Merge branch 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 struct drm_i915_file_private;
38
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC (2 << 1)
51 #define GEN6_PTE_UNCACHED (1 << 1)
52 #define GEN6_PTE_VALID (1 << 0)
53
54 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56 #define I915_PDES 512
57 #define I915_PDE_MASK (I915_PDES - 1)
58 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
59
60 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
62 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
63 #define GEN6_PDE_SHIFT 22
64 #define GEN6_PDE_VALID (1 << 0)
65
66 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69 #define BYT_PTE_WRITEABLE (1 << 1)
70
71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82 #define HSW_PTE_UNCACHED (0)
83 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86 /* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92 #define GEN8_PDPE_SHIFT 30
93 #define GEN8_PDPE_MASK 0x3
94 #define GEN8_PDE_SHIFT 21
95 #define GEN8_PDE_MASK 0x1ff
96 #define GEN8_PTE_SHIFT 12
97 #define GEN8_PTE_MASK 0x1ff
98 #define GEN8_LEGACY_PDPES 4
99 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
100
101 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
106 #define CHV_PPAT_SNOOP (1<<6)
107 #define GEN8_PPAT_AGE(x) (x<<4)
108 #define GEN8_PPAT_LLCeLLC (3<<2)
109 #define GEN8_PPAT_LLCELLC (2<<2)
110 #define GEN8_PPAT_LLC (1<<2)
111 #define GEN8_PPAT_WB (3<<0)
112 #define GEN8_PPAT_WT (2<<0)
113 #define GEN8_PPAT_WC (1<<0)
114 #define GEN8_PPAT_UC (0<<0)
115 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
118 enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
120 I915_GGTT_VIEW_ROTATED,
121 I915_GGTT_VIEW_PARTIAL,
122 };
123
124 struct intel_rotation_info {
125 unsigned int height;
126 unsigned int pitch;
127 uint32_t pixel_format;
128 uint64_t fb_modifier;
129 };
130
131 struct i915_ggtt_view {
132 enum i915_ggtt_view_type type;
133
134 union {
135 struct {
136 unsigned long offset;
137 unsigned int size;
138 } partial;
139 } params;
140
141 struct sg_table *pages;
142
143 union {
144 struct intel_rotation_info rotation_info;
145 };
146 };
147
148 extern const struct i915_ggtt_view i915_ggtt_view_normal;
149 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
150
151 enum i915_cache_level;
152
153 /**
154 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
155 * VMA's presence cannot be guaranteed before binding, or after unbinding the
156 * object into/from the address space.
157 *
158 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
159 * will always be <= an objects lifetime. So object refcounting should cover us.
160 */
161 struct i915_vma {
162 struct drm_mm_node node;
163 struct drm_i915_gem_object *obj;
164 struct i915_address_space *vm;
165
166 /** Flags and address space this VMA is bound to */
167 #define GLOBAL_BIND (1<<0)
168 #define LOCAL_BIND (1<<1)
169 unsigned int bound : 4;
170
171 /**
172 * Support different GGTT views into the same object.
173 * This means there can be multiple VMA mappings per object and per VM.
174 * i915_ggtt_view_type is used to distinguish between those entries.
175 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
176 * assumed in GEM functions which take no ggtt view parameter.
177 */
178 struct i915_ggtt_view ggtt_view;
179
180 /** This object's place on the active/inactive lists */
181 struct list_head mm_list;
182
183 struct list_head vma_link; /* Link in the object's VMA list */
184
185 /** This vma's place in the batchbuffer or on the eviction list */
186 struct list_head exec_list;
187
188 /**
189 * Used for performing relocations during execbuffer insertion.
190 */
191 struct hlist_node exec_node;
192 unsigned long exec_handle;
193 struct drm_i915_gem_exec_object2 *exec_entry;
194
195 /**
196 * How many users have pinned this object in GTT space. The following
197 * users can each hold at most one reference: pwrite/pread, execbuffer
198 * (objects are not allowed multiple times for the same batchbuffer),
199 * and the framebuffer code. When switching/pageflipping, the
200 * framebuffer code has at most two buffers pinned per crtc.
201 *
202 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
203 * bits with absolutely no headroom. So use 4 bits. */
204 unsigned int pin_count:4;
205 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
206 };
207
208 struct i915_page_table {
209 struct page *page;
210 dma_addr_t daddr;
211
212 unsigned long *used_ptes;
213 };
214
215 struct i915_page_directory {
216 struct page *page; /* NULL for GEN6-GEN7 */
217 union {
218 uint32_t pd_offset;
219 dma_addr_t daddr;
220 };
221
222 unsigned long *used_pdes;
223 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
224 };
225
226 struct i915_page_directory_pointer {
227 /* struct page *page; */
228 DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
229 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
230 };
231
232 struct i915_address_space {
233 struct drm_mm mm;
234 struct drm_device *dev;
235 struct list_head global_link;
236 unsigned long start; /* Start offset always 0 for dri2 */
237 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
238
239 struct {
240 dma_addr_t addr;
241 struct page *page;
242 } scratch;
243
244 /**
245 * List of objects currently involved in rendering.
246 *
247 * Includes buffers having the contents of their GPU caches
248 * flushed, not necessarily primitives. last_read_req
249 * represents when the rendering involved will be completed.
250 *
251 * A reference is held on the buffer while on this list.
252 */
253 struct list_head active_list;
254
255 /**
256 * LRU list of objects which are not in the ringbuffer and
257 * are ready to unbind, but are still in the GTT.
258 *
259 * last_read_req is NULL while an object is in this list.
260 *
261 * A reference is not held on the buffer while on this list,
262 * as merely being GTT-bound shouldn't prevent its being
263 * freed, and we'll pull it off the list in the free path.
264 */
265 struct list_head inactive_list;
266
267 /* FIXME: Need a more generic return type */
268 gen6_pte_t (*pte_encode)(dma_addr_t addr,
269 enum i915_cache_level level,
270 bool valid, u32 flags); /* Create a valid PTE */
271 /* flags for pte_encode */
272 #define PTE_READ_ONLY (1<<0)
273 int (*allocate_va_range)(struct i915_address_space *vm,
274 uint64_t start,
275 uint64_t length);
276 void (*clear_range)(struct i915_address_space *vm,
277 uint64_t start,
278 uint64_t length,
279 bool use_scratch);
280 void (*insert_entries)(struct i915_address_space *vm,
281 struct sg_table *st,
282 uint64_t start,
283 enum i915_cache_level cache_level, u32 flags);
284 void (*cleanup)(struct i915_address_space *vm);
285 /** Unmap an object from an address space. This usually consists of
286 * setting the valid PTE entries to a reserved scratch page. */
287 void (*unbind_vma)(struct i915_vma *vma);
288 /* Map an object into an address space with the given cache flags. */
289 int (*bind_vma)(struct i915_vma *vma,
290 enum i915_cache_level cache_level,
291 u32 flags);
292 };
293
294 /* The Graphics Translation Table is the way in which GEN hardware translates a
295 * Graphics Virtual Address into a Physical Address. In addition to the normal
296 * collateral associated with any va->pa translations GEN hardware also has a
297 * portion of the GTT which can be mapped by the CPU and remain both coherent
298 * and correct (in cases like swizzling). That region is referred to as GMADR in
299 * the spec.
300 */
301 struct i915_gtt {
302 struct i915_address_space base;
303 size_t stolen_size; /* Total size of stolen memory */
304
305 unsigned long mappable_end; /* End offset that we can CPU map */
306 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
307 phys_addr_t mappable_base; /* PA of our GMADR */
308
309 /** "Graphics Stolen Memory" holds the global PTEs */
310 void __iomem *gsm;
311
312 bool do_idle_maps;
313
314 int mtrr;
315
316 /* global gtt ops */
317 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
318 size_t *stolen, phys_addr_t *mappable_base,
319 unsigned long *mappable_end);
320 };
321
322 struct i915_hw_ppgtt {
323 struct i915_address_space base;
324 struct kref ref;
325 struct drm_mm_node node;
326 unsigned long pd_dirty_rings;
327 union {
328 struct i915_page_directory_pointer pdp;
329 struct i915_page_directory pd;
330 };
331
332 struct i915_page_table *scratch_pt;
333 struct i915_page_directory *scratch_pd;
334
335 struct drm_i915_file_private *file_priv;
336
337 gen6_pte_t __iomem *pd_addr;
338
339 int (*enable)(struct i915_hw_ppgtt *ppgtt);
340 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
341 struct intel_engine_cs *ring);
342 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
343 };
344
345 /* For each pde iterates over every pde between from start until start + length.
346 * If start, and start+length are not perfectly divisible, the macro will round
347 * down, and up as needed. The macro modifies pde, start, and length. Dev is
348 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
349 * and length = 2G effectively iterates over every PDE in the system.
350 *
351 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
352 */
353 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
354 for (iter = gen6_pde_index(start); \
355 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
356 iter++, \
357 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
358 temp = min_t(unsigned, temp, length), \
359 start += temp, length -= temp)
360
361 #define gen6_for_all_pdes(pt, ppgtt, iter) \
362 for (iter = 0; \
363 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
364 iter++)
365
366 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
367 {
368 const uint32_t mask = NUM_PTE(pde_shift) - 1;
369
370 return (address >> PAGE_SHIFT) & mask;
371 }
372
373 /* Helper to counts the number of PTEs within the given length. This count
374 * does not cross a page table boundary, so the max value would be
375 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
376 */
377 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
378 uint32_t pde_shift)
379 {
380 const uint64_t mask = ~((1 << pde_shift) - 1);
381 uint64_t end;
382
383 WARN_ON(length == 0);
384 WARN_ON(offset_in_page(addr|length));
385
386 end = addr + length;
387
388 if ((addr & mask) != (end & mask))
389 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
390
391 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
392 }
393
394 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
395 {
396 return (addr >> shift) & I915_PDE_MASK;
397 }
398
399 static inline uint32_t gen6_pte_index(uint32_t addr)
400 {
401 return i915_pte_index(addr, GEN6_PDE_SHIFT);
402 }
403
404 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
405 {
406 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
407 }
408
409 static inline uint32_t gen6_pde_index(uint32_t addr)
410 {
411 return i915_pde_index(addr, GEN6_PDE_SHIFT);
412 }
413
414 /* Equivalent to the gen6 version, For each pde iterates over every pde
415 * between from start until start + length. On gen8+ it simply iterates
416 * over every page directory entry in a page directory.
417 */
418 #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
419 for (iter = gen8_pde_index(start); \
420 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
421 iter++, \
422 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
423 temp = min(temp, length), \
424 start += temp, length -= temp)
425
426 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
427 for (iter = gen8_pdpe_index(start); \
428 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
429 iter++, \
430 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
431 temp = min(temp, length), \
432 start += temp, length -= temp)
433
434 /* Clamp length to the next page_directory boundary */
435 static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
436 {
437 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
438
439 if (next_pd > (start + length))
440 return length;
441
442 return next_pd - start;
443 }
444
445 static inline uint32_t gen8_pte_index(uint64_t address)
446 {
447 return i915_pte_index(address, GEN8_PDE_SHIFT);
448 }
449
450 static inline uint32_t gen8_pde_index(uint64_t address)
451 {
452 return i915_pde_index(address, GEN8_PDE_SHIFT);
453 }
454
455 static inline uint32_t gen8_pdpe_index(uint64_t address)
456 {
457 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
458 }
459
460 static inline uint32_t gen8_pml4e_index(uint64_t address)
461 {
462 WARN_ON(1); /* For 64B */
463 return 0;
464 }
465
466 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
467 {
468 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
469 }
470
471 int i915_gem_gtt_init(struct drm_device *dev);
472 void i915_gem_init_global_gtt(struct drm_device *dev);
473 void i915_global_gtt_cleanup(struct drm_device *dev);
474
475
476 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
477 int i915_ppgtt_init_hw(struct drm_device *dev);
478 void i915_ppgtt_release(struct kref *kref);
479 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
480 struct drm_i915_file_private *fpriv);
481 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
482 {
483 if (ppgtt)
484 kref_get(&ppgtt->ref);
485 }
486 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
487 {
488 if (ppgtt)
489 kref_put(&ppgtt->ref, i915_ppgtt_release);
490 }
491
492 void i915_check_and_clear_faults(struct drm_device *dev);
493 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
494 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
495
496 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
497 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
498
499 static inline bool
500 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
501 const struct i915_ggtt_view *b)
502 {
503 if (WARN_ON(!a || !b))
504 return false;
505
506 if (a->type != b->type)
507 return false;
508 if (a->type == I915_GGTT_VIEW_PARTIAL)
509 return !memcmp(&a->params, &b->params, sizeof(a->params));
510 return true;
511 }
512
513 size_t
514 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
515 const struct i915_ggtt_view *view);
516
517 #endif
This page took 0.041787 seconds and 6 git commands to generate.