drm/i915: Return a mask of the active rings in the high word of busy_ioctl
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105 if (ret == 0) {
106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107 return -EIO;
108 } else if (ret < 0) {
109 return ret;
110 }
111
112 if (atomic_read(&dev_priv->mm.wedged)) {
113 /* GPU is hung, bump the completion count to account for
114 * the token we just consumed so that we never hit zero and
115 * end up waiting upon a subsequent completion event that
116 * will never happen.
117 */
118 spin_lock_irqsave(&x->wait.lock, flags);
119 x->done++;
120 spin_unlock_irqrestore(&x->wait.lock, flags);
121 }
122 return 0;
123 }
124
125 int i915_mutex_lock_interruptible(struct drm_device *dev)
126 {
127 int ret;
128
129 ret = i915_gem_wait_for_error(dev);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 WARN_ON(i915_verify_lists(dev));
138 return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144 return !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (drm_core_check_feature(dev, DRIVER_MODESET))
154 return -ENODEV;
155
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
159
160 /* GEM with user mode setting was never supported on ilk and later. */
161 if (INTEL_INFO(dev)->gen >= 5)
162 return -ENODEV;
163
164 mutex_lock(&dev->struct_mutex);
165 i915_gem_init_global_gtt(dev, args->gtt_start,
166 args->gtt_end, args->gtt_end);
167 mutex_unlock(&dev->struct_mutex);
168
169 return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174 struct drm_file *file)
175 {
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 struct drm_i915_gem_get_aperture *args = data;
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
180
181 pinned = 0;
182 mutex_lock(&dev->struct_mutex);
183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184 if (obj->pin_count)
185 pinned += obj->gtt_space->size;
186 mutex_unlock(&dev->struct_mutex);
187
188 args->aper_size = dev_priv->mm.gtt_total;
189 args->aper_available_size = args->aper_size - pinned;
190
191 return 0;
192 }
193
194 static int
195 i915_gem_create(struct drm_file *file,
196 struct drm_device *dev,
197 uint64_t size,
198 uint32_t *handle_p)
199 {
200 struct drm_i915_gem_object *obj;
201 int ret;
202 u32 handle;
203
204 size = roundup(size, PAGE_SIZE);
205 if (size == 0)
206 return -EINVAL;
207
208 /* Allocate the new object */
209 obj = i915_gem_alloc_object(dev, size);
210 if (obj == NULL)
211 return -ENOMEM;
212
213 ret = drm_gem_handle_create(file, &obj->base, &handle);
214 if (ret) {
215 drm_gem_object_release(&obj->base);
216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217 kfree(obj);
218 return ret;
219 }
220
221 /* drop reference from allocate - handle holds it now */
222 drm_gem_object_unreference(&obj->base);
223 trace_i915_gem_object_create(obj);
224
225 *handle_p = handle;
226 return 0;
227 }
228
229 int
230 i915_gem_dumb_create(struct drm_file *file,
231 struct drm_device *dev,
232 struct drm_mode_create_dumb *args)
233 {
234 /* have to work out size/pitch and return them */
235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236 args->size = args->pitch * args->height;
237 return i915_gem_create(file, dev,
238 args->size, &args->handle);
239 }
240
241 int i915_gem_dumb_destroy(struct drm_file *file,
242 struct drm_device *dev,
243 uint32_t handle)
244 {
245 return drm_gem_handle_delete(file, handle);
246 }
247
248 /**
249 * Creates a new mm object and returns a handle to it.
250 */
251 int
252 i915_gem_create_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file)
254 {
255 struct drm_i915_gem_create *args = data;
256
257 return i915_gem_create(file, dev,
258 args->size, &args->handle);
259 }
260
261 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262 {
263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264
265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266 obj->tiling_mode != I915_TILING_NONE;
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 int release_page;
414
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
417
418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
431
432 offset = args->offset;
433
434 while (remain > 0) {
435 struct page *page;
436
437 /* Operation in this page
438 *
439 * shmem_page_offset = offset within page in shmem file
440 * page_length = bytes to copy for this page
441 */
442 shmem_page_offset = offset_in_page(offset);
443 page_length = remain;
444 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - shmem_page_offset;
446
447 if (obj->pages) {
448 page = obj->pages[offset >> PAGE_SHIFT];
449 release_page = 0;
450 } else {
451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452 if (IS_ERR(page)) {
453 ret = PTR_ERR(page);
454 goto out;
455 }
456 release_page = 1;
457 }
458
459 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460 (page_to_phys(page) & (1 << 17)) != 0;
461
462 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463 user_data, page_do_bit17_swizzling,
464 needs_clflush);
465 if (ret == 0)
466 goto next_page;
467
468 hit_slowpath = 1;
469 page_cache_get(page);
470 mutex_unlock(&dev->struct_mutex);
471
472 if (!prefaulted) {
473 ret = fault_in_multipages_writeable(user_data, remain);
474 /* Userspace is tricking us, but we've already clobbered
475 * its pages with the prefault and promised to write the
476 * data up to the first fault. Hence ignore any errors
477 * and just continue. */
478 (void)ret;
479 prefaulted = 1;
480 }
481
482 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483 user_data, page_do_bit17_swizzling,
484 needs_clflush);
485
486 mutex_lock(&dev->struct_mutex);
487 page_cache_release(page);
488 next_page:
489 mark_page_accessed(page);
490 if (release_page)
491 page_cache_release(page);
492
493 if (ret) {
494 ret = -EFAULT;
495 goto out;
496 }
497
498 remain -= page_length;
499 user_data += page_length;
500 offset += page_length;
501 }
502
503 out:
504 if (hit_slowpath) {
505 /* Fixup: Kill any reinstated backing storage pages */
506 if (obj->madv == __I915_MADV_PURGED)
507 i915_gem_object_truncate(obj);
508 }
509
510 return ret;
511 }
512
513 /**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518 int
519 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520 struct drm_file *file)
521 {
522 struct drm_i915_gem_pread *args = data;
523 struct drm_i915_gem_object *obj;
524 int ret = 0;
525
526 if (args->size == 0)
527 return 0;
528
529 if (!access_ok(VERIFY_WRITE,
530 (char __user *)(uintptr_t)args->data_ptr,
531 args->size))
532 return -EFAULT;
533
534 ret = i915_mutex_lock_interruptible(dev);
535 if (ret)
536 return ret;
537
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
540 ret = -ENOENT;
541 goto unlock;
542 }
543
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
547 ret = -EINVAL;
548 goto out;
549 }
550
551 /* prime objects have no backing filp to GEM pread/pwrite
552 * pages from.
553 */
554 if (!obj->base.filp) {
555 ret = -EINVAL;
556 goto out;
557 }
558
559 trace_i915_gem_object_pread(obj, args->offset, args->size);
560
561 ret = i915_gem_shmem_pread(dev, obj, args, file);
562
563 out:
564 drm_gem_object_unreference(&obj->base);
565 unlock:
566 mutex_unlock(&dev->struct_mutex);
567 return ret;
568 }
569
570 /* This is the fast write path which cannot handle
571 * page faults in the source data
572 */
573
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
579 {
580 void __iomem *vaddr_atomic;
581 void *vaddr;
582 unsigned long unwritten;
583
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 /* We can use the cpu mem copy function because this is X86. */
586 vaddr = (void __force*)vaddr_atomic + page_offset;
587 unwritten = __copy_from_user_inatomic_nocache(vaddr,
588 user_data, length);
589 io_mapping_unmap_atomic(vaddr_atomic);
590 return unwritten;
591 }
592
593 /**
594 * This is the fast pwrite path, where we copy the data directly from the
595 * user into the GTT, uncached.
596 */
597 static int
598 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599 struct drm_i915_gem_object *obj,
600 struct drm_i915_gem_pwrite *args,
601 struct drm_file *file)
602 {
603 drm_i915_private_t *dev_priv = dev->dev_private;
604 ssize_t remain;
605 loff_t offset, page_base;
606 char __user *user_data;
607 int page_offset, page_length, ret;
608
609 ret = i915_gem_object_pin(obj, 0, true);
610 if (ret)
611 goto out;
612
613 ret = i915_gem_object_set_to_gtt_domain(obj, true);
614 if (ret)
615 goto out_unpin;
616
617 ret = i915_gem_object_put_fence(obj);
618 if (ret)
619 goto out_unpin;
620
621 user_data = (char __user *) (uintptr_t) args->data_ptr;
622 remain = args->size;
623
624 offset = obj->gtt_offset + args->offset;
625
626 while (remain > 0) {
627 /* Operation in this page
628 *
629 * page_base = page offset within aperture
630 * page_offset = offset within page
631 * page_length = bytes to copy for this page
632 */
633 page_base = offset & PAGE_MASK;
634 page_offset = offset_in_page(offset);
635 page_length = remain;
636 if ((page_offset + remain) > PAGE_SIZE)
637 page_length = PAGE_SIZE - page_offset;
638
639 /* If we get a fault while copying data, then (presumably) our
640 * source page isn't available. Return the error and we'll
641 * retry in the slow path.
642 */
643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
644 page_offset, user_data, page_length)) {
645 ret = -EFAULT;
646 goto out_unpin;
647 }
648
649 remain -= page_length;
650 user_data += page_length;
651 offset += page_length;
652 }
653
654 out_unpin:
655 i915_gem_object_unpin(obj);
656 out:
657 return ret;
658 }
659
660 /* Per-page copy function for the shmem pwrite fastpath.
661 * Flushes invalid cachelines before writing to the target if
662 * needs_clflush_before is set and flushes out any written cachelines after
663 * writing if needs_clflush is set. */
664 static int
665 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666 char __user *user_data,
667 bool page_do_bit17_swizzling,
668 bool needs_clflush_before,
669 bool needs_clflush_after)
670 {
671 char *vaddr;
672 int ret;
673
674 if (unlikely(page_do_bit17_swizzling))
675 return -EINVAL;
676
677 vaddr = kmap_atomic(page);
678 if (needs_clflush_before)
679 drm_clflush_virt_range(vaddr + shmem_page_offset,
680 page_length);
681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682 user_data,
683 page_length);
684 if (needs_clflush_after)
685 drm_clflush_virt_range(vaddr + shmem_page_offset,
686 page_length);
687 kunmap_atomic(vaddr);
688
689 return ret;
690 }
691
692 /* Only difference to the fast-path function is that this can handle bit17
693 * and uses non-atomic copy and kmap functions. */
694 static int
695 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696 char __user *user_data,
697 bool page_do_bit17_swizzling,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
700 {
701 char *vaddr;
702 int ret;
703
704 vaddr = kmap(page);
705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 if (page_do_bit17_swizzling)
710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711 user_data,
712 page_length);
713 else
714 ret = __copy_from_user(vaddr + shmem_page_offset,
715 user_data,
716 page_length);
717 if (needs_clflush_after)
718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719 page_length,
720 page_do_bit17_swizzling);
721 kunmap(page);
722
723 return ret;
724 }
725
726 static int
727 i915_gem_shmem_pwrite(struct drm_device *dev,
728 struct drm_i915_gem_object *obj,
729 struct drm_i915_gem_pwrite *args,
730 struct drm_file *file)
731 {
732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int release_page;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747
748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749 /* If we're not in the cpu write domain, set ourself into the gtt
750 * write domain and manually flush cachelines (if required). This
751 * optimizes for the case when the gpu will use the data
752 * right away and we therefore have to clflush anyway. */
753 if (obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_after = 1;
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 /* Same trick applies for invalidate partially written cachelines before
760 * writing. */
761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762 && obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_before = 1;
764
765 offset = args->offset;
766 obj->dirty = 1;
767
768 while (remain > 0) {
769 struct page *page;
770 int partial_cacheline_write;
771
772 /* Operation in this page
773 *
774 * shmem_page_offset = offset within page in shmem file
775 * page_length = bytes to copy for this page
776 */
777 shmem_page_offset = offset_in_page(offset);
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
790 if (obj->pages) {
791 page = obj->pages[offset >> PAGE_SHIFT];
792 release_page = 0;
793 } else {
794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795 if (IS_ERR(page)) {
796 ret = PTR_ERR(page);
797 goto out;
798 }
799 release_page = 1;
800 }
801
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 page_cache_get(page);
814 mutex_unlock(&dev->struct_mutex);
815
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
820
821 mutex_lock(&dev->struct_mutex);
822 page_cache_release(page);
823 next_page:
824 set_page_dirty(page);
825 mark_page_accessed(page);
826 if (release_page)
827 page_cache_release(page);
828
829 if (ret) {
830 ret = -EFAULT;
831 goto out;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out:
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
850 }
851
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->gtt_space &&
924 obj->cache_level == I915_CACHE_NONE &&
925 obj->tiling_mode == I915_TILING_NONE &&
926 obj->map_and_fenceable &&
927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
929 /* Note that the gtt paths might fail with non-page-backed user
930 * pointers (e.g. gtt mappings when moving data between
931 * textures). Fallback to the shmem path in that case. */
932 }
933
934 if (ret == -EFAULT)
935 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936
937 out:
938 drm_gem_object_unreference(&obj->base);
939 unlock:
940 mutex_unlock(&dev->struct_mutex);
941 return ret;
942 }
943
944 /**
945 * Called when user space prepares to use an object with the CPU, either
946 * through the mmap ioctl's mapping or a GTT mapping.
947 */
948 int
949 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950 struct drm_file *file)
951 {
952 struct drm_i915_gem_set_domain *args = data;
953 struct drm_i915_gem_object *obj;
954 uint32_t read_domains = args->read_domains;
955 uint32_t write_domain = args->write_domain;
956 int ret;
957
958 /* Only handle setting domains to types used by the CPU. */
959 if (write_domain & I915_GEM_GPU_DOMAINS)
960 return -EINVAL;
961
962 if (read_domains & I915_GEM_GPU_DOMAINS)
963 return -EINVAL;
964
965 /* Having something in the write domain implies it's in the read
966 * domain, and only that read domain. Enforce that in the request.
967 */
968 if (write_domain != 0 && read_domains != write_domain)
969 return -EINVAL;
970
971 ret = i915_mutex_lock_interruptible(dev);
972 if (ret)
973 return ret;
974
975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976 if (&obj->base == NULL) {
977 ret = -ENOENT;
978 goto unlock;
979 }
980
981 if (read_domains & I915_GEM_DOMAIN_GTT) {
982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983
984 /* Silently promote "you're not bound, there was nothing to do"
985 * to success, since the client was just asking us to
986 * make sure everything was done.
987 */
988 if (ret == -EINVAL)
989 ret = 0;
990 } else {
991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992 }
993
994 drm_gem_object_unreference(&obj->base);
995 unlock:
996 mutex_unlock(&dev->struct_mutex);
997 return ret;
998 }
999
1000 /**
1001 * Called when user space has done writes to this buffer
1002 */
1003 int
1004 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005 struct drm_file *file)
1006 {
1007 struct drm_i915_gem_sw_finish *args = data;
1008 struct drm_i915_gem_object *obj;
1009 int ret = 0;
1010
1011 ret = i915_mutex_lock_interruptible(dev);
1012 if (ret)
1013 return ret;
1014
1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016 if (&obj->base == NULL) {
1017 ret = -ENOENT;
1018 goto unlock;
1019 }
1020
1021 /* Pinned buffers may be scanout, so flush the cache */
1022 if (obj->pin_count)
1023 i915_gem_object_flush_cpu_write_domain(obj);
1024
1025 drm_gem_object_unreference(&obj->base);
1026 unlock:
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Maps the contents of an object, returning the address it is mapped
1033 * into.
1034 *
1035 * While the mapping holds a reference on the contents of the object, it doesn't
1036 * imply a ref on the object itself.
1037 */
1038 int
1039 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040 struct drm_file *file)
1041 {
1042 struct drm_i915_gem_mmap *args = data;
1043 struct drm_gem_object *obj;
1044 unsigned long addr;
1045
1046 obj = drm_gem_object_lookup(dev, file, args->handle);
1047 if (obj == NULL)
1048 return -ENOENT;
1049
1050 /* prime objects have no backing filp to GEM mmap
1051 * pages from.
1052 */
1053 if (!obj->filp) {
1054 drm_gem_object_unreference_unlocked(obj);
1055 return -EINVAL;
1056 }
1057
1058 addr = vm_mmap(obj->filp, 0, args->size,
1059 PROT_READ | PROT_WRITE, MAP_SHARED,
1060 args->offset);
1061 drm_gem_object_unreference_unlocked(obj);
1062 if (IS_ERR((void *)addr))
1063 return addr;
1064
1065 args->addr_ptr = (uint64_t) addr;
1066
1067 return 0;
1068 }
1069
1070 /**
1071 * i915_gem_fault - fault a page into the GTT
1072 * vma: VMA in question
1073 * vmf: fault info
1074 *
1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076 * from userspace. The fault handler takes care of binding the object to
1077 * the GTT (if needed), allocating and programming a fence register (again,
1078 * only if needed based on whether the old reg is still valid or the object
1079 * is tiled) and inserting a new PTE into the faulting process.
1080 *
1081 * Note that the faulting process may involve evicting existing objects
1082 * from the GTT and/or fence registers to make room. So performance may
1083 * suffer if the GTT working set is large or there are few fence registers
1084 * left.
1085 */
1086 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087 {
1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089 struct drm_device *dev = obj->base.dev;
1090 drm_i915_private_t *dev_priv = dev->dev_private;
1091 pgoff_t page_offset;
1092 unsigned long pfn;
1093 int ret = 0;
1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095
1096 /* We don't use vmf->pgoff since that has the fake offset */
1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098 PAGE_SHIFT;
1099
1100 ret = i915_mutex_lock_interruptible(dev);
1101 if (ret)
1102 goto out;
1103
1104 trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
1106 /* Now bind it into the GTT if needed */
1107 if (!obj->map_and_fenceable) {
1108 ret = i915_gem_object_unbind(obj);
1109 if (ret)
1110 goto unlock;
1111 }
1112 if (!obj->gtt_space) {
1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114 if (ret)
1115 goto unlock;
1116
1117 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118 if (ret)
1119 goto unlock;
1120 }
1121
1122 if (!obj->has_global_gtt_mapping)
1123 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
1125 ret = i915_gem_object_get_fence(obj);
1126 if (ret)
1127 goto unlock;
1128
1129 if (i915_gem_object_is_inactive(obj))
1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131
1132 obj->fault_mappable = true;
1133
1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135 page_offset;
1136
1137 /* Finally, remap it using the new GTT offset */
1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139 unlock:
1140 mutex_unlock(&dev->struct_mutex);
1141 out:
1142 switch (ret) {
1143 case -EIO:
1144 /* If this -EIO is due to a gpu hang, give the reset code a
1145 * chance to clean up the mess. Otherwise return the proper
1146 * SIGBUS. */
1147 if (!atomic_read(&dev_priv->mm.wedged))
1148 return VM_FAULT_SIGBUS;
1149 case -EAGAIN:
1150 /* Give the error handler a chance to run and move the
1151 * objects off the GPU active list. Next time we service the
1152 * fault, we should be able to transition the page into the
1153 * GTT without touching the GPU (and so avoid further
1154 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1155 * with coherency, just lost writes.
1156 */
1157 set_need_resched();
1158 case 0:
1159 case -ERESTARTSYS:
1160 case -EINTR:
1161 return VM_FAULT_NOPAGE;
1162 case -ENOMEM:
1163 return VM_FAULT_OOM;
1164 default:
1165 return VM_FAULT_SIGBUS;
1166 }
1167 }
1168
1169 /**
1170 * i915_gem_release_mmap - remove physical page mappings
1171 * @obj: obj in question
1172 *
1173 * Preserve the reservation of the mmapping with the DRM core code, but
1174 * relinquish ownership of the pages back to the system.
1175 *
1176 * It is vital that we remove the page mapping if we have mapped a tiled
1177 * object through the GTT and then lose the fence register due to
1178 * resource pressure. Similarly if the object has been moved out of the
1179 * aperture, than pages mapped into userspace must be revoked. Removing the
1180 * mapping will then trigger a page fault on the next user access, allowing
1181 * fixup by i915_gem_fault().
1182 */
1183 void
1184 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1185 {
1186 if (!obj->fault_mappable)
1187 return;
1188
1189 if (obj->base.dev->dev_mapping)
1190 unmap_mapping_range(obj->base.dev->dev_mapping,
1191 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1192 obj->base.size, 1);
1193
1194 obj->fault_mappable = false;
1195 }
1196
1197 static uint32_t
1198 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1199 {
1200 uint32_t gtt_size;
1201
1202 if (INTEL_INFO(dev)->gen >= 4 ||
1203 tiling_mode == I915_TILING_NONE)
1204 return size;
1205
1206 /* Previous chips need a power-of-two fence region when tiling */
1207 if (INTEL_INFO(dev)->gen == 3)
1208 gtt_size = 1024*1024;
1209 else
1210 gtt_size = 512*1024;
1211
1212 while (gtt_size < size)
1213 gtt_size <<= 1;
1214
1215 return gtt_size;
1216 }
1217
1218 /**
1219 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1220 * @obj: object to check
1221 *
1222 * Return the required GTT alignment for an object, taking into account
1223 * potential fence register mapping.
1224 */
1225 static uint32_t
1226 i915_gem_get_gtt_alignment(struct drm_device *dev,
1227 uint32_t size,
1228 int tiling_mode)
1229 {
1230 /*
1231 * Minimum alignment is 4k (GTT page size), but might be greater
1232 * if a fence register is needed for the object.
1233 */
1234 if (INTEL_INFO(dev)->gen >= 4 ||
1235 tiling_mode == I915_TILING_NONE)
1236 return 4096;
1237
1238 /*
1239 * Previous chips need to be aligned to the size of the smallest
1240 * fence register that can contain the object.
1241 */
1242 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 }
1244
1245 /**
1246 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1247 * unfenced object
1248 * @dev: the device
1249 * @size: size of the object
1250 * @tiling_mode: tiling mode of the object
1251 *
1252 * Return the required GTT alignment for an object, only taking into account
1253 * unfenced tiled surface requirements.
1254 */
1255 uint32_t
1256 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1257 uint32_t size,
1258 int tiling_mode)
1259 {
1260 /*
1261 * Minimum alignment is 4k (GTT page size) for sane hw.
1262 */
1263 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1264 tiling_mode == I915_TILING_NONE)
1265 return 4096;
1266
1267 /* Previous hardware however needs to be aligned to a power-of-two
1268 * tile height. The simplest method for determining this is to reuse
1269 * the power-of-tile object size.
1270 */
1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 }
1273
1274 int
1275 i915_gem_mmap_gtt(struct drm_file *file,
1276 struct drm_device *dev,
1277 uint32_t handle,
1278 uint64_t *offset)
1279 {
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 struct drm_i915_gem_object *obj;
1282 int ret;
1283
1284 ret = i915_mutex_lock_interruptible(dev);
1285 if (ret)
1286 return ret;
1287
1288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1289 if (&obj->base == NULL) {
1290 ret = -ENOENT;
1291 goto unlock;
1292 }
1293
1294 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1295 ret = -E2BIG;
1296 goto out;
1297 }
1298
1299 if (obj->madv != I915_MADV_WILLNEED) {
1300 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1301 ret = -EINVAL;
1302 goto out;
1303 }
1304
1305 if (!obj->base.map_list.map) {
1306 ret = drm_gem_create_mmap_offset(&obj->base);
1307 if (ret)
1308 goto out;
1309 }
1310
1311 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1312
1313 out:
1314 drm_gem_object_unreference(&obj->base);
1315 unlock:
1316 mutex_unlock(&dev->struct_mutex);
1317 return ret;
1318 }
1319
1320 /**
1321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1322 * @dev: DRM device
1323 * @data: GTT mapping ioctl data
1324 * @file: GEM object info
1325 *
1326 * Simply returns the fake offset to userspace so it can mmap it.
1327 * The mmap call will end up in drm_gem_mmap(), which will set things
1328 * up so we can get faults in the handler above.
1329 *
1330 * The fault handler will take care of binding the object into the GTT
1331 * (since it may have been evicted to make room for something), allocating
1332 * a fence register, and mapping the appropriate aperture address into
1333 * userspace.
1334 */
1335 int
1336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1337 struct drm_file *file)
1338 {
1339 struct drm_i915_gem_mmap_gtt *args = data;
1340
1341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1342 }
1343
1344 int
1345 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1346 gfp_t gfpmask)
1347 {
1348 int page_count, i;
1349 struct address_space *mapping;
1350 struct inode *inode;
1351 struct page *page;
1352
1353 if (obj->pages || obj->sg_table)
1354 return 0;
1355
1356 /* Get the list of pages out of our struct file. They'll be pinned
1357 * at this point until we release them.
1358 */
1359 page_count = obj->base.size / PAGE_SIZE;
1360 BUG_ON(obj->pages != NULL);
1361 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1362 if (obj->pages == NULL)
1363 return -ENOMEM;
1364
1365 inode = obj->base.filp->f_path.dentry->d_inode;
1366 mapping = inode->i_mapping;
1367 gfpmask |= mapping_gfp_mask(mapping);
1368
1369 for (i = 0; i < page_count; i++) {
1370 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1371 if (IS_ERR(page))
1372 goto err_pages;
1373
1374 obj->pages[i] = page;
1375 }
1376
1377 if (i915_gem_object_needs_bit17_swizzle(obj))
1378 i915_gem_object_do_bit_17_swizzle(obj);
1379
1380 return 0;
1381
1382 err_pages:
1383 while (i--)
1384 page_cache_release(obj->pages[i]);
1385
1386 drm_free_large(obj->pages);
1387 obj->pages = NULL;
1388 return PTR_ERR(page);
1389 }
1390
1391 static void
1392 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1393 {
1394 int page_count = obj->base.size / PAGE_SIZE;
1395 int i;
1396
1397 if (!obj->pages)
1398 return;
1399
1400 BUG_ON(obj->madv == __I915_MADV_PURGED);
1401
1402 if (i915_gem_object_needs_bit17_swizzle(obj))
1403 i915_gem_object_save_bit_17_swizzle(obj);
1404
1405 if (obj->madv == I915_MADV_DONTNEED)
1406 obj->dirty = 0;
1407
1408 for (i = 0; i < page_count; i++) {
1409 if (obj->dirty)
1410 set_page_dirty(obj->pages[i]);
1411
1412 if (obj->madv == I915_MADV_WILLNEED)
1413 mark_page_accessed(obj->pages[i]);
1414
1415 page_cache_release(obj->pages[i]);
1416 }
1417 obj->dirty = 0;
1418
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
1421 }
1422
1423 void
1424 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1425 struct intel_ring_buffer *ring,
1426 u32 seqno)
1427 {
1428 struct drm_device *dev = obj->base.dev;
1429 struct drm_i915_private *dev_priv = dev->dev_private;
1430
1431 BUG_ON(ring == NULL);
1432 obj->ring = ring;
1433
1434 /* Add a reference if we're newly entering the active list. */
1435 if (!obj->active) {
1436 drm_gem_object_reference(&obj->base);
1437 obj->active = 1;
1438 }
1439
1440 /* Move from whatever list we were on to the tail of execution. */
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1442 list_move_tail(&obj->ring_list, &ring->active_list);
1443
1444 obj->last_rendering_seqno = seqno;
1445
1446 if (obj->fenced_gpu_access) {
1447 obj->last_fenced_seqno = seqno;
1448
1449 /* Bump MRU to take account of the delayed flush */
1450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1451 struct drm_i915_fence_reg *reg;
1452
1453 reg = &dev_priv->fence_regs[obj->fence_reg];
1454 list_move_tail(&reg->lru_list,
1455 &dev_priv->mm.fence_list);
1456 }
1457 }
1458 }
1459
1460 static void
1461 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1462 {
1463 list_del_init(&obj->ring_list);
1464 obj->last_rendering_seqno = 0;
1465 obj->last_fenced_seqno = 0;
1466 }
1467
1468 static void
1469 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1470 {
1471 struct drm_device *dev = obj->base.dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
1473
1474 BUG_ON(!obj->active);
1475 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1476
1477 i915_gem_object_move_off_active(obj);
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1482 {
1483 struct drm_device *dev = obj->base.dev;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1487
1488 BUG_ON(!list_empty(&obj->gpu_write_list));
1489 BUG_ON(!obj->active);
1490 obj->ring = NULL;
1491
1492 i915_gem_object_move_off_active(obj);
1493 obj->fenced_gpu_access = false;
1494
1495 obj->active = 0;
1496 obj->pending_gpu_write = false;
1497 drm_gem_object_unreference(&obj->base);
1498
1499 WARN_ON(i915_verify_lists(dev));
1500 }
1501
1502 /* Immediately discard the backing storage */
1503 static void
1504 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1505 {
1506 struct inode *inode;
1507
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
1511 * backing pages, *now*.
1512 */
1513 inode = obj->base.filp->f_path.dentry->d_inode;
1514 shmem_truncate_range(inode, 0, (loff_t)-1);
1515
1516 if (obj->base.map_list.map)
1517 drm_gem_free_mmap_offset(&obj->base);
1518
1519 obj->madv = __I915_MADV_PURGED;
1520 }
1521
1522 static inline int
1523 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1524 {
1525 return obj->madv == I915_MADV_DONTNEED;
1526 }
1527
1528 static void
1529 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1530 uint32_t flush_domains)
1531 {
1532 struct drm_i915_gem_object *obj, *next;
1533
1534 list_for_each_entry_safe(obj, next,
1535 &ring->gpu_write_list,
1536 gpu_write_list) {
1537 if (obj->base.write_domain & flush_domains) {
1538 uint32_t old_write_domain = obj->base.write_domain;
1539
1540 obj->base.write_domain = 0;
1541 list_del_init(&obj->gpu_write_list);
1542 i915_gem_object_move_to_active(obj, ring,
1543 i915_gem_next_request_seqno(ring));
1544
1545 trace_i915_gem_object_change_domain(obj,
1546 obj->base.read_domains,
1547 old_write_domain);
1548 }
1549 }
1550 }
1551
1552 static u32
1553 i915_gem_get_seqno(struct drm_device *dev)
1554 {
1555 drm_i915_private_t *dev_priv = dev->dev_private;
1556 u32 seqno = dev_priv->next_seqno;
1557
1558 /* reserve 0 for non-seqno */
1559 if (++dev_priv->next_seqno == 0)
1560 dev_priv->next_seqno = 1;
1561
1562 return seqno;
1563 }
1564
1565 u32
1566 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1567 {
1568 if (ring->outstanding_lazy_request == 0)
1569 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1570
1571 return ring->outstanding_lazy_request;
1572 }
1573
1574 int
1575 i915_add_request(struct intel_ring_buffer *ring,
1576 struct drm_file *file,
1577 struct drm_i915_gem_request *request)
1578 {
1579 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1580 uint32_t seqno;
1581 u32 request_ring_position;
1582 int was_empty;
1583 int ret;
1584
1585 /*
1586 * Emit any outstanding flushes - execbuf can fail to emit the flush
1587 * after having emitted the batchbuffer command. Hence we need to fix
1588 * things up similar to emitting the lazy request. The difference here
1589 * is that the flush _must_ happen before the next request, no matter
1590 * what.
1591 */
1592 if (ring->gpu_caches_dirty) {
1593 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1594 if (ret)
1595 return ret;
1596
1597 ring->gpu_caches_dirty = false;
1598 }
1599
1600 BUG_ON(request == NULL);
1601 seqno = i915_gem_next_request_seqno(ring);
1602
1603 /* Record the position of the start of the request so that
1604 * should we detect the updated seqno part-way through the
1605 * GPU processing the request, we never over-estimate the
1606 * position of the head.
1607 */
1608 request_ring_position = intel_ring_get_tail(ring);
1609
1610 ret = ring->add_request(ring, &seqno);
1611 if (ret)
1612 return ret;
1613
1614 trace_i915_gem_request_add(ring, seqno);
1615
1616 request->seqno = seqno;
1617 request->ring = ring;
1618 request->tail = request_ring_position;
1619 request->emitted_jiffies = jiffies;
1620 was_empty = list_empty(&ring->request_list);
1621 list_add_tail(&request->list, &ring->request_list);
1622
1623 if (file) {
1624 struct drm_i915_file_private *file_priv = file->driver_priv;
1625
1626 spin_lock(&file_priv->mm.lock);
1627 request->file_priv = file_priv;
1628 list_add_tail(&request->client_list,
1629 &file_priv->mm.request_list);
1630 spin_unlock(&file_priv->mm.lock);
1631 }
1632
1633 ring->outstanding_lazy_request = 0;
1634
1635 if (!dev_priv->mm.suspended) {
1636 if (i915_enable_hangcheck) {
1637 mod_timer(&dev_priv->hangcheck_timer,
1638 jiffies +
1639 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1640 }
1641 if (was_empty)
1642 queue_delayed_work(dev_priv->wq,
1643 &dev_priv->mm.retire_work, HZ);
1644 }
1645
1646 WARN_ON(!list_empty(&ring->gpu_write_list));
1647
1648 return 0;
1649 }
1650
1651 static inline void
1652 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1653 {
1654 struct drm_i915_file_private *file_priv = request->file_priv;
1655
1656 if (!file_priv)
1657 return;
1658
1659 spin_lock(&file_priv->mm.lock);
1660 if (request->file_priv) {
1661 list_del(&request->client_list);
1662 request->file_priv = NULL;
1663 }
1664 spin_unlock(&file_priv->mm.lock);
1665 }
1666
1667 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1668 struct intel_ring_buffer *ring)
1669 {
1670 while (!list_empty(&ring->request_list)) {
1671 struct drm_i915_gem_request *request;
1672
1673 request = list_first_entry(&ring->request_list,
1674 struct drm_i915_gem_request,
1675 list);
1676
1677 list_del(&request->list);
1678 i915_gem_request_remove_from_client(request);
1679 kfree(request);
1680 }
1681
1682 while (!list_empty(&ring->active_list)) {
1683 struct drm_i915_gem_object *obj;
1684
1685 obj = list_first_entry(&ring->active_list,
1686 struct drm_i915_gem_object,
1687 ring_list);
1688
1689 obj->base.write_domain = 0;
1690 list_del_init(&obj->gpu_write_list);
1691 i915_gem_object_move_to_inactive(obj);
1692 }
1693 }
1694
1695 static void i915_gem_reset_fences(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 int i;
1699
1700 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1701 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1702
1703 i915_gem_write_fence(dev, i, NULL);
1704
1705 if (reg->obj)
1706 i915_gem_object_fence_lost(reg->obj);
1707
1708 reg->pin_count = 0;
1709 reg->obj = NULL;
1710 INIT_LIST_HEAD(&reg->lru_list);
1711 }
1712
1713 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1714 }
1715
1716 void i915_gem_reset(struct drm_device *dev)
1717 {
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 struct drm_i915_gem_object *obj;
1720 struct intel_ring_buffer *ring;
1721 int i;
1722
1723 for_each_ring(ring, dev_priv, i)
1724 i915_gem_reset_ring_lists(dev_priv, ring);
1725
1726 /* Remove anything from the flushing lists. The GPU cache is likely
1727 * to be lost on reset along with the data, so simply move the
1728 * lost bo to the inactive list.
1729 */
1730 while (!list_empty(&dev_priv->mm.flushing_list)) {
1731 obj = list_first_entry(&dev_priv->mm.flushing_list,
1732 struct drm_i915_gem_object,
1733 mm_list);
1734
1735 obj->base.write_domain = 0;
1736 list_del_init(&obj->gpu_write_list);
1737 i915_gem_object_move_to_inactive(obj);
1738 }
1739
1740 /* Move everything out of the GPU domains to ensure we do any
1741 * necessary invalidation upon reuse.
1742 */
1743 list_for_each_entry(obj,
1744 &dev_priv->mm.inactive_list,
1745 mm_list)
1746 {
1747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1748 }
1749
1750 /* The fence registers are invalidated so clear them out */
1751 i915_gem_reset_fences(dev);
1752 }
1753
1754 /**
1755 * This function clears the request list as sequence numbers are passed.
1756 */
1757 void
1758 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1759 {
1760 uint32_t seqno;
1761 int i;
1762
1763 if (list_empty(&ring->request_list))
1764 return;
1765
1766 WARN_ON(i915_verify_lists(ring->dev));
1767
1768 seqno = ring->get_seqno(ring);
1769
1770 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1771 if (seqno >= ring->sync_seqno[i])
1772 ring->sync_seqno[i] = 0;
1773
1774 while (!list_empty(&ring->request_list)) {
1775 struct drm_i915_gem_request *request;
1776
1777 request = list_first_entry(&ring->request_list,
1778 struct drm_i915_gem_request,
1779 list);
1780
1781 if (!i915_seqno_passed(seqno, request->seqno))
1782 break;
1783
1784 trace_i915_gem_request_retire(ring, request->seqno);
1785 /* We know the GPU must have read the request to have
1786 * sent us the seqno + interrupt, so use the position
1787 * of tail of the request to update the last known position
1788 * of the GPU head.
1789 */
1790 ring->last_retired_head = request->tail;
1791
1792 list_del(&request->list);
1793 i915_gem_request_remove_from_client(request);
1794 kfree(request);
1795 }
1796
1797 /* Move any buffers on the active list that are no longer referenced
1798 * by the ringbuffer to the flushing/inactive lists as appropriate.
1799 */
1800 while (!list_empty(&ring->active_list)) {
1801 struct drm_i915_gem_object *obj;
1802
1803 obj = list_first_entry(&ring->active_list,
1804 struct drm_i915_gem_object,
1805 ring_list);
1806
1807 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1808 break;
1809
1810 if (obj->base.write_domain != 0)
1811 i915_gem_object_move_to_flushing(obj);
1812 else
1813 i915_gem_object_move_to_inactive(obj);
1814 }
1815
1816 if (unlikely(ring->trace_irq_seqno &&
1817 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1818 ring->irq_put(ring);
1819 ring->trace_irq_seqno = 0;
1820 }
1821
1822 WARN_ON(i915_verify_lists(ring->dev));
1823 }
1824
1825 void
1826 i915_gem_retire_requests(struct drm_device *dev)
1827 {
1828 drm_i915_private_t *dev_priv = dev->dev_private;
1829 struct intel_ring_buffer *ring;
1830 int i;
1831
1832 for_each_ring(ring, dev_priv, i)
1833 i915_gem_retire_requests_ring(ring);
1834 }
1835
1836 static void
1837 i915_gem_retire_work_handler(struct work_struct *work)
1838 {
1839 drm_i915_private_t *dev_priv;
1840 struct drm_device *dev;
1841 struct intel_ring_buffer *ring;
1842 bool idle;
1843 int i;
1844
1845 dev_priv = container_of(work, drm_i915_private_t,
1846 mm.retire_work.work);
1847 dev = dev_priv->dev;
1848
1849 /* Come back later if the device is busy... */
1850 if (!mutex_trylock(&dev->struct_mutex)) {
1851 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1852 return;
1853 }
1854
1855 i915_gem_retire_requests(dev);
1856
1857 /* Send a periodic flush down the ring so we don't hold onto GEM
1858 * objects indefinitely.
1859 */
1860 idle = true;
1861 for_each_ring(ring, dev_priv, i) {
1862 if (ring->gpu_caches_dirty) {
1863 struct drm_i915_gem_request *request;
1864
1865 request = kzalloc(sizeof(*request), GFP_KERNEL);
1866 if (request == NULL ||
1867 i915_add_request(ring, NULL, request))
1868 kfree(request);
1869 }
1870
1871 idle &= list_empty(&ring->request_list);
1872 }
1873
1874 if (!dev_priv->mm.suspended && !idle)
1875 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1876
1877 mutex_unlock(&dev->struct_mutex);
1878 }
1879
1880 int
1881 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1882 bool interruptible)
1883 {
1884 if (atomic_read(&dev_priv->mm.wedged)) {
1885 struct completion *x = &dev_priv->error_completion;
1886 bool recovery_complete;
1887 unsigned long flags;
1888
1889 /* Give the error handler a chance to run. */
1890 spin_lock_irqsave(&x->wait.lock, flags);
1891 recovery_complete = x->done > 0;
1892 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
1894 /* Non-interruptible callers can't handle -EAGAIN, hence return
1895 * -EIO unconditionally for these. */
1896 if (!interruptible)
1897 return -EIO;
1898
1899 /* Recovery complete, but still wedged means reset failure. */
1900 if (recovery_complete)
1901 return -EIO;
1902
1903 return -EAGAIN;
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * Compare seqno against outstanding lazy request. Emit a request if they are
1911 * equal.
1912 */
1913 static int
1914 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1915 {
1916 int ret = 0;
1917
1918 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1919
1920 if (seqno == ring->outstanding_lazy_request) {
1921 struct drm_i915_gem_request *request;
1922
1923 request = kzalloc(sizeof(*request), GFP_KERNEL);
1924 if (request == NULL)
1925 return -ENOMEM;
1926
1927 ret = i915_add_request(ring, NULL, request);
1928 if (ret) {
1929 kfree(request);
1930 return ret;
1931 }
1932
1933 BUG_ON(seqno != request->seqno);
1934 }
1935
1936 return ret;
1937 }
1938
1939 /**
1940 * __wait_seqno - wait until execution of seqno has finished
1941 * @ring: the ring expected to report seqno
1942 * @seqno: duh!
1943 * @interruptible: do an interruptible wait (normally yes)
1944 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1945 *
1946 * Returns 0 if the seqno was found within the alloted time. Else returns the
1947 * errno with remaining time filled in timeout argument.
1948 */
1949 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1950 bool interruptible, struct timespec *timeout)
1951 {
1952 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953 struct timespec before, now, wait_time={1,0};
1954 unsigned long timeout_jiffies;
1955 long end;
1956 bool wait_forever = true;
1957 int ret;
1958
1959 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1960 return 0;
1961
1962 trace_i915_gem_request_wait_begin(ring, seqno);
1963
1964 if (timeout != NULL) {
1965 wait_time = *timeout;
1966 wait_forever = false;
1967 }
1968
1969 timeout_jiffies = timespec_to_jiffies(&wait_time);
1970
1971 if (WARN_ON(!ring->irq_get(ring)))
1972 return -ENODEV;
1973
1974 /* Record current time in case interrupted by signal, or wedged * */
1975 getrawmonotonic(&before);
1976
1977 #define EXIT_COND \
1978 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1979 atomic_read(&dev_priv->mm.wedged))
1980 do {
1981 if (interruptible)
1982 end = wait_event_interruptible_timeout(ring->irq_queue,
1983 EXIT_COND,
1984 timeout_jiffies);
1985 else
1986 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1987 timeout_jiffies);
1988
1989 ret = i915_gem_check_wedge(dev_priv, interruptible);
1990 if (ret)
1991 end = ret;
1992 } while (end == 0 && wait_forever);
1993
1994 getrawmonotonic(&now);
1995
1996 ring->irq_put(ring);
1997 trace_i915_gem_request_wait_end(ring, seqno);
1998 #undef EXIT_COND
1999
2000 if (timeout) {
2001 struct timespec sleep_time = timespec_sub(now, before);
2002 *timeout = timespec_sub(*timeout, sleep_time);
2003 }
2004
2005 switch (end) {
2006 case -EIO:
2007 case -EAGAIN: /* Wedged */
2008 case -ERESTARTSYS: /* Signal */
2009 return (int)end;
2010 case 0: /* Timeout */
2011 if (timeout)
2012 set_normalized_timespec(timeout, 0, 0);
2013 return -ETIME;
2014 default: /* Completed */
2015 WARN_ON(end < 0); /* We're not aware of other errors */
2016 return 0;
2017 }
2018 }
2019
2020 /**
2021 * Waits for a sequence number to be signaled, and cleans up the
2022 * request and object lists appropriately for that event.
2023 */
2024 int
2025 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2026 {
2027 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028 int ret = 0;
2029
2030 BUG_ON(seqno == 0);
2031
2032 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2033 if (ret)
2034 return ret;
2035
2036 ret = i915_gem_check_olr(ring, seqno);
2037 if (ret)
2038 return ret;
2039
2040 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2041
2042 return ret;
2043 }
2044
2045 /**
2046 * Ensures that all rendering to the object has completed and the object is
2047 * safe to unbind from the GTT or access from the CPU.
2048 */
2049 int
2050 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2051 {
2052 int ret;
2053
2054 /* This function only exists to support waiting for existing rendering,
2055 * not for emitting required flushes.
2056 */
2057 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2058
2059 /* If there is rendering queued on the buffer being evicted, wait for
2060 * it.
2061 */
2062 if (obj->active) {
2063 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2064 if (ret)
2065 return ret;
2066 i915_gem_retire_requests_ring(obj->ring);
2067 }
2068
2069 return 0;
2070 }
2071
2072 /**
2073 * Ensures that an object will eventually get non-busy by flushing any required
2074 * write domains, emitting any outstanding lazy request and retiring and
2075 * completed requests.
2076 */
2077 static int
2078 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2079 {
2080 int ret;
2081
2082 if (obj->active) {
2083 ret = i915_gem_object_flush_gpu_write_domain(obj);
2084 if (ret)
2085 return ret;
2086
2087 ret = i915_gem_check_olr(obj->ring,
2088 obj->last_rendering_seqno);
2089 if (ret)
2090 return ret;
2091 i915_gem_retire_requests_ring(obj->ring);
2092 }
2093
2094 return 0;
2095 }
2096
2097 /**
2098 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2099 * @DRM_IOCTL_ARGS: standard ioctl arguments
2100 *
2101 * Returns 0 if successful, else an error is returned with the remaining time in
2102 * the timeout parameter.
2103 * -ETIME: object is still busy after timeout
2104 * -ERESTARTSYS: signal interrupted the wait
2105 * -ENONENT: object doesn't exist
2106 * Also possible, but rare:
2107 * -EAGAIN: GPU wedged
2108 * -ENOMEM: damn
2109 * -ENODEV: Internal IRQ fail
2110 * -E?: The add request failed
2111 *
2112 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2113 * non-zero timeout parameter the wait ioctl will wait for the given number of
2114 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2115 * without holding struct_mutex the object may become re-busied before this
2116 * function completes. A similar but shorter * race condition exists in the busy
2117 * ioctl
2118 */
2119 int
2120 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2121 {
2122 struct drm_i915_gem_wait *args = data;
2123 struct drm_i915_gem_object *obj;
2124 struct intel_ring_buffer *ring = NULL;
2125 struct timespec timeout_stack, *timeout = NULL;
2126 u32 seqno = 0;
2127 int ret = 0;
2128
2129 if (args->timeout_ns >= 0) {
2130 timeout_stack = ns_to_timespec(args->timeout_ns);
2131 timeout = &timeout_stack;
2132 }
2133
2134 ret = i915_mutex_lock_interruptible(dev);
2135 if (ret)
2136 return ret;
2137
2138 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2139 if (&obj->base == NULL) {
2140 mutex_unlock(&dev->struct_mutex);
2141 return -ENOENT;
2142 }
2143
2144 /* Need to make sure the object gets inactive eventually. */
2145 ret = i915_gem_object_flush_active(obj);
2146 if (ret)
2147 goto out;
2148
2149 if (obj->active) {
2150 seqno = obj->last_rendering_seqno;
2151 ring = obj->ring;
2152 }
2153
2154 if (seqno == 0)
2155 goto out;
2156
2157 /* Do this after OLR check to make sure we make forward progress polling
2158 * on this IOCTL with a 0 timeout (like busy ioctl)
2159 */
2160 if (!args->timeout_ns) {
2161 ret = -ETIME;
2162 goto out;
2163 }
2164
2165 drm_gem_object_unreference(&obj->base);
2166 mutex_unlock(&dev->struct_mutex);
2167
2168 ret = __wait_seqno(ring, seqno, true, timeout);
2169 if (timeout) {
2170 WARN_ON(!timespec_valid(timeout));
2171 args->timeout_ns = timespec_to_ns(timeout);
2172 }
2173 return ret;
2174
2175 out:
2176 drm_gem_object_unreference(&obj->base);
2177 mutex_unlock(&dev->struct_mutex);
2178 return ret;
2179 }
2180
2181 /**
2182 * i915_gem_object_sync - sync an object to a ring.
2183 *
2184 * @obj: object which may be in use on another ring.
2185 * @to: ring we wish to use the object on. May be NULL.
2186 *
2187 * This code is meant to abstract object synchronization with the GPU.
2188 * Calling with NULL implies synchronizing the object with the CPU
2189 * rather than a particular GPU ring.
2190 *
2191 * Returns 0 if successful, else propagates up the lower layer error.
2192 */
2193 int
2194 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2195 struct intel_ring_buffer *to)
2196 {
2197 struct intel_ring_buffer *from = obj->ring;
2198 u32 seqno;
2199 int ret, idx;
2200
2201 if (from == NULL || to == from)
2202 return 0;
2203
2204 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2205 return i915_gem_object_wait_rendering(obj);
2206
2207 idx = intel_ring_sync_index(from, to);
2208
2209 seqno = obj->last_rendering_seqno;
2210 if (seqno <= from->sync_seqno[idx])
2211 return 0;
2212
2213 ret = i915_gem_check_olr(obj->ring, seqno);
2214 if (ret)
2215 return ret;
2216
2217 ret = to->sync_to(to, from, seqno);
2218 if (!ret)
2219 from->sync_seqno[idx] = seqno;
2220
2221 return ret;
2222 }
2223
2224 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2225 {
2226 u32 old_write_domain, old_read_domains;
2227
2228 /* Act a barrier for all accesses through the GTT */
2229 mb();
2230
2231 /* Force a pagefault for domain tracking on next user access */
2232 i915_gem_release_mmap(obj);
2233
2234 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2235 return;
2236
2237 old_read_domains = obj->base.read_domains;
2238 old_write_domain = obj->base.write_domain;
2239
2240 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2241 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2242
2243 trace_i915_gem_object_change_domain(obj,
2244 old_read_domains,
2245 old_write_domain);
2246 }
2247
2248 /**
2249 * Unbinds an object from the GTT aperture.
2250 */
2251 int
2252 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2253 {
2254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2255 int ret = 0;
2256
2257 if (obj->gtt_space == NULL)
2258 return 0;
2259
2260 if (obj->pin_count)
2261 return -EBUSY;
2262
2263 ret = i915_gem_object_finish_gpu(obj);
2264 if (ret)
2265 return ret;
2266 /* Continue on if we fail due to EIO, the GPU is hung so we
2267 * should be safe and we need to cleanup or else we might
2268 * cause memory corruption through use-after-free.
2269 */
2270
2271 i915_gem_object_finish_gtt(obj);
2272
2273 /* Move the object to the CPU domain to ensure that
2274 * any possible CPU writes while it's not in the GTT
2275 * are flushed when we go to remap it.
2276 */
2277 if (ret == 0)
2278 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2279 if (ret == -ERESTARTSYS)
2280 return ret;
2281 if (ret) {
2282 /* In the event of a disaster, abandon all caches and
2283 * hope for the best.
2284 */
2285 i915_gem_clflush_object(obj);
2286 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2287 }
2288
2289 /* release the fence reg _after_ flushing */
2290 ret = i915_gem_object_put_fence(obj);
2291 if (ret)
2292 return ret;
2293
2294 trace_i915_gem_object_unbind(obj);
2295
2296 if (obj->has_global_gtt_mapping)
2297 i915_gem_gtt_unbind_object(obj);
2298 if (obj->has_aliasing_ppgtt_mapping) {
2299 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2300 obj->has_aliasing_ppgtt_mapping = 0;
2301 }
2302 i915_gem_gtt_finish_object(obj);
2303
2304 i915_gem_object_put_pages_gtt(obj);
2305
2306 list_del_init(&obj->gtt_list);
2307 list_del_init(&obj->mm_list);
2308 /* Avoid an unnecessary call to unbind on rebind. */
2309 obj->map_and_fenceable = true;
2310
2311 drm_mm_put_block(obj->gtt_space);
2312 obj->gtt_space = NULL;
2313 obj->gtt_offset = 0;
2314
2315 if (i915_gem_object_is_purgeable(obj))
2316 i915_gem_object_truncate(obj);
2317
2318 return ret;
2319 }
2320
2321 int
2322 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2323 uint32_t invalidate_domains,
2324 uint32_t flush_domains)
2325 {
2326 int ret;
2327
2328 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2329 return 0;
2330
2331 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2332
2333 ret = ring->flush(ring, invalidate_domains, flush_domains);
2334 if (ret)
2335 return ret;
2336
2337 if (flush_domains & I915_GEM_GPU_DOMAINS)
2338 i915_gem_process_flushing_list(ring, flush_domains);
2339
2340 return 0;
2341 }
2342
2343 static int i915_ring_idle(struct intel_ring_buffer *ring)
2344 {
2345 int ret;
2346
2347 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2348 return 0;
2349
2350 if (!list_empty(&ring->gpu_write_list)) {
2351 ret = i915_gem_flush_ring(ring,
2352 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2353 if (ret)
2354 return ret;
2355 }
2356
2357 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2358 }
2359
2360 int i915_gpu_idle(struct drm_device *dev)
2361 {
2362 drm_i915_private_t *dev_priv = dev->dev_private;
2363 struct intel_ring_buffer *ring;
2364 int ret, i;
2365
2366 /* Flush everything onto the inactive list. */
2367 for_each_ring(ring, dev_priv, i) {
2368 ret = i915_ring_idle(ring);
2369 if (ret)
2370 return ret;
2371
2372 /* Is the device fubar? */
2373 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2374 return -EBUSY;
2375
2376 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2377 if (ret)
2378 return ret;
2379 }
2380
2381 return 0;
2382 }
2383
2384 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2385 struct drm_i915_gem_object *obj)
2386 {
2387 drm_i915_private_t *dev_priv = dev->dev_private;
2388 uint64_t val;
2389
2390 if (obj) {
2391 u32 size = obj->gtt_space->size;
2392
2393 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2394 0xfffff000) << 32;
2395 val |= obj->gtt_offset & 0xfffff000;
2396 val |= (uint64_t)((obj->stride / 128) - 1) <<
2397 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2398
2399 if (obj->tiling_mode == I915_TILING_Y)
2400 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2401 val |= I965_FENCE_REG_VALID;
2402 } else
2403 val = 0;
2404
2405 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2406 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2407 }
2408
2409 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2410 struct drm_i915_gem_object *obj)
2411 {
2412 drm_i915_private_t *dev_priv = dev->dev_private;
2413 uint64_t val;
2414
2415 if (obj) {
2416 u32 size = obj->gtt_space->size;
2417
2418 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2419 0xfffff000) << 32;
2420 val |= obj->gtt_offset & 0xfffff000;
2421 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2422 if (obj->tiling_mode == I915_TILING_Y)
2423 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2424 val |= I965_FENCE_REG_VALID;
2425 } else
2426 val = 0;
2427
2428 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2429 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2430 }
2431
2432 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2433 struct drm_i915_gem_object *obj)
2434 {
2435 drm_i915_private_t *dev_priv = dev->dev_private;
2436 u32 val;
2437
2438 if (obj) {
2439 u32 size = obj->gtt_space->size;
2440 int pitch_val;
2441 int tile_width;
2442
2443 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2444 (size & -size) != size ||
2445 (obj->gtt_offset & (size - 1)),
2446 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2447 obj->gtt_offset, obj->map_and_fenceable, size);
2448
2449 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2450 tile_width = 128;
2451 else
2452 tile_width = 512;
2453
2454 /* Note: pitch better be a power of two tile widths */
2455 pitch_val = obj->stride / tile_width;
2456 pitch_val = ffs(pitch_val) - 1;
2457
2458 val = obj->gtt_offset;
2459 if (obj->tiling_mode == I915_TILING_Y)
2460 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2461 val |= I915_FENCE_SIZE_BITS(size);
2462 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2463 val |= I830_FENCE_REG_VALID;
2464 } else
2465 val = 0;
2466
2467 if (reg < 8)
2468 reg = FENCE_REG_830_0 + reg * 4;
2469 else
2470 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2471
2472 I915_WRITE(reg, val);
2473 POSTING_READ(reg);
2474 }
2475
2476 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2477 struct drm_i915_gem_object *obj)
2478 {
2479 drm_i915_private_t *dev_priv = dev->dev_private;
2480 uint32_t val;
2481
2482 if (obj) {
2483 u32 size = obj->gtt_space->size;
2484 uint32_t pitch_val;
2485
2486 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2487 (size & -size) != size ||
2488 (obj->gtt_offset & (size - 1)),
2489 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2490 obj->gtt_offset, size);
2491
2492 pitch_val = obj->stride / 128;
2493 pitch_val = ffs(pitch_val) - 1;
2494
2495 val = obj->gtt_offset;
2496 if (obj->tiling_mode == I915_TILING_Y)
2497 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2498 val |= I830_FENCE_SIZE_BITS(size);
2499 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2500 val |= I830_FENCE_REG_VALID;
2501 } else
2502 val = 0;
2503
2504 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2505 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2506 }
2507
2508 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2509 struct drm_i915_gem_object *obj)
2510 {
2511 switch (INTEL_INFO(dev)->gen) {
2512 case 7:
2513 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2514 case 5:
2515 case 4: i965_write_fence_reg(dev, reg, obj); break;
2516 case 3: i915_write_fence_reg(dev, reg, obj); break;
2517 case 2: i830_write_fence_reg(dev, reg, obj); break;
2518 default: break;
2519 }
2520 }
2521
2522 static inline int fence_number(struct drm_i915_private *dev_priv,
2523 struct drm_i915_fence_reg *fence)
2524 {
2525 return fence - dev_priv->fence_regs;
2526 }
2527
2528 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2529 struct drm_i915_fence_reg *fence,
2530 bool enable)
2531 {
2532 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2533 int reg = fence_number(dev_priv, fence);
2534
2535 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2536
2537 if (enable) {
2538 obj->fence_reg = reg;
2539 fence->obj = obj;
2540 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2541 } else {
2542 obj->fence_reg = I915_FENCE_REG_NONE;
2543 fence->obj = NULL;
2544 list_del_init(&fence->lru_list);
2545 }
2546 }
2547
2548 static int
2549 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2550 {
2551 int ret;
2552
2553 if (obj->fenced_gpu_access) {
2554 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2555 ret = i915_gem_flush_ring(obj->ring,
2556 0, obj->base.write_domain);
2557 if (ret)
2558 return ret;
2559 }
2560
2561 obj->fenced_gpu_access = false;
2562 }
2563
2564 if (obj->last_fenced_seqno) {
2565 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2566 if (ret)
2567 return ret;
2568
2569 obj->last_fenced_seqno = 0;
2570 }
2571
2572 /* Ensure that all CPU reads are completed before installing a fence
2573 * and all writes before removing the fence.
2574 */
2575 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2576 mb();
2577
2578 return 0;
2579 }
2580
2581 int
2582 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2583 {
2584 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2585 int ret;
2586
2587 ret = i915_gem_object_flush_fence(obj);
2588 if (ret)
2589 return ret;
2590
2591 if (obj->fence_reg == I915_FENCE_REG_NONE)
2592 return 0;
2593
2594 i915_gem_object_update_fence(obj,
2595 &dev_priv->fence_regs[obj->fence_reg],
2596 false);
2597 i915_gem_object_fence_lost(obj);
2598
2599 return 0;
2600 }
2601
2602 static struct drm_i915_fence_reg *
2603 i915_find_fence_reg(struct drm_device *dev)
2604 {
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_i915_fence_reg *reg, *avail;
2607 int i;
2608
2609 /* First try to find a free reg */
2610 avail = NULL;
2611 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2612 reg = &dev_priv->fence_regs[i];
2613 if (!reg->obj)
2614 return reg;
2615
2616 if (!reg->pin_count)
2617 avail = reg;
2618 }
2619
2620 if (avail == NULL)
2621 return NULL;
2622
2623 /* None available, try to steal one or wait for a user to finish */
2624 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2625 if (reg->pin_count)
2626 continue;
2627
2628 return reg;
2629 }
2630
2631 return NULL;
2632 }
2633
2634 /**
2635 * i915_gem_object_get_fence - set up fencing for an object
2636 * @obj: object to map through a fence reg
2637 *
2638 * When mapping objects through the GTT, userspace wants to be able to write
2639 * to them without having to worry about swizzling if the object is tiled.
2640 * This function walks the fence regs looking for a free one for @obj,
2641 * stealing one if it can't find any.
2642 *
2643 * It then sets up the reg based on the object's properties: address, pitch
2644 * and tiling format.
2645 *
2646 * For an untiled surface, this removes any existing fence.
2647 */
2648 int
2649 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2650 {
2651 struct drm_device *dev = obj->base.dev;
2652 struct drm_i915_private *dev_priv = dev->dev_private;
2653 bool enable = obj->tiling_mode != I915_TILING_NONE;
2654 struct drm_i915_fence_reg *reg;
2655 int ret;
2656
2657 /* Have we updated the tiling parameters upon the object and so
2658 * will need to serialise the write to the associated fence register?
2659 */
2660 if (obj->fence_dirty) {
2661 ret = i915_gem_object_flush_fence(obj);
2662 if (ret)
2663 return ret;
2664 }
2665
2666 /* Just update our place in the LRU if our fence is getting reused. */
2667 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2668 reg = &dev_priv->fence_regs[obj->fence_reg];
2669 if (!obj->fence_dirty) {
2670 list_move_tail(&reg->lru_list,
2671 &dev_priv->mm.fence_list);
2672 return 0;
2673 }
2674 } else if (enable) {
2675 reg = i915_find_fence_reg(dev);
2676 if (reg == NULL)
2677 return -EDEADLK;
2678
2679 if (reg->obj) {
2680 struct drm_i915_gem_object *old = reg->obj;
2681
2682 ret = i915_gem_object_flush_fence(old);
2683 if (ret)
2684 return ret;
2685
2686 i915_gem_object_fence_lost(old);
2687 }
2688 } else
2689 return 0;
2690
2691 i915_gem_object_update_fence(obj, reg, enable);
2692 obj->fence_dirty = false;
2693
2694 return 0;
2695 }
2696
2697 /**
2698 * Finds free space in the GTT aperture and binds the object there.
2699 */
2700 static int
2701 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2702 unsigned alignment,
2703 bool map_and_fenceable)
2704 {
2705 struct drm_device *dev = obj->base.dev;
2706 drm_i915_private_t *dev_priv = dev->dev_private;
2707 struct drm_mm_node *free_space;
2708 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2709 u32 size, fence_size, fence_alignment, unfenced_alignment;
2710 bool mappable, fenceable;
2711 int ret;
2712
2713 if (obj->madv != I915_MADV_WILLNEED) {
2714 DRM_ERROR("Attempting to bind a purgeable object\n");
2715 return -EINVAL;
2716 }
2717
2718 fence_size = i915_gem_get_gtt_size(dev,
2719 obj->base.size,
2720 obj->tiling_mode);
2721 fence_alignment = i915_gem_get_gtt_alignment(dev,
2722 obj->base.size,
2723 obj->tiling_mode);
2724 unfenced_alignment =
2725 i915_gem_get_unfenced_gtt_alignment(dev,
2726 obj->base.size,
2727 obj->tiling_mode);
2728
2729 if (alignment == 0)
2730 alignment = map_and_fenceable ? fence_alignment :
2731 unfenced_alignment;
2732 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2733 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2734 return -EINVAL;
2735 }
2736
2737 size = map_and_fenceable ? fence_size : obj->base.size;
2738
2739 /* If the object is bigger than the entire aperture, reject it early
2740 * before evicting everything in a vain attempt to find space.
2741 */
2742 if (obj->base.size >
2743 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2744 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2745 return -E2BIG;
2746 }
2747
2748 search_free:
2749 if (map_and_fenceable)
2750 free_space =
2751 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2752 size, alignment,
2753 0, dev_priv->mm.gtt_mappable_end,
2754 0);
2755 else
2756 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2757 size, alignment, 0);
2758
2759 if (free_space != NULL) {
2760 if (map_and_fenceable)
2761 obj->gtt_space =
2762 drm_mm_get_block_range_generic(free_space,
2763 size, alignment, 0,
2764 0, dev_priv->mm.gtt_mappable_end,
2765 0);
2766 else
2767 obj->gtt_space =
2768 drm_mm_get_block(free_space, size, alignment);
2769 }
2770 if (obj->gtt_space == NULL) {
2771 /* If the gtt is empty and we're still having trouble
2772 * fitting our object in, we're out of memory.
2773 */
2774 ret = i915_gem_evict_something(dev, size, alignment,
2775 map_and_fenceable);
2776 if (ret)
2777 return ret;
2778
2779 goto search_free;
2780 }
2781
2782 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2783 if (ret) {
2784 drm_mm_put_block(obj->gtt_space);
2785 obj->gtt_space = NULL;
2786
2787 if (ret == -ENOMEM) {
2788 /* first try to reclaim some memory by clearing the GTT */
2789 ret = i915_gem_evict_everything(dev, false);
2790 if (ret) {
2791 /* now try to shrink everyone else */
2792 if (gfpmask) {
2793 gfpmask = 0;
2794 goto search_free;
2795 }
2796
2797 return -ENOMEM;
2798 }
2799
2800 goto search_free;
2801 }
2802
2803 return ret;
2804 }
2805
2806 ret = i915_gem_gtt_prepare_object(obj);
2807 if (ret) {
2808 i915_gem_object_put_pages_gtt(obj);
2809 drm_mm_put_block(obj->gtt_space);
2810 obj->gtt_space = NULL;
2811
2812 if (i915_gem_evict_everything(dev, false))
2813 return ret;
2814
2815 goto search_free;
2816 }
2817
2818 if (!dev_priv->mm.aliasing_ppgtt)
2819 i915_gem_gtt_bind_object(obj, obj->cache_level);
2820
2821 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2822 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2823
2824 /* Assert that the object is not currently in any GPU domain. As it
2825 * wasn't in the GTT, there shouldn't be any way it could have been in
2826 * a GPU cache
2827 */
2828 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2829 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2830
2831 obj->gtt_offset = obj->gtt_space->start;
2832
2833 fenceable =
2834 obj->gtt_space->size == fence_size &&
2835 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2836
2837 mappable =
2838 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2839
2840 obj->map_and_fenceable = mappable && fenceable;
2841
2842 trace_i915_gem_object_bind(obj, map_and_fenceable);
2843 return 0;
2844 }
2845
2846 void
2847 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2848 {
2849 /* If we don't have a page list set up, then we're not pinned
2850 * to GPU, and we can ignore the cache flush because it'll happen
2851 * again at bind time.
2852 */
2853 if (obj->pages == NULL)
2854 return;
2855
2856 /* If the GPU is snooping the contents of the CPU cache,
2857 * we do not need to manually clear the CPU cache lines. However,
2858 * the caches are only snooped when the render cache is
2859 * flushed/invalidated. As we always have to emit invalidations
2860 * and flushes when moving into and out of the RENDER domain, correct
2861 * snooping behaviour occurs naturally as the result of our domain
2862 * tracking.
2863 */
2864 if (obj->cache_level != I915_CACHE_NONE)
2865 return;
2866
2867 trace_i915_gem_object_clflush(obj);
2868
2869 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2870 }
2871
2872 /** Flushes any GPU write domain for the object if it's dirty. */
2873 static int
2874 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2875 {
2876 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2877 return 0;
2878
2879 /* Queue the GPU write cache flushing we need. */
2880 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2881 }
2882
2883 /** Flushes the GTT write domain for the object if it's dirty. */
2884 static void
2885 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2886 {
2887 uint32_t old_write_domain;
2888
2889 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2890 return;
2891
2892 /* No actual flushing is required for the GTT write domain. Writes
2893 * to it immediately go to main memory as far as we know, so there's
2894 * no chipset flush. It also doesn't land in render cache.
2895 *
2896 * However, we do have to enforce the order so that all writes through
2897 * the GTT land before any writes to the device, such as updates to
2898 * the GATT itself.
2899 */
2900 wmb();
2901
2902 old_write_domain = obj->base.write_domain;
2903 obj->base.write_domain = 0;
2904
2905 trace_i915_gem_object_change_domain(obj,
2906 obj->base.read_domains,
2907 old_write_domain);
2908 }
2909
2910 /** Flushes the CPU write domain for the object if it's dirty. */
2911 static void
2912 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2913 {
2914 uint32_t old_write_domain;
2915
2916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2917 return;
2918
2919 i915_gem_clflush_object(obj);
2920 intel_gtt_chipset_flush();
2921 old_write_domain = obj->base.write_domain;
2922 obj->base.write_domain = 0;
2923
2924 trace_i915_gem_object_change_domain(obj,
2925 obj->base.read_domains,
2926 old_write_domain);
2927 }
2928
2929 /**
2930 * Moves a single object to the GTT read, and possibly write domain.
2931 *
2932 * This function returns when the move is complete, including waiting on
2933 * flushes to occur.
2934 */
2935 int
2936 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2937 {
2938 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2939 uint32_t old_write_domain, old_read_domains;
2940 int ret;
2941
2942 /* Not valid to be called on unbound objects. */
2943 if (obj->gtt_space == NULL)
2944 return -EINVAL;
2945
2946 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2947 return 0;
2948
2949 ret = i915_gem_object_flush_gpu_write_domain(obj);
2950 if (ret)
2951 return ret;
2952
2953 if (obj->pending_gpu_write || write) {
2954 ret = i915_gem_object_wait_rendering(obj);
2955 if (ret)
2956 return ret;
2957 }
2958
2959 i915_gem_object_flush_cpu_write_domain(obj);
2960
2961 old_write_domain = obj->base.write_domain;
2962 old_read_domains = obj->base.read_domains;
2963
2964 /* It should now be out of any other write domains, and we can update
2965 * the domain values for our changes.
2966 */
2967 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2968 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2969 if (write) {
2970 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2971 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2972 obj->dirty = 1;
2973 }
2974
2975 trace_i915_gem_object_change_domain(obj,
2976 old_read_domains,
2977 old_write_domain);
2978
2979 /* And bump the LRU for this access */
2980 if (i915_gem_object_is_inactive(obj))
2981 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982
2983 return 0;
2984 }
2985
2986 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2987 enum i915_cache_level cache_level)
2988 {
2989 struct drm_device *dev = obj->base.dev;
2990 drm_i915_private_t *dev_priv = dev->dev_private;
2991 int ret;
2992
2993 if (obj->cache_level == cache_level)
2994 return 0;
2995
2996 if (obj->pin_count) {
2997 DRM_DEBUG("can not change the cache level of pinned objects\n");
2998 return -EBUSY;
2999 }
3000
3001 if (obj->gtt_space) {
3002 ret = i915_gem_object_finish_gpu(obj);
3003 if (ret)
3004 return ret;
3005
3006 i915_gem_object_finish_gtt(obj);
3007
3008 /* Before SandyBridge, you could not use tiling or fence
3009 * registers with snooped memory, so relinquish any fences
3010 * currently pointing to our region in the aperture.
3011 */
3012 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3013 ret = i915_gem_object_put_fence(obj);
3014 if (ret)
3015 return ret;
3016 }
3017
3018 if (obj->has_global_gtt_mapping)
3019 i915_gem_gtt_bind_object(obj, cache_level);
3020 if (obj->has_aliasing_ppgtt_mapping)
3021 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3022 obj, cache_level);
3023 }
3024
3025 if (cache_level == I915_CACHE_NONE) {
3026 u32 old_read_domains, old_write_domain;
3027
3028 /* If we're coming from LLC cached, then we haven't
3029 * actually been tracking whether the data is in the
3030 * CPU cache or not, since we only allow one bit set
3031 * in obj->write_domain and have been skipping the clflushes.
3032 * Just set it to the CPU cache for now.
3033 */
3034 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3035 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3036
3037 old_read_domains = obj->base.read_domains;
3038 old_write_domain = obj->base.write_domain;
3039
3040 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3041 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3042
3043 trace_i915_gem_object_change_domain(obj,
3044 old_read_domains,
3045 old_write_domain);
3046 }
3047
3048 obj->cache_level = cache_level;
3049 return 0;
3050 }
3051
3052 /*
3053 * Prepare buffer for display plane (scanout, cursors, etc).
3054 * Can be called from an uninterruptible phase (modesetting) and allows
3055 * any flushes to be pipelined (for pageflips).
3056 */
3057 int
3058 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3059 u32 alignment,
3060 struct intel_ring_buffer *pipelined)
3061 {
3062 u32 old_read_domains, old_write_domain;
3063 int ret;
3064
3065 ret = i915_gem_object_flush_gpu_write_domain(obj);
3066 if (ret)
3067 return ret;
3068
3069 if (pipelined != obj->ring) {
3070 ret = i915_gem_object_sync(obj, pipelined);
3071 if (ret)
3072 return ret;
3073 }
3074
3075 /* The display engine is not coherent with the LLC cache on gen6. As
3076 * a result, we make sure that the pinning that is about to occur is
3077 * done with uncached PTEs. This is lowest common denominator for all
3078 * chipsets.
3079 *
3080 * However for gen6+, we could do better by using the GFDT bit instead
3081 * of uncaching, which would allow us to flush all the LLC-cached data
3082 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3083 */
3084 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3085 if (ret)
3086 return ret;
3087
3088 /* As the user may map the buffer once pinned in the display plane
3089 * (e.g. libkms for the bootup splash), we have to ensure that we
3090 * always use map_and_fenceable for all scanout buffers.
3091 */
3092 ret = i915_gem_object_pin(obj, alignment, true);
3093 if (ret)
3094 return ret;
3095
3096 i915_gem_object_flush_cpu_write_domain(obj);
3097
3098 old_write_domain = obj->base.write_domain;
3099 old_read_domains = obj->base.read_domains;
3100
3101 /* It should now be out of any other write domains, and we can update
3102 * the domain values for our changes.
3103 */
3104 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3105 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3106
3107 trace_i915_gem_object_change_domain(obj,
3108 old_read_domains,
3109 old_write_domain);
3110
3111 return 0;
3112 }
3113
3114 int
3115 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3116 {
3117 int ret;
3118
3119 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3120 return 0;
3121
3122 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3123 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3124 if (ret)
3125 return ret;
3126 }
3127
3128 ret = i915_gem_object_wait_rendering(obj);
3129 if (ret)
3130 return ret;
3131
3132 /* Ensure that we invalidate the GPU's caches and TLBs. */
3133 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3134 return 0;
3135 }
3136
3137 /**
3138 * Moves a single object to the CPU read, and possibly write domain.
3139 *
3140 * This function returns when the move is complete, including waiting on
3141 * flushes to occur.
3142 */
3143 int
3144 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3145 {
3146 uint32_t old_write_domain, old_read_domains;
3147 int ret;
3148
3149 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3150 return 0;
3151
3152 ret = i915_gem_object_flush_gpu_write_domain(obj);
3153 if (ret)
3154 return ret;
3155
3156 if (write || obj->pending_gpu_write) {
3157 ret = i915_gem_object_wait_rendering(obj);
3158 if (ret)
3159 return ret;
3160 }
3161
3162 i915_gem_object_flush_gtt_write_domain(obj);
3163
3164 old_write_domain = obj->base.write_domain;
3165 old_read_domains = obj->base.read_domains;
3166
3167 /* Flush the CPU cache if it's still invalid. */
3168 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3169 i915_gem_clflush_object(obj);
3170
3171 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3172 }
3173
3174 /* It should now be out of any other write domains, and we can update
3175 * the domain values for our changes.
3176 */
3177 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3178
3179 /* If we're writing through the CPU, then the GPU read domains will
3180 * need to be invalidated at next use.
3181 */
3182 if (write) {
3183 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3184 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3185 }
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190
3191 return 0;
3192 }
3193
3194 /* Throttle our rendering by waiting until the ring has completed our requests
3195 * emitted over 20 msec ago.
3196 *
3197 * Note that if we were to use the current jiffies each time around the loop,
3198 * we wouldn't escape the function with any frames outstanding if the time to
3199 * render a frame was over 20ms.
3200 *
3201 * This should get us reasonable parallelism between CPU and GPU but also
3202 * relatively low latency when blocking on a particular request to finish.
3203 */
3204 static int
3205 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3206 {
3207 struct drm_i915_private *dev_priv = dev->dev_private;
3208 struct drm_i915_file_private *file_priv = file->driver_priv;
3209 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3210 struct drm_i915_gem_request *request;
3211 struct intel_ring_buffer *ring = NULL;
3212 u32 seqno = 0;
3213 int ret;
3214
3215 if (atomic_read(&dev_priv->mm.wedged))
3216 return -EIO;
3217
3218 spin_lock(&file_priv->mm.lock);
3219 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3220 if (time_after_eq(request->emitted_jiffies, recent_enough))
3221 break;
3222
3223 ring = request->ring;
3224 seqno = request->seqno;
3225 }
3226 spin_unlock(&file_priv->mm.lock);
3227
3228 if (seqno == 0)
3229 return 0;
3230
3231 ret = __wait_seqno(ring, seqno, true, NULL);
3232 if (ret == 0)
3233 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3234
3235 return ret;
3236 }
3237
3238 int
3239 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3240 uint32_t alignment,
3241 bool map_and_fenceable)
3242 {
3243 int ret;
3244
3245 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3246
3247 if (obj->gtt_space != NULL) {
3248 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3249 (map_and_fenceable && !obj->map_and_fenceable)) {
3250 WARN(obj->pin_count,
3251 "bo is already pinned with incorrect alignment:"
3252 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3253 " obj->map_and_fenceable=%d\n",
3254 obj->gtt_offset, alignment,
3255 map_and_fenceable,
3256 obj->map_and_fenceable);
3257 ret = i915_gem_object_unbind(obj);
3258 if (ret)
3259 return ret;
3260 }
3261 }
3262
3263 if (obj->gtt_space == NULL) {
3264 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3265 map_and_fenceable);
3266 if (ret)
3267 return ret;
3268 }
3269
3270 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3271 i915_gem_gtt_bind_object(obj, obj->cache_level);
3272
3273 obj->pin_count++;
3274 obj->pin_mappable |= map_and_fenceable;
3275
3276 return 0;
3277 }
3278
3279 void
3280 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3281 {
3282 BUG_ON(obj->pin_count == 0);
3283 BUG_ON(obj->gtt_space == NULL);
3284
3285 if (--obj->pin_count == 0)
3286 obj->pin_mappable = false;
3287 }
3288
3289 int
3290 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3291 struct drm_file *file)
3292 {
3293 struct drm_i915_gem_pin *args = data;
3294 struct drm_i915_gem_object *obj;
3295 int ret;
3296
3297 ret = i915_mutex_lock_interruptible(dev);
3298 if (ret)
3299 return ret;
3300
3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3302 if (&obj->base == NULL) {
3303 ret = -ENOENT;
3304 goto unlock;
3305 }
3306
3307 if (obj->madv != I915_MADV_WILLNEED) {
3308 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3309 ret = -EINVAL;
3310 goto out;
3311 }
3312
3313 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3314 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3315 args->handle);
3316 ret = -EINVAL;
3317 goto out;
3318 }
3319
3320 obj->user_pin_count++;
3321 obj->pin_filp = file;
3322 if (obj->user_pin_count == 1) {
3323 ret = i915_gem_object_pin(obj, args->alignment, true);
3324 if (ret)
3325 goto out;
3326 }
3327
3328 /* XXX - flush the CPU caches for pinned objects
3329 * as the X server doesn't manage domains yet
3330 */
3331 i915_gem_object_flush_cpu_write_domain(obj);
3332 args->offset = obj->gtt_offset;
3333 out:
3334 drm_gem_object_unreference(&obj->base);
3335 unlock:
3336 mutex_unlock(&dev->struct_mutex);
3337 return ret;
3338 }
3339
3340 int
3341 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3342 struct drm_file *file)
3343 {
3344 struct drm_i915_gem_pin *args = data;
3345 struct drm_i915_gem_object *obj;
3346 int ret;
3347
3348 ret = i915_mutex_lock_interruptible(dev);
3349 if (ret)
3350 return ret;
3351
3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3353 if (&obj->base == NULL) {
3354 ret = -ENOENT;
3355 goto unlock;
3356 }
3357
3358 if (obj->pin_filp != file) {
3359 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3360 args->handle);
3361 ret = -EINVAL;
3362 goto out;
3363 }
3364 obj->user_pin_count--;
3365 if (obj->user_pin_count == 0) {
3366 obj->pin_filp = NULL;
3367 i915_gem_object_unpin(obj);
3368 }
3369
3370 out:
3371 drm_gem_object_unreference(&obj->base);
3372 unlock:
3373 mutex_unlock(&dev->struct_mutex);
3374 return ret;
3375 }
3376
3377 int
3378 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3379 struct drm_file *file)
3380 {
3381 struct drm_i915_gem_busy *args = data;
3382 struct drm_i915_gem_object *obj;
3383 int ret;
3384
3385 ret = i915_mutex_lock_interruptible(dev);
3386 if (ret)
3387 return ret;
3388
3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3390 if (&obj->base == NULL) {
3391 ret = -ENOENT;
3392 goto unlock;
3393 }
3394
3395 /* Count all active objects as busy, even if they are currently not used
3396 * by the gpu. Users of this interface expect objects to eventually
3397 * become non-busy without any further actions, therefore emit any
3398 * necessary flushes here.
3399 */
3400 ret = i915_gem_object_flush_active(obj);
3401
3402 args->busy = obj->active;
3403 if (obj->ring) {
3404 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3405 args->busy |= intel_ring_flag(obj->ring) << 16;
3406 }
3407
3408 drm_gem_object_unreference(&obj->base);
3409 unlock:
3410 mutex_unlock(&dev->struct_mutex);
3411 return ret;
3412 }
3413
3414 int
3415 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3416 struct drm_file *file_priv)
3417 {
3418 return i915_gem_ring_throttle(dev, file_priv);
3419 }
3420
3421 int
3422 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3423 struct drm_file *file_priv)
3424 {
3425 struct drm_i915_gem_madvise *args = data;
3426 struct drm_i915_gem_object *obj;
3427 int ret;
3428
3429 switch (args->madv) {
3430 case I915_MADV_DONTNEED:
3431 case I915_MADV_WILLNEED:
3432 break;
3433 default:
3434 return -EINVAL;
3435 }
3436
3437 ret = i915_mutex_lock_interruptible(dev);
3438 if (ret)
3439 return ret;
3440
3441 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3442 if (&obj->base == NULL) {
3443 ret = -ENOENT;
3444 goto unlock;
3445 }
3446
3447 if (obj->pin_count) {
3448 ret = -EINVAL;
3449 goto out;
3450 }
3451
3452 if (obj->madv != __I915_MADV_PURGED)
3453 obj->madv = args->madv;
3454
3455 /* if the object is no longer bound, discard its backing storage */
3456 if (i915_gem_object_is_purgeable(obj) &&
3457 obj->gtt_space == NULL)
3458 i915_gem_object_truncate(obj);
3459
3460 args->retained = obj->madv != __I915_MADV_PURGED;
3461
3462 out:
3463 drm_gem_object_unreference(&obj->base);
3464 unlock:
3465 mutex_unlock(&dev->struct_mutex);
3466 return ret;
3467 }
3468
3469 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3470 size_t size)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 struct drm_i915_gem_object *obj;
3474 struct address_space *mapping;
3475 u32 mask;
3476
3477 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3478 if (obj == NULL)
3479 return NULL;
3480
3481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3482 kfree(obj);
3483 return NULL;
3484 }
3485
3486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3488 /* 965gm cannot relocate objects above 4GiB. */
3489 mask &= ~__GFP_HIGHMEM;
3490 mask |= __GFP_DMA32;
3491 }
3492
3493 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3494 mapping_set_gfp_mask(mapping, mask);
3495
3496 i915_gem_info_add_obj(dev_priv, size);
3497
3498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3500
3501 if (HAS_LLC(dev)) {
3502 /* On some devices, we can have the GPU use the LLC (the CPU
3503 * cache) for about a 10% performance improvement
3504 * compared to uncached. Graphics requests other than
3505 * display scanout are coherent with the CPU in
3506 * accessing this cache. This means in this mode we
3507 * don't need to clflush on the CPU side, and on the
3508 * GPU side we only need to flush internal caches to
3509 * get data visible to the CPU.
3510 *
3511 * However, we maintain the display planes as UC, and so
3512 * need to rebind when first used as such.
3513 */
3514 obj->cache_level = I915_CACHE_LLC;
3515 } else
3516 obj->cache_level = I915_CACHE_NONE;
3517
3518 obj->base.driver_private = NULL;
3519 obj->fence_reg = I915_FENCE_REG_NONE;
3520 INIT_LIST_HEAD(&obj->mm_list);
3521 INIT_LIST_HEAD(&obj->gtt_list);
3522 INIT_LIST_HEAD(&obj->ring_list);
3523 INIT_LIST_HEAD(&obj->exec_list);
3524 INIT_LIST_HEAD(&obj->gpu_write_list);
3525 obj->madv = I915_MADV_WILLNEED;
3526 /* Avoid an unnecessary call to unbind on the first bind. */
3527 obj->map_and_fenceable = true;
3528
3529 return obj;
3530 }
3531
3532 int i915_gem_init_object(struct drm_gem_object *obj)
3533 {
3534 BUG();
3535
3536 return 0;
3537 }
3538
3539 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3540 {
3541 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3542 struct drm_device *dev = obj->base.dev;
3543 drm_i915_private_t *dev_priv = dev->dev_private;
3544
3545 trace_i915_gem_object_destroy(obj);
3546
3547 if (gem_obj->import_attach)
3548 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3549
3550 if (obj->phys_obj)
3551 i915_gem_detach_phys_object(dev, obj);
3552
3553 obj->pin_count = 0;
3554 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3555 bool was_interruptible;
3556
3557 was_interruptible = dev_priv->mm.interruptible;
3558 dev_priv->mm.interruptible = false;
3559
3560 WARN_ON(i915_gem_object_unbind(obj));
3561
3562 dev_priv->mm.interruptible = was_interruptible;
3563 }
3564
3565 if (obj->base.map_list.map)
3566 drm_gem_free_mmap_offset(&obj->base);
3567
3568 drm_gem_object_release(&obj->base);
3569 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3570
3571 kfree(obj->bit_17);
3572 kfree(obj);
3573 }
3574
3575 int
3576 i915_gem_idle(struct drm_device *dev)
3577 {
3578 drm_i915_private_t *dev_priv = dev->dev_private;
3579 int ret;
3580
3581 mutex_lock(&dev->struct_mutex);
3582
3583 if (dev_priv->mm.suspended) {
3584 mutex_unlock(&dev->struct_mutex);
3585 return 0;
3586 }
3587
3588 ret = i915_gpu_idle(dev);
3589 if (ret) {
3590 mutex_unlock(&dev->struct_mutex);
3591 return ret;
3592 }
3593 i915_gem_retire_requests(dev);
3594
3595 /* Under UMS, be paranoid and evict. */
3596 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3597 i915_gem_evict_everything(dev, false);
3598
3599 i915_gem_reset_fences(dev);
3600
3601 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3602 * We need to replace this with a semaphore, or something.
3603 * And not confound mm.suspended!
3604 */
3605 dev_priv->mm.suspended = 1;
3606 del_timer_sync(&dev_priv->hangcheck_timer);
3607
3608 i915_kernel_lost_context(dev);
3609 i915_gem_cleanup_ringbuffer(dev);
3610
3611 mutex_unlock(&dev->struct_mutex);
3612
3613 /* Cancel the retire work handler, which should be idle now. */
3614 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3615
3616 return 0;
3617 }
3618
3619 void i915_gem_l3_remap(struct drm_device *dev)
3620 {
3621 drm_i915_private_t *dev_priv = dev->dev_private;
3622 u32 misccpctl;
3623 int i;
3624
3625 if (!IS_IVYBRIDGE(dev))
3626 return;
3627
3628 if (!dev_priv->mm.l3_remap_info)
3629 return;
3630
3631 misccpctl = I915_READ(GEN7_MISCCPCTL);
3632 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3633 POSTING_READ(GEN7_MISCCPCTL);
3634
3635 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3636 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3637 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3638 DRM_DEBUG("0x%x was already programmed to %x\n",
3639 GEN7_L3LOG_BASE + i, remap);
3640 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3641 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3642 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3643 }
3644
3645 /* Make sure all the writes land before disabling dop clock gating */
3646 POSTING_READ(GEN7_L3LOG_BASE);
3647
3648 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3649 }
3650
3651 void i915_gem_init_swizzling(struct drm_device *dev)
3652 {
3653 drm_i915_private_t *dev_priv = dev->dev_private;
3654
3655 if (INTEL_INFO(dev)->gen < 5 ||
3656 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3657 return;
3658
3659 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3660 DISP_TILE_SURFACE_SWIZZLING);
3661
3662 if (IS_GEN5(dev))
3663 return;
3664
3665 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3666 if (IS_GEN6(dev))
3667 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3668 else
3669 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3670 }
3671
3672 void i915_gem_init_ppgtt(struct drm_device *dev)
3673 {
3674 drm_i915_private_t *dev_priv = dev->dev_private;
3675 uint32_t pd_offset;
3676 struct intel_ring_buffer *ring;
3677 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3678 uint32_t __iomem *pd_addr;
3679 uint32_t pd_entry;
3680 int i;
3681
3682 if (!dev_priv->mm.aliasing_ppgtt)
3683 return;
3684
3685
3686 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3687 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3688 dma_addr_t pt_addr;
3689
3690 if (dev_priv->mm.gtt->needs_dmar)
3691 pt_addr = ppgtt->pt_dma_addr[i];
3692 else
3693 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3694
3695 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3696 pd_entry |= GEN6_PDE_VALID;
3697
3698 writel(pd_entry, pd_addr + i);
3699 }
3700 readl(pd_addr);
3701
3702 pd_offset = ppgtt->pd_offset;
3703 pd_offset /= 64; /* in cachelines, */
3704 pd_offset <<= 16;
3705
3706 if (INTEL_INFO(dev)->gen == 6) {
3707 uint32_t ecochk, gab_ctl, ecobits;
3708
3709 ecobits = I915_READ(GAC_ECO_BITS);
3710 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3711
3712 gab_ctl = I915_READ(GAB_CTL);
3713 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3714
3715 ecochk = I915_READ(GAM_ECOCHK);
3716 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3717 ECOCHK_PPGTT_CACHE64B);
3718 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3719 } else if (INTEL_INFO(dev)->gen >= 7) {
3720 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3721 /* GFX_MODE is per-ring on gen7+ */
3722 }
3723
3724 for_each_ring(ring, dev_priv, i) {
3725 if (INTEL_INFO(dev)->gen >= 7)
3726 I915_WRITE(RING_MODE_GEN7(ring),
3727 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3728
3729 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3730 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3731 }
3732 }
3733
3734 static bool
3735 intel_enable_blt(struct drm_device *dev)
3736 {
3737 if (!HAS_BLT(dev))
3738 return false;
3739
3740 /* The blitter was dysfunctional on early prototypes */
3741 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3742 DRM_INFO("BLT not supported on this pre-production hardware;"
3743 " graphics performance will be degraded.\n");
3744 return false;
3745 }
3746
3747 return true;
3748 }
3749
3750 int
3751 i915_gem_init_hw(struct drm_device *dev)
3752 {
3753 drm_i915_private_t *dev_priv = dev->dev_private;
3754 int ret;
3755
3756 if (!intel_enable_gtt())
3757 return -EIO;
3758
3759 i915_gem_l3_remap(dev);
3760
3761 i915_gem_init_swizzling(dev);
3762
3763 ret = intel_init_render_ring_buffer(dev);
3764 if (ret)
3765 return ret;
3766
3767 if (HAS_BSD(dev)) {
3768 ret = intel_init_bsd_ring_buffer(dev);
3769 if (ret)
3770 goto cleanup_render_ring;
3771 }
3772
3773 if (intel_enable_blt(dev)) {
3774 ret = intel_init_blt_ring_buffer(dev);
3775 if (ret)
3776 goto cleanup_bsd_ring;
3777 }
3778
3779 dev_priv->next_seqno = 1;
3780
3781 /*
3782 * XXX: There was some w/a described somewhere suggesting loading
3783 * contexts before PPGTT.
3784 */
3785 i915_gem_context_init(dev);
3786 i915_gem_init_ppgtt(dev);
3787
3788 return 0;
3789
3790 cleanup_bsd_ring:
3791 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3792 cleanup_render_ring:
3793 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3794 return ret;
3795 }
3796
3797 static bool
3798 intel_enable_ppgtt(struct drm_device *dev)
3799 {
3800 if (i915_enable_ppgtt >= 0)
3801 return i915_enable_ppgtt;
3802
3803 #ifdef CONFIG_INTEL_IOMMU
3804 /* Disable ppgtt on SNB if VT-d is on. */
3805 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3806 return false;
3807 #endif
3808
3809 return true;
3810 }
3811
3812 int i915_gem_init(struct drm_device *dev)
3813 {
3814 struct drm_i915_private *dev_priv = dev->dev_private;
3815 unsigned long gtt_size, mappable_size;
3816 int ret;
3817
3818 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3819 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3820
3821 mutex_lock(&dev->struct_mutex);
3822 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3823 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3824 * aperture accordingly when using aliasing ppgtt. */
3825 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3826
3827 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3828
3829 ret = i915_gem_init_aliasing_ppgtt(dev);
3830 if (ret) {
3831 mutex_unlock(&dev->struct_mutex);
3832 return ret;
3833 }
3834 } else {
3835 /* Let GEM Manage all of the aperture.
3836 *
3837 * However, leave one page at the end still bound to the scratch
3838 * page. There are a number of places where the hardware
3839 * apparently prefetches past the end of the object, and we've
3840 * seen multiple hangs with the GPU head pointer stuck in a
3841 * batchbuffer bound at the last page of the aperture. One page
3842 * should be enough to keep any prefetching inside of the
3843 * aperture.
3844 */
3845 i915_gem_init_global_gtt(dev, 0, mappable_size,
3846 gtt_size);
3847 }
3848
3849 ret = i915_gem_init_hw(dev);
3850 mutex_unlock(&dev->struct_mutex);
3851 if (ret) {
3852 i915_gem_cleanup_aliasing_ppgtt(dev);
3853 return ret;
3854 }
3855
3856 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3857 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3858 dev_priv->dri1.allow_batchbuffer = 1;
3859 return 0;
3860 }
3861
3862 void
3863 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3864 {
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866 struct intel_ring_buffer *ring;
3867 int i;
3868
3869 for_each_ring(ring, dev_priv, i)
3870 intel_cleanup_ring_buffer(ring);
3871 }
3872
3873 int
3874 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3875 struct drm_file *file_priv)
3876 {
3877 drm_i915_private_t *dev_priv = dev->dev_private;
3878 int ret;
3879
3880 if (drm_core_check_feature(dev, DRIVER_MODESET))
3881 return 0;
3882
3883 if (atomic_read(&dev_priv->mm.wedged)) {
3884 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3885 atomic_set(&dev_priv->mm.wedged, 0);
3886 }
3887
3888 mutex_lock(&dev->struct_mutex);
3889 dev_priv->mm.suspended = 0;
3890
3891 ret = i915_gem_init_hw(dev);
3892 if (ret != 0) {
3893 mutex_unlock(&dev->struct_mutex);
3894 return ret;
3895 }
3896
3897 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3898 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3899 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3900 mutex_unlock(&dev->struct_mutex);
3901
3902 ret = drm_irq_install(dev);
3903 if (ret)
3904 goto cleanup_ringbuffer;
3905
3906 return 0;
3907
3908 cleanup_ringbuffer:
3909 mutex_lock(&dev->struct_mutex);
3910 i915_gem_cleanup_ringbuffer(dev);
3911 dev_priv->mm.suspended = 1;
3912 mutex_unlock(&dev->struct_mutex);
3913
3914 return ret;
3915 }
3916
3917 int
3918 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3919 struct drm_file *file_priv)
3920 {
3921 if (drm_core_check_feature(dev, DRIVER_MODESET))
3922 return 0;
3923
3924 drm_irq_uninstall(dev);
3925 return i915_gem_idle(dev);
3926 }
3927
3928 void
3929 i915_gem_lastclose(struct drm_device *dev)
3930 {
3931 int ret;
3932
3933 if (drm_core_check_feature(dev, DRIVER_MODESET))
3934 return;
3935
3936 ret = i915_gem_idle(dev);
3937 if (ret)
3938 DRM_ERROR("failed to idle hardware: %d\n", ret);
3939 }
3940
3941 static void
3942 init_ring_lists(struct intel_ring_buffer *ring)
3943 {
3944 INIT_LIST_HEAD(&ring->active_list);
3945 INIT_LIST_HEAD(&ring->request_list);
3946 INIT_LIST_HEAD(&ring->gpu_write_list);
3947 }
3948
3949 void
3950 i915_gem_load(struct drm_device *dev)
3951 {
3952 int i;
3953 drm_i915_private_t *dev_priv = dev->dev_private;
3954
3955 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3956 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3957 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3958 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3959 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3960 for (i = 0; i < I915_NUM_RINGS; i++)
3961 init_ring_lists(&dev_priv->ring[i]);
3962 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3963 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3964 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3965 i915_gem_retire_work_handler);
3966 init_completion(&dev_priv->error_completion);
3967
3968 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3969 if (IS_GEN3(dev)) {
3970 I915_WRITE(MI_ARB_STATE,
3971 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3972 }
3973
3974 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3975
3976 /* Old X drivers will take 0-2 for front, back, depth buffers */
3977 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3978 dev_priv->fence_reg_start = 3;
3979
3980 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3981 dev_priv->num_fence_regs = 16;
3982 else
3983 dev_priv->num_fence_regs = 8;
3984
3985 /* Initialize fence registers to zero */
3986 i915_gem_reset_fences(dev);
3987
3988 i915_gem_detect_bit_6_swizzle(dev);
3989 init_waitqueue_head(&dev_priv->pending_flip_queue);
3990
3991 dev_priv->mm.interruptible = true;
3992
3993 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3994 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3995 register_shrinker(&dev_priv->mm.inactive_shrinker);
3996 }
3997
3998 /*
3999 * Create a physically contiguous memory object for this object
4000 * e.g. for cursor + overlay regs
4001 */
4002 static int i915_gem_init_phys_object(struct drm_device *dev,
4003 int id, int size, int align)
4004 {
4005 drm_i915_private_t *dev_priv = dev->dev_private;
4006 struct drm_i915_gem_phys_object *phys_obj;
4007 int ret;
4008
4009 if (dev_priv->mm.phys_objs[id - 1] || !size)
4010 return 0;
4011
4012 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4013 if (!phys_obj)
4014 return -ENOMEM;
4015
4016 phys_obj->id = id;
4017
4018 phys_obj->handle = drm_pci_alloc(dev, size, align);
4019 if (!phys_obj->handle) {
4020 ret = -ENOMEM;
4021 goto kfree_obj;
4022 }
4023 #ifdef CONFIG_X86
4024 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4025 #endif
4026
4027 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4028
4029 return 0;
4030 kfree_obj:
4031 kfree(phys_obj);
4032 return ret;
4033 }
4034
4035 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4036 {
4037 drm_i915_private_t *dev_priv = dev->dev_private;
4038 struct drm_i915_gem_phys_object *phys_obj;
4039
4040 if (!dev_priv->mm.phys_objs[id - 1])
4041 return;
4042
4043 phys_obj = dev_priv->mm.phys_objs[id - 1];
4044 if (phys_obj->cur_obj) {
4045 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4046 }
4047
4048 #ifdef CONFIG_X86
4049 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4050 #endif
4051 drm_pci_free(dev, phys_obj->handle);
4052 kfree(phys_obj);
4053 dev_priv->mm.phys_objs[id - 1] = NULL;
4054 }
4055
4056 void i915_gem_free_all_phys_object(struct drm_device *dev)
4057 {
4058 int i;
4059
4060 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4061 i915_gem_free_phys_object(dev, i);
4062 }
4063
4064 void i915_gem_detach_phys_object(struct drm_device *dev,
4065 struct drm_i915_gem_object *obj)
4066 {
4067 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4068 char *vaddr;
4069 int i;
4070 int page_count;
4071
4072 if (!obj->phys_obj)
4073 return;
4074 vaddr = obj->phys_obj->handle->vaddr;
4075
4076 page_count = obj->base.size / PAGE_SIZE;
4077 for (i = 0; i < page_count; i++) {
4078 struct page *page = shmem_read_mapping_page(mapping, i);
4079 if (!IS_ERR(page)) {
4080 char *dst = kmap_atomic(page);
4081 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4082 kunmap_atomic(dst);
4083
4084 drm_clflush_pages(&page, 1);
4085
4086 set_page_dirty(page);
4087 mark_page_accessed(page);
4088 page_cache_release(page);
4089 }
4090 }
4091 intel_gtt_chipset_flush();
4092
4093 obj->phys_obj->cur_obj = NULL;
4094 obj->phys_obj = NULL;
4095 }
4096
4097 int
4098 i915_gem_attach_phys_object(struct drm_device *dev,
4099 struct drm_i915_gem_object *obj,
4100 int id,
4101 int align)
4102 {
4103 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4104 drm_i915_private_t *dev_priv = dev->dev_private;
4105 int ret = 0;
4106 int page_count;
4107 int i;
4108
4109 if (id > I915_MAX_PHYS_OBJECT)
4110 return -EINVAL;
4111
4112 if (obj->phys_obj) {
4113 if (obj->phys_obj->id == id)
4114 return 0;
4115 i915_gem_detach_phys_object(dev, obj);
4116 }
4117
4118 /* create a new object */
4119 if (!dev_priv->mm.phys_objs[id - 1]) {
4120 ret = i915_gem_init_phys_object(dev, id,
4121 obj->base.size, align);
4122 if (ret) {
4123 DRM_ERROR("failed to init phys object %d size: %zu\n",
4124 id, obj->base.size);
4125 return ret;
4126 }
4127 }
4128
4129 /* bind to the object */
4130 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4131 obj->phys_obj->cur_obj = obj;
4132
4133 page_count = obj->base.size / PAGE_SIZE;
4134
4135 for (i = 0; i < page_count; i++) {
4136 struct page *page;
4137 char *dst, *src;
4138
4139 page = shmem_read_mapping_page(mapping, i);
4140 if (IS_ERR(page))
4141 return PTR_ERR(page);
4142
4143 src = kmap_atomic(page);
4144 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4145 memcpy(dst, src, PAGE_SIZE);
4146 kunmap_atomic(src);
4147
4148 mark_page_accessed(page);
4149 page_cache_release(page);
4150 }
4151
4152 return 0;
4153 }
4154
4155 static int
4156 i915_gem_phys_pwrite(struct drm_device *dev,
4157 struct drm_i915_gem_object *obj,
4158 struct drm_i915_gem_pwrite *args,
4159 struct drm_file *file_priv)
4160 {
4161 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4162 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4163
4164 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4165 unsigned long unwritten;
4166
4167 /* The physical object once assigned is fixed for the lifetime
4168 * of the obj, so we can safely drop the lock and continue
4169 * to access vaddr.
4170 */
4171 mutex_unlock(&dev->struct_mutex);
4172 unwritten = copy_from_user(vaddr, user_data, args->size);
4173 mutex_lock(&dev->struct_mutex);
4174 if (unwritten)
4175 return -EFAULT;
4176 }
4177
4178 intel_gtt_chipset_flush();
4179 return 0;
4180 }
4181
4182 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4183 {
4184 struct drm_i915_file_private *file_priv = file->driver_priv;
4185
4186 /* Clean up our request list when the client is going away, so that
4187 * later retire_requests won't dereference our soon-to-be-gone
4188 * file_priv.
4189 */
4190 spin_lock(&file_priv->mm.lock);
4191 while (!list_empty(&file_priv->mm.request_list)) {
4192 struct drm_i915_gem_request *request;
4193
4194 request = list_first_entry(&file_priv->mm.request_list,
4195 struct drm_i915_gem_request,
4196 client_list);
4197 list_del(&request->client_list);
4198 request->file_priv = NULL;
4199 }
4200 spin_unlock(&file_priv->mm.lock);
4201 }
4202
4203 static int
4204 i915_gpu_is_active(struct drm_device *dev)
4205 {
4206 drm_i915_private_t *dev_priv = dev->dev_private;
4207 int lists_empty;
4208
4209 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4210 list_empty(&dev_priv->mm.active_list);
4211
4212 return !lists_empty;
4213 }
4214
4215 static int
4216 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4217 {
4218 struct drm_i915_private *dev_priv =
4219 container_of(shrinker,
4220 struct drm_i915_private,
4221 mm.inactive_shrinker);
4222 struct drm_device *dev = dev_priv->dev;
4223 struct drm_i915_gem_object *obj, *next;
4224 int nr_to_scan = sc->nr_to_scan;
4225 int cnt;
4226
4227 if (!mutex_trylock(&dev->struct_mutex))
4228 return 0;
4229
4230 /* "fast-path" to count number of available objects */
4231 if (nr_to_scan == 0) {
4232 cnt = 0;
4233 list_for_each_entry(obj,
4234 &dev_priv->mm.inactive_list,
4235 mm_list)
4236 cnt++;
4237 mutex_unlock(&dev->struct_mutex);
4238 return cnt / 100 * sysctl_vfs_cache_pressure;
4239 }
4240
4241 rescan:
4242 /* first scan for clean buffers */
4243 i915_gem_retire_requests(dev);
4244
4245 list_for_each_entry_safe(obj, next,
4246 &dev_priv->mm.inactive_list,
4247 mm_list) {
4248 if (i915_gem_object_is_purgeable(obj)) {
4249 if (i915_gem_object_unbind(obj) == 0 &&
4250 --nr_to_scan == 0)
4251 break;
4252 }
4253 }
4254
4255 /* second pass, evict/count anything still on the inactive list */
4256 cnt = 0;
4257 list_for_each_entry_safe(obj, next,
4258 &dev_priv->mm.inactive_list,
4259 mm_list) {
4260 if (nr_to_scan &&
4261 i915_gem_object_unbind(obj) == 0)
4262 nr_to_scan--;
4263 else
4264 cnt++;
4265 }
4266
4267 if (nr_to_scan && i915_gpu_is_active(dev)) {
4268 /*
4269 * We are desperate for pages, so as a last resort, wait
4270 * for the GPU to finish and discard whatever we can.
4271 * This has a dramatic impact to reduce the number of
4272 * OOM-killer events whilst running the GPU aggressively.
4273 */
4274 if (i915_gpu_idle(dev) == 0)
4275 goto rescan;
4276 }
4277 mutex_unlock(&dev->struct_mutex);
4278 return cnt / 100 * sysctl_vfs_cache_pressure;
4279 }
This page took 0.214814 seconds and 6 git commands to generate.