drm/i915: non-interruptible sleeps can't handle -EAGAIN
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
114 }
115
116 int i915_mutex_lock_interruptible(struct drm_device *dev)
117 {
118 int ret;
119
120 ret = i915_gem_wait_for_error(dev);
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
128 WARN_ON(i915_verify_lists(dev));
129 return 0;
130 }
131
132 static inline bool
133 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134 {
135 return !obj->active;
136 }
137
138 int
139 i915_gem_init_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_gem_init *args = data;
143
144 if (drm_core_check_feature(dev, DRIVER_MODESET))
145 return -ENODEV;
146
147 if (args->gtt_start >= args->gtt_end ||
148 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
149 return -EINVAL;
150
151 /* GEM with user mode setting was never supported on ilk and later. */
152 if (INTEL_INFO(dev)->gen >= 5)
153 return -ENODEV;
154
155 mutex_lock(&dev->struct_mutex);
156 i915_gem_init_global_gtt(dev, args->gtt_start,
157 args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
159
160 return 0;
161 }
162
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
171
172 pinned = 0;
173 mutex_lock(&dev->struct_mutex);
174 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
175 if (obj->pin_count)
176 pinned += obj->gtt_space->size;
177 mutex_unlock(&dev->struct_mutex);
178
179 args->aper_size = dev_priv->mm.gtt_total;
180 args->aper_available_size = args->aper_size - pinned;
181
182 return 0;
183 }
184
185 static int
186 i915_gem_create(struct drm_file *file,
187 struct drm_device *dev,
188 uint64_t size,
189 uint32_t *handle_p)
190 {
191 struct drm_i915_gem_object *obj;
192 int ret;
193 u32 handle;
194
195 size = roundup(size, PAGE_SIZE);
196 if (size == 0)
197 return -EINVAL;
198
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
203
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
210 }
211
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
215
216 *handle_p = handle;
217 return 0;
218 }
219
220 int
221 i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224 {
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230 }
231
232 int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235 {
236 return drm_gem_handle_delete(file, handle);
237 }
238
239 /**
240 * Creates a new mm object and returns a handle to it.
241 */
242 int
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_gem_create *args = data;
247
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline int
261 __copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264 {
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284 }
285
286 static inline int
287 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
288 const char __user *cpu_vaddr,
289 int length)
290 {
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310 }
311
312 /* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
315 static int
316 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319 {
320 char *vaddr;
321 int ret;
322
323 if (unlikely(page_do_bit17_swizzling))
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336 }
337
338 static void
339 shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341 {
342 if (unlikely(swizzled)) {
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358 }
359
360 /* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362 static int
363 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366 {
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387 }
388
389 static int
390 i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
394 {
395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396 char __user *user_data;
397 ssize_t remain;
398 loff_t offset;
399 int shmem_page_offset, page_length, ret = 0;
400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401 int hit_slowpath = 0;
402 int prefaulted = 0;
403 int needs_clflush = 0;
404 int release_page;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
422
423 offset = args->offset;
424
425 while (remain > 0) {
426 struct page *page;
427
428 /* Operation in this page
429 *
430 * shmem_page_offset = offset within page in shmem file
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset_in_page(offset);
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
437
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
448 }
449
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
458
459 hit_slowpath = 1;
460 page_cache_get(page);
461 mutex_unlock(&dev->struct_mutex);
462
463 if (!prefaulted) {
464 ret = fault_in_multipages_writeable(user_data, remain);
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
472
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
476
477 mutex_lock(&dev->struct_mutex);
478 page_cache_release(page);
479 next_page:
480 mark_page_accessed(page);
481 if (release_page)
482 page_cache_release(page);
483
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
489 remain -= page_length;
490 user_data += page_length;
491 offset += page_length;
492 }
493
494 out:
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555 drm_gem_object_unreference(&obj->base);
556 unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570 {
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582 }
583
584 /**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593 {
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = (char __user *) (uintptr_t) args->data_ptr;
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out_unpin:
646 i915_gem_object_unpin(obj);
647 out:
648 return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691 {
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722 {
723 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724 ssize_t remain;
725 loff_t offset;
726 char __user *user_data;
727 int shmem_page_offset, page_length, ret = 0;
728 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729 int hit_slowpath = 0;
730 int needs_clflush_after = 0;
731 int needs_clflush_before = 0;
732 int release_page;
733
734 user_data = (char __user *) (uintptr_t) args->data_ptr;
735 remain = args->size;
736
737 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738
739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
740 /* If we're not in the cpu write domain, set ourself into the gtt
741 * write domain and manually flush cachelines (if required). This
742 * optimizes for the case when the gpu will use the data
743 * right away and we therefore have to clflush anyway. */
744 if (obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_after = 1;
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 /* Same trick applies for invalidate partially written cachelines before
751 * writing. */
752 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
753 && obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_before = 1;
755
756 offset = args->offset;
757 obj->dirty = 1;
758
759 while (remain > 0) {
760 struct page *page;
761 int partial_cacheline_write;
762
763 /* Operation in this page
764 *
765 * shmem_page_offset = offset within page in shmem file
766 * page_length = bytes to copy for this page
767 */
768 shmem_page_offset = offset_in_page(offset);
769
770 page_length = remain;
771 if ((shmem_page_offset + page_length) > PAGE_SIZE)
772 page_length = PAGE_SIZE - shmem_page_offset;
773
774 /* If we don't overwrite a cacheline completely we need to be
775 * careful to have up-to-date data by first clflushing. Don't
776 * overcomplicate things and flush the entire patch. */
777 partial_cacheline_write = needs_clflush_before &&
778 ((shmem_page_offset | page_length)
779 & (boot_cpu_data.x86_clflush_size - 1));
780
781 if (obj->pages) {
782 page = obj->pages[offset >> PAGE_SHIFT];
783 release_page = 0;
784 } else {
785 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
786 if (IS_ERR(page)) {
787 ret = PTR_ERR(page);
788 goto out;
789 }
790 release_page = 1;
791 }
792
793 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
794 (page_to_phys(page) & (1 << 17)) != 0;
795
796 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800 if (ret == 0)
801 goto next_page;
802
803 hit_slowpath = 1;
804 page_cache_get(page);
805 mutex_unlock(&dev->struct_mutex);
806
807 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
811
812 mutex_lock(&dev->struct_mutex);
813 page_cache_release(page);
814 next_page:
815 set_page_dirty(page);
816 mark_page_accessed(page);
817 if (release_page)
818 page_cache_release(page);
819
820 if (ret) {
821 ret = -EFAULT;
822 goto out;
823 }
824
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 if (hit_slowpath) {
832 /* Fixup: Kill any reinstated backing storage pages */
833 if (obj->madv == __I915_MADV_PURGED)
834 i915_gem_object_truncate(obj);
835 /* and flush dirty cachelines in case the object isn't in the cpu write
836 * domain anymore. */
837 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 i915_gem_clflush_object(obj);
839 intel_gtt_chipset_flush();
840 }
841 }
842
843 if (needs_clflush_after)
844 intel_gtt_chipset_flush();
845
846 return ret;
847 }
848
849 /**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file)
857 {
858 struct drm_i915_gem_pwrite *args = data;
859 struct drm_i915_gem_object *obj;
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
866 (char __user *)(uintptr_t)args->data_ptr,
867 args->size))
868 return -EFAULT;
869
870 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
871 args->size);
872 if (ret)
873 return -EFAULT;
874
875 ret = i915_mutex_lock_interruptible(dev);
876 if (ret)
877 return ret;
878
879 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880 if (&obj->base == NULL) {
881 ret = -ENOENT;
882 goto unlock;
883 }
884
885 /* Bounds check destination. */
886 if (args->offset > obj->base.size ||
887 args->size > obj->base.size - args->offset) {
888 ret = -EINVAL;
889 goto out;
890 }
891
892 /* prime objects have no backing filp to GEM pread/pwrite
893 * pages from.
894 */
895 if (!obj->base.filp) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
901
902 ret = -EFAULT;
903 /* We can only do the GTT pwrite on untiled buffers, as otherwise
904 * it would end up going through the fenced access, and we'll get
905 * different detiling behavior between reading and writing.
906 * pread/pwrite currently are reading and writing from the CPU
907 * perspective, requiring manual detiling by the client.
908 */
909 if (obj->phys_obj) {
910 ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 goto out;
912 }
913
914 if (obj->gtt_space &&
915 obj->cache_level == I915_CACHE_NONE &&
916 obj->tiling_mode == I915_TILING_NONE &&
917 obj->map_and_fenceable &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
923 }
924
925 if (ret == -EFAULT)
926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929 drm_gem_object_unreference(&obj->base);
930 unlock:
931 mutex_unlock(&dev->struct_mutex);
932 return ret;
933 }
934
935 /**
936 * Called when user space prepares to use an object with the CPU, either
937 * through the mmap ioctl's mapping or a GTT mapping.
938 */
939 int
940 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941 struct drm_file *file)
942 {
943 struct drm_i915_gem_set_domain *args = data;
944 struct drm_i915_gem_object *obj;
945 uint32_t read_domains = args->read_domains;
946 uint32_t write_domain = args->write_domain;
947 int ret;
948
949 /* Only handle setting domains to types used by the CPU. */
950 if (write_domain & I915_GEM_GPU_DOMAINS)
951 return -EINVAL;
952
953 if (read_domains & I915_GEM_GPU_DOMAINS)
954 return -EINVAL;
955
956 /* Having something in the write domain implies it's in the read
957 * domain, and only that read domain. Enforce that in the request.
958 */
959 if (write_domain != 0 && read_domains != write_domain)
960 return -EINVAL;
961
962 ret = i915_mutex_lock_interruptible(dev);
963 if (ret)
964 return ret;
965
966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967 if (&obj->base == NULL) {
968 ret = -ENOENT;
969 goto unlock;
970 }
971
972 if (read_domains & I915_GEM_DOMAIN_GTT) {
973 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974
975 /* Silently promote "you're not bound, there was nothing to do"
976 * to success, since the client was just asking us to
977 * make sure everything was done.
978 */
979 if (ret == -EINVAL)
980 ret = 0;
981 } else {
982 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 }
984
985 drm_gem_object_unreference(&obj->base);
986 unlock:
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989 }
990
991 /**
992 * Called when user space has done writes to this buffer
993 */
994 int
995 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996 struct drm_file *file)
997 {
998 struct drm_i915_gem_sw_finish *args = data;
999 struct drm_i915_gem_object *obj;
1000 int ret = 0;
1001
1002 ret = i915_mutex_lock_interruptible(dev);
1003 if (ret)
1004 return ret;
1005
1006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007 if (&obj->base == NULL) {
1008 ret = -ENOENT;
1009 goto unlock;
1010 }
1011
1012 /* Pinned buffers may be scanout, so flush the cache */
1013 if (obj->pin_count)
1014 i915_gem_object_flush_cpu_write_domain(obj);
1015
1016 drm_gem_object_unreference(&obj->base);
1017 unlock:
1018 mutex_unlock(&dev->struct_mutex);
1019 return ret;
1020 }
1021
1022 /**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029 int
1030 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031 struct drm_file *file)
1032 {
1033 struct drm_i915_gem_mmap *args = data;
1034 struct drm_gem_object *obj;
1035 unsigned long addr;
1036
1037 obj = drm_gem_object_lookup(dev, file, args->handle);
1038 if (obj == NULL)
1039 return -ENOENT;
1040
1041 /* prime objects have no backing filp to GEM mmap
1042 * pages from.
1043 */
1044 if (!obj->filp) {
1045 drm_gem_object_unreference_unlocked(obj);
1046 return -EINVAL;
1047 }
1048
1049 addr = vm_mmap(obj->filp, 0, args->size,
1050 PROT_READ | PROT_WRITE, MAP_SHARED,
1051 args->offset);
1052 drm_gem_object_unreference_unlocked(obj);
1053 if (IS_ERR((void *)addr))
1054 return addr;
1055
1056 args->addr_ptr = (uint64_t) addr;
1057
1058 return 0;
1059 }
1060
1061 /**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace. The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room. So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078 {
1079 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080 struct drm_device *dev = obj->base.dev;
1081 drm_i915_private_t *dev_priv = dev->dev_private;
1082 pgoff_t page_offset;
1083 unsigned long pfn;
1084 int ret = 0;
1085 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087 /* We don't use vmf->pgoff since that has the fake offset */
1088 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089 PAGE_SHIFT;
1090
1091 ret = i915_mutex_lock_interruptible(dev);
1092 if (ret)
1093 goto out;
1094
1095 trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097 /* Now bind it into the GTT if needed */
1098 if (!obj->map_and_fenceable) {
1099 ret = i915_gem_object_unbind(obj);
1100 if (ret)
1101 goto unlock;
1102 }
1103 if (!obj->gtt_space) {
1104 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 if (ret)
1106 goto unlock;
1107
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109 if (ret)
1110 goto unlock;
1111 }
1112
1113 if (!obj->has_global_gtt_mapping)
1114 i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116 ret = i915_gem_object_get_fence(obj);
1117 if (ret)
1118 goto unlock;
1119
1120 if (i915_gem_object_is_inactive(obj))
1121 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123 obj->fault_mappable = true;
1124
1125 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1126 page_offset;
1127
1128 /* Finally, remap it using the new GTT offset */
1129 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 out:
1133 switch (ret) {
1134 case -EIO:
1135 case -EAGAIN:
1136 /* Give the error handler a chance to run and move the
1137 * objects off the GPU active list. Next time we service the
1138 * fault, we should be able to transition the page into the
1139 * GTT without touching the GPU (and so avoid further
1140 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141 * with coherency, just lost writes.
1142 */
1143 set_need_resched();
1144 case 0:
1145 case -ERESTARTSYS:
1146 case -EINTR:
1147 return VM_FAULT_NOPAGE;
1148 case -ENOMEM:
1149 return VM_FAULT_OOM;
1150 default:
1151 return VM_FAULT_SIGBUS;
1152 }
1153 }
1154
1155 /**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169 void
1170 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171 {
1172 if (!obj->fault_mappable)
1173 return;
1174
1175 if (obj->base.dev->dev_mapping)
1176 unmap_mapping_range(obj->base.dev->dev_mapping,
1177 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178 obj->base.size, 1);
1179
1180 obj->fault_mappable = false;
1181 }
1182
1183 static uint32_t
1184 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185 {
1186 uint32_t gtt_size;
1187
1188 if (INTEL_INFO(dev)->gen >= 4 ||
1189 tiling_mode == I915_TILING_NONE)
1190 return size;
1191
1192 /* Previous chips need a power-of-two fence region when tiling */
1193 if (INTEL_INFO(dev)->gen == 3)
1194 gtt_size = 1024*1024;
1195 else
1196 gtt_size = 512*1024;
1197
1198 while (gtt_size < size)
1199 gtt_size <<= 1;
1200
1201 return gtt_size;
1202 }
1203
1204 /**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211 static uint32_t
1212 i915_gem_get_gtt_alignment(struct drm_device *dev,
1213 uint32_t size,
1214 int tiling_mode)
1215 {
1216 /*
1217 * Minimum alignment is 4k (GTT page size), but might be greater
1218 * if a fence register is needed for the object.
1219 */
1220 if (INTEL_INFO(dev)->gen >= 4 ||
1221 tiling_mode == I915_TILING_NONE)
1222 return 4096;
1223
1224 /*
1225 * Previous chips need to be aligned to the size of the smallest
1226 * fence register that can contain the object.
1227 */
1228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 }
1230
1231 /**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 * unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241 uint32_t
1242 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243 uint32_t size,
1244 int tiling_mode)
1245 {
1246 /*
1247 * Minimum alignment is 4k (GTT page size) for sane hw.
1248 */
1249 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250 tiling_mode == I915_TILING_NONE)
1251 return 4096;
1252
1253 /* Previous hardware however needs to be aligned to a power-of-two
1254 * tile height. The simplest method for determining this is to reuse
1255 * the power-of-tile object size.
1256 */
1257 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 }
1259
1260 int
1261 i915_gem_mmap_gtt(struct drm_file *file,
1262 struct drm_device *dev,
1263 uint32_t handle,
1264 uint64_t *offset)
1265 {
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 struct drm_i915_gem_object *obj;
1268 int ret;
1269
1270 ret = i915_mutex_lock_interruptible(dev);
1271 if (ret)
1272 return ret;
1273
1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275 if (&obj->base == NULL) {
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
1279
1280 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281 ret = -E2BIG;
1282 goto out;
1283 }
1284
1285 if (obj->madv != I915_MADV_WILLNEED) {
1286 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 ret = -EINVAL;
1288 goto out;
1289 }
1290
1291 if (!obj->base.map_list.map) {
1292 ret = drm_gem_create_mmap_offset(&obj->base);
1293 if (ret)
1294 goto out;
1295 }
1296
1297 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299 out:
1300 drm_gem_object_unreference(&obj->base);
1301 unlock:
1302 mutex_unlock(&dev->struct_mutex);
1303 return ret;
1304 }
1305
1306 /**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321 int
1322 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323 struct drm_file *file)
1324 {
1325 struct drm_i915_gem_mmap_gtt *args = data;
1326
1327 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328 }
1329
1330 int
1331 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 gfp_t gfpmask)
1333 {
1334 int page_count, i;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 struct page *page;
1338
1339 if (obj->pages || obj->sg_table)
1340 return 0;
1341
1342 /* Get the list of pages out of our struct file. They'll be pinned
1343 * at this point until we release them.
1344 */
1345 page_count = obj->base.size / PAGE_SIZE;
1346 BUG_ON(obj->pages != NULL);
1347 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348 if (obj->pages == NULL)
1349 return -ENOMEM;
1350
1351 inode = obj->base.filp->f_path.dentry->d_inode;
1352 mapping = inode->i_mapping;
1353 gfpmask |= mapping_gfp_mask(mapping);
1354
1355 for (i = 0; i < page_count; i++) {
1356 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 if (IS_ERR(page))
1358 goto err_pages;
1359
1360 obj->pages[i] = page;
1361 }
1362
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 i915_gem_object_do_bit_17_swizzle(obj);
1365
1366 return 0;
1367
1368 err_pages:
1369 while (i--)
1370 page_cache_release(obj->pages[i]);
1371
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
1374 return PTR_ERR(page);
1375 }
1376
1377 static void
1378 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379 {
1380 int page_count = obj->base.size / PAGE_SIZE;
1381 int i;
1382
1383 if (!obj->pages)
1384 return;
1385
1386 BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 i915_gem_object_save_bit_17_swizzle(obj);
1390
1391 if (obj->madv == I915_MADV_DONTNEED)
1392 obj->dirty = 0;
1393
1394 for (i = 0; i < page_count; i++) {
1395 if (obj->dirty)
1396 set_page_dirty(obj->pages[i]);
1397
1398 if (obj->madv == I915_MADV_WILLNEED)
1399 mark_page_accessed(obj->pages[i]);
1400
1401 page_cache_release(obj->pages[i]);
1402 }
1403 obj->dirty = 0;
1404
1405 drm_free_large(obj->pages);
1406 obj->pages = NULL;
1407 }
1408
1409 void
1410 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 struct intel_ring_buffer *ring,
1412 u32 seqno)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417 BUG_ON(ring == NULL);
1418 obj->ring = ring;
1419
1420 /* Add a reference if we're newly entering the active list. */
1421 if (!obj->active) {
1422 drm_gem_object_reference(&obj->base);
1423 obj->active = 1;
1424 }
1425
1426 /* Move from whatever list we were on to the tail of execution. */
1427 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428 list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430 obj->last_rendering_seqno = seqno;
1431
1432 if (obj->fenced_gpu_access) {
1433 obj->last_fenced_seqno = seqno;
1434
1435 /* Bump MRU to take account of the delayed flush */
1436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437 struct drm_i915_fence_reg *reg;
1438
1439 reg = &dev_priv->fence_regs[obj->fence_reg];
1440 list_move_tail(&reg->lru_list,
1441 &dev_priv->mm.fence_list);
1442 }
1443 }
1444 }
1445
1446 static void
1447 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448 {
1449 list_del_init(&obj->ring_list);
1450 obj->last_rendering_seqno = 0;
1451 obj->last_fenced_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->base.dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460 BUG_ON(!obj->active);
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463 i915_gem_object_move_off_active(obj);
1464 }
1465
1466 static void
1467 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468 {
1469 struct drm_device *dev = obj->base.dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473
1474 BUG_ON(!list_empty(&obj->gpu_write_list));
1475 BUG_ON(!obj->active);
1476 obj->ring = NULL;
1477
1478 i915_gem_object_move_off_active(obj);
1479 obj->fenced_gpu_access = false;
1480
1481 obj->active = 0;
1482 obj->pending_gpu_write = false;
1483 drm_gem_object_unreference(&obj->base);
1484
1485 WARN_ON(i915_verify_lists(dev));
1486 }
1487
1488 /* Immediately discard the backing storage */
1489 static void
1490 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491 {
1492 struct inode *inode;
1493
1494 /* Our goal here is to return as much of the memory as
1495 * is possible back to the system as we are called from OOM.
1496 * To do this we must instruct the shmfs to drop all of its
1497 * backing pages, *now*.
1498 */
1499 inode = obj->base.filp->f_path.dentry->d_inode;
1500 shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502 if (obj->base.map_list.map)
1503 drm_gem_free_mmap_offset(&obj->base);
1504
1505 obj->madv = __I915_MADV_PURGED;
1506 }
1507
1508 static inline int
1509 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510 {
1511 return obj->madv == I915_MADV_DONTNEED;
1512 }
1513
1514 static void
1515 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516 uint32_t flush_domains)
1517 {
1518 struct drm_i915_gem_object *obj, *next;
1519
1520 list_for_each_entry_safe(obj, next,
1521 &ring->gpu_write_list,
1522 gpu_write_list) {
1523 if (obj->base.write_domain & flush_domains) {
1524 uint32_t old_write_domain = obj->base.write_domain;
1525
1526 obj->base.write_domain = 0;
1527 list_del_init(&obj->gpu_write_list);
1528 i915_gem_object_move_to_active(obj, ring,
1529 i915_gem_next_request_seqno(ring));
1530
1531 trace_i915_gem_object_change_domain(obj,
1532 obj->base.read_domains,
1533 old_write_domain);
1534 }
1535 }
1536 }
1537
1538 static u32
1539 i915_gem_get_seqno(struct drm_device *dev)
1540 {
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542 u32 seqno = dev_priv->next_seqno;
1543
1544 /* reserve 0 for non-seqno */
1545 if (++dev_priv->next_seqno == 0)
1546 dev_priv->next_seqno = 1;
1547
1548 return seqno;
1549 }
1550
1551 u32
1552 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553 {
1554 if (ring->outstanding_lazy_request == 0)
1555 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557 return ring->outstanding_lazy_request;
1558 }
1559
1560 int
1561 i915_add_request(struct intel_ring_buffer *ring,
1562 struct drm_file *file,
1563 struct drm_i915_gem_request *request)
1564 {
1565 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566 uint32_t seqno;
1567 u32 request_ring_position;
1568 int was_empty;
1569 int ret;
1570
1571 /*
1572 * Emit any outstanding flushes - execbuf can fail to emit the flush
1573 * after having emitted the batchbuffer command. Hence we need to fix
1574 * things up similar to emitting the lazy request. The difference here
1575 * is that the flush _must_ happen before the next request, no matter
1576 * what.
1577 */
1578 if (ring->gpu_caches_dirty) {
1579 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1580 if (ret)
1581 return ret;
1582
1583 ring->gpu_caches_dirty = false;
1584 }
1585
1586 BUG_ON(request == NULL);
1587 seqno = i915_gem_next_request_seqno(ring);
1588
1589 /* Record the position of the start of the request so that
1590 * should we detect the updated seqno part-way through the
1591 * GPU processing the request, we never over-estimate the
1592 * position of the head.
1593 */
1594 request_ring_position = intel_ring_get_tail(ring);
1595
1596 ret = ring->add_request(ring, &seqno);
1597 if (ret)
1598 return ret;
1599
1600 trace_i915_gem_request_add(ring, seqno);
1601
1602 request->seqno = seqno;
1603 request->ring = ring;
1604 request->tail = request_ring_position;
1605 request->emitted_jiffies = jiffies;
1606 was_empty = list_empty(&ring->request_list);
1607 list_add_tail(&request->list, &ring->request_list);
1608
1609 if (file) {
1610 struct drm_i915_file_private *file_priv = file->driver_priv;
1611
1612 spin_lock(&file_priv->mm.lock);
1613 request->file_priv = file_priv;
1614 list_add_tail(&request->client_list,
1615 &file_priv->mm.request_list);
1616 spin_unlock(&file_priv->mm.lock);
1617 }
1618
1619 ring->outstanding_lazy_request = 0;
1620
1621 if (!dev_priv->mm.suspended) {
1622 if (i915_enable_hangcheck) {
1623 mod_timer(&dev_priv->hangcheck_timer,
1624 jiffies +
1625 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1626 }
1627 if (was_empty)
1628 queue_delayed_work(dev_priv->wq,
1629 &dev_priv->mm.retire_work, HZ);
1630 }
1631
1632 WARN_ON(!list_empty(&ring->gpu_write_list));
1633
1634 return 0;
1635 }
1636
1637 static inline void
1638 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1639 {
1640 struct drm_i915_file_private *file_priv = request->file_priv;
1641
1642 if (!file_priv)
1643 return;
1644
1645 spin_lock(&file_priv->mm.lock);
1646 if (request->file_priv) {
1647 list_del(&request->client_list);
1648 request->file_priv = NULL;
1649 }
1650 spin_unlock(&file_priv->mm.lock);
1651 }
1652
1653 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1654 struct intel_ring_buffer *ring)
1655 {
1656 while (!list_empty(&ring->request_list)) {
1657 struct drm_i915_gem_request *request;
1658
1659 request = list_first_entry(&ring->request_list,
1660 struct drm_i915_gem_request,
1661 list);
1662
1663 list_del(&request->list);
1664 i915_gem_request_remove_from_client(request);
1665 kfree(request);
1666 }
1667
1668 while (!list_empty(&ring->active_list)) {
1669 struct drm_i915_gem_object *obj;
1670
1671 obj = list_first_entry(&ring->active_list,
1672 struct drm_i915_gem_object,
1673 ring_list);
1674
1675 obj->base.write_domain = 0;
1676 list_del_init(&obj->gpu_write_list);
1677 i915_gem_object_move_to_inactive(obj);
1678 }
1679 }
1680
1681 static void i915_gem_reset_fences(struct drm_device *dev)
1682 {
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684 int i;
1685
1686 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1687 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1688
1689 i915_gem_write_fence(dev, i, NULL);
1690
1691 if (reg->obj)
1692 i915_gem_object_fence_lost(reg->obj);
1693
1694 reg->pin_count = 0;
1695 reg->obj = NULL;
1696 INIT_LIST_HEAD(&reg->lru_list);
1697 }
1698
1699 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1700 }
1701
1702 void i915_gem_reset(struct drm_device *dev)
1703 {
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 struct drm_i915_gem_object *obj;
1706 struct intel_ring_buffer *ring;
1707 int i;
1708
1709 for_each_ring(ring, dev_priv, i)
1710 i915_gem_reset_ring_lists(dev_priv, ring);
1711
1712 /* Remove anything from the flushing lists. The GPU cache is likely
1713 * to be lost on reset along with the data, so simply move the
1714 * lost bo to the inactive list.
1715 */
1716 while (!list_empty(&dev_priv->mm.flushing_list)) {
1717 obj = list_first_entry(&dev_priv->mm.flushing_list,
1718 struct drm_i915_gem_object,
1719 mm_list);
1720
1721 obj->base.write_domain = 0;
1722 list_del_init(&obj->gpu_write_list);
1723 i915_gem_object_move_to_inactive(obj);
1724 }
1725
1726 /* Move everything out of the GPU domains to ensure we do any
1727 * necessary invalidation upon reuse.
1728 */
1729 list_for_each_entry(obj,
1730 &dev_priv->mm.inactive_list,
1731 mm_list)
1732 {
1733 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1734 }
1735
1736 /* The fence registers are invalidated so clear them out */
1737 i915_gem_reset_fences(dev);
1738 }
1739
1740 /**
1741 * This function clears the request list as sequence numbers are passed.
1742 */
1743 void
1744 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1745 {
1746 uint32_t seqno;
1747 int i;
1748
1749 if (list_empty(&ring->request_list))
1750 return;
1751
1752 WARN_ON(i915_verify_lists(ring->dev));
1753
1754 seqno = ring->get_seqno(ring);
1755
1756 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1757 if (seqno >= ring->sync_seqno[i])
1758 ring->sync_seqno[i] = 0;
1759
1760 while (!list_empty(&ring->request_list)) {
1761 struct drm_i915_gem_request *request;
1762
1763 request = list_first_entry(&ring->request_list,
1764 struct drm_i915_gem_request,
1765 list);
1766
1767 if (!i915_seqno_passed(seqno, request->seqno))
1768 break;
1769
1770 trace_i915_gem_request_retire(ring, request->seqno);
1771 /* We know the GPU must have read the request to have
1772 * sent us the seqno + interrupt, so use the position
1773 * of tail of the request to update the last known position
1774 * of the GPU head.
1775 */
1776 ring->last_retired_head = request->tail;
1777
1778 list_del(&request->list);
1779 i915_gem_request_remove_from_client(request);
1780 kfree(request);
1781 }
1782
1783 /* Move any buffers on the active list that are no longer referenced
1784 * by the ringbuffer to the flushing/inactive lists as appropriate.
1785 */
1786 while (!list_empty(&ring->active_list)) {
1787 struct drm_i915_gem_object *obj;
1788
1789 obj = list_first_entry(&ring->active_list,
1790 struct drm_i915_gem_object,
1791 ring_list);
1792
1793 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1794 break;
1795
1796 if (obj->base.write_domain != 0)
1797 i915_gem_object_move_to_flushing(obj);
1798 else
1799 i915_gem_object_move_to_inactive(obj);
1800 }
1801
1802 if (unlikely(ring->trace_irq_seqno &&
1803 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1804 ring->irq_put(ring);
1805 ring->trace_irq_seqno = 0;
1806 }
1807
1808 WARN_ON(i915_verify_lists(ring->dev));
1809 }
1810
1811 void
1812 i915_gem_retire_requests(struct drm_device *dev)
1813 {
1814 drm_i915_private_t *dev_priv = dev->dev_private;
1815 struct intel_ring_buffer *ring;
1816 int i;
1817
1818 for_each_ring(ring, dev_priv, i)
1819 i915_gem_retire_requests_ring(ring);
1820 }
1821
1822 static void
1823 i915_gem_retire_work_handler(struct work_struct *work)
1824 {
1825 drm_i915_private_t *dev_priv;
1826 struct drm_device *dev;
1827 struct intel_ring_buffer *ring;
1828 bool idle;
1829 int i;
1830
1831 dev_priv = container_of(work, drm_i915_private_t,
1832 mm.retire_work.work);
1833 dev = dev_priv->dev;
1834
1835 /* Come back later if the device is busy... */
1836 if (!mutex_trylock(&dev->struct_mutex)) {
1837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1838 return;
1839 }
1840
1841 i915_gem_retire_requests(dev);
1842
1843 /* Send a periodic flush down the ring so we don't hold onto GEM
1844 * objects indefinitely.
1845 */
1846 idle = true;
1847 for_each_ring(ring, dev_priv, i) {
1848 if (ring->gpu_caches_dirty) {
1849 struct drm_i915_gem_request *request;
1850
1851 request = kzalloc(sizeof(*request), GFP_KERNEL);
1852 if (request == NULL ||
1853 i915_add_request(ring, NULL, request))
1854 kfree(request);
1855 }
1856
1857 idle &= list_empty(&ring->request_list);
1858 }
1859
1860 if (!dev_priv->mm.suspended && !idle)
1861 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1862
1863 mutex_unlock(&dev->struct_mutex);
1864 }
1865
1866 int
1867 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1868 bool interruptible)
1869 {
1870 if (atomic_read(&dev_priv->mm.wedged)) {
1871 struct completion *x = &dev_priv->error_completion;
1872 bool recovery_complete;
1873 unsigned long flags;
1874
1875 /* Give the error handler a chance to run. */
1876 spin_lock_irqsave(&x->wait.lock, flags);
1877 recovery_complete = x->done > 0;
1878 spin_unlock_irqrestore(&x->wait.lock, flags);
1879
1880 /* Non-interruptible callers can't handle -EAGAIN, hence return
1881 * -EIO unconditionally for these. */
1882 if (!interruptible)
1883 return -EIO;
1884
1885 /* Recovery complete, but still wedged means reset failure. */
1886 if (recovery_complete)
1887 return -EIO;
1888
1889 return -EAGAIN;
1890 }
1891
1892 return 0;
1893 }
1894
1895 /*
1896 * Compare seqno against outstanding lazy request. Emit a request if they are
1897 * equal.
1898 */
1899 static int
1900 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1901 {
1902 int ret = 0;
1903
1904 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1905
1906 if (seqno == ring->outstanding_lazy_request) {
1907 struct drm_i915_gem_request *request;
1908
1909 request = kzalloc(sizeof(*request), GFP_KERNEL);
1910 if (request == NULL)
1911 return -ENOMEM;
1912
1913 ret = i915_add_request(ring, NULL, request);
1914 if (ret) {
1915 kfree(request);
1916 return ret;
1917 }
1918
1919 BUG_ON(seqno != request->seqno);
1920 }
1921
1922 return ret;
1923 }
1924
1925 /**
1926 * __wait_seqno - wait until execution of seqno has finished
1927 * @ring: the ring expected to report seqno
1928 * @seqno: duh!
1929 * @interruptible: do an interruptible wait (normally yes)
1930 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1931 *
1932 * Returns 0 if the seqno was found within the alloted time. Else returns the
1933 * errno with remaining time filled in timeout argument.
1934 */
1935 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1936 bool interruptible, struct timespec *timeout)
1937 {
1938 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1939 struct timespec before, now, wait_time={1,0};
1940 unsigned long timeout_jiffies;
1941 long end;
1942 bool wait_forever = true;
1943 int ret;
1944
1945 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1946 return 0;
1947
1948 trace_i915_gem_request_wait_begin(ring, seqno);
1949
1950 if (timeout != NULL) {
1951 wait_time = *timeout;
1952 wait_forever = false;
1953 }
1954
1955 timeout_jiffies = timespec_to_jiffies(&wait_time);
1956
1957 if (WARN_ON(!ring->irq_get(ring)))
1958 return -ENODEV;
1959
1960 /* Record current time in case interrupted by signal, or wedged * */
1961 getrawmonotonic(&before);
1962
1963 #define EXIT_COND \
1964 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1965 atomic_read(&dev_priv->mm.wedged))
1966 do {
1967 if (interruptible)
1968 end = wait_event_interruptible_timeout(ring->irq_queue,
1969 EXIT_COND,
1970 timeout_jiffies);
1971 else
1972 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1973 timeout_jiffies);
1974
1975 ret = i915_gem_check_wedge(dev_priv, interruptible);
1976 if (ret)
1977 end = ret;
1978 } while (end == 0 && wait_forever);
1979
1980 getrawmonotonic(&now);
1981
1982 ring->irq_put(ring);
1983 trace_i915_gem_request_wait_end(ring, seqno);
1984 #undef EXIT_COND
1985
1986 if (timeout) {
1987 struct timespec sleep_time = timespec_sub(now, before);
1988 *timeout = timespec_sub(*timeout, sleep_time);
1989 }
1990
1991 switch (end) {
1992 case -EAGAIN: /* Wedged */
1993 case -ERESTARTSYS: /* Signal */
1994 return (int)end;
1995 case 0: /* Timeout */
1996 if (timeout)
1997 set_normalized_timespec(timeout, 0, 0);
1998 return -ETIME;
1999 default: /* Completed */
2000 WARN_ON(end < 0); /* We're not aware of other errors */
2001 return 0;
2002 }
2003 }
2004
2005 /**
2006 * Waits for a sequence number to be signaled, and cleans up the
2007 * request and object lists appropriately for that event.
2008 */
2009 int
2010 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2011 {
2012 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2013 int ret = 0;
2014
2015 BUG_ON(seqno == 0);
2016
2017 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2018 if (ret)
2019 return ret;
2020
2021 ret = i915_gem_check_olr(ring, seqno);
2022 if (ret)
2023 return ret;
2024
2025 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2026
2027 return ret;
2028 }
2029
2030 /**
2031 * Ensures that all rendering to the object has completed and the object is
2032 * safe to unbind from the GTT or access from the CPU.
2033 */
2034 int
2035 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2036 {
2037 int ret;
2038
2039 /* This function only exists to support waiting for existing rendering,
2040 * not for emitting required flushes.
2041 */
2042 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2043
2044 /* If there is rendering queued on the buffer being evicted, wait for
2045 * it.
2046 */
2047 if (obj->active) {
2048 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2049 if (ret)
2050 return ret;
2051 i915_gem_retire_requests_ring(obj->ring);
2052 }
2053
2054 return 0;
2055 }
2056
2057 /**
2058 * Ensures that an object will eventually get non-busy by flushing any required
2059 * write domains, emitting any outstanding lazy request and retiring and
2060 * completed requests.
2061 */
2062 static int
2063 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2064 {
2065 int ret;
2066
2067 if (obj->active) {
2068 ret = i915_gem_object_flush_gpu_write_domain(obj);
2069 if (ret)
2070 return ret;
2071
2072 ret = i915_gem_check_olr(obj->ring,
2073 obj->last_rendering_seqno);
2074 if (ret)
2075 return ret;
2076 i915_gem_retire_requests_ring(obj->ring);
2077 }
2078
2079 return 0;
2080 }
2081
2082 /**
2083 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2084 * @DRM_IOCTL_ARGS: standard ioctl arguments
2085 *
2086 * Returns 0 if successful, else an error is returned with the remaining time in
2087 * the timeout parameter.
2088 * -ETIME: object is still busy after timeout
2089 * -ERESTARTSYS: signal interrupted the wait
2090 * -ENONENT: object doesn't exist
2091 * Also possible, but rare:
2092 * -EAGAIN: GPU wedged
2093 * -ENOMEM: damn
2094 * -ENODEV: Internal IRQ fail
2095 * -E?: The add request failed
2096 *
2097 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2098 * non-zero timeout parameter the wait ioctl will wait for the given number of
2099 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2100 * without holding struct_mutex the object may become re-busied before this
2101 * function completes. A similar but shorter * race condition exists in the busy
2102 * ioctl
2103 */
2104 int
2105 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2106 {
2107 struct drm_i915_gem_wait *args = data;
2108 struct drm_i915_gem_object *obj;
2109 struct intel_ring_buffer *ring = NULL;
2110 struct timespec timeout_stack, *timeout = NULL;
2111 u32 seqno = 0;
2112 int ret = 0;
2113
2114 if (args->timeout_ns >= 0) {
2115 timeout_stack = ns_to_timespec(args->timeout_ns);
2116 timeout = &timeout_stack;
2117 }
2118
2119 ret = i915_mutex_lock_interruptible(dev);
2120 if (ret)
2121 return ret;
2122
2123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2124 if (&obj->base == NULL) {
2125 mutex_unlock(&dev->struct_mutex);
2126 return -ENOENT;
2127 }
2128
2129 /* Need to make sure the object gets inactive eventually. */
2130 ret = i915_gem_object_flush_active(obj);
2131 if (ret)
2132 goto out;
2133
2134 if (obj->active) {
2135 seqno = obj->last_rendering_seqno;
2136 ring = obj->ring;
2137 }
2138
2139 if (seqno == 0)
2140 goto out;
2141
2142 /* Do this after OLR check to make sure we make forward progress polling
2143 * on this IOCTL with a 0 timeout (like busy ioctl)
2144 */
2145 if (!args->timeout_ns) {
2146 ret = -ETIME;
2147 goto out;
2148 }
2149
2150 drm_gem_object_unreference(&obj->base);
2151 mutex_unlock(&dev->struct_mutex);
2152
2153 ret = __wait_seqno(ring, seqno, true, timeout);
2154 if (timeout) {
2155 WARN_ON(!timespec_valid(timeout));
2156 args->timeout_ns = timespec_to_ns(timeout);
2157 }
2158 return ret;
2159
2160 out:
2161 drm_gem_object_unreference(&obj->base);
2162 mutex_unlock(&dev->struct_mutex);
2163 return ret;
2164 }
2165
2166 /**
2167 * i915_gem_object_sync - sync an object to a ring.
2168 *
2169 * @obj: object which may be in use on another ring.
2170 * @to: ring we wish to use the object on. May be NULL.
2171 *
2172 * This code is meant to abstract object synchronization with the GPU.
2173 * Calling with NULL implies synchronizing the object with the CPU
2174 * rather than a particular GPU ring.
2175 *
2176 * Returns 0 if successful, else propagates up the lower layer error.
2177 */
2178 int
2179 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2180 struct intel_ring_buffer *to)
2181 {
2182 struct intel_ring_buffer *from = obj->ring;
2183 u32 seqno;
2184 int ret, idx;
2185
2186 if (from == NULL || to == from)
2187 return 0;
2188
2189 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2190 return i915_gem_object_wait_rendering(obj);
2191
2192 idx = intel_ring_sync_index(from, to);
2193
2194 seqno = obj->last_rendering_seqno;
2195 if (seqno <= from->sync_seqno[idx])
2196 return 0;
2197
2198 ret = i915_gem_check_olr(obj->ring, seqno);
2199 if (ret)
2200 return ret;
2201
2202 ret = to->sync_to(to, from, seqno);
2203 if (!ret)
2204 from->sync_seqno[idx] = seqno;
2205
2206 return ret;
2207 }
2208
2209 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2210 {
2211 u32 old_write_domain, old_read_domains;
2212
2213 /* Act a barrier for all accesses through the GTT */
2214 mb();
2215
2216 /* Force a pagefault for domain tracking on next user access */
2217 i915_gem_release_mmap(obj);
2218
2219 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2220 return;
2221
2222 old_read_domains = obj->base.read_domains;
2223 old_write_domain = obj->base.write_domain;
2224
2225 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2226 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2227
2228 trace_i915_gem_object_change_domain(obj,
2229 old_read_domains,
2230 old_write_domain);
2231 }
2232
2233 /**
2234 * Unbinds an object from the GTT aperture.
2235 */
2236 int
2237 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2238 {
2239 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2240 int ret = 0;
2241
2242 if (obj->gtt_space == NULL)
2243 return 0;
2244
2245 if (obj->pin_count)
2246 return -EBUSY;
2247
2248 ret = i915_gem_object_finish_gpu(obj);
2249 if (ret)
2250 return ret;
2251 /* Continue on if we fail due to EIO, the GPU is hung so we
2252 * should be safe and we need to cleanup or else we might
2253 * cause memory corruption through use-after-free.
2254 */
2255
2256 i915_gem_object_finish_gtt(obj);
2257
2258 /* Move the object to the CPU domain to ensure that
2259 * any possible CPU writes while it's not in the GTT
2260 * are flushed when we go to remap it.
2261 */
2262 if (ret == 0)
2263 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2264 if (ret == -ERESTARTSYS)
2265 return ret;
2266 if (ret) {
2267 /* In the event of a disaster, abandon all caches and
2268 * hope for the best.
2269 */
2270 i915_gem_clflush_object(obj);
2271 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2272 }
2273
2274 /* release the fence reg _after_ flushing */
2275 ret = i915_gem_object_put_fence(obj);
2276 if (ret)
2277 return ret;
2278
2279 trace_i915_gem_object_unbind(obj);
2280
2281 if (obj->has_global_gtt_mapping)
2282 i915_gem_gtt_unbind_object(obj);
2283 if (obj->has_aliasing_ppgtt_mapping) {
2284 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2285 obj->has_aliasing_ppgtt_mapping = 0;
2286 }
2287 i915_gem_gtt_finish_object(obj);
2288
2289 i915_gem_object_put_pages_gtt(obj);
2290
2291 list_del_init(&obj->gtt_list);
2292 list_del_init(&obj->mm_list);
2293 /* Avoid an unnecessary call to unbind on rebind. */
2294 obj->map_and_fenceable = true;
2295
2296 drm_mm_put_block(obj->gtt_space);
2297 obj->gtt_space = NULL;
2298 obj->gtt_offset = 0;
2299
2300 if (i915_gem_object_is_purgeable(obj))
2301 i915_gem_object_truncate(obj);
2302
2303 return ret;
2304 }
2305
2306 int
2307 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2308 uint32_t invalidate_domains,
2309 uint32_t flush_domains)
2310 {
2311 int ret;
2312
2313 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2314 return 0;
2315
2316 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2317
2318 ret = ring->flush(ring, invalidate_domains, flush_domains);
2319 if (ret)
2320 return ret;
2321
2322 if (flush_domains & I915_GEM_GPU_DOMAINS)
2323 i915_gem_process_flushing_list(ring, flush_domains);
2324
2325 return 0;
2326 }
2327
2328 static int i915_ring_idle(struct intel_ring_buffer *ring)
2329 {
2330 int ret;
2331
2332 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2333 return 0;
2334
2335 if (!list_empty(&ring->gpu_write_list)) {
2336 ret = i915_gem_flush_ring(ring,
2337 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2338 if (ret)
2339 return ret;
2340 }
2341
2342 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2343 }
2344
2345 int i915_gpu_idle(struct drm_device *dev)
2346 {
2347 drm_i915_private_t *dev_priv = dev->dev_private;
2348 struct intel_ring_buffer *ring;
2349 int ret, i;
2350
2351 /* Flush everything onto the inactive list. */
2352 for_each_ring(ring, dev_priv, i) {
2353 ret = i915_ring_idle(ring);
2354 if (ret)
2355 return ret;
2356
2357 /* Is the device fubar? */
2358 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2359 return -EBUSY;
2360
2361 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2362 if (ret)
2363 return ret;
2364 }
2365
2366 return 0;
2367 }
2368
2369 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2370 struct drm_i915_gem_object *obj)
2371 {
2372 drm_i915_private_t *dev_priv = dev->dev_private;
2373 uint64_t val;
2374
2375 if (obj) {
2376 u32 size = obj->gtt_space->size;
2377
2378 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2379 0xfffff000) << 32;
2380 val |= obj->gtt_offset & 0xfffff000;
2381 val |= (uint64_t)((obj->stride / 128) - 1) <<
2382 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2383
2384 if (obj->tiling_mode == I915_TILING_Y)
2385 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2386 val |= I965_FENCE_REG_VALID;
2387 } else
2388 val = 0;
2389
2390 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2391 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2392 }
2393
2394 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2395 struct drm_i915_gem_object *obj)
2396 {
2397 drm_i915_private_t *dev_priv = dev->dev_private;
2398 uint64_t val;
2399
2400 if (obj) {
2401 u32 size = obj->gtt_space->size;
2402
2403 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2404 0xfffff000) << 32;
2405 val |= obj->gtt_offset & 0xfffff000;
2406 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2407 if (obj->tiling_mode == I915_TILING_Y)
2408 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2409 val |= I965_FENCE_REG_VALID;
2410 } else
2411 val = 0;
2412
2413 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2414 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2415 }
2416
2417 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2418 struct drm_i915_gem_object *obj)
2419 {
2420 drm_i915_private_t *dev_priv = dev->dev_private;
2421 u32 val;
2422
2423 if (obj) {
2424 u32 size = obj->gtt_space->size;
2425 int pitch_val;
2426 int tile_width;
2427
2428 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2429 (size & -size) != size ||
2430 (obj->gtt_offset & (size - 1)),
2431 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2432 obj->gtt_offset, obj->map_and_fenceable, size);
2433
2434 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2435 tile_width = 128;
2436 else
2437 tile_width = 512;
2438
2439 /* Note: pitch better be a power of two tile widths */
2440 pitch_val = obj->stride / tile_width;
2441 pitch_val = ffs(pitch_val) - 1;
2442
2443 val = obj->gtt_offset;
2444 if (obj->tiling_mode == I915_TILING_Y)
2445 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2446 val |= I915_FENCE_SIZE_BITS(size);
2447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2448 val |= I830_FENCE_REG_VALID;
2449 } else
2450 val = 0;
2451
2452 if (reg < 8)
2453 reg = FENCE_REG_830_0 + reg * 4;
2454 else
2455 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2456
2457 I915_WRITE(reg, val);
2458 POSTING_READ(reg);
2459 }
2460
2461 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2462 struct drm_i915_gem_object *obj)
2463 {
2464 drm_i915_private_t *dev_priv = dev->dev_private;
2465 uint32_t val;
2466
2467 if (obj) {
2468 u32 size = obj->gtt_space->size;
2469 uint32_t pitch_val;
2470
2471 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2472 (size & -size) != size ||
2473 (obj->gtt_offset & (size - 1)),
2474 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2475 obj->gtt_offset, size);
2476
2477 pitch_val = obj->stride / 128;
2478 pitch_val = ffs(pitch_val) - 1;
2479
2480 val = obj->gtt_offset;
2481 if (obj->tiling_mode == I915_TILING_Y)
2482 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2483 val |= I830_FENCE_SIZE_BITS(size);
2484 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2485 val |= I830_FENCE_REG_VALID;
2486 } else
2487 val = 0;
2488
2489 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2490 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2491 }
2492
2493 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2494 struct drm_i915_gem_object *obj)
2495 {
2496 switch (INTEL_INFO(dev)->gen) {
2497 case 7:
2498 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2499 case 5:
2500 case 4: i965_write_fence_reg(dev, reg, obj); break;
2501 case 3: i915_write_fence_reg(dev, reg, obj); break;
2502 case 2: i830_write_fence_reg(dev, reg, obj); break;
2503 default: break;
2504 }
2505 }
2506
2507 static inline int fence_number(struct drm_i915_private *dev_priv,
2508 struct drm_i915_fence_reg *fence)
2509 {
2510 return fence - dev_priv->fence_regs;
2511 }
2512
2513 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2514 struct drm_i915_fence_reg *fence,
2515 bool enable)
2516 {
2517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2518 int reg = fence_number(dev_priv, fence);
2519
2520 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2521
2522 if (enable) {
2523 obj->fence_reg = reg;
2524 fence->obj = obj;
2525 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2526 } else {
2527 obj->fence_reg = I915_FENCE_REG_NONE;
2528 fence->obj = NULL;
2529 list_del_init(&fence->lru_list);
2530 }
2531 }
2532
2533 static int
2534 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2535 {
2536 int ret;
2537
2538 if (obj->fenced_gpu_access) {
2539 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2540 ret = i915_gem_flush_ring(obj->ring,
2541 0, obj->base.write_domain);
2542 if (ret)
2543 return ret;
2544 }
2545
2546 obj->fenced_gpu_access = false;
2547 }
2548
2549 if (obj->last_fenced_seqno) {
2550 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2551 if (ret)
2552 return ret;
2553
2554 obj->last_fenced_seqno = 0;
2555 }
2556
2557 /* Ensure that all CPU reads are completed before installing a fence
2558 * and all writes before removing the fence.
2559 */
2560 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2561 mb();
2562
2563 return 0;
2564 }
2565
2566 int
2567 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2568 {
2569 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2570 int ret;
2571
2572 ret = i915_gem_object_flush_fence(obj);
2573 if (ret)
2574 return ret;
2575
2576 if (obj->fence_reg == I915_FENCE_REG_NONE)
2577 return 0;
2578
2579 i915_gem_object_update_fence(obj,
2580 &dev_priv->fence_regs[obj->fence_reg],
2581 false);
2582 i915_gem_object_fence_lost(obj);
2583
2584 return 0;
2585 }
2586
2587 static struct drm_i915_fence_reg *
2588 i915_find_fence_reg(struct drm_device *dev)
2589 {
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct drm_i915_fence_reg *reg, *avail;
2592 int i;
2593
2594 /* First try to find a free reg */
2595 avail = NULL;
2596 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2597 reg = &dev_priv->fence_regs[i];
2598 if (!reg->obj)
2599 return reg;
2600
2601 if (!reg->pin_count)
2602 avail = reg;
2603 }
2604
2605 if (avail == NULL)
2606 return NULL;
2607
2608 /* None available, try to steal one or wait for a user to finish */
2609 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2610 if (reg->pin_count)
2611 continue;
2612
2613 return reg;
2614 }
2615
2616 return NULL;
2617 }
2618
2619 /**
2620 * i915_gem_object_get_fence - set up fencing for an object
2621 * @obj: object to map through a fence reg
2622 *
2623 * When mapping objects through the GTT, userspace wants to be able to write
2624 * to them without having to worry about swizzling if the object is tiled.
2625 * This function walks the fence regs looking for a free one for @obj,
2626 * stealing one if it can't find any.
2627 *
2628 * It then sets up the reg based on the object's properties: address, pitch
2629 * and tiling format.
2630 *
2631 * For an untiled surface, this removes any existing fence.
2632 */
2633 int
2634 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2635 {
2636 struct drm_device *dev = obj->base.dev;
2637 struct drm_i915_private *dev_priv = dev->dev_private;
2638 bool enable = obj->tiling_mode != I915_TILING_NONE;
2639 struct drm_i915_fence_reg *reg;
2640 int ret;
2641
2642 /* Have we updated the tiling parameters upon the object and so
2643 * will need to serialise the write to the associated fence register?
2644 */
2645 if (obj->fence_dirty) {
2646 ret = i915_gem_object_flush_fence(obj);
2647 if (ret)
2648 return ret;
2649 }
2650
2651 /* Just update our place in the LRU if our fence is getting reused. */
2652 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2653 reg = &dev_priv->fence_regs[obj->fence_reg];
2654 if (!obj->fence_dirty) {
2655 list_move_tail(&reg->lru_list,
2656 &dev_priv->mm.fence_list);
2657 return 0;
2658 }
2659 } else if (enable) {
2660 reg = i915_find_fence_reg(dev);
2661 if (reg == NULL)
2662 return -EDEADLK;
2663
2664 if (reg->obj) {
2665 struct drm_i915_gem_object *old = reg->obj;
2666
2667 ret = i915_gem_object_flush_fence(old);
2668 if (ret)
2669 return ret;
2670
2671 i915_gem_object_fence_lost(old);
2672 }
2673 } else
2674 return 0;
2675
2676 i915_gem_object_update_fence(obj, reg, enable);
2677 obj->fence_dirty = false;
2678
2679 return 0;
2680 }
2681
2682 /**
2683 * Finds free space in the GTT aperture and binds the object there.
2684 */
2685 static int
2686 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2687 unsigned alignment,
2688 bool map_and_fenceable)
2689 {
2690 struct drm_device *dev = obj->base.dev;
2691 drm_i915_private_t *dev_priv = dev->dev_private;
2692 struct drm_mm_node *free_space;
2693 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2694 u32 size, fence_size, fence_alignment, unfenced_alignment;
2695 bool mappable, fenceable;
2696 int ret;
2697
2698 if (obj->madv != I915_MADV_WILLNEED) {
2699 DRM_ERROR("Attempting to bind a purgeable object\n");
2700 return -EINVAL;
2701 }
2702
2703 fence_size = i915_gem_get_gtt_size(dev,
2704 obj->base.size,
2705 obj->tiling_mode);
2706 fence_alignment = i915_gem_get_gtt_alignment(dev,
2707 obj->base.size,
2708 obj->tiling_mode);
2709 unfenced_alignment =
2710 i915_gem_get_unfenced_gtt_alignment(dev,
2711 obj->base.size,
2712 obj->tiling_mode);
2713
2714 if (alignment == 0)
2715 alignment = map_and_fenceable ? fence_alignment :
2716 unfenced_alignment;
2717 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2718 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2719 return -EINVAL;
2720 }
2721
2722 size = map_and_fenceable ? fence_size : obj->base.size;
2723
2724 /* If the object is bigger than the entire aperture, reject it early
2725 * before evicting everything in a vain attempt to find space.
2726 */
2727 if (obj->base.size >
2728 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2729 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2730 return -E2BIG;
2731 }
2732
2733 search_free:
2734 if (map_and_fenceable)
2735 free_space =
2736 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2737 size, alignment, 0,
2738 dev_priv->mm.gtt_mappable_end,
2739 0);
2740 else
2741 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2742 size, alignment, 0);
2743
2744 if (free_space != NULL) {
2745 if (map_and_fenceable)
2746 obj->gtt_space =
2747 drm_mm_get_block_range_generic(free_space,
2748 size, alignment, 0,
2749 dev_priv->mm.gtt_mappable_end,
2750 0);
2751 else
2752 obj->gtt_space =
2753 drm_mm_get_block(free_space, size, alignment);
2754 }
2755 if (obj->gtt_space == NULL) {
2756 /* If the gtt is empty and we're still having trouble
2757 * fitting our object in, we're out of memory.
2758 */
2759 ret = i915_gem_evict_something(dev, size, alignment,
2760 map_and_fenceable);
2761 if (ret)
2762 return ret;
2763
2764 goto search_free;
2765 }
2766
2767 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2768 if (ret) {
2769 drm_mm_put_block(obj->gtt_space);
2770 obj->gtt_space = NULL;
2771
2772 if (ret == -ENOMEM) {
2773 /* first try to reclaim some memory by clearing the GTT */
2774 ret = i915_gem_evict_everything(dev, false);
2775 if (ret) {
2776 /* now try to shrink everyone else */
2777 if (gfpmask) {
2778 gfpmask = 0;
2779 goto search_free;
2780 }
2781
2782 return -ENOMEM;
2783 }
2784
2785 goto search_free;
2786 }
2787
2788 return ret;
2789 }
2790
2791 ret = i915_gem_gtt_prepare_object(obj);
2792 if (ret) {
2793 i915_gem_object_put_pages_gtt(obj);
2794 drm_mm_put_block(obj->gtt_space);
2795 obj->gtt_space = NULL;
2796
2797 if (i915_gem_evict_everything(dev, false))
2798 return ret;
2799
2800 goto search_free;
2801 }
2802
2803 if (!dev_priv->mm.aliasing_ppgtt)
2804 i915_gem_gtt_bind_object(obj, obj->cache_level);
2805
2806 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2807 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2808
2809 /* Assert that the object is not currently in any GPU domain. As it
2810 * wasn't in the GTT, there shouldn't be any way it could have been in
2811 * a GPU cache
2812 */
2813 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2814 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2815
2816 obj->gtt_offset = obj->gtt_space->start;
2817
2818 fenceable =
2819 obj->gtt_space->size == fence_size &&
2820 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2821
2822 mappable =
2823 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2824
2825 obj->map_and_fenceable = mappable && fenceable;
2826
2827 trace_i915_gem_object_bind(obj, map_and_fenceable);
2828 return 0;
2829 }
2830
2831 void
2832 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2833 {
2834 /* If we don't have a page list set up, then we're not pinned
2835 * to GPU, and we can ignore the cache flush because it'll happen
2836 * again at bind time.
2837 */
2838 if (obj->pages == NULL)
2839 return;
2840
2841 /* If the GPU is snooping the contents of the CPU cache,
2842 * we do not need to manually clear the CPU cache lines. However,
2843 * the caches are only snooped when the render cache is
2844 * flushed/invalidated. As we always have to emit invalidations
2845 * and flushes when moving into and out of the RENDER domain, correct
2846 * snooping behaviour occurs naturally as the result of our domain
2847 * tracking.
2848 */
2849 if (obj->cache_level != I915_CACHE_NONE)
2850 return;
2851
2852 trace_i915_gem_object_clflush(obj);
2853
2854 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2855 }
2856
2857 /** Flushes any GPU write domain for the object if it's dirty. */
2858 static int
2859 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2860 {
2861 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2862 return 0;
2863
2864 /* Queue the GPU write cache flushing we need. */
2865 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2866 }
2867
2868 /** Flushes the GTT write domain for the object if it's dirty. */
2869 static void
2870 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2871 {
2872 uint32_t old_write_domain;
2873
2874 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2875 return;
2876
2877 /* No actual flushing is required for the GTT write domain. Writes
2878 * to it immediately go to main memory as far as we know, so there's
2879 * no chipset flush. It also doesn't land in render cache.
2880 *
2881 * However, we do have to enforce the order so that all writes through
2882 * the GTT land before any writes to the device, such as updates to
2883 * the GATT itself.
2884 */
2885 wmb();
2886
2887 old_write_domain = obj->base.write_domain;
2888 obj->base.write_domain = 0;
2889
2890 trace_i915_gem_object_change_domain(obj,
2891 obj->base.read_domains,
2892 old_write_domain);
2893 }
2894
2895 /** Flushes the CPU write domain for the object if it's dirty. */
2896 static void
2897 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2898 {
2899 uint32_t old_write_domain;
2900
2901 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2902 return;
2903
2904 i915_gem_clflush_object(obj);
2905 intel_gtt_chipset_flush();
2906 old_write_domain = obj->base.write_domain;
2907 obj->base.write_domain = 0;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 obj->base.read_domains,
2911 old_write_domain);
2912 }
2913
2914 /**
2915 * Moves a single object to the GTT read, and possibly write domain.
2916 *
2917 * This function returns when the move is complete, including waiting on
2918 * flushes to occur.
2919 */
2920 int
2921 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2922 {
2923 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2924 uint32_t old_write_domain, old_read_domains;
2925 int ret;
2926
2927 /* Not valid to be called on unbound objects. */
2928 if (obj->gtt_space == NULL)
2929 return -EINVAL;
2930
2931 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2932 return 0;
2933
2934 ret = i915_gem_object_flush_gpu_write_domain(obj);
2935 if (ret)
2936 return ret;
2937
2938 if (obj->pending_gpu_write || write) {
2939 ret = i915_gem_object_wait_rendering(obj);
2940 if (ret)
2941 return ret;
2942 }
2943
2944 i915_gem_object_flush_cpu_write_domain(obj);
2945
2946 old_write_domain = obj->base.write_domain;
2947 old_read_domains = obj->base.read_domains;
2948
2949 /* It should now be out of any other write domains, and we can update
2950 * the domain values for our changes.
2951 */
2952 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2953 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2954 if (write) {
2955 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2956 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2957 obj->dirty = 1;
2958 }
2959
2960 trace_i915_gem_object_change_domain(obj,
2961 old_read_domains,
2962 old_write_domain);
2963
2964 /* And bump the LRU for this access */
2965 if (i915_gem_object_is_inactive(obj))
2966 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2967
2968 return 0;
2969 }
2970
2971 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2972 enum i915_cache_level cache_level)
2973 {
2974 struct drm_device *dev = obj->base.dev;
2975 drm_i915_private_t *dev_priv = dev->dev_private;
2976 int ret;
2977
2978 if (obj->cache_level == cache_level)
2979 return 0;
2980
2981 if (obj->pin_count) {
2982 DRM_DEBUG("can not change the cache level of pinned objects\n");
2983 return -EBUSY;
2984 }
2985
2986 if (obj->gtt_space) {
2987 ret = i915_gem_object_finish_gpu(obj);
2988 if (ret)
2989 return ret;
2990
2991 i915_gem_object_finish_gtt(obj);
2992
2993 /* Before SandyBridge, you could not use tiling or fence
2994 * registers with snooped memory, so relinquish any fences
2995 * currently pointing to our region in the aperture.
2996 */
2997 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2998 ret = i915_gem_object_put_fence(obj);
2999 if (ret)
3000 return ret;
3001 }
3002
3003 if (obj->has_global_gtt_mapping)
3004 i915_gem_gtt_bind_object(obj, cache_level);
3005 if (obj->has_aliasing_ppgtt_mapping)
3006 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3007 obj, cache_level);
3008 }
3009
3010 if (cache_level == I915_CACHE_NONE) {
3011 u32 old_read_domains, old_write_domain;
3012
3013 /* If we're coming from LLC cached, then we haven't
3014 * actually been tracking whether the data is in the
3015 * CPU cache or not, since we only allow one bit set
3016 * in obj->write_domain and have been skipping the clflushes.
3017 * Just set it to the CPU cache for now.
3018 */
3019 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3020 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3021
3022 old_read_domains = obj->base.read_domains;
3023 old_write_domain = obj->base.write_domain;
3024
3025 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3026 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3027
3028 trace_i915_gem_object_change_domain(obj,
3029 old_read_domains,
3030 old_write_domain);
3031 }
3032
3033 obj->cache_level = cache_level;
3034 return 0;
3035 }
3036
3037 /*
3038 * Prepare buffer for display plane (scanout, cursors, etc).
3039 * Can be called from an uninterruptible phase (modesetting) and allows
3040 * any flushes to be pipelined (for pageflips).
3041 */
3042 int
3043 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3044 u32 alignment,
3045 struct intel_ring_buffer *pipelined)
3046 {
3047 u32 old_read_domains, old_write_domain;
3048 int ret;
3049
3050 ret = i915_gem_object_flush_gpu_write_domain(obj);
3051 if (ret)
3052 return ret;
3053
3054 if (pipelined != obj->ring) {
3055 ret = i915_gem_object_sync(obj, pipelined);
3056 if (ret)
3057 return ret;
3058 }
3059
3060 /* The display engine is not coherent with the LLC cache on gen6. As
3061 * a result, we make sure that the pinning that is about to occur is
3062 * done with uncached PTEs. This is lowest common denominator for all
3063 * chipsets.
3064 *
3065 * However for gen6+, we could do better by using the GFDT bit instead
3066 * of uncaching, which would allow us to flush all the LLC-cached data
3067 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3068 */
3069 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3070 if (ret)
3071 return ret;
3072
3073 /* As the user may map the buffer once pinned in the display plane
3074 * (e.g. libkms for the bootup splash), we have to ensure that we
3075 * always use map_and_fenceable for all scanout buffers.
3076 */
3077 ret = i915_gem_object_pin(obj, alignment, true);
3078 if (ret)
3079 return ret;
3080
3081 i915_gem_object_flush_cpu_write_domain(obj);
3082
3083 old_write_domain = obj->base.write_domain;
3084 old_read_domains = obj->base.read_domains;
3085
3086 /* It should now be out of any other write domains, and we can update
3087 * the domain values for our changes.
3088 */
3089 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3090 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3091
3092 trace_i915_gem_object_change_domain(obj,
3093 old_read_domains,
3094 old_write_domain);
3095
3096 return 0;
3097 }
3098
3099 int
3100 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3101 {
3102 int ret;
3103
3104 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3105 return 0;
3106
3107 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3108 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3109 if (ret)
3110 return ret;
3111 }
3112
3113 ret = i915_gem_object_wait_rendering(obj);
3114 if (ret)
3115 return ret;
3116
3117 /* Ensure that we invalidate the GPU's caches and TLBs. */
3118 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3119 return 0;
3120 }
3121
3122 /**
3123 * Moves a single object to the CPU read, and possibly write domain.
3124 *
3125 * This function returns when the move is complete, including waiting on
3126 * flushes to occur.
3127 */
3128 int
3129 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3130 {
3131 uint32_t old_write_domain, old_read_domains;
3132 int ret;
3133
3134 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3135 return 0;
3136
3137 ret = i915_gem_object_flush_gpu_write_domain(obj);
3138 if (ret)
3139 return ret;
3140
3141 if (write || obj->pending_gpu_write) {
3142 ret = i915_gem_object_wait_rendering(obj);
3143 if (ret)
3144 return ret;
3145 }
3146
3147 i915_gem_object_flush_gtt_write_domain(obj);
3148
3149 old_write_domain = obj->base.write_domain;
3150 old_read_domains = obj->base.read_domains;
3151
3152 /* Flush the CPU cache if it's still invalid. */
3153 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3154 i915_gem_clflush_object(obj);
3155
3156 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3157 }
3158
3159 /* It should now be out of any other write domains, and we can update
3160 * the domain values for our changes.
3161 */
3162 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3163
3164 /* If we're writing through the CPU, then the GPU read domains will
3165 * need to be invalidated at next use.
3166 */
3167 if (write) {
3168 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3169 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3170 }
3171
3172 trace_i915_gem_object_change_domain(obj,
3173 old_read_domains,
3174 old_write_domain);
3175
3176 return 0;
3177 }
3178
3179 /* Throttle our rendering by waiting until the ring has completed our requests
3180 * emitted over 20 msec ago.
3181 *
3182 * Note that if we were to use the current jiffies each time around the loop,
3183 * we wouldn't escape the function with any frames outstanding if the time to
3184 * render a frame was over 20ms.
3185 *
3186 * This should get us reasonable parallelism between CPU and GPU but also
3187 * relatively low latency when blocking on a particular request to finish.
3188 */
3189 static int
3190 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 struct drm_i915_file_private *file_priv = file->driver_priv;
3194 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3195 struct drm_i915_gem_request *request;
3196 struct intel_ring_buffer *ring = NULL;
3197 u32 seqno = 0;
3198 int ret;
3199
3200 if (atomic_read(&dev_priv->mm.wedged))
3201 return -EIO;
3202
3203 spin_lock(&file_priv->mm.lock);
3204 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3205 if (time_after_eq(request->emitted_jiffies, recent_enough))
3206 break;
3207
3208 ring = request->ring;
3209 seqno = request->seqno;
3210 }
3211 spin_unlock(&file_priv->mm.lock);
3212
3213 if (seqno == 0)
3214 return 0;
3215
3216 ret = __wait_seqno(ring, seqno, true, NULL);
3217 if (ret == 0)
3218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3219
3220 return ret;
3221 }
3222
3223 int
3224 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3225 uint32_t alignment,
3226 bool map_and_fenceable)
3227 {
3228 int ret;
3229
3230 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3231
3232 if (obj->gtt_space != NULL) {
3233 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3234 (map_and_fenceable && !obj->map_and_fenceable)) {
3235 WARN(obj->pin_count,
3236 "bo is already pinned with incorrect alignment:"
3237 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3238 " obj->map_and_fenceable=%d\n",
3239 obj->gtt_offset, alignment,
3240 map_and_fenceable,
3241 obj->map_and_fenceable);
3242 ret = i915_gem_object_unbind(obj);
3243 if (ret)
3244 return ret;
3245 }
3246 }
3247
3248 if (obj->gtt_space == NULL) {
3249 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3250 map_and_fenceable);
3251 if (ret)
3252 return ret;
3253 }
3254
3255 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3256 i915_gem_gtt_bind_object(obj, obj->cache_level);
3257
3258 obj->pin_count++;
3259 obj->pin_mappable |= map_and_fenceable;
3260
3261 return 0;
3262 }
3263
3264 void
3265 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3266 {
3267 BUG_ON(obj->pin_count == 0);
3268 BUG_ON(obj->gtt_space == NULL);
3269
3270 if (--obj->pin_count == 0)
3271 obj->pin_mappable = false;
3272 }
3273
3274 int
3275 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3276 struct drm_file *file)
3277 {
3278 struct drm_i915_gem_pin *args = data;
3279 struct drm_i915_gem_object *obj;
3280 int ret;
3281
3282 ret = i915_mutex_lock_interruptible(dev);
3283 if (ret)
3284 return ret;
3285
3286 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3287 if (&obj->base == NULL) {
3288 ret = -ENOENT;
3289 goto unlock;
3290 }
3291
3292 if (obj->madv != I915_MADV_WILLNEED) {
3293 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3294 ret = -EINVAL;
3295 goto out;
3296 }
3297
3298 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3299 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3300 args->handle);
3301 ret = -EINVAL;
3302 goto out;
3303 }
3304
3305 obj->user_pin_count++;
3306 obj->pin_filp = file;
3307 if (obj->user_pin_count == 1) {
3308 ret = i915_gem_object_pin(obj, args->alignment, true);
3309 if (ret)
3310 goto out;
3311 }
3312
3313 /* XXX - flush the CPU caches for pinned objects
3314 * as the X server doesn't manage domains yet
3315 */
3316 i915_gem_object_flush_cpu_write_domain(obj);
3317 args->offset = obj->gtt_offset;
3318 out:
3319 drm_gem_object_unreference(&obj->base);
3320 unlock:
3321 mutex_unlock(&dev->struct_mutex);
3322 return ret;
3323 }
3324
3325 int
3326 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3327 struct drm_file *file)
3328 {
3329 struct drm_i915_gem_pin *args = data;
3330 struct drm_i915_gem_object *obj;
3331 int ret;
3332
3333 ret = i915_mutex_lock_interruptible(dev);
3334 if (ret)
3335 return ret;
3336
3337 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3338 if (&obj->base == NULL) {
3339 ret = -ENOENT;
3340 goto unlock;
3341 }
3342
3343 if (obj->pin_filp != file) {
3344 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3345 args->handle);
3346 ret = -EINVAL;
3347 goto out;
3348 }
3349 obj->user_pin_count--;
3350 if (obj->user_pin_count == 0) {
3351 obj->pin_filp = NULL;
3352 i915_gem_object_unpin(obj);
3353 }
3354
3355 out:
3356 drm_gem_object_unreference(&obj->base);
3357 unlock:
3358 mutex_unlock(&dev->struct_mutex);
3359 return ret;
3360 }
3361
3362 int
3363 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3364 struct drm_file *file)
3365 {
3366 struct drm_i915_gem_busy *args = data;
3367 struct drm_i915_gem_object *obj;
3368 int ret;
3369
3370 ret = i915_mutex_lock_interruptible(dev);
3371 if (ret)
3372 return ret;
3373
3374 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3375 if (&obj->base == NULL) {
3376 ret = -ENOENT;
3377 goto unlock;
3378 }
3379
3380 /* Count all active objects as busy, even if they are currently not used
3381 * by the gpu. Users of this interface expect objects to eventually
3382 * become non-busy without any further actions, therefore emit any
3383 * necessary flushes here.
3384 */
3385 ret = i915_gem_object_flush_active(obj);
3386
3387 args->busy = obj->active;
3388
3389 drm_gem_object_unreference(&obj->base);
3390 unlock:
3391 mutex_unlock(&dev->struct_mutex);
3392 return ret;
3393 }
3394
3395 int
3396 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file_priv)
3398 {
3399 return i915_gem_ring_throttle(dev, file_priv);
3400 }
3401
3402 int
3403 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3404 struct drm_file *file_priv)
3405 {
3406 struct drm_i915_gem_madvise *args = data;
3407 struct drm_i915_gem_object *obj;
3408 int ret;
3409
3410 switch (args->madv) {
3411 case I915_MADV_DONTNEED:
3412 case I915_MADV_WILLNEED:
3413 break;
3414 default:
3415 return -EINVAL;
3416 }
3417
3418 ret = i915_mutex_lock_interruptible(dev);
3419 if (ret)
3420 return ret;
3421
3422 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3423 if (&obj->base == NULL) {
3424 ret = -ENOENT;
3425 goto unlock;
3426 }
3427
3428 if (obj->pin_count) {
3429 ret = -EINVAL;
3430 goto out;
3431 }
3432
3433 if (obj->madv != __I915_MADV_PURGED)
3434 obj->madv = args->madv;
3435
3436 /* if the object is no longer bound, discard its backing storage */
3437 if (i915_gem_object_is_purgeable(obj) &&
3438 obj->gtt_space == NULL)
3439 i915_gem_object_truncate(obj);
3440
3441 args->retained = obj->madv != __I915_MADV_PURGED;
3442
3443 out:
3444 drm_gem_object_unreference(&obj->base);
3445 unlock:
3446 mutex_unlock(&dev->struct_mutex);
3447 return ret;
3448 }
3449
3450 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3451 size_t size)
3452 {
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 struct drm_i915_gem_object *obj;
3455 struct address_space *mapping;
3456 u32 mask;
3457
3458 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3459 if (obj == NULL)
3460 return NULL;
3461
3462 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3463 kfree(obj);
3464 return NULL;
3465 }
3466
3467 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3468 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3469 /* 965gm cannot relocate objects above 4GiB. */
3470 mask &= ~__GFP_HIGHMEM;
3471 mask |= __GFP_DMA32;
3472 }
3473
3474 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3475 mapping_set_gfp_mask(mapping, mask);
3476
3477 i915_gem_info_add_obj(dev_priv, size);
3478
3479 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3480 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3481
3482 if (HAS_LLC(dev)) {
3483 /* On some devices, we can have the GPU use the LLC (the CPU
3484 * cache) for about a 10% performance improvement
3485 * compared to uncached. Graphics requests other than
3486 * display scanout are coherent with the CPU in
3487 * accessing this cache. This means in this mode we
3488 * don't need to clflush on the CPU side, and on the
3489 * GPU side we only need to flush internal caches to
3490 * get data visible to the CPU.
3491 *
3492 * However, we maintain the display planes as UC, and so
3493 * need to rebind when first used as such.
3494 */
3495 obj->cache_level = I915_CACHE_LLC;
3496 } else
3497 obj->cache_level = I915_CACHE_NONE;
3498
3499 obj->base.driver_private = NULL;
3500 obj->fence_reg = I915_FENCE_REG_NONE;
3501 INIT_LIST_HEAD(&obj->mm_list);
3502 INIT_LIST_HEAD(&obj->gtt_list);
3503 INIT_LIST_HEAD(&obj->ring_list);
3504 INIT_LIST_HEAD(&obj->exec_list);
3505 INIT_LIST_HEAD(&obj->gpu_write_list);
3506 obj->madv = I915_MADV_WILLNEED;
3507 /* Avoid an unnecessary call to unbind on the first bind. */
3508 obj->map_and_fenceable = true;
3509
3510 return obj;
3511 }
3512
3513 int i915_gem_init_object(struct drm_gem_object *obj)
3514 {
3515 BUG();
3516
3517 return 0;
3518 }
3519
3520 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3521 {
3522 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3523 struct drm_device *dev = obj->base.dev;
3524 drm_i915_private_t *dev_priv = dev->dev_private;
3525
3526 trace_i915_gem_object_destroy(obj);
3527
3528 if (gem_obj->import_attach)
3529 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3530
3531 if (obj->phys_obj)
3532 i915_gem_detach_phys_object(dev, obj);
3533
3534 obj->pin_count = 0;
3535 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3536 bool was_interruptible;
3537
3538 was_interruptible = dev_priv->mm.interruptible;
3539 dev_priv->mm.interruptible = false;
3540
3541 WARN_ON(i915_gem_object_unbind(obj));
3542
3543 dev_priv->mm.interruptible = was_interruptible;
3544 }
3545
3546 if (obj->base.map_list.map)
3547 drm_gem_free_mmap_offset(&obj->base);
3548
3549 drm_gem_object_release(&obj->base);
3550 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3551
3552 kfree(obj->bit_17);
3553 kfree(obj);
3554 }
3555
3556 int
3557 i915_gem_idle(struct drm_device *dev)
3558 {
3559 drm_i915_private_t *dev_priv = dev->dev_private;
3560 int ret;
3561
3562 mutex_lock(&dev->struct_mutex);
3563
3564 if (dev_priv->mm.suspended) {
3565 mutex_unlock(&dev->struct_mutex);
3566 return 0;
3567 }
3568
3569 ret = i915_gpu_idle(dev);
3570 if (ret) {
3571 mutex_unlock(&dev->struct_mutex);
3572 return ret;
3573 }
3574 i915_gem_retire_requests(dev);
3575
3576 /* Under UMS, be paranoid and evict. */
3577 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3578 i915_gem_evict_everything(dev, false);
3579
3580 i915_gem_reset_fences(dev);
3581
3582 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3583 * We need to replace this with a semaphore, or something.
3584 * And not confound mm.suspended!
3585 */
3586 dev_priv->mm.suspended = 1;
3587 del_timer_sync(&dev_priv->hangcheck_timer);
3588
3589 i915_kernel_lost_context(dev);
3590 i915_gem_cleanup_ringbuffer(dev);
3591
3592 mutex_unlock(&dev->struct_mutex);
3593
3594 /* Cancel the retire work handler, which should be idle now. */
3595 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3596
3597 return 0;
3598 }
3599
3600 void i915_gem_l3_remap(struct drm_device *dev)
3601 {
3602 drm_i915_private_t *dev_priv = dev->dev_private;
3603 u32 misccpctl;
3604 int i;
3605
3606 if (!IS_IVYBRIDGE(dev))
3607 return;
3608
3609 if (!dev_priv->mm.l3_remap_info)
3610 return;
3611
3612 misccpctl = I915_READ(GEN7_MISCCPCTL);
3613 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3614 POSTING_READ(GEN7_MISCCPCTL);
3615
3616 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3617 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3618 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3619 DRM_DEBUG("0x%x was already programmed to %x\n",
3620 GEN7_L3LOG_BASE + i, remap);
3621 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3622 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3623 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3624 }
3625
3626 /* Make sure all the writes land before disabling dop clock gating */
3627 POSTING_READ(GEN7_L3LOG_BASE);
3628
3629 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3630 }
3631
3632 void i915_gem_init_swizzling(struct drm_device *dev)
3633 {
3634 drm_i915_private_t *dev_priv = dev->dev_private;
3635
3636 if (INTEL_INFO(dev)->gen < 5 ||
3637 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3638 return;
3639
3640 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3641 DISP_TILE_SURFACE_SWIZZLING);
3642
3643 if (IS_GEN5(dev))
3644 return;
3645
3646 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3647 if (IS_GEN6(dev))
3648 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3649 else
3650 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3651 }
3652
3653 void i915_gem_init_ppgtt(struct drm_device *dev)
3654 {
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 uint32_t pd_offset;
3657 struct intel_ring_buffer *ring;
3658 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3659 uint32_t __iomem *pd_addr;
3660 uint32_t pd_entry;
3661 int i;
3662
3663 if (!dev_priv->mm.aliasing_ppgtt)
3664 return;
3665
3666
3667 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3668 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3669 dma_addr_t pt_addr;
3670
3671 if (dev_priv->mm.gtt->needs_dmar)
3672 pt_addr = ppgtt->pt_dma_addr[i];
3673 else
3674 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3675
3676 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3677 pd_entry |= GEN6_PDE_VALID;
3678
3679 writel(pd_entry, pd_addr + i);
3680 }
3681 readl(pd_addr);
3682
3683 pd_offset = ppgtt->pd_offset;
3684 pd_offset /= 64; /* in cachelines, */
3685 pd_offset <<= 16;
3686
3687 if (INTEL_INFO(dev)->gen == 6) {
3688 uint32_t ecochk, gab_ctl, ecobits;
3689
3690 ecobits = I915_READ(GAC_ECO_BITS);
3691 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3692
3693 gab_ctl = I915_READ(GAB_CTL);
3694 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3695
3696 ecochk = I915_READ(GAM_ECOCHK);
3697 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3698 ECOCHK_PPGTT_CACHE64B);
3699 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3700 } else if (INTEL_INFO(dev)->gen >= 7) {
3701 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3702 /* GFX_MODE is per-ring on gen7+ */
3703 }
3704
3705 for_each_ring(ring, dev_priv, i) {
3706 if (INTEL_INFO(dev)->gen >= 7)
3707 I915_WRITE(RING_MODE_GEN7(ring),
3708 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3709
3710 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3711 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3712 }
3713 }
3714
3715 int
3716 i915_gem_init_hw(struct drm_device *dev)
3717 {
3718 drm_i915_private_t *dev_priv = dev->dev_private;
3719 int ret;
3720
3721 if (!intel_enable_gtt())
3722 return -EIO;
3723
3724 i915_gem_l3_remap(dev);
3725
3726 i915_gem_init_swizzling(dev);
3727
3728 ret = intel_init_render_ring_buffer(dev);
3729 if (ret)
3730 return ret;
3731
3732 if (HAS_BSD(dev)) {
3733 ret = intel_init_bsd_ring_buffer(dev);
3734 if (ret)
3735 goto cleanup_render_ring;
3736 }
3737
3738 if (HAS_BLT(dev)) {
3739 ret = intel_init_blt_ring_buffer(dev);
3740 if (ret)
3741 goto cleanup_bsd_ring;
3742 }
3743
3744 dev_priv->next_seqno = 1;
3745
3746 /*
3747 * XXX: There was some w/a described somewhere suggesting loading
3748 * contexts before PPGTT.
3749 */
3750 i915_gem_context_init(dev);
3751 i915_gem_init_ppgtt(dev);
3752
3753 return 0;
3754
3755 cleanup_bsd_ring:
3756 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3757 cleanup_render_ring:
3758 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3759 return ret;
3760 }
3761
3762 static bool
3763 intel_enable_ppgtt(struct drm_device *dev)
3764 {
3765 if (i915_enable_ppgtt >= 0)
3766 return i915_enable_ppgtt;
3767
3768 #ifdef CONFIG_INTEL_IOMMU
3769 /* Disable ppgtt on SNB if VT-d is on. */
3770 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3771 return false;
3772 #endif
3773
3774 return true;
3775 }
3776
3777 int i915_gem_init(struct drm_device *dev)
3778 {
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 unsigned long gtt_size, mappable_size;
3781 int ret;
3782
3783 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3784 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3785
3786 mutex_lock(&dev->struct_mutex);
3787 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3788 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3789 * aperture accordingly when using aliasing ppgtt. */
3790 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3791
3792 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3793
3794 ret = i915_gem_init_aliasing_ppgtt(dev);
3795 if (ret) {
3796 mutex_unlock(&dev->struct_mutex);
3797 return ret;
3798 }
3799 } else {
3800 /* Let GEM Manage all of the aperture.
3801 *
3802 * However, leave one page at the end still bound to the scratch
3803 * page. There are a number of places where the hardware
3804 * apparently prefetches past the end of the object, and we've
3805 * seen multiple hangs with the GPU head pointer stuck in a
3806 * batchbuffer bound at the last page of the aperture. One page
3807 * should be enough to keep any prefetching inside of the
3808 * aperture.
3809 */
3810 i915_gem_init_global_gtt(dev, 0, mappable_size,
3811 gtt_size);
3812 }
3813
3814 ret = i915_gem_init_hw(dev);
3815 mutex_unlock(&dev->struct_mutex);
3816 if (ret) {
3817 i915_gem_cleanup_aliasing_ppgtt(dev);
3818 return ret;
3819 }
3820
3821 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3822 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3823 dev_priv->dri1.allow_batchbuffer = 1;
3824 return 0;
3825 }
3826
3827 void
3828 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3829 {
3830 drm_i915_private_t *dev_priv = dev->dev_private;
3831 struct intel_ring_buffer *ring;
3832 int i;
3833
3834 for_each_ring(ring, dev_priv, i)
3835 intel_cleanup_ring_buffer(ring);
3836 }
3837
3838 int
3839 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file_priv)
3841 {
3842 drm_i915_private_t *dev_priv = dev->dev_private;
3843 int ret;
3844
3845 if (drm_core_check_feature(dev, DRIVER_MODESET))
3846 return 0;
3847
3848 if (atomic_read(&dev_priv->mm.wedged)) {
3849 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3850 atomic_set(&dev_priv->mm.wedged, 0);
3851 }
3852
3853 mutex_lock(&dev->struct_mutex);
3854 dev_priv->mm.suspended = 0;
3855
3856 ret = i915_gem_init_hw(dev);
3857 if (ret != 0) {
3858 mutex_unlock(&dev->struct_mutex);
3859 return ret;
3860 }
3861
3862 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3863 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3864 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3865 mutex_unlock(&dev->struct_mutex);
3866
3867 ret = drm_irq_install(dev);
3868 if (ret)
3869 goto cleanup_ringbuffer;
3870
3871 return 0;
3872
3873 cleanup_ringbuffer:
3874 mutex_lock(&dev->struct_mutex);
3875 i915_gem_cleanup_ringbuffer(dev);
3876 dev_priv->mm.suspended = 1;
3877 mutex_unlock(&dev->struct_mutex);
3878
3879 return ret;
3880 }
3881
3882 int
3883 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3884 struct drm_file *file_priv)
3885 {
3886 if (drm_core_check_feature(dev, DRIVER_MODESET))
3887 return 0;
3888
3889 drm_irq_uninstall(dev);
3890 return i915_gem_idle(dev);
3891 }
3892
3893 void
3894 i915_gem_lastclose(struct drm_device *dev)
3895 {
3896 int ret;
3897
3898 if (drm_core_check_feature(dev, DRIVER_MODESET))
3899 return;
3900
3901 ret = i915_gem_idle(dev);
3902 if (ret)
3903 DRM_ERROR("failed to idle hardware: %d\n", ret);
3904 }
3905
3906 static void
3907 init_ring_lists(struct intel_ring_buffer *ring)
3908 {
3909 INIT_LIST_HEAD(&ring->active_list);
3910 INIT_LIST_HEAD(&ring->request_list);
3911 INIT_LIST_HEAD(&ring->gpu_write_list);
3912 }
3913
3914 void
3915 i915_gem_load(struct drm_device *dev)
3916 {
3917 int i;
3918 drm_i915_private_t *dev_priv = dev->dev_private;
3919
3920 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3921 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3922 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3923 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3924 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3925 for (i = 0; i < I915_NUM_RINGS; i++)
3926 init_ring_lists(&dev_priv->ring[i]);
3927 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3928 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3929 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3930 i915_gem_retire_work_handler);
3931 init_completion(&dev_priv->error_completion);
3932
3933 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3934 if (IS_GEN3(dev)) {
3935 I915_WRITE(MI_ARB_STATE,
3936 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3937 }
3938
3939 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3940
3941 /* Old X drivers will take 0-2 for front, back, depth buffers */
3942 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3943 dev_priv->fence_reg_start = 3;
3944
3945 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3946 dev_priv->num_fence_regs = 16;
3947 else
3948 dev_priv->num_fence_regs = 8;
3949
3950 /* Initialize fence registers to zero */
3951 i915_gem_reset_fences(dev);
3952
3953 i915_gem_detect_bit_6_swizzle(dev);
3954 init_waitqueue_head(&dev_priv->pending_flip_queue);
3955
3956 dev_priv->mm.interruptible = true;
3957
3958 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3959 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3960 register_shrinker(&dev_priv->mm.inactive_shrinker);
3961 }
3962
3963 /*
3964 * Create a physically contiguous memory object for this object
3965 * e.g. for cursor + overlay regs
3966 */
3967 static int i915_gem_init_phys_object(struct drm_device *dev,
3968 int id, int size, int align)
3969 {
3970 drm_i915_private_t *dev_priv = dev->dev_private;
3971 struct drm_i915_gem_phys_object *phys_obj;
3972 int ret;
3973
3974 if (dev_priv->mm.phys_objs[id - 1] || !size)
3975 return 0;
3976
3977 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3978 if (!phys_obj)
3979 return -ENOMEM;
3980
3981 phys_obj->id = id;
3982
3983 phys_obj->handle = drm_pci_alloc(dev, size, align);
3984 if (!phys_obj->handle) {
3985 ret = -ENOMEM;
3986 goto kfree_obj;
3987 }
3988 #ifdef CONFIG_X86
3989 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3990 #endif
3991
3992 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3993
3994 return 0;
3995 kfree_obj:
3996 kfree(phys_obj);
3997 return ret;
3998 }
3999
4000 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4001 {
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 struct drm_i915_gem_phys_object *phys_obj;
4004
4005 if (!dev_priv->mm.phys_objs[id - 1])
4006 return;
4007
4008 phys_obj = dev_priv->mm.phys_objs[id - 1];
4009 if (phys_obj->cur_obj) {
4010 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4011 }
4012
4013 #ifdef CONFIG_X86
4014 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4015 #endif
4016 drm_pci_free(dev, phys_obj->handle);
4017 kfree(phys_obj);
4018 dev_priv->mm.phys_objs[id - 1] = NULL;
4019 }
4020
4021 void i915_gem_free_all_phys_object(struct drm_device *dev)
4022 {
4023 int i;
4024
4025 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4026 i915_gem_free_phys_object(dev, i);
4027 }
4028
4029 void i915_gem_detach_phys_object(struct drm_device *dev,
4030 struct drm_i915_gem_object *obj)
4031 {
4032 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4033 char *vaddr;
4034 int i;
4035 int page_count;
4036
4037 if (!obj->phys_obj)
4038 return;
4039 vaddr = obj->phys_obj->handle->vaddr;
4040
4041 page_count = obj->base.size / PAGE_SIZE;
4042 for (i = 0; i < page_count; i++) {
4043 struct page *page = shmem_read_mapping_page(mapping, i);
4044 if (!IS_ERR(page)) {
4045 char *dst = kmap_atomic(page);
4046 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4047 kunmap_atomic(dst);
4048
4049 drm_clflush_pages(&page, 1);
4050
4051 set_page_dirty(page);
4052 mark_page_accessed(page);
4053 page_cache_release(page);
4054 }
4055 }
4056 intel_gtt_chipset_flush();
4057
4058 obj->phys_obj->cur_obj = NULL;
4059 obj->phys_obj = NULL;
4060 }
4061
4062 int
4063 i915_gem_attach_phys_object(struct drm_device *dev,
4064 struct drm_i915_gem_object *obj,
4065 int id,
4066 int align)
4067 {
4068 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4069 drm_i915_private_t *dev_priv = dev->dev_private;
4070 int ret = 0;
4071 int page_count;
4072 int i;
4073
4074 if (id > I915_MAX_PHYS_OBJECT)
4075 return -EINVAL;
4076
4077 if (obj->phys_obj) {
4078 if (obj->phys_obj->id == id)
4079 return 0;
4080 i915_gem_detach_phys_object(dev, obj);
4081 }
4082
4083 /* create a new object */
4084 if (!dev_priv->mm.phys_objs[id - 1]) {
4085 ret = i915_gem_init_phys_object(dev, id,
4086 obj->base.size, align);
4087 if (ret) {
4088 DRM_ERROR("failed to init phys object %d size: %zu\n",
4089 id, obj->base.size);
4090 return ret;
4091 }
4092 }
4093
4094 /* bind to the object */
4095 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4096 obj->phys_obj->cur_obj = obj;
4097
4098 page_count = obj->base.size / PAGE_SIZE;
4099
4100 for (i = 0; i < page_count; i++) {
4101 struct page *page;
4102 char *dst, *src;
4103
4104 page = shmem_read_mapping_page(mapping, i);
4105 if (IS_ERR(page))
4106 return PTR_ERR(page);
4107
4108 src = kmap_atomic(page);
4109 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4110 memcpy(dst, src, PAGE_SIZE);
4111 kunmap_atomic(src);
4112
4113 mark_page_accessed(page);
4114 page_cache_release(page);
4115 }
4116
4117 return 0;
4118 }
4119
4120 static int
4121 i915_gem_phys_pwrite(struct drm_device *dev,
4122 struct drm_i915_gem_object *obj,
4123 struct drm_i915_gem_pwrite *args,
4124 struct drm_file *file_priv)
4125 {
4126 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4127 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4128
4129 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4130 unsigned long unwritten;
4131
4132 /* The physical object once assigned is fixed for the lifetime
4133 * of the obj, so we can safely drop the lock and continue
4134 * to access vaddr.
4135 */
4136 mutex_unlock(&dev->struct_mutex);
4137 unwritten = copy_from_user(vaddr, user_data, args->size);
4138 mutex_lock(&dev->struct_mutex);
4139 if (unwritten)
4140 return -EFAULT;
4141 }
4142
4143 intel_gtt_chipset_flush();
4144 return 0;
4145 }
4146
4147 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4148 {
4149 struct drm_i915_file_private *file_priv = file->driver_priv;
4150
4151 /* Clean up our request list when the client is going away, so that
4152 * later retire_requests won't dereference our soon-to-be-gone
4153 * file_priv.
4154 */
4155 spin_lock(&file_priv->mm.lock);
4156 while (!list_empty(&file_priv->mm.request_list)) {
4157 struct drm_i915_gem_request *request;
4158
4159 request = list_first_entry(&file_priv->mm.request_list,
4160 struct drm_i915_gem_request,
4161 client_list);
4162 list_del(&request->client_list);
4163 request->file_priv = NULL;
4164 }
4165 spin_unlock(&file_priv->mm.lock);
4166 }
4167
4168 static int
4169 i915_gpu_is_active(struct drm_device *dev)
4170 {
4171 drm_i915_private_t *dev_priv = dev->dev_private;
4172 int lists_empty;
4173
4174 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4175 list_empty(&dev_priv->mm.active_list);
4176
4177 return !lists_empty;
4178 }
4179
4180 static int
4181 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4182 {
4183 struct drm_i915_private *dev_priv =
4184 container_of(shrinker,
4185 struct drm_i915_private,
4186 mm.inactive_shrinker);
4187 struct drm_device *dev = dev_priv->dev;
4188 struct drm_i915_gem_object *obj, *next;
4189 int nr_to_scan = sc->nr_to_scan;
4190 int cnt;
4191
4192 if (!mutex_trylock(&dev->struct_mutex))
4193 return 0;
4194
4195 /* "fast-path" to count number of available objects */
4196 if (nr_to_scan == 0) {
4197 cnt = 0;
4198 list_for_each_entry(obj,
4199 &dev_priv->mm.inactive_list,
4200 mm_list)
4201 cnt++;
4202 mutex_unlock(&dev->struct_mutex);
4203 return cnt / 100 * sysctl_vfs_cache_pressure;
4204 }
4205
4206 rescan:
4207 /* first scan for clean buffers */
4208 i915_gem_retire_requests(dev);
4209
4210 list_for_each_entry_safe(obj, next,
4211 &dev_priv->mm.inactive_list,
4212 mm_list) {
4213 if (i915_gem_object_is_purgeable(obj)) {
4214 if (i915_gem_object_unbind(obj) == 0 &&
4215 --nr_to_scan == 0)
4216 break;
4217 }
4218 }
4219
4220 /* second pass, evict/count anything still on the inactive list */
4221 cnt = 0;
4222 list_for_each_entry_safe(obj, next,
4223 &dev_priv->mm.inactive_list,
4224 mm_list) {
4225 if (nr_to_scan &&
4226 i915_gem_object_unbind(obj) == 0)
4227 nr_to_scan--;
4228 else
4229 cnt++;
4230 }
4231
4232 if (nr_to_scan && i915_gpu_is_active(dev)) {
4233 /*
4234 * We are desperate for pages, so as a last resort, wait
4235 * for the GPU to finish and discard whatever we can.
4236 * This has a dramatic impact to reduce the number of
4237 * OOM-killer events whilst running the GPU aggressively.
4238 */
4239 if (i915_gpu_idle(dev) == 0)
4240 goto rescan;
4241 }
4242 mutex_unlock(&dev->struct_mutex);
4243 return cnt / 100 * sysctl_vfs_cache_pressure;
4244 }
This page took 0.400547 seconds and 6 git commands to generate.