Merge branch 'late/soc' into devel-late
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
114 }
115
116 int i915_mutex_lock_interruptible(struct drm_device *dev)
117 {
118 int ret;
119
120 ret = i915_gem_wait_for_error(dev);
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
128 WARN_ON(i915_verify_lists(dev));
129 return 0;
130 }
131
132 static inline bool
133 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134 {
135 return !obj->active;
136 }
137
138 int
139 i915_gem_init_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_gem_init *args = data;
143
144 if (drm_core_check_feature(dev, DRIVER_MODESET))
145 return -ENODEV;
146
147 if (args->gtt_start >= args->gtt_end ||
148 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
149 return -EINVAL;
150
151 /* GEM with user mode setting was never supported on ilk and later. */
152 if (INTEL_INFO(dev)->gen >= 5)
153 return -ENODEV;
154
155 mutex_lock(&dev->struct_mutex);
156 i915_gem_init_global_gtt(dev, args->gtt_start,
157 args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
159
160 return 0;
161 }
162
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
171
172 pinned = 0;
173 mutex_lock(&dev->struct_mutex);
174 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
175 if (obj->pin_count)
176 pinned += obj->gtt_space->size;
177 mutex_unlock(&dev->struct_mutex);
178
179 args->aper_size = dev_priv->mm.gtt_total;
180 args->aper_available_size = args->aper_size - pinned;
181
182 return 0;
183 }
184
185 static int
186 i915_gem_create(struct drm_file *file,
187 struct drm_device *dev,
188 uint64_t size,
189 uint32_t *handle_p)
190 {
191 struct drm_i915_gem_object *obj;
192 int ret;
193 u32 handle;
194
195 size = roundup(size, PAGE_SIZE);
196 if (size == 0)
197 return -EINVAL;
198
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
203
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
210 }
211
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
215
216 *handle_p = handle;
217 return 0;
218 }
219
220 int
221 i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224 {
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230 }
231
232 int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235 {
236 return drm_gem_handle_delete(file, handle);
237 }
238
239 /**
240 * Creates a new mm object and returns a handle to it.
241 */
242 int
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_gem_create *args = data;
247
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline int
261 __copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264 {
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284 }
285
286 static inline int
287 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
288 const char __user *cpu_vaddr,
289 int length)
290 {
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310 }
311
312 /* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
315 static int
316 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319 {
320 char *vaddr;
321 int ret;
322
323 if (unlikely(page_do_bit17_swizzling))
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336 }
337
338 static void
339 shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341 {
342 if (unlikely(swizzled)) {
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358 }
359
360 /* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362 static int
363 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366 {
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387 }
388
389 static int
390 i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
394 {
395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396 char __user *user_data;
397 ssize_t remain;
398 loff_t offset;
399 int shmem_page_offset, page_length, ret = 0;
400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401 int hit_slowpath = 0;
402 int prefaulted = 0;
403 int needs_clflush = 0;
404 int release_page;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
422
423 offset = args->offset;
424
425 while (remain > 0) {
426 struct page *page;
427
428 /* Operation in this page
429 *
430 * shmem_page_offset = offset within page in shmem file
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset_in_page(offset);
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
437
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
448 }
449
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
458
459 hit_slowpath = 1;
460 page_cache_get(page);
461 mutex_unlock(&dev->struct_mutex);
462
463 if (!prefaulted) {
464 ret = fault_in_multipages_writeable(user_data, remain);
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
472
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
476
477 mutex_lock(&dev->struct_mutex);
478 page_cache_release(page);
479 next_page:
480 mark_page_accessed(page);
481 if (release_page)
482 page_cache_release(page);
483
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
489 remain -= page_length;
490 user_data += page_length;
491 offset += page_length;
492 }
493
494 out:
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555 drm_gem_object_unreference(&obj->base);
556 unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570 {
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582 }
583
584 /**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593 {
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = (char __user *) (uintptr_t) args->data_ptr;
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out_unpin:
646 i915_gem_object_unpin(obj);
647 out:
648 return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691 {
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722 {
723 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724 ssize_t remain;
725 loff_t offset;
726 char __user *user_data;
727 int shmem_page_offset, page_length, ret = 0;
728 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729 int hit_slowpath = 0;
730 int needs_clflush_after = 0;
731 int needs_clflush_before = 0;
732 int release_page;
733
734 user_data = (char __user *) (uintptr_t) args->data_ptr;
735 remain = args->size;
736
737 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738
739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
740 /* If we're not in the cpu write domain, set ourself into the gtt
741 * write domain and manually flush cachelines (if required). This
742 * optimizes for the case when the gpu will use the data
743 * right away and we therefore have to clflush anyway. */
744 if (obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_after = 1;
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 /* Same trick applies for invalidate partially written cachelines before
751 * writing. */
752 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
753 && obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_before = 1;
755
756 offset = args->offset;
757 obj->dirty = 1;
758
759 while (remain > 0) {
760 struct page *page;
761 int partial_cacheline_write;
762
763 /* Operation in this page
764 *
765 * shmem_page_offset = offset within page in shmem file
766 * page_length = bytes to copy for this page
767 */
768 shmem_page_offset = offset_in_page(offset);
769
770 page_length = remain;
771 if ((shmem_page_offset + page_length) > PAGE_SIZE)
772 page_length = PAGE_SIZE - shmem_page_offset;
773
774 /* If we don't overwrite a cacheline completely we need to be
775 * careful to have up-to-date data by first clflushing. Don't
776 * overcomplicate things and flush the entire patch. */
777 partial_cacheline_write = needs_clflush_before &&
778 ((shmem_page_offset | page_length)
779 & (boot_cpu_data.x86_clflush_size - 1));
780
781 if (obj->pages) {
782 page = obj->pages[offset >> PAGE_SHIFT];
783 release_page = 0;
784 } else {
785 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
786 if (IS_ERR(page)) {
787 ret = PTR_ERR(page);
788 goto out;
789 }
790 release_page = 1;
791 }
792
793 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
794 (page_to_phys(page) & (1 << 17)) != 0;
795
796 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800 if (ret == 0)
801 goto next_page;
802
803 hit_slowpath = 1;
804 page_cache_get(page);
805 mutex_unlock(&dev->struct_mutex);
806
807 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
811
812 mutex_lock(&dev->struct_mutex);
813 page_cache_release(page);
814 next_page:
815 set_page_dirty(page);
816 mark_page_accessed(page);
817 if (release_page)
818 page_cache_release(page);
819
820 if (ret) {
821 ret = -EFAULT;
822 goto out;
823 }
824
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 if (hit_slowpath) {
832 /* Fixup: Kill any reinstated backing storage pages */
833 if (obj->madv == __I915_MADV_PURGED)
834 i915_gem_object_truncate(obj);
835 /* and flush dirty cachelines in case the object isn't in the cpu write
836 * domain anymore. */
837 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 i915_gem_clflush_object(obj);
839 intel_gtt_chipset_flush();
840 }
841 }
842
843 if (needs_clflush_after)
844 intel_gtt_chipset_flush();
845
846 return ret;
847 }
848
849 /**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file)
857 {
858 struct drm_i915_gem_pwrite *args = data;
859 struct drm_i915_gem_object *obj;
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
866 (char __user *)(uintptr_t)args->data_ptr,
867 args->size))
868 return -EFAULT;
869
870 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
871 args->size);
872 if (ret)
873 return -EFAULT;
874
875 ret = i915_mutex_lock_interruptible(dev);
876 if (ret)
877 return ret;
878
879 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880 if (&obj->base == NULL) {
881 ret = -ENOENT;
882 goto unlock;
883 }
884
885 /* Bounds check destination. */
886 if (args->offset > obj->base.size ||
887 args->size > obj->base.size - args->offset) {
888 ret = -EINVAL;
889 goto out;
890 }
891
892 /* prime objects have no backing filp to GEM pread/pwrite
893 * pages from.
894 */
895 if (!obj->base.filp) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
901
902 ret = -EFAULT;
903 /* We can only do the GTT pwrite on untiled buffers, as otherwise
904 * it would end up going through the fenced access, and we'll get
905 * different detiling behavior between reading and writing.
906 * pread/pwrite currently are reading and writing from the CPU
907 * perspective, requiring manual detiling by the client.
908 */
909 if (obj->phys_obj) {
910 ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 goto out;
912 }
913
914 if (obj->gtt_space &&
915 obj->cache_level == I915_CACHE_NONE &&
916 obj->tiling_mode == I915_TILING_NONE &&
917 obj->map_and_fenceable &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
923 }
924
925 if (ret == -EFAULT)
926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929 drm_gem_object_unreference(&obj->base);
930 unlock:
931 mutex_unlock(&dev->struct_mutex);
932 return ret;
933 }
934
935 /**
936 * Called when user space prepares to use an object with the CPU, either
937 * through the mmap ioctl's mapping or a GTT mapping.
938 */
939 int
940 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941 struct drm_file *file)
942 {
943 struct drm_i915_gem_set_domain *args = data;
944 struct drm_i915_gem_object *obj;
945 uint32_t read_domains = args->read_domains;
946 uint32_t write_domain = args->write_domain;
947 int ret;
948
949 /* Only handle setting domains to types used by the CPU. */
950 if (write_domain & I915_GEM_GPU_DOMAINS)
951 return -EINVAL;
952
953 if (read_domains & I915_GEM_GPU_DOMAINS)
954 return -EINVAL;
955
956 /* Having something in the write domain implies it's in the read
957 * domain, and only that read domain. Enforce that in the request.
958 */
959 if (write_domain != 0 && read_domains != write_domain)
960 return -EINVAL;
961
962 ret = i915_mutex_lock_interruptible(dev);
963 if (ret)
964 return ret;
965
966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967 if (&obj->base == NULL) {
968 ret = -ENOENT;
969 goto unlock;
970 }
971
972 if (read_domains & I915_GEM_DOMAIN_GTT) {
973 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974
975 /* Silently promote "you're not bound, there was nothing to do"
976 * to success, since the client was just asking us to
977 * make sure everything was done.
978 */
979 if (ret == -EINVAL)
980 ret = 0;
981 } else {
982 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 }
984
985 drm_gem_object_unreference(&obj->base);
986 unlock:
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989 }
990
991 /**
992 * Called when user space has done writes to this buffer
993 */
994 int
995 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996 struct drm_file *file)
997 {
998 struct drm_i915_gem_sw_finish *args = data;
999 struct drm_i915_gem_object *obj;
1000 int ret = 0;
1001
1002 ret = i915_mutex_lock_interruptible(dev);
1003 if (ret)
1004 return ret;
1005
1006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007 if (&obj->base == NULL) {
1008 ret = -ENOENT;
1009 goto unlock;
1010 }
1011
1012 /* Pinned buffers may be scanout, so flush the cache */
1013 if (obj->pin_count)
1014 i915_gem_object_flush_cpu_write_domain(obj);
1015
1016 drm_gem_object_unreference(&obj->base);
1017 unlock:
1018 mutex_unlock(&dev->struct_mutex);
1019 return ret;
1020 }
1021
1022 /**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029 int
1030 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031 struct drm_file *file)
1032 {
1033 struct drm_i915_gem_mmap *args = data;
1034 struct drm_gem_object *obj;
1035 unsigned long addr;
1036
1037 obj = drm_gem_object_lookup(dev, file, args->handle);
1038 if (obj == NULL)
1039 return -ENOENT;
1040
1041 /* prime objects have no backing filp to GEM mmap
1042 * pages from.
1043 */
1044 if (!obj->filp) {
1045 drm_gem_object_unreference_unlocked(obj);
1046 return -EINVAL;
1047 }
1048
1049 addr = vm_mmap(obj->filp, 0, args->size,
1050 PROT_READ | PROT_WRITE, MAP_SHARED,
1051 args->offset);
1052 drm_gem_object_unreference_unlocked(obj);
1053 if (IS_ERR((void *)addr))
1054 return addr;
1055
1056 args->addr_ptr = (uint64_t) addr;
1057
1058 return 0;
1059 }
1060
1061 /**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace. The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room. So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078 {
1079 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080 struct drm_device *dev = obj->base.dev;
1081 drm_i915_private_t *dev_priv = dev->dev_private;
1082 pgoff_t page_offset;
1083 unsigned long pfn;
1084 int ret = 0;
1085 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087 /* We don't use vmf->pgoff since that has the fake offset */
1088 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089 PAGE_SHIFT;
1090
1091 ret = i915_mutex_lock_interruptible(dev);
1092 if (ret)
1093 goto out;
1094
1095 trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097 /* Now bind it into the GTT if needed */
1098 if (!obj->map_and_fenceable) {
1099 ret = i915_gem_object_unbind(obj);
1100 if (ret)
1101 goto unlock;
1102 }
1103 if (!obj->gtt_space) {
1104 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 if (ret)
1106 goto unlock;
1107
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109 if (ret)
1110 goto unlock;
1111 }
1112
1113 if (!obj->has_global_gtt_mapping)
1114 i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116 ret = i915_gem_object_get_fence(obj);
1117 if (ret)
1118 goto unlock;
1119
1120 if (i915_gem_object_is_inactive(obj))
1121 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123 obj->fault_mappable = true;
1124
1125 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126 page_offset;
1127
1128 /* Finally, remap it using the new GTT offset */
1129 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 out:
1133 switch (ret) {
1134 case -EIO:
1135 case -EAGAIN:
1136 /* Give the error handler a chance to run and move the
1137 * objects off the GPU active list. Next time we service the
1138 * fault, we should be able to transition the page into the
1139 * GTT without touching the GPU (and so avoid further
1140 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141 * with coherency, just lost writes.
1142 */
1143 set_need_resched();
1144 case 0:
1145 case -ERESTARTSYS:
1146 case -EINTR:
1147 return VM_FAULT_NOPAGE;
1148 case -ENOMEM:
1149 return VM_FAULT_OOM;
1150 default:
1151 return VM_FAULT_SIGBUS;
1152 }
1153 }
1154
1155 /**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169 void
1170 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171 {
1172 if (!obj->fault_mappable)
1173 return;
1174
1175 if (obj->base.dev->dev_mapping)
1176 unmap_mapping_range(obj->base.dev->dev_mapping,
1177 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178 obj->base.size, 1);
1179
1180 obj->fault_mappable = false;
1181 }
1182
1183 static uint32_t
1184 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185 {
1186 uint32_t gtt_size;
1187
1188 if (INTEL_INFO(dev)->gen >= 4 ||
1189 tiling_mode == I915_TILING_NONE)
1190 return size;
1191
1192 /* Previous chips need a power-of-two fence region when tiling */
1193 if (INTEL_INFO(dev)->gen == 3)
1194 gtt_size = 1024*1024;
1195 else
1196 gtt_size = 512*1024;
1197
1198 while (gtt_size < size)
1199 gtt_size <<= 1;
1200
1201 return gtt_size;
1202 }
1203
1204 /**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211 static uint32_t
1212 i915_gem_get_gtt_alignment(struct drm_device *dev,
1213 uint32_t size,
1214 int tiling_mode)
1215 {
1216 /*
1217 * Minimum alignment is 4k (GTT page size), but might be greater
1218 * if a fence register is needed for the object.
1219 */
1220 if (INTEL_INFO(dev)->gen >= 4 ||
1221 tiling_mode == I915_TILING_NONE)
1222 return 4096;
1223
1224 /*
1225 * Previous chips need to be aligned to the size of the smallest
1226 * fence register that can contain the object.
1227 */
1228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 }
1230
1231 /**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 * unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241 uint32_t
1242 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243 uint32_t size,
1244 int tiling_mode)
1245 {
1246 /*
1247 * Minimum alignment is 4k (GTT page size) for sane hw.
1248 */
1249 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250 tiling_mode == I915_TILING_NONE)
1251 return 4096;
1252
1253 /* Previous hardware however needs to be aligned to a power-of-two
1254 * tile height. The simplest method for determining this is to reuse
1255 * the power-of-tile object size.
1256 */
1257 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 }
1259
1260 int
1261 i915_gem_mmap_gtt(struct drm_file *file,
1262 struct drm_device *dev,
1263 uint32_t handle,
1264 uint64_t *offset)
1265 {
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 struct drm_i915_gem_object *obj;
1268 int ret;
1269
1270 ret = i915_mutex_lock_interruptible(dev);
1271 if (ret)
1272 return ret;
1273
1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275 if (&obj->base == NULL) {
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
1279
1280 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281 ret = -E2BIG;
1282 goto out;
1283 }
1284
1285 if (obj->madv != I915_MADV_WILLNEED) {
1286 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 ret = -EINVAL;
1288 goto out;
1289 }
1290
1291 if (!obj->base.map_list.map) {
1292 ret = drm_gem_create_mmap_offset(&obj->base);
1293 if (ret)
1294 goto out;
1295 }
1296
1297 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299 out:
1300 drm_gem_object_unreference(&obj->base);
1301 unlock:
1302 mutex_unlock(&dev->struct_mutex);
1303 return ret;
1304 }
1305
1306 /**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321 int
1322 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323 struct drm_file *file)
1324 {
1325 struct drm_i915_gem_mmap_gtt *args = data;
1326
1327 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328 }
1329
1330 int
1331 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 gfp_t gfpmask)
1333 {
1334 int page_count, i;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 struct page *page;
1338
1339 if (obj->pages || obj->sg_table)
1340 return 0;
1341
1342 /* Get the list of pages out of our struct file. They'll be pinned
1343 * at this point until we release them.
1344 */
1345 page_count = obj->base.size / PAGE_SIZE;
1346 BUG_ON(obj->pages != NULL);
1347 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348 if (obj->pages == NULL)
1349 return -ENOMEM;
1350
1351 inode = obj->base.filp->f_path.dentry->d_inode;
1352 mapping = inode->i_mapping;
1353 gfpmask |= mapping_gfp_mask(mapping);
1354
1355 for (i = 0; i < page_count; i++) {
1356 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 if (IS_ERR(page))
1358 goto err_pages;
1359
1360 obj->pages[i] = page;
1361 }
1362
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 i915_gem_object_do_bit_17_swizzle(obj);
1365
1366 return 0;
1367
1368 err_pages:
1369 while (i--)
1370 page_cache_release(obj->pages[i]);
1371
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
1374 return PTR_ERR(page);
1375 }
1376
1377 static void
1378 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379 {
1380 int page_count = obj->base.size / PAGE_SIZE;
1381 int i;
1382
1383 if (!obj->pages)
1384 return;
1385
1386 BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 i915_gem_object_save_bit_17_swizzle(obj);
1390
1391 if (obj->madv == I915_MADV_DONTNEED)
1392 obj->dirty = 0;
1393
1394 for (i = 0; i < page_count; i++) {
1395 if (obj->dirty)
1396 set_page_dirty(obj->pages[i]);
1397
1398 if (obj->madv == I915_MADV_WILLNEED)
1399 mark_page_accessed(obj->pages[i]);
1400
1401 page_cache_release(obj->pages[i]);
1402 }
1403 obj->dirty = 0;
1404
1405 drm_free_large(obj->pages);
1406 obj->pages = NULL;
1407 }
1408
1409 void
1410 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 struct intel_ring_buffer *ring,
1412 u32 seqno)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417 BUG_ON(ring == NULL);
1418 obj->ring = ring;
1419
1420 /* Add a reference if we're newly entering the active list. */
1421 if (!obj->active) {
1422 drm_gem_object_reference(&obj->base);
1423 obj->active = 1;
1424 }
1425
1426 /* Move from whatever list we were on to the tail of execution. */
1427 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428 list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430 obj->last_rendering_seqno = seqno;
1431
1432 if (obj->fenced_gpu_access) {
1433 obj->last_fenced_seqno = seqno;
1434
1435 /* Bump MRU to take account of the delayed flush */
1436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437 struct drm_i915_fence_reg *reg;
1438
1439 reg = &dev_priv->fence_regs[obj->fence_reg];
1440 list_move_tail(&reg->lru_list,
1441 &dev_priv->mm.fence_list);
1442 }
1443 }
1444 }
1445
1446 static void
1447 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448 {
1449 list_del_init(&obj->ring_list);
1450 obj->last_rendering_seqno = 0;
1451 obj->last_fenced_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->base.dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460 BUG_ON(!obj->active);
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463 i915_gem_object_move_off_active(obj);
1464 }
1465
1466 static void
1467 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468 {
1469 struct drm_device *dev = obj->base.dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473
1474 BUG_ON(!list_empty(&obj->gpu_write_list));
1475 BUG_ON(!obj->active);
1476 obj->ring = NULL;
1477
1478 i915_gem_object_move_off_active(obj);
1479 obj->fenced_gpu_access = false;
1480
1481 obj->active = 0;
1482 obj->pending_gpu_write = false;
1483 drm_gem_object_unreference(&obj->base);
1484
1485 WARN_ON(i915_verify_lists(dev));
1486 }
1487
1488 /* Immediately discard the backing storage */
1489 static void
1490 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491 {
1492 struct inode *inode;
1493
1494 /* Our goal here is to return as much of the memory as
1495 * is possible back to the system as we are called from OOM.
1496 * To do this we must instruct the shmfs to drop all of its
1497 * backing pages, *now*.
1498 */
1499 inode = obj->base.filp->f_path.dentry->d_inode;
1500 shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502 if (obj->base.map_list.map)
1503 drm_gem_free_mmap_offset(&obj->base);
1504
1505 obj->madv = __I915_MADV_PURGED;
1506 }
1507
1508 static inline int
1509 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510 {
1511 return obj->madv == I915_MADV_DONTNEED;
1512 }
1513
1514 static void
1515 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516 uint32_t flush_domains)
1517 {
1518 struct drm_i915_gem_object *obj, *next;
1519
1520 list_for_each_entry_safe(obj, next,
1521 &ring->gpu_write_list,
1522 gpu_write_list) {
1523 if (obj->base.write_domain & flush_domains) {
1524 uint32_t old_write_domain = obj->base.write_domain;
1525
1526 obj->base.write_domain = 0;
1527 list_del_init(&obj->gpu_write_list);
1528 i915_gem_object_move_to_active(obj, ring,
1529 i915_gem_next_request_seqno(ring));
1530
1531 trace_i915_gem_object_change_domain(obj,
1532 obj->base.read_domains,
1533 old_write_domain);
1534 }
1535 }
1536 }
1537
1538 static u32
1539 i915_gem_get_seqno(struct drm_device *dev)
1540 {
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542 u32 seqno = dev_priv->next_seqno;
1543
1544 /* reserve 0 for non-seqno */
1545 if (++dev_priv->next_seqno == 0)
1546 dev_priv->next_seqno = 1;
1547
1548 return seqno;
1549 }
1550
1551 u32
1552 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553 {
1554 if (ring->outstanding_lazy_request == 0)
1555 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557 return ring->outstanding_lazy_request;
1558 }
1559
1560 int
1561 i915_add_request(struct intel_ring_buffer *ring,
1562 struct drm_file *file,
1563 struct drm_i915_gem_request *request)
1564 {
1565 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566 uint32_t seqno;
1567 u32 request_ring_position;
1568 int was_empty;
1569 int ret;
1570
1571 BUG_ON(request == NULL);
1572 seqno = i915_gem_next_request_seqno(ring);
1573
1574 /* Record the position of the start of the request so that
1575 * should we detect the updated seqno part-way through the
1576 * GPU processing the request, we never over-estimate the
1577 * position of the head.
1578 */
1579 request_ring_position = intel_ring_get_tail(ring);
1580
1581 ret = ring->add_request(ring, &seqno);
1582 if (ret)
1583 return ret;
1584
1585 trace_i915_gem_request_add(ring, seqno);
1586
1587 request->seqno = seqno;
1588 request->ring = ring;
1589 request->tail = request_ring_position;
1590 request->emitted_jiffies = jiffies;
1591 was_empty = list_empty(&ring->request_list);
1592 list_add_tail(&request->list, &ring->request_list);
1593
1594 if (file) {
1595 struct drm_i915_file_private *file_priv = file->driver_priv;
1596
1597 spin_lock(&file_priv->mm.lock);
1598 request->file_priv = file_priv;
1599 list_add_tail(&request->client_list,
1600 &file_priv->mm.request_list);
1601 spin_unlock(&file_priv->mm.lock);
1602 }
1603
1604 ring->outstanding_lazy_request = 0;
1605
1606 if (!dev_priv->mm.suspended) {
1607 if (i915_enable_hangcheck) {
1608 mod_timer(&dev_priv->hangcheck_timer,
1609 jiffies +
1610 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1611 }
1612 if (was_empty)
1613 queue_delayed_work(dev_priv->wq,
1614 &dev_priv->mm.retire_work, HZ);
1615 }
1616 return 0;
1617 }
1618
1619 static inline void
1620 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621 {
1622 struct drm_i915_file_private *file_priv = request->file_priv;
1623
1624 if (!file_priv)
1625 return;
1626
1627 spin_lock(&file_priv->mm.lock);
1628 if (request->file_priv) {
1629 list_del(&request->client_list);
1630 request->file_priv = NULL;
1631 }
1632 spin_unlock(&file_priv->mm.lock);
1633 }
1634
1635 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1636 struct intel_ring_buffer *ring)
1637 {
1638 while (!list_empty(&ring->request_list)) {
1639 struct drm_i915_gem_request *request;
1640
1641 request = list_first_entry(&ring->request_list,
1642 struct drm_i915_gem_request,
1643 list);
1644
1645 list_del(&request->list);
1646 i915_gem_request_remove_from_client(request);
1647 kfree(request);
1648 }
1649
1650 while (!list_empty(&ring->active_list)) {
1651 struct drm_i915_gem_object *obj;
1652
1653 obj = list_first_entry(&ring->active_list,
1654 struct drm_i915_gem_object,
1655 ring_list);
1656
1657 obj->base.write_domain = 0;
1658 list_del_init(&obj->gpu_write_list);
1659 i915_gem_object_move_to_inactive(obj);
1660 }
1661 }
1662
1663 static void i915_gem_reset_fences(struct drm_device *dev)
1664 {
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 int i;
1667
1668 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670
1671 i915_gem_write_fence(dev, i, NULL);
1672
1673 if (reg->obj)
1674 i915_gem_object_fence_lost(reg->obj);
1675
1676 reg->pin_count = 0;
1677 reg->obj = NULL;
1678 INIT_LIST_HEAD(&reg->lru_list);
1679 }
1680
1681 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682 }
1683
1684 void i915_gem_reset(struct drm_device *dev)
1685 {
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 struct drm_i915_gem_object *obj;
1688 struct intel_ring_buffer *ring;
1689 int i;
1690
1691 for_each_ring(ring, dev_priv, i)
1692 i915_gem_reset_ring_lists(dev_priv, ring);
1693
1694 /* Remove anything from the flushing lists. The GPU cache is likely
1695 * to be lost on reset along with the data, so simply move the
1696 * lost bo to the inactive list.
1697 */
1698 while (!list_empty(&dev_priv->mm.flushing_list)) {
1699 obj = list_first_entry(&dev_priv->mm.flushing_list,
1700 struct drm_i915_gem_object,
1701 mm_list);
1702
1703 obj->base.write_domain = 0;
1704 list_del_init(&obj->gpu_write_list);
1705 i915_gem_object_move_to_inactive(obj);
1706 }
1707
1708 /* Move everything out of the GPU domains to ensure we do any
1709 * necessary invalidation upon reuse.
1710 */
1711 list_for_each_entry(obj,
1712 &dev_priv->mm.inactive_list,
1713 mm_list)
1714 {
1715 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716 }
1717
1718 /* The fence registers are invalidated so clear them out */
1719 i915_gem_reset_fences(dev);
1720 }
1721
1722 /**
1723 * This function clears the request list as sequence numbers are passed.
1724 */
1725 void
1726 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727 {
1728 uint32_t seqno;
1729 int i;
1730
1731 if (list_empty(&ring->request_list))
1732 return;
1733
1734 WARN_ON(i915_verify_lists(ring->dev));
1735
1736 seqno = ring->get_seqno(ring);
1737
1738 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739 if (seqno >= ring->sync_seqno[i])
1740 ring->sync_seqno[i] = 0;
1741
1742 while (!list_empty(&ring->request_list)) {
1743 struct drm_i915_gem_request *request;
1744
1745 request = list_first_entry(&ring->request_list,
1746 struct drm_i915_gem_request,
1747 list);
1748
1749 if (!i915_seqno_passed(seqno, request->seqno))
1750 break;
1751
1752 trace_i915_gem_request_retire(ring, request->seqno);
1753 /* We know the GPU must have read the request to have
1754 * sent us the seqno + interrupt, so use the position
1755 * of tail of the request to update the last known position
1756 * of the GPU head.
1757 */
1758 ring->last_retired_head = request->tail;
1759
1760 list_del(&request->list);
1761 i915_gem_request_remove_from_client(request);
1762 kfree(request);
1763 }
1764
1765 /* Move any buffers on the active list that are no longer referenced
1766 * by the ringbuffer to the flushing/inactive lists as appropriate.
1767 */
1768 while (!list_empty(&ring->active_list)) {
1769 struct drm_i915_gem_object *obj;
1770
1771 obj = list_first_entry(&ring->active_list,
1772 struct drm_i915_gem_object,
1773 ring_list);
1774
1775 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776 break;
1777
1778 if (obj->base.write_domain != 0)
1779 i915_gem_object_move_to_flushing(obj);
1780 else
1781 i915_gem_object_move_to_inactive(obj);
1782 }
1783
1784 if (unlikely(ring->trace_irq_seqno &&
1785 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786 ring->irq_put(ring);
1787 ring->trace_irq_seqno = 0;
1788 }
1789
1790 WARN_ON(i915_verify_lists(ring->dev));
1791 }
1792
1793 void
1794 i915_gem_retire_requests(struct drm_device *dev)
1795 {
1796 drm_i915_private_t *dev_priv = dev->dev_private;
1797 struct intel_ring_buffer *ring;
1798 int i;
1799
1800 for_each_ring(ring, dev_priv, i)
1801 i915_gem_retire_requests_ring(ring);
1802 }
1803
1804 static void
1805 i915_gem_retire_work_handler(struct work_struct *work)
1806 {
1807 drm_i915_private_t *dev_priv;
1808 struct drm_device *dev;
1809 struct intel_ring_buffer *ring;
1810 bool idle;
1811 int i;
1812
1813 dev_priv = container_of(work, drm_i915_private_t,
1814 mm.retire_work.work);
1815 dev = dev_priv->dev;
1816
1817 /* Come back later if the device is busy... */
1818 if (!mutex_trylock(&dev->struct_mutex)) {
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 return;
1821 }
1822
1823 i915_gem_retire_requests(dev);
1824
1825 /* Send a periodic flush down the ring so we don't hold onto GEM
1826 * objects indefinitely.
1827 */
1828 idle = true;
1829 for_each_ring(ring, dev_priv, i) {
1830 if (!list_empty(&ring->gpu_write_list)) {
1831 struct drm_i915_gem_request *request;
1832 int ret;
1833
1834 ret = i915_gem_flush_ring(ring,
1835 0, I915_GEM_GPU_DOMAINS);
1836 request = kzalloc(sizeof(*request), GFP_KERNEL);
1837 if (ret || request == NULL ||
1838 i915_add_request(ring, NULL, request))
1839 kfree(request);
1840 }
1841
1842 idle &= list_empty(&ring->request_list);
1843 }
1844
1845 if (!dev_priv->mm.suspended && !idle)
1846 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847
1848 mutex_unlock(&dev->struct_mutex);
1849 }
1850
1851 static int
1852 i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1853 {
1854 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1855
1856 if (atomic_read(&dev_priv->mm.wedged)) {
1857 struct completion *x = &dev_priv->error_completion;
1858 bool recovery_complete;
1859 unsigned long flags;
1860
1861 /* Give the error handler a chance to run. */
1862 spin_lock_irqsave(&x->wait.lock, flags);
1863 recovery_complete = x->done > 0;
1864 spin_unlock_irqrestore(&x->wait.lock, flags);
1865
1866 return recovery_complete ? -EIO : -EAGAIN;
1867 }
1868
1869 return 0;
1870 }
1871
1872 /*
1873 * Compare seqno against outstanding lazy request. Emit a request if they are
1874 * equal.
1875 */
1876 static int
1877 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1878 {
1879 int ret = 0;
1880
1881 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1882
1883 if (seqno == ring->outstanding_lazy_request) {
1884 struct drm_i915_gem_request *request;
1885
1886 request = kzalloc(sizeof(*request), GFP_KERNEL);
1887 if (request == NULL)
1888 return -ENOMEM;
1889
1890 ret = i915_add_request(ring, NULL, request);
1891 if (ret) {
1892 kfree(request);
1893 return ret;
1894 }
1895
1896 BUG_ON(seqno != request->seqno);
1897 }
1898
1899 return ret;
1900 }
1901
1902 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1903 bool interruptible)
1904 {
1905 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1906 int ret = 0;
1907
1908 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1909 return 0;
1910
1911 trace_i915_gem_request_wait_begin(ring, seqno);
1912 if (WARN_ON(!ring->irq_get(ring)))
1913 return -ENODEV;
1914
1915 #define EXIT_COND \
1916 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1917 atomic_read(&dev_priv->mm.wedged))
1918
1919 if (interruptible)
1920 ret = wait_event_interruptible(ring->irq_queue,
1921 EXIT_COND);
1922 else
1923 wait_event(ring->irq_queue, EXIT_COND);
1924
1925 ring->irq_put(ring);
1926 trace_i915_gem_request_wait_end(ring, seqno);
1927 #undef EXIT_COND
1928
1929 return ret;
1930 }
1931
1932 /**
1933 * Waits for a sequence number to be signaled, and cleans up the
1934 * request and object lists appropriately for that event.
1935 */
1936 int
1937 i915_wait_request(struct intel_ring_buffer *ring,
1938 uint32_t seqno)
1939 {
1940 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1941 int ret = 0;
1942
1943 BUG_ON(seqno == 0);
1944
1945 ret = i915_gem_check_wedge(dev_priv);
1946 if (ret)
1947 return ret;
1948
1949 ret = i915_gem_check_olr(ring, seqno);
1950 if (ret)
1951 return ret;
1952
1953 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1954 if (atomic_read(&dev_priv->mm.wedged))
1955 ret = -EAGAIN;
1956
1957 return ret;
1958 }
1959
1960 /**
1961 * Ensures that all rendering to the object has completed and the object is
1962 * safe to unbind from the GTT or access from the CPU.
1963 */
1964 int
1965 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1966 {
1967 int ret;
1968
1969 /* This function only exists to support waiting for existing rendering,
1970 * not for emitting required flushes.
1971 */
1972 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1973
1974 /* If there is rendering queued on the buffer being evicted, wait for
1975 * it.
1976 */
1977 if (obj->active) {
1978 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1979 if (ret)
1980 return ret;
1981 i915_gem_retire_requests_ring(obj->ring);
1982 }
1983
1984 return 0;
1985 }
1986
1987 /**
1988 * i915_gem_object_sync - sync an object to a ring.
1989 *
1990 * @obj: object which may be in use on another ring.
1991 * @to: ring we wish to use the object on. May be NULL.
1992 *
1993 * This code is meant to abstract object synchronization with the GPU.
1994 * Calling with NULL implies synchronizing the object with the CPU
1995 * rather than a particular GPU ring.
1996 *
1997 * Returns 0 if successful, else propagates up the lower layer error.
1998 */
1999 int
2000 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2001 struct intel_ring_buffer *to)
2002 {
2003 struct intel_ring_buffer *from = obj->ring;
2004 u32 seqno;
2005 int ret, idx;
2006
2007 if (from == NULL || to == from)
2008 return 0;
2009
2010 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2011 return i915_gem_object_wait_rendering(obj);
2012
2013 idx = intel_ring_sync_index(from, to);
2014
2015 seqno = obj->last_rendering_seqno;
2016 if (seqno <= from->sync_seqno[idx])
2017 return 0;
2018
2019 ret = i915_gem_check_olr(obj->ring, seqno);
2020 if (ret)
2021 return ret;
2022
2023 ret = to->sync_to(to, from, seqno);
2024 if (!ret)
2025 from->sync_seqno[idx] = seqno;
2026
2027 return ret;
2028 }
2029
2030 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031 {
2032 u32 old_write_domain, old_read_domains;
2033
2034 /* Act a barrier for all accesses through the GTT */
2035 mb();
2036
2037 /* Force a pagefault for domain tracking on next user access */
2038 i915_gem_release_mmap(obj);
2039
2040 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041 return;
2042
2043 old_read_domains = obj->base.read_domains;
2044 old_write_domain = obj->base.write_domain;
2045
2046 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049 trace_i915_gem_object_change_domain(obj,
2050 old_read_domains,
2051 old_write_domain);
2052 }
2053
2054 /**
2055 * Unbinds an object from the GTT aperture.
2056 */
2057 int
2058 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059 {
2060 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 int ret = 0;
2062
2063 if (obj->gtt_space == NULL)
2064 return 0;
2065
2066 if (obj->pin_count)
2067 return -EBUSY;
2068
2069 ret = i915_gem_object_finish_gpu(obj);
2070 if (ret)
2071 return ret;
2072 /* Continue on if we fail due to EIO, the GPU is hung so we
2073 * should be safe and we need to cleanup or else we might
2074 * cause memory corruption through use-after-free.
2075 */
2076
2077 i915_gem_object_finish_gtt(obj);
2078
2079 /* Move the object to the CPU domain to ensure that
2080 * any possible CPU writes while it's not in the GTT
2081 * are flushed when we go to remap it.
2082 */
2083 if (ret == 0)
2084 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2085 if (ret == -ERESTARTSYS)
2086 return ret;
2087 if (ret) {
2088 /* In the event of a disaster, abandon all caches and
2089 * hope for the best.
2090 */
2091 i915_gem_clflush_object(obj);
2092 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2093 }
2094
2095 /* release the fence reg _after_ flushing */
2096 ret = i915_gem_object_put_fence(obj);
2097 if (ret)
2098 return ret;
2099
2100 trace_i915_gem_object_unbind(obj);
2101
2102 if (obj->has_global_gtt_mapping)
2103 i915_gem_gtt_unbind_object(obj);
2104 if (obj->has_aliasing_ppgtt_mapping) {
2105 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2106 obj->has_aliasing_ppgtt_mapping = 0;
2107 }
2108 i915_gem_gtt_finish_object(obj);
2109
2110 i915_gem_object_put_pages_gtt(obj);
2111
2112 list_del_init(&obj->gtt_list);
2113 list_del_init(&obj->mm_list);
2114 /* Avoid an unnecessary call to unbind on rebind. */
2115 obj->map_and_fenceable = true;
2116
2117 drm_mm_put_block(obj->gtt_space);
2118 obj->gtt_space = NULL;
2119 obj->gtt_offset = 0;
2120
2121 if (i915_gem_object_is_purgeable(obj))
2122 i915_gem_object_truncate(obj);
2123
2124 return ret;
2125 }
2126
2127 int
2128 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2129 uint32_t invalidate_domains,
2130 uint32_t flush_domains)
2131 {
2132 int ret;
2133
2134 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2135 return 0;
2136
2137 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2138
2139 ret = ring->flush(ring, invalidate_domains, flush_domains);
2140 if (ret)
2141 return ret;
2142
2143 if (flush_domains & I915_GEM_GPU_DOMAINS)
2144 i915_gem_process_flushing_list(ring, flush_domains);
2145
2146 return 0;
2147 }
2148
2149 static int i915_ring_idle(struct intel_ring_buffer *ring)
2150 {
2151 int ret;
2152
2153 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2154 return 0;
2155
2156 if (!list_empty(&ring->gpu_write_list)) {
2157 ret = i915_gem_flush_ring(ring,
2158 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2159 if (ret)
2160 return ret;
2161 }
2162
2163 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2164 }
2165
2166 int i915_gpu_idle(struct drm_device *dev)
2167 {
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct intel_ring_buffer *ring;
2170 int ret, i;
2171
2172 /* Flush everything onto the inactive list. */
2173 for_each_ring(ring, dev_priv, i) {
2174 ret = i915_ring_idle(ring);
2175 if (ret)
2176 return ret;
2177
2178 /* Is the device fubar? */
2179 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2180 return -EBUSY;
2181 }
2182
2183 return 0;
2184 }
2185
2186 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2187 struct drm_i915_gem_object *obj)
2188 {
2189 drm_i915_private_t *dev_priv = dev->dev_private;
2190 uint64_t val;
2191
2192 if (obj) {
2193 u32 size = obj->gtt_space->size;
2194
2195 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2196 0xfffff000) << 32;
2197 val |= obj->gtt_offset & 0xfffff000;
2198 val |= (uint64_t)((obj->stride / 128) - 1) <<
2199 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2200
2201 if (obj->tiling_mode == I915_TILING_Y)
2202 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2203 val |= I965_FENCE_REG_VALID;
2204 } else
2205 val = 0;
2206
2207 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2208 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2209 }
2210
2211 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2212 struct drm_i915_gem_object *obj)
2213 {
2214 drm_i915_private_t *dev_priv = dev->dev_private;
2215 uint64_t val;
2216
2217 if (obj) {
2218 u32 size = obj->gtt_space->size;
2219
2220 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2221 0xfffff000) << 32;
2222 val |= obj->gtt_offset & 0xfffff000;
2223 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2224 if (obj->tiling_mode == I915_TILING_Y)
2225 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2226 val |= I965_FENCE_REG_VALID;
2227 } else
2228 val = 0;
2229
2230 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2231 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2232 }
2233
2234 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2235 struct drm_i915_gem_object *obj)
2236 {
2237 drm_i915_private_t *dev_priv = dev->dev_private;
2238 u32 val;
2239
2240 if (obj) {
2241 u32 size = obj->gtt_space->size;
2242 int pitch_val;
2243 int tile_width;
2244
2245 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2246 (size & -size) != size ||
2247 (obj->gtt_offset & (size - 1)),
2248 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2249 obj->gtt_offset, obj->map_and_fenceable, size);
2250
2251 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2252 tile_width = 128;
2253 else
2254 tile_width = 512;
2255
2256 /* Note: pitch better be a power of two tile widths */
2257 pitch_val = obj->stride / tile_width;
2258 pitch_val = ffs(pitch_val) - 1;
2259
2260 val = obj->gtt_offset;
2261 if (obj->tiling_mode == I915_TILING_Y)
2262 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2263 val |= I915_FENCE_SIZE_BITS(size);
2264 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2265 val |= I830_FENCE_REG_VALID;
2266 } else
2267 val = 0;
2268
2269 if (reg < 8)
2270 reg = FENCE_REG_830_0 + reg * 4;
2271 else
2272 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2273
2274 I915_WRITE(reg, val);
2275 POSTING_READ(reg);
2276 }
2277
2278 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2279 struct drm_i915_gem_object *obj)
2280 {
2281 drm_i915_private_t *dev_priv = dev->dev_private;
2282 uint32_t val;
2283
2284 if (obj) {
2285 u32 size = obj->gtt_space->size;
2286 uint32_t pitch_val;
2287
2288 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2289 (size & -size) != size ||
2290 (obj->gtt_offset & (size - 1)),
2291 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2292 obj->gtt_offset, size);
2293
2294 pitch_val = obj->stride / 128;
2295 pitch_val = ffs(pitch_val) - 1;
2296
2297 val = obj->gtt_offset;
2298 if (obj->tiling_mode == I915_TILING_Y)
2299 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2300 val |= I830_FENCE_SIZE_BITS(size);
2301 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2302 val |= I830_FENCE_REG_VALID;
2303 } else
2304 val = 0;
2305
2306 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2307 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2308 }
2309
2310 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2311 struct drm_i915_gem_object *obj)
2312 {
2313 switch (INTEL_INFO(dev)->gen) {
2314 case 7:
2315 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2316 case 5:
2317 case 4: i965_write_fence_reg(dev, reg, obj); break;
2318 case 3: i915_write_fence_reg(dev, reg, obj); break;
2319 case 2: i830_write_fence_reg(dev, reg, obj); break;
2320 default: break;
2321 }
2322 }
2323
2324 static inline int fence_number(struct drm_i915_private *dev_priv,
2325 struct drm_i915_fence_reg *fence)
2326 {
2327 return fence - dev_priv->fence_regs;
2328 }
2329
2330 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2331 struct drm_i915_fence_reg *fence,
2332 bool enable)
2333 {
2334 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2335 int reg = fence_number(dev_priv, fence);
2336
2337 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2338
2339 if (enable) {
2340 obj->fence_reg = reg;
2341 fence->obj = obj;
2342 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2343 } else {
2344 obj->fence_reg = I915_FENCE_REG_NONE;
2345 fence->obj = NULL;
2346 list_del_init(&fence->lru_list);
2347 }
2348 }
2349
2350 static int
2351 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2352 {
2353 int ret;
2354
2355 if (obj->fenced_gpu_access) {
2356 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2357 ret = i915_gem_flush_ring(obj->ring,
2358 0, obj->base.write_domain);
2359 if (ret)
2360 return ret;
2361 }
2362
2363 obj->fenced_gpu_access = false;
2364 }
2365
2366 if (obj->last_fenced_seqno) {
2367 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2368 if (ret)
2369 return ret;
2370
2371 obj->last_fenced_seqno = 0;
2372 }
2373
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
2380 return 0;
2381 }
2382
2383 int
2384 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385 {
2386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 int ret;
2388
2389 ret = i915_gem_object_flush_fence(obj);
2390 if (ret)
2391 return ret;
2392
2393 if (obj->fence_reg == I915_FENCE_REG_NONE)
2394 return 0;
2395
2396 i915_gem_object_update_fence(obj,
2397 &dev_priv->fence_regs[obj->fence_reg],
2398 false);
2399 i915_gem_object_fence_lost(obj);
2400
2401 return 0;
2402 }
2403
2404 static struct drm_i915_fence_reg *
2405 i915_find_fence_reg(struct drm_device *dev)
2406 {
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct drm_i915_fence_reg *reg, *avail;
2409 int i;
2410
2411 /* First try to find a free reg */
2412 avail = NULL;
2413 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414 reg = &dev_priv->fence_regs[i];
2415 if (!reg->obj)
2416 return reg;
2417
2418 if (!reg->pin_count)
2419 avail = reg;
2420 }
2421
2422 if (avail == NULL)
2423 return NULL;
2424
2425 /* None available, try to steal one or wait for a user to finish */
2426 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427 if (reg->pin_count)
2428 continue;
2429
2430 return reg;
2431 }
2432
2433 return NULL;
2434 }
2435
2436 /**
2437 * i915_gem_object_get_fence - set up fencing for an object
2438 * @obj: object to map through a fence reg
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 *
2448 * For an untiled surface, this removes any existing fence.
2449 */
2450 int
2451 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452 {
2453 struct drm_device *dev = obj->base.dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 bool enable = obj->tiling_mode != I915_TILING_NONE;
2456 struct drm_i915_fence_reg *reg;
2457 int ret;
2458
2459 /* Have we updated the tiling parameters upon the object and so
2460 * will need to serialise the write to the associated fence register?
2461 */
2462 if (obj->fence_dirty) {
2463 ret = i915_gem_object_flush_fence(obj);
2464 if (ret)
2465 return ret;
2466 }
2467
2468 /* Just update our place in the LRU if our fence is getting reused. */
2469 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2470 reg = &dev_priv->fence_regs[obj->fence_reg];
2471 if (!obj->fence_dirty) {
2472 list_move_tail(&reg->lru_list,
2473 &dev_priv->mm.fence_list);
2474 return 0;
2475 }
2476 } else if (enable) {
2477 reg = i915_find_fence_reg(dev);
2478 if (reg == NULL)
2479 return -EDEADLK;
2480
2481 if (reg->obj) {
2482 struct drm_i915_gem_object *old = reg->obj;
2483
2484 ret = i915_gem_object_flush_fence(old);
2485 if (ret)
2486 return ret;
2487
2488 i915_gem_object_fence_lost(old);
2489 }
2490 } else
2491 return 0;
2492
2493 i915_gem_object_update_fence(obj, reg, enable);
2494 obj->fence_dirty = false;
2495
2496 return 0;
2497 }
2498
2499 /**
2500 * Finds free space in the GTT aperture and binds the object there.
2501 */
2502 static int
2503 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504 unsigned alignment,
2505 bool map_and_fenceable)
2506 {
2507 struct drm_device *dev = obj->base.dev;
2508 drm_i915_private_t *dev_priv = dev->dev_private;
2509 struct drm_mm_node *free_space;
2510 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511 u32 size, fence_size, fence_alignment, unfenced_alignment;
2512 bool mappable, fenceable;
2513 int ret;
2514
2515 if (obj->madv != I915_MADV_WILLNEED) {
2516 DRM_ERROR("Attempting to bind a purgeable object\n");
2517 return -EINVAL;
2518 }
2519
2520 fence_size = i915_gem_get_gtt_size(dev,
2521 obj->base.size,
2522 obj->tiling_mode);
2523 fence_alignment = i915_gem_get_gtt_alignment(dev,
2524 obj->base.size,
2525 obj->tiling_mode);
2526 unfenced_alignment =
2527 i915_gem_get_unfenced_gtt_alignment(dev,
2528 obj->base.size,
2529 obj->tiling_mode);
2530
2531 if (alignment == 0)
2532 alignment = map_and_fenceable ? fence_alignment :
2533 unfenced_alignment;
2534 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2536 return -EINVAL;
2537 }
2538
2539 size = map_and_fenceable ? fence_size : obj->base.size;
2540
2541 /* If the object is bigger than the entire aperture, reject it early
2542 * before evicting everything in a vain attempt to find space.
2543 */
2544 if (obj->base.size >
2545 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2547 return -E2BIG;
2548 }
2549
2550 search_free:
2551 if (map_and_fenceable)
2552 free_space =
2553 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554 size, alignment, 0,
2555 dev_priv->mm.gtt_mappable_end,
2556 0);
2557 else
2558 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559 size, alignment, 0);
2560
2561 if (free_space != NULL) {
2562 if (map_and_fenceable)
2563 obj->gtt_space =
2564 drm_mm_get_block_range_generic(free_space,
2565 size, alignment, 0,
2566 dev_priv->mm.gtt_mappable_end,
2567 0);
2568 else
2569 obj->gtt_space =
2570 drm_mm_get_block(free_space, size, alignment);
2571 }
2572 if (obj->gtt_space == NULL) {
2573 /* If the gtt is empty and we're still having trouble
2574 * fitting our object in, we're out of memory.
2575 */
2576 ret = i915_gem_evict_something(dev, size, alignment,
2577 map_and_fenceable);
2578 if (ret)
2579 return ret;
2580
2581 goto search_free;
2582 }
2583
2584 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585 if (ret) {
2586 drm_mm_put_block(obj->gtt_space);
2587 obj->gtt_space = NULL;
2588
2589 if (ret == -ENOMEM) {
2590 /* first try to reclaim some memory by clearing the GTT */
2591 ret = i915_gem_evict_everything(dev, false);
2592 if (ret) {
2593 /* now try to shrink everyone else */
2594 if (gfpmask) {
2595 gfpmask = 0;
2596 goto search_free;
2597 }
2598
2599 return -ENOMEM;
2600 }
2601
2602 goto search_free;
2603 }
2604
2605 return ret;
2606 }
2607
2608 ret = i915_gem_gtt_prepare_object(obj);
2609 if (ret) {
2610 i915_gem_object_put_pages_gtt(obj);
2611 drm_mm_put_block(obj->gtt_space);
2612 obj->gtt_space = NULL;
2613
2614 if (i915_gem_evict_everything(dev, false))
2615 return ret;
2616
2617 goto search_free;
2618 }
2619
2620 if (!dev_priv->mm.aliasing_ppgtt)
2621 i915_gem_gtt_bind_object(obj, obj->cache_level);
2622
2623 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625
2626 /* Assert that the object is not currently in any GPU domain. As it
2627 * wasn't in the GTT, there shouldn't be any way it could have been in
2628 * a GPU cache
2629 */
2630 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2631 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632
2633 obj->gtt_offset = obj->gtt_space->start;
2634
2635 fenceable =
2636 obj->gtt_space->size == fence_size &&
2637 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638
2639 mappable =
2640 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641
2642 obj->map_and_fenceable = mappable && fenceable;
2643
2644 trace_i915_gem_object_bind(obj, map_and_fenceable);
2645 return 0;
2646 }
2647
2648 void
2649 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650 {
2651 /* If we don't have a page list set up, then we're not pinned
2652 * to GPU, and we can ignore the cache flush because it'll happen
2653 * again at bind time.
2654 */
2655 if (obj->pages == NULL)
2656 return;
2657
2658 /* If the GPU is snooping the contents of the CPU cache,
2659 * we do not need to manually clear the CPU cache lines. However,
2660 * the caches are only snooped when the render cache is
2661 * flushed/invalidated. As we always have to emit invalidations
2662 * and flushes when moving into and out of the RENDER domain, correct
2663 * snooping behaviour occurs naturally as the result of our domain
2664 * tracking.
2665 */
2666 if (obj->cache_level != I915_CACHE_NONE)
2667 return;
2668
2669 trace_i915_gem_object_clflush(obj);
2670
2671 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672 }
2673
2674 /** Flushes any GPU write domain for the object if it's dirty. */
2675 static int
2676 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677 {
2678 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679 return 0;
2680
2681 /* Queue the GPU write cache flushing we need. */
2682 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683 }
2684
2685 /** Flushes the GTT write domain for the object if it's dirty. */
2686 static void
2687 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688 {
2689 uint32_t old_write_domain;
2690
2691 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692 return;
2693
2694 /* No actual flushing is required for the GTT write domain. Writes
2695 * to it immediately go to main memory as far as we know, so there's
2696 * no chipset flush. It also doesn't land in render cache.
2697 *
2698 * However, we do have to enforce the order so that all writes through
2699 * the GTT land before any writes to the device, such as updates to
2700 * the GATT itself.
2701 */
2702 wmb();
2703
2704 old_write_domain = obj->base.write_domain;
2705 obj->base.write_domain = 0;
2706
2707 trace_i915_gem_object_change_domain(obj,
2708 obj->base.read_domains,
2709 old_write_domain);
2710 }
2711
2712 /** Flushes the CPU write domain for the object if it's dirty. */
2713 static void
2714 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715 {
2716 uint32_t old_write_domain;
2717
2718 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719 return;
2720
2721 i915_gem_clflush_object(obj);
2722 intel_gtt_chipset_flush();
2723 old_write_domain = obj->base.write_domain;
2724 obj->base.write_domain = 0;
2725
2726 trace_i915_gem_object_change_domain(obj,
2727 obj->base.read_domains,
2728 old_write_domain);
2729 }
2730
2731 /**
2732 * Moves a single object to the GTT read, and possibly write domain.
2733 *
2734 * This function returns when the move is complete, including waiting on
2735 * flushes to occur.
2736 */
2737 int
2738 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739 {
2740 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2741 uint32_t old_write_domain, old_read_domains;
2742 int ret;
2743
2744 /* Not valid to be called on unbound objects. */
2745 if (obj->gtt_space == NULL)
2746 return -EINVAL;
2747
2748 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2749 return 0;
2750
2751 ret = i915_gem_object_flush_gpu_write_domain(obj);
2752 if (ret)
2753 return ret;
2754
2755 if (obj->pending_gpu_write || write) {
2756 ret = i915_gem_object_wait_rendering(obj);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 i915_gem_object_flush_cpu_write_domain(obj);
2762
2763 old_write_domain = obj->base.write_domain;
2764 old_read_domains = obj->base.read_domains;
2765
2766 /* It should now be out of any other write domains, and we can update
2767 * the domain values for our changes.
2768 */
2769 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2771 if (write) {
2772 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2773 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2774 obj->dirty = 1;
2775 }
2776
2777 trace_i915_gem_object_change_domain(obj,
2778 old_read_domains,
2779 old_write_domain);
2780
2781 /* And bump the LRU for this access */
2782 if (i915_gem_object_is_inactive(obj))
2783 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2784
2785 return 0;
2786 }
2787
2788 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2789 enum i915_cache_level cache_level)
2790 {
2791 struct drm_device *dev = obj->base.dev;
2792 drm_i915_private_t *dev_priv = dev->dev_private;
2793 int ret;
2794
2795 if (obj->cache_level == cache_level)
2796 return 0;
2797
2798 if (obj->pin_count) {
2799 DRM_DEBUG("can not change the cache level of pinned objects\n");
2800 return -EBUSY;
2801 }
2802
2803 if (obj->gtt_space) {
2804 ret = i915_gem_object_finish_gpu(obj);
2805 if (ret)
2806 return ret;
2807
2808 i915_gem_object_finish_gtt(obj);
2809
2810 /* Before SandyBridge, you could not use tiling or fence
2811 * registers with snooped memory, so relinquish any fences
2812 * currently pointing to our region in the aperture.
2813 */
2814 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2815 ret = i915_gem_object_put_fence(obj);
2816 if (ret)
2817 return ret;
2818 }
2819
2820 if (obj->has_global_gtt_mapping)
2821 i915_gem_gtt_bind_object(obj, cache_level);
2822 if (obj->has_aliasing_ppgtt_mapping)
2823 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2824 obj, cache_level);
2825 }
2826
2827 if (cache_level == I915_CACHE_NONE) {
2828 u32 old_read_domains, old_write_domain;
2829
2830 /* If we're coming from LLC cached, then we haven't
2831 * actually been tracking whether the data is in the
2832 * CPU cache or not, since we only allow one bit set
2833 * in obj->write_domain and have been skipping the clflushes.
2834 * Just set it to the CPU cache for now.
2835 */
2836 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2837 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2838
2839 old_read_domains = obj->base.read_domains;
2840 old_write_domain = obj->base.write_domain;
2841
2842 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2843 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2844
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848 }
2849
2850 obj->cache_level = cache_level;
2851 return 0;
2852 }
2853
2854 /*
2855 * Prepare buffer for display plane (scanout, cursors, etc).
2856 * Can be called from an uninterruptible phase (modesetting) and allows
2857 * any flushes to be pipelined (for pageflips).
2858 */
2859 int
2860 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2861 u32 alignment,
2862 struct intel_ring_buffer *pipelined)
2863 {
2864 u32 old_read_domains, old_write_domain;
2865 int ret;
2866
2867 ret = i915_gem_object_flush_gpu_write_domain(obj);
2868 if (ret)
2869 return ret;
2870
2871 if (pipelined != obj->ring) {
2872 ret = i915_gem_object_sync(obj, pipelined);
2873 if (ret)
2874 return ret;
2875 }
2876
2877 /* The display engine is not coherent with the LLC cache on gen6. As
2878 * a result, we make sure that the pinning that is about to occur is
2879 * done with uncached PTEs. This is lowest common denominator for all
2880 * chipsets.
2881 *
2882 * However for gen6+, we could do better by using the GFDT bit instead
2883 * of uncaching, which would allow us to flush all the LLC-cached data
2884 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2885 */
2886 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2887 if (ret)
2888 return ret;
2889
2890 /* As the user may map the buffer once pinned in the display plane
2891 * (e.g. libkms for the bootup splash), we have to ensure that we
2892 * always use map_and_fenceable for all scanout buffers.
2893 */
2894 ret = i915_gem_object_pin(obj, alignment, true);
2895 if (ret)
2896 return ret;
2897
2898 i915_gem_object_flush_cpu_write_domain(obj);
2899
2900 old_write_domain = obj->base.write_domain;
2901 old_read_domains = obj->base.read_domains;
2902
2903 /* It should now be out of any other write domains, and we can update
2904 * the domain values for our changes.
2905 */
2906 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2907 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2911 old_write_domain);
2912
2913 return 0;
2914 }
2915
2916 int
2917 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2918 {
2919 int ret;
2920
2921 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2922 return 0;
2923
2924 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2925 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2926 if (ret)
2927 return ret;
2928 }
2929
2930 ret = i915_gem_object_wait_rendering(obj);
2931 if (ret)
2932 return ret;
2933
2934 /* Ensure that we invalidate the GPU's caches and TLBs. */
2935 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2936 return 0;
2937 }
2938
2939 /**
2940 * Moves a single object to the CPU read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
2945 int
2946 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2947 {
2948 uint32_t old_write_domain, old_read_domains;
2949 int ret;
2950
2951 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2952 return 0;
2953
2954 ret = i915_gem_object_flush_gpu_write_domain(obj);
2955 if (ret)
2956 return ret;
2957
2958 if (write || obj->pending_gpu_write) {
2959 ret = i915_gem_object_wait_rendering(obj);
2960 if (ret)
2961 return ret;
2962 }
2963
2964 i915_gem_object_flush_gtt_write_domain(obj);
2965
2966 old_write_domain = obj->base.write_domain;
2967 old_read_domains = obj->base.read_domains;
2968
2969 /* Flush the CPU cache if it's still invalid. */
2970 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2971 i915_gem_clflush_object(obj);
2972
2973 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2974 }
2975
2976 /* It should now be out of any other write domains, and we can update
2977 * the domain values for our changes.
2978 */
2979 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2980
2981 /* If we're writing through the CPU, then the GPU read domains will
2982 * need to be invalidated at next use.
2983 */
2984 if (write) {
2985 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2986 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2987 }
2988
2989 trace_i915_gem_object_change_domain(obj,
2990 old_read_domains,
2991 old_write_domain);
2992
2993 return 0;
2994 }
2995
2996 /* Throttle our rendering by waiting until the ring has completed our requests
2997 * emitted over 20 msec ago.
2998 *
2999 * Note that if we were to use the current jiffies each time around the loop,
3000 * we wouldn't escape the function with any frames outstanding if the time to
3001 * render a frame was over 20ms.
3002 *
3003 * This should get us reasonable parallelism between CPU and GPU but also
3004 * relatively low latency when blocking on a particular request to finish.
3005 */
3006 static int
3007 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3008 {
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 struct drm_i915_file_private *file_priv = file->driver_priv;
3011 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3012 struct drm_i915_gem_request *request;
3013 struct intel_ring_buffer *ring = NULL;
3014 u32 seqno = 0;
3015 int ret;
3016
3017 if (atomic_read(&dev_priv->mm.wedged))
3018 return -EIO;
3019
3020 spin_lock(&file_priv->mm.lock);
3021 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3022 if (time_after_eq(request->emitted_jiffies, recent_enough))
3023 break;
3024
3025 ring = request->ring;
3026 seqno = request->seqno;
3027 }
3028 spin_unlock(&file_priv->mm.lock);
3029
3030 if (seqno == 0)
3031 return 0;
3032
3033 ret = __wait_seqno(ring, seqno, true);
3034 if (ret == 0)
3035 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3036
3037 return ret;
3038 }
3039
3040 int
3041 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3042 uint32_t alignment,
3043 bool map_and_fenceable)
3044 {
3045 int ret;
3046
3047 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3048
3049 if (obj->gtt_space != NULL) {
3050 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3051 (map_and_fenceable && !obj->map_and_fenceable)) {
3052 WARN(obj->pin_count,
3053 "bo is already pinned with incorrect alignment:"
3054 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3055 " obj->map_and_fenceable=%d\n",
3056 obj->gtt_offset, alignment,
3057 map_and_fenceable,
3058 obj->map_and_fenceable);
3059 ret = i915_gem_object_unbind(obj);
3060 if (ret)
3061 return ret;
3062 }
3063 }
3064
3065 if (obj->gtt_space == NULL) {
3066 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3067 map_and_fenceable);
3068 if (ret)
3069 return ret;
3070 }
3071
3072 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3073 i915_gem_gtt_bind_object(obj, obj->cache_level);
3074
3075 obj->pin_count++;
3076 obj->pin_mappable |= map_and_fenceable;
3077
3078 return 0;
3079 }
3080
3081 void
3082 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3083 {
3084 BUG_ON(obj->pin_count == 0);
3085 BUG_ON(obj->gtt_space == NULL);
3086
3087 if (--obj->pin_count == 0)
3088 obj->pin_mappable = false;
3089 }
3090
3091 int
3092 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3093 struct drm_file *file)
3094 {
3095 struct drm_i915_gem_pin *args = data;
3096 struct drm_i915_gem_object *obj;
3097 int ret;
3098
3099 ret = i915_mutex_lock_interruptible(dev);
3100 if (ret)
3101 return ret;
3102
3103 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3104 if (&obj->base == NULL) {
3105 ret = -ENOENT;
3106 goto unlock;
3107 }
3108
3109 if (obj->madv != I915_MADV_WILLNEED) {
3110 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3111 ret = -EINVAL;
3112 goto out;
3113 }
3114
3115 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3116 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3117 args->handle);
3118 ret = -EINVAL;
3119 goto out;
3120 }
3121
3122 obj->user_pin_count++;
3123 obj->pin_filp = file;
3124 if (obj->user_pin_count == 1) {
3125 ret = i915_gem_object_pin(obj, args->alignment, true);
3126 if (ret)
3127 goto out;
3128 }
3129
3130 /* XXX - flush the CPU caches for pinned objects
3131 * as the X server doesn't manage domains yet
3132 */
3133 i915_gem_object_flush_cpu_write_domain(obj);
3134 args->offset = obj->gtt_offset;
3135 out:
3136 drm_gem_object_unreference(&obj->base);
3137 unlock:
3138 mutex_unlock(&dev->struct_mutex);
3139 return ret;
3140 }
3141
3142 int
3143 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3144 struct drm_file *file)
3145 {
3146 struct drm_i915_gem_pin *args = data;
3147 struct drm_i915_gem_object *obj;
3148 int ret;
3149
3150 ret = i915_mutex_lock_interruptible(dev);
3151 if (ret)
3152 return ret;
3153
3154 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3155 if (&obj->base == NULL) {
3156 ret = -ENOENT;
3157 goto unlock;
3158 }
3159
3160 if (obj->pin_filp != file) {
3161 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3162 args->handle);
3163 ret = -EINVAL;
3164 goto out;
3165 }
3166 obj->user_pin_count--;
3167 if (obj->user_pin_count == 0) {
3168 obj->pin_filp = NULL;
3169 i915_gem_object_unpin(obj);
3170 }
3171
3172 out:
3173 drm_gem_object_unreference(&obj->base);
3174 unlock:
3175 mutex_unlock(&dev->struct_mutex);
3176 return ret;
3177 }
3178
3179 int
3180 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3181 struct drm_file *file)
3182 {
3183 struct drm_i915_gem_busy *args = data;
3184 struct drm_i915_gem_object *obj;
3185 int ret;
3186
3187 ret = i915_mutex_lock_interruptible(dev);
3188 if (ret)
3189 return ret;
3190
3191 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3192 if (&obj->base == NULL) {
3193 ret = -ENOENT;
3194 goto unlock;
3195 }
3196
3197 /* Count all active objects as busy, even if they are currently not used
3198 * by the gpu. Users of this interface expect objects to eventually
3199 * become non-busy without any further actions, therefore emit any
3200 * necessary flushes here.
3201 */
3202 args->busy = obj->active;
3203 if (args->busy) {
3204 /* Unconditionally flush objects, even when the gpu still uses this
3205 * object. Userspace calling this function indicates that it wants to
3206 * use this buffer rather sooner than later, so issuing the required
3207 * flush earlier is beneficial.
3208 */
3209 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3210 ret = i915_gem_flush_ring(obj->ring,
3211 0, obj->base.write_domain);
3212 } else {
3213 ret = i915_gem_check_olr(obj->ring,
3214 obj->last_rendering_seqno);
3215 }
3216
3217 /* Update the active list for the hardware's current position.
3218 * Otherwise this only updates on a delayed timer or when irqs
3219 * are actually unmasked, and our working set ends up being
3220 * larger than required.
3221 */
3222 i915_gem_retire_requests_ring(obj->ring);
3223
3224 args->busy = obj->active;
3225 }
3226
3227 drm_gem_object_unreference(&obj->base);
3228 unlock:
3229 mutex_unlock(&dev->struct_mutex);
3230 return ret;
3231 }
3232
3233 int
3234 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3235 struct drm_file *file_priv)
3236 {
3237 return i915_gem_ring_throttle(dev, file_priv);
3238 }
3239
3240 int
3241 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3242 struct drm_file *file_priv)
3243 {
3244 struct drm_i915_gem_madvise *args = data;
3245 struct drm_i915_gem_object *obj;
3246 int ret;
3247
3248 switch (args->madv) {
3249 case I915_MADV_DONTNEED:
3250 case I915_MADV_WILLNEED:
3251 break;
3252 default:
3253 return -EINVAL;
3254 }
3255
3256 ret = i915_mutex_lock_interruptible(dev);
3257 if (ret)
3258 return ret;
3259
3260 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3261 if (&obj->base == NULL) {
3262 ret = -ENOENT;
3263 goto unlock;
3264 }
3265
3266 if (obj->pin_count) {
3267 ret = -EINVAL;
3268 goto out;
3269 }
3270
3271 if (obj->madv != __I915_MADV_PURGED)
3272 obj->madv = args->madv;
3273
3274 /* if the object is no longer bound, discard its backing storage */
3275 if (i915_gem_object_is_purgeable(obj) &&
3276 obj->gtt_space == NULL)
3277 i915_gem_object_truncate(obj);
3278
3279 args->retained = obj->madv != __I915_MADV_PURGED;
3280
3281 out:
3282 drm_gem_object_unreference(&obj->base);
3283 unlock:
3284 mutex_unlock(&dev->struct_mutex);
3285 return ret;
3286 }
3287
3288 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3289 size_t size)
3290 {
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct drm_i915_gem_object *obj;
3293 struct address_space *mapping;
3294 u32 mask;
3295
3296 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3297 if (obj == NULL)
3298 return NULL;
3299
3300 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3301 kfree(obj);
3302 return NULL;
3303 }
3304
3305 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3306 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3307 /* 965gm cannot relocate objects above 4GiB. */
3308 mask &= ~__GFP_HIGHMEM;
3309 mask |= __GFP_DMA32;
3310 }
3311
3312 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3313 mapping_set_gfp_mask(mapping, mask);
3314
3315 i915_gem_info_add_obj(dev_priv, size);
3316
3317 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3318 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3319
3320 if (HAS_LLC(dev)) {
3321 /* On some devices, we can have the GPU use the LLC (the CPU
3322 * cache) for about a 10% performance improvement
3323 * compared to uncached. Graphics requests other than
3324 * display scanout are coherent with the CPU in
3325 * accessing this cache. This means in this mode we
3326 * don't need to clflush on the CPU side, and on the
3327 * GPU side we only need to flush internal caches to
3328 * get data visible to the CPU.
3329 *
3330 * However, we maintain the display planes as UC, and so
3331 * need to rebind when first used as such.
3332 */
3333 obj->cache_level = I915_CACHE_LLC;
3334 } else
3335 obj->cache_level = I915_CACHE_NONE;
3336
3337 obj->base.driver_private = NULL;
3338 obj->fence_reg = I915_FENCE_REG_NONE;
3339 INIT_LIST_HEAD(&obj->mm_list);
3340 INIT_LIST_HEAD(&obj->gtt_list);
3341 INIT_LIST_HEAD(&obj->ring_list);
3342 INIT_LIST_HEAD(&obj->exec_list);
3343 INIT_LIST_HEAD(&obj->gpu_write_list);
3344 obj->madv = I915_MADV_WILLNEED;
3345 /* Avoid an unnecessary call to unbind on the first bind. */
3346 obj->map_and_fenceable = true;
3347
3348 return obj;
3349 }
3350
3351 int i915_gem_init_object(struct drm_gem_object *obj)
3352 {
3353 BUG();
3354
3355 return 0;
3356 }
3357
3358 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3359 {
3360 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3361 struct drm_device *dev = obj->base.dev;
3362 drm_i915_private_t *dev_priv = dev->dev_private;
3363
3364 trace_i915_gem_object_destroy(obj);
3365
3366 if (gem_obj->import_attach)
3367 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3368
3369 if (obj->phys_obj)
3370 i915_gem_detach_phys_object(dev, obj);
3371
3372 obj->pin_count = 0;
3373 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3374 bool was_interruptible;
3375
3376 was_interruptible = dev_priv->mm.interruptible;
3377 dev_priv->mm.interruptible = false;
3378
3379 WARN_ON(i915_gem_object_unbind(obj));
3380
3381 dev_priv->mm.interruptible = was_interruptible;
3382 }
3383
3384 if (obj->base.map_list.map)
3385 drm_gem_free_mmap_offset(&obj->base);
3386
3387 drm_gem_object_release(&obj->base);
3388 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3389
3390 kfree(obj->bit_17);
3391 kfree(obj);
3392 }
3393
3394 int
3395 i915_gem_idle(struct drm_device *dev)
3396 {
3397 drm_i915_private_t *dev_priv = dev->dev_private;
3398 int ret;
3399
3400 mutex_lock(&dev->struct_mutex);
3401
3402 if (dev_priv->mm.suspended) {
3403 mutex_unlock(&dev->struct_mutex);
3404 return 0;
3405 }
3406
3407 ret = i915_gpu_idle(dev);
3408 if (ret) {
3409 mutex_unlock(&dev->struct_mutex);
3410 return ret;
3411 }
3412 i915_gem_retire_requests(dev);
3413
3414 /* Under UMS, be paranoid and evict. */
3415 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3416 i915_gem_evict_everything(dev, false);
3417
3418 i915_gem_reset_fences(dev);
3419
3420 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3421 * We need to replace this with a semaphore, or something.
3422 * And not confound mm.suspended!
3423 */
3424 dev_priv->mm.suspended = 1;
3425 del_timer_sync(&dev_priv->hangcheck_timer);
3426
3427 i915_kernel_lost_context(dev);
3428 i915_gem_cleanup_ringbuffer(dev);
3429
3430 mutex_unlock(&dev->struct_mutex);
3431
3432 /* Cancel the retire work handler, which should be idle now. */
3433 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3434
3435 return 0;
3436 }
3437
3438 void i915_gem_init_swizzling(struct drm_device *dev)
3439 {
3440 drm_i915_private_t *dev_priv = dev->dev_private;
3441
3442 if (INTEL_INFO(dev)->gen < 5 ||
3443 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3444 return;
3445
3446 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3447 DISP_TILE_SURFACE_SWIZZLING);
3448
3449 if (IS_GEN5(dev))
3450 return;
3451
3452 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3453 if (IS_GEN6(dev))
3454 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3455 else
3456 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3457 }
3458
3459 void i915_gem_init_ppgtt(struct drm_device *dev)
3460 {
3461 drm_i915_private_t *dev_priv = dev->dev_private;
3462 uint32_t pd_offset;
3463 struct intel_ring_buffer *ring;
3464 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3465 uint32_t __iomem *pd_addr;
3466 uint32_t pd_entry;
3467 int i;
3468
3469 if (!dev_priv->mm.aliasing_ppgtt)
3470 return;
3471
3472
3473 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3474 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3475 dma_addr_t pt_addr;
3476
3477 if (dev_priv->mm.gtt->needs_dmar)
3478 pt_addr = ppgtt->pt_dma_addr[i];
3479 else
3480 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3481
3482 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3483 pd_entry |= GEN6_PDE_VALID;
3484
3485 writel(pd_entry, pd_addr + i);
3486 }
3487 readl(pd_addr);
3488
3489 pd_offset = ppgtt->pd_offset;
3490 pd_offset /= 64; /* in cachelines, */
3491 pd_offset <<= 16;
3492
3493 if (INTEL_INFO(dev)->gen == 6) {
3494 uint32_t ecochk, gab_ctl, ecobits;
3495
3496 ecobits = I915_READ(GAC_ECO_BITS);
3497 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3498
3499 gab_ctl = I915_READ(GAB_CTL);
3500 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3501
3502 ecochk = I915_READ(GAM_ECOCHK);
3503 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3504 ECOCHK_PPGTT_CACHE64B);
3505 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3506 } else if (INTEL_INFO(dev)->gen >= 7) {
3507 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3508 /* GFX_MODE is per-ring on gen7+ */
3509 }
3510
3511 for_each_ring(ring, dev_priv, i) {
3512 if (INTEL_INFO(dev)->gen >= 7)
3513 I915_WRITE(RING_MODE_GEN7(ring),
3514 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3515
3516 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3517 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3518 }
3519 }
3520
3521 int
3522 i915_gem_init_hw(struct drm_device *dev)
3523 {
3524 drm_i915_private_t *dev_priv = dev->dev_private;
3525 int ret;
3526
3527 i915_gem_init_swizzling(dev);
3528
3529 ret = intel_init_render_ring_buffer(dev);
3530 if (ret)
3531 return ret;
3532
3533 if (HAS_BSD(dev)) {
3534 ret = intel_init_bsd_ring_buffer(dev);
3535 if (ret)
3536 goto cleanup_render_ring;
3537 }
3538
3539 if (HAS_BLT(dev)) {
3540 ret = intel_init_blt_ring_buffer(dev);
3541 if (ret)
3542 goto cleanup_bsd_ring;
3543 }
3544
3545 dev_priv->next_seqno = 1;
3546
3547 i915_gem_init_ppgtt(dev);
3548
3549 return 0;
3550
3551 cleanup_bsd_ring:
3552 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3553 cleanup_render_ring:
3554 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3555 return ret;
3556 }
3557
3558 static bool
3559 intel_enable_ppgtt(struct drm_device *dev)
3560 {
3561 if (i915_enable_ppgtt >= 0)
3562 return i915_enable_ppgtt;
3563
3564 #ifdef CONFIG_INTEL_IOMMU
3565 /* Disable ppgtt on SNB if VT-d is on. */
3566 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3567 return false;
3568 #endif
3569
3570 return true;
3571 }
3572
3573 int i915_gem_init(struct drm_device *dev)
3574 {
3575 struct drm_i915_private *dev_priv = dev->dev_private;
3576 unsigned long gtt_size, mappable_size;
3577 int ret;
3578
3579 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3580 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3581
3582 mutex_lock(&dev->struct_mutex);
3583 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3584 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3585 * aperture accordingly when using aliasing ppgtt. */
3586 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3587
3588 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3589
3590 ret = i915_gem_init_aliasing_ppgtt(dev);
3591 if (ret) {
3592 mutex_unlock(&dev->struct_mutex);
3593 return ret;
3594 }
3595 } else {
3596 /* Let GEM Manage all of the aperture.
3597 *
3598 * However, leave one page at the end still bound to the scratch
3599 * page. There are a number of places where the hardware
3600 * apparently prefetches past the end of the object, and we've
3601 * seen multiple hangs with the GPU head pointer stuck in a
3602 * batchbuffer bound at the last page of the aperture. One page
3603 * should be enough to keep any prefetching inside of the
3604 * aperture.
3605 */
3606 i915_gem_init_global_gtt(dev, 0, mappable_size,
3607 gtt_size);
3608 }
3609
3610 ret = i915_gem_init_hw(dev);
3611 mutex_unlock(&dev->struct_mutex);
3612 if (ret) {
3613 i915_gem_cleanup_aliasing_ppgtt(dev);
3614 return ret;
3615 }
3616
3617 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3618 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3619 dev_priv->dri1.allow_batchbuffer = 1;
3620 return 0;
3621 }
3622
3623 void
3624 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3625 {
3626 drm_i915_private_t *dev_priv = dev->dev_private;
3627 struct intel_ring_buffer *ring;
3628 int i;
3629
3630 for_each_ring(ring, dev_priv, i)
3631 intel_cleanup_ring_buffer(ring);
3632 }
3633
3634 int
3635 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3636 struct drm_file *file_priv)
3637 {
3638 drm_i915_private_t *dev_priv = dev->dev_private;
3639 int ret;
3640
3641 if (drm_core_check_feature(dev, DRIVER_MODESET))
3642 return 0;
3643
3644 if (atomic_read(&dev_priv->mm.wedged)) {
3645 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3646 atomic_set(&dev_priv->mm.wedged, 0);
3647 }
3648
3649 mutex_lock(&dev->struct_mutex);
3650 dev_priv->mm.suspended = 0;
3651
3652 ret = i915_gem_init_hw(dev);
3653 if (ret != 0) {
3654 mutex_unlock(&dev->struct_mutex);
3655 return ret;
3656 }
3657
3658 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3659 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3660 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3661 mutex_unlock(&dev->struct_mutex);
3662
3663 ret = drm_irq_install(dev);
3664 if (ret)
3665 goto cleanup_ringbuffer;
3666
3667 return 0;
3668
3669 cleanup_ringbuffer:
3670 mutex_lock(&dev->struct_mutex);
3671 i915_gem_cleanup_ringbuffer(dev);
3672 dev_priv->mm.suspended = 1;
3673 mutex_unlock(&dev->struct_mutex);
3674
3675 return ret;
3676 }
3677
3678 int
3679 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3680 struct drm_file *file_priv)
3681 {
3682 if (drm_core_check_feature(dev, DRIVER_MODESET))
3683 return 0;
3684
3685 drm_irq_uninstall(dev);
3686 return i915_gem_idle(dev);
3687 }
3688
3689 void
3690 i915_gem_lastclose(struct drm_device *dev)
3691 {
3692 int ret;
3693
3694 if (drm_core_check_feature(dev, DRIVER_MODESET))
3695 return;
3696
3697 ret = i915_gem_idle(dev);
3698 if (ret)
3699 DRM_ERROR("failed to idle hardware: %d\n", ret);
3700 }
3701
3702 static void
3703 init_ring_lists(struct intel_ring_buffer *ring)
3704 {
3705 INIT_LIST_HEAD(&ring->active_list);
3706 INIT_LIST_HEAD(&ring->request_list);
3707 INIT_LIST_HEAD(&ring->gpu_write_list);
3708 }
3709
3710 void
3711 i915_gem_load(struct drm_device *dev)
3712 {
3713 int i;
3714 drm_i915_private_t *dev_priv = dev->dev_private;
3715
3716 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3717 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3718 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3719 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3720 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3721 for (i = 0; i < I915_NUM_RINGS; i++)
3722 init_ring_lists(&dev_priv->ring[i]);
3723 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3724 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3725 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3726 i915_gem_retire_work_handler);
3727 init_completion(&dev_priv->error_completion);
3728
3729 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3730 if (IS_GEN3(dev)) {
3731 I915_WRITE(MI_ARB_STATE,
3732 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3733 }
3734
3735 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3736
3737 /* Old X drivers will take 0-2 for front, back, depth buffers */
3738 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3739 dev_priv->fence_reg_start = 3;
3740
3741 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3742 dev_priv->num_fence_regs = 16;
3743 else
3744 dev_priv->num_fence_regs = 8;
3745
3746 /* Initialize fence registers to zero */
3747 i915_gem_reset_fences(dev);
3748
3749 i915_gem_detect_bit_6_swizzle(dev);
3750 init_waitqueue_head(&dev_priv->pending_flip_queue);
3751
3752 dev_priv->mm.interruptible = true;
3753
3754 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3755 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3756 register_shrinker(&dev_priv->mm.inactive_shrinker);
3757 }
3758
3759 /*
3760 * Create a physically contiguous memory object for this object
3761 * e.g. for cursor + overlay regs
3762 */
3763 static int i915_gem_init_phys_object(struct drm_device *dev,
3764 int id, int size, int align)
3765 {
3766 drm_i915_private_t *dev_priv = dev->dev_private;
3767 struct drm_i915_gem_phys_object *phys_obj;
3768 int ret;
3769
3770 if (dev_priv->mm.phys_objs[id - 1] || !size)
3771 return 0;
3772
3773 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3774 if (!phys_obj)
3775 return -ENOMEM;
3776
3777 phys_obj->id = id;
3778
3779 phys_obj->handle = drm_pci_alloc(dev, size, align);
3780 if (!phys_obj->handle) {
3781 ret = -ENOMEM;
3782 goto kfree_obj;
3783 }
3784 #ifdef CONFIG_X86
3785 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3786 #endif
3787
3788 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3789
3790 return 0;
3791 kfree_obj:
3792 kfree(phys_obj);
3793 return ret;
3794 }
3795
3796 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3797 {
3798 drm_i915_private_t *dev_priv = dev->dev_private;
3799 struct drm_i915_gem_phys_object *phys_obj;
3800
3801 if (!dev_priv->mm.phys_objs[id - 1])
3802 return;
3803
3804 phys_obj = dev_priv->mm.phys_objs[id - 1];
3805 if (phys_obj->cur_obj) {
3806 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3807 }
3808
3809 #ifdef CONFIG_X86
3810 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3811 #endif
3812 drm_pci_free(dev, phys_obj->handle);
3813 kfree(phys_obj);
3814 dev_priv->mm.phys_objs[id - 1] = NULL;
3815 }
3816
3817 void i915_gem_free_all_phys_object(struct drm_device *dev)
3818 {
3819 int i;
3820
3821 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3822 i915_gem_free_phys_object(dev, i);
3823 }
3824
3825 void i915_gem_detach_phys_object(struct drm_device *dev,
3826 struct drm_i915_gem_object *obj)
3827 {
3828 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3829 char *vaddr;
3830 int i;
3831 int page_count;
3832
3833 if (!obj->phys_obj)
3834 return;
3835 vaddr = obj->phys_obj->handle->vaddr;
3836
3837 page_count = obj->base.size / PAGE_SIZE;
3838 for (i = 0; i < page_count; i++) {
3839 struct page *page = shmem_read_mapping_page(mapping, i);
3840 if (!IS_ERR(page)) {
3841 char *dst = kmap_atomic(page);
3842 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3843 kunmap_atomic(dst);
3844
3845 drm_clflush_pages(&page, 1);
3846
3847 set_page_dirty(page);
3848 mark_page_accessed(page);
3849 page_cache_release(page);
3850 }
3851 }
3852 intel_gtt_chipset_flush();
3853
3854 obj->phys_obj->cur_obj = NULL;
3855 obj->phys_obj = NULL;
3856 }
3857
3858 int
3859 i915_gem_attach_phys_object(struct drm_device *dev,
3860 struct drm_i915_gem_object *obj,
3861 int id,
3862 int align)
3863 {
3864 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866 int ret = 0;
3867 int page_count;
3868 int i;
3869
3870 if (id > I915_MAX_PHYS_OBJECT)
3871 return -EINVAL;
3872
3873 if (obj->phys_obj) {
3874 if (obj->phys_obj->id == id)
3875 return 0;
3876 i915_gem_detach_phys_object(dev, obj);
3877 }
3878
3879 /* create a new object */
3880 if (!dev_priv->mm.phys_objs[id - 1]) {
3881 ret = i915_gem_init_phys_object(dev, id,
3882 obj->base.size, align);
3883 if (ret) {
3884 DRM_ERROR("failed to init phys object %d size: %zu\n",
3885 id, obj->base.size);
3886 return ret;
3887 }
3888 }
3889
3890 /* bind to the object */
3891 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3892 obj->phys_obj->cur_obj = obj;
3893
3894 page_count = obj->base.size / PAGE_SIZE;
3895
3896 for (i = 0; i < page_count; i++) {
3897 struct page *page;
3898 char *dst, *src;
3899
3900 page = shmem_read_mapping_page(mapping, i);
3901 if (IS_ERR(page))
3902 return PTR_ERR(page);
3903
3904 src = kmap_atomic(page);
3905 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3906 memcpy(dst, src, PAGE_SIZE);
3907 kunmap_atomic(src);
3908
3909 mark_page_accessed(page);
3910 page_cache_release(page);
3911 }
3912
3913 return 0;
3914 }
3915
3916 static int
3917 i915_gem_phys_pwrite(struct drm_device *dev,
3918 struct drm_i915_gem_object *obj,
3919 struct drm_i915_gem_pwrite *args,
3920 struct drm_file *file_priv)
3921 {
3922 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3923 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3924
3925 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3926 unsigned long unwritten;
3927
3928 /* The physical object once assigned is fixed for the lifetime
3929 * of the obj, so we can safely drop the lock and continue
3930 * to access vaddr.
3931 */
3932 mutex_unlock(&dev->struct_mutex);
3933 unwritten = copy_from_user(vaddr, user_data, args->size);
3934 mutex_lock(&dev->struct_mutex);
3935 if (unwritten)
3936 return -EFAULT;
3937 }
3938
3939 intel_gtt_chipset_flush();
3940 return 0;
3941 }
3942
3943 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3944 {
3945 struct drm_i915_file_private *file_priv = file->driver_priv;
3946
3947 /* Clean up our request list when the client is going away, so that
3948 * later retire_requests won't dereference our soon-to-be-gone
3949 * file_priv.
3950 */
3951 spin_lock(&file_priv->mm.lock);
3952 while (!list_empty(&file_priv->mm.request_list)) {
3953 struct drm_i915_gem_request *request;
3954
3955 request = list_first_entry(&file_priv->mm.request_list,
3956 struct drm_i915_gem_request,
3957 client_list);
3958 list_del(&request->client_list);
3959 request->file_priv = NULL;
3960 }
3961 spin_unlock(&file_priv->mm.lock);
3962 }
3963
3964 static int
3965 i915_gpu_is_active(struct drm_device *dev)
3966 {
3967 drm_i915_private_t *dev_priv = dev->dev_private;
3968 int lists_empty;
3969
3970 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3971 list_empty(&dev_priv->mm.active_list);
3972
3973 return !lists_empty;
3974 }
3975
3976 static int
3977 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3978 {
3979 struct drm_i915_private *dev_priv =
3980 container_of(shrinker,
3981 struct drm_i915_private,
3982 mm.inactive_shrinker);
3983 struct drm_device *dev = dev_priv->dev;
3984 struct drm_i915_gem_object *obj, *next;
3985 int nr_to_scan = sc->nr_to_scan;
3986 int cnt;
3987
3988 if (!mutex_trylock(&dev->struct_mutex))
3989 return 0;
3990
3991 /* "fast-path" to count number of available objects */
3992 if (nr_to_scan == 0) {
3993 cnt = 0;
3994 list_for_each_entry(obj,
3995 &dev_priv->mm.inactive_list,
3996 mm_list)
3997 cnt++;
3998 mutex_unlock(&dev->struct_mutex);
3999 return cnt / 100 * sysctl_vfs_cache_pressure;
4000 }
4001
4002 rescan:
4003 /* first scan for clean buffers */
4004 i915_gem_retire_requests(dev);
4005
4006 list_for_each_entry_safe(obj, next,
4007 &dev_priv->mm.inactive_list,
4008 mm_list) {
4009 if (i915_gem_object_is_purgeable(obj)) {
4010 if (i915_gem_object_unbind(obj) == 0 &&
4011 --nr_to_scan == 0)
4012 break;
4013 }
4014 }
4015
4016 /* second pass, evict/count anything still on the inactive list */
4017 cnt = 0;
4018 list_for_each_entry_safe(obj, next,
4019 &dev_priv->mm.inactive_list,
4020 mm_list) {
4021 if (nr_to_scan &&
4022 i915_gem_object_unbind(obj) == 0)
4023 nr_to_scan--;
4024 else
4025 cnt++;
4026 }
4027
4028 if (nr_to_scan && i915_gpu_is_active(dev)) {
4029 /*
4030 * We are desperate for pages, so as a last resort, wait
4031 * for the GPU to finish and discard whatever we can.
4032 * This has a dramatic impact to reduce the number of
4033 * OOM-killer events whilst running the GPU aggressively.
4034 */
4035 if (i915_gpu_idle(dev) == 0)
4036 goto rescan;
4037 }
4038 mutex_unlock(&dev->struct_mutex);
4039 return cnt / 100 * sysctl_vfs_cache_pressure;
4040 }
This page took 0.112878 seconds and 6 git commands to generate.