drm/i915: Piggy back hangstats off of contexts
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (i915_gem_obj_is_pinned(obj))
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_ggtt_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
1021 int ret;
1022
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
1040 return -ENODEV;
1041
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
1044 getrawmonotonic(&before);
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
1085 io_schedule();
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
1095 getrawmonotonic(&now);
1096 trace_i915_gem_request_wait_end(ring, seqno);
1097
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
1390
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
1399 /* Now bind it into the GTT if needed */
1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1401 if (ret)
1402 goto unlock;
1403
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
1407
1408 ret = i915_gem_object_get_fence(obj);
1409 if (ret)
1410 goto unpin;
1411
1412 obj->fault_mappable = true;
1413
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 i915_gem_object_ggtt_unpin(obj);
1422 unlock:
1423 mutex_unlock(&dev->struct_mutex);
1424 out:
1425 switch (ret) {
1426 case -EIO:
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 return VM_FAULT_SIGBUS;
1432 case -EAGAIN:
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
1437 */
1438 case 0:
1439 case -ERESTARTSYS:
1440 case -EINTR:
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
1446 return VM_FAULT_NOPAGE;
1447 case -ENOMEM:
1448 return VM_FAULT_OOM;
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
1451 default:
1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 return VM_FAULT_SIGBUS;
1454 }
1455 }
1456
1457 /**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
1461 * Preserve the reservation of the mmapping with the DRM core code, but
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 if (!obj->fault_mappable)
1475 return;
1476
1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 uint32_t gtt_size;
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
1492 gtt_size = 1024*1024;
1493 else
1494 gtt_size = 512*1024;
1495
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
1498
1499 return gtt_size;
1500 }
1501
1502 /**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
1507 * potential fence register mapping.
1508 */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
1512 {
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 tiling_mode == I915_TILING_NONE)
1519 return 4096;
1520
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 return 0;
1535
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
1540 goto out;
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
1552 goto out;
1553
1554 i915_gem_shrink_all(dev_priv);
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
1572 {
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 struct drm_i915_gem_object *obj;
1575 int ret;
1576
1577 ret = i915_mutex_lock_interruptible(dev);
1578 if (ret)
1579 return ret;
1580
1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 if (&obj->base == NULL) {
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
1586
1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 ret = -E2BIG;
1589 goto out;
1590 }
1591
1592 if (obj->madv != I915_MADV_WILLNEED) {
1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 ret = -EINVAL;
1595 goto out;
1596 }
1597
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
1601
1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605 drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 mutex_unlock(&dev->struct_mutex);
1608 return ret;
1609 }
1610
1611 /**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 struct inode *inode;
1640
1641 i915_gem_object_free_mmap_offset(obj);
1642
1643 if (obj->base.filp == NULL)
1644 return;
1645
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
1651 inode = file_inode(obj->base.filp);
1652 shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654 obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 struct sg_page_iter sg_iter;
1667 int ret;
1668
1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
1677 i915_gem_clflush_object(obj, true);
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
1681 if (i915_gem_object_needs_bit17_swizzle(obj))
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
1686
1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690 if (obj->dirty)
1691 set_page_dirty(page);
1692
1693 if (obj->madv == I915_MADV_WILLNEED)
1694 mark_page_accessed(page);
1695
1696 page_cache_release(page);
1697 }
1698 obj->dirty = 0;
1699
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709 if (obj->pages == NULL)
1710 return 0;
1711
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
1715 BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
1720 list_del(&obj->global_list);
1721
1722 ops->put_pages(obj);
1723 obj->pages = NULL;
1724
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729 }
1730
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
1734 {
1735 struct list_head still_bound_list;
1736 struct drm_i915_gem_object *obj, *next;
1737 unsigned long count = 0;
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
1741 global_list) {
1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 i915_gem_object_put_pages(obj) == 0) {
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 struct i915_vma *vma, *v;
1759
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
1792
1793 if (i915_gem_object_put_pages(obj) == 0)
1794 count += obj->base.size >> PAGE_SHIFT;
1795
1796 drm_gem_object_unreference(&obj->base);
1797 }
1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800 return count;
1801 }
1802
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 struct drm_i915_gem_object *obj, *next;
1813 long freed = 0;
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 global_list) {
1819 if (i915_gem_object_put_pages(obj) == 0)
1820 freed += obj->base.size >> PAGE_SHIFT;
1821 }
1822 return freed;
1823 }
1824
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 int page_count, i;
1830 struct address_space *mapping;
1831 struct sg_table *st;
1832 struct scatterlist *sg;
1833 struct sg_page_iter sg_iter;
1834 struct page *page;
1835 unsigned long last_pfn = 0; /* suppress gcc warning */
1836 gfp_t gfp;
1837
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
1849 page_count = obj->base.size / PAGE_SIZE;
1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 kfree(st);
1852 return -ENOMEM;
1853 }
1854
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
1860 mapping = file_inode(obj->base.filp)->i_mapping;
1861 gfp = mapping_gfp_mask(mapping);
1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
1888 #ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895 #endif
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 }
1909 #ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911 #endif
1912 sg_mark_end(sg);
1913 obj->pages = st;
1914
1915 if (i915_gem_object_needs_bit17_swizzle(obj))
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920 err_pages:
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 page_cache_release(sg_page_iter_page(&sg_iter));
1924 sg_free_table(st);
1925 kfree(st);
1926 return PTR_ERR(page);
1927 }
1928
1929 /* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
1943 if (obj->pages)
1944 return 0;
1945
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
1951 BUG_ON(obj->pages_pin_count);
1952
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 return 0;
1959 }
1960
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 struct intel_ring_buffer *ring)
1964 {
1965 struct drm_device *dev = obj->base.dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 u32 seqno = intel_ring_get_seqno(ring);
1968
1969 BUG_ON(ring == NULL);
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
1974 obj->ring = ring;
1975
1976 /* Add a reference if we're newly entering the active list. */
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
1980 }
1981
1982 list_move_tail(&obj->ring_list, &ring->active_list);
1983
1984 obj->last_read_seqno = seqno;
1985
1986 if (obj->fenced_gpu_access) {
1987 obj->last_fenced_seqno = seqno;
1988
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
1997 }
1998 }
1999
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002 {
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *vm;
2012 struct i915_vma *vma;
2013
2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 BUG_ON(!obj->active);
2016
2017 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2018 vma = i915_gem_obj_to_vma(obj, vm);
2019 if (vma && !list_empty(&vma->mm_list))
2020 list_move_tail(&vma->mm_list, &vm->inactive_list);
2021 }
2022
2023 list_del_init(&obj->ring_list);
2024 obj->ring = NULL;
2025
2026 obj->last_read_seqno = 0;
2027 obj->last_write_seqno = 0;
2028 obj->base.write_domain = 0;
2029
2030 obj->last_fenced_seqno = 0;
2031 obj->fenced_gpu_access = false;
2032
2033 obj->active = 0;
2034 drm_gem_object_unreference(&obj->base);
2035
2036 WARN_ON(i915_verify_lists(dev));
2037 }
2038
2039 static int
2040 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2041 {
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_ring_buffer *ring;
2044 int ret, i, j;
2045
2046 /* Carefully retire all requests without writing to the rings */
2047 for_each_ring(ring, dev_priv, i) {
2048 ret = intel_ring_idle(ring);
2049 if (ret)
2050 return ret;
2051 }
2052 i915_gem_retire_requests(dev);
2053
2054 /* Finally reset hw state */
2055 for_each_ring(ring, dev_priv, i) {
2056 intel_ring_init_seqno(ring, seqno);
2057
2058 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2059 ring->sync_seqno[j] = 0;
2060 }
2061
2062 return 0;
2063 }
2064
2065 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 int ret;
2069
2070 if (seqno == 0)
2071 return -EINVAL;
2072
2073 /* HWS page needs to be set less than what we
2074 * will inject to ring
2075 */
2076 ret = i915_gem_init_seqno(dev, seqno - 1);
2077 if (ret)
2078 return ret;
2079
2080 /* Carefully set the last_seqno value so that wrap
2081 * detection still works
2082 */
2083 dev_priv->next_seqno = seqno;
2084 dev_priv->last_seqno = seqno - 1;
2085 if (dev_priv->last_seqno == 0)
2086 dev_priv->last_seqno--;
2087
2088 return 0;
2089 }
2090
2091 int
2092 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2093 {
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096 /* reserve 0 for non-seqno */
2097 if (dev_priv->next_seqno == 0) {
2098 int ret = i915_gem_init_seqno(dev, 0);
2099 if (ret)
2100 return ret;
2101
2102 dev_priv->next_seqno = 1;
2103 }
2104
2105 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2106 return 0;
2107 }
2108
2109 int __i915_add_request(struct intel_ring_buffer *ring,
2110 struct drm_file *file,
2111 struct drm_i915_gem_object *obj,
2112 u32 *out_seqno)
2113 {
2114 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2115 struct drm_i915_gem_request *request;
2116 u32 request_ring_position, request_start;
2117 int was_empty;
2118 int ret;
2119
2120 request_start = intel_ring_get_tail(ring);
2121 /*
2122 * Emit any outstanding flushes - execbuf can fail to emit the flush
2123 * after having emitted the batchbuffer command. Hence we need to fix
2124 * things up similar to emitting the lazy request. The difference here
2125 * is that the flush _must_ happen before the next request, no matter
2126 * what.
2127 */
2128 ret = intel_ring_flush_all_caches(ring);
2129 if (ret)
2130 return ret;
2131
2132 request = ring->preallocated_lazy_request;
2133 if (WARN_ON(request == NULL))
2134 return -ENOMEM;
2135
2136 /* Record the position of the start of the request so that
2137 * should we detect the updated seqno part-way through the
2138 * GPU processing the request, we never over-estimate the
2139 * position of the head.
2140 */
2141 request_ring_position = intel_ring_get_tail(ring);
2142
2143 ret = ring->add_request(ring);
2144 if (ret)
2145 return ret;
2146
2147 request->seqno = intel_ring_get_seqno(ring);
2148 request->ring = ring;
2149 request->head = request_start;
2150 request->tail = request_ring_position;
2151
2152 /* Whilst this request exists, batch_obj will be on the
2153 * active_list, and so will hold the active reference. Only when this
2154 * request is retired will the the batch_obj be moved onto the
2155 * inactive_list and lose its active reference. Hence we do not need
2156 * to explicitly hold another reference here.
2157 */
2158 request->batch_obj = obj;
2159
2160 /* Hold a reference to the current context so that we can inspect
2161 * it later in case a hangcheck error event fires.
2162 */
2163 request->ctx = ring->last_context;
2164 if (request->ctx)
2165 i915_gem_context_reference(request->ctx);
2166
2167 request->emitted_jiffies = jiffies;
2168 was_empty = list_empty(&ring->request_list);
2169 list_add_tail(&request->list, &ring->request_list);
2170 request->file_priv = NULL;
2171
2172 if (file) {
2173 struct drm_i915_file_private *file_priv = file->driver_priv;
2174
2175 spin_lock(&file_priv->mm.lock);
2176 request->file_priv = file_priv;
2177 list_add_tail(&request->client_list,
2178 &file_priv->mm.request_list);
2179 spin_unlock(&file_priv->mm.lock);
2180 }
2181
2182 trace_i915_gem_request_add(ring, request->seqno);
2183 ring->outstanding_lazy_seqno = 0;
2184 ring->preallocated_lazy_request = NULL;
2185
2186 if (!dev_priv->ums.mm_suspended) {
2187 i915_queue_hangcheck(ring->dev);
2188
2189 if (was_empty) {
2190 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2191 queue_delayed_work(dev_priv->wq,
2192 &dev_priv->mm.retire_work,
2193 round_jiffies_up_relative(HZ));
2194 intel_mark_busy(dev_priv->dev);
2195 }
2196 }
2197
2198 if (out_seqno)
2199 *out_seqno = request->seqno;
2200 return 0;
2201 }
2202
2203 static inline void
2204 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2205 {
2206 struct drm_i915_file_private *file_priv = request->file_priv;
2207
2208 if (!file_priv)
2209 return;
2210
2211 spin_lock(&file_priv->mm.lock);
2212 list_del(&request->client_list);
2213 request->file_priv = NULL;
2214 spin_unlock(&file_priv->mm.lock);
2215 }
2216
2217 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2218 struct i915_address_space *vm)
2219 {
2220 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2221 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2222 return true;
2223
2224 return false;
2225 }
2226
2227 static bool i915_head_inside_request(const u32 acthd_unmasked,
2228 const u32 request_start,
2229 const u32 request_end)
2230 {
2231 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2232
2233 if (request_start < request_end) {
2234 if (acthd >= request_start && acthd < request_end)
2235 return true;
2236 } else if (request_start > request_end) {
2237 if (acthd >= request_start || acthd < request_end)
2238 return true;
2239 }
2240
2241 return false;
2242 }
2243
2244 static struct i915_address_space *
2245 request_to_vm(struct drm_i915_gem_request *request)
2246 {
2247 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2248 struct i915_address_space *vm;
2249
2250 vm = &dev_priv->gtt.base;
2251
2252 return vm;
2253 }
2254
2255 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2256 const u32 acthd, bool *inside)
2257 {
2258 /* There is a possibility that unmasked head address
2259 * pointing inside the ring, matches the batch_obj address range.
2260 * However this is extremely unlikely.
2261 */
2262 if (request->batch_obj) {
2263 if (i915_head_inside_object(acthd, request->batch_obj,
2264 request_to_vm(request))) {
2265 *inside = true;
2266 return true;
2267 }
2268 }
2269
2270 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2271 *inside = false;
2272 return true;
2273 }
2274
2275 return false;
2276 }
2277
2278 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2279 {
2280 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2281
2282 if (hs->banned)
2283 return true;
2284
2285 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2286 DRM_ERROR("context hanging too fast, declaring banned!\n");
2287 return true;
2288 }
2289
2290 return false;
2291 }
2292
2293 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2294 struct drm_i915_gem_request *request,
2295 u32 acthd)
2296 {
2297 struct i915_ctx_hang_stats *hs = NULL;
2298 bool inside, guilty;
2299 unsigned long offset = 0;
2300
2301 /* Innocent until proven guilty */
2302 guilty = false;
2303
2304 if (request->batch_obj)
2305 offset = i915_gem_obj_offset(request->batch_obj,
2306 request_to_vm(request));
2307
2308 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2309 i915_request_guilty(request, acthd, &inside)) {
2310 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2311 ring->name,
2312 inside ? "inside" : "flushing",
2313 offset,
2314 request->ctx ? request->ctx->id : 0,
2315 acthd);
2316
2317 guilty = true;
2318 }
2319
2320 /* If contexts are disabled or this is the default context, use
2321 * file_priv->reset_state
2322 */
2323 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2324 hs = &request->ctx->hang_stats;
2325 else if (request->file_priv)
2326 hs = &request->file_priv->private_default_ctx->hang_stats;
2327
2328 if (hs) {
2329 if (guilty) {
2330 hs->banned = i915_context_is_banned(hs);
2331 hs->batch_active++;
2332 hs->guilty_ts = get_seconds();
2333 } else {
2334 hs->batch_pending++;
2335 }
2336 }
2337 }
2338
2339 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2340 {
2341 list_del(&request->list);
2342 i915_gem_request_remove_from_client(request);
2343
2344 if (request->ctx)
2345 i915_gem_context_unreference(request->ctx);
2346
2347 kfree(request);
2348 }
2349
2350 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2351 struct intel_ring_buffer *ring)
2352 {
2353 u32 completed_seqno;
2354 u32 acthd;
2355
2356 acthd = intel_ring_get_active_head(ring);
2357 completed_seqno = ring->get_seqno(ring, false);
2358
2359 while (!list_empty(&ring->request_list)) {
2360 struct drm_i915_gem_request *request;
2361
2362 request = list_first_entry(&ring->request_list,
2363 struct drm_i915_gem_request,
2364 list);
2365
2366 if (request->seqno > completed_seqno)
2367 i915_set_reset_status(ring, request, acthd);
2368
2369 i915_gem_free_request(request);
2370 }
2371
2372 while (!list_empty(&ring->active_list)) {
2373 struct drm_i915_gem_object *obj;
2374
2375 obj = list_first_entry(&ring->active_list,
2376 struct drm_i915_gem_object,
2377 ring_list);
2378
2379 i915_gem_object_move_to_inactive(obj);
2380 }
2381 }
2382
2383 void i915_gem_restore_fences(struct drm_device *dev)
2384 {
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 int i;
2387
2388 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2389 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2390
2391 /*
2392 * Commit delayed tiling changes if we have an object still
2393 * attached to the fence, otherwise just clear the fence.
2394 */
2395 if (reg->obj) {
2396 i915_gem_object_update_fence(reg->obj, reg,
2397 reg->obj->tiling_mode);
2398 } else {
2399 i915_gem_write_fence(dev, i, NULL);
2400 }
2401 }
2402 }
2403
2404 void i915_gem_reset(struct drm_device *dev)
2405 {
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 struct intel_ring_buffer *ring;
2408 int i;
2409
2410 for_each_ring(ring, dev_priv, i)
2411 i915_gem_reset_ring_lists(dev_priv, ring);
2412
2413 i915_gem_cleanup_ringbuffer(dev);
2414
2415 i915_gem_context_reset(dev);
2416
2417 i915_gem_restore_fences(dev);
2418 }
2419
2420 /**
2421 * This function clears the request list as sequence numbers are passed.
2422 */
2423 void
2424 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2425 {
2426 uint32_t seqno;
2427
2428 if (list_empty(&ring->request_list))
2429 return;
2430
2431 WARN_ON(i915_verify_lists(ring->dev));
2432
2433 seqno = ring->get_seqno(ring, true);
2434
2435 while (!list_empty(&ring->request_list)) {
2436 struct drm_i915_gem_request *request;
2437
2438 request = list_first_entry(&ring->request_list,
2439 struct drm_i915_gem_request,
2440 list);
2441
2442 if (!i915_seqno_passed(seqno, request->seqno))
2443 break;
2444
2445 trace_i915_gem_request_retire(ring, request->seqno);
2446 /* We know the GPU must have read the request to have
2447 * sent us the seqno + interrupt, so use the position
2448 * of tail of the request to update the last known position
2449 * of the GPU head.
2450 */
2451 ring->last_retired_head = request->tail;
2452
2453 i915_gem_free_request(request);
2454 }
2455
2456 /* Move any buffers on the active list that are no longer referenced
2457 * by the ringbuffer to the flushing/inactive lists as appropriate.
2458 */
2459 while (!list_empty(&ring->active_list)) {
2460 struct drm_i915_gem_object *obj;
2461
2462 obj = list_first_entry(&ring->active_list,
2463 struct drm_i915_gem_object,
2464 ring_list);
2465
2466 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2467 break;
2468
2469 i915_gem_object_move_to_inactive(obj);
2470 }
2471
2472 if (unlikely(ring->trace_irq_seqno &&
2473 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2474 ring->irq_put(ring);
2475 ring->trace_irq_seqno = 0;
2476 }
2477
2478 WARN_ON(i915_verify_lists(ring->dev));
2479 }
2480
2481 bool
2482 i915_gem_retire_requests(struct drm_device *dev)
2483 {
2484 drm_i915_private_t *dev_priv = dev->dev_private;
2485 struct intel_ring_buffer *ring;
2486 bool idle = true;
2487 int i;
2488
2489 for_each_ring(ring, dev_priv, i) {
2490 i915_gem_retire_requests_ring(ring);
2491 idle &= list_empty(&ring->request_list);
2492 }
2493
2494 if (idle)
2495 mod_delayed_work(dev_priv->wq,
2496 &dev_priv->mm.idle_work,
2497 msecs_to_jiffies(100));
2498
2499 return idle;
2500 }
2501
2502 static void
2503 i915_gem_retire_work_handler(struct work_struct *work)
2504 {
2505 struct drm_i915_private *dev_priv =
2506 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2507 struct drm_device *dev = dev_priv->dev;
2508 bool idle;
2509
2510 /* Come back later if the device is busy... */
2511 idle = false;
2512 if (mutex_trylock(&dev->struct_mutex)) {
2513 idle = i915_gem_retire_requests(dev);
2514 mutex_unlock(&dev->struct_mutex);
2515 }
2516 if (!idle)
2517 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2518 round_jiffies_up_relative(HZ));
2519 }
2520
2521 static void
2522 i915_gem_idle_work_handler(struct work_struct *work)
2523 {
2524 struct drm_i915_private *dev_priv =
2525 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2526
2527 intel_mark_idle(dev_priv->dev);
2528 }
2529
2530 /**
2531 * Ensures that an object will eventually get non-busy by flushing any required
2532 * write domains, emitting any outstanding lazy request and retiring and
2533 * completed requests.
2534 */
2535 static int
2536 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2537 {
2538 int ret;
2539
2540 if (obj->active) {
2541 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2542 if (ret)
2543 return ret;
2544
2545 i915_gem_retire_requests_ring(obj->ring);
2546 }
2547
2548 return 0;
2549 }
2550
2551 /**
2552 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2553 * @DRM_IOCTL_ARGS: standard ioctl arguments
2554 *
2555 * Returns 0 if successful, else an error is returned with the remaining time in
2556 * the timeout parameter.
2557 * -ETIME: object is still busy after timeout
2558 * -ERESTARTSYS: signal interrupted the wait
2559 * -ENONENT: object doesn't exist
2560 * Also possible, but rare:
2561 * -EAGAIN: GPU wedged
2562 * -ENOMEM: damn
2563 * -ENODEV: Internal IRQ fail
2564 * -E?: The add request failed
2565 *
2566 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2567 * non-zero timeout parameter the wait ioctl will wait for the given number of
2568 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2569 * without holding struct_mutex the object may become re-busied before this
2570 * function completes. A similar but shorter * race condition exists in the busy
2571 * ioctl
2572 */
2573 int
2574 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2575 {
2576 drm_i915_private_t *dev_priv = dev->dev_private;
2577 struct drm_i915_gem_wait *args = data;
2578 struct drm_i915_gem_object *obj;
2579 struct intel_ring_buffer *ring = NULL;
2580 struct timespec timeout_stack, *timeout = NULL;
2581 unsigned reset_counter;
2582 u32 seqno = 0;
2583 int ret = 0;
2584
2585 if (args->timeout_ns >= 0) {
2586 timeout_stack = ns_to_timespec(args->timeout_ns);
2587 timeout = &timeout_stack;
2588 }
2589
2590 ret = i915_mutex_lock_interruptible(dev);
2591 if (ret)
2592 return ret;
2593
2594 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2595 if (&obj->base == NULL) {
2596 mutex_unlock(&dev->struct_mutex);
2597 return -ENOENT;
2598 }
2599
2600 /* Need to make sure the object gets inactive eventually. */
2601 ret = i915_gem_object_flush_active(obj);
2602 if (ret)
2603 goto out;
2604
2605 if (obj->active) {
2606 seqno = obj->last_read_seqno;
2607 ring = obj->ring;
2608 }
2609
2610 if (seqno == 0)
2611 goto out;
2612
2613 /* Do this after OLR check to make sure we make forward progress polling
2614 * on this IOCTL with a 0 timeout (like busy ioctl)
2615 */
2616 if (!args->timeout_ns) {
2617 ret = -ETIME;
2618 goto out;
2619 }
2620
2621 drm_gem_object_unreference(&obj->base);
2622 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2623 mutex_unlock(&dev->struct_mutex);
2624
2625 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2626 if (timeout)
2627 args->timeout_ns = timespec_to_ns(timeout);
2628 return ret;
2629
2630 out:
2631 drm_gem_object_unreference(&obj->base);
2632 mutex_unlock(&dev->struct_mutex);
2633 return ret;
2634 }
2635
2636 /**
2637 * i915_gem_object_sync - sync an object to a ring.
2638 *
2639 * @obj: object which may be in use on another ring.
2640 * @to: ring we wish to use the object on. May be NULL.
2641 *
2642 * This code is meant to abstract object synchronization with the GPU.
2643 * Calling with NULL implies synchronizing the object with the CPU
2644 * rather than a particular GPU ring.
2645 *
2646 * Returns 0 if successful, else propagates up the lower layer error.
2647 */
2648 int
2649 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2650 struct intel_ring_buffer *to)
2651 {
2652 struct intel_ring_buffer *from = obj->ring;
2653 u32 seqno;
2654 int ret, idx;
2655
2656 if (from == NULL || to == from)
2657 return 0;
2658
2659 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2660 return i915_gem_object_wait_rendering(obj, false);
2661
2662 idx = intel_ring_sync_index(from, to);
2663
2664 seqno = obj->last_read_seqno;
2665 if (seqno <= from->sync_seqno[idx])
2666 return 0;
2667
2668 ret = i915_gem_check_olr(obj->ring, seqno);
2669 if (ret)
2670 return ret;
2671
2672 trace_i915_gem_ring_sync_to(from, to, seqno);
2673 ret = to->sync_to(to, from, seqno);
2674 if (!ret)
2675 /* We use last_read_seqno because sync_to()
2676 * might have just caused seqno wrap under
2677 * the radar.
2678 */
2679 from->sync_seqno[idx] = obj->last_read_seqno;
2680
2681 return ret;
2682 }
2683
2684 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2685 {
2686 u32 old_write_domain, old_read_domains;
2687
2688 /* Force a pagefault for domain tracking on next user access */
2689 i915_gem_release_mmap(obj);
2690
2691 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2692 return;
2693
2694 /* Wait for any direct GTT access to complete */
2695 mb();
2696
2697 old_read_domains = obj->base.read_domains;
2698 old_write_domain = obj->base.write_domain;
2699
2700 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2701 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2702
2703 trace_i915_gem_object_change_domain(obj,
2704 old_read_domains,
2705 old_write_domain);
2706 }
2707
2708 int i915_vma_unbind(struct i915_vma *vma)
2709 {
2710 struct drm_i915_gem_object *obj = vma->obj;
2711 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2712 int ret;
2713
2714 /* For now we only ever use 1 vma per object */
2715 WARN_ON(!list_is_singular(&obj->vma_list));
2716
2717 if (list_empty(&vma->vma_link))
2718 return 0;
2719
2720 if (!drm_mm_node_allocated(&vma->node)) {
2721 i915_gem_vma_destroy(vma);
2722
2723 return 0;
2724 }
2725
2726 if (vma->pin_count)
2727 return -EBUSY;
2728
2729 BUG_ON(obj->pages == NULL);
2730
2731 ret = i915_gem_object_finish_gpu(obj);
2732 if (ret)
2733 return ret;
2734 /* Continue on if we fail due to EIO, the GPU is hung so we
2735 * should be safe and we need to cleanup or else we might
2736 * cause memory corruption through use-after-free.
2737 */
2738
2739 i915_gem_object_finish_gtt(obj);
2740
2741 /* release the fence reg _after_ flushing */
2742 ret = i915_gem_object_put_fence(obj);
2743 if (ret)
2744 return ret;
2745
2746 trace_i915_vma_unbind(vma);
2747
2748 vma->unbind_vma(vma);
2749
2750 i915_gem_gtt_finish_object(obj);
2751
2752 list_del(&vma->mm_list);
2753 /* Avoid an unnecessary call to unbind on rebind. */
2754 if (i915_is_ggtt(vma->vm))
2755 obj->map_and_fenceable = true;
2756
2757 drm_mm_remove_node(&vma->node);
2758 i915_gem_vma_destroy(vma);
2759
2760 /* Since the unbound list is global, only move to that list if
2761 * no more VMAs exist. */
2762 if (list_empty(&obj->vma_list))
2763 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2764
2765 /* And finally now the object is completely decoupled from this vma,
2766 * we can drop its hold on the backing storage and allow it to be
2767 * reaped by the shrinker.
2768 */
2769 i915_gem_object_unpin_pages(obj);
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * Unbinds an object from the global GTT aperture.
2776 */
2777 int
2778 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2779 {
2780 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2781 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2782
2783 if (!i915_gem_obj_ggtt_bound(obj))
2784 return 0;
2785
2786 if (i915_gem_obj_to_ggtt(obj)->pin_count)
2787 return -EBUSY;
2788
2789 BUG_ON(obj->pages == NULL);
2790
2791 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2792 }
2793
2794 int i915_gpu_idle(struct drm_device *dev)
2795 {
2796 drm_i915_private_t *dev_priv = dev->dev_private;
2797 struct intel_ring_buffer *ring;
2798 int ret, i;
2799
2800 /* Flush everything onto the inactive list. */
2801 for_each_ring(ring, dev_priv, i) {
2802 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2803 if (ret)
2804 return ret;
2805
2806 ret = intel_ring_idle(ring);
2807 if (ret)
2808 return ret;
2809 }
2810
2811 return 0;
2812 }
2813
2814 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2815 struct drm_i915_gem_object *obj)
2816 {
2817 drm_i915_private_t *dev_priv = dev->dev_private;
2818 int fence_reg;
2819 int fence_pitch_shift;
2820
2821 if (INTEL_INFO(dev)->gen >= 6) {
2822 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2823 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2824 } else {
2825 fence_reg = FENCE_REG_965_0;
2826 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2827 }
2828
2829 fence_reg += reg * 8;
2830
2831 /* To w/a incoherency with non-atomic 64-bit register updates,
2832 * we split the 64-bit update into two 32-bit writes. In order
2833 * for a partial fence not to be evaluated between writes, we
2834 * precede the update with write to turn off the fence register,
2835 * and only enable the fence as the last step.
2836 *
2837 * For extra levels of paranoia, we make sure each step lands
2838 * before applying the next step.
2839 */
2840 I915_WRITE(fence_reg, 0);
2841 POSTING_READ(fence_reg);
2842
2843 if (obj) {
2844 u32 size = i915_gem_obj_ggtt_size(obj);
2845 uint64_t val;
2846
2847 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2848 0xfffff000) << 32;
2849 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2850 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2851 if (obj->tiling_mode == I915_TILING_Y)
2852 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2853 val |= I965_FENCE_REG_VALID;
2854
2855 I915_WRITE(fence_reg + 4, val >> 32);
2856 POSTING_READ(fence_reg + 4);
2857
2858 I915_WRITE(fence_reg + 0, val);
2859 POSTING_READ(fence_reg);
2860 } else {
2861 I915_WRITE(fence_reg + 4, 0);
2862 POSTING_READ(fence_reg + 4);
2863 }
2864 }
2865
2866 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2867 struct drm_i915_gem_object *obj)
2868 {
2869 drm_i915_private_t *dev_priv = dev->dev_private;
2870 u32 val;
2871
2872 if (obj) {
2873 u32 size = i915_gem_obj_ggtt_size(obj);
2874 int pitch_val;
2875 int tile_width;
2876
2877 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2878 (size & -size) != size ||
2879 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2880 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2881 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2882
2883 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2884 tile_width = 128;
2885 else
2886 tile_width = 512;
2887
2888 /* Note: pitch better be a power of two tile widths */
2889 pitch_val = obj->stride / tile_width;
2890 pitch_val = ffs(pitch_val) - 1;
2891
2892 val = i915_gem_obj_ggtt_offset(obj);
2893 if (obj->tiling_mode == I915_TILING_Y)
2894 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2895 val |= I915_FENCE_SIZE_BITS(size);
2896 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2897 val |= I830_FENCE_REG_VALID;
2898 } else
2899 val = 0;
2900
2901 if (reg < 8)
2902 reg = FENCE_REG_830_0 + reg * 4;
2903 else
2904 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2905
2906 I915_WRITE(reg, val);
2907 POSTING_READ(reg);
2908 }
2909
2910 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2911 struct drm_i915_gem_object *obj)
2912 {
2913 drm_i915_private_t *dev_priv = dev->dev_private;
2914 uint32_t val;
2915
2916 if (obj) {
2917 u32 size = i915_gem_obj_ggtt_size(obj);
2918 uint32_t pitch_val;
2919
2920 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2921 (size & -size) != size ||
2922 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2923 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2924 i915_gem_obj_ggtt_offset(obj), size);
2925
2926 pitch_val = obj->stride / 128;
2927 pitch_val = ffs(pitch_val) - 1;
2928
2929 val = i915_gem_obj_ggtt_offset(obj);
2930 if (obj->tiling_mode == I915_TILING_Y)
2931 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2932 val |= I830_FENCE_SIZE_BITS(size);
2933 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2934 val |= I830_FENCE_REG_VALID;
2935 } else
2936 val = 0;
2937
2938 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2939 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2940 }
2941
2942 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2943 {
2944 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2945 }
2946
2947 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2948 struct drm_i915_gem_object *obj)
2949 {
2950 struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952 /* Ensure that all CPU reads are completed before installing a fence
2953 * and all writes before removing the fence.
2954 */
2955 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2956 mb();
2957
2958 WARN(obj && (!obj->stride || !obj->tiling_mode),
2959 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2960 obj->stride, obj->tiling_mode);
2961
2962 switch (INTEL_INFO(dev)->gen) {
2963 case 8:
2964 case 7:
2965 case 6:
2966 case 5:
2967 case 4: i965_write_fence_reg(dev, reg, obj); break;
2968 case 3: i915_write_fence_reg(dev, reg, obj); break;
2969 case 2: i830_write_fence_reg(dev, reg, obj); break;
2970 default: BUG();
2971 }
2972
2973 /* And similarly be paranoid that no direct access to this region
2974 * is reordered to before the fence is installed.
2975 */
2976 if (i915_gem_object_needs_mb(obj))
2977 mb();
2978 }
2979
2980 static inline int fence_number(struct drm_i915_private *dev_priv,
2981 struct drm_i915_fence_reg *fence)
2982 {
2983 return fence - dev_priv->fence_regs;
2984 }
2985
2986 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2987 struct drm_i915_fence_reg *fence,
2988 bool enable)
2989 {
2990 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2991 int reg = fence_number(dev_priv, fence);
2992
2993 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2994
2995 if (enable) {
2996 obj->fence_reg = reg;
2997 fence->obj = obj;
2998 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2999 } else {
3000 obj->fence_reg = I915_FENCE_REG_NONE;
3001 fence->obj = NULL;
3002 list_del_init(&fence->lru_list);
3003 }
3004 obj->fence_dirty = false;
3005 }
3006
3007 static int
3008 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3009 {
3010 if (obj->last_fenced_seqno) {
3011 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3012 if (ret)
3013 return ret;
3014
3015 obj->last_fenced_seqno = 0;
3016 }
3017
3018 obj->fenced_gpu_access = false;
3019 return 0;
3020 }
3021
3022 int
3023 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3024 {
3025 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3026 struct drm_i915_fence_reg *fence;
3027 int ret;
3028
3029 ret = i915_gem_object_wait_fence(obj);
3030 if (ret)
3031 return ret;
3032
3033 if (obj->fence_reg == I915_FENCE_REG_NONE)
3034 return 0;
3035
3036 fence = &dev_priv->fence_regs[obj->fence_reg];
3037
3038 i915_gem_object_fence_lost(obj);
3039 i915_gem_object_update_fence(obj, fence, false);
3040
3041 return 0;
3042 }
3043
3044 static struct drm_i915_fence_reg *
3045 i915_find_fence_reg(struct drm_device *dev)
3046 {
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 struct drm_i915_fence_reg *reg, *avail;
3049 int i;
3050
3051 /* First try to find a free reg */
3052 avail = NULL;
3053 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3054 reg = &dev_priv->fence_regs[i];
3055 if (!reg->obj)
3056 return reg;
3057
3058 if (!reg->pin_count)
3059 avail = reg;
3060 }
3061
3062 if (avail == NULL)
3063 return NULL;
3064
3065 /* None available, try to steal one or wait for a user to finish */
3066 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3067 if (reg->pin_count)
3068 continue;
3069
3070 return reg;
3071 }
3072
3073 return NULL;
3074 }
3075
3076 /**
3077 * i915_gem_object_get_fence - set up fencing for an object
3078 * @obj: object to map through a fence reg
3079 *
3080 * When mapping objects through the GTT, userspace wants to be able to write
3081 * to them without having to worry about swizzling if the object is tiled.
3082 * This function walks the fence regs looking for a free one for @obj,
3083 * stealing one if it can't find any.
3084 *
3085 * It then sets up the reg based on the object's properties: address, pitch
3086 * and tiling format.
3087 *
3088 * For an untiled surface, this removes any existing fence.
3089 */
3090 int
3091 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3092 {
3093 struct drm_device *dev = obj->base.dev;
3094 struct drm_i915_private *dev_priv = dev->dev_private;
3095 bool enable = obj->tiling_mode != I915_TILING_NONE;
3096 struct drm_i915_fence_reg *reg;
3097 int ret;
3098
3099 /* Have we updated the tiling parameters upon the object and so
3100 * will need to serialise the write to the associated fence register?
3101 */
3102 if (obj->fence_dirty) {
3103 ret = i915_gem_object_wait_fence(obj);
3104 if (ret)
3105 return ret;
3106 }
3107
3108 /* Just update our place in the LRU if our fence is getting reused. */
3109 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3110 reg = &dev_priv->fence_regs[obj->fence_reg];
3111 if (!obj->fence_dirty) {
3112 list_move_tail(&reg->lru_list,
3113 &dev_priv->mm.fence_list);
3114 return 0;
3115 }
3116 } else if (enable) {
3117 reg = i915_find_fence_reg(dev);
3118 if (reg == NULL)
3119 return -EDEADLK;
3120
3121 if (reg->obj) {
3122 struct drm_i915_gem_object *old = reg->obj;
3123
3124 ret = i915_gem_object_wait_fence(old);
3125 if (ret)
3126 return ret;
3127
3128 i915_gem_object_fence_lost(old);
3129 }
3130 } else
3131 return 0;
3132
3133 i915_gem_object_update_fence(obj, reg, enable);
3134
3135 return 0;
3136 }
3137
3138 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3139 struct drm_mm_node *gtt_space,
3140 unsigned long cache_level)
3141 {
3142 struct drm_mm_node *other;
3143
3144 /* On non-LLC machines we have to be careful when putting differing
3145 * types of snoopable memory together to avoid the prefetcher
3146 * crossing memory domains and dying.
3147 */
3148 if (HAS_LLC(dev))
3149 return true;
3150
3151 if (!drm_mm_node_allocated(gtt_space))
3152 return true;
3153
3154 if (list_empty(&gtt_space->node_list))
3155 return true;
3156
3157 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3158 if (other->allocated && !other->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3162 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3163 return false;
3164
3165 return true;
3166 }
3167
3168 static void i915_gem_verify_gtt(struct drm_device *dev)
3169 {
3170 #if WATCH_GTT
3171 struct drm_i915_private *dev_priv = dev->dev_private;
3172 struct drm_i915_gem_object *obj;
3173 int err = 0;
3174
3175 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3176 if (obj->gtt_space == NULL) {
3177 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3178 err++;
3179 continue;
3180 }
3181
3182 if (obj->cache_level != obj->gtt_space->color) {
3183 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3184 i915_gem_obj_ggtt_offset(obj),
3185 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3186 obj->cache_level,
3187 obj->gtt_space->color);
3188 err++;
3189 continue;
3190 }
3191
3192 if (!i915_gem_valid_gtt_space(dev,
3193 obj->gtt_space,
3194 obj->cache_level)) {
3195 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3196 i915_gem_obj_ggtt_offset(obj),
3197 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3198 obj->cache_level);
3199 err++;
3200 continue;
3201 }
3202 }
3203
3204 WARN_ON(err);
3205 #endif
3206 }
3207
3208 /**
3209 * Finds free space in the GTT aperture and binds the object there.
3210 */
3211 static int
3212 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3213 struct i915_address_space *vm,
3214 unsigned alignment,
3215 bool map_and_fenceable,
3216 bool nonblocking)
3217 {
3218 struct drm_device *dev = obj->base.dev;
3219 drm_i915_private_t *dev_priv = dev->dev_private;
3220 u32 size, fence_size, fence_alignment, unfenced_alignment;
3221 size_t gtt_max =
3222 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3223 struct i915_vma *vma;
3224 int ret;
3225
3226 fence_size = i915_gem_get_gtt_size(dev,
3227 obj->base.size,
3228 obj->tiling_mode);
3229 fence_alignment = i915_gem_get_gtt_alignment(dev,
3230 obj->base.size,
3231 obj->tiling_mode, true);
3232 unfenced_alignment =
3233 i915_gem_get_gtt_alignment(dev,
3234 obj->base.size,
3235 obj->tiling_mode, false);
3236
3237 if (alignment == 0)
3238 alignment = map_and_fenceable ? fence_alignment :
3239 unfenced_alignment;
3240 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3241 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3242 return -EINVAL;
3243 }
3244
3245 size = map_and_fenceable ? fence_size : obj->base.size;
3246
3247 /* If the object is bigger than the entire aperture, reject it early
3248 * before evicting everything in a vain attempt to find space.
3249 */
3250 if (obj->base.size > gtt_max) {
3251 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3252 obj->base.size,
3253 map_and_fenceable ? "mappable" : "total",
3254 gtt_max);
3255 return -E2BIG;
3256 }
3257
3258 ret = i915_gem_object_get_pages(obj);
3259 if (ret)
3260 return ret;
3261
3262 i915_gem_object_pin_pages(obj);
3263
3264 BUG_ON(!i915_is_ggtt(vm));
3265
3266 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3267 if (IS_ERR(vma)) {
3268 ret = PTR_ERR(vma);
3269 goto err_unpin;
3270 }
3271
3272 /* For now we only ever use 1 vma per object */
3273 WARN_ON(!list_is_singular(&obj->vma_list));
3274
3275 search_free:
3276 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3277 size, alignment,
3278 obj->cache_level, 0, gtt_max,
3279 DRM_MM_SEARCH_DEFAULT);
3280 if (ret) {
3281 ret = i915_gem_evict_something(dev, vm, size, alignment,
3282 obj->cache_level,
3283 map_and_fenceable,
3284 nonblocking);
3285 if (ret == 0)
3286 goto search_free;
3287
3288 goto err_free_vma;
3289 }
3290 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3291 obj->cache_level))) {
3292 ret = -EINVAL;
3293 goto err_remove_node;
3294 }
3295
3296 ret = i915_gem_gtt_prepare_object(obj);
3297 if (ret)
3298 goto err_remove_node;
3299
3300 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3301 list_add_tail(&vma->mm_list, &vm->inactive_list);
3302
3303 if (i915_is_ggtt(vm)) {
3304 bool mappable, fenceable;
3305
3306 fenceable = (vma->node.size == fence_size &&
3307 (vma->node.start & (fence_alignment - 1)) == 0);
3308
3309 mappable = (vma->node.start + obj->base.size <=
3310 dev_priv->gtt.mappable_end);
3311
3312 obj->map_and_fenceable = mappable && fenceable;
3313 }
3314
3315 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3316
3317 trace_i915_vma_bind(vma, map_and_fenceable);
3318 i915_gem_verify_gtt(dev);
3319 return 0;
3320
3321 err_remove_node:
3322 drm_mm_remove_node(&vma->node);
3323 err_free_vma:
3324 i915_gem_vma_destroy(vma);
3325 err_unpin:
3326 i915_gem_object_unpin_pages(obj);
3327 return ret;
3328 }
3329
3330 bool
3331 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3332 bool force)
3333 {
3334 /* If we don't have a page list set up, then we're not pinned
3335 * to GPU, and we can ignore the cache flush because it'll happen
3336 * again at bind time.
3337 */
3338 if (obj->pages == NULL)
3339 return false;
3340
3341 /*
3342 * Stolen memory is always coherent with the GPU as it is explicitly
3343 * marked as wc by the system, or the system is cache-coherent.
3344 */
3345 if (obj->stolen)
3346 return false;
3347
3348 /* If the GPU is snooping the contents of the CPU cache,
3349 * we do not need to manually clear the CPU cache lines. However,
3350 * the caches are only snooped when the render cache is
3351 * flushed/invalidated. As we always have to emit invalidations
3352 * and flushes when moving into and out of the RENDER domain, correct
3353 * snooping behaviour occurs naturally as the result of our domain
3354 * tracking.
3355 */
3356 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3357 return false;
3358
3359 trace_i915_gem_object_clflush(obj);
3360 drm_clflush_sg(obj->pages);
3361
3362 return true;
3363 }
3364
3365 /** Flushes the GTT write domain for the object if it's dirty. */
3366 static void
3367 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3368 {
3369 uint32_t old_write_domain;
3370
3371 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3372 return;
3373
3374 /* No actual flushing is required for the GTT write domain. Writes
3375 * to it immediately go to main memory as far as we know, so there's
3376 * no chipset flush. It also doesn't land in render cache.
3377 *
3378 * However, we do have to enforce the order so that all writes through
3379 * the GTT land before any writes to the device, such as updates to
3380 * the GATT itself.
3381 */
3382 wmb();
3383
3384 old_write_domain = obj->base.write_domain;
3385 obj->base.write_domain = 0;
3386
3387 trace_i915_gem_object_change_domain(obj,
3388 obj->base.read_domains,
3389 old_write_domain);
3390 }
3391
3392 /** Flushes the CPU write domain for the object if it's dirty. */
3393 static void
3394 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3395 bool force)
3396 {
3397 uint32_t old_write_domain;
3398
3399 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3400 return;
3401
3402 if (i915_gem_clflush_object(obj, force))
3403 i915_gem_chipset_flush(obj->base.dev);
3404
3405 old_write_domain = obj->base.write_domain;
3406 obj->base.write_domain = 0;
3407
3408 trace_i915_gem_object_change_domain(obj,
3409 obj->base.read_domains,
3410 old_write_domain);
3411 }
3412
3413 /**
3414 * Moves a single object to the GTT read, and possibly write domain.
3415 *
3416 * This function returns when the move is complete, including waiting on
3417 * flushes to occur.
3418 */
3419 int
3420 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3421 {
3422 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3423 uint32_t old_write_domain, old_read_domains;
3424 int ret;
3425
3426 /* Not valid to be called on unbound objects. */
3427 if (!i915_gem_obj_bound_any(obj))
3428 return -EINVAL;
3429
3430 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3431 return 0;
3432
3433 ret = i915_gem_object_wait_rendering(obj, !write);
3434 if (ret)
3435 return ret;
3436
3437 i915_gem_object_flush_cpu_write_domain(obj, false);
3438
3439 /* Serialise direct access to this object with the barriers for
3440 * coherent writes from the GPU, by effectively invalidating the
3441 * GTT domain upon first access.
3442 */
3443 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3444 mb();
3445
3446 old_write_domain = obj->base.write_domain;
3447 old_read_domains = obj->base.read_domains;
3448
3449 /* It should now be out of any other write domains, and we can update
3450 * the domain values for our changes.
3451 */
3452 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3453 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3454 if (write) {
3455 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3456 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3457 obj->dirty = 1;
3458 }
3459
3460 trace_i915_gem_object_change_domain(obj,
3461 old_read_domains,
3462 old_write_domain);
3463
3464 /* And bump the LRU for this access */
3465 if (i915_gem_object_is_inactive(obj)) {
3466 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3467 if (vma)
3468 list_move_tail(&vma->mm_list,
3469 &dev_priv->gtt.base.inactive_list);
3470
3471 }
3472
3473 return 0;
3474 }
3475
3476 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3477 enum i915_cache_level cache_level)
3478 {
3479 struct drm_device *dev = obj->base.dev;
3480 struct i915_vma *vma;
3481 int ret;
3482
3483 if (obj->cache_level == cache_level)
3484 return 0;
3485
3486 if (i915_gem_obj_is_pinned(obj)) {
3487 DRM_DEBUG("can not change the cache level of pinned objects\n");
3488 return -EBUSY;
3489 }
3490
3491 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3492 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3493 ret = i915_vma_unbind(vma);
3494 if (ret)
3495 return ret;
3496
3497 break;
3498 }
3499 }
3500
3501 if (i915_gem_obj_bound_any(obj)) {
3502 ret = i915_gem_object_finish_gpu(obj);
3503 if (ret)
3504 return ret;
3505
3506 i915_gem_object_finish_gtt(obj);
3507
3508 /* Before SandyBridge, you could not use tiling or fence
3509 * registers with snooped memory, so relinquish any fences
3510 * currently pointing to our region in the aperture.
3511 */
3512 if (INTEL_INFO(dev)->gen < 6) {
3513 ret = i915_gem_object_put_fence(obj);
3514 if (ret)
3515 return ret;
3516 }
3517
3518 list_for_each_entry(vma, &obj->vma_list, vma_link)
3519 vma->bind_vma(vma, cache_level, 0);
3520 }
3521
3522 list_for_each_entry(vma, &obj->vma_list, vma_link)
3523 vma->node.color = cache_level;
3524 obj->cache_level = cache_level;
3525
3526 if (cpu_write_needs_clflush(obj)) {
3527 u32 old_read_domains, old_write_domain;
3528
3529 /* If we're coming from LLC cached, then we haven't
3530 * actually been tracking whether the data is in the
3531 * CPU cache or not, since we only allow one bit set
3532 * in obj->write_domain and have been skipping the clflushes.
3533 * Just set it to the CPU cache for now.
3534 */
3535 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3536
3537 old_read_domains = obj->base.read_domains;
3538 old_write_domain = obj->base.write_domain;
3539
3540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3541 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3542
3543 trace_i915_gem_object_change_domain(obj,
3544 old_read_domains,
3545 old_write_domain);
3546 }
3547
3548 i915_gem_verify_gtt(dev);
3549 return 0;
3550 }
3551
3552 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3553 struct drm_file *file)
3554 {
3555 struct drm_i915_gem_caching *args = data;
3556 struct drm_i915_gem_object *obj;
3557 int ret;
3558
3559 ret = i915_mutex_lock_interruptible(dev);
3560 if (ret)
3561 return ret;
3562
3563 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3564 if (&obj->base == NULL) {
3565 ret = -ENOENT;
3566 goto unlock;
3567 }
3568
3569 switch (obj->cache_level) {
3570 case I915_CACHE_LLC:
3571 case I915_CACHE_L3_LLC:
3572 args->caching = I915_CACHING_CACHED;
3573 break;
3574
3575 case I915_CACHE_WT:
3576 args->caching = I915_CACHING_DISPLAY;
3577 break;
3578
3579 default:
3580 args->caching = I915_CACHING_NONE;
3581 break;
3582 }
3583
3584 drm_gem_object_unreference(&obj->base);
3585 unlock:
3586 mutex_unlock(&dev->struct_mutex);
3587 return ret;
3588 }
3589
3590 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3591 struct drm_file *file)
3592 {
3593 struct drm_i915_gem_caching *args = data;
3594 struct drm_i915_gem_object *obj;
3595 enum i915_cache_level level;
3596 int ret;
3597
3598 switch (args->caching) {
3599 case I915_CACHING_NONE:
3600 level = I915_CACHE_NONE;
3601 break;
3602 case I915_CACHING_CACHED:
3603 level = I915_CACHE_LLC;
3604 break;
3605 case I915_CACHING_DISPLAY:
3606 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3607 break;
3608 default:
3609 return -EINVAL;
3610 }
3611
3612 ret = i915_mutex_lock_interruptible(dev);
3613 if (ret)
3614 return ret;
3615
3616 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3617 if (&obj->base == NULL) {
3618 ret = -ENOENT;
3619 goto unlock;
3620 }
3621
3622 ret = i915_gem_object_set_cache_level(obj, level);
3623
3624 drm_gem_object_unreference(&obj->base);
3625 unlock:
3626 mutex_unlock(&dev->struct_mutex);
3627 return ret;
3628 }
3629
3630 static bool is_pin_display(struct drm_i915_gem_object *obj)
3631 {
3632 /* There are 3 sources that pin objects:
3633 * 1. The display engine (scanouts, sprites, cursors);
3634 * 2. Reservations for execbuffer;
3635 * 3. The user.
3636 *
3637 * We can ignore reservations as we hold the struct_mutex and
3638 * are only called outside of the reservation path. The user
3639 * can only increment pin_count once, and so if after
3640 * subtracting the potential reference by the user, any pin_count
3641 * remains, it must be due to another use by the display engine.
3642 */
3643 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3644 }
3645
3646 /*
3647 * Prepare buffer for display plane (scanout, cursors, etc).
3648 * Can be called from an uninterruptible phase (modesetting) and allows
3649 * any flushes to be pipelined (for pageflips).
3650 */
3651 int
3652 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3653 u32 alignment,
3654 struct intel_ring_buffer *pipelined)
3655 {
3656 u32 old_read_domains, old_write_domain;
3657 int ret;
3658
3659 if (pipelined != obj->ring) {
3660 ret = i915_gem_object_sync(obj, pipelined);
3661 if (ret)
3662 return ret;
3663 }
3664
3665 /* Mark the pin_display early so that we account for the
3666 * display coherency whilst setting up the cache domains.
3667 */
3668 obj->pin_display = true;
3669
3670 /* The display engine is not coherent with the LLC cache on gen6. As
3671 * a result, we make sure that the pinning that is about to occur is
3672 * done with uncached PTEs. This is lowest common denominator for all
3673 * chipsets.
3674 *
3675 * However for gen6+, we could do better by using the GFDT bit instead
3676 * of uncaching, which would allow us to flush all the LLC-cached data
3677 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3678 */
3679 ret = i915_gem_object_set_cache_level(obj,
3680 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3681 if (ret)
3682 goto err_unpin_display;
3683
3684 /* As the user may map the buffer once pinned in the display plane
3685 * (e.g. libkms for the bootup splash), we have to ensure that we
3686 * always use map_and_fenceable for all scanout buffers.
3687 */
3688 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3689 if (ret)
3690 goto err_unpin_display;
3691
3692 i915_gem_object_flush_cpu_write_domain(obj, true);
3693
3694 old_write_domain = obj->base.write_domain;
3695 old_read_domains = obj->base.read_domains;
3696
3697 /* It should now be out of any other write domains, and we can update
3698 * the domain values for our changes.
3699 */
3700 obj->base.write_domain = 0;
3701 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3702
3703 trace_i915_gem_object_change_domain(obj,
3704 old_read_domains,
3705 old_write_domain);
3706
3707 return 0;
3708
3709 err_unpin_display:
3710 obj->pin_display = is_pin_display(obj);
3711 return ret;
3712 }
3713
3714 void
3715 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3716 {
3717 i915_gem_object_ggtt_unpin(obj);
3718 obj->pin_display = is_pin_display(obj);
3719 }
3720
3721 int
3722 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3723 {
3724 int ret;
3725
3726 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3727 return 0;
3728
3729 ret = i915_gem_object_wait_rendering(obj, false);
3730 if (ret)
3731 return ret;
3732
3733 /* Ensure that we invalidate the GPU's caches and TLBs. */
3734 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3735 return 0;
3736 }
3737
3738 /**
3739 * Moves a single object to the CPU read, and possibly write domain.
3740 *
3741 * This function returns when the move is complete, including waiting on
3742 * flushes to occur.
3743 */
3744 int
3745 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3746 {
3747 uint32_t old_write_domain, old_read_domains;
3748 int ret;
3749
3750 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3751 return 0;
3752
3753 ret = i915_gem_object_wait_rendering(obj, !write);
3754 if (ret)
3755 return ret;
3756
3757 i915_gem_object_flush_gtt_write_domain(obj);
3758
3759 old_write_domain = obj->base.write_domain;
3760 old_read_domains = obj->base.read_domains;
3761
3762 /* Flush the CPU cache if it's still invalid. */
3763 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3764 i915_gem_clflush_object(obj, false);
3765
3766 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3767 }
3768
3769 /* It should now be out of any other write domains, and we can update
3770 * the domain values for our changes.
3771 */
3772 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3773
3774 /* If we're writing through the CPU, then the GPU read domains will
3775 * need to be invalidated at next use.
3776 */
3777 if (write) {
3778 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3779 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3780 }
3781
3782 trace_i915_gem_object_change_domain(obj,
3783 old_read_domains,
3784 old_write_domain);
3785
3786 return 0;
3787 }
3788
3789 /* Throttle our rendering by waiting until the ring has completed our requests
3790 * emitted over 20 msec ago.
3791 *
3792 * Note that if we were to use the current jiffies each time around the loop,
3793 * we wouldn't escape the function with any frames outstanding if the time to
3794 * render a frame was over 20ms.
3795 *
3796 * This should get us reasonable parallelism between CPU and GPU but also
3797 * relatively low latency when blocking on a particular request to finish.
3798 */
3799 static int
3800 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3801 {
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct drm_i915_file_private *file_priv = file->driver_priv;
3804 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3805 struct drm_i915_gem_request *request;
3806 struct intel_ring_buffer *ring = NULL;
3807 unsigned reset_counter;
3808 u32 seqno = 0;
3809 int ret;
3810
3811 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3812 if (ret)
3813 return ret;
3814
3815 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3816 if (ret)
3817 return ret;
3818
3819 spin_lock(&file_priv->mm.lock);
3820 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3821 if (time_after_eq(request->emitted_jiffies, recent_enough))
3822 break;
3823
3824 ring = request->ring;
3825 seqno = request->seqno;
3826 }
3827 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3828 spin_unlock(&file_priv->mm.lock);
3829
3830 if (seqno == 0)
3831 return 0;
3832
3833 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3834 if (ret == 0)
3835 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3836
3837 return ret;
3838 }
3839
3840 int
3841 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3842 struct i915_address_space *vm,
3843 uint32_t alignment,
3844 bool map_and_fenceable,
3845 bool nonblocking)
3846 {
3847 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3848 struct i915_vma *vma;
3849 int ret;
3850
3851 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3852
3853 vma = i915_gem_obj_to_vma(obj, vm);
3854
3855 if (vma) {
3856 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3857 return -EBUSY;
3858
3859 if ((alignment &&
3860 vma->node.start & (alignment - 1)) ||
3861 (map_and_fenceable && !obj->map_and_fenceable)) {
3862 WARN(vma->pin_count,
3863 "bo is already pinned with incorrect alignment:"
3864 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3865 " obj->map_and_fenceable=%d\n",
3866 i915_gem_obj_offset(obj, vm), alignment,
3867 map_and_fenceable,
3868 obj->map_and_fenceable);
3869 ret = i915_vma_unbind(vma);
3870 if (ret)
3871 return ret;
3872 }
3873 }
3874
3875 if (!i915_gem_obj_bound(obj, vm)) {
3876 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3877 map_and_fenceable,
3878 nonblocking);
3879 if (ret)
3880 return ret;
3881
3882 }
3883
3884 vma = i915_gem_obj_to_vma(obj, vm);
3885
3886 vma->bind_vma(vma, obj->cache_level, flags);
3887
3888 i915_gem_obj_to_vma(obj, vm)->pin_count++;
3889 obj->pin_mappable |= map_and_fenceable;
3890
3891 return 0;
3892 }
3893
3894 void
3895 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3896 {
3897 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3898
3899 BUG_ON(!vma);
3900 BUG_ON(vma->pin_count == 0);
3901 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3902
3903 if (--vma->pin_count == 0)
3904 obj->pin_mappable = false;
3905 }
3906
3907 int
3908 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3909 struct drm_file *file)
3910 {
3911 struct drm_i915_gem_pin *args = data;
3912 struct drm_i915_gem_object *obj;
3913 int ret;
3914
3915 ret = i915_mutex_lock_interruptible(dev);
3916 if (ret)
3917 return ret;
3918
3919 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3920 if (&obj->base == NULL) {
3921 ret = -ENOENT;
3922 goto unlock;
3923 }
3924
3925 if (obj->madv != I915_MADV_WILLNEED) {
3926 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
3931 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3932 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3933 args->handle);
3934 ret = -EINVAL;
3935 goto out;
3936 }
3937
3938 if (obj->user_pin_count == ULONG_MAX) {
3939 ret = -EBUSY;
3940 goto out;
3941 }
3942
3943 if (obj->user_pin_count == 0) {
3944 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3945 if (ret)
3946 goto out;
3947 }
3948
3949 obj->user_pin_count++;
3950 obj->pin_filp = file;
3951
3952 args->offset = i915_gem_obj_ggtt_offset(obj);
3953 out:
3954 drm_gem_object_unreference(&obj->base);
3955 unlock:
3956 mutex_unlock(&dev->struct_mutex);
3957 return ret;
3958 }
3959
3960 int
3961 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3962 struct drm_file *file)
3963 {
3964 struct drm_i915_gem_pin *args = data;
3965 struct drm_i915_gem_object *obj;
3966 int ret;
3967
3968 ret = i915_mutex_lock_interruptible(dev);
3969 if (ret)
3970 return ret;
3971
3972 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3973 if (&obj->base == NULL) {
3974 ret = -ENOENT;
3975 goto unlock;
3976 }
3977
3978 if (obj->pin_filp != file) {
3979 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3980 args->handle);
3981 ret = -EINVAL;
3982 goto out;
3983 }
3984 obj->user_pin_count--;
3985 if (obj->user_pin_count == 0) {
3986 obj->pin_filp = NULL;
3987 i915_gem_object_ggtt_unpin(obj);
3988 }
3989
3990 out:
3991 drm_gem_object_unreference(&obj->base);
3992 unlock:
3993 mutex_unlock(&dev->struct_mutex);
3994 return ret;
3995 }
3996
3997 int
3998 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3999 struct drm_file *file)
4000 {
4001 struct drm_i915_gem_busy *args = data;
4002 struct drm_i915_gem_object *obj;
4003 int ret;
4004
4005 ret = i915_mutex_lock_interruptible(dev);
4006 if (ret)
4007 return ret;
4008
4009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4010 if (&obj->base == NULL) {
4011 ret = -ENOENT;
4012 goto unlock;
4013 }
4014
4015 /* Count all active objects as busy, even if they are currently not used
4016 * by the gpu. Users of this interface expect objects to eventually
4017 * become non-busy without any further actions, therefore emit any
4018 * necessary flushes here.
4019 */
4020 ret = i915_gem_object_flush_active(obj);
4021
4022 args->busy = obj->active;
4023 if (obj->ring) {
4024 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4025 args->busy |= intel_ring_flag(obj->ring) << 16;
4026 }
4027
4028 drm_gem_object_unreference(&obj->base);
4029 unlock:
4030 mutex_unlock(&dev->struct_mutex);
4031 return ret;
4032 }
4033
4034 int
4035 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037 {
4038 return i915_gem_ring_throttle(dev, file_priv);
4039 }
4040
4041 int
4042 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4043 struct drm_file *file_priv)
4044 {
4045 struct drm_i915_gem_madvise *args = data;
4046 struct drm_i915_gem_object *obj;
4047 int ret;
4048
4049 switch (args->madv) {
4050 case I915_MADV_DONTNEED:
4051 case I915_MADV_WILLNEED:
4052 break;
4053 default:
4054 return -EINVAL;
4055 }
4056
4057 ret = i915_mutex_lock_interruptible(dev);
4058 if (ret)
4059 return ret;
4060
4061 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4062 if (&obj->base == NULL) {
4063 ret = -ENOENT;
4064 goto unlock;
4065 }
4066
4067 if (i915_gem_obj_is_pinned(obj)) {
4068 ret = -EINVAL;
4069 goto out;
4070 }
4071
4072 if (obj->madv != __I915_MADV_PURGED)
4073 obj->madv = args->madv;
4074
4075 /* if the object is no longer attached, discard its backing storage */
4076 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4077 i915_gem_object_truncate(obj);
4078
4079 args->retained = obj->madv != __I915_MADV_PURGED;
4080
4081 out:
4082 drm_gem_object_unreference(&obj->base);
4083 unlock:
4084 mutex_unlock(&dev->struct_mutex);
4085 return ret;
4086 }
4087
4088 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4089 const struct drm_i915_gem_object_ops *ops)
4090 {
4091 INIT_LIST_HEAD(&obj->global_list);
4092 INIT_LIST_HEAD(&obj->ring_list);
4093 INIT_LIST_HEAD(&obj->obj_exec_link);
4094 INIT_LIST_HEAD(&obj->vma_list);
4095
4096 obj->ops = ops;
4097
4098 obj->fence_reg = I915_FENCE_REG_NONE;
4099 obj->madv = I915_MADV_WILLNEED;
4100 /* Avoid an unnecessary call to unbind on the first bind. */
4101 obj->map_and_fenceable = true;
4102
4103 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4104 }
4105
4106 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4107 .get_pages = i915_gem_object_get_pages_gtt,
4108 .put_pages = i915_gem_object_put_pages_gtt,
4109 };
4110
4111 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4112 size_t size)
4113 {
4114 struct drm_i915_gem_object *obj;
4115 struct address_space *mapping;
4116 gfp_t mask;
4117
4118 obj = i915_gem_object_alloc(dev);
4119 if (obj == NULL)
4120 return NULL;
4121
4122 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4123 i915_gem_object_free(obj);
4124 return NULL;
4125 }
4126
4127 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4128 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4129 /* 965gm cannot relocate objects above 4GiB. */
4130 mask &= ~__GFP_HIGHMEM;
4131 mask |= __GFP_DMA32;
4132 }
4133
4134 mapping = file_inode(obj->base.filp)->i_mapping;
4135 mapping_set_gfp_mask(mapping, mask);
4136
4137 i915_gem_object_init(obj, &i915_gem_object_ops);
4138
4139 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4140 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4141
4142 if (HAS_LLC(dev)) {
4143 /* On some devices, we can have the GPU use the LLC (the CPU
4144 * cache) for about a 10% performance improvement
4145 * compared to uncached. Graphics requests other than
4146 * display scanout are coherent with the CPU in
4147 * accessing this cache. This means in this mode we
4148 * don't need to clflush on the CPU side, and on the
4149 * GPU side we only need to flush internal caches to
4150 * get data visible to the CPU.
4151 *
4152 * However, we maintain the display planes as UC, and so
4153 * need to rebind when first used as such.
4154 */
4155 obj->cache_level = I915_CACHE_LLC;
4156 } else
4157 obj->cache_level = I915_CACHE_NONE;
4158
4159 trace_i915_gem_object_create(obj);
4160
4161 return obj;
4162 }
4163
4164 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4165 {
4166 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4167 struct drm_device *dev = obj->base.dev;
4168 drm_i915_private_t *dev_priv = dev->dev_private;
4169 struct i915_vma *vma, *next;
4170
4171 trace_i915_gem_object_destroy(obj);
4172
4173 if (obj->phys_obj)
4174 i915_gem_detach_phys_object(dev, obj);
4175
4176 /* NB: 0 or 1 elements */
4177 WARN_ON(!list_empty(&obj->vma_list) &&
4178 !list_is_singular(&obj->vma_list));
4179 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4180 int ret;
4181
4182 vma->pin_count = 0;
4183 ret = i915_vma_unbind(vma);
4184 if (WARN_ON(ret == -ERESTARTSYS)) {
4185 bool was_interruptible;
4186
4187 was_interruptible = dev_priv->mm.interruptible;
4188 dev_priv->mm.interruptible = false;
4189
4190 WARN_ON(i915_vma_unbind(vma));
4191
4192 dev_priv->mm.interruptible = was_interruptible;
4193 }
4194 }
4195
4196 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4197 * before progressing. */
4198 if (obj->stolen)
4199 i915_gem_object_unpin_pages(obj);
4200
4201 if (WARN_ON(obj->pages_pin_count))
4202 obj->pages_pin_count = 0;
4203 i915_gem_object_put_pages(obj);
4204 i915_gem_object_free_mmap_offset(obj);
4205 i915_gem_object_release_stolen(obj);
4206
4207 BUG_ON(obj->pages);
4208
4209 if (obj->base.import_attach)
4210 drm_prime_gem_destroy(&obj->base, NULL);
4211
4212 drm_gem_object_release(&obj->base);
4213 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4214
4215 kfree(obj->bit_17);
4216 i915_gem_object_free(obj);
4217 }
4218
4219 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4220 struct i915_address_space *vm)
4221 {
4222 struct i915_vma *vma;
4223 list_for_each_entry(vma, &obj->vma_list, vma_link)
4224 if (vma->vm == vm)
4225 return vma;
4226
4227 return NULL;
4228 }
4229
4230 void i915_gem_vma_destroy(struct i915_vma *vma)
4231 {
4232 WARN_ON(vma->node.allocated);
4233
4234 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4235 if (!list_empty(&vma->exec_list))
4236 return;
4237
4238 list_del(&vma->vma_link);
4239
4240 kfree(vma);
4241 }
4242
4243 int
4244 i915_gem_suspend(struct drm_device *dev)
4245 {
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247 int ret = 0;
4248
4249 mutex_lock(&dev->struct_mutex);
4250 if (dev_priv->ums.mm_suspended)
4251 goto err;
4252
4253 ret = i915_gpu_idle(dev);
4254 if (ret)
4255 goto err;
4256
4257 i915_gem_retire_requests(dev);
4258
4259 /* Under UMS, be paranoid and evict. */
4260 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4261 i915_gem_evict_everything(dev);
4262
4263 i915_kernel_lost_context(dev);
4264 i915_gem_cleanup_ringbuffer(dev);
4265
4266 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4267 * We need to replace this with a semaphore, or something.
4268 * And not confound ums.mm_suspended!
4269 */
4270 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4271 DRIVER_MODESET);
4272 mutex_unlock(&dev->struct_mutex);
4273
4274 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4275 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4276 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4277
4278 return 0;
4279
4280 err:
4281 mutex_unlock(&dev->struct_mutex);
4282 return ret;
4283 }
4284
4285 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4286 {
4287 struct drm_device *dev = ring->dev;
4288 drm_i915_private_t *dev_priv = dev->dev_private;
4289 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4290 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4291 int i, ret;
4292
4293 if (!HAS_L3_DPF(dev) || !remap_info)
4294 return 0;
4295
4296 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4297 if (ret)
4298 return ret;
4299
4300 /*
4301 * Note: We do not worry about the concurrent register cacheline hang
4302 * here because no other code should access these registers other than
4303 * at initialization time.
4304 */
4305 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4306 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4307 intel_ring_emit(ring, reg_base + i);
4308 intel_ring_emit(ring, remap_info[i/4]);
4309 }
4310
4311 intel_ring_advance(ring);
4312
4313 return ret;
4314 }
4315
4316 void i915_gem_init_swizzling(struct drm_device *dev)
4317 {
4318 drm_i915_private_t *dev_priv = dev->dev_private;
4319
4320 if (INTEL_INFO(dev)->gen < 5 ||
4321 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4322 return;
4323
4324 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4325 DISP_TILE_SURFACE_SWIZZLING);
4326
4327 if (IS_GEN5(dev))
4328 return;
4329
4330 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4331 if (IS_GEN6(dev))
4332 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4333 else if (IS_GEN7(dev))
4334 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4335 else if (IS_GEN8(dev))
4336 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4337 else
4338 BUG();
4339 }
4340
4341 static bool
4342 intel_enable_blt(struct drm_device *dev)
4343 {
4344 if (!HAS_BLT(dev))
4345 return false;
4346
4347 /* The blitter was dysfunctional on early prototypes */
4348 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4349 DRM_INFO("BLT not supported on this pre-production hardware;"
4350 " graphics performance will be degraded.\n");
4351 return false;
4352 }
4353
4354 return true;
4355 }
4356
4357 static int i915_gem_init_rings(struct drm_device *dev)
4358 {
4359 struct drm_i915_private *dev_priv = dev->dev_private;
4360 int ret;
4361
4362 ret = intel_init_render_ring_buffer(dev);
4363 if (ret)
4364 return ret;
4365
4366 if (HAS_BSD(dev)) {
4367 ret = intel_init_bsd_ring_buffer(dev);
4368 if (ret)
4369 goto cleanup_render_ring;
4370 }
4371
4372 if (intel_enable_blt(dev)) {
4373 ret = intel_init_blt_ring_buffer(dev);
4374 if (ret)
4375 goto cleanup_bsd_ring;
4376 }
4377
4378 if (HAS_VEBOX(dev)) {
4379 ret = intel_init_vebox_ring_buffer(dev);
4380 if (ret)
4381 goto cleanup_blt_ring;
4382 }
4383
4384
4385 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4386 if (ret)
4387 goto cleanup_vebox_ring;
4388
4389 return 0;
4390
4391 cleanup_vebox_ring:
4392 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4393 cleanup_blt_ring:
4394 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4395 cleanup_bsd_ring:
4396 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4397 cleanup_render_ring:
4398 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4399
4400 return ret;
4401 }
4402
4403 int
4404 i915_gem_init_hw(struct drm_device *dev)
4405 {
4406 drm_i915_private_t *dev_priv = dev->dev_private;
4407 int ret, i;
4408
4409 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4410 return -EIO;
4411
4412 if (dev_priv->ellc_size)
4413 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4414
4415 if (IS_HSW_GT3(dev))
4416 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4417 else
4418 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4419
4420 if (HAS_PCH_NOP(dev)) {
4421 u32 temp = I915_READ(GEN7_MSG_CTL);
4422 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4423 I915_WRITE(GEN7_MSG_CTL, temp);
4424 }
4425
4426 i915_gem_init_swizzling(dev);
4427
4428 ret = i915_gem_init_rings(dev);
4429 if (ret)
4430 return ret;
4431
4432 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4433 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4434
4435 /*
4436 * XXX: Contexts should only be initialized once. Doing a switch to the
4437 * default context switch however is something we'd like to do after
4438 * reset or thaw (the latter may not actually be necessary for HW, but
4439 * goes with our code better). Context switching requires rings (for
4440 * the do_switch), but before enabling PPGTT. So don't move this.
4441 */
4442 ret = i915_gem_context_enable(dev_priv);
4443 if (ret) {
4444 DRM_ERROR("Context enable failed %d\n", ret);
4445 goto err_out;
4446 }
4447
4448 return 0;
4449
4450 err_out:
4451 i915_gem_cleanup_ringbuffer(dev);
4452 return ret;
4453 }
4454
4455 int i915_gem_init(struct drm_device *dev)
4456 {
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 int ret;
4459
4460 mutex_lock(&dev->struct_mutex);
4461
4462 if (IS_VALLEYVIEW(dev)) {
4463 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4464 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4465 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4466 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4467 }
4468
4469 i915_gem_init_global_gtt(dev);
4470
4471 ret = i915_gem_context_init(dev);
4472 if (ret)
4473 return ret;
4474
4475 ret = i915_gem_init_hw(dev);
4476 mutex_unlock(&dev->struct_mutex);
4477 if (ret) {
4478 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4479 i915_gem_context_fini(dev);
4480 drm_mm_takedown(&dev_priv->gtt.base.mm);
4481 return ret;
4482 }
4483
4484 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4485 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486 dev_priv->dri1.allow_batchbuffer = 1;
4487 return 0;
4488 }
4489
4490 void
4491 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4492 {
4493 drm_i915_private_t *dev_priv = dev->dev_private;
4494 struct intel_ring_buffer *ring;
4495 int i;
4496
4497 for_each_ring(ring, dev_priv, i)
4498 intel_cleanup_ring_buffer(ring);
4499 }
4500
4501 int
4502 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4503 struct drm_file *file_priv)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 int ret;
4507
4508 if (drm_core_check_feature(dev, DRIVER_MODESET))
4509 return 0;
4510
4511 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4512 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4513 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4514 }
4515
4516 mutex_lock(&dev->struct_mutex);
4517 dev_priv->ums.mm_suspended = 0;
4518
4519 ret = i915_gem_init_hw(dev);
4520 if (ret != 0) {
4521 mutex_unlock(&dev->struct_mutex);
4522 return ret;
4523 }
4524
4525 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4526 mutex_unlock(&dev->struct_mutex);
4527
4528 ret = drm_irq_install(dev);
4529 if (ret)
4530 goto cleanup_ringbuffer;
4531
4532 return 0;
4533
4534 cleanup_ringbuffer:
4535 mutex_lock(&dev->struct_mutex);
4536 i915_gem_cleanup_ringbuffer(dev);
4537 dev_priv->ums.mm_suspended = 1;
4538 mutex_unlock(&dev->struct_mutex);
4539
4540 return ret;
4541 }
4542
4543 int
4544 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546 {
4547 if (drm_core_check_feature(dev, DRIVER_MODESET))
4548 return 0;
4549
4550 drm_irq_uninstall(dev);
4551
4552 return i915_gem_suspend(dev);
4553 }
4554
4555 void
4556 i915_gem_lastclose(struct drm_device *dev)
4557 {
4558 int ret;
4559
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return;
4562
4563 ret = i915_gem_suspend(dev);
4564 if (ret)
4565 DRM_ERROR("failed to idle hardware: %d\n", ret);
4566 }
4567
4568 static void
4569 init_ring_lists(struct intel_ring_buffer *ring)
4570 {
4571 INIT_LIST_HEAD(&ring->active_list);
4572 INIT_LIST_HEAD(&ring->request_list);
4573 }
4574
4575 static void i915_init_vm(struct drm_i915_private *dev_priv,
4576 struct i915_address_space *vm)
4577 {
4578 vm->dev = dev_priv->dev;
4579 INIT_LIST_HEAD(&vm->active_list);
4580 INIT_LIST_HEAD(&vm->inactive_list);
4581 INIT_LIST_HEAD(&vm->global_link);
4582 list_add(&vm->global_link, &dev_priv->vm_list);
4583 }
4584
4585 void
4586 i915_gem_load(struct drm_device *dev)
4587 {
4588 drm_i915_private_t *dev_priv = dev->dev_private;
4589 int i;
4590
4591 dev_priv->slab =
4592 kmem_cache_create("i915_gem_object",
4593 sizeof(struct drm_i915_gem_object), 0,
4594 SLAB_HWCACHE_ALIGN,
4595 NULL);
4596
4597 INIT_LIST_HEAD(&dev_priv->vm_list);
4598 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4599
4600 INIT_LIST_HEAD(&dev_priv->context_list);
4601 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4604 for (i = 0; i < I915_NUM_RINGS; i++)
4605 init_ring_lists(&dev_priv->ring[i]);
4606 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4607 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4608 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4609 i915_gem_retire_work_handler);
4610 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4611 i915_gem_idle_work_handler);
4612 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4613
4614 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4615 if (IS_GEN3(dev)) {
4616 I915_WRITE(MI_ARB_STATE,
4617 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4618 }
4619
4620 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4621
4622 /* Old X drivers will take 0-2 for front, back, depth buffers */
4623 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624 dev_priv->fence_reg_start = 3;
4625
4626 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4627 dev_priv->num_fence_regs = 32;
4628 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4629 dev_priv->num_fence_regs = 16;
4630 else
4631 dev_priv->num_fence_regs = 8;
4632
4633 /* Initialize fence registers to zero */
4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635 i915_gem_restore_fences(dev);
4636
4637 i915_gem_detect_bit_6_swizzle(dev);
4638 init_waitqueue_head(&dev_priv->pending_flip_queue);
4639
4640 dev_priv->mm.interruptible = true;
4641
4642 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4643 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4644 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4645 register_shrinker(&dev_priv->mm.inactive_shrinker);
4646 }
4647
4648 /*
4649 * Create a physically contiguous memory object for this object
4650 * e.g. for cursor + overlay regs
4651 */
4652 static int i915_gem_init_phys_object(struct drm_device *dev,
4653 int id, int size, int align)
4654 {
4655 drm_i915_private_t *dev_priv = dev->dev_private;
4656 struct drm_i915_gem_phys_object *phys_obj;
4657 int ret;
4658
4659 if (dev_priv->mm.phys_objs[id - 1] || !size)
4660 return 0;
4661
4662 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4663 if (!phys_obj)
4664 return -ENOMEM;
4665
4666 phys_obj->id = id;
4667
4668 phys_obj->handle = drm_pci_alloc(dev, size, align);
4669 if (!phys_obj->handle) {
4670 ret = -ENOMEM;
4671 goto kfree_obj;
4672 }
4673 #ifdef CONFIG_X86
4674 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675 #endif
4676
4677 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4678
4679 return 0;
4680 kfree_obj:
4681 kfree(phys_obj);
4682 return ret;
4683 }
4684
4685 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4686 {
4687 drm_i915_private_t *dev_priv = dev->dev_private;
4688 struct drm_i915_gem_phys_object *phys_obj;
4689
4690 if (!dev_priv->mm.phys_objs[id - 1])
4691 return;
4692
4693 phys_obj = dev_priv->mm.phys_objs[id - 1];
4694 if (phys_obj->cur_obj) {
4695 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4696 }
4697
4698 #ifdef CONFIG_X86
4699 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4700 #endif
4701 drm_pci_free(dev, phys_obj->handle);
4702 kfree(phys_obj);
4703 dev_priv->mm.phys_objs[id - 1] = NULL;
4704 }
4705
4706 void i915_gem_free_all_phys_object(struct drm_device *dev)
4707 {
4708 int i;
4709
4710 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4711 i915_gem_free_phys_object(dev, i);
4712 }
4713
4714 void i915_gem_detach_phys_object(struct drm_device *dev,
4715 struct drm_i915_gem_object *obj)
4716 {
4717 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4718 char *vaddr;
4719 int i;
4720 int page_count;
4721
4722 if (!obj->phys_obj)
4723 return;
4724 vaddr = obj->phys_obj->handle->vaddr;
4725
4726 page_count = obj->base.size / PAGE_SIZE;
4727 for (i = 0; i < page_count; i++) {
4728 struct page *page = shmem_read_mapping_page(mapping, i);
4729 if (!IS_ERR(page)) {
4730 char *dst = kmap_atomic(page);
4731 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4732 kunmap_atomic(dst);
4733
4734 drm_clflush_pages(&page, 1);
4735
4736 set_page_dirty(page);
4737 mark_page_accessed(page);
4738 page_cache_release(page);
4739 }
4740 }
4741 i915_gem_chipset_flush(dev);
4742
4743 obj->phys_obj->cur_obj = NULL;
4744 obj->phys_obj = NULL;
4745 }
4746
4747 int
4748 i915_gem_attach_phys_object(struct drm_device *dev,
4749 struct drm_i915_gem_object *obj,
4750 int id,
4751 int align)
4752 {
4753 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4754 drm_i915_private_t *dev_priv = dev->dev_private;
4755 int ret = 0;
4756 int page_count;
4757 int i;
4758
4759 if (id > I915_MAX_PHYS_OBJECT)
4760 return -EINVAL;
4761
4762 if (obj->phys_obj) {
4763 if (obj->phys_obj->id == id)
4764 return 0;
4765 i915_gem_detach_phys_object(dev, obj);
4766 }
4767
4768 /* create a new object */
4769 if (!dev_priv->mm.phys_objs[id - 1]) {
4770 ret = i915_gem_init_phys_object(dev, id,
4771 obj->base.size, align);
4772 if (ret) {
4773 DRM_ERROR("failed to init phys object %d size: %zu\n",
4774 id, obj->base.size);
4775 return ret;
4776 }
4777 }
4778
4779 /* bind to the object */
4780 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781 obj->phys_obj->cur_obj = obj;
4782
4783 page_count = obj->base.size / PAGE_SIZE;
4784
4785 for (i = 0; i < page_count; i++) {
4786 struct page *page;
4787 char *dst, *src;
4788
4789 page = shmem_read_mapping_page(mapping, i);
4790 if (IS_ERR(page))
4791 return PTR_ERR(page);
4792
4793 src = kmap_atomic(page);
4794 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4795 memcpy(dst, src, PAGE_SIZE);
4796 kunmap_atomic(src);
4797
4798 mark_page_accessed(page);
4799 page_cache_release(page);
4800 }
4801
4802 return 0;
4803 }
4804
4805 static int
4806 i915_gem_phys_pwrite(struct drm_device *dev,
4807 struct drm_i915_gem_object *obj,
4808 struct drm_i915_gem_pwrite *args,
4809 struct drm_file *file_priv)
4810 {
4811 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4812 char __user *user_data = to_user_ptr(args->data_ptr);
4813
4814 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4815 unsigned long unwritten;
4816
4817 /* The physical object once assigned is fixed for the lifetime
4818 * of the obj, so we can safely drop the lock and continue
4819 * to access vaddr.
4820 */
4821 mutex_unlock(&dev->struct_mutex);
4822 unwritten = copy_from_user(vaddr, user_data, args->size);
4823 mutex_lock(&dev->struct_mutex);
4824 if (unwritten)
4825 return -EFAULT;
4826 }
4827
4828 i915_gem_chipset_flush(dev);
4829 return 0;
4830 }
4831
4832 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4833 {
4834 struct drm_i915_file_private *file_priv = file->driver_priv;
4835
4836 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4837
4838 /* Clean up our request list when the client is going away, so that
4839 * later retire_requests won't dereference our soon-to-be-gone
4840 * file_priv.
4841 */
4842 spin_lock(&file_priv->mm.lock);
4843 while (!list_empty(&file_priv->mm.request_list)) {
4844 struct drm_i915_gem_request *request;
4845
4846 request = list_first_entry(&file_priv->mm.request_list,
4847 struct drm_i915_gem_request,
4848 client_list);
4849 list_del(&request->client_list);
4850 request->file_priv = NULL;
4851 }
4852 spin_unlock(&file_priv->mm.lock);
4853 }
4854
4855 static void
4856 i915_gem_file_idle_work_handler(struct work_struct *work)
4857 {
4858 struct drm_i915_file_private *file_priv =
4859 container_of(work, typeof(*file_priv), mm.idle_work.work);
4860
4861 atomic_set(&file_priv->rps_wait_boost, false);
4862 }
4863
4864 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4865 {
4866 struct drm_i915_file_private *file_priv;
4867 int ret;
4868
4869 DRM_DEBUG_DRIVER("\n");
4870
4871 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4872 if (!file_priv)
4873 return -ENOMEM;
4874
4875 file->driver_priv = file_priv;
4876 file_priv->dev_priv = dev->dev_private;
4877
4878 spin_lock_init(&file_priv->mm.lock);
4879 INIT_LIST_HEAD(&file_priv->mm.request_list);
4880 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4881 i915_gem_file_idle_work_handler);
4882
4883 ret = i915_gem_context_open(dev, file);
4884 if (ret)
4885 kfree(file_priv);
4886
4887 return ret;
4888 }
4889
4890 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4891 {
4892 if (!mutex_is_locked(mutex))
4893 return false;
4894
4895 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4896 return mutex->owner == task;
4897 #else
4898 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4899 return false;
4900 #endif
4901 }
4902
4903 static unsigned long
4904 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4905 {
4906 struct drm_i915_private *dev_priv =
4907 container_of(shrinker,
4908 struct drm_i915_private,
4909 mm.inactive_shrinker);
4910 struct drm_device *dev = dev_priv->dev;
4911 struct drm_i915_gem_object *obj;
4912 bool unlock = true;
4913 unsigned long count;
4914
4915 if (!mutex_trylock(&dev->struct_mutex)) {
4916 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4917 return 0;
4918
4919 if (dev_priv->mm.shrinker_no_lock_stealing)
4920 return 0;
4921
4922 unlock = false;
4923 }
4924
4925 count = 0;
4926 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4927 if (obj->pages_pin_count == 0)
4928 count += obj->base.size >> PAGE_SHIFT;
4929
4930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4931 if (obj->active)
4932 continue;
4933
4934 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4935 count += obj->base.size >> PAGE_SHIFT;
4936 }
4937
4938 if (unlock)
4939 mutex_unlock(&dev->struct_mutex);
4940
4941 return count;
4942 }
4943
4944 /* All the new VM stuff */
4945 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4946 struct i915_address_space *vm)
4947 {
4948 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4949 struct i915_vma *vma;
4950
4951 if (!dev_priv->mm.aliasing_ppgtt ||
4952 vm == &dev_priv->mm.aliasing_ppgtt->base)
4953 vm = &dev_priv->gtt.base;
4954
4955 BUG_ON(list_empty(&o->vma_list));
4956 list_for_each_entry(vma, &o->vma_list, vma_link) {
4957 if (vma->vm == vm)
4958 return vma->node.start;
4959
4960 }
4961 return -1;
4962 }
4963
4964 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4965 struct i915_address_space *vm)
4966 {
4967 struct i915_vma *vma;
4968
4969 list_for_each_entry(vma, &o->vma_list, vma_link)
4970 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4971 return true;
4972
4973 return false;
4974 }
4975
4976 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4977 {
4978 struct i915_vma *vma;
4979
4980 list_for_each_entry(vma, &o->vma_list, vma_link)
4981 if (drm_mm_node_allocated(&vma->node))
4982 return true;
4983
4984 return false;
4985 }
4986
4987 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4988 struct i915_address_space *vm)
4989 {
4990 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991 struct i915_vma *vma;
4992
4993 if (!dev_priv->mm.aliasing_ppgtt ||
4994 vm == &dev_priv->mm.aliasing_ppgtt->base)
4995 vm = &dev_priv->gtt.base;
4996
4997 BUG_ON(list_empty(&o->vma_list));
4998
4999 list_for_each_entry(vma, &o->vma_list, vma_link)
5000 if (vma->vm == vm)
5001 return vma->node.size;
5002
5003 return 0;
5004 }
5005
5006 static unsigned long
5007 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5008 {
5009 struct drm_i915_private *dev_priv =
5010 container_of(shrinker,
5011 struct drm_i915_private,
5012 mm.inactive_shrinker);
5013 struct drm_device *dev = dev_priv->dev;
5014 unsigned long freed;
5015 bool unlock = true;
5016
5017 if (!mutex_trylock(&dev->struct_mutex)) {
5018 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5019 return SHRINK_STOP;
5020
5021 if (dev_priv->mm.shrinker_no_lock_stealing)
5022 return SHRINK_STOP;
5023
5024 unlock = false;
5025 }
5026
5027 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5028 if (freed < sc->nr_to_scan)
5029 freed += __i915_gem_shrink(dev_priv,
5030 sc->nr_to_scan - freed,
5031 false);
5032 if (freed < sc->nr_to_scan)
5033 freed += i915_gem_shrink_all(dev_priv);
5034
5035 if (unlock)
5036 mutex_unlock(&dev->struct_mutex);
5037
5038 return freed;
5039 }
5040
5041 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5042 {
5043 struct i915_vma *vma;
5044
5045 if (WARN_ON(list_empty(&obj->vma_list)))
5046 return NULL;
5047
5048 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5049 if (vma->vm != obj_to_ggtt(obj))
5050 return NULL;
5051
5052 return vma;
5053 }
This page took 0.213935 seconds and 6 git commands to generate.