Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003 engine->user_interrupts++;
1004
1005 wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 struct intel_rps_ei *ei)
1010 {
1011 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 const struct intel_rps_ei *old,
1018 const struct intel_rps_ei *now,
1019 int threshold)
1020 {
1021 u64 time, c0;
1022 unsigned int mul = 100;
1023
1024 if (old->cz_clock == 0)
1025 return false;
1026
1027 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 mul <<= 8;
1029
1030 time = now->cz_clock - old->cz_clock;
1031 time *= threshold * dev_priv->czclk_freq;
1032
1033 /* Workload can be split between render + media, e.g. SwapBuffers
1034 * being blitted in X after being rendered in mesa. To account for
1035 * this we need to combine both engines into our activity counter.
1036 */
1037 c0 = now->render_c0 - old->render_c0;
1038 c0 += now->media_c0 - old->media_c0;
1039 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041 return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 struct intel_rps_ei now;
1053 u32 events = 0;
1054
1055 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 return 0;
1057
1058 vlv_c0_read(dev_priv, &now);
1059 if (now.cz_clock == 0)
1060 return 0;
1061
1062 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 if (!vlv_c0_above(dev_priv,
1064 &dev_priv->rps.down_ei, &now,
1065 dev_priv->rps.down_threshold))
1066 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 dev_priv->rps.down_ei = now;
1068 }
1069
1070 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 if (vlv_c0_above(dev_priv,
1072 &dev_priv->rps.up_ei, &now,
1073 dev_priv->rps.up_threshold))
1074 events |= GEN6_PM_RP_UP_THRESHOLD;
1075 dev_priv->rps.up_ei = now;
1076 }
1077
1078 return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_engine_cs *engine;
1084
1085 for_each_engine(engine, dev_priv)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1268 u32 iir)
1269 {
1270 if (!HAS_L3_DPF(dev_priv))
1271 return;
1272
1273 spin_lock(&dev_priv->irq_lock);
1274 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1275 spin_unlock(&dev_priv->irq_lock);
1276
1277 iir &= GT_PARITY_ERROR(dev_priv);
1278 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1279 dev_priv->l3_parity.which_slice |= 1 << 1;
1280
1281 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1282 dev_priv->l3_parity.which_slice |= 1 << 0;
1283
1284 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1285 }
1286
1287 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1288 u32 gt_iir)
1289 {
1290 if (gt_iir &
1291 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1292 notify_ring(&dev_priv->engine[RCS]);
1293 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1294 notify_ring(&dev_priv->engine[VCS]);
1295 }
1296
1297 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1298 u32 gt_iir)
1299 {
1300
1301 if (gt_iir &
1302 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1303 notify_ring(&dev_priv->engine[RCS]);
1304 if (gt_iir & GT_BSD_USER_INTERRUPT)
1305 notify_ring(&dev_priv->engine[VCS]);
1306 if (gt_iir & GT_BLT_USER_INTERRUPT)
1307 notify_ring(&dev_priv->engine[BCS]);
1308
1309 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1310 GT_BSD_CS_ERROR_INTERRUPT |
1311 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1312 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1313
1314 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1315 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1316 }
1317
1318 static __always_inline void
1319 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1320 {
1321 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1322 notify_ring(engine);
1323 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1324 tasklet_schedule(&engine->irq_tasklet);
1325 }
1326
1327 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1328 u32 master_ctl,
1329 u32 gt_iir[4])
1330 {
1331 irqreturn_t ret = IRQ_NONE;
1332
1333 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1334 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1335 if (gt_iir[0]) {
1336 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1337 ret = IRQ_HANDLED;
1338 } else
1339 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1340 }
1341
1342 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1343 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1344 if (gt_iir[1]) {
1345 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1346 ret = IRQ_HANDLED;
1347 } else
1348 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1349 }
1350
1351 if (master_ctl & GEN8_GT_VECS_IRQ) {
1352 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1353 if (gt_iir[3]) {
1354 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1355 ret = IRQ_HANDLED;
1356 } else
1357 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1358 }
1359
1360 if (master_ctl & GEN8_GT_PM_IRQ) {
1361 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1362 if (gt_iir[2] & dev_priv->pm_rps_events) {
1363 I915_WRITE_FW(GEN8_GT_IIR(2),
1364 gt_iir[2] & dev_priv->pm_rps_events);
1365 ret = IRQ_HANDLED;
1366 } else
1367 DRM_ERROR("The master control interrupt lied (PM)!\n");
1368 }
1369
1370 return ret;
1371 }
1372
1373 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1374 u32 gt_iir[4])
1375 {
1376 if (gt_iir[0]) {
1377 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1378 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1379 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1380 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1381 }
1382
1383 if (gt_iir[1]) {
1384 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1385 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1386 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1387 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1388 }
1389
1390 if (gt_iir[3])
1391 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1392 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1393
1394 if (gt_iir[2] & dev_priv->pm_rps_events)
1395 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1396 }
1397
1398 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1399 {
1400 switch (port) {
1401 case PORT_A:
1402 return val & PORTA_HOTPLUG_LONG_DETECT;
1403 case PORT_B:
1404 return val & PORTB_HOTPLUG_LONG_DETECT;
1405 case PORT_C:
1406 return val & PORTC_HOTPLUG_LONG_DETECT;
1407 default:
1408 return false;
1409 }
1410 }
1411
1412 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1413 {
1414 switch (port) {
1415 case PORT_E:
1416 return val & PORTE_HOTPLUG_LONG_DETECT;
1417 default:
1418 return false;
1419 }
1420 }
1421
1422 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1423 {
1424 switch (port) {
1425 case PORT_A:
1426 return val & PORTA_HOTPLUG_LONG_DETECT;
1427 case PORT_B:
1428 return val & PORTB_HOTPLUG_LONG_DETECT;
1429 case PORT_C:
1430 return val & PORTC_HOTPLUG_LONG_DETECT;
1431 case PORT_D:
1432 return val & PORTD_HOTPLUG_LONG_DETECT;
1433 default:
1434 return false;
1435 }
1436 }
1437
1438 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1439 {
1440 switch (port) {
1441 case PORT_A:
1442 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1443 default:
1444 return false;
1445 }
1446 }
1447
1448 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1449 {
1450 switch (port) {
1451 case PORT_B:
1452 return val & PORTB_HOTPLUG_LONG_DETECT;
1453 case PORT_C:
1454 return val & PORTC_HOTPLUG_LONG_DETECT;
1455 case PORT_D:
1456 return val & PORTD_HOTPLUG_LONG_DETECT;
1457 default:
1458 return false;
1459 }
1460 }
1461
1462 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1463 {
1464 switch (port) {
1465 case PORT_B:
1466 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1467 case PORT_C:
1468 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1469 case PORT_D:
1470 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1471 default:
1472 return false;
1473 }
1474 }
1475
1476 /*
1477 * Get a bit mask of pins that have triggered, and which ones may be long.
1478 * This can be called multiple times with the same masks to accumulate
1479 * hotplug detection results from several registers.
1480 *
1481 * Note that the caller is expected to zero out the masks initially.
1482 */
1483 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1484 u32 hotplug_trigger, u32 dig_hotplug_reg,
1485 const u32 hpd[HPD_NUM_PINS],
1486 bool long_pulse_detect(enum port port, u32 val))
1487 {
1488 enum port port;
1489 int i;
1490
1491 for_each_hpd_pin(i) {
1492 if ((hpd[i] & hotplug_trigger) == 0)
1493 continue;
1494
1495 *pin_mask |= BIT(i);
1496
1497 if (!intel_hpd_pin_to_port(i, &port))
1498 continue;
1499
1500 if (long_pulse_detect(port, dig_hotplug_reg))
1501 *long_mask |= BIT(i);
1502 }
1503
1504 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1505 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1506
1507 }
1508
1509 static void gmbus_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 static void dp_aux_irq_handler(struct drm_device *dev)
1517 {
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520 wake_up_all(&dev_priv->gmbus_wait_queue);
1521 }
1522
1523 #if defined(CONFIG_DEBUG_FS)
1524 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1525 uint32_t crc0, uint32_t crc1,
1526 uint32_t crc2, uint32_t crc3,
1527 uint32_t crc4)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1531 struct intel_pipe_crc_entry *entry;
1532 int head, tail;
1533
1534 spin_lock(&pipe_crc->lock);
1535
1536 if (!pipe_crc->entries) {
1537 spin_unlock(&pipe_crc->lock);
1538 DRM_DEBUG_KMS("spurious interrupt\n");
1539 return;
1540 }
1541
1542 head = pipe_crc->head;
1543 tail = pipe_crc->tail;
1544
1545 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1546 spin_unlock(&pipe_crc->lock);
1547 DRM_ERROR("CRC buffer overflowing\n");
1548 return;
1549 }
1550
1551 entry = &pipe_crc->entries[head];
1552
1553 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1554 entry->crc[0] = crc0;
1555 entry->crc[1] = crc1;
1556 entry->crc[2] = crc2;
1557 entry->crc[3] = crc3;
1558 entry->crc[4] = crc4;
1559
1560 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1561 pipe_crc->head = head;
1562
1563 spin_unlock(&pipe_crc->lock);
1564
1565 wake_up_interruptible(&pipe_crc->wq);
1566 }
1567 #else
1568 static inline void
1569 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1570 uint32_t crc0, uint32_t crc1,
1571 uint32_t crc2, uint32_t crc3,
1572 uint32_t crc4) {}
1573 #endif
1574
1575
1576 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1577 {
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579
1580 display_pipe_crc_irq_handler(dev, pipe,
1581 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1582 0, 0, 0, 0);
1583 }
1584
1585 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 display_pipe_crc_irq_handler(dev, pipe,
1590 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1591 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1592 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1593 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1594 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1595 }
1596
1597 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1598 {
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600 uint32_t res1, res2;
1601
1602 if (INTEL_INFO(dev)->gen >= 3)
1603 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1604 else
1605 res1 = 0;
1606
1607 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1608 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1609 else
1610 res2 = 0;
1611
1612 display_pipe_crc_irq_handler(dev, pipe,
1613 I915_READ(PIPE_CRC_RES_RED(pipe)),
1614 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1615 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1616 res1, res2);
1617 }
1618
1619 /* The RPS events need forcewake, so we add them to a work queue and mask their
1620 * IMR bits until the work is done. Other interrupts can be processed without
1621 * the work queue. */
1622 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1623 {
1624 if (pm_iir & dev_priv->pm_rps_events) {
1625 spin_lock(&dev_priv->irq_lock);
1626 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1627 if (dev_priv->rps.interrupts_enabled) {
1628 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1629 queue_work(dev_priv->wq, &dev_priv->rps.work);
1630 }
1631 spin_unlock(&dev_priv->irq_lock);
1632 }
1633
1634 if (INTEL_INFO(dev_priv)->gen >= 8)
1635 return;
1636
1637 if (HAS_VEBOX(dev_priv)) {
1638 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1639 notify_ring(&dev_priv->engine[VECS]);
1640
1641 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1642 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1643 }
1644 }
1645
1646 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1647 {
1648 if (!drm_handle_vblank(dev, pipe))
1649 return false;
1650
1651 return true;
1652 }
1653
1654 static void valleyview_pipestat_irq_ack(struct drm_device *dev, u32 iir,
1655 u32 pipe_stats[I915_MAX_PIPES])
1656 {
1657 struct drm_i915_private *dev_priv = dev->dev_private;
1658 int pipe;
1659
1660 spin_lock(&dev_priv->irq_lock);
1661
1662 if (!dev_priv->display_irqs_enabled) {
1663 spin_unlock(&dev_priv->irq_lock);
1664 return;
1665 }
1666
1667 for_each_pipe(dev_priv, pipe) {
1668 i915_reg_t reg;
1669 u32 mask, iir_bit = 0;
1670
1671 /*
1672 * PIPESTAT bits get signalled even when the interrupt is
1673 * disabled with the mask bits, and some of the status bits do
1674 * not generate interrupts at all (like the underrun bit). Hence
1675 * we need to be careful that we only handle what we want to
1676 * handle.
1677 */
1678
1679 /* fifo underruns are filterered in the underrun handler. */
1680 mask = PIPE_FIFO_UNDERRUN_STATUS;
1681
1682 switch (pipe) {
1683 case PIPE_A:
1684 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1685 break;
1686 case PIPE_B:
1687 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1688 break;
1689 case PIPE_C:
1690 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1691 break;
1692 }
1693 if (iir & iir_bit)
1694 mask |= dev_priv->pipestat_irq_mask[pipe];
1695
1696 if (!mask)
1697 continue;
1698
1699 reg = PIPESTAT(pipe);
1700 mask |= PIPESTAT_INT_ENABLE_MASK;
1701 pipe_stats[pipe] = I915_READ(reg) & mask;
1702
1703 /*
1704 * Clear the PIPE*STAT regs before the IIR
1705 */
1706 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1707 PIPESTAT_INT_STATUS_MASK))
1708 I915_WRITE(reg, pipe_stats[pipe]);
1709 }
1710 spin_unlock(&dev_priv->irq_lock);
1711 }
1712
1713 static void valleyview_pipestat_irq_handler(struct drm_device *dev,
1714 u32 pipe_stats[I915_MAX_PIPES])
1715 {
1716 struct drm_i915_private *dev_priv = to_i915(dev);
1717 enum pipe pipe;
1718
1719 for_each_pipe(dev_priv, pipe) {
1720 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1721 intel_pipe_handle_vblank(dev, pipe))
1722 intel_check_page_flip(dev, pipe);
1723
1724 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1725 intel_prepare_page_flip(dev, pipe);
1726 intel_finish_page_flip(dev, pipe);
1727 }
1728
1729 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1730 i9xx_pipe_crc_irq_handler(dev, pipe);
1731
1732 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1733 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1734 }
1735
1736 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1737 gmbus_irq_handler(dev);
1738 }
1739
1740 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1741 {
1742 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1743
1744 if (hotplug_status)
1745 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1746
1747 return hotplug_status;
1748 }
1749
1750 static void i9xx_hpd_irq_handler(struct drm_device *dev,
1751 u32 hotplug_status)
1752 {
1753 u32 pin_mask = 0, long_mask = 0;
1754
1755 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_g4x,
1761 i9xx_port_hotplug_long_detect);
1762
1763 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1764 }
1765
1766 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1767 dp_aux_irq_handler(dev);
1768 } else {
1769 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1770
1771 if (hotplug_trigger) {
1772 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1773 hotplug_trigger, hpd_status_i915,
1774 i9xx_port_hotplug_long_detect);
1775 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1776 }
1777 }
1778 }
1779
1780 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1781 {
1782 struct drm_device *dev = arg;
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784 irqreturn_t ret = IRQ_NONE;
1785
1786 if (!intel_irqs_enabled(dev_priv))
1787 return IRQ_NONE;
1788
1789 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1790 disable_rpm_wakeref_asserts(dev_priv);
1791
1792 do {
1793 u32 iir, gt_iir, pm_iir;
1794 u32 pipe_stats[I915_MAX_PIPES] = {};
1795 u32 hotplug_status = 0;
1796 u32 ier = 0;
1797
1798 gt_iir = I915_READ(GTIIR);
1799 pm_iir = I915_READ(GEN6_PMIIR);
1800 iir = I915_READ(VLV_IIR);
1801
1802 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1803 break;
1804
1805 ret = IRQ_HANDLED;
1806
1807 /*
1808 * Theory on interrupt generation, based on empirical evidence:
1809 *
1810 * x = ((VLV_IIR & VLV_IER) ||
1811 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1812 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1813 *
1814 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1815 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1816 * guarantee the CPU interrupt will be raised again even if we
1817 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1818 * bits this time around.
1819 */
1820 I915_WRITE(VLV_MASTER_IER, 0);
1821 ier = I915_READ(VLV_IER);
1822 I915_WRITE(VLV_IER, 0);
1823
1824 if (gt_iir)
1825 I915_WRITE(GTIIR, gt_iir);
1826 if (pm_iir)
1827 I915_WRITE(GEN6_PMIIR, pm_iir);
1828
1829 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1830 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1831
1832 /* Call regardless, as some status bits might not be
1833 * signalled in iir */
1834 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1835
1836 /*
1837 * VLV_IIR is single buffered, and reflects the level
1838 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1839 */
1840 if (iir)
1841 I915_WRITE(VLV_IIR, iir);
1842
1843 I915_WRITE(VLV_IER, ier);
1844 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1845 POSTING_READ(VLV_MASTER_IER);
1846
1847 if (gt_iir)
1848 snb_gt_irq_handler(dev_priv, gt_iir);
1849 if (pm_iir)
1850 gen6_rps_irq_handler(dev_priv, pm_iir);
1851
1852 if (hotplug_status)
1853 i9xx_hpd_irq_handler(dev, hotplug_status);
1854
1855 valleyview_pipestat_irq_handler(dev, pipe_stats);
1856 } while (0);
1857
1858 enable_rpm_wakeref_asserts(dev_priv);
1859
1860 return ret;
1861 }
1862
1863 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1864 {
1865 struct drm_device *dev = arg;
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 irqreturn_t ret = IRQ_NONE;
1868
1869 if (!intel_irqs_enabled(dev_priv))
1870 return IRQ_NONE;
1871
1872 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1873 disable_rpm_wakeref_asserts(dev_priv);
1874
1875 do {
1876 u32 master_ctl, iir;
1877 u32 gt_iir[4] = {};
1878 u32 pipe_stats[I915_MAX_PIPES] = {};
1879 u32 hotplug_status = 0;
1880 u32 ier = 0;
1881
1882 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1883 iir = I915_READ(VLV_IIR);
1884
1885 if (master_ctl == 0 && iir == 0)
1886 break;
1887
1888 ret = IRQ_HANDLED;
1889
1890 /*
1891 * Theory on interrupt generation, based on empirical evidence:
1892 *
1893 * x = ((VLV_IIR & VLV_IER) ||
1894 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1895 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1896 *
1897 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1898 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1899 * guarantee the CPU interrupt will be raised again even if we
1900 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1901 * bits this time around.
1902 */
1903 I915_WRITE(GEN8_MASTER_IRQ, 0);
1904 ier = I915_READ(VLV_IER);
1905 I915_WRITE(VLV_IER, 0);
1906
1907 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1908
1909 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1910 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1911
1912 /* Call regardless, as some status bits might not be
1913 * signalled in iir */
1914 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1915
1916 /*
1917 * VLV_IIR is single buffered, and reflects the level
1918 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 */
1920 if (iir)
1921 I915_WRITE(VLV_IIR, iir);
1922
1923 I915_WRITE(VLV_IER, ier);
1924 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1925 POSTING_READ(GEN8_MASTER_IRQ);
1926
1927 gen8_gt_irq_handler(dev_priv, gt_iir);
1928
1929 if (hotplug_status)
1930 i9xx_hpd_irq_handler(dev, hotplug_status);
1931
1932 valleyview_pipestat_irq_handler(dev, pipe_stats);
1933 } while (0);
1934
1935 enable_rpm_wakeref_asserts(dev_priv);
1936
1937 return ret;
1938 }
1939
1940 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1941 const u32 hpd[HPD_NUM_PINS])
1942 {
1943 struct drm_i915_private *dev_priv = to_i915(dev);
1944 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1945
1946 /*
1947 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1948 * unless we touch the hotplug register, even if hotplug_trigger is
1949 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1950 * errors.
1951 */
1952 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1953 if (!hotplug_trigger) {
1954 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1955 PORTD_HOTPLUG_STATUS_MASK |
1956 PORTC_HOTPLUG_STATUS_MASK |
1957 PORTB_HOTPLUG_STATUS_MASK;
1958 dig_hotplug_reg &= ~mask;
1959 }
1960
1961 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1962 if (!hotplug_trigger)
1963 return;
1964
1965 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1966 dig_hotplug_reg, hpd,
1967 pch_port_hotplug_long_detect);
1968
1969 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1970 }
1971
1972 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 int pipe;
1976 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1977
1978 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1979
1980 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1981 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1982 SDE_AUDIO_POWER_SHIFT);
1983 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1984 port_name(port));
1985 }
1986
1987 if (pch_iir & SDE_AUX_MASK)
1988 dp_aux_irq_handler(dev);
1989
1990 if (pch_iir & SDE_GMBUS)
1991 gmbus_irq_handler(dev);
1992
1993 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1994 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1995
1996 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1997 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1998
1999 if (pch_iir & SDE_POISON)
2000 DRM_ERROR("PCH poison interrupt\n");
2001
2002 if (pch_iir & SDE_FDI_MASK)
2003 for_each_pipe(dev_priv, pipe)
2004 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2005 pipe_name(pipe),
2006 I915_READ(FDI_RX_IIR(pipe)));
2007
2008 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2009 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2010
2011 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2012 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2013
2014 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2015 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016
2017 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2018 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019 }
2020
2021 static void ivb_err_int_handler(struct drm_device *dev)
2022 {
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 u32 err_int = I915_READ(GEN7_ERR_INT);
2025 enum pipe pipe;
2026
2027 if (err_int & ERR_INT_POISON)
2028 DRM_ERROR("Poison interrupt\n");
2029
2030 for_each_pipe(dev_priv, pipe) {
2031 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2032 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2033
2034 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2035 if (IS_IVYBRIDGE(dev))
2036 ivb_pipe_crc_irq_handler(dev, pipe);
2037 else
2038 hsw_pipe_crc_irq_handler(dev, pipe);
2039 }
2040 }
2041
2042 I915_WRITE(GEN7_ERR_INT, err_int);
2043 }
2044
2045 static void cpt_serr_int_handler(struct drm_device *dev)
2046 {
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 u32 serr_int = I915_READ(SERR_INT);
2049
2050 if (serr_int & SERR_INT_POISON)
2051 DRM_ERROR("PCH poison interrupt\n");
2052
2053 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2054 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2055
2056 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2057 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2058
2059 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2060 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2061
2062 I915_WRITE(SERR_INT, serr_int);
2063 }
2064
2065 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 int pipe;
2069 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2070
2071 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2072
2073 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2074 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2075 SDE_AUDIO_POWER_SHIFT_CPT);
2076 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2077 port_name(port));
2078 }
2079
2080 if (pch_iir & SDE_AUX_MASK_CPT)
2081 dp_aux_irq_handler(dev);
2082
2083 if (pch_iir & SDE_GMBUS_CPT)
2084 gmbus_irq_handler(dev);
2085
2086 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2087 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2088
2089 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2090 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2091
2092 if (pch_iir & SDE_FDI_MASK_CPT)
2093 for_each_pipe(dev_priv, pipe)
2094 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2095 pipe_name(pipe),
2096 I915_READ(FDI_RX_IIR(pipe)));
2097
2098 if (pch_iir & SDE_ERROR_CPT)
2099 cpt_serr_int_handler(dev);
2100 }
2101
2102 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2103 {
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2106 ~SDE_PORTE_HOTPLUG_SPT;
2107 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2108 u32 pin_mask = 0, long_mask = 0;
2109
2110 if (hotplug_trigger) {
2111 u32 dig_hotplug_reg;
2112
2113 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2114 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2115
2116 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2117 dig_hotplug_reg, hpd_spt,
2118 spt_port_hotplug_long_detect);
2119 }
2120
2121 if (hotplug2_trigger) {
2122 u32 dig_hotplug_reg;
2123
2124 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2125 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2126
2127 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2128 dig_hotplug_reg, hpd_spt,
2129 spt_port_hotplug2_long_detect);
2130 }
2131
2132 if (pin_mask)
2133 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2134
2135 if (pch_iir & SDE_GMBUS_CPT)
2136 gmbus_irq_handler(dev);
2137 }
2138
2139 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2140 const u32 hpd[HPD_NUM_PINS])
2141 {
2142 struct drm_i915_private *dev_priv = to_i915(dev);
2143 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2144
2145 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2146 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2147
2148 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2149 dig_hotplug_reg, hpd,
2150 ilk_port_hotplug_long_detect);
2151
2152 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2153 }
2154
2155 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2156 {
2157 struct drm_i915_private *dev_priv = dev->dev_private;
2158 enum pipe pipe;
2159 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2160
2161 if (hotplug_trigger)
2162 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2163
2164 if (de_iir & DE_AUX_CHANNEL_A)
2165 dp_aux_irq_handler(dev);
2166
2167 if (de_iir & DE_GSE)
2168 intel_opregion_asle_intr(dev);
2169
2170 if (de_iir & DE_POISON)
2171 DRM_ERROR("Poison interrupt\n");
2172
2173 for_each_pipe(dev_priv, pipe) {
2174 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2175 intel_pipe_handle_vblank(dev, pipe))
2176 intel_check_page_flip(dev, pipe);
2177
2178 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2179 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2180
2181 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2182 i9xx_pipe_crc_irq_handler(dev, pipe);
2183
2184 /* plane/pipes map 1:1 on ilk+ */
2185 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2186 intel_prepare_page_flip(dev, pipe);
2187 intel_finish_page_flip_plane(dev, pipe);
2188 }
2189 }
2190
2191 /* check event from PCH */
2192 if (de_iir & DE_PCH_EVENT) {
2193 u32 pch_iir = I915_READ(SDEIIR);
2194
2195 if (HAS_PCH_CPT(dev))
2196 cpt_irq_handler(dev, pch_iir);
2197 else
2198 ibx_irq_handler(dev, pch_iir);
2199
2200 /* should clear PCH hotplug event before clear CPU irq */
2201 I915_WRITE(SDEIIR, pch_iir);
2202 }
2203
2204 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2205 ironlake_rps_change_irq_handler(dev);
2206 }
2207
2208 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2209 {
2210 struct drm_i915_private *dev_priv = dev->dev_private;
2211 enum pipe pipe;
2212 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2213
2214 if (hotplug_trigger)
2215 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2216
2217 if (de_iir & DE_ERR_INT_IVB)
2218 ivb_err_int_handler(dev);
2219
2220 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2221 dp_aux_irq_handler(dev);
2222
2223 if (de_iir & DE_GSE_IVB)
2224 intel_opregion_asle_intr(dev);
2225
2226 for_each_pipe(dev_priv, pipe) {
2227 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2228 intel_pipe_handle_vblank(dev, pipe))
2229 intel_check_page_flip(dev, pipe);
2230
2231 /* plane/pipes map 1:1 on ilk+ */
2232 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2233 intel_prepare_page_flip(dev, pipe);
2234 intel_finish_page_flip_plane(dev, pipe);
2235 }
2236 }
2237
2238 /* check event from PCH */
2239 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2240 u32 pch_iir = I915_READ(SDEIIR);
2241
2242 cpt_irq_handler(dev, pch_iir);
2243
2244 /* clear PCH hotplug event before clear CPU irq */
2245 I915_WRITE(SDEIIR, pch_iir);
2246 }
2247 }
2248
2249 /*
2250 * To handle irqs with the minimum potential races with fresh interrupts, we:
2251 * 1 - Disable Master Interrupt Control.
2252 * 2 - Find the source(s) of the interrupt.
2253 * 3 - Clear the Interrupt Identity bits (IIR).
2254 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2255 * 5 - Re-enable Master Interrupt Control.
2256 */
2257 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2258 {
2259 struct drm_device *dev = arg;
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2262 irqreturn_t ret = IRQ_NONE;
2263
2264 if (!intel_irqs_enabled(dev_priv))
2265 return IRQ_NONE;
2266
2267 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2268 disable_rpm_wakeref_asserts(dev_priv);
2269
2270 /* disable master interrupt before clearing iir */
2271 de_ier = I915_READ(DEIER);
2272 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2273 POSTING_READ(DEIER);
2274
2275 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2276 * interrupts will will be stored on its back queue, and then we'll be
2277 * able to process them after we restore SDEIER (as soon as we restore
2278 * it, we'll get an interrupt if SDEIIR still has something to process
2279 * due to its back queue). */
2280 if (!HAS_PCH_NOP(dev)) {
2281 sde_ier = I915_READ(SDEIER);
2282 I915_WRITE(SDEIER, 0);
2283 POSTING_READ(SDEIER);
2284 }
2285
2286 /* Find, clear, then process each source of interrupt */
2287
2288 gt_iir = I915_READ(GTIIR);
2289 if (gt_iir) {
2290 I915_WRITE(GTIIR, gt_iir);
2291 ret = IRQ_HANDLED;
2292 if (INTEL_INFO(dev)->gen >= 6)
2293 snb_gt_irq_handler(dev_priv, gt_iir);
2294 else
2295 ilk_gt_irq_handler(dev_priv, gt_iir);
2296 }
2297
2298 de_iir = I915_READ(DEIIR);
2299 if (de_iir) {
2300 I915_WRITE(DEIIR, de_iir);
2301 ret = IRQ_HANDLED;
2302 if (INTEL_INFO(dev)->gen >= 7)
2303 ivb_display_irq_handler(dev, de_iir);
2304 else
2305 ilk_display_irq_handler(dev, de_iir);
2306 }
2307
2308 if (INTEL_INFO(dev)->gen >= 6) {
2309 u32 pm_iir = I915_READ(GEN6_PMIIR);
2310 if (pm_iir) {
2311 I915_WRITE(GEN6_PMIIR, pm_iir);
2312 ret = IRQ_HANDLED;
2313 gen6_rps_irq_handler(dev_priv, pm_iir);
2314 }
2315 }
2316
2317 I915_WRITE(DEIER, de_ier);
2318 POSTING_READ(DEIER);
2319 if (!HAS_PCH_NOP(dev)) {
2320 I915_WRITE(SDEIER, sde_ier);
2321 POSTING_READ(SDEIER);
2322 }
2323
2324 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2325 enable_rpm_wakeref_asserts(dev_priv);
2326
2327 return ret;
2328 }
2329
2330 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2331 const u32 hpd[HPD_NUM_PINS])
2332 {
2333 struct drm_i915_private *dev_priv = to_i915(dev);
2334 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2335
2336 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2337 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2338
2339 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2340 dig_hotplug_reg, hpd,
2341 bxt_port_hotplug_long_detect);
2342
2343 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2344 }
2345
2346 static irqreturn_t
2347 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2348 {
2349 struct drm_device *dev = dev_priv->dev;
2350 irqreturn_t ret = IRQ_NONE;
2351 u32 iir;
2352 enum pipe pipe;
2353
2354 if (master_ctl & GEN8_DE_MISC_IRQ) {
2355 iir = I915_READ(GEN8_DE_MISC_IIR);
2356 if (iir) {
2357 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2358 ret = IRQ_HANDLED;
2359 if (iir & GEN8_DE_MISC_GSE)
2360 intel_opregion_asle_intr(dev);
2361 else
2362 DRM_ERROR("Unexpected DE Misc interrupt\n");
2363 }
2364 else
2365 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2366 }
2367
2368 if (master_ctl & GEN8_DE_PORT_IRQ) {
2369 iir = I915_READ(GEN8_DE_PORT_IIR);
2370 if (iir) {
2371 u32 tmp_mask;
2372 bool found = false;
2373
2374 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2375 ret = IRQ_HANDLED;
2376
2377 tmp_mask = GEN8_AUX_CHANNEL_A;
2378 if (INTEL_INFO(dev_priv)->gen >= 9)
2379 tmp_mask |= GEN9_AUX_CHANNEL_B |
2380 GEN9_AUX_CHANNEL_C |
2381 GEN9_AUX_CHANNEL_D;
2382
2383 if (iir & tmp_mask) {
2384 dp_aux_irq_handler(dev);
2385 found = true;
2386 }
2387
2388 if (IS_BROXTON(dev_priv)) {
2389 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2390 if (tmp_mask) {
2391 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2392 found = true;
2393 }
2394 } else if (IS_BROADWELL(dev_priv)) {
2395 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2396 if (tmp_mask) {
2397 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2398 found = true;
2399 }
2400 }
2401
2402 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2403 gmbus_irq_handler(dev);
2404 found = true;
2405 }
2406
2407 if (!found)
2408 DRM_ERROR("Unexpected DE Port interrupt\n");
2409 }
2410 else
2411 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2412 }
2413
2414 for_each_pipe(dev_priv, pipe) {
2415 u32 flip_done, fault_errors;
2416
2417 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2418 continue;
2419
2420 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2421 if (!iir) {
2422 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2423 continue;
2424 }
2425
2426 ret = IRQ_HANDLED;
2427 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2428
2429 if (iir & GEN8_PIPE_VBLANK &&
2430 intel_pipe_handle_vblank(dev, pipe))
2431 intel_check_page_flip(dev, pipe);
2432
2433 flip_done = iir;
2434 if (INTEL_INFO(dev_priv)->gen >= 9)
2435 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2436 else
2437 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2438
2439 if (flip_done) {
2440 intel_prepare_page_flip(dev, pipe);
2441 intel_finish_page_flip_plane(dev, pipe);
2442 }
2443
2444 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2445 hsw_pipe_crc_irq_handler(dev, pipe);
2446
2447 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2448 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2449
2450 fault_errors = iir;
2451 if (INTEL_INFO(dev_priv)->gen >= 9)
2452 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2453 else
2454 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2455
2456 if (fault_errors)
2457 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2458 pipe_name(pipe),
2459 fault_errors);
2460 }
2461
2462 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2463 master_ctl & GEN8_DE_PCH_IRQ) {
2464 /*
2465 * FIXME(BDW): Assume for now that the new interrupt handling
2466 * scheme also closed the SDE interrupt handling race we've seen
2467 * on older pch-split platforms. But this needs testing.
2468 */
2469 iir = I915_READ(SDEIIR);
2470 if (iir) {
2471 I915_WRITE(SDEIIR, iir);
2472 ret = IRQ_HANDLED;
2473
2474 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2475 spt_irq_handler(dev, iir);
2476 else
2477 cpt_irq_handler(dev, iir);
2478 } else {
2479 /*
2480 * Like on previous PCH there seems to be something
2481 * fishy going on with forwarding PCH interrupts.
2482 */
2483 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2484 }
2485 }
2486
2487 return ret;
2488 }
2489
2490 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2491 {
2492 struct drm_device *dev = arg;
2493 struct drm_i915_private *dev_priv = dev->dev_private;
2494 u32 master_ctl;
2495 u32 gt_iir[4] = {};
2496 irqreturn_t ret;
2497
2498 if (!intel_irqs_enabled(dev_priv))
2499 return IRQ_NONE;
2500
2501 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2502 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2503 if (!master_ctl)
2504 return IRQ_NONE;
2505
2506 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2507
2508 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2509 disable_rpm_wakeref_asserts(dev_priv);
2510
2511 /* Find, clear, then process each source of interrupt */
2512 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2513 gen8_gt_irq_handler(dev_priv, gt_iir);
2514 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2515
2516 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2517 POSTING_READ_FW(GEN8_MASTER_IRQ);
2518
2519 enable_rpm_wakeref_asserts(dev_priv);
2520
2521 return ret;
2522 }
2523
2524 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2525 bool reset_completed)
2526 {
2527 struct intel_engine_cs *engine;
2528
2529 /*
2530 * Notify all waiters for GPU completion events that reset state has
2531 * been changed, and that they need to restart their wait after
2532 * checking for potential errors (and bail out to drop locks if there is
2533 * a gpu reset pending so that i915_error_work_func can acquire them).
2534 */
2535
2536 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2537 for_each_engine(engine, dev_priv)
2538 wake_up_all(&engine->irq_queue);
2539
2540 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2541 wake_up_all(&dev_priv->pending_flip_queue);
2542
2543 /*
2544 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2545 * reset state is cleared.
2546 */
2547 if (reset_completed)
2548 wake_up_all(&dev_priv->gpu_error.reset_queue);
2549 }
2550
2551 /**
2552 * i915_reset_and_wakeup - do process context error handling work
2553 * @dev: drm device
2554 *
2555 * Fire an error uevent so userspace can see that a hang or error
2556 * was detected.
2557 */
2558 static void i915_reset_and_wakeup(struct drm_device *dev)
2559 {
2560 struct drm_i915_private *dev_priv = to_i915(dev);
2561 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2562 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2563 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2564 int ret;
2565
2566 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2567
2568 /*
2569 * Note that there's only one work item which does gpu resets, so we
2570 * need not worry about concurrent gpu resets potentially incrementing
2571 * error->reset_counter twice. We only need to take care of another
2572 * racing irq/hangcheck declaring the gpu dead for a second time. A
2573 * quick check for that is good enough: schedule_work ensures the
2574 * correct ordering between hang detection and this work item, and since
2575 * the reset in-progress bit is only ever set by code outside of this
2576 * work we don't need to worry about any other races.
2577 */
2578 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2579 DRM_DEBUG_DRIVER("resetting chip\n");
2580 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2581 reset_event);
2582
2583 /*
2584 * In most cases it's guaranteed that we get here with an RPM
2585 * reference held, for example because there is a pending GPU
2586 * request that won't finish until the reset is done. This
2587 * isn't the case at least when we get here by doing a
2588 * simulated reset via debugs, so get an RPM reference.
2589 */
2590 intel_runtime_pm_get(dev_priv);
2591
2592 intel_prepare_reset(dev);
2593
2594 /*
2595 * All state reset _must_ be completed before we update the
2596 * reset counter, for otherwise waiters might miss the reset
2597 * pending state and not properly drop locks, resulting in
2598 * deadlocks with the reset work.
2599 */
2600 ret = i915_reset(dev);
2601
2602 intel_finish_reset(dev);
2603
2604 intel_runtime_pm_put(dev_priv);
2605
2606 if (ret == 0)
2607 kobject_uevent_env(&dev->primary->kdev->kobj,
2608 KOBJ_CHANGE, reset_done_event);
2609
2610 /*
2611 * Note: The wake_up also serves as a memory barrier so that
2612 * waiters see the update value of the reset counter atomic_t.
2613 */
2614 i915_error_wake_up(dev_priv, true);
2615 }
2616 }
2617
2618 static void i915_report_and_clear_eir(struct drm_device *dev)
2619 {
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 uint32_t instdone[I915_NUM_INSTDONE_REG];
2622 u32 eir = I915_READ(EIR);
2623 int pipe, i;
2624
2625 if (!eir)
2626 return;
2627
2628 pr_err("render error detected, EIR: 0x%08x\n", eir);
2629
2630 i915_get_extra_instdone(dev, instdone);
2631
2632 if (IS_G4X(dev)) {
2633 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2634 u32 ipeir = I915_READ(IPEIR_I965);
2635
2636 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2637 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2638 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2639 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2640 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2641 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2642 I915_WRITE(IPEIR_I965, ipeir);
2643 POSTING_READ(IPEIR_I965);
2644 }
2645 if (eir & GM45_ERROR_PAGE_TABLE) {
2646 u32 pgtbl_err = I915_READ(PGTBL_ER);
2647 pr_err("page table error\n");
2648 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2649 I915_WRITE(PGTBL_ER, pgtbl_err);
2650 POSTING_READ(PGTBL_ER);
2651 }
2652 }
2653
2654 if (!IS_GEN2(dev)) {
2655 if (eir & I915_ERROR_PAGE_TABLE) {
2656 u32 pgtbl_err = I915_READ(PGTBL_ER);
2657 pr_err("page table error\n");
2658 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2659 I915_WRITE(PGTBL_ER, pgtbl_err);
2660 POSTING_READ(PGTBL_ER);
2661 }
2662 }
2663
2664 if (eir & I915_ERROR_MEMORY_REFRESH) {
2665 pr_err("memory refresh error:\n");
2666 for_each_pipe(dev_priv, pipe)
2667 pr_err("pipe %c stat: 0x%08x\n",
2668 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2669 /* pipestat has already been acked */
2670 }
2671 if (eir & I915_ERROR_INSTRUCTION) {
2672 pr_err("instruction error\n");
2673 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2674 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2675 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2676 if (INTEL_INFO(dev)->gen < 4) {
2677 u32 ipeir = I915_READ(IPEIR);
2678
2679 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2680 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2681 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2682 I915_WRITE(IPEIR, ipeir);
2683 POSTING_READ(IPEIR);
2684 } else {
2685 u32 ipeir = I915_READ(IPEIR_I965);
2686
2687 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2688 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2689 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2690 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2691 I915_WRITE(IPEIR_I965, ipeir);
2692 POSTING_READ(IPEIR_I965);
2693 }
2694 }
2695
2696 I915_WRITE(EIR, eir);
2697 POSTING_READ(EIR);
2698 eir = I915_READ(EIR);
2699 if (eir) {
2700 /*
2701 * some errors might have become stuck,
2702 * mask them.
2703 */
2704 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2705 I915_WRITE(EMR, I915_READ(EMR) | eir);
2706 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2707 }
2708 }
2709
2710 /**
2711 * i915_handle_error - handle a gpu error
2712 * @dev: drm device
2713 * @engine_mask: mask representing engines that are hung
2714 * Do some basic checking of register state at error time and
2715 * dump it to the syslog. Also call i915_capture_error_state() to make
2716 * sure we get a record and make it available in debugfs. Fire a uevent
2717 * so userspace knows something bad happened (should trigger collection
2718 * of a ring dump etc.).
2719 */
2720 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2721 const char *fmt, ...)
2722 {
2723 struct drm_i915_private *dev_priv = dev->dev_private;
2724 va_list args;
2725 char error_msg[80];
2726
2727 va_start(args, fmt);
2728 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2729 va_end(args);
2730
2731 i915_capture_error_state(dev, engine_mask, error_msg);
2732 i915_report_and_clear_eir(dev);
2733
2734 if (engine_mask) {
2735 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2736 &dev_priv->gpu_error.reset_counter);
2737
2738 /*
2739 * Wakeup waiting processes so that the reset function
2740 * i915_reset_and_wakeup doesn't deadlock trying to grab
2741 * various locks. By bumping the reset counter first, the woken
2742 * processes will see a reset in progress and back off,
2743 * releasing their locks and then wait for the reset completion.
2744 * We must do this for _all_ gpu waiters that might hold locks
2745 * that the reset work needs to acquire.
2746 *
2747 * Note: The wake_up serves as the required memory barrier to
2748 * ensure that the waiters see the updated value of the reset
2749 * counter atomic_t.
2750 */
2751 i915_error_wake_up(dev_priv, false);
2752 }
2753
2754 i915_reset_and_wakeup(dev);
2755 }
2756
2757 /* Called from drm generic code, passed 'crtc' which
2758 * we use as a pipe index
2759 */
2760 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 unsigned long irqflags;
2764
2765 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766 if (INTEL_INFO(dev)->gen >= 4)
2767 i915_enable_pipestat(dev_priv, pipe,
2768 PIPE_START_VBLANK_INTERRUPT_STATUS);
2769 else
2770 i915_enable_pipestat(dev_priv, pipe,
2771 PIPE_VBLANK_INTERRUPT_STATUS);
2772 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2773
2774 return 0;
2775 }
2776
2777 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2778 {
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780 unsigned long irqflags;
2781 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2782 DE_PIPE_VBLANK(pipe);
2783
2784 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785 ilk_enable_display_irq(dev_priv, bit);
2786 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787
2788 return 0;
2789 }
2790
2791 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 unsigned long irqflags;
2795
2796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 i915_enable_pipestat(dev_priv, pipe,
2798 PIPE_START_VBLANK_INTERRUPT_STATUS);
2799 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800
2801 return 0;
2802 }
2803
2804 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 unsigned long irqflags;
2808
2809 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2810 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2811 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2812
2813 return 0;
2814 }
2815
2816 /* Called from drm generic code, passed 'crtc' which
2817 * we use as a pipe index
2818 */
2819 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 unsigned long irqflags;
2823
2824 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825 i915_disable_pipestat(dev_priv, pipe,
2826 PIPE_VBLANK_INTERRUPT_STATUS |
2827 PIPE_START_VBLANK_INTERRUPT_STATUS);
2828 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2829 }
2830
2831 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2832 {
2833 struct drm_i915_private *dev_priv = dev->dev_private;
2834 unsigned long irqflags;
2835 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2836 DE_PIPE_VBLANK(pipe);
2837
2838 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2839 ilk_disable_display_irq(dev_priv, bit);
2840 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2841 }
2842
2843 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 unsigned long irqflags;
2847
2848 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849 i915_disable_pipestat(dev_priv, pipe,
2850 PIPE_START_VBLANK_INTERRUPT_STATUS);
2851 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2852 }
2853
2854 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2855 {
2856 struct drm_i915_private *dev_priv = dev->dev_private;
2857 unsigned long irqflags;
2858
2859 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2860 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2861 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2862 }
2863
2864 static bool
2865 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2866 {
2867 return i915_seqno_passed(seqno,
2868 READ_ONCE(engine->last_submitted_seqno));
2869 }
2870
2871 static bool
2872 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2873 {
2874 if (INTEL_INFO(dev)->gen >= 8) {
2875 return (ipehr >> 23) == 0x1c;
2876 } else {
2877 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2878 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2879 MI_SEMAPHORE_REGISTER);
2880 }
2881 }
2882
2883 static struct intel_engine_cs *
2884 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2885 u64 offset)
2886 {
2887 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2888 struct intel_engine_cs *signaller;
2889
2890 if (INTEL_INFO(dev_priv)->gen >= 8) {
2891 for_each_engine(signaller, dev_priv) {
2892 if (engine == signaller)
2893 continue;
2894
2895 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2896 return signaller;
2897 }
2898 } else {
2899 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2900
2901 for_each_engine(signaller, dev_priv) {
2902 if(engine == signaller)
2903 continue;
2904
2905 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2906 return signaller;
2907 }
2908 }
2909
2910 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2911 engine->id, ipehr, offset);
2912
2913 return NULL;
2914 }
2915
2916 static struct intel_engine_cs *
2917 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2918 {
2919 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2920 u32 cmd, ipehr, head;
2921 u64 offset = 0;
2922 int i, backwards;
2923
2924 /*
2925 * This function does not support execlist mode - any attempt to
2926 * proceed further into this function will result in a kernel panic
2927 * when dereferencing ring->buffer, which is not set up in execlist
2928 * mode.
2929 *
2930 * The correct way of doing it would be to derive the currently
2931 * executing ring buffer from the current context, which is derived
2932 * from the currently running request. Unfortunately, to get the
2933 * current request we would have to grab the struct_mutex before doing
2934 * anything else, which would be ill-advised since some other thread
2935 * might have grabbed it already and managed to hang itself, causing
2936 * the hang checker to deadlock.
2937 *
2938 * Therefore, this function does not support execlist mode in its
2939 * current form. Just return NULL and move on.
2940 */
2941 if (engine->buffer == NULL)
2942 return NULL;
2943
2944 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2945 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2946 return NULL;
2947
2948 /*
2949 * HEAD is likely pointing to the dword after the actual command,
2950 * so scan backwards until we find the MBOX. But limit it to just 3
2951 * or 4 dwords depending on the semaphore wait command size.
2952 * Note that we don't care about ACTHD here since that might
2953 * point at at batch, and semaphores are always emitted into the
2954 * ringbuffer itself.
2955 */
2956 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2957 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2958
2959 for (i = backwards; i; --i) {
2960 /*
2961 * Be paranoid and presume the hw has gone off into the wild -
2962 * our ring is smaller than what the hardware (and hence
2963 * HEAD_ADDR) allows. Also handles wrap-around.
2964 */
2965 head &= engine->buffer->size - 1;
2966
2967 /* This here seems to blow up */
2968 cmd = ioread32(engine->buffer->virtual_start + head);
2969 if (cmd == ipehr)
2970 break;
2971
2972 head -= 4;
2973 }
2974
2975 if (!i)
2976 return NULL;
2977
2978 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2979 if (INTEL_INFO(engine->dev)->gen >= 8) {
2980 offset = ioread32(engine->buffer->virtual_start + head + 12);
2981 offset <<= 32;
2982 offset = ioread32(engine->buffer->virtual_start + head + 8);
2983 }
2984 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2985 }
2986
2987 static int semaphore_passed(struct intel_engine_cs *engine)
2988 {
2989 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2990 struct intel_engine_cs *signaller;
2991 u32 seqno;
2992
2993 engine->hangcheck.deadlock++;
2994
2995 signaller = semaphore_waits_for(engine, &seqno);
2996 if (signaller == NULL)
2997 return -1;
2998
2999 /* Prevent pathological recursion due to driver bugs */
3000 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
3001 return -1;
3002
3003 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
3004 return 1;
3005
3006 /* cursory check for an unkickable deadlock */
3007 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3008 semaphore_passed(signaller) < 0)
3009 return -1;
3010
3011 return 0;
3012 }
3013
3014 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3015 {
3016 struct intel_engine_cs *engine;
3017
3018 for_each_engine(engine, dev_priv)
3019 engine->hangcheck.deadlock = 0;
3020 }
3021
3022 static bool subunits_stuck(struct intel_engine_cs *engine)
3023 {
3024 u32 instdone[I915_NUM_INSTDONE_REG];
3025 bool stuck;
3026 int i;
3027
3028 if (engine->id != RCS)
3029 return true;
3030
3031 i915_get_extra_instdone(engine->dev, instdone);
3032
3033 /* There might be unstable subunit states even when
3034 * actual head is not moving. Filter out the unstable ones by
3035 * accumulating the undone -> done transitions and only
3036 * consider those as progress.
3037 */
3038 stuck = true;
3039 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3040 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3041
3042 if (tmp != engine->hangcheck.instdone[i])
3043 stuck = false;
3044
3045 engine->hangcheck.instdone[i] |= tmp;
3046 }
3047
3048 return stuck;
3049 }
3050
3051 static enum intel_ring_hangcheck_action
3052 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3053 {
3054 if (acthd != engine->hangcheck.acthd) {
3055
3056 /* Clear subunit states on head movement */
3057 memset(engine->hangcheck.instdone, 0,
3058 sizeof(engine->hangcheck.instdone));
3059
3060 return HANGCHECK_ACTIVE;
3061 }
3062
3063 if (!subunits_stuck(engine))
3064 return HANGCHECK_ACTIVE;
3065
3066 return HANGCHECK_HUNG;
3067 }
3068
3069 static enum intel_ring_hangcheck_action
3070 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3071 {
3072 struct drm_device *dev = engine->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 enum intel_ring_hangcheck_action ha;
3075 u32 tmp;
3076
3077 ha = head_stuck(engine, acthd);
3078 if (ha != HANGCHECK_HUNG)
3079 return ha;
3080
3081 if (IS_GEN2(dev))
3082 return HANGCHECK_HUNG;
3083
3084 /* Is the chip hanging on a WAIT_FOR_EVENT?
3085 * If so we can simply poke the RB_WAIT bit
3086 * and break the hang. This should work on
3087 * all but the second generation chipsets.
3088 */
3089 tmp = I915_READ_CTL(engine);
3090 if (tmp & RING_WAIT) {
3091 i915_handle_error(dev, 0,
3092 "Kicking stuck wait on %s",
3093 engine->name);
3094 I915_WRITE_CTL(engine, tmp);
3095 return HANGCHECK_KICK;
3096 }
3097
3098 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3099 switch (semaphore_passed(engine)) {
3100 default:
3101 return HANGCHECK_HUNG;
3102 case 1:
3103 i915_handle_error(dev, 0,
3104 "Kicking stuck semaphore on %s",
3105 engine->name);
3106 I915_WRITE_CTL(engine, tmp);
3107 return HANGCHECK_KICK;
3108 case 0:
3109 return HANGCHECK_WAIT;
3110 }
3111 }
3112
3113 return HANGCHECK_HUNG;
3114 }
3115
3116 static unsigned kick_waiters(struct intel_engine_cs *engine)
3117 {
3118 struct drm_i915_private *i915 = to_i915(engine->dev);
3119 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3120
3121 if (engine->hangcheck.user_interrupts == user_interrupts &&
3122 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3123 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3124 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3125 engine->name);
3126 else
3127 DRM_INFO("Fake missed irq on %s\n",
3128 engine->name);
3129 wake_up_all(&engine->irq_queue);
3130 }
3131
3132 return user_interrupts;
3133 }
3134 /*
3135 * This is called when the chip hasn't reported back with completed
3136 * batchbuffers in a long time. We keep track per ring seqno progress and
3137 * if there are no progress, hangcheck score for that ring is increased.
3138 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3139 * we kick the ring. If we see no progress on three subsequent calls
3140 * we assume chip is wedged and try to fix it by resetting the chip.
3141 */
3142 static void i915_hangcheck_elapsed(struct work_struct *work)
3143 {
3144 struct drm_i915_private *dev_priv =
3145 container_of(work, typeof(*dev_priv),
3146 gpu_error.hangcheck_work.work);
3147 struct drm_device *dev = dev_priv->dev;
3148 struct intel_engine_cs *engine;
3149 enum intel_engine_id id;
3150 int busy_count = 0, rings_hung = 0;
3151 bool stuck[I915_NUM_ENGINES] = { 0 };
3152 #define BUSY 1
3153 #define KICK 5
3154 #define HUNG 20
3155 #define ACTIVE_DECAY 15
3156
3157 if (!i915.enable_hangcheck)
3158 return;
3159
3160 /*
3161 * The hangcheck work is synced during runtime suspend, we don't
3162 * require a wakeref. TODO: instead of disabling the asserts make
3163 * sure that we hold a reference when this work is running.
3164 */
3165 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3166
3167 /* As enabling the GPU requires fairly extensive mmio access,
3168 * periodically arm the mmio checker to see if we are triggering
3169 * any invalid access.
3170 */
3171 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3172
3173 for_each_engine_id(engine, dev_priv, id) {
3174 u64 acthd;
3175 u32 seqno;
3176 unsigned user_interrupts;
3177 bool busy = true;
3178
3179 semaphore_clear_deadlocks(dev_priv);
3180
3181 /* We don't strictly need an irq-barrier here, as we are not
3182 * serving an interrupt request, be paranoid in case the
3183 * barrier has side-effects (such as preventing a broken
3184 * cacheline snoop) and so be sure that we can see the seqno
3185 * advance. If the seqno should stick, due to a stale
3186 * cacheline, we would erroneously declare the GPU hung.
3187 */
3188 if (engine->irq_seqno_barrier)
3189 engine->irq_seqno_barrier(engine);
3190
3191 acthd = intel_ring_get_active_head(engine);
3192 seqno = engine->get_seqno(engine);
3193
3194 /* Reset stuck interrupts between batch advances */
3195 user_interrupts = 0;
3196
3197 if (engine->hangcheck.seqno == seqno) {
3198 if (ring_idle(engine, seqno)) {
3199 engine->hangcheck.action = HANGCHECK_IDLE;
3200 if (waitqueue_active(&engine->irq_queue)) {
3201 /* Safeguard against driver failure */
3202 user_interrupts = kick_waiters(engine);
3203 engine->hangcheck.score += BUSY;
3204 } else
3205 busy = false;
3206 } else {
3207 /* We always increment the hangcheck score
3208 * if the ring is busy and still processing
3209 * the same request, so that no single request
3210 * can run indefinitely (such as a chain of
3211 * batches). The only time we do not increment
3212 * the hangcheck score on this ring, if this
3213 * ring is in a legitimate wait for another
3214 * ring. In that case the waiting ring is a
3215 * victim and we want to be sure we catch the
3216 * right culprit. Then every time we do kick
3217 * the ring, add a small increment to the
3218 * score so that we can catch a batch that is
3219 * being repeatedly kicked and so responsible
3220 * for stalling the machine.
3221 */
3222 engine->hangcheck.action = ring_stuck(engine,
3223 acthd);
3224
3225 switch (engine->hangcheck.action) {
3226 case HANGCHECK_IDLE:
3227 case HANGCHECK_WAIT:
3228 break;
3229 case HANGCHECK_ACTIVE:
3230 engine->hangcheck.score += BUSY;
3231 break;
3232 case HANGCHECK_KICK:
3233 engine->hangcheck.score += KICK;
3234 break;
3235 case HANGCHECK_HUNG:
3236 engine->hangcheck.score += HUNG;
3237 stuck[id] = true;
3238 break;
3239 }
3240 }
3241 } else {
3242 engine->hangcheck.action = HANGCHECK_ACTIVE;
3243
3244 /* Gradually reduce the count so that we catch DoS
3245 * attempts across multiple batches.
3246 */
3247 if (engine->hangcheck.score > 0)
3248 engine->hangcheck.score -= ACTIVE_DECAY;
3249 if (engine->hangcheck.score < 0)
3250 engine->hangcheck.score = 0;
3251
3252 /* Clear head and subunit states on seqno movement */
3253 acthd = 0;
3254
3255 memset(engine->hangcheck.instdone, 0,
3256 sizeof(engine->hangcheck.instdone));
3257 }
3258
3259 engine->hangcheck.seqno = seqno;
3260 engine->hangcheck.acthd = acthd;
3261 engine->hangcheck.user_interrupts = user_interrupts;
3262 busy_count += busy;
3263 }
3264
3265 for_each_engine_id(engine, dev_priv, id) {
3266 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3267 DRM_INFO("%s on %s\n",
3268 stuck[id] ? "stuck" : "no progress",
3269 engine->name);
3270 rings_hung |= intel_engine_flag(engine);
3271 }
3272 }
3273
3274 if (rings_hung) {
3275 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3276 goto out;
3277 }
3278
3279 if (busy_count)
3280 /* Reset timer case chip hangs without another request
3281 * being added */
3282 i915_queue_hangcheck(dev);
3283
3284 out:
3285 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3286 }
3287
3288 void i915_queue_hangcheck(struct drm_device *dev)
3289 {
3290 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3291
3292 if (!i915.enable_hangcheck)
3293 return;
3294
3295 /* Don't continually defer the hangcheck so that it is always run at
3296 * least once after work has been scheduled on any ring. Otherwise,
3297 * we will ignore a hung ring if a second ring is kept busy.
3298 */
3299
3300 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3301 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3302 }
3303
3304 static void ibx_irq_reset(struct drm_device *dev)
3305 {
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307
3308 if (HAS_PCH_NOP(dev))
3309 return;
3310
3311 GEN5_IRQ_RESET(SDE);
3312
3313 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3314 I915_WRITE(SERR_INT, 0xffffffff);
3315 }
3316
3317 /*
3318 * SDEIER is also touched by the interrupt handler to work around missed PCH
3319 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3320 * instead we unconditionally enable all PCH interrupt sources here, but then
3321 * only unmask them as needed with SDEIMR.
3322 *
3323 * This function needs to be called before interrupts are enabled.
3324 */
3325 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3326 {
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329 if (HAS_PCH_NOP(dev))
3330 return;
3331
3332 WARN_ON(I915_READ(SDEIER) != 0);
3333 I915_WRITE(SDEIER, 0xffffffff);
3334 POSTING_READ(SDEIER);
3335 }
3336
3337 static void gen5_gt_irq_reset(struct drm_device *dev)
3338 {
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340
3341 GEN5_IRQ_RESET(GT);
3342 if (INTEL_INFO(dev)->gen >= 6)
3343 GEN5_IRQ_RESET(GEN6_PM);
3344 }
3345
3346 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3347 {
3348 enum pipe pipe;
3349
3350 if (IS_CHERRYVIEW(dev_priv))
3351 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3352 else
3353 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3354
3355 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3356 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3357
3358 for_each_pipe(dev_priv, pipe) {
3359 I915_WRITE(PIPESTAT(pipe),
3360 PIPE_FIFO_UNDERRUN_STATUS |
3361 PIPESTAT_INT_STATUS_MASK);
3362 dev_priv->pipestat_irq_mask[pipe] = 0;
3363 }
3364
3365 GEN5_IRQ_RESET(VLV_);
3366 dev_priv->irq_mask = ~0;
3367 }
3368
3369 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3370 {
3371 u32 pipestat_mask;
3372 u32 enable_mask;
3373 enum pipe pipe;
3374
3375 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3376 PIPE_CRC_DONE_INTERRUPT_STATUS;
3377
3378 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3379 for_each_pipe(dev_priv, pipe)
3380 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3381
3382 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3383 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3384 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3385 if (IS_CHERRYVIEW(dev_priv))
3386 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3387
3388 WARN_ON(dev_priv->irq_mask != ~0);
3389
3390 dev_priv->irq_mask = ~enable_mask;
3391
3392 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3393 }
3394
3395 /* drm_dma.h hooks
3396 */
3397 static void ironlake_irq_reset(struct drm_device *dev)
3398 {
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400
3401 I915_WRITE(HWSTAM, 0xffffffff);
3402
3403 GEN5_IRQ_RESET(DE);
3404 if (IS_GEN7(dev))
3405 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3406
3407 gen5_gt_irq_reset(dev);
3408
3409 ibx_irq_reset(dev);
3410 }
3411
3412 static void valleyview_irq_preinstall(struct drm_device *dev)
3413 {
3414 struct drm_i915_private *dev_priv = dev->dev_private;
3415
3416 I915_WRITE(VLV_MASTER_IER, 0);
3417 POSTING_READ(VLV_MASTER_IER);
3418
3419 gen5_gt_irq_reset(dev);
3420
3421 spin_lock_irq(&dev_priv->irq_lock);
3422 if (dev_priv->display_irqs_enabled)
3423 vlv_display_irq_reset(dev_priv);
3424 spin_unlock_irq(&dev_priv->irq_lock);
3425 }
3426
3427 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3428 {
3429 GEN8_IRQ_RESET_NDX(GT, 0);
3430 GEN8_IRQ_RESET_NDX(GT, 1);
3431 GEN8_IRQ_RESET_NDX(GT, 2);
3432 GEN8_IRQ_RESET_NDX(GT, 3);
3433 }
3434
3435 static void gen8_irq_reset(struct drm_device *dev)
3436 {
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 int pipe;
3439
3440 I915_WRITE(GEN8_MASTER_IRQ, 0);
3441 POSTING_READ(GEN8_MASTER_IRQ);
3442
3443 gen8_gt_irq_reset(dev_priv);
3444
3445 for_each_pipe(dev_priv, pipe)
3446 if (intel_display_power_is_enabled(dev_priv,
3447 POWER_DOMAIN_PIPE(pipe)))
3448 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3449
3450 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3451 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3452 GEN5_IRQ_RESET(GEN8_PCU_);
3453
3454 if (HAS_PCH_SPLIT(dev))
3455 ibx_irq_reset(dev);
3456 }
3457
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3459 unsigned int pipe_mask)
3460 {
3461 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3462 enum pipe pipe;
3463
3464 spin_lock_irq(&dev_priv->irq_lock);
3465 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3466 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3467 dev_priv->de_irq_mask[pipe],
3468 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3469 spin_unlock_irq(&dev_priv->irq_lock);
3470 }
3471
3472 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3473 unsigned int pipe_mask)
3474 {
3475 enum pipe pipe;
3476
3477 spin_lock_irq(&dev_priv->irq_lock);
3478 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3479 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3480 spin_unlock_irq(&dev_priv->irq_lock);
3481
3482 /* make sure we're done processing display irqs */
3483 synchronize_irq(dev_priv->dev->irq);
3484 }
3485
3486 static void cherryview_irq_preinstall(struct drm_device *dev)
3487 {
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490 I915_WRITE(GEN8_MASTER_IRQ, 0);
3491 POSTING_READ(GEN8_MASTER_IRQ);
3492
3493 gen8_gt_irq_reset(dev_priv);
3494
3495 GEN5_IRQ_RESET(GEN8_PCU_);
3496
3497 spin_lock_irq(&dev_priv->irq_lock);
3498 if (dev_priv->display_irqs_enabled)
3499 vlv_display_irq_reset(dev_priv);
3500 spin_unlock_irq(&dev_priv->irq_lock);
3501 }
3502
3503 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3504 const u32 hpd[HPD_NUM_PINS])
3505 {
3506 struct drm_i915_private *dev_priv = to_i915(dev);
3507 struct intel_encoder *encoder;
3508 u32 enabled_irqs = 0;
3509
3510 for_each_intel_encoder(dev, encoder)
3511 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3512 enabled_irqs |= hpd[encoder->hpd_pin];
3513
3514 return enabled_irqs;
3515 }
3516
3517 static void ibx_hpd_irq_setup(struct drm_device *dev)
3518 {
3519 struct drm_i915_private *dev_priv = dev->dev_private;
3520 u32 hotplug_irqs, hotplug, enabled_irqs;
3521
3522 if (HAS_PCH_IBX(dev)) {
3523 hotplug_irqs = SDE_HOTPLUG_MASK;
3524 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3525 } else {
3526 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3527 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3528 }
3529
3530 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3531
3532 /*
3533 * Enable digital hotplug on the PCH, and configure the DP short pulse
3534 * duration to 2ms (which is the minimum in the Display Port spec).
3535 * The pulse duration bits are reserved on LPT+.
3536 */
3537 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3539 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3540 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3541 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3542 /*
3543 * When CPU and PCH are on the same package, port A
3544 * HPD must be enabled in both north and south.
3545 */
3546 if (HAS_PCH_LPT_LP(dev))
3547 hotplug |= PORTA_HOTPLUG_ENABLE;
3548 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3549 }
3550
3551 static void spt_hpd_irq_setup(struct drm_device *dev)
3552 {
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 u32 hotplug_irqs, hotplug, enabled_irqs;
3555
3556 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3557 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3558
3559 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3560
3561 /* Enable digital hotplug on the PCH */
3562 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3563 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3564 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3565 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3566
3567 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3568 hotplug |= PORTE_HOTPLUG_ENABLE;
3569 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3570 }
3571
3572 static void ilk_hpd_irq_setup(struct drm_device *dev)
3573 {
3574 struct drm_i915_private *dev_priv = dev->dev_private;
3575 u32 hotplug_irqs, hotplug, enabled_irqs;
3576
3577 if (INTEL_INFO(dev)->gen >= 8) {
3578 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3579 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3580
3581 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3582 } else if (INTEL_INFO(dev)->gen >= 7) {
3583 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3584 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3585
3586 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3587 } else {
3588 hotplug_irqs = DE_DP_A_HOTPLUG;
3589 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3590
3591 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3592 }
3593
3594 /*
3595 * Enable digital hotplug on the CPU, and configure the DP short pulse
3596 * duration to 2ms (which is the minimum in the Display Port spec)
3597 * The pulse duration bits are reserved on HSW+.
3598 */
3599 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3600 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3601 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3602 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3603
3604 ibx_hpd_irq_setup(dev);
3605 }
3606
3607 static void bxt_hpd_irq_setup(struct drm_device *dev)
3608 {
3609 struct drm_i915_private *dev_priv = dev->dev_private;
3610 u32 hotplug_irqs, hotplug, enabled_irqs;
3611
3612 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3613 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3614
3615 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3616
3617 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3618 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3619 PORTA_HOTPLUG_ENABLE;
3620
3621 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3622 hotplug, enabled_irqs);
3623 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3624
3625 /*
3626 * For BXT invert bit has to be set based on AOB design
3627 * for HPD detection logic, update it based on VBT fields.
3628 */
3629
3630 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3631 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3632 hotplug |= BXT_DDIA_HPD_INVERT;
3633 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3634 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3635 hotplug |= BXT_DDIB_HPD_INVERT;
3636 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3637 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3638 hotplug |= BXT_DDIC_HPD_INVERT;
3639
3640 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3641 }
3642
3643 static void ibx_irq_postinstall(struct drm_device *dev)
3644 {
3645 struct drm_i915_private *dev_priv = dev->dev_private;
3646 u32 mask;
3647
3648 if (HAS_PCH_NOP(dev))
3649 return;
3650
3651 if (HAS_PCH_IBX(dev))
3652 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3653 else
3654 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3655
3656 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3657 I915_WRITE(SDEIMR, ~mask);
3658 }
3659
3660 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3661 {
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 u32 pm_irqs, gt_irqs;
3664
3665 pm_irqs = gt_irqs = 0;
3666
3667 dev_priv->gt_irq_mask = ~0;
3668 if (HAS_L3_DPF(dev)) {
3669 /* L3 parity interrupt is always unmasked. */
3670 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3671 gt_irqs |= GT_PARITY_ERROR(dev);
3672 }
3673
3674 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3675 if (IS_GEN5(dev)) {
3676 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3677 ILK_BSD_USER_INTERRUPT;
3678 } else {
3679 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3680 }
3681
3682 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3683
3684 if (INTEL_INFO(dev)->gen >= 6) {
3685 /*
3686 * RPS interrupts will get enabled/disabled on demand when RPS
3687 * itself is enabled/disabled.
3688 */
3689 if (HAS_VEBOX(dev))
3690 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3691
3692 dev_priv->pm_irq_mask = 0xffffffff;
3693 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3694 }
3695 }
3696
3697 static int ironlake_irq_postinstall(struct drm_device *dev)
3698 {
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700 u32 display_mask, extra_mask;
3701
3702 if (INTEL_INFO(dev)->gen >= 7) {
3703 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3704 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3705 DE_PLANEB_FLIP_DONE_IVB |
3706 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3707 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3708 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3709 DE_DP_A_HOTPLUG_IVB);
3710 } else {
3711 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3712 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3713 DE_AUX_CHANNEL_A |
3714 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3715 DE_POISON);
3716 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3717 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3718 DE_DP_A_HOTPLUG);
3719 }
3720
3721 dev_priv->irq_mask = ~display_mask;
3722
3723 I915_WRITE(HWSTAM, 0xeffe);
3724
3725 ibx_irq_pre_postinstall(dev);
3726
3727 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3728
3729 gen5_gt_irq_postinstall(dev);
3730
3731 ibx_irq_postinstall(dev);
3732
3733 if (IS_IRONLAKE_M(dev)) {
3734 /* Enable PCU event interrupts
3735 *
3736 * spinlocking not required here for correctness since interrupt
3737 * setup is guaranteed to run in single-threaded context. But we
3738 * need it to make the assert_spin_locked happy. */
3739 spin_lock_irq(&dev_priv->irq_lock);
3740 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3741 spin_unlock_irq(&dev_priv->irq_lock);
3742 }
3743
3744 return 0;
3745 }
3746
3747 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3748 {
3749 assert_spin_locked(&dev_priv->irq_lock);
3750
3751 if (dev_priv->display_irqs_enabled)
3752 return;
3753
3754 dev_priv->display_irqs_enabled = true;
3755
3756 if (intel_irqs_enabled(dev_priv)) {
3757 vlv_display_irq_reset(dev_priv);
3758 vlv_display_irq_postinstall(dev_priv);
3759 }
3760 }
3761
3762 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3763 {
3764 assert_spin_locked(&dev_priv->irq_lock);
3765
3766 if (!dev_priv->display_irqs_enabled)
3767 return;
3768
3769 dev_priv->display_irqs_enabled = false;
3770
3771 if (intel_irqs_enabled(dev_priv))
3772 vlv_display_irq_reset(dev_priv);
3773 }
3774
3775
3776 static int valleyview_irq_postinstall(struct drm_device *dev)
3777 {
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780 gen5_gt_irq_postinstall(dev);
3781
3782 spin_lock_irq(&dev_priv->irq_lock);
3783 if (dev_priv->display_irqs_enabled)
3784 vlv_display_irq_postinstall(dev_priv);
3785 spin_unlock_irq(&dev_priv->irq_lock);
3786
3787 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3788 POSTING_READ(VLV_MASTER_IER);
3789
3790 return 0;
3791 }
3792
3793 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795 /* These are interrupts we'll toggle with the ring mask register */
3796 uint32_t gt_interrupts[] = {
3797 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3798 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3799 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3800 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3801 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3802 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3803 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3804 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3805 0,
3806 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3807 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3808 };
3809
3810 if (HAS_L3_DPF(dev_priv))
3811 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3812
3813 dev_priv->pm_irq_mask = 0xffffffff;
3814 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3815 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3816 /*
3817 * RPS interrupts will get enabled/disabled on demand when RPS itself
3818 * is enabled/disabled.
3819 */
3820 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3821 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3822 }
3823
3824 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3825 {
3826 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3827 uint32_t de_pipe_enables;
3828 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3829 u32 de_port_enables;
3830 enum pipe pipe;
3831
3832 if (INTEL_INFO(dev_priv)->gen >= 9) {
3833 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3834 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3835 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3836 GEN9_AUX_CHANNEL_D;
3837 if (IS_BROXTON(dev_priv))
3838 de_port_masked |= BXT_DE_PORT_GMBUS;
3839 } else {
3840 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3841 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3842 }
3843
3844 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3845 GEN8_PIPE_FIFO_UNDERRUN;
3846
3847 de_port_enables = de_port_masked;
3848 if (IS_BROXTON(dev_priv))
3849 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3850 else if (IS_BROADWELL(dev_priv))
3851 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3852
3853 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3854 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3855 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3856
3857 for_each_pipe(dev_priv, pipe)
3858 if (intel_display_power_is_enabled(dev_priv,
3859 POWER_DOMAIN_PIPE(pipe)))
3860 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3861 dev_priv->de_irq_mask[pipe],
3862 de_pipe_enables);
3863
3864 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3865 }
3866
3867 static int gen8_irq_postinstall(struct drm_device *dev)
3868 {
3869 struct drm_i915_private *dev_priv = dev->dev_private;
3870
3871 if (HAS_PCH_SPLIT(dev))
3872 ibx_irq_pre_postinstall(dev);
3873
3874 gen8_gt_irq_postinstall(dev_priv);
3875 gen8_de_irq_postinstall(dev_priv);
3876
3877 if (HAS_PCH_SPLIT(dev))
3878 ibx_irq_postinstall(dev);
3879
3880 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3881 POSTING_READ(GEN8_MASTER_IRQ);
3882
3883 return 0;
3884 }
3885
3886 static int cherryview_irq_postinstall(struct drm_device *dev)
3887 {
3888 struct drm_i915_private *dev_priv = dev->dev_private;
3889
3890 gen8_gt_irq_postinstall(dev_priv);
3891
3892 spin_lock_irq(&dev_priv->irq_lock);
3893 if (dev_priv->display_irqs_enabled)
3894 vlv_display_irq_postinstall(dev_priv);
3895 spin_unlock_irq(&dev_priv->irq_lock);
3896
3897 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3898 POSTING_READ(GEN8_MASTER_IRQ);
3899
3900 return 0;
3901 }
3902
3903 static void gen8_irq_uninstall(struct drm_device *dev)
3904 {
3905 struct drm_i915_private *dev_priv = dev->dev_private;
3906
3907 if (!dev_priv)
3908 return;
3909
3910 gen8_irq_reset(dev);
3911 }
3912
3913 static void valleyview_irq_uninstall(struct drm_device *dev)
3914 {
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917 if (!dev_priv)
3918 return;
3919
3920 I915_WRITE(VLV_MASTER_IER, 0);
3921 POSTING_READ(VLV_MASTER_IER);
3922
3923 gen5_gt_irq_reset(dev);
3924
3925 I915_WRITE(HWSTAM, 0xffffffff);
3926
3927 spin_lock_irq(&dev_priv->irq_lock);
3928 if (dev_priv->display_irqs_enabled)
3929 vlv_display_irq_reset(dev_priv);
3930 spin_unlock_irq(&dev_priv->irq_lock);
3931 }
3932
3933 static void cherryview_irq_uninstall(struct drm_device *dev)
3934 {
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936
3937 if (!dev_priv)
3938 return;
3939
3940 I915_WRITE(GEN8_MASTER_IRQ, 0);
3941 POSTING_READ(GEN8_MASTER_IRQ);
3942
3943 gen8_gt_irq_reset(dev_priv);
3944
3945 GEN5_IRQ_RESET(GEN8_PCU_);
3946
3947 spin_lock_irq(&dev_priv->irq_lock);
3948 if (dev_priv->display_irqs_enabled)
3949 vlv_display_irq_reset(dev_priv);
3950 spin_unlock_irq(&dev_priv->irq_lock);
3951 }
3952
3953 static void ironlake_irq_uninstall(struct drm_device *dev)
3954 {
3955 struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957 if (!dev_priv)
3958 return;
3959
3960 ironlake_irq_reset(dev);
3961 }
3962
3963 static void i8xx_irq_preinstall(struct drm_device * dev)
3964 {
3965 struct drm_i915_private *dev_priv = dev->dev_private;
3966 int pipe;
3967
3968 for_each_pipe(dev_priv, pipe)
3969 I915_WRITE(PIPESTAT(pipe), 0);
3970 I915_WRITE16(IMR, 0xffff);
3971 I915_WRITE16(IER, 0x0);
3972 POSTING_READ16(IER);
3973 }
3974
3975 static int i8xx_irq_postinstall(struct drm_device *dev)
3976 {
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979 I915_WRITE16(EMR,
3980 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3981
3982 /* Unmask the interrupts that we always want on. */
3983 dev_priv->irq_mask =
3984 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3985 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3986 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3987 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3988 I915_WRITE16(IMR, dev_priv->irq_mask);
3989
3990 I915_WRITE16(IER,
3991 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3992 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3993 I915_USER_INTERRUPT);
3994 POSTING_READ16(IER);
3995
3996 /* Interrupt setup is already guaranteed to be single-threaded, this is
3997 * just to make the assert_spin_locked check happy. */
3998 spin_lock_irq(&dev_priv->irq_lock);
3999 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4000 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4001 spin_unlock_irq(&dev_priv->irq_lock);
4002
4003 return 0;
4004 }
4005
4006 /*
4007 * Returns true when a page flip has completed.
4008 */
4009 static bool i8xx_handle_vblank(struct drm_device *dev,
4010 int plane, int pipe, u32 iir)
4011 {
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4014
4015 if (!intel_pipe_handle_vblank(dev, pipe))
4016 return false;
4017
4018 if ((iir & flip_pending) == 0)
4019 goto check_page_flip;
4020
4021 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4022 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4023 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4024 * the flip is completed (no longer pending). Since this doesn't raise
4025 * an interrupt per se, we watch for the change at vblank.
4026 */
4027 if (I915_READ16(ISR) & flip_pending)
4028 goto check_page_flip;
4029
4030 intel_prepare_page_flip(dev, plane);
4031 intel_finish_page_flip(dev, pipe);
4032 return true;
4033
4034 check_page_flip:
4035 intel_check_page_flip(dev, pipe);
4036 return false;
4037 }
4038
4039 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4040 {
4041 struct drm_device *dev = arg;
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043 u16 iir, new_iir;
4044 u32 pipe_stats[2];
4045 int pipe;
4046 u16 flip_mask =
4047 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4048 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4049 irqreturn_t ret;
4050
4051 if (!intel_irqs_enabled(dev_priv))
4052 return IRQ_NONE;
4053
4054 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4055 disable_rpm_wakeref_asserts(dev_priv);
4056
4057 ret = IRQ_NONE;
4058 iir = I915_READ16(IIR);
4059 if (iir == 0)
4060 goto out;
4061
4062 while (iir & ~flip_mask) {
4063 /* Can't rely on pipestat interrupt bit in iir as it might
4064 * have been cleared after the pipestat interrupt was received.
4065 * It doesn't set the bit in iir again, but it still produces
4066 * interrupts (for non-MSI).
4067 */
4068 spin_lock(&dev_priv->irq_lock);
4069 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4070 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4071
4072 for_each_pipe(dev_priv, pipe) {
4073 i915_reg_t reg = PIPESTAT(pipe);
4074 pipe_stats[pipe] = I915_READ(reg);
4075
4076 /*
4077 * Clear the PIPE*STAT regs before the IIR
4078 */
4079 if (pipe_stats[pipe] & 0x8000ffff)
4080 I915_WRITE(reg, pipe_stats[pipe]);
4081 }
4082 spin_unlock(&dev_priv->irq_lock);
4083
4084 I915_WRITE16(IIR, iir & ~flip_mask);
4085 new_iir = I915_READ16(IIR); /* Flush posted writes */
4086
4087 if (iir & I915_USER_INTERRUPT)
4088 notify_ring(&dev_priv->engine[RCS]);
4089
4090 for_each_pipe(dev_priv, pipe) {
4091 int plane = pipe;
4092 if (HAS_FBC(dev))
4093 plane = !plane;
4094
4095 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4096 i8xx_handle_vblank(dev, plane, pipe, iir))
4097 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4098
4099 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4100 i9xx_pipe_crc_irq_handler(dev, pipe);
4101
4102 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4103 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4104 pipe);
4105 }
4106
4107 iir = new_iir;
4108 }
4109 ret = IRQ_HANDLED;
4110
4111 out:
4112 enable_rpm_wakeref_asserts(dev_priv);
4113
4114 return ret;
4115 }
4116
4117 static void i8xx_irq_uninstall(struct drm_device * dev)
4118 {
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120 int pipe;
4121
4122 for_each_pipe(dev_priv, pipe) {
4123 /* Clear enable bits; then clear status bits */
4124 I915_WRITE(PIPESTAT(pipe), 0);
4125 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4126 }
4127 I915_WRITE16(IMR, 0xffff);
4128 I915_WRITE16(IER, 0x0);
4129 I915_WRITE16(IIR, I915_READ16(IIR));
4130 }
4131
4132 static void i915_irq_preinstall(struct drm_device * dev)
4133 {
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135 int pipe;
4136
4137 if (I915_HAS_HOTPLUG(dev)) {
4138 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4139 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4140 }
4141
4142 I915_WRITE16(HWSTAM, 0xeffe);
4143 for_each_pipe(dev_priv, pipe)
4144 I915_WRITE(PIPESTAT(pipe), 0);
4145 I915_WRITE(IMR, 0xffffffff);
4146 I915_WRITE(IER, 0x0);
4147 POSTING_READ(IER);
4148 }
4149
4150 static int i915_irq_postinstall(struct drm_device *dev)
4151 {
4152 struct drm_i915_private *dev_priv = dev->dev_private;
4153 u32 enable_mask;
4154
4155 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4156
4157 /* Unmask the interrupts that we always want on. */
4158 dev_priv->irq_mask =
4159 ~(I915_ASLE_INTERRUPT |
4160 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4161 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4162 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4163 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4164
4165 enable_mask =
4166 I915_ASLE_INTERRUPT |
4167 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4168 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4169 I915_USER_INTERRUPT;
4170
4171 if (I915_HAS_HOTPLUG(dev)) {
4172 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4173 POSTING_READ(PORT_HOTPLUG_EN);
4174
4175 /* Enable in IER... */
4176 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4177 /* and unmask in IMR */
4178 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4179 }
4180
4181 I915_WRITE(IMR, dev_priv->irq_mask);
4182 I915_WRITE(IER, enable_mask);
4183 POSTING_READ(IER);
4184
4185 i915_enable_asle_pipestat(dev);
4186
4187 /* Interrupt setup is already guaranteed to be single-threaded, this is
4188 * just to make the assert_spin_locked check happy. */
4189 spin_lock_irq(&dev_priv->irq_lock);
4190 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192 spin_unlock_irq(&dev_priv->irq_lock);
4193
4194 return 0;
4195 }
4196
4197 /*
4198 * Returns true when a page flip has completed.
4199 */
4200 static bool i915_handle_vblank(struct drm_device *dev,
4201 int plane, int pipe, u32 iir)
4202 {
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4205
4206 if (!intel_pipe_handle_vblank(dev, pipe))
4207 return false;
4208
4209 if ((iir & flip_pending) == 0)
4210 goto check_page_flip;
4211
4212 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4213 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4214 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4215 * the flip is completed (no longer pending). Since this doesn't raise
4216 * an interrupt per se, we watch for the change at vblank.
4217 */
4218 if (I915_READ(ISR) & flip_pending)
4219 goto check_page_flip;
4220
4221 intel_prepare_page_flip(dev, plane);
4222 intel_finish_page_flip(dev, pipe);
4223 return true;
4224
4225 check_page_flip:
4226 intel_check_page_flip(dev, pipe);
4227 return false;
4228 }
4229
4230 static irqreturn_t i915_irq_handler(int irq, void *arg)
4231 {
4232 struct drm_device *dev = arg;
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4235 u32 flip_mask =
4236 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4237 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4238 int pipe, ret = IRQ_NONE;
4239
4240 if (!intel_irqs_enabled(dev_priv))
4241 return IRQ_NONE;
4242
4243 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4244 disable_rpm_wakeref_asserts(dev_priv);
4245
4246 iir = I915_READ(IIR);
4247 do {
4248 bool irq_received = (iir & ~flip_mask) != 0;
4249 bool blc_event = false;
4250
4251 /* Can't rely on pipestat interrupt bit in iir as it might
4252 * have been cleared after the pipestat interrupt was received.
4253 * It doesn't set the bit in iir again, but it still produces
4254 * interrupts (for non-MSI).
4255 */
4256 spin_lock(&dev_priv->irq_lock);
4257 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4258 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4259
4260 for_each_pipe(dev_priv, pipe) {
4261 i915_reg_t reg = PIPESTAT(pipe);
4262 pipe_stats[pipe] = I915_READ(reg);
4263
4264 /* Clear the PIPE*STAT regs before the IIR */
4265 if (pipe_stats[pipe] & 0x8000ffff) {
4266 I915_WRITE(reg, pipe_stats[pipe]);
4267 irq_received = true;
4268 }
4269 }
4270 spin_unlock(&dev_priv->irq_lock);
4271
4272 if (!irq_received)
4273 break;
4274
4275 /* Consume port. Then clear IIR or we'll miss events */
4276 if (I915_HAS_HOTPLUG(dev) &&
4277 iir & I915_DISPLAY_PORT_INTERRUPT) {
4278 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4279 if (hotplug_status)
4280 i9xx_hpd_irq_handler(dev, hotplug_status);
4281 }
4282
4283 I915_WRITE(IIR, iir & ~flip_mask);
4284 new_iir = I915_READ(IIR); /* Flush posted writes */
4285
4286 if (iir & I915_USER_INTERRUPT)
4287 notify_ring(&dev_priv->engine[RCS]);
4288
4289 for_each_pipe(dev_priv, pipe) {
4290 int plane = pipe;
4291 if (HAS_FBC(dev))
4292 plane = !plane;
4293
4294 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4295 i915_handle_vblank(dev, plane, pipe, iir))
4296 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4297
4298 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4299 blc_event = true;
4300
4301 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4302 i9xx_pipe_crc_irq_handler(dev, pipe);
4303
4304 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4305 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4306 pipe);
4307 }
4308
4309 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4310 intel_opregion_asle_intr(dev);
4311
4312 /* With MSI, interrupts are only generated when iir
4313 * transitions from zero to nonzero. If another bit got
4314 * set while we were handling the existing iir bits, then
4315 * we would never get another interrupt.
4316 *
4317 * This is fine on non-MSI as well, as if we hit this path
4318 * we avoid exiting the interrupt handler only to generate
4319 * another one.
4320 *
4321 * Note that for MSI this could cause a stray interrupt report
4322 * if an interrupt landed in the time between writing IIR and
4323 * the posting read. This should be rare enough to never
4324 * trigger the 99% of 100,000 interrupts test for disabling
4325 * stray interrupts.
4326 */
4327 ret = IRQ_HANDLED;
4328 iir = new_iir;
4329 } while (iir & ~flip_mask);
4330
4331 enable_rpm_wakeref_asserts(dev_priv);
4332
4333 return ret;
4334 }
4335
4336 static void i915_irq_uninstall(struct drm_device * dev)
4337 {
4338 struct drm_i915_private *dev_priv = dev->dev_private;
4339 int pipe;
4340
4341 if (I915_HAS_HOTPLUG(dev)) {
4342 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4343 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4344 }
4345
4346 I915_WRITE16(HWSTAM, 0xffff);
4347 for_each_pipe(dev_priv, pipe) {
4348 /* Clear enable bits; then clear status bits */
4349 I915_WRITE(PIPESTAT(pipe), 0);
4350 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4351 }
4352 I915_WRITE(IMR, 0xffffffff);
4353 I915_WRITE(IER, 0x0);
4354
4355 I915_WRITE(IIR, I915_READ(IIR));
4356 }
4357
4358 static void i965_irq_preinstall(struct drm_device * dev)
4359 {
4360 struct drm_i915_private *dev_priv = dev->dev_private;
4361 int pipe;
4362
4363 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4364 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4365
4366 I915_WRITE(HWSTAM, 0xeffe);
4367 for_each_pipe(dev_priv, pipe)
4368 I915_WRITE(PIPESTAT(pipe), 0);
4369 I915_WRITE(IMR, 0xffffffff);
4370 I915_WRITE(IER, 0x0);
4371 POSTING_READ(IER);
4372 }
4373
4374 static int i965_irq_postinstall(struct drm_device *dev)
4375 {
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 u32 enable_mask;
4378 u32 error_mask;
4379
4380 /* Unmask the interrupts that we always want on. */
4381 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4382 I915_DISPLAY_PORT_INTERRUPT |
4383 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4384 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4385 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4386 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4387 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4388
4389 enable_mask = ~dev_priv->irq_mask;
4390 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4391 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4392 enable_mask |= I915_USER_INTERRUPT;
4393
4394 if (IS_G4X(dev))
4395 enable_mask |= I915_BSD_USER_INTERRUPT;
4396
4397 /* Interrupt setup is already guaranteed to be single-threaded, this is
4398 * just to make the assert_spin_locked check happy. */
4399 spin_lock_irq(&dev_priv->irq_lock);
4400 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4401 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4402 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4403 spin_unlock_irq(&dev_priv->irq_lock);
4404
4405 /*
4406 * Enable some error detection, note the instruction error mask
4407 * bit is reserved, so we leave it masked.
4408 */
4409 if (IS_G4X(dev)) {
4410 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4411 GM45_ERROR_MEM_PRIV |
4412 GM45_ERROR_CP_PRIV |
4413 I915_ERROR_MEMORY_REFRESH);
4414 } else {
4415 error_mask = ~(I915_ERROR_PAGE_TABLE |
4416 I915_ERROR_MEMORY_REFRESH);
4417 }
4418 I915_WRITE(EMR, error_mask);
4419
4420 I915_WRITE(IMR, dev_priv->irq_mask);
4421 I915_WRITE(IER, enable_mask);
4422 POSTING_READ(IER);
4423
4424 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4425 POSTING_READ(PORT_HOTPLUG_EN);
4426
4427 i915_enable_asle_pipestat(dev);
4428
4429 return 0;
4430 }
4431
4432 static void i915_hpd_irq_setup(struct drm_device *dev)
4433 {
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 u32 hotplug_en;
4436
4437 assert_spin_locked(&dev_priv->irq_lock);
4438
4439 /* Note HDMI and DP share hotplug bits */
4440 /* enable bits are the same for all generations */
4441 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4442 /* Programming the CRT detection parameters tends
4443 to generate a spurious hotplug event about three
4444 seconds later. So just do it once.
4445 */
4446 if (IS_G4X(dev))
4447 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4448 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4449
4450 /* Ignore TV since it's buggy */
4451 i915_hotplug_interrupt_update_locked(dev_priv,
4452 HOTPLUG_INT_EN_MASK |
4453 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4454 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4455 hotplug_en);
4456 }
4457
4458 static irqreturn_t i965_irq_handler(int irq, void *arg)
4459 {
4460 struct drm_device *dev = arg;
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462 u32 iir, new_iir;
4463 u32 pipe_stats[I915_MAX_PIPES];
4464 int ret = IRQ_NONE, pipe;
4465 u32 flip_mask =
4466 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4467 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4468
4469 if (!intel_irqs_enabled(dev_priv))
4470 return IRQ_NONE;
4471
4472 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4473 disable_rpm_wakeref_asserts(dev_priv);
4474
4475 iir = I915_READ(IIR);
4476
4477 for (;;) {
4478 bool irq_received = (iir & ~flip_mask) != 0;
4479 bool blc_event = false;
4480
4481 /* Can't rely on pipestat interrupt bit in iir as it might
4482 * have been cleared after the pipestat interrupt was received.
4483 * It doesn't set the bit in iir again, but it still produces
4484 * interrupts (for non-MSI).
4485 */
4486 spin_lock(&dev_priv->irq_lock);
4487 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4488 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4489
4490 for_each_pipe(dev_priv, pipe) {
4491 i915_reg_t reg = PIPESTAT(pipe);
4492 pipe_stats[pipe] = I915_READ(reg);
4493
4494 /*
4495 * Clear the PIPE*STAT regs before the IIR
4496 */
4497 if (pipe_stats[pipe] & 0x8000ffff) {
4498 I915_WRITE(reg, pipe_stats[pipe]);
4499 irq_received = true;
4500 }
4501 }
4502 spin_unlock(&dev_priv->irq_lock);
4503
4504 if (!irq_received)
4505 break;
4506
4507 ret = IRQ_HANDLED;
4508
4509 /* Consume port. Then clear IIR or we'll miss events */
4510 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4511 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4512 if (hotplug_status)
4513 i9xx_hpd_irq_handler(dev, hotplug_status);
4514 }
4515
4516 I915_WRITE(IIR, iir & ~flip_mask);
4517 new_iir = I915_READ(IIR); /* Flush posted writes */
4518
4519 if (iir & I915_USER_INTERRUPT)
4520 notify_ring(&dev_priv->engine[RCS]);
4521 if (iir & I915_BSD_USER_INTERRUPT)
4522 notify_ring(&dev_priv->engine[VCS]);
4523
4524 for_each_pipe(dev_priv, pipe) {
4525 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4526 i915_handle_vblank(dev, pipe, pipe, iir))
4527 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4528
4529 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4530 blc_event = true;
4531
4532 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4533 i9xx_pipe_crc_irq_handler(dev, pipe);
4534
4535 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4536 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4537 }
4538
4539 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4540 intel_opregion_asle_intr(dev);
4541
4542 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4543 gmbus_irq_handler(dev);
4544
4545 /* With MSI, interrupts are only generated when iir
4546 * transitions from zero to nonzero. If another bit got
4547 * set while we were handling the existing iir bits, then
4548 * we would never get another interrupt.
4549 *
4550 * This is fine on non-MSI as well, as if we hit this path
4551 * we avoid exiting the interrupt handler only to generate
4552 * another one.
4553 *
4554 * Note that for MSI this could cause a stray interrupt report
4555 * if an interrupt landed in the time between writing IIR and
4556 * the posting read. This should be rare enough to never
4557 * trigger the 99% of 100,000 interrupts test for disabling
4558 * stray interrupts.
4559 */
4560 iir = new_iir;
4561 }
4562
4563 enable_rpm_wakeref_asserts(dev_priv);
4564
4565 return ret;
4566 }
4567
4568 static void i965_irq_uninstall(struct drm_device * dev)
4569 {
4570 struct drm_i915_private *dev_priv = dev->dev_private;
4571 int pipe;
4572
4573 if (!dev_priv)
4574 return;
4575
4576 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4577 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4578
4579 I915_WRITE(HWSTAM, 0xffffffff);
4580 for_each_pipe(dev_priv, pipe)
4581 I915_WRITE(PIPESTAT(pipe), 0);
4582 I915_WRITE(IMR, 0xffffffff);
4583 I915_WRITE(IER, 0x0);
4584
4585 for_each_pipe(dev_priv, pipe)
4586 I915_WRITE(PIPESTAT(pipe),
4587 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4588 I915_WRITE(IIR, I915_READ(IIR));
4589 }
4590
4591 /**
4592 * intel_irq_init - initializes irq support
4593 * @dev_priv: i915 device instance
4594 *
4595 * This function initializes all the irq support including work items, timers
4596 * and all the vtables. It does not setup the interrupt itself though.
4597 */
4598 void intel_irq_init(struct drm_i915_private *dev_priv)
4599 {
4600 struct drm_device *dev = dev_priv->dev;
4601
4602 intel_hpd_init_work(dev_priv);
4603
4604 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4605 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4606
4607 /* Let's track the enabled rps events */
4608 if (IS_VALLEYVIEW(dev_priv))
4609 /* WaGsvRC0ResidencyMethod:vlv */
4610 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4611 else
4612 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4613
4614 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4615 i915_hangcheck_elapsed);
4616
4617 if (IS_GEN2(dev_priv)) {
4618 dev->max_vblank_count = 0;
4619 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4620 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4621 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4622 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4623 } else {
4624 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4625 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4626 }
4627
4628 /*
4629 * Opt out of the vblank disable timer on everything except gen2.
4630 * Gen2 doesn't have a hardware frame counter and so depends on
4631 * vblank interrupts to produce sane vblank seuquence numbers.
4632 */
4633 if (!IS_GEN2(dev_priv))
4634 dev->vblank_disable_immediate = true;
4635
4636 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4637 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4638
4639 if (IS_CHERRYVIEW(dev_priv)) {
4640 dev->driver->irq_handler = cherryview_irq_handler;
4641 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4642 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4643 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4644 dev->driver->enable_vblank = valleyview_enable_vblank;
4645 dev->driver->disable_vblank = valleyview_disable_vblank;
4646 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4647 } else if (IS_VALLEYVIEW(dev_priv)) {
4648 dev->driver->irq_handler = valleyview_irq_handler;
4649 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4650 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4651 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4652 dev->driver->enable_vblank = valleyview_enable_vblank;
4653 dev->driver->disable_vblank = valleyview_disable_vblank;
4654 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4655 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4656 dev->driver->irq_handler = gen8_irq_handler;
4657 dev->driver->irq_preinstall = gen8_irq_reset;
4658 dev->driver->irq_postinstall = gen8_irq_postinstall;
4659 dev->driver->irq_uninstall = gen8_irq_uninstall;
4660 dev->driver->enable_vblank = gen8_enable_vblank;
4661 dev->driver->disable_vblank = gen8_disable_vblank;
4662 if (IS_BROXTON(dev))
4663 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4664 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4665 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4666 else
4667 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4668 } else if (HAS_PCH_SPLIT(dev)) {
4669 dev->driver->irq_handler = ironlake_irq_handler;
4670 dev->driver->irq_preinstall = ironlake_irq_reset;
4671 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4672 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4673 dev->driver->enable_vblank = ironlake_enable_vblank;
4674 dev->driver->disable_vblank = ironlake_disable_vblank;
4675 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4676 } else {
4677 if (INTEL_INFO(dev_priv)->gen == 2) {
4678 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4679 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4680 dev->driver->irq_handler = i8xx_irq_handler;
4681 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4682 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4683 dev->driver->irq_preinstall = i915_irq_preinstall;
4684 dev->driver->irq_postinstall = i915_irq_postinstall;
4685 dev->driver->irq_uninstall = i915_irq_uninstall;
4686 dev->driver->irq_handler = i915_irq_handler;
4687 } else {
4688 dev->driver->irq_preinstall = i965_irq_preinstall;
4689 dev->driver->irq_postinstall = i965_irq_postinstall;
4690 dev->driver->irq_uninstall = i965_irq_uninstall;
4691 dev->driver->irq_handler = i965_irq_handler;
4692 }
4693 if (I915_HAS_HOTPLUG(dev_priv))
4694 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4695 dev->driver->enable_vblank = i915_enable_vblank;
4696 dev->driver->disable_vblank = i915_disable_vblank;
4697 }
4698 }
4699
4700 /**
4701 * intel_irq_install - enables the hardware interrupt
4702 * @dev_priv: i915 device instance
4703 *
4704 * This function enables the hardware interrupt handling, but leaves the hotplug
4705 * handling still disabled. It is called after intel_irq_init().
4706 *
4707 * In the driver load and resume code we need working interrupts in a few places
4708 * but don't want to deal with the hassle of concurrent probe and hotplug
4709 * workers. Hence the split into this two-stage approach.
4710 */
4711 int intel_irq_install(struct drm_i915_private *dev_priv)
4712 {
4713 /*
4714 * We enable some interrupt sources in our postinstall hooks, so mark
4715 * interrupts as enabled _before_ actually enabling them to avoid
4716 * special cases in our ordering checks.
4717 */
4718 dev_priv->pm.irqs_enabled = true;
4719
4720 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4721 }
4722
4723 /**
4724 * intel_irq_uninstall - finilizes all irq handling
4725 * @dev_priv: i915 device instance
4726 *
4727 * This stops interrupt and hotplug handling and unregisters and frees all
4728 * resources acquired in the init functions.
4729 */
4730 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4731 {
4732 drm_irq_uninstall(dev_priv->dev);
4733 intel_hpd_cancel_work(dev_priv);
4734 dev_priv->pm.irqs_enabled = false;
4735 }
4736
4737 /**
4738 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4739 * @dev_priv: i915 device instance
4740 *
4741 * This function is used to disable interrupts at runtime, both in the runtime
4742 * pm and the system suspend/resume code.
4743 */
4744 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4745 {
4746 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4747 dev_priv->pm.irqs_enabled = false;
4748 synchronize_irq(dev_priv->dev->irq);
4749 }
4750
4751 /**
4752 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4753 * @dev_priv: i915 device instance
4754 *
4755 * This function is used to enable interrupts at runtime, both in the runtime
4756 * pm and the system suspend/resume code.
4757 */
4758 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4759 {
4760 dev_priv->pm.irqs_enabled = true;
4761 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4762 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4763 }
This page took 0.122416 seconds and 6 git commands to generate.