drm/i915: Add explicit request management to i915_gem_init_hw()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159
1160 if (req == req->ring->outstanding_lazy_request)
1161 i915_add_request(req->ring);
1162
1163 return 0;
1164 }
1165
1166 static void fake_irq(unsigned long data)
1167 {
1168 wake_up_process((struct task_struct *)data);
1169 }
1170
1171 static bool missed_irq(struct drm_i915_private *dev_priv,
1172 struct intel_engine_cs *ring)
1173 {
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175 }
1176
1177 static int __i915_spin_request(struct drm_i915_gem_request *req)
1178 {
1179 unsigned long timeout;
1180
1181 if (i915_gem_request_get_ring(req)->irq_refcount)
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
1186 if (i915_gem_request_completed(req, true))
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
1191
1192 cpu_relax_lowlatency();
1193 }
1194 if (i915_gem_request_completed(req, false))
1195 return 0;
1196
1197 return -EAGAIN;
1198 }
1199
1200 /**
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
1214 * Returns 0 if the request was found within the alloted time. Else returns the
1215 * errno with remaining time filled in timeout argument.
1216 */
1217 int __i915_wait_request(struct drm_i915_gem_request *req,
1218 unsigned reset_counter,
1219 bool interruptible,
1220 s64 *timeout,
1221 struct intel_rps_client *rps)
1222 {
1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224 struct drm_device *dev = ring->dev;
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228 DEFINE_WAIT(wait);
1229 unsigned long timeout_expire;
1230 s64 before, now;
1231 int ret;
1232
1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234
1235 if (list_empty(&req->list))
1236 return 0;
1237
1238 if (i915_gem_request_completed(req, true))
1239 return 0;
1240
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243
1244 if (INTEL_INFO(dev_priv)->gen >= 6)
1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246
1247 /* Record current time in case interrupted by signal, or wedged */
1248 trace_i915_gem_request_wait_begin(req);
1249 before = ktime_get_raw_ns();
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
1261 for (;;) {
1262 struct timer_list timer;
1263
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
1277
1278 if (i915_gem_request_completed(req, false)) {
1279 ret = 0;
1280 break;
1281 }
1282
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
1295 unsigned long expire;
1296
1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299 mod_timer(&timer, expire);
1300 }
1301
1302 io_schedule();
1303
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
1311
1312 finish_wait(&ring->irq_queue, &wait);
1313
1314 out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
1318 if (timeout) {
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
1332 }
1333
1334 return ret;
1335 }
1336
1337 static inline void
1338 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339 {
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395 * Waits for a request to be signaled, and cleans up the
1396 * request and object lists appropriately for that event.
1397 */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
1404 int ret;
1405
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 if (ret)
1416 return ret;
1417
1418 ret = i915_gem_check_olr(req);
1419 if (ret)
1420 return ret;
1421
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
1424 interruptible, NULL, NULL);
1425 if (ret)
1426 return ret;
1427
1428 __i915_gem_request_retire__upto(req);
1429 return 0;
1430 }
1431
1432 /**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
1436 int
1437 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439 {
1440 int ret, i;
1441
1442 if (!obj->active)
1443 return 0;
1444
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
1450
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472 }
1473
1474 static void
1475 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477 {
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
1484
1485 __i915_gem_request_retire__upto(req);
1486 }
1487
1488 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491 static __must_check int
1492 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493 struct intel_rps_client *rps,
1494 bool readonly)
1495 {
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499 unsigned reset_counter;
1500 int ret, i, n = 0;
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
1505 if (!obj->active)
1506 return 0;
1507
1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509 if (ret)
1510 return ret;
1511
1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
1542 mutex_unlock(&dev->struct_mutex);
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
1545 NULL, rps);
1546 mutex_lock(&dev->struct_mutex);
1547
1548 err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
1556 }
1557
1558 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559 {
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
1562 }
1563
1564 /**
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
1567 */
1568 int
1569 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570 struct drm_file *file)
1571 {
1572 struct drm_i915_gem_set_domain *args = data;
1573 struct drm_i915_gem_object *obj;
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
1576 int ret;
1577
1578 /* Only handle setting domains to types used by the CPU. */
1579 if (write_domain & I915_GEM_GPU_DOMAINS)
1580 return -EINVAL;
1581
1582 if (read_domains & I915_GEM_GPU_DOMAINS)
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
1591 ret = i915_mutex_lock_interruptible(dev);
1592 if (ret)
1593 return ret;
1594
1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596 if (&obj->base == NULL) {
1597 ret = -ENOENT;
1598 goto unlock;
1599 }
1600
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606 to_rps_client(file),
1607 !write_domain);
1608 if (ret)
1609 goto unref;
1610
1611 if (read_domains & I915_GEM_DOMAIN_GTT)
1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613 else
1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615
1616 unref:
1617 drm_gem_object_unreference(&obj->base);
1618 unlock:
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621 }
1622
1623 /**
1624 * Called when user space has done writes to this buffer
1625 */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_sw_finish *args = data;
1631 struct drm_i915_gem_object *obj;
1632 int ret = 0;
1633
1634 ret = i915_mutex_lock_interruptible(dev);
1635 if (ret)
1636 return ret;
1637
1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639 if (&obj->base == NULL) {
1640 ret = -ENOENT;
1641 goto unlock;
1642 }
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 if (obj->pin_display)
1646 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648 drm_gem_object_unreference(&obj->base);
1649 unlock:
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652 }
1653
1654 /**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674 {
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
1685 obj = drm_gem_object_lookup(dev, file, args->handle);
1686 if (obj == NULL)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
1713 drm_gem_object_unreference_unlocked(obj);
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720 }
1721
1722 /**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749 intel_runtime_pm_get(dev_priv);
1750
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
1758
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772 ret = -EFAULT;
1773 goto unlock;
1774 }
1775
1776 /* Use a partial view if the object is bigger than the aperture. */
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
1779 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 if (ret)
1794 goto unlock;
1795
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
1799
1800 ret = i915_gem_object_get_fence(obj);
1801 if (ret)
1802 goto unpin;
1803
1804 /* Finally, remap it using the new GTT offset */
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
1807 pfn >>= PAGE_SHIFT;
1808
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
1818
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
1847 unpin:
1848 i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850 mutex_unlock(&dev->struct_mutex);
1851 out:
1852 switch (ret) {
1853 case -EIO:
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
1864 case -EAGAIN:
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
1869 */
1870 case 0:
1871 case -ERESTARTSYS:
1872 case -EINTR:
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
1878 ret = VM_FAULT_NOPAGE;
1879 break;
1880 case -ENOMEM:
1881 ret = VM_FAULT_OOM;
1882 break;
1883 case -ENOSPC:
1884 case -EFAULT:
1885 ret = VM_FAULT_SIGBUS;
1886 break;
1887 default:
1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
1895 }
1896
1897 /**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
1901 * Preserve the reservation of the mmapping with the DRM core code, but
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914 if (!obj->fault_mappable)
1915 return;
1916
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
1919 obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934 uint32_t gtt_size;
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
1942 gtt_size = 1024*1024;
1943 else
1944 gtt_size = 512*1024;
1945
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
1948
1949 return gtt_size;
1950 }
1951
1952 /**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
1957 * potential fence register mapping.
1958 */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
1962 {
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968 tiling_mode == I915_TILING_NONE)
1969 return 4096;
1970
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 return 0;
1985
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
1990 goto out;
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
2006 goto out;
2007
2008 i915_gem_shrink_all(dev_priv);
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018 drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
2024 uint32_t handle,
2025 uint64_t *offset)
2026 {
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 ret = i915_mutex_lock_interruptible(dev);
2031 if (ret)
2032 return ret;
2033
2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035 if (&obj->base == NULL) {
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
2039
2040 if (obj->madv != I915_MADV_WILLNEED) {
2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042 ret = -EFAULT;
2043 goto out;
2044 }
2045
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
2049
2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053 drm_gem_object_unreference(&obj->base);
2054 unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 return ret;
2057 }
2058
2059 /**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077 {
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087 i915_gem_object_free_mmap_offset(obj);
2088
2089 if (obj->base.filp == NULL)
2090 return;
2091
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098 obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124 struct sg_page_iter sg_iter;
2125 int ret;
2126
2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2135 i915_gem_clflush_object(obj, true);
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
2139 if (i915_gem_object_needs_bit17_swizzle(obj))
2140 i915_gem_object_save_bit_17_swizzle(obj);
2141
2142 if (obj->madv == I915_MADV_DONTNEED)
2143 obj->dirty = 0;
2144
2145 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2146 struct page *page = sg_page_iter_page(&sg_iter);
2147
2148 if (obj->dirty)
2149 set_page_dirty(page);
2150
2151 if (obj->madv == I915_MADV_WILLNEED)
2152 mark_page_accessed(page);
2153
2154 page_cache_release(page);
2155 }
2156 obj->dirty = 0;
2157
2158 sg_free_table(obj->pages);
2159 kfree(obj->pages);
2160 }
2161
2162 int
2163 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164 {
2165 const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2167 if (obj->pages == NULL)
2168 return 0;
2169
2170 if (obj->pages_pin_count)
2171 return -EBUSY;
2172
2173 BUG_ON(i915_gem_obj_bound_any(obj));
2174
2175 /* ->put_pages might need to allocate memory for the bit17 swizzle
2176 * array, hence protect them from being reaped by removing them from gtt
2177 * lists early. */
2178 list_del(&obj->global_list);
2179
2180 ops->put_pages(obj);
2181 obj->pages = NULL;
2182
2183 i915_gem_object_invalidate(obj);
2184
2185 return 0;
2186 }
2187
2188 static int
2189 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2190 {
2191 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2192 int page_count, i;
2193 struct address_space *mapping;
2194 struct sg_table *st;
2195 struct scatterlist *sg;
2196 struct sg_page_iter sg_iter;
2197 struct page *page;
2198 unsigned long last_pfn = 0; /* suppress gcc warning */
2199 gfp_t gfp;
2200
2201 /* Assert that the object is not currently in any GPU domain. As it
2202 * wasn't in the GTT, there shouldn't be any way it could have been in
2203 * a GPU cache
2204 */
2205 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
2208 st = kmalloc(sizeof(*st), GFP_KERNEL);
2209 if (st == NULL)
2210 return -ENOMEM;
2211
2212 page_count = obj->base.size / PAGE_SIZE;
2213 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2214 kfree(st);
2215 return -ENOMEM;
2216 }
2217
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2220 *
2221 * Fail silently without starting the shrinker
2222 */
2223 mapping = file_inode(obj->base.filp)->i_mapping;
2224 gfp = mapping_gfp_mask(mapping);
2225 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2226 gfp &= ~(__GFP_IO | __GFP_WAIT);
2227 sg = st->sgl;
2228 st->nents = 0;
2229 for (i = 0; i < page_count; i++) {
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 if (IS_ERR(page)) {
2232 i915_gem_shrink(dev_priv,
2233 page_count,
2234 I915_SHRINK_BOUND |
2235 I915_SHRINK_UNBOUND |
2236 I915_SHRINK_PURGEABLE);
2237 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238 }
2239 if (IS_ERR(page)) {
2240 /* We've tried hard to allocate the memory by reaping
2241 * our own buffer, now let the real VM do its job and
2242 * go down in flames if truly OOM.
2243 */
2244 i915_gem_shrink_all(dev_priv);
2245 page = shmem_read_mapping_page(mapping, i);
2246 if (IS_ERR(page))
2247 goto err_pages;
2248 }
2249 #ifdef CONFIG_SWIOTLB
2250 if (swiotlb_nr_tbl()) {
2251 st->nents++;
2252 sg_set_page(sg, page, PAGE_SIZE, 0);
2253 sg = sg_next(sg);
2254 continue;
2255 }
2256 #endif
2257 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258 if (i)
2259 sg = sg_next(sg);
2260 st->nents++;
2261 sg_set_page(sg, page, PAGE_SIZE, 0);
2262 } else {
2263 sg->length += PAGE_SIZE;
2264 }
2265 last_pfn = page_to_pfn(page);
2266
2267 /* Check that the i965g/gm workaround works. */
2268 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2269 }
2270 #ifdef CONFIG_SWIOTLB
2271 if (!swiotlb_nr_tbl())
2272 #endif
2273 sg_mark_end(sg);
2274 obj->pages = st;
2275
2276 if (i915_gem_object_needs_bit17_swizzle(obj))
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
2283 return 0;
2284
2285 err_pages:
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288 page_cache_release(sg_page_iter_page(&sg_iter));
2289 sg_free_table(st);
2290 kfree(st);
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (PTR_ERR(page) == -ENOSPC)
2301 return -ENOMEM;
2302 else
2303 return PTR_ERR(page);
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2320 if (obj->pages)
2321 return 0;
2322
2323 if (obj->madv != I915_MADV_WILLNEED) {
2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325 return -EFAULT;
2326 }
2327
2328 BUG_ON(obj->pages_pin_count);
2329
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
2339 return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343 struct intel_engine_cs *ring)
2344 {
2345 struct drm_i915_gem_object *obj = vma->obj;
2346
2347 /* Add a reference if we're newly entering the active list. */
2348 if (obj->active == 0)
2349 drm_gem_object_reference(&obj->base);
2350 obj->active |= intel_ring_flag(ring);
2351
2352 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2353 i915_gem_request_assign(&obj->last_read_req[ring->id],
2354 intel_ring_get_request(ring));
2355
2356 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2357 }
2358
2359 static void
2360 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2361 {
2362 RQ_BUG_ON(obj->last_write_req == NULL);
2363 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2364
2365 i915_gem_request_assign(&obj->last_write_req, NULL);
2366 intel_fb_obj_flush(obj, true);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2371 {
2372 struct i915_vma *vma;
2373
2374 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2375 RQ_BUG_ON(!(obj->active & (1 << ring)));
2376
2377 list_del_init(&obj->ring_list[ring]);
2378 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2379
2380 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2381 i915_gem_object_retire__write(obj);
2382
2383 obj->active &= ~(1 << ring);
2384 if (obj->active)
2385 return;
2386
2387 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2388 if (!list_empty(&vma->mm_list))
2389 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2390 }
2391
2392 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2393 drm_gem_object_unreference(&obj->base);
2394 }
2395
2396 static int
2397 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2398 {
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 struct intel_engine_cs *ring;
2401 int ret, i, j;
2402
2403 /* Carefully retire all requests without writing to the rings */
2404 for_each_ring(ring, dev_priv, i) {
2405 ret = intel_ring_idle(ring);
2406 if (ret)
2407 return ret;
2408 }
2409 i915_gem_retire_requests(dev);
2410
2411 /* Finally reset hw state */
2412 for_each_ring(ring, dev_priv, i) {
2413 intel_ring_init_seqno(ring, seqno);
2414
2415 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2416 ring->semaphore.sync_seqno[j] = 0;
2417 }
2418
2419 return 0;
2420 }
2421
2422 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2423 {
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 int ret;
2426
2427 if (seqno == 0)
2428 return -EINVAL;
2429
2430 /* HWS page needs to be set less than what we
2431 * will inject to ring
2432 */
2433 ret = i915_gem_init_seqno(dev, seqno - 1);
2434 if (ret)
2435 return ret;
2436
2437 /* Carefully set the last_seqno value so that wrap
2438 * detection still works
2439 */
2440 dev_priv->next_seqno = seqno;
2441 dev_priv->last_seqno = seqno - 1;
2442 if (dev_priv->last_seqno == 0)
2443 dev_priv->last_seqno--;
2444
2445 return 0;
2446 }
2447
2448 int
2449 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2450 {
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453 /* reserve 0 for non-seqno */
2454 if (dev_priv->next_seqno == 0) {
2455 int ret = i915_gem_init_seqno(dev, 0);
2456 if (ret)
2457 return ret;
2458
2459 dev_priv->next_seqno = 1;
2460 }
2461
2462 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2463 return 0;
2464 }
2465
2466 /*
2467 * NB: This function is not allowed to fail. Doing so would mean the the
2468 * request is not being tracked for completion but the work itself is
2469 * going to happen on the hardware. This would be a Bad Thing(tm).
2470 */
2471 void __i915_add_request(struct intel_engine_cs *ring,
2472 struct drm_file *file,
2473 struct drm_i915_gem_object *obj,
2474 bool flush_caches)
2475 {
2476 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2477 struct drm_i915_gem_request *request;
2478 struct intel_ringbuffer *ringbuf;
2479 u32 request_start;
2480 int ret;
2481
2482 request = ring->outstanding_lazy_request;
2483 if (WARN_ON(request == NULL))
2484 return;
2485
2486 if (i915.enable_execlists) {
2487 ringbuf = request->ctx->engine[ring->id].ringbuf;
2488 } else
2489 ringbuf = ring->buffer;
2490
2491 /*
2492 * To ensure that this call will not fail, space for its emissions
2493 * should already have been reserved in the ring buffer. Let the ring
2494 * know that it is time to use that space up.
2495 */
2496 intel_ring_reserved_space_use(ringbuf);
2497
2498 request_start = intel_ring_get_tail(ringbuf);
2499 /*
2500 * Emit any outstanding flushes - execbuf can fail to emit the flush
2501 * after having emitted the batchbuffer command. Hence we need to fix
2502 * things up similar to emitting the lazy request. The difference here
2503 * is that the flush _must_ happen before the next request, no matter
2504 * what.
2505 */
2506 if (flush_caches) {
2507 if (i915.enable_execlists)
2508 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2509 else
2510 ret = intel_ring_flush_all_caches(ring);
2511 /* Not allowed to fail! */
2512 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2513 }
2514
2515 /* Record the position of the start of the request so that
2516 * should we detect the updated seqno part-way through the
2517 * GPU processing the request, we never over-estimate the
2518 * position of the head.
2519 */
2520 request->postfix = intel_ring_get_tail(ringbuf);
2521
2522 if (i915.enable_execlists)
2523 ret = ring->emit_request(ringbuf, request);
2524 else {
2525 ret = ring->add_request(ring);
2526
2527 request->tail = intel_ring_get_tail(ringbuf);
2528 }
2529 /* Not allowed to fail! */
2530 WARN(ret, "emit|add_request failed: %d!\n", ret);
2531
2532 request->head = request_start;
2533
2534 /* Whilst this request exists, batch_obj will be on the
2535 * active_list, and so will hold the active reference. Only when this
2536 * request is retired will the the batch_obj be moved onto the
2537 * inactive_list and lose its active reference. Hence we do not need
2538 * to explicitly hold another reference here.
2539 */
2540 request->batch_obj = obj;
2541
2542 WARN_ON(!i915.enable_execlists && (request->ctx != ring->last_context));
2543
2544 request->emitted_jiffies = jiffies;
2545 list_add_tail(&request->list, &ring->request_list);
2546 request->file_priv = NULL;
2547
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
2551 spin_lock(&file_priv->mm.lock);
2552 request->file_priv = file_priv;
2553 list_add_tail(&request->client_list,
2554 &file_priv->mm.request_list);
2555 spin_unlock(&file_priv->mm.lock);
2556
2557 request->pid = get_pid(task_pid(current));
2558 }
2559
2560 trace_i915_gem_request_add(request);
2561 ring->outstanding_lazy_request = NULL;
2562
2563 i915_queue_hangcheck(ring->dev);
2564
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
2569
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
2572 }
2573
2574 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2575 const struct intel_context *ctx)
2576 {
2577 unsigned long elapsed;
2578
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
2582 return true;
2583
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
2586 if (!i915_gem_context_is_default(ctx)) {
2587 DRM_DEBUG("context hanging too fast, banning!\n");
2588 return true;
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
2592 return true;
2593 }
2594 }
2595
2596 return false;
2597 }
2598
2599 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2600 struct intel_context *ctx,
2601 const bool guilty)
2602 {
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
2607
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
2616 }
2617 }
2618
2619 void i915_gem_request_free(struct kref *req_ref)
2620 {
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
2625 if (ctx) {
2626 if (i915.enable_execlists) {
2627 struct intel_engine_cs *ring = req->ring;
2628
2629 if (ctx != ring->default_context)
2630 intel_lr_context_unpin(ring, ctx);
2631 }
2632
2633 i915_gem_context_unreference(ctx);
2634 }
2635
2636 kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
2642 {
2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644 struct drm_i915_gem_request *req;
2645 int ret;
2646
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 if ((*req_out = ring->outstanding_lazy_request) != NULL)
2651 return 0;
2652
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
2655 return -ENOMEM;
2656
2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2658 if (ret)
2659 goto err;
2660
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
2663 req->ring = ring;
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
2666
2667 if (i915.enable_execlists)
2668 ret = intel_logical_ring_alloc_request_extras(req);
2669 else
2670 ret = intel_ring_alloc_request_extras(req);
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
2673 goto err;
2674 }
2675
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
2682 *
2683 * Note further that this call merely notes the reserve request. A
2684 * subsequent call to *_ring_begin() is required to actually ensure
2685 * that the reservation is available. Without the begin, if the
2686 * request creator immediately submitted the request without adding
2687 * any commands to it then there might not actually be sufficient
2688 * room for the submission commands. Unfortunately, the current
2689 * *_ring_begin() implementations potentially call back here to
2690 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
2691 * infinite recursion! Until that back call path is removed, it is
2692 * necessary to do a manual _begin() outside.
2693 */
2694 intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2695
2696 *req_out = ring->outstanding_lazy_request = req;
2697 return 0;
2698
2699 err:
2700 kmem_cache_free(dev_priv->requests, req);
2701 return ret;
2702 }
2703
2704 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705 {
2706 intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708 i915_gem_request_unreference(req);
2709 }
2710
2711 struct drm_i915_gem_request *
2712 i915_gem_find_active_request(struct intel_engine_cs *ring)
2713 {
2714 struct drm_i915_gem_request *request;
2715
2716 list_for_each_entry(request, &ring->request_list, list) {
2717 if (i915_gem_request_completed(request, false))
2718 continue;
2719
2720 return request;
2721 }
2722
2723 return NULL;
2724 }
2725
2726 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727 struct intel_engine_cs *ring)
2728 {
2729 struct drm_i915_gem_request *request;
2730 bool ring_hung;
2731
2732 request = i915_gem_find_active_request(ring);
2733
2734 if (request == NULL)
2735 return;
2736
2737 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
2739 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740
2741 list_for_each_entry_continue(request, &ring->request_list, list)
2742 i915_set_reset_status(dev_priv, request->ctx, false);
2743 }
2744
2745 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746 struct intel_engine_cs *ring)
2747 {
2748 while (!list_empty(&ring->active_list)) {
2749 struct drm_i915_gem_object *obj;
2750
2751 obj = list_first_entry(&ring->active_list,
2752 struct drm_i915_gem_object,
2753 ring_list[ring->id]);
2754
2755 i915_gem_object_retire__read(obj, ring->id);
2756 }
2757
2758 /*
2759 * Clear the execlists queue up before freeing the requests, as those
2760 * are the ones that keep the context and ringbuffer backing objects
2761 * pinned in place.
2762 */
2763 while (!list_empty(&ring->execlist_queue)) {
2764 struct drm_i915_gem_request *submit_req;
2765
2766 submit_req = list_first_entry(&ring->execlist_queue,
2767 struct drm_i915_gem_request,
2768 execlist_link);
2769 list_del(&submit_req->execlist_link);
2770
2771 if (submit_req->ctx != ring->default_context)
2772 intel_lr_context_unpin(ring, submit_req->ctx);
2773
2774 i915_gem_request_unreference(submit_req);
2775 }
2776
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
2791 i915_gem_request_retire(request);
2792 }
2793
2794 /* This may not have been flushed before the reset, so clean it now */
2795 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2796 }
2797
2798 void i915_gem_restore_fences(struct drm_device *dev)
2799 {
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801 int i;
2802
2803 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2804 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2805
2806 /*
2807 * Commit delayed tiling changes if we have an object still
2808 * attached to the fence, otherwise just clear the fence.
2809 */
2810 if (reg->obj) {
2811 i915_gem_object_update_fence(reg->obj, reg,
2812 reg->obj->tiling_mode);
2813 } else {
2814 i915_gem_write_fence(dev, i, NULL);
2815 }
2816 }
2817 }
2818
2819 void i915_gem_reset(struct drm_device *dev)
2820 {
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_engine_cs *ring;
2823 int i;
2824
2825 /*
2826 * Before we free the objects from the requests, we need to inspect
2827 * them for finding the guilty party. As the requests only borrow
2828 * their reference to the objects, the inspection must be done first.
2829 */
2830 for_each_ring(ring, dev_priv, i)
2831 i915_gem_reset_ring_status(dev_priv, ring);
2832
2833 for_each_ring(ring, dev_priv, i)
2834 i915_gem_reset_ring_cleanup(dev_priv, ring);
2835
2836 i915_gem_context_reset(dev);
2837
2838 i915_gem_restore_fences(dev);
2839
2840 WARN_ON(i915_verify_lists(dev));
2841 }
2842
2843 /**
2844 * This function clears the request list as sequence numbers are passed.
2845 */
2846 void
2847 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2848 {
2849 WARN_ON(i915_verify_lists(ring->dev));
2850
2851 /* Retire requests first as we use it above for the early return.
2852 * If we retire requests last, we may use a later seqno and so clear
2853 * the requests lists without clearing the active list, leading to
2854 * confusion.
2855 */
2856 while (!list_empty(&ring->request_list)) {
2857 struct drm_i915_gem_request *request;
2858
2859 request = list_first_entry(&ring->request_list,
2860 struct drm_i915_gem_request,
2861 list);
2862
2863 if (!i915_gem_request_completed(request, true))
2864 break;
2865
2866 i915_gem_request_retire(request);
2867 }
2868
2869 /* Move any buffers on the active list that are no longer referenced
2870 * by the ringbuffer to the flushing/inactive lists as appropriate,
2871 * before we free the context associated with the requests.
2872 */
2873 while (!list_empty(&ring->active_list)) {
2874 struct drm_i915_gem_object *obj;
2875
2876 obj = list_first_entry(&ring->active_list,
2877 struct drm_i915_gem_object,
2878 ring_list[ring->id]);
2879
2880 if (!list_empty(&obj->last_read_req[ring->id]->list))
2881 break;
2882
2883 i915_gem_object_retire__read(obj, ring->id);
2884 }
2885
2886 if (unlikely(ring->trace_irq_req &&
2887 i915_gem_request_completed(ring->trace_irq_req, true))) {
2888 ring->irq_put(ring);
2889 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2890 }
2891
2892 WARN_ON(i915_verify_lists(ring->dev));
2893 }
2894
2895 bool
2896 i915_gem_retire_requests(struct drm_device *dev)
2897 {
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 struct intel_engine_cs *ring;
2900 bool idle = true;
2901 int i;
2902
2903 for_each_ring(ring, dev_priv, i) {
2904 i915_gem_retire_requests_ring(ring);
2905 idle &= list_empty(&ring->request_list);
2906 if (i915.enable_execlists) {
2907 unsigned long flags;
2908
2909 spin_lock_irqsave(&ring->execlist_lock, flags);
2910 idle &= list_empty(&ring->execlist_queue);
2911 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2912
2913 intel_execlists_retire_requests(ring);
2914 }
2915 }
2916
2917 if (idle)
2918 mod_delayed_work(dev_priv->wq,
2919 &dev_priv->mm.idle_work,
2920 msecs_to_jiffies(100));
2921
2922 return idle;
2923 }
2924
2925 static void
2926 i915_gem_retire_work_handler(struct work_struct *work)
2927 {
2928 struct drm_i915_private *dev_priv =
2929 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2930 struct drm_device *dev = dev_priv->dev;
2931 bool idle;
2932
2933 /* Come back later if the device is busy... */
2934 idle = false;
2935 if (mutex_trylock(&dev->struct_mutex)) {
2936 idle = i915_gem_retire_requests(dev);
2937 mutex_unlock(&dev->struct_mutex);
2938 }
2939 if (!idle)
2940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2941 round_jiffies_up_relative(HZ));
2942 }
2943
2944 static void
2945 i915_gem_idle_work_handler(struct work_struct *work)
2946 {
2947 struct drm_i915_private *dev_priv =
2948 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2949 struct drm_device *dev = dev_priv->dev;
2950 struct intel_engine_cs *ring;
2951 int i;
2952
2953 for_each_ring(ring, dev_priv, i)
2954 if (!list_empty(&ring->request_list))
2955 return;
2956
2957 intel_mark_idle(dev);
2958
2959 if (mutex_trylock(&dev->struct_mutex)) {
2960 struct intel_engine_cs *ring;
2961 int i;
2962
2963 for_each_ring(ring, dev_priv, i)
2964 i915_gem_batch_pool_fini(&ring->batch_pool);
2965
2966 mutex_unlock(&dev->struct_mutex);
2967 }
2968 }
2969
2970 /**
2971 * Ensures that an object will eventually get non-busy by flushing any required
2972 * write domains, emitting any outstanding lazy request and retiring and
2973 * completed requests.
2974 */
2975 static int
2976 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2977 {
2978 int ret, i;
2979
2980 if (!obj->active)
2981 return 0;
2982
2983 for (i = 0; i < I915_NUM_RINGS; i++) {
2984 struct drm_i915_gem_request *req;
2985
2986 req = obj->last_read_req[i];
2987 if (req == NULL)
2988 continue;
2989
2990 if (list_empty(&req->list))
2991 goto retire;
2992
2993 ret = i915_gem_check_olr(req);
2994 if (ret)
2995 return ret;
2996
2997 if (i915_gem_request_completed(req, true)) {
2998 __i915_gem_request_retire__upto(req);
2999 retire:
3000 i915_gem_object_retire__read(obj, i);
3001 }
3002 }
3003
3004 return 0;
3005 }
3006
3007 /**
3008 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3009 * @DRM_IOCTL_ARGS: standard ioctl arguments
3010 *
3011 * Returns 0 if successful, else an error is returned with the remaining time in
3012 * the timeout parameter.
3013 * -ETIME: object is still busy after timeout
3014 * -ERESTARTSYS: signal interrupted the wait
3015 * -ENONENT: object doesn't exist
3016 * Also possible, but rare:
3017 * -EAGAIN: GPU wedged
3018 * -ENOMEM: damn
3019 * -ENODEV: Internal IRQ fail
3020 * -E?: The add request failed
3021 *
3022 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3023 * non-zero timeout parameter the wait ioctl will wait for the given number of
3024 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3025 * without holding struct_mutex the object may become re-busied before this
3026 * function completes. A similar but shorter * race condition exists in the busy
3027 * ioctl
3028 */
3029 int
3030 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3031 {
3032 struct drm_i915_private *dev_priv = dev->dev_private;
3033 struct drm_i915_gem_wait *args = data;
3034 struct drm_i915_gem_object *obj;
3035 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3036 unsigned reset_counter;
3037 int i, n = 0;
3038 int ret;
3039
3040 if (args->flags != 0)
3041 return -EINVAL;
3042
3043 ret = i915_mutex_lock_interruptible(dev);
3044 if (ret)
3045 return ret;
3046
3047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3048 if (&obj->base == NULL) {
3049 mutex_unlock(&dev->struct_mutex);
3050 return -ENOENT;
3051 }
3052
3053 /* Need to make sure the object gets inactive eventually. */
3054 ret = i915_gem_object_flush_active(obj);
3055 if (ret)
3056 goto out;
3057
3058 if (!obj->active)
3059 goto out;
3060
3061 /* Do this after OLR check to make sure we make forward progress polling
3062 * on this IOCTL with a timeout == 0 (like busy ioctl)
3063 */
3064 if (args->timeout_ns == 0) {
3065 ret = -ETIME;
3066 goto out;
3067 }
3068
3069 drm_gem_object_unreference(&obj->base);
3070 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3071
3072 for (i = 0; i < I915_NUM_RINGS; i++) {
3073 if (obj->last_read_req[i] == NULL)
3074 continue;
3075
3076 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3077 }
3078
3079 mutex_unlock(&dev->struct_mutex);
3080
3081 for (i = 0; i < n; i++) {
3082 if (ret == 0)
3083 ret = __i915_wait_request(req[i], reset_counter, true,
3084 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3085 file->driver_priv);
3086 i915_gem_request_unreference__unlocked(req[i]);
3087 }
3088 return ret;
3089
3090 out:
3091 drm_gem_object_unreference(&obj->base);
3092 mutex_unlock(&dev->struct_mutex);
3093 return ret;
3094 }
3095
3096 static int
3097 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3098 struct intel_engine_cs *to,
3099 struct drm_i915_gem_request *req)
3100 {
3101 struct intel_engine_cs *from;
3102 int ret;
3103
3104 from = i915_gem_request_get_ring(req);
3105 if (to == from)
3106 return 0;
3107
3108 if (i915_gem_request_completed(req, true))
3109 return 0;
3110
3111 ret = i915_gem_check_olr(req);
3112 if (ret)
3113 return ret;
3114
3115 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3116 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3117 ret = __i915_wait_request(req,
3118 atomic_read(&i915->gpu_error.reset_counter),
3119 i915->mm.interruptible,
3120 NULL,
3121 &i915->rps.semaphores);
3122 if (ret)
3123 return ret;
3124
3125 i915_gem_object_retire_request(obj, req);
3126 } else {
3127 int idx = intel_ring_sync_index(from, to);
3128 u32 seqno = i915_gem_request_get_seqno(req);
3129
3130 if (seqno <= from->semaphore.sync_seqno[idx])
3131 return 0;
3132
3133 trace_i915_gem_ring_sync_to(from, to, req);
3134 ret = to->semaphore.sync_to(to, from, seqno);
3135 if (ret)
3136 return ret;
3137
3138 /* We use last_read_req because sync_to()
3139 * might have just caused seqno wrap under
3140 * the radar.
3141 */
3142 from->semaphore.sync_seqno[idx] =
3143 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3144 }
3145
3146 return 0;
3147 }
3148
3149 /**
3150 * i915_gem_object_sync - sync an object to a ring.
3151 *
3152 * @obj: object which may be in use on another ring.
3153 * @to: ring we wish to use the object on. May be NULL.
3154 *
3155 * This code is meant to abstract object synchronization with the GPU.
3156 * Calling with NULL implies synchronizing the object with the CPU
3157 * rather than a particular GPU ring. Conceptually we serialise writes
3158 * between engines inside the GPU. We only allow on engine to write
3159 * into a buffer at any time, but multiple readers. To ensure each has
3160 * a coherent view of memory, we must:
3161 *
3162 * - If there is an outstanding write request to the object, the new
3163 * request must wait for it to complete (either CPU or in hw, requests
3164 * on the same ring will be naturally ordered).
3165 *
3166 * - If we are a write request (pending_write_domain is set), the new
3167 * request must wait for outstanding read requests to complete.
3168 *
3169 * Returns 0 if successful, else propagates up the lower layer error.
3170 */
3171 int
3172 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3173 struct intel_engine_cs *to)
3174 {
3175 const bool readonly = obj->base.pending_write_domain == 0;
3176 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3177 int ret, i, n;
3178
3179 if (!obj->active)
3180 return 0;
3181
3182 if (to == NULL)
3183 return i915_gem_object_wait_rendering(obj, readonly);
3184
3185 n = 0;
3186 if (readonly) {
3187 if (obj->last_write_req)
3188 req[n++] = obj->last_write_req;
3189 } else {
3190 for (i = 0; i < I915_NUM_RINGS; i++)
3191 if (obj->last_read_req[i])
3192 req[n++] = obj->last_read_req[i];
3193 }
3194 for (i = 0; i < n; i++) {
3195 ret = __i915_gem_object_sync(obj, to, req[i]);
3196 if (ret)
3197 return ret;
3198 }
3199
3200 return 0;
3201 }
3202
3203 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3204 {
3205 u32 old_write_domain, old_read_domains;
3206
3207 /* Force a pagefault for domain tracking on next user access */
3208 i915_gem_release_mmap(obj);
3209
3210 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3211 return;
3212
3213 /* Wait for any direct GTT access to complete */
3214 mb();
3215
3216 old_read_domains = obj->base.read_domains;
3217 old_write_domain = obj->base.write_domain;
3218
3219 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3220 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3221
3222 trace_i915_gem_object_change_domain(obj,
3223 old_read_domains,
3224 old_write_domain);
3225 }
3226
3227 int i915_vma_unbind(struct i915_vma *vma)
3228 {
3229 struct drm_i915_gem_object *obj = vma->obj;
3230 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3231 int ret;
3232
3233 if (list_empty(&vma->vma_link))
3234 return 0;
3235
3236 if (!drm_mm_node_allocated(&vma->node)) {
3237 i915_gem_vma_destroy(vma);
3238 return 0;
3239 }
3240
3241 if (vma->pin_count)
3242 return -EBUSY;
3243
3244 BUG_ON(obj->pages == NULL);
3245
3246 ret = i915_gem_object_wait_rendering(obj, false);
3247 if (ret)
3248 return ret;
3249 /* Continue on if we fail due to EIO, the GPU is hung so we
3250 * should be safe and we need to cleanup or else we might
3251 * cause memory corruption through use-after-free.
3252 */
3253
3254 if (i915_is_ggtt(vma->vm) &&
3255 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3256 i915_gem_object_finish_gtt(obj);
3257
3258 /* release the fence reg _after_ flushing */
3259 ret = i915_gem_object_put_fence(obj);
3260 if (ret)
3261 return ret;
3262 }
3263
3264 trace_i915_vma_unbind(vma);
3265
3266 vma->vm->unbind_vma(vma);
3267 vma->bound = 0;
3268
3269 list_del_init(&vma->mm_list);
3270 if (i915_is_ggtt(vma->vm)) {
3271 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3272 obj->map_and_fenceable = false;
3273 } else if (vma->ggtt_view.pages) {
3274 sg_free_table(vma->ggtt_view.pages);
3275 kfree(vma->ggtt_view.pages);
3276 vma->ggtt_view.pages = NULL;
3277 }
3278 }
3279
3280 drm_mm_remove_node(&vma->node);
3281 i915_gem_vma_destroy(vma);
3282
3283 /* Since the unbound list is global, only move to that list if
3284 * no more VMAs exist. */
3285 if (list_empty(&obj->vma_list)) {
3286 i915_gem_gtt_finish_object(obj);
3287 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3288 }
3289
3290 /* And finally now the object is completely decoupled from this vma,
3291 * we can drop its hold on the backing storage and allow it to be
3292 * reaped by the shrinker.
3293 */
3294 i915_gem_object_unpin_pages(obj);
3295
3296 return 0;
3297 }
3298
3299 int i915_gpu_idle(struct drm_device *dev)
3300 {
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 struct intel_engine_cs *ring;
3303 int ret, i;
3304
3305 /* Flush everything onto the inactive list. */
3306 for_each_ring(ring, dev_priv, i) {
3307 if (!i915.enable_execlists) {
3308 struct drm_i915_gem_request *req;
3309
3310 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3311 if (ret)
3312 return ret;
3313
3314 ret = i915_switch_context(req->ring, ring->default_context);
3315 if (ret) {
3316 i915_gem_request_cancel(req);
3317 return ret;
3318 }
3319
3320 i915_add_request_no_flush(req->ring);
3321 }
3322
3323 WARN_ON(ring->outstanding_lazy_request);
3324
3325 ret = intel_ring_idle(ring);
3326 if (ret)
3327 return ret;
3328 }
3329
3330 WARN_ON(i915_verify_lists(dev));
3331 return 0;
3332 }
3333
3334 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3335 struct drm_i915_gem_object *obj)
3336 {
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338 int fence_reg;
3339 int fence_pitch_shift;
3340
3341 if (INTEL_INFO(dev)->gen >= 6) {
3342 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3343 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3344 } else {
3345 fence_reg = FENCE_REG_965_0;
3346 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3347 }
3348
3349 fence_reg += reg * 8;
3350
3351 /* To w/a incoherency with non-atomic 64-bit register updates,
3352 * we split the 64-bit update into two 32-bit writes. In order
3353 * for a partial fence not to be evaluated between writes, we
3354 * precede the update with write to turn off the fence register,
3355 * and only enable the fence as the last step.
3356 *
3357 * For extra levels of paranoia, we make sure each step lands
3358 * before applying the next step.
3359 */
3360 I915_WRITE(fence_reg, 0);
3361 POSTING_READ(fence_reg);
3362
3363 if (obj) {
3364 u32 size = i915_gem_obj_ggtt_size(obj);
3365 uint64_t val;
3366
3367 /* Adjust fence size to match tiled area */
3368 if (obj->tiling_mode != I915_TILING_NONE) {
3369 uint32_t row_size = obj->stride *
3370 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3371 size = (size / row_size) * row_size;
3372 }
3373
3374 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3375 0xfffff000) << 32;
3376 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3377 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3378 if (obj->tiling_mode == I915_TILING_Y)
3379 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3380 val |= I965_FENCE_REG_VALID;
3381
3382 I915_WRITE(fence_reg + 4, val >> 32);
3383 POSTING_READ(fence_reg + 4);
3384
3385 I915_WRITE(fence_reg + 0, val);
3386 POSTING_READ(fence_reg);
3387 } else {
3388 I915_WRITE(fence_reg + 4, 0);
3389 POSTING_READ(fence_reg + 4);
3390 }
3391 }
3392
3393 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3394 struct drm_i915_gem_object *obj)
3395 {
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397 u32 val;
3398
3399 if (obj) {
3400 u32 size = i915_gem_obj_ggtt_size(obj);
3401 int pitch_val;
3402 int tile_width;
3403
3404 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3405 (size & -size) != size ||
3406 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3407 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3408 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3409
3410 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3411 tile_width = 128;
3412 else
3413 tile_width = 512;
3414
3415 /* Note: pitch better be a power of two tile widths */
3416 pitch_val = obj->stride / tile_width;
3417 pitch_val = ffs(pitch_val) - 1;
3418
3419 val = i915_gem_obj_ggtt_offset(obj);
3420 if (obj->tiling_mode == I915_TILING_Y)
3421 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3422 val |= I915_FENCE_SIZE_BITS(size);
3423 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3424 val |= I830_FENCE_REG_VALID;
3425 } else
3426 val = 0;
3427
3428 if (reg < 8)
3429 reg = FENCE_REG_830_0 + reg * 4;
3430 else
3431 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3432
3433 I915_WRITE(reg, val);
3434 POSTING_READ(reg);
3435 }
3436
3437 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3438 struct drm_i915_gem_object *obj)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 uint32_t val;
3442
3443 if (obj) {
3444 u32 size = i915_gem_obj_ggtt_size(obj);
3445 uint32_t pitch_val;
3446
3447 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3448 (size & -size) != size ||
3449 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3450 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3451 i915_gem_obj_ggtt_offset(obj), size);
3452
3453 pitch_val = obj->stride / 128;
3454 pitch_val = ffs(pitch_val) - 1;
3455
3456 val = i915_gem_obj_ggtt_offset(obj);
3457 if (obj->tiling_mode == I915_TILING_Y)
3458 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3459 val |= I830_FENCE_SIZE_BITS(size);
3460 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3461 val |= I830_FENCE_REG_VALID;
3462 } else
3463 val = 0;
3464
3465 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3466 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3467 }
3468
3469 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3470 {
3471 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3472 }
3473
3474 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3475 struct drm_i915_gem_object *obj)
3476 {
3477 struct drm_i915_private *dev_priv = dev->dev_private;
3478
3479 /* Ensure that all CPU reads are completed before installing a fence
3480 * and all writes before removing the fence.
3481 */
3482 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3483 mb();
3484
3485 WARN(obj && (!obj->stride || !obj->tiling_mode),
3486 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3487 obj->stride, obj->tiling_mode);
3488
3489 if (IS_GEN2(dev))
3490 i830_write_fence_reg(dev, reg, obj);
3491 else if (IS_GEN3(dev))
3492 i915_write_fence_reg(dev, reg, obj);
3493 else if (INTEL_INFO(dev)->gen >= 4)
3494 i965_write_fence_reg(dev, reg, obj);
3495
3496 /* And similarly be paranoid that no direct access to this region
3497 * is reordered to before the fence is installed.
3498 */
3499 if (i915_gem_object_needs_mb(obj))
3500 mb();
3501 }
3502
3503 static inline int fence_number(struct drm_i915_private *dev_priv,
3504 struct drm_i915_fence_reg *fence)
3505 {
3506 return fence - dev_priv->fence_regs;
3507 }
3508
3509 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3510 struct drm_i915_fence_reg *fence,
3511 bool enable)
3512 {
3513 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3514 int reg = fence_number(dev_priv, fence);
3515
3516 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3517
3518 if (enable) {
3519 obj->fence_reg = reg;
3520 fence->obj = obj;
3521 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3522 } else {
3523 obj->fence_reg = I915_FENCE_REG_NONE;
3524 fence->obj = NULL;
3525 list_del_init(&fence->lru_list);
3526 }
3527 obj->fence_dirty = false;
3528 }
3529
3530 static int
3531 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3532 {
3533 if (obj->last_fenced_req) {
3534 int ret = i915_wait_request(obj->last_fenced_req);
3535 if (ret)
3536 return ret;
3537
3538 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3539 }
3540
3541 return 0;
3542 }
3543
3544 int
3545 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3546 {
3547 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3548 struct drm_i915_fence_reg *fence;
3549 int ret;
3550
3551 ret = i915_gem_object_wait_fence(obj);
3552 if (ret)
3553 return ret;
3554
3555 if (obj->fence_reg == I915_FENCE_REG_NONE)
3556 return 0;
3557
3558 fence = &dev_priv->fence_regs[obj->fence_reg];
3559
3560 if (WARN_ON(fence->pin_count))
3561 return -EBUSY;
3562
3563 i915_gem_object_fence_lost(obj);
3564 i915_gem_object_update_fence(obj, fence, false);
3565
3566 return 0;
3567 }
3568
3569 static struct drm_i915_fence_reg *
3570 i915_find_fence_reg(struct drm_device *dev)
3571 {
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573 struct drm_i915_fence_reg *reg, *avail;
3574 int i;
3575
3576 /* First try to find a free reg */
3577 avail = NULL;
3578 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3579 reg = &dev_priv->fence_regs[i];
3580 if (!reg->obj)
3581 return reg;
3582
3583 if (!reg->pin_count)
3584 avail = reg;
3585 }
3586
3587 if (avail == NULL)
3588 goto deadlock;
3589
3590 /* None available, try to steal one or wait for a user to finish */
3591 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3592 if (reg->pin_count)
3593 continue;
3594
3595 return reg;
3596 }
3597
3598 deadlock:
3599 /* Wait for completion of pending flips which consume fences */
3600 if (intel_has_pending_fb_unpin(dev))
3601 return ERR_PTR(-EAGAIN);
3602
3603 return ERR_PTR(-EDEADLK);
3604 }
3605
3606 /**
3607 * i915_gem_object_get_fence - set up fencing for an object
3608 * @obj: object to map through a fence reg
3609 *
3610 * When mapping objects through the GTT, userspace wants to be able to write
3611 * to them without having to worry about swizzling if the object is tiled.
3612 * This function walks the fence regs looking for a free one for @obj,
3613 * stealing one if it can't find any.
3614 *
3615 * It then sets up the reg based on the object's properties: address, pitch
3616 * and tiling format.
3617 *
3618 * For an untiled surface, this removes any existing fence.
3619 */
3620 int
3621 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3622 {
3623 struct drm_device *dev = obj->base.dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 bool enable = obj->tiling_mode != I915_TILING_NONE;
3626 struct drm_i915_fence_reg *reg;
3627 int ret;
3628
3629 /* Have we updated the tiling parameters upon the object and so
3630 * will need to serialise the write to the associated fence register?
3631 */
3632 if (obj->fence_dirty) {
3633 ret = i915_gem_object_wait_fence(obj);
3634 if (ret)
3635 return ret;
3636 }
3637
3638 /* Just update our place in the LRU if our fence is getting reused. */
3639 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3640 reg = &dev_priv->fence_regs[obj->fence_reg];
3641 if (!obj->fence_dirty) {
3642 list_move_tail(&reg->lru_list,
3643 &dev_priv->mm.fence_list);
3644 return 0;
3645 }
3646 } else if (enable) {
3647 if (WARN_ON(!obj->map_and_fenceable))
3648 return -EINVAL;
3649
3650 reg = i915_find_fence_reg(dev);
3651 if (IS_ERR(reg))
3652 return PTR_ERR(reg);
3653
3654 if (reg->obj) {
3655 struct drm_i915_gem_object *old = reg->obj;
3656
3657 ret = i915_gem_object_wait_fence(old);
3658 if (ret)
3659 return ret;
3660
3661 i915_gem_object_fence_lost(old);
3662 }
3663 } else
3664 return 0;
3665
3666 i915_gem_object_update_fence(obj, reg, enable);
3667
3668 return 0;
3669 }
3670
3671 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3672 unsigned long cache_level)
3673 {
3674 struct drm_mm_node *gtt_space = &vma->node;
3675 struct drm_mm_node *other;
3676
3677 /*
3678 * On some machines we have to be careful when putting differing types
3679 * of snoopable memory together to avoid the prefetcher crossing memory
3680 * domains and dying. During vm initialisation, we decide whether or not
3681 * these constraints apply and set the drm_mm.color_adjust
3682 * appropriately.
3683 */
3684 if (vma->vm->mm.color_adjust == NULL)
3685 return true;
3686
3687 if (!drm_mm_node_allocated(gtt_space))
3688 return true;
3689
3690 if (list_empty(&gtt_space->node_list))
3691 return true;
3692
3693 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3694 if (other->allocated && !other->hole_follows && other->color != cache_level)
3695 return false;
3696
3697 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3698 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3699 return false;
3700
3701 return true;
3702 }
3703
3704 /**
3705 * Finds free space in the GTT aperture and binds the object or a view of it
3706 * there.
3707 */
3708 static struct i915_vma *
3709 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3710 struct i915_address_space *vm,
3711 const struct i915_ggtt_view *ggtt_view,
3712 unsigned alignment,
3713 uint64_t flags)
3714 {
3715 struct drm_device *dev = obj->base.dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 u32 size, fence_size, fence_alignment, unfenced_alignment;
3718 unsigned long start =
3719 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3720 unsigned long end =
3721 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3722 struct i915_vma *vma;
3723 int ret;
3724
3725 if (i915_is_ggtt(vm)) {
3726 u32 view_size;
3727
3728 if (WARN_ON(!ggtt_view))
3729 return ERR_PTR(-EINVAL);
3730
3731 view_size = i915_ggtt_view_size(obj, ggtt_view);
3732
3733 fence_size = i915_gem_get_gtt_size(dev,
3734 view_size,
3735 obj->tiling_mode);
3736 fence_alignment = i915_gem_get_gtt_alignment(dev,
3737 view_size,
3738 obj->tiling_mode,
3739 true);
3740 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3741 view_size,
3742 obj->tiling_mode,
3743 false);
3744 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3745 } else {
3746 fence_size = i915_gem_get_gtt_size(dev,
3747 obj->base.size,
3748 obj->tiling_mode);
3749 fence_alignment = i915_gem_get_gtt_alignment(dev,
3750 obj->base.size,
3751 obj->tiling_mode,
3752 true);
3753 unfenced_alignment =
3754 i915_gem_get_gtt_alignment(dev,
3755 obj->base.size,
3756 obj->tiling_mode,
3757 false);
3758 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3759 }
3760
3761 if (alignment == 0)
3762 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3763 unfenced_alignment;
3764 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3765 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3766 ggtt_view ? ggtt_view->type : 0,
3767 alignment);
3768 return ERR_PTR(-EINVAL);
3769 }
3770
3771 /* If binding the object/GGTT view requires more space than the entire
3772 * aperture has, reject it early before evicting everything in a vain
3773 * attempt to find space.
3774 */
3775 if (size > end) {
3776 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3777 ggtt_view ? ggtt_view->type : 0,
3778 size,
3779 flags & PIN_MAPPABLE ? "mappable" : "total",
3780 end);
3781 return ERR_PTR(-E2BIG);
3782 }
3783
3784 ret = i915_gem_object_get_pages(obj);
3785 if (ret)
3786 return ERR_PTR(ret);
3787
3788 i915_gem_object_pin_pages(obj);
3789
3790 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3791 i915_gem_obj_lookup_or_create_vma(obj, vm);
3792
3793 if (IS_ERR(vma))
3794 goto err_unpin;
3795
3796 search_free:
3797 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3798 size, alignment,
3799 obj->cache_level,
3800 start, end,
3801 DRM_MM_SEARCH_DEFAULT,
3802 DRM_MM_CREATE_DEFAULT);
3803 if (ret) {
3804 ret = i915_gem_evict_something(dev, vm, size, alignment,
3805 obj->cache_level,
3806 start, end,
3807 flags);
3808 if (ret == 0)
3809 goto search_free;
3810
3811 goto err_free_vma;
3812 }
3813 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3814 ret = -EINVAL;
3815 goto err_remove_node;
3816 }
3817
3818 ret = i915_gem_gtt_prepare_object(obj);
3819 if (ret)
3820 goto err_remove_node;
3821
3822 trace_i915_vma_bind(vma, flags);
3823 ret = i915_vma_bind(vma, obj->cache_level, flags);
3824 if (ret)
3825 goto err_finish_gtt;
3826
3827 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3828 list_add_tail(&vma->mm_list, &vm->inactive_list);
3829
3830 return vma;
3831
3832 err_finish_gtt:
3833 i915_gem_gtt_finish_object(obj);
3834 err_remove_node:
3835 drm_mm_remove_node(&vma->node);
3836 err_free_vma:
3837 i915_gem_vma_destroy(vma);
3838 vma = ERR_PTR(ret);
3839 err_unpin:
3840 i915_gem_object_unpin_pages(obj);
3841 return vma;
3842 }
3843
3844 bool
3845 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3846 bool force)
3847 {
3848 /* If we don't have a page list set up, then we're not pinned
3849 * to GPU, and we can ignore the cache flush because it'll happen
3850 * again at bind time.
3851 */
3852 if (obj->pages == NULL)
3853 return false;
3854
3855 /*
3856 * Stolen memory is always coherent with the GPU as it is explicitly
3857 * marked as wc by the system, or the system is cache-coherent.
3858 */
3859 if (obj->stolen || obj->phys_handle)
3860 return false;
3861
3862 /* If the GPU is snooping the contents of the CPU cache,
3863 * we do not need to manually clear the CPU cache lines. However,
3864 * the caches are only snooped when the render cache is
3865 * flushed/invalidated. As we always have to emit invalidations
3866 * and flushes when moving into and out of the RENDER domain, correct
3867 * snooping behaviour occurs naturally as the result of our domain
3868 * tracking.
3869 */
3870 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3871 obj->cache_dirty = true;
3872 return false;
3873 }
3874
3875 trace_i915_gem_object_clflush(obj);
3876 drm_clflush_sg(obj->pages);
3877 obj->cache_dirty = false;
3878
3879 return true;
3880 }
3881
3882 /** Flushes the GTT write domain for the object if it's dirty. */
3883 static void
3884 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3885 {
3886 uint32_t old_write_domain;
3887
3888 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3889 return;
3890
3891 /* No actual flushing is required for the GTT write domain. Writes
3892 * to it immediately go to main memory as far as we know, so there's
3893 * no chipset flush. It also doesn't land in render cache.
3894 *
3895 * However, we do have to enforce the order so that all writes through
3896 * the GTT land before any writes to the device, such as updates to
3897 * the GATT itself.
3898 */
3899 wmb();
3900
3901 old_write_domain = obj->base.write_domain;
3902 obj->base.write_domain = 0;
3903
3904 intel_fb_obj_flush(obj, false);
3905
3906 trace_i915_gem_object_change_domain(obj,
3907 obj->base.read_domains,
3908 old_write_domain);
3909 }
3910
3911 /** Flushes the CPU write domain for the object if it's dirty. */
3912 static void
3913 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3914 {
3915 uint32_t old_write_domain;
3916
3917 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3918 return;
3919
3920 if (i915_gem_clflush_object(obj, obj->pin_display))
3921 i915_gem_chipset_flush(obj->base.dev);
3922
3923 old_write_domain = obj->base.write_domain;
3924 obj->base.write_domain = 0;
3925
3926 intel_fb_obj_flush(obj, false);
3927
3928 trace_i915_gem_object_change_domain(obj,
3929 obj->base.read_domains,
3930 old_write_domain);
3931 }
3932
3933 /**
3934 * Moves a single object to the GTT read, and possibly write domain.
3935 *
3936 * This function returns when the move is complete, including waiting on
3937 * flushes to occur.
3938 */
3939 int
3940 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3941 {
3942 uint32_t old_write_domain, old_read_domains;
3943 struct i915_vma *vma;
3944 int ret;
3945
3946 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3947 return 0;
3948
3949 ret = i915_gem_object_wait_rendering(obj, !write);
3950 if (ret)
3951 return ret;
3952
3953 /* Flush and acquire obj->pages so that we are coherent through
3954 * direct access in memory with previous cached writes through
3955 * shmemfs and that our cache domain tracking remains valid.
3956 * For example, if the obj->filp was moved to swap without us
3957 * being notified and releasing the pages, we would mistakenly
3958 * continue to assume that the obj remained out of the CPU cached
3959 * domain.
3960 */
3961 ret = i915_gem_object_get_pages(obj);
3962 if (ret)
3963 return ret;
3964
3965 i915_gem_object_flush_cpu_write_domain(obj);
3966
3967 /* Serialise direct access to this object with the barriers for
3968 * coherent writes from the GPU, by effectively invalidating the
3969 * GTT domain upon first access.
3970 */
3971 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3972 mb();
3973
3974 old_write_domain = obj->base.write_domain;
3975 old_read_domains = obj->base.read_domains;
3976
3977 /* It should now be out of any other write domains, and we can update
3978 * the domain values for our changes.
3979 */
3980 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3981 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3982 if (write) {
3983 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3984 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3985 obj->dirty = 1;
3986 }
3987
3988 if (write)
3989 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3990
3991 trace_i915_gem_object_change_domain(obj,
3992 old_read_domains,
3993 old_write_domain);
3994
3995 /* And bump the LRU for this access */
3996 vma = i915_gem_obj_to_ggtt(obj);
3997 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3998 list_move_tail(&vma->mm_list,
3999 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4000
4001 return 0;
4002 }
4003
4004 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4005 enum i915_cache_level cache_level)
4006 {
4007 struct drm_device *dev = obj->base.dev;
4008 struct i915_vma *vma, *next;
4009 int ret;
4010
4011 if (obj->cache_level == cache_level)
4012 return 0;
4013
4014 if (i915_gem_obj_is_pinned(obj)) {
4015 DRM_DEBUG("can not change the cache level of pinned objects\n");
4016 return -EBUSY;
4017 }
4018
4019 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4020 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4021 ret = i915_vma_unbind(vma);
4022 if (ret)
4023 return ret;
4024 }
4025 }
4026
4027 if (i915_gem_obj_bound_any(obj)) {
4028 ret = i915_gem_object_wait_rendering(obj, false);
4029 if (ret)
4030 return ret;
4031
4032 i915_gem_object_finish_gtt(obj);
4033
4034 /* Before SandyBridge, you could not use tiling or fence
4035 * registers with snooped memory, so relinquish any fences
4036 * currently pointing to our region in the aperture.
4037 */
4038 if (INTEL_INFO(dev)->gen < 6) {
4039 ret = i915_gem_object_put_fence(obj);
4040 if (ret)
4041 return ret;
4042 }
4043
4044 list_for_each_entry(vma, &obj->vma_list, vma_link)
4045 if (drm_mm_node_allocated(&vma->node)) {
4046 ret = i915_vma_bind(vma, cache_level,
4047 PIN_UPDATE);
4048 if (ret)
4049 return ret;
4050 }
4051 }
4052
4053 list_for_each_entry(vma, &obj->vma_list, vma_link)
4054 vma->node.color = cache_level;
4055 obj->cache_level = cache_level;
4056
4057 if (obj->cache_dirty &&
4058 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4059 cpu_write_needs_clflush(obj)) {
4060 if (i915_gem_clflush_object(obj, true))
4061 i915_gem_chipset_flush(obj->base.dev);
4062 }
4063
4064 return 0;
4065 }
4066
4067 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file)
4069 {
4070 struct drm_i915_gem_caching *args = data;
4071 struct drm_i915_gem_object *obj;
4072
4073 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4074 if (&obj->base == NULL)
4075 return -ENOENT;
4076
4077 switch (obj->cache_level) {
4078 case I915_CACHE_LLC:
4079 case I915_CACHE_L3_LLC:
4080 args->caching = I915_CACHING_CACHED;
4081 break;
4082
4083 case I915_CACHE_WT:
4084 args->caching = I915_CACHING_DISPLAY;
4085 break;
4086
4087 default:
4088 args->caching = I915_CACHING_NONE;
4089 break;
4090 }
4091
4092 drm_gem_object_unreference_unlocked(&obj->base);
4093 return 0;
4094 }
4095
4096 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file)
4098 {
4099 struct drm_i915_gem_caching *args = data;
4100 struct drm_i915_gem_object *obj;
4101 enum i915_cache_level level;
4102 int ret;
4103
4104 switch (args->caching) {
4105 case I915_CACHING_NONE:
4106 level = I915_CACHE_NONE;
4107 break;
4108 case I915_CACHING_CACHED:
4109 level = I915_CACHE_LLC;
4110 break;
4111 case I915_CACHING_DISPLAY:
4112 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4113 break;
4114 default:
4115 return -EINVAL;
4116 }
4117
4118 ret = i915_mutex_lock_interruptible(dev);
4119 if (ret)
4120 return ret;
4121
4122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123 if (&obj->base == NULL) {
4124 ret = -ENOENT;
4125 goto unlock;
4126 }
4127
4128 ret = i915_gem_object_set_cache_level(obj, level);
4129
4130 drm_gem_object_unreference(&obj->base);
4131 unlock:
4132 mutex_unlock(&dev->struct_mutex);
4133 return ret;
4134 }
4135
4136 /*
4137 * Prepare buffer for display plane (scanout, cursors, etc).
4138 * Can be called from an uninterruptible phase (modesetting) and allows
4139 * any flushes to be pipelined (for pageflips).
4140 */
4141 int
4142 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4143 u32 alignment,
4144 struct intel_engine_cs *pipelined,
4145 const struct i915_ggtt_view *view)
4146 {
4147 u32 old_read_domains, old_write_domain;
4148 int ret;
4149
4150 ret = i915_gem_object_sync(obj, pipelined);
4151 if (ret)
4152 return ret;
4153
4154 /* Mark the pin_display early so that we account for the
4155 * display coherency whilst setting up the cache domains.
4156 */
4157 obj->pin_display++;
4158
4159 /* The display engine is not coherent with the LLC cache on gen6. As
4160 * a result, we make sure that the pinning that is about to occur is
4161 * done with uncached PTEs. This is lowest common denominator for all
4162 * chipsets.
4163 *
4164 * However for gen6+, we could do better by using the GFDT bit instead
4165 * of uncaching, which would allow us to flush all the LLC-cached data
4166 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4167 */
4168 ret = i915_gem_object_set_cache_level(obj,
4169 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4170 if (ret)
4171 goto err_unpin_display;
4172
4173 /* As the user may map the buffer once pinned in the display plane
4174 * (e.g. libkms for the bootup splash), we have to ensure that we
4175 * always use map_and_fenceable for all scanout buffers.
4176 */
4177 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4178 view->type == I915_GGTT_VIEW_NORMAL ?
4179 PIN_MAPPABLE : 0);
4180 if (ret)
4181 goto err_unpin_display;
4182
4183 i915_gem_object_flush_cpu_write_domain(obj);
4184
4185 old_write_domain = obj->base.write_domain;
4186 old_read_domains = obj->base.read_domains;
4187
4188 /* It should now be out of any other write domains, and we can update
4189 * the domain values for our changes.
4190 */
4191 obj->base.write_domain = 0;
4192 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4193
4194 trace_i915_gem_object_change_domain(obj,
4195 old_read_domains,
4196 old_write_domain);
4197
4198 return 0;
4199
4200 err_unpin_display:
4201 obj->pin_display--;
4202 return ret;
4203 }
4204
4205 void
4206 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4207 const struct i915_ggtt_view *view)
4208 {
4209 if (WARN_ON(obj->pin_display == 0))
4210 return;
4211
4212 i915_gem_object_ggtt_unpin_view(obj, view);
4213
4214 obj->pin_display--;
4215 }
4216
4217 /**
4218 * Moves a single object to the CPU read, and possibly write domain.
4219 *
4220 * This function returns when the move is complete, including waiting on
4221 * flushes to occur.
4222 */
4223 int
4224 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4225 {
4226 uint32_t old_write_domain, old_read_domains;
4227 int ret;
4228
4229 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4230 return 0;
4231
4232 ret = i915_gem_object_wait_rendering(obj, !write);
4233 if (ret)
4234 return ret;
4235
4236 i915_gem_object_flush_gtt_write_domain(obj);
4237
4238 old_write_domain = obj->base.write_domain;
4239 old_read_domains = obj->base.read_domains;
4240
4241 /* Flush the CPU cache if it's still invalid. */
4242 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4243 i915_gem_clflush_object(obj, false);
4244
4245 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4246 }
4247
4248 /* It should now be out of any other write domains, and we can update
4249 * the domain values for our changes.
4250 */
4251 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4252
4253 /* If we're writing through the CPU, then the GPU read domains will
4254 * need to be invalidated at next use.
4255 */
4256 if (write) {
4257 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4258 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4259 }
4260
4261 if (write)
4262 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4263
4264 trace_i915_gem_object_change_domain(obj,
4265 old_read_domains,
4266 old_write_domain);
4267
4268 return 0;
4269 }
4270
4271 /* Throttle our rendering by waiting until the ring has completed our requests
4272 * emitted over 20 msec ago.
4273 *
4274 * Note that if we were to use the current jiffies each time around the loop,
4275 * we wouldn't escape the function with any frames outstanding if the time to
4276 * render a frame was over 20ms.
4277 *
4278 * This should get us reasonable parallelism between CPU and GPU but also
4279 * relatively low latency when blocking on a particular request to finish.
4280 */
4281 static int
4282 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4283 {
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct drm_i915_file_private *file_priv = file->driver_priv;
4286 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4287 struct drm_i915_gem_request *request, *target = NULL;
4288 unsigned reset_counter;
4289 int ret;
4290
4291 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4292 if (ret)
4293 return ret;
4294
4295 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4296 if (ret)
4297 return ret;
4298
4299 spin_lock(&file_priv->mm.lock);
4300 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4301 if (time_after_eq(request->emitted_jiffies, recent_enough))
4302 break;
4303
4304 target = request;
4305 }
4306 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4307 if (target)
4308 i915_gem_request_reference(target);
4309 spin_unlock(&file_priv->mm.lock);
4310
4311 if (target == NULL)
4312 return 0;
4313
4314 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4315 if (ret == 0)
4316 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4317
4318 i915_gem_request_unreference__unlocked(target);
4319
4320 return ret;
4321 }
4322
4323 static bool
4324 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4325 {
4326 struct drm_i915_gem_object *obj = vma->obj;
4327
4328 if (alignment &&
4329 vma->node.start & (alignment - 1))
4330 return true;
4331
4332 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4333 return true;
4334
4335 if (flags & PIN_OFFSET_BIAS &&
4336 vma->node.start < (flags & PIN_OFFSET_MASK))
4337 return true;
4338
4339 return false;
4340 }
4341
4342 static int
4343 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4344 struct i915_address_space *vm,
4345 const struct i915_ggtt_view *ggtt_view,
4346 uint32_t alignment,
4347 uint64_t flags)
4348 {
4349 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4350 struct i915_vma *vma;
4351 unsigned bound;
4352 int ret;
4353
4354 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4355 return -ENODEV;
4356
4357 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4358 return -EINVAL;
4359
4360 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4361 return -EINVAL;
4362
4363 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4364 return -EINVAL;
4365
4366 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4367 i915_gem_obj_to_vma(obj, vm);
4368
4369 if (IS_ERR(vma))
4370 return PTR_ERR(vma);
4371
4372 if (vma) {
4373 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4374 return -EBUSY;
4375
4376 if (i915_vma_misplaced(vma, alignment, flags)) {
4377 unsigned long offset;
4378 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4379 i915_gem_obj_offset(obj, vm);
4380 WARN(vma->pin_count,
4381 "bo is already pinned in %s with incorrect alignment:"
4382 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4383 " obj->map_and_fenceable=%d\n",
4384 ggtt_view ? "ggtt" : "ppgtt",
4385 offset,
4386 alignment,
4387 !!(flags & PIN_MAPPABLE),
4388 obj->map_and_fenceable);
4389 ret = i915_vma_unbind(vma);
4390 if (ret)
4391 return ret;
4392
4393 vma = NULL;
4394 }
4395 }
4396
4397 bound = vma ? vma->bound : 0;
4398 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4399 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4400 flags);
4401 if (IS_ERR(vma))
4402 return PTR_ERR(vma);
4403 } else {
4404 ret = i915_vma_bind(vma, obj->cache_level, flags);
4405 if (ret)
4406 return ret;
4407 }
4408
4409 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4410 (bound ^ vma->bound) & GLOBAL_BIND) {
4411 bool mappable, fenceable;
4412 u32 fence_size, fence_alignment;
4413
4414 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4415 obj->base.size,
4416 obj->tiling_mode);
4417 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4418 obj->base.size,
4419 obj->tiling_mode,
4420 true);
4421
4422 fenceable = (vma->node.size == fence_size &&
4423 (vma->node.start & (fence_alignment - 1)) == 0);
4424
4425 mappable = (vma->node.start + fence_size <=
4426 dev_priv->gtt.mappable_end);
4427
4428 obj->map_and_fenceable = mappable && fenceable;
4429
4430 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4431 }
4432
4433 vma->pin_count++;
4434 return 0;
4435 }
4436
4437 int
4438 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4439 struct i915_address_space *vm,
4440 uint32_t alignment,
4441 uint64_t flags)
4442 {
4443 return i915_gem_object_do_pin(obj, vm,
4444 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4445 alignment, flags);
4446 }
4447
4448 int
4449 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4450 const struct i915_ggtt_view *view,
4451 uint32_t alignment,
4452 uint64_t flags)
4453 {
4454 if (WARN_ONCE(!view, "no view specified"))
4455 return -EINVAL;
4456
4457 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4458 alignment, flags | PIN_GLOBAL);
4459 }
4460
4461 void
4462 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4463 const struct i915_ggtt_view *view)
4464 {
4465 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4466
4467 BUG_ON(!vma);
4468 WARN_ON(vma->pin_count == 0);
4469 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4470
4471 --vma->pin_count;
4472 }
4473
4474 bool
4475 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4476 {
4477 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4478 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4479 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4480
4481 WARN_ON(!ggtt_vma ||
4482 dev_priv->fence_regs[obj->fence_reg].pin_count >
4483 ggtt_vma->pin_count);
4484 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4485 return true;
4486 } else
4487 return false;
4488 }
4489
4490 void
4491 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4492 {
4493 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4494 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4495 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4496 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4497 }
4498 }
4499
4500 int
4501 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4502 struct drm_file *file)
4503 {
4504 struct drm_i915_gem_busy *args = data;
4505 struct drm_i915_gem_object *obj;
4506 int ret;
4507
4508 ret = i915_mutex_lock_interruptible(dev);
4509 if (ret)
4510 return ret;
4511
4512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4513 if (&obj->base == NULL) {
4514 ret = -ENOENT;
4515 goto unlock;
4516 }
4517
4518 /* Count all active objects as busy, even if they are currently not used
4519 * by the gpu. Users of this interface expect objects to eventually
4520 * become non-busy without any further actions, therefore emit any
4521 * necessary flushes here.
4522 */
4523 ret = i915_gem_object_flush_active(obj);
4524 if (ret)
4525 goto unref;
4526
4527 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4528 args->busy = obj->active << 16;
4529 if (obj->last_write_req)
4530 args->busy |= obj->last_write_req->ring->id;
4531
4532 unref:
4533 drm_gem_object_unreference(&obj->base);
4534 unlock:
4535 mutex_unlock(&dev->struct_mutex);
4536 return ret;
4537 }
4538
4539 int
4540 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4541 struct drm_file *file_priv)
4542 {
4543 return i915_gem_ring_throttle(dev, file_priv);
4544 }
4545
4546 int
4547 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4548 struct drm_file *file_priv)
4549 {
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 struct drm_i915_gem_madvise *args = data;
4552 struct drm_i915_gem_object *obj;
4553 int ret;
4554
4555 switch (args->madv) {
4556 case I915_MADV_DONTNEED:
4557 case I915_MADV_WILLNEED:
4558 break;
4559 default:
4560 return -EINVAL;
4561 }
4562
4563 ret = i915_mutex_lock_interruptible(dev);
4564 if (ret)
4565 return ret;
4566
4567 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4568 if (&obj->base == NULL) {
4569 ret = -ENOENT;
4570 goto unlock;
4571 }
4572
4573 if (i915_gem_obj_is_pinned(obj)) {
4574 ret = -EINVAL;
4575 goto out;
4576 }
4577
4578 if (obj->pages &&
4579 obj->tiling_mode != I915_TILING_NONE &&
4580 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4581 if (obj->madv == I915_MADV_WILLNEED)
4582 i915_gem_object_unpin_pages(obj);
4583 if (args->madv == I915_MADV_WILLNEED)
4584 i915_gem_object_pin_pages(obj);
4585 }
4586
4587 if (obj->madv != __I915_MADV_PURGED)
4588 obj->madv = args->madv;
4589
4590 /* if the object is no longer attached, discard its backing storage */
4591 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4592 i915_gem_object_truncate(obj);
4593
4594 args->retained = obj->madv != __I915_MADV_PURGED;
4595
4596 out:
4597 drm_gem_object_unreference(&obj->base);
4598 unlock:
4599 mutex_unlock(&dev->struct_mutex);
4600 return ret;
4601 }
4602
4603 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4604 const struct drm_i915_gem_object_ops *ops)
4605 {
4606 int i;
4607
4608 INIT_LIST_HEAD(&obj->global_list);
4609 for (i = 0; i < I915_NUM_RINGS; i++)
4610 INIT_LIST_HEAD(&obj->ring_list[i]);
4611 INIT_LIST_HEAD(&obj->obj_exec_link);
4612 INIT_LIST_HEAD(&obj->vma_list);
4613 INIT_LIST_HEAD(&obj->batch_pool_link);
4614
4615 obj->ops = ops;
4616
4617 obj->fence_reg = I915_FENCE_REG_NONE;
4618 obj->madv = I915_MADV_WILLNEED;
4619
4620 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4621 }
4622
4623 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4624 .get_pages = i915_gem_object_get_pages_gtt,
4625 .put_pages = i915_gem_object_put_pages_gtt,
4626 };
4627
4628 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4629 size_t size)
4630 {
4631 struct drm_i915_gem_object *obj;
4632 struct address_space *mapping;
4633 gfp_t mask;
4634
4635 obj = i915_gem_object_alloc(dev);
4636 if (obj == NULL)
4637 return NULL;
4638
4639 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4640 i915_gem_object_free(obj);
4641 return NULL;
4642 }
4643
4644 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4645 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4646 /* 965gm cannot relocate objects above 4GiB. */
4647 mask &= ~__GFP_HIGHMEM;
4648 mask |= __GFP_DMA32;
4649 }
4650
4651 mapping = file_inode(obj->base.filp)->i_mapping;
4652 mapping_set_gfp_mask(mapping, mask);
4653
4654 i915_gem_object_init(obj, &i915_gem_object_ops);
4655
4656 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4657 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4658
4659 if (HAS_LLC(dev)) {
4660 /* On some devices, we can have the GPU use the LLC (the CPU
4661 * cache) for about a 10% performance improvement
4662 * compared to uncached. Graphics requests other than
4663 * display scanout are coherent with the CPU in
4664 * accessing this cache. This means in this mode we
4665 * don't need to clflush on the CPU side, and on the
4666 * GPU side we only need to flush internal caches to
4667 * get data visible to the CPU.
4668 *
4669 * However, we maintain the display planes as UC, and so
4670 * need to rebind when first used as such.
4671 */
4672 obj->cache_level = I915_CACHE_LLC;
4673 } else
4674 obj->cache_level = I915_CACHE_NONE;
4675
4676 trace_i915_gem_object_create(obj);
4677
4678 return obj;
4679 }
4680
4681 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4682 {
4683 /* If we are the last user of the backing storage (be it shmemfs
4684 * pages or stolen etc), we know that the pages are going to be
4685 * immediately released. In this case, we can then skip copying
4686 * back the contents from the GPU.
4687 */
4688
4689 if (obj->madv != I915_MADV_WILLNEED)
4690 return false;
4691
4692 if (obj->base.filp == NULL)
4693 return true;
4694
4695 /* At first glance, this looks racy, but then again so would be
4696 * userspace racing mmap against close. However, the first external
4697 * reference to the filp can only be obtained through the
4698 * i915_gem_mmap_ioctl() which safeguards us against the user
4699 * acquiring such a reference whilst we are in the middle of
4700 * freeing the object.
4701 */
4702 return atomic_long_read(&obj->base.filp->f_count) == 1;
4703 }
4704
4705 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4706 {
4707 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4708 struct drm_device *dev = obj->base.dev;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710 struct i915_vma *vma, *next;
4711
4712 intel_runtime_pm_get(dev_priv);
4713
4714 trace_i915_gem_object_destroy(obj);
4715
4716 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4717 int ret;
4718
4719 vma->pin_count = 0;
4720 ret = i915_vma_unbind(vma);
4721 if (WARN_ON(ret == -ERESTARTSYS)) {
4722 bool was_interruptible;
4723
4724 was_interruptible = dev_priv->mm.interruptible;
4725 dev_priv->mm.interruptible = false;
4726
4727 WARN_ON(i915_vma_unbind(vma));
4728
4729 dev_priv->mm.interruptible = was_interruptible;
4730 }
4731 }
4732
4733 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4734 * before progressing. */
4735 if (obj->stolen)
4736 i915_gem_object_unpin_pages(obj);
4737
4738 WARN_ON(obj->frontbuffer_bits);
4739
4740 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4741 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4742 obj->tiling_mode != I915_TILING_NONE)
4743 i915_gem_object_unpin_pages(obj);
4744
4745 if (WARN_ON(obj->pages_pin_count))
4746 obj->pages_pin_count = 0;
4747 if (discard_backing_storage(obj))
4748 obj->madv = I915_MADV_DONTNEED;
4749 i915_gem_object_put_pages(obj);
4750 i915_gem_object_free_mmap_offset(obj);
4751
4752 BUG_ON(obj->pages);
4753
4754 if (obj->base.import_attach)
4755 drm_prime_gem_destroy(&obj->base, NULL);
4756
4757 if (obj->ops->release)
4758 obj->ops->release(obj);
4759
4760 drm_gem_object_release(&obj->base);
4761 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4762
4763 kfree(obj->bit_17);
4764 i915_gem_object_free(obj);
4765
4766 intel_runtime_pm_put(dev_priv);
4767 }
4768
4769 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4770 struct i915_address_space *vm)
4771 {
4772 struct i915_vma *vma;
4773 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4774 if (i915_is_ggtt(vma->vm) &&
4775 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4776 continue;
4777 if (vma->vm == vm)
4778 return vma;
4779 }
4780 return NULL;
4781 }
4782
4783 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4784 const struct i915_ggtt_view *view)
4785 {
4786 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4787 struct i915_vma *vma;
4788
4789 if (WARN_ONCE(!view, "no view specified"))
4790 return ERR_PTR(-EINVAL);
4791
4792 list_for_each_entry(vma, &obj->vma_list, vma_link)
4793 if (vma->vm == ggtt &&
4794 i915_ggtt_view_equal(&vma->ggtt_view, view))
4795 return vma;
4796 return NULL;
4797 }
4798
4799 void i915_gem_vma_destroy(struct i915_vma *vma)
4800 {
4801 struct i915_address_space *vm = NULL;
4802 WARN_ON(vma->node.allocated);
4803
4804 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4805 if (!list_empty(&vma->exec_list))
4806 return;
4807
4808 vm = vma->vm;
4809
4810 if (!i915_is_ggtt(vm))
4811 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4812
4813 list_del(&vma->vma_link);
4814
4815 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4816 }
4817
4818 static void
4819 i915_gem_stop_ringbuffers(struct drm_device *dev)
4820 {
4821 struct drm_i915_private *dev_priv = dev->dev_private;
4822 struct intel_engine_cs *ring;
4823 int i;
4824
4825 for_each_ring(ring, dev_priv, i)
4826 dev_priv->gt.stop_ring(ring);
4827 }
4828
4829 int
4830 i915_gem_suspend(struct drm_device *dev)
4831 {
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 int ret = 0;
4834
4835 mutex_lock(&dev->struct_mutex);
4836 ret = i915_gpu_idle(dev);
4837 if (ret)
4838 goto err;
4839
4840 i915_gem_retire_requests(dev);
4841
4842 i915_gem_stop_ringbuffers(dev);
4843 mutex_unlock(&dev->struct_mutex);
4844
4845 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4846 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4847 flush_delayed_work(&dev_priv->mm.idle_work);
4848
4849 /* Assert that we sucessfully flushed all the work and
4850 * reset the GPU back to its idle, low power state.
4851 */
4852 WARN_ON(dev_priv->mm.busy);
4853
4854 return 0;
4855
4856 err:
4857 mutex_unlock(&dev->struct_mutex);
4858 return ret;
4859 }
4860
4861 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4862 {
4863 struct drm_device *dev = ring->dev;
4864 struct drm_i915_private *dev_priv = dev->dev_private;
4865 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4866 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4867 int i, ret;
4868
4869 if (!HAS_L3_DPF(dev) || !remap_info)
4870 return 0;
4871
4872 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4873 if (ret)
4874 return ret;
4875
4876 /*
4877 * Note: We do not worry about the concurrent register cacheline hang
4878 * here because no other code should access these registers other than
4879 * at initialization time.
4880 */
4881 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4882 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4883 intel_ring_emit(ring, reg_base + i);
4884 intel_ring_emit(ring, remap_info[i/4]);
4885 }
4886
4887 intel_ring_advance(ring);
4888
4889 return ret;
4890 }
4891
4892 void i915_gem_init_swizzling(struct drm_device *dev)
4893 {
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895
4896 if (INTEL_INFO(dev)->gen < 5 ||
4897 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4898 return;
4899
4900 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4901 DISP_TILE_SURFACE_SWIZZLING);
4902
4903 if (IS_GEN5(dev))
4904 return;
4905
4906 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4907 if (IS_GEN6(dev))
4908 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4909 else if (IS_GEN7(dev))
4910 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4911 else if (IS_GEN8(dev))
4912 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4913 else
4914 BUG();
4915 }
4916
4917 static bool
4918 intel_enable_blt(struct drm_device *dev)
4919 {
4920 if (!HAS_BLT(dev))
4921 return false;
4922
4923 /* The blitter was dysfunctional on early prototypes */
4924 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4925 DRM_INFO("BLT not supported on this pre-production hardware;"
4926 " graphics performance will be degraded.\n");
4927 return false;
4928 }
4929
4930 return true;
4931 }
4932
4933 static void init_unused_ring(struct drm_device *dev, u32 base)
4934 {
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4936
4937 I915_WRITE(RING_CTL(base), 0);
4938 I915_WRITE(RING_HEAD(base), 0);
4939 I915_WRITE(RING_TAIL(base), 0);
4940 I915_WRITE(RING_START(base), 0);
4941 }
4942
4943 static void init_unused_rings(struct drm_device *dev)
4944 {
4945 if (IS_I830(dev)) {
4946 init_unused_ring(dev, PRB1_BASE);
4947 init_unused_ring(dev, SRB0_BASE);
4948 init_unused_ring(dev, SRB1_BASE);
4949 init_unused_ring(dev, SRB2_BASE);
4950 init_unused_ring(dev, SRB3_BASE);
4951 } else if (IS_GEN2(dev)) {
4952 init_unused_ring(dev, SRB0_BASE);
4953 init_unused_ring(dev, SRB1_BASE);
4954 } else if (IS_GEN3(dev)) {
4955 init_unused_ring(dev, PRB1_BASE);
4956 init_unused_ring(dev, PRB2_BASE);
4957 }
4958 }
4959
4960 int i915_gem_init_rings(struct drm_device *dev)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 int ret;
4964
4965 ret = intel_init_render_ring_buffer(dev);
4966 if (ret)
4967 return ret;
4968
4969 if (HAS_BSD(dev)) {
4970 ret = intel_init_bsd_ring_buffer(dev);
4971 if (ret)
4972 goto cleanup_render_ring;
4973 }
4974
4975 if (intel_enable_blt(dev)) {
4976 ret = intel_init_blt_ring_buffer(dev);
4977 if (ret)
4978 goto cleanup_bsd_ring;
4979 }
4980
4981 if (HAS_VEBOX(dev)) {
4982 ret = intel_init_vebox_ring_buffer(dev);
4983 if (ret)
4984 goto cleanup_blt_ring;
4985 }
4986
4987 if (HAS_BSD2(dev)) {
4988 ret = intel_init_bsd2_ring_buffer(dev);
4989 if (ret)
4990 goto cleanup_vebox_ring;
4991 }
4992
4993 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4994 if (ret)
4995 goto cleanup_bsd2_ring;
4996
4997 return 0;
4998
4999 cleanup_bsd2_ring:
5000 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5001 cleanup_vebox_ring:
5002 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5003 cleanup_blt_ring:
5004 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5005 cleanup_bsd_ring:
5006 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5007 cleanup_render_ring:
5008 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5009
5010 return ret;
5011 }
5012
5013 int
5014 i915_gem_init_hw(struct drm_device *dev)
5015 {
5016 struct drm_i915_private *dev_priv = dev->dev_private;
5017 struct intel_engine_cs *ring;
5018 int ret, i, j;
5019
5020 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5021 return -EIO;
5022
5023 /* Double layer security blanket, see i915_gem_init() */
5024 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5025
5026 if (dev_priv->ellc_size)
5027 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5028
5029 if (IS_HASWELL(dev))
5030 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5031 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5032
5033 if (HAS_PCH_NOP(dev)) {
5034 if (IS_IVYBRIDGE(dev)) {
5035 u32 temp = I915_READ(GEN7_MSG_CTL);
5036 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5037 I915_WRITE(GEN7_MSG_CTL, temp);
5038 } else if (INTEL_INFO(dev)->gen >= 7) {
5039 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5040 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5041 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5042 }
5043 }
5044
5045 i915_gem_init_swizzling(dev);
5046
5047 /*
5048 * At least 830 can leave some of the unused rings
5049 * "active" (ie. head != tail) after resume which
5050 * will prevent c3 entry. Makes sure all unused rings
5051 * are totally idle.
5052 */
5053 init_unused_rings(dev);
5054
5055 BUG_ON(!dev_priv->ring[RCS].default_context);
5056
5057 ret = i915_ppgtt_init_hw(dev);
5058 if (ret) {
5059 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5060 goto out;
5061 }
5062
5063 /* Need to do basic initialisation of all rings first: */
5064 for_each_ring(ring, dev_priv, i) {
5065 ret = ring->init_hw(ring);
5066 if (ret)
5067 goto out;
5068 }
5069
5070 /* Now it is safe to go back round and do everything else: */
5071 for_each_ring(ring, dev_priv, i) {
5072 struct drm_i915_gem_request *req;
5073
5074 WARN_ON(!ring->default_context);
5075
5076 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5077 if (ret) {
5078 i915_gem_cleanup_ringbuffer(dev);
5079 goto out;
5080 }
5081
5082 if (ring->id == RCS) {
5083 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5084 i915_gem_l3_remap(ring, j);
5085 }
5086
5087 ret = i915_ppgtt_init_ring(ring);
5088 if (ret && ret != -EIO) {
5089 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5090 i915_gem_request_cancel(req);
5091 i915_gem_cleanup_ringbuffer(dev);
5092 goto out;
5093 }
5094
5095 ret = i915_gem_context_enable(ring);
5096 if (ret && ret != -EIO) {
5097 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5098 i915_gem_request_cancel(req);
5099 i915_gem_cleanup_ringbuffer(dev);
5100 goto out;
5101 }
5102
5103 i915_add_request_no_flush(ring);
5104 }
5105
5106 out:
5107 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5108 return ret;
5109 }
5110
5111 int i915_gem_init(struct drm_device *dev)
5112 {
5113 struct drm_i915_private *dev_priv = dev->dev_private;
5114 int ret;
5115
5116 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5117 i915.enable_execlists);
5118
5119 mutex_lock(&dev->struct_mutex);
5120
5121 if (IS_VALLEYVIEW(dev)) {
5122 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5123 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5124 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5125 VLV_GTLC_ALLOWWAKEACK), 10))
5126 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5127 }
5128
5129 if (!i915.enable_execlists) {
5130 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5131 dev_priv->gt.init_rings = i915_gem_init_rings;
5132 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5133 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5134 } else {
5135 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5136 dev_priv->gt.init_rings = intel_logical_rings_init;
5137 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5138 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5139 }
5140
5141 /* This is just a security blanket to placate dragons.
5142 * On some systems, we very sporadically observe that the first TLBs
5143 * used by the CS may be stale, despite us poking the TLB reset. If
5144 * we hold the forcewake during initialisation these problems
5145 * just magically go away.
5146 */
5147 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5148
5149 ret = i915_gem_init_userptr(dev);
5150 if (ret)
5151 goto out_unlock;
5152
5153 i915_gem_init_global_gtt(dev);
5154
5155 ret = i915_gem_context_init(dev);
5156 if (ret)
5157 goto out_unlock;
5158
5159 ret = dev_priv->gt.init_rings(dev);
5160 if (ret)
5161 goto out_unlock;
5162
5163 ret = i915_gem_init_hw(dev);
5164 if (ret == -EIO) {
5165 /* Allow ring initialisation to fail by marking the GPU as
5166 * wedged. But we only want to do this where the GPU is angry,
5167 * for all other failure, such as an allocation failure, bail.
5168 */
5169 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5170 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5171 ret = 0;
5172 }
5173
5174 out_unlock:
5175 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176 mutex_unlock(&dev->struct_mutex);
5177
5178 return ret;
5179 }
5180
5181 void
5182 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5183 {
5184 struct drm_i915_private *dev_priv = dev->dev_private;
5185 struct intel_engine_cs *ring;
5186 int i;
5187
5188 for_each_ring(ring, dev_priv, i)
5189 dev_priv->gt.cleanup_ring(ring);
5190 }
5191
5192 static void
5193 init_ring_lists(struct intel_engine_cs *ring)
5194 {
5195 INIT_LIST_HEAD(&ring->active_list);
5196 INIT_LIST_HEAD(&ring->request_list);
5197 }
5198
5199 void i915_init_vm(struct drm_i915_private *dev_priv,
5200 struct i915_address_space *vm)
5201 {
5202 if (!i915_is_ggtt(vm))
5203 drm_mm_init(&vm->mm, vm->start, vm->total);
5204 vm->dev = dev_priv->dev;
5205 INIT_LIST_HEAD(&vm->active_list);
5206 INIT_LIST_HEAD(&vm->inactive_list);
5207 INIT_LIST_HEAD(&vm->global_link);
5208 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5209 }
5210
5211 void
5212 i915_gem_load(struct drm_device *dev)
5213 {
5214 struct drm_i915_private *dev_priv = dev->dev_private;
5215 int i;
5216
5217 dev_priv->objects =
5218 kmem_cache_create("i915_gem_object",
5219 sizeof(struct drm_i915_gem_object), 0,
5220 SLAB_HWCACHE_ALIGN,
5221 NULL);
5222 dev_priv->vmas =
5223 kmem_cache_create("i915_gem_vma",
5224 sizeof(struct i915_vma), 0,
5225 SLAB_HWCACHE_ALIGN,
5226 NULL);
5227 dev_priv->requests =
5228 kmem_cache_create("i915_gem_request",
5229 sizeof(struct drm_i915_gem_request), 0,
5230 SLAB_HWCACHE_ALIGN,
5231 NULL);
5232
5233 INIT_LIST_HEAD(&dev_priv->vm_list);
5234 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5235
5236 INIT_LIST_HEAD(&dev_priv->context_list);
5237 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5238 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5239 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5240 for (i = 0; i < I915_NUM_RINGS; i++)
5241 init_ring_lists(&dev_priv->ring[i]);
5242 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5243 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5244 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5245 i915_gem_retire_work_handler);
5246 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5247 i915_gem_idle_work_handler);
5248 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5249
5250 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5251
5252 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5253 dev_priv->num_fence_regs = 32;
5254 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5255 dev_priv->num_fence_regs = 16;
5256 else
5257 dev_priv->num_fence_regs = 8;
5258
5259 if (intel_vgpu_active(dev))
5260 dev_priv->num_fence_regs =
5261 I915_READ(vgtif_reg(avail_rs.fence_num));
5262
5263 /* Initialize fence registers to zero */
5264 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5265 i915_gem_restore_fences(dev);
5266
5267 i915_gem_detect_bit_6_swizzle(dev);
5268 init_waitqueue_head(&dev_priv->pending_flip_queue);
5269
5270 dev_priv->mm.interruptible = true;
5271
5272 i915_gem_shrinker_init(dev_priv);
5273
5274 mutex_init(&dev_priv->fb_tracking.lock);
5275 }
5276
5277 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5278 {
5279 struct drm_i915_file_private *file_priv = file->driver_priv;
5280
5281 /* Clean up our request list when the client is going away, so that
5282 * later retire_requests won't dereference our soon-to-be-gone
5283 * file_priv.
5284 */
5285 spin_lock(&file_priv->mm.lock);
5286 while (!list_empty(&file_priv->mm.request_list)) {
5287 struct drm_i915_gem_request *request;
5288
5289 request = list_first_entry(&file_priv->mm.request_list,
5290 struct drm_i915_gem_request,
5291 client_list);
5292 list_del(&request->client_list);
5293 request->file_priv = NULL;
5294 }
5295 spin_unlock(&file_priv->mm.lock);
5296
5297 if (!list_empty(&file_priv->rps.link)) {
5298 spin_lock(&to_i915(dev)->rps.client_lock);
5299 list_del(&file_priv->rps.link);
5300 spin_unlock(&to_i915(dev)->rps.client_lock);
5301 }
5302 }
5303
5304 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5305 {
5306 struct drm_i915_file_private *file_priv;
5307 int ret;
5308
5309 DRM_DEBUG_DRIVER("\n");
5310
5311 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5312 if (!file_priv)
5313 return -ENOMEM;
5314
5315 file->driver_priv = file_priv;
5316 file_priv->dev_priv = dev->dev_private;
5317 file_priv->file = file;
5318 INIT_LIST_HEAD(&file_priv->rps.link);
5319
5320 spin_lock_init(&file_priv->mm.lock);
5321 INIT_LIST_HEAD(&file_priv->mm.request_list);
5322
5323 ret = i915_gem_context_open(dev, file);
5324 if (ret)
5325 kfree(file_priv);
5326
5327 return ret;
5328 }
5329
5330 /**
5331 * i915_gem_track_fb - update frontbuffer tracking
5332 * old: current GEM buffer for the frontbuffer slots
5333 * new: new GEM buffer for the frontbuffer slots
5334 * frontbuffer_bits: bitmask of frontbuffer slots
5335 *
5336 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5337 * from @old and setting them in @new. Both @old and @new can be NULL.
5338 */
5339 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5340 struct drm_i915_gem_object *new,
5341 unsigned frontbuffer_bits)
5342 {
5343 if (old) {
5344 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5345 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5346 old->frontbuffer_bits &= ~frontbuffer_bits;
5347 }
5348
5349 if (new) {
5350 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5351 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5352 new->frontbuffer_bits |= frontbuffer_bits;
5353 }
5354 }
5355
5356 /* All the new VM stuff */
5357 unsigned long
5358 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5359 struct i915_address_space *vm)
5360 {
5361 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5362 struct i915_vma *vma;
5363
5364 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5365
5366 list_for_each_entry(vma, &o->vma_list, vma_link) {
5367 if (i915_is_ggtt(vma->vm) &&
5368 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5369 continue;
5370 if (vma->vm == vm)
5371 return vma->node.start;
5372 }
5373
5374 WARN(1, "%s vma for this object not found.\n",
5375 i915_is_ggtt(vm) ? "global" : "ppgtt");
5376 return -1;
5377 }
5378
5379 unsigned long
5380 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5381 const struct i915_ggtt_view *view)
5382 {
5383 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5384 struct i915_vma *vma;
5385
5386 list_for_each_entry(vma, &o->vma_list, vma_link)
5387 if (vma->vm == ggtt &&
5388 i915_ggtt_view_equal(&vma->ggtt_view, view))
5389 return vma->node.start;
5390
5391 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5392 return -1;
5393 }
5394
5395 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5396 struct i915_address_space *vm)
5397 {
5398 struct i915_vma *vma;
5399
5400 list_for_each_entry(vma, &o->vma_list, vma_link) {
5401 if (i915_is_ggtt(vma->vm) &&
5402 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5403 continue;
5404 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5405 return true;
5406 }
5407
5408 return false;
5409 }
5410
5411 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5412 const struct i915_ggtt_view *view)
5413 {
5414 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5415 struct i915_vma *vma;
5416
5417 list_for_each_entry(vma, &o->vma_list, vma_link)
5418 if (vma->vm == ggtt &&
5419 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5420 drm_mm_node_allocated(&vma->node))
5421 return true;
5422
5423 return false;
5424 }
5425
5426 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5427 {
5428 struct i915_vma *vma;
5429
5430 list_for_each_entry(vma, &o->vma_list, vma_link)
5431 if (drm_mm_node_allocated(&vma->node))
5432 return true;
5433
5434 return false;
5435 }
5436
5437 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5438 struct i915_address_space *vm)
5439 {
5440 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5441 struct i915_vma *vma;
5442
5443 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5444
5445 BUG_ON(list_empty(&o->vma_list));
5446
5447 list_for_each_entry(vma, &o->vma_list, vma_link) {
5448 if (i915_is_ggtt(vma->vm) &&
5449 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5450 continue;
5451 if (vma->vm == vm)
5452 return vma->node.size;
5453 }
5454 return 0;
5455 }
5456
5457 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5458 {
5459 struct i915_vma *vma;
5460 list_for_each_entry(vma, &obj->vma_list, vma_link)
5461 if (vma->pin_count > 0)
5462 return true;
5463
5464 return false;
5465 }
5466
This page took 0.143611 seconds and 6 git commands to generate.