drm/i915: Don't compare has_drrs strictly in pipe config
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121 int min, max;
122 } intel_range_t;
123
124 typedef struct {
125 int dot_limit;
126 int p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140 /* Obtain SKU information */
141 mutex_lock(&dev_priv->sb_lock);
142 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143 CCK_FUSE_HPLL_FREQ_MASK;
144 mutex_unlock(&dev_priv->sb_lock);
145
146 return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150 const char *name, u32 reg)
151 {
152 u32 val;
153 int divider;
154
155 if (dev_priv->hpll_freq == 0)
156 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174 struct drm_i915_private *dev_priv = dev->dev_private;
175
176 WARN_ON(!HAS_PCH_SPLIT(dev));
177
178 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184 struct drm_i915_private *dev_priv = dev->dev_private;
185 uint32_t clkcfg;
186
187 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188 if (IS_VALLEYVIEW(dev))
189 return 200;
190
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
194 return 100;
195 case CLKCFG_FSB_533:
196 return 133;
197 case CLKCFG_FSB_667:
198 return 166;
199 case CLKCFG_FSB_800:
200 return 200;
201 case CLKCFG_FSB_1067:
202 return 266;
203 case CLKCFG_FSB_1333:
204 return 333;
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
208 return 400;
209 default:
210 return 133;
211 }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216 if (!IS_VALLEYVIEW(dev_priv))
217 return;
218
219 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220 CCK_CZ_CLOCK_CONTROL);
221
222 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228 if (IS_GEN5(dev)) {
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231 } else
232 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236 .dot = { .min = 25000, .max = 350000 },
237 .vco = { .min = 908000, .max = 1512000 },
238 .n = { .min = 2, .max = 16 },
239 .m = { .min = 96, .max = 140 },
240 .m1 = { .min = 18, .max = 26 },
241 .m2 = { .min = 6, .max = 16 },
242 .p = { .min = 4, .max = 128 },
243 .p1 = { .min = 2, .max = 33 },
244 .p2 = { .dot_limit = 165000,
245 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249 .dot = { .min = 25000, .max = 350000 },
250 .vco = { .min = 908000, .max = 1512000 },
251 .n = { .min = 2, .max = 16 },
252 .m = { .min = 96, .max = 140 },
253 .m1 = { .min = 18, .max = 26 },
254 .m2 = { .min = 6, .max = 16 },
255 .p = { .min = 4, .max = 128 },
256 .p1 = { .min = 2, .max = 33 },
257 .p2 = { .dot_limit = 165000,
258 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262 .dot = { .min = 25000, .max = 350000 },
263 .vco = { .min = 908000, .max = 1512000 },
264 .n = { .min = 2, .max = 16 },
265 .m = { .min = 96, .max = 140 },
266 .m1 = { .min = 18, .max = 26 },
267 .m2 = { .min = 6, .max = 16 },
268 .p = { .min = 4, .max = 128 },
269 .p1 = { .min = 1, .max = 6 },
270 .p2 = { .dot_limit = 165000,
271 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275 .dot = { .min = 20000, .max = 400000 },
276 .vco = { .min = 1400000, .max = 2800000 },
277 .n = { .min = 1, .max = 6 },
278 .m = { .min = 70, .max = 120 },
279 .m1 = { .min = 8, .max = 18 },
280 .m2 = { .min = 3, .max = 7 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1400000, .max = 2800000 },
290 .n = { .min = 1, .max = 6 },
291 .m = { .min = 70, .max = 120 },
292 .m1 = { .min = 8, .max = 18 },
293 .m2 = { .min = 3, .max = 7 },
294 .p = { .min = 7, .max = 98 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302 .dot = { .min = 25000, .max = 270000 },
303 .vco = { .min = 1750000, .max = 3500000},
304 .n = { .min = 1, .max = 4 },
305 .m = { .min = 104, .max = 138 },
306 .m1 = { .min = 17, .max = 23 },
307 .m2 = { .min = 5, .max = 11 },
308 .p = { .min = 10, .max = 30 },
309 .p1 = { .min = 1, .max = 3},
310 .p2 = { .dot_limit = 270000,
311 .p2_slow = 10,
312 .p2_fast = 10
313 },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317 .dot = { .min = 22000, .max = 400000 },
318 .vco = { .min = 1750000, .max = 3500000},
319 .n = { .min = 1, .max = 4 },
320 .m = { .min = 104, .max = 138 },
321 .m1 = { .min = 16, .max = 23 },
322 .m2 = { .min = 5, .max = 11 },
323 .p = { .min = 5, .max = 80 },
324 .p1 = { .min = 1, .max = 8},
325 .p2 = { .dot_limit = 165000,
326 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330 .dot = { .min = 20000, .max = 115000 },
331 .vco = { .min = 1750000, .max = 3500000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 28, .max = 112 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 0,
339 .p2_slow = 14, .p2_fast = 14
340 },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344 .dot = { .min = 80000, .max = 224000 },
345 .vco = { .min = 1750000, .max = 3500000 },
346 .n = { .min = 1, .max = 3 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 17, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 14, .max = 42 },
351 .p1 = { .min = 2, .max = 6 },
352 .p2 = { .dot_limit = 0,
353 .p2_slow = 7, .p2_fast = 7
354 },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358 .dot = { .min = 20000, .max = 400000},
359 .vco = { .min = 1700000, .max = 3500000 },
360 /* Pineview's Ncounter is a ring counter */
361 .n = { .min = 3, .max = 6 },
362 .m = { .min = 2, .max = 256 },
363 /* Pineview only has one combined m divider, which we treat as m2. */
364 .m1 = { .min = 0, .max = 0 },
365 .m2 = { .min = 0, .max = 254 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
368 .p2 = { .dot_limit = 200000,
369 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373 .dot = { .min = 20000, .max = 400000 },
374 .vco = { .min = 1700000, .max = 3500000 },
375 .n = { .min = 3, .max = 6 },
376 .m = { .min = 2, .max = 256 },
377 .m1 = { .min = 0, .max = 0 },
378 .m2 = { .min = 0, .max = 254 },
379 .p = { .min = 7, .max = 112 },
380 .p1 = { .min = 1, .max = 8 },
381 .p2 = { .dot_limit = 112000,
382 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386 *
387 * We calculate clock using (register_value + 2) for N/M1/M2, so here
388 * the range value for them is (actual_value - 2).
389 */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391 .dot = { .min = 25000, .max = 350000 },
392 .vco = { .min = 1760000, .max = 3510000 },
393 .n = { .min = 1, .max = 5 },
394 .m = { .min = 79, .max = 127 },
395 .m1 = { .min = 12, .max = 22 },
396 .m2 = { .min = 5, .max = 9 },
397 .p = { .min = 5, .max = 80 },
398 .p1 = { .min = 1, .max = 8 },
399 .p2 = { .dot_limit = 225000,
400 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404 .dot = { .min = 25000, .max = 350000 },
405 .vco = { .min = 1760000, .max = 3510000 },
406 .n = { .min = 1, .max = 3 },
407 .m = { .min = 79, .max = 118 },
408 .m1 = { .min = 12, .max = 22 },
409 .m2 = { .min = 5, .max = 9 },
410 .p = { .min = 28, .max = 112 },
411 .p1 = { .min = 2, .max = 8 },
412 .p2 = { .dot_limit = 225000,
413 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417 .dot = { .min = 25000, .max = 350000 },
418 .vco = { .min = 1760000, .max = 3510000 },
419 .n = { .min = 1, .max = 3 },
420 .m = { .min = 79, .max = 127 },
421 .m1 = { .min = 12, .max = 22 },
422 .m2 = { .min = 5, .max = 9 },
423 .p = { .min = 14, .max = 56 },
424 .p1 = { .min = 2, .max = 8 },
425 .p2 = { .dot_limit = 225000,
426 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 2 },
434 .m = { .min = 79, .max = 126 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 126 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 42 },
451 .p1 = { .min = 2, .max = 6 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457 /*
458 * These are the data rate limits (measured in fast clocks)
459 * since those are the strictest limits we have. The fast
460 * clock and actual rate limits are more relaxed, so checking
461 * them would make no difference.
462 */
463 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464 .vco = { .min = 4000000, .max = 6000000 },
465 .n = { .min = 1, .max = 7 },
466 .m1 = { .min = 2, .max = 3 },
467 .m2 = { .min = 11, .max = 156 },
468 .p1 = { .min = 2, .max = 3 },
469 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 540000 * 5},
480 .vco = { .min = 4800000, .max = 6480000 },
481 .n = { .min = 1, .max = 1 },
482 .m1 = { .min = 2, .max = 2 },
483 .m2 = { .min = 24 << 22, .max = 175 << 22 },
484 .p1 = { .min = 2, .max = 4 },
485 .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489 /* FIXME: find real dot limits */
490 .dot = { .min = 0, .max = INT_MAX },
491 .vco = { .min = 4800000, .max = 6700000 },
492 .n = { .min = 1, .max = 1 },
493 .m1 = { .min = 2, .max = 2 },
494 /* FIXME: find real m2 limits */
495 .m2 = { .min = 2 << 22, .max = 255 << 22 },
496 .p1 = { .min = 2, .max = 4 },
497 .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503 return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507 * Returns whether any output on the specified pipe is of the specified type
508 */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511 struct drm_device *dev = crtc->base.dev;
512 struct intel_encoder *encoder;
513
514 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515 if (encoder->type == type)
516 return true;
517
518 return false;
519 }
520
521 /**
522 * Returns whether any output on the specified pipe will have the specified
523 * type after a staged modeset is complete, i.e., the same as
524 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525 * encoder->crtc.
526 */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528 int type)
529 {
530 struct drm_atomic_state *state = crtc_state->base.state;
531 struct drm_connector *connector;
532 struct drm_connector_state *connector_state;
533 struct intel_encoder *encoder;
534 int i, num_connectors = 0;
535
536 for_each_connector_in_state(state, connector, connector_state, i) {
537 if (connector_state->crtc != crtc_state->base.crtc)
538 continue;
539
540 num_connectors++;
541
542 encoder = to_intel_encoder(connector_state->best_encoder);
543 if (encoder->type == type)
544 return true;
545 }
546
547 WARN_ON(num_connectors == 0);
548
549 return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555 struct drm_device *dev = crtc_state->base.crtc->dev;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559 if (intel_is_dual_link_lvds(dev)) {
560 if (refclk == 100000)
561 limit = &intel_limits_ironlake_dual_lvds_100m;
562 else
563 limit = &intel_limits_ironlake_dual_lvds;
564 } else {
565 if (refclk == 100000)
566 limit = &intel_limits_ironlake_single_lvds_100m;
567 else
568 limit = &intel_limits_ironlake_single_lvds;
569 }
570 } else
571 limit = &intel_limits_ironlake_dac;
572
573 return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579 struct drm_device *dev = crtc_state->base.crtc->dev;
580 const intel_limit_t *limit;
581
582 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583 if (intel_is_dual_link_lvds(dev))
584 limit = &intel_limits_g4x_dual_channel_lvds;
585 else
586 limit = &intel_limits_g4x_single_channel_lvds;
587 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589 limit = &intel_limits_g4x_hdmi;
590 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591 limit = &intel_limits_g4x_sdvo;
592 } else /* The option is for other outputs */
593 limit = &intel_limits_i9xx_sdvo;
594
595 return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601 struct drm_device *dev = crtc_state->base.crtc->dev;
602 const intel_limit_t *limit;
603
604 if (IS_BROXTON(dev))
605 limit = &intel_limits_bxt;
606 else if (HAS_PCH_SPLIT(dev))
607 limit = intel_ironlake_limit(crtc_state, refclk);
608 else if (IS_G4X(dev)) {
609 limit = intel_g4x_limit(crtc_state);
610 } else if (IS_PINEVIEW(dev)) {
611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612 limit = &intel_limits_pineview_lvds;
613 else
614 limit = &intel_limits_pineview_sdvo;
615 } else if (IS_CHERRYVIEW(dev)) {
616 limit = &intel_limits_chv;
617 } else if (IS_VALLEYVIEW(dev)) {
618 limit = &intel_limits_vlv;
619 } else if (!IS_GEN2(dev)) {
620 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621 limit = &intel_limits_i9xx_lvds;
622 else
623 limit = &intel_limits_i9xx_sdvo;
624 } else {
625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626 limit = &intel_limits_i8xx_lvds;
627 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628 limit = &intel_limits_i8xx_dvo;
629 else
630 limit = &intel_limits_i8xx_dac;
631 }
632 return limit;
633 }
634
635 /*
636 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639 * The helpers' return value is the rate of the clock that is fed to the
640 * display engine's pipe which can be the above fast dot clock rate or a
641 * divided-down version of it.
642 */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646 clock->m = clock->m2 + 2;
647 clock->p = clock->p1 * clock->p2;
648 if (WARN_ON(clock->n == 0 || clock->p == 0))
649 return 0;
650 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653 return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663 clock->m = i9xx_dpll_compute_m(clock);
664 clock->p = clock->p1 * clock->p2;
665 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666 return 0;
667 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670 return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675 clock->m = clock->m1 * clock->m2;
676 clock->p = clock->p1 * clock->p2;
677 if (WARN_ON(clock->n == 0 || clock->p == 0))
678 return 0;
679 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682 return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687 clock->m = clock->m1 * clock->m2;
688 clock->p = clock->p1 * clock->p2;
689 if (WARN_ON(clock->n == 0 || clock->p == 0))
690 return 0;
691 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692 clock->n << 22);
693 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695 return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700 * Returns whether the given set of divisors are valid for a given refclk with
701 * the given connectors.
702 */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705 const intel_limit_t *limit,
706 const intel_clock_t *clock)
707 {
708 if (clock->n < limit->n.min || limit->n.max < clock->n)
709 INTELPllInvalid("n out of range\n");
710 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
711 INTELPllInvalid("p1 out of range\n");
712 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
713 INTELPllInvalid("m2 out of range\n");
714 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
715 INTELPllInvalid("m1 out of range\n");
716
717 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718 if (clock->m1 <= clock->m2)
719 INTELPllInvalid("m1 <= m2\n");
720
721 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722 if (clock->p < limit->p.min || limit->p.max < clock->p)
723 INTELPllInvalid("p out of range\n");
724 if (clock->m < limit->m.min || limit->m.max < clock->m)
725 INTELPllInvalid("m out of range\n");
726 }
727
728 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729 INTELPllInvalid("vco out of range\n");
730 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731 * connector, etc., rather than just a single range.
732 */
733 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734 INTELPllInvalid("dot out of range\n");
735
736 return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741 const struct intel_crtc_state *crtc_state,
742 int target)
743 {
744 struct drm_device *dev = crtc_state->base.crtc->dev;
745
746 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747 /*
748 * For LVDS just rely on its current settings for dual-channel.
749 * We haven't figured out how to reliably set up different
750 * single/dual channel state, if we even can.
751 */
752 if (intel_is_dual_link_lvds(dev))
753 return limit->p2.p2_fast;
754 else
755 return limit->p2.p2_slow;
756 } else {
757 if (target < limit->p2.dot_limit)
758 return limit->p2.p2_slow;
759 else
760 return limit->p2.p2_fast;
761 }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766 struct intel_crtc_state *crtc_state,
767 int target, int refclk, intel_clock_t *match_clock,
768 intel_clock_t *best_clock)
769 {
770 struct drm_device *dev = crtc_state->base.crtc->dev;
771 intel_clock_t clock;
772 int err = target;
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 clock.m1++) {
780 for (clock.m2 = limit->m2.min;
781 clock.m2 <= limit->m2.max; clock.m2++) {
782 if (clock.m2 >= clock.m1)
783 break;
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 i9xx_calc_dpll_params(refclk, &clock);
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794 if (match_clock &&
795 clock.p != match_clock->p)
796 continue;
797
798 this_err = abs(clock.dot - target);
799 if (this_err < err) {
800 *best_clock = clock;
801 err = this_err;
802 }
803 }
804 }
805 }
806 }
807
808 return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813 struct intel_crtc_state *crtc_state,
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
816 {
817 struct drm_device *dev = crtc_state->base.crtc->dev;
818 intel_clock_t clock;
819 int err = target;
820
821 memset(best_clock, 0, sizeof(*best_clock));
822
823 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826 clock.m1++) {
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
829 for (clock.n = limit->n.min;
830 clock.n <= limit->n.max; clock.n++) {
831 for (clock.p1 = limit->p1.min;
832 clock.p1 <= limit->p1.max; clock.p1++) {
833 int this_err;
834
835 pnv_calc_dpll_params(refclk, &clock);
836 if (!intel_PLL_is_valid(dev, limit,
837 &clock))
838 continue;
839 if (match_clock &&
840 clock.p != match_clock->p)
841 continue;
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
845 *best_clock = clock;
846 err = this_err;
847 }
848 }
849 }
850 }
851 }
852
853 return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858 struct intel_crtc_state *crtc_state,
859 int target, int refclk, intel_clock_t *match_clock,
860 intel_clock_t *best_clock)
861 {
862 struct drm_device *dev = crtc_state->base.crtc->dev;
863 intel_clock_t clock;
864 int max_n;
865 bool found = false;
866 /* approximately equals target * 0.00585 */
867 int err_most = (target >> 8) + (target >> 9);
868
869 memset(best_clock, 0, sizeof(*best_clock));
870
871 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873 max_n = limit->n.max;
874 /* based on hardware requirement, prefer smaller n to precision */
875 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876 /* based on hardware requirement, prefere larger m1,m2 */
877 for (clock.m1 = limit->m1.max;
878 clock.m1 >= limit->m1.min; clock.m1--) {
879 for (clock.m2 = limit->m2.max;
880 clock.m2 >= limit->m2.min; clock.m2--) {
881 for (clock.p1 = limit->p1.max;
882 clock.p1 >= limit->p1.min; clock.p1--) {
883 int this_err;
884
885 i9xx_calc_dpll_params(refclk, &clock);
886 if (!intel_PLL_is_valid(dev, limit,
887 &clock))
888 continue;
889
890 this_err = abs(clock.dot - target);
891 if (this_err < err_most) {
892 *best_clock = clock;
893 err_most = this_err;
894 max_n = clock.n;
895 found = true;
896 }
897 }
898 }
899 }
900 }
901 return found;
902 }
903
904 /*
905 * Check if the calculated PLL configuration is more optimal compared to the
906 * best configuration and error found so far. Return the calculated error.
907 */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909 const intel_clock_t *calculated_clock,
910 const intel_clock_t *best_clock,
911 unsigned int best_error_ppm,
912 unsigned int *error_ppm)
913 {
914 /*
915 * For CHV ignore the error and consider only the P value.
916 * Prefer a bigger P value based on HW requirements.
917 */
918 if (IS_CHERRYVIEW(dev)) {
919 *error_ppm = 0;
920
921 return calculated_clock->p > best_clock->p;
922 }
923
924 if (WARN_ON_ONCE(!target_freq))
925 return false;
926
927 *error_ppm = div_u64(1000000ULL *
928 abs(target_freq - calculated_clock->dot),
929 target_freq);
930 /*
931 * Prefer a better P value over a better (smaller) error if the error
932 * is small. Ensure this preference for future configurations too by
933 * setting the error to 0.
934 */
935 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936 *error_ppm = 0;
937
938 return true;
939 }
940
941 return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946 struct intel_crtc_state *crtc_state,
947 int target, int refclk, intel_clock_t *match_clock,
948 intel_clock_t *best_clock)
949 {
950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951 struct drm_device *dev = crtc->base.dev;
952 intel_clock_t clock;
953 unsigned int bestppm = 1000000;
954 /* min update 19.2 MHz */
955 int max_n = min(limit->n.max, refclk / 19200);
956 bool found = false;
957
958 target *= 5; /* fast clock */
959
960 memset(best_clock, 0, sizeof(*best_clock));
961
962 /* based on hardware requirement, prefer smaller n to precision */
963 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967 clock.p = clock.p1 * clock.p2;
968 /* based on hardware requirement, prefer bigger m1,m2 values */
969 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970 unsigned int ppm;
971
972 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973 refclk * clock.m1);
974
975 vlv_calc_dpll_params(refclk, &clock);
976
977 if (!intel_PLL_is_valid(dev, limit,
978 &clock))
979 continue;
980
981 if (!vlv_PLL_is_optimal(dev, target,
982 &clock,
983 best_clock,
984 bestppm, &ppm))
985 continue;
986
987 *best_clock = clock;
988 bestppm = ppm;
989 found = true;
990 }
991 }
992 }
993 }
994
995 return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000 struct intel_crtc_state *crtc_state,
1001 int target, int refclk, intel_clock_t *match_clock,
1002 intel_clock_t *best_clock)
1003 {
1004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005 struct drm_device *dev = crtc->base.dev;
1006 unsigned int best_error_ppm;
1007 intel_clock_t clock;
1008 uint64_t m2;
1009 int found = false;
1010
1011 memset(best_clock, 0, sizeof(*best_clock));
1012 best_error_ppm = 1000000;
1013
1014 /*
1015 * Based on hardware doc, the n always set to 1, and m1 always
1016 * set to 2. If requires to support 200Mhz refclk, we need to
1017 * revisit this because n may not 1 anymore.
1018 */
1019 clock.n = 1, clock.m1 = 2;
1020 target *= 5; /* fast clock */
1021
1022 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023 for (clock.p2 = limit->p2.p2_fast;
1024 clock.p2 >= limit->p2.p2_slow;
1025 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026 unsigned int error_ppm;
1027
1028 clock.p = clock.p1 * clock.p2;
1029
1030 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031 clock.n) << 22, refclk * clock.m1);
1032
1033 if (m2 > INT_MAX/clock.m1)
1034 continue;
1035
1036 clock.m2 = m2;
1037
1038 chv_calc_dpll_params(refclk, &clock);
1039
1040 if (!intel_PLL_is_valid(dev, limit, &clock))
1041 continue;
1042
1043 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044 best_error_ppm, &error_ppm))
1045 continue;
1046
1047 *best_clock = clock;
1048 best_error_ppm = error_ppm;
1049 found = true;
1050 }
1051 }
1052
1053 return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057 intel_clock_t *best_clock)
1058 {
1059 int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062 target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069 /* Be paranoid as we can arrive here with only partial
1070 * state retrieved from the hardware during setup.
1071 *
1072 * We can ditch the adjusted_mode.crtc_clock check as soon
1073 * as Haswell has gained clock readout/fastboot support.
1074 *
1075 * We can ditch the crtc->primary->fb check as soon as we can
1076 * properly reconstruct framebuffers.
1077 *
1078 * FIXME: The intel_crtc->active here should be switched to
1079 * crtc->state->active once we have proper CRTC states wired up
1080 * for atomic.
1081 */
1082 return intel_crtc->active && crtc->primary->state->fb &&
1083 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087 enum pipe pipe)
1088 {
1089 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092 return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 u32 reg = PIPEDSL(pipe);
1099 u32 line1, line2;
1100 u32 line_mask;
1101
1102 if (IS_GEN2(dev))
1103 line_mask = DSL_LINEMASK_GEN2;
1104 else
1105 line_mask = DSL_LINEMASK_GEN3;
1106
1107 line1 = I915_READ(reg) & line_mask;
1108 msleep(5);
1109 line2 = I915_READ(reg) & line_mask;
1110
1111 return line1 == line2;
1112 }
1113
1114 /*
1115 * intel_wait_for_pipe_off - wait for pipe to turn off
1116 * @crtc: crtc whose pipe to wait for
1117 *
1118 * After disabling a pipe, we can't wait for vblank in the usual way,
1119 * spinning on the vblank interrupt status bit, since we won't actually
1120 * see an interrupt when the pipe is disabled.
1121 *
1122 * On Gen4 and above:
1123 * wait for the pipe register state bit to turn off
1124 *
1125 * Otherwise:
1126 * wait for the display line value to settle (it usually
1127 * ends up stopping at the start of the next frame).
1128 *
1129 */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132 struct drm_device *dev = crtc->base.dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135 enum pipe pipe = crtc->pipe;
1136
1137 if (INTEL_INFO(dev)->gen >= 4) {
1138 int reg = PIPECONF(cpu_transcoder);
1139
1140 /* Wait for the Pipe State to go off */
1141 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142 100))
1143 WARN(1, "pipe_off wait timed out\n");
1144 } else {
1145 /* Wait for the display line to settle */
1146 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147 WARN(1, "pipe_off wait timed out\n");
1148 }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153 return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158 enum pipe pipe, bool state)
1159 {
1160 u32 val;
1161 bool cur_state;
1162
1163 val = I915_READ(DPLL(pipe));
1164 cur_state = !!(val & DPLL_VCO_ENABLE);
1165 I915_STATE_WARN(cur_state != state,
1166 "PLL state assertion failure (expected %s, current %s)\n",
1167 state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173 u32 val;
1174 bool cur_state;
1175
1176 mutex_lock(&dev_priv->sb_lock);
1177 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178 mutex_unlock(&dev_priv->sb_lock);
1179
1180 cur_state = val & DSI_PLL_VCO_EN;
1181 I915_STATE_WARN(cur_state != state,
1182 "DSI PLL state assertion failure (expected %s, current %s)\n",
1183 state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193 if (crtc->config->shared_dpll < 0)
1194 return NULL;
1195
1196 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201 struct intel_shared_dpll *pll,
1202 bool state)
1203 {
1204 bool cur_state;
1205 struct intel_dpll_hw_state hw_state;
1206
1207 if (WARN (!pll,
1208 "asserting DPLL %s with no DPLL\n", state_string(state)))
1209 return;
1210
1211 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212 I915_STATE_WARN(cur_state != state,
1213 "%s assertion failure (expected %s, current %s)\n",
1214 pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 bool cur_state;
1221 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222 pipe);
1223
1224 if (HAS_DDI(dev_priv->dev)) {
1225 /* DDI does not have a specific FDI_TX register */
1226 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228 } else {
1229 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230 cur_state = !!(val & FDI_TX_ENABLE);
1231 }
1232 I915_STATE_WARN(cur_state != state,
1233 "FDI TX state assertion failure (expected %s, current %s)\n",
1234 state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 u32 val;
1243 bool cur_state;
1244
1245 val = I915_READ(FDI_RX_CTL(pipe));
1246 cur_state = !!(val & FDI_RX_ENABLE);
1247 I915_STATE_WARN(cur_state != state,
1248 "FDI RX state assertion failure (expected %s, current %s)\n",
1249 state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 u32 val;
1258
1259 /* ILK FDI PLL is always enabled */
1260 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261 return;
1262
1263 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264 if (HAS_DDI(dev_priv->dev))
1265 return;
1266
1267 val = I915_READ(FDI_TX_CTL(pipe));
1268 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, bool state)
1273 {
1274 u32 val;
1275 bool cur_state;
1276
1277 val = I915_READ(FDI_RX_CTL(pipe));
1278 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279 I915_STATE_WARN(cur_state != state,
1280 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281 state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286 {
1287 struct drm_device *dev = dev_priv->dev;
1288 int pp_reg;
1289 u32 val;
1290 enum pipe panel_pipe = PIPE_A;
1291 bool locked = true;
1292
1293 if (WARN_ON(HAS_DDI(dev)))
1294 return;
1295
1296 if (HAS_PCH_SPLIT(dev)) {
1297 u32 port_sel;
1298
1299 pp_reg = PCH_PP_CONTROL;
1300 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304 panel_pipe = PIPE_B;
1305 /* XXX: else fix for eDP */
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 /* presumably write lock depends on pipe, not port select */
1308 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309 panel_pipe = pipe;
1310 } else {
1311 pp_reg = PP_CONTROL;
1312 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313 panel_pipe = PIPE_B;
1314 }
1315
1316 val = I915_READ(pp_reg);
1317 if (!(val & PANEL_POWER_ON) ||
1318 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319 locked = false;
1320
1321 I915_STATE_WARN(panel_pipe == pipe && locked,
1322 "panel assertion failure, pipe %c regs locked\n",
1323 pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328 {
1329 struct drm_device *dev = dev_priv->dev;
1330 bool cur_state;
1331
1332 if (IS_845G(dev) || IS_I865G(dev))
1333 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334 else
1335 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345 enum pipe pipe, bool state)
1346 {
1347 bool cur_state;
1348 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349 pipe);
1350
1351 /* if we need the pipe quirk it must be always on */
1352 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354 state = true;
1355
1356 if (!intel_display_power_is_enabled(dev_priv,
1357 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358 cur_state = false;
1359 } else {
1360 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361 cur_state = !!(val & PIPECONF_ENABLE);
1362 }
1363
1364 I915_STATE_WARN(cur_state != state,
1365 "pipe %c assertion failure (expected %s, current %s)\n",
1366 pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370 enum plane plane, bool state)
1371 {
1372 u32 val;
1373 bool cur_state;
1374
1375 val = I915_READ(DSPCNTR(plane));
1376 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377 I915_STATE_WARN(cur_state != state,
1378 "plane %c assertion failure (expected %s, current %s)\n",
1379 plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe)
1387 {
1388 struct drm_device *dev = dev_priv->dev;
1389 int i;
1390
1391 /* Primary planes are fixed to pipes on gen4+ */
1392 if (INTEL_INFO(dev)->gen >= 4) {
1393 u32 val = I915_READ(DSPCNTR(pipe));
1394 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395 "plane %c assertion failure, should be disabled but not\n",
1396 plane_name(pipe));
1397 return;
1398 }
1399
1400 /* Need to check both planes against the pipe */
1401 for_each_pipe(dev_priv, i) {
1402 u32 val = I915_READ(DSPCNTR(i));
1403 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404 DISPPLANE_SEL_PIPE_SHIFT;
1405 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407 plane_name(i), pipe_name(pipe));
1408 }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413 {
1414 struct drm_device *dev = dev_priv->dev;
1415 int sprite;
1416
1417 if (INTEL_INFO(dev)->gen >= 9) {
1418 for_each_sprite(dev_priv, pipe, sprite) {
1419 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422 sprite, pipe_name(pipe));
1423 }
1424 } else if (IS_VALLEYVIEW(dev)) {
1425 for_each_sprite(dev_priv, pipe, sprite) {
1426 u32 val = I915_READ(SPCNTR(pipe, sprite));
1427 I915_STATE_WARN(val & SP_ENABLE,
1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429 sprite_name(pipe, sprite), pipe_name(pipe));
1430 }
1431 } else if (INTEL_INFO(dev)->gen >= 7) {
1432 u32 val = I915_READ(SPRCTL(pipe));
1433 I915_STATE_WARN(val & SPRITE_ENABLE,
1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435 plane_name(pipe), pipe_name(pipe));
1436 } else if (INTEL_INFO(dev)->gen >= 5) {
1437 u32 val = I915_READ(DVSCNTR(pipe));
1438 I915_STATE_WARN(val & DVS_ENABLE,
1439 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440 plane_name(pipe), pipe_name(pipe));
1441 }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452 u32 val;
1453 bool enabled;
1454
1455 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457 val = I915_READ(PCH_DREF_CONTROL);
1458 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459 DREF_SUPERSPREAD_SOURCE_MASK));
1460 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465 {
1466 u32 val;
1467 bool enabled;
1468
1469 val = I915_READ(PCH_TRANSCONF(pipe));
1470 enabled = !!(val & TRANS_ENABLE);
1471 I915_STATE_WARN(enabled,
1472 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473 pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479 if ((val & DP_PORT_EN) == 0)
1480 return false;
1481
1482 if (HAS_PCH_CPT(dev_priv->dev)) {
1483 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1484 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1485 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1486 return false;
1487 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1488 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1489 return false;
1490 } else {
1491 if ((val & DP_PIPE_MASK) != (pipe << 30))
1492 return false;
1493 }
1494 return true;
1495 }
1496
1497 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1498 enum pipe pipe, u32 val)
1499 {
1500 if ((val & SDVO_ENABLE) == 0)
1501 return false;
1502
1503 if (HAS_PCH_CPT(dev_priv->dev)) {
1504 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1505 return false;
1506 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1507 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1508 return false;
1509 } else {
1510 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1511 return false;
1512 }
1513 return true;
1514 }
1515
1516 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1517 enum pipe pipe, u32 val)
1518 {
1519 if ((val & LVDS_PORT_EN) == 0)
1520 return false;
1521
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1527 return false;
1528 }
1529 return true;
1530 }
1531
1532 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1533 enum pipe pipe, u32 val)
1534 {
1535 if ((val & ADPA_DAC_ENABLE) == 0)
1536 return false;
1537 if (HAS_PCH_CPT(dev_priv->dev)) {
1538 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1539 return false;
1540 } else {
1541 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1542 return false;
1543 }
1544 return true;
1545 }
1546
1547 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1548 enum pipe pipe, int reg, u32 port_sel)
1549 {
1550 u32 val = I915_READ(reg);
1551 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553 reg, pipe_name(pipe));
1554
1555 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556 && (val & DP_PIPEB_SELECT),
1557 "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561 enum pipe pipe, int reg)
1562 {
1563 u32 val = I915_READ(reg);
1564 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566 reg, pipe_name(pipe));
1567
1568 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569 && (val & SDVO_PIPE_B_SELECT),
1570 "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574 enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582 val = I915_READ(PCH_ADPA);
1583 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584 "PCH VGA enabled on transcoder %c, should be disabled\n",
1585 pipe_name(pipe));
1586
1587 val = I915_READ(PCH_LVDS);
1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590 pipe_name(pipe));
1591
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598 const struct intel_crtc_state *pipe_config)
1599 {
1600 struct drm_device *dev = crtc->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 int reg = DPLL(crtc->pipe);
1603 u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605 assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607 /* No really, not for ILK+ */
1608 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610 /* PLL is protected by panel, make sure we can write it */
1611 if (IS_MOBILE(dev_priv->dev))
1612 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150);
1617
1618 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622 POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624 /* We do this three times for luck */
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150); /* wait for warmup */
1628 I915_WRITE(reg, dpll);
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
1631 I915_WRITE(reg, dpll);
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637 const struct intel_crtc_state *pipe_config)
1638 {
1639 struct drm_device *dev = crtc->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 int pipe = crtc->pipe;
1642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643 u32 tmp;
1644
1645 assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649 mutex_lock(&dev_priv->sb_lock);
1650
1651 /* Enable back the 10bit clock to display controller */
1652 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653 tmp |= DPIO_DCLKP_EN;
1654 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656 mutex_unlock(&dev_priv->sb_lock);
1657
1658 /*
1659 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660 */
1661 udelay(1);
1662
1663 /* Enable PLL */
1664 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666 /* Check PLL is locked */
1667 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670 /* not sure when this should be written */
1671 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672 POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677 struct intel_crtc *crtc;
1678 int count = 0;
1679
1680 for_each_intel_crtc(dev, crtc)
1681 count += crtc->base.state->active &&
1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684 return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689 struct drm_device *dev = crtc->base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 int reg = DPLL(crtc->pipe);
1692 u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694 assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696 /* No really, not for ILK+ */
1697 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699 /* PLL is protected by panel, make sure we can write it */
1700 if (IS_MOBILE(dev) && !IS_I830(dev))
1701 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703 /* Enable DVO 2x clock on both PLLs if necessary */
1704 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705 /*
1706 * It appears to be important that we don't enable this
1707 * for the current pipe before otherwise configuring the
1708 * PLL. No idea how this should be handled if multiple
1709 * DVO outputs are enabled simultaneosly.
1710 */
1711 dpll |= DPLL_DVO_2X_MODE;
1712 I915_WRITE(DPLL(!crtc->pipe),
1713 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714 }
1715
1716 /*
1717 * Apparently we need to have VGA mode enabled prior to changing
1718 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719 * dividers, even though the register value does change.
1720 */
1721 I915_WRITE(reg, 0);
1722
1723 I915_WRITE(reg, dpll);
1724
1725 /* Wait for the clocks to stabilize. */
1726 POSTING_READ(reg);
1727 udelay(150);
1728
1729 if (INTEL_INFO(dev)->gen >= 4) {
1730 I915_WRITE(DPLL_MD(crtc->pipe),
1731 crtc->config->dpll_hw_state.dpll_md);
1732 } else {
1733 /* The pixel multiplier can only be updated once the
1734 * DPLL is enabled and the clocks are stable.
1735 *
1736 * So write it again.
1737 */
1738 I915_WRITE(reg, dpll);
1739 }
1740
1741 /* We do this three times for luck */
1742 I915_WRITE(reg, dpll);
1743 POSTING_READ(reg);
1744 udelay(150); /* wait for warmup */
1745 I915_WRITE(reg, dpll);
1746 POSTING_READ(reg);
1747 udelay(150); /* wait for warmup */
1748 I915_WRITE(reg, dpll);
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751 }
1752
1753 /**
1754 * i9xx_disable_pll - disable a PLL
1755 * @dev_priv: i915 private structure
1756 * @pipe: pipe PLL to disable
1757 *
1758 * Disable the PLL for @pipe, making sure the pipe is off first.
1759 *
1760 * Note! This is for pre-ILK only.
1761 */
1762 static void i9xx_disable_pll(struct intel_crtc *crtc)
1763 {
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 enum pipe pipe = crtc->pipe;
1767
1768 /* Disable DVO 2x clock on both PLLs if necessary */
1769 if (IS_I830(dev) &&
1770 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1771 !intel_num_dvo_pipes(dev)) {
1772 I915_WRITE(DPLL(PIPE_B),
1773 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774 I915_WRITE(DPLL(PIPE_A),
1775 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776 }
1777
1778 /* Don't disable pipe or pipe PLLs if needed */
1779 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1781 return;
1782
1783 /* Make sure the pipe isn't still relying on us */
1784 assert_pipe_disabled(dev_priv, pipe);
1785
1786 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1787 POSTING_READ(DPLL(pipe));
1788 }
1789
1790 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791 {
1792 u32 val;
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
1797 /*
1798 * Leave integrated clock source and reference clock enabled for pipe B.
1799 * The latter is needed for VGA hotplug / manual detection.
1800 */
1801 val = DPLL_VGA_MODE_DIS;
1802 if (pipe == PIPE_B)
1803 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1804 I915_WRITE(DPLL(pipe), val);
1805 POSTING_READ(DPLL(pipe));
1806
1807 }
1808
1809 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810 {
1811 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1812 u32 val;
1813
1814 /* Make sure the pipe isn't still relying on us */
1815 assert_pipe_disabled(dev_priv, pipe);
1816
1817 /* Set PLL en = 0 */
1818 val = DPLL_SSC_REF_CLK_CHV |
1819 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1820 if (pipe != PIPE_A)
1821 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822 I915_WRITE(DPLL(pipe), val);
1823 POSTING_READ(DPLL(pipe));
1824
1825 mutex_lock(&dev_priv->sb_lock);
1826
1827 /* Disable 10bit clock to display controller */
1828 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829 val &= ~DPIO_DCLKP_EN;
1830 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832 mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836 struct intel_digital_port *dport,
1837 unsigned int expected_mask)
1838 {
1839 u32 port_mask;
1840 int dpll_reg;
1841
1842 switch (dport->port) {
1843 case PORT_B:
1844 port_mask = DPLL_PORTB_READY_MASK;
1845 dpll_reg = DPLL(0);
1846 break;
1847 case PORT_C:
1848 port_mask = DPLL_PORTC_READY_MASK;
1849 dpll_reg = DPLL(0);
1850 expected_mask <<= 4;
1851 break;
1852 case PORT_D:
1853 port_mask = DPLL_PORTD_READY_MASK;
1854 dpll_reg = DPIO_PHY_STATUS;
1855 break;
1856 default:
1857 BUG();
1858 }
1859
1860 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867 struct drm_device *dev = crtc->base.dev;
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871 if (WARN_ON(pll == NULL))
1872 return;
1873
1874 WARN_ON(!pll->config.crtc_mask);
1875 if (pll->active == 0) {
1876 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877 WARN_ON(pll->on);
1878 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880 pll->mode_set(dev_priv, pll);
1881 }
1882 }
1883
1884 /**
1885 * intel_enable_shared_dpll - enable PCH PLL
1886 * @dev_priv: i915 private structure
1887 * @pipe: pipe PLL to enable
1888 *
1889 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890 * drives the transcoder clock.
1891 */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894 struct drm_device *dev = crtc->base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898 if (WARN_ON(pll == NULL))
1899 return;
1900
1901 if (WARN_ON(pll->config.crtc_mask == 0))
1902 return;
1903
1904 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905 pll->name, pll->active, pll->on,
1906 crtc->base.base.id);
1907
1908 if (pll->active++) {
1909 WARN_ON(!pll->on);
1910 assert_shared_dpll_enabled(dev_priv, pll);
1911 return;
1912 }
1913 WARN_ON(pll->on);
1914
1915 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918 pll->enable(dev_priv, pll);
1919 pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924 struct drm_device *dev = crtc->base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928 /* PCH only available on ILK+ */
1929 if (INTEL_INFO(dev)->gen < 5)
1930 return;
1931
1932 if (pll == NULL)
1933 return;
1934
1935 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1936 return;
1937
1938 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939 pll->name, pll->active, pll->on,
1940 crtc->base.base.id);
1941
1942 if (WARN_ON(pll->active == 0)) {
1943 assert_shared_dpll_disabled(dev_priv, pll);
1944 return;
1945 }
1946
1947 assert_shared_dpll_enabled(dev_priv, pll);
1948 WARN_ON(!pll->on);
1949 if (--pll->active)
1950 return;
1951
1952 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1953 pll->disable(dev_priv, pll);
1954 pll->on = false;
1955
1956 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1957 }
1958
1959 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960 enum pipe pipe)
1961 {
1962 struct drm_device *dev = dev_priv->dev;
1963 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965 uint32_t reg, val, pipeconf_val;
1966
1967 /* PCH only available on ILK+ */
1968 BUG_ON(!HAS_PCH_SPLIT(dev));
1969
1970 /* Make sure PCH DPLL is enabled */
1971 assert_shared_dpll_enabled(dev_priv,
1972 intel_crtc_to_shared_dpll(intel_crtc));
1973
1974 /* FDI must be feeding us bits for PCH ports */
1975 assert_fdi_tx_enabled(dev_priv, pipe);
1976 assert_fdi_rx_enabled(dev_priv, pipe);
1977
1978 if (HAS_PCH_CPT(dev)) {
1979 /* Workaround: Set the timing override bit before enabling the
1980 * pch transcoder. */
1981 reg = TRANS_CHICKEN2(pipe);
1982 val = I915_READ(reg);
1983 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984 I915_WRITE(reg, val);
1985 }
1986
1987 reg = PCH_TRANSCONF(pipe);
1988 val = I915_READ(reg);
1989 pipeconf_val = I915_READ(PIPECONF(pipe));
1990
1991 if (HAS_PCH_IBX(dev_priv->dev)) {
1992 /*
1993 * Make the BPC in transcoder be consistent with
1994 * that in pipeconf reg. For HDMI we must use 8bpc
1995 * here for both 8bpc and 12bpc.
1996 */
1997 val &= ~PIPECONF_BPC_MASK;
1998 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1999 val |= PIPECONF_8BPC;
2000 else
2001 val |= pipeconf_val & PIPECONF_BPC_MASK;
2002 }
2003
2004 val &= ~TRANS_INTERLACE_MASK;
2005 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2006 if (HAS_PCH_IBX(dev_priv->dev) &&
2007 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2008 val |= TRANS_LEGACY_INTERLACED_ILK;
2009 else
2010 val |= TRANS_INTERLACED;
2011 else
2012 val |= TRANS_PROGRESSIVE;
2013
2014 I915_WRITE(reg, val | TRANS_ENABLE);
2015 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2016 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2017 }
2018
2019 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2020 enum transcoder cpu_transcoder)
2021 {
2022 u32 val, pipeconf_val;
2023
2024 /* PCH only available on ILK+ */
2025 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2026
2027 /* FDI must be feeding us bits for PCH ports */
2028 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2029 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2030
2031 /* Workaround: set timing override bit. */
2032 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2033 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2034 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2035
2036 val = TRANS_ENABLE;
2037 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2038
2039 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2040 PIPECONF_INTERLACED_ILK)
2041 val |= TRANS_INTERLACED;
2042 else
2043 val |= TRANS_PROGRESSIVE;
2044
2045 I915_WRITE(LPT_TRANSCONF, val);
2046 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2047 DRM_ERROR("Failed to enable PCH transcoder\n");
2048 }
2049
2050 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2051 enum pipe pipe)
2052 {
2053 struct drm_device *dev = dev_priv->dev;
2054 uint32_t reg, val;
2055
2056 /* FDI relies on the transcoder */
2057 assert_fdi_tx_disabled(dev_priv, pipe);
2058 assert_fdi_rx_disabled(dev_priv, pipe);
2059
2060 /* Ports must be off as well */
2061 assert_pch_ports_disabled(dev_priv, pipe);
2062
2063 reg = PCH_TRANSCONF(pipe);
2064 val = I915_READ(reg);
2065 val &= ~TRANS_ENABLE;
2066 I915_WRITE(reg, val);
2067 /* wait for PCH transcoder off, transcoder state */
2068 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2069 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2070
2071 if (!HAS_PCH_IBX(dev)) {
2072 /* Workaround: Clear the timing override chicken bit again. */
2073 reg = TRANS_CHICKEN2(pipe);
2074 val = I915_READ(reg);
2075 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2076 I915_WRITE(reg, val);
2077 }
2078 }
2079
2080 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2081 {
2082 u32 val;
2083
2084 val = I915_READ(LPT_TRANSCONF);
2085 val &= ~TRANS_ENABLE;
2086 I915_WRITE(LPT_TRANSCONF, val);
2087 /* wait for PCH transcoder off, transcoder state */
2088 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2089 DRM_ERROR("Failed to disable PCH transcoder\n");
2090
2091 /* Workaround: clear timing override bit. */
2092 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2093 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2095 }
2096
2097 /**
2098 * intel_enable_pipe - enable a pipe, asserting requirements
2099 * @crtc: crtc responsible for the pipe
2100 *
2101 * Enable @crtc's pipe, making sure that various hardware specific requirements
2102 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2103 */
2104 static void intel_enable_pipe(struct intel_crtc *crtc)
2105 {
2106 struct drm_device *dev = crtc->base.dev;
2107 struct drm_i915_private *dev_priv = dev->dev_private;
2108 enum pipe pipe = crtc->pipe;
2109 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2110 pipe);
2111 enum pipe pch_transcoder;
2112 int reg;
2113 u32 val;
2114
2115 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2116
2117 assert_planes_disabled(dev_priv, pipe);
2118 assert_cursor_disabled(dev_priv, pipe);
2119 assert_sprites_disabled(dev_priv, pipe);
2120
2121 if (HAS_PCH_LPT(dev_priv->dev))
2122 pch_transcoder = TRANSCODER_A;
2123 else
2124 pch_transcoder = pipe;
2125
2126 /*
2127 * A pipe without a PLL won't actually be able to drive bits from
2128 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2129 * need the check.
2130 */
2131 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2132 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2133 assert_dsi_pll_enabled(dev_priv);
2134 else
2135 assert_pll_enabled(dev_priv, pipe);
2136 else {
2137 if (crtc->config->has_pch_encoder) {
2138 /* if driving the PCH, we need FDI enabled */
2139 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2140 assert_fdi_tx_pll_enabled(dev_priv,
2141 (enum pipe) cpu_transcoder);
2142 }
2143 /* FIXME: assert CPU port conditions for SNB+ */
2144 }
2145
2146 reg = PIPECONF(cpu_transcoder);
2147 val = I915_READ(reg);
2148 if (val & PIPECONF_ENABLE) {
2149 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2150 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2151 return;
2152 }
2153
2154 I915_WRITE(reg, val | PIPECONF_ENABLE);
2155 POSTING_READ(reg);
2156 }
2157
2158 /**
2159 * intel_disable_pipe - disable a pipe, asserting requirements
2160 * @crtc: crtc whose pipes is to be disabled
2161 *
2162 * Disable the pipe of @crtc, making sure that various hardware
2163 * specific requirements are met, if applicable, e.g. plane
2164 * disabled, panel fitter off, etc.
2165 *
2166 * Will wait until the pipe has shut down before returning.
2167 */
2168 static void intel_disable_pipe(struct intel_crtc *crtc)
2169 {
2170 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2171 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2172 enum pipe pipe = crtc->pipe;
2173 int reg;
2174 u32 val;
2175
2176 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2177
2178 /*
2179 * Make sure planes won't keep trying to pump pixels to us,
2180 * or we might hang the display.
2181 */
2182 assert_planes_disabled(dev_priv, pipe);
2183 assert_cursor_disabled(dev_priv, pipe);
2184 assert_sprites_disabled(dev_priv, pipe);
2185
2186 reg = PIPECONF(cpu_transcoder);
2187 val = I915_READ(reg);
2188 if ((val & PIPECONF_ENABLE) == 0)
2189 return;
2190
2191 /*
2192 * Double wide has implications for planes
2193 * so best keep it disabled when not needed.
2194 */
2195 if (crtc->config->double_wide)
2196 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198 /* Don't disable pipe or pipe PLLs if needed */
2199 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2201 val &= ~PIPECONF_ENABLE;
2202
2203 I915_WRITE(reg, val);
2204 if ((val & PIPECONF_ENABLE) == 0)
2205 intel_wait_for_pipe_off(crtc);
2206 }
2207
2208 static bool need_vtd_wa(struct drm_device *dev)
2209 {
2210 #ifdef CONFIG_INTEL_IOMMU
2211 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2212 return true;
2213 #endif
2214 return false;
2215 }
2216
2217 unsigned int
2218 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2219 uint64_t fb_format_modifier, unsigned int plane)
2220 {
2221 unsigned int tile_height;
2222 uint32_t pixel_bytes;
2223
2224 switch (fb_format_modifier) {
2225 case DRM_FORMAT_MOD_NONE:
2226 tile_height = 1;
2227 break;
2228 case I915_FORMAT_MOD_X_TILED:
2229 tile_height = IS_GEN2(dev) ? 16 : 8;
2230 break;
2231 case I915_FORMAT_MOD_Y_TILED:
2232 tile_height = 32;
2233 break;
2234 case I915_FORMAT_MOD_Yf_TILED:
2235 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2236 switch (pixel_bytes) {
2237 default:
2238 case 1:
2239 tile_height = 64;
2240 break;
2241 case 2:
2242 case 4:
2243 tile_height = 32;
2244 break;
2245 case 8:
2246 tile_height = 16;
2247 break;
2248 case 16:
2249 WARN_ONCE(1,
2250 "128-bit pixels are not supported for display!");
2251 tile_height = 16;
2252 break;
2253 }
2254 break;
2255 default:
2256 MISSING_CASE(fb_format_modifier);
2257 tile_height = 1;
2258 break;
2259 }
2260
2261 return tile_height;
2262 }
2263
2264 unsigned int
2265 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2266 uint32_t pixel_format, uint64_t fb_format_modifier)
2267 {
2268 return ALIGN(height, intel_tile_height(dev, pixel_format,
2269 fb_format_modifier, 0));
2270 }
2271
2272 static int
2273 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2274 const struct drm_plane_state *plane_state)
2275 {
2276 struct intel_rotation_info *info = &view->rotation_info;
2277 unsigned int tile_height, tile_pitch;
2278
2279 *view = i915_ggtt_view_normal;
2280
2281 if (!plane_state)
2282 return 0;
2283
2284 if (!intel_rotation_90_or_270(plane_state->rotation))
2285 return 0;
2286
2287 *view = i915_ggtt_view_rotated;
2288
2289 info->height = fb->height;
2290 info->pixel_format = fb->pixel_format;
2291 info->pitch = fb->pitches[0];
2292 info->uv_offset = fb->offsets[1];
2293 info->fb_modifier = fb->modifier[0];
2294
2295 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2296 fb->modifier[0], 0);
2297 tile_pitch = PAGE_SIZE / tile_height;
2298 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2300 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2301
2302 if (info->pixel_format == DRM_FORMAT_NV12) {
2303 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2304 fb->modifier[0], 1);
2305 tile_pitch = PAGE_SIZE / tile_height;
2306 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2307 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2308 tile_height);
2309 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2310 PAGE_SIZE;
2311 }
2312
2313 return 0;
2314 }
2315
2316 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2317 {
2318 if (INTEL_INFO(dev_priv)->gen >= 9)
2319 return 256 * 1024;
2320 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2321 IS_VALLEYVIEW(dev_priv))
2322 return 128 * 1024;
2323 else if (INTEL_INFO(dev_priv)->gen >= 4)
2324 return 4 * 1024;
2325 else
2326 return 0;
2327 }
2328
2329 int
2330 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2331 struct drm_framebuffer *fb,
2332 const struct drm_plane_state *plane_state,
2333 struct intel_engine_cs *pipelined,
2334 struct drm_i915_gem_request **pipelined_request)
2335 {
2336 struct drm_device *dev = fb->dev;
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2339 struct i915_ggtt_view view;
2340 u32 alignment;
2341 int ret;
2342
2343 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2344
2345 switch (fb->modifier[0]) {
2346 case DRM_FORMAT_MOD_NONE:
2347 alignment = intel_linear_alignment(dev_priv);
2348 break;
2349 case I915_FORMAT_MOD_X_TILED:
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else {
2353 /* pin() will align the object as required by fence */
2354 alignment = 0;
2355 }
2356 break;
2357 case I915_FORMAT_MOD_Y_TILED:
2358 case I915_FORMAT_MOD_Yf_TILED:
2359 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360 "Y tiling bo slipped through, driver bug!\n"))
2361 return -EINVAL;
2362 alignment = 1 * 1024 * 1024;
2363 break;
2364 default:
2365 MISSING_CASE(fb->modifier[0]);
2366 return -EINVAL;
2367 }
2368
2369 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370 if (ret)
2371 return ret;
2372
2373 /* Note that the w/a also requires 64 PTE of padding following the
2374 * bo. We currently fill all unused PTE with the shadow page and so
2375 * we should always have valid PTE following the scanout preventing
2376 * the VT-d warning.
2377 */
2378 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379 alignment = 256 * 1024;
2380
2381 /*
2382 * Global gtt pte registers are special registers which actually forward
2383 * writes to a chunk of system memory. Which means that there is no risk
2384 * that the register values disappear as soon as we call
2385 * intel_runtime_pm_put(), so it is correct to wrap only the
2386 * pin/unpin/fence and not more.
2387 */
2388 intel_runtime_pm_get(dev_priv);
2389
2390 dev_priv->mm.interruptible = false;
2391 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2392 pipelined_request, &view);
2393 if (ret)
2394 goto err_interruptible;
2395
2396 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397 * fence, whereas 965+ only requires a fence if using
2398 * framebuffer compression. For simplicity, we always install
2399 * a fence as the cost is not that onerous.
2400 */
2401 if (view.type == I915_GGTT_VIEW_NORMAL) {
2402 ret = i915_gem_object_get_fence(obj);
2403 if (ret == -EDEADLK) {
2404 /*
2405 * -EDEADLK means there are no free fences
2406 * no pending flips.
2407 *
2408 * This is propagated to atomic, but it uses
2409 * -EDEADLK to force a locking recovery, so
2410 * change the returned error to -EBUSY.
2411 */
2412 ret = -EBUSY;
2413 goto err_unpin;
2414 } else if (ret)
2415 goto err_unpin;
2416
2417 i915_gem_object_pin_fence(obj);
2418 }
2419
2420 dev_priv->mm.interruptible = true;
2421 intel_runtime_pm_put(dev_priv);
2422 return 0;
2423
2424 err_unpin:
2425 i915_gem_object_unpin_from_display_plane(obj, &view);
2426 err_interruptible:
2427 dev_priv->mm.interruptible = true;
2428 intel_runtime_pm_put(dev_priv);
2429 return ret;
2430 }
2431
2432 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2433 const struct drm_plane_state *plane_state)
2434 {
2435 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2436 struct i915_ggtt_view view;
2437 int ret;
2438
2439 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
2441 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442 WARN_ONCE(ret, "Couldn't get view from plane state!");
2443
2444 if (view.type == I915_GGTT_VIEW_NORMAL)
2445 i915_gem_object_unpin_fence(obj);
2446
2447 i915_gem_object_unpin_from_display_plane(obj, &view);
2448 }
2449
2450 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451 * is assumed to be a power-of-two. */
2452 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453 int *x, int *y,
2454 unsigned int tiling_mode,
2455 unsigned int cpp,
2456 unsigned int pitch)
2457 {
2458 if (tiling_mode != I915_TILING_NONE) {
2459 unsigned int tile_rows, tiles;
2460
2461 tile_rows = *y / 8;
2462 *y %= 8;
2463
2464 tiles = *x / (512/cpp);
2465 *x %= 512/cpp;
2466
2467 return tile_rows * pitch * 8 + tiles * 4096;
2468 } else {
2469 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2470 unsigned int offset;
2471
2472 offset = *y * pitch + *x * cpp;
2473 *y = (offset & alignment) / pitch;
2474 *x = ((offset & alignment) - *y * pitch) / cpp;
2475 return offset & ~alignment;
2476 }
2477 }
2478
2479 static int i9xx_format_to_fourcc(int format)
2480 {
2481 switch (format) {
2482 case DISPPLANE_8BPP:
2483 return DRM_FORMAT_C8;
2484 case DISPPLANE_BGRX555:
2485 return DRM_FORMAT_XRGB1555;
2486 case DISPPLANE_BGRX565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case DISPPLANE_BGRX888:
2490 return DRM_FORMAT_XRGB8888;
2491 case DISPPLANE_RGBX888:
2492 return DRM_FORMAT_XBGR8888;
2493 case DISPPLANE_BGRX101010:
2494 return DRM_FORMAT_XRGB2101010;
2495 case DISPPLANE_RGBX101010:
2496 return DRM_FORMAT_XBGR2101010;
2497 }
2498 }
2499
2500 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501 {
2502 switch (format) {
2503 case PLANE_CTL_FORMAT_RGB_565:
2504 return DRM_FORMAT_RGB565;
2505 default:
2506 case PLANE_CTL_FORMAT_XRGB_8888:
2507 if (rgb_order) {
2508 if (alpha)
2509 return DRM_FORMAT_ABGR8888;
2510 else
2511 return DRM_FORMAT_XBGR8888;
2512 } else {
2513 if (alpha)
2514 return DRM_FORMAT_ARGB8888;
2515 else
2516 return DRM_FORMAT_XRGB8888;
2517 }
2518 case PLANE_CTL_FORMAT_XRGB_2101010:
2519 if (rgb_order)
2520 return DRM_FORMAT_XBGR2101010;
2521 else
2522 return DRM_FORMAT_XRGB2101010;
2523 }
2524 }
2525
2526 static bool
2527 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528 struct intel_initial_plane_config *plane_config)
2529 {
2530 struct drm_device *dev = crtc->base.dev;
2531 struct drm_i915_private *dev_priv = to_i915(dev);
2532 struct drm_i915_gem_object *obj = NULL;
2533 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2534 struct drm_framebuffer *fb = &plane_config->fb->base;
2535 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2536 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2537 PAGE_SIZE);
2538
2539 size_aligned -= base_aligned;
2540
2541 if (plane_config->size == 0)
2542 return false;
2543
2544 /* If the FB is too big, just don't use it since fbdev is not very
2545 * important and we should probably use that space with FBC or other
2546 * features. */
2547 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2548 return false;
2549
2550 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2551 base_aligned,
2552 base_aligned,
2553 size_aligned);
2554 if (!obj)
2555 return false;
2556
2557 obj->tiling_mode = plane_config->tiling;
2558 if (obj->tiling_mode == I915_TILING_X)
2559 obj->stride = fb->pitches[0];
2560
2561 mode_cmd.pixel_format = fb->pixel_format;
2562 mode_cmd.width = fb->width;
2563 mode_cmd.height = fb->height;
2564 mode_cmd.pitches[0] = fb->pitches[0];
2565 mode_cmd.modifier[0] = fb->modifier[0];
2566 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2567
2568 mutex_lock(&dev->struct_mutex);
2569 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2570 &mode_cmd, obj)) {
2571 DRM_DEBUG_KMS("intel fb init failed\n");
2572 goto out_unref_obj;
2573 }
2574 mutex_unlock(&dev->struct_mutex);
2575
2576 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2577 return true;
2578
2579 out_unref_obj:
2580 drm_gem_object_unreference(&obj->base);
2581 mutex_unlock(&dev->struct_mutex);
2582 return false;
2583 }
2584
2585 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2586 static void
2587 update_state_fb(struct drm_plane *plane)
2588 {
2589 if (plane->fb == plane->state->fb)
2590 return;
2591
2592 if (plane->state->fb)
2593 drm_framebuffer_unreference(plane->state->fb);
2594 plane->state->fb = plane->fb;
2595 if (plane->state->fb)
2596 drm_framebuffer_reference(plane->state->fb);
2597 }
2598
2599 static void
2600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2601 struct intel_initial_plane_config *plane_config)
2602 {
2603 struct drm_device *dev = intel_crtc->base.dev;
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct drm_crtc *c;
2606 struct intel_crtc *i;
2607 struct drm_i915_gem_object *obj;
2608 struct drm_plane *primary = intel_crtc->base.primary;
2609 struct drm_plane_state *plane_state = primary->state;
2610 struct drm_framebuffer *fb;
2611
2612 if (!plane_config->fb)
2613 return;
2614
2615 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2616 fb = &plane_config->fb->base;
2617 goto valid_fb;
2618 }
2619
2620 kfree(plane_config->fb);
2621
2622 /*
2623 * Failed to alloc the obj, check to see if we should share
2624 * an fb with another CRTC instead
2625 */
2626 for_each_crtc(dev, c) {
2627 i = to_intel_crtc(c);
2628
2629 if (c == &intel_crtc->base)
2630 continue;
2631
2632 if (!i->active)
2633 continue;
2634
2635 fb = c->primary->fb;
2636 if (!fb)
2637 continue;
2638
2639 obj = intel_fb_obj(fb);
2640 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2641 drm_framebuffer_reference(fb);
2642 goto valid_fb;
2643 }
2644 }
2645
2646 return;
2647
2648 valid_fb:
2649 plane_state->src_x = 0;
2650 plane_state->src_y = 0;
2651 plane_state->src_w = fb->width << 16;
2652 plane_state->src_h = fb->height << 16;
2653
2654 plane_state->crtc_x = 0;
2655 plane_state->crtc_y = 0;
2656 plane_state->crtc_w = fb->width;
2657 plane_state->crtc_h = fb->height;
2658
2659 obj = intel_fb_obj(fb);
2660 if (obj->tiling_mode != I915_TILING_NONE)
2661 dev_priv->preserve_bios_swizzle = true;
2662
2663 drm_framebuffer_reference(fb);
2664 primary->fb = primary->state->fb = fb;
2665 primary->crtc = primary->state->crtc = &intel_crtc->base;
2666 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2667 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2668 }
2669
2670 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2671 struct drm_framebuffer *fb,
2672 int x, int y)
2673 {
2674 struct drm_device *dev = crtc->dev;
2675 struct drm_i915_private *dev_priv = dev->dev_private;
2676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2677 struct drm_plane *primary = crtc->primary;
2678 bool visible = to_intel_plane_state(primary->state)->visible;
2679 struct drm_i915_gem_object *obj;
2680 int plane = intel_crtc->plane;
2681 unsigned long linear_offset;
2682 u32 dspcntr;
2683 u32 reg = DSPCNTR(plane);
2684 int pixel_size;
2685
2686 if (!visible || !fb) {
2687 I915_WRITE(reg, 0);
2688 if (INTEL_INFO(dev)->gen >= 4)
2689 I915_WRITE(DSPSURF(plane), 0);
2690 else
2691 I915_WRITE(DSPADDR(plane), 0);
2692 POSTING_READ(reg);
2693 return;
2694 }
2695
2696 obj = intel_fb_obj(fb);
2697 if (WARN_ON(obj == NULL))
2698 return;
2699
2700 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2701
2702 dspcntr = DISPPLANE_GAMMA_ENABLE;
2703
2704 dspcntr |= DISPLAY_PLANE_ENABLE;
2705
2706 if (INTEL_INFO(dev)->gen < 4) {
2707 if (intel_crtc->pipe == PIPE_B)
2708 dspcntr |= DISPPLANE_SEL_PIPE_B;
2709
2710 /* pipesrc and dspsize control the size that is scaled from,
2711 * which should always be the user's requested size.
2712 */
2713 I915_WRITE(DSPSIZE(plane),
2714 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2715 (intel_crtc->config->pipe_src_w - 1));
2716 I915_WRITE(DSPPOS(plane), 0);
2717 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2718 I915_WRITE(PRIMSIZE(plane),
2719 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2720 (intel_crtc->config->pipe_src_w - 1));
2721 I915_WRITE(PRIMPOS(plane), 0);
2722 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2723 }
2724
2725 switch (fb->pixel_format) {
2726 case DRM_FORMAT_C8:
2727 dspcntr |= DISPPLANE_8BPP;
2728 break;
2729 case DRM_FORMAT_XRGB1555:
2730 dspcntr |= DISPPLANE_BGRX555;
2731 break;
2732 case DRM_FORMAT_RGB565:
2733 dspcntr |= DISPPLANE_BGRX565;
2734 break;
2735 case DRM_FORMAT_XRGB8888:
2736 dspcntr |= DISPPLANE_BGRX888;
2737 break;
2738 case DRM_FORMAT_XBGR8888:
2739 dspcntr |= DISPPLANE_RGBX888;
2740 break;
2741 case DRM_FORMAT_XRGB2101010:
2742 dspcntr |= DISPPLANE_BGRX101010;
2743 break;
2744 case DRM_FORMAT_XBGR2101010:
2745 dspcntr |= DISPPLANE_RGBX101010;
2746 break;
2747 default:
2748 BUG();
2749 }
2750
2751 if (INTEL_INFO(dev)->gen >= 4 &&
2752 obj->tiling_mode != I915_TILING_NONE)
2753 dspcntr |= DISPPLANE_TILED;
2754
2755 if (IS_G4X(dev))
2756 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2757
2758 linear_offset = y * fb->pitches[0] + x * pixel_size;
2759
2760 if (INTEL_INFO(dev)->gen >= 4) {
2761 intel_crtc->dspaddr_offset =
2762 intel_gen4_compute_page_offset(dev_priv,
2763 &x, &y, obj->tiling_mode,
2764 pixel_size,
2765 fb->pitches[0]);
2766 linear_offset -= intel_crtc->dspaddr_offset;
2767 } else {
2768 intel_crtc->dspaddr_offset = linear_offset;
2769 }
2770
2771 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2772 dspcntr |= DISPPLANE_ROTATE_180;
2773
2774 x += (intel_crtc->config->pipe_src_w - 1);
2775 y += (intel_crtc->config->pipe_src_h - 1);
2776
2777 /* Finding the last pixel of the last line of the display
2778 data and adding to linear_offset*/
2779 linear_offset +=
2780 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2781 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2782 }
2783
2784 intel_crtc->adjusted_x = x;
2785 intel_crtc->adjusted_y = y;
2786
2787 I915_WRITE(reg, dspcntr);
2788
2789 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2790 if (INTEL_INFO(dev)->gen >= 4) {
2791 I915_WRITE(DSPSURF(plane),
2792 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2793 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2794 I915_WRITE(DSPLINOFF(plane), linear_offset);
2795 } else
2796 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2797 POSTING_READ(reg);
2798 }
2799
2800 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2801 struct drm_framebuffer *fb,
2802 int x, int y)
2803 {
2804 struct drm_device *dev = crtc->dev;
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2807 struct drm_plane *primary = crtc->primary;
2808 bool visible = to_intel_plane_state(primary->state)->visible;
2809 struct drm_i915_gem_object *obj;
2810 int plane = intel_crtc->plane;
2811 unsigned long linear_offset;
2812 u32 dspcntr;
2813 u32 reg = DSPCNTR(plane);
2814 int pixel_size;
2815
2816 if (!visible || !fb) {
2817 I915_WRITE(reg, 0);
2818 I915_WRITE(DSPSURF(plane), 0);
2819 POSTING_READ(reg);
2820 return;
2821 }
2822
2823 obj = intel_fb_obj(fb);
2824 if (WARN_ON(obj == NULL))
2825 return;
2826
2827 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2828
2829 dspcntr = DISPPLANE_GAMMA_ENABLE;
2830
2831 dspcntr |= DISPLAY_PLANE_ENABLE;
2832
2833 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2834 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2835
2836 switch (fb->pixel_format) {
2837 case DRM_FORMAT_C8:
2838 dspcntr |= DISPPLANE_8BPP;
2839 break;
2840 case DRM_FORMAT_RGB565:
2841 dspcntr |= DISPPLANE_BGRX565;
2842 break;
2843 case DRM_FORMAT_XRGB8888:
2844 dspcntr |= DISPPLANE_BGRX888;
2845 break;
2846 case DRM_FORMAT_XBGR8888:
2847 dspcntr |= DISPPLANE_RGBX888;
2848 break;
2849 case DRM_FORMAT_XRGB2101010:
2850 dspcntr |= DISPPLANE_BGRX101010;
2851 break;
2852 case DRM_FORMAT_XBGR2101010:
2853 dspcntr |= DISPPLANE_RGBX101010;
2854 break;
2855 default:
2856 BUG();
2857 }
2858
2859 if (obj->tiling_mode != I915_TILING_NONE)
2860 dspcntr |= DISPPLANE_TILED;
2861
2862 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2863 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2864
2865 linear_offset = y * fb->pitches[0] + x * pixel_size;
2866 intel_crtc->dspaddr_offset =
2867 intel_gen4_compute_page_offset(dev_priv,
2868 &x, &y, obj->tiling_mode,
2869 pixel_size,
2870 fb->pitches[0]);
2871 linear_offset -= intel_crtc->dspaddr_offset;
2872 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2873 dspcntr |= DISPPLANE_ROTATE_180;
2874
2875 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2876 x += (intel_crtc->config->pipe_src_w - 1);
2877 y += (intel_crtc->config->pipe_src_h - 1);
2878
2879 /* Finding the last pixel of the last line of the display
2880 data and adding to linear_offset*/
2881 linear_offset +=
2882 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2883 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2884 }
2885 }
2886
2887 intel_crtc->adjusted_x = x;
2888 intel_crtc->adjusted_y = y;
2889
2890 I915_WRITE(reg, dspcntr);
2891
2892 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2893 I915_WRITE(DSPSURF(plane),
2894 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2895 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2896 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2897 } else {
2898 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2899 I915_WRITE(DSPLINOFF(plane), linear_offset);
2900 }
2901 POSTING_READ(reg);
2902 }
2903
2904 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2905 uint32_t pixel_format)
2906 {
2907 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2908
2909 /*
2910 * The stride is either expressed as a multiple of 64 bytes
2911 * chunks for linear buffers or in number of tiles for tiled
2912 * buffers.
2913 */
2914 switch (fb_modifier) {
2915 case DRM_FORMAT_MOD_NONE:
2916 return 64;
2917 case I915_FORMAT_MOD_X_TILED:
2918 if (INTEL_INFO(dev)->gen == 2)
2919 return 128;
2920 return 512;
2921 case I915_FORMAT_MOD_Y_TILED:
2922 /* No need to check for old gens and Y tiling since this is
2923 * about the display engine and those will be blocked before
2924 * we get here.
2925 */
2926 return 128;
2927 case I915_FORMAT_MOD_Yf_TILED:
2928 if (bits_per_pixel == 8)
2929 return 64;
2930 else
2931 return 128;
2932 default:
2933 MISSING_CASE(fb_modifier);
2934 return 64;
2935 }
2936 }
2937
2938 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2939 struct drm_i915_gem_object *obj,
2940 unsigned int plane)
2941 {
2942 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2943 struct i915_vma *vma;
2944 unsigned char *offset;
2945
2946 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2947 view = &i915_ggtt_view_rotated;
2948
2949 vma = i915_gem_obj_to_ggtt_view(obj, view);
2950 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951 view->type))
2952 return -1;
2953
2954 offset = (unsigned char *)vma->node.start;
2955
2956 if (plane == 1) {
2957 offset += vma->ggtt_view.rotation_info.uv_start_page *
2958 PAGE_SIZE;
2959 }
2960
2961 return (unsigned long)offset;
2962 }
2963
2964 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2965 {
2966 struct drm_device *dev = intel_crtc->base.dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968
2969 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2970 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2971 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2972 }
2973
2974 /*
2975 * This function detaches (aka. unbinds) unused scalers in hardware
2976 */
2977 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2978 {
2979 struct intel_crtc_scaler_state *scaler_state;
2980 int i;
2981
2982 scaler_state = &intel_crtc->config->scaler_state;
2983
2984 /* loop through and disable scalers that aren't in use */
2985 for (i = 0; i < intel_crtc->num_scalers; i++) {
2986 if (!scaler_state->scalers[i].in_use)
2987 skl_detach_scaler(intel_crtc, i);
2988 }
2989 }
2990
2991 u32 skl_plane_ctl_format(uint32_t pixel_format)
2992 {
2993 switch (pixel_format) {
2994 case DRM_FORMAT_C8:
2995 return PLANE_CTL_FORMAT_INDEXED;
2996 case DRM_FORMAT_RGB565:
2997 return PLANE_CTL_FORMAT_RGB_565;
2998 case DRM_FORMAT_XBGR8888:
2999 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3000 case DRM_FORMAT_XRGB8888:
3001 return PLANE_CTL_FORMAT_XRGB_8888;
3002 /*
3003 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3004 * to be already pre-multiplied. We need to add a knob (or a different
3005 * DRM_FORMAT) for user-space to configure that.
3006 */
3007 case DRM_FORMAT_ABGR8888:
3008 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3009 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3010 case DRM_FORMAT_ARGB8888:
3011 return PLANE_CTL_FORMAT_XRGB_8888 |
3012 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3013 case DRM_FORMAT_XRGB2101010:
3014 return PLANE_CTL_FORMAT_XRGB_2101010;
3015 case DRM_FORMAT_XBGR2101010:
3016 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3017 case DRM_FORMAT_YUYV:
3018 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3019 case DRM_FORMAT_YVYU:
3020 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3021 case DRM_FORMAT_UYVY:
3022 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3023 case DRM_FORMAT_VYUY:
3024 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3025 default:
3026 MISSING_CASE(pixel_format);
3027 }
3028
3029 return 0;
3030 }
3031
3032 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3033 {
3034 switch (fb_modifier) {
3035 case DRM_FORMAT_MOD_NONE:
3036 break;
3037 case I915_FORMAT_MOD_X_TILED:
3038 return PLANE_CTL_TILED_X;
3039 case I915_FORMAT_MOD_Y_TILED:
3040 return PLANE_CTL_TILED_Y;
3041 case I915_FORMAT_MOD_Yf_TILED:
3042 return PLANE_CTL_TILED_YF;
3043 default:
3044 MISSING_CASE(fb_modifier);
3045 }
3046
3047 return 0;
3048 }
3049
3050 u32 skl_plane_ctl_rotation(unsigned int rotation)
3051 {
3052 switch (rotation) {
3053 case BIT(DRM_ROTATE_0):
3054 break;
3055 /*
3056 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3057 * while i915 HW rotation is clockwise, thats why this swapping.
3058 */
3059 case BIT(DRM_ROTATE_90):
3060 return PLANE_CTL_ROTATE_270;
3061 case BIT(DRM_ROTATE_180):
3062 return PLANE_CTL_ROTATE_180;
3063 case BIT(DRM_ROTATE_270):
3064 return PLANE_CTL_ROTATE_90;
3065 default:
3066 MISSING_CASE(rotation);
3067 }
3068
3069 return 0;
3070 }
3071
3072 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3073 struct drm_framebuffer *fb,
3074 int x, int y)
3075 {
3076 struct drm_device *dev = crtc->dev;
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3079 struct drm_plane *plane = crtc->primary;
3080 bool visible = to_intel_plane_state(plane->state)->visible;
3081 struct drm_i915_gem_object *obj;
3082 int pipe = intel_crtc->pipe;
3083 u32 plane_ctl, stride_div, stride;
3084 u32 tile_height, plane_offset, plane_size;
3085 unsigned int rotation;
3086 int x_offset, y_offset;
3087 unsigned long surf_addr;
3088 struct intel_crtc_state *crtc_state = intel_crtc->config;
3089 struct intel_plane_state *plane_state;
3090 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3091 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3092 int scaler_id = -1;
3093
3094 plane_state = to_intel_plane_state(plane->state);
3095
3096 if (!visible || !fb) {
3097 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3098 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3099 POSTING_READ(PLANE_CTL(pipe, 0));
3100 return;
3101 }
3102
3103 plane_ctl = PLANE_CTL_ENABLE |
3104 PLANE_CTL_PIPE_GAMMA_ENABLE |
3105 PLANE_CTL_PIPE_CSC_ENABLE;
3106
3107 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3108 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3109 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3110
3111 rotation = plane->state->rotation;
3112 plane_ctl |= skl_plane_ctl_rotation(rotation);
3113
3114 obj = intel_fb_obj(fb);
3115 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3116 fb->pixel_format);
3117 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3118
3119 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3120
3121 scaler_id = plane_state->scaler_id;
3122 src_x = plane_state->src.x1 >> 16;
3123 src_y = plane_state->src.y1 >> 16;
3124 src_w = drm_rect_width(&plane_state->src) >> 16;
3125 src_h = drm_rect_height(&plane_state->src) >> 16;
3126 dst_x = plane_state->dst.x1;
3127 dst_y = plane_state->dst.y1;
3128 dst_w = drm_rect_width(&plane_state->dst);
3129 dst_h = drm_rect_height(&plane_state->dst);
3130
3131 WARN_ON(x != src_x || y != src_y);
3132
3133 if (intel_rotation_90_or_270(rotation)) {
3134 /* stride = Surface height in tiles */
3135 tile_height = intel_tile_height(dev, fb->pixel_format,
3136 fb->modifier[0], 0);
3137 stride = DIV_ROUND_UP(fb->height, tile_height);
3138 x_offset = stride * tile_height - y - src_h;
3139 y_offset = x;
3140 plane_size = (src_w - 1) << 16 | (src_h - 1);
3141 } else {
3142 stride = fb->pitches[0] / stride_div;
3143 x_offset = x;
3144 y_offset = y;
3145 plane_size = (src_h - 1) << 16 | (src_w - 1);
3146 }
3147 plane_offset = y_offset << 16 | x_offset;
3148
3149 intel_crtc->adjusted_x = x_offset;
3150 intel_crtc->adjusted_y = y_offset;
3151
3152 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3153 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3154 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3155 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3156
3157 if (scaler_id >= 0) {
3158 uint32_t ps_ctrl = 0;
3159
3160 WARN_ON(!dst_w || !dst_h);
3161 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3162 crtc_state->scaler_state.scalers[scaler_id].mode;
3163 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3164 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3165 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3166 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3167 I915_WRITE(PLANE_POS(pipe, 0), 0);
3168 } else {
3169 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3170 }
3171
3172 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3173
3174 POSTING_READ(PLANE_SURF(pipe, 0));
3175 }
3176
3177 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3178 static int
3179 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3180 int x, int y, enum mode_set_atomic state)
3181 {
3182 struct drm_device *dev = crtc->dev;
3183 struct drm_i915_private *dev_priv = dev->dev_private;
3184
3185 if (dev_priv->fbc.disable_fbc)
3186 dev_priv->fbc.disable_fbc(dev_priv);
3187
3188 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3189
3190 return 0;
3191 }
3192
3193 static void intel_complete_page_flips(struct drm_device *dev)
3194 {
3195 struct drm_crtc *crtc;
3196
3197 for_each_crtc(dev, crtc) {
3198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3199 enum plane plane = intel_crtc->plane;
3200
3201 intel_prepare_page_flip(dev, plane);
3202 intel_finish_page_flip_plane(dev, plane);
3203 }
3204 }
3205
3206 static void intel_update_primary_planes(struct drm_device *dev)
3207 {
3208 struct drm_crtc *crtc;
3209
3210 for_each_crtc(dev, crtc) {
3211 struct intel_plane *plane = to_intel_plane(crtc->primary);
3212 struct intel_plane_state *plane_state;
3213
3214 drm_modeset_lock_crtc(crtc, &plane->base);
3215
3216 plane_state = to_intel_plane_state(plane->base.state);
3217
3218 if (plane_state->base.fb)
3219 plane->commit_plane(&plane->base, plane_state);
3220
3221 drm_modeset_unlock_crtc(crtc);
3222 }
3223 }
3224
3225 void intel_prepare_reset(struct drm_device *dev)
3226 {
3227 /* no reset support for gen2 */
3228 if (IS_GEN2(dev))
3229 return;
3230
3231 /* reset doesn't touch the display */
3232 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3233 return;
3234
3235 drm_modeset_lock_all(dev);
3236 /*
3237 * Disabling the crtcs gracefully seems nicer. Also the
3238 * g33 docs say we should at least disable all the planes.
3239 */
3240 intel_display_suspend(dev);
3241 }
3242
3243 void intel_finish_reset(struct drm_device *dev)
3244 {
3245 struct drm_i915_private *dev_priv = to_i915(dev);
3246
3247 /*
3248 * Flips in the rings will be nuked by the reset,
3249 * so complete all pending flips so that user space
3250 * will get its events and not get stuck.
3251 */
3252 intel_complete_page_flips(dev);
3253
3254 /* no reset support for gen2 */
3255 if (IS_GEN2(dev))
3256 return;
3257
3258 /* reset doesn't touch the display */
3259 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3260 /*
3261 * Flips in the rings have been nuked by the reset,
3262 * so update the base address of all primary
3263 * planes to the the last fb to make sure we're
3264 * showing the correct fb after a reset.
3265 *
3266 * FIXME: Atomic will make this obsolete since we won't schedule
3267 * CS-based flips (which might get lost in gpu resets) any more.
3268 */
3269 intel_update_primary_planes(dev);
3270 return;
3271 }
3272
3273 /*
3274 * The display has been reset as well,
3275 * so need a full re-initialization.
3276 */
3277 intel_runtime_pm_disable_interrupts(dev_priv);
3278 intel_runtime_pm_enable_interrupts(dev_priv);
3279
3280 intel_modeset_init_hw(dev);
3281
3282 spin_lock_irq(&dev_priv->irq_lock);
3283 if (dev_priv->display.hpd_irq_setup)
3284 dev_priv->display.hpd_irq_setup(dev);
3285 spin_unlock_irq(&dev_priv->irq_lock);
3286
3287 intel_display_resume(dev);
3288
3289 intel_hpd_init(dev_priv);
3290
3291 drm_modeset_unlock_all(dev);
3292 }
3293
3294 static void
3295 intel_finish_fb(struct drm_framebuffer *old_fb)
3296 {
3297 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3298 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3299 bool was_interruptible = dev_priv->mm.interruptible;
3300 int ret;
3301
3302 /* Big Hammer, we also need to ensure that any pending
3303 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3304 * current scanout is retired before unpinning the old
3305 * framebuffer. Note that we rely on userspace rendering
3306 * into the buffer attached to the pipe they are waiting
3307 * on. If not, userspace generates a GPU hang with IPEHR
3308 * point to the MI_WAIT_FOR_EVENT.
3309 *
3310 * This should only fail upon a hung GPU, in which case we
3311 * can safely continue.
3312 */
3313 dev_priv->mm.interruptible = false;
3314 ret = i915_gem_object_wait_rendering(obj, true);
3315 dev_priv->mm.interruptible = was_interruptible;
3316
3317 WARN_ON(ret);
3318 }
3319
3320 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3321 {
3322 struct drm_device *dev = crtc->dev;
3323 struct drm_i915_private *dev_priv = dev->dev_private;
3324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3325 bool pending;
3326
3327 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3328 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3329 return false;
3330
3331 spin_lock_irq(&dev->event_lock);
3332 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3333 spin_unlock_irq(&dev->event_lock);
3334
3335 return pending;
3336 }
3337
3338 static void intel_update_pipe_config(struct intel_crtc *crtc,
3339 struct intel_crtc_state *old_crtc_state)
3340 {
3341 struct drm_device *dev = crtc->base.dev;
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343 struct intel_crtc_state *pipe_config =
3344 to_intel_crtc_state(crtc->base.state);
3345
3346 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3347 crtc->base.mode = crtc->base.state->mode;
3348
3349 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3350 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3351 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3352
3353 if (HAS_DDI(dev))
3354 intel_set_pipe_csc(&crtc->base);
3355
3356 /*
3357 * Update pipe size and adjust fitter if needed: the reason for this is
3358 * that in compute_mode_changes we check the native mode (not the pfit
3359 * mode) to see if we can flip rather than do a full mode set. In the
3360 * fastboot case, we'll flip, but if we don't update the pipesrc and
3361 * pfit state, we'll end up with a big fb scanned out into the wrong
3362 * sized surface.
3363 */
3364
3365 I915_WRITE(PIPESRC(crtc->pipe),
3366 ((pipe_config->pipe_src_w - 1) << 16) |
3367 (pipe_config->pipe_src_h - 1));
3368
3369 /* on skylake this is done by detaching scalers */
3370 if (INTEL_INFO(dev)->gen >= 9) {
3371 skl_detach_scalers(crtc);
3372
3373 if (pipe_config->pch_pfit.enabled)
3374 skylake_pfit_enable(crtc);
3375 } else if (HAS_PCH_SPLIT(dev)) {
3376 if (pipe_config->pch_pfit.enabled)
3377 ironlake_pfit_enable(crtc);
3378 else if (old_crtc_state->pch_pfit.enabled)
3379 ironlake_pfit_disable(crtc, true);
3380 }
3381 }
3382
3383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3384 {
3385 struct drm_device *dev = crtc->dev;
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3388 int pipe = intel_crtc->pipe;
3389 u32 reg, temp;
3390
3391 /* enable normal train */
3392 reg = FDI_TX_CTL(pipe);
3393 temp = I915_READ(reg);
3394 if (IS_IVYBRIDGE(dev)) {
3395 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3396 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3397 } else {
3398 temp &= ~FDI_LINK_TRAIN_NONE;
3399 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3400 }
3401 I915_WRITE(reg, temp);
3402
3403 reg = FDI_RX_CTL(pipe);
3404 temp = I915_READ(reg);
3405 if (HAS_PCH_CPT(dev)) {
3406 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3407 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3408 } else {
3409 temp &= ~FDI_LINK_TRAIN_NONE;
3410 temp |= FDI_LINK_TRAIN_NONE;
3411 }
3412 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3413
3414 /* wait one idle pattern time */
3415 POSTING_READ(reg);
3416 udelay(1000);
3417
3418 /* IVB wants error correction enabled */
3419 if (IS_IVYBRIDGE(dev))
3420 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3421 FDI_FE_ERRC_ENABLE);
3422 }
3423
3424 /* The FDI link training functions for ILK/Ibexpeak. */
3425 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3426 {
3427 struct drm_device *dev = crtc->dev;
3428 struct drm_i915_private *dev_priv = dev->dev_private;
3429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3430 int pipe = intel_crtc->pipe;
3431 u32 reg, temp, tries;
3432
3433 /* FDI needs bits from pipe first */
3434 assert_pipe_enabled(dev_priv, pipe);
3435
3436 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3437 for train result */
3438 reg = FDI_RX_IMR(pipe);
3439 temp = I915_READ(reg);
3440 temp &= ~FDI_RX_SYMBOL_LOCK;
3441 temp &= ~FDI_RX_BIT_LOCK;
3442 I915_WRITE(reg, temp);
3443 I915_READ(reg);
3444 udelay(150);
3445
3446 /* enable CPU FDI TX and PCH FDI RX */
3447 reg = FDI_TX_CTL(pipe);
3448 temp = I915_READ(reg);
3449 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3450 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3451 temp &= ~FDI_LINK_TRAIN_NONE;
3452 temp |= FDI_LINK_TRAIN_PATTERN_1;
3453 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3454
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
3457 temp &= ~FDI_LINK_TRAIN_NONE;
3458 temp |= FDI_LINK_TRAIN_PATTERN_1;
3459 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3460
3461 POSTING_READ(reg);
3462 udelay(150);
3463
3464 /* Ironlake workaround, enable clock pointer after FDI enable*/
3465 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3466 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3467 FDI_RX_PHASE_SYNC_POINTER_EN);
3468
3469 reg = FDI_RX_IIR(pipe);
3470 for (tries = 0; tries < 5; tries++) {
3471 temp = I915_READ(reg);
3472 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3473
3474 if ((temp & FDI_RX_BIT_LOCK)) {
3475 DRM_DEBUG_KMS("FDI train 1 done.\n");
3476 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3477 break;
3478 }
3479 }
3480 if (tries == 5)
3481 DRM_ERROR("FDI train 1 fail!\n");
3482
3483 /* Train 2 */
3484 reg = FDI_TX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~FDI_LINK_TRAIN_NONE;
3487 temp |= FDI_LINK_TRAIN_PATTERN_2;
3488 I915_WRITE(reg, temp);
3489
3490 reg = FDI_RX_CTL(pipe);
3491 temp = I915_READ(reg);
3492 temp &= ~FDI_LINK_TRAIN_NONE;
3493 temp |= FDI_LINK_TRAIN_PATTERN_2;
3494 I915_WRITE(reg, temp);
3495
3496 POSTING_READ(reg);
3497 udelay(150);
3498
3499 reg = FDI_RX_IIR(pipe);
3500 for (tries = 0; tries < 5; tries++) {
3501 temp = I915_READ(reg);
3502 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3503
3504 if (temp & FDI_RX_SYMBOL_LOCK) {
3505 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3506 DRM_DEBUG_KMS("FDI train 2 done.\n");
3507 break;
3508 }
3509 }
3510 if (tries == 5)
3511 DRM_ERROR("FDI train 2 fail!\n");
3512
3513 DRM_DEBUG_KMS("FDI train done\n");
3514
3515 }
3516
3517 static const int snb_b_fdi_train_param[] = {
3518 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3519 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3520 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3521 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3522 };
3523
3524 /* The FDI link training functions for SNB/Cougarpoint. */
3525 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3526 {
3527 struct drm_device *dev = crtc->dev;
3528 struct drm_i915_private *dev_priv = dev->dev_private;
3529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3530 int pipe = intel_crtc->pipe;
3531 u32 reg, temp, i, retry;
3532
3533 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3534 for train result */
3535 reg = FDI_RX_IMR(pipe);
3536 temp = I915_READ(reg);
3537 temp &= ~FDI_RX_SYMBOL_LOCK;
3538 temp &= ~FDI_RX_BIT_LOCK;
3539 I915_WRITE(reg, temp);
3540
3541 POSTING_READ(reg);
3542 udelay(150);
3543
3544 /* enable CPU FDI TX and PCH FDI RX */
3545 reg = FDI_TX_CTL(pipe);
3546 temp = I915_READ(reg);
3547 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3548 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3549 temp &= ~FDI_LINK_TRAIN_NONE;
3550 temp |= FDI_LINK_TRAIN_PATTERN_1;
3551 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3552 /* SNB-B */
3553 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3554 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3555
3556 I915_WRITE(FDI_RX_MISC(pipe),
3557 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3558
3559 reg = FDI_RX_CTL(pipe);
3560 temp = I915_READ(reg);
3561 if (HAS_PCH_CPT(dev)) {
3562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3563 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564 } else {
3565 temp &= ~FDI_LINK_TRAIN_NONE;
3566 temp |= FDI_LINK_TRAIN_PATTERN_1;
3567 }
3568 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3569
3570 POSTING_READ(reg);
3571 udelay(150);
3572
3573 for (i = 0; i < 4; i++) {
3574 reg = FDI_TX_CTL(pipe);
3575 temp = I915_READ(reg);
3576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3577 temp |= snb_b_fdi_train_param[i];
3578 I915_WRITE(reg, temp);
3579
3580 POSTING_READ(reg);
3581 udelay(500);
3582
3583 for (retry = 0; retry < 5; retry++) {
3584 reg = FDI_RX_IIR(pipe);
3585 temp = I915_READ(reg);
3586 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3587 if (temp & FDI_RX_BIT_LOCK) {
3588 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3589 DRM_DEBUG_KMS("FDI train 1 done.\n");
3590 break;
3591 }
3592 udelay(50);
3593 }
3594 if (retry < 5)
3595 break;
3596 }
3597 if (i == 4)
3598 DRM_ERROR("FDI train 1 fail!\n");
3599
3600 /* Train 2 */
3601 reg = FDI_TX_CTL(pipe);
3602 temp = I915_READ(reg);
3603 temp &= ~FDI_LINK_TRAIN_NONE;
3604 temp |= FDI_LINK_TRAIN_PATTERN_2;
3605 if (IS_GEN6(dev)) {
3606 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3607 /* SNB-B */
3608 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3609 }
3610 I915_WRITE(reg, temp);
3611
3612 reg = FDI_RX_CTL(pipe);
3613 temp = I915_READ(reg);
3614 if (HAS_PCH_CPT(dev)) {
3615 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3616 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3617 } else {
3618 temp &= ~FDI_LINK_TRAIN_NONE;
3619 temp |= FDI_LINK_TRAIN_PATTERN_2;
3620 }
3621 I915_WRITE(reg, temp);
3622
3623 POSTING_READ(reg);
3624 udelay(150);
3625
3626 for (i = 0; i < 4; i++) {
3627 reg = FDI_TX_CTL(pipe);
3628 temp = I915_READ(reg);
3629 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3630 temp |= snb_b_fdi_train_param[i];
3631 I915_WRITE(reg, temp);
3632
3633 POSTING_READ(reg);
3634 udelay(500);
3635
3636 for (retry = 0; retry < 5; retry++) {
3637 reg = FDI_RX_IIR(pipe);
3638 temp = I915_READ(reg);
3639 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3640 if (temp & FDI_RX_SYMBOL_LOCK) {
3641 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3642 DRM_DEBUG_KMS("FDI train 2 done.\n");
3643 break;
3644 }
3645 udelay(50);
3646 }
3647 if (retry < 5)
3648 break;
3649 }
3650 if (i == 4)
3651 DRM_ERROR("FDI train 2 fail!\n");
3652
3653 DRM_DEBUG_KMS("FDI train done.\n");
3654 }
3655
3656 /* Manual link training for Ivy Bridge A0 parts */
3657 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3658 {
3659 struct drm_device *dev = crtc->dev;
3660 struct drm_i915_private *dev_priv = dev->dev_private;
3661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3662 int pipe = intel_crtc->pipe;
3663 u32 reg, temp, i, j;
3664
3665 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3666 for train result */
3667 reg = FDI_RX_IMR(pipe);
3668 temp = I915_READ(reg);
3669 temp &= ~FDI_RX_SYMBOL_LOCK;
3670 temp &= ~FDI_RX_BIT_LOCK;
3671 I915_WRITE(reg, temp);
3672
3673 POSTING_READ(reg);
3674 udelay(150);
3675
3676 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3677 I915_READ(FDI_RX_IIR(pipe)));
3678
3679 /* Try each vswing and preemphasis setting twice before moving on */
3680 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3681 /* disable first in case we need to retry */
3682 reg = FDI_TX_CTL(pipe);
3683 temp = I915_READ(reg);
3684 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3685 temp &= ~FDI_TX_ENABLE;
3686 I915_WRITE(reg, temp);
3687
3688 reg = FDI_RX_CTL(pipe);
3689 temp = I915_READ(reg);
3690 temp &= ~FDI_LINK_TRAIN_AUTO;
3691 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3692 temp &= ~FDI_RX_ENABLE;
3693 I915_WRITE(reg, temp);
3694
3695 /* enable CPU FDI TX and PCH FDI RX */
3696 reg = FDI_TX_CTL(pipe);
3697 temp = I915_READ(reg);
3698 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3699 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3700 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3701 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3702 temp |= snb_b_fdi_train_param[j/2];
3703 temp |= FDI_COMPOSITE_SYNC;
3704 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3705
3706 I915_WRITE(FDI_RX_MISC(pipe),
3707 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3708
3709 reg = FDI_RX_CTL(pipe);
3710 temp = I915_READ(reg);
3711 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3712 temp |= FDI_COMPOSITE_SYNC;
3713 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3714
3715 POSTING_READ(reg);
3716 udelay(1); /* should be 0.5us */
3717
3718 for (i = 0; i < 4; i++) {
3719 reg = FDI_RX_IIR(pipe);
3720 temp = I915_READ(reg);
3721 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3722
3723 if (temp & FDI_RX_BIT_LOCK ||
3724 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3725 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3726 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3727 i);
3728 break;
3729 }
3730 udelay(1); /* should be 0.5us */
3731 }
3732 if (i == 4) {
3733 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3734 continue;
3735 }
3736
3737 /* Train 2 */
3738 reg = FDI_TX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3741 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3742 I915_WRITE(reg, temp);
3743
3744 reg = FDI_RX_CTL(pipe);
3745 temp = I915_READ(reg);
3746 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3747 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3748 I915_WRITE(reg, temp);
3749
3750 POSTING_READ(reg);
3751 udelay(2); /* should be 1.5us */
3752
3753 for (i = 0; i < 4; i++) {
3754 reg = FDI_RX_IIR(pipe);
3755 temp = I915_READ(reg);
3756 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3757
3758 if (temp & FDI_RX_SYMBOL_LOCK ||
3759 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3760 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3761 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3762 i);
3763 goto train_done;
3764 }
3765 udelay(2); /* should be 1.5us */
3766 }
3767 if (i == 4)
3768 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3769 }
3770
3771 train_done:
3772 DRM_DEBUG_KMS("FDI train done.\n");
3773 }
3774
3775 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3776 {
3777 struct drm_device *dev = intel_crtc->base.dev;
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779 int pipe = intel_crtc->pipe;
3780 u32 reg, temp;
3781
3782
3783 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3784 reg = FDI_RX_CTL(pipe);
3785 temp = I915_READ(reg);
3786 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3787 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3788 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3789 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3790
3791 POSTING_READ(reg);
3792 udelay(200);
3793
3794 /* Switch from Rawclk to PCDclk */
3795 temp = I915_READ(reg);
3796 I915_WRITE(reg, temp | FDI_PCDCLK);
3797
3798 POSTING_READ(reg);
3799 udelay(200);
3800
3801 /* Enable CPU FDI TX PLL, always on for Ironlake */
3802 reg = FDI_TX_CTL(pipe);
3803 temp = I915_READ(reg);
3804 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3805 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3806
3807 POSTING_READ(reg);
3808 udelay(100);
3809 }
3810 }
3811
3812 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3813 {
3814 struct drm_device *dev = intel_crtc->base.dev;
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 int pipe = intel_crtc->pipe;
3817 u32 reg, temp;
3818
3819 /* Switch from PCDclk to Rawclk */
3820 reg = FDI_RX_CTL(pipe);
3821 temp = I915_READ(reg);
3822 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3823
3824 /* Disable CPU FDI TX PLL */
3825 reg = FDI_TX_CTL(pipe);
3826 temp = I915_READ(reg);
3827 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3828
3829 POSTING_READ(reg);
3830 udelay(100);
3831
3832 reg = FDI_RX_CTL(pipe);
3833 temp = I915_READ(reg);
3834 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3835
3836 /* Wait for the clocks to turn off. */
3837 POSTING_READ(reg);
3838 udelay(100);
3839 }
3840
3841 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3842 {
3843 struct drm_device *dev = crtc->dev;
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846 int pipe = intel_crtc->pipe;
3847 u32 reg, temp;
3848
3849 /* disable CPU FDI tx and PCH FDI rx */
3850 reg = FDI_TX_CTL(pipe);
3851 temp = I915_READ(reg);
3852 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3853 POSTING_READ(reg);
3854
3855 reg = FDI_RX_CTL(pipe);
3856 temp = I915_READ(reg);
3857 temp &= ~(0x7 << 16);
3858 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3859 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3860
3861 POSTING_READ(reg);
3862 udelay(100);
3863
3864 /* Ironlake workaround, disable clock pointer after downing FDI */
3865 if (HAS_PCH_IBX(dev))
3866 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3867
3868 /* still set train pattern 1 */
3869 reg = FDI_TX_CTL(pipe);
3870 temp = I915_READ(reg);
3871 temp &= ~FDI_LINK_TRAIN_NONE;
3872 temp |= FDI_LINK_TRAIN_PATTERN_1;
3873 I915_WRITE(reg, temp);
3874
3875 reg = FDI_RX_CTL(pipe);
3876 temp = I915_READ(reg);
3877 if (HAS_PCH_CPT(dev)) {
3878 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3879 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3880 } else {
3881 temp &= ~FDI_LINK_TRAIN_NONE;
3882 temp |= FDI_LINK_TRAIN_PATTERN_1;
3883 }
3884 /* BPC in FDI rx is consistent with that in PIPECONF */
3885 temp &= ~(0x07 << 16);
3886 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3887 I915_WRITE(reg, temp);
3888
3889 POSTING_READ(reg);
3890 udelay(100);
3891 }
3892
3893 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3894 {
3895 struct intel_crtc *crtc;
3896
3897 /* Note that we don't need to be called with mode_config.lock here
3898 * as our list of CRTC objects is static for the lifetime of the
3899 * device and so cannot disappear as we iterate. Similarly, we can
3900 * happily treat the predicates as racy, atomic checks as userspace
3901 * cannot claim and pin a new fb without at least acquring the
3902 * struct_mutex and so serialising with us.
3903 */
3904 for_each_intel_crtc(dev, crtc) {
3905 if (atomic_read(&crtc->unpin_work_count) == 0)
3906 continue;
3907
3908 if (crtc->unpin_work)
3909 intel_wait_for_vblank(dev, crtc->pipe);
3910
3911 return true;
3912 }
3913
3914 return false;
3915 }
3916
3917 static void page_flip_completed(struct intel_crtc *intel_crtc)
3918 {
3919 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3920 struct intel_unpin_work *work = intel_crtc->unpin_work;
3921
3922 /* ensure that the unpin work is consistent wrt ->pending. */
3923 smp_rmb();
3924 intel_crtc->unpin_work = NULL;
3925
3926 if (work->event)
3927 drm_send_vblank_event(intel_crtc->base.dev,
3928 intel_crtc->pipe,
3929 work->event);
3930
3931 drm_crtc_vblank_put(&intel_crtc->base);
3932
3933 wake_up_all(&dev_priv->pending_flip_queue);
3934 queue_work(dev_priv->wq, &work->work);
3935
3936 trace_i915_flip_complete(intel_crtc->plane,
3937 work->pending_flip_obj);
3938 }
3939
3940 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3941 {
3942 struct drm_device *dev = crtc->dev;
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944
3945 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3946 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3947 !intel_crtc_has_pending_flip(crtc),
3948 60*HZ) == 0)) {
3949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3950
3951 spin_lock_irq(&dev->event_lock);
3952 if (intel_crtc->unpin_work) {
3953 WARN_ONCE(1, "Removing stuck page flip\n");
3954 page_flip_completed(intel_crtc);
3955 }
3956 spin_unlock_irq(&dev->event_lock);
3957 }
3958
3959 if (crtc->primary->fb) {
3960 mutex_lock(&dev->struct_mutex);
3961 intel_finish_fb(crtc->primary->fb);
3962 mutex_unlock(&dev->struct_mutex);
3963 }
3964 }
3965
3966 /* Program iCLKIP clock to the desired frequency */
3967 static void lpt_program_iclkip(struct drm_crtc *crtc)
3968 {
3969 struct drm_device *dev = crtc->dev;
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3972 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3973 u32 temp;
3974
3975 mutex_lock(&dev_priv->sb_lock);
3976
3977 /* It is necessary to ungate the pixclk gate prior to programming
3978 * the divisors, and gate it back when it is done.
3979 */
3980 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3981
3982 /* Disable SSCCTL */
3983 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3984 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3985 SBI_SSCCTL_DISABLE,
3986 SBI_ICLK);
3987
3988 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3989 if (clock == 20000) {
3990 auxdiv = 1;
3991 divsel = 0x41;
3992 phaseinc = 0x20;
3993 } else {
3994 /* The iCLK virtual clock root frequency is in MHz,
3995 * but the adjusted_mode->crtc_clock in in KHz. To get the
3996 * divisors, it is necessary to divide one by another, so we
3997 * convert the virtual clock precision to KHz here for higher
3998 * precision.
3999 */
4000 u32 iclk_virtual_root_freq = 172800 * 1000;
4001 u32 iclk_pi_range = 64;
4002 u32 desired_divisor, msb_divisor_value, pi_value;
4003
4004 desired_divisor = (iclk_virtual_root_freq / clock);
4005 msb_divisor_value = desired_divisor / iclk_pi_range;
4006 pi_value = desired_divisor % iclk_pi_range;
4007
4008 auxdiv = 0;
4009 divsel = msb_divisor_value - 2;
4010 phaseinc = pi_value;
4011 }
4012
4013 /* This should not happen with any sane values */
4014 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4015 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4016 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4017 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4018
4019 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4020 clock,
4021 auxdiv,
4022 divsel,
4023 phasedir,
4024 phaseinc);
4025
4026 /* Program SSCDIVINTPHASE6 */
4027 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4028 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4029 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4030 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4031 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4032 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4033 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4034 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4035
4036 /* Program SSCAUXDIV */
4037 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4038 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4039 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4040 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4041
4042 /* Enable modulator and associated divider */
4043 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4044 temp &= ~SBI_SSCCTL_DISABLE;
4045 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4046
4047 /* Wait for initialization time */
4048 udelay(24);
4049
4050 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4051
4052 mutex_unlock(&dev_priv->sb_lock);
4053 }
4054
4055 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4056 enum pipe pch_transcoder)
4057 {
4058 struct drm_device *dev = crtc->base.dev;
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4061
4062 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4063 I915_READ(HTOTAL(cpu_transcoder)));
4064 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4065 I915_READ(HBLANK(cpu_transcoder)));
4066 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4067 I915_READ(HSYNC(cpu_transcoder)));
4068
4069 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4070 I915_READ(VTOTAL(cpu_transcoder)));
4071 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4072 I915_READ(VBLANK(cpu_transcoder)));
4073 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4074 I915_READ(VSYNC(cpu_transcoder)));
4075 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4076 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4077 }
4078
4079 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4080 {
4081 struct drm_i915_private *dev_priv = dev->dev_private;
4082 uint32_t temp;
4083
4084 temp = I915_READ(SOUTH_CHICKEN1);
4085 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4086 return;
4087
4088 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4089 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4090
4091 temp &= ~FDI_BC_BIFURCATION_SELECT;
4092 if (enable)
4093 temp |= FDI_BC_BIFURCATION_SELECT;
4094
4095 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4096 I915_WRITE(SOUTH_CHICKEN1, temp);
4097 POSTING_READ(SOUTH_CHICKEN1);
4098 }
4099
4100 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4101 {
4102 struct drm_device *dev = intel_crtc->base.dev;
4103
4104 switch (intel_crtc->pipe) {
4105 case PIPE_A:
4106 break;
4107 case PIPE_B:
4108 if (intel_crtc->config->fdi_lanes > 2)
4109 cpt_set_fdi_bc_bifurcation(dev, false);
4110 else
4111 cpt_set_fdi_bc_bifurcation(dev, true);
4112
4113 break;
4114 case PIPE_C:
4115 cpt_set_fdi_bc_bifurcation(dev, true);
4116
4117 break;
4118 default:
4119 BUG();
4120 }
4121 }
4122
4123 /*
4124 * Enable PCH resources required for PCH ports:
4125 * - PCH PLLs
4126 * - FDI training & RX/TX
4127 * - update transcoder timings
4128 * - DP transcoding bits
4129 * - transcoder
4130 */
4131 static void ironlake_pch_enable(struct drm_crtc *crtc)
4132 {
4133 struct drm_device *dev = crtc->dev;
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4136 int pipe = intel_crtc->pipe;
4137 u32 reg, temp;
4138
4139 assert_pch_transcoder_disabled(dev_priv, pipe);
4140
4141 if (IS_IVYBRIDGE(dev))
4142 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4143
4144 /* Write the TU size bits before fdi link training, so that error
4145 * detection works. */
4146 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4147 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4148
4149 /* For PCH output, training FDI link */
4150 dev_priv->display.fdi_link_train(crtc);
4151
4152 /* We need to program the right clock selection before writing the pixel
4153 * mutliplier into the DPLL. */
4154 if (HAS_PCH_CPT(dev)) {
4155 u32 sel;
4156
4157 temp = I915_READ(PCH_DPLL_SEL);
4158 temp |= TRANS_DPLL_ENABLE(pipe);
4159 sel = TRANS_DPLLB_SEL(pipe);
4160 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4161 temp |= sel;
4162 else
4163 temp &= ~sel;
4164 I915_WRITE(PCH_DPLL_SEL, temp);
4165 }
4166
4167 /* XXX: pch pll's can be enabled any time before we enable the PCH
4168 * transcoder, and we actually should do this to not upset any PCH
4169 * transcoder that already use the clock when we share it.
4170 *
4171 * Note that enable_shared_dpll tries to do the right thing, but
4172 * get_shared_dpll unconditionally resets the pll - we need that to have
4173 * the right LVDS enable sequence. */
4174 intel_enable_shared_dpll(intel_crtc);
4175
4176 /* set transcoder timing, panel must allow it */
4177 assert_panel_unlocked(dev_priv, pipe);
4178 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4179
4180 intel_fdi_normal_train(crtc);
4181
4182 /* For PCH DP, enable TRANS_DP_CTL */
4183 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4184 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4185 reg = TRANS_DP_CTL(pipe);
4186 temp = I915_READ(reg);
4187 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4188 TRANS_DP_SYNC_MASK |
4189 TRANS_DP_BPC_MASK);
4190 temp |= TRANS_DP_OUTPUT_ENABLE;
4191 temp |= bpc << 9; /* same format but at 11:9 */
4192
4193 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4194 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4195 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4196 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4197
4198 switch (intel_trans_dp_port_sel(crtc)) {
4199 case PCH_DP_B:
4200 temp |= TRANS_DP_PORT_SEL_B;
4201 break;
4202 case PCH_DP_C:
4203 temp |= TRANS_DP_PORT_SEL_C;
4204 break;
4205 case PCH_DP_D:
4206 temp |= TRANS_DP_PORT_SEL_D;
4207 break;
4208 default:
4209 BUG();
4210 }
4211
4212 I915_WRITE(reg, temp);
4213 }
4214
4215 ironlake_enable_pch_transcoder(dev_priv, pipe);
4216 }
4217
4218 static void lpt_pch_enable(struct drm_crtc *crtc)
4219 {
4220 struct drm_device *dev = crtc->dev;
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4223 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4224
4225 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4226
4227 lpt_program_iclkip(crtc);
4228
4229 /* Set transcoder timing. */
4230 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4231
4232 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4233 }
4234
4235 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4236 struct intel_crtc_state *crtc_state)
4237 {
4238 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4239 struct intel_shared_dpll *pll;
4240 struct intel_shared_dpll_config *shared_dpll;
4241 enum intel_dpll_id i;
4242 int max = dev_priv->num_shared_dpll;
4243
4244 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4245
4246 if (HAS_PCH_IBX(dev_priv->dev)) {
4247 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4248 i = (enum intel_dpll_id) crtc->pipe;
4249 pll = &dev_priv->shared_dplls[i];
4250
4251 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4252 crtc->base.base.id, pll->name);
4253
4254 WARN_ON(shared_dpll[i].crtc_mask);
4255
4256 goto found;
4257 }
4258
4259 if (IS_BROXTON(dev_priv->dev)) {
4260 /* PLL is attached to port in bxt */
4261 struct intel_encoder *encoder;
4262 struct intel_digital_port *intel_dig_port;
4263
4264 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4265 if (WARN_ON(!encoder))
4266 return NULL;
4267
4268 intel_dig_port = enc_to_dig_port(&encoder->base);
4269 /* 1:1 mapping between ports and PLLs */
4270 i = (enum intel_dpll_id)intel_dig_port->port;
4271 pll = &dev_priv->shared_dplls[i];
4272 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4273 crtc->base.base.id, pll->name);
4274 WARN_ON(shared_dpll[i].crtc_mask);
4275
4276 goto found;
4277 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4278 /* Do not consider SPLL */
4279 max = 2;
4280
4281 for (i = 0; i < max; i++) {
4282 pll = &dev_priv->shared_dplls[i];
4283
4284 /* Only want to check enabled timings first */
4285 if (shared_dpll[i].crtc_mask == 0)
4286 continue;
4287
4288 if (memcmp(&crtc_state->dpll_hw_state,
4289 &shared_dpll[i].hw_state,
4290 sizeof(crtc_state->dpll_hw_state)) == 0) {
4291 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4292 crtc->base.base.id, pll->name,
4293 shared_dpll[i].crtc_mask,
4294 pll->active);
4295 goto found;
4296 }
4297 }
4298
4299 /* Ok no matching timings, maybe there's a free one? */
4300 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4301 pll = &dev_priv->shared_dplls[i];
4302 if (shared_dpll[i].crtc_mask == 0) {
4303 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4304 crtc->base.base.id, pll->name);
4305 goto found;
4306 }
4307 }
4308
4309 return NULL;
4310
4311 found:
4312 if (shared_dpll[i].crtc_mask == 0)
4313 shared_dpll[i].hw_state =
4314 crtc_state->dpll_hw_state;
4315
4316 crtc_state->shared_dpll = i;
4317 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4318 pipe_name(crtc->pipe));
4319
4320 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4321
4322 return pll;
4323 }
4324
4325 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4326 {
4327 struct drm_i915_private *dev_priv = to_i915(state->dev);
4328 struct intel_shared_dpll_config *shared_dpll;
4329 struct intel_shared_dpll *pll;
4330 enum intel_dpll_id i;
4331
4332 if (!to_intel_atomic_state(state)->dpll_set)
4333 return;
4334
4335 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4336 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4337 pll = &dev_priv->shared_dplls[i];
4338 pll->config = shared_dpll[i];
4339 }
4340 }
4341
4342 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4343 {
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345 int dslreg = PIPEDSL(pipe);
4346 u32 temp;
4347
4348 temp = I915_READ(dslreg);
4349 udelay(500);
4350 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4351 if (wait_for(I915_READ(dslreg) != temp, 5))
4352 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4353 }
4354 }
4355
4356 static int
4357 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4358 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4359 int src_w, int src_h, int dst_w, int dst_h)
4360 {
4361 struct intel_crtc_scaler_state *scaler_state =
4362 &crtc_state->scaler_state;
4363 struct intel_crtc *intel_crtc =
4364 to_intel_crtc(crtc_state->base.crtc);
4365 int need_scaling;
4366
4367 need_scaling = intel_rotation_90_or_270(rotation) ?
4368 (src_h != dst_w || src_w != dst_h):
4369 (src_w != dst_w || src_h != dst_h);
4370
4371 /*
4372 * if plane is being disabled or scaler is no more required or force detach
4373 * - free scaler binded to this plane/crtc
4374 * - in order to do this, update crtc->scaler_usage
4375 *
4376 * Here scaler state in crtc_state is set free so that
4377 * scaler can be assigned to other user. Actual register
4378 * update to free the scaler is done in plane/panel-fit programming.
4379 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4380 */
4381 if (force_detach || !need_scaling) {
4382 if (*scaler_id >= 0) {
4383 scaler_state->scaler_users &= ~(1 << scaler_user);
4384 scaler_state->scalers[*scaler_id].in_use = 0;
4385
4386 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4387 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4388 intel_crtc->pipe, scaler_user, *scaler_id,
4389 scaler_state->scaler_users);
4390 *scaler_id = -1;
4391 }
4392 return 0;
4393 }
4394
4395 /* range checks */
4396 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4397 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4398
4399 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4400 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4401 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4402 "size is out of scaler range\n",
4403 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4404 return -EINVAL;
4405 }
4406
4407 /* mark this plane as a scaler user in crtc_state */
4408 scaler_state->scaler_users |= (1 << scaler_user);
4409 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4410 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4411 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4412 scaler_state->scaler_users);
4413
4414 return 0;
4415 }
4416
4417 /**
4418 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4419 *
4420 * @state: crtc's scaler state
4421 *
4422 * Return
4423 * 0 - scaler_usage updated successfully
4424 * error - requested scaling cannot be supported or other error condition
4425 */
4426 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4427 {
4428 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4429 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4430
4431 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4432 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4433
4434 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4435 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4436 state->pipe_src_w, state->pipe_src_h,
4437 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4438 }
4439
4440 /**
4441 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4442 *
4443 * @state: crtc's scaler state
4444 * @plane_state: atomic plane state to update
4445 *
4446 * Return
4447 * 0 - scaler_usage updated successfully
4448 * error - requested scaling cannot be supported or other error condition
4449 */
4450 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4451 struct intel_plane_state *plane_state)
4452 {
4453
4454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4455 struct intel_plane *intel_plane =
4456 to_intel_plane(plane_state->base.plane);
4457 struct drm_framebuffer *fb = plane_state->base.fb;
4458 int ret;
4459
4460 bool force_detach = !fb || !plane_state->visible;
4461
4462 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4463 intel_plane->base.base.id, intel_crtc->pipe,
4464 drm_plane_index(&intel_plane->base));
4465
4466 ret = skl_update_scaler(crtc_state, force_detach,
4467 drm_plane_index(&intel_plane->base),
4468 &plane_state->scaler_id,
4469 plane_state->base.rotation,
4470 drm_rect_width(&plane_state->src) >> 16,
4471 drm_rect_height(&plane_state->src) >> 16,
4472 drm_rect_width(&plane_state->dst),
4473 drm_rect_height(&plane_state->dst));
4474
4475 if (ret || plane_state->scaler_id < 0)
4476 return ret;
4477
4478 /* check colorkey */
4479 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4480 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4481 intel_plane->base.base.id);
4482 return -EINVAL;
4483 }
4484
4485 /* Check src format */
4486 switch (fb->pixel_format) {
4487 case DRM_FORMAT_RGB565:
4488 case DRM_FORMAT_XBGR8888:
4489 case DRM_FORMAT_XRGB8888:
4490 case DRM_FORMAT_ABGR8888:
4491 case DRM_FORMAT_ARGB8888:
4492 case DRM_FORMAT_XRGB2101010:
4493 case DRM_FORMAT_XBGR2101010:
4494 case DRM_FORMAT_YUYV:
4495 case DRM_FORMAT_YVYU:
4496 case DRM_FORMAT_UYVY:
4497 case DRM_FORMAT_VYUY:
4498 break;
4499 default:
4500 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4501 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4502 return -EINVAL;
4503 }
4504
4505 return 0;
4506 }
4507
4508 static void skylake_scaler_disable(struct intel_crtc *crtc)
4509 {
4510 int i;
4511
4512 for (i = 0; i < crtc->num_scalers; i++)
4513 skl_detach_scaler(crtc, i);
4514 }
4515
4516 static void skylake_pfit_enable(struct intel_crtc *crtc)
4517 {
4518 struct drm_device *dev = crtc->base.dev;
4519 struct drm_i915_private *dev_priv = dev->dev_private;
4520 int pipe = crtc->pipe;
4521 struct intel_crtc_scaler_state *scaler_state =
4522 &crtc->config->scaler_state;
4523
4524 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4525
4526 if (crtc->config->pch_pfit.enabled) {
4527 int id;
4528
4529 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4530 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4531 return;
4532 }
4533
4534 id = scaler_state->scaler_id;
4535 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4536 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4537 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4538 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4539
4540 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4541 }
4542 }
4543
4544 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4545 {
4546 struct drm_device *dev = crtc->base.dev;
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4548 int pipe = crtc->pipe;
4549
4550 if (crtc->config->pch_pfit.enabled) {
4551 /* Force use of hard-coded filter coefficients
4552 * as some pre-programmed values are broken,
4553 * e.g. x201.
4554 */
4555 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4556 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4557 PF_PIPE_SEL_IVB(pipe));
4558 else
4559 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4560 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4561 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4562 }
4563 }
4564
4565 void hsw_enable_ips(struct intel_crtc *crtc)
4566 {
4567 struct drm_device *dev = crtc->base.dev;
4568 struct drm_i915_private *dev_priv = dev->dev_private;
4569
4570 if (!crtc->config->ips_enabled)
4571 return;
4572
4573 /* We can only enable IPS after we enable a plane and wait for a vblank */
4574 intel_wait_for_vblank(dev, crtc->pipe);
4575
4576 assert_plane_enabled(dev_priv, crtc->plane);
4577 if (IS_BROADWELL(dev)) {
4578 mutex_lock(&dev_priv->rps.hw_lock);
4579 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4580 mutex_unlock(&dev_priv->rps.hw_lock);
4581 /* Quoting Art Runyan: "its not safe to expect any particular
4582 * value in IPS_CTL bit 31 after enabling IPS through the
4583 * mailbox." Moreover, the mailbox may return a bogus state,
4584 * so we need to just enable it and continue on.
4585 */
4586 } else {
4587 I915_WRITE(IPS_CTL, IPS_ENABLE);
4588 /* The bit only becomes 1 in the next vblank, so this wait here
4589 * is essentially intel_wait_for_vblank. If we don't have this
4590 * and don't wait for vblanks until the end of crtc_enable, then
4591 * the HW state readout code will complain that the expected
4592 * IPS_CTL value is not the one we read. */
4593 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4594 DRM_ERROR("Timed out waiting for IPS enable\n");
4595 }
4596 }
4597
4598 void hsw_disable_ips(struct intel_crtc *crtc)
4599 {
4600 struct drm_device *dev = crtc->base.dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602
4603 if (!crtc->config->ips_enabled)
4604 return;
4605
4606 assert_plane_enabled(dev_priv, crtc->plane);
4607 if (IS_BROADWELL(dev)) {
4608 mutex_lock(&dev_priv->rps.hw_lock);
4609 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4610 mutex_unlock(&dev_priv->rps.hw_lock);
4611 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4612 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4613 DRM_ERROR("Timed out waiting for IPS disable\n");
4614 } else {
4615 I915_WRITE(IPS_CTL, 0);
4616 POSTING_READ(IPS_CTL);
4617 }
4618
4619 /* We need to wait for a vblank before we can disable the plane. */
4620 intel_wait_for_vblank(dev, crtc->pipe);
4621 }
4622
4623 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4624 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4625 {
4626 struct drm_device *dev = crtc->dev;
4627 struct drm_i915_private *dev_priv = dev->dev_private;
4628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4629 enum pipe pipe = intel_crtc->pipe;
4630 int i;
4631 bool reenable_ips = false;
4632
4633 /* The clocks have to be on to load the palette. */
4634 if (!crtc->state->active)
4635 return;
4636
4637 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4638 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4639 assert_dsi_pll_enabled(dev_priv);
4640 else
4641 assert_pll_enabled(dev_priv, pipe);
4642 }
4643
4644 /* Workaround : Do not read or write the pipe palette/gamma data while
4645 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4646 */
4647 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4648 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4649 GAMMA_MODE_MODE_SPLIT)) {
4650 hsw_disable_ips(intel_crtc);
4651 reenable_ips = true;
4652 }
4653
4654 for (i = 0; i < 256; i++) {
4655 u32 palreg;
4656
4657 if (HAS_GMCH_DISPLAY(dev))
4658 palreg = PALETTE(pipe, i);
4659 else
4660 palreg = LGC_PALETTE(pipe, i);
4661
4662 I915_WRITE(palreg,
4663 (intel_crtc->lut_r[i] << 16) |
4664 (intel_crtc->lut_g[i] << 8) |
4665 intel_crtc->lut_b[i]);
4666 }
4667
4668 if (reenable_ips)
4669 hsw_enable_ips(intel_crtc);
4670 }
4671
4672 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4673 {
4674 if (intel_crtc->overlay) {
4675 struct drm_device *dev = intel_crtc->base.dev;
4676 struct drm_i915_private *dev_priv = dev->dev_private;
4677
4678 mutex_lock(&dev->struct_mutex);
4679 dev_priv->mm.interruptible = false;
4680 (void) intel_overlay_switch_off(intel_crtc->overlay);
4681 dev_priv->mm.interruptible = true;
4682 mutex_unlock(&dev->struct_mutex);
4683 }
4684
4685 /* Let userspace switch the overlay on again. In most cases userspace
4686 * has to recompute where to put it anyway.
4687 */
4688 }
4689
4690 /**
4691 * intel_post_enable_primary - Perform operations after enabling primary plane
4692 * @crtc: the CRTC whose primary plane was just enabled
4693 *
4694 * Performs potentially sleeping operations that must be done after the primary
4695 * plane is enabled, such as updating FBC and IPS. Note that this may be
4696 * called due to an explicit primary plane update, or due to an implicit
4697 * re-enable that is caused when a sprite plane is updated to no longer
4698 * completely hide the primary plane.
4699 */
4700 static void
4701 intel_post_enable_primary(struct drm_crtc *crtc)
4702 {
4703 struct drm_device *dev = crtc->dev;
4704 struct drm_i915_private *dev_priv = dev->dev_private;
4705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706 int pipe = intel_crtc->pipe;
4707
4708 /*
4709 * BDW signals flip done immediately if the plane
4710 * is disabled, even if the plane enable is already
4711 * armed to occur at the next vblank :(
4712 */
4713 if (IS_BROADWELL(dev))
4714 intel_wait_for_vblank(dev, pipe);
4715
4716 /*
4717 * FIXME IPS should be fine as long as one plane is
4718 * enabled, but in practice it seems to have problems
4719 * when going from primary only to sprite only and vice
4720 * versa.
4721 */
4722 hsw_enable_ips(intel_crtc);
4723
4724 /*
4725 * Gen2 reports pipe underruns whenever all planes are disabled.
4726 * So don't enable underrun reporting before at least some planes
4727 * are enabled.
4728 * FIXME: Need to fix the logic to work when we turn off all planes
4729 * but leave the pipe running.
4730 */
4731 if (IS_GEN2(dev))
4732 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4733
4734 /* Underruns don't raise interrupts, so check manually. */
4735 if (HAS_GMCH_DISPLAY(dev))
4736 i9xx_check_fifo_underruns(dev_priv);
4737 }
4738
4739 /**
4740 * intel_pre_disable_primary - Perform operations before disabling primary plane
4741 * @crtc: the CRTC whose primary plane is to be disabled
4742 *
4743 * Performs potentially sleeping operations that must be done before the
4744 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4745 * be called due to an explicit primary plane update, or due to an implicit
4746 * disable that is caused when a sprite plane completely hides the primary
4747 * plane.
4748 */
4749 static void
4750 intel_pre_disable_primary(struct drm_crtc *crtc)
4751 {
4752 struct drm_device *dev = crtc->dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755 int pipe = intel_crtc->pipe;
4756
4757 /*
4758 * Gen2 reports pipe underruns whenever all planes are disabled.
4759 * So diasble underrun reporting before all the planes get disabled.
4760 * FIXME: Need to fix the logic to work when we turn off all planes
4761 * but leave the pipe running.
4762 */
4763 if (IS_GEN2(dev))
4764 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4765
4766 /*
4767 * Vblank time updates from the shadow to live plane control register
4768 * are blocked if the memory self-refresh mode is active at that
4769 * moment. So to make sure the plane gets truly disabled, disable
4770 * first the self-refresh mode. The self-refresh enable bit in turn
4771 * will be checked/applied by the HW only at the next frame start
4772 * event which is after the vblank start event, so we need to have a
4773 * wait-for-vblank between disabling the plane and the pipe.
4774 */
4775 if (HAS_GMCH_DISPLAY(dev)) {
4776 intel_set_memory_cxsr(dev_priv, false);
4777 dev_priv->wm.vlv.cxsr = false;
4778 intel_wait_for_vblank(dev, pipe);
4779 }
4780
4781 /*
4782 * FIXME IPS should be fine as long as one plane is
4783 * enabled, but in practice it seems to have problems
4784 * when going from primary only to sprite only and vice
4785 * versa.
4786 */
4787 hsw_disable_ips(intel_crtc);
4788 }
4789
4790 static void intel_post_plane_update(struct intel_crtc *crtc)
4791 {
4792 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4793 struct drm_device *dev = crtc->base.dev;
4794 struct drm_i915_private *dev_priv = dev->dev_private;
4795 struct drm_plane *plane;
4796
4797 if (atomic->wait_vblank)
4798 intel_wait_for_vblank(dev, crtc->pipe);
4799
4800 intel_frontbuffer_flip(dev, atomic->fb_bits);
4801
4802 if (atomic->disable_cxsr)
4803 crtc->wm.cxsr_allowed = true;
4804
4805 if (crtc->atomic.update_wm_post)
4806 intel_update_watermarks(&crtc->base);
4807
4808 if (atomic->update_fbc)
4809 intel_fbc_update(dev_priv);
4810
4811 if (atomic->post_enable_primary)
4812 intel_post_enable_primary(&crtc->base);
4813
4814 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4815 intel_update_sprite_watermarks(plane, &crtc->base,
4816 0, 0, 0, false, false);
4817
4818 memset(atomic, 0, sizeof(*atomic));
4819 }
4820
4821 static void intel_pre_plane_update(struct intel_crtc *crtc)
4822 {
4823 struct drm_device *dev = crtc->base.dev;
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4826 struct drm_plane *p;
4827
4828 /* Track fb's for any planes being disabled */
4829 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4830 struct intel_plane *plane = to_intel_plane(p);
4831
4832 mutex_lock(&dev->struct_mutex);
4833 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4834 plane->frontbuffer_bit);
4835 mutex_unlock(&dev->struct_mutex);
4836 }
4837
4838 if (atomic->wait_for_flips)
4839 intel_crtc_wait_for_pending_flips(&crtc->base);
4840
4841 if (atomic->disable_fbc)
4842 intel_fbc_disable_crtc(crtc);
4843
4844 if (crtc->atomic.disable_ips)
4845 hsw_disable_ips(crtc);
4846
4847 if (atomic->pre_disable_primary)
4848 intel_pre_disable_primary(&crtc->base);
4849
4850 if (atomic->disable_cxsr) {
4851 crtc->wm.cxsr_allowed = false;
4852 intel_set_memory_cxsr(dev_priv, false);
4853 }
4854 }
4855
4856 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4857 {
4858 struct drm_device *dev = crtc->dev;
4859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860 struct drm_plane *p;
4861 int pipe = intel_crtc->pipe;
4862
4863 intel_crtc_dpms_overlay_disable(intel_crtc);
4864
4865 drm_for_each_plane_mask(p, dev, plane_mask)
4866 to_intel_plane(p)->disable_plane(p, crtc);
4867
4868 /*
4869 * FIXME: Once we grow proper nuclear flip support out of this we need
4870 * to compute the mask of flip planes precisely. For the time being
4871 * consider this a flip to a NULL plane.
4872 */
4873 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4874 }
4875
4876 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4877 {
4878 struct drm_device *dev = crtc->dev;
4879 struct drm_i915_private *dev_priv = dev->dev_private;
4880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4881 struct intel_encoder *encoder;
4882 int pipe = intel_crtc->pipe;
4883
4884 if (WARN_ON(intel_crtc->active))
4885 return;
4886
4887 if (intel_crtc->config->has_pch_encoder)
4888 intel_prepare_shared_dpll(intel_crtc);
4889
4890 if (intel_crtc->config->has_dp_encoder)
4891 intel_dp_set_m_n(intel_crtc, M1_N1);
4892
4893 intel_set_pipe_timings(intel_crtc);
4894
4895 if (intel_crtc->config->has_pch_encoder) {
4896 intel_cpu_transcoder_set_m_n(intel_crtc,
4897 &intel_crtc->config->fdi_m_n, NULL);
4898 }
4899
4900 ironlake_set_pipeconf(crtc);
4901
4902 intel_crtc->active = true;
4903
4904 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4905 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4906
4907 for_each_encoder_on_crtc(dev, crtc, encoder)
4908 if (encoder->pre_enable)
4909 encoder->pre_enable(encoder);
4910
4911 if (intel_crtc->config->has_pch_encoder) {
4912 /* Note: FDI PLL enabling _must_ be done before we enable the
4913 * cpu pipes, hence this is separate from all the other fdi/pch
4914 * enabling. */
4915 ironlake_fdi_pll_enable(intel_crtc);
4916 } else {
4917 assert_fdi_tx_disabled(dev_priv, pipe);
4918 assert_fdi_rx_disabled(dev_priv, pipe);
4919 }
4920
4921 ironlake_pfit_enable(intel_crtc);
4922
4923 /*
4924 * On ILK+ LUT must be loaded before the pipe is running but with
4925 * clocks enabled
4926 */
4927 intel_crtc_load_lut(crtc);
4928
4929 intel_update_watermarks(crtc);
4930 intel_enable_pipe(intel_crtc);
4931
4932 if (intel_crtc->config->has_pch_encoder)
4933 ironlake_pch_enable(crtc);
4934
4935 assert_vblank_disabled(crtc);
4936 drm_crtc_vblank_on(crtc);
4937
4938 for_each_encoder_on_crtc(dev, crtc, encoder)
4939 encoder->enable(encoder);
4940
4941 if (HAS_PCH_CPT(dev))
4942 cpt_verify_modeset(dev, intel_crtc->pipe);
4943 }
4944
4945 /* IPS only exists on ULT machines and is tied to pipe A. */
4946 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4947 {
4948 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4949 }
4950
4951 static void haswell_crtc_enable(struct drm_crtc *crtc)
4952 {
4953 struct drm_device *dev = crtc->dev;
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4956 struct intel_encoder *encoder;
4957 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4958 struct intel_crtc_state *pipe_config =
4959 to_intel_crtc_state(crtc->state);
4960 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4961
4962 if (WARN_ON(intel_crtc->active))
4963 return;
4964
4965 if (intel_crtc_to_shared_dpll(intel_crtc))
4966 intel_enable_shared_dpll(intel_crtc);
4967
4968 if (intel_crtc->config->has_dp_encoder)
4969 intel_dp_set_m_n(intel_crtc, M1_N1);
4970
4971 intel_set_pipe_timings(intel_crtc);
4972
4973 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4974 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4975 intel_crtc->config->pixel_multiplier - 1);
4976 }
4977
4978 if (intel_crtc->config->has_pch_encoder) {
4979 intel_cpu_transcoder_set_m_n(intel_crtc,
4980 &intel_crtc->config->fdi_m_n, NULL);
4981 }
4982
4983 haswell_set_pipeconf(crtc);
4984
4985 intel_set_pipe_csc(crtc);
4986
4987 intel_crtc->active = true;
4988
4989 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4990 for_each_encoder_on_crtc(dev, crtc, encoder) {
4991 if (encoder->pre_pll_enable)
4992 encoder->pre_pll_enable(encoder);
4993 if (encoder->pre_enable)
4994 encoder->pre_enable(encoder);
4995 }
4996
4997 if (intel_crtc->config->has_pch_encoder) {
4998 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4999 true);
5000 dev_priv->display.fdi_link_train(crtc);
5001 }
5002
5003 if (!is_dsi)
5004 intel_ddi_enable_pipe_clock(intel_crtc);
5005
5006 if (INTEL_INFO(dev)->gen >= 9)
5007 skylake_pfit_enable(intel_crtc);
5008 else
5009 ironlake_pfit_enable(intel_crtc);
5010
5011 /*
5012 * On ILK+ LUT must be loaded before the pipe is running but with
5013 * clocks enabled
5014 */
5015 intel_crtc_load_lut(crtc);
5016
5017 intel_ddi_set_pipe_settings(crtc);
5018 if (!is_dsi)
5019 intel_ddi_enable_transcoder_func(crtc);
5020
5021 intel_update_watermarks(crtc);
5022 intel_enable_pipe(intel_crtc);
5023
5024 if (intel_crtc->config->has_pch_encoder)
5025 lpt_pch_enable(crtc);
5026
5027 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5028 intel_ddi_set_vc_payload_alloc(crtc, true);
5029
5030 assert_vblank_disabled(crtc);
5031 drm_crtc_vblank_on(crtc);
5032
5033 for_each_encoder_on_crtc(dev, crtc, encoder) {
5034 encoder->enable(encoder);
5035 intel_opregion_notify_encoder(encoder, true);
5036 }
5037
5038 /* If we change the relative order between pipe/planes enabling, we need
5039 * to change the workaround. */
5040 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5041 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5042 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5043 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5044 }
5045 }
5046
5047 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5048 {
5049 struct drm_device *dev = crtc->base.dev;
5050 struct drm_i915_private *dev_priv = dev->dev_private;
5051 int pipe = crtc->pipe;
5052
5053 /* To avoid upsetting the power well on haswell only disable the pfit if
5054 * it's in use. The hw state code will make sure we get this right. */
5055 if (force || crtc->config->pch_pfit.enabled) {
5056 I915_WRITE(PF_CTL(pipe), 0);
5057 I915_WRITE(PF_WIN_POS(pipe), 0);
5058 I915_WRITE(PF_WIN_SZ(pipe), 0);
5059 }
5060 }
5061
5062 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5063 {
5064 struct drm_device *dev = crtc->dev;
5065 struct drm_i915_private *dev_priv = dev->dev_private;
5066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5067 struct intel_encoder *encoder;
5068 int pipe = intel_crtc->pipe;
5069 u32 reg, temp;
5070
5071 for_each_encoder_on_crtc(dev, crtc, encoder)
5072 encoder->disable(encoder);
5073
5074 drm_crtc_vblank_off(crtc);
5075 assert_vblank_disabled(crtc);
5076
5077 if (intel_crtc->config->has_pch_encoder)
5078 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5079
5080 intel_disable_pipe(intel_crtc);
5081
5082 ironlake_pfit_disable(intel_crtc, false);
5083
5084 if (intel_crtc->config->has_pch_encoder)
5085 ironlake_fdi_disable(crtc);
5086
5087 for_each_encoder_on_crtc(dev, crtc, encoder)
5088 if (encoder->post_disable)
5089 encoder->post_disable(encoder);
5090
5091 if (intel_crtc->config->has_pch_encoder) {
5092 ironlake_disable_pch_transcoder(dev_priv, pipe);
5093
5094 if (HAS_PCH_CPT(dev)) {
5095 /* disable TRANS_DP_CTL */
5096 reg = TRANS_DP_CTL(pipe);
5097 temp = I915_READ(reg);
5098 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5099 TRANS_DP_PORT_SEL_MASK);
5100 temp |= TRANS_DP_PORT_SEL_NONE;
5101 I915_WRITE(reg, temp);
5102
5103 /* disable DPLL_SEL */
5104 temp = I915_READ(PCH_DPLL_SEL);
5105 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5106 I915_WRITE(PCH_DPLL_SEL, temp);
5107 }
5108
5109 ironlake_fdi_pll_disable(intel_crtc);
5110 }
5111 }
5112
5113 static void haswell_crtc_disable(struct drm_crtc *crtc)
5114 {
5115 struct drm_device *dev = crtc->dev;
5116 struct drm_i915_private *dev_priv = dev->dev_private;
5117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5118 struct intel_encoder *encoder;
5119 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5120 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5121
5122 for_each_encoder_on_crtc(dev, crtc, encoder) {
5123 intel_opregion_notify_encoder(encoder, false);
5124 encoder->disable(encoder);
5125 }
5126
5127 drm_crtc_vblank_off(crtc);
5128 assert_vblank_disabled(crtc);
5129
5130 if (intel_crtc->config->has_pch_encoder)
5131 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5132 false);
5133 intel_disable_pipe(intel_crtc);
5134
5135 if (intel_crtc->config->dp_encoder_is_mst)
5136 intel_ddi_set_vc_payload_alloc(crtc, false);
5137
5138 if (!is_dsi)
5139 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5140
5141 if (INTEL_INFO(dev)->gen >= 9)
5142 skylake_scaler_disable(intel_crtc);
5143 else
5144 ironlake_pfit_disable(intel_crtc, false);
5145
5146 if (!is_dsi)
5147 intel_ddi_disable_pipe_clock(intel_crtc);
5148
5149 if (intel_crtc->config->has_pch_encoder) {
5150 lpt_disable_pch_transcoder(dev_priv);
5151 intel_ddi_fdi_disable(crtc);
5152 }
5153
5154 for_each_encoder_on_crtc(dev, crtc, encoder)
5155 if (encoder->post_disable)
5156 encoder->post_disable(encoder);
5157 }
5158
5159 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5160 {
5161 struct drm_device *dev = crtc->base.dev;
5162 struct drm_i915_private *dev_priv = dev->dev_private;
5163 struct intel_crtc_state *pipe_config = crtc->config;
5164
5165 if (!pipe_config->gmch_pfit.control)
5166 return;
5167
5168 /*
5169 * The panel fitter should only be adjusted whilst the pipe is disabled,
5170 * according to register description and PRM.
5171 */
5172 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5173 assert_pipe_disabled(dev_priv, crtc->pipe);
5174
5175 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5176 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5177
5178 /* Border color in case we don't scale up to the full screen. Black by
5179 * default, change to something else for debugging. */
5180 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5181 }
5182
5183 static enum intel_display_power_domain port_to_power_domain(enum port port)
5184 {
5185 switch (port) {
5186 case PORT_A:
5187 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5188 case PORT_B:
5189 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5190 case PORT_C:
5191 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5192 case PORT_D:
5193 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5194 case PORT_E:
5195 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5196 default:
5197 WARN_ON_ONCE(1);
5198 return POWER_DOMAIN_PORT_OTHER;
5199 }
5200 }
5201
5202 #define for_each_power_domain(domain, mask) \
5203 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5204 if ((1 << (domain)) & (mask))
5205
5206 enum intel_display_power_domain
5207 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5208 {
5209 struct drm_device *dev = intel_encoder->base.dev;
5210 struct intel_digital_port *intel_dig_port;
5211
5212 switch (intel_encoder->type) {
5213 case INTEL_OUTPUT_UNKNOWN:
5214 /* Only DDI platforms should ever use this output type */
5215 WARN_ON_ONCE(!HAS_DDI(dev));
5216 case INTEL_OUTPUT_DISPLAYPORT:
5217 case INTEL_OUTPUT_HDMI:
5218 case INTEL_OUTPUT_EDP:
5219 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5220 return port_to_power_domain(intel_dig_port->port);
5221 case INTEL_OUTPUT_DP_MST:
5222 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5223 return port_to_power_domain(intel_dig_port->port);
5224 case INTEL_OUTPUT_ANALOG:
5225 return POWER_DOMAIN_PORT_CRT;
5226 case INTEL_OUTPUT_DSI:
5227 return POWER_DOMAIN_PORT_DSI;
5228 default:
5229 return POWER_DOMAIN_PORT_OTHER;
5230 }
5231 }
5232
5233 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5234 {
5235 struct drm_device *dev = crtc->dev;
5236 struct intel_encoder *intel_encoder;
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238 enum pipe pipe = intel_crtc->pipe;
5239 unsigned long mask;
5240 enum transcoder transcoder;
5241
5242 if (!crtc->state->active)
5243 return 0;
5244
5245 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5246
5247 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5248 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5249 if (intel_crtc->config->pch_pfit.enabled ||
5250 intel_crtc->config->pch_pfit.force_thru)
5251 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5252
5253 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5254 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5255
5256 return mask;
5257 }
5258
5259 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5260 {
5261 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5263 enum intel_display_power_domain domain;
5264 unsigned long domains, new_domains, old_domains;
5265
5266 old_domains = intel_crtc->enabled_power_domains;
5267 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5268
5269 domains = new_domains & ~old_domains;
5270
5271 for_each_power_domain(domain, domains)
5272 intel_display_power_get(dev_priv, domain);
5273
5274 return old_domains & ~new_domains;
5275 }
5276
5277 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5278 unsigned long domains)
5279 {
5280 enum intel_display_power_domain domain;
5281
5282 for_each_power_domain(domain, domains)
5283 intel_display_power_put(dev_priv, domain);
5284 }
5285
5286 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5287 {
5288 struct drm_device *dev = state->dev;
5289 struct drm_i915_private *dev_priv = dev->dev_private;
5290 unsigned long put_domains[I915_MAX_PIPES] = {};
5291 struct drm_crtc_state *crtc_state;
5292 struct drm_crtc *crtc;
5293 int i;
5294
5295 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5296 if (needs_modeset(crtc->state))
5297 put_domains[to_intel_crtc(crtc)->pipe] =
5298 modeset_get_crtc_power_domains(crtc);
5299 }
5300
5301 if (dev_priv->display.modeset_commit_cdclk) {
5302 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5303
5304 if (cdclk != dev_priv->cdclk_freq &&
5305 !WARN_ON(!state->allow_modeset))
5306 dev_priv->display.modeset_commit_cdclk(state);
5307 }
5308
5309 for (i = 0; i < I915_MAX_PIPES; i++)
5310 if (put_domains[i])
5311 modeset_put_power_domains(dev_priv, put_domains[i]);
5312 }
5313
5314 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5315 {
5316 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5317
5318 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5319 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5320 return max_cdclk_freq;
5321 else if (IS_CHERRYVIEW(dev_priv))
5322 return max_cdclk_freq*95/100;
5323 else if (INTEL_INFO(dev_priv)->gen < 4)
5324 return 2*max_cdclk_freq*90/100;
5325 else
5326 return max_cdclk_freq*90/100;
5327 }
5328
5329 static void intel_update_max_cdclk(struct drm_device *dev)
5330 {
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332
5333 if (IS_SKYLAKE(dev)) {
5334 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5335
5336 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5337 dev_priv->max_cdclk_freq = 675000;
5338 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5339 dev_priv->max_cdclk_freq = 540000;
5340 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5341 dev_priv->max_cdclk_freq = 450000;
5342 else
5343 dev_priv->max_cdclk_freq = 337500;
5344 } else if (IS_BROADWELL(dev)) {
5345 /*
5346 * FIXME with extra cooling we can allow
5347 * 540 MHz for ULX and 675 Mhz for ULT.
5348 * How can we know if extra cooling is
5349 * available? PCI ID, VTB, something else?
5350 */
5351 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5352 dev_priv->max_cdclk_freq = 450000;
5353 else if (IS_BDW_ULX(dev))
5354 dev_priv->max_cdclk_freq = 450000;
5355 else if (IS_BDW_ULT(dev))
5356 dev_priv->max_cdclk_freq = 540000;
5357 else
5358 dev_priv->max_cdclk_freq = 675000;
5359 } else if (IS_CHERRYVIEW(dev)) {
5360 dev_priv->max_cdclk_freq = 320000;
5361 } else if (IS_VALLEYVIEW(dev)) {
5362 dev_priv->max_cdclk_freq = 400000;
5363 } else {
5364 /* otherwise assume cdclk is fixed */
5365 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5366 }
5367
5368 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5369
5370 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5371 dev_priv->max_cdclk_freq);
5372
5373 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5374 dev_priv->max_dotclk_freq);
5375 }
5376
5377 static void intel_update_cdclk(struct drm_device *dev)
5378 {
5379 struct drm_i915_private *dev_priv = dev->dev_private;
5380
5381 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5382 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5383 dev_priv->cdclk_freq);
5384
5385 /*
5386 * Program the gmbus_freq based on the cdclk frequency.
5387 * BSpec erroneously claims we should aim for 4MHz, but
5388 * in fact 1MHz is the correct frequency.
5389 */
5390 if (IS_VALLEYVIEW(dev)) {
5391 /*
5392 * Program the gmbus_freq based on the cdclk frequency.
5393 * BSpec erroneously claims we should aim for 4MHz, but
5394 * in fact 1MHz is the correct frequency.
5395 */
5396 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5397 }
5398
5399 if (dev_priv->max_cdclk_freq == 0)
5400 intel_update_max_cdclk(dev);
5401 }
5402
5403 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5404 {
5405 struct drm_i915_private *dev_priv = dev->dev_private;
5406 uint32_t divider;
5407 uint32_t ratio;
5408 uint32_t current_freq;
5409 int ret;
5410
5411 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5412 switch (frequency) {
5413 case 144000:
5414 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5415 ratio = BXT_DE_PLL_RATIO(60);
5416 break;
5417 case 288000:
5418 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5419 ratio = BXT_DE_PLL_RATIO(60);
5420 break;
5421 case 384000:
5422 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5423 ratio = BXT_DE_PLL_RATIO(60);
5424 break;
5425 case 576000:
5426 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5427 ratio = BXT_DE_PLL_RATIO(60);
5428 break;
5429 case 624000:
5430 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5431 ratio = BXT_DE_PLL_RATIO(65);
5432 break;
5433 case 19200:
5434 /*
5435 * Bypass frequency with DE PLL disabled. Init ratio, divider
5436 * to suppress GCC warning.
5437 */
5438 ratio = 0;
5439 divider = 0;
5440 break;
5441 default:
5442 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5443
5444 return;
5445 }
5446
5447 mutex_lock(&dev_priv->rps.hw_lock);
5448 /* Inform power controller of upcoming frequency change */
5449 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5450 0x80000000);
5451 mutex_unlock(&dev_priv->rps.hw_lock);
5452
5453 if (ret) {
5454 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5455 ret, frequency);
5456 return;
5457 }
5458
5459 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5460 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5461 current_freq = current_freq * 500 + 1000;
5462
5463 /*
5464 * DE PLL has to be disabled when
5465 * - setting to 19.2MHz (bypass, PLL isn't used)
5466 * - before setting to 624MHz (PLL needs toggling)
5467 * - before setting to any frequency from 624MHz (PLL needs toggling)
5468 */
5469 if (frequency == 19200 || frequency == 624000 ||
5470 current_freq == 624000) {
5471 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5472 /* Timeout 200us */
5473 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5474 1))
5475 DRM_ERROR("timout waiting for DE PLL unlock\n");
5476 }
5477
5478 if (frequency != 19200) {
5479 uint32_t val;
5480
5481 val = I915_READ(BXT_DE_PLL_CTL);
5482 val &= ~BXT_DE_PLL_RATIO_MASK;
5483 val |= ratio;
5484 I915_WRITE(BXT_DE_PLL_CTL, val);
5485
5486 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5487 /* Timeout 200us */
5488 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5489 DRM_ERROR("timeout waiting for DE PLL lock\n");
5490
5491 val = I915_READ(CDCLK_CTL);
5492 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5493 val |= divider;
5494 /*
5495 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5496 * enable otherwise.
5497 */
5498 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5499 if (frequency >= 500000)
5500 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5501
5502 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5503 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5504 val |= (frequency - 1000) / 500;
5505 I915_WRITE(CDCLK_CTL, val);
5506 }
5507
5508 mutex_lock(&dev_priv->rps.hw_lock);
5509 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5510 DIV_ROUND_UP(frequency, 25000));
5511 mutex_unlock(&dev_priv->rps.hw_lock);
5512
5513 if (ret) {
5514 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5515 ret, frequency);
5516 return;
5517 }
5518
5519 intel_update_cdclk(dev);
5520 }
5521
5522 void broxton_init_cdclk(struct drm_device *dev)
5523 {
5524 struct drm_i915_private *dev_priv = dev->dev_private;
5525 uint32_t val;
5526
5527 /*
5528 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5529 * or else the reset will hang because there is no PCH to respond.
5530 * Move the handshake programming to initialization sequence.
5531 * Previously was left up to BIOS.
5532 */
5533 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5534 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5535 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5536
5537 /* Enable PG1 for cdclk */
5538 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5539
5540 /* check if cd clock is enabled */
5541 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5542 DRM_DEBUG_KMS("Display already initialized\n");
5543 return;
5544 }
5545
5546 /*
5547 * FIXME:
5548 * - The initial CDCLK needs to be read from VBT.
5549 * Need to make this change after VBT has changes for BXT.
5550 * - check if setting the max (or any) cdclk freq is really necessary
5551 * here, it belongs to modeset time
5552 */
5553 broxton_set_cdclk(dev, 624000);
5554
5555 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5556 POSTING_READ(DBUF_CTL);
5557
5558 udelay(10);
5559
5560 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5561 DRM_ERROR("DBuf power enable timeout!\n");
5562 }
5563
5564 void broxton_uninit_cdclk(struct drm_device *dev)
5565 {
5566 struct drm_i915_private *dev_priv = dev->dev_private;
5567
5568 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5569 POSTING_READ(DBUF_CTL);
5570
5571 udelay(10);
5572
5573 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5574 DRM_ERROR("DBuf power disable timeout!\n");
5575
5576 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5577 broxton_set_cdclk(dev, 19200);
5578
5579 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5580 }
5581
5582 static const struct skl_cdclk_entry {
5583 unsigned int freq;
5584 unsigned int vco;
5585 } skl_cdclk_frequencies[] = {
5586 { .freq = 308570, .vco = 8640 },
5587 { .freq = 337500, .vco = 8100 },
5588 { .freq = 432000, .vco = 8640 },
5589 { .freq = 450000, .vco = 8100 },
5590 { .freq = 540000, .vco = 8100 },
5591 { .freq = 617140, .vco = 8640 },
5592 { .freq = 675000, .vco = 8100 },
5593 };
5594
5595 static unsigned int skl_cdclk_decimal(unsigned int freq)
5596 {
5597 return (freq - 1000) / 500;
5598 }
5599
5600 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5601 {
5602 unsigned int i;
5603
5604 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5605 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5606
5607 if (e->freq == freq)
5608 return e->vco;
5609 }
5610
5611 return 8100;
5612 }
5613
5614 static void
5615 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5616 {
5617 unsigned int min_freq;
5618 u32 val;
5619
5620 /* select the minimum CDCLK before enabling DPLL 0 */
5621 val = I915_READ(CDCLK_CTL);
5622 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5623 val |= CDCLK_FREQ_337_308;
5624
5625 if (required_vco == 8640)
5626 min_freq = 308570;
5627 else
5628 min_freq = 337500;
5629
5630 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5631
5632 I915_WRITE(CDCLK_CTL, val);
5633 POSTING_READ(CDCLK_CTL);
5634
5635 /*
5636 * We always enable DPLL0 with the lowest link rate possible, but still
5637 * taking into account the VCO required to operate the eDP panel at the
5638 * desired frequency. The usual DP link rates operate with a VCO of
5639 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5640 * The modeset code is responsible for the selection of the exact link
5641 * rate later on, with the constraint of choosing a frequency that
5642 * works with required_vco.
5643 */
5644 val = I915_READ(DPLL_CTRL1);
5645
5646 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5647 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5648 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5649 if (required_vco == 8640)
5650 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5651 SKL_DPLL0);
5652 else
5653 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5654 SKL_DPLL0);
5655
5656 I915_WRITE(DPLL_CTRL1, val);
5657 POSTING_READ(DPLL_CTRL1);
5658
5659 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5660
5661 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5662 DRM_ERROR("DPLL0 not locked\n");
5663 }
5664
5665 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5666 {
5667 int ret;
5668 u32 val;
5669
5670 /* inform PCU we want to change CDCLK */
5671 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5672 mutex_lock(&dev_priv->rps.hw_lock);
5673 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5674 mutex_unlock(&dev_priv->rps.hw_lock);
5675
5676 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5677 }
5678
5679 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5680 {
5681 unsigned int i;
5682
5683 for (i = 0; i < 15; i++) {
5684 if (skl_cdclk_pcu_ready(dev_priv))
5685 return true;
5686 udelay(10);
5687 }
5688
5689 return false;
5690 }
5691
5692 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5693 {
5694 struct drm_device *dev = dev_priv->dev;
5695 u32 freq_select, pcu_ack;
5696
5697 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5698
5699 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5700 DRM_ERROR("failed to inform PCU about cdclk change\n");
5701 return;
5702 }
5703
5704 /* set CDCLK_CTL */
5705 switch(freq) {
5706 case 450000:
5707 case 432000:
5708 freq_select = CDCLK_FREQ_450_432;
5709 pcu_ack = 1;
5710 break;
5711 case 540000:
5712 freq_select = CDCLK_FREQ_540;
5713 pcu_ack = 2;
5714 break;
5715 case 308570:
5716 case 337500:
5717 default:
5718 freq_select = CDCLK_FREQ_337_308;
5719 pcu_ack = 0;
5720 break;
5721 case 617140:
5722 case 675000:
5723 freq_select = CDCLK_FREQ_675_617;
5724 pcu_ack = 3;
5725 break;
5726 }
5727
5728 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5729 POSTING_READ(CDCLK_CTL);
5730
5731 /* inform PCU of the change */
5732 mutex_lock(&dev_priv->rps.hw_lock);
5733 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5734 mutex_unlock(&dev_priv->rps.hw_lock);
5735
5736 intel_update_cdclk(dev);
5737 }
5738
5739 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5740 {
5741 /* disable DBUF power */
5742 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5743 POSTING_READ(DBUF_CTL);
5744
5745 udelay(10);
5746
5747 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5748 DRM_ERROR("DBuf power disable timeout\n");
5749
5750 /*
5751 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5752 */
5753 if (dev_priv->csr.dmc_payload) {
5754 /* disable DPLL0 */
5755 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5756 ~LCPLL_PLL_ENABLE);
5757 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5758 DRM_ERROR("Couldn't disable DPLL0\n");
5759 }
5760
5761 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5762 }
5763
5764 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5765 {
5766 u32 val;
5767 unsigned int required_vco;
5768
5769 /* enable PCH reset handshake */
5770 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5771 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5772
5773 /* enable PG1 and Misc I/O */
5774 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5775
5776 /* DPLL0 not enabled (happens on early BIOS versions) */
5777 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5778 /* enable DPLL0 */
5779 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5780 skl_dpll0_enable(dev_priv, required_vco);
5781 }
5782
5783 /* set CDCLK to the frequency the BIOS chose */
5784 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5785
5786 /* enable DBUF power */
5787 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5788 POSTING_READ(DBUF_CTL);
5789
5790 udelay(10);
5791
5792 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5793 DRM_ERROR("DBuf power enable timeout\n");
5794 }
5795
5796 /* Adjust CDclk dividers to allow high res or save power if possible */
5797 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5798 {
5799 struct drm_i915_private *dev_priv = dev->dev_private;
5800 u32 val, cmd;
5801
5802 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5803 != dev_priv->cdclk_freq);
5804
5805 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5806 cmd = 2;
5807 else if (cdclk == 266667)
5808 cmd = 1;
5809 else
5810 cmd = 0;
5811
5812 mutex_lock(&dev_priv->rps.hw_lock);
5813 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5814 val &= ~DSPFREQGUAR_MASK;
5815 val |= (cmd << DSPFREQGUAR_SHIFT);
5816 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5817 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5818 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5819 50)) {
5820 DRM_ERROR("timed out waiting for CDclk change\n");
5821 }
5822 mutex_unlock(&dev_priv->rps.hw_lock);
5823
5824 mutex_lock(&dev_priv->sb_lock);
5825
5826 if (cdclk == 400000) {
5827 u32 divider;
5828
5829 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5830
5831 /* adjust cdclk divider */
5832 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5833 val &= ~CCK_FREQUENCY_VALUES;
5834 val |= divider;
5835 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5836
5837 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5838 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5839 50))
5840 DRM_ERROR("timed out waiting for CDclk change\n");
5841 }
5842
5843 /* adjust self-refresh exit latency value */
5844 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5845 val &= ~0x7f;
5846
5847 /*
5848 * For high bandwidth configs, we set a higher latency in the bunit
5849 * so that the core display fetch happens in time to avoid underruns.
5850 */
5851 if (cdclk == 400000)
5852 val |= 4500 / 250; /* 4.5 usec */
5853 else
5854 val |= 3000 / 250; /* 3.0 usec */
5855 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5856
5857 mutex_unlock(&dev_priv->sb_lock);
5858
5859 intel_update_cdclk(dev);
5860 }
5861
5862 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5863 {
5864 struct drm_i915_private *dev_priv = dev->dev_private;
5865 u32 val, cmd;
5866
5867 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5868 != dev_priv->cdclk_freq);
5869
5870 switch (cdclk) {
5871 case 333333:
5872 case 320000:
5873 case 266667:
5874 case 200000:
5875 break;
5876 default:
5877 MISSING_CASE(cdclk);
5878 return;
5879 }
5880
5881 /*
5882 * Specs are full of misinformation, but testing on actual
5883 * hardware has shown that we just need to write the desired
5884 * CCK divider into the Punit register.
5885 */
5886 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5887
5888 mutex_lock(&dev_priv->rps.hw_lock);
5889 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5890 val &= ~DSPFREQGUAR_MASK_CHV;
5891 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5892 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5893 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5894 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5895 50)) {
5896 DRM_ERROR("timed out waiting for CDclk change\n");
5897 }
5898 mutex_unlock(&dev_priv->rps.hw_lock);
5899
5900 intel_update_cdclk(dev);
5901 }
5902
5903 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5904 int max_pixclk)
5905 {
5906 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5907 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5908
5909 /*
5910 * Really only a few cases to deal with, as only 4 CDclks are supported:
5911 * 200MHz
5912 * 267MHz
5913 * 320/333MHz (depends on HPLL freq)
5914 * 400MHz (VLV only)
5915 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5916 * of the lower bin and adjust if needed.
5917 *
5918 * We seem to get an unstable or solid color picture at 200MHz.
5919 * Not sure what's wrong. For now use 200MHz only when all pipes
5920 * are off.
5921 */
5922 if (!IS_CHERRYVIEW(dev_priv) &&
5923 max_pixclk > freq_320*limit/100)
5924 return 400000;
5925 else if (max_pixclk > 266667*limit/100)
5926 return freq_320;
5927 else if (max_pixclk > 0)
5928 return 266667;
5929 else
5930 return 200000;
5931 }
5932
5933 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5934 int max_pixclk)
5935 {
5936 /*
5937 * FIXME:
5938 * - remove the guardband, it's not needed on BXT
5939 * - set 19.2MHz bypass frequency if there are no active pipes
5940 */
5941 if (max_pixclk > 576000*9/10)
5942 return 624000;
5943 else if (max_pixclk > 384000*9/10)
5944 return 576000;
5945 else if (max_pixclk > 288000*9/10)
5946 return 384000;
5947 else if (max_pixclk > 144000*9/10)
5948 return 288000;
5949 else
5950 return 144000;
5951 }
5952
5953 /* Compute the max pixel clock for new configuration. Uses atomic state if
5954 * that's non-NULL, look at current state otherwise. */
5955 static int intel_mode_max_pixclk(struct drm_device *dev,
5956 struct drm_atomic_state *state)
5957 {
5958 struct intel_crtc *intel_crtc;
5959 struct intel_crtc_state *crtc_state;
5960 int max_pixclk = 0;
5961
5962 for_each_intel_crtc(dev, intel_crtc) {
5963 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5964 if (IS_ERR(crtc_state))
5965 return PTR_ERR(crtc_state);
5966
5967 if (!crtc_state->base.enable)
5968 continue;
5969
5970 max_pixclk = max(max_pixclk,
5971 crtc_state->base.adjusted_mode.crtc_clock);
5972 }
5973
5974 return max_pixclk;
5975 }
5976
5977 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5978 {
5979 struct drm_device *dev = state->dev;
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 int max_pixclk = intel_mode_max_pixclk(dev, state);
5982
5983 if (max_pixclk < 0)
5984 return max_pixclk;
5985
5986 to_intel_atomic_state(state)->cdclk =
5987 valleyview_calc_cdclk(dev_priv, max_pixclk);
5988
5989 return 0;
5990 }
5991
5992 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5993 {
5994 struct drm_device *dev = state->dev;
5995 struct drm_i915_private *dev_priv = dev->dev_private;
5996 int max_pixclk = intel_mode_max_pixclk(dev, state);
5997
5998 if (max_pixclk < 0)
5999 return max_pixclk;
6000
6001 to_intel_atomic_state(state)->cdclk =
6002 broxton_calc_cdclk(dev_priv, max_pixclk);
6003
6004 return 0;
6005 }
6006
6007 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6008 {
6009 unsigned int credits, default_credits;
6010
6011 if (IS_CHERRYVIEW(dev_priv))
6012 default_credits = PFI_CREDIT(12);
6013 else
6014 default_credits = PFI_CREDIT(8);
6015
6016 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6017 /* CHV suggested value is 31 or 63 */
6018 if (IS_CHERRYVIEW(dev_priv))
6019 credits = PFI_CREDIT_63;
6020 else
6021 credits = PFI_CREDIT(15);
6022 } else {
6023 credits = default_credits;
6024 }
6025
6026 /*
6027 * WA - write default credits before re-programming
6028 * FIXME: should we also set the resend bit here?
6029 */
6030 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6031 default_credits);
6032
6033 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6034 credits | PFI_CREDIT_RESEND);
6035
6036 /*
6037 * FIXME is this guaranteed to clear
6038 * immediately or should we poll for it?
6039 */
6040 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6041 }
6042
6043 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6044 {
6045 struct drm_device *dev = old_state->dev;
6046 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6047 struct drm_i915_private *dev_priv = dev->dev_private;
6048
6049 /*
6050 * FIXME: We can end up here with all power domains off, yet
6051 * with a CDCLK frequency other than the minimum. To account
6052 * for this take the PIPE-A power domain, which covers the HW
6053 * blocks needed for the following programming. This can be
6054 * removed once it's guaranteed that we get here either with
6055 * the minimum CDCLK set, or the required power domains
6056 * enabled.
6057 */
6058 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6059
6060 if (IS_CHERRYVIEW(dev))
6061 cherryview_set_cdclk(dev, req_cdclk);
6062 else
6063 valleyview_set_cdclk(dev, req_cdclk);
6064
6065 vlv_program_pfi_credits(dev_priv);
6066
6067 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6068 }
6069
6070 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6071 {
6072 struct drm_device *dev = crtc->dev;
6073 struct drm_i915_private *dev_priv = to_i915(dev);
6074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6075 struct intel_encoder *encoder;
6076 int pipe = intel_crtc->pipe;
6077 bool is_dsi;
6078
6079 if (WARN_ON(intel_crtc->active))
6080 return;
6081
6082 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6083
6084 if (intel_crtc->config->has_dp_encoder)
6085 intel_dp_set_m_n(intel_crtc, M1_N1);
6086
6087 intel_set_pipe_timings(intel_crtc);
6088
6089 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6090 struct drm_i915_private *dev_priv = dev->dev_private;
6091
6092 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6093 I915_WRITE(CHV_CANVAS(pipe), 0);
6094 }
6095
6096 i9xx_set_pipeconf(intel_crtc);
6097
6098 intel_crtc->active = true;
6099
6100 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6101
6102 for_each_encoder_on_crtc(dev, crtc, encoder)
6103 if (encoder->pre_pll_enable)
6104 encoder->pre_pll_enable(encoder);
6105
6106 if (!is_dsi) {
6107 if (IS_CHERRYVIEW(dev)) {
6108 chv_prepare_pll(intel_crtc, intel_crtc->config);
6109 chv_enable_pll(intel_crtc, intel_crtc->config);
6110 } else {
6111 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6112 vlv_enable_pll(intel_crtc, intel_crtc->config);
6113 }
6114 }
6115
6116 for_each_encoder_on_crtc(dev, crtc, encoder)
6117 if (encoder->pre_enable)
6118 encoder->pre_enable(encoder);
6119
6120 i9xx_pfit_enable(intel_crtc);
6121
6122 intel_crtc_load_lut(crtc);
6123
6124 intel_enable_pipe(intel_crtc);
6125
6126 assert_vblank_disabled(crtc);
6127 drm_crtc_vblank_on(crtc);
6128
6129 for_each_encoder_on_crtc(dev, crtc, encoder)
6130 encoder->enable(encoder);
6131 }
6132
6133 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6134 {
6135 struct drm_device *dev = crtc->base.dev;
6136 struct drm_i915_private *dev_priv = dev->dev_private;
6137
6138 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6139 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6140 }
6141
6142 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6143 {
6144 struct drm_device *dev = crtc->dev;
6145 struct drm_i915_private *dev_priv = to_i915(dev);
6146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6147 struct intel_encoder *encoder;
6148 int pipe = intel_crtc->pipe;
6149
6150 if (WARN_ON(intel_crtc->active))
6151 return;
6152
6153 i9xx_set_pll_dividers(intel_crtc);
6154
6155 if (intel_crtc->config->has_dp_encoder)
6156 intel_dp_set_m_n(intel_crtc, M1_N1);
6157
6158 intel_set_pipe_timings(intel_crtc);
6159
6160 i9xx_set_pipeconf(intel_crtc);
6161
6162 intel_crtc->active = true;
6163
6164 if (!IS_GEN2(dev))
6165 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6166
6167 for_each_encoder_on_crtc(dev, crtc, encoder)
6168 if (encoder->pre_enable)
6169 encoder->pre_enable(encoder);
6170
6171 i9xx_enable_pll(intel_crtc);
6172
6173 i9xx_pfit_enable(intel_crtc);
6174
6175 intel_crtc_load_lut(crtc);
6176
6177 intel_update_watermarks(crtc);
6178 intel_enable_pipe(intel_crtc);
6179
6180 assert_vblank_disabled(crtc);
6181 drm_crtc_vblank_on(crtc);
6182
6183 for_each_encoder_on_crtc(dev, crtc, encoder)
6184 encoder->enable(encoder);
6185 }
6186
6187 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6188 {
6189 struct drm_device *dev = crtc->base.dev;
6190 struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192 if (!crtc->config->gmch_pfit.control)
6193 return;
6194
6195 assert_pipe_disabled(dev_priv, crtc->pipe);
6196
6197 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6198 I915_READ(PFIT_CONTROL));
6199 I915_WRITE(PFIT_CONTROL, 0);
6200 }
6201
6202 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6203 {
6204 struct drm_device *dev = crtc->dev;
6205 struct drm_i915_private *dev_priv = dev->dev_private;
6206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 struct intel_encoder *encoder;
6208 int pipe = intel_crtc->pipe;
6209
6210 /*
6211 * On gen2 planes are double buffered but the pipe isn't, so we must
6212 * wait for planes to fully turn off before disabling the pipe.
6213 * We also need to wait on all gmch platforms because of the
6214 * self-refresh mode constraint explained above.
6215 */
6216 intel_wait_for_vblank(dev, pipe);
6217
6218 for_each_encoder_on_crtc(dev, crtc, encoder)
6219 encoder->disable(encoder);
6220
6221 drm_crtc_vblank_off(crtc);
6222 assert_vblank_disabled(crtc);
6223
6224 intel_disable_pipe(intel_crtc);
6225
6226 i9xx_pfit_disable(intel_crtc);
6227
6228 for_each_encoder_on_crtc(dev, crtc, encoder)
6229 if (encoder->post_disable)
6230 encoder->post_disable(encoder);
6231
6232 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6233 if (IS_CHERRYVIEW(dev))
6234 chv_disable_pll(dev_priv, pipe);
6235 else if (IS_VALLEYVIEW(dev))
6236 vlv_disable_pll(dev_priv, pipe);
6237 else
6238 i9xx_disable_pll(intel_crtc);
6239 }
6240
6241 for_each_encoder_on_crtc(dev, crtc, encoder)
6242 if (encoder->post_pll_disable)
6243 encoder->post_pll_disable(encoder);
6244
6245 if (!IS_GEN2(dev))
6246 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6247 }
6248
6249 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6250 {
6251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6252 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6253 enum intel_display_power_domain domain;
6254 unsigned long domains;
6255
6256 if (!intel_crtc->active)
6257 return;
6258
6259 if (to_intel_plane_state(crtc->primary->state)->visible) {
6260 intel_crtc_wait_for_pending_flips(crtc);
6261 intel_pre_disable_primary(crtc);
6262 }
6263
6264 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6265 dev_priv->display.crtc_disable(crtc);
6266 intel_crtc->active = false;
6267 intel_update_watermarks(crtc);
6268 intel_disable_shared_dpll(intel_crtc);
6269
6270 domains = intel_crtc->enabled_power_domains;
6271 for_each_power_domain(domain, domains)
6272 intel_display_power_put(dev_priv, domain);
6273 intel_crtc->enabled_power_domains = 0;
6274 }
6275
6276 /*
6277 * turn all crtc's off, but do not adjust state
6278 * This has to be paired with a call to intel_modeset_setup_hw_state.
6279 */
6280 int intel_display_suspend(struct drm_device *dev)
6281 {
6282 struct drm_mode_config *config = &dev->mode_config;
6283 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6284 struct drm_atomic_state *state;
6285 struct drm_crtc *crtc;
6286 unsigned crtc_mask = 0;
6287 int ret = 0;
6288
6289 if (WARN_ON(!ctx))
6290 return 0;
6291
6292 lockdep_assert_held(&ctx->ww_ctx);
6293 state = drm_atomic_state_alloc(dev);
6294 if (WARN_ON(!state))
6295 return -ENOMEM;
6296
6297 state->acquire_ctx = ctx;
6298 state->allow_modeset = true;
6299
6300 for_each_crtc(dev, crtc) {
6301 struct drm_crtc_state *crtc_state =
6302 drm_atomic_get_crtc_state(state, crtc);
6303
6304 ret = PTR_ERR_OR_ZERO(crtc_state);
6305 if (ret)
6306 goto free;
6307
6308 if (!crtc_state->active)
6309 continue;
6310
6311 crtc_state->active = false;
6312 crtc_mask |= 1 << drm_crtc_index(crtc);
6313 }
6314
6315 if (crtc_mask) {
6316 ret = drm_atomic_commit(state);
6317
6318 if (!ret) {
6319 for_each_crtc(dev, crtc)
6320 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6321 crtc->state->active = true;
6322
6323 return ret;
6324 }
6325 }
6326
6327 free:
6328 if (ret)
6329 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6330 drm_atomic_state_free(state);
6331 return ret;
6332 }
6333
6334 void intel_encoder_destroy(struct drm_encoder *encoder)
6335 {
6336 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6337
6338 drm_encoder_cleanup(encoder);
6339 kfree(intel_encoder);
6340 }
6341
6342 /* Cross check the actual hw state with our own modeset state tracking (and it's
6343 * internal consistency). */
6344 static void intel_connector_check_state(struct intel_connector *connector)
6345 {
6346 struct drm_crtc *crtc = connector->base.state->crtc;
6347
6348 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6349 connector->base.base.id,
6350 connector->base.name);
6351
6352 if (connector->get_hw_state(connector)) {
6353 struct intel_encoder *encoder = connector->encoder;
6354 struct drm_connector_state *conn_state = connector->base.state;
6355
6356 I915_STATE_WARN(!crtc,
6357 "connector enabled without attached crtc\n");
6358
6359 if (!crtc)
6360 return;
6361
6362 I915_STATE_WARN(!crtc->state->active,
6363 "connector is active, but attached crtc isn't\n");
6364
6365 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6366 return;
6367
6368 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6369 "atomic encoder doesn't match attached encoder\n");
6370
6371 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6372 "attached encoder crtc differs from connector crtc\n");
6373 } else {
6374 I915_STATE_WARN(crtc && crtc->state->active,
6375 "attached crtc is active, but connector isn't\n");
6376 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6377 "best encoder set without crtc!\n");
6378 }
6379 }
6380
6381 int intel_connector_init(struct intel_connector *connector)
6382 {
6383 struct drm_connector_state *connector_state;
6384
6385 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6386 if (!connector_state)
6387 return -ENOMEM;
6388
6389 connector->base.state = connector_state;
6390 return 0;
6391 }
6392
6393 struct intel_connector *intel_connector_alloc(void)
6394 {
6395 struct intel_connector *connector;
6396
6397 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6398 if (!connector)
6399 return NULL;
6400
6401 if (intel_connector_init(connector) < 0) {
6402 kfree(connector);
6403 return NULL;
6404 }
6405
6406 return connector;
6407 }
6408
6409 /* Simple connector->get_hw_state implementation for encoders that support only
6410 * one connector and no cloning and hence the encoder state determines the state
6411 * of the connector. */
6412 bool intel_connector_get_hw_state(struct intel_connector *connector)
6413 {
6414 enum pipe pipe = 0;
6415 struct intel_encoder *encoder = connector->encoder;
6416
6417 return encoder->get_hw_state(encoder, &pipe);
6418 }
6419
6420 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6421 {
6422 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6423 return crtc_state->fdi_lanes;
6424
6425 return 0;
6426 }
6427
6428 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6429 struct intel_crtc_state *pipe_config)
6430 {
6431 struct drm_atomic_state *state = pipe_config->base.state;
6432 struct intel_crtc *other_crtc;
6433 struct intel_crtc_state *other_crtc_state;
6434
6435 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6436 pipe_name(pipe), pipe_config->fdi_lanes);
6437 if (pipe_config->fdi_lanes > 4) {
6438 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6439 pipe_name(pipe), pipe_config->fdi_lanes);
6440 return -EINVAL;
6441 }
6442
6443 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6444 if (pipe_config->fdi_lanes > 2) {
6445 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6446 pipe_config->fdi_lanes);
6447 return -EINVAL;
6448 } else {
6449 return 0;
6450 }
6451 }
6452
6453 if (INTEL_INFO(dev)->num_pipes == 2)
6454 return 0;
6455
6456 /* Ivybridge 3 pipe is really complicated */
6457 switch (pipe) {
6458 case PIPE_A:
6459 return 0;
6460 case PIPE_B:
6461 if (pipe_config->fdi_lanes <= 2)
6462 return 0;
6463
6464 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6465 other_crtc_state =
6466 intel_atomic_get_crtc_state(state, other_crtc);
6467 if (IS_ERR(other_crtc_state))
6468 return PTR_ERR(other_crtc_state);
6469
6470 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6471 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6472 pipe_name(pipe), pipe_config->fdi_lanes);
6473 return -EINVAL;
6474 }
6475 return 0;
6476 case PIPE_C:
6477 if (pipe_config->fdi_lanes > 2) {
6478 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6479 pipe_name(pipe), pipe_config->fdi_lanes);
6480 return -EINVAL;
6481 }
6482
6483 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6484 other_crtc_state =
6485 intel_atomic_get_crtc_state(state, other_crtc);
6486 if (IS_ERR(other_crtc_state))
6487 return PTR_ERR(other_crtc_state);
6488
6489 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6490 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6491 return -EINVAL;
6492 }
6493 return 0;
6494 default:
6495 BUG();
6496 }
6497 }
6498
6499 #define RETRY 1
6500 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6501 struct intel_crtc_state *pipe_config)
6502 {
6503 struct drm_device *dev = intel_crtc->base.dev;
6504 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6505 int lane, link_bw, fdi_dotclock, ret;
6506 bool needs_recompute = false;
6507
6508 retry:
6509 /* FDI is a binary signal running at ~2.7GHz, encoding
6510 * each output octet as 10 bits. The actual frequency
6511 * is stored as a divider into a 100MHz clock, and the
6512 * mode pixel clock is stored in units of 1KHz.
6513 * Hence the bw of each lane in terms of the mode signal
6514 * is:
6515 */
6516 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6517
6518 fdi_dotclock = adjusted_mode->crtc_clock;
6519
6520 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6521 pipe_config->pipe_bpp);
6522
6523 pipe_config->fdi_lanes = lane;
6524
6525 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6526 link_bw, &pipe_config->fdi_m_n);
6527
6528 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6529 intel_crtc->pipe, pipe_config);
6530 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6531 pipe_config->pipe_bpp -= 2*3;
6532 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6533 pipe_config->pipe_bpp);
6534 needs_recompute = true;
6535 pipe_config->bw_constrained = true;
6536
6537 goto retry;
6538 }
6539
6540 if (needs_recompute)
6541 return RETRY;
6542
6543 return ret;
6544 }
6545
6546 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6547 struct intel_crtc_state *pipe_config)
6548 {
6549 if (pipe_config->pipe_bpp > 24)
6550 return false;
6551
6552 /* HSW can handle pixel rate up to cdclk? */
6553 if (IS_HASWELL(dev_priv->dev))
6554 return true;
6555
6556 /*
6557 * We compare against max which means we must take
6558 * the increased cdclk requirement into account when
6559 * calculating the new cdclk.
6560 *
6561 * Should measure whether using a lower cdclk w/o IPS
6562 */
6563 return ilk_pipe_pixel_rate(pipe_config) <=
6564 dev_priv->max_cdclk_freq * 95 / 100;
6565 }
6566
6567 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6568 struct intel_crtc_state *pipe_config)
6569 {
6570 struct drm_device *dev = crtc->base.dev;
6571 struct drm_i915_private *dev_priv = dev->dev_private;
6572
6573 pipe_config->ips_enabled = i915.enable_ips &&
6574 hsw_crtc_supports_ips(crtc) &&
6575 pipe_config_supports_ips(dev_priv, pipe_config);
6576 }
6577
6578 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6579 struct intel_crtc_state *pipe_config)
6580 {
6581 struct drm_device *dev = crtc->base.dev;
6582 struct drm_i915_private *dev_priv = dev->dev_private;
6583 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6584
6585 /* FIXME should check pixel clock limits on all platforms */
6586 if (INTEL_INFO(dev)->gen < 4) {
6587 int clock_limit = dev_priv->max_cdclk_freq;
6588
6589 /*
6590 * Enable pixel doubling when the dot clock
6591 * is > 90% of the (display) core speed.
6592 *
6593 * GDG double wide on either pipe,
6594 * otherwise pipe A only.
6595 */
6596 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6597 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6598 clock_limit *= 2;
6599 pipe_config->double_wide = true;
6600 }
6601
6602 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6603 return -EINVAL;
6604 }
6605
6606 /*
6607 * Pipe horizontal size must be even in:
6608 * - DVO ganged mode
6609 * - LVDS dual channel mode
6610 * - Double wide pipe
6611 */
6612 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6613 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6614 pipe_config->pipe_src_w &= ~1;
6615
6616 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6617 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6618 */
6619 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6620 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6621 return -EINVAL;
6622
6623 if (HAS_IPS(dev))
6624 hsw_compute_ips_config(crtc, pipe_config);
6625
6626 if (pipe_config->has_pch_encoder)
6627 return ironlake_fdi_compute_config(crtc, pipe_config);
6628
6629 return 0;
6630 }
6631
6632 static int skylake_get_display_clock_speed(struct drm_device *dev)
6633 {
6634 struct drm_i915_private *dev_priv = to_i915(dev);
6635 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6636 uint32_t cdctl = I915_READ(CDCLK_CTL);
6637 uint32_t linkrate;
6638
6639 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6640 return 24000; /* 24MHz is the cd freq with NSSC ref */
6641
6642 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6643 return 540000;
6644
6645 linkrate = (I915_READ(DPLL_CTRL1) &
6646 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6647
6648 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6649 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6650 /* vco 8640 */
6651 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6652 case CDCLK_FREQ_450_432:
6653 return 432000;
6654 case CDCLK_FREQ_337_308:
6655 return 308570;
6656 case CDCLK_FREQ_675_617:
6657 return 617140;
6658 default:
6659 WARN(1, "Unknown cd freq selection\n");
6660 }
6661 } else {
6662 /* vco 8100 */
6663 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6664 case CDCLK_FREQ_450_432:
6665 return 450000;
6666 case CDCLK_FREQ_337_308:
6667 return 337500;
6668 case CDCLK_FREQ_675_617:
6669 return 675000;
6670 default:
6671 WARN(1, "Unknown cd freq selection\n");
6672 }
6673 }
6674
6675 /* error case, do as if DPLL0 isn't enabled */
6676 return 24000;
6677 }
6678
6679 static int broxton_get_display_clock_speed(struct drm_device *dev)
6680 {
6681 struct drm_i915_private *dev_priv = to_i915(dev);
6682 uint32_t cdctl = I915_READ(CDCLK_CTL);
6683 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6684 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6685 int cdclk;
6686
6687 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6688 return 19200;
6689
6690 cdclk = 19200 * pll_ratio / 2;
6691
6692 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6693 case BXT_CDCLK_CD2X_DIV_SEL_1:
6694 return cdclk; /* 576MHz or 624MHz */
6695 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6696 return cdclk * 2 / 3; /* 384MHz */
6697 case BXT_CDCLK_CD2X_DIV_SEL_2:
6698 return cdclk / 2; /* 288MHz */
6699 case BXT_CDCLK_CD2X_DIV_SEL_4:
6700 return cdclk / 4; /* 144MHz */
6701 }
6702
6703 /* error case, do as if DE PLL isn't enabled */
6704 return 19200;
6705 }
6706
6707 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6708 {
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 uint32_t lcpll = I915_READ(LCPLL_CTL);
6711 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6712
6713 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6714 return 800000;
6715 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6716 return 450000;
6717 else if (freq == LCPLL_CLK_FREQ_450)
6718 return 450000;
6719 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6720 return 540000;
6721 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6722 return 337500;
6723 else
6724 return 675000;
6725 }
6726
6727 static int haswell_get_display_clock_speed(struct drm_device *dev)
6728 {
6729 struct drm_i915_private *dev_priv = dev->dev_private;
6730 uint32_t lcpll = I915_READ(LCPLL_CTL);
6731 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6732
6733 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6734 return 800000;
6735 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6736 return 450000;
6737 else if (freq == LCPLL_CLK_FREQ_450)
6738 return 450000;
6739 else if (IS_HSW_ULT(dev))
6740 return 337500;
6741 else
6742 return 540000;
6743 }
6744
6745 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6746 {
6747 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6748 CCK_DISPLAY_CLOCK_CONTROL);
6749 }
6750
6751 static int ilk_get_display_clock_speed(struct drm_device *dev)
6752 {
6753 return 450000;
6754 }
6755
6756 static int i945_get_display_clock_speed(struct drm_device *dev)
6757 {
6758 return 400000;
6759 }
6760
6761 static int i915_get_display_clock_speed(struct drm_device *dev)
6762 {
6763 return 333333;
6764 }
6765
6766 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6767 {
6768 return 200000;
6769 }
6770
6771 static int pnv_get_display_clock_speed(struct drm_device *dev)
6772 {
6773 u16 gcfgc = 0;
6774
6775 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6776
6777 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6778 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6779 return 266667;
6780 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6781 return 333333;
6782 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6783 return 444444;
6784 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6785 return 200000;
6786 default:
6787 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6788 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6789 return 133333;
6790 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6791 return 166667;
6792 }
6793 }
6794
6795 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6796 {
6797 u16 gcfgc = 0;
6798
6799 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6800
6801 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6802 return 133333;
6803 else {
6804 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6805 case GC_DISPLAY_CLOCK_333_MHZ:
6806 return 333333;
6807 default:
6808 case GC_DISPLAY_CLOCK_190_200_MHZ:
6809 return 190000;
6810 }
6811 }
6812 }
6813
6814 static int i865_get_display_clock_speed(struct drm_device *dev)
6815 {
6816 return 266667;
6817 }
6818
6819 static int i85x_get_display_clock_speed(struct drm_device *dev)
6820 {
6821 u16 hpllcc = 0;
6822
6823 /*
6824 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6825 * encoding is different :(
6826 * FIXME is this the right way to detect 852GM/852GMV?
6827 */
6828 if (dev->pdev->revision == 0x1)
6829 return 133333;
6830
6831 pci_bus_read_config_word(dev->pdev->bus,
6832 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6833
6834 /* Assume that the hardware is in the high speed state. This
6835 * should be the default.
6836 */
6837 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6838 case GC_CLOCK_133_200:
6839 case GC_CLOCK_133_200_2:
6840 case GC_CLOCK_100_200:
6841 return 200000;
6842 case GC_CLOCK_166_250:
6843 return 250000;
6844 case GC_CLOCK_100_133:
6845 return 133333;
6846 case GC_CLOCK_133_266:
6847 case GC_CLOCK_133_266_2:
6848 case GC_CLOCK_166_266:
6849 return 266667;
6850 }
6851
6852 /* Shouldn't happen */
6853 return 0;
6854 }
6855
6856 static int i830_get_display_clock_speed(struct drm_device *dev)
6857 {
6858 return 133333;
6859 }
6860
6861 static unsigned int intel_hpll_vco(struct drm_device *dev)
6862 {
6863 struct drm_i915_private *dev_priv = dev->dev_private;
6864 static const unsigned int blb_vco[8] = {
6865 [0] = 3200000,
6866 [1] = 4000000,
6867 [2] = 5333333,
6868 [3] = 4800000,
6869 [4] = 6400000,
6870 };
6871 static const unsigned int pnv_vco[8] = {
6872 [0] = 3200000,
6873 [1] = 4000000,
6874 [2] = 5333333,
6875 [3] = 4800000,
6876 [4] = 2666667,
6877 };
6878 static const unsigned int cl_vco[8] = {
6879 [0] = 3200000,
6880 [1] = 4000000,
6881 [2] = 5333333,
6882 [3] = 6400000,
6883 [4] = 3333333,
6884 [5] = 3566667,
6885 [6] = 4266667,
6886 };
6887 static const unsigned int elk_vco[8] = {
6888 [0] = 3200000,
6889 [1] = 4000000,
6890 [2] = 5333333,
6891 [3] = 4800000,
6892 };
6893 static const unsigned int ctg_vco[8] = {
6894 [0] = 3200000,
6895 [1] = 4000000,
6896 [2] = 5333333,
6897 [3] = 6400000,
6898 [4] = 2666667,
6899 [5] = 4266667,
6900 };
6901 const unsigned int *vco_table;
6902 unsigned int vco;
6903 uint8_t tmp = 0;
6904
6905 /* FIXME other chipsets? */
6906 if (IS_GM45(dev))
6907 vco_table = ctg_vco;
6908 else if (IS_G4X(dev))
6909 vco_table = elk_vco;
6910 else if (IS_CRESTLINE(dev))
6911 vco_table = cl_vco;
6912 else if (IS_PINEVIEW(dev))
6913 vco_table = pnv_vco;
6914 else if (IS_G33(dev))
6915 vco_table = blb_vco;
6916 else
6917 return 0;
6918
6919 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6920
6921 vco = vco_table[tmp & 0x7];
6922 if (vco == 0)
6923 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6924 else
6925 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6926
6927 return vco;
6928 }
6929
6930 static int gm45_get_display_clock_speed(struct drm_device *dev)
6931 {
6932 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6933 uint16_t tmp = 0;
6934
6935 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6936
6937 cdclk_sel = (tmp >> 12) & 0x1;
6938
6939 switch (vco) {
6940 case 2666667:
6941 case 4000000:
6942 case 5333333:
6943 return cdclk_sel ? 333333 : 222222;
6944 case 3200000:
6945 return cdclk_sel ? 320000 : 228571;
6946 default:
6947 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6948 return 222222;
6949 }
6950 }
6951
6952 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6953 {
6954 static const uint8_t div_3200[] = { 16, 10, 8 };
6955 static const uint8_t div_4000[] = { 20, 12, 10 };
6956 static const uint8_t div_5333[] = { 24, 16, 14 };
6957 const uint8_t *div_table;
6958 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6959 uint16_t tmp = 0;
6960
6961 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6962
6963 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6964
6965 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6966 goto fail;
6967
6968 switch (vco) {
6969 case 3200000:
6970 div_table = div_3200;
6971 break;
6972 case 4000000:
6973 div_table = div_4000;
6974 break;
6975 case 5333333:
6976 div_table = div_5333;
6977 break;
6978 default:
6979 goto fail;
6980 }
6981
6982 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6983
6984 fail:
6985 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6986 return 200000;
6987 }
6988
6989 static int g33_get_display_clock_speed(struct drm_device *dev)
6990 {
6991 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6992 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6993 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6994 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6995 const uint8_t *div_table;
6996 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6997 uint16_t tmp = 0;
6998
6999 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7000
7001 cdclk_sel = (tmp >> 4) & 0x7;
7002
7003 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7004 goto fail;
7005
7006 switch (vco) {
7007 case 3200000:
7008 div_table = div_3200;
7009 break;
7010 case 4000000:
7011 div_table = div_4000;
7012 break;
7013 case 4800000:
7014 div_table = div_4800;
7015 break;
7016 case 5333333:
7017 div_table = div_5333;
7018 break;
7019 default:
7020 goto fail;
7021 }
7022
7023 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7024
7025 fail:
7026 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7027 return 190476;
7028 }
7029
7030 static void
7031 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7032 {
7033 while (*num > DATA_LINK_M_N_MASK ||
7034 *den > DATA_LINK_M_N_MASK) {
7035 *num >>= 1;
7036 *den >>= 1;
7037 }
7038 }
7039
7040 static void compute_m_n(unsigned int m, unsigned int n,
7041 uint32_t *ret_m, uint32_t *ret_n)
7042 {
7043 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7044 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7045 intel_reduce_m_n_ratio(ret_m, ret_n);
7046 }
7047
7048 void
7049 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7050 int pixel_clock, int link_clock,
7051 struct intel_link_m_n *m_n)
7052 {
7053 m_n->tu = 64;
7054
7055 compute_m_n(bits_per_pixel * pixel_clock,
7056 link_clock * nlanes * 8,
7057 &m_n->gmch_m, &m_n->gmch_n);
7058
7059 compute_m_n(pixel_clock, link_clock,
7060 &m_n->link_m, &m_n->link_n);
7061 }
7062
7063 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7064 {
7065 if (i915.panel_use_ssc >= 0)
7066 return i915.panel_use_ssc != 0;
7067 return dev_priv->vbt.lvds_use_ssc
7068 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7069 }
7070
7071 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7072 int num_connectors)
7073 {
7074 struct drm_device *dev = crtc_state->base.crtc->dev;
7075 struct drm_i915_private *dev_priv = dev->dev_private;
7076 int refclk;
7077
7078 WARN_ON(!crtc_state->base.state);
7079
7080 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7081 refclk = 100000;
7082 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7083 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7084 refclk = dev_priv->vbt.lvds_ssc_freq;
7085 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7086 } else if (!IS_GEN2(dev)) {
7087 refclk = 96000;
7088 } else {
7089 refclk = 48000;
7090 }
7091
7092 return refclk;
7093 }
7094
7095 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7096 {
7097 return (1 << dpll->n) << 16 | dpll->m2;
7098 }
7099
7100 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7101 {
7102 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7103 }
7104
7105 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7106 struct intel_crtc_state *crtc_state,
7107 intel_clock_t *reduced_clock)
7108 {
7109 struct drm_device *dev = crtc->base.dev;
7110 u32 fp, fp2 = 0;
7111
7112 if (IS_PINEVIEW(dev)) {
7113 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7114 if (reduced_clock)
7115 fp2 = pnv_dpll_compute_fp(reduced_clock);
7116 } else {
7117 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7118 if (reduced_clock)
7119 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7120 }
7121
7122 crtc_state->dpll_hw_state.fp0 = fp;
7123
7124 crtc->lowfreq_avail = false;
7125 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7126 reduced_clock) {
7127 crtc_state->dpll_hw_state.fp1 = fp2;
7128 crtc->lowfreq_avail = true;
7129 } else {
7130 crtc_state->dpll_hw_state.fp1 = fp;
7131 }
7132 }
7133
7134 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7135 pipe)
7136 {
7137 u32 reg_val;
7138
7139 /*
7140 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7141 * and set it to a reasonable value instead.
7142 */
7143 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7144 reg_val &= 0xffffff00;
7145 reg_val |= 0x00000030;
7146 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7147
7148 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7149 reg_val &= 0x8cffffff;
7150 reg_val = 0x8c000000;
7151 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7152
7153 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7154 reg_val &= 0xffffff00;
7155 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7156
7157 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7158 reg_val &= 0x00ffffff;
7159 reg_val |= 0xb0000000;
7160 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7161 }
7162
7163 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7164 struct intel_link_m_n *m_n)
7165 {
7166 struct drm_device *dev = crtc->base.dev;
7167 struct drm_i915_private *dev_priv = dev->dev_private;
7168 int pipe = crtc->pipe;
7169
7170 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7171 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7172 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7173 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7174 }
7175
7176 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7177 struct intel_link_m_n *m_n,
7178 struct intel_link_m_n *m2_n2)
7179 {
7180 struct drm_device *dev = crtc->base.dev;
7181 struct drm_i915_private *dev_priv = dev->dev_private;
7182 int pipe = crtc->pipe;
7183 enum transcoder transcoder = crtc->config->cpu_transcoder;
7184
7185 if (INTEL_INFO(dev)->gen >= 5) {
7186 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7187 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7188 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7189 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7190 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7191 * for gen < 8) and if DRRS is supported (to make sure the
7192 * registers are not unnecessarily accessed).
7193 */
7194 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7195 crtc->config->has_drrs) {
7196 I915_WRITE(PIPE_DATA_M2(transcoder),
7197 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7198 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7199 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7200 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7201 }
7202 } else {
7203 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7204 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7205 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7206 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7207 }
7208 }
7209
7210 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7211 {
7212 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7213
7214 if (m_n == M1_N1) {
7215 dp_m_n = &crtc->config->dp_m_n;
7216 dp_m2_n2 = &crtc->config->dp_m2_n2;
7217 } else if (m_n == M2_N2) {
7218
7219 /*
7220 * M2_N2 registers are not supported. Hence m2_n2 divider value
7221 * needs to be programmed into M1_N1.
7222 */
7223 dp_m_n = &crtc->config->dp_m2_n2;
7224 } else {
7225 DRM_ERROR("Unsupported divider value\n");
7226 return;
7227 }
7228
7229 if (crtc->config->has_pch_encoder)
7230 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7231 else
7232 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7233 }
7234
7235 static void vlv_compute_dpll(struct intel_crtc *crtc,
7236 struct intel_crtc_state *pipe_config)
7237 {
7238 u32 dpll, dpll_md;
7239
7240 /*
7241 * Enable DPIO clock input. We should never disable the reference
7242 * clock for pipe B, since VGA hotplug / manual detection depends
7243 * on it.
7244 */
7245 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7246 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7247 /* We should never disable this, set it here for state tracking */
7248 if (crtc->pipe == PIPE_B)
7249 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7250 dpll |= DPLL_VCO_ENABLE;
7251 pipe_config->dpll_hw_state.dpll = dpll;
7252
7253 dpll_md = (pipe_config->pixel_multiplier - 1)
7254 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7255 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7256 }
7257
7258 static void vlv_prepare_pll(struct intel_crtc *crtc,
7259 const struct intel_crtc_state *pipe_config)
7260 {
7261 struct drm_device *dev = crtc->base.dev;
7262 struct drm_i915_private *dev_priv = dev->dev_private;
7263 int pipe = crtc->pipe;
7264 u32 mdiv;
7265 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7266 u32 coreclk, reg_val;
7267
7268 mutex_lock(&dev_priv->sb_lock);
7269
7270 bestn = pipe_config->dpll.n;
7271 bestm1 = pipe_config->dpll.m1;
7272 bestm2 = pipe_config->dpll.m2;
7273 bestp1 = pipe_config->dpll.p1;
7274 bestp2 = pipe_config->dpll.p2;
7275
7276 /* See eDP HDMI DPIO driver vbios notes doc */
7277
7278 /* PLL B needs special handling */
7279 if (pipe == PIPE_B)
7280 vlv_pllb_recal_opamp(dev_priv, pipe);
7281
7282 /* Set up Tx target for periodic Rcomp update */
7283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7284
7285 /* Disable target IRef on PLL */
7286 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7287 reg_val &= 0x00ffffff;
7288 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7289
7290 /* Disable fast lock */
7291 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7292
7293 /* Set idtafcrecal before PLL is enabled */
7294 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7295 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7296 mdiv |= ((bestn << DPIO_N_SHIFT));
7297 mdiv |= (1 << DPIO_K_SHIFT);
7298
7299 /*
7300 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7301 * but we don't support that).
7302 * Note: don't use the DAC post divider as it seems unstable.
7303 */
7304 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7305 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7306
7307 mdiv |= DPIO_ENABLE_CALIBRATION;
7308 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7309
7310 /* Set HBR and RBR LPF coefficients */
7311 if (pipe_config->port_clock == 162000 ||
7312 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7313 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7314 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7315 0x009f0003);
7316 else
7317 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7318 0x00d0000f);
7319
7320 if (pipe_config->has_dp_encoder) {
7321 /* Use SSC source */
7322 if (pipe == PIPE_A)
7323 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7324 0x0df40000);
7325 else
7326 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7327 0x0df70000);
7328 } else { /* HDMI or VGA */
7329 /* Use bend source */
7330 if (pipe == PIPE_A)
7331 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7332 0x0df70000);
7333 else
7334 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7335 0x0df40000);
7336 }
7337
7338 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7339 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7340 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7341 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7342 coreclk |= 0x01000000;
7343 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7344
7345 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7346 mutex_unlock(&dev_priv->sb_lock);
7347 }
7348
7349 static void chv_compute_dpll(struct intel_crtc *crtc,
7350 struct intel_crtc_state *pipe_config)
7351 {
7352 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7353 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7354 DPLL_VCO_ENABLE;
7355 if (crtc->pipe != PIPE_A)
7356 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7357
7358 pipe_config->dpll_hw_state.dpll_md =
7359 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7360 }
7361
7362 static void chv_prepare_pll(struct intel_crtc *crtc,
7363 const struct intel_crtc_state *pipe_config)
7364 {
7365 struct drm_device *dev = crtc->base.dev;
7366 struct drm_i915_private *dev_priv = dev->dev_private;
7367 int pipe = crtc->pipe;
7368 int dpll_reg = DPLL(crtc->pipe);
7369 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7370 u32 loopfilter, tribuf_calcntr;
7371 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7372 u32 dpio_val;
7373 int vco;
7374
7375 bestn = pipe_config->dpll.n;
7376 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7377 bestm1 = pipe_config->dpll.m1;
7378 bestm2 = pipe_config->dpll.m2 >> 22;
7379 bestp1 = pipe_config->dpll.p1;
7380 bestp2 = pipe_config->dpll.p2;
7381 vco = pipe_config->dpll.vco;
7382 dpio_val = 0;
7383 loopfilter = 0;
7384
7385 /*
7386 * Enable Refclk and SSC
7387 */
7388 I915_WRITE(dpll_reg,
7389 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7390
7391 mutex_lock(&dev_priv->sb_lock);
7392
7393 /* p1 and p2 divider */
7394 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7395 5 << DPIO_CHV_S1_DIV_SHIFT |
7396 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7397 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7398 1 << DPIO_CHV_K_DIV_SHIFT);
7399
7400 /* Feedback post-divider - m2 */
7401 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7402
7403 /* Feedback refclk divider - n and m1 */
7404 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7405 DPIO_CHV_M1_DIV_BY_2 |
7406 1 << DPIO_CHV_N_DIV_SHIFT);
7407
7408 /* M2 fraction division */
7409 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7410
7411 /* M2 fraction division enable */
7412 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7413 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7414 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7415 if (bestm2_frac)
7416 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7417 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7418
7419 /* Program digital lock detect threshold */
7420 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7421 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7422 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7423 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7424 if (!bestm2_frac)
7425 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7426 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7427
7428 /* Loop filter */
7429 if (vco == 5400000) {
7430 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7431 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7432 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7433 tribuf_calcntr = 0x9;
7434 } else if (vco <= 6200000) {
7435 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7436 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7437 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7438 tribuf_calcntr = 0x9;
7439 } else if (vco <= 6480000) {
7440 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7441 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7442 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7443 tribuf_calcntr = 0x8;
7444 } else {
7445 /* Not supported. Apply the same limits as in the max case */
7446 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7447 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7448 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7449 tribuf_calcntr = 0;
7450 }
7451 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7452
7453 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7454 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7455 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7456 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7457
7458 /* AFC Recal */
7459 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7460 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7461 DPIO_AFC_RECAL);
7462
7463 mutex_unlock(&dev_priv->sb_lock);
7464 }
7465
7466 /**
7467 * vlv_force_pll_on - forcibly enable just the PLL
7468 * @dev_priv: i915 private structure
7469 * @pipe: pipe PLL to enable
7470 * @dpll: PLL configuration
7471 *
7472 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7473 * in cases where we need the PLL enabled even when @pipe is not going to
7474 * be enabled.
7475 */
7476 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7477 const struct dpll *dpll)
7478 {
7479 struct intel_crtc *crtc =
7480 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7481 struct intel_crtc_state pipe_config = {
7482 .base.crtc = &crtc->base,
7483 .pixel_multiplier = 1,
7484 .dpll = *dpll,
7485 };
7486
7487 if (IS_CHERRYVIEW(dev)) {
7488 chv_compute_dpll(crtc, &pipe_config);
7489 chv_prepare_pll(crtc, &pipe_config);
7490 chv_enable_pll(crtc, &pipe_config);
7491 } else {
7492 vlv_compute_dpll(crtc, &pipe_config);
7493 vlv_prepare_pll(crtc, &pipe_config);
7494 vlv_enable_pll(crtc, &pipe_config);
7495 }
7496 }
7497
7498 /**
7499 * vlv_force_pll_off - forcibly disable just the PLL
7500 * @dev_priv: i915 private structure
7501 * @pipe: pipe PLL to disable
7502 *
7503 * Disable the PLL for @pipe. To be used in cases where we need
7504 * the PLL enabled even when @pipe is not going to be enabled.
7505 */
7506 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7507 {
7508 if (IS_CHERRYVIEW(dev))
7509 chv_disable_pll(to_i915(dev), pipe);
7510 else
7511 vlv_disable_pll(to_i915(dev), pipe);
7512 }
7513
7514 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7515 struct intel_crtc_state *crtc_state,
7516 intel_clock_t *reduced_clock,
7517 int num_connectors)
7518 {
7519 struct drm_device *dev = crtc->base.dev;
7520 struct drm_i915_private *dev_priv = dev->dev_private;
7521 u32 dpll;
7522 bool is_sdvo;
7523 struct dpll *clock = &crtc_state->dpll;
7524
7525 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7526
7527 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7528 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7529
7530 dpll = DPLL_VGA_MODE_DIS;
7531
7532 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7533 dpll |= DPLLB_MODE_LVDS;
7534 else
7535 dpll |= DPLLB_MODE_DAC_SERIAL;
7536
7537 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7538 dpll |= (crtc_state->pixel_multiplier - 1)
7539 << SDVO_MULTIPLIER_SHIFT_HIRES;
7540 }
7541
7542 if (is_sdvo)
7543 dpll |= DPLL_SDVO_HIGH_SPEED;
7544
7545 if (crtc_state->has_dp_encoder)
7546 dpll |= DPLL_SDVO_HIGH_SPEED;
7547
7548 /* compute bitmask from p1 value */
7549 if (IS_PINEVIEW(dev))
7550 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7551 else {
7552 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7553 if (IS_G4X(dev) && reduced_clock)
7554 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7555 }
7556 switch (clock->p2) {
7557 case 5:
7558 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7559 break;
7560 case 7:
7561 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7562 break;
7563 case 10:
7564 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7565 break;
7566 case 14:
7567 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7568 break;
7569 }
7570 if (INTEL_INFO(dev)->gen >= 4)
7571 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7572
7573 if (crtc_state->sdvo_tv_clock)
7574 dpll |= PLL_REF_INPUT_TVCLKINBC;
7575 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7576 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7577 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7578 else
7579 dpll |= PLL_REF_INPUT_DREFCLK;
7580
7581 dpll |= DPLL_VCO_ENABLE;
7582 crtc_state->dpll_hw_state.dpll = dpll;
7583
7584 if (INTEL_INFO(dev)->gen >= 4) {
7585 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7586 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7587 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7588 }
7589 }
7590
7591 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7592 struct intel_crtc_state *crtc_state,
7593 intel_clock_t *reduced_clock,
7594 int num_connectors)
7595 {
7596 struct drm_device *dev = crtc->base.dev;
7597 struct drm_i915_private *dev_priv = dev->dev_private;
7598 u32 dpll;
7599 struct dpll *clock = &crtc_state->dpll;
7600
7601 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7602
7603 dpll = DPLL_VGA_MODE_DIS;
7604
7605 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7606 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7607 } else {
7608 if (clock->p1 == 2)
7609 dpll |= PLL_P1_DIVIDE_BY_TWO;
7610 else
7611 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7612 if (clock->p2 == 4)
7613 dpll |= PLL_P2_DIVIDE_BY_4;
7614 }
7615
7616 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7617 dpll |= DPLL_DVO_2X_MODE;
7618
7619 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7620 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7621 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7622 else
7623 dpll |= PLL_REF_INPUT_DREFCLK;
7624
7625 dpll |= DPLL_VCO_ENABLE;
7626 crtc_state->dpll_hw_state.dpll = dpll;
7627 }
7628
7629 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7630 {
7631 struct drm_device *dev = intel_crtc->base.dev;
7632 struct drm_i915_private *dev_priv = dev->dev_private;
7633 enum pipe pipe = intel_crtc->pipe;
7634 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7635 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7636 uint32_t crtc_vtotal, crtc_vblank_end;
7637 int vsyncshift = 0;
7638
7639 /* We need to be careful not to changed the adjusted mode, for otherwise
7640 * the hw state checker will get angry at the mismatch. */
7641 crtc_vtotal = adjusted_mode->crtc_vtotal;
7642 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7643
7644 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7645 /* the chip adds 2 halflines automatically */
7646 crtc_vtotal -= 1;
7647 crtc_vblank_end -= 1;
7648
7649 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7650 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7651 else
7652 vsyncshift = adjusted_mode->crtc_hsync_start -
7653 adjusted_mode->crtc_htotal / 2;
7654 if (vsyncshift < 0)
7655 vsyncshift += adjusted_mode->crtc_htotal;
7656 }
7657
7658 if (INTEL_INFO(dev)->gen > 3)
7659 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7660
7661 I915_WRITE(HTOTAL(cpu_transcoder),
7662 (adjusted_mode->crtc_hdisplay - 1) |
7663 ((adjusted_mode->crtc_htotal - 1) << 16));
7664 I915_WRITE(HBLANK(cpu_transcoder),
7665 (adjusted_mode->crtc_hblank_start - 1) |
7666 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7667 I915_WRITE(HSYNC(cpu_transcoder),
7668 (adjusted_mode->crtc_hsync_start - 1) |
7669 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7670
7671 I915_WRITE(VTOTAL(cpu_transcoder),
7672 (adjusted_mode->crtc_vdisplay - 1) |
7673 ((crtc_vtotal - 1) << 16));
7674 I915_WRITE(VBLANK(cpu_transcoder),
7675 (adjusted_mode->crtc_vblank_start - 1) |
7676 ((crtc_vblank_end - 1) << 16));
7677 I915_WRITE(VSYNC(cpu_transcoder),
7678 (adjusted_mode->crtc_vsync_start - 1) |
7679 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7680
7681 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7682 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7683 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7684 * bits. */
7685 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7686 (pipe == PIPE_B || pipe == PIPE_C))
7687 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7688
7689 /* pipesrc controls the size that is scaled from, which should
7690 * always be the user's requested size.
7691 */
7692 I915_WRITE(PIPESRC(pipe),
7693 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7694 (intel_crtc->config->pipe_src_h - 1));
7695 }
7696
7697 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7698 struct intel_crtc_state *pipe_config)
7699 {
7700 struct drm_device *dev = crtc->base.dev;
7701 struct drm_i915_private *dev_priv = dev->dev_private;
7702 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7703 uint32_t tmp;
7704
7705 tmp = I915_READ(HTOTAL(cpu_transcoder));
7706 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7707 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7708 tmp = I915_READ(HBLANK(cpu_transcoder));
7709 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7710 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7711 tmp = I915_READ(HSYNC(cpu_transcoder));
7712 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7713 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7714
7715 tmp = I915_READ(VTOTAL(cpu_transcoder));
7716 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7717 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7718 tmp = I915_READ(VBLANK(cpu_transcoder));
7719 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7720 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7721 tmp = I915_READ(VSYNC(cpu_transcoder));
7722 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7723 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7724
7725 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7726 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7727 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7728 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7729 }
7730
7731 tmp = I915_READ(PIPESRC(crtc->pipe));
7732 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7733 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7734
7735 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7736 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7737 }
7738
7739 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7740 struct intel_crtc_state *pipe_config)
7741 {
7742 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7743 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7744 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7745 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7746
7747 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7748 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7749 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7750 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7751
7752 mode->flags = pipe_config->base.adjusted_mode.flags;
7753 mode->type = DRM_MODE_TYPE_DRIVER;
7754
7755 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7756 mode->flags |= pipe_config->base.adjusted_mode.flags;
7757
7758 mode->hsync = drm_mode_hsync(mode);
7759 mode->vrefresh = drm_mode_vrefresh(mode);
7760 drm_mode_set_name(mode);
7761 }
7762
7763 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7764 {
7765 struct drm_device *dev = intel_crtc->base.dev;
7766 struct drm_i915_private *dev_priv = dev->dev_private;
7767 uint32_t pipeconf;
7768
7769 pipeconf = 0;
7770
7771 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7772 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7773 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7774
7775 if (intel_crtc->config->double_wide)
7776 pipeconf |= PIPECONF_DOUBLE_WIDE;
7777
7778 /* only g4x and later have fancy bpc/dither controls */
7779 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7780 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7781 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7782 pipeconf |= PIPECONF_DITHER_EN |
7783 PIPECONF_DITHER_TYPE_SP;
7784
7785 switch (intel_crtc->config->pipe_bpp) {
7786 case 18:
7787 pipeconf |= PIPECONF_6BPC;
7788 break;
7789 case 24:
7790 pipeconf |= PIPECONF_8BPC;
7791 break;
7792 case 30:
7793 pipeconf |= PIPECONF_10BPC;
7794 break;
7795 default:
7796 /* Case prevented by intel_choose_pipe_bpp_dither. */
7797 BUG();
7798 }
7799 }
7800
7801 if (HAS_PIPE_CXSR(dev)) {
7802 if (intel_crtc->lowfreq_avail) {
7803 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7804 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7805 } else {
7806 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7807 }
7808 }
7809
7810 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7811 if (INTEL_INFO(dev)->gen < 4 ||
7812 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7813 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7814 else
7815 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7816 } else
7817 pipeconf |= PIPECONF_PROGRESSIVE;
7818
7819 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7820 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7821
7822 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7823 POSTING_READ(PIPECONF(intel_crtc->pipe));
7824 }
7825
7826 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7827 struct intel_crtc_state *crtc_state)
7828 {
7829 struct drm_device *dev = crtc->base.dev;
7830 struct drm_i915_private *dev_priv = dev->dev_private;
7831 int refclk, num_connectors = 0;
7832 intel_clock_t clock;
7833 bool ok;
7834 bool is_dsi = false;
7835 struct intel_encoder *encoder;
7836 const intel_limit_t *limit;
7837 struct drm_atomic_state *state = crtc_state->base.state;
7838 struct drm_connector *connector;
7839 struct drm_connector_state *connector_state;
7840 int i;
7841
7842 memset(&crtc_state->dpll_hw_state, 0,
7843 sizeof(crtc_state->dpll_hw_state));
7844
7845 for_each_connector_in_state(state, connector, connector_state, i) {
7846 if (connector_state->crtc != &crtc->base)
7847 continue;
7848
7849 encoder = to_intel_encoder(connector_state->best_encoder);
7850
7851 switch (encoder->type) {
7852 case INTEL_OUTPUT_DSI:
7853 is_dsi = true;
7854 break;
7855 default:
7856 break;
7857 }
7858
7859 num_connectors++;
7860 }
7861
7862 if (is_dsi)
7863 return 0;
7864
7865 if (!crtc_state->clock_set) {
7866 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7867
7868 /*
7869 * Returns a set of divisors for the desired target clock with
7870 * the given refclk, or FALSE. The returned values represent
7871 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7872 * 2) / p1 / p2.
7873 */
7874 limit = intel_limit(crtc_state, refclk);
7875 ok = dev_priv->display.find_dpll(limit, crtc_state,
7876 crtc_state->port_clock,
7877 refclk, NULL, &clock);
7878 if (!ok) {
7879 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7880 return -EINVAL;
7881 }
7882
7883 /* Compat-code for transition, will disappear. */
7884 crtc_state->dpll.n = clock.n;
7885 crtc_state->dpll.m1 = clock.m1;
7886 crtc_state->dpll.m2 = clock.m2;
7887 crtc_state->dpll.p1 = clock.p1;
7888 crtc_state->dpll.p2 = clock.p2;
7889 }
7890
7891 if (IS_GEN2(dev)) {
7892 i8xx_compute_dpll(crtc, crtc_state, NULL,
7893 num_connectors);
7894 } else if (IS_CHERRYVIEW(dev)) {
7895 chv_compute_dpll(crtc, crtc_state);
7896 } else if (IS_VALLEYVIEW(dev)) {
7897 vlv_compute_dpll(crtc, crtc_state);
7898 } else {
7899 i9xx_compute_dpll(crtc, crtc_state, NULL,
7900 num_connectors);
7901 }
7902
7903 return 0;
7904 }
7905
7906 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7907 struct intel_crtc_state *pipe_config)
7908 {
7909 struct drm_device *dev = crtc->base.dev;
7910 struct drm_i915_private *dev_priv = dev->dev_private;
7911 uint32_t tmp;
7912
7913 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7914 return;
7915
7916 tmp = I915_READ(PFIT_CONTROL);
7917 if (!(tmp & PFIT_ENABLE))
7918 return;
7919
7920 /* Check whether the pfit is attached to our pipe. */
7921 if (INTEL_INFO(dev)->gen < 4) {
7922 if (crtc->pipe != PIPE_B)
7923 return;
7924 } else {
7925 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7926 return;
7927 }
7928
7929 pipe_config->gmch_pfit.control = tmp;
7930 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7931 if (INTEL_INFO(dev)->gen < 5)
7932 pipe_config->gmch_pfit.lvds_border_bits =
7933 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7934 }
7935
7936 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7937 struct intel_crtc_state *pipe_config)
7938 {
7939 struct drm_device *dev = crtc->base.dev;
7940 struct drm_i915_private *dev_priv = dev->dev_private;
7941 int pipe = pipe_config->cpu_transcoder;
7942 intel_clock_t clock;
7943 u32 mdiv;
7944 int refclk = 100000;
7945
7946 /* In case of MIPI DPLL will not even be used */
7947 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7948 return;
7949
7950 mutex_lock(&dev_priv->sb_lock);
7951 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7952 mutex_unlock(&dev_priv->sb_lock);
7953
7954 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7955 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7956 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7957 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7958 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7959
7960 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7961 }
7962
7963 static void
7964 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7965 struct intel_initial_plane_config *plane_config)
7966 {
7967 struct drm_device *dev = crtc->base.dev;
7968 struct drm_i915_private *dev_priv = dev->dev_private;
7969 u32 val, base, offset;
7970 int pipe = crtc->pipe, plane = crtc->plane;
7971 int fourcc, pixel_format;
7972 unsigned int aligned_height;
7973 struct drm_framebuffer *fb;
7974 struct intel_framebuffer *intel_fb;
7975
7976 val = I915_READ(DSPCNTR(plane));
7977 if (!(val & DISPLAY_PLANE_ENABLE))
7978 return;
7979
7980 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7981 if (!intel_fb) {
7982 DRM_DEBUG_KMS("failed to alloc fb\n");
7983 return;
7984 }
7985
7986 fb = &intel_fb->base;
7987
7988 if (INTEL_INFO(dev)->gen >= 4) {
7989 if (val & DISPPLANE_TILED) {
7990 plane_config->tiling = I915_TILING_X;
7991 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7992 }
7993 }
7994
7995 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7996 fourcc = i9xx_format_to_fourcc(pixel_format);
7997 fb->pixel_format = fourcc;
7998 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7999
8000 if (INTEL_INFO(dev)->gen >= 4) {
8001 if (plane_config->tiling)
8002 offset = I915_READ(DSPTILEOFF(plane));
8003 else
8004 offset = I915_READ(DSPLINOFF(plane));
8005 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8006 } else {
8007 base = I915_READ(DSPADDR(plane));
8008 }
8009 plane_config->base = base;
8010
8011 val = I915_READ(PIPESRC(pipe));
8012 fb->width = ((val >> 16) & 0xfff) + 1;
8013 fb->height = ((val >> 0) & 0xfff) + 1;
8014
8015 val = I915_READ(DSPSTRIDE(pipe));
8016 fb->pitches[0] = val & 0xffffffc0;
8017
8018 aligned_height = intel_fb_align_height(dev, fb->height,
8019 fb->pixel_format,
8020 fb->modifier[0]);
8021
8022 plane_config->size = fb->pitches[0] * aligned_height;
8023
8024 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8025 pipe_name(pipe), plane, fb->width, fb->height,
8026 fb->bits_per_pixel, base, fb->pitches[0],
8027 plane_config->size);
8028
8029 plane_config->fb = intel_fb;
8030 }
8031
8032 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8033 struct intel_crtc_state *pipe_config)
8034 {
8035 struct drm_device *dev = crtc->base.dev;
8036 struct drm_i915_private *dev_priv = dev->dev_private;
8037 int pipe = pipe_config->cpu_transcoder;
8038 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8039 intel_clock_t clock;
8040 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8041 int refclk = 100000;
8042
8043 mutex_lock(&dev_priv->sb_lock);
8044 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8045 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8046 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8047 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8048 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8049 mutex_unlock(&dev_priv->sb_lock);
8050
8051 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8052 clock.m2 = (pll_dw0 & 0xff) << 22;
8053 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8054 clock.m2 |= pll_dw2 & 0x3fffff;
8055 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8056 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8057 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8058
8059 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8060 }
8061
8062 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8063 struct intel_crtc_state *pipe_config)
8064 {
8065 struct drm_device *dev = crtc->base.dev;
8066 struct drm_i915_private *dev_priv = dev->dev_private;
8067 uint32_t tmp;
8068
8069 if (!intel_display_power_is_enabled(dev_priv,
8070 POWER_DOMAIN_PIPE(crtc->pipe)))
8071 return false;
8072
8073 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8074 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8075
8076 tmp = I915_READ(PIPECONF(crtc->pipe));
8077 if (!(tmp & PIPECONF_ENABLE))
8078 return false;
8079
8080 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8081 switch (tmp & PIPECONF_BPC_MASK) {
8082 case PIPECONF_6BPC:
8083 pipe_config->pipe_bpp = 18;
8084 break;
8085 case PIPECONF_8BPC:
8086 pipe_config->pipe_bpp = 24;
8087 break;
8088 case PIPECONF_10BPC:
8089 pipe_config->pipe_bpp = 30;
8090 break;
8091 default:
8092 break;
8093 }
8094 }
8095
8096 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8097 pipe_config->limited_color_range = true;
8098
8099 if (INTEL_INFO(dev)->gen < 4)
8100 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8101
8102 intel_get_pipe_timings(crtc, pipe_config);
8103
8104 i9xx_get_pfit_config(crtc, pipe_config);
8105
8106 if (INTEL_INFO(dev)->gen >= 4) {
8107 tmp = I915_READ(DPLL_MD(crtc->pipe));
8108 pipe_config->pixel_multiplier =
8109 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8110 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8111 pipe_config->dpll_hw_state.dpll_md = tmp;
8112 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8113 tmp = I915_READ(DPLL(crtc->pipe));
8114 pipe_config->pixel_multiplier =
8115 ((tmp & SDVO_MULTIPLIER_MASK)
8116 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8117 } else {
8118 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8119 * port and will be fixed up in the encoder->get_config
8120 * function. */
8121 pipe_config->pixel_multiplier = 1;
8122 }
8123 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8124 if (!IS_VALLEYVIEW(dev)) {
8125 /*
8126 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8127 * on 830. Filter it out here so that we don't
8128 * report errors due to that.
8129 */
8130 if (IS_I830(dev))
8131 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8132
8133 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8134 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8135 } else {
8136 /* Mask out read-only status bits. */
8137 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8138 DPLL_PORTC_READY_MASK |
8139 DPLL_PORTB_READY_MASK);
8140 }
8141
8142 if (IS_CHERRYVIEW(dev))
8143 chv_crtc_clock_get(crtc, pipe_config);
8144 else if (IS_VALLEYVIEW(dev))
8145 vlv_crtc_clock_get(crtc, pipe_config);
8146 else
8147 i9xx_crtc_clock_get(crtc, pipe_config);
8148
8149 /*
8150 * Normally the dotclock is filled in by the encoder .get_config()
8151 * but in case the pipe is enabled w/o any ports we need a sane
8152 * default.
8153 */
8154 pipe_config->base.adjusted_mode.crtc_clock =
8155 pipe_config->port_clock / pipe_config->pixel_multiplier;
8156
8157 return true;
8158 }
8159
8160 static void ironlake_init_pch_refclk(struct drm_device *dev)
8161 {
8162 struct drm_i915_private *dev_priv = dev->dev_private;
8163 struct intel_encoder *encoder;
8164 u32 val, final;
8165 bool has_lvds = false;
8166 bool has_cpu_edp = false;
8167 bool has_panel = false;
8168 bool has_ck505 = false;
8169 bool can_ssc = false;
8170
8171 /* We need to take the global config into account */
8172 for_each_intel_encoder(dev, encoder) {
8173 switch (encoder->type) {
8174 case INTEL_OUTPUT_LVDS:
8175 has_panel = true;
8176 has_lvds = true;
8177 break;
8178 case INTEL_OUTPUT_EDP:
8179 has_panel = true;
8180 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8181 has_cpu_edp = true;
8182 break;
8183 default:
8184 break;
8185 }
8186 }
8187
8188 if (HAS_PCH_IBX(dev)) {
8189 has_ck505 = dev_priv->vbt.display_clock_mode;
8190 can_ssc = has_ck505;
8191 } else {
8192 has_ck505 = false;
8193 can_ssc = true;
8194 }
8195
8196 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8197 has_panel, has_lvds, has_ck505);
8198
8199 /* Ironlake: try to setup display ref clock before DPLL
8200 * enabling. This is only under driver's control after
8201 * PCH B stepping, previous chipset stepping should be
8202 * ignoring this setting.
8203 */
8204 val = I915_READ(PCH_DREF_CONTROL);
8205
8206 /* As we must carefully and slowly disable/enable each source in turn,
8207 * compute the final state we want first and check if we need to
8208 * make any changes at all.
8209 */
8210 final = val;
8211 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8212 if (has_ck505)
8213 final |= DREF_NONSPREAD_CK505_ENABLE;
8214 else
8215 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8216
8217 final &= ~DREF_SSC_SOURCE_MASK;
8218 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8219 final &= ~DREF_SSC1_ENABLE;
8220
8221 if (has_panel) {
8222 final |= DREF_SSC_SOURCE_ENABLE;
8223
8224 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8225 final |= DREF_SSC1_ENABLE;
8226
8227 if (has_cpu_edp) {
8228 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8229 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8230 else
8231 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8232 } else
8233 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8234 } else {
8235 final |= DREF_SSC_SOURCE_DISABLE;
8236 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8237 }
8238
8239 if (final == val)
8240 return;
8241
8242 /* Always enable nonspread source */
8243 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8244
8245 if (has_ck505)
8246 val |= DREF_NONSPREAD_CK505_ENABLE;
8247 else
8248 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8249
8250 if (has_panel) {
8251 val &= ~DREF_SSC_SOURCE_MASK;
8252 val |= DREF_SSC_SOURCE_ENABLE;
8253
8254 /* SSC must be turned on before enabling the CPU output */
8255 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8256 DRM_DEBUG_KMS("Using SSC on panel\n");
8257 val |= DREF_SSC1_ENABLE;
8258 } else
8259 val &= ~DREF_SSC1_ENABLE;
8260
8261 /* Get SSC going before enabling the outputs */
8262 I915_WRITE(PCH_DREF_CONTROL, val);
8263 POSTING_READ(PCH_DREF_CONTROL);
8264 udelay(200);
8265
8266 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8267
8268 /* Enable CPU source on CPU attached eDP */
8269 if (has_cpu_edp) {
8270 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8271 DRM_DEBUG_KMS("Using SSC on eDP\n");
8272 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8273 } else
8274 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8275 } else
8276 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8277
8278 I915_WRITE(PCH_DREF_CONTROL, val);
8279 POSTING_READ(PCH_DREF_CONTROL);
8280 udelay(200);
8281 } else {
8282 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8283
8284 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8285
8286 /* Turn off CPU output */
8287 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8288
8289 I915_WRITE(PCH_DREF_CONTROL, val);
8290 POSTING_READ(PCH_DREF_CONTROL);
8291 udelay(200);
8292
8293 /* Turn off the SSC source */
8294 val &= ~DREF_SSC_SOURCE_MASK;
8295 val |= DREF_SSC_SOURCE_DISABLE;
8296
8297 /* Turn off SSC1 */
8298 val &= ~DREF_SSC1_ENABLE;
8299
8300 I915_WRITE(PCH_DREF_CONTROL, val);
8301 POSTING_READ(PCH_DREF_CONTROL);
8302 udelay(200);
8303 }
8304
8305 BUG_ON(val != final);
8306 }
8307
8308 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8309 {
8310 uint32_t tmp;
8311
8312 tmp = I915_READ(SOUTH_CHICKEN2);
8313 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8314 I915_WRITE(SOUTH_CHICKEN2, tmp);
8315
8316 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8317 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8318 DRM_ERROR("FDI mPHY reset assert timeout\n");
8319
8320 tmp = I915_READ(SOUTH_CHICKEN2);
8321 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8322 I915_WRITE(SOUTH_CHICKEN2, tmp);
8323
8324 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8325 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8326 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8327 }
8328
8329 /* WaMPhyProgramming:hsw */
8330 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8331 {
8332 uint32_t tmp;
8333
8334 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8335 tmp &= ~(0xFF << 24);
8336 tmp |= (0x12 << 24);
8337 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8338
8339 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8340 tmp |= (1 << 11);
8341 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8342
8343 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8344 tmp |= (1 << 11);
8345 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8346
8347 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8348 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8349 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8350
8351 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8352 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8353 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8354
8355 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8356 tmp &= ~(7 << 13);
8357 tmp |= (5 << 13);
8358 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8359
8360 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8361 tmp &= ~(7 << 13);
8362 tmp |= (5 << 13);
8363 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8364
8365 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8366 tmp &= ~0xFF;
8367 tmp |= 0x1C;
8368 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8369
8370 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8371 tmp &= ~0xFF;
8372 tmp |= 0x1C;
8373 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8374
8375 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8376 tmp &= ~(0xFF << 16);
8377 tmp |= (0x1C << 16);
8378 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8379
8380 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8381 tmp &= ~(0xFF << 16);
8382 tmp |= (0x1C << 16);
8383 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8384
8385 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8386 tmp |= (1 << 27);
8387 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8388
8389 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8390 tmp |= (1 << 27);
8391 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8392
8393 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8394 tmp &= ~(0xF << 28);
8395 tmp |= (4 << 28);
8396 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8397
8398 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8399 tmp &= ~(0xF << 28);
8400 tmp |= (4 << 28);
8401 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8402 }
8403
8404 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8405 * Programming" based on the parameters passed:
8406 * - Sequence to enable CLKOUT_DP
8407 * - Sequence to enable CLKOUT_DP without spread
8408 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8409 */
8410 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8411 bool with_fdi)
8412 {
8413 struct drm_i915_private *dev_priv = dev->dev_private;
8414 uint32_t reg, tmp;
8415
8416 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8417 with_spread = true;
8418 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8419 with_fdi = false;
8420
8421 mutex_lock(&dev_priv->sb_lock);
8422
8423 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8424 tmp &= ~SBI_SSCCTL_DISABLE;
8425 tmp |= SBI_SSCCTL_PATHALT;
8426 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8427
8428 udelay(24);
8429
8430 if (with_spread) {
8431 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8432 tmp &= ~SBI_SSCCTL_PATHALT;
8433 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8434
8435 if (with_fdi) {
8436 lpt_reset_fdi_mphy(dev_priv);
8437 lpt_program_fdi_mphy(dev_priv);
8438 }
8439 }
8440
8441 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8442 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8443 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8444 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8445
8446 mutex_unlock(&dev_priv->sb_lock);
8447 }
8448
8449 /* Sequence to disable CLKOUT_DP */
8450 static void lpt_disable_clkout_dp(struct drm_device *dev)
8451 {
8452 struct drm_i915_private *dev_priv = dev->dev_private;
8453 uint32_t reg, tmp;
8454
8455 mutex_lock(&dev_priv->sb_lock);
8456
8457 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8458 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8459 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8460 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8461
8462 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8463 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8464 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8465 tmp |= SBI_SSCCTL_PATHALT;
8466 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8467 udelay(32);
8468 }
8469 tmp |= SBI_SSCCTL_DISABLE;
8470 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8471 }
8472
8473 mutex_unlock(&dev_priv->sb_lock);
8474 }
8475
8476 static void lpt_init_pch_refclk(struct drm_device *dev)
8477 {
8478 struct intel_encoder *encoder;
8479 bool has_vga = false;
8480
8481 for_each_intel_encoder(dev, encoder) {
8482 switch (encoder->type) {
8483 case INTEL_OUTPUT_ANALOG:
8484 has_vga = true;
8485 break;
8486 default:
8487 break;
8488 }
8489 }
8490
8491 if (has_vga)
8492 lpt_enable_clkout_dp(dev, true, true);
8493 else
8494 lpt_disable_clkout_dp(dev);
8495 }
8496
8497 /*
8498 * Initialize reference clocks when the driver loads
8499 */
8500 void intel_init_pch_refclk(struct drm_device *dev)
8501 {
8502 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8503 ironlake_init_pch_refclk(dev);
8504 else if (HAS_PCH_LPT(dev))
8505 lpt_init_pch_refclk(dev);
8506 }
8507
8508 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8509 {
8510 struct drm_device *dev = crtc_state->base.crtc->dev;
8511 struct drm_i915_private *dev_priv = dev->dev_private;
8512 struct drm_atomic_state *state = crtc_state->base.state;
8513 struct drm_connector *connector;
8514 struct drm_connector_state *connector_state;
8515 struct intel_encoder *encoder;
8516 int num_connectors = 0, i;
8517 bool is_lvds = false;
8518
8519 for_each_connector_in_state(state, connector, connector_state, i) {
8520 if (connector_state->crtc != crtc_state->base.crtc)
8521 continue;
8522
8523 encoder = to_intel_encoder(connector_state->best_encoder);
8524
8525 switch (encoder->type) {
8526 case INTEL_OUTPUT_LVDS:
8527 is_lvds = true;
8528 break;
8529 default:
8530 break;
8531 }
8532 num_connectors++;
8533 }
8534
8535 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8536 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8537 dev_priv->vbt.lvds_ssc_freq);
8538 return dev_priv->vbt.lvds_ssc_freq;
8539 }
8540
8541 return 120000;
8542 }
8543
8544 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8545 {
8546 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8548 int pipe = intel_crtc->pipe;
8549 uint32_t val;
8550
8551 val = 0;
8552
8553 switch (intel_crtc->config->pipe_bpp) {
8554 case 18:
8555 val |= PIPECONF_6BPC;
8556 break;
8557 case 24:
8558 val |= PIPECONF_8BPC;
8559 break;
8560 case 30:
8561 val |= PIPECONF_10BPC;
8562 break;
8563 case 36:
8564 val |= PIPECONF_12BPC;
8565 break;
8566 default:
8567 /* Case prevented by intel_choose_pipe_bpp_dither. */
8568 BUG();
8569 }
8570
8571 if (intel_crtc->config->dither)
8572 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8573
8574 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8575 val |= PIPECONF_INTERLACED_ILK;
8576 else
8577 val |= PIPECONF_PROGRESSIVE;
8578
8579 if (intel_crtc->config->limited_color_range)
8580 val |= PIPECONF_COLOR_RANGE_SELECT;
8581
8582 I915_WRITE(PIPECONF(pipe), val);
8583 POSTING_READ(PIPECONF(pipe));
8584 }
8585
8586 /*
8587 * Set up the pipe CSC unit.
8588 *
8589 * Currently only full range RGB to limited range RGB conversion
8590 * is supported, but eventually this should handle various
8591 * RGB<->YCbCr scenarios as well.
8592 */
8593 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8594 {
8595 struct drm_device *dev = crtc->dev;
8596 struct drm_i915_private *dev_priv = dev->dev_private;
8597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8598 int pipe = intel_crtc->pipe;
8599 uint16_t coeff = 0x7800; /* 1.0 */
8600
8601 /*
8602 * TODO: Check what kind of values actually come out of the pipe
8603 * with these coeff/postoff values and adjust to get the best
8604 * accuracy. Perhaps we even need to take the bpc value into
8605 * consideration.
8606 */
8607
8608 if (intel_crtc->config->limited_color_range)
8609 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8610
8611 /*
8612 * GY/GU and RY/RU should be the other way around according
8613 * to BSpec, but reality doesn't agree. Just set them up in
8614 * a way that results in the correct picture.
8615 */
8616 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8617 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8618
8619 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8620 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8621
8622 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8623 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8624
8625 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8626 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8627 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8628
8629 if (INTEL_INFO(dev)->gen > 6) {
8630 uint16_t postoff = 0;
8631
8632 if (intel_crtc->config->limited_color_range)
8633 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8634
8635 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8636 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8637 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8638
8639 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8640 } else {
8641 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8642
8643 if (intel_crtc->config->limited_color_range)
8644 mode |= CSC_BLACK_SCREEN_OFFSET;
8645
8646 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8647 }
8648 }
8649
8650 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8651 {
8652 struct drm_device *dev = crtc->dev;
8653 struct drm_i915_private *dev_priv = dev->dev_private;
8654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8655 enum pipe pipe = intel_crtc->pipe;
8656 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8657 uint32_t val;
8658
8659 val = 0;
8660
8661 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8662 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8663
8664 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8665 val |= PIPECONF_INTERLACED_ILK;
8666 else
8667 val |= PIPECONF_PROGRESSIVE;
8668
8669 I915_WRITE(PIPECONF(cpu_transcoder), val);
8670 POSTING_READ(PIPECONF(cpu_transcoder));
8671
8672 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8673 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8674
8675 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8676 val = 0;
8677
8678 switch (intel_crtc->config->pipe_bpp) {
8679 case 18:
8680 val |= PIPEMISC_DITHER_6_BPC;
8681 break;
8682 case 24:
8683 val |= PIPEMISC_DITHER_8_BPC;
8684 break;
8685 case 30:
8686 val |= PIPEMISC_DITHER_10_BPC;
8687 break;
8688 case 36:
8689 val |= PIPEMISC_DITHER_12_BPC;
8690 break;
8691 default:
8692 /* Case prevented by pipe_config_set_bpp. */
8693 BUG();
8694 }
8695
8696 if (intel_crtc->config->dither)
8697 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8698
8699 I915_WRITE(PIPEMISC(pipe), val);
8700 }
8701 }
8702
8703 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8704 struct intel_crtc_state *crtc_state,
8705 intel_clock_t *clock,
8706 bool *has_reduced_clock,
8707 intel_clock_t *reduced_clock)
8708 {
8709 struct drm_device *dev = crtc->dev;
8710 struct drm_i915_private *dev_priv = dev->dev_private;
8711 int refclk;
8712 const intel_limit_t *limit;
8713 bool ret;
8714
8715 refclk = ironlake_get_refclk(crtc_state);
8716
8717 /*
8718 * Returns a set of divisors for the desired target clock with the given
8719 * refclk, or FALSE. The returned values represent the clock equation:
8720 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8721 */
8722 limit = intel_limit(crtc_state, refclk);
8723 ret = dev_priv->display.find_dpll(limit, crtc_state,
8724 crtc_state->port_clock,
8725 refclk, NULL, clock);
8726 if (!ret)
8727 return false;
8728
8729 return true;
8730 }
8731
8732 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8733 {
8734 /*
8735 * Account for spread spectrum to avoid
8736 * oversubscribing the link. Max center spread
8737 * is 2.5%; use 5% for safety's sake.
8738 */
8739 u32 bps = target_clock * bpp * 21 / 20;
8740 return DIV_ROUND_UP(bps, link_bw * 8);
8741 }
8742
8743 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8744 {
8745 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8746 }
8747
8748 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8749 struct intel_crtc_state *crtc_state,
8750 u32 *fp,
8751 intel_clock_t *reduced_clock, u32 *fp2)
8752 {
8753 struct drm_crtc *crtc = &intel_crtc->base;
8754 struct drm_device *dev = crtc->dev;
8755 struct drm_i915_private *dev_priv = dev->dev_private;
8756 struct drm_atomic_state *state = crtc_state->base.state;
8757 struct drm_connector *connector;
8758 struct drm_connector_state *connector_state;
8759 struct intel_encoder *encoder;
8760 uint32_t dpll;
8761 int factor, num_connectors = 0, i;
8762 bool is_lvds = false, is_sdvo = false;
8763
8764 for_each_connector_in_state(state, connector, connector_state, i) {
8765 if (connector_state->crtc != crtc_state->base.crtc)
8766 continue;
8767
8768 encoder = to_intel_encoder(connector_state->best_encoder);
8769
8770 switch (encoder->type) {
8771 case INTEL_OUTPUT_LVDS:
8772 is_lvds = true;
8773 break;
8774 case INTEL_OUTPUT_SDVO:
8775 case INTEL_OUTPUT_HDMI:
8776 is_sdvo = true;
8777 break;
8778 default:
8779 break;
8780 }
8781
8782 num_connectors++;
8783 }
8784
8785 /* Enable autotuning of the PLL clock (if permissible) */
8786 factor = 21;
8787 if (is_lvds) {
8788 if ((intel_panel_use_ssc(dev_priv) &&
8789 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8790 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8791 factor = 25;
8792 } else if (crtc_state->sdvo_tv_clock)
8793 factor = 20;
8794
8795 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8796 *fp |= FP_CB_TUNE;
8797
8798 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8799 *fp2 |= FP_CB_TUNE;
8800
8801 dpll = 0;
8802
8803 if (is_lvds)
8804 dpll |= DPLLB_MODE_LVDS;
8805 else
8806 dpll |= DPLLB_MODE_DAC_SERIAL;
8807
8808 dpll |= (crtc_state->pixel_multiplier - 1)
8809 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8810
8811 if (is_sdvo)
8812 dpll |= DPLL_SDVO_HIGH_SPEED;
8813 if (crtc_state->has_dp_encoder)
8814 dpll |= DPLL_SDVO_HIGH_SPEED;
8815
8816 /* compute bitmask from p1 value */
8817 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8818 /* also FPA1 */
8819 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8820
8821 switch (crtc_state->dpll.p2) {
8822 case 5:
8823 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8824 break;
8825 case 7:
8826 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8827 break;
8828 case 10:
8829 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8830 break;
8831 case 14:
8832 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8833 break;
8834 }
8835
8836 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8837 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8838 else
8839 dpll |= PLL_REF_INPUT_DREFCLK;
8840
8841 return dpll | DPLL_VCO_ENABLE;
8842 }
8843
8844 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8845 struct intel_crtc_state *crtc_state)
8846 {
8847 struct drm_device *dev = crtc->base.dev;
8848 intel_clock_t clock, reduced_clock;
8849 u32 dpll = 0, fp = 0, fp2 = 0;
8850 bool ok, has_reduced_clock = false;
8851 bool is_lvds = false;
8852 struct intel_shared_dpll *pll;
8853
8854 memset(&crtc_state->dpll_hw_state, 0,
8855 sizeof(crtc_state->dpll_hw_state));
8856
8857 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8858
8859 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8860 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8861
8862 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8863 &has_reduced_clock, &reduced_clock);
8864 if (!ok && !crtc_state->clock_set) {
8865 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8866 return -EINVAL;
8867 }
8868 /* Compat-code for transition, will disappear. */
8869 if (!crtc_state->clock_set) {
8870 crtc_state->dpll.n = clock.n;
8871 crtc_state->dpll.m1 = clock.m1;
8872 crtc_state->dpll.m2 = clock.m2;
8873 crtc_state->dpll.p1 = clock.p1;
8874 crtc_state->dpll.p2 = clock.p2;
8875 }
8876
8877 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8878 if (crtc_state->has_pch_encoder) {
8879 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8880 if (has_reduced_clock)
8881 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8882
8883 dpll = ironlake_compute_dpll(crtc, crtc_state,
8884 &fp, &reduced_clock,
8885 has_reduced_clock ? &fp2 : NULL);
8886
8887 crtc_state->dpll_hw_state.dpll = dpll;
8888 crtc_state->dpll_hw_state.fp0 = fp;
8889 if (has_reduced_clock)
8890 crtc_state->dpll_hw_state.fp1 = fp2;
8891 else
8892 crtc_state->dpll_hw_state.fp1 = fp;
8893
8894 pll = intel_get_shared_dpll(crtc, crtc_state);
8895 if (pll == NULL) {
8896 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8897 pipe_name(crtc->pipe));
8898 return -EINVAL;
8899 }
8900 }
8901
8902 if (is_lvds && has_reduced_clock)
8903 crtc->lowfreq_avail = true;
8904 else
8905 crtc->lowfreq_avail = false;
8906
8907 return 0;
8908 }
8909
8910 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8911 struct intel_link_m_n *m_n)
8912 {
8913 struct drm_device *dev = crtc->base.dev;
8914 struct drm_i915_private *dev_priv = dev->dev_private;
8915 enum pipe pipe = crtc->pipe;
8916
8917 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8918 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8919 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8920 & ~TU_SIZE_MASK;
8921 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8922 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8923 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8924 }
8925
8926 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8927 enum transcoder transcoder,
8928 struct intel_link_m_n *m_n,
8929 struct intel_link_m_n *m2_n2)
8930 {
8931 struct drm_device *dev = crtc->base.dev;
8932 struct drm_i915_private *dev_priv = dev->dev_private;
8933 enum pipe pipe = crtc->pipe;
8934
8935 if (INTEL_INFO(dev)->gen >= 5) {
8936 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8937 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8938 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8939 & ~TU_SIZE_MASK;
8940 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8941 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8942 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8943 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8944 * gen < 8) and if DRRS is supported (to make sure the
8945 * registers are not unnecessarily read).
8946 */
8947 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8948 crtc->config->has_drrs) {
8949 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8950 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8951 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8952 & ~TU_SIZE_MASK;
8953 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8954 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8955 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8956 }
8957 } else {
8958 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8959 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8960 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8961 & ~TU_SIZE_MASK;
8962 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8963 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8964 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8965 }
8966 }
8967
8968 void intel_dp_get_m_n(struct intel_crtc *crtc,
8969 struct intel_crtc_state *pipe_config)
8970 {
8971 if (pipe_config->has_pch_encoder)
8972 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8973 else
8974 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8975 &pipe_config->dp_m_n,
8976 &pipe_config->dp_m2_n2);
8977 }
8978
8979 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8980 struct intel_crtc_state *pipe_config)
8981 {
8982 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8983 &pipe_config->fdi_m_n, NULL);
8984 }
8985
8986 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8987 struct intel_crtc_state *pipe_config)
8988 {
8989 struct drm_device *dev = crtc->base.dev;
8990 struct drm_i915_private *dev_priv = dev->dev_private;
8991 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8992 uint32_t ps_ctrl = 0;
8993 int id = -1;
8994 int i;
8995
8996 /* find scaler attached to this pipe */
8997 for (i = 0; i < crtc->num_scalers; i++) {
8998 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8999 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9000 id = i;
9001 pipe_config->pch_pfit.enabled = true;
9002 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9003 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9004 break;
9005 }
9006 }
9007
9008 scaler_state->scaler_id = id;
9009 if (id >= 0) {
9010 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9011 } else {
9012 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9013 }
9014 }
9015
9016 static void
9017 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9018 struct intel_initial_plane_config *plane_config)
9019 {
9020 struct drm_device *dev = crtc->base.dev;
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022 u32 val, base, offset, stride_mult, tiling;
9023 int pipe = crtc->pipe;
9024 int fourcc, pixel_format;
9025 unsigned int aligned_height;
9026 struct drm_framebuffer *fb;
9027 struct intel_framebuffer *intel_fb;
9028
9029 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9030 if (!intel_fb) {
9031 DRM_DEBUG_KMS("failed to alloc fb\n");
9032 return;
9033 }
9034
9035 fb = &intel_fb->base;
9036
9037 val = I915_READ(PLANE_CTL(pipe, 0));
9038 if (!(val & PLANE_CTL_ENABLE))
9039 goto error;
9040
9041 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9042 fourcc = skl_format_to_fourcc(pixel_format,
9043 val & PLANE_CTL_ORDER_RGBX,
9044 val & PLANE_CTL_ALPHA_MASK);
9045 fb->pixel_format = fourcc;
9046 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9047
9048 tiling = val & PLANE_CTL_TILED_MASK;
9049 switch (tiling) {
9050 case PLANE_CTL_TILED_LINEAR:
9051 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9052 break;
9053 case PLANE_CTL_TILED_X:
9054 plane_config->tiling = I915_TILING_X;
9055 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9056 break;
9057 case PLANE_CTL_TILED_Y:
9058 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9059 break;
9060 case PLANE_CTL_TILED_YF:
9061 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9062 break;
9063 default:
9064 MISSING_CASE(tiling);
9065 goto error;
9066 }
9067
9068 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9069 plane_config->base = base;
9070
9071 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9072
9073 val = I915_READ(PLANE_SIZE(pipe, 0));
9074 fb->height = ((val >> 16) & 0xfff) + 1;
9075 fb->width = ((val >> 0) & 0x1fff) + 1;
9076
9077 val = I915_READ(PLANE_STRIDE(pipe, 0));
9078 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9079 fb->pixel_format);
9080 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9081
9082 aligned_height = intel_fb_align_height(dev, fb->height,
9083 fb->pixel_format,
9084 fb->modifier[0]);
9085
9086 plane_config->size = fb->pitches[0] * aligned_height;
9087
9088 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9089 pipe_name(pipe), fb->width, fb->height,
9090 fb->bits_per_pixel, base, fb->pitches[0],
9091 plane_config->size);
9092
9093 plane_config->fb = intel_fb;
9094 return;
9095
9096 error:
9097 kfree(fb);
9098 }
9099
9100 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9101 struct intel_crtc_state *pipe_config)
9102 {
9103 struct drm_device *dev = crtc->base.dev;
9104 struct drm_i915_private *dev_priv = dev->dev_private;
9105 uint32_t tmp;
9106
9107 tmp = I915_READ(PF_CTL(crtc->pipe));
9108
9109 if (tmp & PF_ENABLE) {
9110 pipe_config->pch_pfit.enabled = true;
9111 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9112 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9113
9114 /* We currently do not free assignements of panel fitters on
9115 * ivb/hsw (since we don't use the higher upscaling modes which
9116 * differentiates them) so just WARN about this case for now. */
9117 if (IS_GEN7(dev)) {
9118 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9119 PF_PIPE_SEL_IVB(crtc->pipe));
9120 }
9121 }
9122 }
9123
9124 static void
9125 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9126 struct intel_initial_plane_config *plane_config)
9127 {
9128 struct drm_device *dev = crtc->base.dev;
9129 struct drm_i915_private *dev_priv = dev->dev_private;
9130 u32 val, base, offset;
9131 int pipe = crtc->pipe;
9132 int fourcc, pixel_format;
9133 unsigned int aligned_height;
9134 struct drm_framebuffer *fb;
9135 struct intel_framebuffer *intel_fb;
9136
9137 val = I915_READ(DSPCNTR(pipe));
9138 if (!(val & DISPLAY_PLANE_ENABLE))
9139 return;
9140
9141 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9142 if (!intel_fb) {
9143 DRM_DEBUG_KMS("failed to alloc fb\n");
9144 return;
9145 }
9146
9147 fb = &intel_fb->base;
9148
9149 if (INTEL_INFO(dev)->gen >= 4) {
9150 if (val & DISPPLANE_TILED) {
9151 plane_config->tiling = I915_TILING_X;
9152 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9153 }
9154 }
9155
9156 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9157 fourcc = i9xx_format_to_fourcc(pixel_format);
9158 fb->pixel_format = fourcc;
9159 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9160
9161 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9162 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9163 offset = I915_READ(DSPOFFSET(pipe));
9164 } else {
9165 if (plane_config->tiling)
9166 offset = I915_READ(DSPTILEOFF(pipe));
9167 else
9168 offset = I915_READ(DSPLINOFF(pipe));
9169 }
9170 plane_config->base = base;
9171
9172 val = I915_READ(PIPESRC(pipe));
9173 fb->width = ((val >> 16) & 0xfff) + 1;
9174 fb->height = ((val >> 0) & 0xfff) + 1;
9175
9176 val = I915_READ(DSPSTRIDE(pipe));
9177 fb->pitches[0] = val & 0xffffffc0;
9178
9179 aligned_height = intel_fb_align_height(dev, fb->height,
9180 fb->pixel_format,
9181 fb->modifier[0]);
9182
9183 plane_config->size = fb->pitches[0] * aligned_height;
9184
9185 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9186 pipe_name(pipe), fb->width, fb->height,
9187 fb->bits_per_pixel, base, fb->pitches[0],
9188 plane_config->size);
9189
9190 plane_config->fb = intel_fb;
9191 }
9192
9193 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9194 struct intel_crtc_state *pipe_config)
9195 {
9196 struct drm_device *dev = crtc->base.dev;
9197 struct drm_i915_private *dev_priv = dev->dev_private;
9198 uint32_t tmp;
9199
9200 if (!intel_display_power_is_enabled(dev_priv,
9201 POWER_DOMAIN_PIPE(crtc->pipe)))
9202 return false;
9203
9204 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9205 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9206
9207 tmp = I915_READ(PIPECONF(crtc->pipe));
9208 if (!(tmp & PIPECONF_ENABLE))
9209 return false;
9210
9211 switch (tmp & PIPECONF_BPC_MASK) {
9212 case PIPECONF_6BPC:
9213 pipe_config->pipe_bpp = 18;
9214 break;
9215 case PIPECONF_8BPC:
9216 pipe_config->pipe_bpp = 24;
9217 break;
9218 case PIPECONF_10BPC:
9219 pipe_config->pipe_bpp = 30;
9220 break;
9221 case PIPECONF_12BPC:
9222 pipe_config->pipe_bpp = 36;
9223 break;
9224 default:
9225 break;
9226 }
9227
9228 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9229 pipe_config->limited_color_range = true;
9230
9231 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9232 struct intel_shared_dpll *pll;
9233
9234 pipe_config->has_pch_encoder = true;
9235
9236 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9237 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9238 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9239
9240 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9241
9242 if (HAS_PCH_IBX(dev_priv->dev)) {
9243 pipe_config->shared_dpll =
9244 (enum intel_dpll_id) crtc->pipe;
9245 } else {
9246 tmp = I915_READ(PCH_DPLL_SEL);
9247 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9248 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9249 else
9250 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9251 }
9252
9253 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9254
9255 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9256 &pipe_config->dpll_hw_state));
9257
9258 tmp = pipe_config->dpll_hw_state.dpll;
9259 pipe_config->pixel_multiplier =
9260 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9261 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9262
9263 ironlake_pch_clock_get(crtc, pipe_config);
9264 } else {
9265 pipe_config->pixel_multiplier = 1;
9266 }
9267
9268 intel_get_pipe_timings(crtc, pipe_config);
9269
9270 ironlake_get_pfit_config(crtc, pipe_config);
9271
9272 return true;
9273 }
9274
9275 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9276 {
9277 struct drm_device *dev = dev_priv->dev;
9278 struct intel_crtc *crtc;
9279
9280 for_each_intel_crtc(dev, crtc)
9281 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9282 pipe_name(crtc->pipe));
9283
9284 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9285 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9286 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9287 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9288 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9289 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9290 "CPU PWM1 enabled\n");
9291 if (IS_HASWELL(dev))
9292 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9293 "CPU PWM2 enabled\n");
9294 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9295 "PCH PWM1 enabled\n");
9296 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9297 "Utility pin enabled\n");
9298 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9299
9300 /*
9301 * In theory we can still leave IRQs enabled, as long as only the HPD
9302 * interrupts remain enabled. We used to check for that, but since it's
9303 * gen-specific and since we only disable LCPLL after we fully disable
9304 * the interrupts, the check below should be enough.
9305 */
9306 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9307 }
9308
9309 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9310 {
9311 struct drm_device *dev = dev_priv->dev;
9312
9313 if (IS_HASWELL(dev))
9314 return I915_READ(D_COMP_HSW);
9315 else
9316 return I915_READ(D_COMP_BDW);
9317 }
9318
9319 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9320 {
9321 struct drm_device *dev = dev_priv->dev;
9322
9323 if (IS_HASWELL(dev)) {
9324 mutex_lock(&dev_priv->rps.hw_lock);
9325 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9326 val))
9327 DRM_ERROR("Failed to write to D_COMP\n");
9328 mutex_unlock(&dev_priv->rps.hw_lock);
9329 } else {
9330 I915_WRITE(D_COMP_BDW, val);
9331 POSTING_READ(D_COMP_BDW);
9332 }
9333 }
9334
9335 /*
9336 * This function implements pieces of two sequences from BSpec:
9337 * - Sequence for display software to disable LCPLL
9338 * - Sequence for display software to allow package C8+
9339 * The steps implemented here are just the steps that actually touch the LCPLL
9340 * register. Callers should take care of disabling all the display engine
9341 * functions, doing the mode unset, fixing interrupts, etc.
9342 */
9343 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9344 bool switch_to_fclk, bool allow_power_down)
9345 {
9346 uint32_t val;
9347
9348 assert_can_disable_lcpll(dev_priv);
9349
9350 val = I915_READ(LCPLL_CTL);
9351
9352 if (switch_to_fclk) {
9353 val |= LCPLL_CD_SOURCE_FCLK;
9354 I915_WRITE(LCPLL_CTL, val);
9355
9356 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9357 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9358 DRM_ERROR("Switching to FCLK failed\n");
9359
9360 val = I915_READ(LCPLL_CTL);
9361 }
9362
9363 val |= LCPLL_PLL_DISABLE;
9364 I915_WRITE(LCPLL_CTL, val);
9365 POSTING_READ(LCPLL_CTL);
9366
9367 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9368 DRM_ERROR("LCPLL still locked\n");
9369
9370 val = hsw_read_dcomp(dev_priv);
9371 val |= D_COMP_COMP_DISABLE;
9372 hsw_write_dcomp(dev_priv, val);
9373 ndelay(100);
9374
9375 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9376 1))
9377 DRM_ERROR("D_COMP RCOMP still in progress\n");
9378
9379 if (allow_power_down) {
9380 val = I915_READ(LCPLL_CTL);
9381 val |= LCPLL_POWER_DOWN_ALLOW;
9382 I915_WRITE(LCPLL_CTL, val);
9383 POSTING_READ(LCPLL_CTL);
9384 }
9385 }
9386
9387 /*
9388 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9389 * source.
9390 */
9391 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9392 {
9393 uint32_t val;
9394
9395 val = I915_READ(LCPLL_CTL);
9396
9397 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9398 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9399 return;
9400
9401 /*
9402 * Make sure we're not on PC8 state before disabling PC8, otherwise
9403 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9404 */
9405 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9406
9407 if (val & LCPLL_POWER_DOWN_ALLOW) {
9408 val &= ~LCPLL_POWER_DOWN_ALLOW;
9409 I915_WRITE(LCPLL_CTL, val);
9410 POSTING_READ(LCPLL_CTL);
9411 }
9412
9413 val = hsw_read_dcomp(dev_priv);
9414 val |= D_COMP_COMP_FORCE;
9415 val &= ~D_COMP_COMP_DISABLE;
9416 hsw_write_dcomp(dev_priv, val);
9417
9418 val = I915_READ(LCPLL_CTL);
9419 val &= ~LCPLL_PLL_DISABLE;
9420 I915_WRITE(LCPLL_CTL, val);
9421
9422 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9423 DRM_ERROR("LCPLL not locked yet\n");
9424
9425 if (val & LCPLL_CD_SOURCE_FCLK) {
9426 val = I915_READ(LCPLL_CTL);
9427 val &= ~LCPLL_CD_SOURCE_FCLK;
9428 I915_WRITE(LCPLL_CTL, val);
9429
9430 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9431 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9432 DRM_ERROR("Switching back to LCPLL failed\n");
9433 }
9434
9435 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9436 intel_update_cdclk(dev_priv->dev);
9437 }
9438
9439 /*
9440 * Package states C8 and deeper are really deep PC states that can only be
9441 * reached when all the devices on the system allow it, so even if the graphics
9442 * device allows PC8+, it doesn't mean the system will actually get to these
9443 * states. Our driver only allows PC8+ when going into runtime PM.
9444 *
9445 * The requirements for PC8+ are that all the outputs are disabled, the power
9446 * well is disabled and most interrupts are disabled, and these are also
9447 * requirements for runtime PM. When these conditions are met, we manually do
9448 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9449 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9450 * hang the machine.
9451 *
9452 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9453 * the state of some registers, so when we come back from PC8+ we need to
9454 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9455 * need to take care of the registers kept by RC6. Notice that this happens even
9456 * if we don't put the device in PCI D3 state (which is what currently happens
9457 * because of the runtime PM support).
9458 *
9459 * For more, read "Display Sequences for Package C8" on the hardware
9460 * documentation.
9461 */
9462 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9463 {
9464 struct drm_device *dev = dev_priv->dev;
9465 uint32_t val;
9466
9467 DRM_DEBUG_KMS("Enabling package C8+\n");
9468
9469 if (HAS_PCH_LPT_LP(dev)) {
9470 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9471 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9472 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9473 }
9474
9475 lpt_disable_clkout_dp(dev);
9476 hsw_disable_lcpll(dev_priv, true, true);
9477 }
9478
9479 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9480 {
9481 struct drm_device *dev = dev_priv->dev;
9482 uint32_t val;
9483
9484 DRM_DEBUG_KMS("Disabling package C8+\n");
9485
9486 hsw_restore_lcpll(dev_priv);
9487 lpt_init_pch_refclk(dev);
9488
9489 if (HAS_PCH_LPT_LP(dev)) {
9490 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9491 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9492 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9493 }
9494
9495 intel_prepare_ddi(dev);
9496 }
9497
9498 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9499 {
9500 struct drm_device *dev = old_state->dev;
9501 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9502
9503 broxton_set_cdclk(dev, req_cdclk);
9504 }
9505
9506 /* compute the max rate for new configuration */
9507 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9508 {
9509 struct intel_crtc *intel_crtc;
9510 struct intel_crtc_state *crtc_state;
9511 int max_pixel_rate = 0;
9512
9513 for_each_intel_crtc(state->dev, intel_crtc) {
9514 int pixel_rate;
9515
9516 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9517 if (IS_ERR(crtc_state))
9518 return PTR_ERR(crtc_state);
9519
9520 if (!crtc_state->base.enable)
9521 continue;
9522
9523 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9524
9525 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9526 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9527 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9528
9529 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9530 }
9531
9532 return max_pixel_rate;
9533 }
9534
9535 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9536 {
9537 struct drm_i915_private *dev_priv = dev->dev_private;
9538 uint32_t val, data;
9539 int ret;
9540
9541 if (WARN((I915_READ(LCPLL_CTL) &
9542 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9543 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9544 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9545 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9546 "trying to change cdclk frequency with cdclk not enabled\n"))
9547 return;
9548
9549 mutex_lock(&dev_priv->rps.hw_lock);
9550 ret = sandybridge_pcode_write(dev_priv,
9551 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9552 mutex_unlock(&dev_priv->rps.hw_lock);
9553 if (ret) {
9554 DRM_ERROR("failed to inform pcode about cdclk change\n");
9555 return;
9556 }
9557
9558 val = I915_READ(LCPLL_CTL);
9559 val |= LCPLL_CD_SOURCE_FCLK;
9560 I915_WRITE(LCPLL_CTL, val);
9561
9562 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9563 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9564 DRM_ERROR("Switching to FCLK failed\n");
9565
9566 val = I915_READ(LCPLL_CTL);
9567 val &= ~LCPLL_CLK_FREQ_MASK;
9568
9569 switch (cdclk) {
9570 case 450000:
9571 val |= LCPLL_CLK_FREQ_450;
9572 data = 0;
9573 break;
9574 case 540000:
9575 val |= LCPLL_CLK_FREQ_54O_BDW;
9576 data = 1;
9577 break;
9578 case 337500:
9579 val |= LCPLL_CLK_FREQ_337_5_BDW;
9580 data = 2;
9581 break;
9582 case 675000:
9583 val |= LCPLL_CLK_FREQ_675_BDW;
9584 data = 3;
9585 break;
9586 default:
9587 WARN(1, "invalid cdclk frequency\n");
9588 return;
9589 }
9590
9591 I915_WRITE(LCPLL_CTL, val);
9592
9593 val = I915_READ(LCPLL_CTL);
9594 val &= ~LCPLL_CD_SOURCE_FCLK;
9595 I915_WRITE(LCPLL_CTL, val);
9596
9597 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9598 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9599 DRM_ERROR("Switching back to LCPLL failed\n");
9600
9601 mutex_lock(&dev_priv->rps.hw_lock);
9602 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9603 mutex_unlock(&dev_priv->rps.hw_lock);
9604
9605 intel_update_cdclk(dev);
9606
9607 WARN(cdclk != dev_priv->cdclk_freq,
9608 "cdclk requested %d kHz but got %d kHz\n",
9609 cdclk, dev_priv->cdclk_freq);
9610 }
9611
9612 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9613 {
9614 struct drm_i915_private *dev_priv = to_i915(state->dev);
9615 int max_pixclk = ilk_max_pixel_rate(state);
9616 int cdclk;
9617
9618 /*
9619 * FIXME should also account for plane ratio
9620 * once 64bpp pixel formats are supported.
9621 */
9622 if (max_pixclk > 540000)
9623 cdclk = 675000;
9624 else if (max_pixclk > 450000)
9625 cdclk = 540000;
9626 else if (max_pixclk > 337500)
9627 cdclk = 450000;
9628 else
9629 cdclk = 337500;
9630
9631 /*
9632 * FIXME move the cdclk caclulation to
9633 * compute_config() so we can fail gracegully.
9634 */
9635 if (cdclk > dev_priv->max_cdclk_freq) {
9636 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9637 cdclk, dev_priv->max_cdclk_freq);
9638 cdclk = dev_priv->max_cdclk_freq;
9639 }
9640
9641 to_intel_atomic_state(state)->cdclk = cdclk;
9642
9643 return 0;
9644 }
9645
9646 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9647 {
9648 struct drm_device *dev = old_state->dev;
9649 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9650
9651 broadwell_set_cdclk(dev, req_cdclk);
9652 }
9653
9654 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9655 struct intel_crtc_state *crtc_state)
9656 {
9657 if (!intel_ddi_pll_select(crtc, crtc_state))
9658 return -EINVAL;
9659
9660 crtc->lowfreq_avail = false;
9661
9662 return 0;
9663 }
9664
9665 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9666 enum port port,
9667 struct intel_crtc_state *pipe_config)
9668 {
9669 switch (port) {
9670 case PORT_A:
9671 pipe_config->ddi_pll_sel = SKL_DPLL0;
9672 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9673 break;
9674 case PORT_B:
9675 pipe_config->ddi_pll_sel = SKL_DPLL1;
9676 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9677 break;
9678 case PORT_C:
9679 pipe_config->ddi_pll_sel = SKL_DPLL2;
9680 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9681 break;
9682 default:
9683 DRM_ERROR("Incorrect port type\n");
9684 }
9685 }
9686
9687 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9688 enum port port,
9689 struct intel_crtc_state *pipe_config)
9690 {
9691 u32 temp, dpll_ctl1;
9692
9693 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9694 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9695
9696 switch (pipe_config->ddi_pll_sel) {
9697 case SKL_DPLL0:
9698 /*
9699 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9700 * of the shared DPLL framework and thus needs to be read out
9701 * separately
9702 */
9703 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9704 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9705 break;
9706 case SKL_DPLL1:
9707 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9708 break;
9709 case SKL_DPLL2:
9710 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9711 break;
9712 case SKL_DPLL3:
9713 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9714 break;
9715 }
9716 }
9717
9718 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9719 enum port port,
9720 struct intel_crtc_state *pipe_config)
9721 {
9722 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9723
9724 switch (pipe_config->ddi_pll_sel) {
9725 case PORT_CLK_SEL_WRPLL1:
9726 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9727 break;
9728 case PORT_CLK_SEL_WRPLL2:
9729 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9730 break;
9731 case PORT_CLK_SEL_SPLL:
9732 pipe_config->shared_dpll = DPLL_ID_SPLL;
9733 }
9734 }
9735
9736 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9737 struct intel_crtc_state *pipe_config)
9738 {
9739 struct drm_device *dev = crtc->base.dev;
9740 struct drm_i915_private *dev_priv = dev->dev_private;
9741 struct intel_shared_dpll *pll;
9742 enum port port;
9743 uint32_t tmp;
9744
9745 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9746
9747 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9748
9749 if (IS_SKYLAKE(dev))
9750 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9751 else if (IS_BROXTON(dev))
9752 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9753 else
9754 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9755
9756 if (pipe_config->shared_dpll >= 0) {
9757 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9758
9759 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9760 &pipe_config->dpll_hw_state));
9761 }
9762
9763 /*
9764 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9765 * DDI E. So just check whether this pipe is wired to DDI E and whether
9766 * the PCH transcoder is on.
9767 */
9768 if (INTEL_INFO(dev)->gen < 9 &&
9769 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9770 pipe_config->has_pch_encoder = true;
9771
9772 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9773 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9774 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9775
9776 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9777 }
9778 }
9779
9780 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9781 struct intel_crtc_state *pipe_config)
9782 {
9783 struct drm_device *dev = crtc->base.dev;
9784 struct drm_i915_private *dev_priv = dev->dev_private;
9785 enum intel_display_power_domain pfit_domain;
9786 uint32_t tmp;
9787
9788 if (!intel_display_power_is_enabled(dev_priv,
9789 POWER_DOMAIN_PIPE(crtc->pipe)))
9790 return false;
9791
9792 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9793 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9794
9795 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9796 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9797 enum pipe trans_edp_pipe;
9798 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9799 default:
9800 WARN(1, "unknown pipe linked to edp transcoder\n");
9801 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9802 case TRANS_DDI_EDP_INPUT_A_ON:
9803 trans_edp_pipe = PIPE_A;
9804 break;
9805 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9806 trans_edp_pipe = PIPE_B;
9807 break;
9808 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9809 trans_edp_pipe = PIPE_C;
9810 break;
9811 }
9812
9813 if (trans_edp_pipe == crtc->pipe)
9814 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9815 }
9816
9817 if (!intel_display_power_is_enabled(dev_priv,
9818 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9819 return false;
9820
9821 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9822 if (!(tmp & PIPECONF_ENABLE))
9823 return false;
9824
9825 haswell_get_ddi_port_state(crtc, pipe_config);
9826
9827 intel_get_pipe_timings(crtc, pipe_config);
9828
9829 if (INTEL_INFO(dev)->gen >= 9) {
9830 skl_init_scalers(dev, crtc, pipe_config);
9831 }
9832
9833 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9834
9835 if (INTEL_INFO(dev)->gen >= 9) {
9836 pipe_config->scaler_state.scaler_id = -1;
9837 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9838 }
9839
9840 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9841 if (INTEL_INFO(dev)->gen >= 9)
9842 skylake_get_pfit_config(crtc, pipe_config);
9843 else
9844 ironlake_get_pfit_config(crtc, pipe_config);
9845 }
9846
9847 if (IS_HASWELL(dev))
9848 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9849 (I915_READ(IPS_CTL) & IPS_ENABLE);
9850
9851 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9852 pipe_config->pixel_multiplier =
9853 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9854 } else {
9855 pipe_config->pixel_multiplier = 1;
9856 }
9857
9858 return true;
9859 }
9860
9861 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9862 {
9863 struct drm_device *dev = crtc->dev;
9864 struct drm_i915_private *dev_priv = dev->dev_private;
9865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9866 uint32_t cntl = 0, size = 0;
9867
9868 if (base) {
9869 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9870 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9871 unsigned int stride = roundup_pow_of_two(width) * 4;
9872
9873 switch (stride) {
9874 default:
9875 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9876 width, stride);
9877 stride = 256;
9878 /* fallthrough */
9879 case 256:
9880 case 512:
9881 case 1024:
9882 case 2048:
9883 break;
9884 }
9885
9886 cntl |= CURSOR_ENABLE |
9887 CURSOR_GAMMA_ENABLE |
9888 CURSOR_FORMAT_ARGB |
9889 CURSOR_STRIDE(stride);
9890
9891 size = (height << 12) | width;
9892 }
9893
9894 if (intel_crtc->cursor_cntl != 0 &&
9895 (intel_crtc->cursor_base != base ||
9896 intel_crtc->cursor_size != size ||
9897 intel_crtc->cursor_cntl != cntl)) {
9898 /* On these chipsets we can only modify the base/size/stride
9899 * whilst the cursor is disabled.
9900 */
9901 I915_WRITE(CURCNTR(PIPE_A), 0);
9902 POSTING_READ(CURCNTR(PIPE_A));
9903 intel_crtc->cursor_cntl = 0;
9904 }
9905
9906 if (intel_crtc->cursor_base != base) {
9907 I915_WRITE(CURBASE(PIPE_A), base);
9908 intel_crtc->cursor_base = base;
9909 }
9910
9911 if (intel_crtc->cursor_size != size) {
9912 I915_WRITE(CURSIZE, size);
9913 intel_crtc->cursor_size = size;
9914 }
9915
9916 if (intel_crtc->cursor_cntl != cntl) {
9917 I915_WRITE(CURCNTR(PIPE_A), cntl);
9918 POSTING_READ(CURCNTR(PIPE_A));
9919 intel_crtc->cursor_cntl = cntl;
9920 }
9921 }
9922
9923 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9924 {
9925 struct drm_device *dev = crtc->dev;
9926 struct drm_i915_private *dev_priv = dev->dev_private;
9927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9928 int pipe = intel_crtc->pipe;
9929 uint32_t cntl;
9930
9931 cntl = 0;
9932 if (base) {
9933 cntl = MCURSOR_GAMMA_ENABLE;
9934 switch (intel_crtc->base.cursor->state->crtc_w) {
9935 case 64:
9936 cntl |= CURSOR_MODE_64_ARGB_AX;
9937 break;
9938 case 128:
9939 cntl |= CURSOR_MODE_128_ARGB_AX;
9940 break;
9941 case 256:
9942 cntl |= CURSOR_MODE_256_ARGB_AX;
9943 break;
9944 default:
9945 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9946 return;
9947 }
9948 cntl |= pipe << 28; /* Connect to correct pipe */
9949
9950 if (HAS_DDI(dev))
9951 cntl |= CURSOR_PIPE_CSC_ENABLE;
9952 }
9953
9954 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9955 cntl |= CURSOR_ROTATE_180;
9956
9957 if (intel_crtc->cursor_cntl != cntl) {
9958 I915_WRITE(CURCNTR(pipe), cntl);
9959 POSTING_READ(CURCNTR(pipe));
9960 intel_crtc->cursor_cntl = cntl;
9961 }
9962
9963 /* and commit changes on next vblank */
9964 I915_WRITE(CURBASE(pipe), base);
9965 POSTING_READ(CURBASE(pipe));
9966
9967 intel_crtc->cursor_base = base;
9968 }
9969
9970 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9971 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9972 bool on)
9973 {
9974 struct drm_device *dev = crtc->dev;
9975 struct drm_i915_private *dev_priv = dev->dev_private;
9976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9977 int pipe = intel_crtc->pipe;
9978 struct drm_plane_state *cursor_state = crtc->cursor->state;
9979 int x = cursor_state->crtc_x;
9980 int y = cursor_state->crtc_y;
9981 u32 base = 0, pos = 0;
9982
9983 if (on)
9984 base = intel_crtc->cursor_addr;
9985
9986 if (x >= intel_crtc->config->pipe_src_w)
9987 base = 0;
9988
9989 if (y >= intel_crtc->config->pipe_src_h)
9990 base = 0;
9991
9992 if (x < 0) {
9993 if (x + cursor_state->crtc_w <= 0)
9994 base = 0;
9995
9996 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9997 x = -x;
9998 }
9999 pos |= x << CURSOR_X_SHIFT;
10000
10001 if (y < 0) {
10002 if (y + cursor_state->crtc_h <= 0)
10003 base = 0;
10004
10005 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10006 y = -y;
10007 }
10008 pos |= y << CURSOR_Y_SHIFT;
10009
10010 if (base == 0 && intel_crtc->cursor_base == 0)
10011 return;
10012
10013 I915_WRITE(CURPOS(pipe), pos);
10014
10015 /* ILK+ do this automagically */
10016 if (HAS_GMCH_DISPLAY(dev) &&
10017 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10018 base += (cursor_state->crtc_h *
10019 cursor_state->crtc_w - 1) * 4;
10020 }
10021
10022 if (IS_845G(dev) || IS_I865G(dev))
10023 i845_update_cursor(crtc, base);
10024 else
10025 i9xx_update_cursor(crtc, base);
10026 }
10027
10028 static bool cursor_size_ok(struct drm_device *dev,
10029 uint32_t width, uint32_t height)
10030 {
10031 if (width == 0 || height == 0)
10032 return false;
10033
10034 /*
10035 * 845g/865g are special in that they are only limited by
10036 * the width of their cursors, the height is arbitrary up to
10037 * the precision of the register. Everything else requires
10038 * square cursors, limited to a few power-of-two sizes.
10039 */
10040 if (IS_845G(dev) || IS_I865G(dev)) {
10041 if ((width & 63) != 0)
10042 return false;
10043
10044 if (width > (IS_845G(dev) ? 64 : 512))
10045 return false;
10046
10047 if (height > 1023)
10048 return false;
10049 } else {
10050 switch (width | height) {
10051 case 256:
10052 case 128:
10053 if (IS_GEN2(dev))
10054 return false;
10055 case 64:
10056 break;
10057 default:
10058 return false;
10059 }
10060 }
10061
10062 return true;
10063 }
10064
10065 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10066 u16 *blue, uint32_t start, uint32_t size)
10067 {
10068 int end = (start + size > 256) ? 256 : start + size, i;
10069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10070
10071 for (i = start; i < end; i++) {
10072 intel_crtc->lut_r[i] = red[i] >> 8;
10073 intel_crtc->lut_g[i] = green[i] >> 8;
10074 intel_crtc->lut_b[i] = blue[i] >> 8;
10075 }
10076
10077 intel_crtc_load_lut(crtc);
10078 }
10079
10080 /* VESA 640x480x72Hz mode to set on the pipe */
10081 static struct drm_display_mode load_detect_mode = {
10082 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10083 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10084 };
10085
10086 struct drm_framebuffer *
10087 __intel_framebuffer_create(struct drm_device *dev,
10088 struct drm_mode_fb_cmd2 *mode_cmd,
10089 struct drm_i915_gem_object *obj)
10090 {
10091 struct intel_framebuffer *intel_fb;
10092 int ret;
10093
10094 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10095 if (!intel_fb) {
10096 drm_gem_object_unreference(&obj->base);
10097 return ERR_PTR(-ENOMEM);
10098 }
10099
10100 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10101 if (ret)
10102 goto err;
10103
10104 return &intel_fb->base;
10105 err:
10106 drm_gem_object_unreference(&obj->base);
10107 kfree(intel_fb);
10108
10109 return ERR_PTR(ret);
10110 }
10111
10112 static struct drm_framebuffer *
10113 intel_framebuffer_create(struct drm_device *dev,
10114 struct drm_mode_fb_cmd2 *mode_cmd,
10115 struct drm_i915_gem_object *obj)
10116 {
10117 struct drm_framebuffer *fb;
10118 int ret;
10119
10120 ret = i915_mutex_lock_interruptible(dev);
10121 if (ret)
10122 return ERR_PTR(ret);
10123 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10124 mutex_unlock(&dev->struct_mutex);
10125
10126 return fb;
10127 }
10128
10129 static u32
10130 intel_framebuffer_pitch_for_width(int width, int bpp)
10131 {
10132 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10133 return ALIGN(pitch, 64);
10134 }
10135
10136 static u32
10137 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10138 {
10139 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10140 return PAGE_ALIGN(pitch * mode->vdisplay);
10141 }
10142
10143 static struct drm_framebuffer *
10144 intel_framebuffer_create_for_mode(struct drm_device *dev,
10145 struct drm_display_mode *mode,
10146 int depth, int bpp)
10147 {
10148 struct drm_i915_gem_object *obj;
10149 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10150
10151 obj = i915_gem_alloc_object(dev,
10152 intel_framebuffer_size_for_mode(mode, bpp));
10153 if (obj == NULL)
10154 return ERR_PTR(-ENOMEM);
10155
10156 mode_cmd.width = mode->hdisplay;
10157 mode_cmd.height = mode->vdisplay;
10158 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10159 bpp);
10160 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10161
10162 return intel_framebuffer_create(dev, &mode_cmd, obj);
10163 }
10164
10165 static struct drm_framebuffer *
10166 mode_fits_in_fbdev(struct drm_device *dev,
10167 struct drm_display_mode *mode)
10168 {
10169 #ifdef CONFIG_DRM_FBDEV_EMULATION
10170 struct drm_i915_private *dev_priv = dev->dev_private;
10171 struct drm_i915_gem_object *obj;
10172 struct drm_framebuffer *fb;
10173
10174 if (!dev_priv->fbdev)
10175 return NULL;
10176
10177 if (!dev_priv->fbdev->fb)
10178 return NULL;
10179
10180 obj = dev_priv->fbdev->fb->obj;
10181 BUG_ON(!obj);
10182
10183 fb = &dev_priv->fbdev->fb->base;
10184 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10185 fb->bits_per_pixel))
10186 return NULL;
10187
10188 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10189 return NULL;
10190
10191 return fb;
10192 #else
10193 return NULL;
10194 #endif
10195 }
10196
10197 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10198 struct drm_crtc *crtc,
10199 struct drm_display_mode *mode,
10200 struct drm_framebuffer *fb,
10201 int x, int y)
10202 {
10203 struct drm_plane_state *plane_state;
10204 int hdisplay, vdisplay;
10205 int ret;
10206
10207 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10208 if (IS_ERR(plane_state))
10209 return PTR_ERR(plane_state);
10210
10211 if (mode)
10212 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10213 else
10214 hdisplay = vdisplay = 0;
10215
10216 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10217 if (ret)
10218 return ret;
10219 drm_atomic_set_fb_for_plane(plane_state, fb);
10220 plane_state->crtc_x = 0;
10221 plane_state->crtc_y = 0;
10222 plane_state->crtc_w = hdisplay;
10223 plane_state->crtc_h = vdisplay;
10224 plane_state->src_x = x << 16;
10225 plane_state->src_y = y << 16;
10226 plane_state->src_w = hdisplay << 16;
10227 plane_state->src_h = vdisplay << 16;
10228
10229 return 0;
10230 }
10231
10232 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10233 struct drm_display_mode *mode,
10234 struct intel_load_detect_pipe *old,
10235 struct drm_modeset_acquire_ctx *ctx)
10236 {
10237 struct intel_crtc *intel_crtc;
10238 struct intel_encoder *intel_encoder =
10239 intel_attached_encoder(connector);
10240 struct drm_crtc *possible_crtc;
10241 struct drm_encoder *encoder = &intel_encoder->base;
10242 struct drm_crtc *crtc = NULL;
10243 struct drm_device *dev = encoder->dev;
10244 struct drm_framebuffer *fb;
10245 struct drm_mode_config *config = &dev->mode_config;
10246 struct drm_atomic_state *state = NULL;
10247 struct drm_connector_state *connector_state;
10248 struct intel_crtc_state *crtc_state;
10249 int ret, i = -1;
10250
10251 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10252 connector->base.id, connector->name,
10253 encoder->base.id, encoder->name);
10254
10255 retry:
10256 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10257 if (ret)
10258 goto fail;
10259
10260 /*
10261 * Algorithm gets a little messy:
10262 *
10263 * - if the connector already has an assigned crtc, use it (but make
10264 * sure it's on first)
10265 *
10266 * - try to find the first unused crtc that can drive this connector,
10267 * and use that if we find one
10268 */
10269
10270 /* See if we already have a CRTC for this connector */
10271 if (encoder->crtc) {
10272 crtc = encoder->crtc;
10273
10274 ret = drm_modeset_lock(&crtc->mutex, ctx);
10275 if (ret)
10276 goto fail;
10277 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10278 if (ret)
10279 goto fail;
10280
10281 old->dpms_mode = connector->dpms;
10282 old->load_detect_temp = false;
10283
10284 /* Make sure the crtc and connector are running */
10285 if (connector->dpms != DRM_MODE_DPMS_ON)
10286 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10287
10288 return true;
10289 }
10290
10291 /* Find an unused one (if possible) */
10292 for_each_crtc(dev, possible_crtc) {
10293 i++;
10294 if (!(encoder->possible_crtcs & (1 << i)))
10295 continue;
10296 if (possible_crtc->state->enable)
10297 continue;
10298
10299 crtc = possible_crtc;
10300 break;
10301 }
10302
10303 /*
10304 * If we didn't find an unused CRTC, don't use any.
10305 */
10306 if (!crtc) {
10307 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10308 goto fail;
10309 }
10310
10311 ret = drm_modeset_lock(&crtc->mutex, ctx);
10312 if (ret)
10313 goto fail;
10314 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10315 if (ret)
10316 goto fail;
10317
10318 intel_crtc = to_intel_crtc(crtc);
10319 old->dpms_mode = connector->dpms;
10320 old->load_detect_temp = true;
10321 old->release_fb = NULL;
10322
10323 state = drm_atomic_state_alloc(dev);
10324 if (!state)
10325 return false;
10326
10327 state->acquire_ctx = ctx;
10328
10329 connector_state = drm_atomic_get_connector_state(state, connector);
10330 if (IS_ERR(connector_state)) {
10331 ret = PTR_ERR(connector_state);
10332 goto fail;
10333 }
10334
10335 connector_state->crtc = crtc;
10336 connector_state->best_encoder = &intel_encoder->base;
10337
10338 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10339 if (IS_ERR(crtc_state)) {
10340 ret = PTR_ERR(crtc_state);
10341 goto fail;
10342 }
10343
10344 crtc_state->base.active = crtc_state->base.enable = true;
10345
10346 if (!mode)
10347 mode = &load_detect_mode;
10348
10349 /* We need a framebuffer large enough to accommodate all accesses
10350 * that the plane may generate whilst we perform load detection.
10351 * We can not rely on the fbcon either being present (we get called
10352 * during its initialisation to detect all boot displays, or it may
10353 * not even exist) or that it is large enough to satisfy the
10354 * requested mode.
10355 */
10356 fb = mode_fits_in_fbdev(dev, mode);
10357 if (fb == NULL) {
10358 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10359 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10360 old->release_fb = fb;
10361 } else
10362 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10363 if (IS_ERR(fb)) {
10364 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10365 goto fail;
10366 }
10367
10368 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10369 if (ret)
10370 goto fail;
10371
10372 drm_mode_copy(&crtc_state->base.mode, mode);
10373
10374 if (drm_atomic_commit(state)) {
10375 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10376 if (old->release_fb)
10377 old->release_fb->funcs->destroy(old->release_fb);
10378 goto fail;
10379 }
10380 crtc->primary->crtc = crtc;
10381
10382 /* let the connector get through one full cycle before testing */
10383 intel_wait_for_vblank(dev, intel_crtc->pipe);
10384 return true;
10385
10386 fail:
10387 drm_atomic_state_free(state);
10388 state = NULL;
10389
10390 if (ret == -EDEADLK) {
10391 drm_modeset_backoff(ctx);
10392 goto retry;
10393 }
10394
10395 return false;
10396 }
10397
10398 void intel_release_load_detect_pipe(struct drm_connector *connector,
10399 struct intel_load_detect_pipe *old,
10400 struct drm_modeset_acquire_ctx *ctx)
10401 {
10402 struct drm_device *dev = connector->dev;
10403 struct intel_encoder *intel_encoder =
10404 intel_attached_encoder(connector);
10405 struct drm_encoder *encoder = &intel_encoder->base;
10406 struct drm_crtc *crtc = encoder->crtc;
10407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10408 struct drm_atomic_state *state;
10409 struct drm_connector_state *connector_state;
10410 struct intel_crtc_state *crtc_state;
10411 int ret;
10412
10413 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10414 connector->base.id, connector->name,
10415 encoder->base.id, encoder->name);
10416
10417 if (old->load_detect_temp) {
10418 state = drm_atomic_state_alloc(dev);
10419 if (!state)
10420 goto fail;
10421
10422 state->acquire_ctx = ctx;
10423
10424 connector_state = drm_atomic_get_connector_state(state, connector);
10425 if (IS_ERR(connector_state))
10426 goto fail;
10427
10428 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10429 if (IS_ERR(crtc_state))
10430 goto fail;
10431
10432 connector_state->best_encoder = NULL;
10433 connector_state->crtc = NULL;
10434
10435 crtc_state->base.enable = crtc_state->base.active = false;
10436
10437 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10438 0, 0);
10439 if (ret)
10440 goto fail;
10441
10442 ret = drm_atomic_commit(state);
10443 if (ret)
10444 goto fail;
10445
10446 if (old->release_fb) {
10447 drm_framebuffer_unregister_private(old->release_fb);
10448 drm_framebuffer_unreference(old->release_fb);
10449 }
10450
10451 return;
10452 }
10453
10454 /* Switch crtc and encoder back off if necessary */
10455 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10456 connector->funcs->dpms(connector, old->dpms_mode);
10457
10458 return;
10459 fail:
10460 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10461 drm_atomic_state_free(state);
10462 }
10463
10464 static int i9xx_pll_refclk(struct drm_device *dev,
10465 const struct intel_crtc_state *pipe_config)
10466 {
10467 struct drm_i915_private *dev_priv = dev->dev_private;
10468 u32 dpll = pipe_config->dpll_hw_state.dpll;
10469
10470 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10471 return dev_priv->vbt.lvds_ssc_freq;
10472 else if (HAS_PCH_SPLIT(dev))
10473 return 120000;
10474 else if (!IS_GEN2(dev))
10475 return 96000;
10476 else
10477 return 48000;
10478 }
10479
10480 /* Returns the clock of the currently programmed mode of the given pipe. */
10481 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10482 struct intel_crtc_state *pipe_config)
10483 {
10484 struct drm_device *dev = crtc->base.dev;
10485 struct drm_i915_private *dev_priv = dev->dev_private;
10486 int pipe = pipe_config->cpu_transcoder;
10487 u32 dpll = pipe_config->dpll_hw_state.dpll;
10488 u32 fp;
10489 intel_clock_t clock;
10490 int port_clock;
10491 int refclk = i9xx_pll_refclk(dev, pipe_config);
10492
10493 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10494 fp = pipe_config->dpll_hw_state.fp0;
10495 else
10496 fp = pipe_config->dpll_hw_state.fp1;
10497
10498 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10499 if (IS_PINEVIEW(dev)) {
10500 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10501 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10502 } else {
10503 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10504 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10505 }
10506
10507 if (!IS_GEN2(dev)) {
10508 if (IS_PINEVIEW(dev))
10509 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10510 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10511 else
10512 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10513 DPLL_FPA01_P1_POST_DIV_SHIFT);
10514
10515 switch (dpll & DPLL_MODE_MASK) {
10516 case DPLLB_MODE_DAC_SERIAL:
10517 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10518 5 : 10;
10519 break;
10520 case DPLLB_MODE_LVDS:
10521 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10522 7 : 14;
10523 break;
10524 default:
10525 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10526 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10527 return;
10528 }
10529
10530 if (IS_PINEVIEW(dev))
10531 port_clock = pnv_calc_dpll_params(refclk, &clock);
10532 else
10533 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10534 } else {
10535 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10536 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10537
10538 if (is_lvds) {
10539 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10540 DPLL_FPA01_P1_POST_DIV_SHIFT);
10541
10542 if (lvds & LVDS_CLKB_POWER_UP)
10543 clock.p2 = 7;
10544 else
10545 clock.p2 = 14;
10546 } else {
10547 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10548 clock.p1 = 2;
10549 else {
10550 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10551 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10552 }
10553 if (dpll & PLL_P2_DIVIDE_BY_4)
10554 clock.p2 = 4;
10555 else
10556 clock.p2 = 2;
10557 }
10558
10559 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10560 }
10561
10562 /*
10563 * This value includes pixel_multiplier. We will use
10564 * port_clock to compute adjusted_mode.crtc_clock in the
10565 * encoder's get_config() function.
10566 */
10567 pipe_config->port_clock = port_clock;
10568 }
10569
10570 int intel_dotclock_calculate(int link_freq,
10571 const struct intel_link_m_n *m_n)
10572 {
10573 /*
10574 * The calculation for the data clock is:
10575 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10576 * But we want to avoid losing precison if possible, so:
10577 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10578 *
10579 * and the link clock is simpler:
10580 * link_clock = (m * link_clock) / n
10581 */
10582
10583 if (!m_n->link_n)
10584 return 0;
10585
10586 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10587 }
10588
10589 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10590 struct intel_crtc_state *pipe_config)
10591 {
10592 struct drm_device *dev = crtc->base.dev;
10593
10594 /* read out port_clock from the DPLL */
10595 i9xx_crtc_clock_get(crtc, pipe_config);
10596
10597 /*
10598 * This value does not include pixel_multiplier.
10599 * We will check that port_clock and adjusted_mode.crtc_clock
10600 * agree once we know their relationship in the encoder's
10601 * get_config() function.
10602 */
10603 pipe_config->base.adjusted_mode.crtc_clock =
10604 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10605 &pipe_config->fdi_m_n);
10606 }
10607
10608 /** Returns the currently programmed mode of the given pipe. */
10609 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10610 struct drm_crtc *crtc)
10611 {
10612 struct drm_i915_private *dev_priv = dev->dev_private;
10613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10614 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10615 struct drm_display_mode *mode;
10616 struct intel_crtc_state pipe_config;
10617 int htot = I915_READ(HTOTAL(cpu_transcoder));
10618 int hsync = I915_READ(HSYNC(cpu_transcoder));
10619 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10620 int vsync = I915_READ(VSYNC(cpu_transcoder));
10621 enum pipe pipe = intel_crtc->pipe;
10622
10623 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10624 if (!mode)
10625 return NULL;
10626
10627 /*
10628 * Construct a pipe_config sufficient for getting the clock info
10629 * back out of crtc_clock_get.
10630 *
10631 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10632 * to use a real value here instead.
10633 */
10634 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10635 pipe_config.pixel_multiplier = 1;
10636 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10637 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10638 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10639 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10640
10641 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10642 mode->hdisplay = (htot & 0xffff) + 1;
10643 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10644 mode->hsync_start = (hsync & 0xffff) + 1;
10645 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10646 mode->vdisplay = (vtot & 0xffff) + 1;
10647 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10648 mode->vsync_start = (vsync & 0xffff) + 1;
10649 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10650
10651 drm_mode_set_name(mode);
10652
10653 return mode;
10654 }
10655
10656 void intel_mark_busy(struct drm_device *dev)
10657 {
10658 struct drm_i915_private *dev_priv = dev->dev_private;
10659
10660 if (dev_priv->mm.busy)
10661 return;
10662
10663 intel_runtime_pm_get(dev_priv);
10664 i915_update_gfx_val(dev_priv);
10665 if (INTEL_INFO(dev)->gen >= 6)
10666 gen6_rps_busy(dev_priv);
10667 dev_priv->mm.busy = true;
10668 }
10669
10670 void intel_mark_idle(struct drm_device *dev)
10671 {
10672 struct drm_i915_private *dev_priv = dev->dev_private;
10673
10674 if (!dev_priv->mm.busy)
10675 return;
10676
10677 dev_priv->mm.busy = false;
10678
10679 if (INTEL_INFO(dev)->gen >= 6)
10680 gen6_rps_idle(dev->dev_private);
10681
10682 intel_runtime_pm_put(dev_priv);
10683 }
10684
10685 static void intel_crtc_destroy(struct drm_crtc *crtc)
10686 {
10687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10688 struct drm_device *dev = crtc->dev;
10689 struct intel_unpin_work *work;
10690
10691 spin_lock_irq(&dev->event_lock);
10692 work = intel_crtc->unpin_work;
10693 intel_crtc->unpin_work = NULL;
10694 spin_unlock_irq(&dev->event_lock);
10695
10696 if (work) {
10697 cancel_work_sync(&work->work);
10698 kfree(work);
10699 }
10700
10701 drm_crtc_cleanup(crtc);
10702
10703 kfree(intel_crtc);
10704 }
10705
10706 static void intel_unpin_work_fn(struct work_struct *__work)
10707 {
10708 struct intel_unpin_work *work =
10709 container_of(__work, struct intel_unpin_work, work);
10710 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10711 struct drm_device *dev = crtc->base.dev;
10712 struct drm_plane *primary = crtc->base.primary;
10713
10714 mutex_lock(&dev->struct_mutex);
10715 intel_unpin_fb_obj(work->old_fb, primary->state);
10716 drm_gem_object_unreference(&work->pending_flip_obj->base);
10717
10718 if (work->flip_queued_req)
10719 i915_gem_request_assign(&work->flip_queued_req, NULL);
10720 mutex_unlock(&dev->struct_mutex);
10721
10722 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10723 drm_framebuffer_unreference(work->old_fb);
10724
10725 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10726 atomic_dec(&crtc->unpin_work_count);
10727
10728 kfree(work);
10729 }
10730
10731 static void do_intel_finish_page_flip(struct drm_device *dev,
10732 struct drm_crtc *crtc)
10733 {
10734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10735 struct intel_unpin_work *work;
10736 unsigned long flags;
10737
10738 /* Ignore early vblank irqs */
10739 if (intel_crtc == NULL)
10740 return;
10741
10742 /*
10743 * This is called both by irq handlers and the reset code (to complete
10744 * lost pageflips) so needs the full irqsave spinlocks.
10745 */
10746 spin_lock_irqsave(&dev->event_lock, flags);
10747 work = intel_crtc->unpin_work;
10748
10749 /* Ensure we don't miss a work->pending update ... */
10750 smp_rmb();
10751
10752 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10753 spin_unlock_irqrestore(&dev->event_lock, flags);
10754 return;
10755 }
10756
10757 page_flip_completed(intel_crtc);
10758
10759 spin_unlock_irqrestore(&dev->event_lock, flags);
10760 }
10761
10762 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10763 {
10764 struct drm_i915_private *dev_priv = dev->dev_private;
10765 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10766
10767 do_intel_finish_page_flip(dev, crtc);
10768 }
10769
10770 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10771 {
10772 struct drm_i915_private *dev_priv = dev->dev_private;
10773 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10774
10775 do_intel_finish_page_flip(dev, crtc);
10776 }
10777
10778 /* Is 'a' after or equal to 'b'? */
10779 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10780 {
10781 return !((a - b) & 0x80000000);
10782 }
10783
10784 static bool page_flip_finished(struct intel_crtc *crtc)
10785 {
10786 struct drm_device *dev = crtc->base.dev;
10787 struct drm_i915_private *dev_priv = dev->dev_private;
10788
10789 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10790 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10791 return true;
10792
10793 /*
10794 * The relevant registers doen't exist on pre-ctg.
10795 * As the flip done interrupt doesn't trigger for mmio
10796 * flips on gmch platforms, a flip count check isn't
10797 * really needed there. But since ctg has the registers,
10798 * include it in the check anyway.
10799 */
10800 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10801 return true;
10802
10803 /*
10804 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10805 * used the same base address. In that case the mmio flip might
10806 * have completed, but the CS hasn't even executed the flip yet.
10807 *
10808 * A flip count check isn't enough as the CS might have updated
10809 * the base address just after start of vblank, but before we
10810 * managed to process the interrupt. This means we'd complete the
10811 * CS flip too soon.
10812 *
10813 * Combining both checks should get us a good enough result. It may
10814 * still happen that the CS flip has been executed, but has not
10815 * yet actually completed. But in case the base address is the same
10816 * anyway, we don't really care.
10817 */
10818 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10819 crtc->unpin_work->gtt_offset &&
10820 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10821 crtc->unpin_work->flip_count);
10822 }
10823
10824 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10825 {
10826 struct drm_i915_private *dev_priv = dev->dev_private;
10827 struct intel_crtc *intel_crtc =
10828 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10829 unsigned long flags;
10830
10831
10832 /*
10833 * This is called both by irq handlers and the reset code (to complete
10834 * lost pageflips) so needs the full irqsave spinlocks.
10835 *
10836 * NB: An MMIO update of the plane base pointer will also
10837 * generate a page-flip completion irq, i.e. every modeset
10838 * is also accompanied by a spurious intel_prepare_page_flip().
10839 */
10840 spin_lock_irqsave(&dev->event_lock, flags);
10841 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10842 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10843 spin_unlock_irqrestore(&dev->event_lock, flags);
10844 }
10845
10846 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10847 {
10848 /* Ensure that the work item is consistent when activating it ... */
10849 smp_wmb();
10850 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10851 /* and that it is marked active as soon as the irq could fire. */
10852 smp_wmb();
10853 }
10854
10855 static int intel_gen2_queue_flip(struct drm_device *dev,
10856 struct drm_crtc *crtc,
10857 struct drm_framebuffer *fb,
10858 struct drm_i915_gem_object *obj,
10859 struct drm_i915_gem_request *req,
10860 uint32_t flags)
10861 {
10862 struct intel_engine_cs *ring = req->ring;
10863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10864 u32 flip_mask;
10865 int ret;
10866
10867 ret = intel_ring_begin(req, 6);
10868 if (ret)
10869 return ret;
10870
10871 /* Can't queue multiple flips, so wait for the previous
10872 * one to finish before executing the next.
10873 */
10874 if (intel_crtc->plane)
10875 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10876 else
10877 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10878 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10879 intel_ring_emit(ring, MI_NOOP);
10880 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10881 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10882 intel_ring_emit(ring, fb->pitches[0]);
10883 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10884 intel_ring_emit(ring, 0); /* aux display base address, unused */
10885
10886 intel_mark_page_flip_active(intel_crtc->unpin_work);
10887 return 0;
10888 }
10889
10890 static int intel_gen3_queue_flip(struct drm_device *dev,
10891 struct drm_crtc *crtc,
10892 struct drm_framebuffer *fb,
10893 struct drm_i915_gem_object *obj,
10894 struct drm_i915_gem_request *req,
10895 uint32_t flags)
10896 {
10897 struct intel_engine_cs *ring = req->ring;
10898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10899 u32 flip_mask;
10900 int ret;
10901
10902 ret = intel_ring_begin(req, 6);
10903 if (ret)
10904 return ret;
10905
10906 if (intel_crtc->plane)
10907 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10908 else
10909 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10910 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10911 intel_ring_emit(ring, MI_NOOP);
10912 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10913 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10914 intel_ring_emit(ring, fb->pitches[0]);
10915 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10916 intel_ring_emit(ring, MI_NOOP);
10917
10918 intel_mark_page_flip_active(intel_crtc->unpin_work);
10919 return 0;
10920 }
10921
10922 static int intel_gen4_queue_flip(struct drm_device *dev,
10923 struct drm_crtc *crtc,
10924 struct drm_framebuffer *fb,
10925 struct drm_i915_gem_object *obj,
10926 struct drm_i915_gem_request *req,
10927 uint32_t flags)
10928 {
10929 struct intel_engine_cs *ring = req->ring;
10930 struct drm_i915_private *dev_priv = dev->dev_private;
10931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10932 uint32_t pf, pipesrc;
10933 int ret;
10934
10935 ret = intel_ring_begin(req, 4);
10936 if (ret)
10937 return ret;
10938
10939 /* i965+ uses the linear or tiled offsets from the
10940 * Display Registers (which do not change across a page-flip)
10941 * so we need only reprogram the base address.
10942 */
10943 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10944 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10945 intel_ring_emit(ring, fb->pitches[0]);
10946 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10947 obj->tiling_mode);
10948
10949 /* XXX Enabling the panel-fitter across page-flip is so far
10950 * untested on non-native modes, so ignore it for now.
10951 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10952 */
10953 pf = 0;
10954 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10955 intel_ring_emit(ring, pf | pipesrc);
10956
10957 intel_mark_page_flip_active(intel_crtc->unpin_work);
10958 return 0;
10959 }
10960
10961 static int intel_gen6_queue_flip(struct drm_device *dev,
10962 struct drm_crtc *crtc,
10963 struct drm_framebuffer *fb,
10964 struct drm_i915_gem_object *obj,
10965 struct drm_i915_gem_request *req,
10966 uint32_t flags)
10967 {
10968 struct intel_engine_cs *ring = req->ring;
10969 struct drm_i915_private *dev_priv = dev->dev_private;
10970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10971 uint32_t pf, pipesrc;
10972 int ret;
10973
10974 ret = intel_ring_begin(req, 4);
10975 if (ret)
10976 return ret;
10977
10978 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10979 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10980 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10981 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10982
10983 /* Contrary to the suggestions in the documentation,
10984 * "Enable Panel Fitter" does not seem to be required when page
10985 * flipping with a non-native mode, and worse causes a normal
10986 * modeset to fail.
10987 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10988 */
10989 pf = 0;
10990 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10991 intel_ring_emit(ring, pf | pipesrc);
10992
10993 intel_mark_page_flip_active(intel_crtc->unpin_work);
10994 return 0;
10995 }
10996
10997 static int intel_gen7_queue_flip(struct drm_device *dev,
10998 struct drm_crtc *crtc,
10999 struct drm_framebuffer *fb,
11000 struct drm_i915_gem_object *obj,
11001 struct drm_i915_gem_request *req,
11002 uint32_t flags)
11003 {
11004 struct intel_engine_cs *ring = req->ring;
11005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11006 uint32_t plane_bit = 0;
11007 int len, ret;
11008
11009 switch (intel_crtc->plane) {
11010 case PLANE_A:
11011 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11012 break;
11013 case PLANE_B:
11014 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11015 break;
11016 case PLANE_C:
11017 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11018 break;
11019 default:
11020 WARN_ONCE(1, "unknown plane in flip command\n");
11021 return -ENODEV;
11022 }
11023
11024 len = 4;
11025 if (ring->id == RCS) {
11026 len += 6;
11027 /*
11028 * On Gen 8, SRM is now taking an extra dword to accommodate
11029 * 48bits addresses, and we need a NOOP for the batch size to
11030 * stay even.
11031 */
11032 if (IS_GEN8(dev))
11033 len += 2;
11034 }
11035
11036 /*
11037 * BSpec MI_DISPLAY_FLIP for IVB:
11038 * "The full packet must be contained within the same cache line."
11039 *
11040 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11041 * cacheline, if we ever start emitting more commands before
11042 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11043 * then do the cacheline alignment, and finally emit the
11044 * MI_DISPLAY_FLIP.
11045 */
11046 ret = intel_ring_cacheline_align(req);
11047 if (ret)
11048 return ret;
11049
11050 ret = intel_ring_begin(req, len);
11051 if (ret)
11052 return ret;
11053
11054 /* Unmask the flip-done completion message. Note that the bspec says that
11055 * we should do this for both the BCS and RCS, and that we must not unmask
11056 * more than one flip event at any time (or ensure that one flip message
11057 * can be sent by waiting for flip-done prior to queueing new flips).
11058 * Experimentation says that BCS works despite DERRMR masking all
11059 * flip-done completion events and that unmasking all planes at once
11060 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11061 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11062 */
11063 if (ring->id == RCS) {
11064 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11065 intel_ring_emit(ring, DERRMR);
11066 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11067 DERRMR_PIPEB_PRI_FLIP_DONE |
11068 DERRMR_PIPEC_PRI_FLIP_DONE));
11069 if (IS_GEN8(dev))
11070 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11071 MI_SRM_LRM_GLOBAL_GTT);
11072 else
11073 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11074 MI_SRM_LRM_GLOBAL_GTT);
11075 intel_ring_emit(ring, DERRMR);
11076 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11077 if (IS_GEN8(dev)) {
11078 intel_ring_emit(ring, 0);
11079 intel_ring_emit(ring, MI_NOOP);
11080 }
11081 }
11082
11083 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11084 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11085 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11086 intel_ring_emit(ring, (MI_NOOP));
11087
11088 intel_mark_page_flip_active(intel_crtc->unpin_work);
11089 return 0;
11090 }
11091
11092 static bool use_mmio_flip(struct intel_engine_cs *ring,
11093 struct drm_i915_gem_object *obj)
11094 {
11095 /*
11096 * This is not being used for older platforms, because
11097 * non-availability of flip done interrupt forces us to use
11098 * CS flips. Older platforms derive flip done using some clever
11099 * tricks involving the flip_pending status bits and vblank irqs.
11100 * So using MMIO flips there would disrupt this mechanism.
11101 */
11102
11103 if (ring == NULL)
11104 return true;
11105
11106 if (INTEL_INFO(ring->dev)->gen < 5)
11107 return false;
11108
11109 if (i915.use_mmio_flip < 0)
11110 return false;
11111 else if (i915.use_mmio_flip > 0)
11112 return true;
11113 else if (i915.enable_execlists)
11114 return true;
11115 else
11116 return ring != i915_gem_request_get_ring(obj->last_write_req);
11117 }
11118
11119 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11120 struct intel_unpin_work *work)
11121 {
11122 struct drm_device *dev = intel_crtc->base.dev;
11123 struct drm_i915_private *dev_priv = dev->dev_private;
11124 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11125 const enum pipe pipe = intel_crtc->pipe;
11126 u32 ctl, stride;
11127
11128 ctl = I915_READ(PLANE_CTL(pipe, 0));
11129 ctl &= ~PLANE_CTL_TILED_MASK;
11130 switch (fb->modifier[0]) {
11131 case DRM_FORMAT_MOD_NONE:
11132 break;
11133 case I915_FORMAT_MOD_X_TILED:
11134 ctl |= PLANE_CTL_TILED_X;
11135 break;
11136 case I915_FORMAT_MOD_Y_TILED:
11137 ctl |= PLANE_CTL_TILED_Y;
11138 break;
11139 case I915_FORMAT_MOD_Yf_TILED:
11140 ctl |= PLANE_CTL_TILED_YF;
11141 break;
11142 default:
11143 MISSING_CASE(fb->modifier[0]);
11144 }
11145
11146 /*
11147 * The stride is either expressed as a multiple of 64 bytes chunks for
11148 * linear buffers or in number of tiles for tiled buffers.
11149 */
11150 stride = fb->pitches[0] /
11151 intel_fb_stride_alignment(dev, fb->modifier[0],
11152 fb->pixel_format);
11153
11154 /*
11155 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11156 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11157 */
11158 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11159 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11160
11161 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11162 POSTING_READ(PLANE_SURF(pipe, 0));
11163 }
11164
11165 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11166 struct intel_unpin_work *work)
11167 {
11168 struct drm_device *dev = intel_crtc->base.dev;
11169 struct drm_i915_private *dev_priv = dev->dev_private;
11170 struct intel_framebuffer *intel_fb =
11171 to_intel_framebuffer(intel_crtc->base.primary->fb);
11172 struct drm_i915_gem_object *obj = intel_fb->obj;
11173 u32 dspcntr;
11174 u32 reg;
11175
11176 reg = DSPCNTR(intel_crtc->plane);
11177 dspcntr = I915_READ(reg);
11178
11179 if (obj->tiling_mode != I915_TILING_NONE)
11180 dspcntr |= DISPPLANE_TILED;
11181 else
11182 dspcntr &= ~DISPPLANE_TILED;
11183
11184 I915_WRITE(reg, dspcntr);
11185
11186 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11187 POSTING_READ(DSPSURF(intel_crtc->plane));
11188 }
11189
11190 /*
11191 * XXX: This is the temporary way to update the plane registers until we get
11192 * around to using the usual plane update functions for MMIO flips
11193 */
11194 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11195 {
11196 struct intel_crtc *crtc = mmio_flip->crtc;
11197 struct intel_unpin_work *work;
11198
11199 spin_lock_irq(&crtc->base.dev->event_lock);
11200 work = crtc->unpin_work;
11201 spin_unlock_irq(&crtc->base.dev->event_lock);
11202 if (work == NULL)
11203 return;
11204
11205 intel_mark_page_flip_active(work);
11206
11207 intel_pipe_update_start(crtc);
11208
11209 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11210 skl_do_mmio_flip(crtc, work);
11211 else
11212 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11213 ilk_do_mmio_flip(crtc, work);
11214
11215 intel_pipe_update_end(crtc);
11216 }
11217
11218 static void intel_mmio_flip_work_func(struct work_struct *work)
11219 {
11220 struct intel_mmio_flip *mmio_flip =
11221 container_of(work, struct intel_mmio_flip, work);
11222
11223 if (mmio_flip->req) {
11224 WARN_ON(__i915_wait_request(mmio_flip->req,
11225 mmio_flip->crtc->reset_counter,
11226 false, NULL,
11227 &mmio_flip->i915->rps.mmioflips));
11228 i915_gem_request_unreference__unlocked(mmio_flip->req);
11229 }
11230
11231 intel_do_mmio_flip(mmio_flip);
11232 kfree(mmio_flip);
11233 }
11234
11235 static int intel_queue_mmio_flip(struct drm_device *dev,
11236 struct drm_crtc *crtc,
11237 struct drm_framebuffer *fb,
11238 struct drm_i915_gem_object *obj,
11239 struct intel_engine_cs *ring,
11240 uint32_t flags)
11241 {
11242 struct intel_mmio_flip *mmio_flip;
11243
11244 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11245 if (mmio_flip == NULL)
11246 return -ENOMEM;
11247
11248 mmio_flip->i915 = to_i915(dev);
11249 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11250 mmio_flip->crtc = to_intel_crtc(crtc);
11251
11252 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11253 schedule_work(&mmio_flip->work);
11254
11255 return 0;
11256 }
11257
11258 static int intel_default_queue_flip(struct drm_device *dev,
11259 struct drm_crtc *crtc,
11260 struct drm_framebuffer *fb,
11261 struct drm_i915_gem_object *obj,
11262 struct drm_i915_gem_request *req,
11263 uint32_t flags)
11264 {
11265 return -ENODEV;
11266 }
11267
11268 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11269 struct drm_crtc *crtc)
11270 {
11271 struct drm_i915_private *dev_priv = dev->dev_private;
11272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11273 struct intel_unpin_work *work = intel_crtc->unpin_work;
11274 u32 addr;
11275
11276 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11277 return true;
11278
11279 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11280 return false;
11281
11282 if (!work->enable_stall_check)
11283 return false;
11284
11285 if (work->flip_ready_vblank == 0) {
11286 if (work->flip_queued_req &&
11287 !i915_gem_request_completed(work->flip_queued_req, true))
11288 return false;
11289
11290 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11291 }
11292
11293 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11294 return false;
11295
11296 /* Potential stall - if we see that the flip has happened,
11297 * assume a missed interrupt. */
11298 if (INTEL_INFO(dev)->gen >= 4)
11299 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11300 else
11301 addr = I915_READ(DSPADDR(intel_crtc->plane));
11302
11303 /* There is a potential issue here with a false positive after a flip
11304 * to the same address. We could address this by checking for a
11305 * non-incrementing frame counter.
11306 */
11307 return addr == work->gtt_offset;
11308 }
11309
11310 void intel_check_page_flip(struct drm_device *dev, int pipe)
11311 {
11312 struct drm_i915_private *dev_priv = dev->dev_private;
11313 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11315 struct intel_unpin_work *work;
11316
11317 WARN_ON(!in_interrupt());
11318
11319 if (crtc == NULL)
11320 return;
11321
11322 spin_lock(&dev->event_lock);
11323 work = intel_crtc->unpin_work;
11324 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11325 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11326 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11327 page_flip_completed(intel_crtc);
11328 work = NULL;
11329 }
11330 if (work != NULL &&
11331 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11332 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11333 spin_unlock(&dev->event_lock);
11334 }
11335
11336 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11337 struct drm_framebuffer *fb,
11338 struct drm_pending_vblank_event *event,
11339 uint32_t page_flip_flags)
11340 {
11341 struct drm_device *dev = crtc->dev;
11342 struct drm_i915_private *dev_priv = dev->dev_private;
11343 struct drm_framebuffer *old_fb = crtc->primary->fb;
11344 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11346 struct drm_plane *primary = crtc->primary;
11347 enum pipe pipe = intel_crtc->pipe;
11348 struct intel_unpin_work *work;
11349 struct intel_engine_cs *ring;
11350 bool mmio_flip;
11351 struct drm_i915_gem_request *request = NULL;
11352 int ret;
11353
11354 /*
11355 * drm_mode_page_flip_ioctl() should already catch this, but double
11356 * check to be safe. In the future we may enable pageflipping from
11357 * a disabled primary plane.
11358 */
11359 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11360 return -EBUSY;
11361
11362 /* Can't change pixel format via MI display flips. */
11363 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11364 return -EINVAL;
11365
11366 /*
11367 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11368 * Note that pitch changes could also affect these register.
11369 */
11370 if (INTEL_INFO(dev)->gen > 3 &&
11371 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11372 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11373 return -EINVAL;
11374
11375 if (i915_terminally_wedged(&dev_priv->gpu_error))
11376 goto out_hang;
11377
11378 work = kzalloc(sizeof(*work), GFP_KERNEL);
11379 if (work == NULL)
11380 return -ENOMEM;
11381
11382 work->event = event;
11383 work->crtc = crtc;
11384 work->old_fb = old_fb;
11385 INIT_WORK(&work->work, intel_unpin_work_fn);
11386
11387 ret = drm_crtc_vblank_get(crtc);
11388 if (ret)
11389 goto free_work;
11390
11391 /* We borrow the event spin lock for protecting unpin_work */
11392 spin_lock_irq(&dev->event_lock);
11393 if (intel_crtc->unpin_work) {
11394 /* Before declaring the flip queue wedged, check if
11395 * the hardware completed the operation behind our backs.
11396 */
11397 if (__intel_pageflip_stall_check(dev, crtc)) {
11398 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11399 page_flip_completed(intel_crtc);
11400 } else {
11401 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11402 spin_unlock_irq(&dev->event_lock);
11403
11404 drm_crtc_vblank_put(crtc);
11405 kfree(work);
11406 return -EBUSY;
11407 }
11408 }
11409 intel_crtc->unpin_work = work;
11410 spin_unlock_irq(&dev->event_lock);
11411
11412 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11413 flush_workqueue(dev_priv->wq);
11414
11415 /* Reference the objects for the scheduled work. */
11416 drm_framebuffer_reference(work->old_fb);
11417 drm_gem_object_reference(&obj->base);
11418
11419 crtc->primary->fb = fb;
11420 update_state_fb(crtc->primary);
11421
11422 work->pending_flip_obj = obj;
11423
11424 ret = i915_mutex_lock_interruptible(dev);
11425 if (ret)
11426 goto cleanup;
11427
11428 atomic_inc(&intel_crtc->unpin_work_count);
11429 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11430
11431 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11432 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11433
11434 if (IS_VALLEYVIEW(dev)) {
11435 ring = &dev_priv->ring[BCS];
11436 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11437 /* vlv: DISPLAY_FLIP fails to change tiling */
11438 ring = NULL;
11439 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11440 ring = &dev_priv->ring[BCS];
11441 } else if (INTEL_INFO(dev)->gen >= 7) {
11442 ring = i915_gem_request_get_ring(obj->last_write_req);
11443 if (ring == NULL || ring->id != RCS)
11444 ring = &dev_priv->ring[BCS];
11445 } else {
11446 ring = &dev_priv->ring[RCS];
11447 }
11448
11449 mmio_flip = use_mmio_flip(ring, obj);
11450
11451 /* When using CS flips, we want to emit semaphores between rings.
11452 * However, when using mmio flips we will create a task to do the
11453 * synchronisation, so all we want here is to pin the framebuffer
11454 * into the display plane and skip any waits.
11455 */
11456 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11457 crtc->primary->state,
11458 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11459 if (ret)
11460 goto cleanup_pending;
11461
11462 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11463 obj, 0);
11464 work->gtt_offset += intel_crtc->dspaddr_offset;
11465
11466 if (mmio_flip) {
11467 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11468 page_flip_flags);
11469 if (ret)
11470 goto cleanup_unpin;
11471
11472 i915_gem_request_assign(&work->flip_queued_req,
11473 obj->last_write_req);
11474 } else {
11475 if (!request) {
11476 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11477 if (ret)
11478 goto cleanup_unpin;
11479 }
11480
11481 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11482 page_flip_flags);
11483 if (ret)
11484 goto cleanup_unpin;
11485
11486 i915_gem_request_assign(&work->flip_queued_req, request);
11487 }
11488
11489 if (request)
11490 i915_add_request_no_flush(request);
11491
11492 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11493 work->enable_stall_check = true;
11494
11495 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11496 to_intel_plane(primary)->frontbuffer_bit);
11497 mutex_unlock(&dev->struct_mutex);
11498
11499 intel_fbc_disable_crtc(intel_crtc);
11500 intel_frontbuffer_flip_prepare(dev,
11501 to_intel_plane(primary)->frontbuffer_bit);
11502
11503 trace_i915_flip_request(intel_crtc->plane, obj);
11504
11505 return 0;
11506
11507 cleanup_unpin:
11508 intel_unpin_fb_obj(fb, crtc->primary->state);
11509 cleanup_pending:
11510 if (request)
11511 i915_gem_request_cancel(request);
11512 atomic_dec(&intel_crtc->unpin_work_count);
11513 mutex_unlock(&dev->struct_mutex);
11514 cleanup:
11515 crtc->primary->fb = old_fb;
11516 update_state_fb(crtc->primary);
11517
11518 drm_gem_object_unreference_unlocked(&obj->base);
11519 drm_framebuffer_unreference(work->old_fb);
11520
11521 spin_lock_irq(&dev->event_lock);
11522 intel_crtc->unpin_work = NULL;
11523 spin_unlock_irq(&dev->event_lock);
11524
11525 drm_crtc_vblank_put(crtc);
11526 free_work:
11527 kfree(work);
11528
11529 if (ret == -EIO) {
11530 struct drm_atomic_state *state;
11531 struct drm_plane_state *plane_state;
11532
11533 out_hang:
11534 state = drm_atomic_state_alloc(dev);
11535 if (!state)
11536 return -ENOMEM;
11537 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11538
11539 retry:
11540 plane_state = drm_atomic_get_plane_state(state, primary);
11541 ret = PTR_ERR_OR_ZERO(plane_state);
11542 if (!ret) {
11543 drm_atomic_set_fb_for_plane(plane_state, fb);
11544
11545 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11546 if (!ret)
11547 ret = drm_atomic_commit(state);
11548 }
11549
11550 if (ret == -EDEADLK) {
11551 drm_modeset_backoff(state->acquire_ctx);
11552 drm_atomic_state_clear(state);
11553 goto retry;
11554 }
11555
11556 if (ret)
11557 drm_atomic_state_free(state);
11558
11559 if (ret == 0 && event) {
11560 spin_lock_irq(&dev->event_lock);
11561 drm_send_vblank_event(dev, pipe, event);
11562 spin_unlock_irq(&dev->event_lock);
11563 }
11564 }
11565 return ret;
11566 }
11567
11568
11569 /**
11570 * intel_wm_need_update - Check whether watermarks need updating
11571 * @plane: drm plane
11572 * @state: new plane state
11573 *
11574 * Check current plane state versus the new one to determine whether
11575 * watermarks need to be recalculated.
11576 *
11577 * Returns true or false.
11578 */
11579 static bool intel_wm_need_update(struct drm_plane *plane,
11580 struct drm_plane_state *state)
11581 {
11582 /* Update watermarks on tiling changes. */
11583 if (!plane->state->fb || !state->fb ||
11584 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11585 plane->state->rotation != state->rotation)
11586 return true;
11587
11588 if (plane->state->crtc_w != state->crtc_w)
11589 return true;
11590
11591 return false;
11592 }
11593
11594 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11595 struct drm_plane_state *plane_state)
11596 {
11597 struct drm_crtc *crtc = crtc_state->crtc;
11598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11599 struct drm_plane *plane = plane_state->plane;
11600 struct drm_device *dev = crtc->dev;
11601 struct drm_i915_private *dev_priv = dev->dev_private;
11602 struct intel_plane_state *old_plane_state =
11603 to_intel_plane_state(plane->state);
11604 int idx = intel_crtc->base.base.id, ret;
11605 int i = drm_plane_index(plane);
11606 bool mode_changed = needs_modeset(crtc_state);
11607 bool was_crtc_enabled = crtc->state->active;
11608 bool is_crtc_enabled = crtc_state->active;
11609
11610 bool turn_off, turn_on, visible, was_visible;
11611 struct drm_framebuffer *fb = plane_state->fb;
11612
11613 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11614 plane->type != DRM_PLANE_TYPE_CURSOR) {
11615 ret = skl_update_scaler_plane(
11616 to_intel_crtc_state(crtc_state),
11617 to_intel_plane_state(plane_state));
11618 if (ret)
11619 return ret;
11620 }
11621
11622 /*
11623 * Disabling a plane is always okay; we just need to update
11624 * fb tracking in a special way since cleanup_fb() won't
11625 * get called by the plane helpers.
11626 */
11627 if (old_plane_state->base.fb && !fb)
11628 intel_crtc->atomic.disabled_planes |= 1 << i;
11629
11630 was_visible = old_plane_state->visible;
11631 visible = to_intel_plane_state(plane_state)->visible;
11632
11633 if (!was_crtc_enabled && WARN_ON(was_visible))
11634 was_visible = false;
11635
11636 if (!is_crtc_enabled && WARN_ON(visible))
11637 visible = false;
11638
11639 if (!was_visible && !visible)
11640 return 0;
11641
11642 turn_off = was_visible && (!visible || mode_changed);
11643 turn_on = visible && (!was_visible || mode_changed);
11644
11645 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11646 plane->base.id, fb ? fb->base.id : -1);
11647
11648 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11649 plane->base.id, was_visible, visible,
11650 turn_off, turn_on, mode_changed);
11651
11652 if (turn_on) {
11653 intel_crtc->atomic.update_wm_pre = true;
11654 /* must disable cxsr around plane enable/disable */
11655 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11656 intel_crtc->atomic.disable_cxsr = true;
11657 /* to potentially re-enable cxsr */
11658 intel_crtc->atomic.wait_vblank = true;
11659 intel_crtc->atomic.update_wm_post = true;
11660 }
11661 } else if (turn_off) {
11662 intel_crtc->atomic.update_wm_post = true;
11663 /* must disable cxsr around plane enable/disable */
11664 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11665 if (is_crtc_enabled)
11666 intel_crtc->atomic.wait_vblank = true;
11667 intel_crtc->atomic.disable_cxsr = true;
11668 }
11669 } else if (intel_wm_need_update(plane, plane_state)) {
11670 intel_crtc->atomic.update_wm_pre = true;
11671 }
11672
11673 if (visible || was_visible)
11674 intel_crtc->atomic.fb_bits |=
11675 to_intel_plane(plane)->frontbuffer_bit;
11676
11677 switch (plane->type) {
11678 case DRM_PLANE_TYPE_PRIMARY:
11679 intel_crtc->atomic.wait_for_flips = true;
11680 intel_crtc->atomic.pre_disable_primary = turn_off;
11681 intel_crtc->atomic.post_enable_primary = turn_on;
11682
11683 if (turn_off) {
11684 /*
11685 * FIXME: Actually if we will still have any other
11686 * plane enabled on the pipe we could let IPS enabled
11687 * still, but for now lets consider that when we make
11688 * primary invisible by setting DSPCNTR to 0 on
11689 * update_primary_plane function IPS needs to be
11690 * disable.
11691 */
11692 intel_crtc->atomic.disable_ips = true;
11693
11694 intel_crtc->atomic.disable_fbc = true;
11695 }
11696
11697 /*
11698 * FBC does not work on some platforms for rotated
11699 * planes, so disable it when rotation is not 0 and
11700 * update it when rotation is set back to 0.
11701 *
11702 * FIXME: This is redundant with the fbc update done in
11703 * the primary plane enable function except that that
11704 * one is done too late. We eventually need to unify
11705 * this.
11706 */
11707
11708 if (visible &&
11709 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11710 dev_priv->fbc.crtc == intel_crtc &&
11711 plane_state->rotation != BIT(DRM_ROTATE_0))
11712 intel_crtc->atomic.disable_fbc = true;
11713
11714 /*
11715 * BDW signals flip done immediately if the plane
11716 * is disabled, even if the plane enable is already
11717 * armed to occur at the next vblank :(
11718 */
11719 if (turn_on && IS_BROADWELL(dev))
11720 intel_crtc->atomic.wait_vblank = true;
11721
11722 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11723 break;
11724 case DRM_PLANE_TYPE_CURSOR:
11725 break;
11726 case DRM_PLANE_TYPE_OVERLAY:
11727 if (turn_off && !mode_changed) {
11728 intel_crtc->atomic.wait_vblank = true;
11729 intel_crtc->atomic.update_sprite_watermarks |=
11730 1 << i;
11731 }
11732 }
11733 return 0;
11734 }
11735
11736 static bool encoders_cloneable(const struct intel_encoder *a,
11737 const struct intel_encoder *b)
11738 {
11739 /* masks could be asymmetric, so check both ways */
11740 return a == b || (a->cloneable & (1 << b->type) &&
11741 b->cloneable & (1 << a->type));
11742 }
11743
11744 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11745 struct intel_crtc *crtc,
11746 struct intel_encoder *encoder)
11747 {
11748 struct intel_encoder *source_encoder;
11749 struct drm_connector *connector;
11750 struct drm_connector_state *connector_state;
11751 int i;
11752
11753 for_each_connector_in_state(state, connector, connector_state, i) {
11754 if (connector_state->crtc != &crtc->base)
11755 continue;
11756
11757 source_encoder =
11758 to_intel_encoder(connector_state->best_encoder);
11759 if (!encoders_cloneable(encoder, source_encoder))
11760 return false;
11761 }
11762
11763 return true;
11764 }
11765
11766 static bool check_encoder_cloning(struct drm_atomic_state *state,
11767 struct intel_crtc *crtc)
11768 {
11769 struct intel_encoder *encoder;
11770 struct drm_connector *connector;
11771 struct drm_connector_state *connector_state;
11772 int i;
11773
11774 for_each_connector_in_state(state, connector, connector_state, i) {
11775 if (connector_state->crtc != &crtc->base)
11776 continue;
11777
11778 encoder = to_intel_encoder(connector_state->best_encoder);
11779 if (!check_single_encoder_cloning(state, crtc, encoder))
11780 return false;
11781 }
11782
11783 return true;
11784 }
11785
11786 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11787 struct drm_crtc_state *crtc_state)
11788 {
11789 struct drm_device *dev = crtc->dev;
11790 struct drm_i915_private *dev_priv = dev->dev_private;
11791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11792 struct intel_crtc_state *pipe_config =
11793 to_intel_crtc_state(crtc_state);
11794 struct drm_atomic_state *state = crtc_state->state;
11795 int ret;
11796 bool mode_changed = needs_modeset(crtc_state);
11797
11798 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11799 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11800 return -EINVAL;
11801 }
11802
11803 if (mode_changed && !crtc_state->active)
11804 intel_crtc->atomic.update_wm_post = true;
11805
11806 if (mode_changed && crtc_state->enable &&
11807 dev_priv->display.crtc_compute_clock &&
11808 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11809 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11810 pipe_config);
11811 if (ret)
11812 return ret;
11813 }
11814
11815 ret = 0;
11816 if (INTEL_INFO(dev)->gen >= 9) {
11817 if (mode_changed)
11818 ret = skl_update_scaler_crtc(pipe_config);
11819
11820 if (!ret)
11821 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11822 pipe_config);
11823 }
11824
11825 return ret;
11826 }
11827
11828 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11829 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11830 .load_lut = intel_crtc_load_lut,
11831 .atomic_begin = intel_begin_crtc_commit,
11832 .atomic_flush = intel_finish_crtc_commit,
11833 .atomic_check = intel_crtc_atomic_check,
11834 };
11835
11836 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11837 {
11838 struct intel_connector *connector;
11839
11840 for_each_intel_connector(dev, connector) {
11841 if (connector->base.encoder) {
11842 connector->base.state->best_encoder =
11843 connector->base.encoder;
11844 connector->base.state->crtc =
11845 connector->base.encoder->crtc;
11846 } else {
11847 connector->base.state->best_encoder = NULL;
11848 connector->base.state->crtc = NULL;
11849 }
11850 }
11851 }
11852
11853 static void
11854 connected_sink_compute_bpp(struct intel_connector *connector,
11855 struct intel_crtc_state *pipe_config)
11856 {
11857 int bpp = pipe_config->pipe_bpp;
11858
11859 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11860 connector->base.base.id,
11861 connector->base.name);
11862
11863 /* Don't use an invalid EDID bpc value */
11864 if (connector->base.display_info.bpc &&
11865 connector->base.display_info.bpc * 3 < bpp) {
11866 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11867 bpp, connector->base.display_info.bpc*3);
11868 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11869 }
11870
11871 /* Clamp bpp to 8 on screens without EDID 1.4 */
11872 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11873 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11874 bpp);
11875 pipe_config->pipe_bpp = 24;
11876 }
11877 }
11878
11879 static int
11880 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11881 struct intel_crtc_state *pipe_config)
11882 {
11883 struct drm_device *dev = crtc->base.dev;
11884 struct drm_atomic_state *state;
11885 struct drm_connector *connector;
11886 struct drm_connector_state *connector_state;
11887 int bpp, i;
11888
11889 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11890 bpp = 10*3;
11891 else if (INTEL_INFO(dev)->gen >= 5)
11892 bpp = 12*3;
11893 else
11894 bpp = 8*3;
11895
11896
11897 pipe_config->pipe_bpp = bpp;
11898
11899 state = pipe_config->base.state;
11900
11901 /* Clamp display bpp to EDID value */
11902 for_each_connector_in_state(state, connector, connector_state, i) {
11903 if (connector_state->crtc != &crtc->base)
11904 continue;
11905
11906 connected_sink_compute_bpp(to_intel_connector(connector),
11907 pipe_config);
11908 }
11909
11910 return bpp;
11911 }
11912
11913 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11914 {
11915 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11916 "type: 0x%x flags: 0x%x\n",
11917 mode->crtc_clock,
11918 mode->crtc_hdisplay, mode->crtc_hsync_start,
11919 mode->crtc_hsync_end, mode->crtc_htotal,
11920 mode->crtc_vdisplay, mode->crtc_vsync_start,
11921 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11922 }
11923
11924 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11925 struct intel_crtc_state *pipe_config,
11926 const char *context)
11927 {
11928 struct drm_device *dev = crtc->base.dev;
11929 struct drm_plane *plane;
11930 struct intel_plane *intel_plane;
11931 struct intel_plane_state *state;
11932 struct drm_framebuffer *fb;
11933
11934 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11935 context, pipe_config, pipe_name(crtc->pipe));
11936
11937 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11938 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11939 pipe_config->pipe_bpp, pipe_config->dither);
11940 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11941 pipe_config->has_pch_encoder,
11942 pipe_config->fdi_lanes,
11943 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11944 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11945 pipe_config->fdi_m_n.tu);
11946 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11947 pipe_config->has_dp_encoder,
11948 pipe_config->lane_count,
11949 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11950 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11951 pipe_config->dp_m_n.tu);
11952
11953 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11954 pipe_config->has_dp_encoder,
11955 pipe_config->lane_count,
11956 pipe_config->dp_m2_n2.gmch_m,
11957 pipe_config->dp_m2_n2.gmch_n,
11958 pipe_config->dp_m2_n2.link_m,
11959 pipe_config->dp_m2_n2.link_n,
11960 pipe_config->dp_m2_n2.tu);
11961
11962 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11963 pipe_config->has_audio,
11964 pipe_config->has_infoframe);
11965
11966 DRM_DEBUG_KMS("requested mode:\n");
11967 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11968 DRM_DEBUG_KMS("adjusted mode:\n");
11969 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11970 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11971 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11972 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11973 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11974 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11975 crtc->num_scalers,
11976 pipe_config->scaler_state.scaler_users,
11977 pipe_config->scaler_state.scaler_id);
11978 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11979 pipe_config->gmch_pfit.control,
11980 pipe_config->gmch_pfit.pgm_ratios,
11981 pipe_config->gmch_pfit.lvds_border_bits);
11982 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11983 pipe_config->pch_pfit.pos,
11984 pipe_config->pch_pfit.size,
11985 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11986 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11987 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11988
11989 if (IS_BROXTON(dev)) {
11990 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11991 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11992 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11993 pipe_config->ddi_pll_sel,
11994 pipe_config->dpll_hw_state.ebb0,
11995 pipe_config->dpll_hw_state.ebb4,
11996 pipe_config->dpll_hw_state.pll0,
11997 pipe_config->dpll_hw_state.pll1,
11998 pipe_config->dpll_hw_state.pll2,
11999 pipe_config->dpll_hw_state.pll3,
12000 pipe_config->dpll_hw_state.pll6,
12001 pipe_config->dpll_hw_state.pll8,
12002 pipe_config->dpll_hw_state.pll9,
12003 pipe_config->dpll_hw_state.pll10,
12004 pipe_config->dpll_hw_state.pcsdw12);
12005 } else if (IS_SKYLAKE(dev)) {
12006 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12007 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12008 pipe_config->ddi_pll_sel,
12009 pipe_config->dpll_hw_state.ctrl1,
12010 pipe_config->dpll_hw_state.cfgcr1,
12011 pipe_config->dpll_hw_state.cfgcr2);
12012 } else if (HAS_DDI(dev)) {
12013 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12014 pipe_config->ddi_pll_sel,
12015 pipe_config->dpll_hw_state.wrpll,
12016 pipe_config->dpll_hw_state.spll);
12017 } else {
12018 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12019 "fp0: 0x%x, fp1: 0x%x\n",
12020 pipe_config->dpll_hw_state.dpll,
12021 pipe_config->dpll_hw_state.dpll_md,
12022 pipe_config->dpll_hw_state.fp0,
12023 pipe_config->dpll_hw_state.fp1);
12024 }
12025
12026 DRM_DEBUG_KMS("planes on this crtc\n");
12027 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12028 intel_plane = to_intel_plane(plane);
12029 if (intel_plane->pipe != crtc->pipe)
12030 continue;
12031
12032 state = to_intel_plane_state(plane->state);
12033 fb = state->base.fb;
12034 if (!fb) {
12035 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12036 "disabled, scaler_id = %d\n",
12037 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12038 plane->base.id, intel_plane->pipe,
12039 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12040 drm_plane_index(plane), state->scaler_id);
12041 continue;
12042 }
12043
12044 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12045 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12046 plane->base.id, intel_plane->pipe,
12047 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12048 drm_plane_index(plane));
12049 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12050 fb->base.id, fb->width, fb->height, fb->pixel_format);
12051 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12052 state->scaler_id,
12053 state->src.x1 >> 16, state->src.y1 >> 16,
12054 drm_rect_width(&state->src) >> 16,
12055 drm_rect_height(&state->src) >> 16,
12056 state->dst.x1, state->dst.y1,
12057 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12058 }
12059 }
12060
12061 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12062 {
12063 struct drm_device *dev = state->dev;
12064 struct intel_encoder *encoder;
12065 struct drm_connector *connector;
12066 struct drm_connector_state *connector_state;
12067 unsigned int used_ports = 0;
12068 int i;
12069
12070 /*
12071 * Walk the connector list instead of the encoder
12072 * list to detect the problem on ddi platforms
12073 * where there's just one encoder per digital port.
12074 */
12075 for_each_connector_in_state(state, connector, connector_state, i) {
12076 if (!connector_state->best_encoder)
12077 continue;
12078
12079 encoder = to_intel_encoder(connector_state->best_encoder);
12080
12081 WARN_ON(!connector_state->crtc);
12082
12083 switch (encoder->type) {
12084 unsigned int port_mask;
12085 case INTEL_OUTPUT_UNKNOWN:
12086 if (WARN_ON(!HAS_DDI(dev)))
12087 break;
12088 case INTEL_OUTPUT_DISPLAYPORT:
12089 case INTEL_OUTPUT_HDMI:
12090 case INTEL_OUTPUT_EDP:
12091 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12092
12093 /* the same port mustn't appear more than once */
12094 if (used_ports & port_mask)
12095 return false;
12096
12097 used_ports |= port_mask;
12098 default:
12099 break;
12100 }
12101 }
12102
12103 return true;
12104 }
12105
12106 static void
12107 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12108 {
12109 struct drm_crtc_state tmp_state;
12110 struct intel_crtc_scaler_state scaler_state;
12111 struct intel_dpll_hw_state dpll_hw_state;
12112 enum intel_dpll_id shared_dpll;
12113 uint32_t ddi_pll_sel;
12114 bool force_thru;
12115
12116 /* FIXME: before the switch to atomic started, a new pipe_config was
12117 * kzalloc'd. Code that depends on any field being zero should be
12118 * fixed, so that the crtc_state can be safely duplicated. For now,
12119 * only fields that are know to not cause problems are preserved. */
12120
12121 tmp_state = crtc_state->base;
12122 scaler_state = crtc_state->scaler_state;
12123 shared_dpll = crtc_state->shared_dpll;
12124 dpll_hw_state = crtc_state->dpll_hw_state;
12125 ddi_pll_sel = crtc_state->ddi_pll_sel;
12126 force_thru = crtc_state->pch_pfit.force_thru;
12127
12128 memset(crtc_state, 0, sizeof *crtc_state);
12129
12130 crtc_state->base = tmp_state;
12131 crtc_state->scaler_state = scaler_state;
12132 crtc_state->shared_dpll = shared_dpll;
12133 crtc_state->dpll_hw_state = dpll_hw_state;
12134 crtc_state->ddi_pll_sel = ddi_pll_sel;
12135 crtc_state->pch_pfit.force_thru = force_thru;
12136 }
12137
12138 static int
12139 intel_modeset_pipe_config(struct drm_crtc *crtc,
12140 struct intel_crtc_state *pipe_config)
12141 {
12142 struct drm_atomic_state *state = pipe_config->base.state;
12143 struct intel_encoder *encoder;
12144 struct drm_connector *connector;
12145 struct drm_connector_state *connector_state;
12146 int base_bpp, ret = -EINVAL;
12147 int i;
12148 bool retry = true;
12149
12150 clear_intel_crtc_state(pipe_config);
12151
12152 pipe_config->cpu_transcoder =
12153 (enum transcoder) to_intel_crtc(crtc)->pipe;
12154
12155 /*
12156 * Sanitize sync polarity flags based on requested ones. If neither
12157 * positive or negative polarity is requested, treat this as meaning
12158 * negative polarity.
12159 */
12160 if (!(pipe_config->base.adjusted_mode.flags &
12161 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12162 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12163
12164 if (!(pipe_config->base.adjusted_mode.flags &
12165 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12166 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12167
12168 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12169 pipe_config);
12170 if (base_bpp < 0)
12171 goto fail;
12172
12173 /*
12174 * Determine the real pipe dimensions. Note that stereo modes can
12175 * increase the actual pipe size due to the frame doubling and
12176 * insertion of additional space for blanks between the frame. This
12177 * is stored in the crtc timings. We use the requested mode to do this
12178 * computation to clearly distinguish it from the adjusted mode, which
12179 * can be changed by the connectors in the below retry loop.
12180 */
12181 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12182 &pipe_config->pipe_src_w,
12183 &pipe_config->pipe_src_h);
12184
12185 encoder_retry:
12186 /* Ensure the port clock defaults are reset when retrying. */
12187 pipe_config->port_clock = 0;
12188 pipe_config->pixel_multiplier = 1;
12189
12190 /* Fill in default crtc timings, allow encoders to overwrite them. */
12191 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12192 CRTC_STEREO_DOUBLE);
12193
12194 /* Pass our mode to the connectors and the CRTC to give them a chance to
12195 * adjust it according to limitations or connector properties, and also
12196 * a chance to reject the mode entirely.
12197 */
12198 for_each_connector_in_state(state, connector, connector_state, i) {
12199 if (connector_state->crtc != crtc)
12200 continue;
12201
12202 encoder = to_intel_encoder(connector_state->best_encoder);
12203
12204 if (!(encoder->compute_config(encoder, pipe_config))) {
12205 DRM_DEBUG_KMS("Encoder config failure\n");
12206 goto fail;
12207 }
12208 }
12209
12210 /* Set default port clock if not overwritten by the encoder. Needs to be
12211 * done afterwards in case the encoder adjusts the mode. */
12212 if (!pipe_config->port_clock)
12213 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12214 * pipe_config->pixel_multiplier;
12215
12216 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12217 if (ret < 0) {
12218 DRM_DEBUG_KMS("CRTC fixup failed\n");
12219 goto fail;
12220 }
12221
12222 if (ret == RETRY) {
12223 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12224 ret = -EINVAL;
12225 goto fail;
12226 }
12227
12228 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12229 retry = false;
12230 goto encoder_retry;
12231 }
12232
12233 /* Dithering seems to not pass-through bits correctly when it should, so
12234 * only enable it on 6bpc panels. */
12235 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12236 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12237 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12238
12239 fail:
12240 return ret;
12241 }
12242
12243 static void
12244 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12245 {
12246 struct drm_crtc *crtc;
12247 struct drm_crtc_state *crtc_state;
12248 int i;
12249
12250 /* Double check state. */
12251 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12252 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12253
12254 /* Update hwmode for vblank functions */
12255 if (crtc->state->active)
12256 crtc->hwmode = crtc->state->adjusted_mode;
12257 else
12258 crtc->hwmode.crtc_clock = 0;
12259 }
12260 }
12261
12262 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12263 {
12264 int diff;
12265
12266 if (clock1 == clock2)
12267 return true;
12268
12269 if (!clock1 || !clock2)
12270 return false;
12271
12272 diff = abs(clock1 - clock2);
12273
12274 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12275 return true;
12276
12277 return false;
12278 }
12279
12280 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12281 list_for_each_entry((intel_crtc), \
12282 &(dev)->mode_config.crtc_list, \
12283 base.head) \
12284 if (mask & (1 <<(intel_crtc)->pipe))
12285
12286 static bool
12287 intel_compare_m_n(unsigned int m, unsigned int n,
12288 unsigned int m2, unsigned int n2,
12289 bool exact)
12290 {
12291 if (m == m2 && n == n2)
12292 return true;
12293
12294 if (exact || !m || !n || !m2 || !n2)
12295 return false;
12296
12297 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12298
12299 if (m > m2) {
12300 while (m > m2) {
12301 m2 <<= 1;
12302 n2 <<= 1;
12303 }
12304 } else if (m < m2) {
12305 while (m < m2) {
12306 m <<= 1;
12307 n <<= 1;
12308 }
12309 }
12310
12311 return m == m2 && n == n2;
12312 }
12313
12314 static bool
12315 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12316 struct intel_link_m_n *m2_n2,
12317 bool adjust)
12318 {
12319 if (m_n->tu == m2_n2->tu &&
12320 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12321 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12322 intel_compare_m_n(m_n->link_m, m_n->link_n,
12323 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12324 if (adjust)
12325 *m2_n2 = *m_n;
12326
12327 return true;
12328 }
12329
12330 return false;
12331 }
12332
12333 static bool
12334 intel_pipe_config_compare(struct drm_device *dev,
12335 struct intel_crtc_state *current_config,
12336 struct intel_crtc_state *pipe_config,
12337 bool adjust)
12338 {
12339 bool ret = true;
12340
12341 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12342 do { \
12343 if (!adjust) \
12344 DRM_ERROR(fmt, ##__VA_ARGS__); \
12345 else \
12346 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12347 } while (0)
12348
12349 #define PIPE_CONF_CHECK_X(name) \
12350 if (current_config->name != pipe_config->name) { \
12351 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12352 "(expected 0x%08x, found 0x%08x)\n", \
12353 current_config->name, \
12354 pipe_config->name); \
12355 ret = false; \
12356 }
12357
12358 #define PIPE_CONF_CHECK_I(name) \
12359 if (current_config->name != pipe_config->name) { \
12360 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12361 "(expected %i, found %i)\n", \
12362 current_config->name, \
12363 pipe_config->name); \
12364 ret = false; \
12365 }
12366
12367 #define PIPE_CONF_CHECK_M_N(name) \
12368 if (!intel_compare_link_m_n(&current_config->name, \
12369 &pipe_config->name,\
12370 adjust)) { \
12371 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12372 "(expected tu %i gmch %i/%i link %i/%i, " \
12373 "found tu %i, gmch %i/%i link %i/%i)\n", \
12374 current_config->name.tu, \
12375 current_config->name.gmch_m, \
12376 current_config->name.gmch_n, \
12377 current_config->name.link_m, \
12378 current_config->name.link_n, \
12379 pipe_config->name.tu, \
12380 pipe_config->name.gmch_m, \
12381 pipe_config->name.gmch_n, \
12382 pipe_config->name.link_m, \
12383 pipe_config->name.link_n); \
12384 ret = false; \
12385 }
12386
12387 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12388 if (!intel_compare_link_m_n(&current_config->name, \
12389 &pipe_config->name, adjust) && \
12390 !intel_compare_link_m_n(&current_config->alt_name, \
12391 &pipe_config->name, adjust)) { \
12392 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12393 "(expected tu %i gmch %i/%i link %i/%i, " \
12394 "or tu %i gmch %i/%i link %i/%i, " \
12395 "found tu %i, gmch %i/%i link %i/%i)\n", \
12396 current_config->name.tu, \
12397 current_config->name.gmch_m, \
12398 current_config->name.gmch_n, \
12399 current_config->name.link_m, \
12400 current_config->name.link_n, \
12401 current_config->alt_name.tu, \
12402 current_config->alt_name.gmch_m, \
12403 current_config->alt_name.gmch_n, \
12404 current_config->alt_name.link_m, \
12405 current_config->alt_name.link_n, \
12406 pipe_config->name.tu, \
12407 pipe_config->name.gmch_m, \
12408 pipe_config->name.gmch_n, \
12409 pipe_config->name.link_m, \
12410 pipe_config->name.link_n); \
12411 ret = false; \
12412 }
12413
12414 /* This is required for BDW+ where there is only one set of registers for
12415 * switching between high and low RR.
12416 * This macro can be used whenever a comparison has to be made between one
12417 * hw state and multiple sw state variables.
12418 */
12419 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12420 if ((current_config->name != pipe_config->name) && \
12421 (current_config->alt_name != pipe_config->name)) { \
12422 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12423 "(expected %i or %i, found %i)\n", \
12424 current_config->name, \
12425 current_config->alt_name, \
12426 pipe_config->name); \
12427 ret = false; \
12428 }
12429
12430 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12431 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12432 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12433 "(expected %i, found %i)\n", \
12434 current_config->name & (mask), \
12435 pipe_config->name & (mask)); \
12436 ret = false; \
12437 }
12438
12439 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12440 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12441 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12442 "(expected %i, found %i)\n", \
12443 current_config->name, \
12444 pipe_config->name); \
12445 ret = false; \
12446 }
12447
12448 #define PIPE_CONF_QUIRK(quirk) \
12449 ((current_config->quirks | pipe_config->quirks) & (quirk))
12450
12451 PIPE_CONF_CHECK_I(cpu_transcoder);
12452
12453 PIPE_CONF_CHECK_I(has_pch_encoder);
12454 PIPE_CONF_CHECK_I(fdi_lanes);
12455 PIPE_CONF_CHECK_M_N(fdi_m_n);
12456
12457 PIPE_CONF_CHECK_I(has_dp_encoder);
12458 PIPE_CONF_CHECK_I(lane_count);
12459
12460 if (INTEL_INFO(dev)->gen < 8) {
12461 PIPE_CONF_CHECK_M_N(dp_m_n);
12462
12463 if (current_config->has_drrs)
12464 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12465 } else
12466 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12467
12468 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12469 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12470 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12471 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12472 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12473 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12474
12475 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12476 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12477 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12478 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12479 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12480 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12481
12482 PIPE_CONF_CHECK_I(pixel_multiplier);
12483 PIPE_CONF_CHECK_I(has_hdmi_sink);
12484 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12485 IS_VALLEYVIEW(dev))
12486 PIPE_CONF_CHECK_I(limited_color_range);
12487 PIPE_CONF_CHECK_I(has_infoframe);
12488
12489 PIPE_CONF_CHECK_I(has_audio);
12490
12491 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12492 DRM_MODE_FLAG_INTERLACE);
12493
12494 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12495 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12496 DRM_MODE_FLAG_PHSYNC);
12497 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12498 DRM_MODE_FLAG_NHSYNC);
12499 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12500 DRM_MODE_FLAG_PVSYNC);
12501 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12502 DRM_MODE_FLAG_NVSYNC);
12503 }
12504
12505 PIPE_CONF_CHECK_X(gmch_pfit.control);
12506 /* pfit ratios are autocomputed by the hw on gen4+ */
12507 if (INTEL_INFO(dev)->gen < 4)
12508 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12509 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12510
12511 if (!adjust) {
12512 PIPE_CONF_CHECK_I(pipe_src_w);
12513 PIPE_CONF_CHECK_I(pipe_src_h);
12514
12515 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12516 if (current_config->pch_pfit.enabled) {
12517 PIPE_CONF_CHECK_X(pch_pfit.pos);
12518 PIPE_CONF_CHECK_X(pch_pfit.size);
12519 }
12520
12521 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12522 }
12523
12524 /* BDW+ don't expose a synchronous way to read the state */
12525 if (IS_HASWELL(dev))
12526 PIPE_CONF_CHECK_I(ips_enabled);
12527
12528 PIPE_CONF_CHECK_I(double_wide);
12529
12530 PIPE_CONF_CHECK_X(ddi_pll_sel);
12531
12532 PIPE_CONF_CHECK_I(shared_dpll);
12533 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12534 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12535 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12536 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12537 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12538 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12539 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12540 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12541 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12542
12543 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12544 PIPE_CONF_CHECK_I(pipe_bpp);
12545
12546 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12547 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12548
12549 #undef PIPE_CONF_CHECK_X
12550 #undef PIPE_CONF_CHECK_I
12551 #undef PIPE_CONF_CHECK_I_ALT
12552 #undef PIPE_CONF_CHECK_FLAGS
12553 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12554 #undef PIPE_CONF_QUIRK
12555 #undef INTEL_ERR_OR_DBG_KMS
12556
12557 return ret;
12558 }
12559
12560 static void check_wm_state(struct drm_device *dev)
12561 {
12562 struct drm_i915_private *dev_priv = dev->dev_private;
12563 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12564 struct intel_crtc *intel_crtc;
12565 int plane;
12566
12567 if (INTEL_INFO(dev)->gen < 9)
12568 return;
12569
12570 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12571 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12572
12573 for_each_intel_crtc(dev, intel_crtc) {
12574 struct skl_ddb_entry *hw_entry, *sw_entry;
12575 const enum pipe pipe = intel_crtc->pipe;
12576
12577 if (!intel_crtc->active)
12578 continue;
12579
12580 /* planes */
12581 for_each_plane(dev_priv, pipe, plane) {
12582 hw_entry = &hw_ddb.plane[pipe][plane];
12583 sw_entry = &sw_ddb->plane[pipe][plane];
12584
12585 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12586 continue;
12587
12588 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12589 "(expected (%u,%u), found (%u,%u))\n",
12590 pipe_name(pipe), plane + 1,
12591 sw_entry->start, sw_entry->end,
12592 hw_entry->start, hw_entry->end);
12593 }
12594
12595 /* cursor */
12596 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12597 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12598
12599 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12600 continue;
12601
12602 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12603 "(expected (%u,%u), found (%u,%u))\n",
12604 pipe_name(pipe),
12605 sw_entry->start, sw_entry->end,
12606 hw_entry->start, hw_entry->end);
12607 }
12608 }
12609
12610 static void
12611 check_connector_state(struct drm_device *dev,
12612 struct drm_atomic_state *old_state)
12613 {
12614 struct drm_connector_state *old_conn_state;
12615 struct drm_connector *connector;
12616 int i;
12617
12618 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12619 struct drm_encoder *encoder = connector->encoder;
12620 struct drm_connector_state *state = connector->state;
12621
12622 /* This also checks the encoder/connector hw state with the
12623 * ->get_hw_state callbacks. */
12624 intel_connector_check_state(to_intel_connector(connector));
12625
12626 I915_STATE_WARN(state->best_encoder != encoder,
12627 "connector's atomic encoder doesn't match legacy encoder\n");
12628 }
12629 }
12630
12631 static void
12632 check_encoder_state(struct drm_device *dev)
12633 {
12634 struct intel_encoder *encoder;
12635 struct intel_connector *connector;
12636
12637 for_each_intel_encoder(dev, encoder) {
12638 bool enabled = false;
12639 enum pipe pipe;
12640
12641 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12642 encoder->base.base.id,
12643 encoder->base.name);
12644
12645 for_each_intel_connector(dev, connector) {
12646 if (connector->base.state->best_encoder != &encoder->base)
12647 continue;
12648 enabled = true;
12649
12650 I915_STATE_WARN(connector->base.state->crtc !=
12651 encoder->base.crtc,
12652 "connector's crtc doesn't match encoder crtc\n");
12653 }
12654
12655 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12656 "encoder's enabled state mismatch "
12657 "(expected %i, found %i)\n",
12658 !!encoder->base.crtc, enabled);
12659
12660 if (!encoder->base.crtc) {
12661 bool active;
12662
12663 active = encoder->get_hw_state(encoder, &pipe);
12664 I915_STATE_WARN(active,
12665 "encoder detached but still enabled on pipe %c.\n",
12666 pipe_name(pipe));
12667 }
12668 }
12669 }
12670
12671 static void
12672 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12673 {
12674 struct drm_i915_private *dev_priv = dev->dev_private;
12675 struct intel_encoder *encoder;
12676 struct drm_crtc_state *old_crtc_state;
12677 struct drm_crtc *crtc;
12678 int i;
12679
12680 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12682 struct intel_crtc_state *pipe_config, *sw_config;
12683 bool active;
12684
12685 if (!needs_modeset(crtc->state) &&
12686 !to_intel_crtc_state(crtc->state)->update_pipe)
12687 continue;
12688
12689 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12690 pipe_config = to_intel_crtc_state(old_crtc_state);
12691 memset(pipe_config, 0, sizeof(*pipe_config));
12692 pipe_config->base.crtc = crtc;
12693 pipe_config->base.state = old_state;
12694
12695 DRM_DEBUG_KMS("[CRTC:%d]\n",
12696 crtc->base.id);
12697
12698 active = dev_priv->display.get_pipe_config(intel_crtc,
12699 pipe_config);
12700
12701 /* hw state is inconsistent with the pipe quirk */
12702 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12703 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12704 active = crtc->state->active;
12705
12706 I915_STATE_WARN(crtc->state->active != active,
12707 "crtc active state doesn't match with hw state "
12708 "(expected %i, found %i)\n", crtc->state->active, active);
12709
12710 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12711 "transitional active state does not match atomic hw state "
12712 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12713
12714 for_each_encoder_on_crtc(dev, crtc, encoder) {
12715 enum pipe pipe;
12716
12717 active = encoder->get_hw_state(encoder, &pipe);
12718 I915_STATE_WARN(active != crtc->state->active,
12719 "[ENCODER:%i] active %i with crtc active %i\n",
12720 encoder->base.base.id, active, crtc->state->active);
12721
12722 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12723 "Encoder connected to wrong pipe %c\n",
12724 pipe_name(pipe));
12725
12726 if (active)
12727 encoder->get_config(encoder, pipe_config);
12728 }
12729
12730 if (!crtc->state->active)
12731 continue;
12732
12733 sw_config = to_intel_crtc_state(crtc->state);
12734 if (!intel_pipe_config_compare(dev, sw_config,
12735 pipe_config, false)) {
12736 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12737 intel_dump_pipe_config(intel_crtc, pipe_config,
12738 "[hw state]");
12739 intel_dump_pipe_config(intel_crtc, sw_config,
12740 "[sw state]");
12741 }
12742 }
12743 }
12744
12745 static void
12746 check_shared_dpll_state(struct drm_device *dev)
12747 {
12748 struct drm_i915_private *dev_priv = dev->dev_private;
12749 struct intel_crtc *crtc;
12750 struct intel_dpll_hw_state dpll_hw_state;
12751 int i;
12752
12753 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12754 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12755 int enabled_crtcs = 0, active_crtcs = 0;
12756 bool active;
12757
12758 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12759
12760 DRM_DEBUG_KMS("%s\n", pll->name);
12761
12762 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12763
12764 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12765 "more active pll users than references: %i vs %i\n",
12766 pll->active, hweight32(pll->config.crtc_mask));
12767 I915_STATE_WARN(pll->active && !pll->on,
12768 "pll in active use but not on in sw tracking\n");
12769 I915_STATE_WARN(pll->on && !pll->active,
12770 "pll in on but not on in use in sw tracking\n");
12771 I915_STATE_WARN(pll->on != active,
12772 "pll on state mismatch (expected %i, found %i)\n",
12773 pll->on, active);
12774
12775 for_each_intel_crtc(dev, crtc) {
12776 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12777 enabled_crtcs++;
12778 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12779 active_crtcs++;
12780 }
12781 I915_STATE_WARN(pll->active != active_crtcs,
12782 "pll active crtcs mismatch (expected %i, found %i)\n",
12783 pll->active, active_crtcs);
12784 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12785 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12786 hweight32(pll->config.crtc_mask), enabled_crtcs);
12787
12788 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12789 sizeof(dpll_hw_state)),
12790 "pll hw state mismatch\n");
12791 }
12792 }
12793
12794 static void
12795 intel_modeset_check_state(struct drm_device *dev,
12796 struct drm_atomic_state *old_state)
12797 {
12798 check_wm_state(dev);
12799 check_connector_state(dev, old_state);
12800 check_encoder_state(dev);
12801 check_crtc_state(dev, old_state);
12802 check_shared_dpll_state(dev);
12803 }
12804
12805 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12806 int dotclock)
12807 {
12808 /*
12809 * FDI already provided one idea for the dotclock.
12810 * Yell if the encoder disagrees.
12811 */
12812 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12813 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12814 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12815 }
12816
12817 static void update_scanline_offset(struct intel_crtc *crtc)
12818 {
12819 struct drm_device *dev = crtc->base.dev;
12820
12821 /*
12822 * The scanline counter increments at the leading edge of hsync.
12823 *
12824 * On most platforms it starts counting from vtotal-1 on the
12825 * first active line. That means the scanline counter value is
12826 * always one less than what we would expect. Ie. just after
12827 * start of vblank, which also occurs at start of hsync (on the
12828 * last active line), the scanline counter will read vblank_start-1.
12829 *
12830 * On gen2 the scanline counter starts counting from 1 instead
12831 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12832 * to keep the value positive), instead of adding one.
12833 *
12834 * On HSW+ the behaviour of the scanline counter depends on the output
12835 * type. For DP ports it behaves like most other platforms, but on HDMI
12836 * there's an extra 1 line difference. So we need to add two instead of
12837 * one to the value.
12838 */
12839 if (IS_GEN2(dev)) {
12840 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12841 int vtotal;
12842
12843 vtotal = adjusted_mode->crtc_vtotal;
12844 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12845 vtotal /= 2;
12846
12847 crtc->scanline_offset = vtotal - 1;
12848 } else if (HAS_DDI(dev) &&
12849 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12850 crtc->scanline_offset = 2;
12851 } else
12852 crtc->scanline_offset = 1;
12853 }
12854
12855 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12856 {
12857 struct drm_device *dev = state->dev;
12858 struct drm_i915_private *dev_priv = to_i915(dev);
12859 struct intel_shared_dpll_config *shared_dpll = NULL;
12860 struct intel_crtc *intel_crtc;
12861 struct intel_crtc_state *intel_crtc_state;
12862 struct drm_crtc *crtc;
12863 struct drm_crtc_state *crtc_state;
12864 int i;
12865
12866 if (!dev_priv->display.crtc_compute_clock)
12867 return;
12868
12869 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12870 int dpll;
12871
12872 intel_crtc = to_intel_crtc(crtc);
12873 intel_crtc_state = to_intel_crtc_state(crtc_state);
12874 dpll = intel_crtc_state->shared_dpll;
12875
12876 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12877 continue;
12878
12879 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12880
12881 if (!shared_dpll)
12882 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12883
12884 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12885 }
12886 }
12887
12888 /*
12889 * This implements the workaround described in the "notes" section of the mode
12890 * set sequence documentation. When going from no pipes or single pipe to
12891 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12892 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12893 */
12894 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12895 {
12896 struct drm_crtc_state *crtc_state;
12897 struct intel_crtc *intel_crtc;
12898 struct drm_crtc *crtc;
12899 struct intel_crtc_state *first_crtc_state = NULL;
12900 struct intel_crtc_state *other_crtc_state = NULL;
12901 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12902 int i;
12903
12904 /* look at all crtc's that are going to be enabled in during modeset */
12905 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12906 intel_crtc = to_intel_crtc(crtc);
12907
12908 if (!crtc_state->active || !needs_modeset(crtc_state))
12909 continue;
12910
12911 if (first_crtc_state) {
12912 other_crtc_state = to_intel_crtc_state(crtc_state);
12913 break;
12914 } else {
12915 first_crtc_state = to_intel_crtc_state(crtc_state);
12916 first_pipe = intel_crtc->pipe;
12917 }
12918 }
12919
12920 /* No workaround needed? */
12921 if (!first_crtc_state)
12922 return 0;
12923
12924 /* w/a possibly needed, check how many crtc's are already enabled. */
12925 for_each_intel_crtc(state->dev, intel_crtc) {
12926 struct intel_crtc_state *pipe_config;
12927
12928 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12929 if (IS_ERR(pipe_config))
12930 return PTR_ERR(pipe_config);
12931
12932 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12933
12934 if (!pipe_config->base.active ||
12935 needs_modeset(&pipe_config->base))
12936 continue;
12937
12938 /* 2 or more enabled crtcs means no need for w/a */
12939 if (enabled_pipe != INVALID_PIPE)
12940 return 0;
12941
12942 enabled_pipe = intel_crtc->pipe;
12943 }
12944
12945 if (enabled_pipe != INVALID_PIPE)
12946 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12947 else if (other_crtc_state)
12948 other_crtc_state->hsw_workaround_pipe = first_pipe;
12949
12950 return 0;
12951 }
12952
12953 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12954 {
12955 struct drm_crtc *crtc;
12956 struct drm_crtc_state *crtc_state;
12957 int ret = 0;
12958
12959 /* add all active pipes to the state */
12960 for_each_crtc(state->dev, crtc) {
12961 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12962 if (IS_ERR(crtc_state))
12963 return PTR_ERR(crtc_state);
12964
12965 if (!crtc_state->active || needs_modeset(crtc_state))
12966 continue;
12967
12968 crtc_state->mode_changed = true;
12969
12970 ret = drm_atomic_add_affected_connectors(state, crtc);
12971 if (ret)
12972 break;
12973
12974 ret = drm_atomic_add_affected_planes(state, crtc);
12975 if (ret)
12976 break;
12977 }
12978
12979 return ret;
12980 }
12981
12982 static int intel_modeset_checks(struct drm_atomic_state *state)
12983 {
12984 struct drm_device *dev = state->dev;
12985 struct drm_i915_private *dev_priv = dev->dev_private;
12986 int ret;
12987
12988 if (!check_digital_port_conflicts(state)) {
12989 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12990 return -EINVAL;
12991 }
12992
12993 /*
12994 * See if the config requires any additional preparation, e.g.
12995 * to adjust global state with pipes off. We need to do this
12996 * here so we can get the modeset_pipe updated config for the new
12997 * mode set on this crtc. For other crtcs we need to use the
12998 * adjusted_mode bits in the crtc directly.
12999 */
13000 if (dev_priv->display.modeset_calc_cdclk) {
13001 unsigned int cdclk;
13002
13003 ret = dev_priv->display.modeset_calc_cdclk(state);
13004
13005 cdclk = to_intel_atomic_state(state)->cdclk;
13006 if (!ret && cdclk != dev_priv->cdclk_freq)
13007 ret = intel_modeset_all_pipes(state);
13008
13009 if (ret < 0)
13010 return ret;
13011 } else
13012 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13013
13014 intel_modeset_clear_plls(state);
13015
13016 if (IS_HASWELL(dev))
13017 return haswell_mode_set_planes_workaround(state);
13018
13019 return 0;
13020 }
13021
13022 /**
13023 * intel_atomic_check - validate state object
13024 * @dev: drm device
13025 * @state: state to validate
13026 */
13027 static int intel_atomic_check(struct drm_device *dev,
13028 struct drm_atomic_state *state)
13029 {
13030 struct drm_crtc *crtc;
13031 struct drm_crtc_state *crtc_state;
13032 int ret, i;
13033 bool any_ms = false;
13034
13035 ret = drm_atomic_helper_check_modeset(dev, state);
13036 if (ret)
13037 return ret;
13038
13039 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13040 struct intel_crtc_state *pipe_config =
13041 to_intel_crtc_state(crtc_state);
13042
13043 memset(&to_intel_crtc(crtc)->atomic, 0,
13044 sizeof(struct intel_crtc_atomic_commit));
13045
13046 /* Catch I915_MODE_FLAG_INHERITED */
13047 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13048 crtc_state->mode_changed = true;
13049
13050 if (!crtc_state->enable) {
13051 if (needs_modeset(crtc_state))
13052 any_ms = true;
13053 continue;
13054 }
13055
13056 if (!needs_modeset(crtc_state))
13057 continue;
13058
13059 /* FIXME: For only active_changed we shouldn't need to do any
13060 * state recomputation at all. */
13061
13062 ret = drm_atomic_add_affected_connectors(state, crtc);
13063 if (ret)
13064 return ret;
13065
13066 ret = intel_modeset_pipe_config(crtc, pipe_config);
13067 if (ret)
13068 return ret;
13069
13070 if (i915.fastboot &&
13071 intel_pipe_config_compare(state->dev,
13072 to_intel_crtc_state(crtc->state),
13073 pipe_config, true)) {
13074 crtc_state->mode_changed = false;
13075 to_intel_crtc_state(crtc_state)->update_pipe = true;
13076 }
13077
13078 if (needs_modeset(crtc_state)) {
13079 any_ms = true;
13080
13081 ret = drm_atomic_add_affected_planes(state, crtc);
13082 if (ret)
13083 return ret;
13084 }
13085
13086 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13087 needs_modeset(crtc_state) ?
13088 "[modeset]" : "[fastset]");
13089 }
13090
13091 if (any_ms) {
13092 ret = intel_modeset_checks(state);
13093
13094 if (ret)
13095 return ret;
13096 } else
13097 to_intel_atomic_state(state)->cdclk =
13098 to_i915(state->dev)->cdclk_freq;
13099
13100 return drm_atomic_helper_check_planes(state->dev, state);
13101 }
13102
13103 /**
13104 * intel_atomic_commit - commit validated state object
13105 * @dev: DRM device
13106 * @state: the top-level driver state object
13107 * @async: asynchronous commit
13108 *
13109 * This function commits a top-level state object that has been validated
13110 * with drm_atomic_helper_check().
13111 *
13112 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13113 * we can only handle plane-related operations and do not yet support
13114 * asynchronous commit.
13115 *
13116 * RETURNS
13117 * Zero for success or -errno.
13118 */
13119 static int intel_atomic_commit(struct drm_device *dev,
13120 struct drm_atomic_state *state,
13121 bool async)
13122 {
13123 struct drm_i915_private *dev_priv = dev->dev_private;
13124 struct drm_crtc *crtc;
13125 struct drm_crtc_state *crtc_state;
13126 int ret = 0;
13127 int i;
13128 bool any_ms = false;
13129
13130 if (async) {
13131 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13132 return -EINVAL;
13133 }
13134
13135 ret = drm_atomic_helper_prepare_planes(dev, state);
13136 if (ret)
13137 return ret;
13138
13139 drm_atomic_helper_swap_state(dev, state);
13140
13141 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13143
13144 if (!needs_modeset(crtc->state))
13145 continue;
13146
13147 any_ms = true;
13148 intel_pre_plane_update(intel_crtc);
13149
13150 if (crtc_state->active) {
13151 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13152 dev_priv->display.crtc_disable(crtc);
13153 intel_crtc->active = false;
13154 intel_disable_shared_dpll(intel_crtc);
13155 }
13156 }
13157
13158 /* Only after disabling all output pipelines that will be changed can we
13159 * update the the output configuration. */
13160 intel_modeset_update_crtc_state(state);
13161
13162 if (any_ms) {
13163 intel_shared_dpll_commit(state);
13164
13165 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13166 modeset_update_crtc_power_domains(state);
13167 }
13168
13169 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13170 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13172 bool modeset = needs_modeset(crtc->state);
13173 bool update_pipe = !modeset &&
13174 to_intel_crtc_state(crtc->state)->update_pipe;
13175 unsigned long put_domains = 0;
13176
13177 if (modeset && crtc->state->active) {
13178 update_scanline_offset(to_intel_crtc(crtc));
13179 dev_priv->display.crtc_enable(crtc);
13180 }
13181
13182 if (update_pipe) {
13183 put_domains = modeset_get_crtc_power_domains(crtc);
13184
13185 /* make sure intel_modeset_check_state runs */
13186 any_ms = true;
13187 }
13188
13189 if (!modeset)
13190 intel_pre_plane_update(intel_crtc);
13191
13192 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13193
13194 if (put_domains)
13195 modeset_put_power_domains(dev_priv, put_domains);
13196
13197 intel_post_plane_update(intel_crtc);
13198 }
13199
13200 /* FIXME: add subpixel order */
13201
13202 drm_atomic_helper_wait_for_vblanks(dev, state);
13203 drm_atomic_helper_cleanup_planes(dev, state);
13204
13205 if (any_ms)
13206 intel_modeset_check_state(dev, state);
13207
13208 drm_atomic_state_free(state);
13209
13210 return 0;
13211 }
13212
13213 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13214 {
13215 struct drm_device *dev = crtc->dev;
13216 struct drm_atomic_state *state;
13217 struct drm_crtc_state *crtc_state;
13218 int ret;
13219
13220 state = drm_atomic_state_alloc(dev);
13221 if (!state) {
13222 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13223 crtc->base.id);
13224 return;
13225 }
13226
13227 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13228
13229 retry:
13230 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13231 ret = PTR_ERR_OR_ZERO(crtc_state);
13232 if (!ret) {
13233 if (!crtc_state->active)
13234 goto out;
13235
13236 crtc_state->mode_changed = true;
13237 ret = drm_atomic_commit(state);
13238 }
13239
13240 if (ret == -EDEADLK) {
13241 drm_atomic_state_clear(state);
13242 drm_modeset_backoff(state->acquire_ctx);
13243 goto retry;
13244 }
13245
13246 if (ret)
13247 out:
13248 drm_atomic_state_free(state);
13249 }
13250
13251 #undef for_each_intel_crtc_masked
13252
13253 static const struct drm_crtc_funcs intel_crtc_funcs = {
13254 .gamma_set = intel_crtc_gamma_set,
13255 .set_config = drm_atomic_helper_set_config,
13256 .destroy = intel_crtc_destroy,
13257 .page_flip = intel_crtc_page_flip,
13258 .atomic_duplicate_state = intel_crtc_duplicate_state,
13259 .atomic_destroy_state = intel_crtc_destroy_state,
13260 };
13261
13262 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13263 struct intel_shared_dpll *pll,
13264 struct intel_dpll_hw_state *hw_state)
13265 {
13266 uint32_t val;
13267
13268 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13269 return false;
13270
13271 val = I915_READ(PCH_DPLL(pll->id));
13272 hw_state->dpll = val;
13273 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13274 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13275
13276 return val & DPLL_VCO_ENABLE;
13277 }
13278
13279 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13280 struct intel_shared_dpll *pll)
13281 {
13282 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13283 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13284 }
13285
13286 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13287 struct intel_shared_dpll *pll)
13288 {
13289 /* PCH refclock must be enabled first */
13290 ibx_assert_pch_refclk_enabled(dev_priv);
13291
13292 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13293
13294 /* Wait for the clocks to stabilize. */
13295 POSTING_READ(PCH_DPLL(pll->id));
13296 udelay(150);
13297
13298 /* The pixel multiplier can only be updated once the
13299 * DPLL is enabled and the clocks are stable.
13300 *
13301 * So write it again.
13302 */
13303 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13304 POSTING_READ(PCH_DPLL(pll->id));
13305 udelay(200);
13306 }
13307
13308 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13309 struct intel_shared_dpll *pll)
13310 {
13311 struct drm_device *dev = dev_priv->dev;
13312 struct intel_crtc *crtc;
13313
13314 /* Make sure no transcoder isn't still depending on us. */
13315 for_each_intel_crtc(dev, crtc) {
13316 if (intel_crtc_to_shared_dpll(crtc) == pll)
13317 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13318 }
13319
13320 I915_WRITE(PCH_DPLL(pll->id), 0);
13321 POSTING_READ(PCH_DPLL(pll->id));
13322 udelay(200);
13323 }
13324
13325 static char *ibx_pch_dpll_names[] = {
13326 "PCH DPLL A",
13327 "PCH DPLL B",
13328 };
13329
13330 static void ibx_pch_dpll_init(struct drm_device *dev)
13331 {
13332 struct drm_i915_private *dev_priv = dev->dev_private;
13333 int i;
13334
13335 dev_priv->num_shared_dpll = 2;
13336
13337 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13338 dev_priv->shared_dplls[i].id = i;
13339 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13340 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13341 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13342 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13343 dev_priv->shared_dplls[i].get_hw_state =
13344 ibx_pch_dpll_get_hw_state;
13345 }
13346 }
13347
13348 static void intel_shared_dpll_init(struct drm_device *dev)
13349 {
13350 struct drm_i915_private *dev_priv = dev->dev_private;
13351
13352 if (HAS_DDI(dev))
13353 intel_ddi_pll_init(dev);
13354 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13355 ibx_pch_dpll_init(dev);
13356 else
13357 dev_priv->num_shared_dpll = 0;
13358
13359 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13360 }
13361
13362 /**
13363 * intel_prepare_plane_fb - Prepare fb for usage on plane
13364 * @plane: drm plane to prepare for
13365 * @fb: framebuffer to prepare for presentation
13366 *
13367 * Prepares a framebuffer for usage on a display plane. Generally this
13368 * involves pinning the underlying object and updating the frontbuffer tracking
13369 * bits. Some older platforms need special physical address handling for
13370 * cursor planes.
13371 *
13372 * Returns 0 on success, negative error code on failure.
13373 */
13374 int
13375 intel_prepare_plane_fb(struct drm_plane *plane,
13376 const struct drm_plane_state *new_state)
13377 {
13378 struct drm_device *dev = plane->dev;
13379 struct drm_framebuffer *fb = new_state->fb;
13380 struct intel_plane *intel_plane = to_intel_plane(plane);
13381 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13382 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13383 int ret = 0;
13384
13385 if (!obj)
13386 return 0;
13387
13388 mutex_lock(&dev->struct_mutex);
13389
13390 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13391 INTEL_INFO(dev)->cursor_needs_physical) {
13392 int align = IS_I830(dev) ? 16 * 1024 : 256;
13393 ret = i915_gem_object_attach_phys(obj, align);
13394 if (ret)
13395 DRM_DEBUG_KMS("failed to attach phys object\n");
13396 } else {
13397 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13398 }
13399
13400 if (ret == 0)
13401 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13402
13403 mutex_unlock(&dev->struct_mutex);
13404
13405 return ret;
13406 }
13407
13408 /**
13409 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13410 * @plane: drm plane to clean up for
13411 * @fb: old framebuffer that was on plane
13412 *
13413 * Cleans up a framebuffer that has just been removed from a plane.
13414 */
13415 void
13416 intel_cleanup_plane_fb(struct drm_plane *plane,
13417 const struct drm_plane_state *old_state)
13418 {
13419 struct drm_device *dev = plane->dev;
13420 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13421
13422 if (!obj)
13423 return;
13424
13425 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13426 !INTEL_INFO(dev)->cursor_needs_physical) {
13427 mutex_lock(&dev->struct_mutex);
13428 intel_unpin_fb_obj(old_state->fb, old_state);
13429 mutex_unlock(&dev->struct_mutex);
13430 }
13431 }
13432
13433 int
13434 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13435 {
13436 int max_scale;
13437 struct drm_device *dev;
13438 struct drm_i915_private *dev_priv;
13439 int crtc_clock, cdclk;
13440
13441 if (!intel_crtc || !crtc_state)
13442 return DRM_PLANE_HELPER_NO_SCALING;
13443
13444 dev = intel_crtc->base.dev;
13445 dev_priv = dev->dev_private;
13446 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13447 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13448
13449 if (!crtc_clock || !cdclk)
13450 return DRM_PLANE_HELPER_NO_SCALING;
13451
13452 /*
13453 * skl max scale is lower of:
13454 * close to 3 but not 3, -1 is for that purpose
13455 * or
13456 * cdclk/crtc_clock
13457 */
13458 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13459
13460 return max_scale;
13461 }
13462
13463 static int
13464 intel_check_primary_plane(struct drm_plane *plane,
13465 struct intel_crtc_state *crtc_state,
13466 struct intel_plane_state *state)
13467 {
13468 struct drm_crtc *crtc = state->base.crtc;
13469 struct drm_framebuffer *fb = state->base.fb;
13470 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13471 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13472 bool can_position = false;
13473
13474 /* use scaler when colorkey is not required */
13475 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13476 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13477 min_scale = 1;
13478 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13479 can_position = true;
13480 }
13481
13482 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13483 &state->dst, &state->clip,
13484 min_scale, max_scale,
13485 can_position, true,
13486 &state->visible);
13487 }
13488
13489 static void
13490 intel_commit_primary_plane(struct drm_plane *plane,
13491 struct intel_plane_state *state)
13492 {
13493 struct drm_crtc *crtc = state->base.crtc;
13494 struct drm_framebuffer *fb = state->base.fb;
13495 struct drm_device *dev = plane->dev;
13496 struct drm_i915_private *dev_priv = dev->dev_private;
13497 struct intel_crtc *intel_crtc;
13498 struct drm_rect *src = &state->src;
13499
13500 crtc = crtc ? crtc : plane->crtc;
13501 intel_crtc = to_intel_crtc(crtc);
13502
13503 plane->fb = fb;
13504 crtc->x = src->x1 >> 16;
13505 crtc->y = src->y1 >> 16;
13506
13507 if (!crtc->state->active)
13508 return;
13509
13510 dev_priv->display.update_primary_plane(crtc, fb,
13511 state->src.x1 >> 16,
13512 state->src.y1 >> 16);
13513 }
13514
13515 static void
13516 intel_disable_primary_plane(struct drm_plane *plane,
13517 struct drm_crtc *crtc)
13518 {
13519 struct drm_device *dev = plane->dev;
13520 struct drm_i915_private *dev_priv = dev->dev_private;
13521
13522 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13523 }
13524
13525 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13526 struct drm_crtc_state *old_crtc_state)
13527 {
13528 struct drm_device *dev = crtc->dev;
13529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13530 struct intel_crtc_state *old_intel_state =
13531 to_intel_crtc_state(old_crtc_state);
13532 bool modeset = needs_modeset(crtc->state);
13533
13534 if (intel_crtc->atomic.update_wm_pre)
13535 intel_update_watermarks(crtc);
13536
13537 /* Perform vblank evasion around commit operation */
13538 if (crtc->state->active)
13539 intel_pipe_update_start(intel_crtc);
13540
13541 if (modeset)
13542 return;
13543
13544 if (to_intel_crtc_state(crtc->state)->update_pipe)
13545 intel_update_pipe_config(intel_crtc, old_intel_state);
13546 else if (INTEL_INFO(dev)->gen >= 9)
13547 skl_detach_scalers(intel_crtc);
13548 }
13549
13550 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13551 struct drm_crtc_state *old_crtc_state)
13552 {
13553 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13554
13555 if (crtc->state->active)
13556 intel_pipe_update_end(intel_crtc);
13557 }
13558
13559 /**
13560 * intel_plane_destroy - destroy a plane
13561 * @plane: plane to destroy
13562 *
13563 * Common destruction function for all types of planes (primary, cursor,
13564 * sprite).
13565 */
13566 void intel_plane_destroy(struct drm_plane *plane)
13567 {
13568 struct intel_plane *intel_plane = to_intel_plane(plane);
13569 drm_plane_cleanup(plane);
13570 kfree(intel_plane);
13571 }
13572
13573 const struct drm_plane_funcs intel_plane_funcs = {
13574 .update_plane = drm_atomic_helper_update_plane,
13575 .disable_plane = drm_atomic_helper_disable_plane,
13576 .destroy = intel_plane_destroy,
13577 .set_property = drm_atomic_helper_plane_set_property,
13578 .atomic_get_property = intel_plane_atomic_get_property,
13579 .atomic_set_property = intel_plane_atomic_set_property,
13580 .atomic_duplicate_state = intel_plane_duplicate_state,
13581 .atomic_destroy_state = intel_plane_destroy_state,
13582
13583 };
13584
13585 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13586 int pipe)
13587 {
13588 struct intel_plane *primary;
13589 struct intel_plane_state *state;
13590 const uint32_t *intel_primary_formats;
13591 unsigned int num_formats;
13592
13593 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13594 if (primary == NULL)
13595 return NULL;
13596
13597 state = intel_create_plane_state(&primary->base);
13598 if (!state) {
13599 kfree(primary);
13600 return NULL;
13601 }
13602 primary->base.state = &state->base;
13603
13604 primary->can_scale = false;
13605 primary->max_downscale = 1;
13606 if (INTEL_INFO(dev)->gen >= 9) {
13607 primary->can_scale = true;
13608 state->scaler_id = -1;
13609 }
13610 primary->pipe = pipe;
13611 primary->plane = pipe;
13612 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13613 primary->check_plane = intel_check_primary_plane;
13614 primary->commit_plane = intel_commit_primary_plane;
13615 primary->disable_plane = intel_disable_primary_plane;
13616 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13617 primary->plane = !pipe;
13618
13619 if (INTEL_INFO(dev)->gen >= 9) {
13620 intel_primary_formats = skl_primary_formats;
13621 num_formats = ARRAY_SIZE(skl_primary_formats);
13622 } else if (INTEL_INFO(dev)->gen >= 4) {
13623 intel_primary_formats = i965_primary_formats;
13624 num_formats = ARRAY_SIZE(i965_primary_formats);
13625 } else {
13626 intel_primary_formats = i8xx_primary_formats;
13627 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13628 }
13629
13630 drm_universal_plane_init(dev, &primary->base, 0,
13631 &intel_plane_funcs,
13632 intel_primary_formats, num_formats,
13633 DRM_PLANE_TYPE_PRIMARY);
13634
13635 if (INTEL_INFO(dev)->gen >= 4)
13636 intel_create_rotation_property(dev, primary);
13637
13638 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13639
13640 return &primary->base;
13641 }
13642
13643 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13644 {
13645 if (!dev->mode_config.rotation_property) {
13646 unsigned long flags = BIT(DRM_ROTATE_0) |
13647 BIT(DRM_ROTATE_180);
13648
13649 if (INTEL_INFO(dev)->gen >= 9)
13650 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13651
13652 dev->mode_config.rotation_property =
13653 drm_mode_create_rotation_property(dev, flags);
13654 }
13655 if (dev->mode_config.rotation_property)
13656 drm_object_attach_property(&plane->base.base,
13657 dev->mode_config.rotation_property,
13658 plane->base.state->rotation);
13659 }
13660
13661 static int
13662 intel_check_cursor_plane(struct drm_plane *plane,
13663 struct intel_crtc_state *crtc_state,
13664 struct intel_plane_state *state)
13665 {
13666 struct drm_crtc *crtc = crtc_state->base.crtc;
13667 struct drm_framebuffer *fb = state->base.fb;
13668 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13669 unsigned stride;
13670 int ret;
13671
13672 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13673 &state->dst, &state->clip,
13674 DRM_PLANE_HELPER_NO_SCALING,
13675 DRM_PLANE_HELPER_NO_SCALING,
13676 true, true, &state->visible);
13677 if (ret)
13678 return ret;
13679
13680 /* if we want to turn off the cursor ignore width and height */
13681 if (!obj)
13682 return 0;
13683
13684 /* Check for which cursor types we support */
13685 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13686 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13687 state->base.crtc_w, state->base.crtc_h);
13688 return -EINVAL;
13689 }
13690
13691 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13692 if (obj->base.size < stride * state->base.crtc_h) {
13693 DRM_DEBUG_KMS("buffer is too small\n");
13694 return -ENOMEM;
13695 }
13696
13697 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13698 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13699 return -EINVAL;
13700 }
13701
13702 return 0;
13703 }
13704
13705 static void
13706 intel_disable_cursor_plane(struct drm_plane *plane,
13707 struct drm_crtc *crtc)
13708 {
13709 intel_crtc_update_cursor(crtc, false);
13710 }
13711
13712 static void
13713 intel_commit_cursor_plane(struct drm_plane *plane,
13714 struct intel_plane_state *state)
13715 {
13716 struct drm_crtc *crtc = state->base.crtc;
13717 struct drm_device *dev = plane->dev;
13718 struct intel_crtc *intel_crtc;
13719 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13720 uint32_t addr;
13721
13722 crtc = crtc ? crtc : plane->crtc;
13723 intel_crtc = to_intel_crtc(crtc);
13724
13725 if (intel_crtc->cursor_bo == obj)
13726 goto update;
13727
13728 if (!obj)
13729 addr = 0;
13730 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13731 addr = i915_gem_obj_ggtt_offset(obj);
13732 else
13733 addr = obj->phys_handle->busaddr;
13734
13735 intel_crtc->cursor_addr = addr;
13736 intel_crtc->cursor_bo = obj;
13737
13738 update:
13739 if (crtc->state->active)
13740 intel_crtc_update_cursor(crtc, state->visible);
13741 }
13742
13743 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13744 int pipe)
13745 {
13746 struct intel_plane *cursor;
13747 struct intel_plane_state *state;
13748
13749 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13750 if (cursor == NULL)
13751 return NULL;
13752
13753 state = intel_create_plane_state(&cursor->base);
13754 if (!state) {
13755 kfree(cursor);
13756 return NULL;
13757 }
13758 cursor->base.state = &state->base;
13759
13760 cursor->can_scale = false;
13761 cursor->max_downscale = 1;
13762 cursor->pipe = pipe;
13763 cursor->plane = pipe;
13764 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13765 cursor->check_plane = intel_check_cursor_plane;
13766 cursor->commit_plane = intel_commit_cursor_plane;
13767 cursor->disable_plane = intel_disable_cursor_plane;
13768
13769 drm_universal_plane_init(dev, &cursor->base, 0,
13770 &intel_plane_funcs,
13771 intel_cursor_formats,
13772 ARRAY_SIZE(intel_cursor_formats),
13773 DRM_PLANE_TYPE_CURSOR);
13774
13775 if (INTEL_INFO(dev)->gen >= 4) {
13776 if (!dev->mode_config.rotation_property)
13777 dev->mode_config.rotation_property =
13778 drm_mode_create_rotation_property(dev,
13779 BIT(DRM_ROTATE_0) |
13780 BIT(DRM_ROTATE_180));
13781 if (dev->mode_config.rotation_property)
13782 drm_object_attach_property(&cursor->base.base,
13783 dev->mode_config.rotation_property,
13784 state->base.rotation);
13785 }
13786
13787 if (INTEL_INFO(dev)->gen >=9)
13788 state->scaler_id = -1;
13789
13790 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13791
13792 return &cursor->base;
13793 }
13794
13795 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13796 struct intel_crtc_state *crtc_state)
13797 {
13798 int i;
13799 struct intel_scaler *intel_scaler;
13800 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13801
13802 for (i = 0; i < intel_crtc->num_scalers; i++) {
13803 intel_scaler = &scaler_state->scalers[i];
13804 intel_scaler->in_use = 0;
13805 intel_scaler->mode = PS_SCALER_MODE_DYN;
13806 }
13807
13808 scaler_state->scaler_id = -1;
13809 }
13810
13811 static void intel_crtc_init(struct drm_device *dev, int pipe)
13812 {
13813 struct drm_i915_private *dev_priv = dev->dev_private;
13814 struct intel_crtc *intel_crtc;
13815 struct intel_crtc_state *crtc_state = NULL;
13816 struct drm_plane *primary = NULL;
13817 struct drm_plane *cursor = NULL;
13818 int i, ret;
13819
13820 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13821 if (intel_crtc == NULL)
13822 return;
13823
13824 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13825 if (!crtc_state)
13826 goto fail;
13827 intel_crtc->config = crtc_state;
13828 intel_crtc->base.state = &crtc_state->base;
13829 crtc_state->base.crtc = &intel_crtc->base;
13830
13831 /* initialize shared scalers */
13832 if (INTEL_INFO(dev)->gen >= 9) {
13833 if (pipe == PIPE_C)
13834 intel_crtc->num_scalers = 1;
13835 else
13836 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13837
13838 skl_init_scalers(dev, intel_crtc, crtc_state);
13839 }
13840
13841 primary = intel_primary_plane_create(dev, pipe);
13842 if (!primary)
13843 goto fail;
13844
13845 cursor = intel_cursor_plane_create(dev, pipe);
13846 if (!cursor)
13847 goto fail;
13848
13849 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13850 cursor, &intel_crtc_funcs);
13851 if (ret)
13852 goto fail;
13853
13854 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13855 for (i = 0; i < 256; i++) {
13856 intel_crtc->lut_r[i] = i;
13857 intel_crtc->lut_g[i] = i;
13858 intel_crtc->lut_b[i] = i;
13859 }
13860
13861 /*
13862 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13863 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13864 */
13865 intel_crtc->pipe = pipe;
13866 intel_crtc->plane = pipe;
13867 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13868 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13869 intel_crtc->plane = !pipe;
13870 }
13871
13872 intel_crtc->cursor_base = ~0;
13873 intel_crtc->cursor_cntl = ~0;
13874 intel_crtc->cursor_size = ~0;
13875
13876 intel_crtc->wm.cxsr_allowed = true;
13877
13878 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13879 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13880 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13881 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13882
13883 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13884
13885 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13886 return;
13887
13888 fail:
13889 if (primary)
13890 drm_plane_cleanup(primary);
13891 if (cursor)
13892 drm_plane_cleanup(cursor);
13893 kfree(crtc_state);
13894 kfree(intel_crtc);
13895 }
13896
13897 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13898 {
13899 struct drm_encoder *encoder = connector->base.encoder;
13900 struct drm_device *dev = connector->base.dev;
13901
13902 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13903
13904 if (!encoder || WARN_ON(!encoder->crtc))
13905 return INVALID_PIPE;
13906
13907 return to_intel_crtc(encoder->crtc)->pipe;
13908 }
13909
13910 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13911 struct drm_file *file)
13912 {
13913 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13914 struct drm_crtc *drmmode_crtc;
13915 struct intel_crtc *crtc;
13916
13917 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13918
13919 if (!drmmode_crtc) {
13920 DRM_ERROR("no such CRTC id\n");
13921 return -ENOENT;
13922 }
13923
13924 crtc = to_intel_crtc(drmmode_crtc);
13925 pipe_from_crtc_id->pipe = crtc->pipe;
13926
13927 return 0;
13928 }
13929
13930 static int intel_encoder_clones(struct intel_encoder *encoder)
13931 {
13932 struct drm_device *dev = encoder->base.dev;
13933 struct intel_encoder *source_encoder;
13934 int index_mask = 0;
13935 int entry = 0;
13936
13937 for_each_intel_encoder(dev, source_encoder) {
13938 if (encoders_cloneable(encoder, source_encoder))
13939 index_mask |= (1 << entry);
13940
13941 entry++;
13942 }
13943
13944 return index_mask;
13945 }
13946
13947 static bool has_edp_a(struct drm_device *dev)
13948 {
13949 struct drm_i915_private *dev_priv = dev->dev_private;
13950
13951 if (!IS_MOBILE(dev))
13952 return false;
13953
13954 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13955 return false;
13956
13957 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13958 return false;
13959
13960 return true;
13961 }
13962
13963 static bool intel_crt_present(struct drm_device *dev)
13964 {
13965 struct drm_i915_private *dev_priv = dev->dev_private;
13966
13967 if (INTEL_INFO(dev)->gen >= 9)
13968 return false;
13969
13970 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13971 return false;
13972
13973 if (IS_CHERRYVIEW(dev))
13974 return false;
13975
13976 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13977 return false;
13978
13979 return true;
13980 }
13981
13982 static void intel_setup_outputs(struct drm_device *dev)
13983 {
13984 struct drm_i915_private *dev_priv = dev->dev_private;
13985 struct intel_encoder *encoder;
13986 bool dpd_is_edp = false;
13987
13988 intel_lvds_init(dev);
13989
13990 if (intel_crt_present(dev))
13991 intel_crt_init(dev);
13992
13993 if (IS_BROXTON(dev)) {
13994 /*
13995 * FIXME: Broxton doesn't support port detection via the
13996 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13997 * detect the ports.
13998 */
13999 intel_ddi_init(dev, PORT_A);
14000 intel_ddi_init(dev, PORT_B);
14001 intel_ddi_init(dev, PORT_C);
14002 } else if (HAS_DDI(dev)) {
14003 int found;
14004
14005 /*
14006 * Haswell uses DDI functions to detect digital outputs.
14007 * On SKL pre-D0 the strap isn't connected, so we assume
14008 * it's there.
14009 */
14010 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14011 /* WaIgnoreDDIAStrap: skl */
14012 if (found || IS_SKYLAKE(dev))
14013 intel_ddi_init(dev, PORT_A);
14014
14015 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14016 * register */
14017 found = I915_READ(SFUSE_STRAP);
14018
14019 if (found & SFUSE_STRAP_DDIB_DETECTED)
14020 intel_ddi_init(dev, PORT_B);
14021 if (found & SFUSE_STRAP_DDIC_DETECTED)
14022 intel_ddi_init(dev, PORT_C);
14023 if (found & SFUSE_STRAP_DDID_DETECTED)
14024 intel_ddi_init(dev, PORT_D);
14025 /*
14026 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14027 */
14028 if (IS_SKYLAKE(dev) &&
14029 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14030 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14031 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14032 intel_ddi_init(dev, PORT_E);
14033
14034 } else if (HAS_PCH_SPLIT(dev)) {
14035 int found;
14036 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14037
14038 if (has_edp_a(dev))
14039 intel_dp_init(dev, DP_A, PORT_A);
14040
14041 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14042 /* PCH SDVOB multiplex with HDMIB */
14043 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14044 if (!found)
14045 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14046 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14047 intel_dp_init(dev, PCH_DP_B, PORT_B);
14048 }
14049
14050 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14051 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14052
14053 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14054 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14055
14056 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14057 intel_dp_init(dev, PCH_DP_C, PORT_C);
14058
14059 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14060 intel_dp_init(dev, PCH_DP_D, PORT_D);
14061 } else if (IS_VALLEYVIEW(dev)) {
14062 /*
14063 * The DP_DETECTED bit is the latched state of the DDC
14064 * SDA pin at boot. However since eDP doesn't require DDC
14065 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14066 * eDP ports may have been muxed to an alternate function.
14067 * Thus we can't rely on the DP_DETECTED bit alone to detect
14068 * eDP ports. Consult the VBT as well as DP_DETECTED to
14069 * detect eDP ports.
14070 */
14071 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14072 !intel_dp_is_edp(dev, PORT_B))
14073 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14074 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14075 intel_dp_is_edp(dev, PORT_B))
14076 intel_dp_init(dev, VLV_DP_B, PORT_B);
14077
14078 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14079 !intel_dp_is_edp(dev, PORT_C))
14080 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14081 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14082 intel_dp_is_edp(dev, PORT_C))
14083 intel_dp_init(dev, VLV_DP_C, PORT_C);
14084
14085 if (IS_CHERRYVIEW(dev)) {
14086 /* eDP not supported on port D, so don't check VBT */
14087 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14088 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14089 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14090 intel_dp_init(dev, CHV_DP_D, PORT_D);
14091 }
14092
14093 intel_dsi_init(dev);
14094 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14095 bool found = false;
14096
14097 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14098 DRM_DEBUG_KMS("probing SDVOB\n");
14099 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14100 if (!found && IS_G4X(dev)) {
14101 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14102 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14103 }
14104
14105 if (!found && IS_G4X(dev))
14106 intel_dp_init(dev, DP_B, PORT_B);
14107 }
14108
14109 /* Before G4X SDVOC doesn't have its own detect register */
14110
14111 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14112 DRM_DEBUG_KMS("probing SDVOC\n");
14113 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14114 }
14115
14116 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14117
14118 if (IS_G4X(dev)) {
14119 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14120 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14121 }
14122 if (IS_G4X(dev))
14123 intel_dp_init(dev, DP_C, PORT_C);
14124 }
14125
14126 if (IS_G4X(dev) &&
14127 (I915_READ(DP_D) & DP_DETECTED))
14128 intel_dp_init(dev, DP_D, PORT_D);
14129 } else if (IS_GEN2(dev))
14130 intel_dvo_init(dev);
14131
14132 if (SUPPORTS_TV(dev))
14133 intel_tv_init(dev);
14134
14135 intel_psr_init(dev);
14136
14137 for_each_intel_encoder(dev, encoder) {
14138 encoder->base.possible_crtcs = encoder->crtc_mask;
14139 encoder->base.possible_clones =
14140 intel_encoder_clones(encoder);
14141 }
14142
14143 intel_init_pch_refclk(dev);
14144
14145 drm_helper_move_panel_connectors_to_head(dev);
14146 }
14147
14148 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14149 {
14150 struct drm_device *dev = fb->dev;
14151 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14152
14153 drm_framebuffer_cleanup(fb);
14154 mutex_lock(&dev->struct_mutex);
14155 WARN_ON(!intel_fb->obj->framebuffer_references--);
14156 drm_gem_object_unreference(&intel_fb->obj->base);
14157 mutex_unlock(&dev->struct_mutex);
14158 kfree(intel_fb);
14159 }
14160
14161 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14162 struct drm_file *file,
14163 unsigned int *handle)
14164 {
14165 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14166 struct drm_i915_gem_object *obj = intel_fb->obj;
14167
14168 if (obj->userptr.mm) {
14169 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14170 return -EINVAL;
14171 }
14172
14173 return drm_gem_handle_create(file, &obj->base, handle);
14174 }
14175
14176 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14177 struct drm_file *file,
14178 unsigned flags, unsigned color,
14179 struct drm_clip_rect *clips,
14180 unsigned num_clips)
14181 {
14182 struct drm_device *dev = fb->dev;
14183 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14184 struct drm_i915_gem_object *obj = intel_fb->obj;
14185
14186 mutex_lock(&dev->struct_mutex);
14187 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14188 mutex_unlock(&dev->struct_mutex);
14189
14190 return 0;
14191 }
14192
14193 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14194 .destroy = intel_user_framebuffer_destroy,
14195 .create_handle = intel_user_framebuffer_create_handle,
14196 .dirty = intel_user_framebuffer_dirty,
14197 };
14198
14199 static
14200 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14201 uint32_t pixel_format)
14202 {
14203 u32 gen = INTEL_INFO(dev)->gen;
14204
14205 if (gen >= 9) {
14206 /* "The stride in bytes must not exceed the of the size of 8K
14207 * pixels and 32K bytes."
14208 */
14209 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14210 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14211 return 32*1024;
14212 } else if (gen >= 4) {
14213 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14214 return 16*1024;
14215 else
14216 return 32*1024;
14217 } else if (gen >= 3) {
14218 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14219 return 8*1024;
14220 else
14221 return 16*1024;
14222 } else {
14223 /* XXX DSPC is limited to 4k tiled */
14224 return 8*1024;
14225 }
14226 }
14227
14228 static int intel_framebuffer_init(struct drm_device *dev,
14229 struct intel_framebuffer *intel_fb,
14230 struct drm_mode_fb_cmd2 *mode_cmd,
14231 struct drm_i915_gem_object *obj)
14232 {
14233 unsigned int aligned_height;
14234 int ret;
14235 u32 pitch_limit, stride_alignment;
14236
14237 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14238
14239 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14240 /* Enforce that fb modifier and tiling mode match, but only for
14241 * X-tiled. This is needed for FBC. */
14242 if (!!(obj->tiling_mode == I915_TILING_X) !=
14243 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14244 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14245 return -EINVAL;
14246 }
14247 } else {
14248 if (obj->tiling_mode == I915_TILING_X)
14249 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14250 else if (obj->tiling_mode == I915_TILING_Y) {
14251 DRM_DEBUG("No Y tiling for legacy addfb\n");
14252 return -EINVAL;
14253 }
14254 }
14255
14256 /* Passed in modifier sanity checking. */
14257 switch (mode_cmd->modifier[0]) {
14258 case I915_FORMAT_MOD_Y_TILED:
14259 case I915_FORMAT_MOD_Yf_TILED:
14260 if (INTEL_INFO(dev)->gen < 9) {
14261 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14262 mode_cmd->modifier[0]);
14263 return -EINVAL;
14264 }
14265 case DRM_FORMAT_MOD_NONE:
14266 case I915_FORMAT_MOD_X_TILED:
14267 break;
14268 default:
14269 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14270 mode_cmd->modifier[0]);
14271 return -EINVAL;
14272 }
14273
14274 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14275 mode_cmd->pixel_format);
14276 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14277 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14278 mode_cmd->pitches[0], stride_alignment);
14279 return -EINVAL;
14280 }
14281
14282 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14283 mode_cmd->pixel_format);
14284 if (mode_cmd->pitches[0] > pitch_limit) {
14285 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14286 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14287 "tiled" : "linear",
14288 mode_cmd->pitches[0], pitch_limit);
14289 return -EINVAL;
14290 }
14291
14292 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14293 mode_cmd->pitches[0] != obj->stride) {
14294 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14295 mode_cmd->pitches[0], obj->stride);
14296 return -EINVAL;
14297 }
14298
14299 /* Reject formats not supported by any plane early. */
14300 switch (mode_cmd->pixel_format) {
14301 case DRM_FORMAT_C8:
14302 case DRM_FORMAT_RGB565:
14303 case DRM_FORMAT_XRGB8888:
14304 case DRM_FORMAT_ARGB8888:
14305 break;
14306 case DRM_FORMAT_XRGB1555:
14307 if (INTEL_INFO(dev)->gen > 3) {
14308 DRM_DEBUG("unsupported pixel format: %s\n",
14309 drm_get_format_name(mode_cmd->pixel_format));
14310 return -EINVAL;
14311 }
14312 break;
14313 case DRM_FORMAT_ABGR8888:
14314 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14315 DRM_DEBUG("unsupported pixel format: %s\n",
14316 drm_get_format_name(mode_cmd->pixel_format));
14317 return -EINVAL;
14318 }
14319 break;
14320 case DRM_FORMAT_XBGR8888:
14321 case DRM_FORMAT_XRGB2101010:
14322 case DRM_FORMAT_XBGR2101010:
14323 if (INTEL_INFO(dev)->gen < 4) {
14324 DRM_DEBUG("unsupported pixel format: %s\n",
14325 drm_get_format_name(mode_cmd->pixel_format));
14326 return -EINVAL;
14327 }
14328 break;
14329 case DRM_FORMAT_ABGR2101010:
14330 if (!IS_VALLEYVIEW(dev)) {
14331 DRM_DEBUG("unsupported pixel format: %s\n",
14332 drm_get_format_name(mode_cmd->pixel_format));
14333 return -EINVAL;
14334 }
14335 break;
14336 case DRM_FORMAT_YUYV:
14337 case DRM_FORMAT_UYVY:
14338 case DRM_FORMAT_YVYU:
14339 case DRM_FORMAT_VYUY:
14340 if (INTEL_INFO(dev)->gen < 5) {
14341 DRM_DEBUG("unsupported pixel format: %s\n",
14342 drm_get_format_name(mode_cmd->pixel_format));
14343 return -EINVAL;
14344 }
14345 break;
14346 default:
14347 DRM_DEBUG("unsupported pixel format: %s\n",
14348 drm_get_format_name(mode_cmd->pixel_format));
14349 return -EINVAL;
14350 }
14351
14352 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14353 if (mode_cmd->offsets[0] != 0)
14354 return -EINVAL;
14355
14356 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14357 mode_cmd->pixel_format,
14358 mode_cmd->modifier[0]);
14359 /* FIXME drm helper for size checks (especially planar formats)? */
14360 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14361 return -EINVAL;
14362
14363 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14364 intel_fb->obj = obj;
14365 intel_fb->obj->framebuffer_references++;
14366
14367 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14368 if (ret) {
14369 DRM_ERROR("framebuffer init failed %d\n", ret);
14370 return ret;
14371 }
14372
14373 return 0;
14374 }
14375
14376 static struct drm_framebuffer *
14377 intel_user_framebuffer_create(struct drm_device *dev,
14378 struct drm_file *filp,
14379 struct drm_mode_fb_cmd2 *user_mode_cmd)
14380 {
14381 struct drm_i915_gem_object *obj;
14382 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14383
14384 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14385 mode_cmd.handles[0]));
14386 if (&obj->base == NULL)
14387 return ERR_PTR(-ENOENT);
14388
14389 return intel_framebuffer_create(dev, &mode_cmd, obj);
14390 }
14391
14392 #ifndef CONFIG_DRM_FBDEV_EMULATION
14393 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14394 {
14395 }
14396 #endif
14397
14398 static const struct drm_mode_config_funcs intel_mode_funcs = {
14399 .fb_create = intel_user_framebuffer_create,
14400 .output_poll_changed = intel_fbdev_output_poll_changed,
14401 .atomic_check = intel_atomic_check,
14402 .atomic_commit = intel_atomic_commit,
14403 .atomic_state_alloc = intel_atomic_state_alloc,
14404 .atomic_state_clear = intel_atomic_state_clear,
14405 };
14406
14407 /* Set up chip specific display functions */
14408 static void intel_init_display(struct drm_device *dev)
14409 {
14410 struct drm_i915_private *dev_priv = dev->dev_private;
14411
14412 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14413 dev_priv->display.find_dpll = g4x_find_best_dpll;
14414 else if (IS_CHERRYVIEW(dev))
14415 dev_priv->display.find_dpll = chv_find_best_dpll;
14416 else if (IS_VALLEYVIEW(dev))
14417 dev_priv->display.find_dpll = vlv_find_best_dpll;
14418 else if (IS_PINEVIEW(dev))
14419 dev_priv->display.find_dpll = pnv_find_best_dpll;
14420 else
14421 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14422
14423 if (INTEL_INFO(dev)->gen >= 9) {
14424 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14425 dev_priv->display.get_initial_plane_config =
14426 skylake_get_initial_plane_config;
14427 dev_priv->display.crtc_compute_clock =
14428 haswell_crtc_compute_clock;
14429 dev_priv->display.crtc_enable = haswell_crtc_enable;
14430 dev_priv->display.crtc_disable = haswell_crtc_disable;
14431 dev_priv->display.update_primary_plane =
14432 skylake_update_primary_plane;
14433 } else if (HAS_DDI(dev)) {
14434 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14435 dev_priv->display.get_initial_plane_config =
14436 ironlake_get_initial_plane_config;
14437 dev_priv->display.crtc_compute_clock =
14438 haswell_crtc_compute_clock;
14439 dev_priv->display.crtc_enable = haswell_crtc_enable;
14440 dev_priv->display.crtc_disable = haswell_crtc_disable;
14441 dev_priv->display.update_primary_plane =
14442 ironlake_update_primary_plane;
14443 } else if (HAS_PCH_SPLIT(dev)) {
14444 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14445 dev_priv->display.get_initial_plane_config =
14446 ironlake_get_initial_plane_config;
14447 dev_priv->display.crtc_compute_clock =
14448 ironlake_crtc_compute_clock;
14449 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14450 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14451 dev_priv->display.update_primary_plane =
14452 ironlake_update_primary_plane;
14453 } else if (IS_VALLEYVIEW(dev)) {
14454 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14455 dev_priv->display.get_initial_plane_config =
14456 i9xx_get_initial_plane_config;
14457 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14458 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14459 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14460 dev_priv->display.update_primary_plane =
14461 i9xx_update_primary_plane;
14462 } else {
14463 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14464 dev_priv->display.get_initial_plane_config =
14465 i9xx_get_initial_plane_config;
14466 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14467 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14468 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14469 dev_priv->display.update_primary_plane =
14470 i9xx_update_primary_plane;
14471 }
14472
14473 /* Returns the core display clock speed */
14474 if (IS_SKYLAKE(dev))
14475 dev_priv->display.get_display_clock_speed =
14476 skylake_get_display_clock_speed;
14477 else if (IS_BROXTON(dev))
14478 dev_priv->display.get_display_clock_speed =
14479 broxton_get_display_clock_speed;
14480 else if (IS_BROADWELL(dev))
14481 dev_priv->display.get_display_clock_speed =
14482 broadwell_get_display_clock_speed;
14483 else if (IS_HASWELL(dev))
14484 dev_priv->display.get_display_clock_speed =
14485 haswell_get_display_clock_speed;
14486 else if (IS_VALLEYVIEW(dev))
14487 dev_priv->display.get_display_clock_speed =
14488 valleyview_get_display_clock_speed;
14489 else if (IS_GEN5(dev))
14490 dev_priv->display.get_display_clock_speed =
14491 ilk_get_display_clock_speed;
14492 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14493 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14494 dev_priv->display.get_display_clock_speed =
14495 i945_get_display_clock_speed;
14496 else if (IS_GM45(dev))
14497 dev_priv->display.get_display_clock_speed =
14498 gm45_get_display_clock_speed;
14499 else if (IS_CRESTLINE(dev))
14500 dev_priv->display.get_display_clock_speed =
14501 i965gm_get_display_clock_speed;
14502 else if (IS_PINEVIEW(dev))
14503 dev_priv->display.get_display_clock_speed =
14504 pnv_get_display_clock_speed;
14505 else if (IS_G33(dev) || IS_G4X(dev))
14506 dev_priv->display.get_display_clock_speed =
14507 g33_get_display_clock_speed;
14508 else if (IS_I915G(dev))
14509 dev_priv->display.get_display_clock_speed =
14510 i915_get_display_clock_speed;
14511 else if (IS_I945GM(dev) || IS_845G(dev))
14512 dev_priv->display.get_display_clock_speed =
14513 i9xx_misc_get_display_clock_speed;
14514 else if (IS_PINEVIEW(dev))
14515 dev_priv->display.get_display_clock_speed =
14516 pnv_get_display_clock_speed;
14517 else if (IS_I915GM(dev))
14518 dev_priv->display.get_display_clock_speed =
14519 i915gm_get_display_clock_speed;
14520 else if (IS_I865G(dev))
14521 dev_priv->display.get_display_clock_speed =
14522 i865_get_display_clock_speed;
14523 else if (IS_I85X(dev))
14524 dev_priv->display.get_display_clock_speed =
14525 i85x_get_display_clock_speed;
14526 else { /* 830 */
14527 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14528 dev_priv->display.get_display_clock_speed =
14529 i830_get_display_clock_speed;
14530 }
14531
14532 if (IS_GEN5(dev)) {
14533 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14534 } else if (IS_GEN6(dev)) {
14535 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14536 } else if (IS_IVYBRIDGE(dev)) {
14537 /* FIXME: detect B0+ stepping and use auto training */
14538 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14539 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14540 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14541 if (IS_BROADWELL(dev)) {
14542 dev_priv->display.modeset_commit_cdclk =
14543 broadwell_modeset_commit_cdclk;
14544 dev_priv->display.modeset_calc_cdclk =
14545 broadwell_modeset_calc_cdclk;
14546 }
14547 } else if (IS_VALLEYVIEW(dev)) {
14548 dev_priv->display.modeset_commit_cdclk =
14549 valleyview_modeset_commit_cdclk;
14550 dev_priv->display.modeset_calc_cdclk =
14551 valleyview_modeset_calc_cdclk;
14552 } else if (IS_BROXTON(dev)) {
14553 dev_priv->display.modeset_commit_cdclk =
14554 broxton_modeset_commit_cdclk;
14555 dev_priv->display.modeset_calc_cdclk =
14556 broxton_modeset_calc_cdclk;
14557 }
14558
14559 switch (INTEL_INFO(dev)->gen) {
14560 case 2:
14561 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14562 break;
14563
14564 case 3:
14565 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14566 break;
14567
14568 case 4:
14569 case 5:
14570 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14571 break;
14572
14573 case 6:
14574 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14575 break;
14576 case 7:
14577 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14578 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14579 break;
14580 case 9:
14581 /* Drop through - unsupported since execlist only. */
14582 default:
14583 /* Default just returns -ENODEV to indicate unsupported */
14584 dev_priv->display.queue_flip = intel_default_queue_flip;
14585 }
14586
14587 mutex_init(&dev_priv->pps_mutex);
14588 }
14589
14590 /*
14591 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14592 * resume, or other times. This quirk makes sure that's the case for
14593 * affected systems.
14594 */
14595 static void quirk_pipea_force(struct drm_device *dev)
14596 {
14597 struct drm_i915_private *dev_priv = dev->dev_private;
14598
14599 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14600 DRM_INFO("applying pipe a force quirk\n");
14601 }
14602
14603 static void quirk_pipeb_force(struct drm_device *dev)
14604 {
14605 struct drm_i915_private *dev_priv = dev->dev_private;
14606
14607 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14608 DRM_INFO("applying pipe b force quirk\n");
14609 }
14610
14611 /*
14612 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14613 */
14614 static void quirk_ssc_force_disable(struct drm_device *dev)
14615 {
14616 struct drm_i915_private *dev_priv = dev->dev_private;
14617 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14618 DRM_INFO("applying lvds SSC disable quirk\n");
14619 }
14620
14621 /*
14622 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14623 * brightness value
14624 */
14625 static void quirk_invert_brightness(struct drm_device *dev)
14626 {
14627 struct drm_i915_private *dev_priv = dev->dev_private;
14628 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14629 DRM_INFO("applying inverted panel brightness quirk\n");
14630 }
14631
14632 /* Some VBT's incorrectly indicate no backlight is present */
14633 static void quirk_backlight_present(struct drm_device *dev)
14634 {
14635 struct drm_i915_private *dev_priv = dev->dev_private;
14636 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14637 DRM_INFO("applying backlight present quirk\n");
14638 }
14639
14640 struct intel_quirk {
14641 int device;
14642 int subsystem_vendor;
14643 int subsystem_device;
14644 void (*hook)(struct drm_device *dev);
14645 };
14646
14647 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14648 struct intel_dmi_quirk {
14649 void (*hook)(struct drm_device *dev);
14650 const struct dmi_system_id (*dmi_id_list)[];
14651 };
14652
14653 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14654 {
14655 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14656 return 1;
14657 }
14658
14659 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14660 {
14661 .dmi_id_list = &(const struct dmi_system_id[]) {
14662 {
14663 .callback = intel_dmi_reverse_brightness,
14664 .ident = "NCR Corporation",
14665 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14666 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14667 },
14668 },
14669 { } /* terminating entry */
14670 },
14671 .hook = quirk_invert_brightness,
14672 },
14673 };
14674
14675 static struct intel_quirk intel_quirks[] = {
14676 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14677 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14678
14679 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14680 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14681
14682 /* 830 needs to leave pipe A & dpll A up */
14683 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14684
14685 /* 830 needs to leave pipe B & dpll B up */
14686 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14687
14688 /* Lenovo U160 cannot use SSC on LVDS */
14689 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14690
14691 /* Sony Vaio Y cannot use SSC on LVDS */
14692 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14693
14694 /* Acer Aspire 5734Z must invert backlight brightness */
14695 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14696
14697 /* Acer/eMachines G725 */
14698 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14699
14700 /* Acer/eMachines e725 */
14701 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14702
14703 /* Acer/Packard Bell NCL20 */
14704 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14705
14706 /* Acer Aspire 4736Z */
14707 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14708
14709 /* Acer Aspire 5336 */
14710 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14711
14712 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14713 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14714
14715 /* Acer C720 Chromebook (Core i3 4005U) */
14716 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14717
14718 /* Apple Macbook 2,1 (Core 2 T7400) */
14719 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14720
14721 /* Apple Macbook 4,1 */
14722 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14723
14724 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14725 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14726
14727 /* HP Chromebook 14 (Celeron 2955U) */
14728 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14729
14730 /* Dell Chromebook 11 */
14731 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14732
14733 /* Dell Chromebook 11 (2015 version) */
14734 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14735 };
14736
14737 static void intel_init_quirks(struct drm_device *dev)
14738 {
14739 struct pci_dev *d = dev->pdev;
14740 int i;
14741
14742 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14743 struct intel_quirk *q = &intel_quirks[i];
14744
14745 if (d->device == q->device &&
14746 (d->subsystem_vendor == q->subsystem_vendor ||
14747 q->subsystem_vendor == PCI_ANY_ID) &&
14748 (d->subsystem_device == q->subsystem_device ||
14749 q->subsystem_device == PCI_ANY_ID))
14750 q->hook(dev);
14751 }
14752 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14753 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14754 intel_dmi_quirks[i].hook(dev);
14755 }
14756 }
14757
14758 /* Disable the VGA plane that we never use */
14759 static void i915_disable_vga(struct drm_device *dev)
14760 {
14761 struct drm_i915_private *dev_priv = dev->dev_private;
14762 u8 sr1;
14763 u32 vga_reg = i915_vgacntrl_reg(dev);
14764
14765 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14766 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14767 outb(SR01, VGA_SR_INDEX);
14768 sr1 = inb(VGA_SR_DATA);
14769 outb(sr1 | 1<<5, VGA_SR_DATA);
14770 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14771 udelay(300);
14772
14773 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14774 POSTING_READ(vga_reg);
14775 }
14776
14777 void intel_modeset_init_hw(struct drm_device *dev)
14778 {
14779 intel_update_cdclk(dev);
14780 intel_prepare_ddi(dev);
14781 intel_init_clock_gating(dev);
14782 intel_enable_gt_powersave(dev);
14783 }
14784
14785 void intel_modeset_init(struct drm_device *dev)
14786 {
14787 struct drm_i915_private *dev_priv = dev->dev_private;
14788 int sprite, ret;
14789 enum pipe pipe;
14790 struct intel_crtc *crtc;
14791
14792 drm_mode_config_init(dev);
14793
14794 dev->mode_config.min_width = 0;
14795 dev->mode_config.min_height = 0;
14796
14797 dev->mode_config.preferred_depth = 24;
14798 dev->mode_config.prefer_shadow = 1;
14799
14800 dev->mode_config.allow_fb_modifiers = true;
14801
14802 dev->mode_config.funcs = &intel_mode_funcs;
14803
14804 intel_init_quirks(dev);
14805
14806 intel_init_pm(dev);
14807
14808 if (INTEL_INFO(dev)->num_pipes == 0)
14809 return;
14810
14811 /*
14812 * There may be no VBT; and if the BIOS enabled SSC we can
14813 * just keep using it to avoid unnecessary flicker. Whereas if the
14814 * BIOS isn't using it, don't assume it will work even if the VBT
14815 * indicates as much.
14816 */
14817 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14818 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14819 DREF_SSC1_ENABLE);
14820
14821 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14822 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14823 bios_lvds_use_ssc ? "en" : "dis",
14824 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14825 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14826 }
14827 }
14828
14829 intel_init_display(dev);
14830 intel_init_audio(dev);
14831
14832 if (IS_GEN2(dev)) {
14833 dev->mode_config.max_width = 2048;
14834 dev->mode_config.max_height = 2048;
14835 } else if (IS_GEN3(dev)) {
14836 dev->mode_config.max_width = 4096;
14837 dev->mode_config.max_height = 4096;
14838 } else {
14839 dev->mode_config.max_width = 8192;
14840 dev->mode_config.max_height = 8192;
14841 }
14842
14843 if (IS_845G(dev) || IS_I865G(dev)) {
14844 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14845 dev->mode_config.cursor_height = 1023;
14846 } else if (IS_GEN2(dev)) {
14847 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14848 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14849 } else {
14850 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14851 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14852 }
14853
14854 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14855
14856 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14857 INTEL_INFO(dev)->num_pipes,
14858 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14859
14860 for_each_pipe(dev_priv, pipe) {
14861 intel_crtc_init(dev, pipe);
14862 for_each_sprite(dev_priv, pipe, sprite) {
14863 ret = intel_plane_init(dev, pipe, sprite);
14864 if (ret)
14865 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14866 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14867 }
14868 }
14869
14870 intel_update_czclk(dev_priv);
14871 intel_update_cdclk(dev);
14872
14873 intel_shared_dpll_init(dev);
14874
14875 /* Just disable it once at startup */
14876 i915_disable_vga(dev);
14877 intel_setup_outputs(dev);
14878
14879 /* Just in case the BIOS is doing something questionable. */
14880 intel_fbc_disable(dev_priv);
14881
14882 drm_modeset_lock_all(dev);
14883 intel_modeset_setup_hw_state(dev);
14884 drm_modeset_unlock_all(dev);
14885
14886 for_each_intel_crtc(dev, crtc) {
14887 struct intel_initial_plane_config plane_config = {};
14888
14889 if (!crtc->active)
14890 continue;
14891
14892 /*
14893 * Note that reserving the BIOS fb up front prevents us
14894 * from stuffing other stolen allocations like the ring
14895 * on top. This prevents some ugliness at boot time, and
14896 * can even allow for smooth boot transitions if the BIOS
14897 * fb is large enough for the active pipe configuration.
14898 */
14899 dev_priv->display.get_initial_plane_config(crtc,
14900 &plane_config);
14901
14902 /*
14903 * If the fb is shared between multiple heads, we'll
14904 * just get the first one.
14905 */
14906 intel_find_initial_plane_obj(crtc, &plane_config);
14907 }
14908 }
14909
14910 static void intel_enable_pipe_a(struct drm_device *dev)
14911 {
14912 struct intel_connector *connector;
14913 struct drm_connector *crt = NULL;
14914 struct intel_load_detect_pipe load_detect_temp;
14915 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14916
14917 /* We can't just switch on the pipe A, we need to set things up with a
14918 * proper mode and output configuration. As a gross hack, enable pipe A
14919 * by enabling the load detect pipe once. */
14920 for_each_intel_connector(dev, connector) {
14921 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14922 crt = &connector->base;
14923 break;
14924 }
14925 }
14926
14927 if (!crt)
14928 return;
14929
14930 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14931 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14932 }
14933
14934 static bool
14935 intel_check_plane_mapping(struct intel_crtc *crtc)
14936 {
14937 struct drm_device *dev = crtc->base.dev;
14938 struct drm_i915_private *dev_priv = dev->dev_private;
14939 u32 val;
14940
14941 if (INTEL_INFO(dev)->num_pipes == 1)
14942 return true;
14943
14944 val = I915_READ(DSPCNTR(!crtc->plane));
14945
14946 if ((val & DISPLAY_PLANE_ENABLE) &&
14947 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14948 return false;
14949
14950 return true;
14951 }
14952
14953 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14954 {
14955 struct drm_device *dev = crtc->base.dev;
14956 struct intel_encoder *encoder;
14957
14958 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14959 return true;
14960
14961 return false;
14962 }
14963
14964 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14965 {
14966 struct drm_device *dev = crtc->base.dev;
14967 struct drm_i915_private *dev_priv = dev->dev_private;
14968 u32 reg;
14969
14970 /* Clear any frame start delays used for debugging left by the BIOS */
14971 reg = PIPECONF(crtc->config->cpu_transcoder);
14972 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14973
14974 /* restore vblank interrupts to correct state */
14975 drm_crtc_vblank_reset(&crtc->base);
14976 if (crtc->active) {
14977 struct intel_plane *plane;
14978
14979 drm_crtc_vblank_on(&crtc->base);
14980
14981 /* Disable everything but the primary plane */
14982 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14983 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14984 continue;
14985
14986 plane->disable_plane(&plane->base, &crtc->base);
14987 }
14988 }
14989
14990 /* We need to sanitize the plane -> pipe mapping first because this will
14991 * disable the crtc (and hence change the state) if it is wrong. Note
14992 * that gen4+ has a fixed plane -> pipe mapping. */
14993 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14994 bool plane;
14995
14996 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14997 crtc->base.base.id);
14998
14999 /* Pipe has the wrong plane attached and the plane is active.
15000 * Temporarily change the plane mapping and disable everything
15001 * ... */
15002 plane = crtc->plane;
15003 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15004 crtc->plane = !plane;
15005 intel_crtc_disable_noatomic(&crtc->base);
15006 crtc->plane = plane;
15007 }
15008
15009 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15010 crtc->pipe == PIPE_A && !crtc->active) {
15011 /* BIOS forgot to enable pipe A, this mostly happens after
15012 * resume. Force-enable the pipe to fix this, the update_dpms
15013 * call below we restore the pipe to the right state, but leave
15014 * the required bits on. */
15015 intel_enable_pipe_a(dev);
15016 }
15017
15018 /* Adjust the state of the output pipe according to whether we
15019 * have active connectors/encoders. */
15020 if (!intel_crtc_has_encoders(crtc))
15021 intel_crtc_disable_noatomic(&crtc->base);
15022
15023 if (crtc->active != crtc->base.state->active) {
15024 struct intel_encoder *encoder;
15025
15026 /* This can happen either due to bugs in the get_hw_state
15027 * functions or because of calls to intel_crtc_disable_noatomic,
15028 * or because the pipe is force-enabled due to the
15029 * pipe A quirk. */
15030 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15031 crtc->base.base.id,
15032 crtc->base.state->enable ? "enabled" : "disabled",
15033 crtc->active ? "enabled" : "disabled");
15034
15035 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15036 crtc->base.state->active = crtc->active;
15037 crtc->base.enabled = crtc->active;
15038
15039 /* Because we only establish the connector -> encoder ->
15040 * crtc links if something is active, this means the
15041 * crtc is now deactivated. Break the links. connector
15042 * -> encoder links are only establish when things are
15043 * actually up, hence no need to break them. */
15044 WARN_ON(crtc->active);
15045
15046 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15047 encoder->base.crtc = NULL;
15048 }
15049
15050 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15051 /*
15052 * We start out with underrun reporting disabled to avoid races.
15053 * For correct bookkeeping mark this on active crtcs.
15054 *
15055 * Also on gmch platforms we dont have any hardware bits to
15056 * disable the underrun reporting. Which means we need to start
15057 * out with underrun reporting disabled also on inactive pipes,
15058 * since otherwise we'll complain about the garbage we read when
15059 * e.g. coming up after runtime pm.
15060 *
15061 * No protection against concurrent access is required - at
15062 * worst a fifo underrun happens which also sets this to false.
15063 */
15064 crtc->cpu_fifo_underrun_disabled = true;
15065 crtc->pch_fifo_underrun_disabled = true;
15066 }
15067 }
15068
15069 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15070 {
15071 struct intel_connector *connector;
15072 struct drm_device *dev = encoder->base.dev;
15073 bool active = false;
15074
15075 /* We need to check both for a crtc link (meaning that the
15076 * encoder is active and trying to read from a pipe) and the
15077 * pipe itself being active. */
15078 bool has_active_crtc = encoder->base.crtc &&
15079 to_intel_crtc(encoder->base.crtc)->active;
15080
15081 for_each_intel_connector(dev, connector) {
15082 if (connector->base.encoder != &encoder->base)
15083 continue;
15084
15085 active = true;
15086 break;
15087 }
15088
15089 if (active && !has_active_crtc) {
15090 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15091 encoder->base.base.id,
15092 encoder->base.name);
15093
15094 /* Connector is active, but has no active pipe. This is
15095 * fallout from our resume register restoring. Disable
15096 * the encoder manually again. */
15097 if (encoder->base.crtc) {
15098 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15099 encoder->base.base.id,
15100 encoder->base.name);
15101 encoder->disable(encoder);
15102 if (encoder->post_disable)
15103 encoder->post_disable(encoder);
15104 }
15105 encoder->base.crtc = NULL;
15106
15107 /* Inconsistent output/port/pipe state happens presumably due to
15108 * a bug in one of the get_hw_state functions. Or someplace else
15109 * in our code, like the register restore mess on resume. Clamp
15110 * things to off as a safer default. */
15111 for_each_intel_connector(dev, connector) {
15112 if (connector->encoder != encoder)
15113 continue;
15114 connector->base.dpms = DRM_MODE_DPMS_OFF;
15115 connector->base.encoder = NULL;
15116 }
15117 }
15118 /* Enabled encoders without active connectors will be fixed in
15119 * the crtc fixup. */
15120 }
15121
15122 void i915_redisable_vga_power_on(struct drm_device *dev)
15123 {
15124 struct drm_i915_private *dev_priv = dev->dev_private;
15125 u32 vga_reg = i915_vgacntrl_reg(dev);
15126
15127 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15128 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15129 i915_disable_vga(dev);
15130 }
15131 }
15132
15133 void i915_redisable_vga(struct drm_device *dev)
15134 {
15135 struct drm_i915_private *dev_priv = dev->dev_private;
15136
15137 /* This function can be called both from intel_modeset_setup_hw_state or
15138 * at a very early point in our resume sequence, where the power well
15139 * structures are not yet restored. Since this function is at a very
15140 * paranoid "someone might have enabled VGA while we were not looking"
15141 * level, just check if the power well is enabled instead of trying to
15142 * follow the "don't touch the power well if we don't need it" policy
15143 * the rest of the driver uses. */
15144 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15145 return;
15146
15147 i915_redisable_vga_power_on(dev);
15148 }
15149
15150 static bool primary_get_hw_state(struct intel_plane *plane)
15151 {
15152 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15153
15154 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15155 }
15156
15157 /* FIXME read out full plane state for all planes */
15158 static void readout_plane_state(struct intel_crtc *crtc)
15159 {
15160 struct drm_plane *primary = crtc->base.primary;
15161 struct intel_plane_state *plane_state =
15162 to_intel_plane_state(primary->state);
15163
15164 plane_state->visible =
15165 primary_get_hw_state(to_intel_plane(primary));
15166
15167 if (plane_state->visible)
15168 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15169 }
15170
15171 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15172 {
15173 struct drm_i915_private *dev_priv = dev->dev_private;
15174 enum pipe pipe;
15175 struct intel_crtc *crtc;
15176 struct intel_encoder *encoder;
15177 struct intel_connector *connector;
15178 int i;
15179
15180 for_each_intel_crtc(dev, crtc) {
15181 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15182 memset(crtc->config, 0, sizeof(*crtc->config));
15183 crtc->config->base.crtc = &crtc->base;
15184
15185 crtc->active = dev_priv->display.get_pipe_config(crtc,
15186 crtc->config);
15187
15188 crtc->base.state->active = crtc->active;
15189 crtc->base.enabled = crtc->active;
15190
15191 readout_plane_state(crtc);
15192
15193 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15194 crtc->base.base.id,
15195 crtc->active ? "enabled" : "disabled");
15196 }
15197
15198 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15199 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15200
15201 pll->on = pll->get_hw_state(dev_priv, pll,
15202 &pll->config.hw_state);
15203 pll->active = 0;
15204 pll->config.crtc_mask = 0;
15205 for_each_intel_crtc(dev, crtc) {
15206 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15207 pll->active++;
15208 pll->config.crtc_mask |= 1 << crtc->pipe;
15209 }
15210 }
15211
15212 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15213 pll->name, pll->config.crtc_mask, pll->on);
15214
15215 if (pll->config.crtc_mask)
15216 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15217 }
15218
15219 for_each_intel_encoder(dev, encoder) {
15220 pipe = 0;
15221
15222 if (encoder->get_hw_state(encoder, &pipe)) {
15223 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15224 encoder->base.crtc = &crtc->base;
15225 encoder->get_config(encoder, crtc->config);
15226 } else {
15227 encoder->base.crtc = NULL;
15228 }
15229
15230 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15231 encoder->base.base.id,
15232 encoder->base.name,
15233 encoder->base.crtc ? "enabled" : "disabled",
15234 pipe_name(pipe));
15235 }
15236
15237 for_each_intel_connector(dev, connector) {
15238 if (connector->get_hw_state(connector)) {
15239 connector->base.dpms = DRM_MODE_DPMS_ON;
15240 connector->base.encoder = &connector->encoder->base;
15241 } else {
15242 connector->base.dpms = DRM_MODE_DPMS_OFF;
15243 connector->base.encoder = NULL;
15244 }
15245 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15246 connector->base.base.id,
15247 connector->base.name,
15248 connector->base.encoder ? "enabled" : "disabled");
15249 }
15250
15251 for_each_intel_crtc(dev, crtc) {
15252 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15253
15254 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15255 if (crtc->base.state->active) {
15256 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15257 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15258 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15259
15260 /*
15261 * The initial mode needs to be set in order to keep
15262 * the atomic core happy. It wants a valid mode if the
15263 * crtc's enabled, so we do the above call.
15264 *
15265 * At this point some state updated by the connectors
15266 * in their ->detect() callback has not run yet, so
15267 * no recalculation can be done yet.
15268 *
15269 * Even if we could do a recalculation and modeset
15270 * right now it would cause a double modeset if
15271 * fbdev or userspace chooses a different initial mode.
15272 *
15273 * If that happens, someone indicated they wanted a
15274 * mode change, which means it's safe to do a full
15275 * recalculation.
15276 */
15277 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15278
15279 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15280 update_scanline_offset(crtc);
15281 }
15282 }
15283 }
15284
15285 /* Scan out the current hw modeset state,
15286 * and sanitizes it to the current state
15287 */
15288 static void
15289 intel_modeset_setup_hw_state(struct drm_device *dev)
15290 {
15291 struct drm_i915_private *dev_priv = dev->dev_private;
15292 enum pipe pipe;
15293 struct intel_crtc *crtc;
15294 struct intel_encoder *encoder;
15295 int i;
15296
15297 intel_modeset_readout_hw_state(dev);
15298
15299 /* HW state is read out, now we need to sanitize this mess. */
15300 for_each_intel_encoder(dev, encoder) {
15301 intel_sanitize_encoder(encoder);
15302 }
15303
15304 for_each_pipe(dev_priv, pipe) {
15305 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15306 intel_sanitize_crtc(crtc);
15307 intel_dump_pipe_config(crtc, crtc->config,
15308 "[setup_hw_state]");
15309 }
15310
15311 intel_modeset_update_connector_atomic_state(dev);
15312
15313 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15314 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15315
15316 if (!pll->on || pll->active)
15317 continue;
15318
15319 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15320
15321 pll->disable(dev_priv, pll);
15322 pll->on = false;
15323 }
15324
15325 if (IS_VALLEYVIEW(dev))
15326 vlv_wm_get_hw_state(dev);
15327 else if (IS_GEN9(dev))
15328 skl_wm_get_hw_state(dev);
15329 else if (HAS_PCH_SPLIT(dev))
15330 ilk_wm_get_hw_state(dev);
15331
15332 for_each_intel_crtc(dev, crtc) {
15333 unsigned long put_domains;
15334
15335 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15336 if (WARN_ON(put_domains))
15337 modeset_put_power_domains(dev_priv, put_domains);
15338 }
15339 intel_display_set_init_power(dev_priv, false);
15340 }
15341
15342 void intel_display_resume(struct drm_device *dev)
15343 {
15344 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15345 struct intel_connector *conn;
15346 struct intel_plane *plane;
15347 struct drm_crtc *crtc;
15348 int ret;
15349
15350 if (!state)
15351 return;
15352
15353 state->acquire_ctx = dev->mode_config.acquire_ctx;
15354
15355 /* preserve complete old state, including dpll */
15356 intel_atomic_get_shared_dpll_state(state);
15357
15358 for_each_crtc(dev, crtc) {
15359 struct drm_crtc_state *crtc_state =
15360 drm_atomic_get_crtc_state(state, crtc);
15361
15362 ret = PTR_ERR_OR_ZERO(crtc_state);
15363 if (ret)
15364 goto err;
15365
15366 /* force a restore */
15367 crtc_state->mode_changed = true;
15368 }
15369
15370 for_each_intel_plane(dev, plane) {
15371 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15372 if (ret)
15373 goto err;
15374 }
15375
15376 for_each_intel_connector(dev, conn) {
15377 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15378 if (ret)
15379 goto err;
15380 }
15381
15382 intel_modeset_setup_hw_state(dev);
15383
15384 i915_redisable_vga(dev);
15385 ret = drm_atomic_commit(state);
15386 if (!ret)
15387 return;
15388
15389 err:
15390 DRM_ERROR("Restoring old state failed with %i\n", ret);
15391 drm_atomic_state_free(state);
15392 }
15393
15394 void intel_modeset_gem_init(struct drm_device *dev)
15395 {
15396 struct drm_crtc *c;
15397 struct drm_i915_gem_object *obj;
15398 int ret;
15399
15400 mutex_lock(&dev->struct_mutex);
15401 intel_init_gt_powersave(dev);
15402 mutex_unlock(&dev->struct_mutex);
15403
15404 intel_modeset_init_hw(dev);
15405
15406 intel_setup_overlay(dev);
15407
15408 /*
15409 * Make sure any fbs we allocated at startup are properly
15410 * pinned & fenced. When we do the allocation it's too early
15411 * for this.
15412 */
15413 for_each_crtc(dev, c) {
15414 obj = intel_fb_obj(c->primary->fb);
15415 if (obj == NULL)
15416 continue;
15417
15418 mutex_lock(&dev->struct_mutex);
15419 ret = intel_pin_and_fence_fb_obj(c->primary,
15420 c->primary->fb,
15421 c->primary->state,
15422 NULL, NULL);
15423 mutex_unlock(&dev->struct_mutex);
15424 if (ret) {
15425 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15426 to_intel_crtc(c)->pipe);
15427 drm_framebuffer_unreference(c->primary->fb);
15428 c->primary->fb = NULL;
15429 c->primary->crtc = c->primary->state->crtc = NULL;
15430 update_state_fb(c->primary);
15431 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15432 }
15433 }
15434
15435 intel_backlight_register(dev);
15436 }
15437
15438 void intel_connector_unregister(struct intel_connector *intel_connector)
15439 {
15440 struct drm_connector *connector = &intel_connector->base;
15441
15442 intel_panel_destroy_backlight(connector);
15443 drm_connector_unregister(connector);
15444 }
15445
15446 void intel_modeset_cleanup(struct drm_device *dev)
15447 {
15448 struct drm_i915_private *dev_priv = dev->dev_private;
15449 struct drm_connector *connector;
15450
15451 intel_disable_gt_powersave(dev);
15452
15453 intel_backlight_unregister(dev);
15454
15455 /*
15456 * Interrupts and polling as the first thing to avoid creating havoc.
15457 * Too much stuff here (turning of connectors, ...) would
15458 * experience fancy races otherwise.
15459 */
15460 intel_irq_uninstall(dev_priv);
15461
15462 /*
15463 * Due to the hpd irq storm handling the hotplug work can re-arm the
15464 * poll handlers. Hence disable polling after hpd handling is shut down.
15465 */
15466 drm_kms_helper_poll_fini(dev);
15467
15468 intel_unregister_dsm_handler();
15469
15470 intel_fbc_disable(dev_priv);
15471
15472 /* flush any delayed tasks or pending work */
15473 flush_scheduled_work();
15474
15475 /* destroy the backlight and sysfs files before encoders/connectors */
15476 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15477 struct intel_connector *intel_connector;
15478
15479 intel_connector = to_intel_connector(connector);
15480 intel_connector->unregister(intel_connector);
15481 }
15482
15483 drm_mode_config_cleanup(dev);
15484
15485 intel_cleanup_overlay(dev);
15486
15487 mutex_lock(&dev->struct_mutex);
15488 intel_cleanup_gt_powersave(dev);
15489 mutex_unlock(&dev->struct_mutex);
15490 }
15491
15492 /*
15493 * Return which encoder is currently attached for connector.
15494 */
15495 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15496 {
15497 return &intel_attached_encoder(connector)->base;
15498 }
15499
15500 void intel_connector_attach_encoder(struct intel_connector *connector,
15501 struct intel_encoder *encoder)
15502 {
15503 connector->encoder = encoder;
15504 drm_mode_connector_attach_encoder(&connector->base,
15505 &encoder->base);
15506 }
15507
15508 /*
15509 * set vga decode state - true == enable VGA decode
15510 */
15511 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15512 {
15513 struct drm_i915_private *dev_priv = dev->dev_private;
15514 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15515 u16 gmch_ctrl;
15516
15517 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15518 DRM_ERROR("failed to read control word\n");
15519 return -EIO;
15520 }
15521
15522 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15523 return 0;
15524
15525 if (state)
15526 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15527 else
15528 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15529
15530 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15531 DRM_ERROR("failed to write control word\n");
15532 return -EIO;
15533 }
15534
15535 return 0;
15536 }
15537
15538 struct intel_display_error_state {
15539
15540 u32 power_well_driver;
15541
15542 int num_transcoders;
15543
15544 struct intel_cursor_error_state {
15545 u32 control;
15546 u32 position;
15547 u32 base;
15548 u32 size;
15549 } cursor[I915_MAX_PIPES];
15550
15551 struct intel_pipe_error_state {
15552 bool power_domain_on;
15553 u32 source;
15554 u32 stat;
15555 } pipe[I915_MAX_PIPES];
15556
15557 struct intel_plane_error_state {
15558 u32 control;
15559 u32 stride;
15560 u32 size;
15561 u32 pos;
15562 u32 addr;
15563 u32 surface;
15564 u32 tile_offset;
15565 } plane[I915_MAX_PIPES];
15566
15567 struct intel_transcoder_error_state {
15568 bool power_domain_on;
15569 enum transcoder cpu_transcoder;
15570
15571 u32 conf;
15572
15573 u32 htotal;
15574 u32 hblank;
15575 u32 hsync;
15576 u32 vtotal;
15577 u32 vblank;
15578 u32 vsync;
15579 } transcoder[4];
15580 };
15581
15582 struct intel_display_error_state *
15583 intel_display_capture_error_state(struct drm_device *dev)
15584 {
15585 struct drm_i915_private *dev_priv = dev->dev_private;
15586 struct intel_display_error_state *error;
15587 int transcoders[] = {
15588 TRANSCODER_A,
15589 TRANSCODER_B,
15590 TRANSCODER_C,
15591 TRANSCODER_EDP,
15592 };
15593 int i;
15594
15595 if (INTEL_INFO(dev)->num_pipes == 0)
15596 return NULL;
15597
15598 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15599 if (error == NULL)
15600 return NULL;
15601
15602 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15603 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15604
15605 for_each_pipe(dev_priv, i) {
15606 error->pipe[i].power_domain_on =
15607 __intel_display_power_is_enabled(dev_priv,
15608 POWER_DOMAIN_PIPE(i));
15609 if (!error->pipe[i].power_domain_on)
15610 continue;
15611
15612 error->cursor[i].control = I915_READ(CURCNTR(i));
15613 error->cursor[i].position = I915_READ(CURPOS(i));
15614 error->cursor[i].base = I915_READ(CURBASE(i));
15615
15616 error->plane[i].control = I915_READ(DSPCNTR(i));
15617 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15618 if (INTEL_INFO(dev)->gen <= 3) {
15619 error->plane[i].size = I915_READ(DSPSIZE(i));
15620 error->plane[i].pos = I915_READ(DSPPOS(i));
15621 }
15622 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15623 error->plane[i].addr = I915_READ(DSPADDR(i));
15624 if (INTEL_INFO(dev)->gen >= 4) {
15625 error->plane[i].surface = I915_READ(DSPSURF(i));
15626 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15627 }
15628
15629 error->pipe[i].source = I915_READ(PIPESRC(i));
15630
15631 if (HAS_GMCH_DISPLAY(dev))
15632 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15633 }
15634
15635 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15636 if (HAS_DDI(dev_priv->dev))
15637 error->num_transcoders++; /* Account for eDP. */
15638
15639 for (i = 0; i < error->num_transcoders; i++) {
15640 enum transcoder cpu_transcoder = transcoders[i];
15641
15642 error->transcoder[i].power_domain_on =
15643 __intel_display_power_is_enabled(dev_priv,
15644 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15645 if (!error->transcoder[i].power_domain_on)
15646 continue;
15647
15648 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15649
15650 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15651 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15652 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15653 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15654 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15655 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15656 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15657 }
15658
15659 return error;
15660 }
15661
15662 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15663
15664 void
15665 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15666 struct drm_device *dev,
15667 struct intel_display_error_state *error)
15668 {
15669 struct drm_i915_private *dev_priv = dev->dev_private;
15670 int i;
15671
15672 if (!error)
15673 return;
15674
15675 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15676 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15677 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15678 error->power_well_driver);
15679 for_each_pipe(dev_priv, i) {
15680 err_printf(m, "Pipe [%d]:\n", i);
15681 err_printf(m, " Power: %s\n",
15682 error->pipe[i].power_domain_on ? "on" : "off");
15683 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15684 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15685
15686 err_printf(m, "Plane [%d]:\n", i);
15687 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15688 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15689 if (INTEL_INFO(dev)->gen <= 3) {
15690 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15691 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15692 }
15693 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15694 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15695 if (INTEL_INFO(dev)->gen >= 4) {
15696 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15697 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15698 }
15699
15700 err_printf(m, "Cursor [%d]:\n", i);
15701 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15702 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15703 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15704 }
15705
15706 for (i = 0; i < error->num_transcoders; i++) {
15707 err_printf(m, "CPU transcoder: %c\n",
15708 transcoder_name(error->transcoder[i].cpu_transcoder));
15709 err_printf(m, " Power: %s\n",
15710 error->transcoder[i].power_domain_on ? "on" : "off");
15711 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15712 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15713 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15714 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15715 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15716 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15717 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15718 }
15719 }
15720
15721 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15722 {
15723 struct intel_crtc *crtc;
15724
15725 for_each_intel_crtc(dev, crtc) {
15726 struct intel_unpin_work *work;
15727
15728 spin_lock_irq(&dev->event_lock);
15729
15730 work = crtc->unpin_work;
15731
15732 if (work && work->event &&
15733 work->event->base.file_priv == file) {
15734 kfree(work->event);
15735 work->event = NULL;
15736 }
15737
15738 spin_unlock_irq(&dev->event_lock);
15739 }
15740 }
This page took 0.600408 seconds and 5 git commands to generate.