Merge tag 'iio-fixes-for-4.1a-take2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193 * __i915_wait_request - wait until execution of request has finished
1194 * @req: duh!
1195 * @reset_counter: reset sequence associated with the given request
1196 * @interruptible: do an interruptible wait (normally yes)
1197 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198 *
1199 * Note: It is of utmost importance that the passed in seqno and reset_counter
1200 * values have been read by the caller in an smp safe manner. Where read-side
1201 * locks are involved, it is sufficient to read the reset_counter before
1202 * unlocking the lock that protects the seqno. For lockless tricks, the
1203 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204 * inserted.
1205 *
1206 * Returns 0 if the request was found within the alloted time. Else returns the
1207 * errno with remaining time filled in timeout argument.
1208 */
1209 int __i915_wait_request(struct drm_i915_gem_request *req,
1210 unsigned reset_counter,
1211 bool interruptible,
1212 s64 *timeout,
1213 struct drm_i915_file_private *file_priv)
1214 {
1215 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216 struct drm_device *dev = ring->dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 DEFINE_WAIT(wait);
1221 unsigned long timeout_expire;
1222 s64 before, now;
1223 int ret;
1224
1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227 if (i915_gem_request_completed(req, true))
1228 return 0;
1229
1230 timeout_expire = timeout ?
1231 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232
1233 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 gen6_rps_boost(dev_priv);
1235 if (file_priv)
1236 mod_delayed_work(dev_priv->wq,
1237 &file_priv->mm.idle_work,
1238 msecs_to_jiffies(100));
1239 }
1240
1241 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 return -ENODEV;
1243
1244 /* Record current time in case interrupted by signal, or wedged */
1245 trace_i915_gem_request_wait_begin(req);
1246 before = ktime_get_raw_ns();
1247 for (;;) {
1248 struct timer_list timer;
1249
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
1264 if (i915_gem_request_completed(req, false)) {
1265 ret = 0;
1266 break;
1267 }
1268
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
1281 unsigned long expire;
1282
1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 mod_timer(&timer, expire);
1286 }
1287
1288 io_schedule();
1289
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
1300
1301 finish_wait(&ring->irq_queue, &wait);
1302
1303 if (timeout) {
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
1307
1308 /*
1309 * Apparently ktime isn't accurate enough and occasionally has a
1310 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 * things up to make the test happy. We allow up to 1 jiffy.
1312 *
1313 * This is a regrssion from the timespec->ktime conversion.
1314 */
1315 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 *timeout = 0;
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * Waits for a request to be signaled, and cleans up the
1324 * request and object lists appropriately for that event.
1325 */
1326 int
1327 i915_wait_request(struct drm_i915_gem_request *req)
1328 {
1329 struct drm_device *dev;
1330 struct drm_i915_private *dev_priv;
1331 bool interruptible;
1332 unsigned reset_counter;
1333 int ret;
1334
1335 BUG_ON(req == NULL);
1336
1337 dev = req->ring->dev;
1338 dev_priv = dev->dev_private;
1339 interruptible = dev_priv->mm.interruptible;
1340
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(req);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 i915_gem_request_reference(req);
1353 ret = __i915_wait_request(req, reset_counter,
1354 interruptible, NULL, NULL);
1355 i915_gem_request_unreference(req);
1356 return ret;
1357 }
1358
1359 static int
1360 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361 {
1362 if (!obj->active)
1363 return 0;
1364
1365 /* Manually manage the write flush as we may have not yet
1366 * retired the buffer.
1367 *
1368 * Note that the last_write_req is always the earlier of
1369 * the two (read/write) requests, so if we haved successfully waited,
1370 * we know we have passed the last write.
1371 */
1372 i915_gem_request_assign(&obj->last_write_req, NULL);
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * Ensures that all rendering to the object has completed and the object is
1379 * safe to unbind from the GTT or access from the CPU.
1380 */
1381 static __must_check int
1382 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 bool readonly)
1384 {
1385 struct drm_i915_gem_request *req;
1386 int ret;
1387
1388 req = readonly ? obj->last_write_req : obj->last_read_req;
1389 if (!req)
1390 return 0;
1391
1392 ret = i915_wait_request(req);
1393 if (ret)
1394 return ret;
1395
1396 return i915_gem_object_wait_rendering__tail(obj);
1397 }
1398
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402 static __must_check int
1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 struct drm_i915_file_private *file_priv,
1405 bool readonly)
1406 {
1407 struct drm_i915_gem_request *req;
1408 struct drm_device *dev = obj->base.dev;
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 unsigned reset_counter;
1411 int ret;
1412
1413 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 BUG_ON(!dev_priv->mm.interruptible);
1415
1416 req = readonly ? obj->last_write_req : obj->last_read_req;
1417 if (!req)
1418 return 0;
1419
1420 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 if (ret)
1422 return ret;
1423
1424 ret = i915_gem_check_olr(req);
1425 if (ret)
1426 return ret;
1427
1428 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429 i915_gem_request_reference(req);
1430 mutex_unlock(&dev->struct_mutex);
1431 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432 mutex_lock(&dev->struct_mutex);
1433 i915_gem_request_unreference(req);
1434 if (ret)
1435 return ret;
1436
1437 return i915_gem_object_wait_rendering__tail(obj);
1438 }
1439
1440 /**
1441 * Called when user space prepares to use an object with the CPU, either
1442 * through the mmap ioctl's mapping or a GTT mapping.
1443 */
1444 int
1445 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446 struct drm_file *file)
1447 {
1448 struct drm_i915_gem_set_domain *args = data;
1449 struct drm_i915_gem_object *obj;
1450 uint32_t read_domains = args->read_domains;
1451 uint32_t write_domain = args->write_domain;
1452 int ret;
1453
1454 /* Only handle setting domains to types used by the CPU. */
1455 if (write_domain & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 if (read_domains & I915_GEM_GPU_DOMAINS)
1459 return -EINVAL;
1460
1461 /* Having something in the write domain implies it's in the read
1462 * domain, and only that read domain. Enforce that in the request.
1463 */
1464 if (write_domain != 0 && read_domains != write_domain)
1465 return -EINVAL;
1466
1467 ret = i915_mutex_lock_interruptible(dev);
1468 if (ret)
1469 return ret;
1470
1471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472 if (&obj->base == NULL) {
1473 ret = -ENOENT;
1474 goto unlock;
1475 }
1476
1477 /* Try to flush the object off the GPU without holding the lock.
1478 * We will repeat the flush holding the lock in the normal manner
1479 * to catch cases where we are gazumped.
1480 */
1481 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 file->driver_priv,
1483 !write_domain);
1484 if (ret)
1485 goto unref;
1486
1487 if (read_domains & I915_GEM_DOMAIN_GTT)
1488 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489 else
1490 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491
1492 unref:
1493 drm_gem_object_unreference(&obj->base);
1494 unlock:
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497 }
1498
1499 /**
1500 * Called when user space has done writes to this buffer
1501 */
1502 int
1503 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504 struct drm_file *file)
1505 {
1506 struct drm_i915_gem_sw_finish *args = data;
1507 struct drm_i915_gem_object *obj;
1508 int ret = 0;
1509
1510 ret = i915_mutex_lock_interruptible(dev);
1511 if (ret)
1512 return ret;
1513
1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515 if (&obj->base == NULL) {
1516 ret = -ENOENT;
1517 goto unlock;
1518 }
1519
1520 /* Pinned buffers may be scanout, so flush the cache */
1521 if (obj->pin_display)
1522 i915_gem_object_flush_cpu_write_domain(obj);
1523
1524 drm_gem_object_unreference(&obj->base);
1525 unlock:
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528 }
1529
1530 /**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
1546 */
1547 int
1548 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549 struct drm_file *file)
1550 {
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
1553 unsigned long addr;
1554
1555 if (args->flags & ~(I915_MMAP_WC))
1556 return -EINVAL;
1557
1558 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 return -ENODEV;
1560
1561 obj = drm_gem_object_lookup(dev, file, args->handle);
1562 if (obj == NULL)
1563 return -ENOENT;
1564
1565 /* prime objects have no backing filp to GEM mmap
1566 * pages from.
1567 */
1568 if (!obj->filp) {
1569 drm_gem_object_unreference_unlocked(obj);
1570 return -EINVAL;
1571 }
1572
1573 addr = vm_mmap(obj->filp, 0, args->size,
1574 PROT_READ | PROT_WRITE, MAP_SHARED,
1575 args->offset);
1576 if (args->flags & I915_MMAP_WC) {
1577 struct mm_struct *mm = current->mm;
1578 struct vm_area_struct *vma;
1579
1580 down_write(&mm->mmap_sem);
1581 vma = find_vma(mm, addr);
1582 if (vma)
1583 vma->vm_page_prot =
1584 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 else
1586 addr = -ENOMEM;
1587 up_write(&mm->mmap_sem);
1588 }
1589 drm_gem_object_unreference_unlocked(obj);
1590 if (IS_ERR((void *)addr))
1591 return addr;
1592
1593 args->addr_ptr = (uint64_t) addr;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * i915_gem_fault - fault a page into the GTT
1600 * vma: VMA in question
1601 * vmf: fault info
1602 *
1603 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604 * from userspace. The fault handler takes care of binding the object to
1605 * the GTT (if needed), allocating and programming a fence register (again,
1606 * only if needed based on whether the old reg is still valid or the object
1607 * is tiled) and inserting a new PTE into the faulting process.
1608 *
1609 * Note that the faulting process may involve evicting existing objects
1610 * from the GTT and/or fence registers to make room. So performance may
1611 * suffer if the GTT working set is large or there are few fence registers
1612 * left.
1613 */
1614 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615 {
1616 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 struct drm_device *dev = obj->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 pgoff_t page_offset;
1620 unsigned long pfn;
1621 int ret = 0;
1622 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623
1624 intel_runtime_pm_get(dev_priv);
1625
1626 /* We don't use vmf->pgoff since that has the fake offset */
1627 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 PAGE_SHIFT;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 goto out;
1633
1634 trace_i915_gem_object_fault(obj, page_offset, true, write);
1635
1636 /* Try to flush the object off the GPU first without holding the lock.
1637 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 * repeat the flush holding the lock in the normal manner to catch cases
1639 * where we are gazumped.
1640 */
1641 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 if (ret)
1643 goto unlock;
1644
1645 /* Access to snoopable pages through the GTT is incoherent. */
1646 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647 ret = -EFAULT;
1648 goto unlock;
1649 }
1650
1651 /* Now bind it into the GTT if needed */
1652 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 if (ret)
1654 goto unlock;
1655
1656 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 if (ret)
1658 goto unpin;
1659
1660 ret = i915_gem_object_get_fence(obj);
1661 if (ret)
1662 goto unpin;
1663
1664 /* Finally, remap it using the new GTT offset */
1665 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 pfn >>= PAGE_SHIFT;
1667
1668 if (!obj->fault_mappable) {
1669 unsigned long size = min_t(unsigned long,
1670 vma->vm_end - vma->vm_start,
1671 obj->base.size);
1672 int i;
1673
1674 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 ret = vm_insert_pfn(vma,
1676 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 pfn + i);
1678 if (ret)
1679 break;
1680 }
1681
1682 obj->fault_mappable = true;
1683 } else
1684 ret = vm_insert_pfn(vma,
1685 (unsigned long)vmf->virtual_address,
1686 pfn + page_offset);
1687 unpin:
1688 i915_gem_object_ggtt_unpin(obj);
1689 unlock:
1690 mutex_unlock(&dev->struct_mutex);
1691 out:
1692 switch (ret) {
1693 case -EIO:
1694 /*
1695 * We eat errors when the gpu is terminally wedged to avoid
1696 * userspace unduly crashing (gl has no provisions for mmaps to
1697 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 * and so needs to be reported.
1699 */
1700 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 ret = VM_FAULT_SIGBUS;
1702 break;
1703 }
1704 case -EAGAIN:
1705 /*
1706 * EAGAIN means the gpu is hung and we'll wait for the error
1707 * handler to reset everything when re-faulting in
1708 * i915_mutex_lock_interruptible.
1709 */
1710 case 0:
1711 case -ERESTARTSYS:
1712 case -EINTR:
1713 case -EBUSY:
1714 /*
1715 * EBUSY is ok: this just means that another thread
1716 * already did the job.
1717 */
1718 ret = VM_FAULT_NOPAGE;
1719 break;
1720 case -ENOMEM:
1721 ret = VM_FAULT_OOM;
1722 break;
1723 case -ENOSPC:
1724 case -EFAULT:
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 default:
1728 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 ret = VM_FAULT_SIGBUS;
1730 break;
1731 }
1732
1733 intel_runtime_pm_put(dev_priv);
1734 return ret;
1735 }
1736
1737 /**
1738 * i915_gem_release_mmap - remove physical page mappings
1739 * @obj: obj in question
1740 *
1741 * Preserve the reservation of the mmapping with the DRM core code, but
1742 * relinquish ownership of the pages back to the system.
1743 *
1744 * It is vital that we remove the page mapping if we have mapped a tiled
1745 * object through the GTT and then lose the fence register due to
1746 * resource pressure. Similarly if the object has been moved out of the
1747 * aperture, than pages mapped into userspace must be revoked. Removing the
1748 * mapping will then trigger a page fault on the next user access, allowing
1749 * fixup by i915_gem_fault().
1750 */
1751 void
1752 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753 {
1754 if (!obj->fault_mappable)
1755 return;
1756
1757 drm_vma_node_unmap(&obj->base.vma_node,
1758 obj->base.dev->anon_inode->i_mapping);
1759 obj->fault_mappable = false;
1760 }
1761
1762 void
1763 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764 {
1765 struct drm_i915_gem_object *obj;
1766
1767 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 i915_gem_release_mmap(obj);
1769 }
1770
1771 uint32_t
1772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773 {
1774 uint32_t gtt_size;
1775
1776 if (INTEL_INFO(dev)->gen >= 4 ||
1777 tiling_mode == I915_TILING_NONE)
1778 return size;
1779
1780 /* Previous chips need a power-of-two fence region when tiling */
1781 if (INTEL_INFO(dev)->gen == 3)
1782 gtt_size = 1024*1024;
1783 else
1784 gtt_size = 512*1024;
1785
1786 while (gtt_size < size)
1787 gtt_size <<= 1;
1788
1789 return gtt_size;
1790 }
1791
1792 /**
1793 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794 * @obj: object to check
1795 *
1796 * Return the required GTT alignment for an object, taking into account
1797 * potential fence register mapping.
1798 */
1799 uint32_t
1800 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 int tiling_mode, bool fenced)
1802 {
1803 /*
1804 * Minimum alignment is 4k (GTT page size), but might be greater
1805 * if a fence register is needed for the object.
1806 */
1807 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808 tiling_mode == I915_TILING_NONE)
1809 return 4096;
1810
1811 /*
1812 * Previous chips need to be aligned to the size of the smallest
1813 * fence register that can contain the object.
1814 */
1815 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 }
1817
1818 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819 {
1820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 int ret;
1822
1823 if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 return 0;
1825
1826 dev_priv->mm.shrinker_no_lock_stealing = true;
1827
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829 if (ret != -ENOSPC)
1830 goto out;
1831
1832 /* Badly fragmented mmap space? The only way we can recover
1833 * space is by destroying unwanted objects. We can't randomly release
1834 * mmap_offsets as userspace expects them to be persistent for the
1835 * lifetime of the objects. The closest we can is to release the
1836 * offsets on purgeable objects by truncating it and marking it purged,
1837 * which prevents userspace from ever using that object again.
1838 */
1839 i915_gem_shrink(dev_priv,
1840 obj->base.size >> PAGE_SHIFT,
1841 I915_SHRINK_BOUND |
1842 I915_SHRINK_UNBOUND |
1843 I915_SHRINK_PURGEABLE);
1844 ret = drm_gem_create_mmap_offset(&obj->base);
1845 if (ret != -ENOSPC)
1846 goto out;
1847
1848 i915_gem_shrink_all(dev_priv);
1849 ret = drm_gem_create_mmap_offset(&obj->base);
1850 out:
1851 dev_priv->mm.shrinker_no_lock_stealing = false;
1852
1853 return ret;
1854 }
1855
1856 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857 {
1858 drm_gem_free_mmap_offset(&obj->base);
1859 }
1860
1861 int
1862 i915_gem_mmap_gtt(struct drm_file *file,
1863 struct drm_device *dev,
1864 uint32_t handle,
1865 uint64_t *offset)
1866 {
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 struct drm_i915_gem_object *obj;
1869 int ret;
1870
1871 ret = i915_mutex_lock_interruptible(dev);
1872 if (ret)
1873 return ret;
1874
1875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876 if (&obj->base == NULL) {
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
1880
1881 if (obj->base.size > dev_priv->gtt.mappable_end) {
1882 ret = -E2BIG;
1883 goto out;
1884 }
1885
1886 if (obj->madv != I915_MADV_WILLNEED) {
1887 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888 ret = -EFAULT;
1889 goto out;
1890 }
1891
1892 ret = i915_gem_object_create_mmap_offset(obj);
1893 if (ret)
1894 goto out;
1895
1896 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897
1898 out:
1899 drm_gem_object_unreference(&obj->base);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 return ret;
1903 }
1904
1905 /**
1906 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907 * @dev: DRM device
1908 * @data: GTT mapping ioctl data
1909 * @file: GEM object info
1910 *
1911 * Simply returns the fake offset to userspace so it can mmap it.
1912 * The mmap call will end up in drm_gem_mmap(), which will set things
1913 * up so we can get faults in the handler above.
1914 *
1915 * The fault handler will take care of binding the object into the GTT
1916 * (since it may have been evicted to make room for something), allocating
1917 * a fence register, and mapping the appropriate aperture address into
1918 * userspace.
1919 */
1920 int
1921 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 struct drm_file *file)
1923 {
1924 struct drm_i915_gem_mmap_gtt *args = data;
1925
1926 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 }
1928
1929 /* Immediately discard the backing storage */
1930 static void
1931 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932 {
1933 i915_gem_object_free_mmap_offset(obj);
1934
1935 if (obj->base.filp == NULL)
1936 return;
1937
1938 /* Our goal here is to return as much of the memory as
1939 * is possible back to the system as we are called from OOM.
1940 * To do this we must instruct the shmfs to drop all of its
1941 * backing pages, *now*.
1942 */
1943 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1944 obj->madv = __I915_MADV_PURGED;
1945 }
1946
1947 /* Try to discard unwanted pages */
1948 static void
1949 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1950 {
1951 struct address_space *mapping;
1952
1953 switch (obj->madv) {
1954 case I915_MADV_DONTNEED:
1955 i915_gem_object_truncate(obj);
1956 case __I915_MADV_PURGED:
1957 return;
1958 }
1959
1960 if (obj->base.filp == NULL)
1961 return;
1962
1963 mapping = file_inode(obj->base.filp)->i_mapping,
1964 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 }
1966
1967 static void
1968 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969 {
1970 struct sg_page_iter sg_iter;
1971 int ret;
1972
1973 BUG_ON(obj->madv == __I915_MADV_PURGED);
1974
1975 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 if (ret) {
1977 /* In the event of a disaster, abandon all caches and
1978 * hope for the best.
1979 */
1980 WARN_ON(ret != -EIO);
1981 i915_gem_clflush_object(obj, true);
1982 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 }
1984
1985 if (i915_gem_object_needs_bit17_swizzle(obj))
1986 i915_gem_object_save_bit_17_swizzle(obj);
1987
1988 if (obj->madv == I915_MADV_DONTNEED)
1989 obj->dirty = 0;
1990
1991 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992 struct page *page = sg_page_iter_page(&sg_iter);
1993
1994 if (obj->dirty)
1995 set_page_dirty(page);
1996
1997 if (obj->madv == I915_MADV_WILLNEED)
1998 mark_page_accessed(page);
1999
2000 page_cache_release(page);
2001 }
2002 obj->dirty = 0;
2003
2004 sg_free_table(obj->pages);
2005 kfree(obj->pages);
2006 }
2007
2008 int
2009 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010 {
2011 const struct drm_i915_gem_object_ops *ops = obj->ops;
2012
2013 if (obj->pages == NULL)
2014 return 0;
2015
2016 if (obj->pages_pin_count)
2017 return -EBUSY;
2018
2019 BUG_ON(i915_gem_obj_bound_any(obj));
2020
2021 /* ->put_pages might need to allocate memory for the bit17 swizzle
2022 * array, hence protect them from being reaped by removing them from gtt
2023 * lists early. */
2024 list_del(&obj->global_list);
2025
2026 ops->put_pages(obj);
2027 obj->pages = NULL;
2028
2029 i915_gem_object_invalidate(obj);
2030
2031 return 0;
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 if (obj->tiling_mode != I915_TILING_NONE &&
2126 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 i915_gem_object_pin_pages(obj);
2128
2129 return 0;
2130
2131 err_pages:
2132 sg_mark_end(sg);
2133 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134 page_cache_release(sg_page_iter_page(&sg_iter));
2135 sg_free_table(st);
2136 kfree(st);
2137
2138 /* shmemfs first checks if there is enough memory to allocate the page
2139 * and reports ENOSPC should there be insufficient, along with the usual
2140 * ENOMEM for a genuine allocation failure.
2141 *
2142 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 * space and so want to translate the error from shmemfs back to our
2144 * usual understanding of ENOMEM.
2145 */
2146 if (PTR_ERR(page) == -ENOSPC)
2147 return -ENOMEM;
2148 else
2149 return PTR_ERR(page);
2150 }
2151
2152 /* Ensure that the associated pages are gathered from the backing storage
2153 * and pinned into our object. i915_gem_object_get_pages() may be called
2154 * multiple times before they are released by a single call to
2155 * i915_gem_object_put_pages() - once the pages are no longer referenced
2156 * either as a result of memory pressure (reaping pages under the shrinker)
2157 * or as the object is itself released.
2158 */
2159 int
2160 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161 {
2162 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 int ret;
2165
2166 if (obj->pages)
2167 return 0;
2168
2169 if (obj->madv != I915_MADV_WILLNEED) {
2170 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171 return -EFAULT;
2172 }
2173
2174 BUG_ON(obj->pages_pin_count);
2175
2176 ret = ops->get_pages(obj);
2177 if (ret)
2178 return ret;
2179
2180 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181 return 0;
2182 }
2183
2184 static void
2185 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186 struct intel_engine_cs *ring)
2187 {
2188 struct drm_i915_gem_request *req;
2189 struct intel_engine_cs *old_ring;
2190
2191 BUG_ON(ring == NULL);
2192
2193 req = intel_ring_get_request(ring);
2194 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195
2196 if (old_ring != ring && obj->last_write_req) {
2197 /* Keep the request relative to the current ring */
2198 i915_gem_request_assign(&obj->last_write_req, req);
2199 }
2200
2201 /* Add a reference if we're newly entering the active list. */
2202 if (!obj->active) {
2203 drm_gem_object_reference(&obj->base);
2204 obj->active = 1;
2205 }
2206
2207 list_move_tail(&obj->ring_list, &ring->active_list);
2208
2209 i915_gem_request_assign(&obj->last_read_req, req);
2210 }
2211
2212 void i915_vma_move_to_active(struct i915_vma *vma,
2213 struct intel_engine_cs *ring)
2214 {
2215 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 return i915_gem_object_move_to_active(vma->obj, ring);
2217 }
2218
2219 static void
2220 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221 {
2222 struct i915_vma *vma;
2223
2224 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225 BUG_ON(!obj->active);
2226
2227 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 if (!list_empty(&vma->mm_list))
2229 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230 }
2231
2232 intel_fb_obj_flush(obj, true);
2233
2234 list_del_init(&obj->ring_list);
2235
2236 i915_gem_request_assign(&obj->last_read_req, NULL);
2237 i915_gem_request_assign(&obj->last_write_req, NULL);
2238 obj->base.write_domain = 0;
2239
2240 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241
2242 obj->active = 0;
2243 drm_gem_object_unreference(&obj->base);
2244
2245 WARN_ON(i915_verify_lists(dev));
2246 }
2247
2248 static void
2249 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250 {
2251 if (obj->last_read_req == NULL)
2252 return;
2253
2254 if (i915_gem_request_completed(obj->last_read_req, true))
2255 i915_gem_object_move_to_inactive(obj);
2256 }
2257
2258 static int
2259 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260 {
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_engine_cs *ring;
2263 int ret, i, j;
2264
2265 /* Carefully retire all requests without writing to the rings */
2266 for_each_ring(ring, dev_priv, i) {
2267 ret = intel_ring_idle(ring);
2268 if (ret)
2269 return ret;
2270 }
2271 i915_gem_retire_requests(dev);
2272
2273 /* Finally reset hw state */
2274 for_each_ring(ring, dev_priv, i) {
2275 intel_ring_init_seqno(ring, seqno);
2276
2277 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 ring->semaphore.sync_seqno[j] = 0;
2279 }
2280
2281 return 0;
2282 }
2283
2284 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 int ret;
2288
2289 if (seqno == 0)
2290 return -EINVAL;
2291
2292 /* HWS page needs to be set less than what we
2293 * will inject to ring
2294 */
2295 ret = i915_gem_init_seqno(dev, seqno - 1);
2296 if (ret)
2297 return ret;
2298
2299 /* Carefully set the last_seqno value so that wrap
2300 * detection still works
2301 */
2302 dev_priv->next_seqno = seqno;
2303 dev_priv->last_seqno = seqno - 1;
2304 if (dev_priv->last_seqno == 0)
2305 dev_priv->last_seqno--;
2306
2307 return 0;
2308 }
2309
2310 int
2311 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 /* reserve 0 for non-seqno */
2316 if (dev_priv->next_seqno == 0) {
2317 int ret = i915_gem_init_seqno(dev, 0);
2318 if (ret)
2319 return ret;
2320
2321 dev_priv->next_seqno = 1;
2322 }
2323
2324 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325 return 0;
2326 }
2327
2328 int __i915_add_request(struct intel_engine_cs *ring,
2329 struct drm_file *file,
2330 struct drm_i915_gem_object *obj)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_start;
2336 int ret;
2337
2338 request = ring->outstanding_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
2355 if (i915.enable_execlists) {
2356 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
2370 request->postfix = intel_ring_get_tail(ringbuf);
2371
2372 if (i915.enable_execlists) {
2373 ret = ring->emit_request(ringbuf, request);
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
2380
2381 request->tail = intel_ring_get_tail(ringbuf);
2382 }
2383
2384 request->head = request_start;
2385
2386 /* Whilst this request exists, batch_obj will be on the
2387 * active_list, and so will hold the active reference. Only when this
2388 * request is retired will the the batch_obj be moved onto the
2389 * inactive_list and lose its active reference. Hence we do not need
2390 * to explicitly hold another reference here.
2391 */
2392 request->batch_obj = obj;
2393
2394 if (!i915.enable_execlists) {
2395 /* Hold a reference to the current context so that we can inspect
2396 * it later in case a hangcheck error event fires.
2397 */
2398 request->ctx = ring->last_context;
2399 if (request->ctx)
2400 i915_gem_context_reference(request->ctx);
2401 }
2402
2403 request->emitted_jiffies = jiffies;
2404 list_add_tail(&request->list, &ring->request_list);
2405 request->file_priv = NULL;
2406
2407 if (file) {
2408 struct drm_i915_file_private *file_priv = file->driver_priv;
2409
2410 spin_lock(&file_priv->mm.lock);
2411 request->file_priv = file_priv;
2412 list_add_tail(&request->client_list,
2413 &file_priv->mm.request_list);
2414 spin_unlock(&file_priv->mm.lock);
2415
2416 request->pid = get_pid(task_pid(current));
2417 }
2418
2419 trace_i915_gem_request_add(request);
2420 ring->outstanding_lazy_request = NULL;
2421
2422 i915_queue_hangcheck(ring->dev);
2423
2424 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2425 queue_delayed_work(dev_priv->wq,
2426 &dev_priv->mm.retire_work,
2427 round_jiffies_up_relative(HZ));
2428 intel_mark_busy(dev_priv->dev);
2429
2430 return 0;
2431 }
2432
2433 static inline void
2434 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2435 {
2436 struct drm_i915_file_private *file_priv = request->file_priv;
2437
2438 if (!file_priv)
2439 return;
2440
2441 spin_lock(&file_priv->mm.lock);
2442 list_del(&request->client_list);
2443 request->file_priv = NULL;
2444 spin_unlock(&file_priv->mm.lock);
2445 }
2446
2447 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2448 const struct intel_context *ctx)
2449 {
2450 unsigned long elapsed;
2451
2452 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2453
2454 if (ctx->hang_stats.banned)
2455 return true;
2456
2457 if (ctx->hang_stats.ban_period_seconds &&
2458 elapsed <= ctx->hang_stats.ban_period_seconds) {
2459 if (!i915_gem_context_is_default(ctx)) {
2460 DRM_DEBUG("context hanging too fast, banning!\n");
2461 return true;
2462 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2463 if (i915_stop_ring_allow_warn(dev_priv))
2464 DRM_ERROR("gpu hanging too fast, banning!\n");
2465 return true;
2466 }
2467 }
2468
2469 return false;
2470 }
2471
2472 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2473 struct intel_context *ctx,
2474 const bool guilty)
2475 {
2476 struct i915_ctx_hang_stats *hs;
2477
2478 if (WARN_ON(!ctx))
2479 return;
2480
2481 hs = &ctx->hang_stats;
2482
2483 if (guilty) {
2484 hs->banned = i915_context_is_banned(dev_priv, ctx);
2485 hs->batch_active++;
2486 hs->guilty_ts = get_seconds();
2487 } else {
2488 hs->batch_pending++;
2489 }
2490 }
2491
2492 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2493 {
2494 list_del(&request->list);
2495 i915_gem_request_remove_from_client(request);
2496
2497 put_pid(request->pid);
2498
2499 i915_gem_request_unreference(request);
2500 }
2501
2502 void i915_gem_request_free(struct kref *req_ref)
2503 {
2504 struct drm_i915_gem_request *req = container_of(req_ref,
2505 typeof(*req), ref);
2506 struct intel_context *ctx = req->ctx;
2507
2508 if (ctx) {
2509 if (i915.enable_execlists) {
2510 struct intel_engine_cs *ring = req->ring;
2511
2512 if (ctx != ring->default_context)
2513 intel_lr_context_unpin(ring, ctx);
2514 }
2515
2516 i915_gem_context_unreference(ctx);
2517 }
2518
2519 kfree(req);
2520 }
2521
2522 struct drm_i915_gem_request *
2523 i915_gem_find_active_request(struct intel_engine_cs *ring)
2524 {
2525 struct drm_i915_gem_request *request;
2526
2527 list_for_each_entry(request, &ring->request_list, list) {
2528 if (i915_gem_request_completed(request, false))
2529 continue;
2530
2531 return request;
2532 }
2533
2534 return NULL;
2535 }
2536
2537 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2538 struct intel_engine_cs *ring)
2539 {
2540 struct drm_i915_gem_request *request;
2541 bool ring_hung;
2542
2543 request = i915_gem_find_active_request(ring);
2544
2545 if (request == NULL)
2546 return;
2547
2548 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2549
2550 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2551
2552 list_for_each_entry_continue(request, &ring->request_list, list)
2553 i915_set_reset_status(dev_priv, request->ctx, false);
2554 }
2555
2556 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2557 struct intel_engine_cs *ring)
2558 {
2559 while (!list_empty(&ring->active_list)) {
2560 struct drm_i915_gem_object *obj;
2561
2562 obj = list_first_entry(&ring->active_list,
2563 struct drm_i915_gem_object,
2564 ring_list);
2565
2566 i915_gem_object_move_to_inactive(obj);
2567 }
2568
2569 /*
2570 * Clear the execlists queue up before freeing the requests, as those
2571 * are the ones that keep the context and ringbuffer backing objects
2572 * pinned in place.
2573 */
2574 while (!list_empty(&ring->execlist_queue)) {
2575 struct drm_i915_gem_request *submit_req;
2576
2577 submit_req = list_first_entry(&ring->execlist_queue,
2578 struct drm_i915_gem_request,
2579 execlist_link);
2580 list_del(&submit_req->execlist_link);
2581 intel_runtime_pm_put(dev_priv);
2582
2583 if (submit_req->ctx != ring->default_context)
2584 intel_lr_context_unpin(ring, submit_req->ctx);
2585
2586 i915_gem_request_unreference(submit_req);
2587 }
2588
2589 /*
2590 * We must free the requests after all the corresponding objects have
2591 * been moved off active lists. Which is the same order as the normal
2592 * retire_requests function does. This is important if object hold
2593 * implicit references on things like e.g. ppgtt address spaces through
2594 * the request.
2595 */
2596 while (!list_empty(&ring->request_list)) {
2597 struct drm_i915_gem_request *request;
2598
2599 request = list_first_entry(&ring->request_list,
2600 struct drm_i915_gem_request,
2601 list);
2602
2603 i915_gem_free_request(request);
2604 }
2605
2606 /* This may not have been flushed before the reset, so clean it now */
2607 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2608 }
2609
2610 void i915_gem_restore_fences(struct drm_device *dev)
2611 {
2612 struct drm_i915_private *dev_priv = dev->dev_private;
2613 int i;
2614
2615 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2616 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2617
2618 /*
2619 * Commit delayed tiling changes if we have an object still
2620 * attached to the fence, otherwise just clear the fence.
2621 */
2622 if (reg->obj) {
2623 i915_gem_object_update_fence(reg->obj, reg,
2624 reg->obj->tiling_mode);
2625 } else {
2626 i915_gem_write_fence(dev, i, NULL);
2627 }
2628 }
2629 }
2630
2631 void i915_gem_reset(struct drm_device *dev)
2632 {
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_engine_cs *ring;
2635 int i;
2636
2637 /*
2638 * Before we free the objects from the requests, we need to inspect
2639 * them for finding the guilty party. As the requests only borrow
2640 * their reference to the objects, the inspection must be done first.
2641 */
2642 for_each_ring(ring, dev_priv, i)
2643 i915_gem_reset_ring_status(dev_priv, ring);
2644
2645 for_each_ring(ring, dev_priv, i)
2646 i915_gem_reset_ring_cleanup(dev_priv, ring);
2647
2648 i915_gem_context_reset(dev);
2649
2650 i915_gem_restore_fences(dev);
2651 }
2652
2653 /**
2654 * This function clears the request list as sequence numbers are passed.
2655 */
2656 void
2657 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2658 {
2659 if (list_empty(&ring->request_list))
2660 return;
2661
2662 WARN_ON(i915_verify_lists(ring->dev));
2663
2664 /* Retire requests first as we use it above for the early return.
2665 * If we retire requests last, we may use a later seqno and so clear
2666 * the requests lists without clearing the active list, leading to
2667 * confusion.
2668 */
2669 while (!list_empty(&ring->request_list)) {
2670 struct drm_i915_gem_request *request;
2671
2672 request = list_first_entry(&ring->request_list,
2673 struct drm_i915_gem_request,
2674 list);
2675
2676 if (!i915_gem_request_completed(request, true))
2677 break;
2678
2679 trace_i915_gem_request_retire(request);
2680
2681 /* We know the GPU must have read the request to have
2682 * sent us the seqno + interrupt, so use the position
2683 * of tail of the request to update the last known position
2684 * of the GPU head.
2685 */
2686 request->ringbuf->last_retired_head = request->postfix;
2687
2688 i915_gem_free_request(request);
2689 }
2690
2691 /* Move any buffers on the active list that are no longer referenced
2692 * by the ringbuffer to the flushing/inactive lists as appropriate,
2693 * before we free the context associated with the requests.
2694 */
2695 while (!list_empty(&ring->active_list)) {
2696 struct drm_i915_gem_object *obj;
2697
2698 obj = list_first_entry(&ring->active_list,
2699 struct drm_i915_gem_object,
2700 ring_list);
2701
2702 if (!i915_gem_request_completed(obj->last_read_req, true))
2703 break;
2704
2705 i915_gem_object_move_to_inactive(obj);
2706 }
2707
2708 if (unlikely(ring->trace_irq_req &&
2709 i915_gem_request_completed(ring->trace_irq_req, true))) {
2710 ring->irq_put(ring);
2711 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2712 }
2713
2714 WARN_ON(i915_verify_lists(ring->dev));
2715 }
2716
2717 bool
2718 i915_gem_retire_requests(struct drm_device *dev)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 struct intel_engine_cs *ring;
2722 bool idle = true;
2723 int i;
2724
2725 for_each_ring(ring, dev_priv, i) {
2726 i915_gem_retire_requests_ring(ring);
2727 idle &= list_empty(&ring->request_list);
2728 if (i915.enable_execlists) {
2729 unsigned long flags;
2730
2731 spin_lock_irqsave(&ring->execlist_lock, flags);
2732 idle &= list_empty(&ring->execlist_queue);
2733 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2734
2735 intel_execlists_retire_requests(ring);
2736 }
2737 }
2738
2739 if (idle)
2740 mod_delayed_work(dev_priv->wq,
2741 &dev_priv->mm.idle_work,
2742 msecs_to_jiffies(100));
2743
2744 return idle;
2745 }
2746
2747 static void
2748 i915_gem_retire_work_handler(struct work_struct *work)
2749 {
2750 struct drm_i915_private *dev_priv =
2751 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2752 struct drm_device *dev = dev_priv->dev;
2753 bool idle;
2754
2755 /* Come back later if the device is busy... */
2756 idle = false;
2757 if (mutex_trylock(&dev->struct_mutex)) {
2758 idle = i915_gem_retire_requests(dev);
2759 mutex_unlock(&dev->struct_mutex);
2760 }
2761 if (!idle)
2762 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2763 round_jiffies_up_relative(HZ));
2764 }
2765
2766 static void
2767 i915_gem_idle_work_handler(struct work_struct *work)
2768 {
2769 struct drm_i915_private *dev_priv =
2770 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2771
2772 intel_mark_idle(dev_priv->dev);
2773 }
2774
2775 /**
2776 * Ensures that an object will eventually get non-busy by flushing any required
2777 * write domains, emitting any outstanding lazy request and retiring and
2778 * completed requests.
2779 */
2780 static int
2781 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2782 {
2783 struct intel_engine_cs *ring;
2784 int ret;
2785
2786 if (obj->active) {
2787 ring = i915_gem_request_get_ring(obj->last_read_req);
2788
2789 ret = i915_gem_check_olr(obj->last_read_req);
2790 if (ret)
2791 return ret;
2792
2793 i915_gem_retire_requests_ring(ring);
2794 }
2795
2796 return 0;
2797 }
2798
2799 /**
2800 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2801 * @DRM_IOCTL_ARGS: standard ioctl arguments
2802 *
2803 * Returns 0 if successful, else an error is returned with the remaining time in
2804 * the timeout parameter.
2805 * -ETIME: object is still busy after timeout
2806 * -ERESTARTSYS: signal interrupted the wait
2807 * -ENONENT: object doesn't exist
2808 * Also possible, but rare:
2809 * -EAGAIN: GPU wedged
2810 * -ENOMEM: damn
2811 * -ENODEV: Internal IRQ fail
2812 * -E?: The add request failed
2813 *
2814 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2815 * non-zero timeout parameter the wait ioctl will wait for the given number of
2816 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2817 * without holding struct_mutex the object may become re-busied before this
2818 * function completes. A similar but shorter * race condition exists in the busy
2819 * ioctl
2820 */
2821 int
2822 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct drm_i915_gem_wait *args = data;
2826 struct drm_i915_gem_object *obj;
2827 struct drm_i915_gem_request *req;
2828 unsigned reset_counter;
2829 int ret = 0;
2830
2831 if (args->flags != 0)
2832 return -EINVAL;
2833
2834 ret = i915_mutex_lock_interruptible(dev);
2835 if (ret)
2836 return ret;
2837
2838 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2839 if (&obj->base == NULL) {
2840 mutex_unlock(&dev->struct_mutex);
2841 return -ENOENT;
2842 }
2843
2844 /* Need to make sure the object gets inactive eventually. */
2845 ret = i915_gem_object_flush_active(obj);
2846 if (ret)
2847 goto out;
2848
2849 if (!obj->active || !obj->last_read_req)
2850 goto out;
2851
2852 req = obj->last_read_req;
2853
2854 /* Do this after OLR check to make sure we make forward progress polling
2855 * on this IOCTL with a timeout == 0 (like busy ioctl)
2856 */
2857 if (args->timeout_ns == 0) {
2858 ret = -ETIME;
2859 goto out;
2860 }
2861
2862 drm_gem_object_unreference(&obj->base);
2863 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2864 i915_gem_request_reference(req);
2865 mutex_unlock(&dev->struct_mutex);
2866
2867 ret = __i915_wait_request(req, reset_counter, true,
2868 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2869 file->driver_priv);
2870 mutex_lock(&dev->struct_mutex);
2871 i915_gem_request_unreference(req);
2872 mutex_unlock(&dev->struct_mutex);
2873 return ret;
2874
2875 out:
2876 drm_gem_object_unreference(&obj->base);
2877 mutex_unlock(&dev->struct_mutex);
2878 return ret;
2879 }
2880
2881 /**
2882 * i915_gem_object_sync - sync an object to a ring.
2883 *
2884 * @obj: object which may be in use on another ring.
2885 * @to: ring we wish to use the object on. May be NULL.
2886 *
2887 * This code is meant to abstract object synchronization with the GPU.
2888 * Calling with NULL implies synchronizing the object with the CPU
2889 * rather than a particular GPU ring.
2890 *
2891 * Returns 0 if successful, else propagates up the lower layer error.
2892 */
2893 int
2894 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2895 struct intel_engine_cs *to)
2896 {
2897 struct intel_engine_cs *from;
2898 u32 seqno;
2899 int ret, idx;
2900
2901 from = i915_gem_request_get_ring(obj->last_read_req);
2902
2903 if (from == NULL || to == from)
2904 return 0;
2905
2906 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2907 return i915_gem_object_wait_rendering(obj, false);
2908
2909 idx = intel_ring_sync_index(from, to);
2910
2911 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2912 /* Optimization: Avoid semaphore sync when we are sure we already
2913 * waited for an object with higher seqno */
2914 if (seqno <= from->semaphore.sync_seqno[idx])
2915 return 0;
2916
2917 ret = i915_gem_check_olr(obj->last_read_req);
2918 if (ret)
2919 return ret;
2920
2921 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2922 ret = to->semaphore.sync_to(to, from, seqno);
2923 if (!ret)
2924 /* We use last_read_req because sync_to()
2925 * might have just caused seqno wrap under
2926 * the radar.
2927 */
2928 from->semaphore.sync_seqno[idx] =
2929 i915_gem_request_get_seqno(obj->last_read_req);
2930
2931 return ret;
2932 }
2933
2934 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2935 {
2936 u32 old_write_domain, old_read_domains;
2937
2938 /* Force a pagefault for domain tracking on next user access */
2939 i915_gem_release_mmap(obj);
2940
2941 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2942 return;
2943
2944 /* Wait for any direct GTT access to complete */
2945 mb();
2946
2947 old_read_domains = obj->base.read_domains;
2948 old_write_domain = obj->base.write_domain;
2949
2950 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2951 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2952
2953 trace_i915_gem_object_change_domain(obj,
2954 old_read_domains,
2955 old_write_domain);
2956 }
2957
2958 int i915_vma_unbind(struct i915_vma *vma)
2959 {
2960 struct drm_i915_gem_object *obj = vma->obj;
2961 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2962 int ret;
2963
2964 if (list_empty(&vma->vma_link))
2965 return 0;
2966
2967 if (!drm_mm_node_allocated(&vma->node)) {
2968 i915_gem_vma_destroy(vma);
2969 return 0;
2970 }
2971
2972 if (vma->pin_count)
2973 return -EBUSY;
2974
2975 BUG_ON(obj->pages == NULL);
2976
2977 ret = i915_gem_object_finish_gpu(obj);
2978 if (ret)
2979 return ret;
2980 /* Continue on if we fail due to EIO, the GPU is hung so we
2981 * should be safe and we need to cleanup or else we might
2982 * cause memory corruption through use-after-free.
2983 */
2984
2985 if (i915_is_ggtt(vma->vm) &&
2986 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2987 i915_gem_object_finish_gtt(obj);
2988
2989 /* release the fence reg _after_ flushing */
2990 ret = i915_gem_object_put_fence(obj);
2991 if (ret)
2992 return ret;
2993 }
2994
2995 trace_i915_vma_unbind(vma);
2996
2997 vma->unbind_vma(vma);
2998
2999 list_del_init(&vma->mm_list);
3000 if (i915_is_ggtt(vma->vm)) {
3001 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3002 obj->map_and_fenceable = false;
3003 } else if (vma->ggtt_view.pages) {
3004 sg_free_table(vma->ggtt_view.pages);
3005 kfree(vma->ggtt_view.pages);
3006 vma->ggtt_view.pages = NULL;
3007 }
3008 }
3009
3010 drm_mm_remove_node(&vma->node);
3011 i915_gem_vma_destroy(vma);
3012
3013 /* Since the unbound list is global, only move to that list if
3014 * no more VMAs exist. */
3015 if (list_empty(&obj->vma_list)) {
3016 /* Throw away the active reference before
3017 * moving to the unbound list. */
3018 i915_gem_object_retire(obj);
3019
3020 i915_gem_gtt_finish_object(obj);
3021 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3022 }
3023
3024 /* And finally now the object is completely decoupled from this vma,
3025 * we can drop its hold on the backing storage and allow it to be
3026 * reaped by the shrinker.
3027 */
3028 i915_gem_object_unpin_pages(obj);
3029
3030 return 0;
3031 }
3032
3033 int i915_gpu_idle(struct drm_device *dev)
3034 {
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct intel_engine_cs *ring;
3037 int ret, i;
3038
3039 /* Flush everything onto the inactive list. */
3040 for_each_ring(ring, dev_priv, i) {
3041 if (!i915.enable_execlists) {
3042 ret = i915_switch_context(ring, ring->default_context);
3043 if (ret)
3044 return ret;
3045 }
3046
3047 ret = intel_ring_idle(ring);
3048 if (ret)
3049 return ret;
3050 }
3051
3052 return 0;
3053 }
3054
3055 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3056 struct drm_i915_gem_object *obj)
3057 {
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059 int fence_reg;
3060 int fence_pitch_shift;
3061
3062 if (INTEL_INFO(dev)->gen >= 6) {
3063 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3064 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3065 } else {
3066 fence_reg = FENCE_REG_965_0;
3067 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3068 }
3069
3070 fence_reg += reg * 8;
3071
3072 /* To w/a incoherency with non-atomic 64-bit register updates,
3073 * we split the 64-bit update into two 32-bit writes. In order
3074 * for a partial fence not to be evaluated between writes, we
3075 * precede the update with write to turn off the fence register,
3076 * and only enable the fence as the last step.
3077 *
3078 * For extra levels of paranoia, we make sure each step lands
3079 * before applying the next step.
3080 */
3081 I915_WRITE(fence_reg, 0);
3082 POSTING_READ(fence_reg);
3083
3084 if (obj) {
3085 u32 size = i915_gem_obj_ggtt_size(obj);
3086 uint64_t val;
3087
3088 /* Adjust fence size to match tiled area */
3089 if (obj->tiling_mode != I915_TILING_NONE) {
3090 uint32_t row_size = obj->stride *
3091 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3092 size = (size / row_size) * row_size;
3093 }
3094
3095 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3096 0xfffff000) << 32;
3097 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3098 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3099 if (obj->tiling_mode == I915_TILING_Y)
3100 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3101 val |= I965_FENCE_REG_VALID;
3102
3103 I915_WRITE(fence_reg + 4, val >> 32);
3104 POSTING_READ(fence_reg + 4);
3105
3106 I915_WRITE(fence_reg + 0, val);
3107 POSTING_READ(fence_reg);
3108 } else {
3109 I915_WRITE(fence_reg + 4, 0);
3110 POSTING_READ(fence_reg + 4);
3111 }
3112 }
3113
3114 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3115 struct drm_i915_gem_object *obj)
3116 {
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 u32 val;
3119
3120 if (obj) {
3121 u32 size = i915_gem_obj_ggtt_size(obj);
3122 int pitch_val;
3123 int tile_width;
3124
3125 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3126 (size & -size) != size ||
3127 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3128 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3129 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3130
3131 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3132 tile_width = 128;
3133 else
3134 tile_width = 512;
3135
3136 /* Note: pitch better be a power of two tile widths */
3137 pitch_val = obj->stride / tile_width;
3138 pitch_val = ffs(pitch_val) - 1;
3139
3140 val = i915_gem_obj_ggtt_offset(obj);
3141 if (obj->tiling_mode == I915_TILING_Y)
3142 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3143 val |= I915_FENCE_SIZE_BITS(size);
3144 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3145 val |= I830_FENCE_REG_VALID;
3146 } else
3147 val = 0;
3148
3149 if (reg < 8)
3150 reg = FENCE_REG_830_0 + reg * 4;
3151 else
3152 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3153
3154 I915_WRITE(reg, val);
3155 POSTING_READ(reg);
3156 }
3157
3158 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3159 struct drm_i915_gem_object *obj)
3160 {
3161 struct drm_i915_private *dev_priv = dev->dev_private;
3162 uint32_t val;
3163
3164 if (obj) {
3165 u32 size = i915_gem_obj_ggtt_size(obj);
3166 uint32_t pitch_val;
3167
3168 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3169 (size & -size) != size ||
3170 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3171 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3172 i915_gem_obj_ggtt_offset(obj), size);
3173
3174 pitch_val = obj->stride / 128;
3175 pitch_val = ffs(pitch_val) - 1;
3176
3177 val = i915_gem_obj_ggtt_offset(obj);
3178 if (obj->tiling_mode == I915_TILING_Y)
3179 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3180 val |= I830_FENCE_SIZE_BITS(size);
3181 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3182 val |= I830_FENCE_REG_VALID;
3183 } else
3184 val = 0;
3185
3186 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3187 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3188 }
3189
3190 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3191 {
3192 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3193 }
3194
3195 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3196 struct drm_i915_gem_object *obj)
3197 {
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199
3200 /* Ensure that all CPU reads are completed before installing a fence
3201 * and all writes before removing the fence.
3202 */
3203 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3204 mb();
3205
3206 WARN(obj && (!obj->stride || !obj->tiling_mode),
3207 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3208 obj->stride, obj->tiling_mode);
3209
3210 if (IS_GEN2(dev))
3211 i830_write_fence_reg(dev, reg, obj);
3212 else if (IS_GEN3(dev))
3213 i915_write_fence_reg(dev, reg, obj);
3214 else if (INTEL_INFO(dev)->gen >= 4)
3215 i965_write_fence_reg(dev, reg, obj);
3216
3217 /* And similarly be paranoid that no direct access to this region
3218 * is reordered to before the fence is installed.
3219 */
3220 if (i915_gem_object_needs_mb(obj))
3221 mb();
3222 }
3223
3224 static inline int fence_number(struct drm_i915_private *dev_priv,
3225 struct drm_i915_fence_reg *fence)
3226 {
3227 return fence - dev_priv->fence_regs;
3228 }
3229
3230 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3231 struct drm_i915_fence_reg *fence,
3232 bool enable)
3233 {
3234 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3235 int reg = fence_number(dev_priv, fence);
3236
3237 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3238
3239 if (enable) {
3240 obj->fence_reg = reg;
3241 fence->obj = obj;
3242 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3243 } else {
3244 obj->fence_reg = I915_FENCE_REG_NONE;
3245 fence->obj = NULL;
3246 list_del_init(&fence->lru_list);
3247 }
3248 obj->fence_dirty = false;
3249 }
3250
3251 static int
3252 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3253 {
3254 if (obj->last_fenced_req) {
3255 int ret = i915_wait_request(obj->last_fenced_req);
3256 if (ret)
3257 return ret;
3258
3259 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3260 }
3261
3262 return 0;
3263 }
3264
3265 int
3266 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3267 {
3268 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3269 struct drm_i915_fence_reg *fence;
3270 int ret;
3271
3272 ret = i915_gem_object_wait_fence(obj);
3273 if (ret)
3274 return ret;
3275
3276 if (obj->fence_reg == I915_FENCE_REG_NONE)
3277 return 0;
3278
3279 fence = &dev_priv->fence_regs[obj->fence_reg];
3280
3281 if (WARN_ON(fence->pin_count))
3282 return -EBUSY;
3283
3284 i915_gem_object_fence_lost(obj);
3285 i915_gem_object_update_fence(obj, fence, false);
3286
3287 return 0;
3288 }
3289
3290 static struct drm_i915_fence_reg *
3291 i915_find_fence_reg(struct drm_device *dev)
3292 {
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294 struct drm_i915_fence_reg *reg, *avail;
3295 int i;
3296
3297 /* First try to find a free reg */
3298 avail = NULL;
3299 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3300 reg = &dev_priv->fence_regs[i];
3301 if (!reg->obj)
3302 return reg;
3303
3304 if (!reg->pin_count)
3305 avail = reg;
3306 }
3307
3308 if (avail == NULL)
3309 goto deadlock;
3310
3311 /* None available, try to steal one or wait for a user to finish */
3312 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3313 if (reg->pin_count)
3314 continue;
3315
3316 return reg;
3317 }
3318
3319 deadlock:
3320 /* Wait for completion of pending flips which consume fences */
3321 if (intel_has_pending_fb_unpin(dev))
3322 return ERR_PTR(-EAGAIN);
3323
3324 return ERR_PTR(-EDEADLK);
3325 }
3326
3327 /**
3328 * i915_gem_object_get_fence - set up fencing for an object
3329 * @obj: object to map through a fence reg
3330 *
3331 * When mapping objects through the GTT, userspace wants to be able to write
3332 * to them without having to worry about swizzling if the object is tiled.
3333 * This function walks the fence regs looking for a free one for @obj,
3334 * stealing one if it can't find any.
3335 *
3336 * It then sets up the reg based on the object's properties: address, pitch
3337 * and tiling format.
3338 *
3339 * For an untiled surface, this removes any existing fence.
3340 */
3341 int
3342 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3343 {
3344 struct drm_device *dev = obj->base.dev;
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346 bool enable = obj->tiling_mode != I915_TILING_NONE;
3347 struct drm_i915_fence_reg *reg;
3348 int ret;
3349
3350 /* Have we updated the tiling parameters upon the object and so
3351 * will need to serialise the write to the associated fence register?
3352 */
3353 if (obj->fence_dirty) {
3354 ret = i915_gem_object_wait_fence(obj);
3355 if (ret)
3356 return ret;
3357 }
3358
3359 /* Just update our place in the LRU if our fence is getting reused. */
3360 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3361 reg = &dev_priv->fence_regs[obj->fence_reg];
3362 if (!obj->fence_dirty) {
3363 list_move_tail(&reg->lru_list,
3364 &dev_priv->mm.fence_list);
3365 return 0;
3366 }
3367 } else if (enable) {
3368 if (WARN_ON(!obj->map_and_fenceable))
3369 return -EINVAL;
3370
3371 reg = i915_find_fence_reg(dev);
3372 if (IS_ERR(reg))
3373 return PTR_ERR(reg);
3374
3375 if (reg->obj) {
3376 struct drm_i915_gem_object *old = reg->obj;
3377
3378 ret = i915_gem_object_wait_fence(old);
3379 if (ret)
3380 return ret;
3381
3382 i915_gem_object_fence_lost(old);
3383 }
3384 } else
3385 return 0;
3386
3387 i915_gem_object_update_fence(obj, reg, enable);
3388
3389 return 0;
3390 }
3391
3392 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3393 unsigned long cache_level)
3394 {
3395 struct drm_mm_node *gtt_space = &vma->node;
3396 struct drm_mm_node *other;
3397
3398 /*
3399 * On some machines we have to be careful when putting differing types
3400 * of snoopable memory together to avoid the prefetcher crossing memory
3401 * domains and dying. During vm initialisation, we decide whether or not
3402 * these constraints apply and set the drm_mm.color_adjust
3403 * appropriately.
3404 */
3405 if (vma->vm->mm.color_adjust == NULL)
3406 return true;
3407
3408 if (!drm_mm_node_allocated(gtt_space))
3409 return true;
3410
3411 if (list_empty(&gtt_space->node_list))
3412 return true;
3413
3414 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3415 if (other->allocated && !other->hole_follows && other->color != cache_level)
3416 return false;
3417
3418 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3419 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3420 return false;
3421
3422 return true;
3423 }
3424
3425 /**
3426 * Finds free space in the GTT aperture and binds the object there.
3427 */
3428 static struct i915_vma *
3429 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3430 struct i915_address_space *vm,
3431 const struct i915_ggtt_view *ggtt_view,
3432 unsigned alignment,
3433 uint64_t flags)
3434 {
3435 struct drm_device *dev = obj->base.dev;
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 u32 size, fence_size, fence_alignment, unfenced_alignment;
3438 unsigned long start =
3439 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3440 unsigned long end =
3441 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3442 struct i915_vma *vma;
3443 int ret;
3444
3445 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3446 return ERR_PTR(-EINVAL);
3447
3448 fence_size = i915_gem_get_gtt_size(dev,
3449 obj->base.size,
3450 obj->tiling_mode);
3451 fence_alignment = i915_gem_get_gtt_alignment(dev,
3452 obj->base.size,
3453 obj->tiling_mode, true);
3454 unfenced_alignment =
3455 i915_gem_get_gtt_alignment(dev,
3456 obj->base.size,
3457 obj->tiling_mode, false);
3458
3459 if (alignment == 0)
3460 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3461 unfenced_alignment;
3462 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3463 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3464 return ERR_PTR(-EINVAL);
3465 }
3466
3467 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3468
3469 /* If the object is bigger than the entire aperture, reject it early
3470 * before evicting everything in a vain attempt to find space.
3471 */
3472 if (obj->base.size > end) {
3473 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3474 obj->base.size,
3475 flags & PIN_MAPPABLE ? "mappable" : "total",
3476 end);
3477 return ERR_PTR(-E2BIG);
3478 }
3479
3480 ret = i915_gem_object_get_pages(obj);
3481 if (ret)
3482 return ERR_PTR(ret);
3483
3484 i915_gem_object_pin_pages(obj);
3485
3486 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3487 i915_gem_obj_lookup_or_create_vma(obj, vm);
3488
3489 if (IS_ERR(vma))
3490 goto err_unpin;
3491
3492 search_free:
3493 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3494 size, alignment,
3495 obj->cache_level,
3496 start, end,
3497 DRM_MM_SEARCH_DEFAULT,
3498 DRM_MM_CREATE_DEFAULT);
3499 if (ret) {
3500 ret = i915_gem_evict_something(dev, vm, size, alignment,
3501 obj->cache_level,
3502 start, end,
3503 flags);
3504 if (ret == 0)
3505 goto search_free;
3506
3507 goto err_free_vma;
3508 }
3509 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3510 ret = -EINVAL;
3511 goto err_remove_node;
3512 }
3513
3514 ret = i915_gem_gtt_prepare_object(obj);
3515 if (ret)
3516 goto err_remove_node;
3517
3518 /* allocate before insert / bind */
3519 if (vma->vm->allocate_va_range) {
3520 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3521 VM_TO_TRACE_NAME(vma->vm));
3522 ret = vma->vm->allocate_va_range(vma->vm,
3523 vma->node.start,
3524 vma->node.size);
3525 if (ret)
3526 goto err_remove_node;
3527 }
3528
3529 trace_i915_vma_bind(vma, flags);
3530 ret = i915_vma_bind(vma, obj->cache_level,
3531 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3532 if (ret)
3533 goto err_finish_gtt;
3534
3535 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3536 list_add_tail(&vma->mm_list, &vm->inactive_list);
3537
3538 return vma;
3539
3540 err_finish_gtt:
3541 i915_gem_gtt_finish_object(obj);
3542 err_remove_node:
3543 drm_mm_remove_node(&vma->node);
3544 err_free_vma:
3545 i915_gem_vma_destroy(vma);
3546 vma = ERR_PTR(ret);
3547 err_unpin:
3548 i915_gem_object_unpin_pages(obj);
3549 return vma;
3550 }
3551
3552 bool
3553 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3554 bool force)
3555 {
3556 /* If we don't have a page list set up, then we're not pinned
3557 * to GPU, and we can ignore the cache flush because it'll happen
3558 * again at bind time.
3559 */
3560 if (obj->pages == NULL)
3561 return false;
3562
3563 /*
3564 * Stolen memory is always coherent with the GPU as it is explicitly
3565 * marked as wc by the system, or the system is cache-coherent.
3566 */
3567 if (obj->stolen || obj->phys_handle)
3568 return false;
3569
3570 /* If the GPU is snooping the contents of the CPU cache,
3571 * we do not need to manually clear the CPU cache lines. However,
3572 * the caches are only snooped when the render cache is
3573 * flushed/invalidated. As we always have to emit invalidations
3574 * and flushes when moving into and out of the RENDER domain, correct
3575 * snooping behaviour occurs naturally as the result of our domain
3576 * tracking.
3577 */
3578 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3579 obj->cache_dirty = true;
3580 return false;
3581 }
3582
3583 trace_i915_gem_object_clflush(obj);
3584 drm_clflush_sg(obj->pages);
3585 obj->cache_dirty = false;
3586
3587 return true;
3588 }
3589
3590 /** Flushes the GTT write domain for the object if it's dirty. */
3591 static void
3592 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3593 {
3594 uint32_t old_write_domain;
3595
3596 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3597 return;
3598
3599 /* No actual flushing is required for the GTT write domain. Writes
3600 * to it immediately go to main memory as far as we know, so there's
3601 * no chipset flush. It also doesn't land in render cache.
3602 *
3603 * However, we do have to enforce the order so that all writes through
3604 * the GTT land before any writes to the device, such as updates to
3605 * the GATT itself.
3606 */
3607 wmb();
3608
3609 old_write_domain = obj->base.write_domain;
3610 obj->base.write_domain = 0;
3611
3612 intel_fb_obj_flush(obj, false);
3613
3614 trace_i915_gem_object_change_domain(obj,
3615 obj->base.read_domains,
3616 old_write_domain);
3617 }
3618
3619 /** Flushes the CPU write domain for the object if it's dirty. */
3620 static void
3621 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3622 {
3623 uint32_t old_write_domain;
3624
3625 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3626 return;
3627
3628 if (i915_gem_clflush_object(obj, obj->pin_display))
3629 i915_gem_chipset_flush(obj->base.dev);
3630
3631 old_write_domain = obj->base.write_domain;
3632 obj->base.write_domain = 0;
3633
3634 intel_fb_obj_flush(obj, false);
3635
3636 trace_i915_gem_object_change_domain(obj,
3637 obj->base.read_domains,
3638 old_write_domain);
3639 }
3640
3641 /**
3642 * Moves a single object to the GTT read, and possibly write domain.
3643 *
3644 * This function returns when the move is complete, including waiting on
3645 * flushes to occur.
3646 */
3647 int
3648 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3649 {
3650 uint32_t old_write_domain, old_read_domains;
3651 struct i915_vma *vma;
3652 int ret;
3653
3654 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3655 return 0;
3656
3657 ret = i915_gem_object_wait_rendering(obj, !write);
3658 if (ret)
3659 return ret;
3660
3661 i915_gem_object_retire(obj);
3662
3663 /* Flush and acquire obj->pages so that we are coherent through
3664 * direct access in memory with previous cached writes through
3665 * shmemfs and that our cache domain tracking remains valid.
3666 * For example, if the obj->filp was moved to swap without us
3667 * being notified and releasing the pages, we would mistakenly
3668 * continue to assume that the obj remained out of the CPU cached
3669 * domain.
3670 */
3671 ret = i915_gem_object_get_pages(obj);
3672 if (ret)
3673 return ret;
3674
3675 i915_gem_object_flush_cpu_write_domain(obj);
3676
3677 /* Serialise direct access to this object with the barriers for
3678 * coherent writes from the GPU, by effectively invalidating the
3679 * GTT domain upon first access.
3680 */
3681 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3682 mb();
3683
3684 old_write_domain = obj->base.write_domain;
3685 old_read_domains = obj->base.read_domains;
3686
3687 /* It should now be out of any other write domains, and we can update
3688 * the domain values for our changes.
3689 */
3690 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3691 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3692 if (write) {
3693 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3694 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3695 obj->dirty = 1;
3696 }
3697
3698 if (write)
3699 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3700
3701 trace_i915_gem_object_change_domain(obj,
3702 old_read_domains,
3703 old_write_domain);
3704
3705 /* And bump the LRU for this access */
3706 vma = i915_gem_obj_to_ggtt(obj);
3707 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3708 list_move_tail(&vma->mm_list,
3709 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3710
3711 return 0;
3712 }
3713
3714 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3715 enum i915_cache_level cache_level)
3716 {
3717 struct drm_device *dev = obj->base.dev;
3718 struct i915_vma *vma, *next;
3719 int ret;
3720
3721 if (obj->cache_level == cache_level)
3722 return 0;
3723
3724 if (i915_gem_obj_is_pinned(obj)) {
3725 DRM_DEBUG("can not change the cache level of pinned objects\n");
3726 return -EBUSY;
3727 }
3728
3729 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3730 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3731 ret = i915_vma_unbind(vma);
3732 if (ret)
3733 return ret;
3734 }
3735 }
3736
3737 if (i915_gem_obj_bound_any(obj)) {
3738 ret = i915_gem_object_finish_gpu(obj);
3739 if (ret)
3740 return ret;
3741
3742 i915_gem_object_finish_gtt(obj);
3743
3744 /* Before SandyBridge, you could not use tiling or fence
3745 * registers with snooped memory, so relinquish any fences
3746 * currently pointing to our region in the aperture.
3747 */
3748 if (INTEL_INFO(dev)->gen < 6) {
3749 ret = i915_gem_object_put_fence(obj);
3750 if (ret)
3751 return ret;
3752 }
3753
3754 list_for_each_entry(vma, &obj->vma_list, vma_link)
3755 if (drm_mm_node_allocated(&vma->node)) {
3756 ret = i915_vma_bind(vma, cache_level,
3757 vma->bound & GLOBAL_BIND);
3758 if (ret)
3759 return ret;
3760 }
3761 }
3762
3763 list_for_each_entry(vma, &obj->vma_list, vma_link)
3764 vma->node.color = cache_level;
3765 obj->cache_level = cache_level;
3766
3767 if (obj->cache_dirty &&
3768 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3769 cpu_write_needs_clflush(obj)) {
3770 if (i915_gem_clflush_object(obj, true))
3771 i915_gem_chipset_flush(obj->base.dev);
3772 }
3773
3774 return 0;
3775 }
3776
3777 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3778 struct drm_file *file)
3779 {
3780 struct drm_i915_gem_caching *args = data;
3781 struct drm_i915_gem_object *obj;
3782 int ret;
3783
3784 ret = i915_mutex_lock_interruptible(dev);
3785 if (ret)
3786 return ret;
3787
3788 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3789 if (&obj->base == NULL) {
3790 ret = -ENOENT;
3791 goto unlock;
3792 }
3793
3794 switch (obj->cache_level) {
3795 case I915_CACHE_LLC:
3796 case I915_CACHE_L3_LLC:
3797 args->caching = I915_CACHING_CACHED;
3798 break;
3799
3800 case I915_CACHE_WT:
3801 args->caching = I915_CACHING_DISPLAY;
3802 break;
3803
3804 default:
3805 args->caching = I915_CACHING_NONE;
3806 break;
3807 }
3808
3809 drm_gem_object_unreference(&obj->base);
3810 unlock:
3811 mutex_unlock(&dev->struct_mutex);
3812 return ret;
3813 }
3814
3815 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3816 struct drm_file *file)
3817 {
3818 struct drm_i915_gem_caching *args = data;
3819 struct drm_i915_gem_object *obj;
3820 enum i915_cache_level level;
3821 int ret;
3822
3823 switch (args->caching) {
3824 case I915_CACHING_NONE:
3825 level = I915_CACHE_NONE;
3826 break;
3827 case I915_CACHING_CACHED:
3828 level = I915_CACHE_LLC;
3829 break;
3830 case I915_CACHING_DISPLAY:
3831 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3832 break;
3833 default:
3834 return -EINVAL;
3835 }
3836
3837 ret = i915_mutex_lock_interruptible(dev);
3838 if (ret)
3839 return ret;
3840
3841 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3842 if (&obj->base == NULL) {
3843 ret = -ENOENT;
3844 goto unlock;
3845 }
3846
3847 ret = i915_gem_object_set_cache_level(obj, level);
3848
3849 drm_gem_object_unreference(&obj->base);
3850 unlock:
3851 mutex_unlock(&dev->struct_mutex);
3852 return ret;
3853 }
3854
3855 static bool is_pin_display(struct drm_i915_gem_object *obj)
3856 {
3857 struct i915_vma *vma;
3858
3859 vma = i915_gem_obj_to_ggtt(obj);
3860 if (!vma)
3861 return false;
3862
3863 /* There are 2 sources that pin objects:
3864 * 1. The display engine (scanouts, sprites, cursors);
3865 * 2. Reservations for execbuffer;
3866 *
3867 * We can ignore reservations as we hold the struct_mutex and
3868 * are only called outside of the reservation path.
3869 */
3870 return vma->pin_count;
3871 }
3872
3873 /*
3874 * Prepare buffer for display plane (scanout, cursors, etc).
3875 * Can be called from an uninterruptible phase (modesetting) and allows
3876 * any flushes to be pipelined (for pageflips).
3877 */
3878 int
3879 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3880 u32 alignment,
3881 struct intel_engine_cs *pipelined,
3882 const struct i915_ggtt_view *view)
3883 {
3884 u32 old_read_domains, old_write_domain;
3885 bool was_pin_display;
3886 int ret;
3887
3888 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3889 ret = i915_gem_object_sync(obj, pipelined);
3890 if (ret)
3891 return ret;
3892 }
3893
3894 /* Mark the pin_display early so that we account for the
3895 * display coherency whilst setting up the cache domains.
3896 */
3897 was_pin_display = obj->pin_display;
3898 obj->pin_display = true;
3899
3900 /* The display engine is not coherent with the LLC cache on gen6. As
3901 * a result, we make sure that the pinning that is about to occur is
3902 * done with uncached PTEs. This is lowest common denominator for all
3903 * chipsets.
3904 *
3905 * However for gen6+, we could do better by using the GFDT bit instead
3906 * of uncaching, which would allow us to flush all the LLC-cached data
3907 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3908 */
3909 ret = i915_gem_object_set_cache_level(obj,
3910 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3911 if (ret)
3912 goto err_unpin_display;
3913
3914 /* As the user may map the buffer once pinned in the display plane
3915 * (e.g. libkms for the bootup splash), we have to ensure that we
3916 * always use map_and_fenceable for all scanout buffers.
3917 */
3918 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3919 view->type == I915_GGTT_VIEW_NORMAL ?
3920 PIN_MAPPABLE : 0);
3921 if (ret)
3922 goto err_unpin_display;
3923
3924 i915_gem_object_flush_cpu_write_domain(obj);
3925
3926 old_write_domain = obj->base.write_domain;
3927 old_read_domains = obj->base.read_domains;
3928
3929 /* It should now be out of any other write domains, and we can update
3930 * the domain values for our changes.
3931 */
3932 obj->base.write_domain = 0;
3933 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934
3935 trace_i915_gem_object_change_domain(obj,
3936 old_read_domains,
3937 old_write_domain);
3938
3939 return 0;
3940
3941 err_unpin_display:
3942 WARN_ON(was_pin_display != is_pin_display(obj));
3943 obj->pin_display = was_pin_display;
3944 return ret;
3945 }
3946
3947 void
3948 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3949 const struct i915_ggtt_view *view)
3950 {
3951 i915_gem_object_ggtt_unpin_view(obj, view);
3952
3953 obj->pin_display = is_pin_display(obj);
3954 }
3955
3956 int
3957 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3958 {
3959 int ret;
3960
3961 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3962 return 0;
3963
3964 ret = i915_gem_object_wait_rendering(obj, false);
3965 if (ret)
3966 return ret;
3967
3968 /* Ensure that we invalidate the GPU's caches and TLBs. */
3969 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3970 return 0;
3971 }
3972
3973 /**
3974 * Moves a single object to the CPU read, and possibly write domain.
3975 *
3976 * This function returns when the move is complete, including waiting on
3977 * flushes to occur.
3978 */
3979 int
3980 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3981 {
3982 uint32_t old_write_domain, old_read_domains;
3983 int ret;
3984
3985 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3986 return 0;
3987
3988 ret = i915_gem_object_wait_rendering(obj, !write);
3989 if (ret)
3990 return ret;
3991
3992 i915_gem_object_retire(obj);
3993 i915_gem_object_flush_gtt_write_domain(obj);
3994
3995 old_write_domain = obj->base.write_domain;
3996 old_read_domains = obj->base.read_domains;
3997
3998 /* Flush the CPU cache if it's still invalid. */
3999 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4000 i915_gem_clflush_object(obj, false);
4001
4002 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4003 }
4004
4005 /* It should now be out of any other write domains, and we can update
4006 * the domain values for our changes.
4007 */
4008 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4009
4010 /* If we're writing through the CPU, then the GPU read domains will
4011 * need to be invalidated at next use.
4012 */
4013 if (write) {
4014 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4015 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4016 }
4017
4018 if (write)
4019 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4020
4021 trace_i915_gem_object_change_domain(obj,
4022 old_read_domains,
4023 old_write_domain);
4024
4025 return 0;
4026 }
4027
4028 /* Throttle our rendering by waiting until the ring has completed our requests
4029 * emitted over 20 msec ago.
4030 *
4031 * Note that if we were to use the current jiffies each time around the loop,
4032 * we wouldn't escape the function with any frames outstanding if the time to
4033 * render a frame was over 20ms.
4034 *
4035 * This should get us reasonable parallelism between CPU and GPU but also
4036 * relatively low latency when blocking on a particular request to finish.
4037 */
4038 static int
4039 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4040 {
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 struct drm_i915_file_private *file_priv = file->driver_priv;
4043 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4044 struct drm_i915_gem_request *request, *target = NULL;
4045 unsigned reset_counter;
4046 int ret;
4047
4048 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4049 if (ret)
4050 return ret;
4051
4052 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4053 if (ret)
4054 return ret;
4055
4056 spin_lock(&file_priv->mm.lock);
4057 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4058 if (time_after_eq(request->emitted_jiffies, recent_enough))
4059 break;
4060
4061 target = request;
4062 }
4063 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4064 if (target)
4065 i915_gem_request_reference(target);
4066 spin_unlock(&file_priv->mm.lock);
4067
4068 if (target == NULL)
4069 return 0;
4070
4071 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4072 if (ret == 0)
4073 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4074
4075 mutex_lock(&dev->struct_mutex);
4076 i915_gem_request_unreference(target);
4077 mutex_unlock(&dev->struct_mutex);
4078
4079 return ret;
4080 }
4081
4082 static bool
4083 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4084 {
4085 struct drm_i915_gem_object *obj = vma->obj;
4086
4087 if (alignment &&
4088 vma->node.start & (alignment - 1))
4089 return true;
4090
4091 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4092 return true;
4093
4094 if (flags & PIN_OFFSET_BIAS &&
4095 vma->node.start < (flags & PIN_OFFSET_MASK))
4096 return true;
4097
4098 return false;
4099 }
4100
4101 static int
4102 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4103 struct i915_address_space *vm,
4104 const struct i915_ggtt_view *ggtt_view,
4105 uint32_t alignment,
4106 uint64_t flags)
4107 {
4108 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4109 struct i915_vma *vma;
4110 unsigned bound;
4111 int ret;
4112
4113 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4114 return -ENODEV;
4115
4116 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4117 return -EINVAL;
4118
4119 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4120 return -EINVAL;
4121
4122 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4123 return -EINVAL;
4124
4125 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4126 i915_gem_obj_to_vma(obj, vm);
4127
4128 if (IS_ERR(vma))
4129 return PTR_ERR(vma);
4130
4131 if (vma) {
4132 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4133 return -EBUSY;
4134
4135 if (i915_vma_misplaced(vma, alignment, flags)) {
4136 unsigned long offset;
4137 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4138 i915_gem_obj_offset(obj, vm);
4139 WARN(vma->pin_count,
4140 "bo is already pinned in %s with incorrect alignment:"
4141 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4142 " obj->map_and_fenceable=%d\n",
4143 ggtt_view ? "ggtt" : "ppgtt",
4144 offset,
4145 alignment,
4146 !!(flags & PIN_MAPPABLE),
4147 obj->map_and_fenceable);
4148 ret = i915_vma_unbind(vma);
4149 if (ret)
4150 return ret;
4151
4152 vma = NULL;
4153 }
4154 }
4155
4156 bound = vma ? vma->bound : 0;
4157 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4158 /* In true PPGTT, bind has possibly changed PDEs, which
4159 * means we must do a context switch before the GPU can
4160 * accurately read some of the VMAs.
4161 */
4162 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4163 flags);
4164 if (IS_ERR(vma))
4165 return PTR_ERR(vma);
4166 }
4167
4168 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4169 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4170 if (ret)
4171 return ret;
4172 }
4173
4174 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4175 bool mappable, fenceable;
4176 u32 fence_size, fence_alignment;
4177
4178 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4179 obj->base.size,
4180 obj->tiling_mode);
4181 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4182 obj->base.size,
4183 obj->tiling_mode,
4184 true);
4185
4186 fenceable = (vma->node.size == fence_size &&
4187 (vma->node.start & (fence_alignment - 1)) == 0);
4188
4189 mappable = (vma->node.start + fence_size <=
4190 dev_priv->gtt.mappable_end);
4191
4192 obj->map_and_fenceable = mappable && fenceable;
4193 }
4194
4195 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4196
4197 vma->pin_count++;
4198 if (flags & PIN_MAPPABLE)
4199 obj->pin_mappable |= true;
4200
4201 return 0;
4202 }
4203
4204 int
4205 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4206 struct i915_address_space *vm,
4207 uint32_t alignment,
4208 uint64_t flags)
4209 {
4210 return i915_gem_object_do_pin(obj, vm,
4211 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4212 alignment, flags);
4213 }
4214
4215 int
4216 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4217 const struct i915_ggtt_view *view,
4218 uint32_t alignment,
4219 uint64_t flags)
4220 {
4221 if (WARN_ONCE(!view, "no view specified"))
4222 return -EINVAL;
4223
4224 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4225 alignment, flags | PIN_GLOBAL);
4226 }
4227
4228 void
4229 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4230 const struct i915_ggtt_view *view)
4231 {
4232 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4233
4234 BUG_ON(!vma);
4235 WARN_ON(vma->pin_count == 0);
4236 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4237
4238 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4239 obj->pin_mappable = false;
4240 }
4241
4242 bool
4243 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4244 {
4245 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4247 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4248
4249 WARN_ON(!ggtt_vma ||
4250 dev_priv->fence_regs[obj->fence_reg].pin_count >
4251 ggtt_vma->pin_count);
4252 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4253 return true;
4254 } else
4255 return false;
4256 }
4257
4258 void
4259 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4260 {
4261 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4262 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4263 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4264 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4265 }
4266 }
4267
4268 int
4269 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4270 struct drm_file *file)
4271 {
4272 struct drm_i915_gem_busy *args = data;
4273 struct drm_i915_gem_object *obj;
4274 int ret;
4275
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4281 if (&obj->base == NULL) {
4282 ret = -ENOENT;
4283 goto unlock;
4284 }
4285
4286 /* Count all active objects as busy, even if they are currently not used
4287 * by the gpu. Users of this interface expect objects to eventually
4288 * become non-busy without any further actions, therefore emit any
4289 * necessary flushes here.
4290 */
4291 ret = i915_gem_object_flush_active(obj);
4292
4293 args->busy = obj->active;
4294 if (obj->last_read_req) {
4295 struct intel_engine_cs *ring;
4296 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4297 ring = i915_gem_request_get_ring(obj->last_read_req);
4298 args->busy |= intel_ring_flag(ring) << 16;
4299 }
4300
4301 drm_gem_object_unreference(&obj->base);
4302 unlock:
4303 mutex_unlock(&dev->struct_mutex);
4304 return ret;
4305 }
4306
4307 int
4308 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4309 struct drm_file *file_priv)
4310 {
4311 return i915_gem_ring_throttle(dev, file_priv);
4312 }
4313
4314 int
4315 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4316 struct drm_file *file_priv)
4317 {
4318 struct drm_i915_private *dev_priv = dev->dev_private;
4319 struct drm_i915_gem_madvise *args = data;
4320 struct drm_i915_gem_object *obj;
4321 int ret;
4322
4323 switch (args->madv) {
4324 case I915_MADV_DONTNEED:
4325 case I915_MADV_WILLNEED:
4326 break;
4327 default:
4328 return -EINVAL;
4329 }
4330
4331 ret = i915_mutex_lock_interruptible(dev);
4332 if (ret)
4333 return ret;
4334
4335 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4336 if (&obj->base == NULL) {
4337 ret = -ENOENT;
4338 goto unlock;
4339 }
4340
4341 if (i915_gem_obj_is_pinned(obj)) {
4342 ret = -EINVAL;
4343 goto out;
4344 }
4345
4346 if (obj->pages &&
4347 obj->tiling_mode != I915_TILING_NONE &&
4348 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4349 if (obj->madv == I915_MADV_WILLNEED)
4350 i915_gem_object_unpin_pages(obj);
4351 if (args->madv == I915_MADV_WILLNEED)
4352 i915_gem_object_pin_pages(obj);
4353 }
4354
4355 if (obj->madv != __I915_MADV_PURGED)
4356 obj->madv = args->madv;
4357
4358 /* if the object is no longer attached, discard its backing storage */
4359 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4360 i915_gem_object_truncate(obj);
4361
4362 args->retained = obj->madv != __I915_MADV_PURGED;
4363
4364 out:
4365 drm_gem_object_unreference(&obj->base);
4366 unlock:
4367 mutex_unlock(&dev->struct_mutex);
4368 return ret;
4369 }
4370
4371 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4372 const struct drm_i915_gem_object_ops *ops)
4373 {
4374 INIT_LIST_HEAD(&obj->global_list);
4375 INIT_LIST_HEAD(&obj->ring_list);
4376 INIT_LIST_HEAD(&obj->obj_exec_link);
4377 INIT_LIST_HEAD(&obj->vma_list);
4378 INIT_LIST_HEAD(&obj->batch_pool_list);
4379
4380 obj->ops = ops;
4381
4382 obj->fence_reg = I915_FENCE_REG_NONE;
4383 obj->madv = I915_MADV_WILLNEED;
4384
4385 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386 }
4387
4388 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389 .get_pages = i915_gem_object_get_pages_gtt,
4390 .put_pages = i915_gem_object_put_pages_gtt,
4391 };
4392
4393 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394 size_t size)
4395 {
4396 struct drm_i915_gem_object *obj;
4397 struct address_space *mapping;
4398 gfp_t mask;
4399
4400 obj = i915_gem_object_alloc(dev);
4401 if (obj == NULL)
4402 return NULL;
4403
4404 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4405 i915_gem_object_free(obj);
4406 return NULL;
4407 }
4408
4409 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411 /* 965gm cannot relocate objects above 4GiB. */
4412 mask &= ~__GFP_HIGHMEM;
4413 mask |= __GFP_DMA32;
4414 }
4415
4416 mapping = file_inode(obj->base.filp)->i_mapping;
4417 mapping_set_gfp_mask(mapping, mask);
4418
4419 i915_gem_object_init(obj, &i915_gem_object_ops);
4420
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4423
4424 if (HAS_LLC(dev)) {
4425 /* On some devices, we can have the GPU use the LLC (the CPU
4426 * cache) for about a 10% performance improvement
4427 * compared to uncached. Graphics requests other than
4428 * display scanout are coherent with the CPU in
4429 * accessing this cache. This means in this mode we
4430 * don't need to clflush on the CPU side, and on the
4431 * GPU side we only need to flush internal caches to
4432 * get data visible to the CPU.
4433 *
4434 * However, we maintain the display planes as UC, and so
4435 * need to rebind when first used as such.
4436 */
4437 obj->cache_level = I915_CACHE_LLC;
4438 } else
4439 obj->cache_level = I915_CACHE_NONE;
4440
4441 trace_i915_gem_object_create(obj);
4442
4443 return obj;
4444 }
4445
4446 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447 {
4448 /* If we are the last user of the backing storage (be it shmemfs
4449 * pages or stolen etc), we know that the pages are going to be
4450 * immediately released. In this case, we can then skip copying
4451 * back the contents from the GPU.
4452 */
4453
4454 if (obj->madv != I915_MADV_WILLNEED)
4455 return false;
4456
4457 if (obj->base.filp == NULL)
4458 return true;
4459
4460 /* At first glance, this looks racy, but then again so would be
4461 * userspace racing mmap against close. However, the first external
4462 * reference to the filp can only be obtained through the
4463 * i915_gem_mmap_ioctl() which safeguards us against the user
4464 * acquiring such a reference whilst we are in the middle of
4465 * freeing the object.
4466 */
4467 return atomic_long_read(&obj->base.filp->f_count) == 1;
4468 }
4469
4470 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4471 {
4472 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4473 struct drm_device *dev = obj->base.dev;
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 struct i915_vma *vma, *next;
4476
4477 intel_runtime_pm_get(dev_priv);
4478
4479 trace_i915_gem_object_destroy(obj);
4480
4481 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4482 int ret;
4483
4484 vma->pin_count = 0;
4485 ret = i915_vma_unbind(vma);
4486 if (WARN_ON(ret == -ERESTARTSYS)) {
4487 bool was_interruptible;
4488
4489 was_interruptible = dev_priv->mm.interruptible;
4490 dev_priv->mm.interruptible = false;
4491
4492 WARN_ON(i915_vma_unbind(vma));
4493
4494 dev_priv->mm.interruptible = was_interruptible;
4495 }
4496 }
4497
4498 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4499 * before progressing. */
4500 if (obj->stolen)
4501 i915_gem_object_unpin_pages(obj);
4502
4503 WARN_ON(obj->frontbuffer_bits);
4504
4505 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4506 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4507 obj->tiling_mode != I915_TILING_NONE)
4508 i915_gem_object_unpin_pages(obj);
4509
4510 if (WARN_ON(obj->pages_pin_count))
4511 obj->pages_pin_count = 0;
4512 if (discard_backing_storage(obj))
4513 obj->madv = I915_MADV_DONTNEED;
4514 i915_gem_object_put_pages(obj);
4515 i915_gem_object_free_mmap_offset(obj);
4516
4517 BUG_ON(obj->pages);
4518
4519 if (obj->base.import_attach)
4520 drm_prime_gem_destroy(&obj->base, NULL);
4521
4522 if (obj->ops->release)
4523 obj->ops->release(obj);
4524
4525 drm_gem_object_release(&obj->base);
4526 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4527
4528 kfree(obj->bit_17);
4529 i915_gem_object_free(obj);
4530
4531 intel_runtime_pm_put(dev_priv);
4532 }
4533
4534 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4535 struct i915_address_space *vm)
4536 {
4537 struct i915_vma *vma;
4538 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4539 if (i915_is_ggtt(vma->vm) &&
4540 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4541 continue;
4542 if (vma->vm == vm)
4543 return vma;
4544 }
4545 return NULL;
4546 }
4547
4548 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4549 const struct i915_ggtt_view *view)
4550 {
4551 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4552 struct i915_vma *vma;
4553
4554 if (WARN_ONCE(!view, "no view specified"))
4555 return ERR_PTR(-EINVAL);
4556
4557 list_for_each_entry(vma, &obj->vma_list, vma_link)
4558 if (vma->vm == ggtt &&
4559 i915_ggtt_view_equal(&vma->ggtt_view, view))
4560 return vma;
4561 return NULL;
4562 }
4563
4564 void i915_gem_vma_destroy(struct i915_vma *vma)
4565 {
4566 struct i915_address_space *vm = NULL;
4567 WARN_ON(vma->node.allocated);
4568
4569 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4570 if (!list_empty(&vma->exec_list))
4571 return;
4572
4573 vm = vma->vm;
4574
4575 if (!i915_is_ggtt(vm))
4576 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4577
4578 list_del(&vma->vma_link);
4579
4580 kfree(vma);
4581 }
4582
4583 static void
4584 i915_gem_stop_ringbuffers(struct drm_device *dev)
4585 {
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 struct intel_engine_cs *ring;
4588 int i;
4589
4590 for_each_ring(ring, dev_priv, i)
4591 dev_priv->gt.stop_ring(ring);
4592 }
4593
4594 int
4595 i915_gem_suspend(struct drm_device *dev)
4596 {
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598 int ret = 0;
4599
4600 mutex_lock(&dev->struct_mutex);
4601 ret = i915_gpu_idle(dev);
4602 if (ret)
4603 goto err;
4604
4605 i915_gem_retire_requests(dev);
4606
4607 i915_gem_stop_ringbuffers(dev);
4608 mutex_unlock(&dev->struct_mutex);
4609
4610 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4611 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4612 flush_delayed_work(&dev_priv->mm.idle_work);
4613
4614 /* Assert that we sucessfully flushed all the work and
4615 * reset the GPU back to its idle, low power state.
4616 */
4617 WARN_ON(dev_priv->mm.busy);
4618
4619 return 0;
4620
4621 err:
4622 mutex_unlock(&dev->struct_mutex);
4623 return ret;
4624 }
4625
4626 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4627 {
4628 struct drm_device *dev = ring->dev;
4629 struct drm_i915_private *dev_priv = dev->dev_private;
4630 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4631 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4632 int i, ret;
4633
4634 if (!HAS_L3_DPF(dev) || !remap_info)
4635 return 0;
4636
4637 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4638 if (ret)
4639 return ret;
4640
4641 /*
4642 * Note: We do not worry about the concurrent register cacheline hang
4643 * here because no other code should access these registers other than
4644 * at initialization time.
4645 */
4646 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4647 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4648 intel_ring_emit(ring, reg_base + i);
4649 intel_ring_emit(ring, remap_info[i/4]);
4650 }
4651
4652 intel_ring_advance(ring);
4653
4654 return ret;
4655 }
4656
4657 void i915_gem_init_swizzling(struct drm_device *dev)
4658 {
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660
4661 if (INTEL_INFO(dev)->gen < 5 ||
4662 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4663 return;
4664
4665 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4666 DISP_TILE_SURFACE_SWIZZLING);
4667
4668 if (IS_GEN5(dev))
4669 return;
4670
4671 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4672 if (IS_GEN6(dev))
4673 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4674 else if (IS_GEN7(dev))
4675 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4676 else if (IS_GEN8(dev))
4677 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4678 else
4679 BUG();
4680 }
4681
4682 static bool
4683 intel_enable_blt(struct drm_device *dev)
4684 {
4685 if (!HAS_BLT(dev))
4686 return false;
4687
4688 /* The blitter was dysfunctional on early prototypes */
4689 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4690 DRM_INFO("BLT not supported on this pre-production hardware;"
4691 " graphics performance will be degraded.\n");
4692 return false;
4693 }
4694
4695 return true;
4696 }
4697
4698 static void init_unused_ring(struct drm_device *dev, u32 base)
4699 {
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701
4702 I915_WRITE(RING_CTL(base), 0);
4703 I915_WRITE(RING_HEAD(base), 0);
4704 I915_WRITE(RING_TAIL(base), 0);
4705 I915_WRITE(RING_START(base), 0);
4706 }
4707
4708 static void init_unused_rings(struct drm_device *dev)
4709 {
4710 if (IS_I830(dev)) {
4711 init_unused_ring(dev, PRB1_BASE);
4712 init_unused_ring(dev, SRB0_BASE);
4713 init_unused_ring(dev, SRB1_BASE);
4714 init_unused_ring(dev, SRB2_BASE);
4715 init_unused_ring(dev, SRB3_BASE);
4716 } else if (IS_GEN2(dev)) {
4717 init_unused_ring(dev, SRB0_BASE);
4718 init_unused_ring(dev, SRB1_BASE);
4719 } else if (IS_GEN3(dev)) {
4720 init_unused_ring(dev, PRB1_BASE);
4721 init_unused_ring(dev, PRB2_BASE);
4722 }
4723 }
4724
4725 int i915_gem_init_rings(struct drm_device *dev)
4726 {
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728 int ret;
4729
4730 ret = intel_init_render_ring_buffer(dev);
4731 if (ret)
4732 return ret;
4733
4734 if (HAS_BSD(dev)) {
4735 ret = intel_init_bsd_ring_buffer(dev);
4736 if (ret)
4737 goto cleanup_render_ring;
4738 }
4739
4740 if (intel_enable_blt(dev)) {
4741 ret = intel_init_blt_ring_buffer(dev);
4742 if (ret)
4743 goto cleanup_bsd_ring;
4744 }
4745
4746 if (HAS_VEBOX(dev)) {
4747 ret = intel_init_vebox_ring_buffer(dev);
4748 if (ret)
4749 goto cleanup_blt_ring;
4750 }
4751
4752 if (HAS_BSD2(dev)) {
4753 ret = intel_init_bsd2_ring_buffer(dev);
4754 if (ret)
4755 goto cleanup_vebox_ring;
4756 }
4757
4758 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4759 if (ret)
4760 goto cleanup_bsd2_ring;
4761
4762 return 0;
4763
4764 cleanup_bsd2_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4766 cleanup_vebox_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4768 cleanup_blt_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4770 cleanup_bsd_ring:
4771 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4772 cleanup_render_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4774
4775 return ret;
4776 }
4777
4778 int
4779 i915_gem_init_hw(struct drm_device *dev)
4780 {
4781 struct drm_i915_private *dev_priv = dev->dev_private;
4782 struct intel_engine_cs *ring;
4783 int ret, i;
4784
4785 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4786 return -EIO;
4787
4788 /* Double layer security blanket, see i915_gem_init() */
4789 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4790
4791 if (dev_priv->ellc_size)
4792 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4793
4794 if (IS_HASWELL(dev))
4795 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4796 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4797
4798 if (HAS_PCH_NOP(dev)) {
4799 if (IS_IVYBRIDGE(dev)) {
4800 u32 temp = I915_READ(GEN7_MSG_CTL);
4801 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4802 I915_WRITE(GEN7_MSG_CTL, temp);
4803 } else if (INTEL_INFO(dev)->gen >= 7) {
4804 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4805 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4806 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4807 }
4808 }
4809
4810 i915_gem_init_swizzling(dev);
4811
4812 /*
4813 * At least 830 can leave some of the unused rings
4814 * "active" (ie. head != tail) after resume which
4815 * will prevent c3 entry. Makes sure all unused rings
4816 * are totally idle.
4817 */
4818 init_unused_rings(dev);
4819
4820 for_each_ring(ring, dev_priv, i) {
4821 ret = ring->init_hw(ring);
4822 if (ret)
4823 goto out;
4824 }
4825
4826 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4827 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4828
4829 ret = i915_ppgtt_init_hw(dev);
4830 if (ret && ret != -EIO) {
4831 DRM_ERROR("PPGTT enable failed %d\n", ret);
4832 i915_gem_cleanup_ringbuffer(dev);
4833 }
4834
4835 ret = i915_gem_context_enable(dev_priv);
4836 if (ret && ret != -EIO) {
4837 DRM_ERROR("Context enable failed %d\n", ret);
4838 i915_gem_cleanup_ringbuffer(dev);
4839
4840 goto out;
4841 }
4842
4843 out:
4844 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4845 return ret;
4846 }
4847
4848 int i915_gem_init(struct drm_device *dev)
4849 {
4850 struct drm_i915_private *dev_priv = dev->dev_private;
4851 int ret;
4852
4853 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4854 i915.enable_execlists);
4855
4856 mutex_lock(&dev->struct_mutex);
4857
4858 if (IS_VALLEYVIEW(dev)) {
4859 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4860 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4861 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4862 VLV_GTLC_ALLOWWAKEACK), 10))
4863 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4864 }
4865
4866 if (!i915.enable_execlists) {
4867 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4868 dev_priv->gt.init_rings = i915_gem_init_rings;
4869 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4870 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4871 } else {
4872 dev_priv->gt.do_execbuf = intel_execlists_submission;
4873 dev_priv->gt.init_rings = intel_logical_rings_init;
4874 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4875 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4876 }
4877
4878 /* This is just a security blanket to placate dragons.
4879 * On some systems, we very sporadically observe that the first TLBs
4880 * used by the CS may be stale, despite us poking the TLB reset. If
4881 * we hold the forcewake during initialisation these problems
4882 * just magically go away.
4883 */
4884 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4885
4886 ret = i915_gem_init_userptr(dev);
4887 if (ret)
4888 goto out_unlock;
4889
4890 i915_gem_init_global_gtt(dev);
4891
4892 ret = i915_gem_context_init(dev);
4893 if (ret)
4894 goto out_unlock;
4895
4896 ret = dev_priv->gt.init_rings(dev);
4897 if (ret)
4898 goto out_unlock;
4899
4900 ret = i915_gem_init_hw(dev);
4901 if (ret == -EIO) {
4902 /* Allow ring initialisation to fail by marking the GPU as
4903 * wedged. But we only want to do this where the GPU is angry,
4904 * for all other failure, such as an allocation failure, bail.
4905 */
4906 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4907 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4908 ret = 0;
4909 }
4910
4911 out_unlock:
4912 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4913 mutex_unlock(&dev->struct_mutex);
4914
4915 return ret;
4916 }
4917
4918 void
4919 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4920 {
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct intel_engine_cs *ring;
4923 int i;
4924
4925 for_each_ring(ring, dev_priv, i)
4926 dev_priv->gt.cleanup_ring(ring);
4927 }
4928
4929 static void
4930 init_ring_lists(struct intel_engine_cs *ring)
4931 {
4932 INIT_LIST_HEAD(&ring->active_list);
4933 INIT_LIST_HEAD(&ring->request_list);
4934 }
4935
4936 void i915_init_vm(struct drm_i915_private *dev_priv,
4937 struct i915_address_space *vm)
4938 {
4939 if (!i915_is_ggtt(vm))
4940 drm_mm_init(&vm->mm, vm->start, vm->total);
4941 vm->dev = dev_priv->dev;
4942 INIT_LIST_HEAD(&vm->active_list);
4943 INIT_LIST_HEAD(&vm->inactive_list);
4944 INIT_LIST_HEAD(&vm->global_link);
4945 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4946 }
4947
4948 void
4949 i915_gem_load(struct drm_device *dev)
4950 {
4951 struct drm_i915_private *dev_priv = dev->dev_private;
4952 int i;
4953
4954 dev_priv->slab =
4955 kmem_cache_create("i915_gem_object",
4956 sizeof(struct drm_i915_gem_object), 0,
4957 SLAB_HWCACHE_ALIGN,
4958 NULL);
4959
4960 INIT_LIST_HEAD(&dev_priv->vm_list);
4961 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4962
4963 INIT_LIST_HEAD(&dev_priv->context_list);
4964 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4965 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4966 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4967 for (i = 0; i < I915_NUM_RINGS; i++)
4968 init_ring_lists(&dev_priv->ring[i]);
4969 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4970 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4971 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4972 i915_gem_retire_work_handler);
4973 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4974 i915_gem_idle_work_handler);
4975 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4976
4977 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4978
4979 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4980 dev_priv->num_fence_regs = 32;
4981 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4982 dev_priv->num_fence_regs = 16;
4983 else
4984 dev_priv->num_fence_regs = 8;
4985
4986 if (intel_vgpu_active(dev))
4987 dev_priv->num_fence_regs =
4988 I915_READ(vgtif_reg(avail_rs.fence_num));
4989
4990 /* Initialize fence registers to zero */
4991 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4992 i915_gem_restore_fences(dev);
4993
4994 i915_gem_detect_bit_6_swizzle(dev);
4995 init_waitqueue_head(&dev_priv->pending_flip_queue);
4996
4997 dev_priv->mm.interruptible = true;
4998
4999 i915_gem_shrinker_init(dev_priv);
5000
5001 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5002
5003 mutex_init(&dev_priv->fb_tracking.lock);
5004 }
5005
5006 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5007 {
5008 struct drm_i915_file_private *file_priv = file->driver_priv;
5009
5010 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5011
5012 /* Clean up our request list when the client is going away, so that
5013 * later retire_requests won't dereference our soon-to-be-gone
5014 * file_priv.
5015 */
5016 spin_lock(&file_priv->mm.lock);
5017 while (!list_empty(&file_priv->mm.request_list)) {
5018 struct drm_i915_gem_request *request;
5019
5020 request = list_first_entry(&file_priv->mm.request_list,
5021 struct drm_i915_gem_request,
5022 client_list);
5023 list_del(&request->client_list);
5024 request->file_priv = NULL;
5025 }
5026 spin_unlock(&file_priv->mm.lock);
5027 }
5028
5029 static void
5030 i915_gem_file_idle_work_handler(struct work_struct *work)
5031 {
5032 struct drm_i915_file_private *file_priv =
5033 container_of(work, typeof(*file_priv), mm.idle_work.work);
5034
5035 atomic_set(&file_priv->rps_wait_boost, false);
5036 }
5037
5038 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5039 {
5040 struct drm_i915_file_private *file_priv;
5041 int ret;
5042
5043 DRM_DEBUG_DRIVER("\n");
5044
5045 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5046 if (!file_priv)
5047 return -ENOMEM;
5048
5049 file->driver_priv = file_priv;
5050 file_priv->dev_priv = dev->dev_private;
5051 file_priv->file = file;
5052
5053 spin_lock_init(&file_priv->mm.lock);
5054 INIT_LIST_HEAD(&file_priv->mm.request_list);
5055 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5056 i915_gem_file_idle_work_handler);
5057
5058 ret = i915_gem_context_open(dev, file);
5059 if (ret)
5060 kfree(file_priv);
5061
5062 return ret;
5063 }
5064
5065 /**
5066 * i915_gem_track_fb - update frontbuffer tracking
5067 * old: current GEM buffer for the frontbuffer slots
5068 * new: new GEM buffer for the frontbuffer slots
5069 * frontbuffer_bits: bitmask of frontbuffer slots
5070 *
5071 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5072 * from @old and setting them in @new. Both @old and @new can be NULL.
5073 */
5074 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5075 struct drm_i915_gem_object *new,
5076 unsigned frontbuffer_bits)
5077 {
5078 if (old) {
5079 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5080 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5081 old->frontbuffer_bits &= ~frontbuffer_bits;
5082 }
5083
5084 if (new) {
5085 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5086 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5087 new->frontbuffer_bits |= frontbuffer_bits;
5088 }
5089 }
5090
5091 /* All the new VM stuff */
5092 unsigned long
5093 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5094 struct i915_address_space *vm)
5095 {
5096 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5097 struct i915_vma *vma;
5098
5099 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5100
5101 list_for_each_entry(vma, &o->vma_list, vma_link) {
5102 if (i915_is_ggtt(vma->vm) &&
5103 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5104 continue;
5105 if (vma->vm == vm)
5106 return vma->node.start;
5107 }
5108
5109 WARN(1, "%s vma for this object not found.\n",
5110 i915_is_ggtt(vm) ? "global" : "ppgtt");
5111 return -1;
5112 }
5113
5114 unsigned long
5115 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5116 const struct i915_ggtt_view *view)
5117 {
5118 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5119 struct i915_vma *vma;
5120
5121 list_for_each_entry(vma, &o->vma_list, vma_link)
5122 if (vma->vm == ggtt &&
5123 i915_ggtt_view_equal(&vma->ggtt_view, view))
5124 return vma->node.start;
5125
5126 WARN(1, "global vma for this object not found.\n");
5127 return -1;
5128 }
5129
5130 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5131 struct i915_address_space *vm)
5132 {
5133 struct i915_vma *vma;
5134
5135 list_for_each_entry(vma, &o->vma_list, vma_link) {
5136 if (i915_is_ggtt(vma->vm) &&
5137 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5138 continue;
5139 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5140 return true;
5141 }
5142
5143 return false;
5144 }
5145
5146 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5147 const struct i915_ggtt_view *view)
5148 {
5149 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5150 struct i915_vma *vma;
5151
5152 list_for_each_entry(vma, &o->vma_list, vma_link)
5153 if (vma->vm == ggtt &&
5154 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5155 drm_mm_node_allocated(&vma->node))
5156 return true;
5157
5158 return false;
5159 }
5160
5161 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5162 {
5163 struct i915_vma *vma;
5164
5165 list_for_each_entry(vma, &o->vma_list, vma_link)
5166 if (drm_mm_node_allocated(&vma->node))
5167 return true;
5168
5169 return false;
5170 }
5171
5172 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5173 struct i915_address_space *vm)
5174 {
5175 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5176 struct i915_vma *vma;
5177
5178 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5179
5180 BUG_ON(list_empty(&o->vma_list));
5181
5182 list_for_each_entry(vma, &o->vma_list, vma_link) {
5183 if (i915_is_ggtt(vma->vm) &&
5184 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5185 continue;
5186 if (vma->vm == vm)
5187 return vma->node.size;
5188 }
5189 return 0;
5190 }
5191
5192 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5193 {
5194 struct i915_vma *vma;
5195 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5196 if (i915_is_ggtt(vma->vm) &&
5197 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5198 continue;
5199 if (vma->pin_count > 0)
5200 return true;
5201 }
5202 return false;
5203 }
5204
This page took 0.130293 seconds and 6 git commands to generate.