Merge remote-tracking branches 'asoc/topic/ux500' and 'asoc/topic/wm8962' into asoc...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 if (!i915_reset_in_progress(error))
109 return 0;
110
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
116 ret = wait_event_interruptible_timeout(error->reset_queue,
117 !i915_reset_in_progress(error),
118 10*HZ);
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
123 return ret;
124 } else {
125 return 0;
126 }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = to_i915(dev);
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = to_i915(dev);
151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 struct drm_i915_gem_get_aperture *args = data;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = ggtt->base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = obj->base.filp->f_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 put_page(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (WARN_ON(ret)) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
242 struct address_space *mapping = obj->base.filp->f_mapping;
243 char *vaddr = obj->phys_handle->vaddr;
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
261 mark_page_accessed(page);
262 put_page(page);
263 vaddr += PAGE_SIZE;
264 }
265 obj->dirty = 0;
266 }
267
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = to_i915(dev);
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_object_create(dev, size);
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 char *vaddr;
544 int ret;
545
546 if (unlikely(page_do_bit17_swizzling))
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
558 return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564 {
565 if (unlikely(swizzled)) {
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
609 return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617 {
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638 {
639 struct drm_i915_private *dev_priv = to_i915(dev);
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733 out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744 out:
745 return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
753 {
754 char __user *user_data;
755 ssize_t remain;
756 loff_t offset;
757 int shmem_page_offset, page_length, ret = 0;
758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 int prefaulted = 0;
760 int needs_clflush = 0;
761 struct sg_page_iter sg_iter;
762
763 if (!i915_gem_object_has_struct_page(obj))
764 return -ENODEV;
765
766 user_data = u64_to_user_ptr(args->data_ptr);
767 remain = args->size;
768
769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 if (ret)
773 return ret;
774
775 offset = args->offset;
776
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
779 struct page *page = sg_page_iter_page(&sg_iter);
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
802
803 mutex_unlock(&dev->struct_mutex);
804
805 if (likely(!i915.prefault_disable) && !prefaulted) {
806 ret = fault_in_multipages_writeable(user_data, remain);
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
814
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
818
819 mutex_lock(&dev->struct_mutex);
820
821 if (ret)
822 goto out;
823
824 next_page:
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 i915_gem_object_unpin_pages(obj);
832
833 return ret;
834 }
835
836 /**
837 * Reads data from the object referenced by handle.
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
841 *
842 * On error, the contents of *data are undefined.
843 */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 struct drm_file *file)
847 {
848 struct drm_i915_gem_pread *args = data;
849 struct drm_i915_gem_object *obj;
850 int ret = 0;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
856 u64_to_user_ptr(args->data_ptr),
857 args->size))
858 return -EFAULT;
859
860 ret = i915_mutex_lock_interruptible(dev);
861 if (ret)
862 return ret;
863
864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 if (&obj->base == NULL) {
866 ret = -ENOENT;
867 goto unlock;
868 }
869
870 /* Bounds check source. */
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879 ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV) {
883 intel_runtime_pm_get(to_i915(dev));
884 ret = i915_gem_gtt_pread(dev, obj, args->size,
885 args->offset, args->data_ptr);
886 intel_runtime_pm_put(to_i915(dev));
887 }
888
889 out:
890 drm_gem_object_unreference(&obj->base);
891 unlock:
892 mutex_unlock(&dev->struct_mutex);
893 return ret;
894 }
895
896 /* This is the fast write path which cannot handle
897 * page faults in the source data
898 */
899
900 static inline int
901 fast_user_write(struct io_mapping *mapping,
902 loff_t page_base, int page_offset,
903 char __user *user_data,
904 int length)
905 {
906 void __iomem *vaddr_atomic;
907 void *vaddr;
908 unsigned long unwritten;
909
910 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911 /* We can use the cpu mem copy function because this is X86. */
912 vaddr = (void __force*)vaddr_atomic + page_offset;
913 unwritten = __copy_from_user_inatomic_nocache(vaddr,
914 user_data, length);
915 io_mapping_unmap_atomic(vaddr_atomic);
916 return unwritten;
917 }
918
919 /**
920 * This is the fast pwrite path, where we copy the data directly from the
921 * user into the GTT, uncached.
922 * @dev: drm device pointer
923 * @obj: i915 gem object
924 * @args: pwrite arguments structure
925 * @file: drm file pointer
926 */
927 static int
928 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929 struct drm_i915_gem_object *obj,
930 struct drm_i915_gem_pwrite *args,
931 struct drm_file *file)
932 {
933 struct i915_ggtt *ggtt = &i915->ggtt;
934 struct drm_device *dev = obj->base.dev;
935 struct drm_mm_node node;
936 uint64_t remain, offset;
937 char __user *user_data;
938 int ret;
939 bool hit_slow_path = false;
940
941 if (obj->tiling_mode != I915_TILING_NONE)
942 return -EFAULT;
943
944 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945 if (ret) {
946 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
947 if (ret)
948 goto out;
949
950 ret = i915_gem_object_get_pages(obj);
951 if (ret) {
952 remove_mappable_node(&node);
953 goto out;
954 }
955
956 i915_gem_object_pin_pages(obj);
957 } else {
958 node.start = i915_gem_obj_ggtt_offset(obj);
959 node.allocated = false;
960 ret = i915_gem_object_put_fence(obj);
961 if (ret)
962 goto out_unpin;
963 }
964
965 ret = i915_gem_object_set_to_gtt_domain(obj, true);
966 if (ret)
967 goto out_unpin;
968
969 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970 obj->dirty = true;
971
972 user_data = u64_to_user_ptr(args->data_ptr);
973 offset = args->offset;
974 remain = args->size;
975 while (remain) {
976 /* Operation in this page
977 *
978 * page_base = page offset within aperture
979 * page_offset = offset within page
980 * page_length = bytes to copy for this page
981 */
982 u32 page_base = node.start;
983 unsigned page_offset = offset_in_page(offset);
984 unsigned page_length = PAGE_SIZE - page_offset;
985 page_length = remain < page_length ? remain : page_length;
986 if (node.allocated) {
987 wmb(); /* flush the write before we modify the GGTT */
988 ggtt->base.insert_page(&ggtt->base,
989 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
990 node.start, I915_CACHE_NONE, 0);
991 wmb(); /* flush modifications to the GGTT (insert_page) */
992 } else {
993 page_base += offset & PAGE_MASK;
994 }
995 /* If we get a fault while copying data, then (presumably) our
996 * source page isn't available. Return the error and we'll
997 * retry in the slow path.
998 * If the object is non-shmem backed, we retry again with the
999 * path that handles page fault.
1000 */
1001 if (fast_user_write(ggtt->mappable, page_base,
1002 page_offset, user_data, page_length)) {
1003 hit_slow_path = true;
1004 mutex_unlock(&dev->struct_mutex);
1005 if (slow_user_access(ggtt->mappable,
1006 page_base,
1007 page_offset, user_data,
1008 page_length, true)) {
1009 ret = -EFAULT;
1010 mutex_lock(&dev->struct_mutex);
1011 goto out_flush;
1012 }
1013
1014 mutex_lock(&dev->struct_mutex);
1015 }
1016
1017 remain -= page_length;
1018 user_data += page_length;
1019 offset += page_length;
1020 }
1021
1022 out_flush:
1023 if (hit_slow_path) {
1024 if (ret == 0 &&
1025 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1026 /* The user has modified the object whilst we tried
1027 * reading from it, and we now have no idea what domain
1028 * the pages should be in. As we have just been touching
1029 * them directly, flush everything back to the GTT
1030 * domain.
1031 */
1032 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1033 }
1034 }
1035
1036 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1037 out_unpin:
1038 if (node.allocated) {
1039 wmb();
1040 ggtt->base.clear_range(&ggtt->base,
1041 node.start, node.size,
1042 true);
1043 i915_gem_object_unpin_pages(obj);
1044 remove_mappable_node(&node);
1045 } else {
1046 i915_gem_object_ggtt_unpin(obj);
1047 }
1048 out:
1049 return ret;
1050 }
1051
1052 /* Per-page copy function for the shmem pwrite fastpath.
1053 * Flushes invalid cachelines before writing to the target if
1054 * needs_clflush_before is set and flushes out any written cachelines after
1055 * writing if needs_clflush is set. */
1056 static int
1057 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1058 char __user *user_data,
1059 bool page_do_bit17_swizzling,
1060 bool needs_clflush_before,
1061 bool needs_clflush_after)
1062 {
1063 char *vaddr;
1064 int ret;
1065
1066 if (unlikely(page_do_bit17_swizzling))
1067 return -EINVAL;
1068
1069 vaddr = kmap_atomic(page);
1070 if (needs_clflush_before)
1071 drm_clflush_virt_range(vaddr + shmem_page_offset,
1072 page_length);
1073 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1074 user_data, page_length);
1075 if (needs_clflush_after)
1076 drm_clflush_virt_range(vaddr + shmem_page_offset,
1077 page_length);
1078 kunmap_atomic(vaddr);
1079
1080 return ret ? -EFAULT : 0;
1081 }
1082
1083 /* Only difference to the fast-path function is that this can handle bit17
1084 * and uses non-atomic copy and kmap functions. */
1085 static int
1086 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1087 char __user *user_data,
1088 bool page_do_bit17_swizzling,
1089 bool needs_clflush_before,
1090 bool needs_clflush_after)
1091 {
1092 char *vaddr;
1093 int ret;
1094
1095 vaddr = kmap(page);
1096 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1098 page_length,
1099 page_do_bit17_swizzling);
1100 if (page_do_bit17_swizzling)
1101 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102 user_data,
1103 page_length);
1104 else
1105 ret = __copy_from_user(vaddr + shmem_page_offset,
1106 user_data,
1107 page_length);
1108 if (needs_clflush_after)
1109 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1110 page_length,
1111 page_do_bit17_swizzling);
1112 kunmap(page);
1113
1114 return ret ? -EFAULT : 0;
1115 }
1116
1117 static int
1118 i915_gem_shmem_pwrite(struct drm_device *dev,
1119 struct drm_i915_gem_object *obj,
1120 struct drm_i915_gem_pwrite *args,
1121 struct drm_file *file)
1122 {
1123 ssize_t remain;
1124 loff_t offset;
1125 char __user *user_data;
1126 int shmem_page_offset, page_length, ret = 0;
1127 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128 int hit_slowpath = 0;
1129 int needs_clflush_after = 0;
1130 int needs_clflush_before = 0;
1131 struct sg_page_iter sg_iter;
1132
1133 user_data = u64_to_user_ptr(args->data_ptr);
1134 remain = args->size;
1135
1136 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137
1138 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1139 /* If we're not in the cpu write domain, set ourself into the gtt
1140 * write domain and manually flush cachelines (if required). This
1141 * optimizes for the case when the gpu will use the data
1142 * right away and we therefore have to clflush anyway. */
1143 needs_clflush_after = cpu_write_needs_clflush(obj);
1144 ret = i915_gem_object_wait_rendering(obj, false);
1145 if (ret)
1146 return ret;
1147 }
1148 /* Same trick applies to invalidate partially written cachelines read
1149 * before writing. */
1150 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1151 needs_clflush_before =
1152 !cpu_cache_is_coherent(dev, obj->cache_level);
1153
1154 ret = i915_gem_object_get_pages(obj);
1155 if (ret)
1156 return ret;
1157
1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
1160 i915_gem_object_pin_pages(obj);
1161
1162 offset = args->offset;
1163 obj->dirty = 1;
1164
1165 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1166 offset >> PAGE_SHIFT) {
1167 struct page *page = sg_page_iter_page(&sg_iter);
1168 int partial_cacheline_write;
1169
1170 if (remain <= 0)
1171 break;
1172
1173 /* Operation in this page
1174 *
1175 * shmem_page_offset = offset within page in shmem file
1176 * page_length = bytes to copy for this page
1177 */
1178 shmem_page_offset = offset_in_page(offset);
1179
1180 page_length = remain;
1181 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1182 page_length = PAGE_SIZE - shmem_page_offset;
1183
1184 /* If we don't overwrite a cacheline completely we need to be
1185 * careful to have up-to-date data by first clflushing. Don't
1186 * overcomplicate things and flush the entire patch. */
1187 partial_cacheline_write = needs_clflush_before &&
1188 ((shmem_page_offset | page_length)
1189 & (boot_cpu_data.x86_clflush_size - 1));
1190
1191 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1192 (page_to_phys(page) & (1 << 17)) != 0;
1193
1194 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1195 user_data, page_do_bit17_swizzling,
1196 partial_cacheline_write,
1197 needs_clflush_after);
1198 if (ret == 0)
1199 goto next_page;
1200
1201 hit_slowpath = 1;
1202 mutex_unlock(&dev->struct_mutex);
1203 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1204 user_data, page_do_bit17_swizzling,
1205 partial_cacheline_write,
1206 needs_clflush_after);
1207
1208 mutex_lock(&dev->struct_mutex);
1209
1210 if (ret)
1211 goto out;
1212
1213 next_page:
1214 remain -= page_length;
1215 user_data += page_length;
1216 offset += page_length;
1217 }
1218
1219 out:
1220 i915_gem_object_unpin_pages(obj);
1221
1222 if (hit_slowpath) {
1223 /*
1224 * Fixup: Flush cpu caches in case we didn't flush the dirty
1225 * cachelines in-line while writing and the object moved
1226 * out of the cpu write domain while we've dropped the lock.
1227 */
1228 if (!needs_clflush_after &&
1229 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1230 if (i915_gem_clflush_object(obj, obj->pin_display))
1231 needs_clflush_after = true;
1232 }
1233 }
1234
1235 if (needs_clflush_after)
1236 i915_gem_chipset_flush(to_i915(dev));
1237 else
1238 obj->cache_dirty = true;
1239
1240 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1241 return ret;
1242 }
1243
1244 /**
1245 * Writes data to the object referenced by handle.
1246 * @dev: drm device
1247 * @data: ioctl data blob
1248 * @file: drm file
1249 *
1250 * On error, the contents of the buffer that were to be modified are undefined.
1251 */
1252 int
1253 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1254 struct drm_file *file)
1255 {
1256 struct drm_i915_private *dev_priv = to_i915(dev);
1257 struct drm_i915_gem_pwrite *args = data;
1258 struct drm_i915_gem_object *obj;
1259 int ret;
1260
1261 if (args->size == 0)
1262 return 0;
1263
1264 if (!access_ok(VERIFY_READ,
1265 u64_to_user_ptr(args->data_ptr),
1266 args->size))
1267 return -EFAULT;
1268
1269 if (likely(!i915.prefault_disable)) {
1270 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1271 args->size);
1272 if (ret)
1273 return -EFAULT;
1274 }
1275
1276 intel_runtime_pm_get(dev_priv);
1277
1278 ret = i915_mutex_lock_interruptible(dev);
1279 if (ret)
1280 goto put_rpm;
1281
1282 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1283 if (&obj->base == NULL) {
1284 ret = -ENOENT;
1285 goto unlock;
1286 }
1287
1288 /* Bounds check destination. */
1289 if (args->offset > obj->base.size ||
1290 args->size > obj->base.size - args->offset) {
1291 ret = -EINVAL;
1292 goto out;
1293 }
1294
1295 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1296
1297 ret = -EFAULT;
1298 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1299 * it would end up going through the fenced access, and we'll get
1300 * different detiling behavior between reading and writing.
1301 * pread/pwrite currently are reading and writing from the CPU
1302 * perspective, requiring manual detiling by the client.
1303 */
1304 if (!i915_gem_object_has_struct_page(obj) ||
1305 cpu_write_needs_clflush(obj)) {
1306 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1307 /* Note that the gtt paths might fail with non-page-backed user
1308 * pointers (e.g. gtt mappings when moving data between
1309 * textures). Fallback to the shmem path in that case. */
1310 }
1311
1312 if (ret == -EFAULT || ret == -ENOSPC) {
1313 if (obj->phys_handle)
1314 ret = i915_gem_phys_pwrite(obj, args, file);
1315 else if (i915_gem_object_has_struct_page(obj))
1316 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1317 else
1318 ret = -ENODEV;
1319 }
1320
1321 out:
1322 drm_gem_object_unreference(&obj->base);
1323 unlock:
1324 mutex_unlock(&dev->struct_mutex);
1325 put_rpm:
1326 intel_runtime_pm_put(dev_priv);
1327
1328 return ret;
1329 }
1330
1331 static int
1332 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1333 {
1334 if (__i915_terminally_wedged(reset_counter))
1335 return -EIO;
1336
1337 if (__i915_reset_in_progress(reset_counter)) {
1338 /* Non-interruptible callers can't handle -EAGAIN, hence return
1339 * -EIO unconditionally for these. */
1340 if (!interruptible)
1341 return -EIO;
1342
1343 return -EAGAIN;
1344 }
1345
1346 return 0;
1347 }
1348
1349 static unsigned long local_clock_us(unsigned *cpu)
1350 {
1351 unsigned long t;
1352
1353 /* Cheaply and approximately convert from nanoseconds to microseconds.
1354 * The result and subsequent calculations are also defined in the same
1355 * approximate microseconds units. The principal source of timing
1356 * error here is from the simple truncation.
1357 *
1358 * Note that local_clock() is only defined wrt to the current CPU;
1359 * the comparisons are no longer valid if we switch CPUs. Instead of
1360 * blocking preemption for the entire busywait, we can detect the CPU
1361 * switch and use that as indicator of system load and a reason to
1362 * stop busywaiting, see busywait_stop().
1363 */
1364 *cpu = get_cpu();
1365 t = local_clock() >> 10;
1366 put_cpu();
1367
1368 return t;
1369 }
1370
1371 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1372 {
1373 unsigned this_cpu;
1374
1375 if (time_after(local_clock_us(&this_cpu), timeout))
1376 return true;
1377
1378 return this_cpu != cpu;
1379 }
1380
1381 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1382 int state, unsigned long timeout_us)
1383 {
1384 unsigned cpu;
1385
1386 /* When waiting for high frequency requests, e.g. during synchronous
1387 * rendering split between the CPU and GPU, the finite amount of time
1388 * required to set up the irq and wait upon it limits the response
1389 * rate. By busywaiting on the request completion for a short while we
1390 * can service the high frequency waits as quick as possible. However,
1391 * if it is a slow request, we want to sleep as quickly as possible.
1392 * The tradeoff between waiting and sleeping is roughly the time it
1393 * takes to sleep on a request, on the order of a microsecond.
1394 */
1395
1396 timeout_us += local_clock_us(&cpu);
1397 do {
1398 if (i915_gem_request_completed(req))
1399 return true;
1400
1401 if (signal_pending_state(state, current))
1402 break;
1403
1404 if (busywait_stop(timeout_us, cpu))
1405 break;
1406
1407 cpu_relax_lowlatency();
1408 } while (!need_resched());
1409
1410 return false;
1411 }
1412
1413 /**
1414 * __i915_wait_request - wait until execution of request has finished
1415 * @req: duh!
1416 * @interruptible: do an interruptible wait (normally yes)
1417 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1418 * @rps: RPS client
1419 *
1420 * Note: It is of utmost importance that the passed in seqno and reset_counter
1421 * values have been read by the caller in an smp safe manner. Where read-side
1422 * locks are involved, it is sufficient to read the reset_counter before
1423 * unlocking the lock that protects the seqno. For lockless tricks, the
1424 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1425 * inserted.
1426 *
1427 * Returns 0 if the request was found within the alloted time. Else returns the
1428 * errno with remaining time filled in timeout argument.
1429 */
1430 int __i915_wait_request(struct drm_i915_gem_request *req,
1431 bool interruptible,
1432 s64 *timeout,
1433 struct intel_rps_client *rps)
1434 {
1435 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1436 DEFINE_WAIT(reset);
1437 struct intel_wait wait;
1438 unsigned long timeout_remain;
1439 s64 before = 0; /* Only to silence a compiler warning. */
1440 int ret = 0;
1441
1442 might_sleep();
1443
1444 if (list_empty(&req->list))
1445 return 0;
1446
1447 if (i915_gem_request_completed(req))
1448 return 0;
1449
1450 timeout_remain = MAX_SCHEDULE_TIMEOUT;
1451 if (timeout) {
1452 if (WARN_ON(*timeout < 0))
1453 return -EINVAL;
1454
1455 if (*timeout == 0)
1456 return -ETIME;
1457
1458 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1459
1460 /*
1461 * Record current time in case interrupted by signal, or wedged.
1462 */
1463 before = ktime_get_raw_ns();
1464 }
1465
1466 trace_i915_gem_request_wait_begin(req);
1467
1468 /* This client is about to stall waiting for the GPU. In many cases
1469 * this is undesirable and limits the throughput of the system, as
1470 * many clients cannot continue processing user input/output whilst
1471 * blocked. RPS autotuning may take tens of milliseconds to respond
1472 * to the GPU load and thus incurs additional latency for the client.
1473 * We can circumvent that by promoting the GPU frequency to maximum
1474 * before we wait. This makes the GPU throttle up much more quickly
1475 * (good for benchmarks and user experience, e.g. window animations),
1476 * but at a cost of spending more power processing the workload
1477 * (bad for battery). Not all clients even want their results
1478 * immediately and for them we should just let the GPU select its own
1479 * frequency to maximise efficiency. To prevent a single client from
1480 * forcing the clocks too high for the whole system, we only allow
1481 * each client to waitboost once in a busy period.
1482 */
1483 if (INTEL_INFO(req->i915)->gen >= 6)
1484 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1485
1486 /* Optimistic spin for the next ~jiffie before touching IRQs */
1487 if (i915_spin_request(req, state, 5))
1488 goto complete;
1489
1490 set_current_state(state);
1491 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1492
1493 intel_wait_init(&wait, req->seqno);
1494 if (intel_engine_add_wait(req->engine, &wait))
1495 /* In order to check that we haven't missed the interrupt
1496 * as we enabled it, we need to kick ourselves to do a
1497 * coherent check on the seqno before we sleep.
1498 */
1499 goto wakeup;
1500
1501 for (;;) {
1502 if (signal_pending_state(state, current)) {
1503 ret = -ERESTARTSYS;
1504 break;
1505 }
1506
1507 timeout_remain = io_schedule_timeout(timeout_remain);
1508 if (timeout_remain == 0) {
1509 ret = -ETIME;
1510 break;
1511 }
1512
1513 if (intel_wait_complete(&wait))
1514 break;
1515
1516 set_current_state(state);
1517
1518 wakeup:
1519 /* Carefully check if the request is complete, giving time
1520 * for the seqno to be visible following the interrupt.
1521 * We also have to check in case we are kicked by the GPU
1522 * reset in order to drop the struct_mutex.
1523 */
1524 if (__i915_request_irq_complete(req))
1525 break;
1526
1527 /* Only spin if we know the GPU is processing this request */
1528 if (i915_spin_request(req, state, 2))
1529 break;
1530 }
1531 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1532
1533 intel_engine_remove_wait(req->engine, &wait);
1534 __set_current_state(TASK_RUNNING);
1535 complete:
1536 trace_i915_gem_request_wait_end(req);
1537
1538 if (timeout) {
1539 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1540
1541 *timeout = tres < 0 ? 0 : tres;
1542
1543 /*
1544 * Apparently ktime isn't accurate enough and occasionally has a
1545 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1546 * things up to make the test happy. We allow up to 1 jiffy.
1547 *
1548 * This is a regrssion from the timespec->ktime conversion.
1549 */
1550 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1551 *timeout = 0;
1552 }
1553
1554 if (rps && req->seqno == req->engine->last_submitted_seqno) {
1555 /* The GPU is now idle and this client has stalled.
1556 * Since no other client has submitted a request in the
1557 * meantime, assume that this client is the only one
1558 * supplying work to the GPU but is unable to keep that
1559 * work supplied because it is waiting. Since the GPU is
1560 * then never kept fully busy, RPS autoclocking will
1561 * keep the clocks relatively low, causing further delays.
1562 * Compensate by giving the synchronous client credit for
1563 * a waitboost next time.
1564 */
1565 spin_lock(&req->i915->rps.client_lock);
1566 list_del_init(&rps->link);
1567 spin_unlock(&req->i915->rps.client_lock);
1568 }
1569
1570 return ret;
1571 }
1572
1573 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1574 struct drm_file *file)
1575 {
1576 struct drm_i915_file_private *file_priv;
1577
1578 WARN_ON(!req || !file || req->file_priv);
1579
1580 if (!req || !file)
1581 return -EINVAL;
1582
1583 if (req->file_priv)
1584 return -EINVAL;
1585
1586 file_priv = file->driver_priv;
1587
1588 spin_lock(&file_priv->mm.lock);
1589 req->file_priv = file_priv;
1590 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1591 spin_unlock(&file_priv->mm.lock);
1592
1593 req->pid = get_pid(task_pid(current));
1594
1595 return 0;
1596 }
1597
1598 static inline void
1599 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1600 {
1601 struct drm_i915_file_private *file_priv = request->file_priv;
1602
1603 if (!file_priv)
1604 return;
1605
1606 spin_lock(&file_priv->mm.lock);
1607 list_del(&request->client_list);
1608 request->file_priv = NULL;
1609 spin_unlock(&file_priv->mm.lock);
1610
1611 put_pid(request->pid);
1612 request->pid = NULL;
1613 }
1614
1615 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1616 {
1617 trace_i915_gem_request_retire(request);
1618
1619 /* We know the GPU must have read the request to have
1620 * sent us the seqno + interrupt, so use the position
1621 * of tail of the request to update the last known position
1622 * of the GPU head.
1623 *
1624 * Note this requires that we are always called in request
1625 * completion order.
1626 */
1627 request->ringbuf->last_retired_head = request->postfix;
1628
1629 list_del_init(&request->list);
1630 i915_gem_request_remove_from_client(request);
1631
1632 if (request->previous_context) {
1633 if (i915.enable_execlists)
1634 intel_lr_context_unpin(request->previous_context,
1635 request->engine);
1636 }
1637
1638 i915_gem_context_unreference(request->ctx);
1639 i915_gem_request_unreference(request);
1640 }
1641
1642 static void
1643 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1644 {
1645 struct intel_engine_cs *engine = req->engine;
1646 struct drm_i915_gem_request *tmp;
1647
1648 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1649
1650 if (list_empty(&req->list))
1651 return;
1652
1653 do {
1654 tmp = list_first_entry(&engine->request_list,
1655 typeof(*tmp), list);
1656
1657 i915_gem_request_retire(tmp);
1658 } while (tmp != req);
1659
1660 WARN_ON(i915_verify_lists(engine->dev));
1661 }
1662
1663 /**
1664 * Waits for a request to be signaled, and cleans up the
1665 * request and object lists appropriately for that event.
1666 * @req: request to wait on
1667 */
1668 int
1669 i915_wait_request(struct drm_i915_gem_request *req)
1670 {
1671 struct drm_i915_private *dev_priv = req->i915;
1672 bool interruptible;
1673 int ret;
1674
1675 interruptible = dev_priv->mm.interruptible;
1676
1677 BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1678
1679 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1680 if (ret)
1681 return ret;
1682
1683 /* If the GPU hung, we want to keep the requests to find the guilty. */
1684 if (!i915_reset_in_progress(&dev_priv->gpu_error))
1685 __i915_gem_request_retire__upto(req);
1686
1687 return 0;
1688 }
1689
1690 /**
1691 * Ensures that all rendering to the object has completed and the object is
1692 * safe to unbind from the GTT or access from the CPU.
1693 * @obj: i915 gem object
1694 * @readonly: waiting for read access or write
1695 */
1696 int
1697 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1698 bool readonly)
1699 {
1700 int ret, i;
1701
1702 if (!obj->active)
1703 return 0;
1704
1705 if (readonly) {
1706 if (obj->last_write_req != NULL) {
1707 ret = i915_wait_request(obj->last_write_req);
1708 if (ret)
1709 return ret;
1710
1711 i = obj->last_write_req->engine->id;
1712 if (obj->last_read_req[i] == obj->last_write_req)
1713 i915_gem_object_retire__read(obj, i);
1714 else
1715 i915_gem_object_retire__write(obj);
1716 }
1717 } else {
1718 for (i = 0; i < I915_NUM_ENGINES; i++) {
1719 if (obj->last_read_req[i] == NULL)
1720 continue;
1721
1722 ret = i915_wait_request(obj->last_read_req[i]);
1723 if (ret)
1724 return ret;
1725
1726 i915_gem_object_retire__read(obj, i);
1727 }
1728 GEM_BUG_ON(obj->active);
1729 }
1730
1731 return 0;
1732 }
1733
1734 static void
1735 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1736 struct drm_i915_gem_request *req)
1737 {
1738 int ring = req->engine->id;
1739
1740 if (obj->last_read_req[ring] == req)
1741 i915_gem_object_retire__read(obj, ring);
1742 else if (obj->last_write_req == req)
1743 i915_gem_object_retire__write(obj);
1744
1745 if (!i915_reset_in_progress(&req->i915->gpu_error))
1746 __i915_gem_request_retire__upto(req);
1747 }
1748
1749 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1750 * as the object state may change during this call.
1751 */
1752 static __must_check int
1753 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1754 struct intel_rps_client *rps,
1755 bool readonly)
1756 {
1757 struct drm_device *dev = obj->base.dev;
1758 struct drm_i915_private *dev_priv = to_i915(dev);
1759 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1760 int ret, i, n = 0;
1761
1762 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1763 BUG_ON(!dev_priv->mm.interruptible);
1764
1765 if (!obj->active)
1766 return 0;
1767
1768 if (readonly) {
1769 struct drm_i915_gem_request *req;
1770
1771 req = obj->last_write_req;
1772 if (req == NULL)
1773 return 0;
1774
1775 requests[n++] = i915_gem_request_reference(req);
1776 } else {
1777 for (i = 0; i < I915_NUM_ENGINES; i++) {
1778 struct drm_i915_gem_request *req;
1779
1780 req = obj->last_read_req[i];
1781 if (req == NULL)
1782 continue;
1783
1784 requests[n++] = i915_gem_request_reference(req);
1785 }
1786 }
1787
1788 mutex_unlock(&dev->struct_mutex);
1789 ret = 0;
1790 for (i = 0; ret == 0 && i < n; i++)
1791 ret = __i915_wait_request(requests[i], true, NULL, rps);
1792 mutex_lock(&dev->struct_mutex);
1793
1794 for (i = 0; i < n; i++) {
1795 if (ret == 0)
1796 i915_gem_object_retire_request(obj, requests[i]);
1797 i915_gem_request_unreference(requests[i]);
1798 }
1799
1800 return ret;
1801 }
1802
1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1804 {
1805 struct drm_i915_file_private *fpriv = file->driver_priv;
1806 return &fpriv->rps;
1807 }
1808
1809 static enum fb_op_origin
1810 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1811 {
1812 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1813 ORIGIN_GTT : ORIGIN_CPU;
1814 }
1815
1816 /**
1817 * Called when user space prepares to use an object with the CPU, either
1818 * through the mmap ioctl's mapping or a GTT mapping.
1819 * @dev: drm device
1820 * @data: ioctl data blob
1821 * @file: drm file
1822 */
1823 int
1824 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1825 struct drm_file *file)
1826 {
1827 struct drm_i915_gem_set_domain *args = data;
1828 struct drm_i915_gem_object *obj;
1829 uint32_t read_domains = args->read_domains;
1830 uint32_t write_domain = args->write_domain;
1831 int ret;
1832
1833 /* Only handle setting domains to types used by the CPU. */
1834 if (write_domain & I915_GEM_GPU_DOMAINS)
1835 return -EINVAL;
1836
1837 if (read_domains & I915_GEM_GPU_DOMAINS)
1838 return -EINVAL;
1839
1840 /* Having something in the write domain implies it's in the read
1841 * domain, and only that read domain. Enforce that in the request.
1842 */
1843 if (write_domain != 0 && read_domains != write_domain)
1844 return -EINVAL;
1845
1846 ret = i915_mutex_lock_interruptible(dev);
1847 if (ret)
1848 return ret;
1849
1850 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1851 if (&obj->base == NULL) {
1852 ret = -ENOENT;
1853 goto unlock;
1854 }
1855
1856 /* Try to flush the object off the GPU without holding the lock.
1857 * We will repeat the flush holding the lock in the normal manner
1858 * to catch cases where we are gazumped.
1859 */
1860 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1861 to_rps_client(file),
1862 !write_domain);
1863 if (ret)
1864 goto unref;
1865
1866 if (read_domains & I915_GEM_DOMAIN_GTT)
1867 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1868 else
1869 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1870
1871 if (write_domain != 0)
1872 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1873
1874 unref:
1875 drm_gem_object_unreference(&obj->base);
1876 unlock:
1877 mutex_unlock(&dev->struct_mutex);
1878 return ret;
1879 }
1880
1881 /**
1882 * Called when user space has done writes to this buffer
1883 * @dev: drm device
1884 * @data: ioctl data blob
1885 * @file: drm file
1886 */
1887 int
1888 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1889 struct drm_file *file)
1890 {
1891 struct drm_i915_gem_sw_finish *args = data;
1892 struct drm_i915_gem_object *obj;
1893 int ret = 0;
1894
1895 ret = i915_mutex_lock_interruptible(dev);
1896 if (ret)
1897 return ret;
1898
1899 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1900 if (&obj->base == NULL) {
1901 ret = -ENOENT;
1902 goto unlock;
1903 }
1904
1905 /* Pinned buffers may be scanout, so flush the cache */
1906 if (obj->pin_display)
1907 i915_gem_object_flush_cpu_write_domain(obj);
1908
1909 drm_gem_object_unreference(&obj->base);
1910 unlock:
1911 mutex_unlock(&dev->struct_mutex);
1912 return ret;
1913 }
1914
1915 /**
1916 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1917 * it is mapped to.
1918 * @dev: drm device
1919 * @data: ioctl data blob
1920 * @file: drm file
1921 *
1922 * While the mapping holds a reference on the contents of the object, it doesn't
1923 * imply a ref on the object itself.
1924 *
1925 * IMPORTANT:
1926 *
1927 * DRM driver writers who look a this function as an example for how to do GEM
1928 * mmap support, please don't implement mmap support like here. The modern way
1929 * to implement DRM mmap support is with an mmap offset ioctl (like
1930 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1931 * That way debug tooling like valgrind will understand what's going on, hiding
1932 * the mmap call in a driver private ioctl will break that. The i915 driver only
1933 * does cpu mmaps this way because we didn't know better.
1934 */
1935 int
1936 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1937 struct drm_file *file)
1938 {
1939 struct drm_i915_gem_mmap *args = data;
1940 struct drm_gem_object *obj;
1941 unsigned long addr;
1942
1943 if (args->flags & ~(I915_MMAP_WC))
1944 return -EINVAL;
1945
1946 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1947 return -ENODEV;
1948
1949 obj = drm_gem_object_lookup(file, args->handle);
1950 if (obj == NULL)
1951 return -ENOENT;
1952
1953 /* prime objects have no backing filp to GEM mmap
1954 * pages from.
1955 */
1956 if (!obj->filp) {
1957 drm_gem_object_unreference_unlocked(obj);
1958 return -EINVAL;
1959 }
1960
1961 addr = vm_mmap(obj->filp, 0, args->size,
1962 PROT_READ | PROT_WRITE, MAP_SHARED,
1963 args->offset);
1964 if (args->flags & I915_MMAP_WC) {
1965 struct mm_struct *mm = current->mm;
1966 struct vm_area_struct *vma;
1967
1968 if (down_write_killable(&mm->mmap_sem)) {
1969 drm_gem_object_unreference_unlocked(obj);
1970 return -EINTR;
1971 }
1972 vma = find_vma(mm, addr);
1973 if (vma)
1974 vma->vm_page_prot =
1975 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1976 else
1977 addr = -ENOMEM;
1978 up_write(&mm->mmap_sem);
1979
1980 /* This may race, but that's ok, it only gets set */
1981 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1982 }
1983 drm_gem_object_unreference_unlocked(obj);
1984 if (IS_ERR((void *)addr))
1985 return addr;
1986
1987 args->addr_ptr = (uint64_t) addr;
1988
1989 return 0;
1990 }
1991
1992 /**
1993 * i915_gem_fault - fault a page into the GTT
1994 * @vma: VMA in question
1995 * @vmf: fault info
1996 *
1997 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1998 * from userspace. The fault handler takes care of binding the object to
1999 * the GTT (if needed), allocating and programming a fence register (again,
2000 * only if needed based on whether the old reg is still valid or the object
2001 * is tiled) and inserting a new PTE into the faulting process.
2002 *
2003 * Note that the faulting process may involve evicting existing objects
2004 * from the GTT and/or fence registers to make room. So performance may
2005 * suffer if the GTT working set is large or there are few fence registers
2006 * left.
2007 */
2008 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2009 {
2010 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2011 struct drm_device *dev = obj->base.dev;
2012 struct drm_i915_private *dev_priv = to_i915(dev);
2013 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014 struct i915_ggtt_view view = i915_ggtt_view_normal;
2015 pgoff_t page_offset;
2016 unsigned long pfn;
2017 int ret = 0;
2018 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2019
2020 intel_runtime_pm_get(dev_priv);
2021
2022 /* We don't use vmf->pgoff since that has the fake offset */
2023 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2024 PAGE_SHIFT;
2025
2026 ret = i915_mutex_lock_interruptible(dev);
2027 if (ret)
2028 goto out;
2029
2030 trace_i915_gem_object_fault(obj, page_offset, true, write);
2031
2032 /* Try to flush the object off the GPU first without holding the lock.
2033 * Upon reacquiring the lock, we will perform our sanity checks and then
2034 * repeat the flush holding the lock in the normal manner to catch cases
2035 * where we are gazumped.
2036 */
2037 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2038 if (ret)
2039 goto unlock;
2040
2041 /* Access to snoopable pages through the GTT is incoherent. */
2042 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2043 ret = -EFAULT;
2044 goto unlock;
2045 }
2046
2047 /* Use a partial view if the object is bigger than the aperture. */
2048 if (obj->base.size >= ggtt->mappable_end &&
2049 obj->tiling_mode == I915_TILING_NONE) {
2050 static const unsigned int chunk_size = 256; // 1 MiB
2051
2052 memset(&view, 0, sizeof(view));
2053 view.type = I915_GGTT_VIEW_PARTIAL;
2054 view.params.partial.offset = rounddown(page_offset, chunk_size);
2055 view.params.partial.size =
2056 min_t(unsigned int,
2057 chunk_size,
2058 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2059 view.params.partial.offset);
2060 }
2061
2062 /* Now pin it into the GTT if needed */
2063 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2064 if (ret)
2065 goto unlock;
2066
2067 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2068 if (ret)
2069 goto unpin;
2070
2071 ret = i915_gem_object_get_fence(obj);
2072 if (ret)
2073 goto unpin;
2074
2075 /* Finally, remap it using the new GTT offset */
2076 pfn = ggtt->mappable_base +
2077 i915_gem_obj_ggtt_offset_view(obj, &view);
2078 pfn >>= PAGE_SHIFT;
2079
2080 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2081 /* Overriding existing pages in partial view does not cause
2082 * us any trouble as TLBs are still valid because the fault
2083 * is due to userspace losing part of the mapping or never
2084 * having accessed it before (at this partials' range).
2085 */
2086 unsigned long base = vma->vm_start +
2087 (view.params.partial.offset << PAGE_SHIFT);
2088 unsigned int i;
2089
2090 for (i = 0; i < view.params.partial.size; i++) {
2091 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2092 if (ret)
2093 break;
2094 }
2095
2096 obj->fault_mappable = true;
2097 } else {
2098 if (!obj->fault_mappable) {
2099 unsigned long size = min_t(unsigned long,
2100 vma->vm_end - vma->vm_start,
2101 obj->base.size);
2102 int i;
2103
2104 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2105 ret = vm_insert_pfn(vma,
2106 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2107 pfn + i);
2108 if (ret)
2109 break;
2110 }
2111
2112 obj->fault_mappable = true;
2113 } else
2114 ret = vm_insert_pfn(vma,
2115 (unsigned long)vmf->virtual_address,
2116 pfn + page_offset);
2117 }
2118 unpin:
2119 i915_gem_object_ggtt_unpin_view(obj, &view);
2120 unlock:
2121 mutex_unlock(&dev->struct_mutex);
2122 out:
2123 switch (ret) {
2124 case -EIO:
2125 /*
2126 * We eat errors when the gpu is terminally wedged to avoid
2127 * userspace unduly crashing (gl has no provisions for mmaps to
2128 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2129 * and so needs to be reported.
2130 */
2131 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2132 ret = VM_FAULT_SIGBUS;
2133 break;
2134 }
2135 case -EAGAIN:
2136 /*
2137 * EAGAIN means the gpu is hung and we'll wait for the error
2138 * handler to reset everything when re-faulting in
2139 * i915_mutex_lock_interruptible.
2140 */
2141 case 0:
2142 case -ERESTARTSYS:
2143 case -EINTR:
2144 case -EBUSY:
2145 /*
2146 * EBUSY is ok: this just means that another thread
2147 * already did the job.
2148 */
2149 ret = VM_FAULT_NOPAGE;
2150 break;
2151 case -ENOMEM:
2152 ret = VM_FAULT_OOM;
2153 break;
2154 case -ENOSPC:
2155 case -EFAULT:
2156 ret = VM_FAULT_SIGBUS;
2157 break;
2158 default:
2159 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160 ret = VM_FAULT_SIGBUS;
2161 break;
2162 }
2163
2164 intel_runtime_pm_put(dev_priv);
2165 return ret;
2166 }
2167
2168 /**
2169 * i915_gem_release_mmap - remove physical page mappings
2170 * @obj: obj in question
2171 *
2172 * Preserve the reservation of the mmapping with the DRM core code, but
2173 * relinquish ownership of the pages back to the system.
2174 *
2175 * It is vital that we remove the page mapping if we have mapped a tiled
2176 * object through the GTT and then lose the fence register due to
2177 * resource pressure. Similarly if the object has been moved out of the
2178 * aperture, than pages mapped into userspace must be revoked. Removing the
2179 * mapping will then trigger a page fault on the next user access, allowing
2180 * fixup by i915_gem_fault().
2181 */
2182 void
2183 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2184 {
2185 /* Serialisation between user GTT access and our code depends upon
2186 * revoking the CPU's PTE whilst the mutex is held. The next user
2187 * pagefault then has to wait until we release the mutex.
2188 */
2189 lockdep_assert_held(&obj->base.dev->struct_mutex);
2190
2191 if (!obj->fault_mappable)
2192 return;
2193
2194 drm_vma_node_unmap(&obj->base.vma_node,
2195 obj->base.dev->anon_inode->i_mapping);
2196
2197 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2198 * memory transactions from userspace before we return. The TLB
2199 * flushing implied above by changing the PTE above *should* be
2200 * sufficient, an extra barrier here just provides us with a bit
2201 * of paranoid documentation about our requirement to serialise
2202 * memory writes before touching registers / GSM.
2203 */
2204 wmb();
2205
2206 obj->fault_mappable = false;
2207 }
2208
2209 void
2210 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2211 {
2212 struct drm_i915_gem_object *obj;
2213
2214 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2215 i915_gem_release_mmap(obj);
2216 }
2217
2218 uint32_t
2219 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2220 {
2221 uint32_t gtt_size;
2222
2223 if (INTEL_INFO(dev)->gen >= 4 ||
2224 tiling_mode == I915_TILING_NONE)
2225 return size;
2226
2227 /* Previous chips need a power-of-two fence region when tiling */
2228 if (IS_GEN3(dev))
2229 gtt_size = 1024*1024;
2230 else
2231 gtt_size = 512*1024;
2232
2233 while (gtt_size < size)
2234 gtt_size <<= 1;
2235
2236 return gtt_size;
2237 }
2238
2239 /**
2240 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2241 * @dev: drm device
2242 * @size: object size
2243 * @tiling_mode: tiling mode
2244 * @fenced: is fenced alignemned required or not
2245 *
2246 * Return the required GTT alignment for an object, taking into account
2247 * potential fence register mapping.
2248 */
2249 uint32_t
2250 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2251 int tiling_mode, bool fenced)
2252 {
2253 /*
2254 * Minimum alignment is 4k (GTT page size), but might be greater
2255 * if a fence register is needed for the object.
2256 */
2257 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2258 tiling_mode == I915_TILING_NONE)
2259 return 4096;
2260
2261 /*
2262 * Previous chips need to be aligned to the size of the smallest
2263 * fence register that can contain the object.
2264 */
2265 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2266 }
2267
2268 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2269 {
2270 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2271 int ret;
2272
2273 dev_priv->mm.shrinker_no_lock_stealing = true;
2274
2275 ret = drm_gem_create_mmap_offset(&obj->base);
2276 if (ret != -ENOSPC)
2277 goto out;
2278
2279 /* Badly fragmented mmap space? The only way we can recover
2280 * space is by destroying unwanted objects. We can't randomly release
2281 * mmap_offsets as userspace expects them to be persistent for the
2282 * lifetime of the objects. The closest we can is to release the
2283 * offsets on purgeable objects by truncating it and marking it purged,
2284 * which prevents userspace from ever using that object again.
2285 */
2286 i915_gem_shrink(dev_priv,
2287 obj->base.size >> PAGE_SHIFT,
2288 I915_SHRINK_BOUND |
2289 I915_SHRINK_UNBOUND |
2290 I915_SHRINK_PURGEABLE);
2291 ret = drm_gem_create_mmap_offset(&obj->base);
2292 if (ret != -ENOSPC)
2293 goto out;
2294
2295 i915_gem_shrink_all(dev_priv);
2296 ret = drm_gem_create_mmap_offset(&obj->base);
2297 out:
2298 dev_priv->mm.shrinker_no_lock_stealing = false;
2299
2300 return ret;
2301 }
2302
2303 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2304 {
2305 drm_gem_free_mmap_offset(&obj->base);
2306 }
2307
2308 int
2309 i915_gem_mmap_gtt(struct drm_file *file,
2310 struct drm_device *dev,
2311 uint32_t handle,
2312 uint64_t *offset)
2313 {
2314 struct drm_i915_gem_object *obj;
2315 int ret;
2316
2317 ret = i915_mutex_lock_interruptible(dev);
2318 if (ret)
2319 return ret;
2320
2321 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2322 if (&obj->base == NULL) {
2323 ret = -ENOENT;
2324 goto unlock;
2325 }
2326
2327 if (obj->madv != I915_MADV_WILLNEED) {
2328 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2329 ret = -EFAULT;
2330 goto out;
2331 }
2332
2333 ret = i915_gem_object_create_mmap_offset(obj);
2334 if (ret)
2335 goto out;
2336
2337 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2338
2339 out:
2340 drm_gem_object_unreference(&obj->base);
2341 unlock:
2342 mutex_unlock(&dev->struct_mutex);
2343 return ret;
2344 }
2345
2346 /**
2347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2348 * @dev: DRM device
2349 * @data: GTT mapping ioctl data
2350 * @file: GEM object info
2351 *
2352 * Simply returns the fake offset to userspace so it can mmap it.
2353 * The mmap call will end up in drm_gem_mmap(), which will set things
2354 * up so we can get faults in the handler above.
2355 *
2356 * The fault handler will take care of binding the object into the GTT
2357 * (since it may have been evicted to make room for something), allocating
2358 * a fence register, and mapping the appropriate aperture address into
2359 * userspace.
2360 */
2361 int
2362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2363 struct drm_file *file)
2364 {
2365 struct drm_i915_gem_mmap_gtt *args = data;
2366
2367 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2368 }
2369
2370 /* Immediately discard the backing storage */
2371 static void
2372 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2373 {
2374 i915_gem_object_free_mmap_offset(obj);
2375
2376 if (obj->base.filp == NULL)
2377 return;
2378
2379 /* Our goal here is to return as much of the memory as
2380 * is possible back to the system as we are called from OOM.
2381 * To do this we must instruct the shmfs to drop all of its
2382 * backing pages, *now*.
2383 */
2384 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2385 obj->madv = __I915_MADV_PURGED;
2386 }
2387
2388 /* Try to discard unwanted pages */
2389 static void
2390 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2391 {
2392 struct address_space *mapping;
2393
2394 switch (obj->madv) {
2395 case I915_MADV_DONTNEED:
2396 i915_gem_object_truncate(obj);
2397 case __I915_MADV_PURGED:
2398 return;
2399 }
2400
2401 if (obj->base.filp == NULL)
2402 return;
2403
2404 mapping = obj->base.filp->f_mapping,
2405 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2406 }
2407
2408 static void
2409 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2410 {
2411 struct sgt_iter sgt_iter;
2412 struct page *page;
2413 int ret;
2414
2415 BUG_ON(obj->madv == __I915_MADV_PURGED);
2416
2417 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2418 if (WARN_ON(ret)) {
2419 /* In the event of a disaster, abandon all caches and
2420 * hope for the best.
2421 */
2422 i915_gem_clflush_object(obj, true);
2423 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2424 }
2425
2426 i915_gem_gtt_finish_object(obj);
2427
2428 if (i915_gem_object_needs_bit17_swizzle(obj))
2429 i915_gem_object_save_bit_17_swizzle(obj);
2430
2431 if (obj->madv == I915_MADV_DONTNEED)
2432 obj->dirty = 0;
2433
2434 for_each_sgt_page(page, sgt_iter, obj->pages) {
2435 if (obj->dirty)
2436 set_page_dirty(page);
2437
2438 if (obj->madv == I915_MADV_WILLNEED)
2439 mark_page_accessed(page);
2440
2441 put_page(page);
2442 }
2443 obj->dirty = 0;
2444
2445 sg_free_table(obj->pages);
2446 kfree(obj->pages);
2447 }
2448
2449 int
2450 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2451 {
2452 const struct drm_i915_gem_object_ops *ops = obj->ops;
2453
2454 if (obj->pages == NULL)
2455 return 0;
2456
2457 if (obj->pages_pin_count)
2458 return -EBUSY;
2459
2460 BUG_ON(i915_gem_obj_bound_any(obj));
2461
2462 /* ->put_pages might need to allocate memory for the bit17 swizzle
2463 * array, hence protect them from being reaped by removing them from gtt
2464 * lists early. */
2465 list_del(&obj->global_list);
2466
2467 if (obj->mapping) {
2468 if (is_vmalloc_addr(obj->mapping))
2469 vunmap(obj->mapping);
2470 else
2471 kunmap(kmap_to_page(obj->mapping));
2472 obj->mapping = NULL;
2473 }
2474
2475 ops->put_pages(obj);
2476 obj->pages = NULL;
2477
2478 i915_gem_object_invalidate(obj);
2479
2480 return 0;
2481 }
2482
2483 static int
2484 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 int page_count, i;
2488 struct address_space *mapping;
2489 struct sg_table *st;
2490 struct scatterlist *sg;
2491 struct sgt_iter sgt_iter;
2492 struct page *page;
2493 unsigned long last_pfn = 0; /* suppress gcc warning */
2494 int ret;
2495 gfp_t gfp;
2496
2497 /* Assert that the object is not currently in any GPU domain. As it
2498 * wasn't in the GTT, there shouldn't be any way it could have been in
2499 * a GPU cache
2500 */
2501 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2502 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2503
2504 st = kmalloc(sizeof(*st), GFP_KERNEL);
2505 if (st == NULL)
2506 return -ENOMEM;
2507
2508 page_count = obj->base.size / PAGE_SIZE;
2509 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2510 kfree(st);
2511 return -ENOMEM;
2512 }
2513
2514 /* Get the list of pages out of our struct file. They'll be pinned
2515 * at this point until we release them.
2516 *
2517 * Fail silently without starting the shrinker
2518 */
2519 mapping = obj->base.filp->f_mapping;
2520 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2521 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2522 sg = st->sgl;
2523 st->nents = 0;
2524 for (i = 0; i < page_count; i++) {
2525 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2526 if (IS_ERR(page)) {
2527 i915_gem_shrink(dev_priv,
2528 page_count,
2529 I915_SHRINK_BOUND |
2530 I915_SHRINK_UNBOUND |
2531 I915_SHRINK_PURGEABLE);
2532 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2533 }
2534 if (IS_ERR(page)) {
2535 /* We've tried hard to allocate the memory by reaping
2536 * our own buffer, now let the real VM do its job and
2537 * go down in flames if truly OOM.
2538 */
2539 i915_gem_shrink_all(dev_priv);
2540 page = shmem_read_mapping_page(mapping, i);
2541 if (IS_ERR(page)) {
2542 ret = PTR_ERR(page);
2543 goto err_pages;
2544 }
2545 }
2546 #ifdef CONFIG_SWIOTLB
2547 if (swiotlb_nr_tbl()) {
2548 st->nents++;
2549 sg_set_page(sg, page, PAGE_SIZE, 0);
2550 sg = sg_next(sg);
2551 continue;
2552 }
2553 #endif
2554 if (!i || page_to_pfn(page) != last_pfn + 1) {
2555 if (i)
2556 sg = sg_next(sg);
2557 st->nents++;
2558 sg_set_page(sg, page, PAGE_SIZE, 0);
2559 } else {
2560 sg->length += PAGE_SIZE;
2561 }
2562 last_pfn = page_to_pfn(page);
2563
2564 /* Check that the i965g/gm workaround works. */
2565 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2566 }
2567 #ifdef CONFIG_SWIOTLB
2568 if (!swiotlb_nr_tbl())
2569 #endif
2570 sg_mark_end(sg);
2571 obj->pages = st;
2572
2573 ret = i915_gem_gtt_prepare_object(obj);
2574 if (ret)
2575 goto err_pages;
2576
2577 if (i915_gem_object_needs_bit17_swizzle(obj))
2578 i915_gem_object_do_bit_17_swizzle(obj);
2579
2580 if (obj->tiling_mode != I915_TILING_NONE &&
2581 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2582 i915_gem_object_pin_pages(obj);
2583
2584 return 0;
2585
2586 err_pages:
2587 sg_mark_end(sg);
2588 for_each_sgt_page(page, sgt_iter, st)
2589 put_page(page);
2590 sg_free_table(st);
2591 kfree(st);
2592
2593 /* shmemfs first checks if there is enough memory to allocate the page
2594 * and reports ENOSPC should there be insufficient, along with the usual
2595 * ENOMEM for a genuine allocation failure.
2596 *
2597 * We use ENOSPC in our driver to mean that we have run out of aperture
2598 * space and so want to translate the error from shmemfs back to our
2599 * usual understanding of ENOMEM.
2600 */
2601 if (ret == -ENOSPC)
2602 ret = -ENOMEM;
2603
2604 return ret;
2605 }
2606
2607 /* Ensure that the associated pages are gathered from the backing storage
2608 * and pinned into our object. i915_gem_object_get_pages() may be called
2609 * multiple times before they are released by a single call to
2610 * i915_gem_object_put_pages() - once the pages are no longer referenced
2611 * either as a result of memory pressure (reaping pages under the shrinker)
2612 * or as the object is itself released.
2613 */
2614 int
2615 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2616 {
2617 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2618 const struct drm_i915_gem_object_ops *ops = obj->ops;
2619 int ret;
2620
2621 if (obj->pages)
2622 return 0;
2623
2624 if (obj->madv != I915_MADV_WILLNEED) {
2625 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2626 return -EFAULT;
2627 }
2628
2629 BUG_ON(obj->pages_pin_count);
2630
2631 ret = ops->get_pages(obj);
2632 if (ret)
2633 return ret;
2634
2635 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2636
2637 obj->get_page.sg = obj->pages->sgl;
2638 obj->get_page.last = 0;
2639
2640 return 0;
2641 }
2642
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2645 {
2646 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2647 struct sg_table *sgt = obj->pages;
2648 struct sgt_iter sgt_iter;
2649 struct page *page;
2650 struct page *stack_pages[32];
2651 struct page **pages = stack_pages;
2652 unsigned long i = 0;
2653 void *addr;
2654
2655 /* A single page can always be kmapped */
2656 if (n_pages == 1)
2657 return kmap(sg_page(sgt->sgl));
2658
2659 if (n_pages > ARRAY_SIZE(stack_pages)) {
2660 /* Too big for stack -- allocate temporary array instead */
2661 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2662 if (!pages)
2663 return NULL;
2664 }
2665
2666 for_each_sgt_page(page, sgt_iter, sgt)
2667 pages[i++] = page;
2668
2669 /* Check that we have the expected number of pages */
2670 GEM_BUG_ON(i != n_pages);
2671
2672 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2673
2674 if (pages != stack_pages)
2675 drm_free_large(pages);
2676
2677 return addr;
2678 }
2679
2680 /* get, pin, and map the pages of the object into kernel space */
2681 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2682 {
2683 int ret;
2684
2685 lockdep_assert_held(&obj->base.dev->struct_mutex);
2686
2687 ret = i915_gem_object_get_pages(obj);
2688 if (ret)
2689 return ERR_PTR(ret);
2690
2691 i915_gem_object_pin_pages(obj);
2692
2693 if (!obj->mapping) {
2694 obj->mapping = i915_gem_object_map(obj);
2695 if (!obj->mapping) {
2696 i915_gem_object_unpin_pages(obj);
2697 return ERR_PTR(-ENOMEM);
2698 }
2699 }
2700
2701 return obj->mapping;
2702 }
2703
2704 void i915_vma_move_to_active(struct i915_vma *vma,
2705 struct drm_i915_gem_request *req)
2706 {
2707 struct drm_i915_gem_object *obj = vma->obj;
2708 struct intel_engine_cs *engine;
2709
2710 engine = i915_gem_request_get_engine(req);
2711
2712 /* Add a reference if we're newly entering the active list. */
2713 if (obj->active == 0)
2714 drm_gem_object_reference(&obj->base);
2715 obj->active |= intel_engine_flag(engine);
2716
2717 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2718 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2719
2720 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2721 }
2722
2723 static void
2724 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2725 {
2726 GEM_BUG_ON(obj->last_write_req == NULL);
2727 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2728
2729 i915_gem_request_assign(&obj->last_write_req, NULL);
2730 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2731 }
2732
2733 static void
2734 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2735 {
2736 struct i915_vma *vma;
2737
2738 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2739 GEM_BUG_ON(!(obj->active & (1 << ring)));
2740
2741 list_del_init(&obj->engine_list[ring]);
2742 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2743
2744 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2745 i915_gem_object_retire__write(obj);
2746
2747 obj->active &= ~(1 << ring);
2748 if (obj->active)
2749 return;
2750
2751 /* Bump our place on the bound list to keep it roughly in LRU order
2752 * so that we don't steal from recently used but inactive objects
2753 * (unless we are forced to ofc!)
2754 */
2755 list_move_tail(&obj->global_list,
2756 &to_i915(obj->base.dev)->mm.bound_list);
2757
2758 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2759 if (!list_empty(&vma->vm_link))
2760 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2761 }
2762
2763 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2764 drm_gem_object_unreference(&obj->base);
2765 }
2766
2767 static int
2768 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2769 {
2770 struct intel_engine_cs *engine;
2771 int ret;
2772
2773 /* Carefully retire all requests without writing to the rings */
2774 for_each_engine(engine, dev_priv) {
2775 ret = intel_engine_idle(engine);
2776 if (ret)
2777 return ret;
2778 }
2779 i915_gem_retire_requests(dev_priv);
2780
2781 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2782 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2783 while (intel_kick_waiters(dev_priv) ||
2784 intel_kick_signalers(dev_priv))
2785 yield();
2786 }
2787
2788 /* Finally reset hw state */
2789 for_each_engine(engine, dev_priv)
2790 intel_ring_init_seqno(engine, seqno);
2791
2792 return 0;
2793 }
2794
2795 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2796 {
2797 struct drm_i915_private *dev_priv = to_i915(dev);
2798 int ret;
2799
2800 if (seqno == 0)
2801 return -EINVAL;
2802
2803 /* HWS page needs to be set less than what we
2804 * will inject to ring
2805 */
2806 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2807 if (ret)
2808 return ret;
2809
2810 /* Carefully set the last_seqno value so that wrap
2811 * detection still works
2812 */
2813 dev_priv->next_seqno = seqno;
2814 dev_priv->last_seqno = seqno - 1;
2815 if (dev_priv->last_seqno == 0)
2816 dev_priv->last_seqno--;
2817
2818 return 0;
2819 }
2820
2821 int
2822 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2823 {
2824 /* reserve 0 for non-seqno */
2825 if (dev_priv->next_seqno == 0) {
2826 int ret = i915_gem_init_seqno(dev_priv, 0);
2827 if (ret)
2828 return ret;
2829
2830 dev_priv->next_seqno = 1;
2831 }
2832
2833 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2834 return 0;
2835 }
2836
2837 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2838 {
2839 struct drm_i915_private *dev_priv = engine->i915;
2840
2841 dev_priv->gt.active_engines |= intel_engine_flag(engine);
2842 if (dev_priv->gt.awake)
2843 return;
2844
2845 intel_runtime_pm_get_noresume(dev_priv);
2846 dev_priv->gt.awake = true;
2847
2848 i915_update_gfx_val(dev_priv);
2849 if (INTEL_GEN(dev_priv) >= 6)
2850 gen6_rps_busy(dev_priv);
2851
2852 queue_delayed_work(dev_priv->wq,
2853 &dev_priv->gt.retire_work,
2854 round_jiffies_up_relative(HZ));
2855 }
2856
2857 /*
2858 * NB: This function is not allowed to fail. Doing so would mean the the
2859 * request is not being tracked for completion but the work itself is
2860 * going to happen on the hardware. This would be a Bad Thing(tm).
2861 */
2862 void __i915_add_request(struct drm_i915_gem_request *request,
2863 struct drm_i915_gem_object *obj,
2864 bool flush_caches)
2865 {
2866 struct intel_engine_cs *engine;
2867 struct intel_ringbuffer *ringbuf;
2868 u32 request_start;
2869 u32 reserved_tail;
2870 int ret;
2871
2872 if (WARN_ON(request == NULL))
2873 return;
2874
2875 engine = request->engine;
2876 ringbuf = request->ringbuf;
2877
2878 /*
2879 * To ensure that this call will not fail, space for its emissions
2880 * should already have been reserved in the ring buffer. Let the ring
2881 * know that it is time to use that space up.
2882 */
2883 request_start = intel_ring_get_tail(ringbuf);
2884 reserved_tail = request->reserved_space;
2885 request->reserved_space = 0;
2886
2887 /*
2888 * Emit any outstanding flushes - execbuf can fail to emit the flush
2889 * after having emitted the batchbuffer command. Hence we need to fix
2890 * things up similar to emitting the lazy request. The difference here
2891 * is that the flush _must_ happen before the next request, no matter
2892 * what.
2893 */
2894 if (flush_caches) {
2895 if (i915.enable_execlists)
2896 ret = logical_ring_flush_all_caches(request);
2897 else
2898 ret = intel_ring_flush_all_caches(request);
2899 /* Not allowed to fail! */
2900 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2901 }
2902
2903 trace_i915_gem_request_add(request);
2904
2905 request->head = request_start;
2906
2907 /* Whilst this request exists, batch_obj will be on the
2908 * active_list, and so will hold the active reference. Only when this
2909 * request is retired will the the batch_obj be moved onto the
2910 * inactive_list and lose its active reference. Hence we do not need
2911 * to explicitly hold another reference here.
2912 */
2913 request->batch_obj = obj;
2914
2915 /* Seal the request and mark it as pending execution. Note that
2916 * we may inspect this state, without holding any locks, during
2917 * hangcheck. Hence we apply the barrier to ensure that we do not
2918 * see a more recent value in the hws than we are tracking.
2919 */
2920 request->emitted_jiffies = jiffies;
2921 request->previous_seqno = engine->last_submitted_seqno;
2922 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2923 list_add_tail(&request->list, &engine->request_list);
2924
2925 /* Record the position of the start of the request so that
2926 * should we detect the updated seqno part-way through the
2927 * GPU processing the request, we never over-estimate the
2928 * position of the head.
2929 */
2930 request->postfix = intel_ring_get_tail(ringbuf);
2931
2932 if (i915.enable_execlists)
2933 ret = engine->emit_request(request);
2934 else {
2935 ret = engine->add_request(request);
2936
2937 request->tail = intel_ring_get_tail(ringbuf);
2938 }
2939 /* Not allowed to fail! */
2940 WARN(ret, "emit|add_request failed: %d!\n", ret);
2941 /* Sanity check that the reserved size was large enough. */
2942 ret = intel_ring_get_tail(ringbuf) - request_start;
2943 if (ret < 0)
2944 ret += ringbuf->size;
2945 WARN_ONCE(ret > reserved_tail,
2946 "Not enough space reserved (%d bytes) "
2947 "for adding the request (%d bytes)\n",
2948 reserved_tail, ret);
2949
2950 i915_gem_mark_busy(engine);
2951 }
2952
2953 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2954 {
2955 unsigned long elapsed;
2956
2957 if (ctx->hang_stats.banned)
2958 return true;
2959
2960 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2961 if (ctx->hang_stats.ban_period_seconds &&
2962 elapsed <= ctx->hang_stats.ban_period_seconds) {
2963 DRM_DEBUG("context hanging too fast, banning!\n");
2964 return true;
2965 }
2966
2967 return false;
2968 }
2969
2970 static void i915_set_reset_status(struct i915_gem_context *ctx,
2971 const bool guilty)
2972 {
2973 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2974
2975 if (guilty) {
2976 hs->banned = i915_context_is_banned(ctx);
2977 hs->batch_active++;
2978 hs->guilty_ts = get_seconds();
2979 } else {
2980 hs->batch_pending++;
2981 }
2982 }
2983
2984 void i915_gem_request_free(struct kref *req_ref)
2985 {
2986 struct drm_i915_gem_request *req = container_of(req_ref,
2987 typeof(*req), ref);
2988 kmem_cache_free(req->i915->requests, req);
2989 }
2990
2991 static inline int
2992 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2993 struct i915_gem_context *ctx,
2994 struct drm_i915_gem_request **req_out)
2995 {
2996 struct drm_i915_private *dev_priv = engine->i915;
2997 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2998 struct drm_i915_gem_request *req;
2999 int ret;
3000
3001 if (!req_out)
3002 return -EINVAL;
3003
3004 *req_out = NULL;
3005
3006 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3007 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3008 * and restart.
3009 */
3010 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3011 if (ret)
3012 return ret;
3013
3014 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3015 if (req == NULL)
3016 return -ENOMEM;
3017
3018 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3019 if (ret)
3020 goto err;
3021
3022 kref_init(&req->ref);
3023 req->i915 = dev_priv;
3024 req->engine = engine;
3025 req->ctx = ctx;
3026 i915_gem_context_reference(req->ctx);
3027
3028 /*
3029 * Reserve space in the ring buffer for all the commands required to
3030 * eventually emit this request. This is to guarantee that the
3031 * i915_add_request() call can't fail. Note that the reserve may need
3032 * to be redone if the request is not actually submitted straight
3033 * away, e.g. because a GPU scheduler has deferred it.
3034 */
3035 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036
3037 if (i915.enable_execlists)
3038 ret = intel_logical_ring_alloc_request_extras(req);
3039 else
3040 ret = intel_ring_alloc_request_extras(req);
3041 if (ret)
3042 goto err_ctx;
3043
3044 *req_out = req;
3045 return 0;
3046
3047 err_ctx:
3048 i915_gem_context_unreference(ctx);
3049 err:
3050 kmem_cache_free(dev_priv->requests, req);
3051 return ret;
3052 }
3053
3054 /**
3055 * i915_gem_request_alloc - allocate a request structure
3056 *
3057 * @engine: engine that we wish to issue the request on.
3058 * @ctx: context that the request will be associated with.
3059 * This can be NULL if the request is not directly related to
3060 * any specific user context, in which case this function will
3061 * choose an appropriate context to use.
3062 *
3063 * Returns a pointer to the allocated request if successful,
3064 * or an error code if not.
3065 */
3066 struct drm_i915_gem_request *
3067 i915_gem_request_alloc(struct intel_engine_cs *engine,
3068 struct i915_gem_context *ctx)
3069 {
3070 struct drm_i915_gem_request *req;
3071 int err;
3072
3073 if (ctx == NULL)
3074 ctx = engine->i915->kernel_context;
3075 err = __i915_gem_request_alloc(engine, ctx, &req);
3076 return err ? ERR_PTR(err) : req;
3077 }
3078
3079 struct drm_i915_gem_request *
3080 i915_gem_find_active_request(struct intel_engine_cs *engine)
3081 {
3082 struct drm_i915_gem_request *request;
3083
3084 /* We are called by the error capture and reset at a random
3085 * point in time. In particular, note that neither is crucially
3086 * ordered with an interrupt. After a hang, the GPU is dead and we
3087 * assume that no more writes can happen (we waited long enough for
3088 * all writes that were in transaction to be flushed) - adding an
3089 * extra delay for a recent interrupt is pointless. Hence, we do
3090 * not need an engine->irq_seqno_barrier() before the seqno reads.
3091 */
3092 list_for_each_entry(request, &engine->request_list, list) {
3093 if (i915_gem_request_completed(request))
3094 continue;
3095
3096 return request;
3097 }
3098
3099 return NULL;
3100 }
3101
3102 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3103 {
3104 struct drm_i915_gem_request *request;
3105 bool ring_hung;
3106
3107 request = i915_gem_find_active_request(engine);
3108 if (request == NULL)
3109 return;
3110
3111 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3112
3113 i915_set_reset_status(request->ctx, ring_hung);
3114 list_for_each_entry_continue(request, &engine->request_list, list)
3115 i915_set_reset_status(request->ctx, false);
3116 }
3117
3118 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3119 {
3120 struct intel_ringbuffer *buffer;
3121
3122 while (!list_empty(&engine->active_list)) {
3123 struct drm_i915_gem_object *obj;
3124
3125 obj = list_first_entry(&engine->active_list,
3126 struct drm_i915_gem_object,
3127 engine_list[engine->id]);
3128
3129 i915_gem_object_retire__read(obj, engine->id);
3130 }
3131
3132 /*
3133 * Clear the execlists queue up before freeing the requests, as those
3134 * are the ones that keep the context and ringbuffer backing objects
3135 * pinned in place.
3136 */
3137
3138 if (i915.enable_execlists) {
3139 /* Ensure irq handler finishes or is cancelled. */
3140 tasklet_kill(&engine->irq_tasklet);
3141
3142 intel_execlists_cancel_requests(engine);
3143 }
3144
3145 /*
3146 * We must free the requests after all the corresponding objects have
3147 * been moved off active lists. Which is the same order as the normal
3148 * retire_requests function does. This is important if object hold
3149 * implicit references on things like e.g. ppgtt address spaces through
3150 * the request.
3151 */
3152 while (!list_empty(&engine->request_list)) {
3153 struct drm_i915_gem_request *request;
3154
3155 request = list_first_entry(&engine->request_list,
3156 struct drm_i915_gem_request,
3157 list);
3158
3159 i915_gem_request_retire(request);
3160 }
3161
3162 /* Having flushed all requests from all queues, we know that all
3163 * ringbuffers must now be empty. However, since we do not reclaim
3164 * all space when retiring the request (to prevent HEADs colliding
3165 * with rapid ringbuffer wraparound) the amount of available space
3166 * upon reset is less than when we start. Do one more pass over
3167 * all the ringbuffers to reset last_retired_head.
3168 */
3169 list_for_each_entry(buffer, &engine->buffers, link) {
3170 buffer->last_retired_head = buffer->tail;
3171 intel_ring_update_space(buffer);
3172 }
3173
3174 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3175
3176 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
3177 }
3178
3179 void i915_gem_reset(struct drm_device *dev)
3180 {
3181 struct drm_i915_private *dev_priv = to_i915(dev);
3182 struct intel_engine_cs *engine;
3183
3184 /*
3185 * Before we free the objects from the requests, we need to inspect
3186 * them for finding the guilty party. As the requests only borrow
3187 * their reference to the objects, the inspection must be done first.
3188 */
3189 for_each_engine(engine, dev_priv)
3190 i915_gem_reset_engine_status(engine);
3191
3192 for_each_engine(engine, dev_priv)
3193 i915_gem_reset_engine_cleanup(engine);
3194 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3195
3196 i915_gem_context_reset(dev);
3197
3198 i915_gem_restore_fences(dev);
3199
3200 WARN_ON(i915_verify_lists(dev));
3201 }
3202
3203 /**
3204 * This function clears the request list as sequence numbers are passed.
3205 * @engine: engine to retire requests on
3206 */
3207 void
3208 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3209 {
3210 WARN_ON(i915_verify_lists(engine->dev));
3211
3212 /* Retire requests first as we use it above for the early return.
3213 * If we retire requests last, we may use a later seqno and so clear
3214 * the requests lists without clearing the active list, leading to
3215 * confusion.
3216 */
3217 while (!list_empty(&engine->request_list)) {
3218 struct drm_i915_gem_request *request;
3219
3220 request = list_first_entry(&engine->request_list,
3221 struct drm_i915_gem_request,
3222 list);
3223
3224 if (!i915_gem_request_completed(request))
3225 break;
3226
3227 i915_gem_request_retire(request);
3228 }
3229
3230 /* Move any buffers on the active list that are no longer referenced
3231 * by the ringbuffer to the flushing/inactive lists as appropriate,
3232 * before we free the context associated with the requests.
3233 */
3234 while (!list_empty(&engine->active_list)) {
3235 struct drm_i915_gem_object *obj;
3236
3237 obj = list_first_entry(&engine->active_list,
3238 struct drm_i915_gem_object,
3239 engine_list[engine->id]);
3240
3241 if (!list_empty(&obj->last_read_req[engine->id]->list))
3242 break;
3243
3244 i915_gem_object_retire__read(obj, engine->id);
3245 }
3246
3247 WARN_ON(i915_verify_lists(engine->dev));
3248 }
3249
3250 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251 {
3252 struct intel_engine_cs *engine;
3253
3254 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3255
3256 if (dev_priv->gt.active_engines == 0)
3257 return;
3258
3259 GEM_BUG_ON(!dev_priv->gt.awake);
3260
3261 for_each_engine(engine, dev_priv) {
3262 i915_gem_retire_requests_ring(engine);
3263 if (list_empty(&engine->request_list))
3264 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3265 }
3266
3267 if (dev_priv->gt.active_engines == 0)
3268 queue_delayed_work(dev_priv->wq,
3269 &dev_priv->gt.idle_work,
3270 msecs_to_jiffies(100));
3271 }
3272
3273 static void
3274 i915_gem_retire_work_handler(struct work_struct *work)
3275 {
3276 struct drm_i915_private *dev_priv =
3277 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3278 struct drm_device *dev = &dev_priv->drm;
3279
3280 /* Come back later if the device is busy... */
3281 if (mutex_trylock(&dev->struct_mutex)) {
3282 i915_gem_retire_requests(dev_priv);
3283 mutex_unlock(&dev->struct_mutex);
3284 }
3285
3286 /* Keep the retire handler running until we are finally idle.
3287 * We do not need to do this test under locking as in the worst-case
3288 * we queue the retire worker once too often.
3289 */
3290 if (READ_ONCE(dev_priv->gt.awake))
3291 queue_delayed_work(dev_priv->wq,
3292 &dev_priv->gt.retire_work,
3293 round_jiffies_up_relative(HZ));
3294 }
3295
3296 static void
3297 i915_gem_idle_work_handler(struct work_struct *work)
3298 {
3299 struct drm_i915_private *dev_priv =
3300 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3301 struct drm_device *dev = &dev_priv->drm;
3302 struct intel_engine_cs *engine;
3303 unsigned int stuck_engines;
3304 bool rearm_hangcheck;
3305
3306 if (!READ_ONCE(dev_priv->gt.awake))
3307 return;
3308
3309 if (READ_ONCE(dev_priv->gt.active_engines))
3310 return;
3311
3312 rearm_hangcheck =
3313 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3314
3315 if (!mutex_trylock(&dev->struct_mutex)) {
3316 /* Currently busy, come back later */
3317 mod_delayed_work(dev_priv->wq,
3318 &dev_priv->gt.idle_work,
3319 msecs_to_jiffies(50));
3320 goto out_rearm;
3321 }
3322
3323 if (dev_priv->gt.active_engines)
3324 goto out_unlock;
3325
3326 for_each_engine(engine, dev_priv)
3327 i915_gem_batch_pool_fini(&engine->batch_pool);
3328
3329 GEM_BUG_ON(!dev_priv->gt.awake);
3330 dev_priv->gt.awake = false;
3331 rearm_hangcheck = false;
3332
3333 stuck_engines = intel_kick_waiters(dev_priv);
3334 if (unlikely(stuck_engines)) {
3335 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3336 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3337 }
3338
3339 if (INTEL_GEN(dev_priv) >= 6)
3340 gen6_rps_idle(dev_priv);
3341 intel_runtime_pm_put(dev_priv);
3342 out_unlock:
3343 mutex_unlock(&dev->struct_mutex);
3344
3345 out_rearm:
3346 if (rearm_hangcheck) {
3347 GEM_BUG_ON(!dev_priv->gt.awake);
3348 i915_queue_hangcheck(dev_priv);
3349 }
3350 }
3351
3352 /**
3353 * Ensures that an object will eventually get non-busy by flushing any required
3354 * write domains, emitting any outstanding lazy request and retiring and
3355 * completed requests.
3356 * @obj: object to flush
3357 */
3358 static int
3359 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3360 {
3361 int i;
3362
3363 if (!obj->active)
3364 return 0;
3365
3366 for (i = 0; i < I915_NUM_ENGINES; i++) {
3367 struct drm_i915_gem_request *req;
3368
3369 req = obj->last_read_req[i];
3370 if (req == NULL)
3371 continue;
3372
3373 if (i915_gem_request_completed(req))
3374 i915_gem_object_retire__read(obj, i);
3375 }
3376
3377 return 0;
3378 }
3379
3380 /**
3381 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3382 * @dev: drm device pointer
3383 * @data: ioctl data blob
3384 * @file: drm file pointer
3385 *
3386 * Returns 0 if successful, else an error is returned with the remaining time in
3387 * the timeout parameter.
3388 * -ETIME: object is still busy after timeout
3389 * -ERESTARTSYS: signal interrupted the wait
3390 * -ENONENT: object doesn't exist
3391 * Also possible, but rare:
3392 * -EAGAIN: GPU wedged
3393 * -ENOMEM: damn
3394 * -ENODEV: Internal IRQ fail
3395 * -E?: The add request failed
3396 *
3397 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3398 * non-zero timeout parameter the wait ioctl will wait for the given number of
3399 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3400 * without holding struct_mutex the object may become re-busied before this
3401 * function completes. A similar but shorter * race condition exists in the busy
3402 * ioctl
3403 */
3404 int
3405 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3406 {
3407 struct drm_i915_gem_wait *args = data;
3408 struct drm_i915_gem_object *obj;
3409 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3410 int i, n = 0;
3411 int ret;
3412
3413 if (args->flags != 0)
3414 return -EINVAL;
3415
3416 ret = i915_mutex_lock_interruptible(dev);
3417 if (ret)
3418 return ret;
3419
3420 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3421 if (&obj->base == NULL) {
3422 mutex_unlock(&dev->struct_mutex);
3423 return -ENOENT;
3424 }
3425
3426 /* Need to make sure the object gets inactive eventually. */
3427 ret = i915_gem_object_flush_active(obj);
3428 if (ret)
3429 goto out;
3430
3431 if (!obj->active)
3432 goto out;
3433
3434 /* Do this after OLR check to make sure we make forward progress polling
3435 * on this IOCTL with a timeout == 0 (like busy ioctl)
3436 */
3437 if (args->timeout_ns == 0) {
3438 ret = -ETIME;
3439 goto out;
3440 }
3441
3442 drm_gem_object_unreference(&obj->base);
3443
3444 for (i = 0; i < I915_NUM_ENGINES; i++) {
3445 if (obj->last_read_req[i] == NULL)
3446 continue;
3447
3448 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3449 }
3450
3451 mutex_unlock(&dev->struct_mutex);
3452
3453 for (i = 0; i < n; i++) {
3454 if (ret == 0)
3455 ret = __i915_wait_request(req[i], true,
3456 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3457 to_rps_client(file));
3458 i915_gem_request_unreference(req[i]);
3459 }
3460 return ret;
3461
3462 out:
3463 drm_gem_object_unreference(&obj->base);
3464 mutex_unlock(&dev->struct_mutex);
3465 return ret;
3466 }
3467
3468 static int
3469 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3470 struct intel_engine_cs *to,
3471 struct drm_i915_gem_request *from_req,
3472 struct drm_i915_gem_request **to_req)
3473 {
3474 struct intel_engine_cs *from;
3475 int ret;
3476
3477 from = i915_gem_request_get_engine(from_req);
3478 if (to == from)
3479 return 0;
3480
3481 if (i915_gem_request_completed(from_req))
3482 return 0;
3483
3484 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3485 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3486 ret = __i915_wait_request(from_req,
3487 i915->mm.interruptible,
3488 NULL,
3489 &i915->rps.semaphores);
3490 if (ret)
3491 return ret;
3492
3493 i915_gem_object_retire_request(obj, from_req);
3494 } else {
3495 int idx = intel_ring_sync_index(from, to);
3496 u32 seqno = i915_gem_request_get_seqno(from_req);
3497
3498 WARN_ON(!to_req);
3499
3500 if (seqno <= from->semaphore.sync_seqno[idx])
3501 return 0;
3502
3503 if (*to_req == NULL) {
3504 struct drm_i915_gem_request *req;
3505
3506 req = i915_gem_request_alloc(to, NULL);
3507 if (IS_ERR(req))
3508 return PTR_ERR(req);
3509
3510 *to_req = req;
3511 }
3512
3513 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3514 ret = to->semaphore.sync_to(*to_req, from, seqno);
3515 if (ret)
3516 return ret;
3517
3518 /* We use last_read_req because sync_to()
3519 * might have just caused seqno wrap under
3520 * the radar.
3521 */
3522 from->semaphore.sync_seqno[idx] =
3523 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3524 }
3525
3526 return 0;
3527 }
3528
3529 /**
3530 * i915_gem_object_sync - sync an object to a ring.
3531 *
3532 * @obj: object which may be in use on another ring.
3533 * @to: ring we wish to use the object on. May be NULL.
3534 * @to_req: request we wish to use the object for. See below.
3535 * This will be allocated and returned if a request is
3536 * required but not passed in.
3537 *
3538 * This code is meant to abstract object synchronization with the GPU.
3539 * Calling with NULL implies synchronizing the object with the CPU
3540 * rather than a particular GPU ring. Conceptually we serialise writes
3541 * between engines inside the GPU. We only allow one engine to write
3542 * into a buffer at any time, but multiple readers. To ensure each has
3543 * a coherent view of memory, we must:
3544 *
3545 * - If there is an outstanding write request to the object, the new
3546 * request must wait for it to complete (either CPU or in hw, requests
3547 * on the same ring will be naturally ordered).
3548 *
3549 * - If we are a write request (pending_write_domain is set), the new
3550 * request must wait for outstanding read requests to complete.
3551 *
3552 * For CPU synchronisation (NULL to) no request is required. For syncing with
3553 * rings to_req must be non-NULL. However, a request does not have to be
3554 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3555 * request will be allocated automatically and returned through *to_req. Note
3556 * that it is not guaranteed that commands will be emitted (because the system
3557 * might already be idle). Hence there is no need to create a request that
3558 * might never have any work submitted. Note further that if a request is
3559 * returned in *to_req, it is the responsibility of the caller to submit
3560 * that request (after potentially adding more work to it).
3561 *
3562 * Returns 0 if successful, else propagates up the lower layer error.
3563 */
3564 int
3565 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3566 struct intel_engine_cs *to,
3567 struct drm_i915_gem_request **to_req)
3568 {
3569 const bool readonly = obj->base.pending_write_domain == 0;
3570 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3571 int ret, i, n;
3572
3573 if (!obj->active)
3574 return 0;
3575
3576 if (to == NULL)
3577 return i915_gem_object_wait_rendering(obj, readonly);
3578
3579 n = 0;
3580 if (readonly) {
3581 if (obj->last_write_req)
3582 req[n++] = obj->last_write_req;
3583 } else {
3584 for (i = 0; i < I915_NUM_ENGINES; i++)
3585 if (obj->last_read_req[i])
3586 req[n++] = obj->last_read_req[i];
3587 }
3588 for (i = 0; i < n; i++) {
3589 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3590 if (ret)
3591 return ret;
3592 }
3593
3594 return 0;
3595 }
3596
3597 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3598 {
3599 u32 old_write_domain, old_read_domains;
3600
3601 /* Force a pagefault for domain tracking on next user access */
3602 i915_gem_release_mmap(obj);
3603
3604 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3605 return;
3606
3607 old_read_domains = obj->base.read_domains;
3608 old_write_domain = obj->base.write_domain;
3609
3610 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3611 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3612
3613 trace_i915_gem_object_change_domain(obj,
3614 old_read_domains,
3615 old_write_domain);
3616 }
3617
3618 static void __i915_vma_iounmap(struct i915_vma *vma)
3619 {
3620 GEM_BUG_ON(vma->pin_count);
3621
3622 if (vma->iomap == NULL)
3623 return;
3624
3625 io_mapping_unmap(vma->iomap);
3626 vma->iomap = NULL;
3627 }
3628
3629 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3630 {
3631 struct drm_i915_gem_object *obj = vma->obj;
3632 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633 int ret;
3634
3635 if (list_empty(&vma->obj_link))
3636 return 0;
3637
3638 if (!drm_mm_node_allocated(&vma->node)) {
3639 i915_gem_vma_destroy(vma);
3640 return 0;
3641 }
3642
3643 if (vma->pin_count)
3644 return -EBUSY;
3645
3646 BUG_ON(obj->pages == NULL);
3647
3648 if (wait) {
3649 ret = i915_gem_object_wait_rendering(obj, false);
3650 if (ret)
3651 return ret;
3652 }
3653
3654 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3655 i915_gem_object_finish_gtt(obj);
3656
3657 /* release the fence reg _after_ flushing */
3658 ret = i915_gem_object_put_fence(obj);
3659 if (ret)
3660 return ret;
3661
3662 __i915_vma_iounmap(vma);
3663 }
3664
3665 trace_i915_vma_unbind(vma);
3666
3667 vma->vm->unbind_vma(vma);
3668 vma->bound = 0;
3669
3670 list_del_init(&vma->vm_link);
3671 if (vma->is_ggtt) {
3672 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3673 obj->map_and_fenceable = false;
3674 } else if (vma->ggtt_view.pages) {
3675 sg_free_table(vma->ggtt_view.pages);
3676 kfree(vma->ggtt_view.pages);
3677 }
3678 vma->ggtt_view.pages = NULL;
3679 }
3680
3681 drm_mm_remove_node(&vma->node);
3682 i915_gem_vma_destroy(vma);
3683
3684 /* Since the unbound list is global, only move to that list if
3685 * no more VMAs exist. */
3686 if (list_empty(&obj->vma_list))
3687 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3688
3689 /* And finally now the object is completely decoupled from this vma,
3690 * we can drop its hold on the backing storage and allow it to be
3691 * reaped by the shrinker.
3692 */
3693 i915_gem_object_unpin_pages(obj);
3694
3695 return 0;
3696 }
3697
3698 int i915_vma_unbind(struct i915_vma *vma)
3699 {
3700 return __i915_vma_unbind(vma, true);
3701 }
3702
3703 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3704 {
3705 return __i915_vma_unbind(vma, false);
3706 }
3707
3708 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3709 {
3710 struct intel_engine_cs *engine;
3711 int ret;
3712
3713 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3714
3715 for_each_engine(engine, dev_priv) {
3716 if (engine->last_context == NULL)
3717 continue;
3718
3719 ret = intel_engine_idle(engine);
3720 if (ret)
3721 return ret;
3722 }
3723
3724 WARN_ON(i915_verify_lists(dev));
3725 return 0;
3726 }
3727
3728 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3729 unsigned long cache_level)
3730 {
3731 struct drm_mm_node *gtt_space = &vma->node;
3732 struct drm_mm_node *other;
3733
3734 /*
3735 * On some machines we have to be careful when putting differing types
3736 * of snoopable memory together to avoid the prefetcher crossing memory
3737 * domains and dying. During vm initialisation, we decide whether or not
3738 * these constraints apply and set the drm_mm.color_adjust
3739 * appropriately.
3740 */
3741 if (vma->vm->mm.color_adjust == NULL)
3742 return true;
3743
3744 if (!drm_mm_node_allocated(gtt_space))
3745 return true;
3746
3747 if (list_empty(&gtt_space->node_list))
3748 return true;
3749
3750 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3751 if (other->allocated && !other->hole_follows && other->color != cache_level)
3752 return false;
3753
3754 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3755 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3756 return false;
3757
3758 return true;
3759 }
3760
3761 /**
3762 * Finds free space in the GTT aperture and binds the object or a view of it
3763 * there.
3764 * @obj: object to bind
3765 * @vm: address space to bind into
3766 * @ggtt_view: global gtt view if applicable
3767 * @alignment: requested alignment
3768 * @flags: mask of PIN_* flags to use
3769 */
3770 static struct i915_vma *
3771 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3772 struct i915_address_space *vm,
3773 const struct i915_ggtt_view *ggtt_view,
3774 unsigned alignment,
3775 uint64_t flags)
3776 {
3777 struct drm_device *dev = obj->base.dev;
3778 struct drm_i915_private *dev_priv = to_i915(dev);
3779 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3780 u32 fence_alignment, unfenced_alignment;
3781 u32 search_flag, alloc_flag;
3782 u64 start, end;
3783 u64 size, fence_size;
3784 struct i915_vma *vma;
3785 int ret;
3786
3787 if (i915_is_ggtt(vm)) {
3788 u32 view_size;
3789
3790 if (WARN_ON(!ggtt_view))
3791 return ERR_PTR(-EINVAL);
3792
3793 view_size = i915_ggtt_view_size(obj, ggtt_view);
3794
3795 fence_size = i915_gem_get_gtt_size(dev,
3796 view_size,
3797 obj->tiling_mode);
3798 fence_alignment = i915_gem_get_gtt_alignment(dev,
3799 view_size,
3800 obj->tiling_mode,
3801 true);
3802 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3803 view_size,
3804 obj->tiling_mode,
3805 false);
3806 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3807 } else {
3808 fence_size = i915_gem_get_gtt_size(dev,
3809 obj->base.size,
3810 obj->tiling_mode);
3811 fence_alignment = i915_gem_get_gtt_alignment(dev,
3812 obj->base.size,
3813 obj->tiling_mode,
3814 true);
3815 unfenced_alignment =
3816 i915_gem_get_gtt_alignment(dev,
3817 obj->base.size,
3818 obj->tiling_mode,
3819 false);
3820 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3821 }
3822
3823 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3824 end = vm->total;
3825 if (flags & PIN_MAPPABLE)
3826 end = min_t(u64, end, ggtt->mappable_end);
3827 if (flags & PIN_ZONE_4G)
3828 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3829
3830 if (alignment == 0)
3831 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3832 unfenced_alignment;
3833 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3834 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3835 ggtt_view ? ggtt_view->type : 0,
3836 alignment);
3837 return ERR_PTR(-EINVAL);
3838 }
3839
3840 /* If binding the object/GGTT view requires more space than the entire
3841 * aperture has, reject it early before evicting everything in a vain
3842 * attempt to find space.
3843 */
3844 if (size > end) {
3845 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3846 ggtt_view ? ggtt_view->type : 0,
3847 size,
3848 flags & PIN_MAPPABLE ? "mappable" : "total",
3849 end);
3850 return ERR_PTR(-E2BIG);
3851 }
3852
3853 ret = i915_gem_object_get_pages(obj);
3854 if (ret)
3855 return ERR_PTR(ret);
3856
3857 i915_gem_object_pin_pages(obj);
3858
3859 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3860 i915_gem_obj_lookup_or_create_vma(obj, vm);
3861
3862 if (IS_ERR(vma))
3863 goto err_unpin;
3864
3865 if (flags & PIN_OFFSET_FIXED) {
3866 uint64_t offset = flags & PIN_OFFSET_MASK;
3867
3868 if (offset & (alignment - 1) || offset + size > end) {
3869 ret = -EINVAL;
3870 goto err_free_vma;
3871 }
3872 vma->node.start = offset;
3873 vma->node.size = size;
3874 vma->node.color = obj->cache_level;
3875 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3876 if (ret) {
3877 ret = i915_gem_evict_for_vma(vma);
3878 if (ret == 0)
3879 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3880 }
3881 if (ret)
3882 goto err_free_vma;
3883 } else {
3884 if (flags & PIN_HIGH) {
3885 search_flag = DRM_MM_SEARCH_BELOW;
3886 alloc_flag = DRM_MM_CREATE_TOP;
3887 } else {
3888 search_flag = DRM_MM_SEARCH_DEFAULT;
3889 alloc_flag = DRM_MM_CREATE_DEFAULT;
3890 }
3891
3892 search_free:
3893 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3894 size, alignment,
3895 obj->cache_level,
3896 start, end,
3897 search_flag,
3898 alloc_flag);
3899 if (ret) {
3900 ret = i915_gem_evict_something(dev, vm, size, alignment,
3901 obj->cache_level,
3902 start, end,
3903 flags);
3904 if (ret == 0)
3905 goto search_free;
3906
3907 goto err_free_vma;
3908 }
3909 }
3910 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3911 ret = -EINVAL;
3912 goto err_remove_node;
3913 }
3914
3915 trace_i915_vma_bind(vma, flags);
3916 ret = i915_vma_bind(vma, obj->cache_level, flags);
3917 if (ret)
3918 goto err_remove_node;
3919
3920 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3921 list_add_tail(&vma->vm_link, &vm->inactive_list);
3922
3923 return vma;
3924
3925 err_remove_node:
3926 drm_mm_remove_node(&vma->node);
3927 err_free_vma:
3928 i915_gem_vma_destroy(vma);
3929 vma = ERR_PTR(ret);
3930 err_unpin:
3931 i915_gem_object_unpin_pages(obj);
3932 return vma;
3933 }
3934
3935 bool
3936 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3937 bool force)
3938 {
3939 /* If we don't have a page list set up, then we're not pinned
3940 * to GPU, and we can ignore the cache flush because it'll happen
3941 * again at bind time.
3942 */
3943 if (obj->pages == NULL)
3944 return false;
3945
3946 /*
3947 * Stolen memory is always coherent with the GPU as it is explicitly
3948 * marked as wc by the system, or the system is cache-coherent.
3949 */
3950 if (obj->stolen || obj->phys_handle)
3951 return false;
3952
3953 /* If the GPU is snooping the contents of the CPU cache,
3954 * we do not need to manually clear the CPU cache lines. However,
3955 * the caches are only snooped when the render cache is
3956 * flushed/invalidated. As we always have to emit invalidations
3957 * and flushes when moving into and out of the RENDER domain, correct
3958 * snooping behaviour occurs naturally as the result of our domain
3959 * tracking.
3960 */
3961 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3962 obj->cache_dirty = true;
3963 return false;
3964 }
3965
3966 trace_i915_gem_object_clflush(obj);
3967 drm_clflush_sg(obj->pages);
3968 obj->cache_dirty = false;
3969
3970 return true;
3971 }
3972
3973 /** Flushes the GTT write domain for the object if it's dirty. */
3974 static void
3975 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3976 {
3977 uint32_t old_write_domain;
3978
3979 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3980 return;
3981
3982 /* No actual flushing is required for the GTT write domain. Writes
3983 * to it immediately go to main memory as far as we know, so there's
3984 * no chipset flush. It also doesn't land in render cache.
3985 *
3986 * However, we do have to enforce the order so that all writes through
3987 * the GTT land before any writes to the device, such as updates to
3988 * the GATT itself.
3989 */
3990 wmb();
3991
3992 old_write_domain = obj->base.write_domain;
3993 obj->base.write_domain = 0;
3994
3995 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3996
3997 trace_i915_gem_object_change_domain(obj,
3998 obj->base.read_domains,
3999 old_write_domain);
4000 }
4001
4002 /** Flushes the CPU write domain for the object if it's dirty. */
4003 static void
4004 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4005 {
4006 uint32_t old_write_domain;
4007
4008 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4009 return;
4010
4011 if (i915_gem_clflush_object(obj, obj->pin_display))
4012 i915_gem_chipset_flush(to_i915(obj->base.dev));
4013
4014 old_write_domain = obj->base.write_domain;
4015 obj->base.write_domain = 0;
4016
4017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4018
4019 trace_i915_gem_object_change_domain(obj,
4020 obj->base.read_domains,
4021 old_write_domain);
4022 }
4023
4024 /**
4025 * Moves a single object to the GTT read, and possibly write domain.
4026 * @obj: object to act on
4027 * @write: ask for write access or read only
4028 *
4029 * This function returns when the move is complete, including waiting on
4030 * flushes to occur.
4031 */
4032 int
4033 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4034 {
4035 struct drm_device *dev = obj->base.dev;
4036 struct drm_i915_private *dev_priv = to_i915(dev);
4037 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4038 uint32_t old_write_domain, old_read_domains;
4039 struct i915_vma *vma;
4040 int ret;
4041
4042 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4043 return 0;
4044
4045 ret = i915_gem_object_wait_rendering(obj, !write);
4046 if (ret)
4047 return ret;
4048
4049 /* Flush and acquire obj->pages so that we are coherent through
4050 * direct access in memory with previous cached writes through
4051 * shmemfs and that our cache domain tracking remains valid.
4052 * For example, if the obj->filp was moved to swap without us
4053 * being notified and releasing the pages, we would mistakenly
4054 * continue to assume that the obj remained out of the CPU cached
4055 * domain.
4056 */
4057 ret = i915_gem_object_get_pages(obj);
4058 if (ret)
4059 return ret;
4060
4061 i915_gem_object_flush_cpu_write_domain(obj);
4062
4063 /* Serialise direct access to this object with the barriers for
4064 * coherent writes from the GPU, by effectively invalidating the
4065 * GTT domain upon first access.
4066 */
4067 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4068 mb();
4069
4070 old_write_domain = obj->base.write_domain;
4071 old_read_domains = obj->base.read_domains;
4072
4073 /* It should now be out of any other write domains, and we can update
4074 * the domain values for our changes.
4075 */
4076 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4077 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4078 if (write) {
4079 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4080 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4081 obj->dirty = 1;
4082 }
4083
4084 trace_i915_gem_object_change_domain(obj,
4085 old_read_domains,
4086 old_write_domain);
4087
4088 /* And bump the LRU for this access */
4089 vma = i915_gem_obj_to_ggtt(obj);
4090 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4091 list_move_tail(&vma->vm_link,
4092 &ggtt->base.inactive_list);
4093
4094 return 0;
4095 }
4096
4097 /**
4098 * Changes the cache-level of an object across all VMA.
4099 * @obj: object to act on
4100 * @cache_level: new cache level to set for the object
4101 *
4102 * After this function returns, the object will be in the new cache-level
4103 * across all GTT and the contents of the backing storage will be coherent,
4104 * with respect to the new cache-level. In order to keep the backing storage
4105 * coherent for all users, we only allow a single cache level to be set
4106 * globally on the object and prevent it from being changed whilst the
4107 * hardware is reading from the object. That is if the object is currently
4108 * on the scanout it will be set to uncached (or equivalent display
4109 * cache coherency) and all non-MOCS GPU access will also be uncached so
4110 * that all direct access to the scanout remains coherent.
4111 */
4112 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4113 enum i915_cache_level cache_level)
4114 {
4115 struct drm_device *dev = obj->base.dev;
4116 struct i915_vma *vma, *next;
4117 bool bound = false;
4118 int ret = 0;
4119
4120 if (obj->cache_level == cache_level)
4121 goto out;
4122
4123 /* Inspect the list of currently bound VMA and unbind any that would
4124 * be invalid given the new cache-level. This is principally to
4125 * catch the issue of the CS prefetch crossing page boundaries and
4126 * reading an invalid PTE on older architectures.
4127 */
4128 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4129 if (!drm_mm_node_allocated(&vma->node))
4130 continue;
4131
4132 if (vma->pin_count) {
4133 DRM_DEBUG("can not change the cache level of pinned objects\n");
4134 return -EBUSY;
4135 }
4136
4137 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4138 ret = i915_vma_unbind(vma);
4139 if (ret)
4140 return ret;
4141 } else
4142 bound = true;
4143 }
4144
4145 /* We can reuse the existing drm_mm nodes but need to change the
4146 * cache-level on the PTE. We could simply unbind them all and
4147 * rebind with the correct cache-level on next use. However since
4148 * we already have a valid slot, dma mapping, pages etc, we may as
4149 * rewrite the PTE in the belief that doing so tramples upon less
4150 * state and so involves less work.
4151 */
4152 if (bound) {
4153 /* Before we change the PTE, the GPU must not be accessing it.
4154 * If we wait upon the object, we know that all the bound
4155 * VMA are no longer active.
4156 */
4157 ret = i915_gem_object_wait_rendering(obj, false);
4158 if (ret)
4159 return ret;
4160
4161 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4162 /* Access to snoopable pages through the GTT is
4163 * incoherent and on some machines causes a hard
4164 * lockup. Relinquish the CPU mmaping to force
4165 * userspace to refault in the pages and we can
4166 * then double check if the GTT mapping is still
4167 * valid for that pointer access.
4168 */
4169 i915_gem_release_mmap(obj);
4170
4171 /* As we no longer need a fence for GTT access,
4172 * we can relinquish it now (and so prevent having
4173 * to steal a fence from someone else on the next
4174 * fence request). Note GPU activity would have
4175 * dropped the fence as all snoopable access is
4176 * supposed to be linear.
4177 */
4178 ret = i915_gem_object_put_fence(obj);
4179 if (ret)
4180 return ret;
4181 } else {
4182 /* We either have incoherent backing store and
4183 * so no GTT access or the architecture is fully
4184 * coherent. In such cases, existing GTT mmaps
4185 * ignore the cache bit in the PTE and we can
4186 * rewrite it without confusing the GPU or having
4187 * to force userspace to fault back in its mmaps.
4188 */
4189 }
4190
4191 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4192 if (!drm_mm_node_allocated(&vma->node))
4193 continue;
4194
4195 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4196 if (ret)
4197 return ret;
4198 }
4199 }
4200
4201 list_for_each_entry(vma, &obj->vma_list, obj_link)
4202 vma->node.color = cache_level;
4203 obj->cache_level = cache_level;
4204
4205 out:
4206 /* Flush the dirty CPU caches to the backing storage so that the
4207 * object is now coherent at its new cache level (with respect
4208 * to the access domain).
4209 */
4210 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4211 if (i915_gem_clflush_object(obj, true))
4212 i915_gem_chipset_flush(to_i915(obj->base.dev));
4213 }
4214
4215 return 0;
4216 }
4217
4218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4219 struct drm_file *file)
4220 {
4221 struct drm_i915_gem_caching *args = data;
4222 struct drm_i915_gem_object *obj;
4223
4224 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4225 if (&obj->base == NULL)
4226 return -ENOENT;
4227
4228 switch (obj->cache_level) {
4229 case I915_CACHE_LLC:
4230 case I915_CACHE_L3_LLC:
4231 args->caching = I915_CACHING_CACHED;
4232 break;
4233
4234 case I915_CACHE_WT:
4235 args->caching = I915_CACHING_DISPLAY;
4236 break;
4237
4238 default:
4239 args->caching = I915_CACHING_NONE;
4240 break;
4241 }
4242
4243 drm_gem_object_unreference_unlocked(&obj->base);
4244 return 0;
4245 }
4246
4247 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4248 struct drm_file *file)
4249 {
4250 struct drm_i915_private *dev_priv = to_i915(dev);
4251 struct drm_i915_gem_caching *args = data;
4252 struct drm_i915_gem_object *obj;
4253 enum i915_cache_level level;
4254 int ret;
4255
4256 switch (args->caching) {
4257 case I915_CACHING_NONE:
4258 level = I915_CACHE_NONE;
4259 break;
4260 case I915_CACHING_CACHED:
4261 /*
4262 * Due to a HW issue on BXT A stepping, GPU stores via a
4263 * snooped mapping may leave stale data in a corresponding CPU
4264 * cacheline, whereas normally such cachelines would get
4265 * invalidated.
4266 */
4267 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4268 return -ENODEV;
4269
4270 level = I915_CACHE_LLC;
4271 break;
4272 case I915_CACHING_DISPLAY:
4273 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4274 break;
4275 default:
4276 return -EINVAL;
4277 }
4278
4279 intel_runtime_pm_get(dev_priv);
4280
4281 ret = i915_mutex_lock_interruptible(dev);
4282 if (ret)
4283 goto rpm_put;
4284
4285 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4286 if (&obj->base == NULL) {
4287 ret = -ENOENT;
4288 goto unlock;
4289 }
4290
4291 ret = i915_gem_object_set_cache_level(obj, level);
4292
4293 drm_gem_object_unreference(&obj->base);
4294 unlock:
4295 mutex_unlock(&dev->struct_mutex);
4296 rpm_put:
4297 intel_runtime_pm_put(dev_priv);
4298
4299 return ret;
4300 }
4301
4302 /*
4303 * Prepare buffer for display plane (scanout, cursors, etc).
4304 * Can be called from an uninterruptible phase (modesetting) and allows
4305 * any flushes to be pipelined (for pageflips).
4306 */
4307 int
4308 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4309 u32 alignment,
4310 const struct i915_ggtt_view *view)
4311 {
4312 u32 old_read_domains, old_write_domain;
4313 int ret;
4314
4315 /* Mark the pin_display early so that we account for the
4316 * display coherency whilst setting up the cache domains.
4317 */
4318 obj->pin_display++;
4319
4320 /* The display engine is not coherent with the LLC cache on gen6. As
4321 * a result, we make sure that the pinning that is about to occur is
4322 * done with uncached PTEs. This is lowest common denominator for all
4323 * chipsets.
4324 *
4325 * However for gen6+, we could do better by using the GFDT bit instead
4326 * of uncaching, which would allow us to flush all the LLC-cached data
4327 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4328 */
4329 ret = i915_gem_object_set_cache_level(obj,
4330 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4331 if (ret)
4332 goto err_unpin_display;
4333
4334 /* As the user may map the buffer once pinned in the display plane
4335 * (e.g. libkms for the bootup splash), we have to ensure that we
4336 * always use map_and_fenceable for all scanout buffers.
4337 */
4338 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4339 view->type == I915_GGTT_VIEW_NORMAL ?
4340 PIN_MAPPABLE : 0);
4341 if (ret)
4342 goto err_unpin_display;
4343
4344 i915_gem_object_flush_cpu_write_domain(obj);
4345
4346 old_write_domain = obj->base.write_domain;
4347 old_read_domains = obj->base.read_domains;
4348
4349 /* It should now be out of any other write domains, and we can update
4350 * the domain values for our changes.
4351 */
4352 obj->base.write_domain = 0;
4353 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4354
4355 trace_i915_gem_object_change_domain(obj,
4356 old_read_domains,
4357 old_write_domain);
4358
4359 return 0;
4360
4361 err_unpin_display:
4362 obj->pin_display--;
4363 return ret;
4364 }
4365
4366 void
4367 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4368 const struct i915_ggtt_view *view)
4369 {
4370 if (WARN_ON(obj->pin_display == 0))
4371 return;
4372
4373 i915_gem_object_ggtt_unpin_view(obj, view);
4374
4375 obj->pin_display--;
4376 }
4377
4378 /**
4379 * Moves a single object to the CPU read, and possibly write domain.
4380 * @obj: object to act on
4381 * @write: requesting write or read-only access
4382 *
4383 * This function returns when the move is complete, including waiting on
4384 * flushes to occur.
4385 */
4386 int
4387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4388 {
4389 uint32_t old_write_domain, old_read_domains;
4390 int ret;
4391
4392 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4393 return 0;
4394
4395 ret = i915_gem_object_wait_rendering(obj, !write);
4396 if (ret)
4397 return ret;
4398
4399 i915_gem_object_flush_gtt_write_domain(obj);
4400
4401 old_write_domain = obj->base.write_domain;
4402 old_read_domains = obj->base.read_domains;
4403
4404 /* Flush the CPU cache if it's still invalid. */
4405 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4406 i915_gem_clflush_object(obj, false);
4407
4408 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4409 }
4410
4411 /* It should now be out of any other write domains, and we can update
4412 * the domain values for our changes.
4413 */
4414 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4415
4416 /* If we're writing through the CPU, then the GPU read domains will
4417 * need to be invalidated at next use.
4418 */
4419 if (write) {
4420 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 }
4423
4424 trace_i915_gem_object_change_domain(obj,
4425 old_read_domains,
4426 old_write_domain);
4427
4428 return 0;
4429 }
4430
4431 /* Throttle our rendering by waiting until the ring has completed our requests
4432 * emitted over 20 msec ago.
4433 *
4434 * Note that if we were to use the current jiffies each time around the loop,
4435 * we wouldn't escape the function with any frames outstanding if the time to
4436 * render a frame was over 20ms.
4437 *
4438 * This should get us reasonable parallelism between CPU and GPU but also
4439 * relatively low latency when blocking on a particular request to finish.
4440 */
4441 static int
4442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4443 {
4444 struct drm_i915_private *dev_priv = to_i915(dev);
4445 struct drm_i915_file_private *file_priv = file->driver_priv;
4446 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4447 struct drm_i915_gem_request *request, *target = NULL;
4448 int ret;
4449
4450 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4451 if (ret)
4452 return ret;
4453
4454 /* ABI: return -EIO if already wedged */
4455 if (i915_terminally_wedged(&dev_priv->gpu_error))
4456 return -EIO;
4457
4458 spin_lock(&file_priv->mm.lock);
4459 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4460 if (time_after_eq(request->emitted_jiffies, recent_enough))
4461 break;
4462
4463 /*
4464 * Note that the request might not have been submitted yet.
4465 * In which case emitted_jiffies will be zero.
4466 */
4467 if (!request->emitted_jiffies)
4468 continue;
4469
4470 target = request;
4471 }
4472 if (target)
4473 i915_gem_request_reference(target);
4474 spin_unlock(&file_priv->mm.lock);
4475
4476 if (target == NULL)
4477 return 0;
4478
4479 ret = __i915_wait_request(target, true, NULL, NULL);
4480 i915_gem_request_unreference(target);
4481
4482 return ret;
4483 }
4484
4485 static bool
4486 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4487 {
4488 struct drm_i915_gem_object *obj = vma->obj;
4489
4490 if (alignment &&
4491 vma->node.start & (alignment - 1))
4492 return true;
4493
4494 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4495 return true;
4496
4497 if (flags & PIN_OFFSET_BIAS &&
4498 vma->node.start < (flags & PIN_OFFSET_MASK))
4499 return true;
4500
4501 if (flags & PIN_OFFSET_FIXED &&
4502 vma->node.start != (flags & PIN_OFFSET_MASK))
4503 return true;
4504
4505 return false;
4506 }
4507
4508 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4509 {
4510 struct drm_i915_gem_object *obj = vma->obj;
4511 bool mappable, fenceable;
4512 u32 fence_size, fence_alignment;
4513
4514 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4515 obj->base.size,
4516 obj->tiling_mode);
4517 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4518 obj->base.size,
4519 obj->tiling_mode,
4520 true);
4521
4522 fenceable = (vma->node.size == fence_size &&
4523 (vma->node.start & (fence_alignment - 1)) == 0);
4524
4525 mappable = (vma->node.start + fence_size <=
4526 to_i915(obj->base.dev)->ggtt.mappable_end);
4527
4528 obj->map_and_fenceable = mappable && fenceable;
4529 }
4530
4531 static int
4532 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4533 struct i915_address_space *vm,
4534 const struct i915_ggtt_view *ggtt_view,
4535 uint32_t alignment,
4536 uint64_t flags)
4537 {
4538 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4539 struct i915_vma *vma;
4540 unsigned bound;
4541 int ret;
4542
4543 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4544 return -ENODEV;
4545
4546 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4547 return -EINVAL;
4548
4549 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4550 return -EINVAL;
4551
4552 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4553 return -EINVAL;
4554
4555 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4556 i915_gem_obj_to_vma(obj, vm);
4557
4558 if (vma) {
4559 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4560 return -EBUSY;
4561
4562 if (i915_vma_misplaced(vma, alignment, flags)) {
4563 WARN(vma->pin_count,
4564 "bo is already pinned in %s with incorrect alignment:"
4565 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4566 " obj->map_and_fenceable=%d\n",
4567 ggtt_view ? "ggtt" : "ppgtt",
4568 upper_32_bits(vma->node.start),
4569 lower_32_bits(vma->node.start),
4570 alignment,
4571 !!(flags & PIN_MAPPABLE),
4572 obj->map_and_fenceable);
4573 ret = i915_vma_unbind(vma);
4574 if (ret)
4575 return ret;
4576
4577 vma = NULL;
4578 }
4579 }
4580
4581 bound = vma ? vma->bound : 0;
4582 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4583 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4584 flags);
4585 if (IS_ERR(vma))
4586 return PTR_ERR(vma);
4587 } else {
4588 ret = i915_vma_bind(vma, obj->cache_level, flags);
4589 if (ret)
4590 return ret;
4591 }
4592
4593 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4594 (bound ^ vma->bound) & GLOBAL_BIND) {
4595 __i915_vma_set_map_and_fenceable(vma);
4596 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4597 }
4598
4599 vma->pin_count++;
4600 return 0;
4601 }
4602
4603 int
4604 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4605 struct i915_address_space *vm,
4606 uint32_t alignment,
4607 uint64_t flags)
4608 {
4609 return i915_gem_object_do_pin(obj, vm,
4610 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4611 alignment, flags);
4612 }
4613
4614 int
4615 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4616 const struct i915_ggtt_view *view,
4617 uint32_t alignment,
4618 uint64_t flags)
4619 {
4620 struct drm_device *dev = obj->base.dev;
4621 struct drm_i915_private *dev_priv = to_i915(dev);
4622 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4623
4624 BUG_ON(!view);
4625
4626 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4627 alignment, flags | PIN_GLOBAL);
4628 }
4629
4630 void
4631 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4632 const struct i915_ggtt_view *view)
4633 {
4634 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4635
4636 WARN_ON(vma->pin_count == 0);
4637 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4638
4639 --vma->pin_count;
4640 }
4641
4642 int
4643 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4644 struct drm_file *file)
4645 {
4646 struct drm_i915_gem_busy *args = data;
4647 struct drm_i915_gem_object *obj;
4648 int ret;
4649
4650 ret = i915_mutex_lock_interruptible(dev);
4651 if (ret)
4652 return ret;
4653
4654 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4655 if (&obj->base == NULL) {
4656 ret = -ENOENT;
4657 goto unlock;
4658 }
4659
4660 /* Count all active objects as busy, even if they are currently not used
4661 * by the gpu. Users of this interface expect objects to eventually
4662 * become non-busy without any further actions, therefore emit any
4663 * necessary flushes here.
4664 */
4665 ret = i915_gem_object_flush_active(obj);
4666 if (ret)
4667 goto unref;
4668
4669 args->busy = 0;
4670 if (obj->active) {
4671 int i;
4672
4673 for (i = 0; i < I915_NUM_ENGINES; i++) {
4674 struct drm_i915_gem_request *req;
4675
4676 req = obj->last_read_req[i];
4677 if (req)
4678 args->busy |= 1 << (16 + req->engine->exec_id);
4679 }
4680 if (obj->last_write_req)
4681 args->busy |= obj->last_write_req->engine->exec_id;
4682 }
4683
4684 unref:
4685 drm_gem_object_unreference(&obj->base);
4686 unlock:
4687 mutex_unlock(&dev->struct_mutex);
4688 return ret;
4689 }
4690
4691 int
4692 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4693 struct drm_file *file_priv)
4694 {
4695 return i915_gem_ring_throttle(dev, file_priv);
4696 }
4697
4698 int
4699 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4700 struct drm_file *file_priv)
4701 {
4702 struct drm_i915_private *dev_priv = to_i915(dev);
4703 struct drm_i915_gem_madvise *args = data;
4704 struct drm_i915_gem_object *obj;
4705 int ret;
4706
4707 switch (args->madv) {
4708 case I915_MADV_DONTNEED:
4709 case I915_MADV_WILLNEED:
4710 break;
4711 default:
4712 return -EINVAL;
4713 }
4714
4715 ret = i915_mutex_lock_interruptible(dev);
4716 if (ret)
4717 return ret;
4718
4719 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4720 if (&obj->base == NULL) {
4721 ret = -ENOENT;
4722 goto unlock;
4723 }
4724
4725 if (i915_gem_obj_is_pinned(obj)) {
4726 ret = -EINVAL;
4727 goto out;
4728 }
4729
4730 if (obj->pages &&
4731 obj->tiling_mode != I915_TILING_NONE &&
4732 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4733 if (obj->madv == I915_MADV_WILLNEED)
4734 i915_gem_object_unpin_pages(obj);
4735 if (args->madv == I915_MADV_WILLNEED)
4736 i915_gem_object_pin_pages(obj);
4737 }
4738
4739 if (obj->madv != __I915_MADV_PURGED)
4740 obj->madv = args->madv;
4741
4742 /* if the object is no longer attached, discard its backing storage */
4743 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4744 i915_gem_object_truncate(obj);
4745
4746 args->retained = obj->madv != __I915_MADV_PURGED;
4747
4748 out:
4749 drm_gem_object_unreference(&obj->base);
4750 unlock:
4751 mutex_unlock(&dev->struct_mutex);
4752 return ret;
4753 }
4754
4755 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4756 const struct drm_i915_gem_object_ops *ops)
4757 {
4758 int i;
4759
4760 INIT_LIST_HEAD(&obj->global_list);
4761 for (i = 0; i < I915_NUM_ENGINES; i++)
4762 INIT_LIST_HEAD(&obj->engine_list[i]);
4763 INIT_LIST_HEAD(&obj->obj_exec_link);
4764 INIT_LIST_HEAD(&obj->vma_list);
4765 INIT_LIST_HEAD(&obj->batch_pool_link);
4766
4767 obj->ops = ops;
4768
4769 obj->fence_reg = I915_FENCE_REG_NONE;
4770 obj->madv = I915_MADV_WILLNEED;
4771
4772 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4773 }
4774
4775 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4776 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4777 .get_pages = i915_gem_object_get_pages_gtt,
4778 .put_pages = i915_gem_object_put_pages_gtt,
4779 };
4780
4781 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4782 size_t size)
4783 {
4784 struct drm_i915_gem_object *obj;
4785 struct address_space *mapping;
4786 gfp_t mask;
4787 int ret;
4788
4789 obj = i915_gem_object_alloc(dev);
4790 if (obj == NULL)
4791 return ERR_PTR(-ENOMEM);
4792
4793 ret = drm_gem_object_init(dev, &obj->base, size);
4794 if (ret)
4795 goto fail;
4796
4797 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4798 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4799 /* 965gm cannot relocate objects above 4GiB. */
4800 mask &= ~__GFP_HIGHMEM;
4801 mask |= __GFP_DMA32;
4802 }
4803
4804 mapping = obj->base.filp->f_mapping;
4805 mapping_set_gfp_mask(mapping, mask);
4806
4807 i915_gem_object_init(obj, &i915_gem_object_ops);
4808
4809 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4810 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4811
4812 if (HAS_LLC(dev)) {
4813 /* On some devices, we can have the GPU use the LLC (the CPU
4814 * cache) for about a 10% performance improvement
4815 * compared to uncached. Graphics requests other than
4816 * display scanout are coherent with the CPU in
4817 * accessing this cache. This means in this mode we
4818 * don't need to clflush on the CPU side, and on the
4819 * GPU side we only need to flush internal caches to
4820 * get data visible to the CPU.
4821 *
4822 * However, we maintain the display planes as UC, and so
4823 * need to rebind when first used as such.
4824 */
4825 obj->cache_level = I915_CACHE_LLC;
4826 } else
4827 obj->cache_level = I915_CACHE_NONE;
4828
4829 trace_i915_gem_object_create(obj);
4830
4831 return obj;
4832
4833 fail:
4834 i915_gem_object_free(obj);
4835
4836 return ERR_PTR(ret);
4837 }
4838
4839 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4840 {
4841 /* If we are the last user of the backing storage (be it shmemfs
4842 * pages or stolen etc), we know that the pages are going to be
4843 * immediately released. In this case, we can then skip copying
4844 * back the contents from the GPU.
4845 */
4846
4847 if (obj->madv != I915_MADV_WILLNEED)
4848 return false;
4849
4850 if (obj->base.filp == NULL)
4851 return true;
4852
4853 /* At first glance, this looks racy, but then again so would be
4854 * userspace racing mmap against close. However, the first external
4855 * reference to the filp can only be obtained through the
4856 * i915_gem_mmap_ioctl() which safeguards us against the user
4857 * acquiring such a reference whilst we are in the middle of
4858 * freeing the object.
4859 */
4860 return atomic_long_read(&obj->base.filp->f_count) == 1;
4861 }
4862
4863 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4864 {
4865 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4866 struct drm_device *dev = obj->base.dev;
4867 struct drm_i915_private *dev_priv = to_i915(dev);
4868 struct i915_vma *vma, *next;
4869
4870 intel_runtime_pm_get(dev_priv);
4871
4872 trace_i915_gem_object_destroy(obj);
4873
4874 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4875 int ret;
4876
4877 vma->pin_count = 0;
4878 ret = i915_vma_unbind(vma);
4879 if (WARN_ON(ret == -ERESTARTSYS)) {
4880 bool was_interruptible;
4881
4882 was_interruptible = dev_priv->mm.interruptible;
4883 dev_priv->mm.interruptible = false;
4884
4885 WARN_ON(i915_vma_unbind(vma));
4886
4887 dev_priv->mm.interruptible = was_interruptible;
4888 }
4889 }
4890
4891 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4892 * before progressing. */
4893 if (obj->stolen)
4894 i915_gem_object_unpin_pages(obj);
4895
4896 WARN_ON(obj->frontbuffer_bits);
4897
4898 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4899 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4900 obj->tiling_mode != I915_TILING_NONE)
4901 i915_gem_object_unpin_pages(obj);
4902
4903 if (WARN_ON(obj->pages_pin_count))
4904 obj->pages_pin_count = 0;
4905 if (discard_backing_storage(obj))
4906 obj->madv = I915_MADV_DONTNEED;
4907 i915_gem_object_put_pages(obj);
4908 i915_gem_object_free_mmap_offset(obj);
4909
4910 BUG_ON(obj->pages);
4911
4912 if (obj->base.import_attach)
4913 drm_prime_gem_destroy(&obj->base, NULL);
4914
4915 if (obj->ops->release)
4916 obj->ops->release(obj);
4917
4918 drm_gem_object_release(&obj->base);
4919 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4920
4921 kfree(obj->bit_17);
4922 i915_gem_object_free(obj);
4923
4924 intel_runtime_pm_put(dev_priv);
4925 }
4926
4927 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4928 struct i915_address_space *vm)
4929 {
4930 struct i915_vma *vma;
4931 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4932 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4933 vma->vm == vm)
4934 return vma;
4935 }
4936 return NULL;
4937 }
4938
4939 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4940 const struct i915_ggtt_view *view)
4941 {
4942 struct i915_vma *vma;
4943
4944 GEM_BUG_ON(!view);
4945
4946 list_for_each_entry(vma, &obj->vma_list, obj_link)
4947 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4948 return vma;
4949 return NULL;
4950 }
4951
4952 void i915_gem_vma_destroy(struct i915_vma *vma)
4953 {
4954 WARN_ON(vma->node.allocated);
4955
4956 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4957 if (!list_empty(&vma->exec_list))
4958 return;
4959
4960 if (!vma->is_ggtt)
4961 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4962
4963 list_del(&vma->obj_link);
4964
4965 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4966 }
4967
4968 static void
4969 i915_gem_stop_engines(struct drm_device *dev)
4970 {
4971 struct drm_i915_private *dev_priv = to_i915(dev);
4972 struct intel_engine_cs *engine;
4973
4974 for_each_engine(engine, dev_priv)
4975 dev_priv->gt.stop_engine(engine);
4976 }
4977
4978 int
4979 i915_gem_suspend(struct drm_device *dev)
4980 {
4981 struct drm_i915_private *dev_priv = to_i915(dev);
4982 int ret = 0;
4983
4984 mutex_lock(&dev->struct_mutex);
4985 ret = i915_gem_wait_for_idle(dev_priv);
4986 if (ret)
4987 goto err;
4988
4989 i915_gem_retire_requests(dev_priv);
4990
4991 i915_gem_stop_engines(dev);
4992 i915_gem_context_lost(dev_priv);
4993 mutex_unlock(&dev->struct_mutex);
4994
4995 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4996 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4997 flush_delayed_work(&dev_priv->gt.idle_work);
4998
4999 /* Assert that we sucessfully flushed all the work and
5000 * reset the GPU back to its idle, low power state.
5001 */
5002 WARN_ON(dev_priv->gt.awake);
5003
5004 return 0;
5005
5006 err:
5007 mutex_unlock(&dev->struct_mutex);
5008 return ret;
5009 }
5010
5011 void i915_gem_init_swizzling(struct drm_device *dev)
5012 {
5013 struct drm_i915_private *dev_priv = to_i915(dev);
5014
5015 if (INTEL_INFO(dev)->gen < 5 ||
5016 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5017 return;
5018
5019 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5020 DISP_TILE_SURFACE_SWIZZLING);
5021
5022 if (IS_GEN5(dev))
5023 return;
5024
5025 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5026 if (IS_GEN6(dev))
5027 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5028 else if (IS_GEN7(dev))
5029 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5030 else if (IS_GEN8(dev))
5031 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5032 else
5033 BUG();
5034 }
5035
5036 static void init_unused_ring(struct drm_device *dev, u32 base)
5037 {
5038 struct drm_i915_private *dev_priv = to_i915(dev);
5039
5040 I915_WRITE(RING_CTL(base), 0);
5041 I915_WRITE(RING_HEAD(base), 0);
5042 I915_WRITE(RING_TAIL(base), 0);
5043 I915_WRITE(RING_START(base), 0);
5044 }
5045
5046 static void init_unused_rings(struct drm_device *dev)
5047 {
5048 if (IS_I830(dev)) {
5049 init_unused_ring(dev, PRB1_BASE);
5050 init_unused_ring(dev, SRB0_BASE);
5051 init_unused_ring(dev, SRB1_BASE);
5052 init_unused_ring(dev, SRB2_BASE);
5053 init_unused_ring(dev, SRB3_BASE);
5054 } else if (IS_GEN2(dev)) {
5055 init_unused_ring(dev, SRB0_BASE);
5056 init_unused_ring(dev, SRB1_BASE);
5057 } else if (IS_GEN3(dev)) {
5058 init_unused_ring(dev, PRB1_BASE);
5059 init_unused_ring(dev, PRB2_BASE);
5060 }
5061 }
5062
5063 int i915_gem_init_engines(struct drm_device *dev)
5064 {
5065 struct drm_i915_private *dev_priv = to_i915(dev);
5066 int ret;
5067
5068 ret = intel_init_render_ring_buffer(dev);
5069 if (ret)
5070 return ret;
5071
5072 if (HAS_BSD(dev)) {
5073 ret = intel_init_bsd_ring_buffer(dev);
5074 if (ret)
5075 goto cleanup_render_ring;
5076 }
5077
5078 if (HAS_BLT(dev)) {
5079 ret = intel_init_blt_ring_buffer(dev);
5080 if (ret)
5081 goto cleanup_bsd_ring;
5082 }
5083
5084 if (HAS_VEBOX(dev)) {
5085 ret = intel_init_vebox_ring_buffer(dev);
5086 if (ret)
5087 goto cleanup_blt_ring;
5088 }
5089
5090 if (HAS_BSD2(dev)) {
5091 ret = intel_init_bsd2_ring_buffer(dev);
5092 if (ret)
5093 goto cleanup_vebox_ring;
5094 }
5095
5096 return 0;
5097
5098 cleanup_vebox_ring:
5099 intel_cleanup_engine(&dev_priv->engine[VECS]);
5100 cleanup_blt_ring:
5101 intel_cleanup_engine(&dev_priv->engine[BCS]);
5102 cleanup_bsd_ring:
5103 intel_cleanup_engine(&dev_priv->engine[VCS]);
5104 cleanup_render_ring:
5105 intel_cleanup_engine(&dev_priv->engine[RCS]);
5106
5107 return ret;
5108 }
5109
5110 int
5111 i915_gem_init_hw(struct drm_device *dev)
5112 {
5113 struct drm_i915_private *dev_priv = to_i915(dev);
5114 struct intel_engine_cs *engine;
5115 int ret;
5116
5117 /* Double layer security blanket, see i915_gem_init() */
5118 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5119
5120 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5121 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5122
5123 if (IS_HASWELL(dev))
5124 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5125 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5126
5127 if (HAS_PCH_NOP(dev)) {
5128 if (IS_IVYBRIDGE(dev)) {
5129 u32 temp = I915_READ(GEN7_MSG_CTL);
5130 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5131 I915_WRITE(GEN7_MSG_CTL, temp);
5132 } else if (INTEL_INFO(dev)->gen >= 7) {
5133 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5134 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5135 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5136 }
5137 }
5138
5139 i915_gem_init_swizzling(dev);
5140
5141 /*
5142 * At least 830 can leave some of the unused rings
5143 * "active" (ie. head != tail) after resume which
5144 * will prevent c3 entry. Makes sure all unused rings
5145 * are totally idle.
5146 */
5147 init_unused_rings(dev);
5148
5149 BUG_ON(!dev_priv->kernel_context);
5150
5151 ret = i915_ppgtt_init_hw(dev);
5152 if (ret) {
5153 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5154 goto out;
5155 }
5156
5157 /* Need to do basic initialisation of all rings first: */
5158 for_each_engine(engine, dev_priv) {
5159 ret = engine->init_hw(engine);
5160 if (ret)
5161 goto out;
5162 }
5163
5164 intel_mocs_init_l3cc_table(dev);
5165
5166 /* We can't enable contexts until all firmware is loaded */
5167 ret = intel_guc_setup(dev);
5168 if (ret)
5169 goto out;
5170
5171 out:
5172 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 return ret;
5174 }
5175
5176 int i915_gem_init(struct drm_device *dev)
5177 {
5178 struct drm_i915_private *dev_priv = to_i915(dev);
5179 int ret;
5180
5181 mutex_lock(&dev->struct_mutex);
5182
5183 if (!i915.enable_execlists) {
5184 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5185 dev_priv->gt.init_engines = i915_gem_init_engines;
5186 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5187 dev_priv->gt.stop_engine = intel_stop_engine;
5188 } else {
5189 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5190 dev_priv->gt.init_engines = intel_logical_rings_init;
5191 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5192 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5193 }
5194
5195 /* This is just a security blanket to placate dragons.
5196 * On some systems, we very sporadically observe that the first TLBs
5197 * used by the CS may be stale, despite us poking the TLB reset. If
5198 * we hold the forcewake during initialisation these problems
5199 * just magically go away.
5200 */
5201 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5202
5203 i915_gem_init_userptr(dev_priv);
5204 i915_gem_init_ggtt(dev);
5205
5206 ret = i915_gem_context_init(dev);
5207 if (ret)
5208 goto out_unlock;
5209
5210 ret = dev_priv->gt.init_engines(dev);
5211 if (ret)
5212 goto out_unlock;
5213
5214 ret = i915_gem_init_hw(dev);
5215 if (ret == -EIO) {
5216 /* Allow ring initialisation to fail by marking the GPU as
5217 * wedged. But we only want to do this where the GPU is angry,
5218 * for all other failure, such as an allocation failure, bail.
5219 */
5220 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5221 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5222 ret = 0;
5223 }
5224
5225 out_unlock:
5226 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5227 mutex_unlock(&dev->struct_mutex);
5228
5229 return ret;
5230 }
5231
5232 void
5233 i915_gem_cleanup_engines(struct drm_device *dev)
5234 {
5235 struct drm_i915_private *dev_priv = to_i915(dev);
5236 struct intel_engine_cs *engine;
5237
5238 for_each_engine(engine, dev_priv)
5239 dev_priv->gt.cleanup_engine(engine);
5240 }
5241
5242 static void
5243 init_engine_lists(struct intel_engine_cs *engine)
5244 {
5245 INIT_LIST_HEAD(&engine->active_list);
5246 INIT_LIST_HEAD(&engine->request_list);
5247 }
5248
5249 void
5250 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5251 {
5252 struct drm_device *dev = &dev_priv->drm;
5253
5254 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5255 !IS_CHERRYVIEW(dev_priv))
5256 dev_priv->num_fence_regs = 32;
5257 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5258 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5259 dev_priv->num_fence_regs = 16;
5260 else
5261 dev_priv->num_fence_regs = 8;
5262
5263 if (intel_vgpu_active(dev_priv))
5264 dev_priv->num_fence_regs =
5265 I915_READ(vgtif_reg(avail_rs.fence_num));
5266
5267 /* Initialize fence registers to zero */
5268 i915_gem_restore_fences(dev);
5269
5270 i915_gem_detect_bit_6_swizzle(dev);
5271 }
5272
5273 void
5274 i915_gem_load_init(struct drm_device *dev)
5275 {
5276 struct drm_i915_private *dev_priv = to_i915(dev);
5277 int i;
5278
5279 dev_priv->objects =
5280 kmem_cache_create("i915_gem_object",
5281 sizeof(struct drm_i915_gem_object), 0,
5282 SLAB_HWCACHE_ALIGN,
5283 NULL);
5284 dev_priv->vmas =
5285 kmem_cache_create("i915_gem_vma",
5286 sizeof(struct i915_vma), 0,
5287 SLAB_HWCACHE_ALIGN,
5288 NULL);
5289 dev_priv->requests =
5290 kmem_cache_create("i915_gem_request",
5291 sizeof(struct drm_i915_gem_request), 0,
5292 SLAB_HWCACHE_ALIGN,
5293 NULL);
5294
5295 INIT_LIST_HEAD(&dev_priv->vm_list);
5296 INIT_LIST_HEAD(&dev_priv->context_list);
5297 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5298 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5299 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5300 for (i = 0; i < I915_NUM_ENGINES; i++)
5301 init_engine_lists(&dev_priv->engine[i]);
5302 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5303 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5304 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5305 i915_gem_retire_work_handler);
5306 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5307 i915_gem_idle_work_handler);
5308 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5309 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5310
5311 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5312
5313 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5314
5315 init_waitqueue_head(&dev_priv->pending_flip_queue);
5316
5317 dev_priv->mm.interruptible = true;
5318
5319 mutex_init(&dev_priv->fb_tracking.lock);
5320 }
5321
5322 void i915_gem_load_cleanup(struct drm_device *dev)
5323 {
5324 struct drm_i915_private *dev_priv = to_i915(dev);
5325
5326 kmem_cache_destroy(dev_priv->requests);
5327 kmem_cache_destroy(dev_priv->vmas);
5328 kmem_cache_destroy(dev_priv->objects);
5329 }
5330
5331 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5332 {
5333 struct drm_i915_gem_object *obj;
5334
5335 /* Called just before we write the hibernation image.
5336 *
5337 * We need to update the domain tracking to reflect that the CPU
5338 * will be accessing all the pages to create and restore from the
5339 * hibernation, and so upon restoration those pages will be in the
5340 * CPU domain.
5341 *
5342 * To make sure the hibernation image contains the latest state,
5343 * we update that state just before writing out the image.
5344 */
5345
5346 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5347 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5348 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5349 }
5350
5351 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5352 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5353 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5354 }
5355
5356 return 0;
5357 }
5358
5359 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5360 {
5361 struct drm_i915_file_private *file_priv = file->driver_priv;
5362
5363 /* Clean up our request list when the client is going away, so that
5364 * later retire_requests won't dereference our soon-to-be-gone
5365 * file_priv.
5366 */
5367 spin_lock(&file_priv->mm.lock);
5368 while (!list_empty(&file_priv->mm.request_list)) {
5369 struct drm_i915_gem_request *request;
5370
5371 request = list_first_entry(&file_priv->mm.request_list,
5372 struct drm_i915_gem_request,
5373 client_list);
5374 list_del(&request->client_list);
5375 request->file_priv = NULL;
5376 }
5377 spin_unlock(&file_priv->mm.lock);
5378
5379 if (!list_empty(&file_priv->rps.link)) {
5380 spin_lock(&to_i915(dev)->rps.client_lock);
5381 list_del(&file_priv->rps.link);
5382 spin_unlock(&to_i915(dev)->rps.client_lock);
5383 }
5384 }
5385
5386 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5387 {
5388 struct drm_i915_file_private *file_priv;
5389 int ret;
5390
5391 DRM_DEBUG_DRIVER("\n");
5392
5393 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5394 if (!file_priv)
5395 return -ENOMEM;
5396
5397 file->driver_priv = file_priv;
5398 file_priv->dev_priv = to_i915(dev);
5399 file_priv->file = file;
5400 INIT_LIST_HEAD(&file_priv->rps.link);
5401
5402 spin_lock_init(&file_priv->mm.lock);
5403 INIT_LIST_HEAD(&file_priv->mm.request_list);
5404
5405 file_priv->bsd_ring = -1;
5406
5407 ret = i915_gem_context_open(dev, file);
5408 if (ret)
5409 kfree(file_priv);
5410
5411 return ret;
5412 }
5413
5414 /**
5415 * i915_gem_track_fb - update frontbuffer tracking
5416 * @old: current GEM buffer for the frontbuffer slots
5417 * @new: new GEM buffer for the frontbuffer slots
5418 * @frontbuffer_bits: bitmask of frontbuffer slots
5419 *
5420 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5421 * from @old and setting them in @new. Both @old and @new can be NULL.
5422 */
5423 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5424 struct drm_i915_gem_object *new,
5425 unsigned frontbuffer_bits)
5426 {
5427 if (old) {
5428 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5429 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5430 old->frontbuffer_bits &= ~frontbuffer_bits;
5431 }
5432
5433 if (new) {
5434 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5435 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5436 new->frontbuffer_bits |= frontbuffer_bits;
5437 }
5438 }
5439
5440 /* All the new VM stuff */
5441 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5442 struct i915_address_space *vm)
5443 {
5444 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5445 struct i915_vma *vma;
5446
5447 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5448
5449 list_for_each_entry(vma, &o->vma_list, obj_link) {
5450 if (vma->is_ggtt &&
5451 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5452 continue;
5453 if (vma->vm == vm)
5454 return vma->node.start;
5455 }
5456
5457 WARN(1, "%s vma for this object not found.\n",
5458 i915_is_ggtt(vm) ? "global" : "ppgtt");
5459 return -1;
5460 }
5461
5462 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5463 const struct i915_ggtt_view *view)
5464 {
5465 struct i915_vma *vma;
5466
5467 list_for_each_entry(vma, &o->vma_list, obj_link)
5468 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5469 return vma->node.start;
5470
5471 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5472 return -1;
5473 }
5474
5475 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5476 struct i915_address_space *vm)
5477 {
5478 struct i915_vma *vma;
5479
5480 list_for_each_entry(vma, &o->vma_list, obj_link) {
5481 if (vma->is_ggtt &&
5482 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5483 continue;
5484 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5485 return true;
5486 }
5487
5488 return false;
5489 }
5490
5491 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5492 const struct i915_ggtt_view *view)
5493 {
5494 struct i915_vma *vma;
5495
5496 list_for_each_entry(vma, &o->vma_list, obj_link)
5497 if (vma->is_ggtt &&
5498 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5499 drm_mm_node_allocated(&vma->node))
5500 return true;
5501
5502 return false;
5503 }
5504
5505 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5506 {
5507 struct i915_vma *vma;
5508
5509 list_for_each_entry(vma, &o->vma_list, obj_link)
5510 if (drm_mm_node_allocated(&vma->node))
5511 return true;
5512
5513 return false;
5514 }
5515
5516 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5517 {
5518 struct i915_vma *vma;
5519
5520 GEM_BUG_ON(list_empty(&o->vma_list));
5521
5522 list_for_each_entry(vma, &o->vma_list, obj_link) {
5523 if (vma->is_ggtt &&
5524 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5525 return vma->node.size;
5526 }
5527
5528 return 0;
5529 }
5530
5531 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5532 {
5533 struct i915_vma *vma;
5534 list_for_each_entry(vma, &obj->vma_list, obj_link)
5535 if (vma->pin_count > 0)
5536 return true;
5537
5538 return false;
5539 }
5540
5541 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5542 struct page *
5543 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5544 {
5545 struct page *page;
5546
5547 /* Only default objects have per-page dirty tracking */
5548 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5549 return NULL;
5550
5551 page = i915_gem_object_get_page(obj, n);
5552 set_page_dirty(page);
5553 return page;
5554 }
5555
5556 /* Allocate a new GEM object and fill it with the supplied data */
5557 struct drm_i915_gem_object *
5558 i915_gem_object_create_from_data(struct drm_device *dev,
5559 const void *data, size_t size)
5560 {
5561 struct drm_i915_gem_object *obj;
5562 struct sg_table *sg;
5563 size_t bytes;
5564 int ret;
5565
5566 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5567 if (IS_ERR(obj))
5568 return obj;
5569
5570 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5571 if (ret)
5572 goto fail;
5573
5574 ret = i915_gem_object_get_pages(obj);
5575 if (ret)
5576 goto fail;
5577
5578 i915_gem_object_pin_pages(obj);
5579 sg = obj->pages;
5580 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5581 obj->dirty = 1; /* Backing store is now out of date */
5582 i915_gem_object_unpin_pages(obj);
5583
5584 if (WARN_ON(bytes != size)) {
5585 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5586 ret = -EFAULT;
5587 goto fail;
5588 }
5589
5590 return obj;
5591
5592 fail:
5593 drm_gem_object_unreference(&obj->base);
5594 return ERR_PTR(ret);
5595 }
This page took 0.195213 seconds and 6 git commands to generate.