6b7bee59e0c7f91db71aded86756192375e2370f
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_ring_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003
1004 wake_up_all(&engine->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *engine;
1083 int i;
1084
1085 for_each_ring(engine, dev_priv, i)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->engine[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->engine[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->engine[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->engine[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->engine[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(engine);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 intel_lrc_irq_handler(engine);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv->dev)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->engine[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704
1705 for_each_pipe(dev_priv, pipe) {
1706 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 intel_pipe_handle_vblank(dev, pipe))
1708 intel_check_page_flip(dev, pipe);
1709
1710 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 intel_prepare_page_flip(dev, pipe);
1712 intel_finish_page_flip(dev, pipe);
1713 }
1714
1715 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 }
1721
1722 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 u32 pin_mask = 0, long_mask = 0;
1731
1732 if (!hotplug_status)
1733 return;
1734
1735 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 /*
1737 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 * may miss hotplug events.
1739 */
1740 POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745 if (hotplug_trigger) {
1746 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 hotplug_trigger, hpd_status_g4x,
1748 i9xx_port_hotplug_long_detect);
1749
1750 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 }
1752
1753 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 dp_aux_irq_handler(dev);
1755 } else {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_i915,
1761 i9xx_port_hotplug_long_detect);
1762 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 }
1764 }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 struct drm_device *dev = arg;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 iir, gt_iir, pm_iir;
1772 irqreturn_t ret = IRQ_NONE;
1773
1774 if (!intel_irqs_enabled(dev_priv))
1775 return IRQ_NONE;
1776
1777 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 disable_rpm_wakeref_asserts(dev_priv);
1779
1780 while (true) {
1781 /* Find, clear, then process each source of interrupt */
1782
1783 gt_iir = I915_READ(GTIIR);
1784 if (gt_iir)
1785 I915_WRITE(GTIIR, gt_iir);
1786
1787 pm_iir = I915_READ(GEN6_PMIIR);
1788 if (pm_iir)
1789 I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791 iir = I915_READ(VLV_IIR);
1792 if (iir) {
1793 /* Consume port before clearing IIR or we'll miss events */
1794 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795 i9xx_hpd_irq_handler(dev);
1796 I915_WRITE(VLV_IIR, iir);
1797 }
1798
1799 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800 goto out;
1801
1802 ret = IRQ_HANDLED;
1803
1804 if (gt_iir)
1805 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806 if (pm_iir)
1807 gen6_rps_irq_handler(dev_priv, pm_iir);
1808 /* Call regardless, as some status bits might not be
1809 * signalled in iir */
1810 valleyview_pipestat_irq_handler(dev, iir);
1811 }
1812
1813 out:
1814 enable_rpm_wakeref_asserts(dev_priv);
1815
1816 return ret;
1817 }
1818
1819 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820 {
1821 struct drm_device *dev = arg;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
1823 u32 master_ctl, iir;
1824 irqreturn_t ret = IRQ_NONE;
1825
1826 if (!intel_irqs_enabled(dev_priv))
1827 return IRQ_NONE;
1828
1829 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830 disable_rpm_wakeref_asserts(dev_priv);
1831
1832 for (;;) {
1833 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834 iir = I915_READ(VLV_IIR);
1835
1836 if (master_ctl == 0 && iir == 0)
1837 break;
1838
1839 ret = IRQ_HANDLED;
1840
1841 I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843 /* Find, clear, then process each source of interrupt */
1844
1845 if (iir) {
1846 /* Consume port before clearing IIR or we'll miss events */
1847 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848 i9xx_hpd_irq_handler(dev);
1849 I915_WRITE(VLV_IIR, iir);
1850 }
1851
1852 gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854 /* Call regardless, as some status bits might not be
1855 * signalled in iir */
1856 valleyview_pipestat_irq_handler(dev, iir);
1857
1858 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859 POSTING_READ(GEN8_MASTER_IRQ);
1860 }
1861
1862 enable_rpm_wakeref_asserts(dev_priv);
1863
1864 return ret;
1865 }
1866
1867 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868 const u32 hpd[HPD_NUM_PINS])
1869 {
1870 struct drm_i915_private *dev_priv = to_i915(dev);
1871 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873 /*
1874 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875 * unless we touch the hotplug register, even if hotplug_trigger is
1876 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877 * errors.
1878 */
1879 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880 if (!hotplug_trigger) {
1881 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882 PORTD_HOTPLUG_STATUS_MASK |
1883 PORTC_HOTPLUG_STATUS_MASK |
1884 PORTB_HOTPLUG_STATUS_MASK;
1885 dig_hotplug_reg &= ~mask;
1886 }
1887
1888 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889 if (!hotplug_trigger)
1890 return;
1891
1892 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893 dig_hotplug_reg, hpd,
1894 pch_port_hotplug_long_detect);
1895
1896 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897 }
1898
1899 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 int pipe;
1903 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909 SDE_AUDIO_POWER_SHIFT);
1910 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911 port_name(port));
1912 }
1913
1914 if (pch_iir & SDE_AUX_MASK)
1915 dp_aux_irq_handler(dev);
1916
1917 if (pch_iir & SDE_GMBUS)
1918 gmbus_irq_handler(dev);
1919
1920 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926 if (pch_iir & SDE_POISON)
1927 DRM_ERROR("PCH poison interrupt\n");
1928
1929 if (pch_iir & SDE_FDI_MASK)
1930 for_each_pipe(dev_priv, pipe)
1931 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1932 pipe_name(pipe),
1933 I915_READ(FDI_RX_IIR(pipe)));
1934
1935 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 }
1947
1948 static void ivb_err_int_handler(struct drm_device *dev)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 u32 err_int = I915_READ(GEN7_ERR_INT);
1952 enum pipe pipe;
1953
1954 if (err_int & ERR_INT_POISON)
1955 DRM_ERROR("Poison interrupt\n");
1956
1957 for_each_pipe(dev_priv, pipe) {
1958 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962 if (IS_IVYBRIDGE(dev))
1963 ivb_pipe_crc_irq_handler(dev, pipe);
1964 else
1965 hsw_pipe_crc_irq_handler(dev, pipe);
1966 }
1967 }
1968
1969 I915_WRITE(GEN7_ERR_INT, err_int);
1970 }
1971
1972 static void cpt_serr_int_handler(struct drm_device *dev)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 u32 serr_int = I915_READ(SERR_INT);
1976
1977 if (serr_int & SERR_INT_POISON)
1978 DRM_ERROR("PCH poison interrupt\n");
1979
1980 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989 I915_WRITE(SERR_INT, serr_int);
1990 }
1991
1992 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 int pipe;
1996 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002 SDE_AUDIO_POWER_SHIFT_CPT);
2003 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004 port_name(port));
2005 }
2006
2007 if (pch_iir & SDE_AUX_MASK_CPT)
2008 dp_aux_irq_handler(dev);
2009
2010 if (pch_iir & SDE_GMBUS_CPT)
2011 gmbus_irq_handler(dev);
2012
2013 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019 if (pch_iir & SDE_FDI_MASK_CPT)
2020 for_each_pipe(dev_priv, pipe)
2021 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2022 pipe_name(pipe),
2023 I915_READ(FDI_RX_IIR(pipe)));
2024
2025 if (pch_iir & SDE_ERROR_CPT)
2026 cpt_serr_int_handler(dev);
2027 }
2028
2029 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030 {
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033 ~SDE_PORTE_HOTPLUG_SPT;
2034 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035 u32 pin_mask = 0, long_mask = 0;
2036
2037 if (hotplug_trigger) {
2038 u32 dig_hotplug_reg;
2039
2040 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044 dig_hotplug_reg, hpd_spt,
2045 spt_port_hotplug_long_detect);
2046 }
2047
2048 if (hotplug2_trigger) {
2049 u32 dig_hotplug_reg;
2050
2051 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055 dig_hotplug_reg, hpd_spt,
2056 spt_port_hotplug2_long_detect);
2057 }
2058
2059 if (pin_mask)
2060 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062 if (pch_iir & SDE_GMBUS_CPT)
2063 gmbus_irq_handler(dev);
2064 }
2065
2066 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067 const u32 hpd[HPD_NUM_PINS])
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(dev);
2070 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 dig_hotplug_reg, hpd,
2077 ilk_port_hotplug_long_detect);
2078
2079 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080 }
2081
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 enum pipe pipe;
2086 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088 if (hotplug_trigger)
2089 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091 if (de_iir & DE_AUX_CHANNEL_A)
2092 dp_aux_irq_handler(dev);
2093
2094 if (de_iir & DE_GSE)
2095 intel_opregion_asle_intr(dev);
2096
2097 if (de_iir & DE_POISON)
2098 DRM_ERROR("Poison interrupt\n");
2099
2100 for_each_pipe(dev_priv, pipe) {
2101 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102 intel_pipe_handle_vblank(dev, pipe))
2103 intel_check_page_flip(dev, pipe);
2104
2105 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109 i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111 /* plane/pipes map 1:1 on ilk+ */
2112 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113 intel_prepare_page_flip(dev, pipe);
2114 intel_finish_page_flip_plane(dev, pipe);
2115 }
2116 }
2117
2118 /* check event from PCH */
2119 if (de_iir & DE_PCH_EVENT) {
2120 u32 pch_iir = I915_READ(SDEIIR);
2121
2122 if (HAS_PCH_CPT(dev))
2123 cpt_irq_handler(dev, pch_iir);
2124 else
2125 ibx_irq_handler(dev, pch_iir);
2126
2127 /* should clear PCH hotplug event before clear CPU irq */
2128 I915_WRITE(SDEIIR, pch_iir);
2129 }
2130
2131 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132 ironlake_rps_change_irq_handler(dev);
2133 }
2134
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 enum pipe pipe;
2139 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141 if (hotplug_trigger)
2142 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144 if (de_iir & DE_ERR_INT_IVB)
2145 ivb_err_int_handler(dev);
2146
2147 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148 dp_aux_irq_handler(dev);
2149
2150 if (de_iir & DE_GSE_IVB)
2151 intel_opregion_asle_intr(dev);
2152
2153 for_each_pipe(dev_priv, pipe) {
2154 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155 intel_pipe_handle_vblank(dev, pipe))
2156 intel_check_page_flip(dev, pipe);
2157
2158 /* plane/pipes map 1:1 on ilk+ */
2159 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160 intel_prepare_page_flip(dev, pipe);
2161 intel_finish_page_flip_plane(dev, pipe);
2162 }
2163 }
2164
2165 /* check event from PCH */
2166 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167 u32 pch_iir = I915_READ(SDEIIR);
2168
2169 cpt_irq_handler(dev, pch_iir);
2170
2171 /* clear PCH hotplug event before clear CPU irq */
2172 I915_WRITE(SDEIIR, pch_iir);
2173 }
2174 }
2175
2176 /*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186 struct drm_device *dev = arg;
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189 irqreturn_t ret = IRQ_NONE;
2190
2191 if (!intel_irqs_enabled(dev_priv))
2192 return IRQ_NONE;
2193
2194 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195 disable_rpm_wakeref_asserts(dev_priv);
2196
2197 /* disable master interrupt before clearing iir */
2198 de_ier = I915_READ(DEIER);
2199 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200 POSTING_READ(DEIER);
2201
2202 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2203 * interrupts will will be stored on its back queue, and then we'll be
2204 * able to process them after we restore SDEIER (as soon as we restore
2205 * it, we'll get an interrupt if SDEIIR still has something to process
2206 * due to its back queue). */
2207 if (!HAS_PCH_NOP(dev)) {
2208 sde_ier = I915_READ(SDEIER);
2209 I915_WRITE(SDEIER, 0);
2210 POSTING_READ(SDEIER);
2211 }
2212
2213 /* Find, clear, then process each source of interrupt */
2214
2215 gt_iir = I915_READ(GTIIR);
2216 if (gt_iir) {
2217 I915_WRITE(GTIIR, gt_iir);
2218 ret = IRQ_HANDLED;
2219 if (INTEL_INFO(dev)->gen >= 6)
2220 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221 else
2222 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223 }
2224
2225 de_iir = I915_READ(DEIIR);
2226 if (de_iir) {
2227 I915_WRITE(DEIIR, de_iir);
2228 ret = IRQ_HANDLED;
2229 if (INTEL_INFO(dev)->gen >= 7)
2230 ivb_display_irq_handler(dev, de_iir);
2231 else
2232 ilk_display_irq_handler(dev, de_iir);
2233 }
2234
2235 if (INTEL_INFO(dev)->gen >= 6) {
2236 u32 pm_iir = I915_READ(GEN6_PMIIR);
2237 if (pm_iir) {
2238 I915_WRITE(GEN6_PMIIR, pm_iir);
2239 ret = IRQ_HANDLED;
2240 gen6_rps_irq_handler(dev_priv, pm_iir);
2241 }
2242 }
2243
2244 I915_WRITE(DEIER, de_ier);
2245 POSTING_READ(DEIER);
2246 if (!HAS_PCH_NOP(dev)) {
2247 I915_WRITE(SDEIER, sde_ier);
2248 POSTING_READ(SDEIER);
2249 }
2250
2251 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252 enable_rpm_wakeref_asserts(dev_priv);
2253
2254 return ret;
2255 }
2256
2257 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258 const u32 hpd[HPD_NUM_PINS])
2259 {
2260 struct drm_i915_private *dev_priv = to_i915(dev);
2261 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267 dig_hotplug_reg, hpd,
2268 bxt_port_hotplug_long_detect);
2269
2270 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271 }
2272
2273 static irqreturn_t
2274 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275 {
2276 struct drm_device *dev = dev_priv->dev;
2277 irqreturn_t ret = IRQ_NONE;
2278 u32 iir;
2279 enum pipe pipe;
2280
2281 if (master_ctl & GEN8_DE_MISC_IRQ) {
2282 iir = I915_READ(GEN8_DE_MISC_IIR);
2283 if (iir) {
2284 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285 ret = IRQ_HANDLED;
2286 if (iir & GEN8_DE_MISC_GSE)
2287 intel_opregion_asle_intr(dev);
2288 else
2289 DRM_ERROR("Unexpected DE Misc interrupt\n");
2290 }
2291 else
2292 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293 }
2294
2295 if (master_ctl & GEN8_DE_PORT_IRQ) {
2296 iir = I915_READ(GEN8_DE_PORT_IIR);
2297 if (iir) {
2298 u32 tmp_mask;
2299 bool found = false;
2300
2301 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302 ret = IRQ_HANDLED;
2303
2304 tmp_mask = GEN8_AUX_CHANNEL_A;
2305 if (INTEL_INFO(dev_priv)->gen >= 9)
2306 tmp_mask |= GEN9_AUX_CHANNEL_B |
2307 GEN9_AUX_CHANNEL_C |
2308 GEN9_AUX_CHANNEL_D;
2309
2310 if (iir & tmp_mask) {
2311 dp_aux_irq_handler(dev);
2312 found = true;
2313 }
2314
2315 if (IS_BROXTON(dev_priv)) {
2316 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317 if (tmp_mask) {
2318 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319 found = true;
2320 }
2321 } else if (IS_BROADWELL(dev_priv)) {
2322 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323 if (tmp_mask) {
2324 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325 found = true;
2326 }
2327 }
2328
2329 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330 gmbus_irq_handler(dev);
2331 found = true;
2332 }
2333
2334 if (!found)
2335 DRM_ERROR("Unexpected DE Port interrupt\n");
2336 }
2337 else
2338 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339 }
2340
2341 for_each_pipe(dev_priv, pipe) {
2342 u32 flip_done, fault_errors;
2343
2344 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345 continue;
2346
2347 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348 if (!iir) {
2349 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350 continue;
2351 }
2352
2353 ret = IRQ_HANDLED;
2354 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356 if (iir & GEN8_PIPE_VBLANK &&
2357 intel_pipe_handle_vblank(dev, pipe))
2358 intel_check_page_flip(dev, pipe);
2359
2360 flip_done = iir;
2361 if (INTEL_INFO(dev_priv)->gen >= 9)
2362 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363 else
2364 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366 if (flip_done) {
2367 intel_prepare_page_flip(dev, pipe);
2368 intel_finish_page_flip_plane(dev, pipe);
2369 }
2370
2371 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372 hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377 fault_errors = iir;
2378 if (INTEL_INFO(dev_priv)->gen >= 9)
2379 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380 else
2381 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383 if (fault_errors)
2384 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385 pipe_name(pipe),
2386 fault_errors);
2387 }
2388
2389 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390 master_ctl & GEN8_DE_PCH_IRQ) {
2391 /*
2392 * FIXME(BDW): Assume for now that the new interrupt handling
2393 * scheme also closed the SDE interrupt handling race we've seen
2394 * on older pch-split platforms. But this needs testing.
2395 */
2396 iir = I915_READ(SDEIIR);
2397 if (iir) {
2398 I915_WRITE(SDEIIR, iir);
2399 ret = IRQ_HANDLED;
2400
2401 if (HAS_PCH_SPT(dev_priv))
2402 spt_irq_handler(dev, iir);
2403 else
2404 cpt_irq_handler(dev, iir);
2405 } else {
2406 /*
2407 * Like on previous PCH there seems to be something
2408 * fishy going on with forwarding PCH interrupts.
2409 */
2410 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411 }
2412 }
2413
2414 return ret;
2415 }
2416
2417 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418 {
2419 struct drm_device *dev = arg;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 u32 master_ctl;
2422 irqreturn_t ret;
2423
2424 if (!intel_irqs_enabled(dev_priv))
2425 return IRQ_NONE;
2426
2427 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429 if (!master_ctl)
2430 return IRQ_NONE;
2431
2432 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435 disable_rpm_wakeref_asserts(dev_priv);
2436
2437 /* Find, clear, then process each source of interrupt */
2438 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442 POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444 enable_rpm_wakeref_asserts(dev_priv);
2445
2446 return ret;
2447 }
2448
2449 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450 bool reset_completed)
2451 {
2452 struct intel_engine_cs *engine;
2453 int i;
2454
2455 /*
2456 * Notify all waiters for GPU completion events that reset state has
2457 * been changed, and that they need to restart their wait after
2458 * checking for potential errors (and bail out to drop locks if there is
2459 * a gpu reset pending so that i915_error_work_func can acquire them).
2460 */
2461
2462 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463 for_each_ring(engine, dev_priv, i)
2464 wake_up_all(&engine->irq_queue);
2465
2466 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467 wake_up_all(&dev_priv->pending_flip_queue);
2468
2469 /*
2470 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471 * reset state is cleared.
2472 */
2473 if (reset_completed)
2474 wake_up_all(&dev_priv->gpu_error.reset_queue);
2475 }
2476
2477 /**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484 static void i915_reset_and_wakeup(struct drm_device *dev)
2485 {
2486 struct drm_i915_private *dev_priv = to_i915(dev);
2487 struct i915_gpu_error *error = &dev_priv->gpu_error;
2488 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491 int ret;
2492
2493 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2494
2495 /*
2496 * Note that there's only one work item which does gpu resets, so we
2497 * need not worry about concurrent gpu resets potentially incrementing
2498 * error->reset_counter twice. We only need to take care of another
2499 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500 * quick check for that is good enough: schedule_work ensures the
2501 * correct ordering between hang detection and this work item, and since
2502 * the reset in-progress bit is only ever set by code outside of this
2503 * work we don't need to worry about any other races.
2504 */
2505 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506 DRM_DEBUG_DRIVER("resetting chip\n");
2507 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508 reset_event);
2509
2510 /*
2511 * In most cases it's guaranteed that we get here with an RPM
2512 * reference held, for example because there is a pending GPU
2513 * request that won't finish until the reset is done. This
2514 * isn't the case at least when we get here by doing a
2515 * simulated reset via debugs, so get an RPM reference.
2516 */
2517 intel_runtime_pm_get(dev_priv);
2518
2519 intel_prepare_reset(dev);
2520
2521 /*
2522 * All state reset _must_ be completed before we update the
2523 * reset counter, for otherwise waiters might miss the reset
2524 * pending state and not properly drop locks, resulting in
2525 * deadlocks with the reset work.
2526 */
2527 ret = i915_reset(dev);
2528
2529 intel_finish_reset(dev);
2530
2531 intel_runtime_pm_put(dev_priv);
2532
2533 if (ret == 0) {
2534 /*
2535 * After all the gem state is reset, increment the reset
2536 * counter and wake up everyone waiting for the reset to
2537 * complete.
2538 *
2539 * Since unlock operations are a one-sided barrier only,
2540 * we need to insert a barrier here to order any seqno
2541 * updates before
2542 * the counter increment.
2543 */
2544 smp_mb__before_atomic();
2545 atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547 kobject_uevent_env(&dev->primary->kdev->kobj,
2548 KOBJ_CHANGE, reset_done_event);
2549 } else {
2550 atomic_or(I915_WEDGED, &error->reset_counter);
2551 }
2552
2553 /*
2554 * Note: The wake_up also serves as a memory barrier so that
2555 * waiters see the update value of the reset counter atomic_t.
2556 */
2557 i915_error_wake_up(dev_priv, true);
2558 }
2559 }
2560
2561 static void i915_report_and_clear_eir(struct drm_device *dev)
2562 {
2563 struct drm_i915_private *dev_priv = dev->dev_private;
2564 uint32_t instdone[I915_NUM_INSTDONE_REG];
2565 u32 eir = I915_READ(EIR);
2566 int pipe, i;
2567
2568 if (!eir)
2569 return;
2570
2571 pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573 i915_get_extra_instdone(dev, instdone);
2574
2575 if (IS_G4X(dev)) {
2576 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577 u32 ipeir = I915_READ(IPEIR_I965);
2578
2579 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585 I915_WRITE(IPEIR_I965, ipeir);
2586 POSTING_READ(IPEIR_I965);
2587 }
2588 if (eir & GM45_ERROR_PAGE_TABLE) {
2589 u32 pgtbl_err = I915_READ(PGTBL_ER);
2590 pr_err("page table error\n");
2591 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2592 I915_WRITE(PGTBL_ER, pgtbl_err);
2593 POSTING_READ(PGTBL_ER);
2594 }
2595 }
2596
2597 if (!IS_GEN2(dev)) {
2598 if (eir & I915_ERROR_PAGE_TABLE) {
2599 u32 pgtbl_err = I915_READ(PGTBL_ER);
2600 pr_err("page table error\n");
2601 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2602 I915_WRITE(PGTBL_ER, pgtbl_err);
2603 POSTING_READ(PGTBL_ER);
2604 }
2605 }
2606
2607 if (eir & I915_ERROR_MEMORY_REFRESH) {
2608 pr_err("memory refresh error:\n");
2609 for_each_pipe(dev_priv, pipe)
2610 pr_err("pipe %c stat: 0x%08x\n",
2611 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612 /* pipestat has already been acked */
2613 }
2614 if (eir & I915_ERROR_INSTRUCTION) {
2615 pr_err("instruction error\n");
2616 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619 if (INTEL_INFO(dev)->gen < 4) {
2620 u32 ipeir = I915_READ(IPEIR);
2621
2622 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625 I915_WRITE(IPEIR, ipeir);
2626 POSTING_READ(IPEIR);
2627 } else {
2628 u32 ipeir = I915_READ(IPEIR_I965);
2629
2630 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634 I915_WRITE(IPEIR_I965, ipeir);
2635 POSTING_READ(IPEIR_I965);
2636 }
2637 }
2638
2639 I915_WRITE(EIR, eir);
2640 POSTING_READ(EIR);
2641 eir = I915_READ(EIR);
2642 if (eir) {
2643 /*
2644 * some errors might have become stuck,
2645 * mask them.
2646 */
2647 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648 I915_WRITE(EMR, I915_READ(EMR) | eir);
2649 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650 }
2651 }
2652
2653 /**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog. Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs. Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663 void i915_handle_error(struct drm_device *dev, bool wedged,
2664 const char *fmt, ...)
2665 {
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 va_list args;
2668 char error_msg[80];
2669
2670 va_start(args, fmt);
2671 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672 va_end(args);
2673
2674 i915_capture_error_state(dev, wedged, error_msg);
2675 i915_report_and_clear_eir(dev);
2676
2677 if (wedged) {
2678 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679 &dev_priv->gpu_error.reset_counter);
2680
2681 /*
2682 * Wakeup waiting processes so that the reset function
2683 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684 * various locks. By bumping the reset counter first, the woken
2685 * processes will see a reset in progress and back off,
2686 * releasing their locks and then wait for the reset completion.
2687 * We must do this for _all_ gpu waiters that might hold locks
2688 * that the reset work needs to acquire.
2689 *
2690 * Note: The wake_up serves as the required memory barrier to
2691 * ensure that the waiters see the updated value of the reset
2692 * counter atomic_t.
2693 */
2694 i915_error_wake_up(dev_priv, false);
2695 }
2696
2697 i915_reset_and_wakeup(dev);
2698 }
2699
2700 /* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704 {
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 unsigned long irqflags;
2707
2708 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709 if (INTEL_INFO(dev)->gen >= 4)
2710 i915_enable_pipestat(dev_priv, pipe,
2711 PIPE_START_VBLANK_INTERRUPT_STATUS);
2712 else
2713 i915_enable_pipestat(dev_priv, pipe,
2714 PIPE_VBLANK_INTERRUPT_STATUS);
2715 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717 return 0;
2718 }
2719
2720 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721 {
2722 struct drm_i915_private *dev_priv = dev->dev_private;
2723 unsigned long irqflags;
2724 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725 DE_PIPE_VBLANK(pipe);
2726
2727 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728 ilk_enable_display_irq(dev_priv, bit);
2729 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731 return 0;
2732 }
2733
2734 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735 {
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 unsigned long irqflags;
2738
2739 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740 i915_enable_pipestat(dev_priv, pipe,
2741 PIPE_START_VBLANK_INTERRUPT_STATUS);
2742 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744 return 0;
2745 }
2746
2747 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748 {
2749 struct drm_i915_private *dev_priv = dev->dev_private;
2750 unsigned long irqflags;
2751
2752 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756 return 0;
2757 }
2758
2759 /* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 unsigned long irqflags;
2766
2767 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768 i915_disable_pipestat(dev_priv, pipe,
2769 PIPE_VBLANK_INTERRUPT_STATUS |
2770 PIPE_START_VBLANK_INTERRUPT_STATUS);
2771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 }
2773
2774 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775 {
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 unsigned long irqflags;
2778 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779 DE_PIPE_VBLANK(pipe);
2780
2781 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 ilk_disable_display_irq(dev_priv, bit);
2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784 }
2785
2786 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 unsigned long irqflags;
2790
2791 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792 i915_disable_pipestat(dev_priv, pipe,
2793 PIPE_START_VBLANK_INTERRUPT_STATUS);
2794 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 }
2796
2797 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 unsigned long irqflags;
2801
2802 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805 }
2806
2807 static bool
2808 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2809 {
2810 return (list_empty(&engine->request_list) ||
2811 i915_seqno_passed(seqno, engine->last_submitted_seqno));
2812 }
2813
2814 static bool
2815 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816 {
2817 if (INTEL_INFO(dev)->gen >= 8) {
2818 return (ipehr >> 23) == 0x1c;
2819 } else {
2820 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822 MI_SEMAPHORE_REGISTER);
2823 }
2824 }
2825
2826 static struct intel_engine_cs *
2827 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2828 u64 offset)
2829 {
2830 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2831 struct intel_engine_cs *signaller;
2832 int i;
2833
2834 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2835 for_each_ring(signaller, dev_priv, i) {
2836 if (engine == signaller)
2837 continue;
2838
2839 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2840 return signaller;
2841 }
2842 } else {
2843 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2844
2845 for_each_ring(signaller, dev_priv, i) {
2846 if(engine == signaller)
2847 continue;
2848
2849 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2850 return signaller;
2851 }
2852 }
2853
2854 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2855 engine->id, ipehr, offset);
2856
2857 return NULL;
2858 }
2859
2860 static struct intel_engine_cs *
2861 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2862 {
2863 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2864 u32 cmd, ipehr, head;
2865 u64 offset = 0;
2866 int i, backwards;
2867
2868 /*
2869 * This function does not support execlist mode - any attempt to
2870 * proceed further into this function will result in a kernel panic
2871 * when dereferencing ring->buffer, which is not set up in execlist
2872 * mode.
2873 *
2874 * The correct way of doing it would be to derive the currently
2875 * executing ring buffer from the current context, which is derived
2876 * from the currently running request. Unfortunately, to get the
2877 * current request we would have to grab the struct_mutex before doing
2878 * anything else, which would be ill-advised since some other thread
2879 * might have grabbed it already and managed to hang itself, causing
2880 * the hang checker to deadlock.
2881 *
2882 * Therefore, this function does not support execlist mode in its
2883 * current form. Just return NULL and move on.
2884 */
2885 if (engine->buffer == NULL)
2886 return NULL;
2887
2888 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2889 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2890 return NULL;
2891
2892 /*
2893 * HEAD is likely pointing to the dword after the actual command,
2894 * so scan backwards until we find the MBOX. But limit it to just 3
2895 * or 4 dwords depending on the semaphore wait command size.
2896 * Note that we don't care about ACTHD here since that might
2897 * point at at batch, and semaphores are always emitted into the
2898 * ringbuffer itself.
2899 */
2900 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2901 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2902
2903 for (i = backwards; i; --i) {
2904 /*
2905 * Be paranoid and presume the hw has gone off into the wild -
2906 * our ring is smaller than what the hardware (and hence
2907 * HEAD_ADDR) allows. Also handles wrap-around.
2908 */
2909 head &= engine->buffer->size - 1;
2910
2911 /* This here seems to blow up */
2912 cmd = ioread32(engine->buffer->virtual_start + head);
2913 if (cmd == ipehr)
2914 break;
2915
2916 head -= 4;
2917 }
2918
2919 if (!i)
2920 return NULL;
2921
2922 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2923 if (INTEL_INFO(engine->dev)->gen >= 8) {
2924 offset = ioread32(engine->buffer->virtual_start + head + 12);
2925 offset <<= 32;
2926 offset = ioread32(engine->buffer->virtual_start + head + 8);
2927 }
2928 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2929 }
2930
2931 static int semaphore_passed(struct intel_engine_cs *engine)
2932 {
2933 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2934 struct intel_engine_cs *signaller;
2935 u32 seqno;
2936
2937 engine->hangcheck.deadlock++;
2938
2939 signaller = semaphore_waits_for(engine, &seqno);
2940 if (signaller == NULL)
2941 return -1;
2942
2943 /* Prevent pathological recursion due to driver bugs */
2944 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2945 return -1;
2946
2947 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2948 return 1;
2949
2950 /* cursory check for an unkickable deadlock */
2951 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2952 semaphore_passed(signaller) < 0)
2953 return -1;
2954
2955 return 0;
2956 }
2957
2958 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2959 {
2960 struct intel_engine_cs *engine;
2961 int i;
2962
2963 for_each_ring(engine, dev_priv, i)
2964 engine->hangcheck.deadlock = 0;
2965 }
2966
2967 static bool subunits_stuck(struct intel_engine_cs *engine)
2968 {
2969 u32 instdone[I915_NUM_INSTDONE_REG];
2970 bool stuck;
2971 int i;
2972
2973 if (engine->id != RCS)
2974 return true;
2975
2976 i915_get_extra_instdone(engine->dev, instdone);
2977
2978 /* There might be unstable subunit states even when
2979 * actual head is not moving. Filter out the unstable ones by
2980 * accumulating the undone -> done transitions and only
2981 * consider those as progress.
2982 */
2983 stuck = true;
2984 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2985 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2986
2987 if (tmp != engine->hangcheck.instdone[i])
2988 stuck = false;
2989
2990 engine->hangcheck.instdone[i] |= tmp;
2991 }
2992
2993 return stuck;
2994 }
2995
2996 static enum intel_ring_hangcheck_action
2997 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2998 {
2999 if (acthd != engine->hangcheck.acthd) {
3000
3001 /* Clear subunit states on head movement */
3002 memset(engine->hangcheck.instdone, 0,
3003 sizeof(engine->hangcheck.instdone));
3004
3005 return HANGCHECK_ACTIVE;
3006 }
3007
3008 if (!subunits_stuck(engine))
3009 return HANGCHECK_ACTIVE;
3010
3011 return HANGCHECK_HUNG;
3012 }
3013
3014 static enum intel_ring_hangcheck_action
3015 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3016 {
3017 struct drm_device *dev = engine->dev;
3018 struct drm_i915_private *dev_priv = dev->dev_private;
3019 enum intel_ring_hangcheck_action ha;
3020 u32 tmp;
3021
3022 ha = head_stuck(engine, acthd);
3023 if (ha != HANGCHECK_HUNG)
3024 return ha;
3025
3026 if (IS_GEN2(dev))
3027 return HANGCHECK_HUNG;
3028
3029 /* Is the chip hanging on a WAIT_FOR_EVENT?
3030 * If so we can simply poke the RB_WAIT bit
3031 * and break the hang. This should work on
3032 * all but the second generation chipsets.
3033 */
3034 tmp = I915_READ_CTL(engine);
3035 if (tmp & RING_WAIT) {
3036 i915_handle_error(dev, false,
3037 "Kicking stuck wait on %s",
3038 engine->name);
3039 I915_WRITE_CTL(engine, tmp);
3040 return HANGCHECK_KICK;
3041 }
3042
3043 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3044 switch (semaphore_passed(engine)) {
3045 default:
3046 return HANGCHECK_HUNG;
3047 case 1:
3048 i915_handle_error(dev, false,
3049 "Kicking stuck semaphore on %s",
3050 engine->name);
3051 I915_WRITE_CTL(engine, tmp);
3052 return HANGCHECK_KICK;
3053 case 0:
3054 return HANGCHECK_WAIT;
3055 }
3056 }
3057
3058 return HANGCHECK_HUNG;
3059 }
3060
3061 /*
3062 * This is called when the chip hasn't reported back with completed
3063 * batchbuffers in a long time. We keep track per ring seqno progress and
3064 * if there are no progress, hangcheck score for that ring is increased.
3065 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3066 * we kick the ring. If we see no progress on three subsequent calls
3067 * we assume chip is wedged and try to fix it by resetting the chip.
3068 */
3069 static void i915_hangcheck_elapsed(struct work_struct *work)
3070 {
3071 struct drm_i915_private *dev_priv =
3072 container_of(work, typeof(*dev_priv),
3073 gpu_error.hangcheck_work.work);
3074 struct drm_device *dev = dev_priv->dev;
3075 struct intel_engine_cs *engine;
3076 int i;
3077 int busy_count = 0, rings_hung = 0;
3078 bool stuck[I915_NUM_RINGS] = { 0 };
3079 #define BUSY 1
3080 #define KICK 5
3081 #define HUNG 20
3082 #define ACTIVE_DECAY 15
3083
3084 if (!i915.enable_hangcheck)
3085 return;
3086
3087 /*
3088 * The hangcheck work is synced during runtime suspend, we don't
3089 * require a wakeref. TODO: instead of disabling the asserts make
3090 * sure that we hold a reference when this work is running.
3091 */
3092 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3093
3094 /* As enabling the GPU requires fairly extensive mmio access,
3095 * periodically arm the mmio checker to see if we are triggering
3096 * any invalid access.
3097 */
3098 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3099
3100 for_each_ring(engine, dev_priv, i) {
3101 u64 acthd;
3102 u32 seqno;
3103 bool busy = true;
3104
3105 semaphore_clear_deadlocks(dev_priv);
3106
3107 seqno = engine->get_seqno(engine, false);
3108 acthd = intel_ring_get_active_head(engine);
3109
3110 if (engine->hangcheck.seqno == seqno) {
3111 if (ring_idle(engine, seqno)) {
3112 engine->hangcheck.action = HANGCHECK_IDLE;
3113
3114 if (waitqueue_active(&engine->irq_queue)) {
3115 /* Issue a wake-up to catch stuck h/w. */
3116 if (!test_and_set_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings)) {
3117 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(engine)))
3118 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3119 engine->name);
3120 else
3121 DRM_INFO("Fake missed irq on %s\n",
3122 engine->name);
3123 wake_up_all(&engine->irq_queue);
3124 }
3125 /* Safeguard against driver failure */
3126 engine->hangcheck.score += BUSY;
3127 } else
3128 busy = false;
3129 } else {
3130 /* We always increment the hangcheck score
3131 * if the ring is busy and still processing
3132 * the same request, so that no single request
3133 * can run indefinitely (such as a chain of
3134 * batches). The only time we do not increment
3135 * the hangcheck score on this ring, if this
3136 * ring is in a legitimate wait for another
3137 * ring. In that case the waiting ring is a
3138 * victim and we want to be sure we catch the
3139 * right culprit. Then every time we do kick
3140 * the ring, add a small increment to the
3141 * score so that we can catch a batch that is
3142 * being repeatedly kicked and so responsible
3143 * for stalling the machine.
3144 */
3145 engine->hangcheck.action = ring_stuck(engine,
3146 acthd);
3147
3148 switch (engine->hangcheck.action) {
3149 case HANGCHECK_IDLE:
3150 case HANGCHECK_WAIT:
3151 break;
3152 case HANGCHECK_ACTIVE:
3153 engine->hangcheck.score += BUSY;
3154 break;
3155 case HANGCHECK_KICK:
3156 engine->hangcheck.score += KICK;
3157 break;
3158 case HANGCHECK_HUNG:
3159 engine->hangcheck.score += HUNG;
3160 stuck[i] = true;
3161 break;
3162 }
3163 }
3164 } else {
3165 engine->hangcheck.action = HANGCHECK_ACTIVE;
3166
3167 /* Gradually reduce the count so that we catch DoS
3168 * attempts across multiple batches.
3169 */
3170 if (engine->hangcheck.score > 0)
3171 engine->hangcheck.score -= ACTIVE_DECAY;
3172 if (engine->hangcheck.score < 0)
3173 engine->hangcheck.score = 0;
3174
3175 /* Clear head and subunit states on seqno movement */
3176 engine->hangcheck.acthd = 0;
3177
3178 memset(engine->hangcheck.instdone, 0,
3179 sizeof(engine->hangcheck.instdone));
3180 }
3181
3182 engine->hangcheck.seqno = seqno;
3183 engine->hangcheck.acthd = acthd;
3184 busy_count += busy;
3185 }
3186
3187 for_each_ring(engine, dev_priv, i) {
3188 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3189 DRM_INFO("%s on %s\n",
3190 stuck[i] ? "stuck" : "no progress",
3191 engine->name);
3192 rings_hung++;
3193 }
3194 }
3195
3196 if (rings_hung) {
3197 i915_handle_error(dev, true, "Ring hung");
3198 goto out;
3199 }
3200
3201 if (busy_count)
3202 /* Reset timer case chip hangs without another request
3203 * being added */
3204 i915_queue_hangcheck(dev);
3205
3206 out:
3207 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3208 }
3209
3210 void i915_queue_hangcheck(struct drm_device *dev)
3211 {
3212 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3213
3214 if (!i915.enable_hangcheck)
3215 return;
3216
3217 /* Don't continually defer the hangcheck so that it is always run at
3218 * least once after work has been scheduled on any ring. Otherwise,
3219 * we will ignore a hung ring if a second ring is kept busy.
3220 */
3221
3222 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3223 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3224 }
3225
3226 static void ibx_irq_reset(struct drm_device *dev)
3227 {
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229
3230 if (HAS_PCH_NOP(dev))
3231 return;
3232
3233 GEN5_IRQ_RESET(SDE);
3234
3235 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3236 I915_WRITE(SERR_INT, 0xffffffff);
3237 }
3238
3239 /*
3240 * SDEIER is also touched by the interrupt handler to work around missed PCH
3241 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3242 * instead we unconditionally enable all PCH interrupt sources here, but then
3243 * only unmask them as needed with SDEIMR.
3244 *
3245 * This function needs to be called before interrupts are enabled.
3246 */
3247 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3248 {
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250
3251 if (HAS_PCH_NOP(dev))
3252 return;
3253
3254 WARN_ON(I915_READ(SDEIER) != 0);
3255 I915_WRITE(SDEIER, 0xffffffff);
3256 POSTING_READ(SDEIER);
3257 }
3258
3259 static void gen5_gt_irq_reset(struct drm_device *dev)
3260 {
3261 struct drm_i915_private *dev_priv = dev->dev_private;
3262
3263 GEN5_IRQ_RESET(GT);
3264 if (INTEL_INFO(dev)->gen >= 6)
3265 GEN5_IRQ_RESET(GEN6_PM);
3266 }
3267
3268 /* drm_dma.h hooks
3269 */
3270 static void ironlake_irq_reset(struct drm_device *dev)
3271 {
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274 I915_WRITE(HWSTAM, 0xffffffff);
3275
3276 GEN5_IRQ_RESET(DE);
3277 if (IS_GEN7(dev))
3278 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3279
3280 gen5_gt_irq_reset(dev);
3281
3282 ibx_irq_reset(dev);
3283 }
3284
3285 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3286 {
3287 enum pipe pipe;
3288
3289 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3290 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3291
3292 for_each_pipe(dev_priv, pipe)
3293 I915_WRITE(PIPESTAT(pipe), 0xffff);
3294
3295 GEN5_IRQ_RESET(VLV_);
3296 }
3297
3298 static void valleyview_irq_preinstall(struct drm_device *dev)
3299 {
3300 struct drm_i915_private *dev_priv = dev->dev_private;
3301
3302 /* VLV magic */
3303 I915_WRITE(VLV_IMR, 0);
3304 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3305 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3306 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3307
3308 gen5_gt_irq_reset(dev);
3309
3310 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3311
3312 vlv_display_irq_reset(dev_priv);
3313 }
3314
3315 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3316 {
3317 GEN8_IRQ_RESET_NDX(GT, 0);
3318 GEN8_IRQ_RESET_NDX(GT, 1);
3319 GEN8_IRQ_RESET_NDX(GT, 2);
3320 GEN8_IRQ_RESET_NDX(GT, 3);
3321 }
3322
3323 static void gen8_irq_reset(struct drm_device *dev)
3324 {
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 int pipe;
3327
3328 I915_WRITE(GEN8_MASTER_IRQ, 0);
3329 POSTING_READ(GEN8_MASTER_IRQ);
3330
3331 gen8_gt_irq_reset(dev_priv);
3332
3333 for_each_pipe(dev_priv, pipe)
3334 if (intel_display_power_is_enabled(dev_priv,
3335 POWER_DOMAIN_PIPE(pipe)))
3336 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3337
3338 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3339 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3340 GEN5_IRQ_RESET(GEN8_PCU_);
3341
3342 if (HAS_PCH_SPLIT(dev))
3343 ibx_irq_reset(dev);
3344 }
3345
3346 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3347 unsigned int pipe_mask)
3348 {
3349 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3350 enum pipe pipe;
3351
3352 spin_lock_irq(&dev_priv->irq_lock);
3353 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3354 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3355 dev_priv->de_irq_mask[pipe],
3356 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3357 spin_unlock_irq(&dev_priv->irq_lock);
3358 }
3359
3360 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3361 unsigned int pipe_mask)
3362 {
3363 enum pipe pipe;
3364
3365 spin_lock_irq(&dev_priv->irq_lock);
3366 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3367 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3368 spin_unlock_irq(&dev_priv->irq_lock);
3369
3370 /* make sure we're done processing display irqs */
3371 synchronize_irq(dev_priv->dev->irq);
3372 }
3373
3374 static void cherryview_irq_preinstall(struct drm_device *dev)
3375 {
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377
3378 I915_WRITE(GEN8_MASTER_IRQ, 0);
3379 POSTING_READ(GEN8_MASTER_IRQ);
3380
3381 gen8_gt_irq_reset(dev_priv);
3382
3383 GEN5_IRQ_RESET(GEN8_PCU_);
3384
3385 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3386
3387 vlv_display_irq_reset(dev_priv);
3388 }
3389
3390 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3391 const u32 hpd[HPD_NUM_PINS])
3392 {
3393 struct drm_i915_private *dev_priv = to_i915(dev);
3394 struct intel_encoder *encoder;
3395 u32 enabled_irqs = 0;
3396
3397 for_each_intel_encoder(dev, encoder)
3398 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3399 enabled_irqs |= hpd[encoder->hpd_pin];
3400
3401 return enabled_irqs;
3402 }
3403
3404 static void ibx_hpd_irq_setup(struct drm_device *dev)
3405 {
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 u32 hotplug_irqs, hotplug, enabled_irqs;
3408
3409 if (HAS_PCH_IBX(dev)) {
3410 hotplug_irqs = SDE_HOTPLUG_MASK;
3411 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3412 } else {
3413 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3414 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3415 }
3416
3417 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3418
3419 /*
3420 * Enable digital hotplug on the PCH, and configure the DP short pulse
3421 * duration to 2ms (which is the minimum in the Display Port spec).
3422 * The pulse duration bits are reserved on LPT+.
3423 */
3424 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3425 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3426 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3427 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3428 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3429 /*
3430 * When CPU and PCH are on the same package, port A
3431 * HPD must be enabled in both north and south.
3432 */
3433 if (HAS_PCH_LPT_LP(dev))
3434 hotplug |= PORTA_HOTPLUG_ENABLE;
3435 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3436 }
3437
3438 static void spt_hpd_irq_setup(struct drm_device *dev)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 u32 hotplug_irqs, hotplug, enabled_irqs;
3442
3443 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3444 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3445
3446 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3447
3448 /* Enable digital hotplug on the PCH */
3449 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3450 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3451 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3452 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3453
3454 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3455 hotplug |= PORTE_HOTPLUG_ENABLE;
3456 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3457 }
3458
3459 static void ilk_hpd_irq_setup(struct drm_device *dev)
3460 {
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 u32 hotplug_irqs, hotplug, enabled_irqs;
3463
3464 if (INTEL_INFO(dev)->gen >= 8) {
3465 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3466 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3467
3468 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3469 } else if (INTEL_INFO(dev)->gen >= 7) {
3470 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3471 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3472
3473 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3474 } else {
3475 hotplug_irqs = DE_DP_A_HOTPLUG;
3476 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3477
3478 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3479 }
3480
3481 /*
3482 * Enable digital hotplug on the CPU, and configure the DP short pulse
3483 * duration to 2ms (which is the minimum in the Display Port spec)
3484 * The pulse duration bits are reserved on HSW+.
3485 */
3486 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3487 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3488 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3489 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3490
3491 ibx_hpd_irq_setup(dev);
3492 }
3493
3494 static void bxt_hpd_irq_setup(struct drm_device *dev)
3495 {
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 u32 hotplug_irqs, hotplug, enabled_irqs;
3498
3499 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3500 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3501
3502 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3503
3504 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3505 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3506 PORTA_HOTPLUG_ENABLE;
3507 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3508 }
3509
3510 static void ibx_irq_postinstall(struct drm_device *dev)
3511 {
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 u32 mask;
3514
3515 if (HAS_PCH_NOP(dev))
3516 return;
3517
3518 if (HAS_PCH_IBX(dev))
3519 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3520 else
3521 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3522
3523 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3524 I915_WRITE(SDEIMR, ~mask);
3525 }
3526
3527 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3528 {
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 u32 pm_irqs, gt_irqs;
3531
3532 pm_irqs = gt_irqs = 0;
3533
3534 dev_priv->gt_irq_mask = ~0;
3535 if (HAS_L3_DPF(dev)) {
3536 /* L3 parity interrupt is always unmasked. */
3537 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3538 gt_irqs |= GT_PARITY_ERROR(dev);
3539 }
3540
3541 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3542 if (IS_GEN5(dev)) {
3543 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3544 ILK_BSD_USER_INTERRUPT;
3545 } else {
3546 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3547 }
3548
3549 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3550
3551 if (INTEL_INFO(dev)->gen >= 6) {
3552 /*
3553 * RPS interrupts will get enabled/disabled on demand when RPS
3554 * itself is enabled/disabled.
3555 */
3556 if (HAS_VEBOX(dev))
3557 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3558
3559 dev_priv->pm_irq_mask = 0xffffffff;
3560 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3561 }
3562 }
3563
3564 static int ironlake_irq_postinstall(struct drm_device *dev)
3565 {
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 u32 display_mask, extra_mask;
3568
3569 if (INTEL_INFO(dev)->gen >= 7) {
3570 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3571 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3572 DE_PLANEB_FLIP_DONE_IVB |
3573 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3574 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3575 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3576 DE_DP_A_HOTPLUG_IVB);
3577 } else {
3578 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3579 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3580 DE_AUX_CHANNEL_A |
3581 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3582 DE_POISON);
3583 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3584 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3585 DE_DP_A_HOTPLUG);
3586 }
3587
3588 dev_priv->irq_mask = ~display_mask;
3589
3590 I915_WRITE(HWSTAM, 0xeffe);
3591
3592 ibx_irq_pre_postinstall(dev);
3593
3594 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3595
3596 gen5_gt_irq_postinstall(dev);
3597
3598 ibx_irq_postinstall(dev);
3599
3600 if (IS_IRONLAKE_M(dev)) {
3601 /* Enable PCU event interrupts
3602 *
3603 * spinlocking not required here for correctness since interrupt
3604 * setup is guaranteed to run in single-threaded context. But we
3605 * need it to make the assert_spin_locked happy. */
3606 spin_lock_irq(&dev_priv->irq_lock);
3607 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3608 spin_unlock_irq(&dev_priv->irq_lock);
3609 }
3610
3611 return 0;
3612 }
3613
3614 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3615 {
3616 u32 pipestat_mask;
3617 u32 iir_mask;
3618 enum pipe pipe;
3619
3620 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3621 PIPE_FIFO_UNDERRUN_STATUS;
3622
3623 for_each_pipe(dev_priv, pipe)
3624 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3625 POSTING_READ(PIPESTAT(PIPE_A));
3626
3627 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3628 PIPE_CRC_DONE_INTERRUPT_STATUS;
3629
3630 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3631 for_each_pipe(dev_priv, pipe)
3632 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3633
3634 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3635 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3636 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3637 if (IS_CHERRYVIEW(dev_priv))
3638 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3639 dev_priv->irq_mask &= ~iir_mask;
3640
3641 I915_WRITE(VLV_IIR, iir_mask);
3642 I915_WRITE(VLV_IIR, iir_mask);
3643 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3644 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3645 POSTING_READ(VLV_IMR);
3646 }
3647
3648 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3649 {
3650 u32 pipestat_mask;
3651 u32 iir_mask;
3652 enum pipe pipe;
3653
3654 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3655 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3656 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3657 if (IS_CHERRYVIEW(dev_priv))
3658 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3659
3660 dev_priv->irq_mask |= iir_mask;
3661 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3662 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3663 I915_WRITE(VLV_IIR, iir_mask);
3664 I915_WRITE(VLV_IIR, iir_mask);
3665 POSTING_READ(VLV_IIR);
3666
3667 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3668 PIPE_CRC_DONE_INTERRUPT_STATUS;
3669
3670 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3671 for_each_pipe(dev_priv, pipe)
3672 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3673
3674 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3675 PIPE_FIFO_UNDERRUN_STATUS;
3676
3677 for_each_pipe(dev_priv, pipe)
3678 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3679 POSTING_READ(PIPESTAT(PIPE_A));
3680 }
3681
3682 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3683 {
3684 assert_spin_locked(&dev_priv->irq_lock);
3685
3686 if (dev_priv->display_irqs_enabled)
3687 return;
3688
3689 dev_priv->display_irqs_enabled = true;
3690
3691 if (intel_irqs_enabled(dev_priv))
3692 valleyview_display_irqs_install(dev_priv);
3693 }
3694
3695 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3696 {
3697 assert_spin_locked(&dev_priv->irq_lock);
3698
3699 if (!dev_priv->display_irqs_enabled)
3700 return;
3701
3702 dev_priv->display_irqs_enabled = false;
3703
3704 if (intel_irqs_enabled(dev_priv))
3705 valleyview_display_irqs_uninstall(dev_priv);
3706 }
3707
3708 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3709 {
3710 dev_priv->irq_mask = ~0;
3711
3712 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3713 POSTING_READ(PORT_HOTPLUG_EN);
3714
3715 I915_WRITE(VLV_IIR, 0xffffffff);
3716 I915_WRITE(VLV_IIR, 0xffffffff);
3717 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3718 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3719 POSTING_READ(VLV_IMR);
3720
3721 /* Interrupt setup is already guaranteed to be single-threaded, this is
3722 * just to make the assert_spin_locked check happy. */
3723 spin_lock_irq(&dev_priv->irq_lock);
3724 if (dev_priv->display_irqs_enabled)
3725 valleyview_display_irqs_install(dev_priv);
3726 spin_unlock_irq(&dev_priv->irq_lock);
3727 }
3728
3729 static int valleyview_irq_postinstall(struct drm_device *dev)
3730 {
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732
3733 vlv_display_irq_postinstall(dev_priv);
3734
3735 gen5_gt_irq_postinstall(dev);
3736
3737 /* ack & enable invalid PTE error interrupts */
3738 #if 0 /* FIXME: add support to irq handler for checking these bits */
3739 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3740 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3741 #endif
3742
3743 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3744
3745 return 0;
3746 }
3747
3748 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3749 {
3750 /* These are interrupts we'll toggle with the ring mask register */
3751 uint32_t gt_interrupts[] = {
3752 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3753 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3754 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3755 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3756 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3757 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3758 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3759 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3760 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3761 0,
3762 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3763 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3764 };
3765
3766 dev_priv->pm_irq_mask = 0xffffffff;
3767 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3768 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3769 /*
3770 * RPS interrupts will get enabled/disabled on demand when RPS itself
3771 * is enabled/disabled.
3772 */
3773 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3774 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3775 }
3776
3777 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3778 {
3779 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3780 uint32_t de_pipe_enables;
3781 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3782 u32 de_port_enables;
3783 enum pipe pipe;
3784
3785 if (INTEL_INFO(dev_priv)->gen >= 9) {
3786 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3787 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3788 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3789 GEN9_AUX_CHANNEL_D;
3790 if (IS_BROXTON(dev_priv))
3791 de_port_masked |= BXT_DE_PORT_GMBUS;
3792 } else {
3793 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3794 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3795 }
3796
3797 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3798 GEN8_PIPE_FIFO_UNDERRUN;
3799
3800 de_port_enables = de_port_masked;
3801 if (IS_BROXTON(dev_priv))
3802 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3803 else if (IS_BROADWELL(dev_priv))
3804 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3805
3806 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3807 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3808 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3809
3810 for_each_pipe(dev_priv, pipe)
3811 if (intel_display_power_is_enabled(dev_priv,
3812 POWER_DOMAIN_PIPE(pipe)))
3813 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3814 dev_priv->de_irq_mask[pipe],
3815 de_pipe_enables);
3816
3817 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3818 }
3819
3820 static int gen8_irq_postinstall(struct drm_device *dev)
3821 {
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823
3824 if (HAS_PCH_SPLIT(dev))
3825 ibx_irq_pre_postinstall(dev);
3826
3827 gen8_gt_irq_postinstall(dev_priv);
3828 gen8_de_irq_postinstall(dev_priv);
3829
3830 if (HAS_PCH_SPLIT(dev))
3831 ibx_irq_postinstall(dev);
3832
3833 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3834 POSTING_READ(GEN8_MASTER_IRQ);
3835
3836 return 0;
3837 }
3838
3839 static int cherryview_irq_postinstall(struct drm_device *dev)
3840 {
3841 struct drm_i915_private *dev_priv = dev->dev_private;
3842
3843 vlv_display_irq_postinstall(dev_priv);
3844
3845 gen8_gt_irq_postinstall(dev_priv);
3846
3847 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3848 POSTING_READ(GEN8_MASTER_IRQ);
3849
3850 return 0;
3851 }
3852
3853 static void gen8_irq_uninstall(struct drm_device *dev)
3854 {
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856
3857 if (!dev_priv)
3858 return;
3859
3860 gen8_irq_reset(dev);
3861 }
3862
3863 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3864 {
3865 /* Interrupt setup is already guaranteed to be single-threaded, this is
3866 * just to make the assert_spin_locked check happy. */
3867 spin_lock_irq(&dev_priv->irq_lock);
3868 if (dev_priv->display_irqs_enabled)
3869 valleyview_display_irqs_uninstall(dev_priv);
3870 spin_unlock_irq(&dev_priv->irq_lock);
3871
3872 vlv_display_irq_reset(dev_priv);
3873
3874 dev_priv->irq_mask = ~0;
3875 }
3876
3877 static void valleyview_irq_uninstall(struct drm_device *dev)
3878 {
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880
3881 if (!dev_priv)
3882 return;
3883
3884 I915_WRITE(VLV_MASTER_IER, 0);
3885
3886 gen5_gt_irq_reset(dev);
3887
3888 I915_WRITE(HWSTAM, 0xffffffff);
3889
3890 vlv_display_irq_uninstall(dev_priv);
3891 }
3892
3893 static void cherryview_irq_uninstall(struct drm_device *dev)
3894 {
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896
3897 if (!dev_priv)
3898 return;
3899
3900 I915_WRITE(GEN8_MASTER_IRQ, 0);
3901 POSTING_READ(GEN8_MASTER_IRQ);
3902
3903 gen8_gt_irq_reset(dev_priv);
3904
3905 GEN5_IRQ_RESET(GEN8_PCU_);
3906
3907 vlv_display_irq_uninstall(dev_priv);
3908 }
3909
3910 static void ironlake_irq_uninstall(struct drm_device *dev)
3911 {
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914 if (!dev_priv)
3915 return;
3916
3917 ironlake_irq_reset(dev);
3918 }
3919
3920 static void i8xx_irq_preinstall(struct drm_device * dev)
3921 {
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923 int pipe;
3924
3925 for_each_pipe(dev_priv, pipe)
3926 I915_WRITE(PIPESTAT(pipe), 0);
3927 I915_WRITE16(IMR, 0xffff);
3928 I915_WRITE16(IER, 0x0);
3929 POSTING_READ16(IER);
3930 }
3931
3932 static int i8xx_irq_postinstall(struct drm_device *dev)
3933 {
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935
3936 I915_WRITE16(EMR,
3937 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3938
3939 /* Unmask the interrupts that we always want on. */
3940 dev_priv->irq_mask =
3941 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3942 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3943 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3944 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3945 I915_WRITE16(IMR, dev_priv->irq_mask);
3946
3947 I915_WRITE16(IER,
3948 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3949 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3950 I915_USER_INTERRUPT);
3951 POSTING_READ16(IER);
3952
3953 /* Interrupt setup is already guaranteed to be single-threaded, this is
3954 * just to make the assert_spin_locked check happy. */
3955 spin_lock_irq(&dev_priv->irq_lock);
3956 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3957 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3958 spin_unlock_irq(&dev_priv->irq_lock);
3959
3960 return 0;
3961 }
3962
3963 /*
3964 * Returns true when a page flip has completed.
3965 */
3966 static bool i8xx_handle_vblank(struct drm_device *dev,
3967 int plane, int pipe, u32 iir)
3968 {
3969 struct drm_i915_private *dev_priv = dev->dev_private;
3970 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3971
3972 if (!intel_pipe_handle_vblank(dev, pipe))
3973 return false;
3974
3975 if ((iir & flip_pending) == 0)
3976 goto check_page_flip;
3977
3978 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3979 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3980 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3981 * the flip is completed (no longer pending). Since this doesn't raise
3982 * an interrupt per se, we watch for the change at vblank.
3983 */
3984 if (I915_READ16(ISR) & flip_pending)
3985 goto check_page_flip;
3986
3987 intel_prepare_page_flip(dev, plane);
3988 intel_finish_page_flip(dev, pipe);
3989 return true;
3990
3991 check_page_flip:
3992 intel_check_page_flip(dev, pipe);
3993 return false;
3994 }
3995
3996 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3997 {
3998 struct drm_device *dev = arg;
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 u16 iir, new_iir;
4001 u32 pipe_stats[2];
4002 int pipe;
4003 u16 flip_mask =
4004 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4005 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4006 irqreturn_t ret;
4007
4008 if (!intel_irqs_enabled(dev_priv))
4009 return IRQ_NONE;
4010
4011 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4012 disable_rpm_wakeref_asserts(dev_priv);
4013
4014 ret = IRQ_NONE;
4015 iir = I915_READ16(IIR);
4016 if (iir == 0)
4017 goto out;
4018
4019 while (iir & ~flip_mask) {
4020 /* Can't rely on pipestat interrupt bit in iir as it might
4021 * have been cleared after the pipestat interrupt was received.
4022 * It doesn't set the bit in iir again, but it still produces
4023 * interrupts (for non-MSI).
4024 */
4025 spin_lock(&dev_priv->irq_lock);
4026 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4027 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4028
4029 for_each_pipe(dev_priv, pipe) {
4030 i915_reg_t reg = PIPESTAT(pipe);
4031 pipe_stats[pipe] = I915_READ(reg);
4032
4033 /*
4034 * Clear the PIPE*STAT regs before the IIR
4035 */
4036 if (pipe_stats[pipe] & 0x8000ffff)
4037 I915_WRITE(reg, pipe_stats[pipe]);
4038 }
4039 spin_unlock(&dev_priv->irq_lock);
4040
4041 I915_WRITE16(IIR, iir & ~flip_mask);
4042 new_iir = I915_READ16(IIR); /* Flush posted writes */
4043
4044 if (iir & I915_USER_INTERRUPT)
4045 notify_ring(&dev_priv->engine[RCS]);
4046
4047 for_each_pipe(dev_priv, pipe) {
4048 int plane = pipe;
4049 if (HAS_FBC(dev))
4050 plane = !plane;
4051
4052 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4053 i8xx_handle_vblank(dev, plane, pipe, iir))
4054 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4055
4056 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4057 i9xx_pipe_crc_irq_handler(dev, pipe);
4058
4059 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4060 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4061 pipe);
4062 }
4063
4064 iir = new_iir;
4065 }
4066 ret = IRQ_HANDLED;
4067
4068 out:
4069 enable_rpm_wakeref_asserts(dev_priv);
4070
4071 return ret;
4072 }
4073
4074 static void i8xx_irq_uninstall(struct drm_device * dev)
4075 {
4076 struct drm_i915_private *dev_priv = dev->dev_private;
4077 int pipe;
4078
4079 for_each_pipe(dev_priv, pipe) {
4080 /* Clear enable bits; then clear status bits */
4081 I915_WRITE(PIPESTAT(pipe), 0);
4082 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4083 }
4084 I915_WRITE16(IMR, 0xffff);
4085 I915_WRITE16(IER, 0x0);
4086 I915_WRITE16(IIR, I915_READ16(IIR));
4087 }
4088
4089 static void i915_irq_preinstall(struct drm_device * dev)
4090 {
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092 int pipe;
4093
4094 if (I915_HAS_HOTPLUG(dev)) {
4095 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4096 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4097 }
4098
4099 I915_WRITE16(HWSTAM, 0xeffe);
4100 for_each_pipe(dev_priv, pipe)
4101 I915_WRITE(PIPESTAT(pipe), 0);
4102 I915_WRITE(IMR, 0xffffffff);
4103 I915_WRITE(IER, 0x0);
4104 POSTING_READ(IER);
4105 }
4106
4107 static int i915_irq_postinstall(struct drm_device *dev)
4108 {
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 u32 enable_mask;
4111
4112 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4113
4114 /* Unmask the interrupts that we always want on. */
4115 dev_priv->irq_mask =
4116 ~(I915_ASLE_INTERRUPT |
4117 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4118 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4119 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4120 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4121
4122 enable_mask =
4123 I915_ASLE_INTERRUPT |
4124 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4125 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4126 I915_USER_INTERRUPT;
4127
4128 if (I915_HAS_HOTPLUG(dev)) {
4129 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4130 POSTING_READ(PORT_HOTPLUG_EN);
4131
4132 /* Enable in IER... */
4133 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4134 /* and unmask in IMR */
4135 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4136 }
4137
4138 I915_WRITE(IMR, dev_priv->irq_mask);
4139 I915_WRITE(IER, enable_mask);
4140 POSTING_READ(IER);
4141
4142 i915_enable_asle_pipestat(dev);
4143
4144 /* Interrupt setup is already guaranteed to be single-threaded, this is
4145 * just to make the assert_spin_locked check happy. */
4146 spin_lock_irq(&dev_priv->irq_lock);
4147 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4148 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4149 spin_unlock_irq(&dev_priv->irq_lock);
4150
4151 return 0;
4152 }
4153
4154 /*
4155 * Returns true when a page flip has completed.
4156 */
4157 static bool i915_handle_vblank(struct drm_device *dev,
4158 int plane, int pipe, u32 iir)
4159 {
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4162
4163 if (!intel_pipe_handle_vblank(dev, pipe))
4164 return false;
4165
4166 if ((iir & flip_pending) == 0)
4167 goto check_page_flip;
4168
4169 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4170 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4171 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4172 * the flip is completed (no longer pending). Since this doesn't raise
4173 * an interrupt per se, we watch for the change at vblank.
4174 */
4175 if (I915_READ(ISR) & flip_pending)
4176 goto check_page_flip;
4177
4178 intel_prepare_page_flip(dev, plane);
4179 intel_finish_page_flip(dev, pipe);
4180 return true;
4181
4182 check_page_flip:
4183 intel_check_page_flip(dev, pipe);
4184 return false;
4185 }
4186
4187 static irqreturn_t i915_irq_handler(int irq, void *arg)
4188 {
4189 struct drm_device *dev = arg;
4190 struct drm_i915_private *dev_priv = dev->dev_private;
4191 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4192 u32 flip_mask =
4193 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4194 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4195 int pipe, ret = IRQ_NONE;
4196
4197 if (!intel_irqs_enabled(dev_priv))
4198 return IRQ_NONE;
4199
4200 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4201 disable_rpm_wakeref_asserts(dev_priv);
4202
4203 iir = I915_READ(IIR);
4204 do {
4205 bool irq_received = (iir & ~flip_mask) != 0;
4206 bool blc_event = false;
4207
4208 /* Can't rely on pipestat interrupt bit in iir as it might
4209 * have been cleared after the pipestat interrupt was received.
4210 * It doesn't set the bit in iir again, but it still produces
4211 * interrupts (for non-MSI).
4212 */
4213 spin_lock(&dev_priv->irq_lock);
4214 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4215 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4216
4217 for_each_pipe(dev_priv, pipe) {
4218 i915_reg_t reg = PIPESTAT(pipe);
4219 pipe_stats[pipe] = I915_READ(reg);
4220
4221 /* Clear the PIPE*STAT regs before the IIR */
4222 if (pipe_stats[pipe] & 0x8000ffff) {
4223 I915_WRITE(reg, pipe_stats[pipe]);
4224 irq_received = true;
4225 }
4226 }
4227 spin_unlock(&dev_priv->irq_lock);
4228
4229 if (!irq_received)
4230 break;
4231
4232 /* Consume port. Then clear IIR or we'll miss events */
4233 if (I915_HAS_HOTPLUG(dev) &&
4234 iir & I915_DISPLAY_PORT_INTERRUPT)
4235 i9xx_hpd_irq_handler(dev);
4236
4237 I915_WRITE(IIR, iir & ~flip_mask);
4238 new_iir = I915_READ(IIR); /* Flush posted writes */
4239
4240 if (iir & I915_USER_INTERRUPT)
4241 notify_ring(&dev_priv->engine[RCS]);
4242
4243 for_each_pipe(dev_priv, pipe) {
4244 int plane = pipe;
4245 if (HAS_FBC(dev))
4246 plane = !plane;
4247
4248 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4249 i915_handle_vblank(dev, plane, pipe, iir))
4250 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4251
4252 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4253 blc_event = true;
4254
4255 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4256 i9xx_pipe_crc_irq_handler(dev, pipe);
4257
4258 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4259 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4260 pipe);
4261 }
4262
4263 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4264 intel_opregion_asle_intr(dev);
4265
4266 /* With MSI, interrupts are only generated when iir
4267 * transitions from zero to nonzero. If another bit got
4268 * set while we were handling the existing iir bits, then
4269 * we would never get another interrupt.
4270 *
4271 * This is fine on non-MSI as well, as if we hit this path
4272 * we avoid exiting the interrupt handler only to generate
4273 * another one.
4274 *
4275 * Note that for MSI this could cause a stray interrupt report
4276 * if an interrupt landed in the time between writing IIR and
4277 * the posting read. This should be rare enough to never
4278 * trigger the 99% of 100,000 interrupts test for disabling
4279 * stray interrupts.
4280 */
4281 ret = IRQ_HANDLED;
4282 iir = new_iir;
4283 } while (iir & ~flip_mask);
4284
4285 enable_rpm_wakeref_asserts(dev_priv);
4286
4287 return ret;
4288 }
4289
4290 static void i915_irq_uninstall(struct drm_device * dev)
4291 {
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293 int pipe;
4294
4295 if (I915_HAS_HOTPLUG(dev)) {
4296 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4297 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4298 }
4299
4300 I915_WRITE16(HWSTAM, 0xffff);
4301 for_each_pipe(dev_priv, pipe) {
4302 /* Clear enable bits; then clear status bits */
4303 I915_WRITE(PIPESTAT(pipe), 0);
4304 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4305 }
4306 I915_WRITE(IMR, 0xffffffff);
4307 I915_WRITE(IER, 0x0);
4308
4309 I915_WRITE(IIR, I915_READ(IIR));
4310 }
4311
4312 static void i965_irq_preinstall(struct drm_device * dev)
4313 {
4314 struct drm_i915_private *dev_priv = dev->dev_private;
4315 int pipe;
4316
4317 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4318 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4319
4320 I915_WRITE(HWSTAM, 0xeffe);
4321 for_each_pipe(dev_priv, pipe)
4322 I915_WRITE(PIPESTAT(pipe), 0);
4323 I915_WRITE(IMR, 0xffffffff);
4324 I915_WRITE(IER, 0x0);
4325 POSTING_READ(IER);
4326 }
4327
4328 static int i965_irq_postinstall(struct drm_device *dev)
4329 {
4330 struct drm_i915_private *dev_priv = dev->dev_private;
4331 u32 enable_mask;
4332 u32 error_mask;
4333
4334 /* Unmask the interrupts that we always want on. */
4335 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4336 I915_DISPLAY_PORT_INTERRUPT |
4337 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4338 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4339 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4340 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4341 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4342
4343 enable_mask = ~dev_priv->irq_mask;
4344 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4345 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4346 enable_mask |= I915_USER_INTERRUPT;
4347
4348 if (IS_G4X(dev))
4349 enable_mask |= I915_BSD_USER_INTERRUPT;
4350
4351 /* Interrupt setup is already guaranteed to be single-threaded, this is
4352 * just to make the assert_spin_locked check happy. */
4353 spin_lock_irq(&dev_priv->irq_lock);
4354 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4355 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4356 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4357 spin_unlock_irq(&dev_priv->irq_lock);
4358
4359 /*
4360 * Enable some error detection, note the instruction error mask
4361 * bit is reserved, so we leave it masked.
4362 */
4363 if (IS_G4X(dev)) {
4364 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4365 GM45_ERROR_MEM_PRIV |
4366 GM45_ERROR_CP_PRIV |
4367 I915_ERROR_MEMORY_REFRESH);
4368 } else {
4369 error_mask = ~(I915_ERROR_PAGE_TABLE |
4370 I915_ERROR_MEMORY_REFRESH);
4371 }
4372 I915_WRITE(EMR, error_mask);
4373
4374 I915_WRITE(IMR, dev_priv->irq_mask);
4375 I915_WRITE(IER, enable_mask);
4376 POSTING_READ(IER);
4377
4378 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4379 POSTING_READ(PORT_HOTPLUG_EN);
4380
4381 i915_enable_asle_pipestat(dev);
4382
4383 return 0;
4384 }
4385
4386 static void i915_hpd_irq_setup(struct drm_device *dev)
4387 {
4388 struct drm_i915_private *dev_priv = dev->dev_private;
4389 u32 hotplug_en;
4390
4391 assert_spin_locked(&dev_priv->irq_lock);
4392
4393 /* Note HDMI and DP share hotplug bits */
4394 /* enable bits are the same for all generations */
4395 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4396 /* Programming the CRT detection parameters tends
4397 to generate a spurious hotplug event about three
4398 seconds later. So just do it once.
4399 */
4400 if (IS_G4X(dev))
4401 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4402 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4403
4404 /* Ignore TV since it's buggy */
4405 i915_hotplug_interrupt_update_locked(dev_priv,
4406 HOTPLUG_INT_EN_MASK |
4407 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4408 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4409 hotplug_en);
4410 }
4411
4412 static irqreturn_t i965_irq_handler(int irq, void *arg)
4413 {
4414 struct drm_device *dev = arg;
4415 struct drm_i915_private *dev_priv = dev->dev_private;
4416 u32 iir, new_iir;
4417 u32 pipe_stats[I915_MAX_PIPES];
4418 int ret = IRQ_NONE, pipe;
4419 u32 flip_mask =
4420 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4421 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4422
4423 if (!intel_irqs_enabled(dev_priv))
4424 return IRQ_NONE;
4425
4426 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4427 disable_rpm_wakeref_asserts(dev_priv);
4428
4429 iir = I915_READ(IIR);
4430
4431 for (;;) {
4432 bool irq_received = (iir & ~flip_mask) != 0;
4433 bool blc_event = false;
4434
4435 /* Can't rely on pipestat interrupt bit in iir as it might
4436 * have been cleared after the pipestat interrupt was received.
4437 * It doesn't set the bit in iir again, but it still produces
4438 * interrupts (for non-MSI).
4439 */
4440 spin_lock(&dev_priv->irq_lock);
4441 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4442 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4443
4444 for_each_pipe(dev_priv, pipe) {
4445 i915_reg_t reg = PIPESTAT(pipe);
4446 pipe_stats[pipe] = I915_READ(reg);
4447
4448 /*
4449 * Clear the PIPE*STAT regs before the IIR
4450 */
4451 if (pipe_stats[pipe] & 0x8000ffff) {
4452 I915_WRITE(reg, pipe_stats[pipe]);
4453 irq_received = true;
4454 }
4455 }
4456 spin_unlock(&dev_priv->irq_lock);
4457
4458 if (!irq_received)
4459 break;
4460
4461 ret = IRQ_HANDLED;
4462
4463 /* Consume port. Then clear IIR or we'll miss events */
4464 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4465 i9xx_hpd_irq_handler(dev);
4466
4467 I915_WRITE(IIR, iir & ~flip_mask);
4468 new_iir = I915_READ(IIR); /* Flush posted writes */
4469
4470 if (iir & I915_USER_INTERRUPT)
4471 notify_ring(&dev_priv->engine[RCS]);
4472 if (iir & I915_BSD_USER_INTERRUPT)
4473 notify_ring(&dev_priv->engine[VCS]);
4474
4475 for_each_pipe(dev_priv, pipe) {
4476 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4477 i915_handle_vblank(dev, pipe, pipe, iir))
4478 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4479
4480 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4481 blc_event = true;
4482
4483 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4484 i9xx_pipe_crc_irq_handler(dev, pipe);
4485
4486 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4487 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4488 }
4489
4490 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4491 intel_opregion_asle_intr(dev);
4492
4493 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4494 gmbus_irq_handler(dev);
4495
4496 /* With MSI, interrupts are only generated when iir
4497 * transitions from zero to nonzero. If another bit got
4498 * set while we were handling the existing iir bits, then
4499 * we would never get another interrupt.
4500 *
4501 * This is fine on non-MSI as well, as if we hit this path
4502 * we avoid exiting the interrupt handler only to generate
4503 * another one.
4504 *
4505 * Note that for MSI this could cause a stray interrupt report
4506 * if an interrupt landed in the time between writing IIR and
4507 * the posting read. This should be rare enough to never
4508 * trigger the 99% of 100,000 interrupts test for disabling
4509 * stray interrupts.
4510 */
4511 iir = new_iir;
4512 }
4513
4514 enable_rpm_wakeref_asserts(dev_priv);
4515
4516 return ret;
4517 }
4518
4519 static void i965_irq_uninstall(struct drm_device * dev)
4520 {
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int pipe;
4523
4524 if (!dev_priv)
4525 return;
4526
4527 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4528 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4529
4530 I915_WRITE(HWSTAM, 0xffffffff);
4531 for_each_pipe(dev_priv, pipe)
4532 I915_WRITE(PIPESTAT(pipe), 0);
4533 I915_WRITE(IMR, 0xffffffff);
4534 I915_WRITE(IER, 0x0);
4535
4536 for_each_pipe(dev_priv, pipe)
4537 I915_WRITE(PIPESTAT(pipe),
4538 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4539 I915_WRITE(IIR, I915_READ(IIR));
4540 }
4541
4542 /**
4543 * intel_irq_init - initializes irq support
4544 * @dev_priv: i915 device instance
4545 *
4546 * This function initializes all the irq support including work items, timers
4547 * and all the vtables. It does not setup the interrupt itself though.
4548 */
4549 void intel_irq_init(struct drm_i915_private *dev_priv)
4550 {
4551 struct drm_device *dev = dev_priv->dev;
4552
4553 intel_hpd_init_work(dev_priv);
4554
4555 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4556 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4557
4558 /* Let's track the enabled rps events */
4559 if (IS_VALLEYVIEW(dev_priv))
4560 /* WaGsvRC0ResidencyMethod:vlv */
4561 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4562 else
4563 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4564
4565 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4566 i915_hangcheck_elapsed);
4567
4568 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4569
4570 if (IS_GEN2(dev_priv)) {
4571 dev->max_vblank_count = 0;
4572 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4573 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4574 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4575 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4576 } else {
4577 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4578 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4579 }
4580
4581 /*
4582 * Opt out of the vblank disable timer on everything except gen2.
4583 * Gen2 doesn't have a hardware frame counter and so depends on
4584 * vblank interrupts to produce sane vblank seuquence numbers.
4585 */
4586 if (!IS_GEN2(dev_priv))
4587 dev->vblank_disable_immediate = true;
4588
4589 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4590 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4591
4592 if (IS_CHERRYVIEW(dev_priv)) {
4593 dev->driver->irq_handler = cherryview_irq_handler;
4594 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4595 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4596 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4597 dev->driver->enable_vblank = valleyview_enable_vblank;
4598 dev->driver->disable_vblank = valleyview_disable_vblank;
4599 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4600 } else if (IS_VALLEYVIEW(dev_priv)) {
4601 dev->driver->irq_handler = valleyview_irq_handler;
4602 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4603 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4604 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4605 dev->driver->enable_vblank = valleyview_enable_vblank;
4606 dev->driver->disable_vblank = valleyview_disable_vblank;
4607 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4608 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4609 dev->driver->irq_handler = gen8_irq_handler;
4610 dev->driver->irq_preinstall = gen8_irq_reset;
4611 dev->driver->irq_postinstall = gen8_irq_postinstall;
4612 dev->driver->irq_uninstall = gen8_irq_uninstall;
4613 dev->driver->enable_vblank = gen8_enable_vblank;
4614 dev->driver->disable_vblank = gen8_disable_vblank;
4615 if (IS_BROXTON(dev))
4616 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4617 else if (HAS_PCH_SPT(dev))
4618 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4619 else
4620 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4621 } else if (HAS_PCH_SPLIT(dev)) {
4622 dev->driver->irq_handler = ironlake_irq_handler;
4623 dev->driver->irq_preinstall = ironlake_irq_reset;
4624 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4625 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4626 dev->driver->enable_vblank = ironlake_enable_vblank;
4627 dev->driver->disable_vblank = ironlake_disable_vblank;
4628 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4629 } else {
4630 if (INTEL_INFO(dev_priv)->gen == 2) {
4631 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4632 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4633 dev->driver->irq_handler = i8xx_irq_handler;
4634 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4635 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4636 dev->driver->irq_preinstall = i915_irq_preinstall;
4637 dev->driver->irq_postinstall = i915_irq_postinstall;
4638 dev->driver->irq_uninstall = i915_irq_uninstall;
4639 dev->driver->irq_handler = i915_irq_handler;
4640 } else {
4641 dev->driver->irq_preinstall = i965_irq_preinstall;
4642 dev->driver->irq_postinstall = i965_irq_postinstall;
4643 dev->driver->irq_uninstall = i965_irq_uninstall;
4644 dev->driver->irq_handler = i965_irq_handler;
4645 }
4646 if (I915_HAS_HOTPLUG(dev_priv))
4647 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4648 dev->driver->enable_vblank = i915_enable_vblank;
4649 dev->driver->disable_vblank = i915_disable_vblank;
4650 }
4651 }
4652
4653 /**
4654 * intel_irq_install - enables the hardware interrupt
4655 * @dev_priv: i915 device instance
4656 *
4657 * This function enables the hardware interrupt handling, but leaves the hotplug
4658 * handling still disabled. It is called after intel_irq_init().
4659 *
4660 * In the driver load and resume code we need working interrupts in a few places
4661 * but don't want to deal with the hassle of concurrent probe and hotplug
4662 * workers. Hence the split into this two-stage approach.
4663 */
4664 int intel_irq_install(struct drm_i915_private *dev_priv)
4665 {
4666 /*
4667 * We enable some interrupt sources in our postinstall hooks, so mark
4668 * interrupts as enabled _before_ actually enabling them to avoid
4669 * special cases in our ordering checks.
4670 */
4671 dev_priv->pm.irqs_enabled = true;
4672
4673 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4674 }
4675
4676 /**
4677 * intel_irq_uninstall - finilizes all irq handling
4678 * @dev_priv: i915 device instance
4679 *
4680 * This stops interrupt and hotplug handling and unregisters and frees all
4681 * resources acquired in the init functions.
4682 */
4683 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4684 {
4685 drm_irq_uninstall(dev_priv->dev);
4686 intel_hpd_cancel_work(dev_priv);
4687 dev_priv->pm.irqs_enabled = false;
4688 }
4689
4690 /**
4691 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4692 * @dev_priv: i915 device instance
4693 *
4694 * This function is used to disable interrupts at runtime, both in the runtime
4695 * pm and the system suspend/resume code.
4696 */
4697 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4698 {
4699 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4700 dev_priv->pm.irqs_enabled = false;
4701 synchronize_irq(dev_priv->dev->irq);
4702 }
4703
4704 /**
4705 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4706 * @dev_priv: i915 device instance
4707 *
4708 * This function is used to enable interrupts at runtime, both in the runtime
4709 * pm and the system suspend/resume code.
4710 */
4711 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4712 {
4713 dev_priv->pm.irqs_enabled = true;
4714 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4715 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4716 }
This page took 0.121268 seconds and 4 git commands to generate.