Merge branches 'sched-urgent-for-linus' and 'timers-urgent-for-linus' of git://git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_gen4[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pc8.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pc8.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pc8.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pc8.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pc8.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pc8.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 enum pipe pipe, bool enable)
237 {
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 DE_PIPEB_FIFO_UNDERRUN;
241
242 if (enable)
243 ironlake_enable_display_irq(dev_priv, bit);
244 else
245 ironlake_disable_display_irq(dev_priv, bit);
246 }
247
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 enum pipe pipe, bool enable)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 if (enable) {
253 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254
255 if (!ivb_can_enable_err_int(dev))
256 return;
257
258 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 } else {
260 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261
262 /* Change the state _after_ we've read out the current one. */
263 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264
265 if (!was_enabled &&
266 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 pipe_name(pipe));
269 }
270 }
271 }
272
273 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
274 enum pipe pipe, bool enable)
275 {
276 struct drm_i915_private *dev_priv = dev->dev_private;
277
278 assert_spin_locked(&dev_priv->irq_lock);
279
280 if (enable)
281 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
282 else
283 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
284 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
285 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
286 }
287
288 /**
289 * ibx_display_interrupt_update - update SDEIMR
290 * @dev_priv: driver private
291 * @interrupt_mask: mask of interrupt bits to update
292 * @enabled_irq_mask: mask of interrupt bits to enable
293 */
294 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
295 uint32_t interrupt_mask,
296 uint32_t enabled_irq_mask)
297 {
298 uint32_t sdeimr = I915_READ(SDEIMR);
299 sdeimr &= ~interrupt_mask;
300 sdeimr |= (~enabled_irq_mask & interrupt_mask);
301
302 assert_spin_locked(&dev_priv->irq_lock);
303
304 if (dev_priv->pc8.irqs_disabled &&
305 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
306 WARN(1, "IRQs disabled\n");
307 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
308 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
309 interrupt_mask);
310 return;
311 }
312
313 I915_WRITE(SDEIMR, sdeimr);
314 POSTING_READ(SDEIMR);
315 }
316 #define ibx_enable_display_interrupt(dev_priv, bits) \
317 ibx_display_interrupt_update((dev_priv), (bits), (bits))
318 #define ibx_disable_display_interrupt(dev_priv, bits) \
319 ibx_display_interrupt_update((dev_priv), (bits), 0)
320
321 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
322 enum transcoder pch_transcoder,
323 bool enable)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
327 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
328
329 if (enable)
330 ibx_enable_display_interrupt(dev_priv, bit);
331 else
332 ibx_disable_display_interrupt(dev_priv, bit);
333 }
334
335 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
336 enum transcoder pch_transcoder,
337 bool enable)
338 {
339 struct drm_i915_private *dev_priv = dev->dev_private;
340
341 if (enable) {
342 I915_WRITE(SERR_INT,
343 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
344
345 if (!cpt_can_enable_serr_int(dev))
346 return;
347
348 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
349 } else {
350 uint32_t tmp = I915_READ(SERR_INT);
351 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
352
353 /* Change the state _after_ we've read out the current one. */
354 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
355
356 if (!was_enabled &&
357 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
358 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
359 transcoder_name(pch_transcoder));
360 }
361 }
362 }
363
364 /**
365 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
366 * @dev: drm device
367 * @pipe: pipe
368 * @enable: true if we want to report FIFO underrun errors, false otherwise
369 *
370 * This function makes us disable or enable CPU fifo underruns for a specific
371 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
372 * reporting for one pipe may also disable all the other CPU error interruts for
373 * the other pipes, due to the fact that there's just one interrupt mask/enable
374 * bit for all the pipes.
375 *
376 * Returns the previous state of underrun reporting.
377 */
378 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
379 enum pipe pipe, bool enable)
380 {
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
384 unsigned long flags;
385 bool ret;
386
387 spin_lock_irqsave(&dev_priv->irq_lock, flags);
388
389 ret = !intel_crtc->cpu_fifo_underrun_disabled;
390
391 if (enable == ret)
392 goto done;
393
394 intel_crtc->cpu_fifo_underrun_disabled = !enable;
395
396 if (IS_GEN5(dev) || IS_GEN6(dev))
397 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
398 else if (IS_GEN7(dev))
399 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
400 else if (IS_GEN8(dev))
401 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
402
403 done:
404 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
405 return ret;
406 }
407
408 /**
409 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
410 * @dev: drm device
411 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
412 * @enable: true if we want to report FIFO underrun errors, false otherwise
413 *
414 * This function makes us disable or enable PCH fifo underruns for a specific
415 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
416 * underrun reporting for one transcoder may also disable all the other PCH
417 * error interruts for the other transcoders, due to the fact that there's just
418 * one interrupt mask/enable bit for all the transcoders.
419 *
420 * Returns the previous state of underrun reporting.
421 */
422 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
423 enum transcoder pch_transcoder,
424 bool enable)
425 {
426 struct drm_i915_private *dev_priv = dev->dev_private;
427 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
429 unsigned long flags;
430 bool ret;
431
432 /*
433 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
434 * has only one pch transcoder A that all pipes can use. To avoid racy
435 * pch transcoder -> pipe lookups from interrupt code simply store the
436 * underrun statistics in crtc A. Since we never expose this anywhere
437 * nor use it outside of the fifo underrun code here using the "wrong"
438 * crtc on LPT won't cause issues.
439 */
440
441 spin_lock_irqsave(&dev_priv->irq_lock, flags);
442
443 ret = !intel_crtc->pch_fifo_underrun_disabled;
444
445 if (enable == ret)
446 goto done;
447
448 intel_crtc->pch_fifo_underrun_disabled = !enable;
449
450 if (HAS_PCH_IBX(dev))
451 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
452 else
453 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
454
455 done:
456 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
457 return ret;
458 }
459
460
461 void
462 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
463 {
464 u32 reg = PIPESTAT(pipe);
465 u32 pipestat = I915_READ(reg) & 0x7fff0000;
466
467 assert_spin_locked(&dev_priv->irq_lock);
468
469 if ((pipestat & mask) == mask)
470 return;
471
472 /* Enable the interrupt, clear any pending status */
473 pipestat |= mask | (mask >> 16);
474 I915_WRITE(reg, pipestat);
475 POSTING_READ(reg);
476 }
477
478 void
479 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
480 {
481 u32 reg = PIPESTAT(pipe);
482 u32 pipestat = I915_READ(reg) & 0x7fff0000;
483
484 assert_spin_locked(&dev_priv->irq_lock);
485
486 if ((pipestat & mask) == 0)
487 return;
488
489 pipestat &= ~mask;
490 I915_WRITE(reg, pipestat);
491 POSTING_READ(reg);
492 }
493
494 /**
495 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
496 */
497 static void i915_enable_asle_pipestat(struct drm_device *dev)
498 {
499 drm_i915_private_t *dev_priv = dev->dev_private;
500 unsigned long irqflags;
501
502 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
503 return;
504
505 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
506
507 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
508 if (INTEL_INFO(dev)->gen >= 4)
509 i915_enable_pipestat(dev_priv, PIPE_A,
510 PIPE_LEGACY_BLC_EVENT_ENABLE);
511
512 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
513 }
514
515 /**
516 * i915_pipe_enabled - check if a pipe is enabled
517 * @dev: DRM device
518 * @pipe: pipe to check
519 *
520 * Reading certain registers when the pipe is disabled can hang the chip.
521 * Use this routine to make sure the PLL is running and the pipe is active
522 * before reading such registers if unsure.
523 */
524 static int
525 i915_pipe_enabled(struct drm_device *dev, int pipe)
526 {
527 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
528
529 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
530 /* Locking is horribly broken here, but whatever. */
531 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
533
534 return intel_crtc->active;
535 } else {
536 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
537 }
538 }
539
540 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
541 {
542 /* Gen2 doesn't have a hardware frame counter */
543 return 0;
544 }
545
546 /* Called from drm generic code, passed a 'crtc', which
547 * we use as a pipe index
548 */
549 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
550 {
551 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
552 unsigned long high_frame;
553 unsigned long low_frame;
554 u32 high1, high2, low, pixel, vbl_start;
555
556 if (!i915_pipe_enabled(dev, pipe)) {
557 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
558 "pipe %c\n", pipe_name(pipe));
559 return 0;
560 }
561
562 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
563 struct intel_crtc *intel_crtc =
564 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
565 const struct drm_display_mode *mode =
566 &intel_crtc->config.adjusted_mode;
567
568 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
569 } else {
570 enum transcoder cpu_transcoder =
571 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
572 u32 htotal;
573
574 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
575 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
576
577 vbl_start *= htotal;
578 }
579
580 high_frame = PIPEFRAME(pipe);
581 low_frame = PIPEFRAMEPIXEL(pipe);
582
583 /*
584 * High & low register fields aren't synchronized, so make sure
585 * we get a low value that's stable across two reads of the high
586 * register.
587 */
588 do {
589 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
590 low = I915_READ(low_frame);
591 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 } while (high1 != high2);
593
594 high1 >>= PIPE_FRAME_HIGH_SHIFT;
595 pixel = low & PIPE_PIXEL_MASK;
596 low >>= PIPE_FRAME_LOW_SHIFT;
597
598 /*
599 * The frame counter increments at beginning of active.
600 * Cook up a vblank counter by also checking the pixel
601 * counter against vblank start.
602 */
603 return ((high1 << 8) | low) + (pixel >= vbl_start);
604 }
605
606 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
607 {
608 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
609 int reg = PIPE_FRMCOUNT_GM45(pipe);
610
611 if (!i915_pipe_enabled(dev, pipe)) {
612 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
613 "pipe %c\n", pipe_name(pipe));
614 return 0;
615 }
616
617 return I915_READ(reg);
618 }
619
620 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
621 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
622 #define __raw_i915_read16(dev_priv__, reg__) readw((dev_priv__)->regs + (reg__))
623
624 static bool intel_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
625 {
626 struct drm_i915_private *dev_priv = dev->dev_private;
627 uint32_t status;
628 int reg;
629
630 if (IS_VALLEYVIEW(dev)) {
631 status = pipe == PIPE_A ?
632 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
633 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
634
635 reg = VLV_ISR;
636 } else if (IS_GEN2(dev)) {
637 status = pipe == PIPE_A ?
638 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
639 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
640
641 reg = ISR;
642 } else if (INTEL_INFO(dev)->gen < 5) {
643 status = pipe == PIPE_A ?
644 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
645 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
646
647 reg = ISR;
648 } else if (INTEL_INFO(dev)->gen < 7) {
649 status = pipe == PIPE_A ?
650 DE_PIPEA_VBLANK :
651 DE_PIPEB_VBLANK;
652
653 reg = DEISR;
654 } else {
655 switch (pipe) {
656 default:
657 case PIPE_A:
658 status = DE_PIPEA_VBLANK_IVB;
659 break;
660 case PIPE_B:
661 status = DE_PIPEB_VBLANK_IVB;
662 break;
663 case PIPE_C:
664 status = DE_PIPEC_VBLANK_IVB;
665 break;
666 }
667
668 reg = DEISR;
669 }
670
671 if (IS_GEN2(dev))
672 return __raw_i915_read16(dev_priv, reg) & status;
673 else
674 return __raw_i915_read32(dev_priv, reg) & status;
675 }
676
677 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
678 int *vpos, int *hpos, ktime_t *stime, ktime_t *etime)
679 {
680 struct drm_i915_private *dev_priv = dev->dev_private;
681 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
683 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
684 int position;
685 int vbl_start, vbl_end, htotal, vtotal;
686 bool in_vbl = true;
687 int ret = 0;
688 unsigned long irqflags;
689
690 if (!intel_crtc->active) {
691 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
692 "pipe %c\n", pipe_name(pipe));
693 return 0;
694 }
695
696 htotal = mode->crtc_htotal;
697 vtotal = mode->crtc_vtotal;
698 vbl_start = mode->crtc_vblank_start;
699 vbl_end = mode->crtc_vblank_end;
700
701 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
702
703 /*
704 * Lock uncore.lock, as we will do multiple timing critical raw
705 * register reads, potentially with preemption disabled, so the
706 * following code must not block on uncore.lock.
707 */
708 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
709
710 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
711
712 /* Get optional system timestamp before query. */
713 if (stime)
714 *stime = ktime_get();
715
716 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
717 /* No obvious pixelcount register. Only query vertical
718 * scanout position from Display scan line register.
719 */
720 if (IS_GEN2(dev))
721 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
722 else
723 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
724
725 /*
726 * The scanline counter increments at the leading edge
727 * of hsync, ie. it completely misses the active portion
728 * of the line. Fix up the counter at both edges of vblank
729 * to get a more accurate picture whether we're in vblank
730 * or not.
731 */
732 in_vbl = intel_pipe_in_vblank_locked(dev, pipe);
733 if ((in_vbl && position == vbl_start - 1) ||
734 (!in_vbl && position == vbl_end - 1))
735 position = (position + 1) % vtotal;
736 } else {
737 /* Have access to pixelcount since start of frame.
738 * We can split this into vertical and horizontal
739 * scanout position.
740 */
741 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
742
743 /* convert to pixel counts */
744 vbl_start *= htotal;
745 vbl_end *= htotal;
746 vtotal *= htotal;
747 }
748
749 /* Get optional system timestamp after query. */
750 if (etime)
751 *etime = ktime_get();
752
753 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
754
755 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
756
757 in_vbl = position >= vbl_start && position < vbl_end;
758
759 /*
760 * While in vblank, position will be negative
761 * counting up towards 0 at vbl_end. And outside
762 * vblank, position will be positive counting
763 * up since vbl_end.
764 */
765 if (position >= vbl_start)
766 position -= vbl_end;
767 else
768 position += vtotal - vbl_end;
769
770 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
771 *vpos = position;
772 *hpos = 0;
773 } else {
774 *vpos = position / htotal;
775 *hpos = position - (*vpos * htotal);
776 }
777
778 /* In vblank? */
779 if (in_vbl)
780 ret |= DRM_SCANOUTPOS_INVBL;
781
782 return ret;
783 }
784
785 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
786 int *max_error,
787 struct timeval *vblank_time,
788 unsigned flags)
789 {
790 struct drm_crtc *crtc;
791
792 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
793 DRM_ERROR("Invalid crtc %d\n", pipe);
794 return -EINVAL;
795 }
796
797 /* Get drm_crtc to timestamp: */
798 crtc = intel_get_crtc_for_pipe(dev, pipe);
799 if (crtc == NULL) {
800 DRM_ERROR("Invalid crtc %d\n", pipe);
801 return -EINVAL;
802 }
803
804 if (!crtc->enabled) {
805 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
806 return -EBUSY;
807 }
808
809 /* Helper routine in DRM core does all the work: */
810 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
811 vblank_time, flags,
812 crtc);
813 }
814
815 static bool intel_hpd_irq_event(struct drm_device *dev,
816 struct drm_connector *connector)
817 {
818 enum drm_connector_status old_status;
819
820 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
821 old_status = connector->status;
822
823 connector->status = connector->funcs->detect(connector, false);
824 if (old_status == connector->status)
825 return false;
826
827 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
828 connector->base.id,
829 drm_get_connector_name(connector),
830 drm_get_connector_status_name(old_status),
831 drm_get_connector_status_name(connector->status));
832
833 return true;
834 }
835
836 /*
837 * Handle hotplug events outside the interrupt handler proper.
838 */
839 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
840
841 static void i915_hotplug_work_func(struct work_struct *work)
842 {
843 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
844 hotplug_work);
845 struct drm_device *dev = dev_priv->dev;
846 struct drm_mode_config *mode_config = &dev->mode_config;
847 struct intel_connector *intel_connector;
848 struct intel_encoder *intel_encoder;
849 struct drm_connector *connector;
850 unsigned long irqflags;
851 bool hpd_disabled = false;
852 bool changed = false;
853 u32 hpd_event_bits;
854
855 /* HPD irq before everything is fully set up. */
856 if (!dev_priv->enable_hotplug_processing)
857 return;
858
859 mutex_lock(&mode_config->mutex);
860 DRM_DEBUG_KMS("running encoder hotplug functions\n");
861
862 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
863
864 hpd_event_bits = dev_priv->hpd_event_bits;
865 dev_priv->hpd_event_bits = 0;
866 list_for_each_entry(connector, &mode_config->connector_list, head) {
867 intel_connector = to_intel_connector(connector);
868 intel_encoder = intel_connector->encoder;
869 if (intel_encoder->hpd_pin > HPD_NONE &&
870 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
871 connector->polled == DRM_CONNECTOR_POLL_HPD) {
872 DRM_INFO("HPD interrupt storm detected on connector %s: "
873 "switching from hotplug detection to polling\n",
874 drm_get_connector_name(connector));
875 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
876 connector->polled = DRM_CONNECTOR_POLL_CONNECT
877 | DRM_CONNECTOR_POLL_DISCONNECT;
878 hpd_disabled = true;
879 }
880 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
881 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
882 drm_get_connector_name(connector), intel_encoder->hpd_pin);
883 }
884 }
885 /* if there were no outputs to poll, poll was disabled,
886 * therefore make sure it's enabled when disabling HPD on
887 * some connectors */
888 if (hpd_disabled) {
889 drm_kms_helper_poll_enable(dev);
890 mod_timer(&dev_priv->hotplug_reenable_timer,
891 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
892 }
893
894 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
895
896 list_for_each_entry(connector, &mode_config->connector_list, head) {
897 intel_connector = to_intel_connector(connector);
898 intel_encoder = intel_connector->encoder;
899 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
900 if (intel_encoder->hot_plug)
901 intel_encoder->hot_plug(intel_encoder);
902 if (intel_hpd_irq_event(dev, connector))
903 changed = true;
904 }
905 }
906 mutex_unlock(&mode_config->mutex);
907
908 if (changed)
909 drm_kms_helper_hotplug_event(dev);
910 }
911
912 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
913 {
914 drm_i915_private_t *dev_priv = dev->dev_private;
915 u32 busy_up, busy_down, max_avg, min_avg;
916 u8 new_delay;
917
918 spin_lock(&mchdev_lock);
919
920 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
921
922 new_delay = dev_priv->ips.cur_delay;
923
924 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
925 busy_up = I915_READ(RCPREVBSYTUPAVG);
926 busy_down = I915_READ(RCPREVBSYTDNAVG);
927 max_avg = I915_READ(RCBMAXAVG);
928 min_avg = I915_READ(RCBMINAVG);
929
930 /* Handle RCS change request from hw */
931 if (busy_up > max_avg) {
932 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
933 new_delay = dev_priv->ips.cur_delay - 1;
934 if (new_delay < dev_priv->ips.max_delay)
935 new_delay = dev_priv->ips.max_delay;
936 } else if (busy_down < min_avg) {
937 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
938 new_delay = dev_priv->ips.cur_delay + 1;
939 if (new_delay > dev_priv->ips.min_delay)
940 new_delay = dev_priv->ips.min_delay;
941 }
942
943 if (ironlake_set_drps(dev, new_delay))
944 dev_priv->ips.cur_delay = new_delay;
945
946 spin_unlock(&mchdev_lock);
947
948 return;
949 }
950
951 static void notify_ring(struct drm_device *dev,
952 struct intel_ring_buffer *ring)
953 {
954 if (ring->obj == NULL)
955 return;
956
957 trace_i915_gem_request_complete(ring);
958
959 wake_up_all(&ring->irq_queue);
960 i915_queue_hangcheck(dev);
961 }
962
963 static void gen6_pm_rps_work(struct work_struct *work)
964 {
965 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
966 rps.work);
967 u32 pm_iir;
968 int new_delay, adj;
969
970 spin_lock_irq(&dev_priv->irq_lock);
971 pm_iir = dev_priv->rps.pm_iir;
972 dev_priv->rps.pm_iir = 0;
973 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
974 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
975 spin_unlock_irq(&dev_priv->irq_lock);
976
977 /* Make sure we didn't queue anything we're not going to process. */
978 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
979
980 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
981 return;
982
983 mutex_lock(&dev_priv->rps.hw_lock);
984
985 adj = dev_priv->rps.last_adj;
986 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
987 if (adj > 0)
988 adj *= 2;
989 else
990 adj = 1;
991 new_delay = dev_priv->rps.cur_delay + adj;
992
993 /*
994 * For better performance, jump directly
995 * to RPe if we're below it.
996 */
997 if (new_delay < dev_priv->rps.rpe_delay)
998 new_delay = dev_priv->rps.rpe_delay;
999 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1000 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
1001 new_delay = dev_priv->rps.rpe_delay;
1002 else
1003 new_delay = dev_priv->rps.min_delay;
1004 adj = 0;
1005 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1006 if (adj < 0)
1007 adj *= 2;
1008 else
1009 adj = -1;
1010 new_delay = dev_priv->rps.cur_delay + adj;
1011 } else { /* unknown event */
1012 new_delay = dev_priv->rps.cur_delay;
1013 }
1014
1015 /* sysfs frequency interfaces may have snuck in while servicing the
1016 * interrupt
1017 */
1018 if (new_delay < (int)dev_priv->rps.min_delay)
1019 new_delay = dev_priv->rps.min_delay;
1020 if (new_delay > (int)dev_priv->rps.max_delay)
1021 new_delay = dev_priv->rps.max_delay;
1022 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
1023
1024 if (IS_VALLEYVIEW(dev_priv->dev))
1025 valleyview_set_rps(dev_priv->dev, new_delay);
1026 else
1027 gen6_set_rps(dev_priv->dev, new_delay);
1028
1029 mutex_unlock(&dev_priv->rps.hw_lock);
1030 }
1031
1032
1033 /**
1034 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1035 * occurred.
1036 * @work: workqueue struct
1037 *
1038 * Doesn't actually do anything except notify userspace. As a consequence of
1039 * this event, userspace should try to remap the bad rows since statistically
1040 * it is likely the same row is more likely to go bad again.
1041 */
1042 static void ivybridge_parity_work(struct work_struct *work)
1043 {
1044 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1045 l3_parity.error_work);
1046 u32 error_status, row, bank, subbank;
1047 char *parity_event[6];
1048 uint32_t misccpctl;
1049 unsigned long flags;
1050 uint8_t slice = 0;
1051
1052 /* We must turn off DOP level clock gating to access the L3 registers.
1053 * In order to prevent a get/put style interface, acquire struct mutex
1054 * any time we access those registers.
1055 */
1056 mutex_lock(&dev_priv->dev->struct_mutex);
1057
1058 /* If we've screwed up tracking, just let the interrupt fire again */
1059 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1060 goto out;
1061
1062 misccpctl = I915_READ(GEN7_MISCCPCTL);
1063 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1064 POSTING_READ(GEN7_MISCCPCTL);
1065
1066 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1067 u32 reg;
1068
1069 slice--;
1070 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1071 break;
1072
1073 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1074
1075 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1076
1077 error_status = I915_READ(reg);
1078 row = GEN7_PARITY_ERROR_ROW(error_status);
1079 bank = GEN7_PARITY_ERROR_BANK(error_status);
1080 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1081
1082 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1083 POSTING_READ(reg);
1084
1085 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1086 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1087 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1088 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1089 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1090 parity_event[5] = NULL;
1091
1092 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1093 KOBJ_CHANGE, parity_event);
1094
1095 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1096 slice, row, bank, subbank);
1097
1098 kfree(parity_event[4]);
1099 kfree(parity_event[3]);
1100 kfree(parity_event[2]);
1101 kfree(parity_event[1]);
1102 }
1103
1104 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1105
1106 out:
1107 WARN_ON(dev_priv->l3_parity.which_slice);
1108 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1109 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1110 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1111
1112 mutex_unlock(&dev_priv->dev->struct_mutex);
1113 }
1114
1115 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1116 {
1117 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1118
1119 if (!HAS_L3_DPF(dev))
1120 return;
1121
1122 spin_lock(&dev_priv->irq_lock);
1123 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1124 spin_unlock(&dev_priv->irq_lock);
1125
1126 iir &= GT_PARITY_ERROR(dev);
1127 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1128 dev_priv->l3_parity.which_slice |= 1 << 1;
1129
1130 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1131 dev_priv->l3_parity.which_slice |= 1 << 0;
1132
1133 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1134 }
1135
1136 static void ilk_gt_irq_handler(struct drm_device *dev,
1137 struct drm_i915_private *dev_priv,
1138 u32 gt_iir)
1139 {
1140 if (gt_iir &
1141 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1142 notify_ring(dev, &dev_priv->ring[RCS]);
1143 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1144 notify_ring(dev, &dev_priv->ring[VCS]);
1145 }
1146
1147 static void snb_gt_irq_handler(struct drm_device *dev,
1148 struct drm_i915_private *dev_priv,
1149 u32 gt_iir)
1150 {
1151
1152 if (gt_iir &
1153 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1154 notify_ring(dev, &dev_priv->ring[RCS]);
1155 if (gt_iir & GT_BSD_USER_INTERRUPT)
1156 notify_ring(dev, &dev_priv->ring[VCS]);
1157 if (gt_iir & GT_BLT_USER_INTERRUPT)
1158 notify_ring(dev, &dev_priv->ring[BCS]);
1159
1160 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1161 GT_BSD_CS_ERROR_INTERRUPT |
1162 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1163 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1164 i915_handle_error(dev, false);
1165 }
1166
1167 if (gt_iir & GT_PARITY_ERROR(dev))
1168 ivybridge_parity_error_irq_handler(dev, gt_iir);
1169 }
1170
1171 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1172 struct drm_i915_private *dev_priv,
1173 u32 master_ctl)
1174 {
1175 u32 rcs, bcs, vcs;
1176 uint32_t tmp = 0;
1177 irqreturn_t ret = IRQ_NONE;
1178
1179 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1180 tmp = I915_READ(GEN8_GT_IIR(0));
1181 if (tmp) {
1182 ret = IRQ_HANDLED;
1183 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1184 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1185 if (rcs & GT_RENDER_USER_INTERRUPT)
1186 notify_ring(dev, &dev_priv->ring[RCS]);
1187 if (bcs & GT_RENDER_USER_INTERRUPT)
1188 notify_ring(dev, &dev_priv->ring[BCS]);
1189 I915_WRITE(GEN8_GT_IIR(0), tmp);
1190 } else
1191 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1192 }
1193
1194 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1195 tmp = I915_READ(GEN8_GT_IIR(1));
1196 if (tmp) {
1197 ret = IRQ_HANDLED;
1198 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1199 if (vcs & GT_RENDER_USER_INTERRUPT)
1200 notify_ring(dev, &dev_priv->ring[VCS]);
1201 I915_WRITE(GEN8_GT_IIR(1), tmp);
1202 } else
1203 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1204 }
1205
1206 if (master_ctl & GEN8_GT_VECS_IRQ) {
1207 tmp = I915_READ(GEN8_GT_IIR(3));
1208 if (tmp) {
1209 ret = IRQ_HANDLED;
1210 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1211 if (vcs & GT_RENDER_USER_INTERRUPT)
1212 notify_ring(dev, &dev_priv->ring[VECS]);
1213 I915_WRITE(GEN8_GT_IIR(3), tmp);
1214 } else
1215 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1216 }
1217
1218 return ret;
1219 }
1220
1221 #define HPD_STORM_DETECT_PERIOD 1000
1222 #define HPD_STORM_THRESHOLD 5
1223
1224 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1225 u32 hotplug_trigger,
1226 const u32 *hpd)
1227 {
1228 drm_i915_private_t *dev_priv = dev->dev_private;
1229 int i;
1230 bool storm_detected = false;
1231
1232 if (!hotplug_trigger)
1233 return;
1234
1235 spin_lock(&dev_priv->irq_lock);
1236 for (i = 1; i < HPD_NUM_PINS; i++) {
1237
1238 WARN(((hpd[i] & hotplug_trigger) &&
1239 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1240 "Received HPD interrupt although disabled\n");
1241
1242 if (!(hpd[i] & hotplug_trigger) ||
1243 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1244 continue;
1245
1246 dev_priv->hpd_event_bits |= (1 << i);
1247 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1248 dev_priv->hpd_stats[i].hpd_last_jiffies
1249 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1250 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1251 dev_priv->hpd_stats[i].hpd_cnt = 0;
1252 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1253 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1254 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1255 dev_priv->hpd_event_bits &= ~(1 << i);
1256 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1257 storm_detected = true;
1258 } else {
1259 dev_priv->hpd_stats[i].hpd_cnt++;
1260 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1261 dev_priv->hpd_stats[i].hpd_cnt);
1262 }
1263 }
1264
1265 if (storm_detected)
1266 dev_priv->display.hpd_irq_setup(dev);
1267 spin_unlock(&dev_priv->irq_lock);
1268
1269 /*
1270 * Our hotplug handler can grab modeset locks (by calling down into the
1271 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1272 * queue for otherwise the flush_work in the pageflip code will
1273 * deadlock.
1274 */
1275 schedule_work(&dev_priv->hotplug_work);
1276 }
1277
1278 static void gmbus_irq_handler(struct drm_device *dev)
1279 {
1280 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1281
1282 wake_up_all(&dev_priv->gmbus_wait_queue);
1283 }
1284
1285 static void dp_aux_irq_handler(struct drm_device *dev)
1286 {
1287 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1288
1289 wake_up_all(&dev_priv->gmbus_wait_queue);
1290 }
1291
1292 #if defined(CONFIG_DEBUG_FS)
1293 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1294 uint32_t crc0, uint32_t crc1,
1295 uint32_t crc2, uint32_t crc3,
1296 uint32_t crc4)
1297 {
1298 struct drm_i915_private *dev_priv = dev->dev_private;
1299 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1300 struct intel_pipe_crc_entry *entry;
1301 int head, tail;
1302
1303 spin_lock(&pipe_crc->lock);
1304
1305 if (!pipe_crc->entries) {
1306 spin_unlock(&pipe_crc->lock);
1307 DRM_ERROR("spurious interrupt\n");
1308 return;
1309 }
1310
1311 head = pipe_crc->head;
1312 tail = pipe_crc->tail;
1313
1314 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1315 spin_unlock(&pipe_crc->lock);
1316 DRM_ERROR("CRC buffer overflowing\n");
1317 return;
1318 }
1319
1320 entry = &pipe_crc->entries[head];
1321
1322 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1323 entry->crc[0] = crc0;
1324 entry->crc[1] = crc1;
1325 entry->crc[2] = crc2;
1326 entry->crc[3] = crc3;
1327 entry->crc[4] = crc4;
1328
1329 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1330 pipe_crc->head = head;
1331
1332 spin_unlock(&pipe_crc->lock);
1333
1334 wake_up_interruptible(&pipe_crc->wq);
1335 }
1336 #else
1337 static inline void
1338 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1339 uint32_t crc0, uint32_t crc1,
1340 uint32_t crc2, uint32_t crc3,
1341 uint32_t crc4) {}
1342 #endif
1343
1344
1345 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1346 {
1347 struct drm_i915_private *dev_priv = dev->dev_private;
1348
1349 display_pipe_crc_irq_handler(dev, pipe,
1350 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1351 0, 0, 0, 0);
1352 }
1353
1354 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1355 {
1356 struct drm_i915_private *dev_priv = dev->dev_private;
1357
1358 display_pipe_crc_irq_handler(dev, pipe,
1359 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1360 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1361 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1362 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1363 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1364 }
1365
1366 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1367 {
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 uint32_t res1, res2;
1370
1371 if (INTEL_INFO(dev)->gen >= 3)
1372 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1373 else
1374 res1 = 0;
1375
1376 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1377 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1378 else
1379 res2 = 0;
1380
1381 display_pipe_crc_irq_handler(dev, pipe,
1382 I915_READ(PIPE_CRC_RES_RED(pipe)),
1383 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1384 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1385 res1, res2);
1386 }
1387
1388 /* The RPS events need forcewake, so we add them to a work queue and mask their
1389 * IMR bits until the work is done. Other interrupts can be processed without
1390 * the work queue. */
1391 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1392 {
1393 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1394 spin_lock(&dev_priv->irq_lock);
1395 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1396 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1397 spin_unlock(&dev_priv->irq_lock);
1398
1399 queue_work(dev_priv->wq, &dev_priv->rps.work);
1400 }
1401
1402 if (HAS_VEBOX(dev_priv->dev)) {
1403 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1404 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1405
1406 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1407 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1408 i915_handle_error(dev_priv->dev, false);
1409 }
1410 }
1411 }
1412
1413 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1414 {
1415 struct drm_device *dev = (struct drm_device *) arg;
1416 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1417 u32 iir, gt_iir, pm_iir;
1418 irqreturn_t ret = IRQ_NONE;
1419 unsigned long irqflags;
1420 int pipe;
1421 u32 pipe_stats[I915_MAX_PIPES];
1422
1423 atomic_inc(&dev_priv->irq_received);
1424
1425 while (true) {
1426 iir = I915_READ(VLV_IIR);
1427 gt_iir = I915_READ(GTIIR);
1428 pm_iir = I915_READ(GEN6_PMIIR);
1429
1430 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1431 goto out;
1432
1433 ret = IRQ_HANDLED;
1434
1435 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1436
1437 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1438 for_each_pipe(pipe) {
1439 int reg = PIPESTAT(pipe);
1440 pipe_stats[pipe] = I915_READ(reg);
1441
1442 /*
1443 * Clear the PIPE*STAT regs before the IIR
1444 */
1445 if (pipe_stats[pipe] & 0x8000ffff) {
1446 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1447 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1448 pipe_name(pipe));
1449 I915_WRITE(reg, pipe_stats[pipe]);
1450 }
1451 }
1452 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1453
1454 for_each_pipe(pipe) {
1455 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1456 drm_handle_vblank(dev, pipe);
1457
1458 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1459 intel_prepare_page_flip(dev, pipe);
1460 intel_finish_page_flip(dev, pipe);
1461 }
1462
1463 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1464 i9xx_pipe_crc_irq_handler(dev, pipe);
1465 }
1466
1467 /* Consume port. Then clear IIR or we'll miss events */
1468 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1469 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1470 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1471
1472 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1473 hotplug_status);
1474
1475 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1476
1477 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1478 I915_READ(PORT_HOTPLUG_STAT);
1479 }
1480
1481 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1482 gmbus_irq_handler(dev);
1483
1484 if (pm_iir)
1485 gen6_rps_irq_handler(dev_priv, pm_iir);
1486
1487 I915_WRITE(GTIIR, gt_iir);
1488 I915_WRITE(GEN6_PMIIR, pm_iir);
1489 I915_WRITE(VLV_IIR, iir);
1490 }
1491
1492 out:
1493 return ret;
1494 }
1495
1496 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1497 {
1498 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1499 int pipe;
1500 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1501
1502 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1503
1504 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1505 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1506 SDE_AUDIO_POWER_SHIFT);
1507 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1508 port_name(port));
1509 }
1510
1511 if (pch_iir & SDE_AUX_MASK)
1512 dp_aux_irq_handler(dev);
1513
1514 if (pch_iir & SDE_GMBUS)
1515 gmbus_irq_handler(dev);
1516
1517 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1518 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1519
1520 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1521 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1522
1523 if (pch_iir & SDE_POISON)
1524 DRM_ERROR("PCH poison interrupt\n");
1525
1526 if (pch_iir & SDE_FDI_MASK)
1527 for_each_pipe(pipe)
1528 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1529 pipe_name(pipe),
1530 I915_READ(FDI_RX_IIR(pipe)));
1531
1532 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1533 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1534
1535 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1536 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1537
1538 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1539 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1540 false))
1541 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1542
1543 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1544 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1545 false))
1546 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1547 }
1548
1549 static void ivb_err_int_handler(struct drm_device *dev)
1550 {
1551 struct drm_i915_private *dev_priv = dev->dev_private;
1552 u32 err_int = I915_READ(GEN7_ERR_INT);
1553 enum pipe pipe;
1554
1555 if (err_int & ERR_INT_POISON)
1556 DRM_ERROR("Poison interrupt\n");
1557
1558 for_each_pipe(pipe) {
1559 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1560 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1561 false))
1562 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1563 pipe_name(pipe));
1564 }
1565
1566 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1567 if (IS_IVYBRIDGE(dev))
1568 ivb_pipe_crc_irq_handler(dev, pipe);
1569 else
1570 hsw_pipe_crc_irq_handler(dev, pipe);
1571 }
1572 }
1573
1574 I915_WRITE(GEN7_ERR_INT, err_int);
1575 }
1576
1577 static void cpt_serr_int_handler(struct drm_device *dev)
1578 {
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 u32 serr_int = I915_READ(SERR_INT);
1581
1582 if (serr_int & SERR_INT_POISON)
1583 DRM_ERROR("PCH poison interrupt\n");
1584
1585 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1586 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1587 false))
1588 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1589
1590 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1591 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1592 false))
1593 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1594
1595 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1596 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1597 false))
1598 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1599
1600 I915_WRITE(SERR_INT, serr_int);
1601 }
1602
1603 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1604 {
1605 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1606 int pipe;
1607 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1608
1609 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1610
1611 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1612 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1613 SDE_AUDIO_POWER_SHIFT_CPT);
1614 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1615 port_name(port));
1616 }
1617
1618 if (pch_iir & SDE_AUX_MASK_CPT)
1619 dp_aux_irq_handler(dev);
1620
1621 if (pch_iir & SDE_GMBUS_CPT)
1622 gmbus_irq_handler(dev);
1623
1624 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1625 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1626
1627 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1628 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1629
1630 if (pch_iir & SDE_FDI_MASK_CPT)
1631 for_each_pipe(pipe)
1632 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1633 pipe_name(pipe),
1634 I915_READ(FDI_RX_IIR(pipe)));
1635
1636 if (pch_iir & SDE_ERROR_CPT)
1637 cpt_serr_int_handler(dev);
1638 }
1639
1640 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1641 {
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 enum pipe pipe;
1644
1645 if (de_iir & DE_AUX_CHANNEL_A)
1646 dp_aux_irq_handler(dev);
1647
1648 if (de_iir & DE_GSE)
1649 intel_opregion_asle_intr(dev);
1650
1651 if (de_iir & DE_POISON)
1652 DRM_ERROR("Poison interrupt\n");
1653
1654 for_each_pipe(pipe) {
1655 if (de_iir & DE_PIPE_VBLANK(pipe))
1656 drm_handle_vblank(dev, pipe);
1657
1658 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1659 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1660 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1661 pipe_name(pipe));
1662
1663 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1664 i9xx_pipe_crc_irq_handler(dev, pipe);
1665
1666 /* plane/pipes map 1:1 on ilk+ */
1667 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1668 intel_prepare_page_flip(dev, pipe);
1669 intel_finish_page_flip_plane(dev, pipe);
1670 }
1671 }
1672
1673 /* check event from PCH */
1674 if (de_iir & DE_PCH_EVENT) {
1675 u32 pch_iir = I915_READ(SDEIIR);
1676
1677 if (HAS_PCH_CPT(dev))
1678 cpt_irq_handler(dev, pch_iir);
1679 else
1680 ibx_irq_handler(dev, pch_iir);
1681
1682 /* should clear PCH hotplug event before clear CPU irq */
1683 I915_WRITE(SDEIIR, pch_iir);
1684 }
1685
1686 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1687 ironlake_rps_change_irq_handler(dev);
1688 }
1689
1690 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1691 {
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 enum pipe i;
1694
1695 if (de_iir & DE_ERR_INT_IVB)
1696 ivb_err_int_handler(dev);
1697
1698 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1699 dp_aux_irq_handler(dev);
1700
1701 if (de_iir & DE_GSE_IVB)
1702 intel_opregion_asle_intr(dev);
1703
1704 for_each_pipe(i) {
1705 if (de_iir & (DE_PIPE_VBLANK_IVB(i)))
1706 drm_handle_vblank(dev, i);
1707
1708 /* plane/pipes map 1:1 on ilk+ */
1709 if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) {
1710 intel_prepare_page_flip(dev, i);
1711 intel_finish_page_flip_plane(dev, i);
1712 }
1713 }
1714
1715 /* check event from PCH */
1716 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1717 u32 pch_iir = I915_READ(SDEIIR);
1718
1719 cpt_irq_handler(dev, pch_iir);
1720
1721 /* clear PCH hotplug event before clear CPU irq */
1722 I915_WRITE(SDEIIR, pch_iir);
1723 }
1724 }
1725
1726 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1727 {
1728 struct drm_device *dev = (struct drm_device *) arg;
1729 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1730 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1731 irqreturn_t ret = IRQ_NONE;
1732
1733 atomic_inc(&dev_priv->irq_received);
1734
1735 /* We get interrupts on unclaimed registers, so check for this before we
1736 * do any I915_{READ,WRITE}. */
1737 intel_uncore_check_errors(dev);
1738
1739 /* disable master interrupt before clearing iir */
1740 de_ier = I915_READ(DEIER);
1741 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1742 POSTING_READ(DEIER);
1743
1744 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1745 * interrupts will will be stored on its back queue, and then we'll be
1746 * able to process them after we restore SDEIER (as soon as we restore
1747 * it, we'll get an interrupt if SDEIIR still has something to process
1748 * due to its back queue). */
1749 if (!HAS_PCH_NOP(dev)) {
1750 sde_ier = I915_READ(SDEIER);
1751 I915_WRITE(SDEIER, 0);
1752 POSTING_READ(SDEIER);
1753 }
1754
1755 gt_iir = I915_READ(GTIIR);
1756 if (gt_iir) {
1757 if (INTEL_INFO(dev)->gen >= 6)
1758 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1759 else
1760 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1761 I915_WRITE(GTIIR, gt_iir);
1762 ret = IRQ_HANDLED;
1763 }
1764
1765 de_iir = I915_READ(DEIIR);
1766 if (de_iir) {
1767 if (INTEL_INFO(dev)->gen >= 7)
1768 ivb_display_irq_handler(dev, de_iir);
1769 else
1770 ilk_display_irq_handler(dev, de_iir);
1771 I915_WRITE(DEIIR, de_iir);
1772 ret = IRQ_HANDLED;
1773 }
1774
1775 if (INTEL_INFO(dev)->gen >= 6) {
1776 u32 pm_iir = I915_READ(GEN6_PMIIR);
1777 if (pm_iir) {
1778 gen6_rps_irq_handler(dev_priv, pm_iir);
1779 I915_WRITE(GEN6_PMIIR, pm_iir);
1780 ret = IRQ_HANDLED;
1781 }
1782 }
1783
1784 I915_WRITE(DEIER, de_ier);
1785 POSTING_READ(DEIER);
1786 if (!HAS_PCH_NOP(dev)) {
1787 I915_WRITE(SDEIER, sde_ier);
1788 POSTING_READ(SDEIER);
1789 }
1790
1791 return ret;
1792 }
1793
1794 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1795 {
1796 struct drm_device *dev = arg;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 u32 master_ctl;
1799 irqreturn_t ret = IRQ_NONE;
1800 uint32_t tmp = 0;
1801 enum pipe pipe;
1802
1803 atomic_inc(&dev_priv->irq_received);
1804
1805 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1806 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1807 if (!master_ctl)
1808 return IRQ_NONE;
1809
1810 I915_WRITE(GEN8_MASTER_IRQ, 0);
1811 POSTING_READ(GEN8_MASTER_IRQ);
1812
1813 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1814
1815 if (master_ctl & GEN8_DE_MISC_IRQ) {
1816 tmp = I915_READ(GEN8_DE_MISC_IIR);
1817 if (tmp & GEN8_DE_MISC_GSE)
1818 intel_opregion_asle_intr(dev);
1819 else if (tmp)
1820 DRM_ERROR("Unexpected DE Misc interrupt\n");
1821 else
1822 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1823
1824 if (tmp) {
1825 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1826 ret = IRQ_HANDLED;
1827 }
1828 }
1829
1830 if (master_ctl & GEN8_DE_PORT_IRQ) {
1831 tmp = I915_READ(GEN8_DE_PORT_IIR);
1832 if (tmp & GEN8_AUX_CHANNEL_A)
1833 dp_aux_irq_handler(dev);
1834 else if (tmp)
1835 DRM_ERROR("Unexpected DE Port interrupt\n");
1836 else
1837 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1838
1839 if (tmp) {
1840 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
1841 ret = IRQ_HANDLED;
1842 }
1843 }
1844
1845 for_each_pipe(pipe) {
1846 uint32_t pipe_iir;
1847
1848 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
1849 continue;
1850
1851 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
1852 if (pipe_iir & GEN8_PIPE_VBLANK)
1853 drm_handle_vblank(dev, pipe);
1854
1855 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
1856 intel_prepare_page_flip(dev, pipe);
1857 intel_finish_page_flip_plane(dev, pipe);
1858 }
1859
1860 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
1861 hsw_pipe_crc_irq_handler(dev, pipe);
1862
1863 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
1864 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1865 false))
1866 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1867 pipe_name(pipe));
1868 }
1869
1870 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
1871 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
1872 pipe_name(pipe),
1873 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
1874 }
1875
1876 if (pipe_iir) {
1877 ret = IRQ_HANDLED;
1878 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
1879 } else
1880 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
1881 }
1882
1883 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
1884 /*
1885 * FIXME(BDW): Assume for now that the new interrupt handling
1886 * scheme also closed the SDE interrupt handling race we've seen
1887 * on older pch-split platforms. But this needs testing.
1888 */
1889 u32 pch_iir = I915_READ(SDEIIR);
1890
1891 cpt_irq_handler(dev, pch_iir);
1892
1893 if (pch_iir) {
1894 I915_WRITE(SDEIIR, pch_iir);
1895 ret = IRQ_HANDLED;
1896 }
1897 }
1898
1899 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1900 POSTING_READ(GEN8_MASTER_IRQ);
1901
1902 return ret;
1903 }
1904
1905 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1906 bool reset_completed)
1907 {
1908 struct intel_ring_buffer *ring;
1909 int i;
1910
1911 /*
1912 * Notify all waiters for GPU completion events that reset state has
1913 * been changed, and that they need to restart their wait after
1914 * checking for potential errors (and bail out to drop locks if there is
1915 * a gpu reset pending so that i915_error_work_func can acquire them).
1916 */
1917
1918 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1919 for_each_ring(ring, dev_priv, i)
1920 wake_up_all(&ring->irq_queue);
1921
1922 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1923 wake_up_all(&dev_priv->pending_flip_queue);
1924
1925 /*
1926 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1927 * reset state is cleared.
1928 */
1929 if (reset_completed)
1930 wake_up_all(&dev_priv->gpu_error.reset_queue);
1931 }
1932
1933 /**
1934 * i915_error_work_func - do process context error handling work
1935 * @work: work struct
1936 *
1937 * Fire an error uevent so userspace can see that a hang or error
1938 * was detected.
1939 */
1940 static void i915_error_work_func(struct work_struct *work)
1941 {
1942 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1943 work);
1944 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1945 gpu_error);
1946 struct drm_device *dev = dev_priv->dev;
1947 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1948 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1949 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1950 int ret;
1951
1952 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
1953
1954 /*
1955 * Note that there's only one work item which does gpu resets, so we
1956 * need not worry about concurrent gpu resets potentially incrementing
1957 * error->reset_counter twice. We only need to take care of another
1958 * racing irq/hangcheck declaring the gpu dead for a second time. A
1959 * quick check for that is good enough: schedule_work ensures the
1960 * correct ordering between hang detection and this work item, and since
1961 * the reset in-progress bit is only ever set by code outside of this
1962 * work we don't need to worry about any other races.
1963 */
1964 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1965 DRM_DEBUG_DRIVER("resetting chip\n");
1966 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
1967 reset_event);
1968
1969 /*
1970 * All state reset _must_ be completed before we update the
1971 * reset counter, for otherwise waiters might miss the reset
1972 * pending state and not properly drop locks, resulting in
1973 * deadlocks with the reset work.
1974 */
1975 ret = i915_reset(dev);
1976
1977 intel_display_handle_reset(dev);
1978
1979 if (ret == 0) {
1980 /*
1981 * After all the gem state is reset, increment the reset
1982 * counter and wake up everyone waiting for the reset to
1983 * complete.
1984 *
1985 * Since unlock operations are a one-sided barrier only,
1986 * we need to insert a barrier here to order any seqno
1987 * updates before
1988 * the counter increment.
1989 */
1990 smp_mb__before_atomic_inc();
1991 atomic_inc(&dev_priv->gpu_error.reset_counter);
1992
1993 kobject_uevent_env(&dev->primary->kdev->kobj,
1994 KOBJ_CHANGE, reset_done_event);
1995 } else {
1996 atomic_set(&error->reset_counter, I915_WEDGED);
1997 }
1998
1999 /*
2000 * Note: The wake_up also serves as a memory barrier so that
2001 * waiters see the update value of the reset counter atomic_t.
2002 */
2003 i915_error_wake_up(dev_priv, true);
2004 }
2005 }
2006
2007 static void i915_report_and_clear_eir(struct drm_device *dev)
2008 {
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 uint32_t instdone[I915_NUM_INSTDONE_REG];
2011 u32 eir = I915_READ(EIR);
2012 int pipe, i;
2013
2014 if (!eir)
2015 return;
2016
2017 pr_err("render error detected, EIR: 0x%08x\n", eir);
2018
2019 i915_get_extra_instdone(dev, instdone);
2020
2021 if (IS_G4X(dev)) {
2022 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2023 u32 ipeir = I915_READ(IPEIR_I965);
2024
2025 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2026 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2027 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2028 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2029 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2030 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2031 I915_WRITE(IPEIR_I965, ipeir);
2032 POSTING_READ(IPEIR_I965);
2033 }
2034 if (eir & GM45_ERROR_PAGE_TABLE) {
2035 u32 pgtbl_err = I915_READ(PGTBL_ER);
2036 pr_err("page table error\n");
2037 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2038 I915_WRITE(PGTBL_ER, pgtbl_err);
2039 POSTING_READ(PGTBL_ER);
2040 }
2041 }
2042
2043 if (!IS_GEN2(dev)) {
2044 if (eir & I915_ERROR_PAGE_TABLE) {
2045 u32 pgtbl_err = I915_READ(PGTBL_ER);
2046 pr_err("page table error\n");
2047 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2048 I915_WRITE(PGTBL_ER, pgtbl_err);
2049 POSTING_READ(PGTBL_ER);
2050 }
2051 }
2052
2053 if (eir & I915_ERROR_MEMORY_REFRESH) {
2054 pr_err("memory refresh error:\n");
2055 for_each_pipe(pipe)
2056 pr_err("pipe %c stat: 0x%08x\n",
2057 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2058 /* pipestat has already been acked */
2059 }
2060 if (eir & I915_ERROR_INSTRUCTION) {
2061 pr_err("instruction error\n");
2062 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2063 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2064 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2065 if (INTEL_INFO(dev)->gen < 4) {
2066 u32 ipeir = I915_READ(IPEIR);
2067
2068 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2069 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2070 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2071 I915_WRITE(IPEIR, ipeir);
2072 POSTING_READ(IPEIR);
2073 } else {
2074 u32 ipeir = I915_READ(IPEIR_I965);
2075
2076 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2077 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2078 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2079 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2080 I915_WRITE(IPEIR_I965, ipeir);
2081 POSTING_READ(IPEIR_I965);
2082 }
2083 }
2084
2085 I915_WRITE(EIR, eir);
2086 POSTING_READ(EIR);
2087 eir = I915_READ(EIR);
2088 if (eir) {
2089 /*
2090 * some errors might have become stuck,
2091 * mask them.
2092 */
2093 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2094 I915_WRITE(EMR, I915_READ(EMR) | eir);
2095 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2096 }
2097 }
2098
2099 /**
2100 * i915_handle_error - handle an error interrupt
2101 * @dev: drm device
2102 *
2103 * Do some basic checking of regsiter state at error interrupt time and
2104 * dump it to the syslog. Also call i915_capture_error_state() to make
2105 * sure we get a record and make it available in debugfs. Fire a uevent
2106 * so userspace knows something bad happened (should trigger collection
2107 * of a ring dump etc.).
2108 */
2109 void i915_handle_error(struct drm_device *dev, bool wedged)
2110 {
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113 i915_capture_error_state(dev);
2114 i915_report_and_clear_eir(dev);
2115
2116 if (wedged) {
2117 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2118 &dev_priv->gpu_error.reset_counter);
2119
2120 /*
2121 * Wakeup waiting processes so that the reset work function
2122 * i915_error_work_func doesn't deadlock trying to grab various
2123 * locks. By bumping the reset counter first, the woken
2124 * processes will see a reset in progress and back off,
2125 * releasing their locks and then wait for the reset completion.
2126 * We must do this for _all_ gpu waiters that might hold locks
2127 * that the reset work needs to acquire.
2128 *
2129 * Note: The wake_up serves as the required memory barrier to
2130 * ensure that the waiters see the updated value of the reset
2131 * counter atomic_t.
2132 */
2133 i915_error_wake_up(dev_priv, false);
2134 }
2135
2136 /*
2137 * Our reset work can grab modeset locks (since it needs to reset the
2138 * state of outstanding pagelips). Hence it must not be run on our own
2139 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2140 * code will deadlock.
2141 */
2142 schedule_work(&dev_priv->gpu_error.work);
2143 }
2144
2145 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2146 {
2147 drm_i915_private_t *dev_priv = dev->dev_private;
2148 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2150 struct drm_i915_gem_object *obj;
2151 struct intel_unpin_work *work;
2152 unsigned long flags;
2153 bool stall_detected;
2154
2155 /* Ignore early vblank irqs */
2156 if (intel_crtc == NULL)
2157 return;
2158
2159 spin_lock_irqsave(&dev->event_lock, flags);
2160 work = intel_crtc->unpin_work;
2161
2162 if (work == NULL ||
2163 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2164 !work->enable_stall_check) {
2165 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2166 spin_unlock_irqrestore(&dev->event_lock, flags);
2167 return;
2168 }
2169
2170 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2171 obj = work->pending_flip_obj;
2172 if (INTEL_INFO(dev)->gen >= 4) {
2173 int dspsurf = DSPSURF(intel_crtc->plane);
2174 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2175 i915_gem_obj_ggtt_offset(obj);
2176 } else {
2177 int dspaddr = DSPADDR(intel_crtc->plane);
2178 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2179 crtc->y * crtc->fb->pitches[0] +
2180 crtc->x * crtc->fb->bits_per_pixel/8);
2181 }
2182
2183 spin_unlock_irqrestore(&dev->event_lock, flags);
2184
2185 if (stall_detected) {
2186 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2187 intel_prepare_page_flip(dev, intel_crtc->plane);
2188 }
2189 }
2190
2191 /* Called from drm generic code, passed 'crtc' which
2192 * we use as a pipe index
2193 */
2194 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2195 {
2196 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2197 unsigned long irqflags;
2198
2199 if (!i915_pipe_enabled(dev, pipe))
2200 return -EINVAL;
2201
2202 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2203 if (INTEL_INFO(dev)->gen >= 4)
2204 i915_enable_pipestat(dev_priv, pipe,
2205 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2206 else
2207 i915_enable_pipestat(dev_priv, pipe,
2208 PIPE_VBLANK_INTERRUPT_ENABLE);
2209
2210 /* maintain vblank delivery even in deep C-states */
2211 if (dev_priv->info->gen == 3)
2212 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2213 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2214
2215 return 0;
2216 }
2217
2218 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2219 {
2220 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2221 unsigned long irqflags;
2222 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2223 DE_PIPE_VBLANK(pipe);
2224
2225 if (!i915_pipe_enabled(dev, pipe))
2226 return -EINVAL;
2227
2228 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2229 ironlake_enable_display_irq(dev_priv, bit);
2230 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2231
2232 return 0;
2233 }
2234
2235 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2236 {
2237 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2238 unsigned long irqflags;
2239 u32 imr;
2240
2241 if (!i915_pipe_enabled(dev, pipe))
2242 return -EINVAL;
2243
2244 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2245 imr = I915_READ(VLV_IMR);
2246 if (pipe == PIPE_A)
2247 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2248 else
2249 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2250 I915_WRITE(VLV_IMR, imr);
2251 i915_enable_pipestat(dev_priv, pipe,
2252 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2253 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2254
2255 return 0;
2256 }
2257
2258 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 unsigned long irqflags;
2262
2263 if (!i915_pipe_enabled(dev, pipe))
2264 return -EINVAL;
2265
2266 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2267 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2268 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2269 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2270 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2271 return 0;
2272 }
2273
2274 /* Called from drm generic code, passed 'crtc' which
2275 * we use as a pipe index
2276 */
2277 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2278 {
2279 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2280 unsigned long irqflags;
2281
2282 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2283 if (dev_priv->info->gen == 3)
2284 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2285
2286 i915_disable_pipestat(dev_priv, pipe,
2287 PIPE_VBLANK_INTERRUPT_ENABLE |
2288 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2289 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2290 }
2291
2292 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2293 {
2294 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2295 unsigned long irqflags;
2296 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2297 DE_PIPE_VBLANK(pipe);
2298
2299 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2300 ironlake_disable_display_irq(dev_priv, bit);
2301 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2302 }
2303
2304 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2305 {
2306 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2307 unsigned long irqflags;
2308 u32 imr;
2309
2310 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2311 i915_disable_pipestat(dev_priv, pipe,
2312 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2313 imr = I915_READ(VLV_IMR);
2314 if (pipe == PIPE_A)
2315 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2316 else
2317 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2318 I915_WRITE(VLV_IMR, imr);
2319 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2320 }
2321
2322 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2323 {
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325 unsigned long irqflags;
2326
2327 if (!i915_pipe_enabled(dev, pipe))
2328 return;
2329
2330 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2331 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2332 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2333 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2334 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2335 }
2336
2337 static u32
2338 ring_last_seqno(struct intel_ring_buffer *ring)
2339 {
2340 return list_entry(ring->request_list.prev,
2341 struct drm_i915_gem_request, list)->seqno;
2342 }
2343
2344 static bool
2345 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2346 {
2347 return (list_empty(&ring->request_list) ||
2348 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2349 }
2350
2351 static struct intel_ring_buffer *
2352 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2353 {
2354 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2355 u32 cmd, ipehr, acthd, acthd_min;
2356
2357 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2358 if ((ipehr & ~(0x3 << 16)) !=
2359 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2360 return NULL;
2361
2362 /* ACTHD is likely pointing to the dword after the actual command,
2363 * so scan backwards until we find the MBOX.
2364 */
2365 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2366 acthd_min = max((int)acthd - 3 * 4, 0);
2367 do {
2368 cmd = ioread32(ring->virtual_start + acthd);
2369 if (cmd == ipehr)
2370 break;
2371
2372 acthd -= 4;
2373 if (acthd < acthd_min)
2374 return NULL;
2375 } while (1);
2376
2377 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2378 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2379 }
2380
2381 static int semaphore_passed(struct intel_ring_buffer *ring)
2382 {
2383 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2384 struct intel_ring_buffer *signaller;
2385 u32 seqno, ctl;
2386
2387 ring->hangcheck.deadlock = true;
2388
2389 signaller = semaphore_waits_for(ring, &seqno);
2390 if (signaller == NULL || signaller->hangcheck.deadlock)
2391 return -1;
2392
2393 /* cursory check for an unkickable deadlock */
2394 ctl = I915_READ_CTL(signaller);
2395 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2396 return -1;
2397
2398 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2399 }
2400
2401 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2402 {
2403 struct intel_ring_buffer *ring;
2404 int i;
2405
2406 for_each_ring(ring, dev_priv, i)
2407 ring->hangcheck.deadlock = false;
2408 }
2409
2410 static enum intel_ring_hangcheck_action
2411 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2412 {
2413 struct drm_device *dev = ring->dev;
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 u32 tmp;
2416
2417 if (ring->hangcheck.acthd != acthd)
2418 return HANGCHECK_ACTIVE;
2419
2420 if (IS_GEN2(dev))
2421 return HANGCHECK_HUNG;
2422
2423 /* Is the chip hanging on a WAIT_FOR_EVENT?
2424 * If so we can simply poke the RB_WAIT bit
2425 * and break the hang. This should work on
2426 * all but the second generation chipsets.
2427 */
2428 tmp = I915_READ_CTL(ring);
2429 if (tmp & RING_WAIT) {
2430 DRM_ERROR("Kicking stuck wait on %s\n",
2431 ring->name);
2432 i915_handle_error(dev, false);
2433 I915_WRITE_CTL(ring, tmp);
2434 return HANGCHECK_KICK;
2435 }
2436
2437 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2438 switch (semaphore_passed(ring)) {
2439 default:
2440 return HANGCHECK_HUNG;
2441 case 1:
2442 DRM_ERROR("Kicking stuck semaphore on %s\n",
2443 ring->name);
2444 i915_handle_error(dev, false);
2445 I915_WRITE_CTL(ring, tmp);
2446 return HANGCHECK_KICK;
2447 case 0:
2448 return HANGCHECK_WAIT;
2449 }
2450 }
2451
2452 return HANGCHECK_HUNG;
2453 }
2454
2455 /**
2456 * This is called when the chip hasn't reported back with completed
2457 * batchbuffers in a long time. We keep track per ring seqno progress and
2458 * if there are no progress, hangcheck score for that ring is increased.
2459 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2460 * we kick the ring. If we see no progress on three subsequent calls
2461 * we assume chip is wedged and try to fix it by resetting the chip.
2462 */
2463 static void i915_hangcheck_elapsed(unsigned long data)
2464 {
2465 struct drm_device *dev = (struct drm_device *)data;
2466 drm_i915_private_t *dev_priv = dev->dev_private;
2467 struct intel_ring_buffer *ring;
2468 int i;
2469 int busy_count = 0, rings_hung = 0;
2470 bool stuck[I915_NUM_RINGS] = { 0 };
2471 #define BUSY 1
2472 #define KICK 5
2473 #define HUNG 20
2474 #define FIRE 30
2475
2476 if (!i915_enable_hangcheck)
2477 return;
2478
2479 for_each_ring(ring, dev_priv, i) {
2480 u32 seqno, acthd;
2481 bool busy = true;
2482
2483 semaphore_clear_deadlocks(dev_priv);
2484
2485 seqno = ring->get_seqno(ring, false);
2486 acthd = intel_ring_get_active_head(ring);
2487
2488 if (ring->hangcheck.seqno == seqno) {
2489 if (ring_idle(ring, seqno)) {
2490 ring->hangcheck.action = HANGCHECK_IDLE;
2491
2492 if (waitqueue_active(&ring->irq_queue)) {
2493 /* Issue a wake-up to catch stuck h/w. */
2494 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2495 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2496 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2497 ring->name);
2498 else
2499 DRM_INFO("Fake missed irq on %s\n",
2500 ring->name);
2501 wake_up_all(&ring->irq_queue);
2502 }
2503 /* Safeguard against driver failure */
2504 ring->hangcheck.score += BUSY;
2505 } else
2506 busy = false;
2507 } else {
2508 /* We always increment the hangcheck score
2509 * if the ring is busy and still processing
2510 * the same request, so that no single request
2511 * can run indefinitely (such as a chain of
2512 * batches). The only time we do not increment
2513 * the hangcheck score on this ring, if this
2514 * ring is in a legitimate wait for another
2515 * ring. In that case the waiting ring is a
2516 * victim and we want to be sure we catch the
2517 * right culprit. Then every time we do kick
2518 * the ring, add a small increment to the
2519 * score so that we can catch a batch that is
2520 * being repeatedly kicked and so responsible
2521 * for stalling the machine.
2522 */
2523 ring->hangcheck.action = ring_stuck(ring,
2524 acthd);
2525
2526 switch (ring->hangcheck.action) {
2527 case HANGCHECK_IDLE:
2528 case HANGCHECK_WAIT:
2529 break;
2530 case HANGCHECK_ACTIVE:
2531 ring->hangcheck.score += BUSY;
2532 break;
2533 case HANGCHECK_KICK:
2534 ring->hangcheck.score += KICK;
2535 break;
2536 case HANGCHECK_HUNG:
2537 ring->hangcheck.score += HUNG;
2538 stuck[i] = true;
2539 break;
2540 }
2541 }
2542 } else {
2543 ring->hangcheck.action = HANGCHECK_ACTIVE;
2544
2545 /* Gradually reduce the count so that we catch DoS
2546 * attempts across multiple batches.
2547 */
2548 if (ring->hangcheck.score > 0)
2549 ring->hangcheck.score--;
2550 }
2551
2552 ring->hangcheck.seqno = seqno;
2553 ring->hangcheck.acthd = acthd;
2554 busy_count += busy;
2555 }
2556
2557 for_each_ring(ring, dev_priv, i) {
2558 if (ring->hangcheck.score > FIRE) {
2559 DRM_INFO("%s on %s\n",
2560 stuck[i] ? "stuck" : "no progress",
2561 ring->name);
2562 rings_hung++;
2563 }
2564 }
2565
2566 if (rings_hung)
2567 return i915_handle_error(dev, true);
2568
2569 if (busy_count)
2570 /* Reset timer case chip hangs without another request
2571 * being added */
2572 i915_queue_hangcheck(dev);
2573 }
2574
2575 void i915_queue_hangcheck(struct drm_device *dev)
2576 {
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578 if (!i915_enable_hangcheck)
2579 return;
2580
2581 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2582 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2583 }
2584
2585 static void ibx_irq_preinstall(struct drm_device *dev)
2586 {
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588
2589 if (HAS_PCH_NOP(dev))
2590 return;
2591
2592 /* south display irq */
2593 I915_WRITE(SDEIMR, 0xffffffff);
2594 /*
2595 * SDEIER is also touched by the interrupt handler to work around missed
2596 * PCH interrupts. Hence we can't update it after the interrupt handler
2597 * is enabled - instead we unconditionally enable all PCH interrupt
2598 * sources here, but then only unmask them as needed with SDEIMR.
2599 */
2600 I915_WRITE(SDEIER, 0xffffffff);
2601 POSTING_READ(SDEIER);
2602 }
2603
2604 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2605 {
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607
2608 /* and GT */
2609 I915_WRITE(GTIMR, 0xffffffff);
2610 I915_WRITE(GTIER, 0x0);
2611 POSTING_READ(GTIER);
2612
2613 if (INTEL_INFO(dev)->gen >= 6) {
2614 /* and PM */
2615 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2616 I915_WRITE(GEN6_PMIER, 0x0);
2617 POSTING_READ(GEN6_PMIER);
2618 }
2619 }
2620
2621 /* drm_dma.h hooks
2622 */
2623 static void ironlake_irq_preinstall(struct drm_device *dev)
2624 {
2625 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2626
2627 atomic_set(&dev_priv->irq_received, 0);
2628
2629 I915_WRITE(HWSTAM, 0xeffe);
2630
2631 I915_WRITE(DEIMR, 0xffffffff);
2632 I915_WRITE(DEIER, 0x0);
2633 POSTING_READ(DEIER);
2634
2635 gen5_gt_irq_preinstall(dev);
2636
2637 ibx_irq_preinstall(dev);
2638 }
2639
2640 static void valleyview_irq_preinstall(struct drm_device *dev)
2641 {
2642 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2643 int pipe;
2644
2645 atomic_set(&dev_priv->irq_received, 0);
2646
2647 /* VLV magic */
2648 I915_WRITE(VLV_IMR, 0);
2649 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2650 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2651 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2652
2653 /* and GT */
2654 I915_WRITE(GTIIR, I915_READ(GTIIR));
2655 I915_WRITE(GTIIR, I915_READ(GTIIR));
2656
2657 gen5_gt_irq_preinstall(dev);
2658
2659 I915_WRITE(DPINVGTT, 0xff);
2660
2661 I915_WRITE(PORT_HOTPLUG_EN, 0);
2662 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2663 for_each_pipe(pipe)
2664 I915_WRITE(PIPESTAT(pipe), 0xffff);
2665 I915_WRITE(VLV_IIR, 0xffffffff);
2666 I915_WRITE(VLV_IMR, 0xffffffff);
2667 I915_WRITE(VLV_IER, 0x0);
2668 POSTING_READ(VLV_IER);
2669 }
2670
2671 static void gen8_irq_preinstall(struct drm_device *dev)
2672 {
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 int pipe;
2675
2676 atomic_set(&dev_priv->irq_received, 0);
2677
2678 I915_WRITE(GEN8_MASTER_IRQ, 0);
2679 POSTING_READ(GEN8_MASTER_IRQ);
2680
2681 /* IIR can theoretically queue up two events. Be paranoid */
2682 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2683 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2684 POSTING_READ(GEN8_##type##_IMR(which)); \
2685 I915_WRITE(GEN8_##type##_IER(which), 0); \
2686 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2687 POSTING_READ(GEN8_##type##_IIR(which)); \
2688 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2689 } while (0)
2690
2691 #define GEN8_IRQ_INIT(type) do { \
2692 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2693 POSTING_READ(GEN8_##type##_IMR); \
2694 I915_WRITE(GEN8_##type##_IER, 0); \
2695 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2696 POSTING_READ(GEN8_##type##_IIR); \
2697 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2698 } while (0)
2699
2700 GEN8_IRQ_INIT_NDX(GT, 0);
2701 GEN8_IRQ_INIT_NDX(GT, 1);
2702 GEN8_IRQ_INIT_NDX(GT, 2);
2703 GEN8_IRQ_INIT_NDX(GT, 3);
2704
2705 for_each_pipe(pipe) {
2706 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2707 }
2708
2709 GEN8_IRQ_INIT(DE_PORT);
2710 GEN8_IRQ_INIT(DE_MISC);
2711 GEN8_IRQ_INIT(PCU);
2712 #undef GEN8_IRQ_INIT
2713 #undef GEN8_IRQ_INIT_NDX
2714
2715 POSTING_READ(GEN8_PCU_IIR);
2716
2717 ibx_irq_preinstall(dev);
2718 }
2719
2720 static void ibx_hpd_irq_setup(struct drm_device *dev)
2721 {
2722 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2723 struct drm_mode_config *mode_config = &dev->mode_config;
2724 struct intel_encoder *intel_encoder;
2725 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2726
2727 if (HAS_PCH_IBX(dev)) {
2728 hotplug_irqs = SDE_HOTPLUG_MASK;
2729 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2730 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2731 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2732 } else {
2733 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2734 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2735 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2736 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2737 }
2738
2739 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2740
2741 /*
2742 * Enable digital hotplug on the PCH, and configure the DP short pulse
2743 * duration to 2ms (which is the minimum in the Display Port spec)
2744 *
2745 * This register is the same on all known PCH chips.
2746 */
2747 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2748 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2749 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2750 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2751 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2752 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2753 }
2754
2755 static void ibx_irq_postinstall(struct drm_device *dev)
2756 {
2757 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2758 u32 mask;
2759
2760 if (HAS_PCH_NOP(dev))
2761 return;
2762
2763 if (HAS_PCH_IBX(dev)) {
2764 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2765 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2766 } else {
2767 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2768
2769 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2770 }
2771
2772 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2773 I915_WRITE(SDEIMR, ~mask);
2774 }
2775
2776 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2777 {
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 u32 pm_irqs, gt_irqs;
2780
2781 pm_irqs = gt_irqs = 0;
2782
2783 dev_priv->gt_irq_mask = ~0;
2784 if (HAS_L3_DPF(dev)) {
2785 /* L3 parity interrupt is always unmasked. */
2786 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2787 gt_irqs |= GT_PARITY_ERROR(dev);
2788 }
2789
2790 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2791 if (IS_GEN5(dev)) {
2792 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2793 ILK_BSD_USER_INTERRUPT;
2794 } else {
2795 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2796 }
2797
2798 I915_WRITE(GTIIR, I915_READ(GTIIR));
2799 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2800 I915_WRITE(GTIER, gt_irqs);
2801 POSTING_READ(GTIER);
2802
2803 if (INTEL_INFO(dev)->gen >= 6) {
2804 pm_irqs |= GEN6_PM_RPS_EVENTS;
2805
2806 if (HAS_VEBOX(dev))
2807 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2808
2809 dev_priv->pm_irq_mask = 0xffffffff;
2810 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2811 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2812 I915_WRITE(GEN6_PMIER, pm_irqs);
2813 POSTING_READ(GEN6_PMIER);
2814 }
2815 }
2816
2817 static int ironlake_irq_postinstall(struct drm_device *dev)
2818 {
2819 unsigned long irqflags;
2820 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2821 u32 display_mask, extra_mask;
2822
2823 if (INTEL_INFO(dev)->gen >= 7) {
2824 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2825 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2826 DE_PLANEB_FLIP_DONE_IVB |
2827 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2828 DE_ERR_INT_IVB);
2829 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2830 DE_PIPEA_VBLANK_IVB);
2831
2832 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2833 } else {
2834 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2835 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2836 DE_AUX_CHANNEL_A |
2837 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
2838 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2839 DE_POISON);
2840 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2841 }
2842
2843 dev_priv->irq_mask = ~display_mask;
2844
2845 /* should always can generate irq */
2846 I915_WRITE(DEIIR, I915_READ(DEIIR));
2847 I915_WRITE(DEIMR, dev_priv->irq_mask);
2848 I915_WRITE(DEIER, display_mask | extra_mask);
2849 POSTING_READ(DEIER);
2850
2851 gen5_gt_irq_postinstall(dev);
2852
2853 ibx_irq_postinstall(dev);
2854
2855 if (IS_IRONLAKE_M(dev)) {
2856 /* Enable PCU event interrupts
2857 *
2858 * spinlocking not required here for correctness since interrupt
2859 * setup is guaranteed to run in single-threaded context. But we
2860 * need it to make the assert_spin_locked happy. */
2861 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2862 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2863 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2864 }
2865
2866 return 0;
2867 }
2868
2869 static int valleyview_irq_postinstall(struct drm_device *dev)
2870 {
2871 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2872 u32 enable_mask;
2873 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2874 PIPE_CRC_DONE_ENABLE;
2875 unsigned long irqflags;
2876
2877 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2878 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2879 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2880 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2881 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2882
2883 /*
2884 *Leave vblank interrupts masked initially. enable/disable will
2885 * toggle them based on usage.
2886 */
2887 dev_priv->irq_mask = (~enable_mask) |
2888 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2889 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2890
2891 I915_WRITE(PORT_HOTPLUG_EN, 0);
2892 POSTING_READ(PORT_HOTPLUG_EN);
2893
2894 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2895 I915_WRITE(VLV_IER, enable_mask);
2896 I915_WRITE(VLV_IIR, 0xffffffff);
2897 I915_WRITE(PIPESTAT(0), 0xffff);
2898 I915_WRITE(PIPESTAT(1), 0xffff);
2899 POSTING_READ(VLV_IER);
2900
2901 /* Interrupt setup is already guaranteed to be single-threaded, this is
2902 * just to make the assert_spin_locked check happy. */
2903 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2904 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2905 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2906 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2907 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2908
2909 I915_WRITE(VLV_IIR, 0xffffffff);
2910 I915_WRITE(VLV_IIR, 0xffffffff);
2911
2912 gen5_gt_irq_postinstall(dev);
2913
2914 /* ack & enable invalid PTE error interrupts */
2915 #if 0 /* FIXME: add support to irq handler for checking these bits */
2916 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2917 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2918 #endif
2919
2920 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2921
2922 return 0;
2923 }
2924
2925 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
2926 {
2927 int i;
2928
2929 /* These are interrupts we'll toggle with the ring mask register */
2930 uint32_t gt_interrupts[] = {
2931 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
2932 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
2933 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
2934 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
2935 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
2936 0,
2937 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
2938 };
2939
2940 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
2941 u32 tmp = I915_READ(GEN8_GT_IIR(i));
2942 if (tmp)
2943 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2944 i, tmp);
2945 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
2946 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
2947 }
2948 POSTING_READ(GEN8_GT_IER(0));
2949 }
2950
2951 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
2952 {
2953 struct drm_device *dev = dev_priv->dev;
2954 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
2955 GEN8_PIPE_CDCLK_CRC_DONE |
2956 GEN8_PIPE_FIFO_UNDERRUN |
2957 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2958 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK;
2959 int pipe;
2960 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
2961 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
2962 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
2963
2964 for_each_pipe(pipe) {
2965 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2966 if (tmp)
2967 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2968 pipe, tmp);
2969 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2970 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
2971 }
2972 POSTING_READ(GEN8_DE_PIPE_ISR(0));
2973
2974 I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
2975 I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
2976 POSTING_READ(GEN8_DE_PORT_IER);
2977 }
2978
2979 static int gen8_irq_postinstall(struct drm_device *dev)
2980 {
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982
2983 gen8_gt_irq_postinstall(dev_priv);
2984 gen8_de_irq_postinstall(dev_priv);
2985
2986 ibx_irq_postinstall(dev);
2987
2988 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2989 POSTING_READ(GEN8_MASTER_IRQ);
2990
2991 return 0;
2992 }
2993
2994 static void gen8_irq_uninstall(struct drm_device *dev)
2995 {
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997 int pipe;
2998
2999 if (!dev_priv)
3000 return;
3001
3002 atomic_set(&dev_priv->irq_received, 0);
3003
3004 I915_WRITE(GEN8_MASTER_IRQ, 0);
3005
3006 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3007 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3008 I915_WRITE(GEN8_##type##_IER(which), 0); \
3009 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3010 } while (0)
3011
3012 #define GEN8_IRQ_FINI(type) do { \
3013 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3014 I915_WRITE(GEN8_##type##_IER, 0); \
3015 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3016 } while (0)
3017
3018 GEN8_IRQ_FINI_NDX(GT, 0);
3019 GEN8_IRQ_FINI_NDX(GT, 1);
3020 GEN8_IRQ_FINI_NDX(GT, 2);
3021 GEN8_IRQ_FINI_NDX(GT, 3);
3022
3023 for_each_pipe(pipe) {
3024 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3025 }
3026
3027 GEN8_IRQ_FINI(DE_PORT);
3028 GEN8_IRQ_FINI(DE_MISC);
3029 GEN8_IRQ_FINI(PCU);
3030 #undef GEN8_IRQ_FINI
3031 #undef GEN8_IRQ_FINI_NDX
3032
3033 POSTING_READ(GEN8_PCU_IIR);
3034 }
3035
3036 static void valleyview_irq_uninstall(struct drm_device *dev)
3037 {
3038 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3039 int pipe;
3040
3041 if (!dev_priv)
3042 return;
3043
3044 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3045
3046 for_each_pipe(pipe)
3047 I915_WRITE(PIPESTAT(pipe), 0xffff);
3048
3049 I915_WRITE(HWSTAM, 0xffffffff);
3050 I915_WRITE(PORT_HOTPLUG_EN, 0);
3051 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3052 for_each_pipe(pipe)
3053 I915_WRITE(PIPESTAT(pipe), 0xffff);
3054 I915_WRITE(VLV_IIR, 0xffffffff);
3055 I915_WRITE(VLV_IMR, 0xffffffff);
3056 I915_WRITE(VLV_IER, 0x0);
3057 POSTING_READ(VLV_IER);
3058 }
3059
3060 static void ironlake_irq_uninstall(struct drm_device *dev)
3061 {
3062 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3063
3064 if (!dev_priv)
3065 return;
3066
3067 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3068
3069 I915_WRITE(HWSTAM, 0xffffffff);
3070
3071 I915_WRITE(DEIMR, 0xffffffff);
3072 I915_WRITE(DEIER, 0x0);
3073 I915_WRITE(DEIIR, I915_READ(DEIIR));
3074 if (IS_GEN7(dev))
3075 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3076
3077 I915_WRITE(GTIMR, 0xffffffff);
3078 I915_WRITE(GTIER, 0x0);
3079 I915_WRITE(GTIIR, I915_READ(GTIIR));
3080
3081 if (HAS_PCH_NOP(dev))
3082 return;
3083
3084 I915_WRITE(SDEIMR, 0xffffffff);
3085 I915_WRITE(SDEIER, 0x0);
3086 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3087 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3088 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3089 }
3090
3091 static void i8xx_irq_preinstall(struct drm_device * dev)
3092 {
3093 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3094 int pipe;
3095
3096 atomic_set(&dev_priv->irq_received, 0);
3097
3098 for_each_pipe(pipe)
3099 I915_WRITE(PIPESTAT(pipe), 0);
3100 I915_WRITE16(IMR, 0xffff);
3101 I915_WRITE16(IER, 0x0);
3102 POSTING_READ16(IER);
3103 }
3104
3105 static int i8xx_irq_postinstall(struct drm_device *dev)
3106 {
3107 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3108 unsigned long irqflags;
3109
3110 I915_WRITE16(EMR,
3111 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3112
3113 /* Unmask the interrupts that we always want on. */
3114 dev_priv->irq_mask =
3115 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3116 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3117 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3118 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3119 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3120 I915_WRITE16(IMR, dev_priv->irq_mask);
3121
3122 I915_WRITE16(IER,
3123 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3124 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3125 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3126 I915_USER_INTERRUPT);
3127 POSTING_READ16(IER);
3128
3129 /* Interrupt setup is already guaranteed to be single-threaded, this is
3130 * just to make the assert_spin_locked check happy. */
3131 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3132 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3133 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3134 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3135
3136 return 0;
3137 }
3138
3139 /*
3140 * Returns true when a page flip has completed.
3141 */
3142 static bool i8xx_handle_vblank(struct drm_device *dev,
3143 int pipe, u16 iir)
3144 {
3145 drm_i915_private_t *dev_priv = dev->dev_private;
3146 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
3147
3148 if (!drm_handle_vblank(dev, pipe))
3149 return false;
3150
3151 if ((iir & flip_pending) == 0)
3152 return false;
3153
3154 intel_prepare_page_flip(dev, pipe);
3155
3156 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3157 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3158 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3159 * the flip is completed (no longer pending). Since this doesn't raise
3160 * an interrupt per se, we watch for the change at vblank.
3161 */
3162 if (I915_READ16(ISR) & flip_pending)
3163 return false;
3164
3165 intel_finish_page_flip(dev, pipe);
3166
3167 return true;
3168 }
3169
3170 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3171 {
3172 struct drm_device *dev = (struct drm_device *) arg;
3173 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3174 u16 iir, new_iir;
3175 u32 pipe_stats[2];
3176 unsigned long irqflags;
3177 int pipe;
3178 u16 flip_mask =
3179 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3180 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3181
3182 atomic_inc(&dev_priv->irq_received);
3183
3184 iir = I915_READ16(IIR);
3185 if (iir == 0)
3186 return IRQ_NONE;
3187
3188 while (iir & ~flip_mask) {
3189 /* Can't rely on pipestat interrupt bit in iir as it might
3190 * have been cleared after the pipestat interrupt was received.
3191 * It doesn't set the bit in iir again, but it still produces
3192 * interrupts (for non-MSI).
3193 */
3194 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3195 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3196 i915_handle_error(dev, false);
3197
3198 for_each_pipe(pipe) {
3199 int reg = PIPESTAT(pipe);
3200 pipe_stats[pipe] = I915_READ(reg);
3201
3202 /*
3203 * Clear the PIPE*STAT regs before the IIR
3204 */
3205 if (pipe_stats[pipe] & 0x8000ffff) {
3206 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3207 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3208 pipe_name(pipe));
3209 I915_WRITE(reg, pipe_stats[pipe]);
3210 }
3211 }
3212 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3213
3214 I915_WRITE16(IIR, iir & ~flip_mask);
3215 new_iir = I915_READ16(IIR); /* Flush posted writes */
3216
3217 i915_update_dri1_breadcrumb(dev);
3218
3219 if (iir & I915_USER_INTERRUPT)
3220 notify_ring(dev, &dev_priv->ring[RCS]);
3221
3222 for_each_pipe(pipe) {
3223 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3224 i8xx_handle_vblank(dev, pipe, iir))
3225 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3226
3227 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3228 i9xx_pipe_crc_irq_handler(dev, pipe);
3229 }
3230
3231 iir = new_iir;
3232 }
3233
3234 return IRQ_HANDLED;
3235 }
3236
3237 static void i8xx_irq_uninstall(struct drm_device * dev)
3238 {
3239 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3240 int pipe;
3241
3242 for_each_pipe(pipe) {
3243 /* Clear enable bits; then clear status bits */
3244 I915_WRITE(PIPESTAT(pipe), 0);
3245 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3246 }
3247 I915_WRITE16(IMR, 0xffff);
3248 I915_WRITE16(IER, 0x0);
3249 I915_WRITE16(IIR, I915_READ16(IIR));
3250 }
3251
3252 static void i915_irq_preinstall(struct drm_device * dev)
3253 {
3254 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3255 int pipe;
3256
3257 atomic_set(&dev_priv->irq_received, 0);
3258
3259 if (I915_HAS_HOTPLUG(dev)) {
3260 I915_WRITE(PORT_HOTPLUG_EN, 0);
3261 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3262 }
3263
3264 I915_WRITE16(HWSTAM, 0xeffe);
3265 for_each_pipe(pipe)
3266 I915_WRITE(PIPESTAT(pipe), 0);
3267 I915_WRITE(IMR, 0xffffffff);
3268 I915_WRITE(IER, 0x0);
3269 POSTING_READ(IER);
3270 }
3271
3272 static int i915_irq_postinstall(struct drm_device *dev)
3273 {
3274 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3275 u32 enable_mask;
3276 unsigned long irqflags;
3277
3278 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3279
3280 /* Unmask the interrupts that we always want on. */
3281 dev_priv->irq_mask =
3282 ~(I915_ASLE_INTERRUPT |
3283 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3284 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3285 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3286 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3287 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3288
3289 enable_mask =
3290 I915_ASLE_INTERRUPT |
3291 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3292 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3293 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3294 I915_USER_INTERRUPT;
3295
3296 if (I915_HAS_HOTPLUG(dev)) {
3297 I915_WRITE(PORT_HOTPLUG_EN, 0);
3298 POSTING_READ(PORT_HOTPLUG_EN);
3299
3300 /* Enable in IER... */
3301 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3302 /* and unmask in IMR */
3303 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3304 }
3305
3306 I915_WRITE(IMR, dev_priv->irq_mask);
3307 I915_WRITE(IER, enable_mask);
3308 POSTING_READ(IER);
3309
3310 i915_enable_asle_pipestat(dev);
3311
3312 /* Interrupt setup is already guaranteed to be single-threaded, this is
3313 * just to make the assert_spin_locked check happy. */
3314 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3315 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3316 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3317 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3318
3319 return 0;
3320 }
3321
3322 /*
3323 * Returns true when a page flip has completed.
3324 */
3325 static bool i915_handle_vblank(struct drm_device *dev,
3326 int plane, int pipe, u32 iir)
3327 {
3328 drm_i915_private_t *dev_priv = dev->dev_private;
3329 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3330
3331 if (!drm_handle_vblank(dev, pipe))
3332 return false;
3333
3334 if ((iir & flip_pending) == 0)
3335 return false;
3336
3337 intel_prepare_page_flip(dev, plane);
3338
3339 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3340 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3341 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3342 * the flip is completed (no longer pending). Since this doesn't raise
3343 * an interrupt per se, we watch for the change at vblank.
3344 */
3345 if (I915_READ(ISR) & flip_pending)
3346 return false;
3347
3348 intel_finish_page_flip(dev, pipe);
3349
3350 return true;
3351 }
3352
3353 static irqreturn_t i915_irq_handler(int irq, void *arg)
3354 {
3355 struct drm_device *dev = (struct drm_device *) arg;
3356 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3357 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3358 unsigned long irqflags;
3359 u32 flip_mask =
3360 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3361 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3362 int pipe, ret = IRQ_NONE;
3363
3364 atomic_inc(&dev_priv->irq_received);
3365
3366 iir = I915_READ(IIR);
3367 do {
3368 bool irq_received = (iir & ~flip_mask) != 0;
3369 bool blc_event = false;
3370
3371 /* Can't rely on pipestat interrupt bit in iir as it might
3372 * have been cleared after the pipestat interrupt was received.
3373 * It doesn't set the bit in iir again, but it still produces
3374 * interrupts (for non-MSI).
3375 */
3376 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3378 i915_handle_error(dev, false);
3379
3380 for_each_pipe(pipe) {
3381 int reg = PIPESTAT(pipe);
3382 pipe_stats[pipe] = I915_READ(reg);
3383
3384 /* Clear the PIPE*STAT regs before the IIR */
3385 if (pipe_stats[pipe] & 0x8000ffff) {
3386 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3387 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3388 pipe_name(pipe));
3389 I915_WRITE(reg, pipe_stats[pipe]);
3390 irq_received = true;
3391 }
3392 }
3393 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3394
3395 if (!irq_received)
3396 break;
3397
3398 /* Consume port. Then clear IIR or we'll miss events */
3399 if ((I915_HAS_HOTPLUG(dev)) &&
3400 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3401 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3402 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3403
3404 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3405 hotplug_status);
3406
3407 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3408
3409 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3410 POSTING_READ(PORT_HOTPLUG_STAT);
3411 }
3412
3413 I915_WRITE(IIR, iir & ~flip_mask);
3414 new_iir = I915_READ(IIR); /* Flush posted writes */
3415
3416 if (iir & I915_USER_INTERRUPT)
3417 notify_ring(dev, &dev_priv->ring[RCS]);
3418
3419 for_each_pipe(pipe) {
3420 int plane = pipe;
3421 if (IS_MOBILE(dev))
3422 plane = !plane;
3423
3424 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3425 i915_handle_vblank(dev, plane, pipe, iir))
3426 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3427
3428 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3429 blc_event = true;
3430
3431 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3432 i9xx_pipe_crc_irq_handler(dev, pipe);
3433 }
3434
3435 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3436 intel_opregion_asle_intr(dev);
3437
3438 /* With MSI, interrupts are only generated when iir
3439 * transitions from zero to nonzero. If another bit got
3440 * set while we were handling the existing iir bits, then
3441 * we would never get another interrupt.
3442 *
3443 * This is fine on non-MSI as well, as if we hit this path
3444 * we avoid exiting the interrupt handler only to generate
3445 * another one.
3446 *
3447 * Note that for MSI this could cause a stray interrupt report
3448 * if an interrupt landed in the time between writing IIR and
3449 * the posting read. This should be rare enough to never
3450 * trigger the 99% of 100,000 interrupts test for disabling
3451 * stray interrupts.
3452 */
3453 ret = IRQ_HANDLED;
3454 iir = new_iir;
3455 } while (iir & ~flip_mask);
3456
3457 i915_update_dri1_breadcrumb(dev);
3458
3459 return ret;
3460 }
3461
3462 static void i915_irq_uninstall(struct drm_device * dev)
3463 {
3464 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3465 int pipe;
3466
3467 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3468
3469 if (I915_HAS_HOTPLUG(dev)) {
3470 I915_WRITE(PORT_HOTPLUG_EN, 0);
3471 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3472 }
3473
3474 I915_WRITE16(HWSTAM, 0xffff);
3475 for_each_pipe(pipe) {
3476 /* Clear enable bits; then clear status bits */
3477 I915_WRITE(PIPESTAT(pipe), 0);
3478 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3479 }
3480 I915_WRITE(IMR, 0xffffffff);
3481 I915_WRITE(IER, 0x0);
3482
3483 I915_WRITE(IIR, I915_READ(IIR));
3484 }
3485
3486 static void i965_irq_preinstall(struct drm_device * dev)
3487 {
3488 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3489 int pipe;
3490
3491 atomic_set(&dev_priv->irq_received, 0);
3492
3493 I915_WRITE(PORT_HOTPLUG_EN, 0);
3494 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3495
3496 I915_WRITE(HWSTAM, 0xeffe);
3497 for_each_pipe(pipe)
3498 I915_WRITE(PIPESTAT(pipe), 0);
3499 I915_WRITE(IMR, 0xffffffff);
3500 I915_WRITE(IER, 0x0);
3501 POSTING_READ(IER);
3502 }
3503
3504 static int i965_irq_postinstall(struct drm_device *dev)
3505 {
3506 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3507 u32 enable_mask;
3508 u32 error_mask;
3509 unsigned long irqflags;
3510
3511 /* Unmask the interrupts that we always want on. */
3512 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3513 I915_DISPLAY_PORT_INTERRUPT |
3514 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3515 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3516 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3517 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3518 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3519
3520 enable_mask = ~dev_priv->irq_mask;
3521 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3522 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3523 enable_mask |= I915_USER_INTERRUPT;
3524
3525 if (IS_G4X(dev))
3526 enable_mask |= I915_BSD_USER_INTERRUPT;
3527
3528 /* Interrupt setup is already guaranteed to be single-threaded, this is
3529 * just to make the assert_spin_locked check happy. */
3530 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3531 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3532 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3533 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3534 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3535
3536 /*
3537 * Enable some error detection, note the instruction error mask
3538 * bit is reserved, so we leave it masked.
3539 */
3540 if (IS_G4X(dev)) {
3541 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3542 GM45_ERROR_MEM_PRIV |
3543 GM45_ERROR_CP_PRIV |
3544 I915_ERROR_MEMORY_REFRESH);
3545 } else {
3546 error_mask = ~(I915_ERROR_PAGE_TABLE |
3547 I915_ERROR_MEMORY_REFRESH);
3548 }
3549 I915_WRITE(EMR, error_mask);
3550
3551 I915_WRITE(IMR, dev_priv->irq_mask);
3552 I915_WRITE(IER, enable_mask);
3553 POSTING_READ(IER);
3554
3555 I915_WRITE(PORT_HOTPLUG_EN, 0);
3556 POSTING_READ(PORT_HOTPLUG_EN);
3557
3558 i915_enable_asle_pipestat(dev);
3559
3560 return 0;
3561 }
3562
3563 static void i915_hpd_irq_setup(struct drm_device *dev)
3564 {
3565 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3566 struct drm_mode_config *mode_config = &dev->mode_config;
3567 struct intel_encoder *intel_encoder;
3568 u32 hotplug_en;
3569
3570 assert_spin_locked(&dev_priv->irq_lock);
3571
3572 if (I915_HAS_HOTPLUG(dev)) {
3573 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3574 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3575 /* Note HDMI and DP share hotplug bits */
3576 /* enable bits are the same for all generations */
3577 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3578 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3579 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3580 /* Programming the CRT detection parameters tends
3581 to generate a spurious hotplug event about three
3582 seconds later. So just do it once.
3583 */
3584 if (IS_G4X(dev))
3585 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3586 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3587 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3588
3589 /* Ignore TV since it's buggy */
3590 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3591 }
3592 }
3593
3594 static irqreturn_t i965_irq_handler(int irq, void *arg)
3595 {
3596 struct drm_device *dev = (struct drm_device *) arg;
3597 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3598 u32 iir, new_iir;
3599 u32 pipe_stats[I915_MAX_PIPES];
3600 unsigned long irqflags;
3601 int irq_received;
3602 int ret = IRQ_NONE, pipe;
3603 u32 flip_mask =
3604 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3605 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3606
3607 atomic_inc(&dev_priv->irq_received);
3608
3609 iir = I915_READ(IIR);
3610
3611 for (;;) {
3612 bool blc_event = false;
3613
3614 irq_received = (iir & ~flip_mask) != 0;
3615
3616 /* Can't rely on pipestat interrupt bit in iir as it might
3617 * have been cleared after the pipestat interrupt was received.
3618 * It doesn't set the bit in iir again, but it still produces
3619 * interrupts (for non-MSI).
3620 */
3621 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3622 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3623 i915_handle_error(dev, false);
3624
3625 for_each_pipe(pipe) {
3626 int reg = PIPESTAT(pipe);
3627 pipe_stats[pipe] = I915_READ(reg);
3628
3629 /*
3630 * Clear the PIPE*STAT regs before the IIR
3631 */
3632 if (pipe_stats[pipe] & 0x8000ffff) {
3633 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3634 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3635 pipe_name(pipe));
3636 I915_WRITE(reg, pipe_stats[pipe]);
3637 irq_received = 1;
3638 }
3639 }
3640 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3641
3642 if (!irq_received)
3643 break;
3644
3645 ret = IRQ_HANDLED;
3646
3647 /* Consume port. Then clear IIR or we'll miss events */
3648 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3649 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3650 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3651 HOTPLUG_INT_STATUS_G4X :
3652 HOTPLUG_INT_STATUS_I915);
3653
3654 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3655 hotplug_status);
3656
3657 intel_hpd_irq_handler(dev, hotplug_trigger,
3658 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3659
3660 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3661 I915_READ(PORT_HOTPLUG_STAT);
3662 }
3663
3664 I915_WRITE(IIR, iir & ~flip_mask);
3665 new_iir = I915_READ(IIR); /* Flush posted writes */
3666
3667 if (iir & I915_USER_INTERRUPT)
3668 notify_ring(dev, &dev_priv->ring[RCS]);
3669 if (iir & I915_BSD_USER_INTERRUPT)
3670 notify_ring(dev, &dev_priv->ring[VCS]);
3671
3672 for_each_pipe(pipe) {
3673 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3674 i915_handle_vblank(dev, pipe, pipe, iir))
3675 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3676
3677 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3678 blc_event = true;
3679
3680 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3681 i9xx_pipe_crc_irq_handler(dev, pipe);
3682 }
3683
3684
3685 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3686 intel_opregion_asle_intr(dev);
3687
3688 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3689 gmbus_irq_handler(dev);
3690
3691 /* With MSI, interrupts are only generated when iir
3692 * transitions from zero to nonzero. If another bit got
3693 * set while we were handling the existing iir bits, then
3694 * we would never get another interrupt.
3695 *
3696 * This is fine on non-MSI as well, as if we hit this path
3697 * we avoid exiting the interrupt handler only to generate
3698 * another one.
3699 *
3700 * Note that for MSI this could cause a stray interrupt report
3701 * if an interrupt landed in the time between writing IIR and
3702 * the posting read. This should be rare enough to never
3703 * trigger the 99% of 100,000 interrupts test for disabling
3704 * stray interrupts.
3705 */
3706 iir = new_iir;
3707 }
3708
3709 i915_update_dri1_breadcrumb(dev);
3710
3711 return ret;
3712 }
3713
3714 static void i965_irq_uninstall(struct drm_device * dev)
3715 {
3716 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3717 int pipe;
3718
3719 if (!dev_priv)
3720 return;
3721
3722 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3723
3724 I915_WRITE(PORT_HOTPLUG_EN, 0);
3725 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3726
3727 I915_WRITE(HWSTAM, 0xffffffff);
3728 for_each_pipe(pipe)
3729 I915_WRITE(PIPESTAT(pipe), 0);
3730 I915_WRITE(IMR, 0xffffffff);
3731 I915_WRITE(IER, 0x0);
3732
3733 for_each_pipe(pipe)
3734 I915_WRITE(PIPESTAT(pipe),
3735 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3736 I915_WRITE(IIR, I915_READ(IIR));
3737 }
3738
3739 static void i915_reenable_hotplug_timer_func(unsigned long data)
3740 {
3741 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3742 struct drm_device *dev = dev_priv->dev;
3743 struct drm_mode_config *mode_config = &dev->mode_config;
3744 unsigned long irqflags;
3745 int i;
3746
3747 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3748 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3749 struct drm_connector *connector;
3750
3751 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3752 continue;
3753
3754 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3755
3756 list_for_each_entry(connector, &mode_config->connector_list, head) {
3757 struct intel_connector *intel_connector = to_intel_connector(connector);
3758
3759 if (intel_connector->encoder->hpd_pin == i) {
3760 if (connector->polled != intel_connector->polled)
3761 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3762 drm_get_connector_name(connector));
3763 connector->polled = intel_connector->polled;
3764 if (!connector->polled)
3765 connector->polled = DRM_CONNECTOR_POLL_HPD;
3766 }
3767 }
3768 }
3769 if (dev_priv->display.hpd_irq_setup)
3770 dev_priv->display.hpd_irq_setup(dev);
3771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3772 }
3773
3774 void intel_irq_init(struct drm_device *dev)
3775 {
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777
3778 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3779 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3780 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3781 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3782
3783 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3784 i915_hangcheck_elapsed,
3785 (unsigned long) dev);
3786 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3787 (unsigned long) dev_priv);
3788
3789 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3790
3791 if (IS_GEN2(dev)) {
3792 dev->max_vblank_count = 0;
3793 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3794 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3795 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3796 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3797 } else {
3798 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3799 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3800 }
3801
3802 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3803 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3804 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3805 }
3806
3807 if (IS_VALLEYVIEW(dev)) {
3808 dev->driver->irq_handler = valleyview_irq_handler;
3809 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3810 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3811 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3812 dev->driver->enable_vblank = valleyview_enable_vblank;
3813 dev->driver->disable_vblank = valleyview_disable_vblank;
3814 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3815 } else if (IS_GEN8(dev)) {
3816 dev->driver->irq_handler = gen8_irq_handler;
3817 dev->driver->irq_preinstall = gen8_irq_preinstall;
3818 dev->driver->irq_postinstall = gen8_irq_postinstall;
3819 dev->driver->irq_uninstall = gen8_irq_uninstall;
3820 dev->driver->enable_vblank = gen8_enable_vblank;
3821 dev->driver->disable_vblank = gen8_disable_vblank;
3822 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3823 } else if (HAS_PCH_SPLIT(dev)) {
3824 dev->driver->irq_handler = ironlake_irq_handler;
3825 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3826 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3827 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3828 dev->driver->enable_vblank = ironlake_enable_vblank;
3829 dev->driver->disable_vblank = ironlake_disable_vblank;
3830 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3831 } else {
3832 if (INTEL_INFO(dev)->gen == 2) {
3833 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3834 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3835 dev->driver->irq_handler = i8xx_irq_handler;
3836 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3837 } else if (INTEL_INFO(dev)->gen == 3) {
3838 dev->driver->irq_preinstall = i915_irq_preinstall;
3839 dev->driver->irq_postinstall = i915_irq_postinstall;
3840 dev->driver->irq_uninstall = i915_irq_uninstall;
3841 dev->driver->irq_handler = i915_irq_handler;
3842 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3843 } else {
3844 dev->driver->irq_preinstall = i965_irq_preinstall;
3845 dev->driver->irq_postinstall = i965_irq_postinstall;
3846 dev->driver->irq_uninstall = i965_irq_uninstall;
3847 dev->driver->irq_handler = i965_irq_handler;
3848 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3849 }
3850 dev->driver->enable_vblank = i915_enable_vblank;
3851 dev->driver->disable_vblank = i915_disable_vblank;
3852 }
3853 }
3854
3855 void intel_hpd_init(struct drm_device *dev)
3856 {
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858 struct drm_mode_config *mode_config = &dev->mode_config;
3859 struct drm_connector *connector;
3860 unsigned long irqflags;
3861 int i;
3862
3863 for (i = 1; i < HPD_NUM_PINS; i++) {
3864 dev_priv->hpd_stats[i].hpd_cnt = 0;
3865 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3866 }
3867 list_for_each_entry(connector, &mode_config->connector_list, head) {
3868 struct intel_connector *intel_connector = to_intel_connector(connector);
3869 connector->polled = intel_connector->polled;
3870 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3871 connector->polled = DRM_CONNECTOR_POLL_HPD;
3872 }
3873
3874 /* Interrupt setup is already guaranteed to be single-threaded, this is
3875 * just to make the assert_spin_locked checks happy. */
3876 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3877 if (dev_priv->display.hpd_irq_setup)
3878 dev_priv->display.hpd_irq_setup(dev);
3879 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3880 }
3881
3882 /* Disable interrupts so we can allow Package C8+. */
3883 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3884 {
3885 struct drm_i915_private *dev_priv = dev->dev_private;
3886 unsigned long irqflags;
3887
3888 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3889
3890 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3891 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3892 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3893 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3894 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3895
3896 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3897 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3898 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3899 snb_disable_pm_irq(dev_priv, 0xffffffff);
3900
3901 dev_priv->pc8.irqs_disabled = true;
3902
3903 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3904 }
3905
3906 /* Restore interrupts so we can recover from Package C8+. */
3907 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3908 {
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 unsigned long irqflags;
3911 uint32_t val, expected;
3912
3913 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3914
3915 val = I915_READ(DEIMR);
3916 expected = ~DE_PCH_EVENT_IVB;
3917 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3918
3919 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3920 expected = ~SDE_HOTPLUG_MASK_CPT;
3921 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3922 val, expected);
3923
3924 val = I915_READ(GTIMR);
3925 expected = 0xffffffff;
3926 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3927
3928 val = I915_READ(GEN6_PMIMR);
3929 expected = 0xffffffff;
3930 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3931 expected);
3932
3933 dev_priv->pc8.irqs_disabled = false;
3934
3935 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3936 ibx_enable_display_interrupt(dev_priv,
3937 ~dev_priv->pc8.regsave.sdeimr &
3938 ~SDE_HOTPLUG_MASK_CPT);
3939 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3940 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3941 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3942
3943 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3944 }
This page took 0.128881 seconds and 6 git commands to generate.