Merge branches 'powercap' and 'acpi-lpss' with new device IDs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
1021 int ret;
1022
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
1040 return -ENODEV;
1041
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
1044 getrawmonotonic(&before);
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
1085 io_schedule();
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
1095 getrawmonotonic(&now);
1096 trace_i915_gem_request_wait_end(ring, seqno);
1097
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
1390
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
1399 /* Now bind it into the GTT if needed */
1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1401 if (ret)
1402 goto unlock;
1403
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
1407
1408 ret = i915_gem_object_get_fence(obj);
1409 if (ret)
1410 goto unpin;
1411
1412 obj->fault_mappable = true;
1413
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 i915_gem_object_unpin(obj);
1422 unlock:
1423 mutex_unlock(&dev->struct_mutex);
1424 out:
1425 switch (ret) {
1426 case -EIO:
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 return VM_FAULT_SIGBUS;
1432 case -EAGAIN:
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
1437 */
1438 case 0:
1439 case -ERESTARTSYS:
1440 case -EINTR:
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
1446 return VM_FAULT_NOPAGE;
1447 case -ENOMEM:
1448 return VM_FAULT_OOM;
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
1451 default:
1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 return VM_FAULT_SIGBUS;
1454 }
1455 }
1456
1457 /**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
1461 * Preserve the reservation of the mmapping with the DRM core code, but
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 if (!obj->fault_mappable)
1475 return;
1476
1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 uint32_t gtt_size;
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
1492 gtt_size = 1024*1024;
1493 else
1494 gtt_size = 512*1024;
1495
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
1498
1499 return gtt_size;
1500 }
1501
1502 /**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
1507 * potential fence register mapping.
1508 */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
1512 {
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 tiling_mode == I915_TILING_NONE)
1519 return 4096;
1520
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 return 0;
1535
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
1540 goto out;
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
1552 goto out;
1553
1554 i915_gem_shrink_all(dev_priv);
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
1572 {
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 struct drm_i915_gem_object *obj;
1575 int ret;
1576
1577 ret = i915_mutex_lock_interruptible(dev);
1578 if (ret)
1579 return ret;
1580
1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 if (&obj->base == NULL) {
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
1586
1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 ret = -E2BIG;
1589 goto out;
1590 }
1591
1592 if (obj->madv != I915_MADV_WILLNEED) {
1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 ret = -EINVAL;
1595 goto out;
1596 }
1597
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
1601
1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605 drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 mutex_unlock(&dev->struct_mutex);
1608 return ret;
1609 }
1610
1611 /**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 struct inode *inode;
1640
1641 i915_gem_object_free_mmap_offset(obj);
1642
1643 if (obj->base.filp == NULL)
1644 return;
1645
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
1651 inode = file_inode(obj->base.filp);
1652 shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654 obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 struct sg_page_iter sg_iter;
1667 int ret;
1668
1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
1677 i915_gem_clflush_object(obj, true);
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
1681 if (i915_gem_object_needs_bit17_swizzle(obj))
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
1686
1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690 if (obj->dirty)
1691 set_page_dirty(page);
1692
1693 if (obj->madv == I915_MADV_WILLNEED)
1694 mark_page_accessed(page);
1695
1696 page_cache_release(page);
1697 }
1698 obj->dirty = 0;
1699
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709 if (obj->pages == NULL)
1710 return 0;
1711
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
1715 BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
1720 list_del(&obj->global_list);
1721
1722 ops->put_pages(obj);
1723 obj->pages = NULL;
1724
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729 }
1730
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
1734 {
1735 struct list_head still_bound_list;
1736 struct drm_i915_gem_object *obj, *next;
1737 unsigned long count = 0;
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
1741 global_list) {
1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 i915_gem_object_put_pages(obj) == 0) {
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 struct i915_vma *vma, *v;
1759
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
1792
1793 if (i915_gem_object_put_pages(obj) == 0)
1794 count += obj->base.size >> PAGE_SHIFT;
1795
1796 drm_gem_object_unreference(&obj->base);
1797 }
1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800 return count;
1801 }
1802
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 struct drm_i915_gem_object *obj, *next;
1813 long freed = 0;
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 global_list) {
1819 if (i915_gem_object_put_pages(obj) == 0)
1820 freed += obj->base.size >> PAGE_SHIFT;
1821 }
1822 return freed;
1823 }
1824
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 int page_count, i;
1830 struct address_space *mapping;
1831 struct sg_table *st;
1832 struct scatterlist *sg;
1833 struct sg_page_iter sg_iter;
1834 struct page *page;
1835 unsigned long last_pfn = 0; /* suppress gcc warning */
1836 gfp_t gfp;
1837
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
1849 page_count = obj->base.size / PAGE_SIZE;
1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 kfree(st);
1852 return -ENOMEM;
1853 }
1854
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
1860 mapping = file_inode(obj->base.filp)->i_mapping;
1861 gfp = mapping_gfp_mask(mapping);
1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
1888 #ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895 #endif
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 }
1909 #ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911 #endif
1912 sg_mark_end(sg);
1913 obj->pages = st;
1914
1915 if (i915_gem_object_needs_bit17_swizzle(obj))
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920 err_pages:
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 page_cache_release(sg_page_iter_page(&sg_iter));
1924 sg_free_table(st);
1925 kfree(st);
1926 return PTR_ERR(page);
1927 }
1928
1929 /* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
1943 if (obj->pages)
1944 return 0;
1945
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
1951 BUG_ON(obj->pages_pin_count);
1952
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 return 0;
1959 }
1960
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 struct intel_ring_buffer *ring)
1964 {
1965 struct drm_device *dev = obj->base.dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 u32 seqno = intel_ring_get_seqno(ring);
1968
1969 BUG_ON(ring == NULL);
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
1974 obj->ring = ring;
1975
1976 /* Add a reference if we're newly entering the active list. */
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
1980 }
1981
1982 list_move_tail(&obj->ring_list, &ring->active_list);
1983
1984 obj->last_read_seqno = seqno;
1985
1986 if (obj->fenced_gpu_access) {
1987 obj->last_fenced_seqno = seqno;
1988
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
1997 }
1998 }
1999
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002 {
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2013
2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 BUG_ON(!obj->active);
2016
2017 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2018
2019 list_del_init(&obj->ring_list);
2020 obj->ring = NULL;
2021
2022 obj->last_read_seqno = 0;
2023 obj->last_write_seqno = 0;
2024 obj->base.write_domain = 0;
2025
2026 obj->last_fenced_seqno = 0;
2027 obj->fenced_gpu_access = false;
2028
2029 obj->active = 0;
2030 drm_gem_object_unreference(&obj->base);
2031
2032 WARN_ON(i915_verify_lists(dev));
2033 }
2034
2035 static int
2036 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2037 {
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 struct intel_ring_buffer *ring;
2040 int ret, i, j;
2041
2042 /* Carefully retire all requests without writing to the rings */
2043 for_each_ring(ring, dev_priv, i) {
2044 ret = intel_ring_idle(ring);
2045 if (ret)
2046 return ret;
2047 }
2048 i915_gem_retire_requests(dev);
2049
2050 /* Finally reset hw state */
2051 for_each_ring(ring, dev_priv, i) {
2052 intel_ring_init_seqno(ring, seqno);
2053
2054 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 ring->sync_seqno[j] = 0;
2056 }
2057
2058 return 0;
2059 }
2060
2061 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062 {
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 int ret;
2065
2066 if (seqno == 0)
2067 return -EINVAL;
2068
2069 /* HWS page needs to be set less than what we
2070 * will inject to ring
2071 */
2072 ret = i915_gem_init_seqno(dev, seqno - 1);
2073 if (ret)
2074 return ret;
2075
2076 /* Carefully set the last_seqno value so that wrap
2077 * detection still works
2078 */
2079 dev_priv->next_seqno = seqno;
2080 dev_priv->last_seqno = seqno - 1;
2081 if (dev_priv->last_seqno == 0)
2082 dev_priv->last_seqno--;
2083
2084 return 0;
2085 }
2086
2087 int
2088 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 /* reserve 0 for non-seqno */
2093 if (dev_priv->next_seqno == 0) {
2094 int ret = i915_gem_init_seqno(dev, 0);
2095 if (ret)
2096 return ret;
2097
2098 dev_priv->next_seqno = 1;
2099 }
2100
2101 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2102 return 0;
2103 }
2104
2105 int __i915_add_request(struct intel_ring_buffer *ring,
2106 struct drm_file *file,
2107 struct drm_i915_gem_object *obj,
2108 u32 *out_seqno)
2109 {
2110 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2111 struct drm_i915_gem_request *request;
2112 u32 request_ring_position, request_start;
2113 int was_empty;
2114 int ret;
2115
2116 request_start = intel_ring_get_tail(ring);
2117 /*
2118 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 * after having emitted the batchbuffer command. Hence we need to fix
2120 * things up similar to emitting the lazy request. The difference here
2121 * is that the flush _must_ happen before the next request, no matter
2122 * what.
2123 */
2124 ret = intel_ring_flush_all_caches(ring);
2125 if (ret)
2126 return ret;
2127
2128 request = ring->preallocated_lazy_request;
2129 if (WARN_ON(request == NULL))
2130 return -ENOMEM;
2131
2132 /* Record the position of the start of the request so that
2133 * should we detect the updated seqno part-way through the
2134 * GPU processing the request, we never over-estimate the
2135 * position of the head.
2136 */
2137 request_ring_position = intel_ring_get_tail(ring);
2138
2139 ret = ring->add_request(ring);
2140 if (ret)
2141 return ret;
2142
2143 request->seqno = intel_ring_get_seqno(ring);
2144 request->ring = ring;
2145 request->head = request_start;
2146 request->tail = request_ring_position;
2147
2148 /* Whilst this request exists, batch_obj will be on the
2149 * active_list, and so will hold the active reference. Only when this
2150 * request is retired will the the batch_obj be moved onto the
2151 * inactive_list and lose its active reference. Hence we do not need
2152 * to explicitly hold another reference here.
2153 */
2154 request->batch_obj = obj;
2155
2156 /* Hold a reference to the current context so that we can inspect
2157 * it later in case a hangcheck error event fires.
2158 */
2159 request->ctx = ring->last_context;
2160 if (request->ctx)
2161 i915_gem_context_reference(request->ctx);
2162
2163 request->emitted_jiffies = jiffies;
2164 was_empty = list_empty(&ring->request_list);
2165 list_add_tail(&request->list, &ring->request_list);
2166 request->file_priv = NULL;
2167
2168 if (file) {
2169 struct drm_i915_file_private *file_priv = file->driver_priv;
2170
2171 spin_lock(&file_priv->mm.lock);
2172 request->file_priv = file_priv;
2173 list_add_tail(&request->client_list,
2174 &file_priv->mm.request_list);
2175 spin_unlock(&file_priv->mm.lock);
2176 }
2177
2178 trace_i915_gem_request_add(ring, request->seqno);
2179 ring->outstanding_lazy_seqno = 0;
2180 ring->preallocated_lazy_request = NULL;
2181
2182 if (!dev_priv->ums.mm_suspended) {
2183 i915_queue_hangcheck(ring->dev);
2184
2185 if (was_empty) {
2186 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2187 queue_delayed_work(dev_priv->wq,
2188 &dev_priv->mm.retire_work,
2189 round_jiffies_up_relative(HZ));
2190 intel_mark_busy(dev_priv->dev);
2191 }
2192 }
2193
2194 if (out_seqno)
2195 *out_seqno = request->seqno;
2196 return 0;
2197 }
2198
2199 static inline void
2200 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2201 {
2202 struct drm_i915_file_private *file_priv = request->file_priv;
2203
2204 if (!file_priv)
2205 return;
2206
2207 spin_lock(&file_priv->mm.lock);
2208 list_del(&request->client_list);
2209 request->file_priv = NULL;
2210 spin_unlock(&file_priv->mm.lock);
2211 }
2212
2213 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 struct i915_address_space *vm)
2215 {
2216 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2218 return true;
2219
2220 return false;
2221 }
2222
2223 static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 const u32 request_start,
2225 const u32 request_end)
2226 {
2227 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228
2229 if (request_start < request_end) {
2230 if (acthd >= request_start && acthd < request_end)
2231 return true;
2232 } else if (request_start > request_end) {
2233 if (acthd >= request_start || acthd < request_end)
2234 return true;
2235 }
2236
2237 return false;
2238 }
2239
2240 static struct i915_address_space *
2241 request_to_vm(struct drm_i915_gem_request *request)
2242 {
2243 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 struct i915_address_space *vm;
2245
2246 vm = &dev_priv->gtt.base;
2247
2248 return vm;
2249 }
2250
2251 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 const u32 acthd, bool *inside)
2253 {
2254 /* There is a possibility that unmasked head address
2255 * pointing inside the ring, matches the batch_obj address range.
2256 * However this is extremely unlikely.
2257 */
2258 if (request->batch_obj) {
2259 if (i915_head_inside_object(acthd, request->batch_obj,
2260 request_to_vm(request))) {
2261 *inside = true;
2262 return true;
2263 }
2264 }
2265
2266 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 *inside = false;
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
2274 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275 {
2276 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277
2278 if (hs->banned)
2279 return true;
2280
2281 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 return true;
2284 }
2285
2286 return false;
2287 }
2288
2289 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 struct drm_i915_gem_request *request,
2291 u32 acthd)
2292 {
2293 struct i915_ctx_hang_stats *hs = NULL;
2294 bool inside, guilty;
2295 unsigned long offset = 0;
2296
2297 /* Innocent until proven guilty */
2298 guilty = false;
2299
2300 if (request->batch_obj)
2301 offset = i915_gem_obj_offset(request->batch_obj,
2302 request_to_vm(request));
2303
2304 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2305 i915_request_guilty(request, acthd, &inside)) {
2306 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2307 ring->name,
2308 inside ? "inside" : "flushing",
2309 offset,
2310 request->ctx ? request->ctx->id : 0,
2311 acthd);
2312
2313 guilty = true;
2314 }
2315
2316 /* If contexts are disabled or this is the default context, use
2317 * file_priv->reset_state
2318 */
2319 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 hs = &request->ctx->hang_stats;
2321 else if (request->file_priv)
2322 hs = &request->file_priv->hang_stats;
2323
2324 if (hs) {
2325 if (guilty) {
2326 hs->banned = i915_context_is_banned(hs);
2327 hs->batch_active++;
2328 hs->guilty_ts = get_seconds();
2329 } else {
2330 hs->batch_pending++;
2331 }
2332 }
2333 }
2334
2335 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336 {
2337 list_del(&request->list);
2338 i915_gem_request_remove_from_client(request);
2339
2340 if (request->ctx)
2341 i915_gem_context_unreference(request->ctx);
2342
2343 kfree(request);
2344 }
2345
2346 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2347 struct intel_ring_buffer *ring)
2348 {
2349 u32 completed_seqno;
2350 u32 acthd;
2351
2352 acthd = intel_ring_get_active_head(ring);
2353 completed_seqno = ring->get_seqno(ring, false);
2354
2355 while (!list_empty(&ring->request_list)) {
2356 struct drm_i915_gem_request *request;
2357
2358 request = list_first_entry(&ring->request_list,
2359 struct drm_i915_gem_request,
2360 list);
2361
2362 if (request->seqno > completed_seqno)
2363 i915_set_reset_status(ring, request, acthd);
2364
2365 i915_gem_free_request(request);
2366 }
2367
2368 while (!list_empty(&ring->active_list)) {
2369 struct drm_i915_gem_object *obj;
2370
2371 obj = list_first_entry(&ring->active_list,
2372 struct drm_i915_gem_object,
2373 ring_list);
2374
2375 i915_gem_object_move_to_inactive(obj);
2376 }
2377 }
2378
2379 void i915_gem_restore_fences(struct drm_device *dev)
2380 {
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 int i;
2383
2384 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2385 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2386
2387 /*
2388 * Commit delayed tiling changes if we have an object still
2389 * attached to the fence, otherwise just clear the fence.
2390 */
2391 if (reg->obj) {
2392 i915_gem_object_update_fence(reg->obj, reg,
2393 reg->obj->tiling_mode);
2394 } else {
2395 i915_gem_write_fence(dev, i, NULL);
2396 }
2397 }
2398 }
2399
2400 void i915_gem_reset(struct drm_device *dev)
2401 {
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 struct intel_ring_buffer *ring;
2404 int i;
2405
2406 for_each_ring(ring, dev_priv, i)
2407 i915_gem_reset_ring_lists(dev_priv, ring);
2408
2409 i915_gem_cleanup_ringbuffer(dev);
2410
2411 i915_gem_restore_fences(dev);
2412 }
2413
2414 /**
2415 * This function clears the request list as sequence numbers are passed.
2416 */
2417 void
2418 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2419 {
2420 uint32_t seqno;
2421
2422 if (list_empty(&ring->request_list))
2423 return;
2424
2425 WARN_ON(i915_verify_lists(ring->dev));
2426
2427 seqno = ring->get_seqno(ring, true);
2428
2429 while (!list_empty(&ring->request_list)) {
2430 struct drm_i915_gem_request *request;
2431
2432 request = list_first_entry(&ring->request_list,
2433 struct drm_i915_gem_request,
2434 list);
2435
2436 if (!i915_seqno_passed(seqno, request->seqno))
2437 break;
2438
2439 trace_i915_gem_request_retire(ring, request->seqno);
2440 /* We know the GPU must have read the request to have
2441 * sent us the seqno + interrupt, so use the position
2442 * of tail of the request to update the last known position
2443 * of the GPU head.
2444 */
2445 ring->last_retired_head = request->tail;
2446
2447 i915_gem_free_request(request);
2448 }
2449
2450 /* Move any buffers on the active list that are no longer referenced
2451 * by the ringbuffer to the flushing/inactive lists as appropriate.
2452 */
2453 while (!list_empty(&ring->active_list)) {
2454 struct drm_i915_gem_object *obj;
2455
2456 obj = list_first_entry(&ring->active_list,
2457 struct drm_i915_gem_object,
2458 ring_list);
2459
2460 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2461 break;
2462
2463 i915_gem_object_move_to_inactive(obj);
2464 }
2465
2466 if (unlikely(ring->trace_irq_seqno &&
2467 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2468 ring->irq_put(ring);
2469 ring->trace_irq_seqno = 0;
2470 }
2471
2472 WARN_ON(i915_verify_lists(ring->dev));
2473 }
2474
2475 bool
2476 i915_gem_retire_requests(struct drm_device *dev)
2477 {
2478 drm_i915_private_t *dev_priv = dev->dev_private;
2479 struct intel_ring_buffer *ring;
2480 bool idle = true;
2481 int i;
2482
2483 for_each_ring(ring, dev_priv, i) {
2484 i915_gem_retire_requests_ring(ring);
2485 idle &= list_empty(&ring->request_list);
2486 }
2487
2488 if (idle)
2489 mod_delayed_work(dev_priv->wq,
2490 &dev_priv->mm.idle_work,
2491 msecs_to_jiffies(100));
2492
2493 return idle;
2494 }
2495
2496 static void
2497 i915_gem_retire_work_handler(struct work_struct *work)
2498 {
2499 struct drm_i915_private *dev_priv =
2500 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2501 struct drm_device *dev = dev_priv->dev;
2502 bool idle;
2503
2504 /* Come back later if the device is busy... */
2505 idle = false;
2506 if (mutex_trylock(&dev->struct_mutex)) {
2507 idle = i915_gem_retire_requests(dev);
2508 mutex_unlock(&dev->struct_mutex);
2509 }
2510 if (!idle)
2511 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2512 round_jiffies_up_relative(HZ));
2513 }
2514
2515 static void
2516 i915_gem_idle_work_handler(struct work_struct *work)
2517 {
2518 struct drm_i915_private *dev_priv =
2519 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520
2521 intel_mark_idle(dev_priv->dev);
2522 }
2523
2524 /**
2525 * Ensures that an object will eventually get non-busy by flushing any required
2526 * write domains, emitting any outstanding lazy request and retiring and
2527 * completed requests.
2528 */
2529 static int
2530 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531 {
2532 int ret;
2533
2534 if (obj->active) {
2535 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2536 if (ret)
2537 return ret;
2538
2539 i915_gem_retire_requests_ring(obj->ring);
2540 }
2541
2542 return 0;
2543 }
2544
2545 /**
2546 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2547 * @DRM_IOCTL_ARGS: standard ioctl arguments
2548 *
2549 * Returns 0 if successful, else an error is returned with the remaining time in
2550 * the timeout parameter.
2551 * -ETIME: object is still busy after timeout
2552 * -ERESTARTSYS: signal interrupted the wait
2553 * -ENONENT: object doesn't exist
2554 * Also possible, but rare:
2555 * -EAGAIN: GPU wedged
2556 * -ENOMEM: damn
2557 * -ENODEV: Internal IRQ fail
2558 * -E?: The add request failed
2559 *
2560 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2561 * non-zero timeout parameter the wait ioctl will wait for the given number of
2562 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2563 * without holding struct_mutex the object may become re-busied before this
2564 * function completes. A similar but shorter * race condition exists in the busy
2565 * ioctl
2566 */
2567 int
2568 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569 {
2570 drm_i915_private_t *dev_priv = dev->dev_private;
2571 struct drm_i915_gem_wait *args = data;
2572 struct drm_i915_gem_object *obj;
2573 struct intel_ring_buffer *ring = NULL;
2574 struct timespec timeout_stack, *timeout = NULL;
2575 unsigned reset_counter;
2576 u32 seqno = 0;
2577 int ret = 0;
2578
2579 if (args->timeout_ns >= 0) {
2580 timeout_stack = ns_to_timespec(args->timeout_ns);
2581 timeout = &timeout_stack;
2582 }
2583
2584 ret = i915_mutex_lock_interruptible(dev);
2585 if (ret)
2586 return ret;
2587
2588 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2589 if (&obj->base == NULL) {
2590 mutex_unlock(&dev->struct_mutex);
2591 return -ENOENT;
2592 }
2593
2594 /* Need to make sure the object gets inactive eventually. */
2595 ret = i915_gem_object_flush_active(obj);
2596 if (ret)
2597 goto out;
2598
2599 if (obj->active) {
2600 seqno = obj->last_read_seqno;
2601 ring = obj->ring;
2602 }
2603
2604 if (seqno == 0)
2605 goto out;
2606
2607 /* Do this after OLR check to make sure we make forward progress polling
2608 * on this IOCTL with a 0 timeout (like busy ioctl)
2609 */
2610 if (!args->timeout_ns) {
2611 ret = -ETIME;
2612 goto out;
2613 }
2614
2615 drm_gem_object_unreference(&obj->base);
2616 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2617 mutex_unlock(&dev->struct_mutex);
2618
2619 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2620 if (timeout)
2621 args->timeout_ns = timespec_to_ns(timeout);
2622 return ret;
2623
2624 out:
2625 drm_gem_object_unreference(&obj->base);
2626 mutex_unlock(&dev->struct_mutex);
2627 return ret;
2628 }
2629
2630 /**
2631 * i915_gem_object_sync - sync an object to a ring.
2632 *
2633 * @obj: object which may be in use on another ring.
2634 * @to: ring we wish to use the object on. May be NULL.
2635 *
2636 * This code is meant to abstract object synchronization with the GPU.
2637 * Calling with NULL implies synchronizing the object with the CPU
2638 * rather than a particular GPU ring.
2639 *
2640 * Returns 0 if successful, else propagates up the lower layer error.
2641 */
2642 int
2643 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2644 struct intel_ring_buffer *to)
2645 {
2646 struct intel_ring_buffer *from = obj->ring;
2647 u32 seqno;
2648 int ret, idx;
2649
2650 if (from == NULL || to == from)
2651 return 0;
2652
2653 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2654 return i915_gem_object_wait_rendering(obj, false);
2655
2656 idx = intel_ring_sync_index(from, to);
2657
2658 seqno = obj->last_read_seqno;
2659 if (seqno <= from->sync_seqno[idx])
2660 return 0;
2661
2662 ret = i915_gem_check_olr(obj->ring, seqno);
2663 if (ret)
2664 return ret;
2665
2666 trace_i915_gem_ring_sync_to(from, to, seqno);
2667 ret = to->sync_to(to, from, seqno);
2668 if (!ret)
2669 /* We use last_read_seqno because sync_to()
2670 * might have just caused seqno wrap under
2671 * the radar.
2672 */
2673 from->sync_seqno[idx] = obj->last_read_seqno;
2674
2675 return ret;
2676 }
2677
2678 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679 {
2680 u32 old_write_domain, old_read_domains;
2681
2682 /* Force a pagefault for domain tracking on next user access */
2683 i915_gem_release_mmap(obj);
2684
2685 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2686 return;
2687
2688 /* Wait for any direct GTT access to complete */
2689 mb();
2690
2691 old_read_domains = obj->base.read_domains;
2692 old_write_domain = obj->base.write_domain;
2693
2694 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2695 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696
2697 trace_i915_gem_object_change_domain(obj,
2698 old_read_domains,
2699 old_write_domain);
2700 }
2701
2702 int i915_vma_unbind(struct i915_vma *vma)
2703 {
2704 struct drm_i915_gem_object *obj = vma->obj;
2705 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2706 int ret;
2707
2708 /* For now we only ever use 1 vma per object */
2709 WARN_ON(!list_is_singular(&obj->vma_list));
2710
2711 if (list_empty(&vma->vma_link))
2712 return 0;
2713
2714 if (!drm_mm_node_allocated(&vma->node)) {
2715 i915_gem_vma_destroy(vma);
2716
2717 return 0;
2718 }
2719
2720 if (obj->pin_count)
2721 return -EBUSY;
2722
2723 BUG_ON(obj->pages == NULL);
2724
2725 ret = i915_gem_object_finish_gpu(obj);
2726 if (ret)
2727 return ret;
2728 /* Continue on if we fail due to EIO, the GPU is hung so we
2729 * should be safe and we need to cleanup or else we might
2730 * cause memory corruption through use-after-free.
2731 */
2732
2733 i915_gem_object_finish_gtt(obj);
2734
2735 /* release the fence reg _after_ flushing */
2736 ret = i915_gem_object_put_fence(obj);
2737 if (ret)
2738 return ret;
2739
2740 trace_i915_vma_unbind(vma);
2741
2742 if (obj->has_global_gtt_mapping)
2743 i915_gem_gtt_unbind_object(obj);
2744 if (obj->has_aliasing_ppgtt_mapping) {
2745 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2746 obj->has_aliasing_ppgtt_mapping = 0;
2747 }
2748 i915_gem_gtt_finish_object(obj);
2749 i915_gem_object_unpin_pages(obj);
2750
2751 list_del(&vma->mm_list);
2752 /* Avoid an unnecessary call to unbind on rebind. */
2753 if (i915_is_ggtt(vma->vm))
2754 obj->map_and_fenceable = true;
2755
2756 drm_mm_remove_node(&vma->node);
2757
2758 i915_gem_vma_destroy(vma);
2759
2760 /* Since the unbound list is global, only move to that list if
2761 * no more VMAs exist. */
2762 if (list_empty(&obj->vma_list))
2763 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2764
2765 return 0;
2766 }
2767
2768 /**
2769 * Unbinds an object from the global GTT aperture.
2770 */
2771 int
2772 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2773 {
2774 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2775 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2776
2777 if (!i915_gem_obj_ggtt_bound(obj))
2778 return 0;
2779
2780 if (obj->pin_count)
2781 return -EBUSY;
2782
2783 BUG_ON(obj->pages == NULL);
2784
2785 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2786 }
2787
2788 int i915_gpu_idle(struct drm_device *dev)
2789 {
2790 drm_i915_private_t *dev_priv = dev->dev_private;
2791 struct intel_ring_buffer *ring;
2792 int ret, i;
2793
2794 /* Flush everything onto the inactive list. */
2795 for_each_ring(ring, dev_priv, i) {
2796 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2797 if (ret)
2798 return ret;
2799
2800 ret = intel_ring_idle(ring);
2801 if (ret)
2802 return ret;
2803 }
2804
2805 return 0;
2806 }
2807
2808 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2809 struct drm_i915_gem_object *obj)
2810 {
2811 drm_i915_private_t *dev_priv = dev->dev_private;
2812 int fence_reg;
2813 int fence_pitch_shift;
2814
2815 if (INTEL_INFO(dev)->gen >= 6) {
2816 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2817 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2818 } else {
2819 fence_reg = FENCE_REG_965_0;
2820 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2821 }
2822
2823 fence_reg += reg * 8;
2824
2825 /* To w/a incoherency with non-atomic 64-bit register updates,
2826 * we split the 64-bit update into two 32-bit writes. In order
2827 * for a partial fence not to be evaluated between writes, we
2828 * precede the update with write to turn off the fence register,
2829 * and only enable the fence as the last step.
2830 *
2831 * For extra levels of paranoia, we make sure each step lands
2832 * before applying the next step.
2833 */
2834 I915_WRITE(fence_reg, 0);
2835 POSTING_READ(fence_reg);
2836
2837 if (obj) {
2838 u32 size = i915_gem_obj_ggtt_size(obj);
2839 uint64_t val;
2840
2841 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2842 0xfffff000) << 32;
2843 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2844 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2845 if (obj->tiling_mode == I915_TILING_Y)
2846 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2847 val |= I965_FENCE_REG_VALID;
2848
2849 I915_WRITE(fence_reg + 4, val >> 32);
2850 POSTING_READ(fence_reg + 4);
2851
2852 I915_WRITE(fence_reg + 0, val);
2853 POSTING_READ(fence_reg);
2854 } else {
2855 I915_WRITE(fence_reg + 4, 0);
2856 POSTING_READ(fence_reg + 4);
2857 }
2858 }
2859
2860 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2861 struct drm_i915_gem_object *obj)
2862 {
2863 drm_i915_private_t *dev_priv = dev->dev_private;
2864 u32 val;
2865
2866 if (obj) {
2867 u32 size = i915_gem_obj_ggtt_size(obj);
2868 int pitch_val;
2869 int tile_width;
2870
2871 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2872 (size & -size) != size ||
2873 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2874 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2875 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2876
2877 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2878 tile_width = 128;
2879 else
2880 tile_width = 512;
2881
2882 /* Note: pitch better be a power of two tile widths */
2883 pitch_val = obj->stride / tile_width;
2884 pitch_val = ffs(pitch_val) - 1;
2885
2886 val = i915_gem_obj_ggtt_offset(obj);
2887 if (obj->tiling_mode == I915_TILING_Y)
2888 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2889 val |= I915_FENCE_SIZE_BITS(size);
2890 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2891 val |= I830_FENCE_REG_VALID;
2892 } else
2893 val = 0;
2894
2895 if (reg < 8)
2896 reg = FENCE_REG_830_0 + reg * 4;
2897 else
2898 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2899
2900 I915_WRITE(reg, val);
2901 POSTING_READ(reg);
2902 }
2903
2904 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2905 struct drm_i915_gem_object *obj)
2906 {
2907 drm_i915_private_t *dev_priv = dev->dev_private;
2908 uint32_t val;
2909
2910 if (obj) {
2911 u32 size = i915_gem_obj_ggtt_size(obj);
2912 uint32_t pitch_val;
2913
2914 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2915 (size & -size) != size ||
2916 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2917 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2918 i915_gem_obj_ggtt_offset(obj), size);
2919
2920 pitch_val = obj->stride / 128;
2921 pitch_val = ffs(pitch_val) - 1;
2922
2923 val = i915_gem_obj_ggtt_offset(obj);
2924 if (obj->tiling_mode == I915_TILING_Y)
2925 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2926 val |= I830_FENCE_SIZE_BITS(size);
2927 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2928 val |= I830_FENCE_REG_VALID;
2929 } else
2930 val = 0;
2931
2932 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2933 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2934 }
2935
2936 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2937 {
2938 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2939 }
2940
2941 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2942 struct drm_i915_gem_object *obj)
2943 {
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945
2946 /* Ensure that all CPU reads are completed before installing a fence
2947 * and all writes before removing the fence.
2948 */
2949 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2950 mb();
2951
2952 WARN(obj && (!obj->stride || !obj->tiling_mode),
2953 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2954 obj->stride, obj->tiling_mode);
2955
2956 switch (INTEL_INFO(dev)->gen) {
2957 case 8:
2958 case 7:
2959 case 6:
2960 case 5:
2961 case 4: i965_write_fence_reg(dev, reg, obj); break;
2962 case 3: i915_write_fence_reg(dev, reg, obj); break;
2963 case 2: i830_write_fence_reg(dev, reg, obj); break;
2964 default: BUG();
2965 }
2966
2967 /* And similarly be paranoid that no direct access to this region
2968 * is reordered to before the fence is installed.
2969 */
2970 if (i915_gem_object_needs_mb(obj))
2971 mb();
2972 }
2973
2974 static inline int fence_number(struct drm_i915_private *dev_priv,
2975 struct drm_i915_fence_reg *fence)
2976 {
2977 return fence - dev_priv->fence_regs;
2978 }
2979
2980 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2981 struct drm_i915_fence_reg *fence,
2982 bool enable)
2983 {
2984 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2985 int reg = fence_number(dev_priv, fence);
2986
2987 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2988
2989 if (enable) {
2990 obj->fence_reg = reg;
2991 fence->obj = obj;
2992 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2993 } else {
2994 obj->fence_reg = I915_FENCE_REG_NONE;
2995 fence->obj = NULL;
2996 list_del_init(&fence->lru_list);
2997 }
2998 obj->fence_dirty = false;
2999 }
3000
3001 static int
3002 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3003 {
3004 if (obj->last_fenced_seqno) {
3005 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3006 if (ret)
3007 return ret;
3008
3009 obj->last_fenced_seqno = 0;
3010 }
3011
3012 obj->fenced_gpu_access = false;
3013 return 0;
3014 }
3015
3016 int
3017 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3018 {
3019 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3020 struct drm_i915_fence_reg *fence;
3021 int ret;
3022
3023 ret = i915_gem_object_wait_fence(obj);
3024 if (ret)
3025 return ret;
3026
3027 if (obj->fence_reg == I915_FENCE_REG_NONE)
3028 return 0;
3029
3030 fence = &dev_priv->fence_regs[obj->fence_reg];
3031
3032 i915_gem_object_fence_lost(obj);
3033 i915_gem_object_update_fence(obj, fence, false);
3034
3035 return 0;
3036 }
3037
3038 static struct drm_i915_fence_reg *
3039 i915_find_fence_reg(struct drm_device *dev)
3040 {
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 struct drm_i915_fence_reg *reg, *avail;
3043 int i;
3044
3045 /* First try to find a free reg */
3046 avail = NULL;
3047 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3048 reg = &dev_priv->fence_regs[i];
3049 if (!reg->obj)
3050 return reg;
3051
3052 if (!reg->pin_count)
3053 avail = reg;
3054 }
3055
3056 if (avail == NULL)
3057 return NULL;
3058
3059 /* None available, try to steal one or wait for a user to finish */
3060 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3061 if (reg->pin_count)
3062 continue;
3063
3064 return reg;
3065 }
3066
3067 return NULL;
3068 }
3069
3070 /**
3071 * i915_gem_object_get_fence - set up fencing for an object
3072 * @obj: object to map through a fence reg
3073 *
3074 * When mapping objects through the GTT, userspace wants to be able to write
3075 * to them without having to worry about swizzling if the object is tiled.
3076 * This function walks the fence regs looking for a free one for @obj,
3077 * stealing one if it can't find any.
3078 *
3079 * It then sets up the reg based on the object's properties: address, pitch
3080 * and tiling format.
3081 *
3082 * For an untiled surface, this removes any existing fence.
3083 */
3084 int
3085 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3086 {
3087 struct drm_device *dev = obj->base.dev;
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089 bool enable = obj->tiling_mode != I915_TILING_NONE;
3090 struct drm_i915_fence_reg *reg;
3091 int ret;
3092
3093 /* Have we updated the tiling parameters upon the object and so
3094 * will need to serialise the write to the associated fence register?
3095 */
3096 if (obj->fence_dirty) {
3097 ret = i915_gem_object_wait_fence(obj);
3098 if (ret)
3099 return ret;
3100 }
3101
3102 /* Just update our place in the LRU if our fence is getting reused. */
3103 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3104 reg = &dev_priv->fence_regs[obj->fence_reg];
3105 if (!obj->fence_dirty) {
3106 list_move_tail(&reg->lru_list,
3107 &dev_priv->mm.fence_list);
3108 return 0;
3109 }
3110 } else if (enable) {
3111 reg = i915_find_fence_reg(dev);
3112 if (reg == NULL)
3113 return -EDEADLK;
3114
3115 if (reg->obj) {
3116 struct drm_i915_gem_object *old = reg->obj;
3117
3118 ret = i915_gem_object_wait_fence(old);
3119 if (ret)
3120 return ret;
3121
3122 i915_gem_object_fence_lost(old);
3123 }
3124 } else
3125 return 0;
3126
3127 i915_gem_object_update_fence(obj, reg, enable);
3128
3129 return 0;
3130 }
3131
3132 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3133 struct drm_mm_node *gtt_space,
3134 unsigned long cache_level)
3135 {
3136 struct drm_mm_node *other;
3137
3138 /* On non-LLC machines we have to be careful when putting differing
3139 * types of snoopable memory together to avoid the prefetcher
3140 * crossing memory domains and dying.
3141 */
3142 if (HAS_LLC(dev))
3143 return true;
3144
3145 if (!drm_mm_node_allocated(gtt_space))
3146 return true;
3147
3148 if (list_empty(&gtt_space->node_list))
3149 return true;
3150
3151 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3152 if (other->allocated && !other->hole_follows && other->color != cache_level)
3153 return false;
3154
3155 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3156 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3157 return false;
3158
3159 return true;
3160 }
3161
3162 static void i915_gem_verify_gtt(struct drm_device *dev)
3163 {
3164 #if WATCH_GTT
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct drm_i915_gem_object *obj;
3167 int err = 0;
3168
3169 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3170 if (obj->gtt_space == NULL) {
3171 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3172 err++;
3173 continue;
3174 }
3175
3176 if (obj->cache_level != obj->gtt_space->color) {
3177 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3178 i915_gem_obj_ggtt_offset(obj),
3179 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3180 obj->cache_level,
3181 obj->gtt_space->color);
3182 err++;
3183 continue;
3184 }
3185
3186 if (!i915_gem_valid_gtt_space(dev,
3187 obj->gtt_space,
3188 obj->cache_level)) {
3189 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3190 i915_gem_obj_ggtt_offset(obj),
3191 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3192 obj->cache_level);
3193 err++;
3194 continue;
3195 }
3196 }
3197
3198 WARN_ON(err);
3199 #endif
3200 }
3201
3202 /**
3203 * Finds free space in the GTT aperture and binds the object there.
3204 */
3205 static int
3206 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3207 struct i915_address_space *vm,
3208 unsigned alignment,
3209 bool map_and_fenceable,
3210 bool nonblocking)
3211 {
3212 struct drm_device *dev = obj->base.dev;
3213 drm_i915_private_t *dev_priv = dev->dev_private;
3214 u32 size, fence_size, fence_alignment, unfenced_alignment;
3215 size_t gtt_max =
3216 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3217 struct i915_vma *vma;
3218 int ret;
3219
3220 fence_size = i915_gem_get_gtt_size(dev,
3221 obj->base.size,
3222 obj->tiling_mode);
3223 fence_alignment = i915_gem_get_gtt_alignment(dev,
3224 obj->base.size,
3225 obj->tiling_mode, true);
3226 unfenced_alignment =
3227 i915_gem_get_gtt_alignment(dev,
3228 obj->base.size,
3229 obj->tiling_mode, false);
3230
3231 if (alignment == 0)
3232 alignment = map_and_fenceable ? fence_alignment :
3233 unfenced_alignment;
3234 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3235 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3236 return -EINVAL;
3237 }
3238
3239 size = map_and_fenceable ? fence_size : obj->base.size;
3240
3241 /* If the object is bigger than the entire aperture, reject it early
3242 * before evicting everything in a vain attempt to find space.
3243 */
3244 if (obj->base.size > gtt_max) {
3245 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3246 obj->base.size,
3247 map_and_fenceable ? "mappable" : "total",
3248 gtt_max);
3249 return -E2BIG;
3250 }
3251
3252 ret = i915_gem_object_get_pages(obj);
3253 if (ret)
3254 return ret;
3255
3256 i915_gem_object_pin_pages(obj);
3257
3258 BUG_ON(!i915_is_ggtt(vm));
3259
3260 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3261 if (IS_ERR(vma)) {
3262 ret = PTR_ERR(vma);
3263 goto err_unpin;
3264 }
3265
3266 /* For now we only ever use 1 vma per object */
3267 WARN_ON(!list_is_singular(&obj->vma_list));
3268
3269 search_free:
3270 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3271 size, alignment,
3272 obj->cache_level, 0, gtt_max,
3273 DRM_MM_SEARCH_DEFAULT);
3274 if (ret) {
3275 ret = i915_gem_evict_something(dev, vm, size, alignment,
3276 obj->cache_level,
3277 map_and_fenceable,
3278 nonblocking);
3279 if (ret == 0)
3280 goto search_free;
3281
3282 goto err_free_vma;
3283 }
3284 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3285 obj->cache_level))) {
3286 ret = -EINVAL;
3287 goto err_remove_node;
3288 }
3289
3290 ret = i915_gem_gtt_prepare_object(obj);
3291 if (ret)
3292 goto err_remove_node;
3293
3294 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3295 list_add_tail(&vma->mm_list, &vm->inactive_list);
3296
3297 if (i915_is_ggtt(vm)) {
3298 bool mappable, fenceable;
3299
3300 fenceable = (vma->node.size == fence_size &&
3301 (vma->node.start & (fence_alignment - 1)) == 0);
3302
3303 mappable = (vma->node.start + obj->base.size <=
3304 dev_priv->gtt.mappable_end);
3305
3306 obj->map_and_fenceable = mappable && fenceable;
3307 }
3308
3309 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3310
3311 trace_i915_vma_bind(vma, map_and_fenceable);
3312 i915_gem_verify_gtt(dev);
3313 return 0;
3314
3315 err_remove_node:
3316 drm_mm_remove_node(&vma->node);
3317 err_free_vma:
3318 i915_gem_vma_destroy(vma);
3319 err_unpin:
3320 i915_gem_object_unpin_pages(obj);
3321 return ret;
3322 }
3323
3324 bool
3325 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3326 bool force)
3327 {
3328 /* If we don't have a page list set up, then we're not pinned
3329 * to GPU, and we can ignore the cache flush because it'll happen
3330 * again at bind time.
3331 */
3332 if (obj->pages == NULL)
3333 return false;
3334
3335 /*
3336 * Stolen memory is always coherent with the GPU as it is explicitly
3337 * marked as wc by the system, or the system is cache-coherent.
3338 */
3339 if (obj->stolen)
3340 return false;
3341
3342 /* If the GPU is snooping the contents of the CPU cache,
3343 * we do not need to manually clear the CPU cache lines. However,
3344 * the caches are only snooped when the render cache is
3345 * flushed/invalidated. As we always have to emit invalidations
3346 * and flushes when moving into and out of the RENDER domain, correct
3347 * snooping behaviour occurs naturally as the result of our domain
3348 * tracking.
3349 */
3350 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3351 return false;
3352
3353 trace_i915_gem_object_clflush(obj);
3354 drm_clflush_sg(obj->pages);
3355
3356 return true;
3357 }
3358
3359 /** Flushes the GTT write domain for the object if it's dirty. */
3360 static void
3361 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3362 {
3363 uint32_t old_write_domain;
3364
3365 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3366 return;
3367
3368 /* No actual flushing is required for the GTT write domain. Writes
3369 * to it immediately go to main memory as far as we know, so there's
3370 * no chipset flush. It also doesn't land in render cache.
3371 *
3372 * However, we do have to enforce the order so that all writes through
3373 * the GTT land before any writes to the device, such as updates to
3374 * the GATT itself.
3375 */
3376 wmb();
3377
3378 old_write_domain = obj->base.write_domain;
3379 obj->base.write_domain = 0;
3380
3381 trace_i915_gem_object_change_domain(obj,
3382 obj->base.read_domains,
3383 old_write_domain);
3384 }
3385
3386 /** Flushes the CPU write domain for the object if it's dirty. */
3387 static void
3388 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3389 bool force)
3390 {
3391 uint32_t old_write_domain;
3392
3393 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3394 return;
3395
3396 if (i915_gem_clflush_object(obj, force))
3397 i915_gem_chipset_flush(obj->base.dev);
3398
3399 old_write_domain = obj->base.write_domain;
3400 obj->base.write_domain = 0;
3401
3402 trace_i915_gem_object_change_domain(obj,
3403 obj->base.read_domains,
3404 old_write_domain);
3405 }
3406
3407 /**
3408 * Moves a single object to the GTT read, and possibly write domain.
3409 *
3410 * This function returns when the move is complete, including waiting on
3411 * flushes to occur.
3412 */
3413 int
3414 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3415 {
3416 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3417 uint32_t old_write_domain, old_read_domains;
3418 int ret;
3419
3420 /* Not valid to be called on unbound objects. */
3421 if (!i915_gem_obj_bound_any(obj))
3422 return -EINVAL;
3423
3424 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3425 return 0;
3426
3427 ret = i915_gem_object_wait_rendering(obj, !write);
3428 if (ret)
3429 return ret;
3430
3431 i915_gem_object_flush_cpu_write_domain(obj, false);
3432
3433 /* Serialise direct access to this object with the barriers for
3434 * coherent writes from the GPU, by effectively invalidating the
3435 * GTT domain upon first access.
3436 */
3437 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3438 mb();
3439
3440 old_write_domain = obj->base.write_domain;
3441 old_read_domains = obj->base.read_domains;
3442
3443 /* It should now be out of any other write domains, and we can update
3444 * the domain values for our changes.
3445 */
3446 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3447 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3448 if (write) {
3449 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3450 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3451 obj->dirty = 1;
3452 }
3453
3454 trace_i915_gem_object_change_domain(obj,
3455 old_read_domains,
3456 old_write_domain);
3457
3458 /* And bump the LRU for this access */
3459 if (i915_gem_object_is_inactive(obj)) {
3460 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3461 if (vma)
3462 list_move_tail(&vma->mm_list,
3463 &dev_priv->gtt.base.inactive_list);
3464
3465 }
3466
3467 return 0;
3468 }
3469
3470 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3471 enum i915_cache_level cache_level)
3472 {
3473 struct drm_device *dev = obj->base.dev;
3474 drm_i915_private_t *dev_priv = dev->dev_private;
3475 struct i915_vma *vma;
3476 int ret;
3477
3478 if (obj->cache_level == cache_level)
3479 return 0;
3480
3481 if (obj->pin_count) {
3482 DRM_DEBUG("can not change the cache level of pinned objects\n");
3483 return -EBUSY;
3484 }
3485
3486 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3487 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3488 ret = i915_vma_unbind(vma);
3489 if (ret)
3490 return ret;
3491
3492 break;
3493 }
3494 }
3495
3496 if (i915_gem_obj_bound_any(obj)) {
3497 ret = i915_gem_object_finish_gpu(obj);
3498 if (ret)
3499 return ret;
3500
3501 i915_gem_object_finish_gtt(obj);
3502
3503 /* Before SandyBridge, you could not use tiling or fence
3504 * registers with snooped memory, so relinquish any fences
3505 * currently pointing to our region in the aperture.
3506 */
3507 if (INTEL_INFO(dev)->gen < 6) {
3508 ret = i915_gem_object_put_fence(obj);
3509 if (ret)
3510 return ret;
3511 }
3512
3513 if (obj->has_global_gtt_mapping)
3514 i915_gem_gtt_bind_object(obj, cache_level);
3515 if (obj->has_aliasing_ppgtt_mapping)
3516 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3517 obj, cache_level);
3518 }
3519
3520 list_for_each_entry(vma, &obj->vma_list, vma_link)
3521 vma->node.color = cache_level;
3522 obj->cache_level = cache_level;
3523
3524 if (cpu_write_needs_clflush(obj)) {
3525 u32 old_read_domains, old_write_domain;
3526
3527 /* If we're coming from LLC cached, then we haven't
3528 * actually been tracking whether the data is in the
3529 * CPU cache or not, since we only allow one bit set
3530 * in obj->write_domain and have been skipping the clflushes.
3531 * Just set it to the CPU cache for now.
3532 */
3533 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3534
3535 old_read_domains = obj->base.read_domains;
3536 old_write_domain = obj->base.write_domain;
3537
3538 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3539 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3540
3541 trace_i915_gem_object_change_domain(obj,
3542 old_read_domains,
3543 old_write_domain);
3544 }
3545
3546 i915_gem_verify_gtt(dev);
3547 return 0;
3548 }
3549
3550 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3551 struct drm_file *file)
3552 {
3553 struct drm_i915_gem_caching *args = data;
3554 struct drm_i915_gem_object *obj;
3555 int ret;
3556
3557 ret = i915_mutex_lock_interruptible(dev);
3558 if (ret)
3559 return ret;
3560
3561 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3562 if (&obj->base == NULL) {
3563 ret = -ENOENT;
3564 goto unlock;
3565 }
3566
3567 switch (obj->cache_level) {
3568 case I915_CACHE_LLC:
3569 case I915_CACHE_L3_LLC:
3570 args->caching = I915_CACHING_CACHED;
3571 break;
3572
3573 case I915_CACHE_WT:
3574 args->caching = I915_CACHING_DISPLAY;
3575 break;
3576
3577 default:
3578 args->caching = I915_CACHING_NONE;
3579 break;
3580 }
3581
3582 drm_gem_object_unreference(&obj->base);
3583 unlock:
3584 mutex_unlock(&dev->struct_mutex);
3585 return ret;
3586 }
3587
3588 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3589 struct drm_file *file)
3590 {
3591 struct drm_i915_gem_caching *args = data;
3592 struct drm_i915_gem_object *obj;
3593 enum i915_cache_level level;
3594 int ret;
3595
3596 switch (args->caching) {
3597 case I915_CACHING_NONE:
3598 level = I915_CACHE_NONE;
3599 break;
3600 case I915_CACHING_CACHED:
3601 level = I915_CACHE_LLC;
3602 break;
3603 case I915_CACHING_DISPLAY:
3604 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3605 break;
3606 default:
3607 return -EINVAL;
3608 }
3609
3610 ret = i915_mutex_lock_interruptible(dev);
3611 if (ret)
3612 return ret;
3613
3614 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3615 if (&obj->base == NULL) {
3616 ret = -ENOENT;
3617 goto unlock;
3618 }
3619
3620 ret = i915_gem_object_set_cache_level(obj, level);
3621
3622 drm_gem_object_unreference(&obj->base);
3623 unlock:
3624 mutex_unlock(&dev->struct_mutex);
3625 return ret;
3626 }
3627
3628 static bool is_pin_display(struct drm_i915_gem_object *obj)
3629 {
3630 /* There are 3 sources that pin objects:
3631 * 1. The display engine (scanouts, sprites, cursors);
3632 * 2. Reservations for execbuffer;
3633 * 3. The user.
3634 *
3635 * We can ignore reservations as we hold the struct_mutex and
3636 * are only called outside of the reservation path. The user
3637 * can only increment pin_count once, and so if after
3638 * subtracting the potential reference by the user, any pin_count
3639 * remains, it must be due to another use by the display engine.
3640 */
3641 return obj->pin_count - !!obj->user_pin_count;
3642 }
3643
3644 /*
3645 * Prepare buffer for display plane (scanout, cursors, etc).
3646 * Can be called from an uninterruptible phase (modesetting) and allows
3647 * any flushes to be pipelined (for pageflips).
3648 */
3649 int
3650 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3651 u32 alignment,
3652 struct intel_ring_buffer *pipelined)
3653 {
3654 u32 old_read_domains, old_write_domain;
3655 int ret;
3656
3657 if (pipelined != obj->ring) {
3658 ret = i915_gem_object_sync(obj, pipelined);
3659 if (ret)
3660 return ret;
3661 }
3662
3663 /* Mark the pin_display early so that we account for the
3664 * display coherency whilst setting up the cache domains.
3665 */
3666 obj->pin_display = true;
3667
3668 /* The display engine is not coherent with the LLC cache on gen6. As
3669 * a result, we make sure that the pinning that is about to occur is
3670 * done with uncached PTEs. This is lowest common denominator for all
3671 * chipsets.
3672 *
3673 * However for gen6+, we could do better by using the GFDT bit instead
3674 * of uncaching, which would allow us to flush all the LLC-cached data
3675 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3676 */
3677 ret = i915_gem_object_set_cache_level(obj,
3678 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3679 if (ret)
3680 goto err_unpin_display;
3681
3682 /* As the user may map the buffer once pinned in the display plane
3683 * (e.g. libkms for the bootup splash), we have to ensure that we
3684 * always use map_and_fenceable for all scanout buffers.
3685 */
3686 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3687 if (ret)
3688 goto err_unpin_display;
3689
3690 i915_gem_object_flush_cpu_write_domain(obj, true);
3691
3692 old_write_domain = obj->base.write_domain;
3693 old_read_domains = obj->base.read_domains;
3694
3695 /* It should now be out of any other write domains, and we can update
3696 * the domain values for our changes.
3697 */
3698 obj->base.write_domain = 0;
3699 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3700
3701 trace_i915_gem_object_change_domain(obj,
3702 old_read_domains,
3703 old_write_domain);
3704
3705 return 0;
3706
3707 err_unpin_display:
3708 obj->pin_display = is_pin_display(obj);
3709 return ret;
3710 }
3711
3712 void
3713 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3714 {
3715 i915_gem_object_unpin(obj);
3716 obj->pin_display = is_pin_display(obj);
3717 }
3718
3719 int
3720 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3721 {
3722 int ret;
3723
3724 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3725 return 0;
3726
3727 ret = i915_gem_object_wait_rendering(obj, false);
3728 if (ret)
3729 return ret;
3730
3731 /* Ensure that we invalidate the GPU's caches and TLBs. */
3732 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3733 return 0;
3734 }
3735
3736 /**
3737 * Moves a single object to the CPU read, and possibly write domain.
3738 *
3739 * This function returns when the move is complete, including waiting on
3740 * flushes to occur.
3741 */
3742 int
3743 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3744 {
3745 uint32_t old_write_domain, old_read_domains;
3746 int ret;
3747
3748 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3749 return 0;
3750
3751 ret = i915_gem_object_wait_rendering(obj, !write);
3752 if (ret)
3753 return ret;
3754
3755 i915_gem_object_flush_gtt_write_domain(obj);
3756
3757 old_write_domain = obj->base.write_domain;
3758 old_read_domains = obj->base.read_domains;
3759
3760 /* Flush the CPU cache if it's still invalid. */
3761 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3762 i915_gem_clflush_object(obj, false);
3763
3764 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3765 }
3766
3767 /* It should now be out of any other write domains, and we can update
3768 * the domain values for our changes.
3769 */
3770 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3771
3772 /* If we're writing through the CPU, then the GPU read domains will
3773 * need to be invalidated at next use.
3774 */
3775 if (write) {
3776 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3777 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3778 }
3779
3780 trace_i915_gem_object_change_domain(obj,
3781 old_read_domains,
3782 old_write_domain);
3783
3784 return 0;
3785 }
3786
3787 /* Throttle our rendering by waiting until the ring has completed our requests
3788 * emitted over 20 msec ago.
3789 *
3790 * Note that if we were to use the current jiffies each time around the loop,
3791 * we wouldn't escape the function with any frames outstanding if the time to
3792 * render a frame was over 20ms.
3793 *
3794 * This should get us reasonable parallelism between CPU and GPU but also
3795 * relatively low latency when blocking on a particular request to finish.
3796 */
3797 static int
3798 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3799 {
3800 struct drm_i915_private *dev_priv = dev->dev_private;
3801 struct drm_i915_file_private *file_priv = file->driver_priv;
3802 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3803 struct drm_i915_gem_request *request;
3804 struct intel_ring_buffer *ring = NULL;
3805 unsigned reset_counter;
3806 u32 seqno = 0;
3807 int ret;
3808
3809 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3810 if (ret)
3811 return ret;
3812
3813 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3814 if (ret)
3815 return ret;
3816
3817 spin_lock(&file_priv->mm.lock);
3818 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3819 if (time_after_eq(request->emitted_jiffies, recent_enough))
3820 break;
3821
3822 ring = request->ring;
3823 seqno = request->seqno;
3824 }
3825 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3826 spin_unlock(&file_priv->mm.lock);
3827
3828 if (seqno == 0)
3829 return 0;
3830
3831 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3832 if (ret == 0)
3833 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3834
3835 return ret;
3836 }
3837
3838 int
3839 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3840 struct i915_address_space *vm,
3841 uint32_t alignment,
3842 bool map_and_fenceable,
3843 bool nonblocking)
3844 {
3845 struct i915_vma *vma;
3846 int ret;
3847
3848 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3849 return -EBUSY;
3850
3851 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3852
3853 vma = i915_gem_obj_to_vma(obj, vm);
3854
3855 if (vma) {
3856 if ((alignment &&
3857 vma->node.start & (alignment - 1)) ||
3858 (map_and_fenceable && !obj->map_and_fenceable)) {
3859 WARN(obj->pin_count,
3860 "bo is already pinned with incorrect alignment:"
3861 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3862 " obj->map_and_fenceable=%d\n",
3863 i915_gem_obj_offset(obj, vm), alignment,
3864 map_and_fenceable,
3865 obj->map_and_fenceable);
3866 ret = i915_vma_unbind(vma);
3867 if (ret)
3868 return ret;
3869 }
3870 }
3871
3872 if (!i915_gem_obj_bound(obj, vm)) {
3873 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3874
3875 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3876 map_and_fenceable,
3877 nonblocking);
3878 if (ret)
3879 return ret;
3880
3881 if (!dev_priv->mm.aliasing_ppgtt)
3882 i915_gem_gtt_bind_object(obj, obj->cache_level);
3883 }
3884
3885 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3886 i915_gem_gtt_bind_object(obj, obj->cache_level);
3887
3888 obj->pin_count++;
3889 obj->pin_mappable |= map_and_fenceable;
3890
3891 return 0;
3892 }
3893
3894 void
3895 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3896 {
3897 BUG_ON(obj->pin_count == 0);
3898 BUG_ON(!i915_gem_obj_bound_any(obj));
3899
3900 if (--obj->pin_count == 0)
3901 obj->pin_mappable = false;
3902 }
3903
3904 int
3905 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3906 struct drm_file *file)
3907 {
3908 struct drm_i915_gem_pin *args = data;
3909 struct drm_i915_gem_object *obj;
3910 int ret;
3911
3912 ret = i915_mutex_lock_interruptible(dev);
3913 if (ret)
3914 return ret;
3915
3916 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3917 if (&obj->base == NULL) {
3918 ret = -ENOENT;
3919 goto unlock;
3920 }
3921
3922 if (obj->madv != I915_MADV_WILLNEED) {
3923 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3924 ret = -EINVAL;
3925 goto out;
3926 }
3927
3928 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3929 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3930 args->handle);
3931 ret = -EINVAL;
3932 goto out;
3933 }
3934
3935 if (obj->user_pin_count == ULONG_MAX) {
3936 ret = -EBUSY;
3937 goto out;
3938 }
3939
3940 if (obj->user_pin_count == 0) {
3941 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3942 if (ret)
3943 goto out;
3944 }
3945
3946 obj->user_pin_count++;
3947 obj->pin_filp = file;
3948
3949 args->offset = i915_gem_obj_ggtt_offset(obj);
3950 out:
3951 drm_gem_object_unreference(&obj->base);
3952 unlock:
3953 mutex_unlock(&dev->struct_mutex);
3954 return ret;
3955 }
3956
3957 int
3958 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3959 struct drm_file *file)
3960 {
3961 struct drm_i915_gem_pin *args = data;
3962 struct drm_i915_gem_object *obj;
3963 int ret;
3964
3965 ret = i915_mutex_lock_interruptible(dev);
3966 if (ret)
3967 return ret;
3968
3969 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3970 if (&obj->base == NULL) {
3971 ret = -ENOENT;
3972 goto unlock;
3973 }
3974
3975 if (obj->pin_filp != file) {
3976 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3977 args->handle);
3978 ret = -EINVAL;
3979 goto out;
3980 }
3981 obj->user_pin_count--;
3982 if (obj->user_pin_count == 0) {
3983 obj->pin_filp = NULL;
3984 i915_gem_object_unpin(obj);
3985 }
3986
3987 out:
3988 drm_gem_object_unreference(&obj->base);
3989 unlock:
3990 mutex_unlock(&dev->struct_mutex);
3991 return ret;
3992 }
3993
3994 int
3995 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3996 struct drm_file *file)
3997 {
3998 struct drm_i915_gem_busy *args = data;
3999 struct drm_i915_gem_object *obj;
4000 int ret;
4001
4002 ret = i915_mutex_lock_interruptible(dev);
4003 if (ret)
4004 return ret;
4005
4006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4007 if (&obj->base == NULL) {
4008 ret = -ENOENT;
4009 goto unlock;
4010 }
4011
4012 /* Count all active objects as busy, even if they are currently not used
4013 * by the gpu. Users of this interface expect objects to eventually
4014 * become non-busy without any further actions, therefore emit any
4015 * necessary flushes here.
4016 */
4017 ret = i915_gem_object_flush_active(obj);
4018
4019 args->busy = obj->active;
4020 if (obj->ring) {
4021 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4022 args->busy |= intel_ring_flag(obj->ring) << 16;
4023 }
4024
4025 drm_gem_object_unreference(&obj->base);
4026 unlock:
4027 mutex_unlock(&dev->struct_mutex);
4028 return ret;
4029 }
4030
4031 int
4032 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4034 {
4035 return i915_gem_ring_throttle(dev, file_priv);
4036 }
4037
4038 int
4039 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4040 struct drm_file *file_priv)
4041 {
4042 struct drm_i915_gem_madvise *args = data;
4043 struct drm_i915_gem_object *obj;
4044 int ret;
4045
4046 switch (args->madv) {
4047 case I915_MADV_DONTNEED:
4048 case I915_MADV_WILLNEED:
4049 break;
4050 default:
4051 return -EINVAL;
4052 }
4053
4054 ret = i915_mutex_lock_interruptible(dev);
4055 if (ret)
4056 return ret;
4057
4058 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4059 if (&obj->base == NULL) {
4060 ret = -ENOENT;
4061 goto unlock;
4062 }
4063
4064 if (obj->pin_count) {
4065 ret = -EINVAL;
4066 goto out;
4067 }
4068
4069 if (obj->madv != __I915_MADV_PURGED)
4070 obj->madv = args->madv;
4071
4072 /* if the object is no longer attached, discard its backing storage */
4073 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4074 i915_gem_object_truncate(obj);
4075
4076 args->retained = obj->madv != __I915_MADV_PURGED;
4077
4078 out:
4079 drm_gem_object_unreference(&obj->base);
4080 unlock:
4081 mutex_unlock(&dev->struct_mutex);
4082 return ret;
4083 }
4084
4085 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4086 const struct drm_i915_gem_object_ops *ops)
4087 {
4088 INIT_LIST_HEAD(&obj->global_list);
4089 INIT_LIST_HEAD(&obj->ring_list);
4090 INIT_LIST_HEAD(&obj->obj_exec_link);
4091 INIT_LIST_HEAD(&obj->vma_list);
4092
4093 obj->ops = ops;
4094
4095 obj->fence_reg = I915_FENCE_REG_NONE;
4096 obj->madv = I915_MADV_WILLNEED;
4097 /* Avoid an unnecessary call to unbind on the first bind. */
4098 obj->map_and_fenceable = true;
4099
4100 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4101 }
4102
4103 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4104 .get_pages = i915_gem_object_get_pages_gtt,
4105 .put_pages = i915_gem_object_put_pages_gtt,
4106 };
4107
4108 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4109 size_t size)
4110 {
4111 struct drm_i915_gem_object *obj;
4112 struct address_space *mapping;
4113 gfp_t mask;
4114
4115 obj = i915_gem_object_alloc(dev);
4116 if (obj == NULL)
4117 return NULL;
4118
4119 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4120 i915_gem_object_free(obj);
4121 return NULL;
4122 }
4123
4124 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4125 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4126 /* 965gm cannot relocate objects above 4GiB. */
4127 mask &= ~__GFP_HIGHMEM;
4128 mask |= __GFP_DMA32;
4129 }
4130
4131 mapping = file_inode(obj->base.filp)->i_mapping;
4132 mapping_set_gfp_mask(mapping, mask);
4133
4134 i915_gem_object_init(obj, &i915_gem_object_ops);
4135
4136 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4137 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4138
4139 if (HAS_LLC(dev)) {
4140 /* On some devices, we can have the GPU use the LLC (the CPU
4141 * cache) for about a 10% performance improvement
4142 * compared to uncached. Graphics requests other than
4143 * display scanout are coherent with the CPU in
4144 * accessing this cache. This means in this mode we
4145 * don't need to clflush on the CPU side, and on the
4146 * GPU side we only need to flush internal caches to
4147 * get data visible to the CPU.
4148 *
4149 * However, we maintain the display planes as UC, and so
4150 * need to rebind when first used as such.
4151 */
4152 obj->cache_level = I915_CACHE_LLC;
4153 } else
4154 obj->cache_level = I915_CACHE_NONE;
4155
4156 trace_i915_gem_object_create(obj);
4157
4158 return obj;
4159 }
4160
4161 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4162 {
4163 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4164 struct drm_device *dev = obj->base.dev;
4165 drm_i915_private_t *dev_priv = dev->dev_private;
4166 struct i915_vma *vma, *next;
4167
4168 trace_i915_gem_object_destroy(obj);
4169
4170 if (obj->phys_obj)
4171 i915_gem_detach_phys_object(dev, obj);
4172
4173 obj->pin_count = 0;
4174 /* NB: 0 or 1 elements */
4175 WARN_ON(!list_empty(&obj->vma_list) &&
4176 !list_is_singular(&obj->vma_list));
4177 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4178 int ret = i915_vma_unbind(vma);
4179 if (WARN_ON(ret == -ERESTARTSYS)) {
4180 bool was_interruptible;
4181
4182 was_interruptible = dev_priv->mm.interruptible;
4183 dev_priv->mm.interruptible = false;
4184
4185 WARN_ON(i915_vma_unbind(vma));
4186
4187 dev_priv->mm.interruptible = was_interruptible;
4188 }
4189 }
4190
4191 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4192 * before progressing. */
4193 if (obj->stolen)
4194 i915_gem_object_unpin_pages(obj);
4195
4196 if (WARN_ON(obj->pages_pin_count))
4197 obj->pages_pin_count = 0;
4198 i915_gem_object_put_pages(obj);
4199 i915_gem_object_free_mmap_offset(obj);
4200 i915_gem_object_release_stolen(obj);
4201
4202 BUG_ON(obj->pages);
4203
4204 if (obj->base.import_attach)
4205 drm_prime_gem_destroy(&obj->base, NULL);
4206
4207 drm_gem_object_release(&obj->base);
4208 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4209
4210 kfree(obj->bit_17);
4211 i915_gem_object_free(obj);
4212 }
4213
4214 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4215 struct i915_address_space *vm)
4216 {
4217 struct i915_vma *vma;
4218 list_for_each_entry(vma, &obj->vma_list, vma_link)
4219 if (vma->vm == vm)
4220 return vma;
4221
4222 return NULL;
4223 }
4224
4225 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4226 struct i915_address_space *vm)
4227 {
4228 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4229 if (vma == NULL)
4230 return ERR_PTR(-ENOMEM);
4231
4232 INIT_LIST_HEAD(&vma->vma_link);
4233 INIT_LIST_HEAD(&vma->mm_list);
4234 INIT_LIST_HEAD(&vma->exec_list);
4235 vma->vm = vm;
4236 vma->obj = obj;
4237
4238 /* Keep GGTT vmas first to make debug easier */
4239 if (i915_is_ggtt(vm))
4240 list_add(&vma->vma_link, &obj->vma_list);
4241 else
4242 list_add_tail(&vma->vma_link, &obj->vma_list);
4243
4244 return vma;
4245 }
4246
4247 struct i915_vma *
4248 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4249 struct i915_address_space *vm)
4250 {
4251 struct i915_vma *vma;
4252
4253 vma = i915_gem_obj_to_vma(obj, vm);
4254 if (!vma)
4255 vma = __i915_gem_vma_create(obj, vm);
4256
4257 return vma;
4258 }
4259
4260 void i915_gem_vma_destroy(struct i915_vma *vma)
4261 {
4262 WARN_ON(vma->node.allocated);
4263
4264 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4265 if (!list_empty(&vma->exec_list))
4266 return;
4267
4268 list_del(&vma->vma_link);
4269
4270 kfree(vma);
4271 }
4272
4273 int
4274 i915_gem_suspend(struct drm_device *dev)
4275 {
4276 drm_i915_private_t *dev_priv = dev->dev_private;
4277 int ret = 0;
4278
4279 mutex_lock(&dev->struct_mutex);
4280 if (dev_priv->ums.mm_suspended)
4281 goto err;
4282
4283 ret = i915_gpu_idle(dev);
4284 if (ret)
4285 goto err;
4286
4287 i915_gem_retire_requests(dev);
4288
4289 /* Under UMS, be paranoid and evict. */
4290 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4291 i915_gem_evict_everything(dev);
4292
4293 i915_kernel_lost_context(dev);
4294 i915_gem_cleanup_ringbuffer(dev);
4295
4296 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4297 * We need to replace this with a semaphore, or something.
4298 * And not confound ums.mm_suspended!
4299 */
4300 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4301 DRIVER_MODESET);
4302 mutex_unlock(&dev->struct_mutex);
4303
4304 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4305 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4306 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4307
4308 return 0;
4309
4310 err:
4311 mutex_unlock(&dev->struct_mutex);
4312 return ret;
4313 }
4314
4315 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4316 {
4317 struct drm_device *dev = ring->dev;
4318 drm_i915_private_t *dev_priv = dev->dev_private;
4319 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4320 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4321 int i, ret;
4322
4323 if (!HAS_L3_DPF(dev) || !remap_info)
4324 return 0;
4325
4326 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4327 if (ret)
4328 return ret;
4329
4330 /*
4331 * Note: We do not worry about the concurrent register cacheline hang
4332 * here because no other code should access these registers other than
4333 * at initialization time.
4334 */
4335 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4336 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4337 intel_ring_emit(ring, reg_base + i);
4338 intel_ring_emit(ring, remap_info[i/4]);
4339 }
4340
4341 intel_ring_advance(ring);
4342
4343 return ret;
4344 }
4345
4346 void i915_gem_init_swizzling(struct drm_device *dev)
4347 {
4348 drm_i915_private_t *dev_priv = dev->dev_private;
4349
4350 if (INTEL_INFO(dev)->gen < 5 ||
4351 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4352 return;
4353
4354 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4355 DISP_TILE_SURFACE_SWIZZLING);
4356
4357 if (IS_GEN5(dev))
4358 return;
4359
4360 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4361 if (IS_GEN6(dev))
4362 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4363 else if (IS_GEN7(dev))
4364 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4365 else if (IS_GEN8(dev))
4366 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4367 else
4368 BUG();
4369 }
4370
4371 static bool
4372 intel_enable_blt(struct drm_device *dev)
4373 {
4374 if (!HAS_BLT(dev))
4375 return false;
4376
4377 /* The blitter was dysfunctional on early prototypes */
4378 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4379 DRM_INFO("BLT not supported on this pre-production hardware;"
4380 " graphics performance will be degraded.\n");
4381 return false;
4382 }
4383
4384 return true;
4385 }
4386
4387 static int i915_gem_init_rings(struct drm_device *dev)
4388 {
4389 struct drm_i915_private *dev_priv = dev->dev_private;
4390 int ret;
4391
4392 ret = intel_init_render_ring_buffer(dev);
4393 if (ret)
4394 return ret;
4395
4396 if (HAS_BSD(dev)) {
4397 ret = intel_init_bsd_ring_buffer(dev);
4398 if (ret)
4399 goto cleanup_render_ring;
4400 }
4401
4402 if (intel_enable_blt(dev)) {
4403 ret = intel_init_blt_ring_buffer(dev);
4404 if (ret)
4405 goto cleanup_bsd_ring;
4406 }
4407
4408 if (HAS_VEBOX(dev)) {
4409 ret = intel_init_vebox_ring_buffer(dev);
4410 if (ret)
4411 goto cleanup_blt_ring;
4412 }
4413
4414
4415 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4416 if (ret)
4417 goto cleanup_vebox_ring;
4418
4419 return 0;
4420
4421 cleanup_vebox_ring:
4422 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4423 cleanup_blt_ring:
4424 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4425 cleanup_bsd_ring:
4426 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4427 cleanup_render_ring:
4428 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4429
4430 return ret;
4431 }
4432
4433 int
4434 i915_gem_init_hw(struct drm_device *dev)
4435 {
4436 drm_i915_private_t *dev_priv = dev->dev_private;
4437 int ret, i;
4438
4439 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4440 return -EIO;
4441
4442 if (dev_priv->ellc_size)
4443 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4444
4445 if (IS_HASWELL(dev))
4446 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4447 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4448
4449 if (HAS_PCH_NOP(dev)) {
4450 u32 temp = I915_READ(GEN7_MSG_CTL);
4451 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4452 I915_WRITE(GEN7_MSG_CTL, temp);
4453 }
4454
4455 i915_gem_init_swizzling(dev);
4456
4457 ret = i915_gem_init_rings(dev);
4458 if (ret)
4459 return ret;
4460
4461 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4462 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4463
4464 /*
4465 * XXX: There was some w/a described somewhere suggesting loading
4466 * contexts before PPGTT.
4467 */
4468 i915_gem_context_init(dev);
4469 if (dev_priv->mm.aliasing_ppgtt) {
4470 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4471 if (ret) {
4472 i915_gem_cleanup_aliasing_ppgtt(dev);
4473 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4474 }
4475 }
4476
4477 return 0;
4478 }
4479
4480 int i915_gem_init(struct drm_device *dev)
4481 {
4482 struct drm_i915_private *dev_priv = dev->dev_private;
4483 int ret;
4484
4485 mutex_lock(&dev->struct_mutex);
4486
4487 if (IS_VALLEYVIEW(dev)) {
4488 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4489 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4490 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4491 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4492 }
4493
4494 i915_gem_init_global_gtt(dev);
4495
4496 ret = i915_gem_init_hw(dev);
4497 mutex_unlock(&dev->struct_mutex);
4498 if (ret) {
4499 i915_gem_cleanup_aliasing_ppgtt(dev);
4500 return ret;
4501 }
4502
4503 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4504 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4505 dev_priv->dri1.allow_batchbuffer = 1;
4506 return 0;
4507 }
4508
4509 void
4510 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4511 {
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4513 struct intel_ring_buffer *ring;
4514 int i;
4515
4516 for_each_ring(ring, dev_priv, i)
4517 intel_cleanup_ring_buffer(ring);
4518 }
4519
4520 int
4521 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4522 struct drm_file *file_priv)
4523 {
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4525 int ret;
4526
4527 if (drm_core_check_feature(dev, DRIVER_MODESET))
4528 return 0;
4529
4530 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4531 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4532 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4533 }
4534
4535 mutex_lock(&dev->struct_mutex);
4536 dev_priv->ums.mm_suspended = 0;
4537
4538 ret = i915_gem_init_hw(dev);
4539 if (ret != 0) {
4540 mutex_unlock(&dev->struct_mutex);
4541 return ret;
4542 }
4543
4544 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4545 mutex_unlock(&dev->struct_mutex);
4546
4547 ret = drm_irq_install(dev);
4548 if (ret)
4549 goto cleanup_ringbuffer;
4550
4551 return 0;
4552
4553 cleanup_ringbuffer:
4554 mutex_lock(&dev->struct_mutex);
4555 i915_gem_cleanup_ringbuffer(dev);
4556 dev_priv->ums.mm_suspended = 1;
4557 mutex_unlock(&dev->struct_mutex);
4558
4559 return ret;
4560 }
4561
4562 int
4563 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4564 struct drm_file *file_priv)
4565 {
4566 if (drm_core_check_feature(dev, DRIVER_MODESET))
4567 return 0;
4568
4569 drm_irq_uninstall(dev);
4570
4571 return i915_gem_suspend(dev);
4572 }
4573
4574 void
4575 i915_gem_lastclose(struct drm_device *dev)
4576 {
4577 int ret;
4578
4579 if (drm_core_check_feature(dev, DRIVER_MODESET))
4580 return;
4581
4582 ret = i915_gem_suspend(dev);
4583 if (ret)
4584 DRM_ERROR("failed to idle hardware: %d\n", ret);
4585 }
4586
4587 static void
4588 init_ring_lists(struct intel_ring_buffer *ring)
4589 {
4590 INIT_LIST_HEAD(&ring->active_list);
4591 INIT_LIST_HEAD(&ring->request_list);
4592 }
4593
4594 static void i915_init_vm(struct drm_i915_private *dev_priv,
4595 struct i915_address_space *vm)
4596 {
4597 vm->dev = dev_priv->dev;
4598 INIT_LIST_HEAD(&vm->active_list);
4599 INIT_LIST_HEAD(&vm->inactive_list);
4600 INIT_LIST_HEAD(&vm->global_link);
4601 list_add(&vm->global_link, &dev_priv->vm_list);
4602 }
4603
4604 void
4605 i915_gem_load(struct drm_device *dev)
4606 {
4607 drm_i915_private_t *dev_priv = dev->dev_private;
4608 int i;
4609
4610 dev_priv->slab =
4611 kmem_cache_create("i915_gem_object",
4612 sizeof(struct drm_i915_gem_object), 0,
4613 SLAB_HWCACHE_ALIGN,
4614 NULL);
4615
4616 INIT_LIST_HEAD(&dev_priv->vm_list);
4617 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4618
4619 INIT_LIST_HEAD(&dev_priv->context_list);
4620 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4621 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4622 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4623 for (i = 0; i < I915_NUM_RINGS; i++)
4624 init_ring_lists(&dev_priv->ring[i]);
4625 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4626 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4627 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4628 i915_gem_retire_work_handler);
4629 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4630 i915_gem_idle_work_handler);
4631 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4632
4633 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4634 if (IS_GEN3(dev)) {
4635 I915_WRITE(MI_ARB_STATE,
4636 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4637 }
4638
4639 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4640
4641 /* Old X drivers will take 0-2 for front, back, depth buffers */
4642 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4643 dev_priv->fence_reg_start = 3;
4644
4645 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4646 dev_priv->num_fence_regs = 32;
4647 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 dev_priv->num_fence_regs = 16;
4649 else
4650 dev_priv->num_fence_regs = 8;
4651
4652 /* Initialize fence registers to zero */
4653 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4654 i915_gem_restore_fences(dev);
4655
4656 i915_gem_detect_bit_6_swizzle(dev);
4657 init_waitqueue_head(&dev_priv->pending_flip_queue);
4658
4659 dev_priv->mm.interruptible = true;
4660
4661 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4662 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4663 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4664 register_shrinker(&dev_priv->mm.inactive_shrinker);
4665 }
4666
4667 /*
4668 * Create a physically contiguous memory object for this object
4669 * e.g. for cursor + overlay regs
4670 */
4671 static int i915_gem_init_phys_object(struct drm_device *dev,
4672 int id, int size, int align)
4673 {
4674 drm_i915_private_t *dev_priv = dev->dev_private;
4675 struct drm_i915_gem_phys_object *phys_obj;
4676 int ret;
4677
4678 if (dev_priv->mm.phys_objs[id - 1] || !size)
4679 return 0;
4680
4681 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4682 if (!phys_obj)
4683 return -ENOMEM;
4684
4685 phys_obj->id = id;
4686
4687 phys_obj->handle = drm_pci_alloc(dev, size, align);
4688 if (!phys_obj->handle) {
4689 ret = -ENOMEM;
4690 goto kfree_obj;
4691 }
4692 #ifdef CONFIG_X86
4693 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4694 #endif
4695
4696 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4697
4698 return 0;
4699 kfree_obj:
4700 kfree(phys_obj);
4701 return ret;
4702 }
4703
4704 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4705 {
4706 drm_i915_private_t *dev_priv = dev->dev_private;
4707 struct drm_i915_gem_phys_object *phys_obj;
4708
4709 if (!dev_priv->mm.phys_objs[id - 1])
4710 return;
4711
4712 phys_obj = dev_priv->mm.phys_objs[id - 1];
4713 if (phys_obj->cur_obj) {
4714 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4715 }
4716
4717 #ifdef CONFIG_X86
4718 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719 #endif
4720 drm_pci_free(dev, phys_obj->handle);
4721 kfree(phys_obj);
4722 dev_priv->mm.phys_objs[id - 1] = NULL;
4723 }
4724
4725 void i915_gem_free_all_phys_object(struct drm_device *dev)
4726 {
4727 int i;
4728
4729 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4730 i915_gem_free_phys_object(dev, i);
4731 }
4732
4733 void i915_gem_detach_phys_object(struct drm_device *dev,
4734 struct drm_i915_gem_object *obj)
4735 {
4736 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4737 char *vaddr;
4738 int i;
4739 int page_count;
4740
4741 if (!obj->phys_obj)
4742 return;
4743 vaddr = obj->phys_obj->handle->vaddr;
4744
4745 page_count = obj->base.size / PAGE_SIZE;
4746 for (i = 0; i < page_count; i++) {
4747 struct page *page = shmem_read_mapping_page(mapping, i);
4748 if (!IS_ERR(page)) {
4749 char *dst = kmap_atomic(page);
4750 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4751 kunmap_atomic(dst);
4752
4753 drm_clflush_pages(&page, 1);
4754
4755 set_page_dirty(page);
4756 mark_page_accessed(page);
4757 page_cache_release(page);
4758 }
4759 }
4760 i915_gem_chipset_flush(dev);
4761
4762 obj->phys_obj->cur_obj = NULL;
4763 obj->phys_obj = NULL;
4764 }
4765
4766 int
4767 i915_gem_attach_phys_object(struct drm_device *dev,
4768 struct drm_i915_gem_object *obj,
4769 int id,
4770 int align)
4771 {
4772 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4773 drm_i915_private_t *dev_priv = dev->dev_private;
4774 int ret = 0;
4775 int page_count;
4776 int i;
4777
4778 if (id > I915_MAX_PHYS_OBJECT)
4779 return -EINVAL;
4780
4781 if (obj->phys_obj) {
4782 if (obj->phys_obj->id == id)
4783 return 0;
4784 i915_gem_detach_phys_object(dev, obj);
4785 }
4786
4787 /* create a new object */
4788 if (!dev_priv->mm.phys_objs[id - 1]) {
4789 ret = i915_gem_init_phys_object(dev, id,
4790 obj->base.size, align);
4791 if (ret) {
4792 DRM_ERROR("failed to init phys object %d size: %zu\n",
4793 id, obj->base.size);
4794 return ret;
4795 }
4796 }
4797
4798 /* bind to the object */
4799 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4800 obj->phys_obj->cur_obj = obj;
4801
4802 page_count = obj->base.size / PAGE_SIZE;
4803
4804 for (i = 0; i < page_count; i++) {
4805 struct page *page;
4806 char *dst, *src;
4807
4808 page = shmem_read_mapping_page(mapping, i);
4809 if (IS_ERR(page))
4810 return PTR_ERR(page);
4811
4812 src = kmap_atomic(page);
4813 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4814 memcpy(dst, src, PAGE_SIZE);
4815 kunmap_atomic(src);
4816
4817 mark_page_accessed(page);
4818 page_cache_release(page);
4819 }
4820
4821 return 0;
4822 }
4823
4824 static int
4825 i915_gem_phys_pwrite(struct drm_device *dev,
4826 struct drm_i915_gem_object *obj,
4827 struct drm_i915_gem_pwrite *args,
4828 struct drm_file *file_priv)
4829 {
4830 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4831 char __user *user_data = to_user_ptr(args->data_ptr);
4832
4833 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4834 unsigned long unwritten;
4835
4836 /* The physical object once assigned is fixed for the lifetime
4837 * of the obj, so we can safely drop the lock and continue
4838 * to access vaddr.
4839 */
4840 mutex_unlock(&dev->struct_mutex);
4841 unwritten = copy_from_user(vaddr, user_data, args->size);
4842 mutex_lock(&dev->struct_mutex);
4843 if (unwritten)
4844 return -EFAULT;
4845 }
4846
4847 i915_gem_chipset_flush(dev);
4848 return 0;
4849 }
4850
4851 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4852 {
4853 struct drm_i915_file_private *file_priv = file->driver_priv;
4854
4855 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4856
4857 /* Clean up our request list when the client is going away, so that
4858 * later retire_requests won't dereference our soon-to-be-gone
4859 * file_priv.
4860 */
4861 spin_lock(&file_priv->mm.lock);
4862 while (!list_empty(&file_priv->mm.request_list)) {
4863 struct drm_i915_gem_request *request;
4864
4865 request = list_first_entry(&file_priv->mm.request_list,
4866 struct drm_i915_gem_request,
4867 client_list);
4868 list_del(&request->client_list);
4869 request->file_priv = NULL;
4870 }
4871 spin_unlock(&file_priv->mm.lock);
4872 }
4873
4874 static void
4875 i915_gem_file_idle_work_handler(struct work_struct *work)
4876 {
4877 struct drm_i915_file_private *file_priv =
4878 container_of(work, typeof(*file_priv), mm.idle_work.work);
4879
4880 atomic_set(&file_priv->rps_wait_boost, false);
4881 }
4882
4883 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4884 {
4885 struct drm_i915_file_private *file_priv;
4886
4887 DRM_DEBUG_DRIVER("\n");
4888
4889 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4890 if (!file_priv)
4891 return -ENOMEM;
4892
4893 file->driver_priv = file_priv;
4894 file_priv->dev_priv = dev->dev_private;
4895
4896 spin_lock_init(&file_priv->mm.lock);
4897 INIT_LIST_HEAD(&file_priv->mm.request_list);
4898 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4899 i915_gem_file_idle_work_handler);
4900
4901 idr_init(&file_priv->context_idr);
4902
4903 return 0;
4904 }
4905
4906 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4907 {
4908 if (!mutex_is_locked(mutex))
4909 return false;
4910
4911 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4912 return mutex->owner == task;
4913 #else
4914 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4915 return false;
4916 #endif
4917 }
4918
4919 static unsigned long
4920 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4921 {
4922 struct drm_i915_private *dev_priv =
4923 container_of(shrinker,
4924 struct drm_i915_private,
4925 mm.inactive_shrinker);
4926 struct drm_device *dev = dev_priv->dev;
4927 struct drm_i915_gem_object *obj;
4928 bool unlock = true;
4929 unsigned long count;
4930
4931 if (!mutex_trylock(&dev->struct_mutex)) {
4932 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4933 return 0;
4934
4935 if (dev_priv->mm.shrinker_no_lock_stealing)
4936 return 0;
4937
4938 unlock = false;
4939 }
4940
4941 count = 0;
4942 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4943 if (obj->pages_pin_count == 0)
4944 count += obj->base.size >> PAGE_SHIFT;
4945
4946 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4947 if (obj->active)
4948 continue;
4949
4950 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4951 count += obj->base.size >> PAGE_SHIFT;
4952 }
4953
4954 if (unlock)
4955 mutex_unlock(&dev->struct_mutex);
4956
4957 return count;
4958 }
4959
4960 /* All the new VM stuff */
4961 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4962 struct i915_address_space *vm)
4963 {
4964 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4965 struct i915_vma *vma;
4966
4967 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4968 vm = &dev_priv->gtt.base;
4969
4970 BUG_ON(list_empty(&o->vma_list));
4971 list_for_each_entry(vma, &o->vma_list, vma_link) {
4972 if (vma->vm == vm)
4973 return vma->node.start;
4974
4975 }
4976 return -1;
4977 }
4978
4979 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4980 struct i915_address_space *vm)
4981 {
4982 struct i915_vma *vma;
4983
4984 list_for_each_entry(vma, &o->vma_list, vma_link)
4985 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4986 return true;
4987
4988 return false;
4989 }
4990
4991 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4992 {
4993 struct i915_vma *vma;
4994
4995 list_for_each_entry(vma, &o->vma_list, vma_link)
4996 if (drm_mm_node_allocated(&vma->node))
4997 return true;
4998
4999 return false;
5000 }
5001
5002 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5003 struct i915_address_space *vm)
5004 {
5005 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5006 struct i915_vma *vma;
5007
5008 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5009 vm = &dev_priv->gtt.base;
5010
5011 BUG_ON(list_empty(&o->vma_list));
5012
5013 list_for_each_entry(vma, &o->vma_list, vma_link)
5014 if (vma->vm == vm)
5015 return vma->node.size;
5016
5017 return 0;
5018 }
5019
5020 static unsigned long
5021 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5022 {
5023 struct drm_i915_private *dev_priv =
5024 container_of(shrinker,
5025 struct drm_i915_private,
5026 mm.inactive_shrinker);
5027 struct drm_device *dev = dev_priv->dev;
5028 unsigned long freed;
5029 bool unlock = true;
5030
5031 if (!mutex_trylock(&dev->struct_mutex)) {
5032 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5033 return SHRINK_STOP;
5034
5035 if (dev_priv->mm.shrinker_no_lock_stealing)
5036 return SHRINK_STOP;
5037
5038 unlock = false;
5039 }
5040
5041 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5042 if (freed < sc->nr_to_scan)
5043 freed += __i915_gem_shrink(dev_priv,
5044 sc->nr_to_scan - freed,
5045 false);
5046 if (freed < sc->nr_to_scan)
5047 freed += i915_gem_shrink_all(dev_priv);
5048
5049 if (unlock)
5050 mutex_unlock(&dev->struct_mutex);
5051
5052 return freed;
5053 }
5054
5055 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5056 {
5057 struct i915_vma *vma;
5058
5059 if (WARN_ON(list_empty(&obj->vma_list)))
5060 return NULL;
5061
5062 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5063 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5064 return NULL;
5065
5066 return vma;
5067 }
This page took 0.224983 seconds and 6 git commands to generate.