drm/i915: Limit ring synchronisation (sw sempahores) RPS boosts
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 int ret;
1159
1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162 ret = 0;
1163 if (req == req->ring->outstanding_lazy_request)
1164 ret = i915_add_request(req->ring);
1165
1166 return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171 wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 struct intel_engine_cs *ring)
1176 {
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static int __i915_spin_request(struct drm_i915_gem_request *req)
1181 {
1182 unsigned long timeout;
1183
1184 if (i915_gem_request_get_ring(req)->irq_refcount)
1185 return -EBUSY;
1186
1187 timeout = jiffies + 1;
1188 while (!need_resched()) {
1189 if (i915_gem_request_completed(req, true))
1190 return 0;
1191
1192 if (time_after_eq(jiffies, timeout))
1193 break;
1194
1195 cpu_relax_lowlatency();
1196 }
1197 if (i915_gem_request_completed(req, false))
1198 return 0;
1199
1200 return -EAGAIN;
1201 }
1202
1203 /**
1204 * __i915_wait_request - wait until execution of request has finished
1205 * @req: duh!
1206 * @reset_counter: reset sequence associated with the given request
1207 * @interruptible: do an interruptible wait (normally yes)
1208 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209 *
1210 * Note: It is of utmost importance that the passed in seqno and reset_counter
1211 * values have been read by the caller in an smp safe manner. Where read-side
1212 * locks are involved, it is sufficient to read the reset_counter before
1213 * unlocking the lock that protects the seqno. For lockless tricks, the
1214 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215 * inserted.
1216 *
1217 * Returns 0 if the request was found within the alloted time. Else returns the
1218 * errno with remaining time filled in timeout argument.
1219 */
1220 int __i915_wait_request(struct drm_i915_gem_request *req,
1221 unsigned reset_counter,
1222 bool interruptible,
1223 s64 *timeout,
1224 struct drm_i915_file_private *file_priv)
1225 {
1226 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227 struct drm_device *dev = ring->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 const bool irq_test_in_progress =
1230 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231 DEFINE_WAIT(wait);
1232 unsigned long timeout_expire;
1233 s64 before, now;
1234 int ret;
1235
1236 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237
1238 if (list_empty(&req->list))
1239 return 0;
1240
1241 if (i915_gem_request_completed(req, true))
1242 return 0;
1243
1244 timeout_expire = timeout ?
1245 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246
1247 if (INTEL_INFO(dev)->gen >= 6)
1248 gen6_rps_boost(dev_priv, file_priv);
1249
1250 /* Record current time in case interrupted by signal, or wedged */
1251 trace_i915_gem_request_wait_begin(req);
1252 before = ktime_get_raw_ns();
1253
1254 /* Optimistic spin for the next jiffie before touching IRQs */
1255 ret = __i915_spin_request(req);
1256 if (ret == 0)
1257 goto out;
1258
1259 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260 ret = -ENODEV;
1261 goto out;
1262 }
1263
1264 for (;;) {
1265 struct timer_list timer;
1266
1267 prepare_to_wait(&ring->irq_queue, &wait,
1268 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269
1270 /* We need to check whether any gpu reset happened in between
1271 * the caller grabbing the seqno and now ... */
1272 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274 * is truely gone. */
1275 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276 if (ret == 0)
1277 ret = -EAGAIN;
1278 break;
1279 }
1280
1281 if (i915_gem_request_completed(req, false)) {
1282 ret = 0;
1283 break;
1284 }
1285
1286 if (interruptible && signal_pending(current)) {
1287 ret = -ERESTARTSYS;
1288 break;
1289 }
1290
1291 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 ret = -ETIME;
1293 break;
1294 }
1295
1296 timer.function = NULL;
1297 if (timeout || missed_irq(dev_priv, ring)) {
1298 unsigned long expire;
1299
1300 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 mod_timer(&timer, expire);
1303 }
1304
1305 io_schedule();
1306
1307 if (timer.function) {
1308 del_singleshot_timer_sync(&timer);
1309 destroy_timer_on_stack(&timer);
1310 }
1311 }
1312 if (!irq_test_in_progress)
1313 ring->irq_put(ring);
1314
1315 finish_wait(&ring->irq_queue, &wait);
1316
1317 out:
1318 now = ktime_get_raw_ns();
1319 trace_i915_gem_request_wait_end(req);
1320
1321 if (timeout) {
1322 s64 tres = *timeout - (now - before);
1323
1324 *timeout = tres < 0 ? 0 : tres;
1325
1326 /*
1327 * Apparently ktime isn't accurate enough and occasionally has a
1328 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 * things up to make the test happy. We allow up to 1 jiffy.
1330 *
1331 * This is a regrssion from the timespec->ktime conversion.
1332 */
1333 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 *timeout = 0;
1335 }
1336
1337 return ret;
1338 }
1339
1340 static inline void
1341 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342 {
1343 struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345 if (!file_priv)
1346 return;
1347
1348 spin_lock(&file_priv->mm.lock);
1349 list_del(&request->client_list);
1350 request->file_priv = NULL;
1351 spin_unlock(&file_priv->mm.lock);
1352 }
1353
1354 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355 {
1356 trace_i915_gem_request_retire(request);
1357
1358 /* We know the GPU must have read the request to have
1359 * sent us the seqno + interrupt, so use the position
1360 * of tail of the request to update the last known position
1361 * of the GPU head.
1362 *
1363 * Note this requires that we are always called in request
1364 * completion order.
1365 */
1366 request->ringbuf->last_retired_head = request->postfix;
1367
1368 list_del_init(&request->list);
1369 i915_gem_request_remove_from_client(request);
1370
1371 put_pid(request->pid);
1372
1373 i915_gem_request_unreference(request);
1374 }
1375
1376 static void
1377 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378 {
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395 }
1396
1397 /**
1398 * Waits for a request to be signaled, and cleans up the
1399 * request and object lists appropriately for that event.
1400 */
1401 int
1402 i915_wait_request(struct drm_i915_gem_request *req)
1403 {
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
1407 int ret;
1408
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1416
1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 if (ret)
1419 return ret;
1420
1421 ret = i915_gem_check_olr(req);
1422 if (ret)
1423 return ret;
1424
1425 ret = __i915_wait_request(req,
1426 atomic_read(&dev_priv->gpu_error.reset_counter),
1427 interruptible, NULL, NULL);
1428 if (ret)
1429 return ret;
1430
1431 __i915_gem_request_retire__upto(req);
1432 return 0;
1433 }
1434
1435 /**
1436 * Ensures that all rendering to the object has completed and the object is
1437 * safe to unbind from the GTT or access from the CPU.
1438 */
1439 int
1440 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441 bool readonly)
1442 {
1443 int ret, i;
1444
1445 if (!obj->active)
1446 return 0;
1447
1448 if (readonly) {
1449 if (obj->last_write_req != NULL) {
1450 ret = i915_wait_request(obj->last_write_req);
1451 if (ret)
1452 return ret;
1453
1454 i = obj->last_write_req->ring->id;
1455 if (obj->last_read_req[i] == obj->last_write_req)
1456 i915_gem_object_retire__read(obj, i);
1457 else
1458 i915_gem_object_retire__write(obj);
1459 }
1460 } else {
1461 for (i = 0; i < I915_NUM_RINGS; i++) {
1462 if (obj->last_read_req[i] == NULL)
1463 continue;
1464
1465 ret = i915_wait_request(obj->last_read_req[i]);
1466 if (ret)
1467 return ret;
1468
1469 i915_gem_object_retire__read(obj, i);
1470 }
1471 RQ_BUG_ON(obj->active);
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void
1478 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479 struct drm_i915_gem_request *req)
1480 {
1481 int ring = req->ring->id;
1482
1483 if (obj->last_read_req[ring] == req)
1484 i915_gem_object_retire__read(obj, ring);
1485 else if (obj->last_write_req == req)
1486 i915_gem_object_retire__write(obj);
1487
1488 __i915_gem_request_retire__upto(req);
1489 }
1490
1491 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1492 * as the object state may change during this call.
1493 */
1494 static __must_check int
1495 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496 struct drm_i915_file_private *file_priv,
1497 bool readonly)
1498 {
1499 struct drm_device *dev = obj->base.dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502 unsigned reset_counter;
1503 int ret, i, n = 0;
1504
1505 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506 BUG_ON(!dev_priv->mm.interruptible);
1507
1508 if (!obj->active)
1509 return 0;
1510
1511 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 if (ret)
1513 return ret;
1514
1515 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516
1517 if (readonly) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_write_req;
1521 if (req == NULL)
1522 return 0;
1523
1524 ret = i915_gem_check_olr(req);
1525 if (ret)
1526 goto err;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 ret = i915_gem_check_olr(req);
1538 if (ret)
1539 goto err;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
1545 mutex_unlock(&dev->struct_mutex);
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
1548 NULL, file_priv);
1549 mutex_lock(&dev->struct_mutex);
1550
1551 err:
1552 for (i = 0; i < n; i++) {
1553 if (ret == 0)
1554 i915_gem_object_retire_request(obj, requests[i]);
1555 i915_gem_request_unreference(requests[i]);
1556 }
1557
1558 return ret;
1559 }
1560
1561 /**
1562 * Called when user space prepares to use an object with the CPU, either
1563 * through the mmap ioctl's mapping or a GTT mapping.
1564 */
1565 int
1566 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1567 struct drm_file *file)
1568 {
1569 struct drm_i915_gem_set_domain *args = data;
1570 struct drm_i915_gem_object *obj;
1571 uint32_t read_domains = args->read_domains;
1572 uint32_t write_domain = args->write_domain;
1573 int ret;
1574
1575 /* Only handle setting domains to types used by the CPU. */
1576 if (write_domain & I915_GEM_GPU_DOMAINS)
1577 return -EINVAL;
1578
1579 if (read_domains & I915_GEM_GPU_DOMAINS)
1580 return -EINVAL;
1581
1582 /* Having something in the write domain implies it's in the read
1583 * domain, and only that read domain. Enforce that in the request.
1584 */
1585 if (write_domain != 0 && read_domains != write_domain)
1586 return -EINVAL;
1587
1588 ret = i915_mutex_lock_interruptible(dev);
1589 if (ret)
1590 return ret;
1591
1592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1593 if (&obj->base == NULL) {
1594 ret = -ENOENT;
1595 goto unlock;
1596 }
1597
1598 /* Try to flush the object off the GPU without holding the lock.
1599 * We will repeat the flush holding the lock in the normal manner
1600 * to catch cases where we are gazumped.
1601 */
1602 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1603 file->driver_priv,
1604 !write_domain);
1605 if (ret)
1606 goto unref;
1607
1608 if (read_domains & I915_GEM_DOMAIN_GTT)
1609 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1610 else
1611 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1612
1613 unref:
1614 drm_gem_object_unreference(&obj->base);
1615 unlock:
1616 mutex_unlock(&dev->struct_mutex);
1617 return ret;
1618 }
1619
1620 /**
1621 * Called when user space has done writes to this buffer
1622 */
1623 int
1624 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1625 struct drm_file *file)
1626 {
1627 struct drm_i915_gem_sw_finish *args = data;
1628 struct drm_i915_gem_object *obj;
1629 int ret = 0;
1630
1631 ret = i915_mutex_lock_interruptible(dev);
1632 if (ret)
1633 return ret;
1634
1635 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1636 if (&obj->base == NULL) {
1637 ret = -ENOENT;
1638 goto unlock;
1639 }
1640
1641 /* Pinned buffers may be scanout, so flush the cache */
1642 if (obj->pin_display)
1643 i915_gem_object_flush_cpu_write_domain(obj);
1644
1645 drm_gem_object_unreference(&obj->base);
1646 unlock:
1647 mutex_unlock(&dev->struct_mutex);
1648 return ret;
1649 }
1650
1651 /**
1652 * Maps the contents of an object, returning the address it is mapped
1653 * into.
1654 *
1655 * While the mapping holds a reference on the contents of the object, it doesn't
1656 * imply a ref on the object itself.
1657 *
1658 * IMPORTANT:
1659 *
1660 * DRM driver writers who look a this function as an example for how to do GEM
1661 * mmap support, please don't implement mmap support like here. The modern way
1662 * to implement DRM mmap support is with an mmap offset ioctl (like
1663 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1664 * That way debug tooling like valgrind will understand what's going on, hiding
1665 * the mmap call in a driver private ioctl will break that. The i915 driver only
1666 * does cpu mmaps this way because we didn't know better.
1667 */
1668 int
1669 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1670 struct drm_file *file)
1671 {
1672 struct drm_i915_gem_mmap *args = data;
1673 struct drm_gem_object *obj;
1674 unsigned long addr;
1675
1676 if (args->flags & ~(I915_MMAP_WC))
1677 return -EINVAL;
1678
1679 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1680 return -ENODEV;
1681
1682 obj = drm_gem_object_lookup(dev, file, args->handle);
1683 if (obj == NULL)
1684 return -ENOENT;
1685
1686 /* prime objects have no backing filp to GEM mmap
1687 * pages from.
1688 */
1689 if (!obj->filp) {
1690 drm_gem_object_unreference_unlocked(obj);
1691 return -EINVAL;
1692 }
1693
1694 addr = vm_mmap(obj->filp, 0, args->size,
1695 PROT_READ | PROT_WRITE, MAP_SHARED,
1696 args->offset);
1697 if (args->flags & I915_MMAP_WC) {
1698 struct mm_struct *mm = current->mm;
1699 struct vm_area_struct *vma;
1700
1701 down_write(&mm->mmap_sem);
1702 vma = find_vma(mm, addr);
1703 if (vma)
1704 vma->vm_page_prot =
1705 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1706 else
1707 addr = -ENOMEM;
1708 up_write(&mm->mmap_sem);
1709 }
1710 drm_gem_object_unreference_unlocked(obj);
1711 if (IS_ERR((void *)addr))
1712 return addr;
1713
1714 args->addr_ptr = (uint64_t) addr;
1715
1716 return 0;
1717 }
1718
1719 /**
1720 * i915_gem_fault - fault a page into the GTT
1721 * vma: VMA in question
1722 * vmf: fault info
1723 *
1724 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1725 * from userspace. The fault handler takes care of binding the object to
1726 * the GTT (if needed), allocating and programming a fence register (again,
1727 * only if needed based on whether the old reg is still valid or the object
1728 * is tiled) and inserting a new PTE into the faulting process.
1729 *
1730 * Note that the faulting process may involve evicting existing objects
1731 * from the GTT and/or fence registers to make room. So performance may
1732 * suffer if the GTT working set is large or there are few fence registers
1733 * left.
1734 */
1735 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1736 {
1737 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1738 struct drm_device *dev = obj->base.dev;
1739 struct drm_i915_private *dev_priv = dev->dev_private;
1740 struct i915_ggtt_view view = i915_ggtt_view_normal;
1741 pgoff_t page_offset;
1742 unsigned long pfn;
1743 int ret = 0;
1744 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1745
1746 intel_runtime_pm_get(dev_priv);
1747
1748 /* We don't use vmf->pgoff since that has the fake offset */
1749 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1750 PAGE_SHIFT;
1751
1752 ret = i915_mutex_lock_interruptible(dev);
1753 if (ret)
1754 goto out;
1755
1756 trace_i915_gem_object_fault(obj, page_offset, true, write);
1757
1758 /* Try to flush the object off the GPU first without holding the lock.
1759 * Upon reacquiring the lock, we will perform our sanity checks and then
1760 * repeat the flush holding the lock in the normal manner to catch cases
1761 * where we are gazumped.
1762 */
1763 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1764 if (ret)
1765 goto unlock;
1766
1767 /* Access to snoopable pages through the GTT is incoherent. */
1768 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1769 ret = -EFAULT;
1770 goto unlock;
1771 }
1772
1773 /* Use a partial view if the object is bigger than the aperture. */
1774 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1775 obj->tiling_mode == I915_TILING_NONE) {
1776 static const unsigned int chunk_size = 256; // 1 MiB
1777
1778 memset(&view, 0, sizeof(view));
1779 view.type = I915_GGTT_VIEW_PARTIAL;
1780 view.params.partial.offset = rounddown(page_offset, chunk_size);
1781 view.params.partial.size =
1782 min_t(unsigned int,
1783 chunk_size,
1784 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1785 view.params.partial.offset);
1786 }
1787
1788 /* Now pin it into the GTT if needed */
1789 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1790 if (ret)
1791 goto unlock;
1792
1793 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1794 if (ret)
1795 goto unpin;
1796
1797 ret = i915_gem_object_get_fence(obj);
1798 if (ret)
1799 goto unpin;
1800
1801 /* Finally, remap it using the new GTT offset */
1802 pfn = dev_priv->gtt.mappable_base +
1803 i915_gem_obj_ggtt_offset_view(obj, &view);
1804 pfn >>= PAGE_SHIFT;
1805
1806 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1807 /* Overriding existing pages in partial view does not cause
1808 * us any trouble as TLBs are still valid because the fault
1809 * is due to userspace losing part of the mapping or never
1810 * having accessed it before (at this partials' range).
1811 */
1812 unsigned long base = vma->vm_start +
1813 (view.params.partial.offset << PAGE_SHIFT);
1814 unsigned int i;
1815
1816 for (i = 0; i < view.params.partial.size; i++) {
1817 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1818 if (ret)
1819 break;
1820 }
1821
1822 obj->fault_mappable = true;
1823 } else {
1824 if (!obj->fault_mappable) {
1825 unsigned long size = min_t(unsigned long,
1826 vma->vm_end - vma->vm_start,
1827 obj->base.size);
1828 int i;
1829
1830 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1831 ret = vm_insert_pfn(vma,
1832 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1833 pfn + i);
1834 if (ret)
1835 break;
1836 }
1837
1838 obj->fault_mappable = true;
1839 } else
1840 ret = vm_insert_pfn(vma,
1841 (unsigned long)vmf->virtual_address,
1842 pfn + page_offset);
1843 }
1844 unpin:
1845 i915_gem_object_ggtt_unpin_view(obj, &view);
1846 unlock:
1847 mutex_unlock(&dev->struct_mutex);
1848 out:
1849 switch (ret) {
1850 case -EIO:
1851 /*
1852 * We eat errors when the gpu is terminally wedged to avoid
1853 * userspace unduly crashing (gl has no provisions for mmaps to
1854 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1855 * and so needs to be reported.
1856 */
1857 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1858 ret = VM_FAULT_SIGBUS;
1859 break;
1860 }
1861 case -EAGAIN:
1862 /*
1863 * EAGAIN means the gpu is hung and we'll wait for the error
1864 * handler to reset everything when re-faulting in
1865 * i915_mutex_lock_interruptible.
1866 */
1867 case 0:
1868 case -ERESTARTSYS:
1869 case -EINTR:
1870 case -EBUSY:
1871 /*
1872 * EBUSY is ok: this just means that another thread
1873 * already did the job.
1874 */
1875 ret = VM_FAULT_NOPAGE;
1876 break;
1877 case -ENOMEM:
1878 ret = VM_FAULT_OOM;
1879 break;
1880 case -ENOSPC:
1881 case -EFAULT:
1882 ret = VM_FAULT_SIGBUS;
1883 break;
1884 default:
1885 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1886 ret = VM_FAULT_SIGBUS;
1887 break;
1888 }
1889
1890 intel_runtime_pm_put(dev_priv);
1891 return ret;
1892 }
1893
1894 /**
1895 * i915_gem_release_mmap - remove physical page mappings
1896 * @obj: obj in question
1897 *
1898 * Preserve the reservation of the mmapping with the DRM core code, but
1899 * relinquish ownership of the pages back to the system.
1900 *
1901 * It is vital that we remove the page mapping if we have mapped a tiled
1902 * object through the GTT and then lose the fence register due to
1903 * resource pressure. Similarly if the object has been moved out of the
1904 * aperture, than pages mapped into userspace must be revoked. Removing the
1905 * mapping will then trigger a page fault on the next user access, allowing
1906 * fixup by i915_gem_fault().
1907 */
1908 void
1909 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1910 {
1911 if (!obj->fault_mappable)
1912 return;
1913
1914 drm_vma_node_unmap(&obj->base.vma_node,
1915 obj->base.dev->anon_inode->i_mapping);
1916 obj->fault_mappable = false;
1917 }
1918
1919 void
1920 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1921 {
1922 struct drm_i915_gem_object *obj;
1923
1924 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1925 i915_gem_release_mmap(obj);
1926 }
1927
1928 uint32_t
1929 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1930 {
1931 uint32_t gtt_size;
1932
1933 if (INTEL_INFO(dev)->gen >= 4 ||
1934 tiling_mode == I915_TILING_NONE)
1935 return size;
1936
1937 /* Previous chips need a power-of-two fence region when tiling */
1938 if (INTEL_INFO(dev)->gen == 3)
1939 gtt_size = 1024*1024;
1940 else
1941 gtt_size = 512*1024;
1942
1943 while (gtt_size < size)
1944 gtt_size <<= 1;
1945
1946 return gtt_size;
1947 }
1948
1949 /**
1950 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1951 * @obj: object to check
1952 *
1953 * Return the required GTT alignment for an object, taking into account
1954 * potential fence register mapping.
1955 */
1956 uint32_t
1957 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1958 int tiling_mode, bool fenced)
1959 {
1960 /*
1961 * Minimum alignment is 4k (GTT page size), but might be greater
1962 * if a fence register is needed for the object.
1963 */
1964 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1965 tiling_mode == I915_TILING_NONE)
1966 return 4096;
1967
1968 /*
1969 * Previous chips need to be aligned to the size of the smallest
1970 * fence register that can contain the object.
1971 */
1972 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1973 }
1974
1975 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1976 {
1977 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1978 int ret;
1979
1980 if (drm_vma_node_has_offset(&obj->base.vma_node))
1981 return 0;
1982
1983 dev_priv->mm.shrinker_no_lock_stealing = true;
1984
1985 ret = drm_gem_create_mmap_offset(&obj->base);
1986 if (ret != -ENOSPC)
1987 goto out;
1988
1989 /* Badly fragmented mmap space? The only way we can recover
1990 * space is by destroying unwanted objects. We can't randomly release
1991 * mmap_offsets as userspace expects them to be persistent for the
1992 * lifetime of the objects. The closest we can is to release the
1993 * offsets on purgeable objects by truncating it and marking it purged,
1994 * which prevents userspace from ever using that object again.
1995 */
1996 i915_gem_shrink(dev_priv,
1997 obj->base.size >> PAGE_SHIFT,
1998 I915_SHRINK_BOUND |
1999 I915_SHRINK_UNBOUND |
2000 I915_SHRINK_PURGEABLE);
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002 if (ret != -ENOSPC)
2003 goto out;
2004
2005 i915_gem_shrink_all(dev_priv);
2006 ret = drm_gem_create_mmap_offset(&obj->base);
2007 out:
2008 dev_priv->mm.shrinker_no_lock_stealing = false;
2009
2010 return ret;
2011 }
2012
2013 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2014 {
2015 drm_gem_free_mmap_offset(&obj->base);
2016 }
2017
2018 int
2019 i915_gem_mmap_gtt(struct drm_file *file,
2020 struct drm_device *dev,
2021 uint32_t handle,
2022 uint64_t *offset)
2023 {
2024 struct drm_i915_gem_object *obj;
2025 int ret;
2026
2027 ret = i915_mutex_lock_interruptible(dev);
2028 if (ret)
2029 return ret;
2030
2031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2032 if (&obj->base == NULL) {
2033 ret = -ENOENT;
2034 goto unlock;
2035 }
2036
2037 if (obj->madv != I915_MADV_WILLNEED) {
2038 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2039 ret = -EFAULT;
2040 goto out;
2041 }
2042
2043 ret = i915_gem_object_create_mmap_offset(obj);
2044 if (ret)
2045 goto out;
2046
2047 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2048
2049 out:
2050 drm_gem_object_unreference(&obj->base);
2051 unlock:
2052 mutex_unlock(&dev->struct_mutex);
2053 return ret;
2054 }
2055
2056 /**
2057 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2058 * @dev: DRM device
2059 * @data: GTT mapping ioctl data
2060 * @file: GEM object info
2061 *
2062 * Simply returns the fake offset to userspace so it can mmap it.
2063 * The mmap call will end up in drm_gem_mmap(), which will set things
2064 * up so we can get faults in the handler above.
2065 *
2066 * The fault handler will take care of binding the object into the GTT
2067 * (since it may have been evicted to make room for something), allocating
2068 * a fence register, and mapping the appropriate aperture address into
2069 * userspace.
2070 */
2071 int
2072 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2073 struct drm_file *file)
2074 {
2075 struct drm_i915_gem_mmap_gtt *args = data;
2076
2077 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2078 }
2079
2080 /* Immediately discard the backing storage */
2081 static void
2082 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2083 {
2084 i915_gem_object_free_mmap_offset(obj);
2085
2086 if (obj->base.filp == NULL)
2087 return;
2088
2089 /* Our goal here is to return as much of the memory as
2090 * is possible back to the system as we are called from OOM.
2091 * To do this we must instruct the shmfs to drop all of its
2092 * backing pages, *now*.
2093 */
2094 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2095 obj->madv = __I915_MADV_PURGED;
2096 }
2097
2098 /* Try to discard unwanted pages */
2099 static void
2100 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2101 {
2102 struct address_space *mapping;
2103
2104 switch (obj->madv) {
2105 case I915_MADV_DONTNEED:
2106 i915_gem_object_truncate(obj);
2107 case __I915_MADV_PURGED:
2108 return;
2109 }
2110
2111 if (obj->base.filp == NULL)
2112 return;
2113
2114 mapping = file_inode(obj->base.filp)->i_mapping,
2115 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2116 }
2117
2118 static void
2119 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2120 {
2121 struct sg_page_iter sg_iter;
2122 int ret;
2123
2124 BUG_ON(obj->madv == __I915_MADV_PURGED);
2125
2126 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2127 if (ret) {
2128 /* In the event of a disaster, abandon all caches and
2129 * hope for the best.
2130 */
2131 WARN_ON(ret != -EIO);
2132 i915_gem_clflush_object(obj, true);
2133 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2134 }
2135
2136 if (i915_gem_object_needs_bit17_swizzle(obj))
2137 i915_gem_object_save_bit_17_swizzle(obj);
2138
2139 if (obj->madv == I915_MADV_DONTNEED)
2140 obj->dirty = 0;
2141
2142 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2143 struct page *page = sg_page_iter_page(&sg_iter);
2144
2145 if (obj->dirty)
2146 set_page_dirty(page);
2147
2148 if (obj->madv == I915_MADV_WILLNEED)
2149 mark_page_accessed(page);
2150
2151 page_cache_release(page);
2152 }
2153 obj->dirty = 0;
2154
2155 sg_free_table(obj->pages);
2156 kfree(obj->pages);
2157 }
2158
2159 int
2160 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2161 {
2162 const struct drm_i915_gem_object_ops *ops = obj->ops;
2163
2164 if (obj->pages == NULL)
2165 return 0;
2166
2167 if (obj->pages_pin_count)
2168 return -EBUSY;
2169
2170 BUG_ON(i915_gem_obj_bound_any(obj));
2171
2172 /* ->put_pages might need to allocate memory for the bit17 swizzle
2173 * array, hence protect them from being reaped by removing them from gtt
2174 * lists early. */
2175 list_del(&obj->global_list);
2176
2177 ops->put_pages(obj);
2178 obj->pages = NULL;
2179
2180 i915_gem_object_invalidate(obj);
2181
2182 return 0;
2183 }
2184
2185 static int
2186 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2187 {
2188 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2189 int page_count, i;
2190 struct address_space *mapping;
2191 struct sg_table *st;
2192 struct scatterlist *sg;
2193 struct sg_page_iter sg_iter;
2194 struct page *page;
2195 unsigned long last_pfn = 0; /* suppress gcc warning */
2196 gfp_t gfp;
2197
2198 /* Assert that the object is not currently in any GPU domain. As it
2199 * wasn't in the GTT, there shouldn't be any way it could have been in
2200 * a GPU cache
2201 */
2202 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2203 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2204
2205 st = kmalloc(sizeof(*st), GFP_KERNEL);
2206 if (st == NULL)
2207 return -ENOMEM;
2208
2209 page_count = obj->base.size / PAGE_SIZE;
2210 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2211 kfree(st);
2212 return -ENOMEM;
2213 }
2214
2215 /* Get the list of pages out of our struct file. They'll be pinned
2216 * at this point until we release them.
2217 *
2218 * Fail silently without starting the shrinker
2219 */
2220 mapping = file_inode(obj->base.filp)->i_mapping;
2221 gfp = mapping_gfp_mask(mapping);
2222 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2223 gfp &= ~(__GFP_IO | __GFP_WAIT);
2224 sg = st->sgl;
2225 st->nents = 0;
2226 for (i = 0; i < page_count; i++) {
2227 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2228 if (IS_ERR(page)) {
2229 i915_gem_shrink(dev_priv,
2230 page_count,
2231 I915_SHRINK_BOUND |
2232 I915_SHRINK_UNBOUND |
2233 I915_SHRINK_PURGEABLE);
2234 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2235 }
2236 if (IS_ERR(page)) {
2237 /* We've tried hard to allocate the memory by reaping
2238 * our own buffer, now let the real VM do its job and
2239 * go down in flames if truly OOM.
2240 */
2241 i915_gem_shrink_all(dev_priv);
2242 page = shmem_read_mapping_page(mapping, i);
2243 if (IS_ERR(page))
2244 goto err_pages;
2245 }
2246 #ifdef CONFIG_SWIOTLB
2247 if (swiotlb_nr_tbl()) {
2248 st->nents++;
2249 sg_set_page(sg, page, PAGE_SIZE, 0);
2250 sg = sg_next(sg);
2251 continue;
2252 }
2253 #endif
2254 if (!i || page_to_pfn(page) != last_pfn + 1) {
2255 if (i)
2256 sg = sg_next(sg);
2257 st->nents++;
2258 sg_set_page(sg, page, PAGE_SIZE, 0);
2259 } else {
2260 sg->length += PAGE_SIZE;
2261 }
2262 last_pfn = page_to_pfn(page);
2263
2264 /* Check that the i965g/gm workaround works. */
2265 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266 }
2267 #ifdef CONFIG_SWIOTLB
2268 if (!swiotlb_nr_tbl())
2269 #endif
2270 sg_mark_end(sg);
2271 obj->pages = st;
2272
2273 if (i915_gem_object_needs_bit17_swizzle(obj))
2274 i915_gem_object_do_bit_17_swizzle(obj);
2275
2276 if (obj->tiling_mode != I915_TILING_NONE &&
2277 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2278 i915_gem_object_pin_pages(obj);
2279
2280 return 0;
2281
2282 err_pages:
2283 sg_mark_end(sg);
2284 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2285 page_cache_release(sg_page_iter_page(&sg_iter));
2286 sg_free_table(st);
2287 kfree(st);
2288
2289 /* shmemfs first checks if there is enough memory to allocate the page
2290 * and reports ENOSPC should there be insufficient, along with the usual
2291 * ENOMEM for a genuine allocation failure.
2292 *
2293 * We use ENOSPC in our driver to mean that we have run out of aperture
2294 * space and so want to translate the error from shmemfs back to our
2295 * usual understanding of ENOMEM.
2296 */
2297 if (PTR_ERR(page) == -ENOSPC)
2298 return -ENOMEM;
2299 else
2300 return PTR_ERR(page);
2301 }
2302
2303 /* Ensure that the associated pages are gathered from the backing storage
2304 * and pinned into our object. i915_gem_object_get_pages() may be called
2305 * multiple times before they are released by a single call to
2306 * i915_gem_object_put_pages() - once the pages are no longer referenced
2307 * either as a result of memory pressure (reaping pages under the shrinker)
2308 * or as the object is itself released.
2309 */
2310 int
2311 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2312 {
2313 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2314 const struct drm_i915_gem_object_ops *ops = obj->ops;
2315 int ret;
2316
2317 if (obj->pages)
2318 return 0;
2319
2320 if (obj->madv != I915_MADV_WILLNEED) {
2321 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2322 return -EFAULT;
2323 }
2324
2325 BUG_ON(obj->pages_pin_count);
2326
2327 ret = ops->get_pages(obj);
2328 if (ret)
2329 return ret;
2330
2331 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2332
2333 obj->get_page.sg = obj->pages->sgl;
2334 obj->get_page.last = 0;
2335
2336 return 0;
2337 }
2338
2339 void i915_vma_move_to_active(struct i915_vma *vma,
2340 struct intel_engine_cs *ring)
2341 {
2342 struct drm_i915_gem_object *obj = vma->obj;
2343
2344 /* Add a reference if we're newly entering the active list. */
2345 if (obj->active == 0)
2346 drm_gem_object_reference(&obj->base);
2347 obj->active |= intel_ring_flag(ring);
2348
2349 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2350 i915_gem_request_assign(&obj->last_read_req[ring->id],
2351 intel_ring_get_request(ring));
2352
2353 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2354 }
2355
2356 static void
2357 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2358 {
2359 RQ_BUG_ON(obj->last_write_req == NULL);
2360 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2361
2362 i915_gem_request_assign(&obj->last_write_req, NULL);
2363 intel_fb_obj_flush(obj, true);
2364 }
2365
2366 static void
2367 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2368 {
2369 struct i915_vma *vma;
2370
2371 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2372 RQ_BUG_ON(!(obj->active & (1 << ring)));
2373
2374 list_del_init(&obj->ring_list[ring]);
2375 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2376
2377 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2378 i915_gem_object_retire__write(obj);
2379
2380 obj->active &= ~(1 << ring);
2381 if (obj->active)
2382 return;
2383
2384 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2385 if (!list_empty(&vma->mm_list))
2386 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2387 }
2388
2389 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2390 drm_gem_object_unreference(&obj->base);
2391 }
2392
2393 static int
2394 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2395 {
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397 struct intel_engine_cs *ring;
2398 int ret, i, j;
2399
2400 /* Carefully retire all requests without writing to the rings */
2401 for_each_ring(ring, dev_priv, i) {
2402 ret = intel_ring_idle(ring);
2403 if (ret)
2404 return ret;
2405 }
2406 i915_gem_retire_requests(dev);
2407
2408 /* Finally reset hw state */
2409 for_each_ring(ring, dev_priv, i) {
2410 intel_ring_init_seqno(ring, seqno);
2411
2412 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2413 ring->semaphore.sync_seqno[j] = 0;
2414 }
2415
2416 return 0;
2417 }
2418
2419 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2420 {
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 int ret;
2423
2424 if (seqno == 0)
2425 return -EINVAL;
2426
2427 /* HWS page needs to be set less than what we
2428 * will inject to ring
2429 */
2430 ret = i915_gem_init_seqno(dev, seqno - 1);
2431 if (ret)
2432 return ret;
2433
2434 /* Carefully set the last_seqno value so that wrap
2435 * detection still works
2436 */
2437 dev_priv->next_seqno = seqno;
2438 dev_priv->last_seqno = seqno - 1;
2439 if (dev_priv->last_seqno == 0)
2440 dev_priv->last_seqno--;
2441
2442 return 0;
2443 }
2444
2445 int
2446 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2447 {
2448 struct drm_i915_private *dev_priv = dev->dev_private;
2449
2450 /* reserve 0 for non-seqno */
2451 if (dev_priv->next_seqno == 0) {
2452 int ret = i915_gem_init_seqno(dev, 0);
2453 if (ret)
2454 return ret;
2455
2456 dev_priv->next_seqno = 1;
2457 }
2458
2459 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2460 return 0;
2461 }
2462
2463 int __i915_add_request(struct intel_engine_cs *ring,
2464 struct drm_file *file,
2465 struct drm_i915_gem_object *obj)
2466 {
2467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2468 struct drm_i915_gem_request *request;
2469 struct intel_ringbuffer *ringbuf;
2470 u32 request_start;
2471 int ret;
2472
2473 request = ring->outstanding_lazy_request;
2474 if (WARN_ON(request == NULL))
2475 return -ENOMEM;
2476
2477 if (i915.enable_execlists) {
2478 ringbuf = request->ctx->engine[ring->id].ringbuf;
2479 } else
2480 ringbuf = ring->buffer;
2481
2482 request_start = intel_ring_get_tail(ringbuf);
2483 /*
2484 * Emit any outstanding flushes - execbuf can fail to emit the flush
2485 * after having emitted the batchbuffer command. Hence we need to fix
2486 * things up similar to emitting the lazy request. The difference here
2487 * is that the flush _must_ happen before the next request, no matter
2488 * what.
2489 */
2490 if (i915.enable_execlists) {
2491 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2492 if (ret)
2493 return ret;
2494 } else {
2495 ret = intel_ring_flush_all_caches(ring);
2496 if (ret)
2497 return ret;
2498 }
2499
2500 /* Record the position of the start of the request so that
2501 * should we detect the updated seqno part-way through the
2502 * GPU processing the request, we never over-estimate the
2503 * position of the head.
2504 */
2505 request->postfix = intel_ring_get_tail(ringbuf);
2506
2507 if (i915.enable_execlists) {
2508 ret = ring->emit_request(ringbuf, request);
2509 if (ret)
2510 return ret;
2511 } else {
2512 ret = ring->add_request(ring);
2513 if (ret)
2514 return ret;
2515
2516 request->tail = intel_ring_get_tail(ringbuf);
2517 }
2518
2519 request->head = request_start;
2520
2521 /* Whilst this request exists, batch_obj will be on the
2522 * active_list, and so will hold the active reference. Only when this
2523 * request is retired will the the batch_obj be moved onto the
2524 * inactive_list and lose its active reference. Hence we do not need
2525 * to explicitly hold another reference here.
2526 */
2527 request->batch_obj = obj;
2528
2529 if (!i915.enable_execlists) {
2530 /* Hold a reference to the current context so that we can inspect
2531 * it later in case a hangcheck error event fires.
2532 */
2533 request->ctx = ring->last_context;
2534 if (request->ctx)
2535 i915_gem_context_reference(request->ctx);
2536 }
2537
2538 request->emitted_jiffies = jiffies;
2539 list_add_tail(&request->list, &ring->request_list);
2540 request->file_priv = NULL;
2541
2542 if (file) {
2543 struct drm_i915_file_private *file_priv = file->driver_priv;
2544
2545 spin_lock(&file_priv->mm.lock);
2546 request->file_priv = file_priv;
2547 list_add_tail(&request->client_list,
2548 &file_priv->mm.request_list);
2549 spin_unlock(&file_priv->mm.lock);
2550
2551 request->pid = get_pid(task_pid(current));
2552 }
2553
2554 trace_i915_gem_request_add(request);
2555 ring->outstanding_lazy_request = NULL;
2556
2557 i915_queue_hangcheck(ring->dev);
2558
2559 queue_delayed_work(dev_priv->wq,
2560 &dev_priv->mm.retire_work,
2561 round_jiffies_up_relative(HZ));
2562 intel_mark_busy(dev_priv->dev);
2563
2564 return 0;
2565 }
2566
2567 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2568 const struct intel_context *ctx)
2569 {
2570 unsigned long elapsed;
2571
2572 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2573
2574 if (ctx->hang_stats.banned)
2575 return true;
2576
2577 if (ctx->hang_stats.ban_period_seconds &&
2578 elapsed <= ctx->hang_stats.ban_period_seconds) {
2579 if (!i915_gem_context_is_default(ctx)) {
2580 DRM_DEBUG("context hanging too fast, banning!\n");
2581 return true;
2582 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2583 if (i915_stop_ring_allow_warn(dev_priv))
2584 DRM_ERROR("gpu hanging too fast, banning!\n");
2585 return true;
2586 }
2587 }
2588
2589 return false;
2590 }
2591
2592 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2593 struct intel_context *ctx,
2594 const bool guilty)
2595 {
2596 struct i915_ctx_hang_stats *hs;
2597
2598 if (WARN_ON(!ctx))
2599 return;
2600
2601 hs = &ctx->hang_stats;
2602
2603 if (guilty) {
2604 hs->banned = i915_context_is_banned(dev_priv, ctx);
2605 hs->batch_active++;
2606 hs->guilty_ts = get_seconds();
2607 } else {
2608 hs->batch_pending++;
2609 }
2610 }
2611
2612 void i915_gem_request_free(struct kref *req_ref)
2613 {
2614 struct drm_i915_gem_request *req = container_of(req_ref,
2615 typeof(*req), ref);
2616 struct intel_context *ctx = req->ctx;
2617
2618 if (ctx) {
2619 if (i915.enable_execlists) {
2620 struct intel_engine_cs *ring = req->ring;
2621
2622 if (ctx != ring->default_context)
2623 intel_lr_context_unpin(ring, ctx);
2624 }
2625
2626 i915_gem_context_unreference(ctx);
2627 }
2628
2629 kmem_cache_free(req->i915->requests, req);
2630 }
2631
2632 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633 struct intel_context *ctx)
2634 {
2635 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636 struct drm_i915_gem_request *req;
2637 int ret;
2638
2639 if (ring->outstanding_lazy_request)
2640 return 0;
2641
2642 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2643 if (req == NULL)
2644 return -ENOMEM;
2645
2646 kref_init(&req->ref);
2647 req->i915 = dev_priv;
2648
2649 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650 if (ret) {
2651 kfree(req);
2652 return ret;
2653 }
2654
2655 req->ring = ring;
2656
2657 if (i915.enable_execlists)
2658 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2659 else
2660 ret = intel_ring_alloc_request_extras(req);
2661 if (ret) {
2662 kfree(req);
2663 return ret;
2664 }
2665
2666 ring->outstanding_lazy_request = req;
2667 return 0;
2668 }
2669
2670 struct drm_i915_gem_request *
2671 i915_gem_find_active_request(struct intel_engine_cs *ring)
2672 {
2673 struct drm_i915_gem_request *request;
2674
2675 list_for_each_entry(request, &ring->request_list, list) {
2676 if (i915_gem_request_completed(request, false))
2677 continue;
2678
2679 return request;
2680 }
2681
2682 return NULL;
2683 }
2684
2685 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2686 struct intel_engine_cs *ring)
2687 {
2688 struct drm_i915_gem_request *request;
2689 bool ring_hung;
2690
2691 request = i915_gem_find_active_request(ring);
2692
2693 if (request == NULL)
2694 return;
2695
2696 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2697
2698 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2699
2700 list_for_each_entry_continue(request, &ring->request_list, list)
2701 i915_set_reset_status(dev_priv, request->ctx, false);
2702 }
2703
2704 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2705 struct intel_engine_cs *ring)
2706 {
2707 while (!list_empty(&ring->active_list)) {
2708 struct drm_i915_gem_object *obj;
2709
2710 obj = list_first_entry(&ring->active_list,
2711 struct drm_i915_gem_object,
2712 ring_list[ring->id]);
2713
2714 i915_gem_object_retire__read(obj, ring->id);
2715 }
2716
2717 /*
2718 * Clear the execlists queue up before freeing the requests, as those
2719 * are the ones that keep the context and ringbuffer backing objects
2720 * pinned in place.
2721 */
2722 while (!list_empty(&ring->execlist_queue)) {
2723 struct drm_i915_gem_request *submit_req;
2724
2725 submit_req = list_first_entry(&ring->execlist_queue,
2726 struct drm_i915_gem_request,
2727 execlist_link);
2728 list_del(&submit_req->execlist_link);
2729
2730 if (submit_req->ctx != ring->default_context)
2731 intel_lr_context_unpin(ring, submit_req->ctx);
2732
2733 i915_gem_request_unreference(submit_req);
2734 }
2735
2736 /*
2737 * We must free the requests after all the corresponding objects have
2738 * been moved off active lists. Which is the same order as the normal
2739 * retire_requests function does. This is important if object hold
2740 * implicit references on things like e.g. ppgtt address spaces through
2741 * the request.
2742 */
2743 while (!list_empty(&ring->request_list)) {
2744 struct drm_i915_gem_request *request;
2745
2746 request = list_first_entry(&ring->request_list,
2747 struct drm_i915_gem_request,
2748 list);
2749
2750 i915_gem_request_retire(request);
2751 }
2752
2753 /* This may not have been flushed before the reset, so clean it now */
2754 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2755 }
2756
2757 void i915_gem_restore_fences(struct drm_device *dev)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int i;
2761
2762 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2763 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2764
2765 /*
2766 * Commit delayed tiling changes if we have an object still
2767 * attached to the fence, otherwise just clear the fence.
2768 */
2769 if (reg->obj) {
2770 i915_gem_object_update_fence(reg->obj, reg,
2771 reg->obj->tiling_mode);
2772 } else {
2773 i915_gem_write_fence(dev, i, NULL);
2774 }
2775 }
2776 }
2777
2778 void i915_gem_reset(struct drm_device *dev)
2779 {
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_engine_cs *ring;
2782 int i;
2783
2784 /*
2785 * Before we free the objects from the requests, we need to inspect
2786 * them for finding the guilty party. As the requests only borrow
2787 * their reference to the objects, the inspection must be done first.
2788 */
2789 for_each_ring(ring, dev_priv, i)
2790 i915_gem_reset_ring_status(dev_priv, ring);
2791
2792 for_each_ring(ring, dev_priv, i)
2793 i915_gem_reset_ring_cleanup(dev_priv, ring);
2794
2795 i915_gem_context_reset(dev);
2796
2797 i915_gem_restore_fences(dev);
2798
2799 WARN_ON(i915_verify_lists(dev));
2800 }
2801
2802 /**
2803 * This function clears the request list as sequence numbers are passed.
2804 */
2805 void
2806 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2807 {
2808 WARN_ON(i915_verify_lists(ring->dev));
2809
2810 if (list_empty(&ring->active_list))
2811 return;
2812
2813 /* Retire requests first as we use it above for the early return.
2814 * If we retire requests last, we may use a later seqno and so clear
2815 * the requests lists without clearing the active list, leading to
2816 * confusion.
2817 */
2818 while (!list_empty(&ring->request_list)) {
2819 struct drm_i915_gem_request *request;
2820
2821 request = list_first_entry(&ring->request_list,
2822 struct drm_i915_gem_request,
2823 list);
2824
2825 if (!i915_gem_request_completed(request, true))
2826 break;
2827
2828 i915_gem_request_retire(request);
2829 }
2830
2831 /* Move any buffers on the active list that are no longer referenced
2832 * by the ringbuffer to the flushing/inactive lists as appropriate,
2833 * before we free the context associated with the requests.
2834 */
2835 while (!list_empty(&ring->active_list)) {
2836 struct drm_i915_gem_object *obj;
2837
2838 obj = list_first_entry(&ring->active_list,
2839 struct drm_i915_gem_object,
2840 ring_list[ring->id]);
2841
2842 if (!list_empty(&obj->last_read_req[ring->id]->list))
2843 break;
2844
2845 i915_gem_object_retire__read(obj, ring->id);
2846 }
2847
2848 if (unlikely(ring->trace_irq_req &&
2849 i915_gem_request_completed(ring->trace_irq_req, true))) {
2850 ring->irq_put(ring);
2851 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2852 }
2853
2854 WARN_ON(i915_verify_lists(ring->dev));
2855 }
2856
2857 bool
2858 i915_gem_retire_requests(struct drm_device *dev)
2859 {
2860 struct drm_i915_private *dev_priv = dev->dev_private;
2861 struct intel_engine_cs *ring;
2862 bool idle = true;
2863 int i;
2864
2865 for_each_ring(ring, dev_priv, i) {
2866 i915_gem_retire_requests_ring(ring);
2867 idle &= list_empty(&ring->request_list);
2868 if (i915.enable_execlists) {
2869 unsigned long flags;
2870
2871 spin_lock_irqsave(&ring->execlist_lock, flags);
2872 idle &= list_empty(&ring->execlist_queue);
2873 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2874
2875 intel_execlists_retire_requests(ring);
2876 }
2877 }
2878
2879 if (idle)
2880 mod_delayed_work(dev_priv->wq,
2881 &dev_priv->mm.idle_work,
2882 msecs_to_jiffies(100));
2883
2884 return idle;
2885 }
2886
2887 static void
2888 i915_gem_retire_work_handler(struct work_struct *work)
2889 {
2890 struct drm_i915_private *dev_priv =
2891 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2892 struct drm_device *dev = dev_priv->dev;
2893 bool idle;
2894
2895 /* Come back later if the device is busy... */
2896 idle = false;
2897 if (mutex_trylock(&dev->struct_mutex)) {
2898 idle = i915_gem_retire_requests(dev);
2899 mutex_unlock(&dev->struct_mutex);
2900 }
2901 if (!idle)
2902 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2903 round_jiffies_up_relative(HZ));
2904 }
2905
2906 static void
2907 i915_gem_idle_work_handler(struct work_struct *work)
2908 {
2909 struct drm_i915_private *dev_priv =
2910 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2911 struct drm_device *dev = dev_priv->dev;
2912 struct intel_engine_cs *ring;
2913 int i;
2914
2915 for_each_ring(ring, dev_priv, i)
2916 if (!list_empty(&ring->request_list))
2917 return;
2918
2919 intel_mark_idle(dev);
2920
2921 if (mutex_trylock(&dev->struct_mutex)) {
2922 struct intel_engine_cs *ring;
2923 int i;
2924
2925 for_each_ring(ring, dev_priv, i)
2926 i915_gem_batch_pool_fini(&ring->batch_pool);
2927
2928 mutex_unlock(&dev->struct_mutex);
2929 }
2930 }
2931
2932 /**
2933 * Ensures that an object will eventually get non-busy by flushing any required
2934 * write domains, emitting any outstanding lazy request and retiring and
2935 * completed requests.
2936 */
2937 static int
2938 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2939 {
2940 int ret, i;
2941
2942 if (!obj->active)
2943 return 0;
2944
2945 for (i = 0; i < I915_NUM_RINGS; i++) {
2946 struct drm_i915_gem_request *req;
2947
2948 req = obj->last_read_req[i];
2949 if (req == NULL)
2950 continue;
2951
2952 if (list_empty(&req->list))
2953 goto retire;
2954
2955 ret = i915_gem_check_olr(req);
2956 if (ret)
2957 return ret;
2958
2959 if (i915_gem_request_completed(req, true)) {
2960 __i915_gem_request_retire__upto(req);
2961 retire:
2962 i915_gem_object_retire__read(obj, i);
2963 }
2964 }
2965
2966 return 0;
2967 }
2968
2969 /**
2970 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2971 * @DRM_IOCTL_ARGS: standard ioctl arguments
2972 *
2973 * Returns 0 if successful, else an error is returned with the remaining time in
2974 * the timeout parameter.
2975 * -ETIME: object is still busy after timeout
2976 * -ERESTARTSYS: signal interrupted the wait
2977 * -ENONENT: object doesn't exist
2978 * Also possible, but rare:
2979 * -EAGAIN: GPU wedged
2980 * -ENOMEM: damn
2981 * -ENODEV: Internal IRQ fail
2982 * -E?: The add request failed
2983 *
2984 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2985 * non-zero timeout parameter the wait ioctl will wait for the given number of
2986 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2987 * without holding struct_mutex the object may become re-busied before this
2988 * function completes. A similar but shorter * race condition exists in the busy
2989 * ioctl
2990 */
2991 int
2992 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2993 {
2994 struct drm_i915_private *dev_priv = dev->dev_private;
2995 struct drm_i915_gem_wait *args = data;
2996 struct drm_i915_gem_object *obj;
2997 struct drm_i915_gem_request *req[I915_NUM_RINGS];
2998 unsigned reset_counter;
2999 int i, n = 0;
3000 int ret;
3001
3002 if (args->flags != 0)
3003 return -EINVAL;
3004
3005 ret = i915_mutex_lock_interruptible(dev);
3006 if (ret)
3007 return ret;
3008
3009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3010 if (&obj->base == NULL) {
3011 mutex_unlock(&dev->struct_mutex);
3012 return -ENOENT;
3013 }
3014
3015 /* Need to make sure the object gets inactive eventually. */
3016 ret = i915_gem_object_flush_active(obj);
3017 if (ret)
3018 goto out;
3019
3020 if (!obj->active)
3021 goto out;
3022
3023 /* Do this after OLR check to make sure we make forward progress polling
3024 * on this IOCTL with a timeout == 0 (like busy ioctl)
3025 */
3026 if (args->timeout_ns == 0) {
3027 ret = -ETIME;
3028 goto out;
3029 }
3030
3031 drm_gem_object_unreference(&obj->base);
3032 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3033
3034 for (i = 0; i < I915_NUM_RINGS; i++) {
3035 if (obj->last_read_req[i] == NULL)
3036 continue;
3037
3038 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3039 }
3040
3041 mutex_unlock(&dev->struct_mutex);
3042
3043 for (i = 0; i < n; i++) {
3044 if (ret == 0)
3045 ret = __i915_wait_request(req[i], reset_counter, true,
3046 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3047 file->driver_priv);
3048 i915_gem_request_unreference__unlocked(req[i]);
3049 }
3050 return ret;
3051
3052 out:
3053 drm_gem_object_unreference(&obj->base);
3054 mutex_unlock(&dev->struct_mutex);
3055 return ret;
3056 }
3057
3058 static int
3059 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3060 struct intel_engine_cs *to,
3061 struct drm_i915_gem_request *req)
3062 {
3063 struct intel_engine_cs *from;
3064 int ret;
3065
3066 from = i915_gem_request_get_ring(req);
3067 if (to == from)
3068 return 0;
3069
3070 if (i915_gem_request_completed(req, true))
3071 return 0;
3072
3073 ret = i915_gem_check_olr(req);
3074 if (ret)
3075 return ret;
3076
3077 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3078 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3079 ret = __i915_wait_request(req,
3080 atomic_read(&i915->gpu_error.reset_counter),
3081 i915->mm.interruptible,
3082 NULL,
3083 &i915->rps.semaphores);
3084 if (ret)
3085 return ret;
3086
3087 i915_gem_object_retire_request(obj, req);
3088 } else {
3089 int idx = intel_ring_sync_index(from, to);
3090 u32 seqno = i915_gem_request_get_seqno(req);
3091
3092 if (seqno <= from->semaphore.sync_seqno[idx])
3093 return 0;
3094
3095 trace_i915_gem_ring_sync_to(from, to, req);
3096 ret = to->semaphore.sync_to(to, from, seqno);
3097 if (ret)
3098 return ret;
3099
3100 /* We use last_read_req because sync_to()
3101 * might have just caused seqno wrap under
3102 * the radar.
3103 */
3104 from->semaphore.sync_seqno[idx] =
3105 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3106 }
3107
3108 return 0;
3109 }
3110
3111 /**
3112 * i915_gem_object_sync - sync an object to a ring.
3113 *
3114 * @obj: object which may be in use on another ring.
3115 * @to: ring we wish to use the object on. May be NULL.
3116 *
3117 * This code is meant to abstract object synchronization with the GPU.
3118 * Calling with NULL implies synchronizing the object with the CPU
3119 * rather than a particular GPU ring. Conceptually we serialise writes
3120 * between engines inside the GPU. We only allow on engine to write
3121 * into a buffer at any time, but multiple readers. To ensure each has
3122 * a coherent view of memory, we must:
3123 *
3124 * - If there is an outstanding write request to the object, the new
3125 * request must wait for it to complete (either CPU or in hw, requests
3126 * on the same ring will be naturally ordered).
3127 *
3128 * - If we are a write request (pending_write_domain is set), the new
3129 * request must wait for outstanding read requests to complete.
3130 *
3131 * Returns 0 if successful, else propagates up the lower layer error.
3132 */
3133 int
3134 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3135 struct intel_engine_cs *to)
3136 {
3137 const bool readonly = obj->base.pending_write_domain == 0;
3138 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3139 int ret, i, n;
3140
3141 if (!obj->active)
3142 return 0;
3143
3144 if (to == NULL)
3145 return i915_gem_object_wait_rendering(obj, readonly);
3146
3147 n = 0;
3148 if (readonly) {
3149 if (obj->last_write_req)
3150 req[n++] = obj->last_write_req;
3151 } else {
3152 for (i = 0; i < I915_NUM_RINGS; i++)
3153 if (obj->last_read_req[i])
3154 req[n++] = obj->last_read_req[i];
3155 }
3156 for (i = 0; i < n; i++) {
3157 ret = __i915_gem_object_sync(obj, to, req[i]);
3158 if (ret)
3159 return ret;
3160 }
3161
3162 return 0;
3163 }
3164
3165 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3166 {
3167 u32 old_write_domain, old_read_domains;
3168
3169 /* Force a pagefault for domain tracking on next user access */
3170 i915_gem_release_mmap(obj);
3171
3172 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3173 return;
3174
3175 /* Wait for any direct GTT access to complete */
3176 mb();
3177
3178 old_read_domains = obj->base.read_domains;
3179 old_write_domain = obj->base.write_domain;
3180
3181 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3182 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3183
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
3186 old_write_domain);
3187 }
3188
3189 int i915_vma_unbind(struct i915_vma *vma)
3190 {
3191 struct drm_i915_gem_object *obj = vma->obj;
3192 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3193 int ret;
3194
3195 if (list_empty(&vma->vma_link))
3196 return 0;
3197
3198 if (!drm_mm_node_allocated(&vma->node)) {
3199 i915_gem_vma_destroy(vma);
3200 return 0;
3201 }
3202
3203 if (vma->pin_count)
3204 return -EBUSY;
3205
3206 BUG_ON(obj->pages == NULL);
3207
3208 ret = i915_gem_object_wait_rendering(obj, false);
3209 if (ret)
3210 return ret;
3211 /* Continue on if we fail due to EIO, the GPU is hung so we
3212 * should be safe and we need to cleanup or else we might
3213 * cause memory corruption through use-after-free.
3214 */
3215
3216 if (i915_is_ggtt(vma->vm) &&
3217 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3218 i915_gem_object_finish_gtt(obj);
3219
3220 /* release the fence reg _after_ flushing */
3221 ret = i915_gem_object_put_fence(obj);
3222 if (ret)
3223 return ret;
3224 }
3225
3226 trace_i915_vma_unbind(vma);
3227
3228 vma->vm->unbind_vma(vma);
3229 vma->bound = 0;
3230
3231 list_del_init(&vma->mm_list);
3232 if (i915_is_ggtt(vma->vm)) {
3233 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3234 obj->map_and_fenceable = false;
3235 } else if (vma->ggtt_view.pages) {
3236 sg_free_table(vma->ggtt_view.pages);
3237 kfree(vma->ggtt_view.pages);
3238 vma->ggtt_view.pages = NULL;
3239 }
3240 }
3241
3242 drm_mm_remove_node(&vma->node);
3243 i915_gem_vma_destroy(vma);
3244
3245 /* Since the unbound list is global, only move to that list if
3246 * no more VMAs exist. */
3247 if (list_empty(&obj->vma_list)) {
3248 i915_gem_gtt_finish_object(obj);
3249 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3250 }
3251
3252 /* And finally now the object is completely decoupled from this vma,
3253 * we can drop its hold on the backing storage and allow it to be
3254 * reaped by the shrinker.
3255 */
3256 i915_gem_object_unpin_pages(obj);
3257
3258 return 0;
3259 }
3260
3261 int i915_gpu_idle(struct drm_device *dev)
3262 {
3263 struct drm_i915_private *dev_priv = dev->dev_private;
3264 struct intel_engine_cs *ring;
3265 int ret, i;
3266
3267 /* Flush everything onto the inactive list. */
3268 for_each_ring(ring, dev_priv, i) {
3269 if (!i915.enable_execlists) {
3270 ret = i915_switch_context(ring, ring->default_context);
3271 if (ret)
3272 return ret;
3273 }
3274
3275 ret = intel_ring_idle(ring);
3276 if (ret)
3277 return ret;
3278 }
3279
3280 WARN_ON(i915_verify_lists(dev));
3281 return 0;
3282 }
3283
3284 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3285 struct drm_i915_gem_object *obj)
3286 {
3287 struct drm_i915_private *dev_priv = dev->dev_private;
3288 int fence_reg;
3289 int fence_pitch_shift;
3290
3291 if (INTEL_INFO(dev)->gen >= 6) {
3292 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3293 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3294 } else {
3295 fence_reg = FENCE_REG_965_0;
3296 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3297 }
3298
3299 fence_reg += reg * 8;
3300
3301 /* To w/a incoherency with non-atomic 64-bit register updates,
3302 * we split the 64-bit update into two 32-bit writes. In order
3303 * for a partial fence not to be evaluated between writes, we
3304 * precede the update with write to turn off the fence register,
3305 * and only enable the fence as the last step.
3306 *
3307 * For extra levels of paranoia, we make sure each step lands
3308 * before applying the next step.
3309 */
3310 I915_WRITE(fence_reg, 0);
3311 POSTING_READ(fence_reg);
3312
3313 if (obj) {
3314 u32 size = i915_gem_obj_ggtt_size(obj);
3315 uint64_t val;
3316
3317 /* Adjust fence size to match tiled area */
3318 if (obj->tiling_mode != I915_TILING_NONE) {
3319 uint32_t row_size = obj->stride *
3320 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3321 size = (size / row_size) * row_size;
3322 }
3323
3324 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3325 0xfffff000) << 32;
3326 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3327 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3328 if (obj->tiling_mode == I915_TILING_Y)
3329 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3330 val |= I965_FENCE_REG_VALID;
3331
3332 I915_WRITE(fence_reg + 4, val >> 32);
3333 POSTING_READ(fence_reg + 4);
3334
3335 I915_WRITE(fence_reg + 0, val);
3336 POSTING_READ(fence_reg);
3337 } else {
3338 I915_WRITE(fence_reg + 4, 0);
3339 POSTING_READ(fence_reg + 4);
3340 }
3341 }
3342
3343 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3344 struct drm_i915_gem_object *obj)
3345 {
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 u32 val;
3348
3349 if (obj) {
3350 u32 size = i915_gem_obj_ggtt_size(obj);
3351 int pitch_val;
3352 int tile_width;
3353
3354 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3355 (size & -size) != size ||
3356 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3357 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3358 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3359
3360 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3361 tile_width = 128;
3362 else
3363 tile_width = 512;
3364
3365 /* Note: pitch better be a power of two tile widths */
3366 pitch_val = obj->stride / tile_width;
3367 pitch_val = ffs(pitch_val) - 1;
3368
3369 val = i915_gem_obj_ggtt_offset(obj);
3370 if (obj->tiling_mode == I915_TILING_Y)
3371 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3372 val |= I915_FENCE_SIZE_BITS(size);
3373 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3374 val |= I830_FENCE_REG_VALID;
3375 } else
3376 val = 0;
3377
3378 if (reg < 8)
3379 reg = FENCE_REG_830_0 + reg * 4;
3380 else
3381 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3382
3383 I915_WRITE(reg, val);
3384 POSTING_READ(reg);
3385 }
3386
3387 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3388 struct drm_i915_gem_object *obj)
3389 {
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 uint32_t val;
3392
3393 if (obj) {
3394 u32 size = i915_gem_obj_ggtt_size(obj);
3395 uint32_t pitch_val;
3396
3397 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3398 (size & -size) != size ||
3399 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3400 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3401 i915_gem_obj_ggtt_offset(obj), size);
3402
3403 pitch_val = obj->stride / 128;
3404 pitch_val = ffs(pitch_val) - 1;
3405
3406 val = i915_gem_obj_ggtt_offset(obj);
3407 if (obj->tiling_mode == I915_TILING_Y)
3408 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3409 val |= I830_FENCE_SIZE_BITS(size);
3410 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3411 val |= I830_FENCE_REG_VALID;
3412 } else
3413 val = 0;
3414
3415 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3416 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3417 }
3418
3419 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3420 {
3421 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3422 }
3423
3424 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3425 struct drm_i915_gem_object *obj)
3426 {
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428
3429 /* Ensure that all CPU reads are completed before installing a fence
3430 * and all writes before removing the fence.
3431 */
3432 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3433 mb();
3434
3435 WARN(obj && (!obj->stride || !obj->tiling_mode),
3436 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3437 obj->stride, obj->tiling_mode);
3438
3439 if (IS_GEN2(dev))
3440 i830_write_fence_reg(dev, reg, obj);
3441 else if (IS_GEN3(dev))
3442 i915_write_fence_reg(dev, reg, obj);
3443 else if (INTEL_INFO(dev)->gen >= 4)
3444 i965_write_fence_reg(dev, reg, obj);
3445
3446 /* And similarly be paranoid that no direct access to this region
3447 * is reordered to before the fence is installed.
3448 */
3449 if (i915_gem_object_needs_mb(obj))
3450 mb();
3451 }
3452
3453 static inline int fence_number(struct drm_i915_private *dev_priv,
3454 struct drm_i915_fence_reg *fence)
3455 {
3456 return fence - dev_priv->fence_regs;
3457 }
3458
3459 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3460 struct drm_i915_fence_reg *fence,
3461 bool enable)
3462 {
3463 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3464 int reg = fence_number(dev_priv, fence);
3465
3466 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3467
3468 if (enable) {
3469 obj->fence_reg = reg;
3470 fence->obj = obj;
3471 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3472 } else {
3473 obj->fence_reg = I915_FENCE_REG_NONE;
3474 fence->obj = NULL;
3475 list_del_init(&fence->lru_list);
3476 }
3477 obj->fence_dirty = false;
3478 }
3479
3480 static int
3481 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3482 {
3483 if (obj->last_fenced_req) {
3484 int ret = i915_wait_request(obj->last_fenced_req);
3485 if (ret)
3486 return ret;
3487
3488 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3489 }
3490
3491 return 0;
3492 }
3493
3494 int
3495 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3496 {
3497 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3498 struct drm_i915_fence_reg *fence;
3499 int ret;
3500
3501 ret = i915_gem_object_wait_fence(obj);
3502 if (ret)
3503 return ret;
3504
3505 if (obj->fence_reg == I915_FENCE_REG_NONE)
3506 return 0;
3507
3508 fence = &dev_priv->fence_regs[obj->fence_reg];
3509
3510 if (WARN_ON(fence->pin_count))
3511 return -EBUSY;
3512
3513 i915_gem_object_fence_lost(obj);
3514 i915_gem_object_update_fence(obj, fence, false);
3515
3516 return 0;
3517 }
3518
3519 static struct drm_i915_fence_reg *
3520 i915_find_fence_reg(struct drm_device *dev)
3521 {
3522 struct drm_i915_private *dev_priv = dev->dev_private;
3523 struct drm_i915_fence_reg *reg, *avail;
3524 int i;
3525
3526 /* First try to find a free reg */
3527 avail = NULL;
3528 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3529 reg = &dev_priv->fence_regs[i];
3530 if (!reg->obj)
3531 return reg;
3532
3533 if (!reg->pin_count)
3534 avail = reg;
3535 }
3536
3537 if (avail == NULL)
3538 goto deadlock;
3539
3540 /* None available, try to steal one or wait for a user to finish */
3541 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3542 if (reg->pin_count)
3543 continue;
3544
3545 return reg;
3546 }
3547
3548 deadlock:
3549 /* Wait for completion of pending flips which consume fences */
3550 if (intel_has_pending_fb_unpin(dev))
3551 return ERR_PTR(-EAGAIN);
3552
3553 return ERR_PTR(-EDEADLK);
3554 }
3555
3556 /**
3557 * i915_gem_object_get_fence - set up fencing for an object
3558 * @obj: object to map through a fence reg
3559 *
3560 * When mapping objects through the GTT, userspace wants to be able to write
3561 * to them without having to worry about swizzling if the object is tiled.
3562 * This function walks the fence regs looking for a free one for @obj,
3563 * stealing one if it can't find any.
3564 *
3565 * It then sets up the reg based on the object's properties: address, pitch
3566 * and tiling format.
3567 *
3568 * For an untiled surface, this removes any existing fence.
3569 */
3570 int
3571 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3572 {
3573 struct drm_device *dev = obj->base.dev;
3574 struct drm_i915_private *dev_priv = dev->dev_private;
3575 bool enable = obj->tiling_mode != I915_TILING_NONE;
3576 struct drm_i915_fence_reg *reg;
3577 int ret;
3578
3579 /* Have we updated the tiling parameters upon the object and so
3580 * will need to serialise the write to the associated fence register?
3581 */
3582 if (obj->fence_dirty) {
3583 ret = i915_gem_object_wait_fence(obj);
3584 if (ret)
3585 return ret;
3586 }
3587
3588 /* Just update our place in the LRU if our fence is getting reused. */
3589 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3590 reg = &dev_priv->fence_regs[obj->fence_reg];
3591 if (!obj->fence_dirty) {
3592 list_move_tail(&reg->lru_list,
3593 &dev_priv->mm.fence_list);
3594 return 0;
3595 }
3596 } else if (enable) {
3597 if (WARN_ON(!obj->map_and_fenceable))
3598 return -EINVAL;
3599
3600 reg = i915_find_fence_reg(dev);
3601 if (IS_ERR(reg))
3602 return PTR_ERR(reg);
3603
3604 if (reg->obj) {
3605 struct drm_i915_gem_object *old = reg->obj;
3606
3607 ret = i915_gem_object_wait_fence(old);
3608 if (ret)
3609 return ret;
3610
3611 i915_gem_object_fence_lost(old);
3612 }
3613 } else
3614 return 0;
3615
3616 i915_gem_object_update_fence(obj, reg, enable);
3617
3618 return 0;
3619 }
3620
3621 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3622 unsigned long cache_level)
3623 {
3624 struct drm_mm_node *gtt_space = &vma->node;
3625 struct drm_mm_node *other;
3626
3627 /*
3628 * On some machines we have to be careful when putting differing types
3629 * of snoopable memory together to avoid the prefetcher crossing memory
3630 * domains and dying. During vm initialisation, we decide whether or not
3631 * these constraints apply and set the drm_mm.color_adjust
3632 * appropriately.
3633 */
3634 if (vma->vm->mm.color_adjust == NULL)
3635 return true;
3636
3637 if (!drm_mm_node_allocated(gtt_space))
3638 return true;
3639
3640 if (list_empty(&gtt_space->node_list))
3641 return true;
3642
3643 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3644 if (other->allocated && !other->hole_follows && other->color != cache_level)
3645 return false;
3646
3647 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3648 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3649 return false;
3650
3651 return true;
3652 }
3653
3654 /**
3655 * Finds free space in the GTT aperture and binds the object or a view of it
3656 * there.
3657 */
3658 static struct i915_vma *
3659 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3660 struct i915_address_space *vm,
3661 const struct i915_ggtt_view *ggtt_view,
3662 unsigned alignment,
3663 uint64_t flags)
3664 {
3665 struct drm_device *dev = obj->base.dev;
3666 struct drm_i915_private *dev_priv = dev->dev_private;
3667 u32 size, fence_size, fence_alignment, unfenced_alignment;
3668 unsigned long start =
3669 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3670 unsigned long end =
3671 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3672 struct i915_vma *vma;
3673 int ret;
3674
3675 if (i915_is_ggtt(vm)) {
3676 u32 view_size;
3677
3678 if (WARN_ON(!ggtt_view))
3679 return ERR_PTR(-EINVAL);
3680
3681 view_size = i915_ggtt_view_size(obj, ggtt_view);
3682
3683 fence_size = i915_gem_get_gtt_size(dev,
3684 view_size,
3685 obj->tiling_mode);
3686 fence_alignment = i915_gem_get_gtt_alignment(dev,
3687 view_size,
3688 obj->tiling_mode,
3689 true);
3690 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3691 view_size,
3692 obj->tiling_mode,
3693 false);
3694 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3695 } else {
3696 fence_size = i915_gem_get_gtt_size(dev,
3697 obj->base.size,
3698 obj->tiling_mode);
3699 fence_alignment = i915_gem_get_gtt_alignment(dev,
3700 obj->base.size,
3701 obj->tiling_mode,
3702 true);
3703 unfenced_alignment =
3704 i915_gem_get_gtt_alignment(dev,
3705 obj->base.size,
3706 obj->tiling_mode,
3707 false);
3708 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3709 }
3710
3711 if (alignment == 0)
3712 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3713 unfenced_alignment;
3714 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3715 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3716 ggtt_view ? ggtt_view->type : 0,
3717 alignment);
3718 return ERR_PTR(-EINVAL);
3719 }
3720
3721 /* If binding the object/GGTT view requires more space than the entire
3722 * aperture has, reject it early before evicting everything in a vain
3723 * attempt to find space.
3724 */
3725 if (size > end) {
3726 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3727 ggtt_view ? ggtt_view->type : 0,
3728 size,
3729 flags & PIN_MAPPABLE ? "mappable" : "total",
3730 end);
3731 return ERR_PTR(-E2BIG);
3732 }
3733
3734 ret = i915_gem_object_get_pages(obj);
3735 if (ret)
3736 return ERR_PTR(ret);
3737
3738 i915_gem_object_pin_pages(obj);
3739
3740 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3741 i915_gem_obj_lookup_or_create_vma(obj, vm);
3742
3743 if (IS_ERR(vma))
3744 goto err_unpin;
3745
3746 search_free:
3747 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3748 size, alignment,
3749 obj->cache_level,
3750 start, end,
3751 DRM_MM_SEARCH_DEFAULT,
3752 DRM_MM_CREATE_DEFAULT);
3753 if (ret) {
3754 ret = i915_gem_evict_something(dev, vm, size, alignment,
3755 obj->cache_level,
3756 start, end,
3757 flags);
3758 if (ret == 0)
3759 goto search_free;
3760
3761 goto err_free_vma;
3762 }
3763 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3764 ret = -EINVAL;
3765 goto err_remove_node;
3766 }
3767
3768 ret = i915_gem_gtt_prepare_object(obj);
3769 if (ret)
3770 goto err_remove_node;
3771
3772 trace_i915_vma_bind(vma, flags);
3773 ret = i915_vma_bind(vma, obj->cache_level, flags);
3774 if (ret)
3775 goto err_finish_gtt;
3776
3777 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3778 list_add_tail(&vma->mm_list, &vm->inactive_list);
3779
3780 return vma;
3781
3782 err_finish_gtt:
3783 i915_gem_gtt_finish_object(obj);
3784 err_remove_node:
3785 drm_mm_remove_node(&vma->node);
3786 err_free_vma:
3787 i915_gem_vma_destroy(vma);
3788 vma = ERR_PTR(ret);
3789 err_unpin:
3790 i915_gem_object_unpin_pages(obj);
3791 return vma;
3792 }
3793
3794 bool
3795 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3796 bool force)
3797 {
3798 /* If we don't have a page list set up, then we're not pinned
3799 * to GPU, and we can ignore the cache flush because it'll happen
3800 * again at bind time.
3801 */
3802 if (obj->pages == NULL)
3803 return false;
3804
3805 /*
3806 * Stolen memory is always coherent with the GPU as it is explicitly
3807 * marked as wc by the system, or the system is cache-coherent.
3808 */
3809 if (obj->stolen || obj->phys_handle)
3810 return false;
3811
3812 /* If the GPU is snooping the contents of the CPU cache,
3813 * we do not need to manually clear the CPU cache lines. However,
3814 * the caches are only snooped when the render cache is
3815 * flushed/invalidated. As we always have to emit invalidations
3816 * and flushes when moving into and out of the RENDER domain, correct
3817 * snooping behaviour occurs naturally as the result of our domain
3818 * tracking.
3819 */
3820 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3821 obj->cache_dirty = true;
3822 return false;
3823 }
3824
3825 trace_i915_gem_object_clflush(obj);
3826 drm_clflush_sg(obj->pages);
3827 obj->cache_dirty = false;
3828
3829 return true;
3830 }
3831
3832 /** Flushes the GTT write domain for the object if it's dirty. */
3833 static void
3834 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3835 {
3836 uint32_t old_write_domain;
3837
3838 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3839 return;
3840
3841 /* No actual flushing is required for the GTT write domain. Writes
3842 * to it immediately go to main memory as far as we know, so there's
3843 * no chipset flush. It also doesn't land in render cache.
3844 *
3845 * However, we do have to enforce the order so that all writes through
3846 * the GTT land before any writes to the device, such as updates to
3847 * the GATT itself.
3848 */
3849 wmb();
3850
3851 old_write_domain = obj->base.write_domain;
3852 obj->base.write_domain = 0;
3853
3854 intel_fb_obj_flush(obj, false);
3855
3856 trace_i915_gem_object_change_domain(obj,
3857 obj->base.read_domains,
3858 old_write_domain);
3859 }
3860
3861 /** Flushes the CPU write domain for the object if it's dirty. */
3862 static void
3863 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3864 {
3865 uint32_t old_write_domain;
3866
3867 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3868 return;
3869
3870 if (i915_gem_clflush_object(obj, obj->pin_display))
3871 i915_gem_chipset_flush(obj->base.dev);
3872
3873 old_write_domain = obj->base.write_domain;
3874 obj->base.write_domain = 0;
3875
3876 intel_fb_obj_flush(obj, false);
3877
3878 trace_i915_gem_object_change_domain(obj,
3879 obj->base.read_domains,
3880 old_write_domain);
3881 }
3882
3883 /**
3884 * Moves a single object to the GTT read, and possibly write domain.
3885 *
3886 * This function returns when the move is complete, including waiting on
3887 * flushes to occur.
3888 */
3889 int
3890 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3891 {
3892 uint32_t old_write_domain, old_read_domains;
3893 struct i915_vma *vma;
3894 int ret;
3895
3896 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3897 return 0;
3898
3899 ret = i915_gem_object_wait_rendering(obj, !write);
3900 if (ret)
3901 return ret;
3902
3903 /* Flush and acquire obj->pages so that we are coherent through
3904 * direct access in memory with previous cached writes through
3905 * shmemfs and that our cache domain tracking remains valid.
3906 * For example, if the obj->filp was moved to swap without us
3907 * being notified and releasing the pages, we would mistakenly
3908 * continue to assume that the obj remained out of the CPU cached
3909 * domain.
3910 */
3911 ret = i915_gem_object_get_pages(obj);
3912 if (ret)
3913 return ret;
3914
3915 i915_gem_object_flush_cpu_write_domain(obj);
3916
3917 /* Serialise direct access to this object with the barriers for
3918 * coherent writes from the GPU, by effectively invalidating the
3919 * GTT domain upon first access.
3920 */
3921 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3922 mb();
3923
3924 old_write_domain = obj->base.write_domain;
3925 old_read_domains = obj->base.read_domains;
3926
3927 /* It should now be out of any other write domains, and we can update
3928 * the domain values for our changes.
3929 */
3930 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3931 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3932 if (write) {
3933 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3934 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3935 obj->dirty = 1;
3936 }
3937
3938 if (write)
3939 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3940
3941 trace_i915_gem_object_change_domain(obj,
3942 old_read_domains,
3943 old_write_domain);
3944
3945 /* And bump the LRU for this access */
3946 vma = i915_gem_obj_to_ggtt(obj);
3947 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3948 list_move_tail(&vma->mm_list,
3949 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3950
3951 return 0;
3952 }
3953
3954 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3955 enum i915_cache_level cache_level)
3956 {
3957 struct drm_device *dev = obj->base.dev;
3958 struct i915_vma *vma, *next;
3959 int ret;
3960
3961 if (obj->cache_level == cache_level)
3962 return 0;
3963
3964 if (i915_gem_obj_is_pinned(obj)) {
3965 DRM_DEBUG("can not change the cache level of pinned objects\n");
3966 return -EBUSY;
3967 }
3968
3969 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3970 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3971 ret = i915_vma_unbind(vma);
3972 if (ret)
3973 return ret;
3974 }
3975 }
3976
3977 if (i915_gem_obj_bound_any(obj)) {
3978 ret = i915_gem_object_wait_rendering(obj, false);
3979 if (ret)
3980 return ret;
3981
3982 i915_gem_object_finish_gtt(obj);
3983
3984 /* Before SandyBridge, you could not use tiling or fence
3985 * registers with snooped memory, so relinquish any fences
3986 * currently pointing to our region in the aperture.
3987 */
3988 if (INTEL_INFO(dev)->gen < 6) {
3989 ret = i915_gem_object_put_fence(obj);
3990 if (ret)
3991 return ret;
3992 }
3993
3994 list_for_each_entry(vma, &obj->vma_list, vma_link)
3995 if (drm_mm_node_allocated(&vma->node)) {
3996 ret = i915_vma_bind(vma, cache_level,
3997 PIN_UPDATE);
3998 if (ret)
3999 return ret;
4000 }
4001 }
4002
4003 list_for_each_entry(vma, &obj->vma_list, vma_link)
4004 vma->node.color = cache_level;
4005 obj->cache_level = cache_level;
4006
4007 if (obj->cache_dirty &&
4008 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4009 cpu_write_needs_clflush(obj)) {
4010 if (i915_gem_clflush_object(obj, true))
4011 i915_gem_chipset_flush(obj->base.dev);
4012 }
4013
4014 return 0;
4015 }
4016
4017 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4018 struct drm_file *file)
4019 {
4020 struct drm_i915_gem_caching *args = data;
4021 struct drm_i915_gem_object *obj;
4022
4023 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4024 if (&obj->base == NULL)
4025 return -ENOENT;
4026
4027 switch (obj->cache_level) {
4028 case I915_CACHE_LLC:
4029 case I915_CACHE_L3_LLC:
4030 args->caching = I915_CACHING_CACHED;
4031 break;
4032
4033 case I915_CACHE_WT:
4034 args->caching = I915_CACHING_DISPLAY;
4035 break;
4036
4037 default:
4038 args->caching = I915_CACHING_NONE;
4039 break;
4040 }
4041
4042 drm_gem_object_unreference_unlocked(&obj->base);
4043 return 0;
4044 }
4045
4046 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4047 struct drm_file *file)
4048 {
4049 struct drm_i915_gem_caching *args = data;
4050 struct drm_i915_gem_object *obj;
4051 enum i915_cache_level level;
4052 int ret;
4053
4054 switch (args->caching) {
4055 case I915_CACHING_NONE:
4056 level = I915_CACHE_NONE;
4057 break;
4058 case I915_CACHING_CACHED:
4059 level = I915_CACHE_LLC;
4060 break;
4061 case I915_CACHING_DISPLAY:
4062 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4063 break;
4064 default:
4065 return -EINVAL;
4066 }
4067
4068 ret = i915_mutex_lock_interruptible(dev);
4069 if (ret)
4070 return ret;
4071
4072 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4073 if (&obj->base == NULL) {
4074 ret = -ENOENT;
4075 goto unlock;
4076 }
4077
4078 ret = i915_gem_object_set_cache_level(obj, level);
4079
4080 drm_gem_object_unreference(&obj->base);
4081 unlock:
4082 mutex_unlock(&dev->struct_mutex);
4083 return ret;
4084 }
4085
4086 /*
4087 * Prepare buffer for display plane (scanout, cursors, etc).
4088 * Can be called from an uninterruptible phase (modesetting) and allows
4089 * any flushes to be pipelined (for pageflips).
4090 */
4091 int
4092 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4093 u32 alignment,
4094 struct intel_engine_cs *pipelined,
4095 const struct i915_ggtt_view *view)
4096 {
4097 u32 old_read_domains, old_write_domain;
4098 int ret;
4099
4100 ret = i915_gem_object_sync(obj, pipelined);
4101 if (ret)
4102 return ret;
4103
4104 /* Mark the pin_display early so that we account for the
4105 * display coherency whilst setting up the cache domains.
4106 */
4107 obj->pin_display++;
4108
4109 /* The display engine is not coherent with the LLC cache on gen6. As
4110 * a result, we make sure that the pinning that is about to occur is
4111 * done with uncached PTEs. This is lowest common denominator for all
4112 * chipsets.
4113 *
4114 * However for gen6+, we could do better by using the GFDT bit instead
4115 * of uncaching, which would allow us to flush all the LLC-cached data
4116 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4117 */
4118 ret = i915_gem_object_set_cache_level(obj,
4119 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4120 if (ret)
4121 goto err_unpin_display;
4122
4123 /* As the user may map the buffer once pinned in the display plane
4124 * (e.g. libkms for the bootup splash), we have to ensure that we
4125 * always use map_and_fenceable for all scanout buffers.
4126 */
4127 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4128 view->type == I915_GGTT_VIEW_NORMAL ?
4129 PIN_MAPPABLE : 0);
4130 if (ret)
4131 goto err_unpin_display;
4132
4133 i915_gem_object_flush_cpu_write_domain(obj);
4134
4135 old_write_domain = obj->base.write_domain;
4136 old_read_domains = obj->base.read_domains;
4137
4138 /* It should now be out of any other write domains, and we can update
4139 * the domain values for our changes.
4140 */
4141 obj->base.write_domain = 0;
4142 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4143
4144 trace_i915_gem_object_change_domain(obj,
4145 old_read_domains,
4146 old_write_domain);
4147
4148 return 0;
4149
4150 err_unpin_display:
4151 obj->pin_display--;
4152 return ret;
4153 }
4154
4155 void
4156 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4157 const struct i915_ggtt_view *view)
4158 {
4159 if (WARN_ON(obj->pin_display == 0))
4160 return;
4161
4162 i915_gem_object_ggtt_unpin_view(obj, view);
4163
4164 obj->pin_display--;
4165 }
4166
4167 /**
4168 * Moves a single object to the CPU read, and possibly write domain.
4169 *
4170 * This function returns when the move is complete, including waiting on
4171 * flushes to occur.
4172 */
4173 int
4174 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4175 {
4176 uint32_t old_write_domain, old_read_domains;
4177 int ret;
4178
4179 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4180 return 0;
4181
4182 ret = i915_gem_object_wait_rendering(obj, !write);
4183 if (ret)
4184 return ret;
4185
4186 i915_gem_object_flush_gtt_write_domain(obj);
4187
4188 old_write_domain = obj->base.write_domain;
4189 old_read_domains = obj->base.read_domains;
4190
4191 /* Flush the CPU cache if it's still invalid. */
4192 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4193 i915_gem_clflush_object(obj, false);
4194
4195 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4196 }
4197
4198 /* It should now be out of any other write domains, and we can update
4199 * the domain values for our changes.
4200 */
4201 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4202
4203 /* If we're writing through the CPU, then the GPU read domains will
4204 * need to be invalidated at next use.
4205 */
4206 if (write) {
4207 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4208 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4209 }
4210
4211 if (write)
4212 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4213
4214 trace_i915_gem_object_change_domain(obj,
4215 old_read_domains,
4216 old_write_domain);
4217
4218 return 0;
4219 }
4220
4221 /* Throttle our rendering by waiting until the ring has completed our requests
4222 * emitted over 20 msec ago.
4223 *
4224 * Note that if we were to use the current jiffies each time around the loop,
4225 * we wouldn't escape the function with any frames outstanding if the time to
4226 * render a frame was over 20ms.
4227 *
4228 * This should get us reasonable parallelism between CPU and GPU but also
4229 * relatively low latency when blocking on a particular request to finish.
4230 */
4231 static int
4232 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4233 {
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 struct drm_i915_file_private *file_priv = file->driver_priv;
4236 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4237 struct drm_i915_gem_request *request, *target = NULL;
4238 unsigned reset_counter;
4239 int ret;
4240
4241 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4242 if (ret)
4243 return ret;
4244
4245 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4246 if (ret)
4247 return ret;
4248
4249 spin_lock(&file_priv->mm.lock);
4250 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4251 if (time_after_eq(request->emitted_jiffies, recent_enough))
4252 break;
4253
4254 target = request;
4255 }
4256 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4257 if (target)
4258 i915_gem_request_reference(target);
4259 spin_unlock(&file_priv->mm.lock);
4260
4261 if (target == NULL)
4262 return 0;
4263
4264 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4265 if (ret == 0)
4266 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4267
4268 i915_gem_request_unreference__unlocked(target);
4269
4270 return ret;
4271 }
4272
4273 static bool
4274 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4275 {
4276 struct drm_i915_gem_object *obj = vma->obj;
4277
4278 if (alignment &&
4279 vma->node.start & (alignment - 1))
4280 return true;
4281
4282 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4283 return true;
4284
4285 if (flags & PIN_OFFSET_BIAS &&
4286 vma->node.start < (flags & PIN_OFFSET_MASK))
4287 return true;
4288
4289 return false;
4290 }
4291
4292 static int
4293 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4294 struct i915_address_space *vm,
4295 const struct i915_ggtt_view *ggtt_view,
4296 uint32_t alignment,
4297 uint64_t flags)
4298 {
4299 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4300 struct i915_vma *vma;
4301 unsigned bound;
4302 int ret;
4303
4304 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4305 return -ENODEV;
4306
4307 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4308 return -EINVAL;
4309
4310 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4311 return -EINVAL;
4312
4313 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4314 return -EINVAL;
4315
4316 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4317 i915_gem_obj_to_vma(obj, vm);
4318
4319 if (IS_ERR(vma))
4320 return PTR_ERR(vma);
4321
4322 if (vma) {
4323 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4324 return -EBUSY;
4325
4326 if (i915_vma_misplaced(vma, alignment, flags)) {
4327 unsigned long offset;
4328 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4329 i915_gem_obj_offset(obj, vm);
4330 WARN(vma->pin_count,
4331 "bo is already pinned in %s with incorrect alignment:"
4332 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4333 " obj->map_and_fenceable=%d\n",
4334 ggtt_view ? "ggtt" : "ppgtt",
4335 offset,
4336 alignment,
4337 !!(flags & PIN_MAPPABLE),
4338 obj->map_and_fenceable);
4339 ret = i915_vma_unbind(vma);
4340 if (ret)
4341 return ret;
4342
4343 vma = NULL;
4344 }
4345 }
4346
4347 bound = vma ? vma->bound : 0;
4348 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4349 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4350 flags);
4351 if (IS_ERR(vma))
4352 return PTR_ERR(vma);
4353 } else {
4354 ret = i915_vma_bind(vma, obj->cache_level, flags);
4355 if (ret)
4356 return ret;
4357 }
4358
4359 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4360 (bound ^ vma->bound) & GLOBAL_BIND) {
4361 bool mappable, fenceable;
4362 u32 fence_size, fence_alignment;
4363
4364 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4365 obj->base.size,
4366 obj->tiling_mode);
4367 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4368 obj->base.size,
4369 obj->tiling_mode,
4370 true);
4371
4372 fenceable = (vma->node.size == fence_size &&
4373 (vma->node.start & (fence_alignment - 1)) == 0);
4374
4375 mappable = (vma->node.start + fence_size <=
4376 dev_priv->gtt.mappable_end);
4377
4378 obj->map_and_fenceable = mappable && fenceable;
4379
4380 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4381 }
4382
4383 vma->pin_count++;
4384 return 0;
4385 }
4386
4387 int
4388 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4389 struct i915_address_space *vm,
4390 uint32_t alignment,
4391 uint64_t flags)
4392 {
4393 return i915_gem_object_do_pin(obj, vm,
4394 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4395 alignment, flags);
4396 }
4397
4398 int
4399 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4400 const struct i915_ggtt_view *view,
4401 uint32_t alignment,
4402 uint64_t flags)
4403 {
4404 if (WARN_ONCE(!view, "no view specified"))
4405 return -EINVAL;
4406
4407 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4408 alignment, flags | PIN_GLOBAL);
4409 }
4410
4411 void
4412 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4413 const struct i915_ggtt_view *view)
4414 {
4415 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4416
4417 BUG_ON(!vma);
4418 WARN_ON(vma->pin_count == 0);
4419 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4420
4421 --vma->pin_count;
4422 }
4423
4424 bool
4425 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4426 {
4427 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4428 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4429 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4430
4431 WARN_ON(!ggtt_vma ||
4432 dev_priv->fence_regs[obj->fence_reg].pin_count >
4433 ggtt_vma->pin_count);
4434 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4435 return true;
4436 } else
4437 return false;
4438 }
4439
4440 void
4441 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4442 {
4443 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4444 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4445 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4446 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4447 }
4448 }
4449
4450 int
4451 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4452 struct drm_file *file)
4453 {
4454 struct drm_i915_gem_busy *args = data;
4455 struct drm_i915_gem_object *obj;
4456 int ret;
4457
4458 ret = i915_mutex_lock_interruptible(dev);
4459 if (ret)
4460 return ret;
4461
4462 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4463 if (&obj->base == NULL) {
4464 ret = -ENOENT;
4465 goto unlock;
4466 }
4467
4468 /* Count all active objects as busy, even if they are currently not used
4469 * by the gpu. Users of this interface expect objects to eventually
4470 * become non-busy without any further actions, therefore emit any
4471 * necessary flushes here.
4472 */
4473 ret = i915_gem_object_flush_active(obj);
4474 if (ret)
4475 goto unref;
4476
4477 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4478 args->busy = obj->active << 16;
4479 if (obj->last_write_req)
4480 args->busy |= obj->last_write_req->ring->id;
4481
4482 unref:
4483 drm_gem_object_unreference(&obj->base);
4484 unlock:
4485 mutex_unlock(&dev->struct_mutex);
4486 return ret;
4487 }
4488
4489 int
4490 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4491 struct drm_file *file_priv)
4492 {
4493 return i915_gem_ring_throttle(dev, file_priv);
4494 }
4495
4496 int
4497 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4498 struct drm_file *file_priv)
4499 {
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 struct drm_i915_gem_madvise *args = data;
4502 struct drm_i915_gem_object *obj;
4503 int ret;
4504
4505 switch (args->madv) {
4506 case I915_MADV_DONTNEED:
4507 case I915_MADV_WILLNEED:
4508 break;
4509 default:
4510 return -EINVAL;
4511 }
4512
4513 ret = i915_mutex_lock_interruptible(dev);
4514 if (ret)
4515 return ret;
4516
4517 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4518 if (&obj->base == NULL) {
4519 ret = -ENOENT;
4520 goto unlock;
4521 }
4522
4523 if (i915_gem_obj_is_pinned(obj)) {
4524 ret = -EINVAL;
4525 goto out;
4526 }
4527
4528 if (obj->pages &&
4529 obj->tiling_mode != I915_TILING_NONE &&
4530 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4531 if (obj->madv == I915_MADV_WILLNEED)
4532 i915_gem_object_unpin_pages(obj);
4533 if (args->madv == I915_MADV_WILLNEED)
4534 i915_gem_object_pin_pages(obj);
4535 }
4536
4537 if (obj->madv != __I915_MADV_PURGED)
4538 obj->madv = args->madv;
4539
4540 /* if the object is no longer attached, discard its backing storage */
4541 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4542 i915_gem_object_truncate(obj);
4543
4544 args->retained = obj->madv != __I915_MADV_PURGED;
4545
4546 out:
4547 drm_gem_object_unreference(&obj->base);
4548 unlock:
4549 mutex_unlock(&dev->struct_mutex);
4550 return ret;
4551 }
4552
4553 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4554 const struct drm_i915_gem_object_ops *ops)
4555 {
4556 int i;
4557
4558 INIT_LIST_HEAD(&obj->global_list);
4559 for (i = 0; i < I915_NUM_RINGS; i++)
4560 INIT_LIST_HEAD(&obj->ring_list[i]);
4561 INIT_LIST_HEAD(&obj->obj_exec_link);
4562 INIT_LIST_HEAD(&obj->vma_list);
4563 INIT_LIST_HEAD(&obj->batch_pool_link);
4564
4565 obj->ops = ops;
4566
4567 obj->fence_reg = I915_FENCE_REG_NONE;
4568 obj->madv = I915_MADV_WILLNEED;
4569
4570 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4571 }
4572
4573 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4574 .get_pages = i915_gem_object_get_pages_gtt,
4575 .put_pages = i915_gem_object_put_pages_gtt,
4576 };
4577
4578 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4579 size_t size)
4580 {
4581 struct drm_i915_gem_object *obj;
4582 struct address_space *mapping;
4583 gfp_t mask;
4584
4585 obj = i915_gem_object_alloc(dev);
4586 if (obj == NULL)
4587 return NULL;
4588
4589 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4590 i915_gem_object_free(obj);
4591 return NULL;
4592 }
4593
4594 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4595 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4596 /* 965gm cannot relocate objects above 4GiB. */
4597 mask &= ~__GFP_HIGHMEM;
4598 mask |= __GFP_DMA32;
4599 }
4600
4601 mapping = file_inode(obj->base.filp)->i_mapping;
4602 mapping_set_gfp_mask(mapping, mask);
4603
4604 i915_gem_object_init(obj, &i915_gem_object_ops);
4605
4606 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4607 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4608
4609 if (HAS_LLC(dev)) {
4610 /* On some devices, we can have the GPU use the LLC (the CPU
4611 * cache) for about a 10% performance improvement
4612 * compared to uncached. Graphics requests other than
4613 * display scanout are coherent with the CPU in
4614 * accessing this cache. This means in this mode we
4615 * don't need to clflush on the CPU side, and on the
4616 * GPU side we only need to flush internal caches to
4617 * get data visible to the CPU.
4618 *
4619 * However, we maintain the display planes as UC, and so
4620 * need to rebind when first used as such.
4621 */
4622 obj->cache_level = I915_CACHE_LLC;
4623 } else
4624 obj->cache_level = I915_CACHE_NONE;
4625
4626 trace_i915_gem_object_create(obj);
4627
4628 return obj;
4629 }
4630
4631 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4632 {
4633 /* If we are the last user of the backing storage (be it shmemfs
4634 * pages or stolen etc), we know that the pages are going to be
4635 * immediately released. In this case, we can then skip copying
4636 * back the contents from the GPU.
4637 */
4638
4639 if (obj->madv != I915_MADV_WILLNEED)
4640 return false;
4641
4642 if (obj->base.filp == NULL)
4643 return true;
4644
4645 /* At first glance, this looks racy, but then again so would be
4646 * userspace racing mmap against close. However, the first external
4647 * reference to the filp can only be obtained through the
4648 * i915_gem_mmap_ioctl() which safeguards us against the user
4649 * acquiring such a reference whilst we are in the middle of
4650 * freeing the object.
4651 */
4652 return atomic_long_read(&obj->base.filp->f_count) == 1;
4653 }
4654
4655 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4656 {
4657 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4658 struct drm_device *dev = obj->base.dev;
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660 struct i915_vma *vma, *next;
4661
4662 intel_runtime_pm_get(dev_priv);
4663
4664 trace_i915_gem_object_destroy(obj);
4665
4666 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4667 int ret;
4668
4669 vma->pin_count = 0;
4670 ret = i915_vma_unbind(vma);
4671 if (WARN_ON(ret == -ERESTARTSYS)) {
4672 bool was_interruptible;
4673
4674 was_interruptible = dev_priv->mm.interruptible;
4675 dev_priv->mm.interruptible = false;
4676
4677 WARN_ON(i915_vma_unbind(vma));
4678
4679 dev_priv->mm.interruptible = was_interruptible;
4680 }
4681 }
4682
4683 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4684 * before progressing. */
4685 if (obj->stolen)
4686 i915_gem_object_unpin_pages(obj);
4687
4688 WARN_ON(obj->frontbuffer_bits);
4689
4690 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4691 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4692 obj->tiling_mode != I915_TILING_NONE)
4693 i915_gem_object_unpin_pages(obj);
4694
4695 if (WARN_ON(obj->pages_pin_count))
4696 obj->pages_pin_count = 0;
4697 if (discard_backing_storage(obj))
4698 obj->madv = I915_MADV_DONTNEED;
4699 i915_gem_object_put_pages(obj);
4700 i915_gem_object_free_mmap_offset(obj);
4701
4702 BUG_ON(obj->pages);
4703
4704 if (obj->base.import_attach)
4705 drm_prime_gem_destroy(&obj->base, NULL);
4706
4707 if (obj->ops->release)
4708 obj->ops->release(obj);
4709
4710 drm_gem_object_release(&obj->base);
4711 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4712
4713 kfree(obj->bit_17);
4714 i915_gem_object_free(obj);
4715
4716 intel_runtime_pm_put(dev_priv);
4717 }
4718
4719 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4720 struct i915_address_space *vm)
4721 {
4722 struct i915_vma *vma;
4723 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4724 if (i915_is_ggtt(vma->vm) &&
4725 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4726 continue;
4727 if (vma->vm == vm)
4728 return vma;
4729 }
4730 return NULL;
4731 }
4732
4733 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4734 const struct i915_ggtt_view *view)
4735 {
4736 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4737 struct i915_vma *vma;
4738
4739 if (WARN_ONCE(!view, "no view specified"))
4740 return ERR_PTR(-EINVAL);
4741
4742 list_for_each_entry(vma, &obj->vma_list, vma_link)
4743 if (vma->vm == ggtt &&
4744 i915_ggtt_view_equal(&vma->ggtt_view, view))
4745 return vma;
4746 return NULL;
4747 }
4748
4749 void i915_gem_vma_destroy(struct i915_vma *vma)
4750 {
4751 struct i915_address_space *vm = NULL;
4752 WARN_ON(vma->node.allocated);
4753
4754 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4755 if (!list_empty(&vma->exec_list))
4756 return;
4757
4758 vm = vma->vm;
4759
4760 if (!i915_is_ggtt(vm))
4761 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4762
4763 list_del(&vma->vma_link);
4764
4765 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4766 }
4767
4768 static void
4769 i915_gem_stop_ringbuffers(struct drm_device *dev)
4770 {
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772 struct intel_engine_cs *ring;
4773 int i;
4774
4775 for_each_ring(ring, dev_priv, i)
4776 dev_priv->gt.stop_ring(ring);
4777 }
4778
4779 int
4780 i915_gem_suspend(struct drm_device *dev)
4781 {
4782 struct drm_i915_private *dev_priv = dev->dev_private;
4783 int ret = 0;
4784
4785 mutex_lock(&dev->struct_mutex);
4786 ret = i915_gpu_idle(dev);
4787 if (ret)
4788 goto err;
4789
4790 i915_gem_retire_requests(dev);
4791
4792 i915_gem_stop_ringbuffers(dev);
4793 mutex_unlock(&dev->struct_mutex);
4794
4795 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4796 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4797 flush_delayed_work(&dev_priv->mm.idle_work);
4798
4799 /* Assert that we sucessfully flushed all the work and
4800 * reset the GPU back to its idle, low power state.
4801 */
4802 WARN_ON(dev_priv->mm.busy);
4803
4804 return 0;
4805
4806 err:
4807 mutex_unlock(&dev->struct_mutex);
4808 return ret;
4809 }
4810
4811 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4812 {
4813 struct drm_device *dev = ring->dev;
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4816 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4817 int i, ret;
4818
4819 if (!HAS_L3_DPF(dev) || !remap_info)
4820 return 0;
4821
4822 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4823 if (ret)
4824 return ret;
4825
4826 /*
4827 * Note: We do not worry about the concurrent register cacheline hang
4828 * here because no other code should access these registers other than
4829 * at initialization time.
4830 */
4831 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4832 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4833 intel_ring_emit(ring, reg_base + i);
4834 intel_ring_emit(ring, remap_info[i/4]);
4835 }
4836
4837 intel_ring_advance(ring);
4838
4839 return ret;
4840 }
4841
4842 void i915_gem_init_swizzling(struct drm_device *dev)
4843 {
4844 struct drm_i915_private *dev_priv = dev->dev_private;
4845
4846 if (INTEL_INFO(dev)->gen < 5 ||
4847 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4848 return;
4849
4850 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4851 DISP_TILE_SURFACE_SWIZZLING);
4852
4853 if (IS_GEN5(dev))
4854 return;
4855
4856 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4857 if (IS_GEN6(dev))
4858 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4859 else if (IS_GEN7(dev))
4860 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4861 else if (IS_GEN8(dev))
4862 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4863 else
4864 BUG();
4865 }
4866
4867 static bool
4868 intel_enable_blt(struct drm_device *dev)
4869 {
4870 if (!HAS_BLT(dev))
4871 return false;
4872
4873 /* The blitter was dysfunctional on early prototypes */
4874 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4875 DRM_INFO("BLT not supported on this pre-production hardware;"
4876 " graphics performance will be degraded.\n");
4877 return false;
4878 }
4879
4880 return true;
4881 }
4882
4883 static void init_unused_ring(struct drm_device *dev, u32 base)
4884 {
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886
4887 I915_WRITE(RING_CTL(base), 0);
4888 I915_WRITE(RING_HEAD(base), 0);
4889 I915_WRITE(RING_TAIL(base), 0);
4890 I915_WRITE(RING_START(base), 0);
4891 }
4892
4893 static void init_unused_rings(struct drm_device *dev)
4894 {
4895 if (IS_I830(dev)) {
4896 init_unused_ring(dev, PRB1_BASE);
4897 init_unused_ring(dev, SRB0_BASE);
4898 init_unused_ring(dev, SRB1_BASE);
4899 init_unused_ring(dev, SRB2_BASE);
4900 init_unused_ring(dev, SRB3_BASE);
4901 } else if (IS_GEN2(dev)) {
4902 init_unused_ring(dev, SRB0_BASE);
4903 init_unused_ring(dev, SRB1_BASE);
4904 } else if (IS_GEN3(dev)) {
4905 init_unused_ring(dev, PRB1_BASE);
4906 init_unused_ring(dev, PRB2_BASE);
4907 }
4908 }
4909
4910 int i915_gem_init_rings(struct drm_device *dev)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 int ret;
4914
4915 ret = intel_init_render_ring_buffer(dev);
4916 if (ret)
4917 return ret;
4918
4919 if (HAS_BSD(dev)) {
4920 ret = intel_init_bsd_ring_buffer(dev);
4921 if (ret)
4922 goto cleanup_render_ring;
4923 }
4924
4925 if (intel_enable_blt(dev)) {
4926 ret = intel_init_blt_ring_buffer(dev);
4927 if (ret)
4928 goto cleanup_bsd_ring;
4929 }
4930
4931 if (HAS_VEBOX(dev)) {
4932 ret = intel_init_vebox_ring_buffer(dev);
4933 if (ret)
4934 goto cleanup_blt_ring;
4935 }
4936
4937 if (HAS_BSD2(dev)) {
4938 ret = intel_init_bsd2_ring_buffer(dev);
4939 if (ret)
4940 goto cleanup_vebox_ring;
4941 }
4942
4943 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4944 if (ret)
4945 goto cleanup_bsd2_ring;
4946
4947 return 0;
4948
4949 cleanup_bsd2_ring:
4950 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4951 cleanup_vebox_ring:
4952 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4953 cleanup_blt_ring:
4954 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4955 cleanup_bsd_ring:
4956 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4957 cleanup_render_ring:
4958 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4959
4960 return ret;
4961 }
4962
4963 int
4964 i915_gem_init_hw(struct drm_device *dev)
4965 {
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 struct intel_engine_cs *ring;
4968 int ret, i;
4969
4970 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4971 return -EIO;
4972
4973 /* Double layer security blanket, see i915_gem_init() */
4974 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4975
4976 if (dev_priv->ellc_size)
4977 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4978
4979 if (IS_HASWELL(dev))
4980 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4981 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4982
4983 if (HAS_PCH_NOP(dev)) {
4984 if (IS_IVYBRIDGE(dev)) {
4985 u32 temp = I915_READ(GEN7_MSG_CTL);
4986 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4987 I915_WRITE(GEN7_MSG_CTL, temp);
4988 } else if (INTEL_INFO(dev)->gen >= 7) {
4989 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4990 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4991 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4992 }
4993 }
4994
4995 i915_gem_init_swizzling(dev);
4996
4997 /*
4998 * At least 830 can leave some of the unused rings
4999 * "active" (ie. head != tail) after resume which
5000 * will prevent c3 entry. Makes sure all unused rings
5001 * are totally idle.
5002 */
5003 init_unused_rings(dev);
5004
5005 for_each_ring(ring, dev_priv, i) {
5006 ret = ring->init_hw(ring);
5007 if (ret)
5008 goto out;
5009 }
5010
5011 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5012 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5013
5014 ret = i915_ppgtt_init_hw(dev);
5015 if (ret && ret != -EIO) {
5016 DRM_ERROR("PPGTT enable failed %d\n", ret);
5017 i915_gem_cleanup_ringbuffer(dev);
5018 }
5019
5020 ret = i915_gem_context_enable(dev_priv);
5021 if (ret && ret != -EIO) {
5022 DRM_ERROR("Context enable failed %d\n", ret);
5023 i915_gem_cleanup_ringbuffer(dev);
5024
5025 goto out;
5026 }
5027
5028 out:
5029 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5030 return ret;
5031 }
5032
5033 int i915_gem_init(struct drm_device *dev)
5034 {
5035 struct drm_i915_private *dev_priv = dev->dev_private;
5036 int ret;
5037
5038 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5039 i915.enable_execlists);
5040
5041 mutex_lock(&dev->struct_mutex);
5042
5043 if (IS_VALLEYVIEW(dev)) {
5044 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5045 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5046 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5047 VLV_GTLC_ALLOWWAKEACK), 10))
5048 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5049 }
5050
5051 if (!i915.enable_execlists) {
5052 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5053 dev_priv->gt.init_rings = i915_gem_init_rings;
5054 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5055 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5056 } else {
5057 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5058 dev_priv->gt.init_rings = intel_logical_rings_init;
5059 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5060 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5061 }
5062
5063 /* This is just a security blanket to placate dragons.
5064 * On some systems, we very sporadically observe that the first TLBs
5065 * used by the CS may be stale, despite us poking the TLB reset. If
5066 * we hold the forcewake during initialisation these problems
5067 * just magically go away.
5068 */
5069 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5070
5071 ret = i915_gem_init_userptr(dev);
5072 if (ret)
5073 goto out_unlock;
5074
5075 i915_gem_init_global_gtt(dev);
5076
5077 ret = i915_gem_context_init(dev);
5078 if (ret)
5079 goto out_unlock;
5080
5081 ret = dev_priv->gt.init_rings(dev);
5082 if (ret)
5083 goto out_unlock;
5084
5085 ret = i915_gem_init_hw(dev);
5086 if (ret == -EIO) {
5087 /* Allow ring initialisation to fail by marking the GPU as
5088 * wedged. But we only want to do this where the GPU is angry,
5089 * for all other failure, such as an allocation failure, bail.
5090 */
5091 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5092 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5093 ret = 0;
5094 }
5095
5096 out_unlock:
5097 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5098 mutex_unlock(&dev->struct_mutex);
5099
5100 return ret;
5101 }
5102
5103 void
5104 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5105 {
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107 struct intel_engine_cs *ring;
5108 int i;
5109
5110 for_each_ring(ring, dev_priv, i)
5111 dev_priv->gt.cleanup_ring(ring);
5112 }
5113
5114 static void
5115 init_ring_lists(struct intel_engine_cs *ring)
5116 {
5117 INIT_LIST_HEAD(&ring->active_list);
5118 INIT_LIST_HEAD(&ring->request_list);
5119 }
5120
5121 void i915_init_vm(struct drm_i915_private *dev_priv,
5122 struct i915_address_space *vm)
5123 {
5124 if (!i915_is_ggtt(vm))
5125 drm_mm_init(&vm->mm, vm->start, vm->total);
5126 vm->dev = dev_priv->dev;
5127 INIT_LIST_HEAD(&vm->active_list);
5128 INIT_LIST_HEAD(&vm->inactive_list);
5129 INIT_LIST_HEAD(&vm->global_link);
5130 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5131 }
5132
5133 void
5134 i915_gem_load(struct drm_device *dev)
5135 {
5136 struct drm_i915_private *dev_priv = dev->dev_private;
5137 int i;
5138
5139 dev_priv->objects =
5140 kmem_cache_create("i915_gem_object",
5141 sizeof(struct drm_i915_gem_object), 0,
5142 SLAB_HWCACHE_ALIGN,
5143 NULL);
5144 dev_priv->vmas =
5145 kmem_cache_create("i915_gem_vma",
5146 sizeof(struct i915_vma), 0,
5147 SLAB_HWCACHE_ALIGN,
5148 NULL);
5149 dev_priv->requests =
5150 kmem_cache_create("i915_gem_request",
5151 sizeof(struct drm_i915_gem_request), 0,
5152 SLAB_HWCACHE_ALIGN,
5153 NULL);
5154
5155 INIT_LIST_HEAD(&dev_priv->vm_list);
5156 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5157
5158 INIT_LIST_HEAD(&dev_priv->context_list);
5159 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5160 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5161 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5162 for (i = 0; i < I915_NUM_RINGS; i++)
5163 init_ring_lists(&dev_priv->ring[i]);
5164 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5165 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5166 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5167 i915_gem_retire_work_handler);
5168 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5169 i915_gem_idle_work_handler);
5170 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5171
5172 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5173
5174 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5175 dev_priv->num_fence_regs = 32;
5176 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5177 dev_priv->num_fence_regs = 16;
5178 else
5179 dev_priv->num_fence_regs = 8;
5180
5181 if (intel_vgpu_active(dev))
5182 dev_priv->num_fence_regs =
5183 I915_READ(vgtif_reg(avail_rs.fence_num));
5184
5185 /* Initialize fence registers to zero */
5186 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5187 i915_gem_restore_fences(dev);
5188
5189 i915_gem_detect_bit_6_swizzle(dev);
5190 init_waitqueue_head(&dev_priv->pending_flip_queue);
5191
5192 dev_priv->mm.interruptible = true;
5193
5194 i915_gem_shrinker_init(dev_priv);
5195
5196 mutex_init(&dev_priv->fb_tracking.lock);
5197 }
5198
5199 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5200 {
5201 struct drm_i915_file_private *file_priv = file->driver_priv;
5202
5203 /* Clean up our request list when the client is going away, so that
5204 * later retire_requests won't dereference our soon-to-be-gone
5205 * file_priv.
5206 */
5207 spin_lock(&file_priv->mm.lock);
5208 while (!list_empty(&file_priv->mm.request_list)) {
5209 struct drm_i915_gem_request *request;
5210
5211 request = list_first_entry(&file_priv->mm.request_list,
5212 struct drm_i915_gem_request,
5213 client_list);
5214 list_del(&request->client_list);
5215 request->file_priv = NULL;
5216 }
5217 spin_unlock(&file_priv->mm.lock);
5218
5219 if (!list_empty(&file_priv->rps_boost)) {
5220 mutex_lock(&to_i915(dev)->rps.hw_lock);
5221 list_del(&file_priv->rps_boost);
5222 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5223 }
5224 }
5225
5226 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5227 {
5228 struct drm_i915_file_private *file_priv;
5229 int ret;
5230
5231 DRM_DEBUG_DRIVER("\n");
5232
5233 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5234 if (!file_priv)
5235 return -ENOMEM;
5236
5237 file->driver_priv = file_priv;
5238 file_priv->dev_priv = dev->dev_private;
5239 file_priv->file = file;
5240 INIT_LIST_HEAD(&file_priv->rps_boost);
5241
5242 spin_lock_init(&file_priv->mm.lock);
5243 INIT_LIST_HEAD(&file_priv->mm.request_list);
5244
5245 ret = i915_gem_context_open(dev, file);
5246 if (ret)
5247 kfree(file_priv);
5248
5249 return ret;
5250 }
5251
5252 /**
5253 * i915_gem_track_fb - update frontbuffer tracking
5254 * old: current GEM buffer for the frontbuffer slots
5255 * new: new GEM buffer for the frontbuffer slots
5256 * frontbuffer_bits: bitmask of frontbuffer slots
5257 *
5258 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5259 * from @old and setting them in @new. Both @old and @new can be NULL.
5260 */
5261 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5262 struct drm_i915_gem_object *new,
5263 unsigned frontbuffer_bits)
5264 {
5265 if (old) {
5266 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5267 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5268 old->frontbuffer_bits &= ~frontbuffer_bits;
5269 }
5270
5271 if (new) {
5272 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5273 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5274 new->frontbuffer_bits |= frontbuffer_bits;
5275 }
5276 }
5277
5278 /* All the new VM stuff */
5279 unsigned long
5280 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5281 struct i915_address_space *vm)
5282 {
5283 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5284 struct i915_vma *vma;
5285
5286 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5287
5288 list_for_each_entry(vma, &o->vma_list, vma_link) {
5289 if (i915_is_ggtt(vma->vm) &&
5290 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5291 continue;
5292 if (vma->vm == vm)
5293 return vma->node.start;
5294 }
5295
5296 WARN(1, "%s vma for this object not found.\n",
5297 i915_is_ggtt(vm) ? "global" : "ppgtt");
5298 return -1;
5299 }
5300
5301 unsigned long
5302 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5303 const struct i915_ggtt_view *view)
5304 {
5305 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5306 struct i915_vma *vma;
5307
5308 list_for_each_entry(vma, &o->vma_list, vma_link)
5309 if (vma->vm == ggtt &&
5310 i915_ggtt_view_equal(&vma->ggtt_view, view))
5311 return vma->node.start;
5312
5313 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5314 return -1;
5315 }
5316
5317 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5318 struct i915_address_space *vm)
5319 {
5320 struct i915_vma *vma;
5321
5322 list_for_each_entry(vma, &o->vma_list, vma_link) {
5323 if (i915_is_ggtt(vma->vm) &&
5324 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5325 continue;
5326 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5327 return true;
5328 }
5329
5330 return false;
5331 }
5332
5333 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5334 const struct i915_ggtt_view *view)
5335 {
5336 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5337 struct i915_vma *vma;
5338
5339 list_for_each_entry(vma, &o->vma_list, vma_link)
5340 if (vma->vm == ggtt &&
5341 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5342 drm_mm_node_allocated(&vma->node))
5343 return true;
5344
5345 return false;
5346 }
5347
5348 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5349 {
5350 struct i915_vma *vma;
5351
5352 list_for_each_entry(vma, &o->vma_list, vma_link)
5353 if (drm_mm_node_allocated(&vma->node))
5354 return true;
5355
5356 return false;
5357 }
5358
5359 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5360 struct i915_address_space *vm)
5361 {
5362 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5363 struct i915_vma *vma;
5364
5365 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5366
5367 BUG_ON(list_empty(&o->vma_list));
5368
5369 list_for_each_entry(vma, &o->vma_list, vma_link) {
5370 if (i915_is_ggtt(vma->vm) &&
5371 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5372 continue;
5373 if (vma->vm == vm)
5374 return vma->node.size;
5375 }
5376 return 0;
5377 }
5378
5379 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5380 {
5381 struct i915_vma *vma;
5382 list_for_each_entry(vma, &obj->vma_list, vma_link)
5383 if (vma->pin_count > 0)
5384 return true;
5385
5386 return false;
5387 }
5388
This page took 0.143643 seconds and 6 git commands to generate.