1118c39281f98cc272b23bcbded120c7ecdd4502
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 POSTING_READ(GEN8_##type##_IMR(which)); \
101 I915_WRITE(GEN8_##type##_IER(which), 0); \
102 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 POSTING_READ(GEN8_##type##_IIR(which)); \
104 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107
108 #define GEN5_IRQ_RESET(type) do { \
109 I915_WRITE(type##IMR, 0xffffffff); \
110 POSTING_READ(type##IMR); \
111 I915_WRITE(type##IER, 0); \
112 I915_WRITE(type##IIR, 0xffffffff); \
113 POSTING_READ(type##IIR); \
114 I915_WRITE(type##IIR, 0xffffffff); \
115 POSTING_READ(type##IIR); \
116 } while (0)
117
118 /*
119 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120 */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 u32 val = I915_READ(reg); \
123 if (val) { \
124 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 (reg), val); \
126 I915_WRITE((reg), 0xffffffff); \
127 POSTING_READ(reg); \
128 I915_WRITE((reg), 0xffffffff); \
129 POSTING_READ(reg); \
130 } \
131 } while (0)
132
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 I915_WRITE(type##IER, (ier_val)); \
143 I915_WRITE(type##IMR, (imr_val)); \
144 POSTING_READ(type##IMR); \
145 } while (0)
146
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 assert_spin_locked(&dev_priv->irq_lock);
154
155 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 return;
157
158 if ((dev_priv->irq_mask & mask) != 0) {
159 dev_priv->irq_mask &= ~mask;
160 I915_WRITE(DEIMR, dev_priv->irq_mask);
161 POSTING_READ(DEIMR);
162 }
163 }
164
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 return;
172
173 if ((dev_priv->irq_mask & mask) != mask) {
174 dev_priv->irq_mask |= mask;
175 I915_WRITE(DEIMR, dev_priv->irq_mask);
176 POSTING_READ(DEIMR);
177 }
178 }
179
180 /**
181 * ilk_update_gt_irq - update GTIMR
182 * @dev_priv: driver private
183 * @interrupt_mask: mask of interrupt bits to update
184 * @enabled_irq_mask: mask of interrupt bits to enable
185 */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 uint32_t interrupt_mask,
188 uint32_t enabled_irq_mask)
189 {
190 assert_spin_locked(&dev_priv->irq_lock);
191
192 WARN_ON(enabled_irq_mask & ~interrupt_mask);
193
194 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 return;
196
197 dev_priv->gt_irq_mask &= ~interrupt_mask;
198 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 POSTING_READ(GTIMR);
201 }
202
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227
228 /**
229 * snb_update_pm_irq - update GEN6_PMIMR
230 * @dev_priv: driver private
231 * @interrupt_mask: mask of interrupt bits to update
232 * @enabled_irq_mask: mask of interrupt bits to enable
233 */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 uint32_t interrupt_mask,
236 uint32_t enabled_irq_mask)
237 {
238 uint32_t new_val;
239
240 WARN_ON(enabled_irq_mask & ~interrupt_mask);
241
242 assert_spin_locked(&dev_priv->irq_lock);
243
244 new_val = dev_priv->pm_irq_mask;
245 new_val &= ~interrupt_mask;
246 new_val |= (~enabled_irq_mask & interrupt_mask);
247
248 if (new_val != dev_priv->pm_irq_mask) {
249 dev_priv->pm_irq_mask = new_val;
250 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 POSTING_READ(gen6_pm_imr(dev_priv));
252 }
253 }
254
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 snb_update_pm_irq(dev_priv, mask, mask);
261 }
262
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 uint32_t mask)
265 {
266 snb_update_pm_irq(dev_priv, mask, 0);
267 }
268
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 return;
273
274 __gen6_disable_pm_irq(dev_priv, mask);
275 }
276
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 uint32_t reg = gen6_pm_iir(dev_priv);
281
282 spin_lock_irq(&dev_priv->irq_lock);
283 I915_WRITE(reg, dev_priv->pm_rps_events);
284 I915_WRITE(reg, dev_priv->pm_rps_events);
285 POSTING_READ(reg);
286 dev_priv->rps.pm_iir = 0;
287 spin_unlock_irq(&dev_priv->irq_lock);
288 }
289
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 struct drm_i915_private *dev_priv = dev->dev_private;
293
294 spin_lock_irq(&dev_priv->irq_lock);
295
296 WARN_ON(dev_priv->rps.pm_iir);
297 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 dev_priv->rps.interrupts_enabled = true;
299 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 dev_priv->pm_rps_events);
301 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302
303 spin_unlock_irq(&dev_priv->irq_lock);
304 }
305
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 /*
309 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 *
312 * TODO: verify if this can be reproduced on VLV,CHV.
313 */
314 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316
317 if (INTEL_INFO(dev_priv)->gen >= 8)
318 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319
320 return mask;
321 }
322
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 spin_lock_irq(&dev_priv->irq_lock);
328 dev_priv->rps.interrupts_enabled = false;
329 spin_unlock_irq(&dev_priv->irq_lock);
330
331 cancel_work_sync(&dev_priv->rps.work);
332
333 spin_lock_irq(&dev_priv->irq_lock);
334
335 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336
337 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 ~dev_priv->pm_rps_events);
340
341 spin_unlock_irq(&dev_priv->irq_lock);
342
343 synchronize_irq(dev->irq);
344 }
345
346 /**
347 * ibx_display_interrupt_update - update SDEIMR
348 * @dev_priv: driver private
349 * @interrupt_mask: mask of interrupt bits to update
350 * @enabled_irq_mask: mask of interrupt bits to enable
351 */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 uint32_t interrupt_mask,
354 uint32_t enabled_irq_mask)
355 {
356 uint32_t sdeimr = I915_READ(SDEIMR);
357 sdeimr &= ~interrupt_mask;
358 sdeimr |= (~enabled_irq_mask & interrupt_mask);
359
360 WARN_ON(enabled_irq_mask & ~interrupt_mask);
361
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 return;
366
367 I915_WRITE(SDEIMR, sdeimr);
368 POSTING_READ(SDEIMR);
369 }
370
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 u32 enable_mask, u32 status_mask)
374 {
375 u32 reg = PIPESTAT(pipe);
376 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378 assert_spin_locked(&dev_priv->irq_lock);
379 WARN_ON(!intel_irqs_enabled(dev_priv));
380
381 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 pipe_name(pipe), enable_mask, status_mask))
385 return;
386
387 if ((pipestat & enable_mask) == enable_mask)
388 return;
389
390 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391
392 /* Enable the interrupt, clear any pending status */
393 pipestat |= enable_mask | status_mask;
394 I915_WRITE(reg, pipestat);
395 POSTING_READ(reg);
396 }
397
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 u32 enable_mask, u32 status_mask)
401 {
402 u32 reg = PIPESTAT(pipe);
403 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404
405 assert_spin_locked(&dev_priv->irq_lock);
406 WARN_ON(!intel_irqs_enabled(dev_priv));
407
408 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 pipe_name(pipe), enable_mask, status_mask))
412 return;
413
414 if ((pipestat & enable_mask) == 0)
415 return;
416
417 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418
419 pipestat &= ~enable_mask;
420 I915_WRITE(reg, pipestat);
421 POSTING_READ(reg);
422 }
423
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 u32 enable_mask = status_mask << 16;
427
428 /*
429 * On pipe A we don't support the PSR interrupt yet,
430 * on pipe B and C the same bit MBZ.
431 */
432 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 return 0;
434 /*
435 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 * A the same bit is for perf counters which we don't use either.
437 */
438 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 return 0;
440
441 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448
449 return enable_mask;
450 }
451
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 u32 status_mask)
455 {
456 u32 enable_mask;
457
458 if (IS_VALLEYVIEW(dev_priv->dev))
459 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 status_mask);
461 else
462 enable_mask = status_mask << 16;
463 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 u32 status_mask)
469 {
470 u32 enable_mask;
471
472 if (IS_VALLEYVIEW(dev_priv->dev))
473 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 status_mask);
475 else
476 enable_mask = status_mask << 16;
477 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479
480 /**
481 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482 */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486
487 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 return;
489
490 spin_lock_irq(&dev_priv->irq_lock);
491
492 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 if (INTEL_INFO(dev)->gen >= 4)
494 i915_enable_pipestat(dev_priv, PIPE_A,
495 PIPE_LEGACY_BLC_EVENT_STATUS);
496
497 spin_unlock_irq(&dev_priv->irq_lock);
498 }
499
500 /*
501 * This timing diagram depicts the video signal in and
502 * around the vertical blanking period.
503 *
504 * Assumptions about the fictitious mode used in this example:
505 * vblank_start >= 3
506 * vsync_start = vblank_start + 1
507 * vsync_end = vblank_start + 2
508 * vtotal = vblank_start + 3
509 *
510 * start of vblank:
511 * latch double buffered registers
512 * increment frame counter (ctg+)
513 * generate start of vblank interrupt (gen4+)
514 * |
515 * | frame start:
516 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
517 * | may be shifted forward 1-3 extra lines via PIPECONF
518 * | |
519 * | | start of vsync:
520 * | | generate vsync interrupt
521 * | | |
522 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
523 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
524 * ----va---> <-----------------vb--------------------> <--------va-------------
525 * | | <----vs-----> |
526 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529 * | | |
530 * last visible pixel first visible pixel
531 * | increment frame counter (gen3/4)
532 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
533 *
534 * x = horizontal active
535 * _ = horizontal blanking
536 * hs = horizontal sync
537 * va = vertical active
538 * vb = vertical blanking
539 * vs = vertical sync
540 * vbs = vblank_start (number)
541 *
542 * Summary:
543 * - most events happen at the start of horizontal sync
544 * - frame start happens at the start of horizontal blank, 1-4 lines
545 * (depending on PIPECONF settings) after the start of vblank
546 * - gen3/4 pixel and frame counter are synchronized with the start
547 * of horizontal active on the first line of vertical active
548 */
549
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 /* Gen2 doesn't have a hardware frame counter */
553 return 0;
554 }
555
556 /* Called from drm generic code, passed a 'crtc', which
557 * we use as a pipe index
558 */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 unsigned long high_frame;
563 unsigned long low_frame;
564 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 struct intel_crtc *intel_crtc =
566 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
568
569 htotal = mode->crtc_htotal;
570 hsync_start = mode->crtc_hsync_start;
571 vbl_start = mode->crtc_vblank_start;
572 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
573 vbl_start = DIV_ROUND_UP(vbl_start, 2);
574
575 /* Convert to pixel count */
576 vbl_start *= htotal;
577
578 /* Start of vblank event occurs at start of hsync */
579 vbl_start -= htotal - hsync_start;
580
581 high_frame = PIPEFRAME(pipe);
582 low_frame = PIPEFRAMEPIXEL(pipe);
583
584 /*
585 * High & low register fields aren't synchronized, so make sure
586 * we get a low value that's stable across two reads of the high
587 * register.
588 */
589 do {
590 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
591 low = I915_READ(low_frame);
592 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
593 } while (high1 != high2);
594
595 high1 >>= PIPE_FRAME_HIGH_SHIFT;
596 pixel = low & PIPE_PIXEL_MASK;
597 low >>= PIPE_FRAME_LOW_SHIFT;
598
599 /*
600 * The frame counter increments at beginning of active.
601 * Cook up a vblank counter by also checking the pixel
602 * counter against vblank start.
603 */
604 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
605 }
606
607 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
608 {
609 struct drm_i915_private *dev_priv = dev->dev_private;
610 int reg = PIPE_FRMCOUNT_GM45(pipe);
611
612 return I915_READ(reg);
613 }
614
615 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
616 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
617
618 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
619 {
620 struct drm_device *dev = crtc->base.dev;
621 struct drm_i915_private *dev_priv = dev->dev_private;
622 const struct drm_display_mode *mode = &crtc->base.hwmode;
623 enum pipe pipe = crtc->pipe;
624 int position, vtotal;
625
626 vtotal = mode->crtc_vtotal;
627 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
628 vtotal /= 2;
629
630 if (IS_GEN2(dev))
631 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
632 else
633 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
634
635 /*
636 * See update_scanline_offset() for the details on the
637 * scanline_offset adjustment.
638 */
639 return (position + crtc->scanline_offset) % vtotal;
640 }
641
642 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
643 unsigned int flags, int *vpos, int *hpos,
644 ktime_t *stime, ktime_t *etime)
645 {
646 struct drm_i915_private *dev_priv = dev->dev_private;
647 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
649 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
650 int position;
651 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
652 bool in_vbl = true;
653 int ret = 0;
654 unsigned long irqflags;
655
656 if (WARN_ON(!mode->crtc_clock)) {
657 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
658 "pipe %c\n", pipe_name(pipe));
659 return 0;
660 }
661
662 htotal = mode->crtc_htotal;
663 hsync_start = mode->crtc_hsync_start;
664 vtotal = mode->crtc_vtotal;
665 vbl_start = mode->crtc_vblank_start;
666 vbl_end = mode->crtc_vblank_end;
667
668 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
669 vbl_start = DIV_ROUND_UP(vbl_start, 2);
670 vbl_end /= 2;
671 vtotal /= 2;
672 }
673
674 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
675
676 /*
677 * Lock uncore.lock, as we will do multiple timing critical raw
678 * register reads, potentially with preemption disabled, so the
679 * following code must not block on uncore.lock.
680 */
681 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
682
683 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
684
685 /* Get optional system timestamp before query. */
686 if (stime)
687 *stime = ktime_get();
688
689 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
690 /* No obvious pixelcount register. Only query vertical
691 * scanout position from Display scan line register.
692 */
693 position = __intel_get_crtc_scanline(intel_crtc);
694 } else {
695 /* Have access to pixelcount since start of frame.
696 * We can split this into vertical and horizontal
697 * scanout position.
698 */
699 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
700
701 /* convert to pixel counts */
702 vbl_start *= htotal;
703 vbl_end *= htotal;
704 vtotal *= htotal;
705
706 /*
707 * In interlaced modes, the pixel counter counts all pixels,
708 * so one field will have htotal more pixels. In order to avoid
709 * the reported position from jumping backwards when the pixel
710 * counter is beyond the length of the shorter field, just
711 * clamp the position the length of the shorter field. This
712 * matches how the scanline counter based position works since
713 * the scanline counter doesn't count the two half lines.
714 */
715 if (position >= vtotal)
716 position = vtotal - 1;
717
718 /*
719 * Start of vblank interrupt is triggered at start of hsync,
720 * just prior to the first active line of vblank. However we
721 * consider lines to start at the leading edge of horizontal
722 * active. So, should we get here before we've crossed into
723 * the horizontal active of the first line in vblank, we would
724 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
725 * always add htotal-hsync_start to the current pixel position.
726 */
727 position = (position + htotal - hsync_start) % vtotal;
728 }
729
730 /* Get optional system timestamp after query. */
731 if (etime)
732 *etime = ktime_get();
733
734 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
735
736 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
737
738 in_vbl = position >= vbl_start && position < vbl_end;
739
740 /*
741 * While in vblank, position will be negative
742 * counting up towards 0 at vbl_end. And outside
743 * vblank, position will be positive counting
744 * up since vbl_end.
745 */
746 if (position >= vbl_start)
747 position -= vbl_end;
748 else
749 position += vtotal - vbl_end;
750
751 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
752 *vpos = position;
753 *hpos = 0;
754 } else {
755 *vpos = position / htotal;
756 *hpos = position - (*vpos * htotal);
757 }
758
759 /* In vblank? */
760 if (in_vbl)
761 ret |= DRM_SCANOUTPOS_IN_VBLANK;
762
763 return ret;
764 }
765
766 int intel_get_crtc_scanline(struct intel_crtc *crtc)
767 {
768 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
769 unsigned long irqflags;
770 int position;
771
772 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
773 position = __intel_get_crtc_scanline(crtc);
774 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
775
776 return position;
777 }
778
779 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
780 int *max_error,
781 struct timeval *vblank_time,
782 unsigned flags)
783 {
784 struct drm_crtc *crtc;
785
786 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
787 DRM_ERROR("Invalid crtc %d\n", pipe);
788 return -EINVAL;
789 }
790
791 /* Get drm_crtc to timestamp: */
792 crtc = intel_get_crtc_for_pipe(dev, pipe);
793 if (crtc == NULL) {
794 DRM_ERROR("Invalid crtc %d\n", pipe);
795 return -EINVAL;
796 }
797
798 if (!crtc->hwmode.crtc_clock) {
799 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
800 return -EBUSY;
801 }
802
803 /* Helper routine in DRM core does all the work: */
804 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
805 vblank_time, flags,
806 crtc,
807 &crtc->hwmode);
808 }
809
810 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
811 {
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 u32 busy_up, busy_down, max_avg, min_avg;
814 u8 new_delay;
815
816 spin_lock(&mchdev_lock);
817
818 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
819
820 new_delay = dev_priv->ips.cur_delay;
821
822 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
823 busy_up = I915_READ(RCPREVBSYTUPAVG);
824 busy_down = I915_READ(RCPREVBSYTDNAVG);
825 max_avg = I915_READ(RCBMAXAVG);
826 min_avg = I915_READ(RCBMINAVG);
827
828 /* Handle RCS change request from hw */
829 if (busy_up > max_avg) {
830 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
831 new_delay = dev_priv->ips.cur_delay - 1;
832 if (new_delay < dev_priv->ips.max_delay)
833 new_delay = dev_priv->ips.max_delay;
834 } else if (busy_down < min_avg) {
835 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
836 new_delay = dev_priv->ips.cur_delay + 1;
837 if (new_delay > dev_priv->ips.min_delay)
838 new_delay = dev_priv->ips.min_delay;
839 }
840
841 if (ironlake_set_drps(dev, new_delay))
842 dev_priv->ips.cur_delay = new_delay;
843
844 spin_unlock(&mchdev_lock);
845
846 return;
847 }
848
849 static void notify_ring(struct intel_engine_cs *ring)
850 {
851 if (!intel_ring_initialized(ring))
852 return;
853
854 trace_i915_gem_request_notify(ring);
855
856 wake_up_all(&ring->irq_queue);
857 }
858
859 static void vlv_c0_read(struct drm_i915_private *dev_priv,
860 struct intel_rps_ei *ei)
861 {
862 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
863 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
864 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
865 }
866
867 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
868 const struct intel_rps_ei *old,
869 const struct intel_rps_ei *now,
870 int threshold)
871 {
872 u64 time, c0;
873
874 if (old->cz_clock == 0)
875 return false;
876
877 time = now->cz_clock - old->cz_clock;
878 time *= threshold * dev_priv->mem_freq;
879
880 /* Workload can be split between render + media, e.g. SwapBuffers
881 * being blitted in X after being rendered in mesa. To account for
882 * this we need to combine both engines into our activity counter.
883 */
884 c0 = now->render_c0 - old->render_c0;
885 c0 += now->media_c0 - old->media_c0;
886 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
887
888 return c0 >= time;
889 }
890
891 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
892 {
893 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
894 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
895 }
896
897 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
898 {
899 struct intel_rps_ei now;
900 u32 events = 0;
901
902 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
903 return 0;
904
905 vlv_c0_read(dev_priv, &now);
906 if (now.cz_clock == 0)
907 return 0;
908
909 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
910 if (!vlv_c0_above(dev_priv,
911 &dev_priv->rps.down_ei, &now,
912 dev_priv->rps.down_threshold))
913 events |= GEN6_PM_RP_DOWN_THRESHOLD;
914 dev_priv->rps.down_ei = now;
915 }
916
917 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
918 if (vlv_c0_above(dev_priv,
919 &dev_priv->rps.up_ei, &now,
920 dev_priv->rps.up_threshold))
921 events |= GEN6_PM_RP_UP_THRESHOLD;
922 dev_priv->rps.up_ei = now;
923 }
924
925 return events;
926 }
927
928 static bool any_waiters(struct drm_i915_private *dev_priv)
929 {
930 struct intel_engine_cs *ring;
931 int i;
932
933 for_each_ring(ring, dev_priv, i)
934 if (ring->irq_refcount)
935 return true;
936
937 return false;
938 }
939
940 static void gen6_pm_rps_work(struct work_struct *work)
941 {
942 struct drm_i915_private *dev_priv =
943 container_of(work, struct drm_i915_private, rps.work);
944 bool client_boost;
945 int new_delay, adj, min, max;
946 u32 pm_iir;
947
948 spin_lock_irq(&dev_priv->irq_lock);
949 /* Speed up work cancelation during disabling rps interrupts. */
950 if (!dev_priv->rps.interrupts_enabled) {
951 spin_unlock_irq(&dev_priv->irq_lock);
952 return;
953 }
954 pm_iir = dev_priv->rps.pm_iir;
955 dev_priv->rps.pm_iir = 0;
956 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
957 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
958 client_boost = dev_priv->rps.client_boost;
959 dev_priv->rps.client_boost = false;
960 spin_unlock_irq(&dev_priv->irq_lock);
961
962 /* Make sure we didn't queue anything we're not going to process. */
963 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
964
965 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
966 return;
967
968 mutex_lock(&dev_priv->rps.hw_lock);
969
970 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
971
972 adj = dev_priv->rps.last_adj;
973 new_delay = dev_priv->rps.cur_freq;
974 min = dev_priv->rps.min_freq_softlimit;
975 max = dev_priv->rps.max_freq_softlimit;
976
977 if (client_boost) {
978 new_delay = dev_priv->rps.max_freq_softlimit;
979 adj = 0;
980 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
981 if (adj > 0)
982 adj *= 2;
983 else /* CHV needs even encode values */
984 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
985 /*
986 * For better performance, jump directly
987 * to RPe if we're below it.
988 */
989 if (new_delay < dev_priv->rps.efficient_freq - adj) {
990 new_delay = dev_priv->rps.efficient_freq;
991 adj = 0;
992 }
993 } else if (any_waiters(dev_priv)) {
994 adj = 0;
995 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
996 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
997 new_delay = dev_priv->rps.efficient_freq;
998 else
999 new_delay = dev_priv->rps.min_freq_softlimit;
1000 adj = 0;
1001 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1002 if (adj < 0)
1003 adj *= 2;
1004 else /* CHV needs even encode values */
1005 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1006 } else { /* unknown event */
1007 adj = 0;
1008 }
1009
1010 dev_priv->rps.last_adj = adj;
1011
1012 /* sysfs frequency interfaces may have snuck in while servicing the
1013 * interrupt
1014 */
1015 new_delay += adj;
1016 new_delay = clamp_t(int, new_delay, min, max);
1017
1018 intel_set_rps(dev_priv->dev, new_delay);
1019
1020 mutex_unlock(&dev_priv->rps.hw_lock);
1021 }
1022
1023
1024 /**
1025 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1026 * occurred.
1027 * @work: workqueue struct
1028 *
1029 * Doesn't actually do anything except notify userspace. As a consequence of
1030 * this event, userspace should try to remap the bad rows since statistically
1031 * it is likely the same row is more likely to go bad again.
1032 */
1033 static void ivybridge_parity_work(struct work_struct *work)
1034 {
1035 struct drm_i915_private *dev_priv =
1036 container_of(work, struct drm_i915_private, l3_parity.error_work);
1037 u32 error_status, row, bank, subbank;
1038 char *parity_event[6];
1039 uint32_t misccpctl;
1040 uint8_t slice = 0;
1041
1042 /* We must turn off DOP level clock gating to access the L3 registers.
1043 * In order to prevent a get/put style interface, acquire struct mutex
1044 * any time we access those registers.
1045 */
1046 mutex_lock(&dev_priv->dev->struct_mutex);
1047
1048 /* If we've screwed up tracking, just let the interrupt fire again */
1049 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1050 goto out;
1051
1052 misccpctl = I915_READ(GEN7_MISCCPCTL);
1053 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1054 POSTING_READ(GEN7_MISCCPCTL);
1055
1056 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1057 u32 reg;
1058
1059 slice--;
1060 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1061 break;
1062
1063 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1064
1065 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1066
1067 error_status = I915_READ(reg);
1068 row = GEN7_PARITY_ERROR_ROW(error_status);
1069 bank = GEN7_PARITY_ERROR_BANK(error_status);
1070 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1071
1072 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1073 POSTING_READ(reg);
1074
1075 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1076 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1077 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1078 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1079 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1080 parity_event[5] = NULL;
1081
1082 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1083 KOBJ_CHANGE, parity_event);
1084
1085 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1086 slice, row, bank, subbank);
1087
1088 kfree(parity_event[4]);
1089 kfree(parity_event[3]);
1090 kfree(parity_event[2]);
1091 kfree(parity_event[1]);
1092 }
1093
1094 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1095
1096 out:
1097 WARN_ON(dev_priv->l3_parity.which_slice);
1098 spin_lock_irq(&dev_priv->irq_lock);
1099 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1100 spin_unlock_irq(&dev_priv->irq_lock);
1101
1102 mutex_unlock(&dev_priv->dev->struct_mutex);
1103 }
1104
1105 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1106 {
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108
1109 if (!HAS_L3_DPF(dev))
1110 return;
1111
1112 spin_lock(&dev_priv->irq_lock);
1113 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1114 spin_unlock(&dev_priv->irq_lock);
1115
1116 iir &= GT_PARITY_ERROR(dev);
1117 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1118 dev_priv->l3_parity.which_slice |= 1 << 1;
1119
1120 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1121 dev_priv->l3_parity.which_slice |= 1 << 0;
1122
1123 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1124 }
1125
1126 static void ilk_gt_irq_handler(struct drm_device *dev,
1127 struct drm_i915_private *dev_priv,
1128 u32 gt_iir)
1129 {
1130 if (gt_iir &
1131 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1132 notify_ring(&dev_priv->ring[RCS]);
1133 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1134 notify_ring(&dev_priv->ring[VCS]);
1135 }
1136
1137 static void snb_gt_irq_handler(struct drm_device *dev,
1138 struct drm_i915_private *dev_priv,
1139 u32 gt_iir)
1140 {
1141
1142 if (gt_iir &
1143 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1144 notify_ring(&dev_priv->ring[RCS]);
1145 if (gt_iir & GT_BSD_USER_INTERRUPT)
1146 notify_ring(&dev_priv->ring[VCS]);
1147 if (gt_iir & GT_BLT_USER_INTERRUPT)
1148 notify_ring(&dev_priv->ring[BCS]);
1149
1150 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1151 GT_BSD_CS_ERROR_INTERRUPT |
1152 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1153 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1154
1155 if (gt_iir & GT_PARITY_ERROR(dev))
1156 ivybridge_parity_error_irq_handler(dev, gt_iir);
1157 }
1158
1159 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1160 u32 master_ctl)
1161 {
1162 irqreturn_t ret = IRQ_NONE;
1163
1164 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1165 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1166 if (tmp) {
1167 I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1168 ret = IRQ_HANDLED;
1169
1170 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1171 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1172 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1173 notify_ring(&dev_priv->ring[RCS]);
1174
1175 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1176 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1177 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1178 notify_ring(&dev_priv->ring[BCS]);
1179 } else
1180 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1181 }
1182
1183 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1184 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1185 if (tmp) {
1186 I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1187 ret = IRQ_HANDLED;
1188
1189 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1190 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1191 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1192 notify_ring(&dev_priv->ring[VCS]);
1193
1194 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1195 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1196 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1197 notify_ring(&dev_priv->ring[VCS2]);
1198 } else
1199 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1200 }
1201
1202 if (master_ctl & GEN8_GT_VECS_IRQ) {
1203 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1204 if (tmp) {
1205 I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1206 ret = IRQ_HANDLED;
1207
1208 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1209 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1210 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1211 notify_ring(&dev_priv->ring[VECS]);
1212 } else
1213 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1214 }
1215
1216 if (master_ctl & GEN8_GT_PM_IRQ) {
1217 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1218 if (tmp & dev_priv->pm_rps_events) {
1219 I915_WRITE_FW(GEN8_GT_IIR(2),
1220 tmp & dev_priv->pm_rps_events);
1221 ret = IRQ_HANDLED;
1222 gen6_rps_irq_handler(dev_priv, tmp);
1223 } else
1224 DRM_ERROR("The master control interrupt lied (PM)!\n");
1225 }
1226
1227 return ret;
1228 }
1229
1230 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1231 {
1232 switch (port) {
1233 case PORT_A:
1234 return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1235 case PORT_B:
1236 return val & PORTB_HOTPLUG_LONG_DETECT;
1237 case PORT_C:
1238 return val & PORTC_HOTPLUG_LONG_DETECT;
1239 case PORT_D:
1240 return val & PORTD_HOTPLUG_LONG_DETECT;
1241 default:
1242 return false;
1243 }
1244 }
1245
1246 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1247 {
1248 switch (port) {
1249 case PORT_B:
1250 return val & PORTB_HOTPLUG_LONG_DETECT;
1251 case PORT_C:
1252 return val & PORTC_HOTPLUG_LONG_DETECT;
1253 case PORT_D:
1254 return val & PORTD_HOTPLUG_LONG_DETECT;
1255 default:
1256 return false;
1257 }
1258 }
1259
1260 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1261 {
1262 switch (port) {
1263 case PORT_B:
1264 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1265 case PORT_C:
1266 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1267 case PORT_D:
1268 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1269 default:
1270 return false;
1271 }
1272 }
1273
1274 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1275 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1276 u32 hotplug_trigger, u32 dig_hotplug_reg,
1277 const u32 hpd[HPD_NUM_PINS],
1278 bool long_pulse_detect(enum port port, u32 val))
1279 {
1280 enum port port;
1281 int i;
1282
1283 *pin_mask = 0;
1284 *long_mask = 0;
1285
1286 for_each_hpd_pin(i) {
1287 if ((hpd[i] & hotplug_trigger) == 0)
1288 continue;
1289
1290 *pin_mask |= BIT(i);
1291
1292 if (!intel_hpd_pin_to_port(i, &port))
1293 continue;
1294
1295 if (long_pulse_detect(port, dig_hotplug_reg))
1296 *long_mask |= BIT(i);
1297 }
1298
1299 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1300 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1301
1302 }
1303
1304 static void gmbus_irq_handler(struct drm_device *dev)
1305 {
1306 struct drm_i915_private *dev_priv = dev->dev_private;
1307
1308 wake_up_all(&dev_priv->gmbus_wait_queue);
1309 }
1310
1311 static void dp_aux_irq_handler(struct drm_device *dev)
1312 {
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314
1315 wake_up_all(&dev_priv->gmbus_wait_queue);
1316 }
1317
1318 #if defined(CONFIG_DEBUG_FS)
1319 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1320 uint32_t crc0, uint32_t crc1,
1321 uint32_t crc2, uint32_t crc3,
1322 uint32_t crc4)
1323 {
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1326 struct intel_pipe_crc_entry *entry;
1327 int head, tail;
1328
1329 spin_lock(&pipe_crc->lock);
1330
1331 if (!pipe_crc->entries) {
1332 spin_unlock(&pipe_crc->lock);
1333 DRM_DEBUG_KMS("spurious interrupt\n");
1334 return;
1335 }
1336
1337 head = pipe_crc->head;
1338 tail = pipe_crc->tail;
1339
1340 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1341 spin_unlock(&pipe_crc->lock);
1342 DRM_ERROR("CRC buffer overflowing\n");
1343 return;
1344 }
1345
1346 entry = &pipe_crc->entries[head];
1347
1348 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1349 entry->crc[0] = crc0;
1350 entry->crc[1] = crc1;
1351 entry->crc[2] = crc2;
1352 entry->crc[3] = crc3;
1353 entry->crc[4] = crc4;
1354
1355 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1356 pipe_crc->head = head;
1357
1358 spin_unlock(&pipe_crc->lock);
1359
1360 wake_up_interruptible(&pipe_crc->wq);
1361 }
1362 #else
1363 static inline void
1364 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1365 uint32_t crc0, uint32_t crc1,
1366 uint32_t crc2, uint32_t crc3,
1367 uint32_t crc4) {}
1368 #endif
1369
1370
1371 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1372 {
1373 struct drm_i915_private *dev_priv = dev->dev_private;
1374
1375 display_pipe_crc_irq_handler(dev, pipe,
1376 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1377 0, 0, 0, 0);
1378 }
1379
1380 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1381 {
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383
1384 display_pipe_crc_irq_handler(dev, pipe,
1385 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1386 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1387 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1388 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1389 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1390 }
1391
1392 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1393 {
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 uint32_t res1, res2;
1396
1397 if (INTEL_INFO(dev)->gen >= 3)
1398 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1399 else
1400 res1 = 0;
1401
1402 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1403 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1404 else
1405 res2 = 0;
1406
1407 display_pipe_crc_irq_handler(dev, pipe,
1408 I915_READ(PIPE_CRC_RES_RED(pipe)),
1409 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1410 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1411 res1, res2);
1412 }
1413
1414 /* The RPS events need forcewake, so we add them to a work queue and mask their
1415 * IMR bits until the work is done. Other interrupts can be processed without
1416 * the work queue. */
1417 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1418 {
1419 if (pm_iir & dev_priv->pm_rps_events) {
1420 spin_lock(&dev_priv->irq_lock);
1421 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1422 if (dev_priv->rps.interrupts_enabled) {
1423 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1424 queue_work(dev_priv->wq, &dev_priv->rps.work);
1425 }
1426 spin_unlock(&dev_priv->irq_lock);
1427 }
1428
1429 if (INTEL_INFO(dev_priv)->gen >= 8)
1430 return;
1431
1432 if (HAS_VEBOX(dev_priv->dev)) {
1433 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1434 notify_ring(&dev_priv->ring[VECS]);
1435
1436 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1437 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1438 }
1439 }
1440
1441 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1442 {
1443 if (!drm_handle_vblank(dev, pipe))
1444 return false;
1445
1446 return true;
1447 }
1448
1449 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1450 {
1451 struct drm_i915_private *dev_priv = dev->dev_private;
1452 u32 pipe_stats[I915_MAX_PIPES] = { };
1453 int pipe;
1454
1455 spin_lock(&dev_priv->irq_lock);
1456 for_each_pipe(dev_priv, pipe) {
1457 int reg;
1458 u32 mask, iir_bit = 0;
1459
1460 /*
1461 * PIPESTAT bits get signalled even when the interrupt is
1462 * disabled with the mask bits, and some of the status bits do
1463 * not generate interrupts at all (like the underrun bit). Hence
1464 * we need to be careful that we only handle what we want to
1465 * handle.
1466 */
1467
1468 /* fifo underruns are filterered in the underrun handler. */
1469 mask = PIPE_FIFO_UNDERRUN_STATUS;
1470
1471 switch (pipe) {
1472 case PIPE_A:
1473 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1474 break;
1475 case PIPE_B:
1476 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1477 break;
1478 case PIPE_C:
1479 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1480 break;
1481 }
1482 if (iir & iir_bit)
1483 mask |= dev_priv->pipestat_irq_mask[pipe];
1484
1485 if (!mask)
1486 continue;
1487
1488 reg = PIPESTAT(pipe);
1489 mask |= PIPESTAT_INT_ENABLE_MASK;
1490 pipe_stats[pipe] = I915_READ(reg) & mask;
1491
1492 /*
1493 * Clear the PIPE*STAT regs before the IIR
1494 */
1495 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1496 PIPESTAT_INT_STATUS_MASK))
1497 I915_WRITE(reg, pipe_stats[pipe]);
1498 }
1499 spin_unlock(&dev_priv->irq_lock);
1500
1501 for_each_pipe(dev_priv, pipe) {
1502 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1503 intel_pipe_handle_vblank(dev, pipe))
1504 intel_check_page_flip(dev, pipe);
1505
1506 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1507 intel_prepare_page_flip(dev, pipe);
1508 intel_finish_page_flip(dev, pipe);
1509 }
1510
1511 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1512 i9xx_pipe_crc_irq_handler(dev, pipe);
1513
1514 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1515 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1516 }
1517
1518 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1519 gmbus_irq_handler(dev);
1520 }
1521
1522 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1523 {
1524 struct drm_i915_private *dev_priv = dev->dev_private;
1525 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1526 u32 pin_mask, long_mask;
1527
1528 if (!hotplug_status)
1529 return;
1530
1531 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1532 /*
1533 * Make sure hotplug status is cleared before we clear IIR, or else we
1534 * may miss hotplug events.
1535 */
1536 POSTING_READ(PORT_HOTPLUG_STAT);
1537
1538 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1539 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1540
1541 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1542 hotplug_trigger, hpd_status_g4x,
1543 i9xx_port_hotplug_long_detect);
1544 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1545
1546 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1547 dp_aux_irq_handler(dev);
1548 } else {
1549 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1550
1551 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1552 hotplug_trigger, hpd_status_g4x,
1553 i9xx_port_hotplug_long_detect);
1554 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1555 }
1556 }
1557
1558 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1559 {
1560 struct drm_device *dev = arg;
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 u32 iir, gt_iir, pm_iir;
1563 irqreturn_t ret = IRQ_NONE;
1564
1565 if (!intel_irqs_enabled(dev_priv))
1566 return IRQ_NONE;
1567
1568 while (true) {
1569 /* Find, clear, then process each source of interrupt */
1570
1571 gt_iir = I915_READ(GTIIR);
1572 if (gt_iir)
1573 I915_WRITE(GTIIR, gt_iir);
1574
1575 pm_iir = I915_READ(GEN6_PMIIR);
1576 if (pm_iir)
1577 I915_WRITE(GEN6_PMIIR, pm_iir);
1578
1579 iir = I915_READ(VLV_IIR);
1580 if (iir) {
1581 /* Consume port before clearing IIR or we'll miss events */
1582 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1583 i9xx_hpd_irq_handler(dev);
1584 I915_WRITE(VLV_IIR, iir);
1585 }
1586
1587 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1588 goto out;
1589
1590 ret = IRQ_HANDLED;
1591
1592 if (gt_iir)
1593 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1594 if (pm_iir)
1595 gen6_rps_irq_handler(dev_priv, pm_iir);
1596 /* Call regardless, as some status bits might not be
1597 * signalled in iir */
1598 valleyview_pipestat_irq_handler(dev, iir);
1599 }
1600
1601 out:
1602 return ret;
1603 }
1604
1605 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1606 {
1607 struct drm_device *dev = arg;
1608 struct drm_i915_private *dev_priv = dev->dev_private;
1609 u32 master_ctl, iir;
1610 irqreturn_t ret = IRQ_NONE;
1611
1612 if (!intel_irqs_enabled(dev_priv))
1613 return IRQ_NONE;
1614
1615 for (;;) {
1616 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1617 iir = I915_READ(VLV_IIR);
1618
1619 if (master_ctl == 0 && iir == 0)
1620 break;
1621
1622 ret = IRQ_HANDLED;
1623
1624 I915_WRITE(GEN8_MASTER_IRQ, 0);
1625
1626 /* Find, clear, then process each source of interrupt */
1627
1628 if (iir) {
1629 /* Consume port before clearing IIR or we'll miss events */
1630 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1631 i9xx_hpd_irq_handler(dev);
1632 I915_WRITE(VLV_IIR, iir);
1633 }
1634
1635 gen8_gt_irq_handler(dev_priv, master_ctl);
1636
1637 /* Call regardless, as some status bits might not be
1638 * signalled in iir */
1639 valleyview_pipestat_irq_handler(dev, iir);
1640
1641 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1642 POSTING_READ(GEN8_MASTER_IRQ);
1643 }
1644
1645 return ret;
1646 }
1647
1648 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1649 {
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 int pipe;
1652 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1653
1654 if (hotplug_trigger) {
1655 u32 dig_hotplug_reg, pin_mask, long_mask;
1656
1657 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1658 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1659
1660 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1661 dig_hotplug_reg, hpd_ibx,
1662 pch_port_hotplug_long_detect);
1663 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1664 }
1665
1666 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1667 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1668 SDE_AUDIO_POWER_SHIFT);
1669 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1670 port_name(port));
1671 }
1672
1673 if (pch_iir & SDE_AUX_MASK)
1674 dp_aux_irq_handler(dev);
1675
1676 if (pch_iir & SDE_GMBUS)
1677 gmbus_irq_handler(dev);
1678
1679 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1680 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1681
1682 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1683 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1684
1685 if (pch_iir & SDE_POISON)
1686 DRM_ERROR("PCH poison interrupt\n");
1687
1688 if (pch_iir & SDE_FDI_MASK)
1689 for_each_pipe(dev_priv, pipe)
1690 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1691 pipe_name(pipe),
1692 I915_READ(FDI_RX_IIR(pipe)));
1693
1694 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1695 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1696
1697 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1698 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1699
1700 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1701 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1702
1703 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1704 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1705 }
1706
1707 static void ivb_err_int_handler(struct drm_device *dev)
1708 {
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 u32 err_int = I915_READ(GEN7_ERR_INT);
1711 enum pipe pipe;
1712
1713 if (err_int & ERR_INT_POISON)
1714 DRM_ERROR("Poison interrupt\n");
1715
1716 for_each_pipe(dev_priv, pipe) {
1717 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1718 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1719
1720 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1721 if (IS_IVYBRIDGE(dev))
1722 ivb_pipe_crc_irq_handler(dev, pipe);
1723 else
1724 hsw_pipe_crc_irq_handler(dev, pipe);
1725 }
1726 }
1727
1728 I915_WRITE(GEN7_ERR_INT, err_int);
1729 }
1730
1731 static void cpt_serr_int_handler(struct drm_device *dev)
1732 {
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 u32 serr_int = I915_READ(SERR_INT);
1735
1736 if (serr_int & SERR_INT_POISON)
1737 DRM_ERROR("PCH poison interrupt\n");
1738
1739 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1740 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1741
1742 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1743 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1744
1745 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1746 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1747
1748 I915_WRITE(SERR_INT, serr_int);
1749 }
1750
1751 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1752 {
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 int pipe;
1755 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1756
1757 if (hotplug_trigger) {
1758 u32 dig_hotplug_reg, pin_mask, long_mask;
1759
1760 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1761 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1762
1763 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1764 dig_hotplug_reg, hpd_cpt,
1765 pch_port_hotplug_long_detect);
1766 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1767 }
1768
1769 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1770 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1771 SDE_AUDIO_POWER_SHIFT_CPT);
1772 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1773 port_name(port));
1774 }
1775
1776 if (pch_iir & SDE_AUX_MASK_CPT)
1777 dp_aux_irq_handler(dev);
1778
1779 if (pch_iir & SDE_GMBUS_CPT)
1780 gmbus_irq_handler(dev);
1781
1782 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1783 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1784
1785 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1786 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1787
1788 if (pch_iir & SDE_FDI_MASK_CPT)
1789 for_each_pipe(dev_priv, pipe)
1790 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1791 pipe_name(pipe),
1792 I915_READ(FDI_RX_IIR(pipe)));
1793
1794 if (pch_iir & SDE_ERROR_CPT)
1795 cpt_serr_int_handler(dev);
1796 }
1797
1798 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1799 {
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 enum pipe pipe;
1802
1803 if (de_iir & DE_AUX_CHANNEL_A)
1804 dp_aux_irq_handler(dev);
1805
1806 if (de_iir & DE_GSE)
1807 intel_opregion_asle_intr(dev);
1808
1809 if (de_iir & DE_POISON)
1810 DRM_ERROR("Poison interrupt\n");
1811
1812 for_each_pipe(dev_priv, pipe) {
1813 if (de_iir & DE_PIPE_VBLANK(pipe) &&
1814 intel_pipe_handle_vblank(dev, pipe))
1815 intel_check_page_flip(dev, pipe);
1816
1817 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1818 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1819
1820 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1821 i9xx_pipe_crc_irq_handler(dev, pipe);
1822
1823 /* plane/pipes map 1:1 on ilk+ */
1824 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1825 intel_prepare_page_flip(dev, pipe);
1826 intel_finish_page_flip_plane(dev, pipe);
1827 }
1828 }
1829
1830 /* check event from PCH */
1831 if (de_iir & DE_PCH_EVENT) {
1832 u32 pch_iir = I915_READ(SDEIIR);
1833
1834 if (HAS_PCH_CPT(dev))
1835 cpt_irq_handler(dev, pch_iir);
1836 else
1837 ibx_irq_handler(dev, pch_iir);
1838
1839 /* should clear PCH hotplug event before clear CPU irq */
1840 I915_WRITE(SDEIIR, pch_iir);
1841 }
1842
1843 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1844 ironlake_rps_change_irq_handler(dev);
1845 }
1846
1847 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1848 {
1849 struct drm_i915_private *dev_priv = dev->dev_private;
1850 enum pipe pipe;
1851
1852 if (de_iir & DE_ERR_INT_IVB)
1853 ivb_err_int_handler(dev);
1854
1855 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1856 dp_aux_irq_handler(dev);
1857
1858 if (de_iir & DE_GSE_IVB)
1859 intel_opregion_asle_intr(dev);
1860
1861 for_each_pipe(dev_priv, pipe) {
1862 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1863 intel_pipe_handle_vblank(dev, pipe))
1864 intel_check_page_flip(dev, pipe);
1865
1866 /* plane/pipes map 1:1 on ilk+ */
1867 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1868 intel_prepare_page_flip(dev, pipe);
1869 intel_finish_page_flip_plane(dev, pipe);
1870 }
1871 }
1872
1873 /* check event from PCH */
1874 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1875 u32 pch_iir = I915_READ(SDEIIR);
1876
1877 cpt_irq_handler(dev, pch_iir);
1878
1879 /* clear PCH hotplug event before clear CPU irq */
1880 I915_WRITE(SDEIIR, pch_iir);
1881 }
1882 }
1883
1884 /*
1885 * To handle irqs with the minimum potential races with fresh interrupts, we:
1886 * 1 - Disable Master Interrupt Control.
1887 * 2 - Find the source(s) of the interrupt.
1888 * 3 - Clear the Interrupt Identity bits (IIR).
1889 * 4 - Process the interrupt(s) that had bits set in the IIRs.
1890 * 5 - Re-enable Master Interrupt Control.
1891 */
1892 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1893 {
1894 struct drm_device *dev = arg;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1897 irqreturn_t ret = IRQ_NONE;
1898
1899 if (!intel_irqs_enabled(dev_priv))
1900 return IRQ_NONE;
1901
1902 /* We get interrupts on unclaimed registers, so check for this before we
1903 * do any I915_{READ,WRITE}. */
1904 intel_uncore_check_errors(dev);
1905
1906 /* disable master interrupt before clearing iir */
1907 de_ier = I915_READ(DEIER);
1908 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1909 POSTING_READ(DEIER);
1910
1911 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1912 * interrupts will will be stored on its back queue, and then we'll be
1913 * able to process them after we restore SDEIER (as soon as we restore
1914 * it, we'll get an interrupt if SDEIIR still has something to process
1915 * due to its back queue). */
1916 if (!HAS_PCH_NOP(dev)) {
1917 sde_ier = I915_READ(SDEIER);
1918 I915_WRITE(SDEIER, 0);
1919 POSTING_READ(SDEIER);
1920 }
1921
1922 /* Find, clear, then process each source of interrupt */
1923
1924 gt_iir = I915_READ(GTIIR);
1925 if (gt_iir) {
1926 I915_WRITE(GTIIR, gt_iir);
1927 ret = IRQ_HANDLED;
1928 if (INTEL_INFO(dev)->gen >= 6)
1929 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1930 else
1931 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1932 }
1933
1934 de_iir = I915_READ(DEIIR);
1935 if (de_iir) {
1936 I915_WRITE(DEIIR, de_iir);
1937 ret = IRQ_HANDLED;
1938 if (INTEL_INFO(dev)->gen >= 7)
1939 ivb_display_irq_handler(dev, de_iir);
1940 else
1941 ilk_display_irq_handler(dev, de_iir);
1942 }
1943
1944 if (INTEL_INFO(dev)->gen >= 6) {
1945 u32 pm_iir = I915_READ(GEN6_PMIIR);
1946 if (pm_iir) {
1947 I915_WRITE(GEN6_PMIIR, pm_iir);
1948 ret = IRQ_HANDLED;
1949 gen6_rps_irq_handler(dev_priv, pm_iir);
1950 }
1951 }
1952
1953 I915_WRITE(DEIER, de_ier);
1954 POSTING_READ(DEIER);
1955 if (!HAS_PCH_NOP(dev)) {
1956 I915_WRITE(SDEIER, sde_ier);
1957 POSTING_READ(SDEIER);
1958 }
1959
1960 return ret;
1961 }
1962
1963 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 u32 hp_control, hp_trigger;
1967 u32 pin_mask, long_mask;
1968
1969 /* Get the status */
1970 hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
1971 hp_control = I915_READ(BXT_HOTPLUG_CTL);
1972
1973 /* Hotplug not enabled ? */
1974 if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
1975 DRM_ERROR("Interrupt when HPD disabled\n");
1976 return;
1977 }
1978
1979 /* Clear sticky bits in hpd status */
1980 I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
1981
1982 intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
1983 hpd_bxt, bxt_port_hotplug_long_detect);
1984 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1985 }
1986
1987 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1988 {
1989 struct drm_device *dev = arg;
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 u32 master_ctl;
1992 irqreturn_t ret = IRQ_NONE;
1993 uint32_t tmp = 0;
1994 enum pipe pipe;
1995 u32 aux_mask = GEN8_AUX_CHANNEL_A;
1996
1997 if (!intel_irqs_enabled(dev_priv))
1998 return IRQ_NONE;
1999
2000 if (IS_GEN9(dev))
2001 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2002 GEN9_AUX_CHANNEL_D;
2003
2004 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2005 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2006 if (!master_ctl)
2007 return IRQ_NONE;
2008
2009 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2010
2011 /* Find, clear, then process each source of interrupt */
2012
2013 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2014
2015 if (master_ctl & GEN8_DE_MISC_IRQ) {
2016 tmp = I915_READ(GEN8_DE_MISC_IIR);
2017 if (tmp) {
2018 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2019 ret = IRQ_HANDLED;
2020 if (tmp & GEN8_DE_MISC_GSE)
2021 intel_opregion_asle_intr(dev);
2022 else
2023 DRM_ERROR("Unexpected DE Misc interrupt\n");
2024 }
2025 else
2026 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2027 }
2028
2029 if (master_ctl & GEN8_DE_PORT_IRQ) {
2030 tmp = I915_READ(GEN8_DE_PORT_IIR);
2031 if (tmp) {
2032 bool found = false;
2033
2034 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2035 ret = IRQ_HANDLED;
2036
2037 if (tmp & aux_mask) {
2038 dp_aux_irq_handler(dev);
2039 found = true;
2040 }
2041
2042 if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2043 bxt_hpd_handler(dev, tmp);
2044 found = true;
2045 }
2046
2047 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2048 gmbus_irq_handler(dev);
2049 found = true;
2050 }
2051
2052 if (!found)
2053 DRM_ERROR("Unexpected DE Port interrupt\n");
2054 }
2055 else
2056 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2057 }
2058
2059 for_each_pipe(dev_priv, pipe) {
2060 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2061
2062 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2063 continue;
2064
2065 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2066 if (pipe_iir) {
2067 ret = IRQ_HANDLED;
2068 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2069
2070 if (pipe_iir & GEN8_PIPE_VBLANK &&
2071 intel_pipe_handle_vblank(dev, pipe))
2072 intel_check_page_flip(dev, pipe);
2073
2074 if (IS_GEN9(dev))
2075 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2076 else
2077 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2078
2079 if (flip_done) {
2080 intel_prepare_page_flip(dev, pipe);
2081 intel_finish_page_flip_plane(dev, pipe);
2082 }
2083
2084 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2085 hsw_pipe_crc_irq_handler(dev, pipe);
2086
2087 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2088 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2089 pipe);
2090
2091
2092 if (IS_GEN9(dev))
2093 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2094 else
2095 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2096
2097 if (fault_errors)
2098 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2099 pipe_name(pipe),
2100 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2101 } else
2102 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2103 }
2104
2105 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2106 master_ctl & GEN8_DE_PCH_IRQ) {
2107 /*
2108 * FIXME(BDW): Assume for now that the new interrupt handling
2109 * scheme also closed the SDE interrupt handling race we've seen
2110 * on older pch-split platforms. But this needs testing.
2111 */
2112 u32 pch_iir = I915_READ(SDEIIR);
2113 if (pch_iir) {
2114 I915_WRITE(SDEIIR, pch_iir);
2115 ret = IRQ_HANDLED;
2116 cpt_irq_handler(dev, pch_iir);
2117 } else
2118 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2119
2120 }
2121
2122 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2123 POSTING_READ_FW(GEN8_MASTER_IRQ);
2124
2125 return ret;
2126 }
2127
2128 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2129 bool reset_completed)
2130 {
2131 struct intel_engine_cs *ring;
2132 int i;
2133
2134 /*
2135 * Notify all waiters for GPU completion events that reset state has
2136 * been changed, and that they need to restart their wait after
2137 * checking for potential errors (and bail out to drop locks if there is
2138 * a gpu reset pending so that i915_error_work_func can acquire them).
2139 */
2140
2141 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2142 for_each_ring(ring, dev_priv, i)
2143 wake_up_all(&ring->irq_queue);
2144
2145 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2146 wake_up_all(&dev_priv->pending_flip_queue);
2147
2148 /*
2149 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2150 * reset state is cleared.
2151 */
2152 if (reset_completed)
2153 wake_up_all(&dev_priv->gpu_error.reset_queue);
2154 }
2155
2156 /**
2157 * i915_reset_and_wakeup - do process context error handling work
2158 *
2159 * Fire an error uevent so userspace can see that a hang or error
2160 * was detected.
2161 */
2162 static void i915_reset_and_wakeup(struct drm_device *dev)
2163 {
2164 struct drm_i915_private *dev_priv = to_i915(dev);
2165 struct i915_gpu_error *error = &dev_priv->gpu_error;
2166 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2167 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2168 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2169 int ret;
2170
2171 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2172
2173 /*
2174 * Note that there's only one work item which does gpu resets, so we
2175 * need not worry about concurrent gpu resets potentially incrementing
2176 * error->reset_counter twice. We only need to take care of another
2177 * racing irq/hangcheck declaring the gpu dead for a second time. A
2178 * quick check for that is good enough: schedule_work ensures the
2179 * correct ordering between hang detection and this work item, and since
2180 * the reset in-progress bit is only ever set by code outside of this
2181 * work we don't need to worry about any other races.
2182 */
2183 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2184 DRM_DEBUG_DRIVER("resetting chip\n");
2185 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2186 reset_event);
2187
2188 /*
2189 * In most cases it's guaranteed that we get here with an RPM
2190 * reference held, for example because there is a pending GPU
2191 * request that won't finish until the reset is done. This
2192 * isn't the case at least when we get here by doing a
2193 * simulated reset via debugs, so get an RPM reference.
2194 */
2195 intel_runtime_pm_get(dev_priv);
2196
2197 intel_prepare_reset(dev);
2198
2199 /*
2200 * All state reset _must_ be completed before we update the
2201 * reset counter, for otherwise waiters might miss the reset
2202 * pending state and not properly drop locks, resulting in
2203 * deadlocks with the reset work.
2204 */
2205 ret = i915_reset(dev);
2206
2207 intel_finish_reset(dev);
2208
2209 intel_runtime_pm_put(dev_priv);
2210
2211 if (ret == 0) {
2212 /*
2213 * After all the gem state is reset, increment the reset
2214 * counter and wake up everyone waiting for the reset to
2215 * complete.
2216 *
2217 * Since unlock operations are a one-sided barrier only,
2218 * we need to insert a barrier here to order any seqno
2219 * updates before
2220 * the counter increment.
2221 */
2222 smp_mb__before_atomic();
2223 atomic_inc(&dev_priv->gpu_error.reset_counter);
2224
2225 kobject_uevent_env(&dev->primary->kdev->kobj,
2226 KOBJ_CHANGE, reset_done_event);
2227 } else {
2228 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2229 }
2230
2231 /*
2232 * Note: The wake_up also serves as a memory barrier so that
2233 * waiters see the update value of the reset counter atomic_t.
2234 */
2235 i915_error_wake_up(dev_priv, true);
2236 }
2237 }
2238
2239 static void i915_report_and_clear_eir(struct drm_device *dev)
2240 {
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 uint32_t instdone[I915_NUM_INSTDONE_REG];
2243 u32 eir = I915_READ(EIR);
2244 int pipe, i;
2245
2246 if (!eir)
2247 return;
2248
2249 pr_err("render error detected, EIR: 0x%08x\n", eir);
2250
2251 i915_get_extra_instdone(dev, instdone);
2252
2253 if (IS_G4X(dev)) {
2254 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2255 u32 ipeir = I915_READ(IPEIR_I965);
2256
2257 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2258 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2259 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2260 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2261 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2262 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2263 I915_WRITE(IPEIR_I965, ipeir);
2264 POSTING_READ(IPEIR_I965);
2265 }
2266 if (eir & GM45_ERROR_PAGE_TABLE) {
2267 u32 pgtbl_err = I915_READ(PGTBL_ER);
2268 pr_err("page table error\n");
2269 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2270 I915_WRITE(PGTBL_ER, pgtbl_err);
2271 POSTING_READ(PGTBL_ER);
2272 }
2273 }
2274
2275 if (!IS_GEN2(dev)) {
2276 if (eir & I915_ERROR_PAGE_TABLE) {
2277 u32 pgtbl_err = I915_READ(PGTBL_ER);
2278 pr_err("page table error\n");
2279 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2280 I915_WRITE(PGTBL_ER, pgtbl_err);
2281 POSTING_READ(PGTBL_ER);
2282 }
2283 }
2284
2285 if (eir & I915_ERROR_MEMORY_REFRESH) {
2286 pr_err("memory refresh error:\n");
2287 for_each_pipe(dev_priv, pipe)
2288 pr_err("pipe %c stat: 0x%08x\n",
2289 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2290 /* pipestat has already been acked */
2291 }
2292 if (eir & I915_ERROR_INSTRUCTION) {
2293 pr_err("instruction error\n");
2294 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2295 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2296 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2297 if (INTEL_INFO(dev)->gen < 4) {
2298 u32 ipeir = I915_READ(IPEIR);
2299
2300 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2301 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2302 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2303 I915_WRITE(IPEIR, ipeir);
2304 POSTING_READ(IPEIR);
2305 } else {
2306 u32 ipeir = I915_READ(IPEIR_I965);
2307
2308 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2309 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2310 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2311 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2312 I915_WRITE(IPEIR_I965, ipeir);
2313 POSTING_READ(IPEIR_I965);
2314 }
2315 }
2316
2317 I915_WRITE(EIR, eir);
2318 POSTING_READ(EIR);
2319 eir = I915_READ(EIR);
2320 if (eir) {
2321 /*
2322 * some errors might have become stuck,
2323 * mask them.
2324 */
2325 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2326 I915_WRITE(EMR, I915_READ(EMR) | eir);
2327 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2328 }
2329 }
2330
2331 /**
2332 * i915_handle_error - handle a gpu error
2333 * @dev: drm device
2334 *
2335 * Do some basic checking of regsiter state at error time and
2336 * dump it to the syslog. Also call i915_capture_error_state() to make
2337 * sure we get a record and make it available in debugfs. Fire a uevent
2338 * so userspace knows something bad happened (should trigger collection
2339 * of a ring dump etc.).
2340 */
2341 void i915_handle_error(struct drm_device *dev, bool wedged,
2342 const char *fmt, ...)
2343 {
2344 struct drm_i915_private *dev_priv = dev->dev_private;
2345 va_list args;
2346 char error_msg[80];
2347
2348 va_start(args, fmt);
2349 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2350 va_end(args);
2351
2352 i915_capture_error_state(dev, wedged, error_msg);
2353 i915_report_and_clear_eir(dev);
2354
2355 if (wedged) {
2356 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2357 &dev_priv->gpu_error.reset_counter);
2358
2359 /*
2360 * Wakeup waiting processes so that the reset function
2361 * i915_reset_and_wakeup doesn't deadlock trying to grab
2362 * various locks. By bumping the reset counter first, the woken
2363 * processes will see a reset in progress and back off,
2364 * releasing their locks and then wait for the reset completion.
2365 * We must do this for _all_ gpu waiters that might hold locks
2366 * that the reset work needs to acquire.
2367 *
2368 * Note: The wake_up serves as the required memory barrier to
2369 * ensure that the waiters see the updated value of the reset
2370 * counter atomic_t.
2371 */
2372 i915_error_wake_up(dev_priv, false);
2373 }
2374
2375 i915_reset_and_wakeup(dev);
2376 }
2377
2378 /* Called from drm generic code, passed 'crtc' which
2379 * we use as a pipe index
2380 */
2381 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2382 {
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 unsigned long irqflags;
2385
2386 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2387 if (INTEL_INFO(dev)->gen >= 4)
2388 i915_enable_pipestat(dev_priv, pipe,
2389 PIPE_START_VBLANK_INTERRUPT_STATUS);
2390 else
2391 i915_enable_pipestat(dev_priv, pipe,
2392 PIPE_VBLANK_INTERRUPT_STATUS);
2393 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2394
2395 return 0;
2396 }
2397
2398 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2399 {
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401 unsigned long irqflags;
2402 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2403 DE_PIPE_VBLANK(pipe);
2404
2405 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406 ironlake_enable_display_irq(dev_priv, bit);
2407 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408
2409 return 0;
2410 }
2411
2412 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 unsigned long irqflags;
2416
2417 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2418 i915_enable_pipestat(dev_priv, pipe,
2419 PIPE_START_VBLANK_INTERRUPT_STATUS);
2420 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2421
2422 return 0;
2423 }
2424
2425 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2426 {
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 unsigned long irqflags;
2429
2430 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2431 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2432 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2433 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2434 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2435 return 0;
2436 }
2437
2438 /* Called from drm generic code, passed 'crtc' which
2439 * we use as a pipe index
2440 */
2441 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2442 {
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 unsigned long irqflags;
2445
2446 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2447 i915_disable_pipestat(dev_priv, pipe,
2448 PIPE_VBLANK_INTERRUPT_STATUS |
2449 PIPE_START_VBLANK_INTERRUPT_STATUS);
2450 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2451 }
2452
2453 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2454 {
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 unsigned long irqflags;
2457 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2458 DE_PIPE_VBLANK(pipe);
2459
2460 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2461 ironlake_disable_display_irq(dev_priv, bit);
2462 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2463 }
2464
2465 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2466 {
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 unsigned long irqflags;
2469
2470 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2471 i915_disable_pipestat(dev_priv, pipe,
2472 PIPE_START_VBLANK_INTERRUPT_STATUS);
2473 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2474 }
2475
2476 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2477 {
2478 struct drm_i915_private *dev_priv = dev->dev_private;
2479 unsigned long irqflags;
2480
2481 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2482 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2483 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2484 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2485 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2486 }
2487
2488 static bool
2489 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2490 {
2491 return (list_empty(&ring->request_list) ||
2492 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2493 }
2494
2495 static bool
2496 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2497 {
2498 if (INTEL_INFO(dev)->gen >= 8) {
2499 return (ipehr >> 23) == 0x1c;
2500 } else {
2501 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2502 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2503 MI_SEMAPHORE_REGISTER);
2504 }
2505 }
2506
2507 static struct intel_engine_cs *
2508 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2509 {
2510 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2511 struct intel_engine_cs *signaller;
2512 int i;
2513
2514 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2515 for_each_ring(signaller, dev_priv, i) {
2516 if (ring == signaller)
2517 continue;
2518
2519 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2520 return signaller;
2521 }
2522 } else {
2523 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2524
2525 for_each_ring(signaller, dev_priv, i) {
2526 if(ring == signaller)
2527 continue;
2528
2529 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2530 return signaller;
2531 }
2532 }
2533
2534 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2535 ring->id, ipehr, offset);
2536
2537 return NULL;
2538 }
2539
2540 static struct intel_engine_cs *
2541 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2542 {
2543 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2544 u32 cmd, ipehr, head;
2545 u64 offset = 0;
2546 int i, backwards;
2547
2548 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2549 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2550 return NULL;
2551
2552 /*
2553 * HEAD is likely pointing to the dword after the actual command,
2554 * so scan backwards until we find the MBOX. But limit it to just 3
2555 * or 4 dwords depending on the semaphore wait command size.
2556 * Note that we don't care about ACTHD here since that might
2557 * point at at batch, and semaphores are always emitted into the
2558 * ringbuffer itself.
2559 */
2560 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2561 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2562
2563 for (i = backwards; i; --i) {
2564 /*
2565 * Be paranoid and presume the hw has gone off into the wild -
2566 * our ring is smaller than what the hardware (and hence
2567 * HEAD_ADDR) allows. Also handles wrap-around.
2568 */
2569 head &= ring->buffer->size - 1;
2570
2571 /* This here seems to blow up */
2572 cmd = ioread32(ring->buffer->virtual_start + head);
2573 if (cmd == ipehr)
2574 break;
2575
2576 head -= 4;
2577 }
2578
2579 if (!i)
2580 return NULL;
2581
2582 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2583 if (INTEL_INFO(ring->dev)->gen >= 8) {
2584 offset = ioread32(ring->buffer->virtual_start + head + 12);
2585 offset <<= 32;
2586 offset = ioread32(ring->buffer->virtual_start + head + 8);
2587 }
2588 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2589 }
2590
2591 static int semaphore_passed(struct intel_engine_cs *ring)
2592 {
2593 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2594 struct intel_engine_cs *signaller;
2595 u32 seqno;
2596
2597 ring->hangcheck.deadlock++;
2598
2599 signaller = semaphore_waits_for(ring, &seqno);
2600 if (signaller == NULL)
2601 return -1;
2602
2603 /* Prevent pathological recursion due to driver bugs */
2604 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2605 return -1;
2606
2607 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2608 return 1;
2609
2610 /* cursory check for an unkickable deadlock */
2611 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2612 semaphore_passed(signaller) < 0)
2613 return -1;
2614
2615 return 0;
2616 }
2617
2618 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2619 {
2620 struct intel_engine_cs *ring;
2621 int i;
2622
2623 for_each_ring(ring, dev_priv, i)
2624 ring->hangcheck.deadlock = 0;
2625 }
2626
2627 static enum intel_ring_hangcheck_action
2628 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2629 {
2630 struct drm_device *dev = ring->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 u32 tmp;
2633
2634 if (acthd != ring->hangcheck.acthd) {
2635 if (acthd > ring->hangcheck.max_acthd) {
2636 ring->hangcheck.max_acthd = acthd;
2637 return HANGCHECK_ACTIVE;
2638 }
2639
2640 return HANGCHECK_ACTIVE_LOOP;
2641 }
2642
2643 if (IS_GEN2(dev))
2644 return HANGCHECK_HUNG;
2645
2646 /* Is the chip hanging on a WAIT_FOR_EVENT?
2647 * If so we can simply poke the RB_WAIT bit
2648 * and break the hang. This should work on
2649 * all but the second generation chipsets.
2650 */
2651 tmp = I915_READ_CTL(ring);
2652 if (tmp & RING_WAIT) {
2653 i915_handle_error(dev, false,
2654 "Kicking stuck wait on %s",
2655 ring->name);
2656 I915_WRITE_CTL(ring, tmp);
2657 return HANGCHECK_KICK;
2658 }
2659
2660 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2661 switch (semaphore_passed(ring)) {
2662 default:
2663 return HANGCHECK_HUNG;
2664 case 1:
2665 i915_handle_error(dev, false,
2666 "Kicking stuck semaphore on %s",
2667 ring->name);
2668 I915_WRITE_CTL(ring, tmp);
2669 return HANGCHECK_KICK;
2670 case 0:
2671 return HANGCHECK_WAIT;
2672 }
2673 }
2674
2675 return HANGCHECK_HUNG;
2676 }
2677
2678 /*
2679 * This is called when the chip hasn't reported back with completed
2680 * batchbuffers in a long time. We keep track per ring seqno progress and
2681 * if there are no progress, hangcheck score for that ring is increased.
2682 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2683 * we kick the ring. If we see no progress on three subsequent calls
2684 * we assume chip is wedged and try to fix it by resetting the chip.
2685 */
2686 static void i915_hangcheck_elapsed(struct work_struct *work)
2687 {
2688 struct drm_i915_private *dev_priv =
2689 container_of(work, typeof(*dev_priv),
2690 gpu_error.hangcheck_work.work);
2691 struct drm_device *dev = dev_priv->dev;
2692 struct intel_engine_cs *ring;
2693 int i;
2694 int busy_count = 0, rings_hung = 0;
2695 bool stuck[I915_NUM_RINGS] = { 0 };
2696 #define BUSY 1
2697 #define KICK 5
2698 #define HUNG 20
2699
2700 if (!i915.enable_hangcheck)
2701 return;
2702
2703 for_each_ring(ring, dev_priv, i) {
2704 u64 acthd;
2705 u32 seqno;
2706 bool busy = true;
2707
2708 semaphore_clear_deadlocks(dev_priv);
2709
2710 seqno = ring->get_seqno(ring, false);
2711 acthd = intel_ring_get_active_head(ring);
2712
2713 if (ring->hangcheck.seqno == seqno) {
2714 if (ring_idle(ring, seqno)) {
2715 ring->hangcheck.action = HANGCHECK_IDLE;
2716
2717 if (waitqueue_active(&ring->irq_queue)) {
2718 /* Issue a wake-up to catch stuck h/w. */
2719 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2720 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2721 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2722 ring->name);
2723 else
2724 DRM_INFO("Fake missed irq on %s\n",
2725 ring->name);
2726 wake_up_all(&ring->irq_queue);
2727 }
2728 /* Safeguard against driver failure */
2729 ring->hangcheck.score += BUSY;
2730 } else
2731 busy = false;
2732 } else {
2733 /* We always increment the hangcheck score
2734 * if the ring is busy and still processing
2735 * the same request, so that no single request
2736 * can run indefinitely (such as a chain of
2737 * batches). The only time we do not increment
2738 * the hangcheck score on this ring, if this
2739 * ring is in a legitimate wait for another
2740 * ring. In that case the waiting ring is a
2741 * victim and we want to be sure we catch the
2742 * right culprit. Then every time we do kick
2743 * the ring, add a small increment to the
2744 * score so that we can catch a batch that is
2745 * being repeatedly kicked and so responsible
2746 * for stalling the machine.
2747 */
2748 ring->hangcheck.action = ring_stuck(ring,
2749 acthd);
2750
2751 switch (ring->hangcheck.action) {
2752 case HANGCHECK_IDLE:
2753 case HANGCHECK_WAIT:
2754 case HANGCHECK_ACTIVE:
2755 break;
2756 case HANGCHECK_ACTIVE_LOOP:
2757 ring->hangcheck.score += BUSY;
2758 break;
2759 case HANGCHECK_KICK:
2760 ring->hangcheck.score += KICK;
2761 break;
2762 case HANGCHECK_HUNG:
2763 ring->hangcheck.score += HUNG;
2764 stuck[i] = true;
2765 break;
2766 }
2767 }
2768 } else {
2769 ring->hangcheck.action = HANGCHECK_ACTIVE;
2770
2771 /* Gradually reduce the count so that we catch DoS
2772 * attempts across multiple batches.
2773 */
2774 if (ring->hangcheck.score > 0)
2775 ring->hangcheck.score--;
2776
2777 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2778 }
2779
2780 ring->hangcheck.seqno = seqno;
2781 ring->hangcheck.acthd = acthd;
2782 busy_count += busy;
2783 }
2784
2785 for_each_ring(ring, dev_priv, i) {
2786 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2787 DRM_INFO("%s on %s\n",
2788 stuck[i] ? "stuck" : "no progress",
2789 ring->name);
2790 rings_hung++;
2791 }
2792 }
2793
2794 if (rings_hung)
2795 return i915_handle_error(dev, true, "Ring hung");
2796
2797 if (busy_count)
2798 /* Reset timer case chip hangs without another request
2799 * being added */
2800 i915_queue_hangcheck(dev);
2801 }
2802
2803 void i915_queue_hangcheck(struct drm_device *dev)
2804 {
2805 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2806
2807 if (!i915.enable_hangcheck)
2808 return;
2809
2810 /* Don't continually defer the hangcheck so that it is always run at
2811 * least once after work has been scheduled on any ring. Otherwise,
2812 * we will ignore a hung ring if a second ring is kept busy.
2813 */
2814
2815 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2816 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2817 }
2818
2819 static void ibx_irq_reset(struct drm_device *dev)
2820 {
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822
2823 if (HAS_PCH_NOP(dev))
2824 return;
2825
2826 GEN5_IRQ_RESET(SDE);
2827
2828 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2829 I915_WRITE(SERR_INT, 0xffffffff);
2830 }
2831
2832 /*
2833 * SDEIER is also touched by the interrupt handler to work around missed PCH
2834 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2835 * instead we unconditionally enable all PCH interrupt sources here, but then
2836 * only unmask them as needed with SDEIMR.
2837 *
2838 * This function needs to be called before interrupts are enabled.
2839 */
2840 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2841 {
2842 struct drm_i915_private *dev_priv = dev->dev_private;
2843
2844 if (HAS_PCH_NOP(dev))
2845 return;
2846
2847 WARN_ON(I915_READ(SDEIER) != 0);
2848 I915_WRITE(SDEIER, 0xffffffff);
2849 POSTING_READ(SDEIER);
2850 }
2851
2852 static void gen5_gt_irq_reset(struct drm_device *dev)
2853 {
2854 struct drm_i915_private *dev_priv = dev->dev_private;
2855
2856 GEN5_IRQ_RESET(GT);
2857 if (INTEL_INFO(dev)->gen >= 6)
2858 GEN5_IRQ_RESET(GEN6_PM);
2859 }
2860
2861 /* drm_dma.h hooks
2862 */
2863 static void ironlake_irq_reset(struct drm_device *dev)
2864 {
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866
2867 I915_WRITE(HWSTAM, 0xffffffff);
2868
2869 GEN5_IRQ_RESET(DE);
2870 if (IS_GEN7(dev))
2871 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2872
2873 gen5_gt_irq_reset(dev);
2874
2875 ibx_irq_reset(dev);
2876 }
2877
2878 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2879 {
2880 enum pipe pipe;
2881
2882 I915_WRITE(PORT_HOTPLUG_EN, 0);
2883 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2884
2885 for_each_pipe(dev_priv, pipe)
2886 I915_WRITE(PIPESTAT(pipe), 0xffff);
2887
2888 GEN5_IRQ_RESET(VLV_);
2889 }
2890
2891 static void valleyview_irq_preinstall(struct drm_device *dev)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895 /* VLV magic */
2896 I915_WRITE(VLV_IMR, 0);
2897 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2898 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2899 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2900
2901 gen5_gt_irq_reset(dev);
2902
2903 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2904
2905 vlv_display_irq_reset(dev_priv);
2906 }
2907
2908 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2909 {
2910 GEN8_IRQ_RESET_NDX(GT, 0);
2911 GEN8_IRQ_RESET_NDX(GT, 1);
2912 GEN8_IRQ_RESET_NDX(GT, 2);
2913 GEN8_IRQ_RESET_NDX(GT, 3);
2914 }
2915
2916 static void gen8_irq_reset(struct drm_device *dev)
2917 {
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 int pipe;
2920
2921 I915_WRITE(GEN8_MASTER_IRQ, 0);
2922 POSTING_READ(GEN8_MASTER_IRQ);
2923
2924 gen8_gt_irq_reset(dev_priv);
2925
2926 for_each_pipe(dev_priv, pipe)
2927 if (intel_display_power_is_enabled(dev_priv,
2928 POWER_DOMAIN_PIPE(pipe)))
2929 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2930
2931 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2932 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2933 GEN5_IRQ_RESET(GEN8_PCU_);
2934
2935 if (HAS_PCH_SPLIT(dev))
2936 ibx_irq_reset(dev);
2937 }
2938
2939 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2940 unsigned int pipe_mask)
2941 {
2942 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2943
2944 spin_lock_irq(&dev_priv->irq_lock);
2945 if (pipe_mask & 1 << PIPE_A)
2946 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2947 dev_priv->de_irq_mask[PIPE_A],
2948 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2949 if (pipe_mask & 1 << PIPE_B)
2950 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2951 dev_priv->de_irq_mask[PIPE_B],
2952 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2953 if (pipe_mask & 1 << PIPE_C)
2954 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2955 dev_priv->de_irq_mask[PIPE_C],
2956 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2957 spin_unlock_irq(&dev_priv->irq_lock);
2958 }
2959
2960 static void cherryview_irq_preinstall(struct drm_device *dev)
2961 {
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963
2964 I915_WRITE(GEN8_MASTER_IRQ, 0);
2965 POSTING_READ(GEN8_MASTER_IRQ);
2966
2967 gen8_gt_irq_reset(dev_priv);
2968
2969 GEN5_IRQ_RESET(GEN8_PCU_);
2970
2971 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2972
2973 vlv_display_irq_reset(dev_priv);
2974 }
2975
2976 static void ibx_hpd_irq_setup(struct drm_device *dev)
2977 {
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 struct intel_encoder *intel_encoder;
2980 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2981
2982 if (HAS_PCH_IBX(dev)) {
2983 hotplug_irqs = SDE_HOTPLUG_MASK;
2984 for_each_intel_encoder(dev, intel_encoder)
2985 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
2986 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2987 } else {
2988 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2989 for_each_intel_encoder(dev, intel_encoder)
2990 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
2991 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2992 }
2993
2994 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2995
2996 /*
2997 * Enable digital hotplug on the PCH, and configure the DP short pulse
2998 * duration to 2ms (which is the minimum in the Display Port spec)
2999 *
3000 * This register is the same on all known PCH chips.
3001 */
3002 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3003 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3004 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3005 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3006 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3007 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3008 }
3009
3010 static void bxt_hpd_irq_setup(struct drm_device *dev)
3011 {
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013 struct intel_encoder *intel_encoder;
3014 u32 hotplug_port = 0;
3015 u32 hotplug_ctrl;
3016
3017 /* Now, enable HPD */
3018 for_each_intel_encoder(dev, intel_encoder) {
3019 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3020 == HPD_ENABLED)
3021 hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3022 }
3023
3024 /* Mask all HPD control bits */
3025 hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3026
3027 /* Enable requested port in hotplug control */
3028 /* TODO: implement (short) HPD support on port A */
3029 WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3030 if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3031 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3032 if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3033 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3034 I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3035
3036 /* Unmask DDI hotplug in IMR */
3037 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3038 I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3039
3040 /* Enable DDI hotplug in IER */
3041 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3042 I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3043 POSTING_READ(GEN8_DE_PORT_IER);
3044 }
3045
3046 static void ibx_irq_postinstall(struct drm_device *dev)
3047 {
3048 struct drm_i915_private *dev_priv = dev->dev_private;
3049 u32 mask;
3050
3051 if (HAS_PCH_NOP(dev))
3052 return;
3053
3054 if (HAS_PCH_IBX(dev))
3055 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3056 else
3057 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3058
3059 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3060 I915_WRITE(SDEIMR, ~mask);
3061 }
3062
3063 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3064 {
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 u32 pm_irqs, gt_irqs;
3067
3068 pm_irqs = gt_irqs = 0;
3069
3070 dev_priv->gt_irq_mask = ~0;
3071 if (HAS_L3_DPF(dev)) {
3072 /* L3 parity interrupt is always unmasked. */
3073 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3074 gt_irqs |= GT_PARITY_ERROR(dev);
3075 }
3076
3077 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3078 if (IS_GEN5(dev)) {
3079 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3080 ILK_BSD_USER_INTERRUPT;
3081 } else {
3082 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3083 }
3084
3085 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3086
3087 if (INTEL_INFO(dev)->gen >= 6) {
3088 /*
3089 * RPS interrupts will get enabled/disabled on demand when RPS
3090 * itself is enabled/disabled.
3091 */
3092 if (HAS_VEBOX(dev))
3093 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3094
3095 dev_priv->pm_irq_mask = 0xffffffff;
3096 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3097 }
3098 }
3099
3100 static int ironlake_irq_postinstall(struct drm_device *dev)
3101 {
3102 struct drm_i915_private *dev_priv = dev->dev_private;
3103 u32 display_mask, extra_mask;
3104
3105 if (INTEL_INFO(dev)->gen >= 7) {
3106 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3107 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3108 DE_PLANEB_FLIP_DONE_IVB |
3109 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3110 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3111 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3112 } else {
3113 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3114 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3115 DE_AUX_CHANNEL_A |
3116 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3117 DE_POISON);
3118 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3119 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3120 }
3121
3122 dev_priv->irq_mask = ~display_mask;
3123
3124 I915_WRITE(HWSTAM, 0xeffe);
3125
3126 ibx_irq_pre_postinstall(dev);
3127
3128 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3129
3130 gen5_gt_irq_postinstall(dev);
3131
3132 ibx_irq_postinstall(dev);
3133
3134 if (IS_IRONLAKE_M(dev)) {
3135 /* Enable PCU event interrupts
3136 *
3137 * spinlocking not required here for correctness since interrupt
3138 * setup is guaranteed to run in single-threaded context. But we
3139 * need it to make the assert_spin_locked happy. */
3140 spin_lock_irq(&dev_priv->irq_lock);
3141 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3142 spin_unlock_irq(&dev_priv->irq_lock);
3143 }
3144
3145 return 0;
3146 }
3147
3148 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3149 {
3150 u32 pipestat_mask;
3151 u32 iir_mask;
3152 enum pipe pipe;
3153
3154 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3155 PIPE_FIFO_UNDERRUN_STATUS;
3156
3157 for_each_pipe(dev_priv, pipe)
3158 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3159 POSTING_READ(PIPESTAT(PIPE_A));
3160
3161 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3162 PIPE_CRC_DONE_INTERRUPT_STATUS;
3163
3164 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3165 for_each_pipe(dev_priv, pipe)
3166 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3167
3168 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3169 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3170 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3171 if (IS_CHERRYVIEW(dev_priv))
3172 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3173 dev_priv->irq_mask &= ~iir_mask;
3174
3175 I915_WRITE(VLV_IIR, iir_mask);
3176 I915_WRITE(VLV_IIR, iir_mask);
3177 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3178 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3179 POSTING_READ(VLV_IMR);
3180 }
3181
3182 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3183 {
3184 u32 pipestat_mask;
3185 u32 iir_mask;
3186 enum pipe pipe;
3187
3188 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3189 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3190 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3191 if (IS_CHERRYVIEW(dev_priv))
3192 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3193
3194 dev_priv->irq_mask |= iir_mask;
3195 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3196 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3197 I915_WRITE(VLV_IIR, iir_mask);
3198 I915_WRITE(VLV_IIR, iir_mask);
3199 POSTING_READ(VLV_IIR);
3200
3201 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3202 PIPE_CRC_DONE_INTERRUPT_STATUS;
3203
3204 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3205 for_each_pipe(dev_priv, pipe)
3206 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3207
3208 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3209 PIPE_FIFO_UNDERRUN_STATUS;
3210
3211 for_each_pipe(dev_priv, pipe)
3212 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3213 POSTING_READ(PIPESTAT(PIPE_A));
3214 }
3215
3216 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3217 {
3218 assert_spin_locked(&dev_priv->irq_lock);
3219
3220 if (dev_priv->display_irqs_enabled)
3221 return;
3222
3223 dev_priv->display_irqs_enabled = true;
3224
3225 if (intel_irqs_enabled(dev_priv))
3226 valleyview_display_irqs_install(dev_priv);
3227 }
3228
3229 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3230 {
3231 assert_spin_locked(&dev_priv->irq_lock);
3232
3233 if (!dev_priv->display_irqs_enabled)
3234 return;
3235
3236 dev_priv->display_irqs_enabled = false;
3237
3238 if (intel_irqs_enabled(dev_priv))
3239 valleyview_display_irqs_uninstall(dev_priv);
3240 }
3241
3242 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3243 {
3244 dev_priv->irq_mask = ~0;
3245
3246 I915_WRITE(PORT_HOTPLUG_EN, 0);
3247 POSTING_READ(PORT_HOTPLUG_EN);
3248
3249 I915_WRITE(VLV_IIR, 0xffffffff);
3250 I915_WRITE(VLV_IIR, 0xffffffff);
3251 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3252 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3253 POSTING_READ(VLV_IMR);
3254
3255 /* Interrupt setup is already guaranteed to be single-threaded, this is
3256 * just to make the assert_spin_locked check happy. */
3257 spin_lock_irq(&dev_priv->irq_lock);
3258 if (dev_priv->display_irqs_enabled)
3259 valleyview_display_irqs_install(dev_priv);
3260 spin_unlock_irq(&dev_priv->irq_lock);
3261 }
3262
3263 static int valleyview_irq_postinstall(struct drm_device *dev)
3264 {
3265 struct drm_i915_private *dev_priv = dev->dev_private;
3266
3267 vlv_display_irq_postinstall(dev_priv);
3268
3269 gen5_gt_irq_postinstall(dev);
3270
3271 /* ack & enable invalid PTE error interrupts */
3272 #if 0 /* FIXME: add support to irq handler for checking these bits */
3273 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3274 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3275 #endif
3276
3277 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3278
3279 return 0;
3280 }
3281
3282 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284 /* These are interrupts we'll toggle with the ring mask register */
3285 uint32_t gt_interrupts[] = {
3286 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3287 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3288 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3289 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3290 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3291 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3292 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3293 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3294 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3295 0,
3296 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3297 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3298 };
3299
3300 dev_priv->pm_irq_mask = 0xffffffff;
3301 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3302 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3303 /*
3304 * RPS interrupts will get enabled/disabled on demand when RPS itself
3305 * is enabled/disabled.
3306 */
3307 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3308 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3309 }
3310
3311 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3312 {
3313 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3314 uint32_t de_pipe_enables;
3315 int pipe;
3316 u32 de_port_en = GEN8_AUX_CHANNEL_A;
3317
3318 if (IS_GEN9(dev_priv)) {
3319 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3320 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3321 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3322 GEN9_AUX_CHANNEL_D;
3323
3324 if (IS_BROXTON(dev_priv))
3325 de_port_en |= BXT_DE_PORT_GMBUS;
3326 } else
3327 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3328 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3329
3330 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3331 GEN8_PIPE_FIFO_UNDERRUN;
3332
3333 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3334 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3335 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3336
3337 for_each_pipe(dev_priv, pipe)
3338 if (intel_display_power_is_enabled(dev_priv,
3339 POWER_DOMAIN_PIPE(pipe)))
3340 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3341 dev_priv->de_irq_mask[pipe],
3342 de_pipe_enables);
3343
3344 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3345 }
3346
3347 static int gen8_irq_postinstall(struct drm_device *dev)
3348 {
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351 if (HAS_PCH_SPLIT(dev))
3352 ibx_irq_pre_postinstall(dev);
3353
3354 gen8_gt_irq_postinstall(dev_priv);
3355 gen8_de_irq_postinstall(dev_priv);
3356
3357 if (HAS_PCH_SPLIT(dev))
3358 ibx_irq_postinstall(dev);
3359
3360 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3361 POSTING_READ(GEN8_MASTER_IRQ);
3362
3363 return 0;
3364 }
3365
3366 static int cherryview_irq_postinstall(struct drm_device *dev)
3367 {
3368 struct drm_i915_private *dev_priv = dev->dev_private;
3369
3370 vlv_display_irq_postinstall(dev_priv);
3371
3372 gen8_gt_irq_postinstall(dev_priv);
3373
3374 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3375 POSTING_READ(GEN8_MASTER_IRQ);
3376
3377 return 0;
3378 }
3379
3380 static void gen8_irq_uninstall(struct drm_device *dev)
3381 {
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 if (!dev_priv)
3385 return;
3386
3387 gen8_irq_reset(dev);
3388 }
3389
3390 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3391 {
3392 /* Interrupt setup is already guaranteed to be single-threaded, this is
3393 * just to make the assert_spin_locked check happy. */
3394 spin_lock_irq(&dev_priv->irq_lock);
3395 if (dev_priv->display_irqs_enabled)
3396 valleyview_display_irqs_uninstall(dev_priv);
3397 spin_unlock_irq(&dev_priv->irq_lock);
3398
3399 vlv_display_irq_reset(dev_priv);
3400
3401 dev_priv->irq_mask = ~0;
3402 }
3403
3404 static void valleyview_irq_uninstall(struct drm_device *dev)
3405 {
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407
3408 if (!dev_priv)
3409 return;
3410
3411 I915_WRITE(VLV_MASTER_IER, 0);
3412
3413 gen5_gt_irq_reset(dev);
3414
3415 I915_WRITE(HWSTAM, 0xffffffff);
3416
3417 vlv_display_irq_uninstall(dev_priv);
3418 }
3419
3420 static void cherryview_irq_uninstall(struct drm_device *dev)
3421 {
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423
3424 if (!dev_priv)
3425 return;
3426
3427 I915_WRITE(GEN8_MASTER_IRQ, 0);
3428 POSTING_READ(GEN8_MASTER_IRQ);
3429
3430 gen8_gt_irq_reset(dev_priv);
3431
3432 GEN5_IRQ_RESET(GEN8_PCU_);
3433
3434 vlv_display_irq_uninstall(dev_priv);
3435 }
3436
3437 static void ironlake_irq_uninstall(struct drm_device *dev)
3438 {
3439 struct drm_i915_private *dev_priv = dev->dev_private;
3440
3441 if (!dev_priv)
3442 return;
3443
3444 ironlake_irq_reset(dev);
3445 }
3446
3447 static void i8xx_irq_preinstall(struct drm_device * dev)
3448 {
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 int pipe;
3451
3452 for_each_pipe(dev_priv, pipe)
3453 I915_WRITE(PIPESTAT(pipe), 0);
3454 I915_WRITE16(IMR, 0xffff);
3455 I915_WRITE16(IER, 0x0);
3456 POSTING_READ16(IER);
3457 }
3458
3459 static int i8xx_irq_postinstall(struct drm_device *dev)
3460 {
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462
3463 I915_WRITE16(EMR,
3464 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3465
3466 /* Unmask the interrupts that we always want on. */
3467 dev_priv->irq_mask =
3468 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3469 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3470 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3471 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3472 I915_WRITE16(IMR, dev_priv->irq_mask);
3473
3474 I915_WRITE16(IER,
3475 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3476 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3477 I915_USER_INTERRUPT);
3478 POSTING_READ16(IER);
3479
3480 /* Interrupt setup is already guaranteed to be single-threaded, this is
3481 * just to make the assert_spin_locked check happy. */
3482 spin_lock_irq(&dev_priv->irq_lock);
3483 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3484 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3485 spin_unlock_irq(&dev_priv->irq_lock);
3486
3487 return 0;
3488 }
3489
3490 /*
3491 * Returns true when a page flip has completed.
3492 */
3493 static bool i8xx_handle_vblank(struct drm_device *dev,
3494 int plane, int pipe, u32 iir)
3495 {
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3498
3499 if (!intel_pipe_handle_vblank(dev, pipe))
3500 return false;
3501
3502 if ((iir & flip_pending) == 0)
3503 goto check_page_flip;
3504
3505 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3506 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3507 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3508 * the flip is completed (no longer pending). Since this doesn't raise
3509 * an interrupt per se, we watch for the change at vblank.
3510 */
3511 if (I915_READ16(ISR) & flip_pending)
3512 goto check_page_flip;
3513
3514 intel_prepare_page_flip(dev, plane);
3515 intel_finish_page_flip(dev, pipe);
3516 return true;
3517
3518 check_page_flip:
3519 intel_check_page_flip(dev, pipe);
3520 return false;
3521 }
3522
3523 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3524 {
3525 struct drm_device *dev = arg;
3526 struct drm_i915_private *dev_priv = dev->dev_private;
3527 u16 iir, new_iir;
3528 u32 pipe_stats[2];
3529 int pipe;
3530 u16 flip_mask =
3531 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3532 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3533
3534 if (!intel_irqs_enabled(dev_priv))
3535 return IRQ_NONE;
3536
3537 iir = I915_READ16(IIR);
3538 if (iir == 0)
3539 return IRQ_NONE;
3540
3541 while (iir & ~flip_mask) {
3542 /* Can't rely on pipestat interrupt bit in iir as it might
3543 * have been cleared after the pipestat interrupt was received.
3544 * It doesn't set the bit in iir again, but it still produces
3545 * interrupts (for non-MSI).
3546 */
3547 spin_lock(&dev_priv->irq_lock);
3548 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3549 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3550
3551 for_each_pipe(dev_priv, pipe) {
3552 int reg = PIPESTAT(pipe);
3553 pipe_stats[pipe] = I915_READ(reg);
3554
3555 /*
3556 * Clear the PIPE*STAT regs before the IIR
3557 */
3558 if (pipe_stats[pipe] & 0x8000ffff)
3559 I915_WRITE(reg, pipe_stats[pipe]);
3560 }
3561 spin_unlock(&dev_priv->irq_lock);
3562
3563 I915_WRITE16(IIR, iir & ~flip_mask);
3564 new_iir = I915_READ16(IIR); /* Flush posted writes */
3565
3566 if (iir & I915_USER_INTERRUPT)
3567 notify_ring(&dev_priv->ring[RCS]);
3568
3569 for_each_pipe(dev_priv, pipe) {
3570 int plane = pipe;
3571 if (HAS_FBC(dev))
3572 plane = !plane;
3573
3574 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3575 i8xx_handle_vblank(dev, plane, pipe, iir))
3576 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3577
3578 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3579 i9xx_pipe_crc_irq_handler(dev, pipe);
3580
3581 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3582 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3583 pipe);
3584 }
3585
3586 iir = new_iir;
3587 }
3588
3589 return IRQ_HANDLED;
3590 }
3591
3592 static void i8xx_irq_uninstall(struct drm_device * dev)
3593 {
3594 struct drm_i915_private *dev_priv = dev->dev_private;
3595 int pipe;
3596
3597 for_each_pipe(dev_priv, pipe) {
3598 /* Clear enable bits; then clear status bits */
3599 I915_WRITE(PIPESTAT(pipe), 0);
3600 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3601 }
3602 I915_WRITE16(IMR, 0xffff);
3603 I915_WRITE16(IER, 0x0);
3604 I915_WRITE16(IIR, I915_READ16(IIR));
3605 }
3606
3607 static void i915_irq_preinstall(struct drm_device * dev)
3608 {
3609 struct drm_i915_private *dev_priv = dev->dev_private;
3610 int pipe;
3611
3612 if (I915_HAS_HOTPLUG(dev)) {
3613 I915_WRITE(PORT_HOTPLUG_EN, 0);
3614 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3615 }
3616
3617 I915_WRITE16(HWSTAM, 0xeffe);
3618 for_each_pipe(dev_priv, pipe)
3619 I915_WRITE(PIPESTAT(pipe), 0);
3620 I915_WRITE(IMR, 0xffffffff);
3621 I915_WRITE(IER, 0x0);
3622 POSTING_READ(IER);
3623 }
3624
3625 static int i915_irq_postinstall(struct drm_device *dev)
3626 {
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 u32 enable_mask;
3629
3630 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3631
3632 /* Unmask the interrupts that we always want on. */
3633 dev_priv->irq_mask =
3634 ~(I915_ASLE_INTERRUPT |
3635 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3636 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3637 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3638 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3639
3640 enable_mask =
3641 I915_ASLE_INTERRUPT |
3642 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3643 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3644 I915_USER_INTERRUPT;
3645
3646 if (I915_HAS_HOTPLUG(dev)) {
3647 I915_WRITE(PORT_HOTPLUG_EN, 0);
3648 POSTING_READ(PORT_HOTPLUG_EN);
3649
3650 /* Enable in IER... */
3651 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3652 /* and unmask in IMR */
3653 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3654 }
3655
3656 I915_WRITE(IMR, dev_priv->irq_mask);
3657 I915_WRITE(IER, enable_mask);
3658 POSTING_READ(IER);
3659
3660 i915_enable_asle_pipestat(dev);
3661
3662 /* Interrupt setup is already guaranteed to be single-threaded, this is
3663 * just to make the assert_spin_locked check happy. */
3664 spin_lock_irq(&dev_priv->irq_lock);
3665 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3666 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3667 spin_unlock_irq(&dev_priv->irq_lock);
3668
3669 return 0;
3670 }
3671
3672 /*
3673 * Returns true when a page flip has completed.
3674 */
3675 static bool i915_handle_vblank(struct drm_device *dev,
3676 int plane, int pipe, u32 iir)
3677 {
3678 struct drm_i915_private *dev_priv = dev->dev_private;
3679 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3680
3681 if (!intel_pipe_handle_vblank(dev, pipe))
3682 return false;
3683
3684 if ((iir & flip_pending) == 0)
3685 goto check_page_flip;
3686
3687 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3688 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3689 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3690 * the flip is completed (no longer pending). Since this doesn't raise
3691 * an interrupt per se, we watch for the change at vblank.
3692 */
3693 if (I915_READ(ISR) & flip_pending)
3694 goto check_page_flip;
3695
3696 intel_prepare_page_flip(dev, plane);
3697 intel_finish_page_flip(dev, pipe);
3698 return true;
3699
3700 check_page_flip:
3701 intel_check_page_flip(dev, pipe);
3702 return false;
3703 }
3704
3705 static irqreturn_t i915_irq_handler(int irq, void *arg)
3706 {
3707 struct drm_device *dev = arg;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3710 u32 flip_mask =
3711 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3712 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3713 int pipe, ret = IRQ_NONE;
3714
3715 if (!intel_irqs_enabled(dev_priv))
3716 return IRQ_NONE;
3717
3718 iir = I915_READ(IIR);
3719 do {
3720 bool irq_received = (iir & ~flip_mask) != 0;
3721 bool blc_event = false;
3722
3723 /* Can't rely on pipestat interrupt bit in iir as it might
3724 * have been cleared after the pipestat interrupt was received.
3725 * It doesn't set the bit in iir again, but it still produces
3726 * interrupts (for non-MSI).
3727 */
3728 spin_lock(&dev_priv->irq_lock);
3729 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3730 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3731
3732 for_each_pipe(dev_priv, pipe) {
3733 int reg = PIPESTAT(pipe);
3734 pipe_stats[pipe] = I915_READ(reg);
3735
3736 /* Clear the PIPE*STAT regs before the IIR */
3737 if (pipe_stats[pipe] & 0x8000ffff) {
3738 I915_WRITE(reg, pipe_stats[pipe]);
3739 irq_received = true;
3740 }
3741 }
3742 spin_unlock(&dev_priv->irq_lock);
3743
3744 if (!irq_received)
3745 break;
3746
3747 /* Consume port. Then clear IIR or we'll miss events */
3748 if (I915_HAS_HOTPLUG(dev) &&
3749 iir & I915_DISPLAY_PORT_INTERRUPT)
3750 i9xx_hpd_irq_handler(dev);
3751
3752 I915_WRITE(IIR, iir & ~flip_mask);
3753 new_iir = I915_READ(IIR); /* Flush posted writes */
3754
3755 if (iir & I915_USER_INTERRUPT)
3756 notify_ring(&dev_priv->ring[RCS]);
3757
3758 for_each_pipe(dev_priv, pipe) {
3759 int plane = pipe;
3760 if (HAS_FBC(dev))
3761 plane = !plane;
3762
3763 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3764 i915_handle_vblank(dev, plane, pipe, iir))
3765 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3766
3767 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3768 blc_event = true;
3769
3770 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3771 i9xx_pipe_crc_irq_handler(dev, pipe);
3772
3773 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3774 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3775 pipe);
3776 }
3777
3778 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3779 intel_opregion_asle_intr(dev);
3780
3781 /* With MSI, interrupts are only generated when iir
3782 * transitions from zero to nonzero. If another bit got
3783 * set while we were handling the existing iir bits, then
3784 * we would never get another interrupt.
3785 *
3786 * This is fine on non-MSI as well, as if we hit this path
3787 * we avoid exiting the interrupt handler only to generate
3788 * another one.
3789 *
3790 * Note that for MSI this could cause a stray interrupt report
3791 * if an interrupt landed in the time between writing IIR and
3792 * the posting read. This should be rare enough to never
3793 * trigger the 99% of 100,000 interrupts test for disabling
3794 * stray interrupts.
3795 */
3796 ret = IRQ_HANDLED;
3797 iir = new_iir;
3798 } while (iir & ~flip_mask);
3799
3800 return ret;
3801 }
3802
3803 static void i915_irq_uninstall(struct drm_device * dev)
3804 {
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806 int pipe;
3807
3808 if (I915_HAS_HOTPLUG(dev)) {
3809 I915_WRITE(PORT_HOTPLUG_EN, 0);
3810 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3811 }
3812
3813 I915_WRITE16(HWSTAM, 0xffff);
3814 for_each_pipe(dev_priv, pipe) {
3815 /* Clear enable bits; then clear status bits */
3816 I915_WRITE(PIPESTAT(pipe), 0);
3817 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3818 }
3819 I915_WRITE(IMR, 0xffffffff);
3820 I915_WRITE(IER, 0x0);
3821
3822 I915_WRITE(IIR, I915_READ(IIR));
3823 }
3824
3825 static void i965_irq_preinstall(struct drm_device * dev)
3826 {
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 int pipe;
3829
3830 I915_WRITE(PORT_HOTPLUG_EN, 0);
3831 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3832
3833 I915_WRITE(HWSTAM, 0xeffe);
3834 for_each_pipe(dev_priv, pipe)
3835 I915_WRITE(PIPESTAT(pipe), 0);
3836 I915_WRITE(IMR, 0xffffffff);
3837 I915_WRITE(IER, 0x0);
3838 POSTING_READ(IER);
3839 }
3840
3841 static int i965_irq_postinstall(struct drm_device *dev)
3842 {
3843 struct drm_i915_private *dev_priv = dev->dev_private;
3844 u32 enable_mask;
3845 u32 error_mask;
3846
3847 /* Unmask the interrupts that we always want on. */
3848 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3849 I915_DISPLAY_PORT_INTERRUPT |
3850 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3851 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3852 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3853 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3854 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3855
3856 enable_mask = ~dev_priv->irq_mask;
3857 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3858 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3859 enable_mask |= I915_USER_INTERRUPT;
3860
3861 if (IS_G4X(dev))
3862 enable_mask |= I915_BSD_USER_INTERRUPT;
3863
3864 /* Interrupt setup is already guaranteed to be single-threaded, this is
3865 * just to make the assert_spin_locked check happy. */
3866 spin_lock_irq(&dev_priv->irq_lock);
3867 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3868 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3869 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3870 spin_unlock_irq(&dev_priv->irq_lock);
3871
3872 /*
3873 * Enable some error detection, note the instruction error mask
3874 * bit is reserved, so we leave it masked.
3875 */
3876 if (IS_G4X(dev)) {
3877 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3878 GM45_ERROR_MEM_PRIV |
3879 GM45_ERROR_CP_PRIV |
3880 I915_ERROR_MEMORY_REFRESH);
3881 } else {
3882 error_mask = ~(I915_ERROR_PAGE_TABLE |
3883 I915_ERROR_MEMORY_REFRESH);
3884 }
3885 I915_WRITE(EMR, error_mask);
3886
3887 I915_WRITE(IMR, dev_priv->irq_mask);
3888 I915_WRITE(IER, enable_mask);
3889 POSTING_READ(IER);
3890
3891 I915_WRITE(PORT_HOTPLUG_EN, 0);
3892 POSTING_READ(PORT_HOTPLUG_EN);
3893
3894 i915_enable_asle_pipestat(dev);
3895
3896 return 0;
3897 }
3898
3899 static void i915_hpd_irq_setup(struct drm_device *dev)
3900 {
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902 struct intel_encoder *intel_encoder;
3903 u32 hotplug_en;
3904
3905 assert_spin_locked(&dev_priv->irq_lock);
3906
3907 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3908 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3909 /* Note HDMI and DP share hotplug bits */
3910 /* enable bits are the same for all generations */
3911 for_each_intel_encoder(dev, intel_encoder)
3912 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3913 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3914 /* Programming the CRT detection parameters tends
3915 to generate a spurious hotplug event about three
3916 seconds later. So just do it once.
3917 */
3918 if (IS_G4X(dev))
3919 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3920 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3921 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3922
3923 /* Ignore TV since it's buggy */
3924 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3925 }
3926
3927 static irqreturn_t i965_irq_handler(int irq, void *arg)
3928 {
3929 struct drm_device *dev = arg;
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 u32 iir, new_iir;
3932 u32 pipe_stats[I915_MAX_PIPES];
3933 int ret = IRQ_NONE, pipe;
3934 u32 flip_mask =
3935 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3936 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3937
3938 if (!intel_irqs_enabled(dev_priv))
3939 return IRQ_NONE;
3940
3941 iir = I915_READ(IIR);
3942
3943 for (;;) {
3944 bool irq_received = (iir & ~flip_mask) != 0;
3945 bool blc_event = false;
3946
3947 /* Can't rely on pipestat interrupt bit in iir as it might
3948 * have been cleared after the pipestat interrupt was received.
3949 * It doesn't set the bit in iir again, but it still produces
3950 * interrupts (for non-MSI).
3951 */
3952 spin_lock(&dev_priv->irq_lock);
3953 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3954 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3955
3956 for_each_pipe(dev_priv, pipe) {
3957 int reg = PIPESTAT(pipe);
3958 pipe_stats[pipe] = I915_READ(reg);
3959
3960 /*
3961 * Clear the PIPE*STAT regs before the IIR
3962 */
3963 if (pipe_stats[pipe] & 0x8000ffff) {
3964 I915_WRITE(reg, pipe_stats[pipe]);
3965 irq_received = true;
3966 }
3967 }
3968 spin_unlock(&dev_priv->irq_lock);
3969
3970 if (!irq_received)
3971 break;
3972
3973 ret = IRQ_HANDLED;
3974
3975 /* Consume port. Then clear IIR or we'll miss events */
3976 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3977 i9xx_hpd_irq_handler(dev);
3978
3979 I915_WRITE(IIR, iir & ~flip_mask);
3980 new_iir = I915_READ(IIR); /* Flush posted writes */
3981
3982 if (iir & I915_USER_INTERRUPT)
3983 notify_ring(&dev_priv->ring[RCS]);
3984 if (iir & I915_BSD_USER_INTERRUPT)
3985 notify_ring(&dev_priv->ring[VCS]);
3986
3987 for_each_pipe(dev_priv, pipe) {
3988 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3989 i915_handle_vblank(dev, pipe, pipe, iir))
3990 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3991
3992 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3993 blc_event = true;
3994
3995 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3996 i9xx_pipe_crc_irq_handler(dev, pipe);
3997
3998 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3999 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4000 }
4001
4002 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4003 intel_opregion_asle_intr(dev);
4004
4005 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4006 gmbus_irq_handler(dev);
4007
4008 /* With MSI, interrupts are only generated when iir
4009 * transitions from zero to nonzero. If another bit got
4010 * set while we were handling the existing iir bits, then
4011 * we would never get another interrupt.
4012 *
4013 * This is fine on non-MSI as well, as if we hit this path
4014 * we avoid exiting the interrupt handler only to generate
4015 * another one.
4016 *
4017 * Note that for MSI this could cause a stray interrupt report
4018 * if an interrupt landed in the time between writing IIR and
4019 * the posting read. This should be rare enough to never
4020 * trigger the 99% of 100,000 interrupts test for disabling
4021 * stray interrupts.
4022 */
4023 iir = new_iir;
4024 }
4025
4026 return ret;
4027 }
4028
4029 static void i965_irq_uninstall(struct drm_device * dev)
4030 {
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032 int pipe;
4033
4034 if (!dev_priv)
4035 return;
4036
4037 I915_WRITE(PORT_HOTPLUG_EN, 0);
4038 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039
4040 I915_WRITE(HWSTAM, 0xffffffff);
4041 for_each_pipe(dev_priv, pipe)
4042 I915_WRITE(PIPESTAT(pipe), 0);
4043 I915_WRITE(IMR, 0xffffffff);
4044 I915_WRITE(IER, 0x0);
4045
4046 for_each_pipe(dev_priv, pipe)
4047 I915_WRITE(PIPESTAT(pipe),
4048 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4049 I915_WRITE(IIR, I915_READ(IIR));
4050 }
4051
4052 /**
4053 * intel_irq_init - initializes irq support
4054 * @dev_priv: i915 device instance
4055 *
4056 * This function initializes all the irq support including work items, timers
4057 * and all the vtables. It does not setup the interrupt itself though.
4058 */
4059 void intel_irq_init(struct drm_i915_private *dev_priv)
4060 {
4061 struct drm_device *dev = dev_priv->dev;
4062
4063 intel_hpd_init_work(dev_priv);
4064
4065 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4066 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4067
4068 /* Let's track the enabled rps events */
4069 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4070 /* WaGsvRC0ResidencyMethod:vlv */
4071 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4072 else
4073 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4074
4075 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4076 i915_hangcheck_elapsed);
4077
4078 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4079
4080 if (IS_GEN2(dev_priv)) {
4081 dev->max_vblank_count = 0;
4082 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4083 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4084 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4085 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4086 } else {
4087 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4088 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4089 }
4090
4091 /*
4092 * Opt out of the vblank disable timer on everything except gen2.
4093 * Gen2 doesn't have a hardware frame counter and so depends on
4094 * vblank interrupts to produce sane vblank seuquence numbers.
4095 */
4096 if (!IS_GEN2(dev_priv))
4097 dev->vblank_disable_immediate = true;
4098
4099 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4100 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4101
4102 if (IS_CHERRYVIEW(dev_priv)) {
4103 dev->driver->irq_handler = cherryview_irq_handler;
4104 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4105 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4106 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4107 dev->driver->enable_vblank = valleyview_enable_vblank;
4108 dev->driver->disable_vblank = valleyview_disable_vblank;
4109 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4110 } else if (IS_VALLEYVIEW(dev_priv)) {
4111 dev->driver->irq_handler = valleyview_irq_handler;
4112 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4113 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4114 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4115 dev->driver->enable_vblank = valleyview_enable_vblank;
4116 dev->driver->disable_vblank = valleyview_disable_vblank;
4117 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4118 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4119 dev->driver->irq_handler = gen8_irq_handler;
4120 dev->driver->irq_preinstall = gen8_irq_reset;
4121 dev->driver->irq_postinstall = gen8_irq_postinstall;
4122 dev->driver->irq_uninstall = gen8_irq_uninstall;
4123 dev->driver->enable_vblank = gen8_enable_vblank;
4124 dev->driver->disable_vblank = gen8_disable_vblank;
4125 if (HAS_PCH_SPLIT(dev))
4126 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4127 else
4128 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4129 } else if (HAS_PCH_SPLIT(dev)) {
4130 dev->driver->irq_handler = ironlake_irq_handler;
4131 dev->driver->irq_preinstall = ironlake_irq_reset;
4132 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4133 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4134 dev->driver->enable_vblank = ironlake_enable_vblank;
4135 dev->driver->disable_vblank = ironlake_disable_vblank;
4136 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4137 } else {
4138 if (INTEL_INFO(dev_priv)->gen == 2) {
4139 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4140 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4141 dev->driver->irq_handler = i8xx_irq_handler;
4142 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4143 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4144 dev->driver->irq_preinstall = i915_irq_preinstall;
4145 dev->driver->irq_postinstall = i915_irq_postinstall;
4146 dev->driver->irq_uninstall = i915_irq_uninstall;
4147 dev->driver->irq_handler = i915_irq_handler;
4148 } else {
4149 dev->driver->irq_preinstall = i965_irq_preinstall;
4150 dev->driver->irq_postinstall = i965_irq_postinstall;
4151 dev->driver->irq_uninstall = i965_irq_uninstall;
4152 dev->driver->irq_handler = i965_irq_handler;
4153 }
4154 if (I915_HAS_HOTPLUG(dev_priv))
4155 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4156 dev->driver->enable_vblank = i915_enable_vblank;
4157 dev->driver->disable_vblank = i915_disable_vblank;
4158 }
4159 }
4160
4161 /**
4162 * intel_irq_install - enables the hardware interrupt
4163 * @dev_priv: i915 device instance
4164 *
4165 * This function enables the hardware interrupt handling, but leaves the hotplug
4166 * handling still disabled. It is called after intel_irq_init().
4167 *
4168 * In the driver load and resume code we need working interrupts in a few places
4169 * but don't want to deal with the hassle of concurrent probe and hotplug
4170 * workers. Hence the split into this two-stage approach.
4171 */
4172 int intel_irq_install(struct drm_i915_private *dev_priv)
4173 {
4174 /*
4175 * We enable some interrupt sources in our postinstall hooks, so mark
4176 * interrupts as enabled _before_ actually enabling them to avoid
4177 * special cases in our ordering checks.
4178 */
4179 dev_priv->pm.irqs_enabled = true;
4180
4181 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4182 }
4183
4184 /**
4185 * intel_irq_uninstall - finilizes all irq handling
4186 * @dev_priv: i915 device instance
4187 *
4188 * This stops interrupt and hotplug handling and unregisters and frees all
4189 * resources acquired in the init functions.
4190 */
4191 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4192 {
4193 drm_irq_uninstall(dev_priv->dev);
4194 intel_hpd_cancel_work(dev_priv);
4195 dev_priv->pm.irqs_enabled = false;
4196 }
4197
4198 /**
4199 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4200 * @dev_priv: i915 device instance
4201 *
4202 * This function is used to disable interrupts at runtime, both in the runtime
4203 * pm and the system suspend/resume code.
4204 */
4205 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4206 {
4207 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4208 dev_priv->pm.irqs_enabled = false;
4209 synchronize_irq(dev_priv->dev->irq);
4210 }
4211
4212 /**
4213 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4214 * @dev_priv: i915 device instance
4215 *
4216 * This function is used to enable interrupts at runtime, both in the runtime
4217 * pm and the system suspend/resume code.
4218 */
4219 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4220 {
4221 dev_priv->pm.irqs_enabled = true;
4222 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4223 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4224 }
This page took 0.124314 seconds and 5 git commands to generate.