drm/i915: Store a i915 backpointer from engine, and use it
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
353 {
354 spin_lock_irq(&dev_priv->irq_lock);
355
356 WARN_ON(dev_priv->rps.pm_iir);
357 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
358 dev_priv->rps.interrupts_enabled = true;
359 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
360 dev_priv->pm_rps_events);
361 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
362
363 spin_unlock_irq(&dev_priv->irq_lock);
364 }
365
366 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
367 {
368 /*
369 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
370 * if GEN6_PM_UP_EI_EXPIRED is masked.
371 *
372 * TODO: verify if this can be reproduced on VLV,CHV.
373 */
374 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
375 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
376
377 if (INTEL_INFO(dev_priv)->gen >= 8)
378 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
379
380 return mask;
381 }
382
383 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
384 {
385 spin_lock_irq(&dev_priv->irq_lock);
386 dev_priv->rps.interrupts_enabled = false;
387 spin_unlock_irq(&dev_priv->irq_lock);
388
389 cancel_work_sync(&dev_priv->rps.work);
390
391 spin_lock_irq(&dev_priv->irq_lock);
392
393 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
394
395 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
396 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
397 ~dev_priv->pm_rps_events);
398
399 spin_unlock_irq(&dev_priv->irq_lock);
400
401 synchronize_irq(dev_priv->dev->irq);
402 }
403
404 /**
405 * bdw_update_port_irq - update DE port interrupt
406 * @dev_priv: driver private
407 * @interrupt_mask: mask of interrupt bits to update
408 * @enabled_irq_mask: mask of interrupt bits to enable
409 */
410 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
411 uint32_t interrupt_mask,
412 uint32_t enabled_irq_mask)
413 {
414 uint32_t new_val;
415 uint32_t old_val;
416
417 assert_spin_locked(&dev_priv->irq_lock);
418
419 WARN_ON(enabled_irq_mask & ~interrupt_mask);
420
421 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
422 return;
423
424 old_val = I915_READ(GEN8_DE_PORT_IMR);
425
426 new_val = old_val;
427 new_val &= ~interrupt_mask;
428 new_val |= (~enabled_irq_mask & interrupt_mask);
429
430 if (new_val != old_val) {
431 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
432 POSTING_READ(GEN8_DE_PORT_IMR);
433 }
434 }
435
436 /**
437 * bdw_update_pipe_irq - update DE pipe interrupt
438 * @dev_priv: driver private
439 * @pipe: pipe whose interrupt to update
440 * @interrupt_mask: mask of interrupt bits to update
441 * @enabled_irq_mask: mask of interrupt bits to enable
442 */
443 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
444 enum pipe pipe,
445 uint32_t interrupt_mask,
446 uint32_t enabled_irq_mask)
447 {
448 uint32_t new_val;
449
450 assert_spin_locked(&dev_priv->irq_lock);
451
452 WARN_ON(enabled_irq_mask & ~interrupt_mask);
453
454 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
455 return;
456
457 new_val = dev_priv->de_irq_mask[pipe];
458 new_val &= ~interrupt_mask;
459 new_val |= (~enabled_irq_mask & interrupt_mask);
460
461 if (new_val != dev_priv->de_irq_mask[pipe]) {
462 dev_priv->de_irq_mask[pipe] = new_val;
463 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
464 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
465 }
466 }
467
468 /**
469 * ibx_display_interrupt_update - update SDEIMR
470 * @dev_priv: driver private
471 * @interrupt_mask: mask of interrupt bits to update
472 * @enabled_irq_mask: mask of interrupt bits to enable
473 */
474 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
475 uint32_t interrupt_mask,
476 uint32_t enabled_irq_mask)
477 {
478 uint32_t sdeimr = I915_READ(SDEIMR);
479 sdeimr &= ~interrupt_mask;
480 sdeimr |= (~enabled_irq_mask & interrupt_mask);
481
482 WARN_ON(enabled_irq_mask & ~interrupt_mask);
483
484 assert_spin_locked(&dev_priv->irq_lock);
485
486 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
487 return;
488
489 I915_WRITE(SDEIMR, sdeimr);
490 POSTING_READ(SDEIMR);
491 }
492
493 static void
494 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
495 u32 enable_mask, u32 status_mask)
496 {
497 i915_reg_t reg = PIPESTAT(pipe);
498 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
499
500 assert_spin_locked(&dev_priv->irq_lock);
501 WARN_ON(!intel_irqs_enabled(dev_priv));
502
503 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
504 status_mask & ~PIPESTAT_INT_STATUS_MASK,
505 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
506 pipe_name(pipe), enable_mask, status_mask))
507 return;
508
509 if ((pipestat & enable_mask) == enable_mask)
510 return;
511
512 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
513
514 /* Enable the interrupt, clear any pending status */
515 pipestat |= enable_mask | status_mask;
516 I915_WRITE(reg, pipestat);
517 POSTING_READ(reg);
518 }
519
520 static void
521 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
522 u32 enable_mask, u32 status_mask)
523 {
524 i915_reg_t reg = PIPESTAT(pipe);
525 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
526
527 assert_spin_locked(&dev_priv->irq_lock);
528 WARN_ON(!intel_irqs_enabled(dev_priv));
529
530 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 status_mask & ~PIPESTAT_INT_STATUS_MASK,
532 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
533 pipe_name(pipe), enable_mask, status_mask))
534 return;
535
536 if ((pipestat & enable_mask) == 0)
537 return;
538
539 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
540
541 pipestat &= ~enable_mask;
542 I915_WRITE(reg, pipestat);
543 POSTING_READ(reg);
544 }
545
546 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
547 {
548 u32 enable_mask = status_mask << 16;
549
550 /*
551 * On pipe A we don't support the PSR interrupt yet,
552 * on pipe B and C the same bit MBZ.
553 */
554 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
555 return 0;
556 /*
557 * On pipe B and C we don't support the PSR interrupt yet, on pipe
558 * A the same bit is for perf counters which we don't use either.
559 */
560 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
561 return 0;
562
563 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
564 SPRITE0_FLIP_DONE_INT_EN_VLV |
565 SPRITE1_FLIP_DONE_INT_EN_VLV);
566 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
567 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
568 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
569 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
570
571 return enable_mask;
572 }
573
574 void
575 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
576 u32 status_mask)
577 {
578 u32 enable_mask;
579
580 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
581 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
582 status_mask);
583 else
584 enable_mask = status_mask << 16;
585 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
586 }
587
588 void
589 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
590 u32 status_mask)
591 {
592 u32 enable_mask;
593
594 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
595 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
596 status_mask);
597 else
598 enable_mask = status_mask << 16;
599 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
600 }
601
602 /**
603 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
604 * @dev: drm device
605 */
606 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
607 {
608 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
609 return;
610
611 spin_lock_irq(&dev_priv->irq_lock);
612
613 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
614 if (INTEL_GEN(dev_priv) >= 4)
615 i915_enable_pipestat(dev_priv, PIPE_A,
616 PIPE_LEGACY_BLC_EVENT_STATUS);
617
618 spin_unlock_irq(&dev_priv->irq_lock);
619 }
620
621 /*
622 * This timing diagram depicts the video signal in and
623 * around the vertical blanking period.
624 *
625 * Assumptions about the fictitious mode used in this example:
626 * vblank_start >= 3
627 * vsync_start = vblank_start + 1
628 * vsync_end = vblank_start + 2
629 * vtotal = vblank_start + 3
630 *
631 * start of vblank:
632 * latch double buffered registers
633 * increment frame counter (ctg+)
634 * generate start of vblank interrupt (gen4+)
635 * |
636 * | frame start:
637 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
638 * | may be shifted forward 1-3 extra lines via PIPECONF
639 * | |
640 * | | start of vsync:
641 * | | generate vsync interrupt
642 * | | |
643 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
644 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
645 * ----va---> <-----------------vb--------------------> <--------va-------------
646 * | | <----vs-----> |
647 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
648 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
649 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
650 * | | |
651 * last visible pixel first visible pixel
652 * | increment frame counter (gen3/4)
653 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
654 *
655 * x = horizontal active
656 * _ = horizontal blanking
657 * hs = horizontal sync
658 * va = vertical active
659 * vb = vertical blanking
660 * vs = vertical sync
661 * vbs = vblank_start (number)
662 *
663 * Summary:
664 * - most events happen at the start of horizontal sync
665 * - frame start happens at the start of horizontal blank, 1-4 lines
666 * (depending on PIPECONF settings) after the start of vblank
667 * - gen3/4 pixel and frame counter are synchronized with the start
668 * of horizontal active on the first line of vertical active
669 */
670
671 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
672 {
673 /* Gen2 doesn't have a hardware frame counter */
674 return 0;
675 }
676
677 /* Called from drm generic code, passed a 'crtc', which
678 * we use as a pipe index
679 */
680 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
681 {
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 i915_reg_t high_frame, low_frame;
684 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
685 struct intel_crtc *intel_crtc =
686 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
687 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
688
689 htotal = mode->crtc_htotal;
690 hsync_start = mode->crtc_hsync_start;
691 vbl_start = mode->crtc_vblank_start;
692 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
693 vbl_start = DIV_ROUND_UP(vbl_start, 2);
694
695 /* Convert to pixel count */
696 vbl_start *= htotal;
697
698 /* Start of vblank event occurs at start of hsync */
699 vbl_start -= htotal - hsync_start;
700
701 high_frame = PIPEFRAME(pipe);
702 low_frame = PIPEFRAMEPIXEL(pipe);
703
704 /*
705 * High & low register fields aren't synchronized, so make sure
706 * we get a low value that's stable across two reads of the high
707 * register.
708 */
709 do {
710 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
711 low = I915_READ(low_frame);
712 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
713 } while (high1 != high2);
714
715 high1 >>= PIPE_FRAME_HIGH_SHIFT;
716 pixel = low & PIPE_PIXEL_MASK;
717 low >>= PIPE_FRAME_LOW_SHIFT;
718
719 /*
720 * The frame counter increments at beginning of active.
721 * Cook up a vblank counter by also checking the pixel
722 * counter against vblank start.
723 */
724 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
725 }
726
727 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
728 {
729 struct drm_i915_private *dev_priv = dev->dev_private;
730
731 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
732 }
733
734 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
735 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
736 {
737 struct drm_device *dev = crtc->base.dev;
738 struct drm_i915_private *dev_priv = dev->dev_private;
739 const struct drm_display_mode *mode = &crtc->base.hwmode;
740 enum pipe pipe = crtc->pipe;
741 int position, vtotal;
742
743 vtotal = mode->crtc_vtotal;
744 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745 vtotal /= 2;
746
747 if (IS_GEN2(dev_priv))
748 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
749 else
750 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
751
752 /*
753 * On HSW, the DSL reg (0x70000) appears to return 0 if we
754 * read it just before the start of vblank. So try it again
755 * so we don't accidentally end up spanning a vblank frame
756 * increment, causing the pipe_update_end() code to squak at us.
757 *
758 * The nature of this problem means we can't simply check the ISR
759 * bit and return the vblank start value; nor can we use the scanline
760 * debug register in the transcoder as it appears to have the same
761 * problem. We may need to extend this to include other platforms,
762 * but so far testing only shows the problem on HSW.
763 */
764 if (HAS_DDI(dev_priv) && !position) {
765 int i, temp;
766
767 for (i = 0; i < 100; i++) {
768 udelay(1);
769 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
770 DSL_LINEMASK_GEN3;
771 if (temp != position) {
772 position = temp;
773 break;
774 }
775 }
776 }
777
778 /*
779 * See update_scanline_offset() for the details on the
780 * scanline_offset adjustment.
781 */
782 return (position + crtc->scanline_offset) % vtotal;
783 }
784
785 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
786 unsigned int flags, int *vpos, int *hpos,
787 ktime_t *stime, ktime_t *etime,
788 const struct drm_display_mode *mode)
789 {
790 struct drm_i915_private *dev_priv = dev->dev_private;
791 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793 int position;
794 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
795 bool in_vbl = true;
796 int ret = 0;
797 unsigned long irqflags;
798
799 if (WARN_ON(!mode->crtc_clock)) {
800 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
801 "pipe %c\n", pipe_name(pipe));
802 return 0;
803 }
804
805 htotal = mode->crtc_htotal;
806 hsync_start = mode->crtc_hsync_start;
807 vtotal = mode->crtc_vtotal;
808 vbl_start = mode->crtc_vblank_start;
809 vbl_end = mode->crtc_vblank_end;
810
811 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
812 vbl_start = DIV_ROUND_UP(vbl_start, 2);
813 vbl_end /= 2;
814 vtotal /= 2;
815 }
816
817 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
818
819 /*
820 * Lock uncore.lock, as we will do multiple timing critical raw
821 * register reads, potentially with preemption disabled, so the
822 * following code must not block on uncore.lock.
823 */
824 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
825
826 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
827
828 /* Get optional system timestamp before query. */
829 if (stime)
830 *stime = ktime_get();
831
832 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
833 /* No obvious pixelcount register. Only query vertical
834 * scanout position from Display scan line register.
835 */
836 position = __intel_get_crtc_scanline(intel_crtc);
837 } else {
838 /* Have access to pixelcount since start of frame.
839 * We can split this into vertical and horizontal
840 * scanout position.
841 */
842 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
843
844 /* convert to pixel counts */
845 vbl_start *= htotal;
846 vbl_end *= htotal;
847 vtotal *= htotal;
848
849 /*
850 * In interlaced modes, the pixel counter counts all pixels,
851 * so one field will have htotal more pixels. In order to avoid
852 * the reported position from jumping backwards when the pixel
853 * counter is beyond the length of the shorter field, just
854 * clamp the position the length of the shorter field. This
855 * matches how the scanline counter based position works since
856 * the scanline counter doesn't count the two half lines.
857 */
858 if (position >= vtotal)
859 position = vtotal - 1;
860
861 /*
862 * Start of vblank interrupt is triggered at start of hsync,
863 * just prior to the first active line of vblank. However we
864 * consider lines to start at the leading edge of horizontal
865 * active. So, should we get here before we've crossed into
866 * the horizontal active of the first line in vblank, we would
867 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
868 * always add htotal-hsync_start to the current pixel position.
869 */
870 position = (position + htotal - hsync_start) % vtotal;
871 }
872
873 /* Get optional system timestamp after query. */
874 if (etime)
875 *etime = ktime_get();
876
877 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
878
879 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
880
881 in_vbl = position >= vbl_start && position < vbl_end;
882
883 /*
884 * While in vblank, position will be negative
885 * counting up towards 0 at vbl_end. And outside
886 * vblank, position will be positive counting
887 * up since vbl_end.
888 */
889 if (position >= vbl_start)
890 position -= vbl_end;
891 else
892 position += vtotal - vbl_end;
893
894 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
895 *vpos = position;
896 *hpos = 0;
897 } else {
898 *vpos = position / htotal;
899 *hpos = position - (*vpos * htotal);
900 }
901
902 /* In vblank? */
903 if (in_vbl)
904 ret |= DRM_SCANOUTPOS_IN_VBLANK;
905
906 return ret;
907 }
908
909 int intel_get_crtc_scanline(struct intel_crtc *crtc)
910 {
911 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
912 unsigned long irqflags;
913 int position;
914
915 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
916 position = __intel_get_crtc_scanline(crtc);
917 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
918
919 return position;
920 }
921
922 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
923 int *max_error,
924 struct timeval *vblank_time,
925 unsigned flags)
926 {
927 struct drm_crtc *crtc;
928
929 if (pipe >= INTEL_INFO(dev)->num_pipes) {
930 DRM_ERROR("Invalid crtc %u\n", pipe);
931 return -EINVAL;
932 }
933
934 /* Get drm_crtc to timestamp: */
935 crtc = intel_get_crtc_for_pipe(dev, pipe);
936 if (crtc == NULL) {
937 DRM_ERROR("Invalid crtc %u\n", pipe);
938 return -EINVAL;
939 }
940
941 if (!crtc->hwmode.crtc_clock) {
942 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
943 return -EBUSY;
944 }
945
946 /* Helper routine in DRM core does all the work: */
947 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
948 vblank_time, flags,
949 &crtc->hwmode);
950 }
951
952 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
953 {
954 u32 busy_up, busy_down, max_avg, min_avg;
955 u8 new_delay;
956
957 spin_lock(&mchdev_lock);
958
959 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
960
961 new_delay = dev_priv->ips.cur_delay;
962
963 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
964 busy_up = I915_READ(RCPREVBSYTUPAVG);
965 busy_down = I915_READ(RCPREVBSYTDNAVG);
966 max_avg = I915_READ(RCBMAXAVG);
967 min_avg = I915_READ(RCBMINAVG);
968
969 /* Handle RCS change request from hw */
970 if (busy_up > max_avg) {
971 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
972 new_delay = dev_priv->ips.cur_delay - 1;
973 if (new_delay < dev_priv->ips.max_delay)
974 new_delay = dev_priv->ips.max_delay;
975 } else if (busy_down < min_avg) {
976 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
977 new_delay = dev_priv->ips.cur_delay + 1;
978 if (new_delay > dev_priv->ips.min_delay)
979 new_delay = dev_priv->ips.min_delay;
980 }
981
982 if (ironlake_set_drps(dev_priv, new_delay))
983 dev_priv->ips.cur_delay = new_delay;
984
985 spin_unlock(&mchdev_lock);
986
987 return;
988 }
989
990 static void notify_ring(struct intel_engine_cs *engine)
991 {
992 if (!intel_engine_initialized(engine))
993 return;
994
995 trace_i915_gem_request_notify(engine);
996 engine->user_interrupts++;
997
998 wake_up_all(&engine->irq_queue);
999 }
1000
1001 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1002 struct intel_rps_ei *ei)
1003 {
1004 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1005 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1006 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1007 }
1008
1009 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1010 const struct intel_rps_ei *old,
1011 const struct intel_rps_ei *now,
1012 int threshold)
1013 {
1014 u64 time, c0;
1015 unsigned int mul = 100;
1016
1017 if (old->cz_clock == 0)
1018 return false;
1019
1020 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1021 mul <<= 8;
1022
1023 time = now->cz_clock - old->cz_clock;
1024 time *= threshold * dev_priv->czclk_freq;
1025
1026 /* Workload can be split between render + media, e.g. SwapBuffers
1027 * being blitted in X after being rendered in mesa. To account for
1028 * this we need to combine both engines into our activity counter.
1029 */
1030 c0 = now->render_c0 - old->render_c0;
1031 c0 += now->media_c0 - old->media_c0;
1032 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1033
1034 return c0 >= time;
1035 }
1036
1037 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1038 {
1039 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1040 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1041 }
1042
1043 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1044 {
1045 struct intel_rps_ei now;
1046 u32 events = 0;
1047
1048 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1049 return 0;
1050
1051 vlv_c0_read(dev_priv, &now);
1052 if (now.cz_clock == 0)
1053 return 0;
1054
1055 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1056 if (!vlv_c0_above(dev_priv,
1057 &dev_priv->rps.down_ei, &now,
1058 dev_priv->rps.down_threshold))
1059 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1060 dev_priv->rps.down_ei = now;
1061 }
1062
1063 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1064 if (vlv_c0_above(dev_priv,
1065 &dev_priv->rps.up_ei, &now,
1066 dev_priv->rps.up_threshold))
1067 events |= GEN6_PM_RP_UP_THRESHOLD;
1068 dev_priv->rps.up_ei = now;
1069 }
1070
1071 return events;
1072 }
1073
1074 static bool any_waiters(struct drm_i915_private *dev_priv)
1075 {
1076 struct intel_engine_cs *engine;
1077
1078 for_each_engine(engine, dev_priv)
1079 if (engine->irq_refcount)
1080 return true;
1081
1082 return false;
1083 }
1084
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087 struct drm_i915_private *dev_priv =
1088 container_of(work, struct drm_i915_private, rps.work);
1089 bool client_boost;
1090 int new_delay, adj, min, max;
1091 u32 pm_iir;
1092
1093 spin_lock_irq(&dev_priv->irq_lock);
1094 /* Speed up work cancelation during disabling rps interrupts. */
1095 if (!dev_priv->rps.interrupts_enabled) {
1096 spin_unlock_irq(&dev_priv->irq_lock);
1097 return;
1098 }
1099
1100 /*
1101 * The RPS work is synced during runtime suspend, we don't require a
1102 * wakeref. TODO: instead of disabling the asserts make sure that we
1103 * always hold an RPM reference while the work is running.
1104 */
1105 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1106
1107 pm_iir = dev_priv->rps.pm_iir;
1108 dev_priv->rps.pm_iir = 0;
1109 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1110 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1111 client_boost = dev_priv->rps.client_boost;
1112 dev_priv->rps.client_boost = false;
1113 spin_unlock_irq(&dev_priv->irq_lock);
1114
1115 /* Make sure we didn't queue anything we're not going to process. */
1116 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1117
1118 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1119 goto out;
1120
1121 mutex_lock(&dev_priv->rps.hw_lock);
1122
1123 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1124
1125 adj = dev_priv->rps.last_adj;
1126 new_delay = dev_priv->rps.cur_freq;
1127 min = dev_priv->rps.min_freq_softlimit;
1128 max = dev_priv->rps.max_freq_softlimit;
1129
1130 if (client_boost) {
1131 new_delay = dev_priv->rps.max_freq_softlimit;
1132 adj = 0;
1133 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1134 if (adj > 0)
1135 adj *= 2;
1136 else /* CHV needs even encode values */
1137 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1138 /*
1139 * For better performance, jump directly
1140 * to RPe if we're below it.
1141 */
1142 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1143 new_delay = dev_priv->rps.efficient_freq;
1144 adj = 0;
1145 }
1146 } else if (any_waiters(dev_priv)) {
1147 adj = 0;
1148 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1149 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1150 new_delay = dev_priv->rps.efficient_freq;
1151 else
1152 new_delay = dev_priv->rps.min_freq_softlimit;
1153 adj = 0;
1154 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1155 if (adj < 0)
1156 adj *= 2;
1157 else /* CHV needs even encode values */
1158 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1159 } else { /* unknown event */
1160 adj = 0;
1161 }
1162
1163 dev_priv->rps.last_adj = adj;
1164
1165 /* sysfs frequency interfaces may have snuck in while servicing the
1166 * interrupt
1167 */
1168 new_delay += adj;
1169 new_delay = clamp_t(int, new_delay, min, max);
1170
1171 intel_set_rps(dev_priv->dev, new_delay);
1172
1173 mutex_unlock(&dev_priv->rps.hw_lock);
1174 out:
1175 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1176 }
1177
1178
1179 /**
1180 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181 * occurred.
1182 * @work: workqueue struct
1183 *
1184 * Doesn't actually do anything except notify userspace. As a consequence of
1185 * this event, userspace should try to remap the bad rows since statistically
1186 * it is likely the same row is more likely to go bad again.
1187 */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190 struct drm_i915_private *dev_priv =
1191 container_of(work, struct drm_i915_private, l3_parity.error_work);
1192 u32 error_status, row, bank, subbank;
1193 char *parity_event[6];
1194 uint32_t misccpctl;
1195 uint8_t slice = 0;
1196
1197 /* We must turn off DOP level clock gating to access the L3 registers.
1198 * In order to prevent a get/put style interface, acquire struct mutex
1199 * any time we access those registers.
1200 */
1201 mutex_lock(&dev_priv->dev->struct_mutex);
1202
1203 /* If we've screwed up tracking, just let the interrupt fire again */
1204 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205 goto out;
1206
1207 misccpctl = I915_READ(GEN7_MISCCPCTL);
1208 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209 POSTING_READ(GEN7_MISCCPCTL);
1210
1211 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212 i915_reg_t reg;
1213
1214 slice--;
1215 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216 break;
1217
1218 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219
1220 reg = GEN7_L3CDERRST1(slice);
1221
1222 error_status = I915_READ(reg);
1223 row = GEN7_PARITY_ERROR_ROW(error_status);
1224 bank = GEN7_PARITY_ERROR_BANK(error_status);
1225 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226
1227 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228 POSTING_READ(reg);
1229
1230 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235 parity_event[5] = NULL;
1236
1237 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1238 KOBJ_CHANGE, parity_event);
1239
1240 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241 slice, row, bank, subbank);
1242
1243 kfree(parity_event[4]);
1244 kfree(parity_event[3]);
1245 kfree(parity_event[2]);
1246 kfree(parity_event[1]);
1247 }
1248
1249 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250
1251 out:
1252 WARN_ON(dev_priv->l3_parity.which_slice);
1253 spin_lock_irq(&dev_priv->irq_lock);
1254 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255 spin_unlock_irq(&dev_priv->irq_lock);
1256
1257 mutex_unlock(&dev_priv->dev->struct_mutex);
1258 }
1259
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261 u32 iir)
1262 {
1263 if (!HAS_L3_DPF(dev_priv))
1264 return;
1265
1266 spin_lock(&dev_priv->irq_lock);
1267 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268 spin_unlock(&dev_priv->irq_lock);
1269
1270 iir &= GT_PARITY_ERROR(dev_priv);
1271 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272 dev_priv->l3_parity.which_slice |= 1 << 1;
1273
1274 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275 dev_priv->l3_parity.which_slice |= 1 << 0;
1276
1277 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281 u32 gt_iir)
1282 {
1283 if (gt_iir &
1284 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1285 notify_ring(&dev_priv->engine[RCS]);
1286 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1287 notify_ring(&dev_priv->engine[VCS]);
1288 }
1289
1290 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1291 u32 gt_iir)
1292 {
1293
1294 if (gt_iir &
1295 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1296 notify_ring(&dev_priv->engine[RCS]);
1297 if (gt_iir & GT_BSD_USER_INTERRUPT)
1298 notify_ring(&dev_priv->engine[VCS]);
1299 if (gt_iir & GT_BLT_USER_INTERRUPT)
1300 notify_ring(&dev_priv->engine[BCS]);
1301
1302 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1303 GT_BSD_CS_ERROR_INTERRUPT |
1304 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1305 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1306
1307 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1308 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1309 }
1310
1311 static __always_inline void
1312 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1313 {
1314 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1315 notify_ring(engine);
1316 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1317 tasklet_schedule(&engine->irq_tasklet);
1318 }
1319
1320 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1321 u32 master_ctl,
1322 u32 gt_iir[4])
1323 {
1324 irqreturn_t ret = IRQ_NONE;
1325
1326 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1327 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1328 if (gt_iir[0]) {
1329 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1330 ret = IRQ_HANDLED;
1331 } else
1332 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1333 }
1334
1335 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1336 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1337 if (gt_iir[1]) {
1338 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1339 ret = IRQ_HANDLED;
1340 } else
1341 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1342 }
1343
1344 if (master_ctl & GEN8_GT_VECS_IRQ) {
1345 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1346 if (gt_iir[3]) {
1347 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1348 ret = IRQ_HANDLED;
1349 } else
1350 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1351 }
1352
1353 if (master_ctl & GEN8_GT_PM_IRQ) {
1354 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1355 if (gt_iir[2] & dev_priv->pm_rps_events) {
1356 I915_WRITE_FW(GEN8_GT_IIR(2),
1357 gt_iir[2] & dev_priv->pm_rps_events);
1358 ret = IRQ_HANDLED;
1359 } else
1360 DRM_ERROR("The master control interrupt lied (PM)!\n");
1361 }
1362
1363 return ret;
1364 }
1365
1366 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1367 u32 gt_iir[4])
1368 {
1369 if (gt_iir[0]) {
1370 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1371 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1372 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1373 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1374 }
1375
1376 if (gt_iir[1]) {
1377 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1378 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1379 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1380 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1381 }
1382
1383 if (gt_iir[3])
1384 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1385 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1386
1387 if (gt_iir[2] & dev_priv->pm_rps_events)
1388 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1503 {
1504 wake_up_all(&dev_priv->gmbus_wait_queue);
1505 }
1506
1507 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1508 {
1509 wake_up_all(&dev_priv->gmbus_wait_queue);
1510 }
1511
1512 #if defined(CONFIG_DEBUG_FS)
1513 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1514 enum pipe pipe,
1515 uint32_t crc0, uint32_t crc1,
1516 uint32_t crc2, uint32_t crc3,
1517 uint32_t crc4)
1518 {
1519 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1520 struct intel_pipe_crc_entry *entry;
1521 int head, tail;
1522
1523 spin_lock(&pipe_crc->lock);
1524
1525 if (!pipe_crc->entries) {
1526 spin_unlock(&pipe_crc->lock);
1527 DRM_DEBUG_KMS("spurious interrupt\n");
1528 return;
1529 }
1530
1531 head = pipe_crc->head;
1532 tail = pipe_crc->tail;
1533
1534 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1535 spin_unlock(&pipe_crc->lock);
1536 DRM_ERROR("CRC buffer overflowing\n");
1537 return;
1538 }
1539
1540 entry = &pipe_crc->entries[head];
1541
1542 entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1543 pipe);
1544 entry->crc[0] = crc0;
1545 entry->crc[1] = crc1;
1546 entry->crc[2] = crc2;
1547 entry->crc[3] = crc3;
1548 entry->crc[4] = crc4;
1549
1550 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1551 pipe_crc->head = head;
1552
1553 spin_unlock(&pipe_crc->lock);
1554
1555 wake_up_interruptible(&pipe_crc->wq);
1556 }
1557 #else
1558 static inline void
1559 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1560 enum pipe pipe,
1561 uint32_t crc0, uint32_t crc1,
1562 uint32_t crc2, uint32_t crc3,
1563 uint32_t crc4) {}
1564 #endif
1565
1566
1567 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1568 enum pipe pipe)
1569 {
1570 display_pipe_crc_irq_handler(dev_priv, pipe,
1571 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1572 0, 0, 0, 0);
1573 }
1574
1575 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1576 enum pipe pipe)
1577 {
1578 display_pipe_crc_irq_handler(dev_priv, pipe,
1579 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1580 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1581 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1582 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1583 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1584 }
1585
1586 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1587 enum pipe pipe)
1588 {
1589 uint32_t res1, res2;
1590
1591 if (INTEL_GEN(dev_priv) >= 3)
1592 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1593 else
1594 res1 = 0;
1595
1596 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1597 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1598 else
1599 res2 = 0;
1600
1601 display_pipe_crc_irq_handler(dev_priv, pipe,
1602 I915_READ(PIPE_CRC_RES_RED(pipe)),
1603 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1604 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1605 res1, res2);
1606 }
1607
1608 /* The RPS events need forcewake, so we add them to a work queue and mask their
1609 * IMR bits until the work is done. Other interrupts can be processed without
1610 * the work queue. */
1611 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1612 {
1613 if (pm_iir & dev_priv->pm_rps_events) {
1614 spin_lock(&dev_priv->irq_lock);
1615 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1616 if (dev_priv->rps.interrupts_enabled) {
1617 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1618 queue_work(dev_priv->wq, &dev_priv->rps.work);
1619 }
1620 spin_unlock(&dev_priv->irq_lock);
1621 }
1622
1623 if (INTEL_INFO(dev_priv)->gen >= 8)
1624 return;
1625
1626 if (HAS_VEBOX(dev_priv)) {
1627 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1628 notify_ring(&dev_priv->engine[VECS]);
1629
1630 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1631 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1632 }
1633 }
1634
1635 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1636 enum pipe pipe)
1637 {
1638 return drm_handle_vblank(dev_priv->dev, pipe);
1639 }
1640
1641 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1642 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1643 {
1644 int pipe;
1645
1646 spin_lock(&dev_priv->irq_lock);
1647
1648 if (!dev_priv->display_irqs_enabled) {
1649 spin_unlock(&dev_priv->irq_lock);
1650 return;
1651 }
1652
1653 for_each_pipe(dev_priv, pipe) {
1654 i915_reg_t reg;
1655 u32 mask, iir_bit = 0;
1656
1657 /*
1658 * PIPESTAT bits get signalled even when the interrupt is
1659 * disabled with the mask bits, and some of the status bits do
1660 * not generate interrupts at all (like the underrun bit). Hence
1661 * we need to be careful that we only handle what we want to
1662 * handle.
1663 */
1664
1665 /* fifo underruns are filterered in the underrun handler. */
1666 mask = PIPE_FIFO_UNDERRUN_STATUS;
1667
1668 switch (pipe) {
1669 case PIPE_A:
1670 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1671 break;
1672 case PIPE_B:
1673 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1674 break;
1675 case PIPE_C:
1676 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1677 break;
1678 }
1679 if (iir & iir_bit)
1680 mask |= dev_priv->pipestat_irq_mask[pipe];
1681
1682 if (!mask)
1683 continue;
1684
1685 reg = PIPESTAT(pipe);
1686 mask |= PIPESTAT_INT_ENABLE_MASK;
1687 pipe_stats[pipe] = I915_READ(reg) & mask;
1688
1689 /*
1690 * Clear the PIPE*STAT regs before the IIR
1691 */
1692 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1693 PIPESTAT_INT_STATUS_MASK))
1694 I915_WRITE(reg, pipe_stats[pipe]);
1695 }
1696 spin_unlock(&dev_priv->irq_lock);
1697 }
1698
1699 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1700 u32 pipe_stats[I915_MAX_PIPES])
1701 {
1702 enum pipe pipe;
1703
1704 for_each_pipe(dev_priv, pipe) {
1705 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1706 intel_pipe_handle_vblank(dev_priv, pipe))
1707 intel_check_page_flip(dev_priv, pipe);
1708
1709 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1710 intel_prepare_page_flip(dev_priv, pipe);
1711 intel_finish_page_flip(dev_priv, pipe);
1712 }
1713
1714 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1715 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1716
1717 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1718 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1719 }
1720
1721 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1722 gmbus_irq_handler(dev_priv);
1723 }
1724
1725 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1726 {
1727 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1728
1729 if (hotplug_status)
1730 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1731
1732 return hotplug_status;
1733 }
1734
1735 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1736 u32 hotplug_status)
1737 {
1738 u32 pin_mask = 0, long_mask = 0;
1739
1740 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1741 IS_CHERRYVIEW(dev_priv)) {
1742 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1743
1744 if (hotplug_trigger) {
1745 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1746 hotplug_trigger, hpd_status_g4x,
1747 i9xx_port_hotplug_long_detect);
1748
1749 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1750 }
1751
1752 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1753 dp_aux_irq_handler(dev_priv);
1754 } else {
1755 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1756
1757 if (hotplug_trigger) {
1758 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1759 hotplug_trigger, hpd_status_i915,
1760 i9xx_port_hotplug_long_detect);
1761 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1762 }
1763 }
1764 }
1765
1766 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1767 {
1768 struct drm_device *dev = arg;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 irqreturn_t ret = IRQ_NONE;
1771
1772 if (!intel_irqs_enabled(dev_priv))
1773 return IRQ_NONE;
1774
1775 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1776 disable_rpm_wakeref_asserts(dev_priv);
1777
1778 do {
1779 u32 iir, gt_iir, pm_iir;
1780 u32 pipe_stats[I915_MAX_PIPES] = {};
1781 u32 hotplug_status = 0;
1782 u32 ier = 0;
1783
1784 gt_iir = I915_READ(GTIIR);
1785 pm_iir = I915_READ(GEN6_PMIIR);
1786 iir = I915_READ(VLV_IIR);
1787
1788 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1789 break;
1790
1791 ret = IRQ_HANDLED;
1792
1793 /*
1794 * Theory on interrupt generation, based on empirical evidence:
1795 *
1796 * x = ((VLV_IIR & VLV_IER) ||
1797 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1798 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1799 *
1800 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1801 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1802 * guarantee the CPU interrupt will be raised again even if we
1803 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1804 * bits this time around.
1805 */
1806 I915_WRITE(VLV_MASTER_IER, 0);
1807 ier = I915_READ(VLV_IER);
1808 I915_WRITE(VLV_IER, 0);
1809
1810 if (gt_iir)
1811 I915_WRITE(GTIIR, gt_iir);
1812 if (pm_iir)
1813 I915_WRITE(GEN6_PMIIR, pm_iir);
1814
1815 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1816 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1817
1818 /* Call regardless, as some status bits might not be
1819 * signalled in iir */
1820 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1821
1822 /*
1823 * VLV_IIR is single buffered, and reflects the level
1824 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1825 */
1826 if (iir)
1827 I915_WRITE(VLV_IIR, iir);
1828
1829 I915_WRITE(VLV_IER, ier);
1830 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1831 POSTING_READ(VLV_MASTER_IER);
1832
1833 if (gt_iir)
1834 snb_gt_irq_handler(dev_priv, gt_iir);
1835 if (pm_iir)
1836 gen6_rps_irq_handler(dev_priv, pm_iir);
1837
1838 if (hotplug_status)
1839 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1840
1841 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1842 } while (0);
1843
1844 enable_rpm_wakeref_asserts(dev_priv);
1845
1846 return ret;
1847 }
1848
1849 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1850 {
1851 struct drm_device *dev = arg;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 irqreturn_t ret = IRQ_NONE;
1854
1855 if (!intel_irqs_enabled(dev_priv))
1856 return IRQ_NONE;
1857
1858 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1859 disable_rpm_wakeref_asserts(dev_priv);
1860
1861 do {
1862 u32 master_ctl, iir;
1863 u32 gt_iir[4] = {};
1864 u32 pipe_stats[I915_MAX_PIPES] = {};
1865 u32 hotplug_status = 0;
1866 u32 ier = 0;
1867
1868 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1869 iir = I915_READ(VLV_IIR);
1870
1871 if (master_ctl == 0 && iir == 0)
1872 break;
1873
1874 ret = IRQ_HANDLED;
1875
1876 /*
1877 * Theory on interrupt generation, based on empirical evidence:
1878 *
1879 * x = ((VLV_IIR & VLV_IER) ||
1880 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1881 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1882 *
1883 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1884 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1885 * guarantee the CPU interrupt will be raised again even if we
1886 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1887 * bits this time around.
1888 */
1889 I915_WRITE(GEN8_MASTER_IRQ, 0);
1890 ier = I915_READ(VLV_IER);
1891 I915_WRITE(VLV_IER, 0);
1892
1893 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1894
1895 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1896 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1897
1898 /* Call regardless, as some status bits might not be
1899 * signalled in iir */
1900 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1901
1902 /*
1903 * VLV_IIR is single buffered, and reflects the level
1904 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1905 */
1906 if (iir)
1907 I915_WRITE(VLV_IIR, iir);
1908
1909 I915_WRITE(VLV_IER, ier);
1910 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1911 POSTING_READ(GEN8_MASTER_IRQ);
1912
1913 gen8_gt_irq_handler(dev_priv, gt_iir);
1914
1915 if (hotplug_status)
1916 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1917
1918 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1919 } while (0);
1920
1921 enable_rpm_wakeref_asserts(dev_priv);
1922
1923 return ret;
1924 }
1925
1926 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1927 u32 hotplug_trigger,
1928 const u32 hpd[HPD_NUM_PINS])
1929 {
1930 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1931
1932 /*
1933 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1934 * unless we touch the hotplug register, even if hotplug_trigger is
1935 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1936 * errors.
1937 */
1938 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1939 if (!hotplug_trigger) {
1940 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1941 PORTD_HOTPLUG_STATUS_MASK |
1942 PORTC_HOTPLUG_STATUS_MASK |
1943 PORTB_HOTPLUG_STATUS_MASK;
1944 dig_hotplug_reg &= ~mask;
1945 }
1946
1947 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1948 if (!hotplug_trigger)
1949 return;
1950
1951 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1952 dig_hotplug_reg, hpd,
1953 pch_port_hotplug_long_detect);
1954
1955 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1956 }
1957
1958 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1959 {
1960 int pipe;
1961 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1962
1963 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1964
1965 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1966 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1967 SDE_AUDIO_POWER_SHIFT);
1968 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1969 port_name(port));
1970 }
1971
1972 if (pch_iir & SDE_AUX_MASK)
1973 dp_aux_irq_handler(dev_priv);
1974
1975 if (pch_iir & SDE_GMBUS)
1976 gmbus_irq_handler(dev_priv);
1977
1978 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1979 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1980
1981 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1982 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1983
1984 if (pch_iir & SDE_POISON)
1985 DRM_ERROR("PCH poison interrupt\n");
1986
1987 if (pch_iir & SDE_FDI_MASK)
1988 for_each_pipe(dev_priv, pipe)
1989 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1990 pipe_name(pipe),
1991 I915_READ(FDI_RX_IIR(pipe)));
1992
1993 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1994 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1995
1996 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1997 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1998
1999 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2000 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2001
2002 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2003 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2004 }
2005
2006 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2007 {
2008 u32 err_int = I915_READ(GEN7_ERR_INT);
2009 enum pipe pipe;
2010
2011 if (err_int & ERR_INT_POISON)
2012 DRM_ERROR("Poison interrupt\n");
2013
2014 for_each_pipe(dev_priv, pipe) {
2015 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2016 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2017
2018 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2019 if (IS_IVYBRIDGE(dev_priv))
2020 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2021 else
2022 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2023 }
2024 }
2025
2026 I915_WRITE(GEN7_ERR_INT, err_int);
2027 }
2028
2029 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2030 {
2031 u32 serr_int = I915_READ(SERR_INT);
2032
2033 if (serr_int & SERR_INT_POISON)
2034 DRM_ERROR("PCH poison interrupt\n");
2035
2036 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2037 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2038
2039 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2040 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2041
2042 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2043 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2044
2045 I915_WRITE(SERR_INT, serr_int);
2046 }
2047
2048 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2049 {
2050 int pipe;
2051 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2052
2053 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2054
2055 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2056 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2057 SDE_AUDIO_POWER_SHIFT_CPT);
2058 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2059 port_name(port));
2060 }
2061
2062 if (pch_iir & SDE_AUX_MASK_CPT)
2063 dp_aux_irq_handler(dev_priv);
2064
2065 if (pch_iir & SDE_GMBUS_CPT)
2066 gmbus_irq_handler(dev_priv);
2067
2068 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2069 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2070
2071 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2072 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2073
2074 if (pch_iir & SDE_FDI_MASK_CPT)
2075 for_each_pipe(dev_priv, pipe)
2076 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2077 pipe_name(pipe),
2078 I915_READ(FDI_RX_IIR(pipe)));
2079
2080 if (pch_iir & SDE_ERROR_CPT)
2081 cpt_serr_int_handler(dev_priv);
2082 }
2083
2084 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2085 {
2086 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2087 ~SDE_PORTE_HOTPLUG_SPT;
2088 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2089 u32 pin_mask = 0, long_mask = 0;
2090
2091 if (hotplug_trigger) {
2092 u32 dig_hotplug_reg;
2093
2094 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2095 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2096
2097 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2098 dig_hotplug_reg, hpd_spt,
2099 spt_port_hotplug_long_detect);
2100 }
2101
2102 if (hotplug2_trigger) {
2103 u32 dig_hotplug_reg;
2104
2105 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2106 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2107
2108 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2109 dig_hotplug_reg, hpd_spt,
2110 spt_port_hotplug2_long_detect);
2111 }
2112
2113 if (pin_mask)
2114 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2115
2116 if (pch_iir & SDE_GMBUS_CPT)
2117 gmbus_irq_handler(dev_priv);
2118 }
2119
2120 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2121 u32 hotplug_trigger,
2122 const u32 hpd[HPD_NUM_PINS])
2123 {
2124 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2125
2126 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2127 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2128
2129 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2130 dig_hotplug_reg, hpd,
2131 ilk_port_hotplug_long_detect);
2132
2133 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2134 }
2135
2136 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2137 u32 de_iir)
2138 {
2139 enum pipe pipe;
2140 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2141
2142 if (hotplug_trigger)
2143 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2144
2145 if (de_iir & DE_AUX_CHANNEL_A)
2146 dp_aux_irq_handler(dev_priv);
2147
2148 if (de_iir & DE_GSE)
2149 intel_opregion_asle_intr(dev_priv);
2150
2151 if (de_iir & DE_POISON)
2152 DRM_ERROR("Poison interrupt\n");
2153
2154 for_each_pipe(dev_priv, pipe) {
2155 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2156 intel_pipe_handle_vblank(dev_priv, pipe))
2157 intel_check_page_flip(dev_priv, pipe);
2158
2159 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2160 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2161
2162 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2163 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2164
2165 /* plane/pipes map 1:1 on ilk+ */
2166 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2167 intel_prepare_page_flip(dev_priv, pipe);
2168 intel_finish_page_flip_plane(dev_priv, pipe);
2169 }
2170 }
2171
2172 /* check event from PCH */
2173 if (de_iir & DE_PCH_EVENT) {
2174 u32 pch_iir = I915_READ(SDEIIR);
2175
2176 if (HAS_PCH_CPT(dev_priv))
2177 cpt_irq_handler(dev_priv, pch_iir);
2178 else
2179 ibx_irq_handler(dev_priv, pch_iir);
2180
2181 /* should clear PCH hotplug event before clear CPU irq */
2182 I915_WRITE(SDEIIR, pch_iir);
2183 }
2184
2185 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2186 ironlake_rps_change_irq_handler(dev_priv);
2187 }
2188
2189 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2190 u32 de_iir)
2191 {
2192 enum pipe pipe;
2193 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2194
2195 if (hotplug_trigger)
2196 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2197
2198 if (de_iir & DE_ERR_INT_IVB)
2199 ivb_err_int_handler(dev_priv);
2200
2201 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2202 dp_aux_irq_handler(dev_priv);
2203
2204 if (de_iir & DE_GSE_IVB)
2205 intel_opregion_asle_intr(dev_priv);
2206
2207 for_each_pipe(dev_priv, pipe) {
2208 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2209 intel_pipe_handle_vblank(dev_priv, pipe))
2210 intel_check_page_flip(dev_priv, pipe);
2211
2212 /* plane/pipes map 1:1 on ilk+ */
2213 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2214 intel_prepare_page_flip(dev_priv, pipe);
2215 intel_finish_page_flip_plane(dev_priv, pipe);
2216 }
2217 }
2218
2219 /* check event from PCH */
2220 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2221 u32 pch_iir = I915_READ(SDEIIR);
2222
2223 cpt_irq_handler(dev_priv, pch_iir);
2224
2225 /* clear PCH hotplug event before clear CPU irq */
2226 I915_WRITE(SDEIIR, pch_iir);
2227 }
2228 }
2229
2230 /*
2231 * To handle irqs with the minimum potential races with fresh interrupts, we:
2232 * 1 - Disable Master Interrupt Control.
2233 * 2 - Find the source(s) of the interrupt.
2234 * 3 - Clear the Interrupt Identity bits (IIR).
2235 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2236 * 5 - Re-enable Master Interrupt Control.
2237 */
2238 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2239 {
2240 struct drm_device *dev = arg;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2243 irqreturn_t ret = IRQ_NONE;
2244
2245 if (!intel_irqs_enabled(dev_priv))
2246 return IRQ_NONE;
2247
2248 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2249 disable_rpm_wakeref_asserts(dev_priv);
2250
2251 /* disable master interrupt before clearing iir */
2252 de_ier = I915_READ(DEIER);
2253 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2254 POSTING_READ(DEIER);
2255
2256 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2257 * interrupts will will be stored on its back queue, and then we'll be
2258 * able to process them after we restore SDEIER (as soon as we restore
2259 * it, we'll get an interrupt if SDEIIR still has something to process
2260 * due to its back queue). */
2261 if (!HAS_PCH_NOP(dev_priv)) {
2262 sde_ier = I915_READ(SDEIER);
2263 I915_WRITE(SDEIER, 0);
2264 POSTING_READ(SDEIER);
2265 }
2266
2267 /* Find, clear, then process each source of interrupt */
2268
2269 gt_iir = I915_READ(GTIIR);
2270 if (gt_iir) {
2271 I915_WRITE(GTIIR, gt_iir);
2272 ret = IRQ_HANDLED;
2273 if (INTEL_GEN(dev_priv) >= 6)
2274 snb_gt_irq_handler(dev_priv, gt_iir);
2275 else
2276 ilk_gt_irq_handler(dev_priv, gt_iir);
2277 }
2278
2279 de_iir = I915_READ(DEIIR);
2280 if (de_iir) {
2281 I915_WRITE(DEIIR, de_iir);
2282 ret = IRQ_HANDLED;
2283 if (INTEL_GEN(dev_priv) >= 7)
2284 ivb_display_irq_handler(dev_priv, de_iir);
2285 else
2286 ilk_display_irq_handler(dev_priv, de_iir);
2287 }
2288
2289 if (INTEL_GEN(dev_priv) >= 6) {
2290 u32 pm_iir = I915_READ(GEN6_PMIIR);
2291 if (pm_iir) {
2292 I915_WRITE(GEN6_PMIIR, pm_iir);
2293 ret = IRQ_HANDLED;
2294 gen6_rps_irq_handler(dev_priv, pm_iir);
2295 }
2296 }
2297
2298 I915_WRITE(DEIER, de_ier);
2299 POSTING_READ(DEIER);
2300 if (!HAS_PCH_NOP(dev_priv)) {
2301 I915_WRITE(SDEIER, sde_ier);
2302 POSTING_READ(SDEIER);
2303 }
2304
2305 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2306 enable_rpm_wakeref_asserts(dev_priv);
2307
2308 return ret;
2309 }
2310
2311 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2312 u32 hotplug_trigger,
2313 const u32 hpd[HPD_NUM_PINS])
2314 {
2315 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2316
2317 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2318 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2319
2320 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2321 dig_hotplug_reg, hpd,
2322 bxt_port_hotplug_long_detect);
2323
2324 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2325 }
2326
2327 static irqreturn_t
2328 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2329 {
2330 irqreturn_t ret = IRQ_NONE;
2331 u32 iir;
2332 enum pipe pipe;
2333
2334 if (master_ctl & GEN8_DE_MISC_IRQ) {
2335 iir = I915_READ(GEN8_DE_MISC_IIR);
2336 if (iir) {
2337 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2338 ret = IRQ_HANDLED;
2339 if (iir & GEN8_DE_MISC_GSE)
2340 intel_opregion_asle_intr(dev_priv);
2341 else
2342 DRM_ERROR("Unexpected DE Misc interrupt\n");
2343 }
2344 else
2345 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2346 }
2347
2348 if (master_ctl & GEN8_DE_PORT_IRQ) {
2349 iir = I915_READ(GEN8_DE_PORT_IIR);
2350 if (iir) {
2351 u32 tmp_mask;
2352 bool found = false;
2353
2354 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2355 ret = IRQ_HANDLED;
2356
2357 tmp_mask = GEN8_AUX_CHANNEL_A;
2358 if (INTEL_INFO(dev_priv)->gen >= 9)
2359 tmp_mask |= GEN9_AUX_CHANNEL_B |
2360 GEN9_AUX_CHANNEL_C |
2361 GEN9_AUX_CHANNEL_D;
2362
2363 if (iir & tmp_mask) {
2364 dp_aux_irq_handler(dev_priv);
2365 found = true;
2366 }
2367
2368 if (IS_BROXTON(dev_priv)) {
2369 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2370 if (tmp_mask) {
2371 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2372 hpd_bxt);
2373 found = true;
2374 }
2375 } else if (IS_BROADWELL(dev_priv)) {
2376 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2377 if (tmp_mask) {
2378 ilk_hpd_irq_handler(dev_priv,
2379 tmp_mask, hpd_bdw);
2380 found = true;
2381 }
2382 }
2383
2384 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2385 gmbus_irq_handler(dev_priv);
2386 found = true;
2387 }
2388
2389 if (!found)
2390 DRM_ERROR("Unexpected DE Port interrupt\n");
2391 }
2392 else
2393 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2394 }
2395
2396 for_each_pipe(dev_priv, pipe) {
2397 u32 flip_done, fault_errors;
2398
2399 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2400 continue;
2401
2402 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2403 if (!iir) {
2404 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2405 continue;
2406 }
2407
2408 ret = IRQ_HANDLED;
2409 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2410
2411 if (iir & GEN8_PIPE_VBLANK &&
2412 intel_pipe_handle_vblank(dev_priv, pipe))
2413 intel_check_page_flip(dev_priv, pipe);
2414
2415 flip_done = iir;
2416 if (INTEL_INFO(dev_priv)->gen >= 9)
2417 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2418 else
2419 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2420
2421 if (flip_done) {
2422 intel_prepare_page_flip(dev_priv, pipe);
2423 intel_finish_page_flip_plane(dev_priv, pipe);
2424 }
2425
2426 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2427 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2428
2429 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2430 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2431
2432 fault_errors = iir;
2433 if (INTEL_INFO(dev_priv)->gen >= 9)
2434 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2435 else
2436 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2437
2438 if (fault_errors)
2439 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2440 pipe_name(pipe),
2441 fault_errors);
2442 }
2443
2444 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2445 master_ctl & GEN8_DE_PCH_IRQ) {
2446 /*
2447 * FIXME(BDW): Assume for now that the new interrupt handling
2448 * scheme also closed the SDE interrupt handling race we've seen
2449 * on older pch-split platforms. But this needs testing.
2450 */
2451 iir = I915_READ(SDEIIR);
2452 if (iir) {
2453 I915_WRITE(SDEIIR, iir);
2454 ret = IRQ_HANDLED;
2455
2456 if (HAS_PCH_SPT(dev_priv))
2457 spt_irq_handler(dev_priv, iir);
2458 else
2459 cpt_irq_handler(dev_priv, iir);
2460 } else {
2461 /*
2462 * Like on previous PCH there seems to be something
2463 * fishy going on with forwarding PCH interrupts.
2464 */
2465 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2466 }
2467 }
2468
2469 return ret;
2470 }
2471
2472 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2473 {
2474 struct drm_device *dev = arg;
2475 struct drm_i915_private *dev_priv = dev->dev_private;
2476 u32 master_ctl;
2477 u32 gt_iir[4] = {};
2478 irqreturn_t ret;
2479
2480 if (!intel_irqs_enabled(dev_priv))
2481 return IRQ_NONE;
2482
2483 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2484 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2485 if (!master_ctl)
2486 return IRQ_NONE;
2487
2488 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2489
2490 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2491 disable_rpm_wakeref_asserts(dev_priv);
2492
2493 /* Find, clear, then process each source of interrupt */
2494 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2495 gen8_gt_irq_handler(dev_priv, gt_iir);
2496 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2497
2498 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2499 POSTING_READ_FW(GEN8_MASTER_IRQ);
2500
2501 enable_rpm_wakeref_asserts(dev_priv);
2502
2503 return ret;
2504 }
2505
2506 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2507 bool reset_completed)
2508 {
2509 struct intel_engine_cs *engine;
2510
2511 /*
2512 * Notify all waiters for GPU completion events that reset state has
2513 * been changed, and that they need to restart their wait after
2514 * checking for potential errors (and bail out to drop locks if there is
2515 * a gpu reset pending so that i915_error_work_func can acquire them).
2516 */
2517
2518 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2519 for_each_engine(engine, dev_priv)
2520 wake_up_all(&engine->irq_queue);
2521
2522 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2523 wake_up_all(&dev_priv->pending_flip_queue);
2524
2525 /*
2526 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2527 * reset state is cleared.
2528 */
2529 if (reset_completed)
2530 wake_up_all(&dev_priv->gpu_error.reset_queue);
2531 }
2532
2533 /**
2534 * i915_reset_and_wakeup - do process context error handling work
2535 * @dev: drm device
2536 *
2537 * Fire an error uevent so userspace can see that a hang or error
2538 * was detected.
2539 */
2540 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2541 {
2542 struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
2543 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2544 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2545 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2546 int ret;
2547
2548 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2549
2550 /*
2551 * Note that there's only one work item which does gpu resets, so we
2552 * need not worry about concurrent gpu resets potentially incrementing
2553 * error->reset_counter twice. We only need to take care of another
2554 * racing irq/hangcheck declaring the gpu dead for a second time. A
2555 * quick check for that is good enough: schedule_work ensures the
2556 * correct ordering between hang detection and this work item, and since
2557 * the reset in-progress bit is only ever set by code outside of this
2558 * work we don't need to worry about any other races.
2559 */
2560 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2561 DRM_DEBUG_DRIVER("resetting chip\n");
2562 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2563
2564 /*
2565 * In most cases it's guaranteed that we get here with an RPM
2566 * reference held, for example because there is a pending GPU
2567 * request that won't finish until the reset is done. This
2568 * isn't the case at least when we get here by doing a
2569 * simulated reset via debugs, so get an RPM reference.
2570 */
2571 intel_runtime_pm_get(dev_priv);
2572
2573 intel_prepare_reset(dev_priv);
2574
2575 /*
2576 * All state reset _must_ be completed before we update the
2577 * reset counter, for otherwise waiters might miss the reset
2578 * pending state and not properly drop locks, resulting in
2579 * deadlocks with the reset work.
2580 */
2581 ret = i915_reset(dev_priv);
2582
2583 intel_finish_reset(dev_priv);
2584
2585 intel_runtime_pm_put(dev_priv);
2586
2587 if (ret == 0)
2588 kobject_uevent_env(kobj,
2589 KOBJ_CHANGE, reset_done_event);
2590
2591 /*
2592 * Note: The wake_up also serves as a memory barrier so that
2593 * waiters see the update value of the reset counter atomic_t.
2594 */
2595 i915_error_wake_up(dev_priv, true);
2596 }
2597 }
2598
2599 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2600 {
2601 uint32_t instdone[I915_NUM_INSTDONE_REG];
2602 u32 eir = I915_READ(EIR);
2603 int pipe, i;
2604
2605 if (!eir)
2606 return;
2607
2608 pr_err("render error detected, EIR: 0x%08x\n", eir);
2609
2610 i915_get_extra_instdone(dev_priv, instdone);
2611
2612 if (IS_G4X(dev_priv)) {
2613 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2614 u32 ipeir = I915_READ(IPEIR_I965);
2615
2616 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2617 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2618 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2619 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2620 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2621 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2622 I915_WRITE(IPEIR_I965, ipeir);
2623 POSTING_READ(IPEIR_I965);
2624 }
2625 if (eir & GM45_ERROR_PAGE_TABLE) {
2626 u32 pgtbl_err = I915_READ(PGTBL_ER);
2627 pr_err("page table error\n");
2628 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2629 I915_WRITE(PGTBL_ER, pgtbl_err);
2630 POSTING_READ(PGTBL_ER);
2631 }
2632 }
2633
2634 if (!IS_GEN2(dev_priv)) {
2635 if (eir & I915_ERROR_PAGE_TABLE) {
2636 u32 pgtbl_err = I915_READ(PGTBL_ER);
2637 pr_err("page table error\n");
2638 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2639 I915_WRITE(PGTBL_ER, pgtbl_err);
2640 POSTING_READ(PGTBL_ER);
2641 }
2642 }
2643
2644 if (eir & I915_ERROR_MEMORY_REFRESH) {
2645 pr_err("memory refresh error:\n");
2646 for_each_pipe(dev_priv, pipe)
2647 pr_err("pipe %c stat: 0x%08x\n",
2648 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2649 /* pipestat has already been acked */
2650 }
2651 if (eir & I915_ERROR_INSTRUCTION) {
2652 pr_err("instruction error\n");
2653 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2654 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2655 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2656 if (INTEL_GEN(dev_priv) < 4) {
2657 u32 ipeir = I915_READ(IPEIR);
2658
2659 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2660 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2661 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2662 I915_WRITE(IPEIR, ipeir);
2663 POSTING_READ(IPEIR);
2664 } else {
2665 u32 ipeir = I915_READ(IPEIR_I965);
2666
2667 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2668 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2669 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2670 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2671 I915_WRITE(IPEIR_I965, ipeir);
2672 POSTING_READ(IPEIR_I965);
2673 }
2674 }
2675
2676 I915_WRITE(EIR, eir);
2677 POSTING_READ(EIR);
2678 eir = I915_READ(EIR);
2679 if (eir) {
2680 /*
2681 * some errors might have become stuck,
2682 * mask them.
2683 */
2684 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2685 I915_WRITE(EMR, I915_READ(EMR) | eir);
2686 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2687 }
2688 }
2689
2690 /**
2691 * i915_handle_error - handle a gpu error
2692 * @dev: drm device
2693 * @engine_mask: mask representing engines that are hung
2694 * Do some basic checking of register state at error time and
2695 * dump it to the syslog. Also call i915_capture_error_state() to make
2696 * sure we get a record and make it available in debugfs. Fire a uevent
2697 * so userspace knows something bad happened (should trigger collection
2698 * of a ring dump etc.).
2699 */
2700 void i915_handle_error(struct drm_i915_private *dev_priv,
2701 u32 engine_mask,
2702 const char *fmt, ...)
2703 {
2704 va_list args;
2705 char error_msg[80];
2706
2707 va_start(args, fmt);
2708 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2709 va_end(args);
2710
2711 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2712 i915_report_and_clear_eir(dev_priv);
2713
2714 if (engine_mask) {
2715 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2716 &dev_priv->gpu_error.reset_counter);
2717
2718 /*
2719 * Wakeup waiting processes so that the reset function
2720 * i915_reset_and_wakeup doesn't deadlock trying to grab
2721 * various locks. By bumping the reset counter first, the woken
2722 * processes will see a reset in progress and back off,
2723 * releasing their locks and then wait for the reset completion.
2724 * We must do this for _all_ gpu waiters that might hold locks
2725 * that the reset work needs to acquire.
2726 *
2727 * Note: The wake_up serves as the required memory barrier to
2728 * ensure that the waiters see the updated value of the reset
2729 * counter atomic_t.
2730 */
2731 i915_error_wake_up(dev_priv, false);
2732 }
2733
2734 i915_reset_and_wakeup(dev_priv);
2735 }
2736
2737 /* Called from drm generic code, passed 'crtc' which
2738 * we use as a pipe index
2739 */
2740 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2741 {
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 unsigned long irqflags;
2744
2745 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2746 if (INTEL_INFO(dev)->gen >= 4)
2747 i915_enable_pipestat(dev_priv, pipe,
2748 PIPE_START_VBLANK_INTERRUPT_STATUS);
2749 else
2750 i915_enable_pipestat(dev_priv, pipe,
2751 PIPE_VBLANK_INTERRUPT_STATUS);
2752 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2753
2754 return 0;
2755 }
2756
2757 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 unsigned long irqflags;
2761 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2762 DE_PIPE_VBLANK(pipe);
2763
2764 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2765 ilk_enable_display_irq(dev_priv, bit);
2766 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2767
2768 return 0;
2769 }
2770
2771 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2772 {
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 unsigned long irqflags;
2775
2776 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2777 i915_enable_pipestat(dev_priv, pipe,
2778 PIPE_START_VBLANK_INTERRUPT_STATUS);
2779 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2780
2781 return 0;
2782 }
2783
2784 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2785 {
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 unsigned long irqflags;
2788
2789 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2790 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2791 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2792
2793 return 0;
2794 }
2795
2796 /* Called from drm generic code, passed 'crtc' which
2797 * we use as a pipe index
2798 */
2799 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 unsigned long irqflags;
2803
2804 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2805 i915_disable_pipestat(dev_priv, pipe,
2806 PIPE_VBLANK_INTERRUPT_STATUS |
2807 PIPE_START_VBLANK_INTERRUPT_STATUS);
2808 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2809 }
2810
2811 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2812 {
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 unsigned long irqflags;
2815 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2816 DE_PIPE_VBLANK(pipe);
2817
2818 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2819 ilk_disable_display_irq(dev_priv, bit);
2820 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2821 }
2822
2823 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2824 {
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 unsigned long irqflags;
2827
2828 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2829 i915_disable_pipestat(dev_priv, pipe,
2830 PIPE_START_VBLANK_INTERRUPT_STATUS);
2831 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832 }
2833
2834 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2835 {
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 unsigned long irqflags;
2838
2839 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2841 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842 }
2843
2844 static bool
2845 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2846 {
2847 return i915_seqno_passed(seqno,
2848 READ_ONCE(engine->last_submitted_seqno));
2849 }
2850
2851 static bool
2852 ipehr_is_semaphore_wait(struct drm_i915_private *dev_priv, u32 ipehr)
2853 {
2854 if (INTEL_GEN(dev_priv) >= 8) {
2855 return (ipehr >> 23) == 0x1c;
2856 } else {
2857 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2858 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2859 MI_SEMAPHORE_REGISTER);
2860 }
2861 }
2862
2863 static struct intel_engine_cs *
2864 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2865 u64 offset)
2866 {
2867 struct drm_i915_private *dev_priv = engine->i915;
2868 struct intel_engine_cs *signaller;
2869
2870 if (INTEL_GEN(dev_priv) >= 8) {
2871 for_each_engine(signaller, dev_priv) {
2872 if (engine == signaller)
2873 continue;
2874
2875 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2876 return signaller;
2877 }
2878 } else {
2879 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2880
2881 for_each_engine(signaller, dev_priv) {
2882 if(engine == signaller)
2883 continue;
2884
2885 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2886 return signaller;
2887 }
2888 }
2889
2890 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2891 engine->id, ipehr, offset);
2892
2893 return NULL;
2894 }
2895
2896 static struct intel_engine_cs *
2897 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2898 {
2899 struct drm_i915_private *dev_priv = engine->i915;
2900 u32 cmd, ipehr, head;
2901 u64 offset = 0;
2902 int i, backwards;
2903
2904 /*
2905 * This function does not support execlist mode - any attempt to
2906 * proceed further into this function will result in a kernel panic
2907 * when dereferencing ring->buffer, which is not set up in execlist
2908 * mode.
2909 *
2910 * The correct way of doing it would be to derive the currently
2911 * executing ring buffer from the current context, which is derived
2912 * from the currently running request. Unfortunately, to get the
2913 * current request we would have to grab the struct_mutex before doing
2914 * anything else, which would be ill-advised since some other thread
2915 * might have grabbed it already and managed to hang itself, causing
2916 * the hang checker to deadlock.
2917 *
2918 * Therefore, this function does not support execlist mode in its
2919 * current form. Just return NULL and move on.
2920 */
2921 if (engine->buffer == NULL)
2922 return NULL;
2923
2924 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2925 if (!ipehr_is_semaphore_wait(engine->i915, ipehr))
2926 return NULL;
2927
2928 /*
2929 * HEAD is likely pointing to the dword after the actual command,
2930 * so scan backwards until we find the MBOX. But limit it to just 3
2931 * or 4 dwords depending on the semaphore wait command size.
2932 * Note that we don't care about ACTHD here since that might
2933 * point at at batch, and semaphores are always emitted into the
2934 * ringbuffer itself.
2935 */
2936 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2937 backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2938
2939 for (i = backwards; i; --i) {
2940 /*
2941 * Be paranoid and presume the hw has gone off into the wild -
2942 * our ring is smaller than what the hardware (and hence
2943 * HEAD_ADDR) allows. Also handles wrap-around.
2944 */
2945 head &= engine->buffer->size - 1;
2946
2947 /* This here seems to blow up */
2948 cmd = ioread32(engine->buffer->virtual_start + head);
2949 if (cmd == ipehr)
2950 break;
2951
2952 head -= 4;
2953 }
2954
2955 if (!i)
2956 return NULL;
2957
2958 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2959 if (INTEL_GEN(dev_priv) >= 8) {
2960 offset = ioread32(engine->buffer->virtual_start + head + 12);
2961 offset <<= 32;
2962 offset = ioread32(engine->buffer->virtual_start + head + 8);
2963 }
2964 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2965 }
2966
2967 static int semaphore_passed(struct intel_engine_cs *engine)
2968 {
2969 struct drm_i915_private *dev_priv = engine->i915;
2970 struct intel_engine_cs *signaller;
2971 u32 seqno;
2972
2973 engine->hangcheck.deadlock++;
2974
2975 signaller = semaphore_waits_for(engine, &seqno);
2976 if (signaller == NULL)
2977 return -1;
2978
2979 /* Prevent pathological recursion due to driver bugs */
2980 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2981 return -1;
2982
2983 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2984 return 1;
2985
2986 /* cursory check for an unkickable deadlock */
2987 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2988 semaphore_passed(signaller) < 0)
2989 return -1;
2990
2991 return 0;
2992 }
2993
2994 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2995 {
2996 struct intel_engine_cs *engine;
2997
2998 for_each_engine(engine, dev_priv)
2999 engine->hangcheck.deadlock = 0;
3000 }
3001
3002 static bool subunits_stuck(struct intel_engine_cs *engine)
3003 {
3004 u32 instdone[I915_NUM_INSTDONE_REG];
3005 bool stuck;
3006 int i;
3007
3008 if (engine->id != RCS)
3009 return true;
3010
3011 i915_get_extra_instdone(engine->i915, instdone);
3012
3013 /* There might be unstable subunit states even when
3014 * actual head is not moving. Filter out the unstable ones by
3015 * accumulating the undone -> done transitions and only
3016 * consider those as progress.
3017 */
3018 stuck = true;
3019 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3020 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3021
3022 if (tmp != engine->hangcheck.instdone[i])
3023 stuck = false;
3024
3025 engine->hangcheck.instdone[i] |= tmp;
3026 }
3027
3028 return stuck;
3029 }
3030
3031 static enum intel_ring_hangcheck_action
3032 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3033 {
3034 if (acthd != engine->hangcheck.acthd) {
3035
3036 /* Clear subunit states on head movement */
3037 memset(engine->hangcheck.instdone, 0,
3038 sizeof(engine->hangcheck.instdone));
3039
3040 return HANGCHECK_ACTIVE;
3041 }
3042
3043 if (!subunits_stuck(engine))
3044 return HANGCHECK_ACTIVE;
3045
3046 return HANGCHECK_HUNG;
3047 }
3048
3049 static enum intel_ring_hangcheck_action
3050 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3051 {
3052 struct drm_i915_private *dev_priv = engine->i915;
3053 enum intel_ring_hangcheck_action ha;
3054 u32 tmp;
3055
3056 ha = head_stuck(engine, acthd);
3057 if (ha != HANGCHECK_HUNG)
3058 return ha;
3059
3060 if (IS_GEN2(dev_priv))
3061 return HANGCHECK_HUNG;
3062
3063 /* Is the chip hanging on a WAIT_FOR_EVENT?
3064 * If so we can simply poke the RB_WAIT bit
3065 * and break the hang. This should work on
3066 * all but the second generation chipsets.
3067 */
3068 tmp = I915_READ_CTL(engine);
3069 if (tmp & RING_WAIT) {
3070 i915_handle_error(dev_priv, 0,
3071 "Kicking stuck wait on %s",
3072 engine->name);
3073 I915_WRITE_CTL(engine, tmp);
3074 return HANGCHECK_KICK;
3075 }
3076
3077 if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3078 switch (semaphore_passed(engine)) {
3079 default:
3080 return HANGCHECK_HUNG;
3081 case 1:
3082 i915_handle_error(dev_priv, 0,
3083 "Kicking stuck semaphore on %s",
3084 engine->name);
3085 I915_WRITE_CTL(engine, tmp);
3086 return HANGCHECK_KICK;
3087 case 0:
3088 return HANGCHECK_WAIT;
3089 }
3090 }
3091
3092 return HANGCHECK_HUNG;
3093 }
3094
3095 static unsigned kick_waiters(struct intel_engine_cs *engine)
3096 {
3097 struct drm_i915_private *i915 = engine->i915;
3098 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3099
3100 if (engine->hangcheck.user_interrupts == user_interrupts &&
3101 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3102 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3103 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3104 engine->name);
3105 else
3106 DRM_INFO("Fake missed irq on %s\n",
3107 engine->name);
3108 wake_up_all(&engine->irq_queue);
3109 }
3110
3111 return user_interrupts;
3112 }
3113 /*
3114 * This is called when the chip hasn't reported back with completed
3115 * batchbuffers in a long time. We keep track per ring seqno progress and
3116 * if there are no progress, hangcheck score for that ring is increased.
3117 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3118 * we kick the ring. If we see no progress on three subsequent calls
3119 * we assume chip is wedged and try to fix it by resetting the chip.
3120 */
3121 static void i915_hangcheck_elapsed(struct work_struct *work)
3122 {
3123 struct drm_i915_private *dev_priv =
3124 container_of(work, typeof(*dev_priv),
3125 gpu_error.hangcheck_work.work);
3126 struct intel_engine_cs *engine;
3127 enum intel_engine_id id;
3128 int busy_count = 0, rings_hung = 0;
3129 bool stuck[I915_NUM_ENGINES] = { 0 };
3130 #define BUSY 1
3131 #define KICK 5
3132 #define HUNG 20
3133 #define ACTIVE_DECAY 15
3134
3135 if (!i915.enable_hangcheck)
3136 return;
3137
3138 /*
3139 * The hangcheck work is synced during runtime suspend, we don't
3140 * require a wakeref. TODO: instead of disabling the asserts make
3141 * sure that we hold a reference when this work is running.
3142 */
3143 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3144
3145 /* As enabling the GPU requires fairly extensive mmio access,
3146 * periodically arm the mmio checker to see if we are triggering
3147 * any invalid access.
3148 */
3149 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3150
3151 for_each_engine_id(engine, dev_priv, id) {
3152 u64 acthd;
3153 u32 seqno;
3154 unsigned user_interrupts;
3155 bool busy = true;
3156
3157 semaphore_clear_deadlocks(dev_priv);
3158
3159 /* We don't strictly need an irq-barrier here, as we are not
3160 * serving an interrupt request, be paranoid in case the
3161 * barrier has side-effects (such as preventing a broken
3162 * cacheline snoop) and so be sure that we can see the seqno
3163 * advance. If the seqno should stick, due to a stale
3164 * cacheline, we would erroneously declare the GPU hung.
3165 */
3166 if (engine->irq_seqno_barrier)
3167 engine->irq_seqno_barrier(engine);
3168
3169 acthd = intel_ring_get_active_head(engine);
3170 seqno = engine->get_seqno(engine);
3171
3172 /* Reset stuck interrupts between batch advances */
3173 user_interrupts = 0;
3174
3175 if (engine->hangcheck.seqno == seqno) {
3176 if (ring_idle(engine, seqno)) {
3177 engine->hangcheck.action = HANGCHECK_IDLE;
3178 if (waitqueue_active(&engine->irq_queue)) {
3179 /* Safeguard against driver failure */
3180 user_interrupts = kick_waiters(engine);
3181 engine->hangcheck.score += BUSY;
3182 } else
3183 busy = false;
3184 } else {
3185 /* We always increment the hangcheck score
3186 * if the ring is busy and still processing
3187 * the same request, so that no single request
3188 * can run indefinitely (such as a chain of
3189 * batches). The only time we do not increment
3190 * the hangcheck score on this ring, if this
3191 * ring is in a legitimate wait for another
3192 * ring. In that case the waiting ring is a
3193 * victim and we want to be sure we catch the
3194 * right culprit. Then every time we do kick
3195 * the ring, add a small increment to the
3196 * score so that we can catch a batch that is
3197 * being repeatedly kicked and so responsible
3198 * for stalling the machine.
3199 */
3200 engine->hangcheck.action = ring_stuck(engine,
3201 acthd);
3202
3203 switch (engine->hangcheck.action) {
3204 case HANGCHECK_IDLE:
3205 case HANGCHECK_WAIT:
3206 break;
3207 case HANGCHECK_ACTIVE:
3208 engine->hangcheck.score += BUSY;
3209 break;
3210 case HANGCHECK_KICK:
3211 engine->hangcheck.score += KICK;
3212 break;
3213 case HANGCHECK_HUNG:
3214 engine->hangcheck.score += HUNG;
3215 stuck[id] = true;
3216 break;
3217 }
3218 }
3219 } else {
3220 engine->hangcheck.action = HANGCHECK_ACTIVE;
3221
3222 /* Gradually reduce the count so that we catch DoS
3223 * attempts across multiple batches.
3224 */
3225 if (engine->hangcheck.score > 0)
3226 engine->hangcheck.score -= ACTIVE_DECAY;
3227 if (engine->hangcheck.score < 0)
3228 engine->hangcheck.score = 0;
3229
3230 /* Clear head and subunit states on seqno movement */
3231 acthd = 0;
3232
3233 memset(engine->hangcheck.instdone, 0,
3234 sizeof(engine->hangcheck.instdone));
3235 }
3236
3237 engine->hangcheck.seqno = seqno;
3238 engine->hangcheck.acthd = acthd;
3239 engine->hangcheck.user_interrupts = user_interrupts;
3240 busy_count += busy;
3241 }
3242
3243 for_each_engine_id(engine, dev_priv, id) {
3244 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3245 DRM_INFO("%s on %s\n",
3246 stuck[id] ? "stuck" : "no progress",
3247 engine->name);
3248 rings_hung |= intel_engine_flag(engine);
3249 }
3250 }
3251
3252 if (rings_hung) {
3253 i915_handle_error(dev_priv, rings_hung, "Engine(s) hung");
3254 goto out;
3255 }
3256
3257 if (busy_count)
3258 /* Reset timer case chip hangs without another request
3259 * being added */
3260 i915_queue_hangcheck(dev_priv);
3261
3262 out:
3263 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3264 }
3265
3266 void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3267 {
3268 struct i915_gpu_error *e = &dev_priv->gpu_error;
3269
3270 if (!i915.enable_hangcheck)
3271 return;
3272
3273 /* Don't continually defer the hangcheck so that it is always run at
3274 * least once after work has been scheduled on any ring. Otherwise,
3275 * we will ignore a hung ring if a second ring is kept busy.
3276 */
3277
3278 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3279 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3280 }
3281
3282 static void ibx_irq_reset(struct drm_device *dev)
3283 {
3284 struct drm_i915_private *dev_priv = dev->dev_private;
3285
3286 if (HAS_PCH_NOP(dev))
3287 return;
3288
3289 GEN5_IRQ_RESET(SDE);
3290
3291 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3292 I915_WRITE(SERR_INT, 0xffffffff);
3293 }
3294
3295 /*
3296 * SDEIER is also touched by the interrupt handler to work around missed PCH
3297 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3298 * instead we unconditionally enable all PCH interrupt sources here, but then
3299 * only unmask them as needed with SDEIMR.
3300 *
3301 * This function needs to be called before interrupts are enabled.
3302 */
3303 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3304 {
3305 struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307 if (HAS_PCH_NOP(dev))
3308 return;
3309
3310 WARN_ON(I915_READ(SDEIER) != 0);
3311 I915_WRITE(SDEIER, 0xffffffff);
3312 POSTING_READ(SDEIER);
3313 }
3314
3315 static void gen5_gt_irq_reset(struct drm_device *dev)
3316 {
3317 struct drm_i915_private *dev_priv = dev->dev_private;
3318
3319 GEN5_IRQ_RESET(GT);
3320 if (INTEL_INFO(dev)->gen >= 6)
3321 GEN5_IRQ_RESET(GEN6_PM);
3322 }
3323
3324 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3325 {
3326 enum pipe pipe;
3327
3328 if (IS_CHERRYVIEW(dev_priv))
3329 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3330 else
3331 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3332
3333 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3334 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3335
3336 for_each_pipe(dev_priv, pipe) {
3337 I915_WRITE(PIPESTAT(pipe),
3338 PIPE_FIFO_UNDERRUN_STATUS |
3339 PIPESTAT_INT_STATUS_MASK);
3340 dev_priv->pipestat_irq_mask[pipe] = 0;
3341 }
3342
3343 GEN5_IRQ_RESET(VLV_);
3344 dev_priv->irq_mask = ~0;
3345 }
3346
3347 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3348 {
3349 u32 pipestat_mask;
3350 u32 enable_mask;
3351 enum pipe pipe;
3352
3353 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3354 PIPE_CRC_DONE_INTERRUPT_STATUS;
3355
3356 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3357 for_each_pipe(dev_priv, pipe)
3358 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3359
3360 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3361 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3362 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3363 if (IS_CHERRYVIEW(dev_priv))
3364 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3365
3366 WARN_ON(dev_priv->irq_mask != ~0);
3367
3368 dev_priv->irq_mask = ~enable_mask;
3369
3370 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3371 }
3372
3373 /* drm_dma.h hooks
3374 */
3375 static void ironlake_irq_reset(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378
3379 I915_WRITE(HWSTAM, 0xffffffff);
3380
3381 GEN5_IRQ_RESET(DE);
3382 if (IS_GEN7(dev))
3383 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3384
3385 gen5_gt_irq_reset(dev);
3386
3387 ibx_irq_reset(dev);
3388 }
3389
3390 static void valleyview_irq_preinstall(struct drm_device *dev)
3391 {
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393
3394 I915_WRITE(VLV_MASTER_IER, 0);
3395 POSTING_READ(VLV_MASTER_IER);
3396
3397 gen5_gt_irq_reset(dev);
3398
3399 spin_lock_irq(&dev_priv->irq_lock);
3400 if (dev_priv->display_irqs_enabled)
3401 vlv_display_irq_reset(dev_priv);
3402 spin_unlock_irq(&dev_priv->irq_lock);
3403 }
3404
3405 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3406 {
3407 GEN8_IRQ_RESET_NDX(GT, 0);
3408 GEN8_IRQ_RESET_NDX(GT, 1);
3409 GEN8_IRQ_RESET_NDX(GT, 2);
3410 GEN8_IRQ_RESET_NDX(GT, 3);
3411 }
3412
3413 static void gen8_irq_reset(struct drm_device *dev)
3414 {
3415 struct drm_i915_private *dev_priv = dev->dev_private;
3416 int pipe;
3417
3418 I915_WRITE(GEN8_MASTER_IRQ, 0);
3419 POSTING_READ(GEN8_MASTER_IRQ);
3420
3421 gen8_gt_irq_reset(dev_priv);
3422
3423 for_each_pipe(dev_priv, pipe)
3424 if (intel_display_power_is_enabled(dev_priv,
3425 POWER_DOMAIN_PIPE(pipe)))
3426 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3427
3428 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3429 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3430 GEN5_IRQ_RESET(GEN8_PCU_);
3431
3432 if (HAS_PCH_SPLIT(dev))
3433 ibx_irq_reset(dev);
3434 }
3435
3436 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3437 unsigned int pipe_mask)
3438 {
3439 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3440 enum pipe pipe;
3441
3442 spin_lock_irq(&dev_priv->irq_lock);
3443 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3444 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3445 dev_priv->de_irq_mask[pipe],
3446 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3447 spin_unlock_irq(&dev_priv->irq_lock);
3448 }
3449
3450 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3451 unsigned int pipe_mask)
3452 {
3453 enum pipe pipe;
3454
3455 spin_lock_irq(&dev_priv->irq_lock);
3456 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3457 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3458 spin_unlock_irq(&dev_priv->irq_lock);
3459
3460 /* make sure we're done processing display irqs */
3461 synchronize_irq(dev_priv->dev->irq);
3462 }
3463
3464 static void cherryview_irq_preinstall(struct drm_device *dev)
3465 {
3466 struct drm_i915_private *dev_priv = dev->dev_private;
3467
3468 I915_WRITE(GEN8_MASTER_IRQ, 0);
3469 POSTING_READ(GEN8_MASTER_IRQ);
3470
3471 gen8_gt_irq_reset(dev_priv);
3472
3473 GEN5_IRQ_RESET(GEN8_PCU_);
3474
3475 spin_lock_irq(&dev_priv->irq_lock);
3476 if (dev_priv->display_irqs_enabled)
3477 vlv_display_irq_reset(dev_priv);
3478 spin_unlock_irq(&dev_priv->irq_lock);
3479 }
3480
3481 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3482 const u32 hpd[HPD_NUM_PINS])
3483 {
3484 struct intel_encoder *encoder;
3485 u32 enabled_irqs = 0;
3486
3487 for_each_intel_encoder(dev_priv->dev, encoder)
3488 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3489 enabled_irqs |= hpd[encoder->hpd_pin];
3490
3491 return enabled_irqs;
3492 }
3493
3494 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3495 {
3496 u32 hotplug_irqs, hotplug, enabled_irqs;
3497
3498 if (HAS_PCH_IBX(dev_priv)) {
3499 hotplug_irqs = SDE_HOTPLUG_MASK;
3500 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3501 } else {
3502 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3503 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3504 }
3505
3506 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3507
3508 /*
3509 * Enable digital hotplug on the PCH, and configure the DP short pulse
3510 * duration to 2ms (which is the minimum in the Display Port spec).
3511 * The pulse duration bits are reserved on LPT+.
3512 */
3513 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3514 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3515 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3516 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3517 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3518 /*
3519 * When CPU and PCH are on the same package, port A
3520 * HPD must be enabled in both north and south.
3521 */
3522 if (HAS_PCH_LPT_LP(dev_priv))
3523 hotplug |= PORTA_HOTPLUG_ENABLE;
3524 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3525 }
3526
3527 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3528 {
3529 u32 hotplug_irqs, hotplug, enabled_irqs;
3530
3531 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3532 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3533
3534 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3535
3536 /* Enable digital hotplug on the PCH */
3537 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3539 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3540 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3541
3542 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3543 hotplug |= PORTE_HOTPLUG_ENABLE;
3544 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3545 }
3546
3547 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3548 {
3549 u32 hotplug_irqs, hotplug, enabled_irqs;
3550
3551 if (INTEL_GEN(dev_priv) >= 8) {
3552 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3553 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3554
3555 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3556 } else if (INTEL_GEN(dev_priv) >= 7) {
3557 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3558 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3559
3560 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3561 } else {
3562 hotplug_irqs = DE_DP_A_HOTPLUG;
3563 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3564
3565 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3566 }
3567
3568 /*
3569 * Enable digital hotplug on the CPU, and configure the DP short pulse
3570 * duration to 2ms (which is the minimum in the Display Port spec)
3571 * The pulse duration bits are reserved on HSW+.
3572 */
3573 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3574 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3575 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3576 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3577
3578 ibx_hpd_irq_setup(dev_priv);
3579 }
3580
3581 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3582 {
3583 u32 hotplug_irqs, hotplug, enabled_irqs;
3584
3585 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3586 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3587
3588 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3589
3590 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3591 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3592 PORTA_HOTPLUG_ENABLE;
3593
3594 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3595 hotplug, enabled_irqs);
3596 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3597
3598 /*
3599 * For BXT invert bit has to be set based on AOB design
3600 * for HPD detection logic, update it based on VBT fields.
3601 */
3602
3603 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3604 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3605 hotplug |= BXT_DDIA_HPD_INVERT;
3606 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3607 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3608 hotplug |= BXT_DDIB_HPD_INVERT;
3609 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3610 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3611 hotplug |= BXT_DDIC_HPD_INVERT;
3612
3613 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3614 }
3615
3616 static void ibx_irq_postinstall(struct drm_device *dev)
3617 {
3618 struct drm_i915_private *dev_priv = dev->dev_private;
3619 u32 mask;
3620
3621 if (HAS_PCH_NOP(dev))
3622 return;
3623
3624 if (HAS_PCH_IBX(dev))
3625 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3626 else
3627 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3628
3629 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3630 I915_WRITE(SDEIMR, ~mask);
3631 }
3632
3633 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3634 {
3635 struct drm_i915_private *dev_priv = dev->dev_private;
3636 u32 pm_irqs, gt_irqs;
3637
3638 pm_irqs = gt_irqs = 0;
3639
3640 dev_priv->gt_irq_mask = ~0;
3641 if (HAS_L3_DPF(dev)) {
3642 /* L3 parity interrupt is always unmasked. */
3643 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3644 gt_irqs |= GT_PARITY_ERROR(dev);
3645 }
3646
3647 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3648 if (IS_GEN5(dev)) {
3649 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3650 ILK_BSD_USER_INTERRUPT;
3651 } else {
3652 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3653 }
3654
3655 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3656
3657 if (INTEL_INFO(dev)->gen >= 6) {
3658 /*
3659 * RPS interrupts will get enabled/disabled on demand when RPS
3660 * itself is enabled/disabled.
3661 */
3662 if (HAS_VEBOX(dev))
3663 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3664
3665 dev_priv->pm_irq_mask = 0xffffffff;
3666 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3667 }
3668 }
3669
3670 static int ironlake_irq_postinstall(struct drm_device *dev)
3671 {
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673 u32 display_mask, extra_mask;
3674
3675 if (INTEL_INFO(dev)->gen >= 7) {
3676 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3677 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3678 DE_PLANEB_FLIP_DONE_IVB |
3679 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3680 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3681 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3682 DE_DP_A_HOTPLUG_IVB);
3683 } else {
3684 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3685 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3686 DE_AUX_CHANNEL_A |
3687 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3688 DE_POISON);
3689 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3690 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3691 DE_DP_A_HOTPLUG);
3692 }
3693
3694 dev_priv->irq_mask = ~display_mask;
3695
3696 I915_WRITE(HWSTAM, 0xeffe);
3697
3698 ibx_irq_pre_postinstall(dev);
3699
3700 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3701
3702 gen5_gt_irq_postinstall(dev);
3703
3704 ibx_irq_postinstall(dev);
3705
3706 if (IS_IRONLAKE_M(dev)) {
3707 /* Enable PCU event interrupts
3708 *
3709 * spinlocking not required here for correctness since interrupt
3710 * setup is guaranteed to run in single-threaded context. But we
3711 * need it to make the assert_spin_locked happy. */
3712 spin_lock_irq(&dev_priv->irq_lock);
3713 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3714 spin_unlock_irq(&dev_priv->irq_lock);
3715 }
3716
3717 return 0;
3718 }
3719
3720 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3721 {
3722 assert_spin_locked(&dev_priv->irq_lock);
3723
3724 if (dev_priv->display_irqs_enabled)
3725 return;
3726
3727 dev_priv->display_irqs_enabled = true;
3728
3729 if (intel_irqs_enabled(dev_priv)) {
3730 vlv_display_irq_reset(dev_priv);
3731 vlv_display_irq_postinstall(dev_priv);
3732 }
3733 }
3734
3735 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3736 {
3737 assert_spin_locked(&dev_priv->irq_lock);
3738
3739 if (!dev_priv->display_irqs_enabled)
3740 return;
3741
3742 dev_priv->display_irqs_enabled = false;
3743
3744 if (intel_irqs_enabled(dev_priv))
3745 vlv_display_irq_reset(dev_priv);
3746 }
3747
3748
3749 static int valleyview_irq_postinstall(struct drm_device *dev)
3750 {
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752
3753 gen5_gt_irq_postinstall(dev);
3754
3755 spin_lock_irq(&dev_priv->irq_lock);
3756 if (dev_priv->display_irqs_enabled)
3757 vlv_display_irq_postinstall(dev_priv);
3758 spin_unlock_irq(&dev_priv->irq_lock);
3759
3760 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3761 POSTING_READ(VLV_MASTER_IER);
3762
3763 return 0;
3764 }
3765
3766 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3767 {
3768 /* These are interrupts we'll toggle with the ring mask register */
3769 uint32_t gt_interrupts[] = {
3770 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3771 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3772 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3773 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3774 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3775 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3776 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3777 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3778 0,
3779 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3780 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3781 };
3782
3783 if (HAS_L3_DPF(dev_priv))
3784 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3785
3786 dev_priv->pm_irq_mask = 0xffffffff;
3787 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3788 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3789 /*
3790 * RPS interrupts will get enabled/disabled on demand when RPS itself
3791 * is enabled/disabled.
3792 */
3793 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3794 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3795 }
3796
3797 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3798 {
3799 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3800 uint32_t de_pipe_enables;
3801 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3802 u32 de_port_enables;
3803 enum pipe pipe;
3804
3805 if (INTEL_INFO(dev_priv)->gen >= 9) {
3806 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3807 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3808 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3809 GEN9_AUX_CHANNEL_D;
3810 if (IS_BROXTON(dev_priv))
3811 de_port_masked |= BXT_DE_PORT_GMBUS;
3812 } else {
3813 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3814 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3815 }
3816
3817 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3818 GEN8_PIPE_FIFO_UNDERRUN;
3819
3820 de_port_enables = de_port_masked;
3821 if (IS_BROXTON(dev_priv))
3822 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3823 else if (IS_BROADWELL(dev_priv))
3824 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3825
3826 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3827 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3828 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3829
3830 for_each_pipe(dev_priv, pipe)
3831 if (intel_display_power_is_enabled(dev_priv,
3832 POWER_DOMAIN_PIPE(pipe)))
3833 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3834 dev_priv->de_irq_mask[pipe],
3835 de_pipe_enables);
3836
3837 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3838 }
3839
3840 static int gen8_irq_postinstall(struct drm_device *dev)
3841 {
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843
3844 if (HAS_PCH_SPLIT(dev))
3845 ibx_irq_pre_postinstall(dev);
3846
3847 gen8_gt_irq_postinstall(dev_priv);
3848 gen8_de_irq_postinstall(dev_priv);
3849
3850 if (HAS_PCH_SPLIT(dev))
3851 ibx_irq_postinstall(dev);
3852
3853 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3854 POSTING_READ(GEN8_MASTER_IRQ);
3855
3856 return 0;
3857 }
3858
3859 static int cherryview_irq_postinstall(struct drm_device *dev)
3860 {
3861 struct drm_i915_private *dev_priv = dev->dev_private;
3862
3863 gen8_gt_irq_postinstall(dev_priv);
3864
3865 spin_lock_irq(&dev_priv->irq_lock);
3866 if (dev_priv->display_irqs_enabled)
3867 vlv_display_irq_postinstall(dev_priv);
3868 spin_unlock_irq(&dev_priv->irq_lock);
3869
3870 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3871 POSTING_READ(GEN8_MASTER_IRQ);
3872
3873 return 0;
3874 }
3875
3876 static void gen8_irq_uninstall(struct drm_device *dev)
3877 {
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3880 if (!dev_priv)
3881 return;
3882
3883 gen8_irq_reset(dev);
3884 }
3885
3886 static void valleyview_irq_uninstall(struct drm_device *dev)
3887 {
3888 struct drm_i915_private *dev_priv = dev->dev_private;
3889
3890 if (!dev_priv)
3891 return;
3892
3893 I915_WRITE(VLV_MASTER_IER, 0);
3894 POSTING_READ(VLV_MASTER_IER);
3895
3896 gen5_gt_irq_reset(dev);
3897
3898 I915_WRITE(HWSTAM, 0xffffffff);
3899
3900 spin_lock_irq(&dev_priv->irq_lock);
3901 if (dev_priv->display_irqs_enabled)
3902 vlv_display_irq_reset(dev_priv);
3903 spin_unlock_irq(&dev_priv->irq_lock);
3904 }
3905
3906 static void cherryview_irq_uninstall(struct drm_device *dev)
3907 {
3908 struct drm_i915_private *dev_priv = dev->dev_private;
3909
3910 if (!dev_priv)
3911 return;
3912
3913 I915_WRITE(GEN8_MASTER_IRQ, 0);
3914 POSTING_READ(GEN8_MASTER_IRQ);
3915
3916 gen8_gt_irq_reset(dev_priv);
3917
3918 GEN5_IRQ_RESET(GEN8_PCU_);
3919
3920 spin_lock_irq(&dev_priv->irq_lock);
3921 if (dev_priv->display_irqs_enabled)
3922 vlv_display_irq_reset(dev_priv);
3923 spin_unlock_irq(&dev_priv->irq_lock);
3924 }
3925
3926 static void ironlake_irq_uninstall(struct drm_device *dev)
3927 {
3928 struct drm_i915_private *dev_priv = dev->dev_private;
3929
3930 if (!dev_priv)
3931 return;
3932
3933 ironlake_irq_reset(dev);
3934 }
3935
3936 static void i8xx_irq_preinstall(struct drm_device * dev)
3937 {
3938 struct drm_i915_private *dev_priv = dev->dev_private;
3939 int pipe;
3940
3941 for_each_pipe(dev_priv, pipe)
3942 I915_WRITE(PIPESTAT(pipe), 0);
3943 I915_WRITE16(IMR, 0xffff);
3944 I915_WRITE16(IER, 0x0);
3945 POSTING_READ16(IER);
3946 }
3947
3948 static int i8xx_irq_postinstall(struct drm_device *dev)
3949 {
3950 struct drm_i915_private *dev_priv = dev->dev_private;
3951
3952 I915_WRITE16(EMR,
3953 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3954
3955 /* Unmask the interrupts that we always want on. */
3956 dev_priv->irq_mask =
3957 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3958 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3959 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3960 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3961 I915_WRITE16(IMR, dev_priv->irq_mask);
3962
3963 I915_WRITE16(IER,
3964 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3965 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3966 I915_USER_INTERRUPT);
3967 POSTING_READ16(IER);
3968
3969 /* Interrupt setup is already guaranteed to be single-threaded, this is
3970 * just to make the assert_spin_locked check happy. */
3971 spin_lock_irq(&dev_priv->irq_lock);
3972 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3973 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3974 spin_unlock_irq(&dev_priv->irq_lock);
3975
3976 return 0;
3977 }
3978
3979 /*
3980 * Returns true when a page flip has completed.
3981 */
3982 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3983 int plane, int pipe, u32 iir)
3984 {
3985 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3986
3987 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3988 return false;
3989
3990 if ((iir & flip_pending) == 0)
3991 goto check_page_flip;
3992
3993 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3994 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3995 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3996 * the flip is completed (no longer pending). Since this doesn't raise
3997 * an interrupt per se, we watch for the change at vblank.
3998 */
3999 if (I915_READ16(ISR) & flip_pending)
4000 goto check_page_flip;
4001
4002 intel_prepare_page_flip(dev_priv, plane);
4003 intel_finish_page_flip(dev_priv, pipe);
4004 return true;
4005
4006 check_page_flip:
4007 intel_check_page_flip(dev_priv, pipe);
4008 return false;
4009 }
4010
4011 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4012 {
4013 struct drm_device *dev = arg;
4014 struct drm_i915_private *dev_priv = dev->dev_private;
4015 u16 iir, new_iir;
4016 u32 pipe_stats[2];
4017 int pipe;
4018 u16 flip_mask =
4019 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4020 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4021 irqreturn_t ret;
4022
4023 if (!intel_irqs_enabled(dev_priv))
4024 return IRQ_NONE;
4025
4026 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4027 disable_rpm_wakeref_asserts(dev_priv);
4028
4029 ret = IRQ_NONE;
4030 iir = I915_READ16(IIR);
4031 if (iir == 0)
4032 goto out;
4033
4034 while (iir & ~flip_mask) {
4035 /* Can't rely on pipestat interrupt bit in iir as it might
4036 * have been cleared after the pipestat interrupt was received.
4037 * It doesn't set the bit in iir again, but it still produces
4038 * interrupts (for non-MSI).
4039 */
4040 spin_lock(&dev_priv->irq_lock);
4041 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4042 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4043
4044 for_each_pipe(dev_priv, pipe) {
4045 i915_reg_t reg = PIPESTAT(pipe);
4046 pipe_stats[pipe] = I915_READ(reg);
4047
4048 /*
4049 * Clear the PIPE*STAT regs before the IIR
4050 */
4051 if (pipe_stats[pipe] & 0x8000ffff)
4052 I915_WRITE(reg, pipe_stats[pipe]);
4053 }
4054 spin_unlock(&dev_priv->irq_lock);
4055
4056 I915_WRITE16(IIR, iir & ~flip_mask);
4057 new_iir = I915_READ16(IIR); /* Flush posted writes */
4058
4059 if (iir & I915_USER_INTERRUPT)
4060 notify_ring(&dev_priv->engine[RCS]);
4061
4062 for_each_pipe(dev_priv, pipe) {
4063 int plane = pipe;
4064 if (HAS_FBC(dev_priv))
4065 plane = !plane;
4066
4067 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4068 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4069 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4070
4071 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4072 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4073
4074 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4075 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4076 pipe);
4077 }
4078
4079 iir = new_iir;
4080 }
4081 ret = IRQ_HANDLED;
4082
4083 out:
4084 enable_rpm_wakeref_asserts(dev_priv);
4085
4086 return ret;
4087 }
4088
4089 static void i8xx_irq_uninstall(struct drm_device * dev)
4090 {
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092 int pipe;
4093
4094 for_each_pipe(dev_priv, pipe) {
4095 /* Clear enable bits; then clear status bits */
4096 I915_WRITE(PIPESTAT(pipe), 0);
4097 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4098 }
4099 I915_WRITE16(IMR, 0xffff);
4100 I915_WRITE16(IER, 0x0);
4101 I915_WRITE16(IIR, I915_READ16(IIR));
4102 }
4103
4104 static void i915_irq_preinstall(struct drm_device * dev)
4105 {
4106 struct drm_i915_private *dev_priv = dev->dev_private;
4107 int pipe;
4108
4109 if (I915_HAS_HOTPLUG(dev)) {
4110 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4111 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4112 }
4113
4114 I915_WRITE16(HWSTAM, 0xeffe);
4115 for_each_pipe(dev_priv, pipe)
4116 I915_WRITE(PIPESTAT(pipe), 0);
4117 I915_WRITE(IMR, 0xffffffff);
4118 I915_WRITE(IER, 0x0);
4119 POSTING_READ(IER);
4120 }
4121
4122 static int i915_irq_postinstall(struct drm_device *dev)
4123 {
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 u32 enable_mask;
4126
4127 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4128
4129 /* Unmask the interrupts that we always want on. */
4130 dev_priv->irq_mask =
4131 ~(I915_ASLE_INTERRUPT |
4132 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4133 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4134 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4135 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4136
4137 enable_mask =
4138 I915_ASLE_INTERRUPT |
4139 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4140 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4141 I915_USER_INTERRUPT;
4142
4143 if (I915_HAS_HOTPLUG(dev)) {
4144 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4145 POSTING_READ(PORT_HOTPLUG_EN);
4146
4147 /* Enable in IER... */
4148 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4149 /* and unmask in IMR */
4150 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4151 }
4152
4153 I915_WRITE(IMR, dev_priv->irq_mask);
4154 I915_WRITE(IER, enable_mask);
4155 POSTING_READ(IER);
4156
4157 i915_enable_asle_pipestat(dev_priv);
4158
4159 /* Interrupt setup is already guaranteed to be single-threaded, this is
4160 * just to make the assert_spin_locked check happy. */
4161 spin_lock_irq(&dev_priv->irq_lock);
4162 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4163 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4164 spin_unlock_irq(&dev_priv->irq_lock);
4165
4166 return 0;
4167 }
4168
4169 /*
4170 * Returns true when a page flip has completed.
4171 */
4172 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4173 int plane, int pipe, u32 iir)
4174 {
4175 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4176
4177 if (!intel_pipe_handle_vblank(dev_priv, pipe))
4178 return false;
4179
4180 if ((iir & flip_pending) == 0)
4181 goto check_page_flip;
4182
4183 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4184 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4185 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4186 * the flip is completed (no longer pending). Since this doesn't raise
4187 * an interrupt per se, we watch for the change at vblank.
4188 */
4189 if (I915_READ(ISR) & flip_pending)
4190 goto check_page_flip;
4191
4192 intel_prepare_page_flip(dev_priv, plane);
4193 intel_finish_page_flip(dev_priv, pipe);
4194 return true;
4195
4196 check_page_flip:
4197 intel_check_page_flip(dev_priv, pipe);
4198 return false;
4199 }
4200
4201 static irqreturn_t i915_irq_handler(int irq, void *arg)
4202 {
4203 struct drm_device *dev = arg;
4204 struct drm_i915_private *dev_priv = dev->dev_private;
4205 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4206 u32 flip_mask =
4207 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4208 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4209 int pipe, ret = IRQ_NONE;
4210
4211 if (!intel_irqs_enabled(dev_priv))
4212 return IRQ_NONE;
4213
4214 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4215 disable_rpm_wakeref_asserts(dev_priv);
4216
4217 iir = I915_READ(IIR);
4218 do {
4219 bool irq_received = (iir & ~flip_mask) != 0;
4220 bool blc_event = false;
4221
4222 /* Can't rely on pipestat interrupt bit in iir as it might
4223 * have been cleared after the pipestat interrupt was received.
4224 * It doesn't set the bit in iir again, but it still produces
4225 * interrupts (for non-MSI).
4226 */
4227 spin_lock(&dev_priv->irq_lock);
4228 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4229 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4230
4231 for_each_pipe(dev_priv, pipe) {
4232 i915_reg_t reg = PIPESTAT(pipe);
4233 pipe_stats[pipe] = I915_READ(reg);
4234
4235 /* Clear the PIPE*STAT regs before the IIR */
4236 if (pipe_stats[pipe] & 0x8000ffff) {
4237 I915_WRITE(reg, pipe_stats[pipe]);
4238 irq_received = true;
4239 }
4240 }
4241 spin_unlock(&dev_priv->irq_lock);
4242
4243 if (!irq_received)
4244 break;
4245
4246 /* Consume port. Then clear IIR or we'll miss events */
4247 if (I915_HAS_HOTPLUG(dev_priv) &&
4248 iir & I915_DISPLAY_PORT_INTERRUPT) {
4249 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4250 if (hotplug_status)
4251 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4252 }
4253
4254 I915_WRITE(IIR, iir & ~flip_mask);
4255 new_iir = I915_READ(IIR); /* Flush posted writes */
4256
4257 if (iir & I915_USER_INTERRUPT)
4258 notify_ring(&dev_priv->engine[RCS]);
4259
4260 for_each_pipe(dev_priv, pipe) {
4261 int plane = pipe;
4262 if (HAS_FBC(dev_priv))
4263 plane = !plane;
4264
4265 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4266 i915_handle_vblank(dev_priv, plane, pipe, iir))
4267 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4268
4269 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4270 blc_event = true;
4271
4272 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4273 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4274
4275 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4276 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4277 pipe);
4278 }
4279
4280 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4281 intel_opregion_asle_intr(dev_priv);
4282
4283 /* With MSI, interrupts are only generated when iir
4284 * transitions from zero to nonzero. If another bit got
4285 * set while we were handling the existing iir bits, then
4286 * we would never get another interrupt.
4287 *
4288 * This is fine on non-MSI as well, as if we hit this path
4289 * we avoid exiting the interrupt handler only to generate
4290 * another one.
4291 *
4292 * Note that for MSI this could cause a stray interrupt report
4293 * if an interrupt landed in the time between writing IIR and
4294 * the posting read. This should be rare enough to never
4295 * trigger the 99% of 100,000 interrupts test for disabling
4296 * stray interrupts.
4297 */
4298 ret = IRQ_HANDLED;
4299 iir = new_iir;
4300 } while (iir & ~flip_mask);
4301
4302 enable_rpm_wakeref_asserts(dev_priv);
4303
4304 return ret;
4305 }
4306
4307 static void i915_irq_uninstall(struct drm_device * dev)
4308 {
4309 struct drm_i915_private *dev_priv = dev->dev_private;
4310 int pipe;
4311
4312 if (I915_HAS_HOTPLUG(dev)) {
4313 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4314 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4315 }
4316
4317 I915_WRITE16(HWSTAM, 0xffff);
4318 for_each_pipe(dev_priv, pipe) {
4319 /* Clear enable bits; then clear status bits */
4320 I915_WRITE(PIPESTAT(pipe), 0);
4321 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4322 }
4323 I915_WRITE(IMR, 0xffffffff);
4324 I915_WRITE(IER, 0x0);
4325
4326 I915_WRITE(IIR, I915_READ(IIR));
4327 }
4328
4329 static void i965_irq_preinstall(struct drm_device * dev)
4330 {
4331 struct drm_i915_private *dev_priv = dev->dev_private;
4332 int pipe;
4333
4334 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4335 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4336
4337 I915_WRITE(HWSTAM, 0xeffe);
4338 for_each_pipe(dev_priv, pipe)
4339 I915_WRITE(PIPESTAT(pipe), 0);
4340 I915_WRITE(IMR, 0xffffffff);
4341 I915_WRITE(IER, 0x0);
4342 POSTING_READ(IER);
4343 }
4344
4345 static int i965_irq_postinstall(struct drm_device *dev)
4346 {
4347 struct drm_i915_private *dev_priv = dev->dev_private;
4348 u32 enable_mask;
4349 u32 error_mask;
4350
4351 /* Unmask the interrupts that we always want on. */
4352 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4353 I915_DISPLAY_PORT_INTERRUPT |
4354 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4355 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4356 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4357 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4358 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4359
4360 enable_mask = ~dev_priv->irq_mask;
4361 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4362 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4363 enable_mask |= I915_USER_INTERRUPT;
4364
4365 if (IS_G4X(dev_priv))
4366 enable_mask |= I915_BSD_USER_INTERRUPT;
4367
4368 /* Interrupt setup is already guaranteed to be single-threaded, this is
4369 * just to make the assert_spin_locked check happy. */
4370 spin_lock_irq(&dev_priv->irq_lock);
4371 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4372 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4373 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4374 spin_unlock_irq(&dev_priv->irq_lock);
4375
4376 /*
4377 * Enable some error detection, note the instruction error mask
4378 * bit is reserved, so we leave it masked.
4379 */
4380 if (IS_G4X(dev_priv)) {
4381 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4382 GM45_ERROR_MEM_PRIV |
4383 GM45_ERROR_CP_PRIV |
4384 I915_ERROR_MEMORY_REFRESH);
4385 } else {
4386 error_mask = ~(I915_ERROR_PAGE_TABLE |
4387 I915_ERROR_MEMORY_REFRESH);
4388 }
4389 I915_WRITE(EMR, error_mask);
4390
4391 I915_WRITE(IMR, dev_priv->irq_mask);
4392 I915_WRITE(IER, enable_mask);
4393 POSTING_READ(IER);
4394
4395 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4396 POSTING_READ(PORT_HOTPLUG_EN);
4397
4398 i915_enable_asle_pipestat(dev_priv);
4399
4400 return 0;
4401 }
4402
4403 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4404 {
4405 u32 hotplug_en;
4406
4407 assert_spin_locked(&dev_priv->irq_lock);
4408
4409 /* Note HDMI and DP share hotplug bits */
4410 /* enable bits are the same for all generations */
4411 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4412 /* Programming the CRT detection parameters tends
4413 to generate a spurious hotplug event about three
4414 seconds later. So just do it once.
4415 */
4416 if (IS_G4X(dev_priv))
4417 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4418 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4419
4420 /* Ignore TV since it's buggy */
4421 i915_hotplug_interrupt_update_locked(dev_priv,
4422 HOTPLUG_INT_EN_MASK |
4423 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4424 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4425 hotplug_en);
4426 }
4427
4428 static irqreturn_t i965_irq_handler(int irq, void *arg)
4429 {
4430 struct drm_device *dev = arg;
4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 u32 iir, new_iir;
4433 u32 pipe_stats[I915_MAX_PIPES];
4434 int ret = IRQ_NONE, pipe;
4435 u32 flip_mask =
4436 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4437 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4438
4439 if (!intel_irqs_enabled(dev_priv))
4440 return IRQ_NONE;
4441
4442 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4443 disable_rpm_wakeref_asserts(dev_priv);
4444
4445 iir = I915_READ(IIR);
4446
4447 for (;;) {
4448 bool irq_received = (iir & ~flip_mask) != 0;
4449 bool blc_event = false;
4450
4451 /* Can't rely on pipestat interrupt bit in iir as it might
4452 * have been cleared after the pipestat interrupt was received.
4453 * It doesn't set the bit in iir again, but it still produces
4454 * interrupts (for non-MSI).
4455 */
4456 spin_lock(&dev_priv->irq_lock);
4457 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4458 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4459
4460 for_each_pipe(dev_priv, pipe) {
4461 i915_reg_t reg = PIPESTAT(pipe);
4462 pipe_stats[pipe] = I915_READ(reg);
4463
4464 /*
4465 * Clear the PIPE*STAT regs before the IIR
4466 */
4467 if (pipe_stats[pipe] & 0x8000ffff) {
4468 I915_WRITE(reg, pipe_stats[pipe]);
4469 irq_received = true;
4470 }
4471 }
4472 spin_unlock(&dev_priv->irq_lock);
4473
4474 if (!irq_received)
4475 break;
4476
4477 ret = IRQ_HANDLED;
4478
4479 /* Consume port. Then clear IIR or we'll miss events */
4480 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4481 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4482 if (hotplug_status)
4483 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4484 }
4485
4486 I915_WRITE(IIR, iir & ~flip_mask);
4487 new_iir = I915_READ(IIR); /* Flush posted writes */
4488
4489 if (iir & I915_USER_INTERRUPT)
4490 notify_ring(&dev_priv->engine[RCS]);
4491 if (iir & I915_BSD_USER_INTERRUPT)
4492 notify_ring(&dev_priv->engine[VCS]);
4493
4494 for_each_pipe(dev_priv, pipe) {
4495 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4496 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4497 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4498
4499 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4500 blc_event = true;
4501
4502 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4503 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4504
4505 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4506 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4507 }
4508
4509 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4510 intel_opregion_asle_intr(dev_priv);
4511
4512 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4513 gmbus_irq_handler(dev_priv);
4514
4515 /* With MSI, interrupts are only generated when iir
4516 * transitions from zero to nonzero. If another bit got
4517 * set while we were handling the existing iir bits, then
4518 * we would never get another interrupt.
4519 *
4520 * This is fine on non-MSI as well, as if we hit this path
4521 * we avoid exiting the interrupt handler only to generate
4522 * another one.
4523 *
4524 * Note that for MSI this could cause a stray interrupt report
4525 * if an interrupt landed in the time between writing IIR and
4526 * the posting read. This should be rare enough to never
4527 * trigger the 99% of 100,000 interrupts test for disabling
4528 * stray interrupts.
4529 */
4530 iir = new_iir;
4531 }
4532
4533 enable_rpm_wakeref_asserts(dev_priv);
4534
4535 return ret;
4536 }
4537
4538 static void i965_irq_uninstall(struct drm_device * dev)
4539 {
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 int pipe;
4542
4543 if (!dev_priv)
4544 return;
4545
4546 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4547 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4548
4549 I915_WRITE(HWSTAM, 0xffffffff);
4550 for_each_pipe(dev_priv, pipe)
4551 I915_WRITE(PIPESTAT(pipe), 0);
4552 I915_WRITE(IMR, 0xffffffff);
4553 I915_WRITE(IER, 0x0);
4554
4555 for_each_pipe(dev_priv, pipe)
4556 I915_WRITE(PIPESTAT(pipe),
4557 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4558 I915_WRITE(IIR, I915_READ(IIR));
4559 }
4560
4561 /**
4562 * intel_irq_init - initializes irq support
4563 * @dev_priv: i915 device instance
4564 *
4565 * This function initializes all the irq support including work items, timers
4566 * and all the vtables. It does not setup the interrupt itself though.
4567 */
4568 void intel_irq_init(struct drm_i915_private *dev_priv)
4569 {
4570 struct drm_device *dev = dev_priv->dev;
4571
4572 intel_hpd_init_work(dev_priv);
4573
4574 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4575 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4576
4577 /* Let's track the enabled rps events */
4578 if (IS_VALLEYVIEW(dev_priv))
4579 /* WaGsvRC0ResidencyMethod:vlv */
4580 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4581 else
4582 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4583
4584 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4585 i915_hangcheck_elapsed);
4586
4587 if (IS_GEN2(dev_priv)) {
4588 dev->max_vblank_count = 0;
4589 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4590 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4591 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4592 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4593 } else {
4594 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4595 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4596 }
4597
4598 /*
4599 * Opt out of the vblank disable timer on everything except gen2.
4600 * Gen2 doesn't have a hardware frame counter and so depends on
4601 * vblank interrupts to produce sane vblank seuquence numbers.
4602 */
4603 if (!IS_GEN2(dev_priv))
4604 dev->vblank_disable_immediate = true;
4605
4606 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4607 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4608
4609 if (IS_CHERRYVIEW(dev_priv)) {
4610 dev->driver->irq_handler = cherryview_irq_handler;
4611 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4612 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4613 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4614 dev->driver->enable_vblank = valleyview_enable_vblank;
4615 dev->driver->disable_vblank = valleyview_disable_vblank;
4616 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4617 } else if (IS_VALLEYVIEW(dev_priv)) {
4618 dev->driver->irq_handler = valleyview_irq_handler;
4619 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4620 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4621 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4622 dev->driver->enable_vblank = valleyview_enable_vblank;
4623 dev->driver->disable_vblank = valleyview_disable_vblank;
4624 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4625 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4626 dev->driver->irq_handler = gen8_irq_handler;
4627 dev->driver->irq_preinstall = gen8_irq_reset;
4628 dev->driver->irq_postinstall = gen8_irq_postinstall;
4629 dev->driver->irq_uninstall = gen8_irq_uninstall;
4630 dev->driver->enable_vblank = gen8_enable_vblank;
4631 dev->driver->disable_vblank = gen8_disable_vblank;
4632 if (IS_BROXTON(dev))
4633 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4634 else if (HAS_PCH_SPT(dev))
4635 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4636 else
4637 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4638 } else if (HAS_PCH_SPLIT(dev)) {
4639 dev->driver->irq_handler = ironlake_irq_handler;
4640 dev->driver->irq_preinstall = ironlake_irq_reset;
4641 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4642 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4643 dev->driver->enable_vblank = ironlake_enable_vblank;
4644 dev->driver->disable_vblank = ironlake_disable_vblank;
4645 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4646 } else {
4647 if (INTEL_INFO(dev_priv)->gen == 2) {
4648 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4649 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4650 dev->driver->irq_handler = i8xx_irq_handler;
4651 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4652 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4653 dev->driver->irq_preinstall = i915_irq_preinstall;
4654 dev->driver->irq_postinstall = i915_irq_postinstall;
4655 dev->driver->irq_uninstall = i915_irq_uninstall;
4656 dev->driver->irq_handler = i915_irq_handler;
4657 } else {
4658 dev->driver->irq_preinstall = i965_irq_preinstall;
4659 dev->driver->irq_postinstall = i965_irq_postinstall;
4660 dev->driver->irq_uninstall = i965_irq_uninstall;
4661 dev->driver->irq_handler = i965_irq_handler;
4662 }
4663 if (I915_HAS_HOTPLUG(dev_priv))
4664 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4665 dev->driver->enable_vblank = i915_enable_vblank;
4666 dev->driver->disable_vblank = i915_disable_vblank;
4667 }
4668 }
4669
4670 /**
4671 * intel_irq_install - enables the hardware interrupt
4672 * @dev_priv: i915 device instance
4673 *
4674 * This function enables the hardware interrupt handling, but leaves the hotplug
4675 * handling still disabled. It is called after intel_irq_init().
4676 *
4677 * In the driver load and resume code we need working interrupts in a few places
4678 * but don't want to deal with the hassle of concurrent probe and hotplug
4679 * workers. Hence the split into this two-stage approach.
4680 */
4681 int intel_irq_install(struct drm_i915_private *dev_priv)
4682 {
4683 /*
4684 * We enable some interrupt sources in our postinstall hooks, so mark
4685 * interrupts as enabled _before_ actually enabling them to avoid
4686 * special cases in our ordering checks.
4687 */
4688 dev_priv->pm.irqs_enabled = true;
4689
4690 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4691 }
4692
4693 /**
4694 * intel_irq_uninstall - finilizes all irq handling
4695 * @dev_priv: i915 device instance
4696 *
4697 * This stops interrupt and hotplug handling and unregisters and frees all
4698 * resources acquired in the init functions.
4699 */
4700 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4701 {
4702 drm_irq_uninstall(dev_priv->dev);
4703 intel_hpd_cancel_work(dev_priv);
4704 dev_priv->pm.irqs_enabled = false;
4705 }
4706
4707 /**
4708 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4709 * @dev_priv: i915 device instance
4710 *
4711 * This function is used to disable interrupts at runtime, both in the runtime
4712 * pm and the system suspend/resume code.
4713 */
4714 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4715 {
4716 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4717 dev_priv->pm.irqs_enabled = false;
4718 synchronize_irq(dev_priv->dev->irq);
4719 }
4720
4721 /**
4722 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4723 * @dev_priv: i915 device instance
4724 *
4725 * This function is used to enable interrupts at runtime, both in the runtime
4726 * pm and the system suspend/resume code.
4727 */
4728 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4729 {
4730 dev_priv->pm.irqs_enabled = true;
4731 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4732 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4733 }
This page took 0.129199 seconds and 5 git commands to generate.