ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 POSTING_READ(GEN8_##type##_IMR(which)); \
101 I915_WRITE(GEN8_##type##_IER(which), 0); \
102 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 POSTING_READ(GEN8_##type##_IIR(which)); \
104 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107
108 #define GEN5_IRQ_RESET(type) do { \
109 I915_WRITE(type##IMR, 0xffffffff); \
110 POSTING_READ(type##IMR); \
111 I915_WRITE(type##IER, 0); \
112 I915_WRITE(type##IIR, 0xffffffff); \
113 POSTING_READ(type##IIR); \
114 I915_WRITE(type##IIR, 0xffffffff); \
115 POSTING_READ(type##IIR); \
116 } while (0)
117
118 /*
119 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120 */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 u32 val = I915_READ(reg); \
123 if (val) { \
124 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 (reg), val); \
126 I915_WRITE((reg), 0xffffffff); \
127 POSTING_READ(reg); \
128 I915_WRITE((reg), 0xffffffff); \
129 POSTING_READ(reg); \
130 } \
131 } while (0)
132
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 I915_WRITE(type##IER, (ier_val)); \
143 I915_WRITE(type##IMR, (imr_val)); \
144 POSTING_READ(type##IMR); \
145 } while (0)
146
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 assert_spin_locked(&dev_priv->irq_lock);
154
155 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 return;
157
158 if ((dev_priv->irq_mask & mask) != 0) {
159 dev_priv->irq_mask &= ~mask;
160 I915_WRITE(DEIMR, dev_priv->irq_mask);
161 POSTING_READ(DEIMR);
162 }
163 }
164
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 return;
172
173 if ((dev_priv->irq_mask & mask) != mask) {
174 dev_priv->irq_mask |= mask;
175 I915_WRITE(DEIMR, dev_priv->irq_mask);
176 POSTING_READ(DEIMR);
177 }
178 }
179
180 /**
181 * ilk_update_gt_irq - update GTIMR
182 * @dev_priv: driver private
183 * @interrupt_mask: mask of interrupt bits to update
184 * @enabled_irq_mask: mask of interrupt bits to enable
185 */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 uint32_t interrupt_mask,
188 uint32_t enabled_irq_mask)
189 {
190 assert_spin_locked(&dev_priv->irq_lock);
191
192 WARN_ON(enabled_irq_mask & ~interrupt_mask);
193
194 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 return;
196
197 dev_priv->gt_irq_mask &= ~interrupt_mask;
198 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 POSTING_READ(GTIMR);
201 }
202
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227
228 /**
229 * snb_update_pm_irq - update GEN6_PMIMR
230 * @dev_priv: driver private
231 * @interrupt_mask: mask of interrupt bits to update
232 * @enabled_irq_mask: mask of interrupt bits to enable
233 */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 uint32_t interrupt_mask,
236 uint32_t enabled_irq_mask)
237 {
238 uint32_t new_val;
239
240 WARN_ON(enabled_irq_mask & ~interrupt_mask);
241
242 assert_spin_locked(&dev_priv->irq_lock);
243
244 new_val = dev_priv->pm_irq_mask;
245 new_val &= ~interrupt_mask;
246 new_val |= (~enabled_irq_mask & interrupt_mask);
247
248 if (new_val != dev_priv->pm_irq_mask) {
249 dev_priv->pm_irq_mask = new_val;
250 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 POSTING_READ(gen6_pm_imr(dev_priv));
252 }
253 }
254
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 snb_update_pm_irq(dev_priv, mask, mask);
261 }
262
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 uint32_t mask)
265 {
266 snb_update_pm_irq(dev_priv, mask, 0);
267 }
268
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 return;
273
274 __gen6_disable_pm_irq(dev_priv, mask);
275 }
276
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 uint32_t reg = gen6_pm_iir(dev_priv);
281
282 spin_lock_irq(&dev_priv->irq_lock);
283 I915_WRITE(reg, dev_priv->pm_rps_events);
284 I915_WRITE(reg, dev_priv->pm_rps_events);
285 POSTING_READ(reg);
286 dev_priv->rps.pm_iir = 0;
287 spin_unlock_irq(&dev_priv->irq_lock);
288 }
289
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 struct drm_i915_private *dev_priv = dev->dev_private;
293
294 spin_lock_irq(&dev_priv->irq_lock);
295
296 WARN_ON(dev_priv->rps.pm_iir);
297 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 dev_priv->rps.interrupts_enabled = true;
299 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 dev_priv->pm_rps_events);
301 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302
303 spin_unlock_irq(&dev_priv->irq_lock);
304 }
305
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 /*
309 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 *
312 * TODO: verify if this can be reproduced on VLV,CHV.
313 */
314 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316
317 if (INTEL_INFO(dev_priv)->gen >= 8)
318 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319
320 return mask;
321 }
322
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 spin_lock_irq(&dev_priv->irq_lock);
328 dev_priv->rps.interrupts_enabled = false;
329 spin_unlock_irq(&dev_priv->irq_lock);
330
331 cancel_work_sync(&dev_priv->rps.work);
332
333 spin_lock_irq(&dev_priv->irq_lock);
334
335 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336
337 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 ~dev_priv->pm_rps_events);
340
341 spin_unlock_irq(&dev_priv->irq_lock);
342
343 synchronize_irq(dev->irq);
344 }
345
346 /**
347 * ibx_display_interrupt_update - update SDEIMR
348 * @dev_priv: driver private
349 * @interrupt_mask: mask of interrupt bits to update
350 * @enabled_irq_mask: mask of interrupt bits to enable
351 */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 uint32_t interrupt_mask,
354 uint32_t enabled_irq_mask)
355 {
356 uint32_t sdeimr = I915_READ(SDEIMR);
357 sdeimr &= ~interrupt_mask;
358 sdeimr |= (~enabled_irq_mask & interrupt_mask);
359
360 WARN_ON(enabled_irq_mask & ~interrupt_mask);
361
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 return;
366
367 I915_WRITE(SDEIMR, sdeimr);
368 POSTING_READ(SDEIMR);
369 }
370
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 u32 enable_mask, u32 status_mask)
374 {
375 u32 reg = PIPESTAT(pipe);
376 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378 assert_spin_locked(&dev_priv->irq_lock);
379 WARN_ON(!intel_irqs_enabled(dev_priv));
380
381 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 pipe_name(pipe), enable_mask, status_mask))
385 return;
386
387 if ((pipestat & enable_mask) == enable_mask)
388 return;
389
390 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391
392 /* Enable the interrupt, clear any pending status */
393 pipestat |= enable_mask | status_mask;
394 I915_WRITE(reg, pipestat);
395 POSTING_READ(reg);
396 }
397
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 u32 enable_mask, u32 status_mask)
401 {
402 u32 reg = PIPESTAT(pipe);
403 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404
405 assert_spin_locked(&dev_priv->irq_lock);
406 WARN_ON(!intel_irqs_enabled(dev_priv));
407
408 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 pipe_name(pipe), enable_mask, status_mask))
412 return;
413
414 if ((pipestat & enable_mask) == 0)
415 return;
416
417 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418
419 pipestat &= ~enable_mask;
420 I915_WRITE(reg, pipestat);
421 POSTING_READ(reg);
422 }
423
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 u32 enable_mask = status_mask << 16;
427
428 /*
429 * On pipe A we don't support the PSR interrupt yet,
430 * on pipe B and C the same bit MBZ.
431 */
432 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 return 0;
434 /*
435 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 * A the same bit is for perf counters which we don't use either.
437 */
438 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 return 0;
440
441 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448
449 return enable_mask;
450 }
451
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 u32 status_mask)
455 {
456 u32 enable_mask;
457
458 if (IS_VALLEYVIEW(dev_priv->dev))
459 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 status_mask);
461 else
462 enable_mask = status_mask << 16;
463 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 u32 status_mask)
469 {
470 u32 enable_mask;
471
472 if (IS_VALLEYVIEW(dev_priv->dev))
473 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 status_mask);
475 else
476 enable_mask = status_mask << 16;
477 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479
480 /**
481 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482 */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486
487 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 return;
489
490 spin_lock_irq(&dev_priv->irq_lock);
491
492 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 if (INTEL_INFO(dev)->gen >= 4)
494 i915_enable_pipestat(dev_priv, PIPE_A,
495 PIPE_LEGACY_BLC_EVENT_STATUS);
496
497 spin_unlock_irq(&dev_priv->irq_lock);
498 }
499
500 /*
501 * This timing diagram depicts the video signal in and
502 * around the vertical blanking period.
503 *
504 * Assumptions about the fictitious mode used in this example:
505 * vblank_start >= 3
506 * vsync_start = vblank_start + 1
507 * vsync_end = vblank_start + 2
508 * vtotal = vblank_start + 3
509 *
510 * start of vblank:
511 * latch double buffered registers
512 * increment frame counter (ctg+)
513 * generate start of vblank interrupt (gen4+)
514 * |
515 * | frame start:
516 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
517 * | may be shifted forward 1-3 extra lines via PIPECONF
518 * | |
519 * | | start of vsync:
520 * | | generate vsync interrupt
521 * | | |
522 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
523 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
524 * ----va---> <-----------------vb--------------------> <--------va-------------
525 * | | <----vs-----> |
526 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529 * | | |
530 * last visible pixel first visible pixel
531 * | increment frame counter (gen3/4)
532 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
533 *
534 * x = horizontal active
535 * _ = horizontal blanking
536 * hs = horizontal sync
537 * va = vertical active
538 * vb = vertical blanking
539 * vs = vertical sync
540 * vbs = vblank_start (number)
541 *
542 * Summary:
543 * - most events happen at the start of horizontal sync
544 * - frame start happens at the start of horizontal blank, 1-4 lines
545 * (depending on PIPECONF settings) after the start of vblank
546 * - gen3/4 pixel and frame counter are synchronized with the start
547 * of horizontal active on the first line of vertical active
548 */
549
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 /* Gen2 doesn't have a hardware frame counter */
553 return 0;
554 }
555
556 /* Called from drm generic code, passed a 'crtc', which
557 * we use as a pipe index
558 */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 unsigned long high_frame;
563 unsigned long low_frame;
564 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 struct intel_crtc *intel_crtc =
566 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 const struct drm_display_mode *mode =
568 &intel_crtc->config->base.adjusted_mode;
569
570 htotal = mode->crtc_htotal;
571 hsync_start = mode->crtc_hsync_start;
572 vbl_start = mode->crtc_vblank_start;
573 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
574 vbl_start = DIV_ROUND_UP(vbl_start, 2);
575
576 /* Convert to pixel count */
577 vbl_start *= htotal;
578
579 /* Start of vblank event occurs at start of hsync */
580 vbl_start -= htotal - hsync_start;
581
582 high_frame = PIPEFRAME(pipe);
583 low_frame = PIPEFRAMEPIXEL(pipe);
584
585 /*
586 * High & low register fields aren't synchronized, so make sure
587 * we get a low value that's stable across two reads of the high
588 * register.
589 */
590 do {
591 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 low = I915_READ(low_frame);
593 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
594 } while (high1 != high2);
595
596 high1 >>= PIPE_FRAME_HIGH_SHIFT;
597 pixel = low & PIPE_PIXEL_MASK;
598 low >>= PIPE_FRAME_LOW_SHIFT;
599
600 /*
601 * The frame counter increments at beginning of active.
602 * Cook up a vblank counter by also checking the pixel
603 * counter against vblank start.
604 */
605 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
606 }
607
608 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
609 {
610 struct drm_i915_private *dev_priv = dev->dev_private;
611 int reg = PIPE_FRMCOUNT_GM45(pipe);
612
613 return I915_READ(reg);
614 }
615
616 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
617 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
618
619 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
620 {
621 struct drm_device *dev = crtc->base.dev;
622 struct drm_i915_private *dev_priv = dev->dev_private;
623 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
624 enum pipe pipe = crtc->pipe;
625 int position, vtotal;
626
627 vtotal = mode->crtc_vtotal;
628 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629 vtotal /= 2;
630
631 if (IS_GEN2(dev))
632 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
633 else
634 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
635
636 /*
637 * See update_scanline_offset() for the details on the
638 * scanline_offset adjustment.
639 */
640 return (position + crtc->scanline_offset) % vtotal;
641 }
642
643 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
644 unsigned int flags, int *vpos, int *hpos,
645 ktime_t *stime, ktime_t *etime)
646 {
647 struct drm_i915_private *dev_priv = dev->dev_private;
648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650 const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
651 int position;
652 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
653 bool in_vbl = true;
654 int ret = 0;
655 unsigned long irqflags;
656
657 if (!intel_crtc->active) {
658 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
659 "pipe %c\n", pipe_name(pipe));
660 return 0;
661 }
662
663 htotal = mode->crtc_htotal;
664 hsync_start = mode->crtc_hsync_start;
665 vtotal = mode->crtc_vtotal;
666 vbl_start = mode->crtc_vblank_start;
667 vbl_end = mode->crtc_vblank_end;
668
669 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
670 vbl_start = DIV_ROUND_UP(vbl_start, 2);
671 vbl_end /= 2;
672 vtotal /= 2;
673 }
674
675 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
676
677 /*
678 * Lock uncore.lock, as we will do multiple timing critical raw
679 * register reads, potentially with preemption disabled, so the
680 * following code must not block on uncore.lock.
681 */
682 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683
684 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
685
686 /* Get optional system timestamp before query. */
687 if (stime)
688 *stime = ktime_get();
689
690 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
691 /* No obvious pixelcount register. Only query vertical
692 * scanout position from Display scan line register.
693 */
694 position = __intel_get_crtc_scanline(intel_crtc);
695 } else {
696 /* Have access to pixelcount since start of frame.
697 * We can split this into vertical and horizontal
698 * scanout position.
699 */
700 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701
702 /* convert to pixel counts */
703 vbl_start *= htotal;
704 vbl_end *= htotal;
705 vtotal *= htotal;
706
707 /*
708 * In interlaced modes, the pixel counter counts all pixels,
709 * so one field will have htotal more pixels. In order to avoid
710 * the reported position from jumping backwards when the pixel
711 * counter is beyond the length of the shorter field, just
712 * clamp the position the length of the shorter field. This
713 * matches how the scanline counter based position works since
714 * the scanline counter doesn't count the two half lines.
715 */
716 if (position >= vtotal)
717 position = vtotal - 1;
718
719 /*
720 * Start of vblank interrupt is triggered at start of hsync,
721 * just prior to the first active line of vblank. However we
722 * consider lines to start at the leading edge of horizontal
723 * active. So, should we get here before we've crossed into
724 * the horizontal active of the first line in vblank, we would
725 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
726 * always add htotal-hsync_start to the current pixel position.
727 */
728 position = (position + htotal - hsync_start) % vtotal;
729 }
730
731 /* Get optional system timestamp after query. */
732 if (etime)
733 *etime = ktime_get();
734
735 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
736
737 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
738
739 in_vbl = position >= vbl_start && position < vbl_end;
740
741 /*
742 * While in vblank, position will be negative
743 * counting up towards 0 at vbl_end. And outside
744 * vblank, position will be positive counting
745 * up since vbl_end.
746 */
747 if (position >= vbl_start)
748 position -= vbl_end;
749 else
750 position += vtotal - vbl_end;
751
752 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
753 *vpos = position;
754 *hpos = 0;
755 } else {
756 *vpos = position / htotal;
757 *hpos = position - (*vpos * htotal);
758 }
759
760 /* In vblank? */
761 if (in_vbl)
762 ret |= DRM_SCANOUTPOS_IN_VBLANK;
763
764 return ret;
765 }
766
767 int intel_get_crtc_scanline(struct intel_crtc *crtc)
768 {
769 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
770 unsigned long irqflags;
771 int position;
772
773 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
774 position = __intel_get_crtc_scanline(crtc);
775 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776
777 return position;
778 }
779
780 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
781 int *max_error,
782 struct timeval *vblank_time,
783 unsigned flags)
784 {
785 struct drm_crtc *crtc;
786
787 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
788 DRM_ERROR("Invalid crtc %d\n", pipe);
789 return -EINVAL;
790 }
791
792 /* Get drm_crtc to timestamp: */
793 crtc = intel_get_crtc_for_pipe(dev, pipe);
794 if (crtc == NULL) {
795 DRM_ERROR("Invalid crtc %d\n", pipe);
796 return -EINVAL;
797 }
798
799 if (!crtc->state->enable) {
800 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
801 return -EBUSY;
802 }
803
804 /* Helper routine in DRM core does all the work: */
805 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
806 vblank_time, flags,
807 crtc,
808 &to_intel_crtc(crtc)->config->base.adjusted_mode);
809 }
810
811 static bool intel_hpd_irq_event(struct drm_device *dev,
812 struct drm_connector *connector)
813 {
814 enum drm_connector_status old_status;
815
816 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
817 old_status = connector->status;
818
819 connector->status = connector->funcs->detect(connector, false);
820 if (old_status == connector->status)
821 return false;
822
823 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
824 connector->base.id,
825 connector->name,
826 drm_get_connector_status_name(old_status),
827 drm_get_connector_status_name(connector->status));
828
829 return true;
830 }
831
832 static void i915_digport_work_func(struct work_struct *work)
833 {
834 struct drm_i915_private *dev_priv =
835 container_of(work, struct drm_i915_private, dig_port_work);
836 u32 long_port_mask, short_port_mask;
837 struct intel_digital_port *intel_dig_port;
838 int i;
839 u32 old_bits = 0;
840
841 spin_lock_irq(&dev_priv->irq_lock);
842 long_port_mask = dev_priv->long_hpd_port_mask;
843 dev_priv->long_hpd_port_mask = 0;
844 short_port_mask = dev_priv->short_hpd_port_mask;
845 dev_priv->short_hpd_port_mask = 0;
846 spin_unlock_irq(&dev_priv->irq_lock);
847
848 for (i = 0; i < I915_MAX_PORTS; i++) {
849 bool valid = false;
850 bool long_hpd = false;
851 intel_dig_port = dev_priv->hpd_irq_port[i];
852 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
853 continue;
854
855 if (long_port_mask & (1 << i)) {
856 valid = true;
857 long_hpd = true;
858 } else if (short_port_mask & (1 << i))
859 valid = true;
860
861 if (valid) {
862 enum irqreturn ret;
863
864 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865 if (ret == IRQ_NONE) {
866 /* fall back to old school hpd */
867 old_bits |= (1 << intel_dig_port->base.hpd_pin);
868 }
869 }
870 }
871
872 if (old_bits) {
873 spin_lock_irq(&dev_priv->irq_lock);
874 dev_priv->hpd_event_bits |= old_bits;
875 spin_unlock_irq(&dev_priv->irq_lock);
876 schedule_work(&dev_priv->hotplug_work);
877 }
878 }
879
880 /*
881 * Handle hotplug events outside the interrupt handler proper.
882 */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887 struct drm_i915_private *dev_priv =
888 container_of(work, struct drm_i915_private, hotplug_work);
889 struct drm_device *dev = dev_priv->dev;
890 struct drm_mode_config *mode_config = &dev->mode_config;
891 struct intel_connector *intel_connector;
892 struct intel_encoder *intel_encoder;
893 struct drm_connector *connector;
894 bool hpd_disabled = false;
895 bool changed = false;
896 u32 hpd_event_bits;
897
898 mutex_lock(&mode_config->mutex);
899 DRM_DEBUG_KMS("running encoder hotplug functions\n");
900
901 spin_lock_irq(&dev_priv->irq_lock);
902
903 hpd_event_bits = dev_priv->hpd_event_bits;
904 dev_priv->hpd_event_bits = 0;
905 list_for_each_entry(connector, &mode_config->connector_list, head) {
906 intel_connector = to_intel_connector(connector);
907 if (!intel_connector->encoder)
908 continue;
909 intel_encoder = intel_connector->encoder;
910 if (intel_encoder->hpd_pin > HPD_NONE &&
911 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
912 connector->polled == DRM_CONNECTOR_POLL_HPD) {
913 DRM_INFO("HPD interrupt storm detected on connector %s: "
914 "switching from hotplug detection to polling\n",
915 connector->name);
916 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
917 connector->polled = DRM_CONNECTOR_POLL_CONNECT
918 | DRM_CONNECTOR_POLL_DISCONNECT;
919 hpd_disabled = true;
920 }
921 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923 connector->name, intel_encoder->hpd_pin);
924 }
925 }
926 /* if there were no outputs to poll, poll was disabled,
927 * therefore make sure it's enabled when disabling HPD on
928 * some connectors */
929 if (hpd_disabled) {
930 drm_kms_helper_poll_enable(dev);
931 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
932 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933 }
934
935 spin_unlock_irq(&dev_priv->irq_lock);
936
937 list_for_each_entry(connector, &mode_config->connector_list, head) {
938 intel_connector = to_intel_connector(connector);
939 if (!intel_connector->encoder)
940 continue;
941 intel_encoder = intel_connector->encoder;
942 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943 if (intel_encoder->hot_plug)
944 intel_encoder->hot_plug(intel_encoder);
945 if (intel_hpd_irq_event(dev, connector))
946 changed = true;
947 }
948 }
949 mutex_unlock(&mode_config->mutex);
950
951 if (changed)
952 drm_kms_helper_hotplug_event(dev);
953 }
954
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957 struct drm_i915_private *dev_priv = dev->dev_private;
958 u32 busy_up, busy_down, max_avg, min_avg;
959 u8 new_delay;
960
961 spin_lock(&mchdev_lock);
962
963 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964
965 new_delay = dev_priv->ips.cur_delay;
966
967 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968 busy_up = I915_READ(RCPREVBSYTUPAVG);
969 busy_down = I915_READ(RCPREVBSYTDNAVG);
970 max_avg = I915_READ(RCBMAXAVG);
971 min_avg = I915_READ(RCBMINAVG);
972
973 /* Handle RCS change request from hw */
974 if (busy_up > max_avg) {
975 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976 new_delay = dev_priv->ips.cur_delay - 1;
977 if (new_delay < dev_priv->ips.max_delay)
978 new_delay = dev_priv->ips.max_delay;
979 } else if (busy_down < min_avg) {
980 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981 new_delay = dev_priv->ips.cur_delay + 1;
982 if (new_delay > dev_priv->ips.min_delay)
983 new_delay = dev_priv->ips.min_delay;
984 }
985
986 if (ironlake_set_drps(dev, new_delay))
987 dev_priv->ips.cur_delay = new_delay;
988
989 spin_unlock(&mchdev_lock);
990
991 return;
992 }
993
994 static void notify_ring(struct intel_engine_cs *ring)
995 {
996 if (!intel_ring_initialized(ring))
997 return;
998
999 trace_i915_gem_request_notify(ring);
1000
1001 wake_up_all(&ring->irq_queue);
1002 }
1003
1004 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1005 struct intel_rps_ei *ei)
1006 {
1007 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1008 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1009 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1010 }
1011
1012 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1013 const struct intel_rps_ei *old,
1014 const struct intel_rps_ei *now,
1015 int threshold)
1016 {
1017 u64 time, c0;
1018
1019 if (old->cz_clock == 0)
1020 return false;
1021
1022 time = now->cz_clock - old->cz_clock;
1023 time *= threshold * dev_priv->mem_freq;
1024
1025 /* Workload can be split between render + media, e.g. SwapBuffers
1026 * being blitted in X after being rendered in mesa. To account for
1027 * this we need to combine both engines into our activity counter.
1028 */
1029 c0 = now->render_c0 - old->render_c0;
1030 c0 += now->media_c0 - old->media_c0;
1031 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1032
1033 return c0 >= time;
1034 }
1035
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044 struct intel_rps_ei now;
1045 u32 events = 0;
1046
1047 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048 return 0;
1049
1050 vlv_c0_read(dev_priv, &now);
1051 if (now.cz_clock == 0)
1052 return 0;
1053
1054 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055 if (!vlv_c0_above(dev_priv,
1056 &dev_priv->rps.down_ei, &now,
1057 dev_priv->rps.down_threshold))
1058 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059 dev_priv->rps.down_ei = now;
1060 }
1061
1062 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063 if (vlv_c0_above(dev_priv,
1064 &dev_priv->rps.up_ei, &now,
1065 dev_priv->rps.up_threshold))
1066 events |= GEN6_PM_RP_UP_THRESHOLD;
1067 dev_priv->rps.up_ei = now;
1068 }
1069
1070 return events;
1071 }
1072
1073 static bool any_waiters(struct drm_i915_private *dev_priv)
1074 {
1075 struct intel_engine_cs *ring;
1076 int i;
1077
1078 for_each_ring(ring, dev_priv, i)
1079 if (ring->irq_refcount)
1080 return true;
1081
1082 return false;
1083 }
1084
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087 struct drm_i915_private *dev_priv =
1088 container_of(work, struct drm_i915_private, rps.work);
1089 bool client_boost;
1090 int new_delay, adj, min, max;
1091 u32 pm_iir;
1092
1093 spin_lock_irq(&dev_priv->irq_lock);
1094 /* Speed up work cancelation during disabling rps interrupts. */
1095 if (!dev_priv->rps.interrupts_enabled) {
1096 spin_unlock_irq(&dev_priv->irq_lock);
1097 return;
1098 }
1099 pm_iir = dev_priv->rps.pm_iir;
1100 dev_priv->rps.pm_iir = 0;
1101 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1102 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1103 client_boost = dev_priv->rps.client_boost;
1104 dev_priv->rps.client_boost = false;
1105 spin_unlock_irq(&dev_priv->irq_lock);
1106
1107 /* Make sure we didn't queue anything we're not going to process. */
1108 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1109
1110 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1111 return;
1112
1113 mutex_lock(&dev_priv->rps.hw_lock);
1114
1115 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1116
1117 adj = dev_priv->rps.last_adj;
1118 new_delay = dev_priv->rps.cur_freq;
1119 min = dev_priv->rps.min_freq_softlimit;
1120 max = dev_priv->rps.max_freq_softlimit;
1121
1122 if (client_boost) {
1123 new_delay = dev_priv->rps.max_freq_softlimit;
1124 adj = 0;
1125 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1126 if (adj > 0)
1127 adj *= 2;
1128 else /* CHV needs even encode values */
1129 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1130 /*
1131 * For better performance, jump directly
1132 * to RPe if we're below it.
1133 */
1134 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1135 new_delay = dev_priv->rps.efficient_freq;
1136 adj = 0;
1137 }
1138 } else if (any_waiters(dev_priv)) {
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1141 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1142 new_delay = dev_priv->rps.efficient_freq;
1143 else
1144 new_delay = dev_priv->rps.min_freq_softlimit;
1145 adj = 0;
1146 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1147 if (adj < 0)
1148 adj *= 2;
1149 else /* CHV needs even encode values */
1150 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1151 } else { /* unknown event */
1152 adj = 0;
1153 }
1154
1155 dev_priv->rps.last_adj = adj;
1156
1157 /* sysfs frequency interfaces may have snuck in while servicing the
1158 * interrupt
1159 */
1160 new_delay += adj;
1161 new_delay = clamp_t(int, new_delay, min, max);
1162
1163 intel_set_rps(dev_priv->dev, new_delay);
1164
1165 mutex_unlock(&dev_priv->rps.hw_lock);
1166 }
1167
1168
1169 /**
1170 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1171 * occurred.
1172 * @work: workqueue struct
1173 *
1174 * Doesn't actually do anything except notify userspace. As a consequence of
1175 * this event, userspace should try to remap the bad rows since statistically
1176 * it is likely the same row is more likely to go bad again.
1177 */
1178 static void ivybridge_parity_work(struct work_struct *work)
1179 {
1180 struct drm_i915_private *dev_priv =
1181 container_of(work, struct drm_i915_private, l3_parity.error_work);
1182 u32 error_status, row, bank, subbank;
1183 char *parity_event[6];
1184 uint32_t misccpctl;
1185 uint8_t slice = 0;
1186
1187 /* We must turn off DOP level clock gating to access the L3 registers.
1188 * In order to prevent a get/put style interface, acquire struct mutex
1189 * any time we access those registers.
1190 */
1191 mutex_lock(&dev_priv->dev->struct_mutex);
1192
1193 /* If we've screwed up tracking, just let the interrupt fire again */
1194 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1195 goto out;
1196
1197 misccpctl = I915_READ(GEN7_MISCCPCTL);
1198 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1199 POSTING_READ(GEN7_MISCCPCTL);
1200
1201 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1202 u32 reg;
1203
1204 slice--;
1205 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1206 break;
1207
1208 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1209
1210 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1211
1212 error_status = I915_READ(reg);
1213 row = GEN7_PARITY_ERROR_ROW(error_status);
1214 bank = GEN7_PARITY_ERROR_BANK(error_status);
1215 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1216
1217 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1218 POSTING_READ(reg);
1219
1220 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1221 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1222 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1223 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1224 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1225 parity_event[5] = NULL;
1226
1227 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1228 KOBJ_CHANGE, parity_event);
1229
1230 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1231 slice, row, bank, subbank);
1232
1233 kfree(parity_event[4]);
1234 kfree(parity_event[3]);
1235 kfree(parity_event[2]);
1236 kfree(parity_event[1]);
1237 }
1238
1239 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1240
1241 out:
1242 WARN_ON(dev_priv->l3_parity.which_slice);
1243 spin_lock_irq(&dev_priv->irq_lock);
1244 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1245 spin_unlock_irq(&dev_priv->irq_lock);
1246
1247 mutex_unlock(&dev_priv->dev->struct_mutex);
1248 }
1249
1250 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1251 {
1252 struct drm_i915_private *dev_priv = dev->dev_private;
1253
1254 if (!HAS_L3_DPF(dev))
1255 return;
1256
1257 spin_lock(&dev_priv->irq_lock);
1258 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1259 spin_unlock(&dev_priv->irq_lock);
1260
1261 iir &= GT_PARITY_ERROR(dev);
1262 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1263 dev_priv->l3_parity.which_slice |= 1 << 1;
1264
1265 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1266 dev_priv->l3_parity.which_slice |= 1 << 0;
1267
1268 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1269 }
1270
1271 static void ilk_gt_irq_handler(struct drm_device *dev,
1272 struct drm_i915_private *dev_priv,
1273 u32 gt_iir)
1274 {
1275 if (gt_iir &
1276 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1277 notify_ring(&dev_priv->ring[RCS]);
1278 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1279 notify_ring(&dev_priv->ring[VCS]);
1280 }
1281
1282 static void snb_gt_irq_handler(struct drm_device *dev,
1283 struct drm_i915_private *dev_priv,
1284 u32 gt_iir)
1285 {
1286
1287 if (gt_iir &
1288 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1289 notify_ring(&dev_priv->ring[RCS]);
1290 if (gt_iir & GT_BSD_USER_INTERRUPT)
1291 notify_ring(&dev_priv->ring[VCS]);
1292 if (gt_iir & GT_BLT_USER_INTERRUPT)
1293 notify_ring(&dev_priv->ring[BCS]);
1294
1295 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1296 GT_BSD_CS_ERROR_INTERRUPT |
1297 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1298 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1299
1300 if (gt_iir & GT_PARITY_ERROR(dev))
1301 ivybridge_parity_error_irq_handler(dev, gt_iir);
1302 }
1303
1304 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1305 u32 master_ctl)
1306 {
1307 irqreturn_t ret = IRQ_NONE;
1308
1309 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1310 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1311 if (tmp) {
1312 I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1313 ret = IRQ_HANDLED;
1314
1315 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1316 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1317 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1318 notify_ring(&dev_priv->ring[RCS]);
1319
1320 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1321 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1322 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1323 notify_ring(&dev_priv->ring[BCS]);
1324 } else
1325 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1326 }
1327
1328 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1329 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1330 if (tmp) {
1331 I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1332 ret = IRQ_HANDLED;
1333
1334 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1335 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1336 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1337 notify_ring(&dev_priv->ring[VCS]);
1338
1339 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1340 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1341 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1342 notify_ring(&dev_priv->ring[VCS2]);
1343 } else
1344 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1345 }
1346
1347 if (master_ctl & GEN8_GT_VECS_IRQ) {
1348 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1349 if (tmp) {
1350 I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1351 ret = IRQ_HANDLED;
1352
1353 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1354 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1355 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1356 notify_ring(&dev_priv->ring[VECS]);
1357 } else
1358 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1359 }
1360
1361 if (master_ctl & GEN8_GT_PM_IRQ) {
1362 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1363 if (tmp & dev_priv->pm_rps_events) {
1364 I915_WRITE_FW(GEN8_GT_IIR(2),
1365 tmp & dev_priv->pm_rps_events);
1366 ret = IRQ_HANDLED;
1367 gen6_rps_irq_handler(dev_priv, tmp);
1368 } else
1369 DRM_ERROR("The master control interrupt lied (PM)!\n");
1370 }
1371
1372 return ret;
1373 }
1374
1375 #define HPD_STORM_DETECT_PERIOD 1000
1376 #define HPD_STORM_THRESHOLD 5
1377
1378 static int pch_port_to_hotplug_shift(enum port port)
1379 {
1380 switch (port) {
1381 case PORT_A:
1382 case PORT_E:
1383 default:
1384 return -1;
1385 case PORT_B:
1386 return 0;
1387 case PORT_C:
1388 return 8;
1389 case PORT_D:
1390 return 16;
1391 }
1392 }
1393
1394 static int i915_port_to_hotplug_shift(enum port port)
1395 {
1396 switch (port) {
1397 case PORT_A:
1398 case PORT_E:
1399 default:
1400 return -1;
1401 case PORT_B:
1402 return 17;
1403 case PORT_C:
1404 return 19;
1405 case PORT_D:
1406 return 21;
1407 }
1408 }
1409
1410 static enum port get_port_from_pin(enum hpd_pin pin)
1411 {
1412 switch (pin) {
1413 case HPD_PORT_B:
1414 return PORT_B;
1415 case HPD_PORT_C:
1416 return PORT_C;
1417 case HPD_PORT_D:
1418 return PORT_D;
1419 default:
1420 return PORT_A; /* no hpd */
1421 }
1422 }
1423
1424 static void intel_hpd_irq_handler(struct drm_device *dev,
1425 u32 hotplug_trigger,
1426 u32 dig_hotplug_reg,
1427 const u32 hpd[HPD_NUM_PINS])
1428 {
1429 struct drm_i915_private *dev_priv = dev->dev_private;
1430 int i;
1431 enum port port;
1432 bool storm_detected = false;
1433 bool queue_dig = false, queue_hp = false;
1434 u32 dig_shift;
1435 u32 dig_port_mask = 0;
1436
1437 if (!hotplug_trigger)
1438 return;
1439
1440 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1441 hotplug_trigger, dig_hotplug_reg);
1442
1443 spin_lock(&dev_priv->irq_lock);
1444 for (i = 1; i < HPD_NUM_PINS; i++) {
1445 if (!(hpd[i] & hotplug_trigger))
1446 continue;
1447
1448 port = get_port_from_pin(i);
1449 if (port && dev_priv->hpd_irq_port[port]) {
1450 bool long_hpd;
1451
1452 if (!HAS_GMCH_DISPLAY(dev_priv)) {
1453 dig_shift = pch_port_to_hotplug_shift(port);
1454 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1455 } else {
1456 dig_shift = i915_port_to_hotplug_shift(port);
1457 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1458 }
1459
1460 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1461 port_name(port),
1462 long_hpd ? "long" : "short");
1463 /* for long HPD pulses we want to have the digital queue happen,
1464 but we still want HPD storm detection to function. */
1465 if (long_hpd) {
1466 dev_priv->long_hpd_port_mask |= (1 << port);
1467 dig_port_mask |= hpd[i];
1468 } else {
1469 /* for short HPD just trigger the digital queue */
1470 dev_priv->short_hpd_port_mask |= (1 << port);
1471 hotplug_trigger &= ~hpd[i];
1472 }
1473 queue_dig = true;
1474 }
1475 }
1476
1477 for (i = 1; i < HPD_NUM_PINS; i++) {
1478 if (hpd[i] & hotplug_trigger &&
1479 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1480 /*
1481 * On GMCH platforms the interrupt mask bits only
1482 * prevent irq generation, not the setting of the
1483 * hotplug bits itself. So only WARN about unexpected
1484 * interrupts on saner platforms.
1485 */
1486 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1487 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1488 hotplug_trigger, i, hpd[i]);
1489
1490 continue;
1491 }
1492
1493 if (!(hpd[i] & hotplug_trigger) ||
1494 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1495 continue;
1496
1497 if (!(dig_port_mask & hpd[i])) {
1498 dev_priv->hpd_event_bits |= (1 << i);
1499 queue_hp = true;
1500 }
1501
1502 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1503 dev_priv->hpd_stats[i].hpd_last_jiffies
1504 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1505 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1506 dev_priv->hpd_stats[i].hpd_cnt = 0;
1507 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1508 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1509 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1510 dev_priv->hpd_event_bits &= ~(1 << i);
1511 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1512 storm_detected = true;
1513 } else {
1514 dev_priv->hpd_stats[i].hpd_cnt++;
1515 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1516 dev_priv->hpd_stats[i].hpd_cnt);
1517 }
1518 }
1519
1520 if (storm_detected)
1521 dev_priv->display.hpd_irq_setup(dev);
1522 spin_unlock(&dev_priv->irq_lock);
1523
1524 /*
1525 * Our hotplug handler can grab modeset locks (by calling down into the
1526 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1527 * queue for otherwise the flush_work in the pageflip code will
1528 * deadlock.
1529 */
1530 if (queue_dig)
1531 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1532 if (queue_hp)
1533 schedule_work(&dev_priv->hotplug_work);
1534 }
1535
1536 static void gmbus_irq_handler(struct drm_device *dev)
1537 {
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539
1540 wake_up_all(&dev_priv->gmbus_wait_queue);
1541 }
1542
1543 static void dp_aux_irq_handler(struct drm_device *dev)
1544 {
1545 struct drm_i915_private *dev_priv = dev->dev_private;
1546
1547 wake_up_all(&dev_priv->gmbus_wait_queue);
1548 }
1549
1550 #if defined(CONFIG_DEBUG_FS)
1551 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1552 uint32_t crc0, uint32_t crc1,
1553 uint32_t crc2, uint32_t crc3,
1554 uint32_t crc4)
1555 {
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1558 struct intel_pipe_crc_entry *entry;
1559 int head, tail;
1560
1561 spin_lock(&pipe_crc->lock);
1562
1563 if (!pipe_crc->entries) {
1564 spin_unlock(&pipe_crc->lock);
1565 DRM_DEBUG_KMS("spurious interrupt\n");
1566 return;
1567 }
1568
1569 head = pipe_crc->head;
1570 tail = pipe_crc->tail;
1571
1572 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1573 spin_unlock(&pipe_crc->lock);
1574 DRM_ERROR("CRC buffer overflowing\n");
1575 return;
1576 }
1577
1578 entry = &pipe_crc->entries[head];
1579
1580 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1581 entry->crc[0] = crc0;
1582 entry->crc[1] = crc1;
1583 entry->crc[2] = crc2;
1584 entry->crc[3] = crc3;
1585 entry->crc[4] = crc4;
1586
1587 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1588 pipe_crc->head = head;
1589
1590 spin_unlock(&pipe_crc->lock);
1591
1592 wake_up_interruptible(&pipe_crc->wq);
1593 }
1594 #else
1595 static inline void
1596 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1597 uint32_t crc0, uint32_t crc1,
1598 uint32_t crc2, uint32_t crc3,
1599 uint32_t crc4) {}
1600 #endif
1601
1602
1603 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607 display_pipe_crc_irq_handler(dev, pipe,
1608 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609 0, 0, 0, 0);
1610 }
1611
1612 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1613 {
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616 display_pipe_crc_irq_handler(dev, pipe,
1617 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1618 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1619 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1620 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1621 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1622 }
1623
1624 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1625 {
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 uint32_t res1, res2;
1628
1629 if (INTEL_INFO(dev)->gen >= 3)
1630 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1631 else
1632 res1 = 0;
1633
1634 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1635 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1636 else
1637 res2 = 0;
1638
1639 display_pipe_crc_irq_handler(dev, pipe,
1640 I915_READ(PIPE_CRC_RES_RED(pipe)),
1641 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1642 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1643 res1, res2);
1644 }
1645
1646 /* The RPS events need forcewake, so we add them to a work queue and mask their
1647 * IMR bits until the work is done. Other interrupts can be processed without
1648 * the work queue. */
1649 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1650 {
1651 if (pm_iir & dev_priv->pm_rps_events) {
1652 spin_lock(&dev_priv->irq_lock);
1653 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1654 if (dev_priv->rps.interrupts_enabled) {
1655 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1656 queue_work(dev_priv->wq, &dev_priv->rps.work);
1657 }
1658 spin_unlock(&dev_priv->irq_lock);
1659 }
1660
1661 if (INTEL_INFO(dev_priv)->gen >= 8)
1662 return;
1663
1664 if (HAS_VEBOX(dev_priv->dev)) {
1665 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1666 notify_ring(&dev_priv->ring[VECS]);
1667
1668 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1669 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1670 }
1671 }
1672
1673 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1674 {
1675 if (!drm_handle_vblank(dev, pipe))
1676 return false;
1677
1678 return true;
1679 }
1680
1681 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1682 {
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684 u32 pipe_stats[I915_MAX_PIPES] = { };
1685 int pipe;
1686
1687 spin_lock(&dev_priv->irq_lock);
1688 for_each_pipe(dev_priv, pipe) {
1689 int reg;
1690 u32 mask, iir_bit = 0;
1691
1692 /*
1693 * PIPESTAT bits get signalled even when the interrupt is
1694 * disabled with the mask bits, and some of the status bits do
1695 * not generate interrupts at all (like the underrun bit). Hence
1696 * we need to be careful that we only handle what we want to
1697 * handle.
1698 */
1699
1700 /* fifo underruns are filterered in the underrun handler. */
1701 mask = PIPE_FIFO_UNDERRUN_STATUS;
1702
1703 switch (pipe) {
1704 case PIPE_A:
1705 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1706 break;
1707 case PIPE_B:
1708 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1709 break;
1710 case PIPE_C:
1711 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1712 break;
1713 }
1714 if (iir & iir_bit)
1715 mask |= dev_priv->pipestat_irq_mask[pipe];
1716
1717 if (!mask)
1718 continue;
1719
1720 reg = PIPESTAT(pipe);
1721 mask |= PIPESTAT_INT_ENABLE_MASK;
1722 pipe_stats[pipe] = I915_READ(reg) & mask;
1723
1724 /*
1725 * Clear the PIPE*STAT regs before the IIR
1726 */
1727 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1728 PIPESTAT_INT_STATUS_MASK))
1729 I915_WRITE(reg, pipe_stats[pipe]);
1730 }
1731 spin_unlock(&dev_priv->irq_lock);
1732
1733 for_each_pipe(dev_priv, pipe) {
1734 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1735 intel_pipe_handle_vblank(dev, pipe))
1736 intel_check_page_flip(dev, pipe);
1737
1738 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1739 intel_prepare_page_flip(dev, pipe);
1740 intel_finish_page_flip(dev, pipe);
1741 }
1742
1743 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1744 i9xx_pipe_crc_irq_handler(dev, pipe);
1745
1746 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1747 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1748 }
1749
1750 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1751 gmbus_irq_handler(dev);
1752 }
1753
1754 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1755 {
1756 struct drm_i915_private *dev_priv = dev->dev_private;
1757 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1758
1759 if (hotplug_status) {
1760 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1761 /*
1762 * Make sure hotplug status is cleared before we clear IIR, or else we
1763 * may miss hotplug events.
1764 */
1765 POSTING_READ(PORT_HOTPLUG_STAT);
1766
1767 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1768 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1769
1770 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1771 } else {
1772 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1773
1774 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1775 }
1776
1777 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1778 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1779 dp_aux_irq_handler(dev);
1780 }
1781 }
1782
1783 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1784 {
1785 struct drm_device *dev = arg;
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 u32 iir, gt_iir, pm_iir;
1788 irqreturn_t ret = IRQ_NONE;
1789
1790 if (!intel_irqs_enabled(dev_priv))
1791 return IRQ_NONE;
1792
1793 while (true) {
1794 /* Find, clear, then process each source of interrupt */
1795
1796 gt_iir = I915_READ(GTIIR);
1797 if (gt_iir)
1798 I915_WRITE(GTIIR, gt_iir);
1799
1800 pm_iir = I915_READ(GEN6_PMIIR);
1801 if (pm_iir)
1802 I915_WRITE(GEN6_PMIIR, pm_iir);
1803
1804 iir = I915_READ(VLV_IIR);
1805 if (iir) {
1806 /* Consume port before clearing IIR or we'll miss events */
1807 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1808 i9xx_hpd_irq_handler(dev);
1809 I915_WRITE(VLV_IIR, iir);
1810 }
1811
1812 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1813 goto out;
1814
1815 ret = IRQ_HANDLED;
1816
1817 if (gt_iir)
1818 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1819 if (pm_iir)
1820 gen6_rps_irq_handler(dev_priv, pm_iir);
1821 /* Call regardless, as some status bits might not be
1822 * signalled in iir */
1823 valleyview_pipestat_irq_handler(dev, iir);
1824 }
1825
1826 out:
1827 return ret;
1828 }
1829
1830 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1831 {
1832 struct drm_device *dev = arg;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 u32 master_ctl, iir;
1835 irqreturn_t ret = IRQ_NONE;
1836
1837 if (!intel_irqs_enabled(dev_priv))
1838 return IRQ_NONE;
1839
1840 for (;;) {
1841 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1842 iir = I915_READ(VLV_IIR);
1843
1844 if (master_ctl == 0 && iir == 0)
1845 break;
1846
1847 ret = IRQ_HANDLED;
1848
1849 I915_WRITE(GEN8_MASTER_IRQ, 0);
1850
1851 /* Find, clear, then process each source of interrupt */
1852
1853 if (iir) {
1854 /* Consume port before clearing IIR or we'll miss events */
1855 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1856 i9xx_hpd_irq_handler(dev);
1857 I915_WRITE(VLV_IIR, iir);
1858 }
1859
1860 gen8_gt_irq_handler(dev_priv, master_ctl);
1861
1862 /* Call regardless, as some status bits might not be
1863 * signalled in iir */
1864 valleyview_pipestat_irq_handler(dev, iir);
1865
1866 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1867 POSTING_READ(GEN8_MASTER_IRQ);
1868 }
1869
1870 return ret;
1871 }
1872
1873 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1874 {
1875 struct drm_i915_private *dev_priv = dev->dev_private;
1876 int pipe;
1877 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1878 u32 dig_hotplug_reg;
1879
1880 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1881 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1882
1883 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1884
1885 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1886 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1887 SDE_AUDIO_POWER_SHIFT);
1888 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1889 port_name(port));
1890 }
1891
1892 if (pch_iir & SDE_AUX_MASK)
1893 dp_aux_irq_handler(dev);
1894
1895 if (pch_iir & SDE_GMBUS)
1896 gmbus_irq_handler(dev);
1897
1898 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1899 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1900
1901 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1902 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1903
1904 if (pch_iir & SDE_POISON)
1905 DRM_ERROR("PCH poison interrupt\n");
1906
1907 if (pch_iir & SDE_FDI_MASK)
1908 for_each_pipe(dev_priv, pipe)
1909 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1910 pipe_name(pipe),
1911 I915_READ(FDI_RX_IIR(pipe)));
1912
1913 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1914 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1915
1916 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1917 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1918
1919 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1920 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1921
1922 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1923 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1924 }
1925
1926 static void ivb_err_int_handler(struct drm_device *dev)
1927 {
1928 struct drm_i915_private *dev_priv = dev->dev_private;
1929 u32 err_int = I915_READ(GEN7_ERR_INT);
1930 enum pipe pipe;
1931
1932 if (err_int & ERR_INT_POISON)
1933 DRM_ERROR("Poison interrupt\n");
1934
1935 for_each_pipe(dev_priv, pipe) {
1936 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1937 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1938
1939 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1940 if (IS_IVYBRIDGE(dev))
1941 ivb_pipe_crc_irq_handler(dev, pipe);
1942 else
1943 hsw_pipe_crc_irq_handler(dev, pipe);
1944 }
1945 }
1946
1947 I915_WRITE(GEN7_ERR_INT, err_int);
1948 }
1949
1950 static void cpt_serr_int_handler(struct drm_device *dev)
1951 {
1952 struct drm_i915_private *dev_priv = dev->dev_private;
1953 u32 serr_int = I915_READ(SERR_INT);
1954
1955 if (serr_int & SERR_INT_POISON)
1956 DRM_ERROR("PCH poison interrupt\n");
1957
1958 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1959 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1960
1961 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1962 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1963
1964 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1965 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1966
1967 I915_WRITE(SERR_INT, serr_int);
1968 }
1969
1970 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 int pipe;
1974 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1975 u32 dig_hotplug_reg;
1976
1977 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979
1980 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1981
1982 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1983 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1984 SDE_AUDIO_POWER_SHIFT_CPT);
1985 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1986 port_name(port));
1987 }
1988
1989 if (pch_iir & SDE_AUX_MASK_CPT)
1990 dp_aux_irq_handler(dev);
1991
1992 if (pch_iir & SDE_GMBUS_CPT)
1993 gmbus_irq_handler(dev);
1994
1995 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1996 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1997
1998 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1999 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2000
2001 if (pch_iir & SDE_FDI_MASK_CPT)
2002 for_each_pipe(dev_priv, pipe)
2003 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2004 pipe_name(pipe),
2005 I915_READ(FDI_RX_IIR(pipe)));
2006
2007 if (pch_iir & SDE_ERROR_CPT)
2008 cpt_serr_int_handler(dev);
2009 }
2010
2011 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2012 {
2013 struct drm_i915_private *dev_priv = dev->dev_private;
2014 enum pipe pipe;
2015
2016 if (de_iir & DE_AUX_CHANNEL_A)
2017 dp_aux_irq_handler(dev);
2018
2019 if (de_iir & DE_GSE)
2020 intel_opregion_asle_intr(dev);
2021
2022 if (de_iir & DE_POISON)
2023 DRM_ERROR("Poison interrupt\n");
2024
2025 for_each_pipe(dev_priv, pipe) {
2026 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2027 intel_pipe_handle_vblank(dev, pipe))
2028 intel_check_page_flip(dev, pipe);
2029
2030 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2031 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2032
2033 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2034 i9xx_pipe_crc_irq_handler(dev, pipe);
2035
2036 /* plane/pipes map 1:1 on ilk+ */
2037 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2038 intel_prepare_page_flip(dev, pipe);
2039 intel_finish_page_flip_plane(dev, pipe);
2040 }
2041 }
2042
2043 /* check event from PCH */
2044 if (de_iir & DE_PCH_EVENT) {
2045 u32 pch_iir = I915_READ(SDEIIR);
2046
2047 if (HAS_PCH_CPT(dev))
2048 cpt_irq_handler(dev, pch_iir);
2049 else
2050 ibx_irq_handler(dev, pch_iir);
2051
2052 /* should clear PCH hotplug event before clear CPU irq */
2053 I915_WRITE(SDEIIR, pch_iir);
2054 }
2055
2056 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2057 ironlake_rps_change_irq_handler(dev);
2058 }
2059
2060 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2061 {
2062 struct drm_i915_private *dev_priv = dev->dev_private;
2063 enum pipe pipe;
2064
2065 if (de_iir & DE_ERR_INT_IVB)
2066 ivb_err_int_handler(dev);
2067
2068 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069 dp_aux_irq_handler(dev);
2070
2071 if (de_iir & DE_GSE_IVB)
2072 intel_opregion_asle_intr(dev);
2073
2074 for_each_pipe(dev_priv, pipe) {
2075 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2076 intel_pipe_handle_vblank(dev, pipe))
2077 intel_check_page_flip(dev, pipe);
2078
2079 /* plane/pipes map 1:1 on ilk+ */
2080 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2081 intel_prepare_page_flip(dev, pipe);
2082 intel_finish_page_flip_plane(dev, pipe);
2083 }
2084 }
2085
2086 /* check event from PCH */
2087 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2088 u32 pch_iir = I915_READ(SDEIIR);
2089
2090 cpt_irq_handler(dev, pch_iir);
2091
2092 /* clear PCH hotplug event before clear CPU irq */
2093 I915_WRITE(SDEIIR, pch_iir);
2094 }
2095 }
2096
2097 /*
2098 * To handle irqs with the minimum potential races with fresh interrupts, we:
2099 * 1 - Disable Master Interrupt Control.
2100 * 2 - Find the source(s) of the interrupt.
2101 * 3 - Clear the Interrupt Identity bits (IIR).
2102 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2103 * 5 - Re-enable Master Interrupt Control.
2104 */
2105 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2106 {
2107 struct drm_device *dev = arg;
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2110 irqreturn_t ret = IRQ_NONE;
2111
2112 if (!intel_irqs_enabled(dev_priv))
2113 return IRQ_NONE;
2114
2115 /* We get interrupts on unclaimed registers, so check for this before we
2116 * do any I915_{READ,WRITE}. */
2117 intel_uncore_check_errors(dev);
2118
2119 /* disable master interrupt before clearing iir */
2120 de_ier = I915_READ(DEIER);
2121 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2122 POSTING_READ(DEIER);
2123
2124 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2125 * interrupts will will be stored on its back queue, and then we'll be
2126 * able to process them after we restore SDEIER (as soon as we restore
2127 * it, we'll get an interrupt if SDEIIR still has something to process
2128 * due to its back queue). */
2129 if (!HAS_PCH_NOP(dev)) {
2130 sde_ier = I915_READ(SDEIER);
2131 I915_WRITE(SDEIER, 0);
2132 POSTING_READ(SDEIER);
2133 }
2134
2135 /* Find, clear, then process each source of interrupt */
2136
2137 gt_iir = I915_READ(GTIIR);
2138 if (gt_iir) {
2139 I915_WRITE(GTIIR, gt_iir);
2140 ret = IRQ_HANDLED;
2141 if (INTEL_INFO(dev)->gen >= 6)
2142 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2143 else
2144 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2145 }
2146
2147 de_iir = I915_READ(DEIIR);
2148 if (de_iir) {
2149 I915_WRITE(DEIIR, de_iir);
2150 ret = IRQ_HANDLED;
2151 if (INTEL_INFO(dev)->gen >= 7)
2152 ivb_display_irq_handler(dev, de_iir);
2153 else
2154 ilk_display_irq_handler(dev, de_iir);
2155 }
2156
2157 if (INTEL_INFO(dev)->gen >= 6) {
2158 u32 pm_iir = I915_READ(GEN6_PMIIR);
2159 if (pm_iir) {
2160 I915_WRITE(GEN6_PMIIR, pm_iir);
2161 ret = IRQ_HANDLED;
2162 gen6_rps_irq_handler(dev_priv, pm_iir);
2163 }
2164 }
2165
2166 I915_WRITE(DEIER, de_ier);
2167 POSTING_READ(DEIER);
2168 if (!HAS_PCH_NOP(dev)) {
2169 I915_WRITE(SDEIER, sde_ier);
2170 POSTING_READ(SDEIER);
2171 }
2172
2173 return ret;
2174 }
2175
2176 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2177 {
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179 uint32_t hp_control;
2180 uint32_t hp_trigger;
2181
2182 /* Get the status */
2183 hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2184 hp_control = I915_READ(BXT_HOTPLUG_CTL);
2185
2186 /* Hotplug not enabled ? */
2187 if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2188 DRM_ERROR("Interrupt when HPD disabled\n");
2189 return;
2190 }
2191
2192 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2193 hp_control & BXT_HOTPLUG_CTL_MASK);
2194
2195 /* Check for HPD storm and schedule bottom half */
2196 intel_hpd_irq_handler(dev, hp_trigger, hp_control, hpd_bxt);
2197
2198 /*
2199 * FIXME: Save the hot plug status for bottom half before
2200 * clearing the sticky status bits, else the status will be
2201 * lost.
2202 */
2203
2204 /* Clear sticky bits in hpd status */
2205 I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2206 }
2207
2208 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2209 {
2210 struct drm_device *dev = arg;
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2212 u32 master_ctl;
2213 irqreturn_t ret = IRQ_NONE;
2214 uint32_t tmp = 0;
2215 enum pipe pipe;
2216 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2217
2218 if (!intel_irqs_enabled(dev_priv))
2219 return IRQ_NONE;
2220
2221 if (IS_GEN9(dev))
2222 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2223 GEN9_AUX_CHANNEL_D;
2224
2225 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2226 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2227 if (!master_ctl)
2228 return IRQ_NONE;
2229
2230 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2231
2232 /* Find, clear, then process each source of interrupt */
2233
2234 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2235
2236 if (master_ctl & GEN8_DE_MISC_IRQ) {
2237 tmp = I915_READ(GEN8_DE_MISC_IIR);
2238 if (tmp) {
2239 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2240 ret = IRQ_HANDLED;
2241 if (tmp & GEN8_DE_MISC_GSE)
2242 intel_opregion_asle_intr(dev);
2243 else
2244 DRM_ERROR("Unexpected DE Misc interrupt\n");
2245 }
2246 else
2247 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2248 }
2249
2250 if (master_ctl & GEN8_DE_PORT_IRQ) {
2251 tmp = I915_READ(GEN8_DE_PORT_IIR);
2252 if (tmp) {
2253 bool found = false;
2254
2255 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2256 ret = IRQ_HANDLED;
2257
2258 if (tmp & aux_mask) {
2259 dp_aux_irq_handler(dev);
2260 found = true;
2261 }
2262
2263 if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2264 bxt_hpd_handler(dev, tmp);
2265 found = true;
2266 }
2267
2268 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2269 gmbus_irq_handler(dev);
2270 found = true;
2271 }
2272
2273 if (!found)
2274 DRM_ERROR("Unexpected DE Port interrupt\n");
2275 }
2276 else
2277 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2278 }
2279
2280 for_each_pipe(dev_priv, pipe) {
2281 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2282
2283 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2284 continue;
2285
2286 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2287 if (pipe_iir) {
2288 ret = IRQ_HANDLED;
2289 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2290
2291 if (pipe_iir & GEN8_PIPE_VBLANK &&
2292 intel_pipe_handle_vblank(dev, pipe))
2293 intel_check_page_flip(dev, pipe);
2294
2295 if (IS_GEN9(dev))
2296 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2297 else
2298 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2299
2300 if (flip_done) {
2301 intel_prepare_page_flip(dev, pipe);
2302 intel_finish_page_flip_plane(dev, pipe);
2303 }
2304
2305 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2306 hsw_pipe_crc_irq_handler(dev, pipe);
2307
2308 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2309 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2310 pipe);
2311
2312
2313 if (IS_GEN9(dev))
2314 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2315 else
2316 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2317
2318 if (fault_errors)
2319 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2320 pipe_name(pipe),
2321 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2322 } else
2323 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2324 }
2325
2326 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2327 master_ctl & GEN8_DE_PCH_IRQ) {
2328 /*
2329 * FIXME(BDW): Assume for now that the new interrupt handling
2330 * scheme also closed the SDE interrupt handling race we've seen
2331 * on older pch-split platforms. But this needs testing.
2332 */
2333 u32 pch_iir = I915_READ(SDEIIR);
2334 if (pch_iir) {
2335 I915_WRITE(SDEIIR, pch_iir);
2336 ret = IRQ_HANDLED;
2337 cpt_irq_handler(dev, pch_iir);
2338 } else
2339 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2340
2341 }
2342
2343 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2344 POSTING_READ_FW(GEN8_MASTER_IRQ);
2345
2346 return ret;
2347 }
2348
2349 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2350 bool reset_completed)
2351 {
2352 struct intel_engine_cs *ring;
2353 int i;
2354
2355 /*
2356 * Notify all waiters for GPU completion events that reset state has
2357 * been changed, and that they need to restart their wait after
2358 * checking for potential errors (and bail out to drop locks if there is
2359 * a gpu reset pending so that i915_error_work_func can acquire them).
2360 */
2361
2362 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2363 for_each_ring(ring, dev_priv, i)
2364 wake_up_all(&ring->irq_queue);
2365
2366 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2367 wake_up_all(&dev_priv->pending_flip_queue);
2368
2369 /*
2370 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2371 * reset state is cleared.
2372 */
2373 if (reset_completed)
2374 wake_up_all(&dev_priv->gpu_error.reset_queue);
2375 }
2376
2377 /**
2378 * i915_reset_and_wakeup - do process context error handling work
2379 *
2380 * Fire an error uevent so userspace can see that a hang or error
2381 * was detected.
2382 */
2383 static void i915_reset_and_wakeup(struct drm_device *dev)
2384 {
2385 struct drm_i915_private *dev_priv = to_i915(dev);
2386 struct i915_gpu_error *error = &dev_priv->gpu_error;
2387 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2388 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2389 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2390 int ret;
2391
2392 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2393
2394 /*
2395 * Note that there's only one work item which does gpu resets, so we
2396 * need not worry about concurrent gpu resets potentially incrementing
2397 * error->reset_counter twice. We only need to take care of another
2398 * racing irq/hangcheck declaring the gpu dead for a second time. A
2399 * quick check for that is good enough: schedule_work ensures the
2400 * correct ordering between hang detection and this work item, and since
2401 * the reset in-progress bit is only ever set by code outside of this
2402 * work we don't need to worry about any other races.
2403 */
2404 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2405 DRM_DEBUG_DRIVER("resetting chip\n");
2406 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2407 reset_event);
2408
2409 /*
2410 * In most cases it's guaranteed that we get here with an RPM
2411 * reference held, for example because there is a pending GPU
2412 * request that won't finish until the reset is done. This
2413 * isn't the case at least when we get here by doing a
2414 * simulated reset via debugs, so get an RPM reference.
2415 */
2416 intel_runtime_pm_get(dev_priv);
2417
2418 intel_prepare_reset(dev);
2419
2420 /*
2421 * All state reset _must_ be completed before we update the
2422 * reset counter, for otherwise waiters might miss the reset
2423 * pending state and not properly drop locks, resulting in
2424 * deadlocks with the reset work.
2425 */
2426 ret = i915_reset(dev);
2427
2428 intel_finish_reset(dev);
2429
2430 intel_runtime_pm_put(dev_priv);
2431
2432 if (ret == 0) {
2433 /*
2434 * After all the gem state is reset, increment the reset
2435 * counter and wake up everyone waiting for the reset to
2436 * complete.
2437 *
2438 * Since unlock operations are a one-sided barrier only,
2439 * we need to insert a barrier here to order any seqno
2440 * updates before
2441 * the counter increment.
2442 */
2443 smp_mb__before_atomic();
2444 atomic_inc(&dev_priv->gpu_error.reset_counter);
2445
2446 kobject_uevent_env(&dev->primary->kdev->kobj,
2447 KOBJ_CHANGE, reset_done_event);
2448 } else {
2449 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2450 }
2451
2452 /*
2453 * Note: The wake_up also serves as a memory barrier so that
2454 * waiters see the update value of the reset counter atomic_t.
2455 */
2456 i915_error_wake_up(dev_priv, true);
2457 }
2458 }
2459
2460 static void i915_report_and_clear_eir(struct drm_device *dev)
2461 {
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 uint32_t instdone[I915_NUM_INSTDONE_REG];
2464 u32 eir = I915_READ(EIR);
2465 int pipe, i;
2466
2467 if (!eir)
2468 return;
2469
2470 pr_err("render error detected, EIR: 0x%08x\n", eir);
2471
2472 i915_get_extra_instdone(dev, instdone);
2473
2474 if (IS_G4X(dev)) {
2475 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2476 u32 ipeir = I915_READ(IPEIR_I965);
2477
2478 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2479 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2480 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2481 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2482 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2483 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2484 I915_WRITE(IPEIR_I965, ipeir);
2485 POSTING_READ(IPEIR_I965);
2486 }
2487 if (eir & GM45_ERROR_PAGE_TABLE) {
2488 u32 pgtbl_err = I915_READ(PGTBL_ER);
2489 pr_err("page table error\n");
2490 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2491 I915_WRITE(PGTBL_ER, pgtbl_err);
2492 POSTING_READ(PGTBL_ER);
2493 }
2494 }
2495
2496 if (!IS_GEN2(dev)) {
2497 if (eir & I915_ERROR_PAGE_TABLE) {
2498 u32 pgtbl_err = I915_READ(PGTBL_ER);
2499 pr_err("page table error\n");
2500 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2501 I915_WRITE(PGTBL_ER, pgtbl_err);
2502 POSTING_READ(PGTBL_ER);
2503 }
2504 }
2505
2506 if (eir & I915_ERROR_MEMORY_REFRESH) {
2507 pr_err("memory refresh error:\n");
2508 for_each_pipe(dev_priv, pipe)
2509 pr_err("pipe %c stat: 0x%08x\n",
2510 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2511 /* pipestat has already been acked */
2512 }
2513 if (eir & I915_ERROR_INSTRUCTION) {
2514 pr_err("instruction error\n");
2515 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2516 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2517 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2518 if (INTEL_INFO(dev)->gen < 4) {
2519 u32 ipeir = I915_READ(IPEIR);
2520
2521 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2522 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2523 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2524 I915_WRITE(IPEIR, ipeir);
2525 POSTING_READ(IPEIR);
2526 } else {
2527 u32 ipeir = I915_READ(IPEIR_I965);
2528
2529 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2530 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2531 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2532 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2533 I915_WRITE(IPEIR_I965, ipeir);
2534 POSTING_READ(IPEIR_I965);
2535 }
2536 }
2537
2538 I915_WRITE(EIR, eir);
2539 POSTING_READ(EIR);
2540 eir = I915_READ(EIR);
2541 if (eir) {
2542 /*
2543 * some errors might have become stuck,
2544 * mask them.
2545 */
2546 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2547 I915_WRITE(EMR, I915_READ(EMR) | eir);
2548 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2549 }
2550 }
2551
2552 /**
2553 * i915_handle_error - handle a gpu error
2554 * @dev: drm device
2555 *
2556 * Do some basic checking of regsiter state at error time and
2557 * dump it to the syslog. Also call i915_capture_error_state() to make
2558 * sure we get a record and make it available in debugfs. Fire a uevent
2559 * so userspace knows something bad happened (should trigger collection
2560 * of a ring dump etc.).
2561 */
2562 void i915_handle_error(struct drm_device *dev, bool wedged,
2563 const char *fmt, ...)
2564 {
2565 struct drm_i915_private *dev_priv = dev->dev_private;
2566 va_list args;
2567 char error_msg[80];
2568
2569 va_start(args, fmt);
2570 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2571 va_end(args);
2572
2573 i915_capture_error_state(dev, wedged, error_msg);
2574 i915_report_and_clear_eir(dev);
2575
2576 if (wedged) {
2577 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2578 &dev_priv->gpu_error.reset_counter);
2579
2580 /*
2581 * Wakeup waiting processes so that the reset function
2582 * i915_reset_and_wakeup doesn't deadlock trying to grab
2583 * various locks. By bumping the reset counter first, the woken
2584 * processes will see a reset in progress and back off,
2585 * releasing their locks and then wait for the reset completion.
2586 * We must do this for _all_ gpu waiters that might hold locks
2587 * that the reset work needs to acquire.
2588 *
2589 * Note: The wake_up serves as the required memory barrier to
2590 * ensure that the waiters see the updated value of the reset
2591 * counter atomic_t.
2592 */
2593 i915_error_wake_up(dev_priv, false);
2594 }
2595
2596 i915_reset_and_wakeup(dev);
2597 }
2598
2599 /* Called from drm generic code, passed 'crtc' which
2600 * we use as a pipe index
2601 */
2602 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 unsigned long irqflags;
2606
2607 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2608 if (INTEL_INFO(dev)->gen >= 4)
2609 i915_enable_pipestat(dev_priv, pipe,
2610 PIPE_START_VBLANK_INTERRUPT_STATUS);
2611 else
2612 i915_enable_pipestat(dev_priv, pipe,
2613 PIPE_VBLANK_INTERRUPT_STATUS);
2614 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2615
2616 return 0;
2617 }
2618
2619 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2620 {
2621 struct drm_i915_private *dev_priv = dev->dev_private;
2622 unsigned long irqflags;
2623 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2624 DE_PIPE_VBLANK(pipe);
2625
2626 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627 ironlake_enable_display_irq(dev_priv, bit);
2628 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629
2630 return 0;
2631 }
2632
2633 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 unsigned long irqflags;
2637
2638 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639 i915_enable_pipestat(dev_priv, pipe,
2640 PIPE_START_VBLANK_INTERRUPT_STATUS);
2641 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2642
2643 return 0;
2644 }
2645
2646 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 unsigned long irqflags;
2650
2651 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2652 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2653 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2654 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2655 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2656 return 0;
2657 }
2658
2659 /* Called from drm generic code, passed 'crtc' which
2660 * we use as a pipe index
2661 */
2662 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2663 {
2664 struct drm_i915_private *dev_priv = dev->dev_private;
2665 unsigned long irqflags;
2666
2667 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2668 i915_disable_pipestat(dev_priv, pipe,
2669 PIPE_VBLANK_INTERRUPT_STATUS |
2670 PIPE_START_VBLANK_INTERRUPT_STATUS);
2671 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672 }
2673
2674 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2675 {
2676 struct drm_i915_private *dev_priv = dev->dev_private;
2677 unsigned long irqflags;
2678 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2679 DE_PIPE_VBLANK(pipe);
2680
2681 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682 ironlake_disable_display_irq(dev_priv, bit);
2683 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684 }
2685
2686 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2687 {
2688 struct drm_i915_private *dev_priv = dev->dev_private;
2689 unsigned long irqflags;
2690
2691 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692 i915_disable_pipestat(dev_priv, pipe,
2693 PIPE_START_VBLANK_INTERRUPT_STATUS);
2694 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2695 }
2696
2697 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2698 {
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 unsigned long irqflags;
2701
2702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2704 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2705 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2706 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2707 }
2708
2709 static struct drm_i915_gem_request *
2710 ring_last_request(struct intel_engine_cs *ring)
2711 {
2712 return list_entry(ring->request_list.prev,
2713 struct drm_i915_gem_request, list);
2714 }
2715
2716 static bool
2717 ring_idle(struct intel_engine_cs *ring)
2718 {
2719 return (list_empty(&ring->request_list) ||
2720 i915_gem_request_completed(ring_last_request(ring), false));
2721 }
2722
2723 static bool
2724 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2725 {
2726 if (INTEL_INFO(dev)->gen >= 8) {
2727 return (ipehr >> 23) == 0x1c;
2728 } else {
2729 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2730 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2731 MI_SEMAPHORE_REGISTER);
2732 }
2733 }
2734
2735 static struct intel_engine_cs *
2736 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2737 {
2738 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2739 struct intel_engine_cs *signaller;
2740 int i;
2741
2742 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2743 for_each_ring(signaller, dev_priv, i) {
2744 if (ring == signaller)
2745 continue;
2746
2747 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2748 return signaller;
2749 }
2750 } else {
2751 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2752
2753 for_each_ring(signaller, dev_priv, i) {
2754 if(ring == signaller)
2755 continue;
2756
2757 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2758 return signaller;
2759 }
2760 }
2761
2762 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2763 ring->id, ipehr, offset);
2764
2765 return NULL;
2766 }
2767
2768 static struct intel_engine_cs *
2769 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2770 {
2771 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2772 u32 cmd, ipehr, head;
2773 u64 offset = 0;
2774 int i, backwards;
2775
2776 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2777 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2778 return NULL;
2779
2780 /*
2781 * HEAD is likely pointing to the dword after the actual command,
2782 * so scan backwards until we find the MBOX. But limit it to just 3
2783 * or 4 dwords depending on the semaphore wait command size.
2784 * Note that we don't care about ACTHD here since that might
2785 * point at at batch, and semaphores are always emitted into the
2786 * ringbuffer itself.
2787 */
2788 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2789 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2790
2791 for (i = backwards; i; --i) {
2792 /*
2793 * Be paranoid and presume the hw has gone off into the wild -
2794 * our ring is smaller than what the hardware (and hence
2795 * HEAD_ADDR) allows. Also handles wrap-around.
2796 */
2797 head &= ring->buffer->size - 1;
2798
2799 /* This here seems to blow up */
2800 cmd = ioread32(ring->buffer->virtual_start + head);
2801 if (cmd == ipehr)
2802 break;
2803
2804 head -= 4;
2805 }
2806
2807 if (!i)
2808 return NULL;
2809
2810 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2811 if (INTEL_INFO(ring->dev)->gen >= 8) {
2812 offset = ioread32(ring->buffer->virtual_start + head + 12);
2813 offset <<= 32;
2814 offset = ioread32(ring->buffer->virtual_start + head + 8);
2815 }
2816 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2817 }
2818
2819 static int semaphore_passed(struct intel_engine_cs *ring)
2820 {
2821 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2822 struct intel_engine_cs *signaller;
2823 u32 seqno;
2824
2825 ring->hangcheck.deadlock++;
2826
2827 signaller = semaphore_waits_for(ring, &seqno);
2828 if (signaller == NULL)
2829 return -1;
2830
2831 /* Prevent pathological recursion due to driver bugs */
2832 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2833 return -1;
2834
2835 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2836 return 1;
2837
2838 /* cursory check for an unkickable deadlock */
2839 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2840 semaphore_passed(signaller) < 0)
2841 return -1;
2842
2843 return 0;
2844 }
2845
2846 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2847 {
2848 struct intel_engine_cs *ring;
2849 int i;
2850
2851 for_each_ring(ring, dev_priv, i)
2852 ring->hangcheck.deadlock = 0;
2853 }
2854
2855 static enum intel_ring_hangcheck_action
2856 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2857 {
2858 struct drm_device *dev = ring->dev;
2859 struct drm_i915_private *dev_priv = dev->dev_private;
2860 u32 tmp;
2861
2862 if (acthd != ring->hangcheck.acthd) {
2863 if (acthd > ring->hangcheck.max_acthd) {
2864 ring->hangcheck.max_acthd = acthd;
2865 return HANGCHECK_ACTIVE;
2866 }
2867
2868 return HANGCHECK_ACTIVE_LOOP;
2869 }
2870
2871 if (IS_GEN2(dev))
2872 return HANGCHECK_HUNG;
2873
2874 /* Is the chip hanging on a WAIT_FOR_EVENT?
2875 * If so we can simply poke the RB_WAIT bit
2876 * and break the hang. This should work on
2877 * all but the second generation chipsets.
2878 */
2879 tmp = I915_READ_CTL(ring);
2880 if (tmp & RING_WAIT) {
2881 i915_handle_error(dev, false,
2882 "Kicking stuck wait on %s",
2883 ring->name);
2884 I915_WRITE_CTL(ring, tmp);
2885 return HANGCHECK_KICK;
2886 }
2887
2888 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2889 switch (semaphore_passed(ring)) {
2890 default:
2891 return HANGCHECK_HUNG;
2892 case 1:
2893 i915_handle_error(dev, false,
2894 "Kicking stuck semaphore on %s",
2895 ring->name);
2896 I915_WRITE_CTL(ring, tmp);
2897 return HANGCHECK_KICK;
2898 case 0:
2899 return HANGCHECK_WAIT;
2900 }
2901 }
2902
2903 return HANGCHECK_HUNG;
2904 }
2905
2906 /*
2907 * This is called when the chip hasn't reported back with completed
2908 * batchbuffers in a long time. We keep track per ring seqno progress and
2909 * if there are no progress, hangcheck score for that ring is increased.
2910 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2911 * we kick the ring. If we see no progress on three subsequent calls
2912 * we assume chip is wedged and try to fix it by resetting the chip.
2913 */
2914 static void i915_hangcheck_elapsed(struct work_struct *work)
2915 {
2916 struct drm_i915_private *dev_priv =
2917 container_of(work, typeof(*dev_priv),
2918 gpu_error.hangcheck_work.work);
2919 struct drm_device *dev = dev_priv->dev;
2920 struct intel_engine_cs *ring;
2921 int i;
2922 int busy_count = 0, rings_hung = 0;
2923 bool stuck[I915_NUM_RINGS] = { 0 };
2924 #define BUSY 1
2925 #define KICK 5
2926 #define HUNG 20
2927
2928 if (!i915.enable_hangcheck)
2929 return;
2930
2931 for_each_ring(ring, dev_priv, i) {
2932 u64 acthd;
2933 u32 seqno;
2934 bool busy = true;
2935
2936 semaphore_clear_deadlocks(dev_priv);
2937
2938 seqno = ring->get_seqno(ring, false);
2939 acthd = intel_ring_get_active_head(ring);
2940
2941 if (ring->hangcheck.seqno == seqno) {
2942 if (ring_idle(ring)) {
2943 ring->hangcheck.action = HANGCHECK_IDLE;
2944
2945 if (waitqueue_active(&ring->irq_queue)) {
2946 /* Issue a wake-up to catch stuck h/w. */
2947 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2948 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2949 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2950 ring->name);
2951 else
2952 DRM_INFO("Fake missed irq on %s\n",
2953 ring->name);
2954 wake_up_all(&ring->irq_queue);
2955 }
2956 /* Safeguard against driver failure */
2957 ring->hangcheck.score += BUSY;
2958 } else
2959 busy = false;
2960 } else {
2961 /* We always increment the hangcheck score
2962 * if the ring is busy and still processing
2963 * the same request, so that no single request
2964 * can run indefinitely (such as a chain of
2965 * batches). The only time we do not increment
2966 * the hangcheck score on this ring, if this
2967 * ring is in a legitimate wait for another
2968 * ring. In that case the waiting ring is a
2969 * victim and we want to be sure we catch the
2970 * right culprit. Then every time we do kick
2971 * the ring, add a small increment to the
2972 * score so that we can catch a batch that is
2973 * being repeatedly kicked and so responsible
2974 * for stalling the machine.
2975 */
2976 ring->hangcheck.action = ring_stuck(ring,
2977 acthd);
2978
2979 switch (ring->hangcheck.action) {
2980 case HANGCHECK_IDLE:
2981 case HANGCHECK_WAIT:
2982 case HANGCHECK_ACTIVE:
2983 break;
2984 case HANGCHECK_ACTIVE_LOOP:
2985 ring->hangcheck.score += BUSY;
2986 break;
2987 case HANGCHECK_KICK:
2988 ring->hangcheck.score += KICK;
2989 break;
2990 case HANGCHECK_HUNG:
2991 ring->hangcheck.score += HUNG;
2992 stuck[i] = true;
2993 break;
2994 }
2995 }
2996 } else {
2997 ring->hangcheck.action = HANGCHECK_ACTIVE;
2998
2999 /* Gradually reduce the count so that we catch DoS
3000 * attempts across multiple batches.
3001 */
3002 if (ring->hangcheck.score > 0)
3003 ring->hangcheck.score--;
3004
3005 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3006 }
3007
3008 ring->hangcheck.seqno = seqno;
3009 ring->hangcheck.acthd = acthd;
3010 busy_count += busy;
3011 }
3012
3013 for_each_ring(ring, dev_priv, i) {
3014 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3015 DRM_INFO("%s on %s\n",
3016 stuck[i] ? "stuck" : "no progress",
3017 ring->name);
3018 rings_hung++;
3019 }
3020 }
3021
3022 if (rings_hung)
3023 return i915_handle_error(dev, true, "Ring hung");
3024
3025 if (busy_count)
3026 /* Reset timer case chip hangs without another request
3027 * being added */
3028 i915_queue_hangcheck(dev);
3029 }
3030
3031 void i915_queue_hangcheck(struct drm_device *dev)
3032 {
3033 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3034
3035 if (!i915.enable_hangcheck)
3036 return;
3037
3038 /* Don't continually defer the hangcheck so that it is always run at
3039 * least once after work has been scheduled on any ring. Otherwise,
3040 * we will ignore a hung ring if a second ring is kept busy.
3041 */
3042
3043 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3044 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3045 }
3046
3047 static void ibx_irq_reset(struct drm_device *dev)
3048 {
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3050
3051 if (HAS_PCH_NOP(dev))
3052 return;
3053
3054 GEN5_IRQ_RESET(SDE);
3055
3056 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3057 I915_WRITE(SERR_INT, 0xffffffff);
3058 }
3059
3060 /*
3061 * SDEIER is also touched by the interrupt handler to work around missed PCH
3062 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3063 * instead we unconditionally enable all PCH interrupt sources here, but then
3064 * only unmask them as needed with SDEIMR.
3065 *
3066 * This function needs to be called before interrupts are enabled.
3067 */
3068 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3069 {
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071
3072 if (HAS_PCH_NOP(dev))
3073 return;
3074
3075 WARN_ON(I915_READ(SDEIER) != 0);
3076 I915_WRITE(SDEIER, 0xffffffff);
3077 POSTING_READ(SDEIER);
3078 }
3079
3080 static void gen5_gt_irq_reset(struct drm_device *dev)
3081 {
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083
3084 GEN5_IRQ_RESET(GT);
3085 if (INTEL_INFO(dev)->gen >= 6)
3086 GEN5_IRQ_RESET(GEN6_PM);
3087 }
3088
3089 /* drm_dma.h hooks
3090 */
3091 static void ironlake_irq_reset(struct drm_device *dev)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095 I915_WRITE(HWSTAM, 0xffffffff);
3096
3097 GEN5_IRQ_RESET(DE);
3098 if (IS_GEN7(dev))
3099 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3100
3101 gen5_gt_irq_reset(dev);
3102
3103 ibx_irq_reset(dev);
3104 }
3105
3106 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3107 {
3108 enum pipe pipe;
3109
3110 I915_WRITE(PORT_HOTPLUG_EN, 0);
3111 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3112
3113 for_each_pipe(dev_priv, pipe)
3114 I915_WRITE(PIPESTAT(pipe), 0xffff);
3115
3116 GEN5_IRQ_RESET(VLV_);
3117 }
3118
3119 static void valleyview_irq_preinstall(struct drm_device *dev)
3120 {
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122
3123 /* VLV magic */
3124 I915_WRITE(VLV_IMR, 0);
3125 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3126 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3127 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3128
3129 gen5_gt_irq_reset(dev);
3130
3131 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3132
3133 vlv_display_irq_reset(dev_priv);
3134 }
3135
3136 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3137 {
3138 GEN8_IRQ_RESET_NDX(GT, 0);
3139 GEN8_IRQ_RESET_NDX(GT, 1);
3140 GEN8_IRQ_RESET_NDX(GT, 2);
3141 GEN8_IRQ_RESET_NDX(GT, 3);
3142 }
3143
3144 static void gen8_irq_reset(struct drm_device *dev)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int pipe;
3148
3149 I915_WRITE(GEN8_MASTER_IRQ, 0);
3150 POSTING_READ(GEN8_MASTER_IRQ);
3151
3152 gen8_gt_irq_reset(dev_priv);
3153
3154 for_each_pipe(dev_priv, pipe)
3155 if (intel_display_power_is_enabled(dev_priv,
3156 POWER_DOMAIN_PIPE(pipe)))
3157 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3158
3159 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3160 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3161 GEN5_IRQ_RESET(GEN8_PCU_);
3162
3163 if (HAS_PCH_SPLIT(dev))
3164 ibx_irq_reset(dev);
3165 }
3166
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3168 unsigned int pipe_mask)
3169 {
3170 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3171
3172 spin_lock_irq(&dev_priv->irq_lock);
3173 if (pipe_mask & 1 << PIPE_A)
3174 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3175 dev_priv->de_irq_mask[PIPE_A],
3176 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3177 if (pipe_mask & 1 << PIPE_B)
3178 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3179 dev_priv->de_irq_mask[PIPE_B],
3180 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3181 if (pipe_mask & 1 << PIPE_C)
3182 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3183 dev_priv->de_irq_mask[PIPE_C],
3184 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3185 spin_unlock_irq(&dev_priv->irq_lock);
3186 }
3187
3188 static void cherryview_irq_preinstall(struct drm_device *dev)
3189 {
3190 struct drm_i915_private *dev_priv = dev->dev_private;
3191
3192 I915_WRITE(GEN8_MASTER_IRQ, 0);
3193 POSTING_READ(GEN8_MASTER_IRQ);
3194
3195 gen8_gt_irq_reset(dev_priv);
3196
3197 GEN5_IRQ_RESET(GEN8_PCU_);
3198
3199 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3200
3201 vlv_display_irq_reset(dev_priv);
3202 }
3203
3204 static void ibx_hpd_irq_setup(struct drm_device *dev)
3205 {
3206 struct drm_i915_private *dev_priv = dev->dev_private;
3207 struct intel_encoder *intel_encoder;
3208 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3209
3210 if (HAS_PCH_IBX(dev)) {
3211 hotplug_irqs = SDE_HOTPLUG_MASK;
3212 for_each_intel_encoder(dev, intel_encoder)
3213 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3214 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3215 } else {
3216 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3217 for_each_intel_encoder(dev, intel_encoder)
3218 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3219 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3220 }
3221
3222 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3223
3224 /*
3225 * Enable digital hotplug on the PCH, and configure the DP short pulse
3226 * duration to 2ms (which is the minimum in the Display Port spec)
3227 *
3228 * This register is the same on all known PCH chips.
3229 */
3230 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3231 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3232 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3233 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3234 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3235 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3236 }
3237
3238 static void bxt_hpd_irq_setup(struct drm_device *dev)
3239 {
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_encoder *intel_encoder;
3242 u32 hotplug_port = 0;
3243 u32 hotplug_ctrl;
3244
3245 /* Now, enable HPD */
3246 for_each_intel_encoder(dev, intel_encoder) {
3247 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark
3248 == HPD_ENABLED)
3249 hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3250 }
3251
3252 /* Mask all HPD control bits */
3253 hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3254
3255 /* Enable requested port in hotplug control */
3256 /* TODO: implement (short) HPD support on port A */
3257 WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3258 if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3259 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3260 if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3261 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3262 I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3263
3264 /* Unmask DDI hotplug in IMR */
3265 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3266 I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3267
3268 /* Enable DDI hotplug in IER */
3269 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3270 I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3271 POSTING_READ(GEN8_DE_PORT_IER);
3272 }
3273
3274 static void ibx_irq_postinstall(struct drm_device *dev)
3275 {
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 u32 mask;
3278
3279 if (HAS_PCH_NOP(dev))
3280 return;
3281
3282 if (HAS_PCH_IBX(dev))
3283 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3284 else
3285 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3286
3287 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3288 I915_WRITE(SDEIMR, ~mask);
3289 }
3290
3291 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3292 {
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294 u32 pm_irqs, gt_irqs;
3295
3296 pm_irqs = gt_irqs = 0;
3297
3298 dev_priv->gt_irq_mask = ~0;
3299 if (HAS_L3_DPF(dev)) {
3300 /* L3 parity interrupt is always unmasked. */
3301 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3302 gt_irqs |= GT_PARITY_ERROR(dev);
3303 }
3304
3305 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3306 if (IS_GEN5(dev)) {
3307 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3308 ILK_BSD_USER_INTERRUPT;
3309 } else {
3310 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3311 }
3312
3313 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3314
3315 if (INTEL_INFO(dev)->gen >= 6) {
3316 /*
3317 * RPS interrupts will get enabled/disabled on demand when RPS
3318 * itself is enabled/disabled.
3319 */
3320 if (HAS_VEBOX(dev))
3321 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3322
3323 dev_priv->pm_irq_mask = 0xffffffff;
3324 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3325 }
3326 }
3327
3328 static int ironlake_irq_postinstall(struct drm_device *dev)
3329 {
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 u32 display_mask, extra_mask;
3332
3333 if (INTEL_INFO(dev)->gen >= 7) {
3334 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3335 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3336 DE_PLANEB_FLIP_DONE_IVB |
3337 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3338 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3339 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3340 } else {
3341 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3342 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3343 DE_AUX_CHANNEL_A |
3344 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3345 DE_POISON);
3346 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3347 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3348 }
3349
3350 dev_priv->irq_mask = ~display_mask;
3351
3352 I915_WRITE(HWSTAM, 0xeffe);
3353
3354 ibx_irq_pre_postinstall(dev);
3355
3356 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3357
3358 gen5_gt_irq_postinstall(dev);
3359
3360 ibx_irq_postinstall(dev);
3361
3362 if (IS_IRONLAKE_M(dev)) {
3363 /* Enable PCU event interrupts
3364 *
3365 * spinlocking not required here for correctness since interrupt
3366 * setup is guaranteed to run in single-threaded context. But we
3367 * need it to make the assert_spin_locked happy. */
3368 spin_lock_irq(&dev_priv->irq_lock);
3369 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3370 spin_unlock_irq(&dev_priv->irq_lock);
3371 }
3372
3373 return 0;
3374 }
3375
3376 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3377 {
3378 u32 pipestat_mask;
3379 u32 iir_mask;
3380 enum pipe pipe;
3381
3382 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3383 PIPE_FIFO_UNDERRUN_STATUS;
3384
3385 for_each_pipe(dev_priv, pipe)
3386 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3387 POSTING_READ(PIPESTAT(PIPE_A));
3388
3389 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3390 PIPE_CRC_DONE_INTERRUPT_STATUS;
3391
3392 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3393 for_each_pipe(dev_priv, pipe)
3394 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3395
3396 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3397 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3398 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3399 if (IS_CHERRYVIEW(dev_priv))
3400 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3401 dev_priv->irq_mask &= ~iir_mask;
3402
3403 I915_WRITE(VLV_IIR, iir_mask);
3404 I915_WRITE(VLV_IIR, iir_mask);
3405 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3406 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3407 POSTING_READ(VLV_IMR);
3408 }
3409
3410 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3411 {
3412 u32 pipestat_mask;
3413 u32 iir_mask;
3414 enum pipe pipe;
3415
3416 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419 if (IS_CHERRYVIEW(dev_priv))
3420 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421
3422 dev_priv->irq_mask |= iir_mask;
3423 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3424 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3425 I915_WRITE(VLV_IIR, iir_mask);
3426 I915_WRITE(VLV_IIR, iir_mask);
3427 POSTING_READ(VLV_IIR);
3428
3429 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3430 PIPE_CRC_DONE_INTERRUPT_STATUS;
3431
3432 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3433 for_each_pipe(dev_priv, pipe)
3434 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3435
3436 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3437 PIPE_FIFO_UNDERRUN_STATUS;
3438
3439 for_each_pipe(dev_priv, pipe)
3440 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3441 POSTING_READ(PIPESTAT(PIPE_A));
3442 }
3443
3444 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3445 {
3446 assert_spin_locked(&dev_priv->irq_lock);
3447
3448 if (dev_priv->display_irqs_enabled)
3449 return;
3450
3451 dev_priv->display_irqs_enabled = true;
3452
3453 if (intel_irqs_enabled(dev_priv))
3454 valleyview_display_irqs_install(dev_priv);
3455 }
3456
3457 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3458 {
3459 assert_spin_locked(&dev_priv->irq_lock);
3460
3461 if (!dev_priv->display_irqs_enabled)
3462 return;
3463
3464 dev_priv->display_irqs_enabled = false;
3465
3466 if (intel_irqs_enabled(dev_priv))
3467 valleyview_display_irqs_uninstall(dev_priv);
3468 }
3469
3470 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3471 {
3472 dev_priv->irq_mask = ~0;
3473
3474 I915_WRITE(PORT_HOTPLUG_EN, 0);
3475 POSTING_READ(PORT_HOTPLUG_EN);
3476
3477 I915_WRITE(VLV_IIR, 0xffffffff);
3478 I915_WRITE(VLV_IIR, 0xffffffff);
3479 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3480 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3481 POSTING_READ(VLV_IMR);
3482
3483 /* Interrupt setup is already guaranteed to be single-threaded, this is
3484 * just to make the assert_spin_locked check happy. */
3485 spin_lock_irq(&dev_priv->irq_lock);
3486 if (dev_priv->display_irqs_enabled)
3487 valleyview_display_irqs_install(dev_priv);
3488 spin_unlock_irq(&dev_priv->irq_lock);
3489 }
3490
3491 static int valleyview_irq_postinstall(struct drm_device *dev)
3492 {
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494
3495 vlv_display_irq_postinstall(dev_priv);
3496
3497 gen5_gt_irq_postinstall(dev);
3498
3499 /* ack & enable invalid PTE error interrupts */
3500 #if 0 /* FIXME: add support to irq handler for checking these bits */
3501 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3502 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3503 #endif
3504
3505 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3506
3507 return 0;
3508 }
3509
3510 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3511 {
3512 /* These are interrupts we'll toggle with the ring mask register */
3513 uint32_t gt_interrupts[] = {
3514 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3515 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3516 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3517 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3518 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3519 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3520 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3521 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3522 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3523 0,
3524 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3525 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3526 };
3527
3528 dev_priv->pm_irq_mask = 0xffffffff;
3529 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3530 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3531 /*
3532 * RPS interrupts will get enabled/disabled on demand when RPS itself
3533 * is enabled/disabled.
3534 */
3535 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3536 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3537 }
3538
3539 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3540 {
3541 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3542 uint32_t de_pipe_enables;
3543 int pipe;
3544 u32 de_port_en = GEN8_AUX_CHANNEL_A;
3545
3546 if (IS_GEN9(dev_priv)) {
3547 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3548 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3549 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3550 GEN9_AUX_CHANNEL_D;
3551
3552 if (IS_BROXTON(dev_priv))
3553 de_port_en |= BXT_DE_PORT_GMBUS;
3554 } else
3555 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3556 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3557
3558 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3559 GEN8_PIPE_FIFO_UNDERRUN;
3560
3561 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3562 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3563 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3564
3565 for_each_pipe(dev_priv, pipe)
3566 if (intel_display_power_is_enabled(dev_priv,
3567 POWER_DOMAIN_PIPE(pipe)))
3568 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3569 dev_priv->de_irq_mask[pipe],
3570 de_pipe_enables);
3571
3572 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3573 }
3574
3575 static int gen8_irq_postinstall(struct drm_device *dev)
3576 {
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579 if (HAS_PCH_SPLIT(dev))
3580 ibx_irq_pre_postinstall(dev);
3581
3582 gen8_gt_irq_postinstall(dev_priv);
3583 gen8_de_irq_postinstall(dev_priv);
3584
3585 if (HAS_PCH_SPLIT(dev))
3586 ibx_irq_postinstall(dev);
3587
3588 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3589 POSTING_READ(GEN8_MASTER_IRQ);
3590
3591 return 0;
3592 }
3593
3594 static int cherryview_irq_postinstall(struct drm_device *dev)
3595 {
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597
3598 vlv_display_irq_postinstall(dev_priv);
3599
3600 gen8_gt_irq_postinstall(dev_priv);
3601
3602 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3603 POSTING_READ(GEN8_MASTER_IRQ);
3604
3605 return 0;
3606 }
3607
3608 static void gen8_irq_uninstall(struct drm_device *dev)
3609 {
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611
3612 if (!dev_priv)
3613 return;
3614
3615 gen8_irq_reset(dev);
3616 }
3617
3618 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3619 {
3620 /* Interrupt setup is already guaranteed to be single-threaded, this is
3621 * just to make the assert_spin_locked check happy. */
3622 spin_lock_irq(&dev_priv->irq_lock);
3623 if (dev_priv->display_irqs_enabled)
3624 valleyview_display_irqs_uninstall(dev_priv);
3625 spin_unlock_irq(&dev_priv->irq_lock);
3626
3627 vlv_display_irq_reset(dev_priv);
3628
3629 dev_priv->irq_mask = ~0;
3630 }
3631
3632 static void valleyview_irq_uninstall(struct drm_device *dev)
3633 {
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635
3636 if (!dev_priv)
3637 return;
3638
3639 I915_WRITE(VLV_MASTER_IER, 0);
3640
3641 gen5_gt_irq_reset(dev);
3642
3643 I915_WRITE(HWSTAM, 0xffffffff);
3644
3645 vlv_display_irq_uninstall(dev_priv);
3646 }
3647
3648 static void cherryview_irq_uninstall(struct drm_device *dev)
3649 {
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652 if (!dev_priv)
3653 return;
3654
3655 I915_WRITE(GEN8_MASTER_IRQ, 0);
3656 POSTING_READ(GEN8_MASTER_IRQ);
3657
3658 gen8_gt_irq_reset(dev_priv);
3659
3660 GEN5_IRQ_RESET(GEN8_PCU_);
3661
3662 vlv_display_irq_uninstall(dev_priv);
3663 }
3664
3665 static void ironlake_irq_uninstall(struct drm_device *dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668
3669 if (!dev_priv)
3670 return;
3671
3672 ironlake_irq_reset(dev);
3673 }
3674
3675 static void i8xx_irq_preinstall(struct drm_device * dev)
3676 {
3677 struct drm_i915_private *dev_priv = dev->dev_private;
3678 int pipe;
3679
3680 for_each_pipe(dev_priv, pipe)
3681 I915_WRITE(PIPESTAT(pipe), 0);
3682 I915_WRITE16(IMR, 0xffff);
3683 I915_WRITE16(IER, 0x0);
3684 POSTING_READ16(IER);
3685 }
3686
3687 static int i8xx_irq_postinstall(struct drm_device *dev)
3688 {
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691 I915_WRITE16(EMR,
3692 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3693
3694 /* Unmask the interrupts that we always want on. */
3695 dev_priv->irq_mask =
3696 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3697 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3698 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3699 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3700 I915_WRITE16(IMR, dev_priv->irq_mask);
3701
3702 I915_WRITE16(IER,
3703 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3704 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3705 I915_USER_INTERRUPT);
3706 POSTING_READ16(IER);
3707
3708 /* Interrupt setup is already guaranteed to be single-threaded, this is
3709 * just to make the assert_spin_locked check happy. */
3710 spin_lock_irq(&dev_priv->irq_lock);
3711 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3712 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713 spin_unlock_irq(&dev_priv->irq_lock);
3714
3715 return 0;
3716 }
3717
3718 /*
3719 * Returns true when a page flip has completed.
3720 */
3721 static bool i8xx_handle_vblank(struct drm_device *dev,
3722 int plane, int pipe, u32 iir)
3723 {
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3726
3727 if (!intel_pipe_handle_vblank(dev, pipe))
3728 return false;
3729
3730 if ((iir & flip_pending) == 0)
3731 goto check_page_flip;
3732
3733 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3734 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3735 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3736 * the flip is completed (no longer pending). Since this doesn't raise
3737 * an interrupt per se, we watch for the change at vblank.
3738 */
3739 if (I915_READ16(ISR) & flip_pending)
3740 goto check_page_flip;
3741
3742 intel_prepare_page_flip(dev, plane);
3743 intel_finish_page_flip(dev, pipe);
3744 return true;
3745
3746 check_page_flip:
3747 intel_check_page_flip(dev, pipe);
3748 return false;
3749 }
3750
3751 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3752 {
3753 struct drm_device *dev = arg;
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 u16 iir, new_iir;
3756 u32 pipe_stats[2];
3757 int pipe;
3758 u16 flip_mask =
3759 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3760 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3761
3762 if (!intel_irqs_enabled(dev_priv))
3763 return IRQ_NONE;
3764
3765 iir = I915_READ16(IIR);
3766 if (iir == 0)
3767 return IRQ_NONE;
3768
3769 while (iir & ~flip_mask) {
3770 /* Can't rely on pipestat interrupt bit in iir as it might
3771 * have been cleared after the pipestat interrupt was received.
3772 * It doesn't set the bit in iir again, but it still produces
3773 * interrupts (for non-MSI).
3774 */
3775 spin_lock(&dev_priv->irq_lock);
3776 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3777 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3778
3779 for_each_pipe(dev_priv, pipe) {
3780 int reg = PIPESTAT(pipe);
3781 pipe_stats[pipe] = I915_READ(reg);
3782
3783 /*
3784 * Clear the PIPE*STAT regs before the IIR
3785 */
3786 if (pipe_stats[pipe] & 0x8000ffff)
3787 I915_WRITE(reg, pipe_stats[pipe]);
3788 }
3789 spin_unlock(&dev_priv->irq_lock);
3790
3791 I915_WRITE16(IIR, iir & ~flip_mask);
3792 new_iir = I915_READ16(IIR); /* Flush posted writes */
3793
3794 if (iir & I915_USER_INTERRUPT)
3795 notify_ring(&dev_priv->ring[RCS]);
3796
3797 for_each_pipe(dev_priv, pipe) {
3798 int plane = pipe;
3799 if (HAS_FBC(dev))
3800 plane = !plane;
3801
3802 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3803 i8xx_handle_vblank(dev, plane, pipe, iir))
3804 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3805
3806 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3807 i9xx_pipe_crc_irq_handler(dev, pipe);
3808
3809 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3810 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3811 pipe);
3812 }
3813
3814 iir = new_iir;
3815 }
3816
3817 return IRQ_HANDLED;
3818 }
3819
3820 static void i8xx_irq_uninstall(struct drm_device * dev)
3821 {
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 int pipe;
3824
3825 for_each_pipe(dev_priv, pipe) {
3826 /* Clear enable bits; then clear status bits */
3827 I915_WRITE(PIPESTAT(pipe), 0);
3828 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3829 }
3830 I915_WRITE16(IMR, 0xffff);
3831 I915_WRITE16(IER, 0x0);
3832 I915_WRITE16(IIR, I915_READ16(IIR));
3833 }
3834
3835 static void i915_irq_preinstall(struct drm_device * dev)
3836 {
3837 struct drm_i915_private *dev_priv = dev->dev_private;
3838 int pipe;
3839
3840 if (I915_HAS_HOTPLUG(dev)) {
3841 I915_WRITE(PORT_HOTPLUG_EN, 0);
3842 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3843 }
3844
3845 I915_WRITE16(HWSTAM, 0xeffe);
3846 for_each_pipe(dev_priv, pipe)
3847 I915_WRITE(PIPESTAT(pipe), 0);
3848 I915_WRITE(IMR, 0xffffffff);
3849 I915_WRITE(IER, 0x0);
3850 POSTING_READ(IER);
3851 }
3852
3853 static int i915_irq_postinstall(struct drm_device *dev)
3854 {
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856 u32 enable_mask;
3857
3858 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3859
3860 /* Unmask the interrupts that we always want on. */
3861 dev_priv->irq_mask =
3862 ~(I915_ASLE_INTERRUPT |
3863 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3864 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3865 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3866 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3867
3868 enable_mask =
3869 I915_ASLE_INTERRUPT |
3870 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3871 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3872 I915_USER_INTERRUPT;
3873
3874 if (I915_HAS_HOTPLUG(dev)) {
3875 I915_WRITE(PORT_HOTPLUG_EN, 0);
3876 POSTING_READ(PORT_HOTPLUG_EN);
3877
3878 /* Enable in IER... */
3879 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3880 /* and unmask in IMR */
3881 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3882 }
3883
3884 I915_WRITE(IMR, dev_priv->irq_mask);
3885 I915_WRITE(IER, enable_mask);
3886 POSTING_READ(IER);
3887
3888 i915_enable_asle_pipestat(dev);
3889
3890 /* Interrupt setup is already guaranteed to be single-threaded, this is
3891 * just to make the assert_spin_locked check happy. */
3892 spin_lock_irq(&dev_priv->irq_lock);
3893 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3894 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3895 spin_unlock_irq(&dev_priv->irq_lock);
3896
3897 return 0;
3898 }
3899
3900 /*
3901 * Returns true when a page flip has completed.
3902 */
3903 static bool i915_handle_vblank(struct drm_device *dev,
3904 int plane, int pipe, u32 iir)
3905 {
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3908
3909 if (!intel_pipe_handle_vblank(dev, pipe))
3910 return false;
3911
3912 if ((iir & flip_pending) == 0)
3913 goto check_page_flip;
3914
3915 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3916 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3917 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3918 * the flip is completed (no longer pending). Since this doesn't raise
3919 * an interrupt per se, we watch for the change at vblank.
3920 */
3921 if (I915_READ(ISR) & flip_pending)
3922 goto check_page_flip;
3923
3924 intel_prepare_page_flip(dev, plane);
3925 intel_finish_page_flip(dev, pipe);
3926 return true;
3927
3928 check_page_flip:
3929 intel_check_page_flip(dev, pipe);
3930 return false;
3931 }
3932
3933 static irqreturn_t i915_irq_handler(int irq, void *arg)
3934 {
3935 struct drm_device *dev = arg;
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3938 u32 flip_mask =
3939 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3940 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3941 int pipe, ret = IRQ_NONE;
3942
3943 if (!intel_irqs_enabled(dev_priv))
3944 return IRQ_NONE;
3945
3946 iir = I915_READ(IIR);
3947 do {
3948 bool irq_received = (iir & ~flip_mask) != 0;
3949 bool blc_event = false;
3950
3951 /* Can't rely on pipestat interrupt bit in iir as it might
3952 * have been cleared after the pipestat interrupt was received.
3953 * It doesn't set the bit in iir again, but it still produces
3954 * interrupts (for non-MSI).
3955 */
3956 spin_lock(&dev_priv->irq_lock);
3957 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3958 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3959
3960 for_each_pipe(dev_priv, pipe) {
3961 int reg = PIPESTAT(pipe);
3962 pipe_stats[pipe] = I915_READ(reg);
3963
3964 /* Clear the PIPE*STAT regs before the IIR */
3965 if (pipe_stats[pipe] & 0x8000ffff) {
3966 I915_WRITE(reg, pipe_stats[pipe]);
3967 irq_received = true;
3968 }
3969 }
3970 spin_unlock(&dev_priv->irq_lock);
3971
3972 if (!irq_received)
3973 break;
3974
3975 /* Consume port. Then clear IIR or we'll miss events */
3976 if (I915_HAS_HOTPLUG(dev) &&
3977 iir & I915_DISPLAY_PORT_INTERRUPT)
3978 i9xx_hpd_irq_handler(dev);
3979
3980 I915_WRITE(IIR, iir & ~flip_mask);
3981 new_iir = I915_READ(IIR); /* Flush posted writes */
3982
3983 if (iir & I915_USER_INTERRUPT)
3984 notify_ring(&dev_priv->ring[RCS]);
3985
3986 for_each_pipe(dev_priv, pipe) {
3987 int plane = pipe;
3988 if (HAS_FBC(dev))
3989 plane = !plane;
3990
3991 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3992 i915_handle_vblank(dev, plane, pipe, iir))
3993 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3994
3995 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3996 blc_event = true;
3997
3998 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3999 i9xx_pipe_crc_irq_handler(dev, pipe);
4000
4001 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4002 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4003 pipe);
4004 }
4005
4006 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4007 intel_opregion_asle_intr(dev);
4008
4009 /* With MSI, interrupts are only generated when iir
4010 * transitions from zero to nonzero. If another bit got
4011 * set while we were handling the existing iir bits, then
4012 * we would never get another interrupt.
4013 *
4014 * This is fine on non-MSI as well, as if we hit this path
4015 * we avoid exiting the interrupt handler only to generate
4016 * another one.
4017 *
4018 * Note that for MSI this could cause a stray interrupt report
4019 * if an interrupt landed in the time between writing IIR and
4020 * the posting read. This should be rare enough to never
4021 * trigger the 99% of 100,000 interrupts test for disabling
4022 * stray interrupts.
4023 */
4024 ret = IRQ_HANDLED;
4025 iir = new_iir;
4026 } while (iir & ~flip_mask);
4027
4028 return ret;
4029 }
4030
4031 static void i915_irq_uninstall(struct drm_device * dev)
4032 {
4033 struct drm_i915_private *dev_priv = dev->dev_private;
4034 int pipe;
4035
4036 if (I915_HAS_HOTPLUG(dev)) {
4037 I915_WRITE(PORT_HOTPLUG_EN, 0);
4038 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039 }
4040
4041 I915_WRITE16(HWSTAM, 0xffff);
4042 for_each_pipe(dev_priv, pipe) {
4043 /* Clear enable bits; then clear status bits */
4044 I915_WRITE(PIPESTAT(pipe), 0);
4045 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4046 }
4047 I915_WRITE(IMR, 0xffffffff);
4048 I915_WRITE(IER, 0x0);
4049
4050 I915_WRITE(IIR, I915_READ(IIR));
4051 }
4052
4053 static void i965_irq_preinstall(struct drm_device * dev)
4054 {
4055 struct drm_i915_private *dev_priv = dev->dev_private;
4056 int pipe;
4057
4058 I915_WRITE(PORT_HOTPLUG_EN, 0);
4059 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4060
4061 I915_WRITE(HWSTAM, 0xeffe);
4062 for_each_pipe(dev_priv, pipe)
4063 I915_WRITE(PIPESTAT(pipe), 0);
4064 I915_WRITE(IMR, 0xffffffff);
4065 I915_WRITE(IER, 0x0);
4066 POSTING_READ(IER);
4067 }
4068
4069 static int i965_irq_postinstall(struct drm_device *dev)
4070 {
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 u32 enable_mask;
4073 u32 error_mask;
4074
4075 /* Unmask the interrupts that we always want on. */
4076 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4077 I915_DISPLAY_PORT_INTERRUPT |
4078 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4079 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4080 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4081 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4082 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4083
4084 enable_mask = ~dev_priv->irq_mask;
4085 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4086 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4087 enable_mask |= I915_USER_INTERRUPT;
4088
4089 if (IS_G4X(dev))
4090 enable_mask |= I915_BSD_USER_INTERRUPT;
4091
4092 /* Interrupt setup is already guaranteed to be single-threaded, this is
4093 * just to make the assert_spin_locked check happy. */
4094 spin_lock_irq(&dev_priv->irq_lock);
4095 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4096 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4098 spin_unlock_irq(&dev_priv->irq_lock);
4099
4100 /*
4101 * Enable some error detection, note the instruction error mask
4102 * bit is reserved, so we leave it masked.
4103 */
4104 if (IS_G4X(dev)) {
4105 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4106 GM45_ERROR_MEM_PRIV |
4107 GM45_ERROR_CP_PRIV |
4108 I915_ERROR_MEMORY_REFRESH);
4109 } else {
4110 error_mask = ~(I915_ERROR_PAGE_TABLE |
4111 I915_ERROR_MEMORY_REFRESH);
4112 }
4113 I915_WRITE(EMR, error_mask);
4114
4115 I915_WRITE(IMR, dev_priv->irq_mask);
4116 I915_WRITE(IER, enable_mask);
4117 POSTING_READ(IER);
4118
4119 I915_WRITE(PORT_HOTPLUG_EN, 0);
4120 POSTING_READ(PORT_HOTPLUG_EN);
4121
4122 i915_enable_asle_pipestat(dev);
4123
4124 return 0;
4125 }
4126
4127 static void i915_hpd_irq_setup(struct drm_device *dev)
4128 {
4129 struct drm_i915_private *dev_priv = dev->dev_private;
4130 struct intel_encoder *intel_encoder;
4131 u32 hotplug_en;
4132
4133 assert_spin_locked(&dev_priv->irq_lock);
4134
4135 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4136 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4137 /* Note HDMI and DP share hotplug bits */
4138 /* enable bits are the same for all generations */
4139 for_each_intel_encoder(dev, intel_encoder)
4140 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4141 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4142 /* Programming the CRT detection parameters tends
4143 to generate a spurious hotplug event about three
4144 seconds later. So just do it once.
4145 */
4146 if (IS_G4X(dev))
4147 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4148 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4149 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4150
4151 /* Ignore TV since it's buggy */
4152 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4153 }
4154
4155 static irqreturn_t i965_irq_handler(int irq, void *arg)
4156 {
4157 struct drm_device *dev = arg;
4158 struct drm_i915_private *dev_priv = dev->dev_private;
4159 u32 iir, new_iir;
4160 u32 pipe_stats[I915_MAX_PIPES];
4161 int ret = IRQ_NONE, pipe;
4162 u32 flip_mask =
4163 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4164 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4165
4166 if (!intel_irqs_enabled(dev_priv))
4167 return IRQ_NONE;
4168
4169 iir = I915_READ(IIR);
4170
4171 for (;;) {
4172 bool irq_received = (iir & ~flip_mask) != 0;
4173 bool blc_event = false;
4174
4175 /* Can't rely on pipestat interrupt bit in iir as it might
4176 * have been cleared after the pipestat interrupt was received.
4177 * It doesn't set the bit in iir again, but it still produces
4178 * interrupts (for non-MSI).
4179 */
4180 spin_lock(&dev_priv->irq_lock);
4181 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4182 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4183
4184 for_each_pipe(dev_priv, pipe) {
4185 int reg = PIPESTAT(pipe);
4186 pipe_stats[pipe] = I915_READ(reg);
4187
4188 /*
4189 * Clear the PIPE*STAT regs before the IIR
4190 */
4191 if (pipe_stats[pipe] & 0x8000ffff) {
4192 I915_WRITE(reg, pipe_stats[pipe]);
4193 irq_received = true;
4194 }
4195 }
4196 spin_unlock(&dev_priv->irq_lock);
4197
4198 if (!irq_received)
4199 break;
4200
4201 ret = IRQ_HANDLED;
4202
4203 /* Consume port. Then clear IIR or we'll miss events */
4204 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4205 i9xx_hpd_irq_handler(dev);
4206
4207 I915_WRITE(IIR, iir & ~flip_mask);
4208 new_iir = I915_READ(IIR); /* Flush posted writes */
4209
4210 if (iir & I915_USER_INTERRUPT)
4211 notify_ring(&dev_priv->ring[RCS]);
4212 if (iir & I915_BSD_USER_INTERRUPT)
4213 notify_ring(&dev_priv->ring[VCS]);
4214
4215 for_each_pipe(dev_priv, pipe) {
4216 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4217 i915_handle_vblank(dev, pipe, pipe, iir))
4218 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4219
4220 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4221 blc_event = true;
4222
4223 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4224 i9xx_pipe_crc_irq_handler(dev, pipe);
4225
4226 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4227 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4228 }
4229
4230 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4231 intel_opregion_asle_intr(dev);
4232
4233 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4234 gmbus_irq_handler(dev);
4235
4236 /* With MSI, interrupts are only generated when iir
4237 * transitions from zero to nonzero. If another bit got
4238 * set while we were handling the existing iir bits, then
4239 * we would never get another interrupt.
4240 *
4241 * This is fine on non-MSI as well, as if we hit this path
4242 * we avoid exiting the interrupt handler only to generate
4243 * another one.
4244 *
4245 * Note that for MSI this could cause a stray interrupt report
4246 * if an interrupt landed in the time between writing IIR and
4247 * the posting read. This should be rare enough to never
4248 * trigger the 99% of 100,000 interrupts test for disabling
4249 * stray interrupts.
4250 */
4251 iir = new_iir;
4252 }
4253
4254 return ret;
4255 }
4256
4257 static void i965_irq_uninstall(struct drm_device * dev)
4258 {
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 int pipe;
4261
4262 if (!dev_priv)
4263 return;
4264
4265 I915_WRITE(PORT_HOTPLUG_EN, 0);
4266 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4267
4268 I915_WRITE(HWSTAM, 0xffffffff);
4269 for_each_pipe(dev_priv, pipe)
4270 I915_WRITE(PIPESTAT(pipe), 0);
4271 I915_WRITE(IMR, 0xffffffff);
4272 I915_WRITE(IER, 0x0);
4273
4274 for_each_pipe(dev_priv, pipe)
4275 I915_WRITE(PIPESTAT(pipe),
4276 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4277 I915_WRITE(IIR, I915_READ(IIR));
4278 }
4279
4280 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4281 {
4282 struct drm_i915_private *dev_priv =
4283 container_of(work, typeof(*dev_priv),
4284 hotplug_reenable_work.work);
4285 struct drm_device *dev = dev_priv->dev;
4286 struct drm_mode_config *mode_config = &dev->mode_config;
4287 int i;
4288
4289 intel_runtime_pm_get(dev_priv);
4290
4291 spin_lock_irq(&dev_priv->irq_lock);
4292 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4293 struct drm_connector *connector;
4294
4295 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4296 continue;
4297
4298 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4299
4300 list_for_each_entry(connector, &mode_config->connector_list, head) {
4301 struct intel_connector *intel_connector = to_intel_connector(connector);
4302
4303 if (intel_connector->encoder->hpd_pin == i) {
4304 if (connector->polled != intel_connector->polled)
4305 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4306 connector->name);
4307 connector->polled = intel_connector->polled;
4308 if (!connector->polled)
4309 connector->polled = DRM_CONNECTOR_POLL_HPD;
4310 }
4311 }
4312 }
4313 if (dev_priv->display.hpd_irq_setup)
4314 dev_priv->display.hpd_irq_setup(dev);
4315 spin_unlock_irq(&dev_priv->irq_lock);
4316
4317 intel_runtime_pm_put(dev_priv);
4318 }
4319
4320 /**
4321 * intel_irq_init - initializes irq support
4322 * @dev_priv: i915 device instance
4323 *
4324 * This function initializes all the irq support including work items, timers
4325 * and all the vtables. It does not setup the interrupt itself though.
4326 */
4327 void intel_irq_init(struct drm_i915_private *dev_priv)
4328 {
4329 struct drm_device *dev = dev_priv->dev;
4330
4331 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4332 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4333 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4334 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4335
4336 /* Let's track the enabled rps events */
4337 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4338 /* WaGsvRC0ResidencyMethod:vlv */
4339 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4340 else
4341 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4342
4343 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4344 i915_hangcheck_elapsed);
4345 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4346 intel_hpd_irq_reenable_work);
4347
4348 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4349
4350 if (IS_GEN2(dev_priv)) {
4351 dev->max_vblank_count = 0;
4352 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4353 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4354 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4355 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4356 } else {
4357 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4358 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4359 }
4360
4361 /*
4362 * Opt out of the vblank disable timer on everything except gen2.
4363 * Gen2 doesn't have a hardware frame counter and so depends on
4364 * vblank interrupts to produce sane vblank seuquence numbers.
4365 */
4366 if (!IS_GEN2(dev_priv))
4367 dev->vblank_disable_immediate = true;
4368
4369 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4370 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4371
4372 if (IS_CHERRYVIEW(dev_priv)) {
4373 dev->driver->irq_handler = cherryview_irq_handler;
4374 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4375 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4376 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4377 dev->driver->enable_vblank = valleyview_enable_vblank;
4378 dev->driver->disable_vblank = valleyview_disable_vblank;
4379 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4380 } else if (IS_VALLEYVIEW(dev_priv)) {
4381 dev->driver->irq_handler = valleyview_irq_handler;
4382 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4383 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4384 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4385 dev->driver->enable_vblank = valleyview_enable_vblank;
4386 dev->driver->disable_vblank = valleyview_disable_vblank;
4387 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4388 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4389 dev->driver->irq_handler = gen8_irq_handler;
4390 dev->driver->irq_preinstall = gen8_irq_reset;
4391 dev->driver->irq_postinstall = gen8_irq_postinstall;
4392 dev->driver->irq_uninstall = gen8_irq_uninstall;
4393 dev->driver->enable_vblank = gen8_enable_vblank;
4394 dev->driver->disable_vblank = gen8_disable_vblank;
4395 if (HAS_PCH_SPLIT(dev))
4396 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4397 else
4398 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4399 } else if (HAS_PCH_SPLIT(dev)) {
4400 dev->driver->irq_handler = ironlake_irq_handler;
4401 dev->driver->irq_preinstall = ironlake_irq_reset;
4402 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4403 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4404 dev->driver->enable_vblank = ironlake_enable_vblank;
4405 dev->driver->disable_vblank = ironlake_disable_vblank;
4406 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4407 } else {
4408 if (INTEL_INFO(dev_priv)->gen == 2) {
4409 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4410 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4411 dev->driver->irq_handler = i8xx_irq_handler;
4412 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4413 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4414 dev->driver->irq_preinstall = i915_irq_preinstall;
4415 dev->driver->irq_postinstall = i915_irq_postinstall;
4416 dev->driver->irq_uninstall = i915_irq_uninstall;
4417 dev->driver->irq_handler = i915_irq_handler;
4418 } else {
4419 dev->driver->irq_preinstall = i965_irq_preinstall;
4420 dev->driver->irq_postinstall = i965_irq_postinstall;
4421 dev->driver->irq_uninstall = i965_irq_uninstall;
4422 dev->driver->irq_handler = i965_irq_handler;
4423 }
4424 if (I915_HAS_HOTPLUG(dev_priv))
4425 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4426 dev->driver->enable_vblank = i915_enable_vblank;
4427 dev->driver->disable_vblank = i915_disable_vblank;
4428 }
4429 }
4430
4431 /**
4432 * intel_hpd_init - initializes and enables hpd support
4433 * @dev_priv: i915 device instance
4434 *
4435 * This function enables the hotplug support. It requires that interrupts have
4436 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4437 * poll request can run concurrently to other code, so locking rules must be
4438 * obeyed.
4439 *
4440 * This is a separate step from interrupt enabling to simplify the locking rules
4441 * in the driver load and resume code.
4442 */
4443 void intel_hpd_init(struct drm_i915_private *dev_priv)
4444 {
4445 struct drm_device *dev = dev_priv->dev;
4446 struct drm_mode_config *mode_config = &dev->mode_config;
4447 struct drm_connector *connector;
4448 int i;
4449
4450 for (i = 1; i < HPD_NUM_PINS; i++) {
4451 dev_priv->hpd_stats[i].hpd_cnt = 0;
4452 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4453 }
4454 list_for_each_entry(connector, &mode_config->connector_list, head) {
4455 struct intel_connector *intel_connector = to_intel_connector(connector);
4456 connector->polled = intel_connector->polled;
4457 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4458 connector->polled = DRM_CONNECTOR_POLL_HPD;
4459 if (intel_connector->mst_port)
4460 connector->polled = DRM_CONNECTOR_POLL_HPD;
4461 }
4462
4463 /* Interrupt setup is already guaranteed to be single-threaded, this is
4464 * just to make the assert_spin_locked checks happy. */
4465 spin_lock_irq(&dev_priv->irq_lock);
4466 if (dev_priv->display.hpd_irq_setup)
4467 dev_priv->display.hpd_irq_setup(dev);
4468 spin_unlock_irq(&dev_priv->irq_lock);
4469 }
4470
4471 /**
4472 * intel_irq_install - enables the hardware interrupt
4473 * @dev_priv: i915 device instance
4474 *
4475 * This function enables the hardware interrupt handling, but leaves the hotplug
4476 * handling still disabled. It is called after intel_irq_init().
4477 *
4478 * In the driver load and resume code we need working interrupts in a few places
4479 * but don't want to deal with the hassle of concurrent probe and hotplug
4480 * workers. Hence the split into this two-stage approach.
4481 */
4482 int intel_irq_install(struct drm_i915_private *dev_priv)
4483 {
4484 /*
4485 * We enable some interrupt sources in our postinstall hooks, so mark
4486 * interrupts as enabled _before_ actually enabling them to avoid
4487 * special cases in our ordering checks.
4488 */
4489 dev_priv->pm.irqs_enabled = true;
4490
4491 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4492 }
4493
4494 /**
4495 * intel_irq_uninstall - finilizes all irq handling
4496 * @dev_priv: i915 device instance
4497 *
4498 * This stops interrupt and hotplug handling and unregisters and frees all
4499 * resources acquired in the init functions.
4500 */
4501 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4502 {
4503 drm_irq_uninstall(dev_priv->dev);
4504 intel_hpd_cancel_work(dev_priv);
4505 dev_priv->pm.irqs_enabled = false;
4506 }
4507
4508 /**
4509 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4510 * @dev_priv: i915 device instance
4511 *
4512 * This function is used to disable interrupts at runtime, both in the runtime
4513 * pm and the system suspend/resume code.
4514 */
4515 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4516 {
4517 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4518 dev_priv->pm.irqs_enabled = false;
4519 synchronize_irq(dev_priv->dev->irq);
4520 }
4521
4522 /**
4523 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4524 * @dev_priv: i915 device instance
4525 *
4526 * This function is used to enable interrupts at runtime, both in the runtime
4527 * pm and the system suspend/resume code.
4528 */
4529 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4530 {
4531 dev_priv->pm.irqs_enabled = true;
4532 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4533 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4534 }
This page took 0.129495 seconds and 5 git commands to generate.