Merge remote-tracking branch 'regulator/topic/tps65910' into regulator-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79
80 WARN_ON(!HAS_PCH_SPLIT(dev));
81
82 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88 if (IS_GEN5(dev)) {
89 struct drm_i915_private *dev_priv = dev->dev_private;
90 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91 } else
92 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96 .dot = { .min = 25000, .max = 350000 },
97 .vco = { .min = 930000, .max = 1400000 },
98 .n = { .min = 3, .max = 16 },
99 .m = { .min = 96, .max = 140 },
100 .m1 = { .min = 18, .max = 26 },
101 .m2 = { .min = 6, .max = 16 },
102 .p = { .min = 4, .max = 128 },
103 .p1 = { .min = 2, .max = 33 },
104 .p2 = { .dot_limit = 165000,
105 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135 .dot = { .min = 20000, .max = 400000 },
136 .vco = { .min = 1400000, .max = 2800000 },
137 .n = { .min = 1, .max = 6 },
138 .m = { .min = 70, .max = 120 },
139 .m1 = { .min = 8, .max = 18 },
140 .m2 = { .min = 3, .max = 7 },
141 .p = { .min = 5, .max = 80 },
142 .p1 = { .min = 1, .max = 8 },
143 .p2 = { .dot_limit = 200000,
144 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148 .dot = { .min = 20000, .max = 400000 },
149 .vco = { .min = 1400000, .max = 2800000 },
150 .n = { .min = 1, .max = 6 },
151 .m = { .min = 70, .max = 120 },
152 .m1 = { .min = 8, .max = 18 },
153 .m2 = { .min = 3, .max = 7 },
154 .p = { .min = 7, .max = 98 },
155 .p1 = { .min = 1, .max = 8 },
156 .p2 = { .dot_limit = 112000,
157 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162 .dot = { .min = 25000, .max = 270000 },
163 .vco = { .min = 1750000, .max = 3500000},
164 .n = { .min = 1, .max = 4 },
165 .m = { .min = 104, .max = 138 },
166 .m1 = { .min = 17, .max = 23 },
167 .m2 = { .min = 5, .max = 11 },
168 .p = { .min = 10, .max = 30 },
169 .p1 = { .min = 1, .max = 3},
170 .p2 = { .dot_limit = 270000,
171 .p2_slow = 10,
172 .p2_fast = 10
173 },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177 .dot = { .min = 22000, .max = 400000 },
178 .vco = { .min = 1750000, .max = 3500000},
179 .n = { .min = 1, .max = 4 },
180 .m = { .min = 104, .max = 138 },
181 .m1 = { .min = 16, .max = 23 },
182 .m2 = { .min = 5, .max = 11 },
183 .p = { .min = 5, .max = 80 },
184 .p1 = { .min = 1, .max = 8},
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190 .dot = { .min = 20000, .max = 115000 },
191 .vco = { .min = 1750000, .max = 3500000 },
192 .n = { .min = 1, .max = 3 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 17, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 28, .max = 112 },
197 .p1 = { .min = 2, .max = 8 },
198 .p2 = { .dot_limit = 0,
199 .p2_slow = 14, .p2_fast = 14
200 },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204 .dot = { .min = 80000, .max = 224000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 14, .max = 42 },
211 .p1 = { .min = 2, .max = 6 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 7, .p2_fast = 7
214 },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218 .dot = { .min = 20000, .max = 400000},
219 .vco = { .min = 1700000, .max = 3500000 },
220 /* Pineview's Ncounter is a ring counter */
221 .n = { .min = 3, .max = 6 },
222 .m = { .min = 2, .max = 256 },
223 /* Pineview only has one combined m divider, which we treat as m2. */
224 .m1 = { .min = 0, .max = 0 },
225 .m2 = { .min = 0, .max = 254 },
226 .p = { .min = 5, .max = 80 },
227 .p1 = { .min = 1, .max = 8 },
228 .p2 = { .dot_limit = 200000,
229 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233 .dot = { .min = 20000, .max = 400000 },
234 .vco = { .min = 1700000, .max = 3500000 },
235 .n = { .min = 3, .max = 6 },
236 .m = { .min = 2, .max = 256 },
237 .m1 = { .min = 0, .max = 0 },
238 .m2 = { .min = 0, .max = 254 },
239 .p = { .min = 7, .max = 112 },
240 .p1 = { .min = 1, .max = 8 },
241 .p2 = { .dot_limit = 112000,
242 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246 *
247 * We calculate clock using (register_value + 2) for N/M1/M2, so here
248 * the range value for them is (actual_value - 2).
249 */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251 .dot = { .min = 25000, .max = 350000 },
252 .vco = { .min = 1760000, .max = 3510000 },
253 .n = { .min = 1, .max = 5 },
254 .m = { .min = 79, .max = 127 },
255 .m1 = { .min = 12, .max = 22 },
256 .m2 = { .min = 5, .max = 9 },
257 .p = { .min = 5, .max = 80 },
258 .p1 = { .min = 1, .max = 8 },
259 .p2 = { .dot_limit = 225000,
260 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 1760000, .max = 3510000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 79, .max = 118 },
268 .m1 = { .min = 12, .max = 22 },
269 .m2 = { .min = 5, .max = 9 },
270 .p = { .min = 28, .max = 112 },
271 .p1 = { .min = 2, .max = 8 },
272 .p2 = { .dot_limit = 225000,
273 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 1760000, .max = 3510000 },
279 .n = { .min = 1, .max = 3 },
280 .m = { .min = 79, .max = 127 },
281 .m1 = { .min = 12, .max = 22 },
282 .m2 = { .min = 5, .max = 9 },
283 .p = { .min = 14, .max = 56 },
284 .p1 = { .min = 2, .max = 8 },
285 .p2 = { .dot_limit = 225000,
286 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 2 },
294 .m = { .min = 79, .max = 126 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 28, .max = 112 },
298 .p1 = { .min = 2, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 3 },
307 .m = { .min = 79, .max = 126 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 14, .max = 42 },
311 .p1 = { .min = 2, .max = 6 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317 .dot = { .min = 25000, .max = 270000 },
318 .vco = { .min = 4000000, .max = 6000000 },
319 .n = { .min = 1, .max = 7 },
320 .m = { .min = 22, .max = 450 }, /* guess */
321 .m1 = { .min = 2, .max = 3 },
322 .m2 = { .min = 11, .max = 156 },
323 .p = { .min = 10, .max = 30 },
324 .p1 = { .min = 1, .max = 3 },
325 .p2 = { .dot_limit = 270000,
326 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 4000000, .max = 6000000 },
332 .n = { .min = 1, .max = 7 },
333 .m = { .min = 60, .max = 300 }, /* guess */
334 .m1 = { .min = 2, .max = 3 },
335 .m2 = { .min = 11, .max = 156 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 2, .max = 3 },
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343 .dot = { .min = 25000, .max = 270000 },
344 .vco = { .min = 4000000, .max = 6000000 },
345 .n = { .min = 1, .max = 7 },
346 .m = { .min = 22, .max = 450 },
347 .m1 = { .min = 2, .max = 3 },
348 .m2 = { .min = 11, .max = 156 },
349 .p = { .min = 10, .max = 30 },
350 .p1 = { .min = 1, .max = 3 },
351 .p2 = { .dot_limit = 270000,
352 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356 int refclk)
357 {
358 struct drm_device *dev = crtc->dev;
359 const intel_limit_t *limit;
360
361 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362 if (intel_is_dual_link_lvds(dev)) {
363 if (refclk == 100000)
364 limit = &intel_limits_ironlake_dual_lvds_100m;
365 else
366 limit = &intel_limits_ironlake_dual_lvds;
367 } else {
368 if (refclk == 100000)
369 limit = &intel_limits_ironlake_single_lvds_100m;
370 else
371 limit = &intel_limits_ironlake_single_lvds;
372 }
373 } else
374 limit = &intel_limits_ironlake_dac;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385 if (intel_is_dual_link_lvds(dev))
386 limit = &intel_limits_g4x_dual_channel_lvds;
387 else
388 limit = &intel_limits_g4x_single_channel_lvds;
389 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391 limit = &intel_limits_g4x_hdmi;
392 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393 limit = &intel_limits_g4x_sdvo;
394 } else /* The option is for other outputs */
395 limit = &intel_limits_i9xx_sdvo;
396
397 return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402 struct drm_device *dev = crtc->dev;
403 const intel_limit_t *limit;
404
405 if (HAS_PCH_SPLIT(dev))
406 limit = intel_ironlake_limit(crtc, refclk);
407 else if (IS_G4X(dev)) {
408 limit = intel_g4x_limit(crtc);
409 } else if (IS_PINEVIEW(dev)) {
410 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411 limit = &intel_limits_pineview_lvds;
412 else
413 limit = &intel_limits_pineview_sdvo;
414 } else if (IS_VALLEYVIEW(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416 limit = &intel_limits_vlv_dac;
417 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418 limit = &intel_limits_vlv_hdmi;
419 else
420 limit = &intel_limits_vlv_dp;
421 } else if (!IS_GEN2(dev)) {
422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423 limit = &intel_limits_i9xx_lvds;
424 else
425 limit = &intel_limits_i9xx_sdvo;
426 } else {
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428 limit = &intel_limits_i8xx_lvds;
429 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430 limit = &intel_limits_i8xx_dvo;
431 else
432 limit = &intel_limits_i8xx_dac;
433 }
434 return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440 clock->m = clock->m2 + 2;
441 clock->p = clock->p1 * clock->p2;
442 clock->vco = refclk * clock->m / clock->n;
443 clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453 clock->m = i9xx_dpll_compute_m(clock);
454 clock->p = clock->p1 * clock->p2;
455 clock->vco = refclk * clock->m / (clock->n + 2);
456 clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460 * Returns whether any output on the specified pipe is of the specified type
461 */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464 struct drm_device *dev = crtc->dev;
465 struct intel_encoder *encoder;
466
467 for_each_encoder_on_crtc(dev, crtc, encoder)
468 if (encoder->type == type)
469 return true;
470
471 return false;
472 }
473
474 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476 * Returns whether the given set of divisors are valid for a given refclk with
477 * the given connectors.
478 */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481 const intel_limit_t *limit,
482 const intel_clock_t *clock)
483 {
484 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
485 INTELPllInvalid("p1 out of range\n");
486 if (clock->p < limit->p.min || limit->p.max < clock->p)
487 INTELPllInvalid("p out of range\n");
488 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
489 INTELPllInvalid("m2 out of range\n");
490 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
491 INTELPllInvalid("m1 out of range\n");
492 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493 INTELPllInvalid("m1 <= m2\n");
494 if (clock->m < limit->m.min || limit->m.max < clock->m)
495 INTELPllInvalid("m out of range\n");
496 if (clock->n < limit->n.min || limit->n.max < clock->n)
497 INTELPllInvalid("n out of range\n");
498 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499 INTELPllInvalid("vco out of range\n");
500 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501 * connector, etc., rather than just a single range.
502 */
503 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504 INTELPllInvalid("dot out of range\n");
505
506 return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511 int target, int refclk, intel_clock_t *match_clock,
512 intel_clock_t *best_clock)
513 {
514 struct drm_device *dev = crtc->dev;
515 intel_clock_t clock;
516 int err = target;
517
518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519 /*
520 * For LVDS just rely on its current settings for dual-channel.
521 * We haven't figured out how to reliably set up different
522 * single/dual channel state, if we even can.
523 */
524 if (intel_is_dual_link_lvds(dev))
525 clock.p2 = limit->p2.p2_fast;
526 else
527 clock.p2 = limit->p2.p2_slow;
528 } else {
529 if (target < limit->p2.dot_limit)
530 clock.p2 = limit->p2.p2_slow;
531 else
532 clock.p2 = limit->p2.p2_fast;
533 }
534
535 memset(best_clock, 0, sizeof(*best_clock));
536
537 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538 clock.m1++) {
539 for (clock.m2 = limit->m2.min;
540 clock.m2 <= limit->m2.max; clock.m2++) {
541 if (clock.m2 >= clock.m1)
542 break;
543 for (clock.n = limit->n.min;
544 clock.n <= limit->n.max; clock.n++) {
545 for (clock.p1 = limit->p1.min;
546 clock.p1 <= limit->p1.max; clock.p1++) {
547 int this_err;
548
549 i9xx_clock(refclk, &clock);
550 if (!intel_PLL_is_valid(dev, limit,
551 &clock))
552 continue;
553 if (match_clock &&
554 clock.p != match_clock->p)
555 continue;
556
557 this_err = abs(clock.dot - target);
558 if (this_err < err) {
559 *best_clock = clock;
560 err = this_err;
561 }
562 }
563 }
564 }
565 }
566
567 return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572 int target, int refclk, intel_clock_t *match_clock,
573 intel_clock_t *best_clock)
574 {
575 struct drm_device *dev = crtc->dev;
576 intel_clock_t clock;
577 int err = target;
578
579 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580 /*
581 * For LVDS just rely on its current settings for dual-channel.
582 * We haven't figured out how to reliably set up different
583 * single/dual channel state, if we even can.
584 */
585 if (intel_is_dual_link_lvds(dev))
586 clock.p2 = limit->p2.p2_fast;
587 else
588 clock.p2 = limit->p2.p2_slow;
589 } else {
590 if (target < limit->p2.dot_limit)
591 clock.p2 = limit->p2.p2_slow;
592 else
593 clock.p2 = limit->p2.p2_fast;
594 }
595
596 memset(best_clock, 0, sizeof(*best_clock));
597
598 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599 clock.m1++) {
600 for (clock.m2 = limit->m2.min;
601 clock.m2 <= limit->m2.max; clock.m2++) {
602 for (clock.n = limit->n.min;
603 clock.n <= limit->n.max; clock.n++) {
604 for (clock.p1 = limit->p1.min;
605 clock.p1 <= limit->p1.max; clock.p1++) {
606 int this_err;
607
608 pineview_clock(refclk, &clock);
609 if (!intel_PLL_is_valid(dev, limit,
610 &clock))
611 continue;
612 if (match_clock &&
613 clock.p != match_clock->p)
614 continue;
615
616 this_err = abs(clock.dot - target);
617 if (this_err < err) {
618 *best_clock = clock;
619 err = this_err;
620 }
621 }
622 }
623 }
624 }
625
626 return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631 int target, int refclk, intel_clock_t *match_clock,
632 intel_clock_t *best_clock)
633 {
634 struct drm_device *dev = crtc->dev;
635 intel_clock_t clock;
636 int max_n;
637 bool found;
638 /* approximately equals target * 0.00585 */
639 int err_most = (target >> 8) + (target >> 9);
640 found = false;
641
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (intel_is_dual_link_lvds(dev))
644 clock.p2 = limit->p2.p2_fast;
645 else
646 clock.p2 = limit->p2.p2_slow;
647 } else {
648 if (target < limit->p2.dot_limit)
649 clock.p2 = limit->p2.p2_slow;
650 else
651 clock.p2 = limit->p2.p2_fast;
652 }
653
654 memset(best_clock, 0, sizeof(*best_clock));
655 max_n = limit->n.max;
656 /* based on hardware requirement, prefer smaller n to precision */
657 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658 /* based on hardware requirement, prefere larger m1,m2 */
659 for (clock.m1 = limit->m1.max;
660 clock.m1 >= limit->m1.min; clock.m1--) {
661 for (clock.m2 = limit->m2.max;
662 clock.m2 >= limit->m2.min; clock.m2--) {
663 for (clock.p1 = limit->p1.max;
664 clock.p1 >= limit->p1.min; clock.p1--) {
665 int this_err;
666
667 i9xx_clock(refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671
672 this_err = abs(clock.dot - target);
673 if (this_err < err_most) {
674 *best_clock = clock;
675 err_most = this_err;
676 max_n = clock.n;
677 found = true;
678 }
679 }
680 }
681 }
682 }
683 return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688 int target, int refclk, intel_clock_t *match_clock,
689 intel_clock_t *best_clock)
690 {
691 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692 u32 m, n, fastclk;
693 u32 updrate, minupdate, p;
694 unsigned long bestppm, ppm, absppm;
695 int dotclk, flag;
696
697 flag = 0;
698 dotclk = target * 1000;
699 bestppm = 1000000;
700 ppm = absppm = 0;
701 fastclk = dotclk / (2*100);
702 updrate = 0;
703 minupdate = 19200;
704 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705 bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707 /* based on hardware requirement, prefer smaller n to precision */
708 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709 updrate = refclk / n;
710 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712 if (p2 > 10)
713 p2 = p2 - 1;
714 p = p1 * p2;
715 /* based on hardware requirement, prefer bigger m1,m2 values */
716 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717 m2 = (((2*(fastclk * p * n / m1 )) +
718 refclk) / (2*refclk));
719 m = m1 * m2;
720 vco = updrate * m;
721 if (vco >= limit->vco.min && vco < limit->vco.max) {
722 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723 absppm = (ppm > 0) ? ppm : (-ppm);
724 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725 bestppm = 0;
726 flag = 1;
727 }
728 if (absppm < bestppm - 10) {
729 bestppm = absppm;
730 flag = 1;
731 }
732 if (flag) {
733 bestn = n;
734 bestm1 = m1;
735 bestm2 = m2;
736 bestp1 = p1;
737 bestp2 = p2;
738 flag = 0;
739 }
740 }
741 }
742 }
743 }
744 }
745 best_clock->n = bestn;
746 best_clock->m1 = bestm1;
747 best_clock->m2 = bestm2;
748 best_clock->p1 = bestp1;
749 best_clock->p2 = bestp2;
750
751 return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755 enum pipe pipe)
756 {
757 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760 return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765 struct drm_i915_private *dev_priv = dev->dev_private;
766 u32 frame, frame_reg = PIPEFRAME(pipe);
767
768 frame = I915_READ(frame_reg);
769
770 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775 * intel_wait_for_vblank - wait for vblank on a given pipe
776 * @dev: drm device
777 * @pipe: pipe to wait for
778 *
779 * Wait for vblank to occur on a given pipe. Needed for various bits of
780 * mode setting code.
781 */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 int pipestat_reg = PIPESTAT(pipe);
786
787 if (INTEL_INFO(dev)->gen >= 5) {
788 ironlake_wait_for_vblank(dev, pipe);
789 return;
790 }
791
792 /* Clear existing vblank status. Note this will clear any other
793 * sticky status fields as well.
794 *
795 * This races with i915_driver_irq_handler() with the result
796 * that either function could miss a vblank event. Here it is not
797 * fatal, as we will either wait upon the next vblank interrupt or
798 * timeout. Generally speaking intel_wait_for_vblank() is only
799 * called during modeset at which time the GPU should be idle and
800 * should *not* be performing page flips and thus not waiting on
801 * vblanks...
802 * Currently, the result of us stealing a vblank from the irq
803 * handler is that a single frame will be skipped during swapbuffers.
804 */
805 I915_WRITE(pipestat_reg,
806 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808 /* Wait for vblank interrupt bit to set */
809 if (wait_for(I915_READ(pipestat_reg) &
810 PIPE_VBLANK_INTERRUPT_STATUS,
811 50))
812 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816 * intel_wait_for_pipe_off - wait for pipe to turn off
817 * @dev: drm device
818 * @pipe: pipe to wait for
819 *
820 * After disabling a pipe, we can't wait for vblank in the usual way,
821 * spinning on the vblank interrupt status bit, since we won't actually
822 * see an interrupt when the pipe is disabled.
823 *
824 * On Gen4 and above:
825 * wait for the pipe register state bit to turn off
826 *
827 * Otherwise:
828 * wait for the display line value to settle (it usually
829 * ends up stopping at the start of the next frame).
830 *
831 */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836 pipe);
837
838 if (INTEL_INFO(dev)->gen >= 4) {
839 int reg = PIPECONF(cpu_transcoder);
840
841 /* Wait for the Pipe State to go off */
842 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843 100))
844 WARN(1, "pipe_off wait timed out\n");
845 } else {
846 u32 last_line, line_mask;
847 int reg = PIPEDSL(pipe);
848 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850 if (IS_GEN2(dev))
851 line_mask = DSL_LINEMASK_GEN2;
852 else
853 line_mask = DSL_LINEMASK_GEN3;
854
855 /* Wait for the display line to settle */
856 do {
857 last_line = I915_READ(reg) & line_mask;
858 mdelay(5);
859 } while (((I915_READ(reg) & line_mask) != last_line) &&
860 time_after(timeout, jiffies));
861 if (time_after(jiffies, timeout))
862 WARN(1, "pipe_off wait timed out\n");
863 }
864 }
865
866 /*
867 * ibx_digital_port_connected - is the specified port connected?
868 * @dev_priv: i915 private structure
869 * @port: the port to test
870 *
871 * Returns true if @port is connected, false otherwise.
872 */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874 struct intel_digital_port *port)
875 {
876 u32 bit;
877
878 if (HAS_PCH_IBX(dev_priv->dev)) {
879 switch(port->port) {
880 case PORT_B:
881 bit = SDE_PORTB_HOTPLUG;
882 break;
883 case PORT_C:
884 bit = SDE_PORTC_HOTPLUG;
885 break;
886 case PORT_D:
887 bit = SDE_PORTD_HOTPLUG;
888 break;
889 default:
890 return true;
891 }
892 } else {
893 switch(port->port) {
894 case PORT_B:
895 bit = SDE_PORTB_HOTPLUG_CPT;
896 break;
897 case PORT_C:
898 bit = SDE_PORTC_HOTPLUG_CPT;
899 break;
900 case PORT_D:
901 bit = SDE_PORTD_HOTPLUG_CPT;
902 break;
903 default:
904 return true;
905 }
906 }
907
908 return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913 return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918 enum pipe pipe, bool state)
919 {
920 int reg;
921 u32 val;
922 bool cur_state;
923
924 reg = DPLL(pipe);
925 val = I915_READ(reg);
926 cur_state = !!(val & DPLL_VCO_ENABLE);
927 WARN(cur_state != state,
928 "PLL state assertion failure (expected %s, current %s)\n",
929 state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937 if (crtc->config.shared_dpll < 0)
938 return NULL;
939
940 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945 struct intel_shared_dpll *pll,
946 bool state)
947 {
948 bool cur_state;
949 struct intel_dpll_hw_state hw_state;
950
951 if (HAS_PCH_LPT(dev_priv->dev)) {
952 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953 return;
954 }
955
956 if (WARN (!pll,
957 "asserting DPLL %s with no DPLL\n", state_string(state)))
958 return;
959
960 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961 WARN(cur_state != state,
962 "%s assertion failure (expected %s, current %s)\n",
963 pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967 enum pipe pipe, bool state)
968 {
969 int reg;
970 u32 val;
971 bool cur_state;
972 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973 pipe);
974
975 if (HAS_DDI(dev_priv->dev)) {
976 /* DDI does not have a specific FDI_TX register */
977 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978 val = I915_READ(reg);
979 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980 } else {
981 reg = FDI_TX_CTL(pipe);
982 val = I915_READ(reg);
983 cur_state = !!(val & FDI_TX_ENABLE);
984 }
985 WARN(cur_state != state,
986 "FDI TX state assertion failure (expected %s, current %s)\n",
987 state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993 enum pipe pipe, bool state)
994 {
995 int reg;
996 u32 val;
997 bool cur_state;
998
999 reg = FDI_RX_CTL(pipe);
1000 val = I915_READ(reg);
1001 cur_state = !!(val & FDI_RX_ENABLE);
1002 WARN(cur_state != state,
1003 "FDI RX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014
1015 /* ILK FDI PLL is always enabled */
1016 if (dev_priv->info->gen == 5)
1017 return;
1018
1019 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020 if (HAS_DDI(dev_priv->dev))
1021 return;
1022
1023 reg = FDI_TX_CTL(pipe);
1024 val = I915_READ(reg);
1025 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029 enum pipe pipe, bool state)
1030 {
1031 int reg;
1032 u32 val;
1033 bool cur_state;
1034
1035 reg = FDI_RX_CTL(pipe);
1036 val = I915_READ(reg);
1037 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038 WARN(cur_state != state,
1039 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040 state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044 enum pipe pipe)
1045 {
1046 int pp_reg, lvds_reg;
1047 u32 val;
1048 enum pipe panel_pipe = PIPE_A;
1049 bool locked = true;
1050
1051 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052 pp_reg = PCH_PP_CONTROL;
1053 lvds_reg = PCH_LVDS;
1054 } else {
1055 pp_reg = PP_CONTROL;
1056 lvds_reg = LVDS;
1057 }
1058
1059 val = I915_READ(pp_reg);
1060 if (!(val & PANEL_POWER_ON) ||
1061 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062 locked = false;
1063
1064 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065 panel_pipe = PIPE_B;
1066
1067 WARN(panel_pipe == pipe && locked,
1068 "panel assertion failure, pipe %c regs locked\n",
1069 pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073 enum pipe pipe, bool state)
1074 {
1075 int reg;
1076 u32 val;
1077 bool cur_state;
1078 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079 pipe);
1080
1081 /* if we need the pipe A quirk it must be always on */
1082 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083 state = true;
1084
1085 if (!intel_display_power_enabled(dev_priv->dev,
1086 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087 cur_state = false;
1088 } else {
1089 reg = PIPECONF(cpu_transcoder);
1090 val = I915_READ(reg);
1091 cur_state = !!(val & PIPECONF_ENABLE);
1092 }
1093
1094 WARN(cur_state != state,
1095 "pipe %c assertion failure (expected %s, current %s)\n",
1096 pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100 enum plane plane, bool state)
1101 {
1102 int reg;
1103 u32 val;
1104 bool cur_state;
1105
1106 reg = DSPCNTR(plane);
1107 val = I915_READ(reg);
1108 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109 WARN(cur_state != state,
1110 "plane %c assertion failure (expected %s, current %s)\n",
1111 plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118 enum pipe pipe)
1119 {
1120 struct drm_device *dev = dev_priv->dev;
1121 int reg, i;
1122 u32 val;
1123 int cur_pipe;
1124
1125 /* Primary planes are fixed to pipes on gen4+ */
1126 if (INTEL_INFO(dev)->gen >= 4) {
1127 reg = DSPCNTR(pipe);
1128 val = I915_READ(reg);
1129 WARN((val & DISPLAY_PLANE_ENABLE),
1130 "plane %c assertion failure, should be disabled but not\n",
1131 plane_name(pipe));
1132 return;
1133 }
1134
1135 /* Need to check both planes against the pipe */
1136 for_each_pipe(i) {
1137 reg = DSPCNTR(i);
1138 val = I915_READ(reg);
1139 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140 DISPPLANE_SEL_PIPE_SHIFT;
1141 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143 plane_name(i), pipe_name(pipe));
1144 }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148 enum pipe pipe)
1149 {
1150 struct drm_device *dev = dev_priv->dev;
1151 int reg, i;
1152 u32 val;
1153
1154 if (IS_VALLEYVIEW(dev)) {
1155 for (i = 0; i < dev_priv->num_plane; i++) {
1156 reg = SPCNTR(pipe, i);
1157 val = I915_READ(reg);
1158 WARN((val & SP_ENABLE),
1159 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160 sprite_name(pipe, i), pipe_name(pipe));
1161 }
1162 } else if (INTEL_INFO(dev)->gen >= 7) {
1163 reg = SPRCTL(pipe);
1164 val = I915_READ(reg);
1165 WARN((val & SPRITE_ENABLE),
1166 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167 plane_name(pipe), pipe_name(pipe));
1168 } else if (INTEL_INFO(dev)->gen >= 5) {
1169 reg = DVSCNTR(pipe);
1170 val = I915_READ(reg);
1171 WARN((val & DVS_ENABLE),
1172 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173 plane_name(pipe), pipe_name(pipe));
1174 }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179 u32 val;
1180 bool enabled;
1181
1182 if (HAS_PCH_LPT(dev_priv->dev)) {
1183 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184 return;
1185 }
1186
1187 val = I915_READ(PCH_DREF_CONTROL);
1188 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189 DREF_SUPERSPREAD_SOURCE_MASK));
1190 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195 {
1196 int reg;
1197 u32 val;
1198 bool enabled;
1199
1200 reg = PCH_TRANSCONF(pipe);
1201 val = I915_READ(reg);
1202 enabled = !!(val & TRANS_ENABLE);
1203 WARN(enabled,
1204 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205 pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209 enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211 if ((val & DP_PORT_EN) == 0)
1212 return false;
1213
1214 if (HAS_PCH_CPT(dev_priv->dev)) {
1215 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218 return false;
1219 } else {
1220 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221 return false;
1222 }
1223 return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227 enum pipe pipe, u32 val)
1228 {
1229 if ((val & SDVO_ENABLE) == 0)
1230 return false;
1231
1232 if (HAS_PCH_CPT(dev_priv->dev)) {
1233 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234 return false;
1235 } else {
1236 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237 return false;
1238 }
1239 return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, u32 val)
1244 {
1245 if ((val & LVDS_PORT_EN) == 0)
1246 return false;
1247
1248 if (HAS_PCH_CPT(dev_priv->dev)) {
1249 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250 return false;
1251 } else {
1252 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253 return false;
1254 }
1255 return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259 enum pipe pipe, u32 val)
1260 {
1261 if ((val & ADPA_DAC_ENABLE) == 0)
1262 return false;
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, int reg, u32 port_sel)
1275 {
1276 u32 val = I915_READ(reg);
1277 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279 reg, pipe_name(pipe));
1280
1281 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282 && (val & DP_PIPEB_SELECT),
1283 "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287 enum pipe pipe, int reg)
1288 {
1289 u32 val = I915_READ(reg);
1290 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292 reg, pipe_name(pipe));
1293
1294 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295 && (val & SDVO_PIPE_B_SELECT),
1296 "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300 enum pipe pipe)
1301 {
1302 int reg;
1303 u32 val;
1304
1305 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309 reg = PCH_ADPA;
1310 val = I915_READ(reg);
1311 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312 "PCH VGA enabled on transcoder %c, should be disabled\n",
1313 pipe_name(pipe));
1314
1315 reg = PCH_LVDS;
1316 val = I915_READ(reg);
1317 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319 pipe_name(pipe));
1320
1321 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328 struct drm_device *dev = crtc->base.dev;
1329 struct drm_i915_private *dev_priv = dev->dev_private;
1330 int reg = DPLL(crtc->pipe);
1331 u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333 assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335 /* No really, not for ILK+ */
1336 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338 /* PLL is protected by panel, make sure we can write it */
1339 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342 I915_WRITE(reg, dpll);
1343 POSTING_READ(reg);
1344 udelay(150);
1345
1346 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350 POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352 /* We do this three times for luck */
1353 I915_WRITE(reg, dpll);
1354 POSTING_READ(reg);
1355 udelay(150); /* wait for warmup */
1356 I915_WRITE(reg, dpll);
1357 POSTING_READ(reg);
1358 udelay(150); /* wait for warmup */
1359 I915_WRITE(reg, dpll);
1360 POSTING_READ(reg);
1361 udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->base.dev;
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 int reg = DPLL(crtc->pipe);
1369 u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371 assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373 /* No really, not for ILK+ */
1374 BUG_ON(dev_priv->info->gen >= 5);
1375
1376 /* PLL is protected by panel, make sure we can write it */
1377 if (IS_MOBILE(dev) && !IS_I830(dev))
1378 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380 I915_WRITE(reg, dpll);
1381
1382 /* Wait for the clocks to stabilize. */
1383 POSTING_READ(reg);
1384 udelay(150);
1385
1386 if (INTEL_INFO(dev)->gen >= 4) {
1387 I915_WRITE(DPLL_MD(crtc->pipe),
1388 crtc->config.dpll_hw_state.dpll_md);
1389 } else {
1390 /* The pixel multiplier can only be updated once the
1391 * DPLL is enabled and the clocks are stable.
1392 *
1393 * So write it again.
1394 */
1395 I915_WRITE(reg, dpll);
1396 }
1397
1398 /* We do this three times for luck */
1399 I915_WRITE(reg, dpll);
1400 POSTING_READ(reg);
1401 udelay(150); /* wait for warmup */
1402 I915_WRITE(reg, dpll);
1403 POSTING_READ(reg);
1404 udelay(150); /* wait for warmup */
1405 I915_WRITE(reg, dpll);
1406 POSTING_READ(reg);
1407 udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411 * i9xx_disable_pll - disable a PLL
1412 * @dev_priv: i915 private structure
1413 * @pipe: pipe PLL to disable
1414 *
1415 * Disable the PLL for @pipe, making sure the pipe is off first.
1416 *
1417 * Note! This is for pre-ILK only.
1418 */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421 /* Don't disable pipe A or pipe A PLLs if needed */
1422 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423 return;
1424
1425 /* Make sure the pipe isn't still relying on us */
1426 assert_pipe_disabled(dev_priv, pipe);
1427
1428 I915_WRITE(DPLL(pipe), 0);
1429 POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434 u32 port_mask;
1435
1436 if (!port)
1437 port_mask = DPLL_PORTB_READY_MASK;
1438 else
1439 port_mask = DPLL_PORTC_READY_MASK;
1440
1441 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443 'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447 * ironlake_enable_shared_dpll - enable PCH PLL
1448 * @dev_priv: i915 private structure
1449 * @pipe: pipe PLL to enable
1450 *
1451 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452 * drives the transcoder clock.
1453 */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459 /* PCH PLLs only available on ILK, SNB and IVB */
1460 BUG_ON(dev_priv->info->gen < 5);
1461 if (WARN_ON(pll == NULL))
1462 return;
1463
1464 if (WARN_ON(pll->refcount == 0))
1465 return;
1466
1467 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468 pll->name, pll->active, pll->on,
1469 crtc->base.base.id);
1470
1471 if (pll->active++) {
1472 WARN_ON(!pll->on);
1473 assert_shared_dpll_enabled(dev_priv, pll);
1474 return;
1475 }
1476 WARN_ON(pll->on);
1477
1478 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479 pll->enable(dev_priv, pll);
1480 pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488 /* PCH only available on ILK+ */
1489 BUG_ON(dev_priv->info->gen < 5);
1490 if (WARN_ON(pll == NULL))
1491 return;
1492
1493 if (WARN_ON(pll->refcount == 0))
1494 return;
1495
1496 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497 pll->name, pll->active, pll->on,
1498 crtc->base.base.id);
1499
1500 if (WARN_ON(pll->active == 0)) {
1501 assert_shared_dpll_disabled(dev_priv, pll);
1502 return;
1503 }
1504
1505 assert_shared_dpll_enabled(dev_priv, pll);
1506 WARN_ON(!pll->on);
1507 if (--pll->active)
1508 return;
1509
1510 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511 pll->disable(dev_priv, pll);
1512 pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516 enum pipe pipe)
1517 {
1518 struct drm_device *dev = dev_priv->dev;
1519 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521 uint32_t reg, val, pipeconf_val;
1522
1523 /* PCH only available on ILK+ */
1524 BUG_ON(dev_priv->info->gen < 5);
1525
1526 /* Make sure PCH DPLL is enabled */
1527 assert_shared_dpll_enabled(dev_priv,
1528 intel_crtc_to_shared_dpll(intel_crtc));
1529
1530 /* FDI must be feeding us bits for PCH ports */
1531 assert_fdi_tx_enabled(dev_priv, pipe);
1532 assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534 if (HAS_PCH_CPT(dev)) {
1535 /* Workaround: Set the timing override bit before enabling the
1536 * pch transcoder. */
1537 reg = TRANS_CHICKEN2(pipe);
1538 val = I915_READ(reg);
1539 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540 I915_WRITE(reg, val);
1541 }
1542
1543 reg = PCH_TRANSCONF(pipe);
1544 val = I915_READ(reg);
1545 pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547 if (HAS_PCH_IBX(dev_priv->dev)) {
1548 /*
1549 * make the BPC in transcoder be consistent with
1550 * that in pipeconf reg.
1551 */
1552 val &= ~PIPECONF_BPC_MASK;
1553 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554 }
1555
1556 val &= ~TRANS_INTERLACE_MASK;
1557 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558 if (HAS_PCH_IBX(dev_priv->dev) &&
1559 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560 val |= TRANS_LEGACY_INTERLACED_ILK;
1561 else
1562 val |= TRANS_INTERLACED;
1563 else
1564 val |= TRANS_PROGRESSIVE;
1565
1566 I915_WRITE(reg, val | TRANS_ENABLE);
1567 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572 enum transcoder cpu_transcoder)
1573 {
1574 u32 val, pipeconf_val;
1575
1576 /* PCH only available on ILK+ */
1577 BUG_ON(dev_priv->info->gen < 5);
1578
1579 /* FDI must be feeding us bits for PCH ports */
1580 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583 /* Workaround: set timing override bit. */
1584 val = I915_READ(_TRANSA_CHICKEN2);
1585 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586 I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588 val = TRANS_ENABLE;
1589 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592 PIPECONF_INTERLACED_ILK)
1593 val |= TRANS_INTERLACED;
1594 else
1595 val |= TRANS_PROGRESSIVE;
1596
1597 I915_WRITE(LPT_TRANSCONF, val);
1598 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603 enum pipe pipe)
1604 {
1605 struct drm_device *dev = dev_priv->dev;
1606 uint32_t reg, val;
1607
1608 /* FDI relies on the transcoder */
1609 assert_fdi_tx_disabled(dev_priv, pipe);
1610 assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612 /* Ports must be off as well */
1613 assert_pch_ports_disabled(dev_priv, pipe);
1614
1615 reg = PCH_TRANSCONF(pipe);
1616 val = I915_READ(reg);
1617 val &= ~TRANS_ENABLE;
1618 I915_WRITE(reg, val);
1619 /* wait for PCH transcoder off, transcoder state */
1620 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623 if (!HAS_PCH_IBX(dev)) {
1624 /* Workaround: Clear the timing override chicken bit again. */
1625 reg = TRANS_CHICKEN2(pipe);
1626 val = I915_READ(reg);
1627 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628 I915_WRITE(reg, val);
1629 }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634 u32 val;
1635
1636 val = I915_READ(LPT_TRANSCONF);
1637 val &= ~TRANS_ENABLE;
1638 I915_WRITE(LPT_TRANSCONF, val);
1639 /* wait for PCH transcoder off, transcoder state */
1640 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643 /* Workaround: clear timing override bit. */
1644 val = I915_READ(_TRANSA_CHICKEN2);
1645 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646 I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650 * intel_enable_pipe - enable a pipe, asserting requirements
1651 * @dev_priv: i915 private structure
1652 * @pipe: pipe to enable
1653 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654 *
1655 * Enable @pipe, making sure that various hardware specific requirements
1656 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657 *
1658 * @pipe should be %PIPE_A or %PIPE_B.
1659 *
1660 * Will wait until the pipe is actually running (i.e. first vblank) before
1661 * returning.
1662 */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664 bool pch_port)
1665 {
1666 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667 pipe);
1668 enum pipe pch_transcoder;
1669 int reg;
1670 u32 val;
1671
1672 assert_planes_disabled(dev_priv, pipe);
1673 assert_sprites_disabled(dev_priv, pipe);
1674
1675 if (HAS_PCH_LPT(dev_priv->dev))
1676 pch_transcoder = TRANSCODER_A;
1677 else
1678 pch_transcoder = pipe;
1679
1680 /*
1681 * A pipe without a PLL won't actually be able to drive bits from
1682 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1683 * need the check.
1684 */
1685 if (!HAS_PCH_SPLIT(dev_priv->dev))
1686 assert_pll_enabled(dev_priv, pipe);
1687 else {
1688 if (pch_port) {
1689 /* if driving the PCH, we need FDI enabled */
1690 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691 assert_fdi_tx_pll_enabled(dev_priv,
1692 (enum pipe) cpu_transcoder);
1693 }
1694 /* FIXME: assert CPU port conditions for SNB+ */
1695 }
1696
1697 reg = PIPECONF(cpu_transcoder);
1698 val = I915_READ(reg);
1699 if (val & PIPECONF_ENABLE)
1700 return;
1701
1702 I915_WRITE(reg, val | PIPECONF_ENABLE);
1703 intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707 * intel_disable_pipe - disable a pipe, asserting requirements
1708 * @dev_priv: i915 private structure
1709 * @pipe: pipe to disable
1710 *
1711 * Disable @pipe, making sure that various hardware specific requirements
1712 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713 *
1714 * @pipe should be %PIPE_A or %PIPE_B.
1715 *
1716 * Will wait until the pipe has shut down before returning.
1717 */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719 enum pipe pipe)
1720 {
1721 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722 pipe);
1723 int reg;
1724 u32 val;
1725
1726 /*
1727 * Make sure planes won't keep trying to pump pixels to us,
1728 * or we might hang the display.
1729 */
1730 assert_planes_disabled(dev_priv, pipe);
1731 assert_sprites_disabled(dev_priv, pipe);
1732
1733 /* Don't disable pipe A or pipe A PLLs if needed */
1734 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735 return;
1736
1737 reg = PIPECONF(cpu_transcoder);
1738 val = I915_READ(reg);
1739 if ((val & PIPECONF_ENABLE) == 0)
1740 return;
1741
1742 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747 * Plane regs are double buffered, going from enabled->disabled needs a
1748 * trigger in order to latch. The display address reg provides this.
1749 */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751 enum plane plane)
1752 {
1753 if (dev_priv->info->gen >= 4)
1754 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755 else
1756 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760 * intel_enable_plane - enable a display plane on a given pipe
1761 * @dev_priv: i915 private structure
1762 * @plane: plane to enable
1763 * @pipe: pipe being fed
1764 *
1765 * Enable @plane on @pipe, making sure that @pipe is running first.
1766 */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768 enum plane plane, enum pipe pipe)
1769 {
1770 int reg;
1771 u32 val;
1772
1773 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774 assert_pipe_enabled(dev_priv, pipe);
1775
1776 reg = DSPCNTR(plane);
1777 val = I915_READ(reg);
1778 if (val & DISPLAY_PLANE_ENABLE)
1779 return;
1780
1781 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782 intel_flush_display_plane(dev_priv, plane);
1783 intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787 * intel_disable_plane - disable a display plane
1788 * @dev_priv: i915 private structure
1789 * @plane: plane to disable
1790 * @pipe: pipe consuming the data
1791 *
1792 * Disable @plane; should be an independent operation.
1793 */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795 enum plane plane, enum pipe pipe)
1796 {
1797 int reg;
1798 u32 val;
1799
1800 reg = DSPCNTR(plane);
1801 val = I915_READ(reg);
1802 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803 return;
1804
1805 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806 intel_flush_display_plane(dev_priv, plane);
1807 intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814 return true;
1815 #endif
1816 return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821 struct drm_i915_gem_object *obj,
1822 struct intel_ring_buffer *pipelined)
1823 {
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 u32 alignment;
1826 int ret;
1827
1828 switch (obj->tiling_mode) {
1829 case I915_TILING_NONE:
1830 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831 alignment = 128 * 1024;
1832 else if (INTEL_INFO(dev)->gen >= 4)
1833 alignment = 4 * 1024;
1834 else
1835 alignment = 64 * 1024;
1836 break;
1837 case I915_TILING_X:
1838 /* pin() will align the object as required by fence */
1839 alignment = 0;
1840 break;
1841 case I915_TILING_Y:
1842 /* Despite that we check this in framebuffer_init userspace can
1843 * screw us over and change the tiling after the fact. Only
1844 * pinned buffers can't change their tiling. */
1845 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846 return -EINVAL;
1847 default:
1848 BUG();
1849 }
1850
1851 /* Note that the w/a also requires 64 PTE of padding following the
1852 * bo. We currently fill all unused PTE with the shadow page and so
1853 * we should always have valid PTE following the scanout preventing
1854 * the VT-d warning.
1855 */
1856 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857 alignment = 256 * 1024;
1858
1859 dev_priv->mm.interruptible = false;
1860 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861 if (ret)
1862 goto err_interruptible;
1863
1864 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865 * fence, whereas 965+ only requires a fence if using
1866 * framebuffer compression. For simplicity, we always install
1867 * a fence as the cost is not that onerous.
1868 */
1869 ret = i915_gem_object_get_fence(obj);
1870 if (ret)
1871 goto err_unpin;
1872
1873 i915_gem_object_pin_fence(obj);
1874
1875 dev_priv->mm.interruptible = true;
1876 return 0;
1877
1878 err_unpin:
1879 i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881 dev_priv->mm.interruptible = true;
1882 return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887 i915_gem_object_unpin_fence(obj);
1888 i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892 * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894 unsigned int tiling_mode,
1895 unsigned int cpp,
1896 unsigned int pitch)
1897 {
1898 if (tiling_mode != I915_TILING_NONE) {
1899 unsigned int tile_rows, tiles;
1900
1901 tile_rows = *y / 8;
1902 *y %= 8;
1903
1904 tiles = *x / (512/cpp);
1905 *x %= 512/cpp;
1906
1907 return tile_rows * pitch * 8 + tiles * 4096;
1908 } else {
1909 unsigned int offset;
1910
1911 offset = *y * pitch + *x * cpp;
1912 *y = 0;
1913 *x = (offset & 4095) / cpp;
1914 return offset & -4096;
1915 }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919 int x, int y)
1920 {
1921 struct drm_device *dev = crtc->dev;
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924 struct intel_framebuffer *intel_fb;
1925 struct drm_i915_gem_object *obj;
1926 int plane = intel_crtc->plane;
1927 unsigned long linear_offset;
1928 u32 dspcntr;
1929 u32 reg;
1930
1931 switch (plane) {
1932 case 0:
1933 case 1:
1934 break;
1935 default:
1936 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937 return -EINVAL;
1938 }
1939
1940 intel_fb = to_intel_framebuffer(fb);
1941 obj = intel_fb->obj;
1942
1943 reg = DSPCNTR(plane);
1944 dspcntr = I915_READ(reg);
1945 /* Mask out pixel format bits in case we change it */
1946 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947 switch (fb->pixel_format) {
1948 case DRM_FORMAT_C8:
1949 dspcntr |= DISPPLANE_8BPP;
1950 break;
1951 case DRM_FORMAT_XRGB1555:
1952 case DRM_FORMAT_ARGB1555:
1953 dspcntr |= DISPPLANE_BGRX555;
1954 break;
1955 case DRM_FORMAT_RGB565:
1956 dspcntr |= DISPPLANE_BGRX565;
1957 break;
1958 case DRM_FORMAT_XRGB8888:
1959 case DRM_FORMAT_ARGB8888:
1960 dspcntr |= DISPPLANE_BGRX888;
1961 break;
1962 case DRM_FORMAT_XBGR8888:
1963 case DRM_FORMAT_ABGR8888:
1964 dspcntr |= DISPPLANE_RGBX888;
1965 break;
1966 case DRM_FORMAT_XRGB2101010:
1967 case DRM_FORMAT_ARGB2101010:
1968 dspcntr |= DISPPLANE_BGRX101010;
1969 break;
1970 case DRM_FORMAT_XBGR2101010:
1971 case DRM_FORMAT_ABGR2101010:
1972 dspcntr |= DISPPLANE_RGBX101010;
1973 break;
1974 default:
1975 BUG();
1976 }
1977
1978 if (INTEL_INFO(dev)->gen >= 4) {
1979 if (obj->tiling_mode != I915_TILING_NONE)
1980 dspcntr |= DISPPLANE_TILED;
1981 else
1982 dspcntr &= ~DISPPLANE_TILED;
1983 }
1984
1985 if (IS_G4X(dev))
1986 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988 I915_WRITE(reg, dspcntr);
1989
1990 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992 if (INTEL_INFO(dev)->gen >= 4) {
1993 intel_crtc->dspaddr_offset =
1994 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995 fb->bits_per_pixel / 8,
1996 fb->pitches[0]);
1997 linear_offset -= intel_crtc->dspaddr_offset;
1998 } else {
1999 intel_crtc->dspaddr_offset = linear_offset;
2000 }
2001
2002 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004 fb->pitches[0]);
2005 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006 if (INTEL_INFO(dev)->gen >= 4) {
2007 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011 } else
2012 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013 POSTING_READ(reg);
2014
2015 return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019 struct drm_framebuffer *fb, int x, int y)
2020 {
2021 struct drm_device *dev = crtc->dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024 struct intel_framebuffer *intel_fb;
2025 struct drm_i915_gem_object *obj;
2026 int plane = intel_crtc->plane;
2027 unsigned long linear_offset;
2028 u32 dspcntr;
2029 u32 reg;
2030
2031 switch (plane) {
2032 case 0:
2033 case 1:
2034 case 2:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
2043
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->pixel_format) {
2049 case DRM_FORMAT_C8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case DRM_FORMAT_RGB565:
2053 dspcntr |= DISPPLANE_BGRX565;
2054 break;
2055 case DRM_FORMAT_XRGB8888:
2056 case DRM_FORMAT_ARGB8888:
2057 dspcntr |= DISPPLANE_BGRX888;
2058 break;
2059 case DRM_FORMAT_XBGR8888:
2060 case DRM_FORMAT_ABGR8888:
2061 dspcntr |= DISPPLANE_RGBX888;
2062 break;
2063 case DRM_FORMAT_XRGB2101010:
2064 case DRM_FORMAT_ARGB2101010:
2065 dspcntr |= DISPPLANE_BGRX101010;
2066 break;
2067 case DRM_FORMAT_XBGR2101010:
2068 case DRM_FORMAT_ABGR2101010:
2069 dspcntr |= DISPPLANE_RGBX101010;
2070 break;
2071 default:
2072 BUG();
2073 }
2074
2075 if (obj->tiling_mode != I915_TILING_NONE)
2076 dspcntr |= DISPPLANE_TILED;
2077 else
2078 dspcntr &= ~DISPPLANE_TILED;
2079
2080 if (IS_HASWELL(dev))
2081 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2082 else
2083 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085 I915_WRITE(reg, dspcntr);
2086
2087 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088 intel_crtc->dspaddr_offset =
2089 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2090 fb->bits_per_pixel / 8,
2091 fb->pitches[0]);
2092 linear_offset -= intel_crtc->dspaddr_offset;
2093
2094 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2095 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2096 fb->pitches[0]);
2097 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098 I915_MODIFY_DISPBASE(DSPSURF(plane),
2099 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2100 if (IS_HASWELL(dev)) {
2101 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2102 } else {
2103 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2104 I915_WRITE(DSPLINOFF(plane), linear_offset);
2105 }
2106 POSTING_READ(reg);
2107
2108 return 0;
2109 }
2110
2111 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2112 static int
2113 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2114 int x, int y, enum mode_set_atomic state)
2115 {
2116 struct drm_device *dev = crtc->dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 if (dev_priv->display.disable_fbc)
2120 dev_priv->display.disable_fbc(dev);
2121 intel_increase_pllclock(crtc);
2122
2123 return dev_priv->display.update_plane(crtc, fb, x, y);
2124 }
2125
2126 void intel_display_handle_reset(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129 struct drm_crtc *crtc;
2130
2131 /*
2132 * Flips in the rings have been nuked by the reset,
2133 * so complete all pending flips so that user space
2134 * will get its events and not get stuck.
2135 *
2136 * Also update the base address of all primary
2137 * planes to the the last fb to make sure we're
2138 * showing the correct fb after a reset.
2139 *
2140 * Need to make two loops over the crtcs so that we
2141 * don't try to grab a crtc mutex before the
2142 * pending_flip_queue really got woken up.
2143 */
2144
2145 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2147 enum plane plane = intel_crtc->plane;
2148
2149 intel_prepare_page_flip(dev, plane);
2150 intel_finish_page_flip_plane(dev, plane);
2151 }
2152
2153 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2155
2156 mutex_lock(&crtc->mutex);
2157 if (intel_crtc->active)
2158 dev_priv->display.update_plane(crtc, crtc->fb,
2159 crtc->x, crtc->y);
2160 mutex_unlock(&crtc->mutex);
2161 }
2162 }
2163
2164 static int
2165 intel_finish_fb(struct drm_framebuffer *old_fb)
2166 {
2167 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2168 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2169 bool was_interruptible = dev_priv->mm.interruptible;
2170 int ret;
2171
2172 /* Big Hammer, we also need to ensure that any pending
2173 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2174 * current scanout is retired before unpinning the old
2175 * framebuffer.
2176 *
2177 * This should only fail upon a hung GPU, in which case we
2178 * can safely continue.
2179 */
2180 dev_priv->mm.interruptible = false;
2181 ret = i915_gem_object_finish_gpu(obj);
2182 dev_priv->mm.interruptible = was_interruptible;
2183
2184 return ret;
2185 }
2186
2187 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2188 {
2189 struct drm_device *dev = crtc->dev;
2190 struct drm_i915_master_private *master_priv;
2191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192
2193 if (!dev->primary->master)
2194 return;
2195
2196 master_priv = dev->primary->master->driver_priv;
2197 if (!master_priv->sarea_priv)
2198 return;
2199
2200 switch (intel_crtc->pipe) {
2201 case 0:
2202 master_priv->sarea_priv->pipeA_x = x;
2203 master_priv->sarea_priv->pipeA_y = y;
2204 break;
2205 case 1:
2206 master_priv->sarea_priv->pipeB_x = x;
2207 master_priv->sarea_priv->pipeB_y = y;
2208 break;
2209 default:
2210 break;
2211 }
2212 }
2213
2214 static int
2215 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2216 struct drm_framebuffer *fb)
2217 {
2218 struct drm_device *dev = crtc->dev;
2219 struct drm_i915_private *dev_priv = dev->dev_private;
2220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221 struct drm_framebuffer *old_fb;
2222 int ret;
2223
2224 /* no fb bound */
2225 if (!fb) {
2226 DRM_ERROR("No FB bound\n");
2227 return 0;
2228 }
2229
2230 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2231 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2232 plane_name(intel_crtc->plane),
2233 INTEL_INFO(dev)->num_pipes);
2234 return -EINVAL;
2235 }
2236
2237 mutex_lock(&dev->struct_mutex);
2238 ret = intel_pin_and_fence_fb_obj(dev,
2239 to_intel_framebuffer(fb)->obj,
2240 NULL);
2241 if (ret != 0) {
2242 mutex_unlock(&dev->struct_mutex);
2243 DRM_ERROR("pin & fence failed\n");
2244 return ret;
2245 }
2246
2247 /* Update pipe size and adjust fitter if needed */
2248 if (i915_fastboot) {
2249 I915_WRITE(PIPESRC(intel_crtc->pipe),
2250 ((crtc->mode.hdisplay - 1) << 16) |
2251 (crtc->mode.vdisplay - 1));
2252 if (!intel_crtc->config.pch_pfit.enabled &&
2253 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2254 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2255 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2256 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2257 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2258 }
2259 }
2260
2261 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2262 if (ret) {
2263 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2264 mutex_unlock(&dev->struct_mutex);
2265 DRM_ERROR("failed to update base address\n");
2266 return ret;
2267 }
2268
2269 old_fb = crtc->fb;
2270 crtc->fb = fb;
2271 crtc->x = x;
2272 crtc->y = y;
2273
2274 if (old_fb) {
2275 if (intel_crtc->active && old_fb != fb)
2276 intel_wait_for_vblank(dev, intel_crtc->pipe);
2277 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2278 }
2279
2280 intel_update_fbc(dev);
2281 intel_edp_psr_update(dev);
2282 mutex_unlock(&dev->struct_mutex);
2283
2284 intel_crtc_update_sarea_pos(crtc, x, y);
2285
2286 return 0;
2287 }
2288
2289 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2290 {
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294 int pipe = intel_crtc->pipe;
2295 u32 reg, temp;
2296
2297 /* enable normal train */
2298 reg = FDI_TX_CTL(pipe);
2299 temp = I915_READ(reg);
2300 if (IS_IVYBRIDGE(dev)) {
2301 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2302 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2303 } else {
2304 temp &= ~FDI_LINK_TRAIN_NONE;
2305 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2306 }
2307 I915_WRITE(reg, temp);
2308
2309 reg = FDI_RX_CTL(pipe);
2310 temp = I915_READ(reg);
2311 if (HAS_PCH_CPT(dev)) {
2312 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2313 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2314 } else {
2315 temp &= ~FDI_LINK_TRAIN_NONE;
2316 temp |= FDI_LINK_TRAIN_NONE;
2317 }
2318 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2319
2320 /* wait one idle pattern time */
2321 POSTING_READ(reg);
2322 udelay(1000);
2323
2324 /* IVB wants error correction enabled */
2325 if (IS_IVYBRIDGE(dev))
2326 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2327 FDI_FE_ERRC_ENABLE);
2328 }
2329
2330 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2331 {
2332 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2333 }
2334
2335 static void ivb_modeset_global_resources(struct drm_device *dev)
2336 {
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 struct intel_crtc *pipe_B_crtc =
2339 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2340 struct intel_crtc *pipe_C_crtc =
2341 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2342 uint32_t temp;
2343
2344 /*
2345 * When everything is off disable fdi C so that we could enable fdi B
2346 * with all lanes. Note that we don't care about enabled pipes without
2347 * an enabled pch encoder.
2348 */
2349 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2350 !pipe_has_enabled_pch(pipe_C_crtc)) {
2351 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2352 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2353
2354 temp = I915_READ(SOUTH_CHICKEN1);
2355 temp &= ~FDI_BC_BIFURCATION_SELECT;
2356 DRM_DEBUG_KMS("disabling fdi C rx\n");
2357 I915_WRITE(SOUTH_CHICKEN1, temp);
2358 }
2359 }
2360
2361 /* The FDI link training functions for ILK/Ibexpeak. */
2362 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2363 {
2364 struct drm_device *dev = crtc->dev;
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367 int pipe = intel_crtc->pipe;
2368 int plane = intel_crtc->plane;
2369 u32 reg, temp, tries;
2370
2371 /* FDI needs bits from pipe & plane first */
2372 assert_pipe_enabled(dev_priv, pipe);
2373 assert_plane_enabled(dev_priv, plane);
2374
2375 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2376 for train result */
2377 reg = FDI_RX_IMR(pipe);
2378 temp = I915_READ(reg);
2379 temp &= ~FDI_RX_SYMBOL_LOCK;
2380 temp &= ~FDI_RX_BIT_LOCK;
2381 I915_WRITE(reg, temp);
2382 I915_READ(reg);
2383 udelay(150);
2384
2385 /* enable CPU FDI TX and PCH FDI RX */
2386 reg = FDI_TX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2389 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2390 temp &= ~FDI_LINK_TRAIN_NONE;
2391 temp |= FDI_LINK_TRAIN_PATTERN_1;
2392 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2393
2394 reg = FDI_RX_CTL(pipe);
2395 temp = I915_READ(reg);
2396 temp &= ~FDI_LINK_TRAIN_NONE;
2397 temp |= FDI_LINK_TRAIN_PATTERN_1;
2398 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2399
2400 POSTING_READ(reg);
2401 udelay(150);
2402
2403 /* Ironlake workaround, enable clock pointer after FDI enable*/
2404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406 FDI_RX_PHASE_SYNC_POINTER_EN);
2407
2408 reg = FDI_RX_IIR(pipe);
2409 for (tries = 0; tries < 5; tries++) {
2410 temp = I915_READ(reg);
2411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413 if ((temp & FDI_RX_BIT_LOCK)) {
2414 DRM_DEBUG_KMS("FDI train 1 done.\n");
2415 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416 break;
2417 }
2418 }
2419 if (tries == 5)
2420 DRM_ERROR("FDI train 1 fail!\n");
2421
2422 /* Train 2 */
2423 reg = FDI_TX_CTL(pipe);
2424 temp = I915_READ(reg);
2425 temp &= ~FDI_LINK_TRAIN_NONE;
2426 temp |= FDI_LINK_TRAIN_PATTERN_2;
2427 I915_WRITE(reg, temp);
2428
2429 reg = FDI_RX_CTL(pipe);
2430 temp = I915_READ(reg);
2431 temp &= ~FDI_LINK_TRAIN_NONE;
2432 temp |= FDI_LINK_TRAIN_PATTERN_2;
2433 I915_WRITE(reg, temp);
2434
2435 POSTING_READ(reg);
2436 udelay(150);
2437
2438 reg = FDI_RX_IIR(pipe);
2439 for (tries = 0; tries < 5; tries++) {
2440 temp = I915_READ(reg);
2441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443 if (temp & FDI_RX_SYMBOL_LOCK) {
2444 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445 DRM_DEBUG_KMS("FDI train 2 done.\n");
2446 break;
2447 }
2448 }
2449 if (tries == 5)
2450 DRM_ERROR("FDI train 2 fail!\n");
2451
2452 DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466 struct drm_device *dev = crtc->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469 int pipe = intel_crtc->pipe;
2470 u32 reg, temp, i, retry;
2471
2472 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473 for train result */
2474 reg = FDI_RX_IMR(pipe);
2475 temp = I915_READ(reg);
2476 temp &= ~FDI_RX_SYMBOL_LOCK;
2477 temp &= ~FDI_RX_BIT_LOCK;
2478 I915_WRITE(reg, temp);
2479
2480 POSTING_READ(reg);
2481 udelay(150);
2482
2483 /* enable CPU FDI TX and PCH FDI RX */
2484 reg = FDI_TX_CTL(pipe);
2485 temp = I915_READ(reg);
2486 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2487 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491 /* SNB-B */
2492 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495 I915_WRITE(FDI_RX_MISC(pipe),
2496 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 for (i = 0; i < 4; i++) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 for (retry = 0; retry < 5; retry++) {
2523 reg = FDI_RX_IIR(pipe);
2524 temp = I915_READ(reg);
2525 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 udelay(50);
2532 }
2533 if (retry < 5)
2534 break;
2535 }
2536 if (i == 4)
2537 DRM_ERROR("FDI train 1 fail!\n");
2538
2539 /* Train 2 */
2540 reg = FDI_TX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 temp &= ~FDI_LINK_TRAIN_NONE;
2543 temp |= FDI_LINK_TRAIN_PATTERN_2;
2544 if (IS_GEN6(dev)) {
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 /* SNB-B */
2547 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548 }
2549 I915_WRITE(reg, temp);
2550
2551 reg = FDI_RX_CTL(pipe);
2552 temp = I915_READ(reg);
2553 if (HAS_PCH_CPT(dev)) {
2554 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556 } else {
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 }
2560 I915_WRITE(reg, temp);
2561
2562 POSTING_READ(reg);
2563 udelay(150);
2564
2565 for (i = 0; i < 4; i++) {
2566 reg = FDI_TX_CTL(pipe);
2567 temp = I915_READ(reg);
2568 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569 temp |= snb_b_fdi_train_param[i];
2570 I915_WRITE(reg, temp);
2571
2572 POSTING_READ(reg);
2573 udelay(500);
2574
2575 for (retry = 0; retry < 5; retry++) {
2576 reg = FDI_RX_IIR(pipe);
2577 temp = I915_READ(reg);
2578 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579 if (temp & FDI_RX_SYMBOL_LOCK) {
2580 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582 break;
2583 }
2584 udelay(50);
2585 }
2586 if (retry < 5)
2587 break;
2588 }
2589 if (i == 4)
2590 DRM_ERROR("FDI train 2 fail!\n");
2591
2592 DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i, j;
2603
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2616 I915_READ(FDI_RX_IIR(pipe)));
2617
2618 /* Try each vswing and preemphasis setting twice before moving on */
2619 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2620 /* disable first in case we need to retry */
2621 reg = FDI_TX_CTL(pipe);
2622 temp = I915_READ(reg);
2623 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624 temp &= ~FDI_TX_ENABLE;
2625 I915_WRITE(reg, temp);
2626
2627 reg = FDI_RX_CTL(pipe);
2628 temp = I915_READ(reg);
2629 temp &= ~FDI_LINK_TRAIN_AUTO;
2630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631 temp &= ~FDI_RX_ENABLE;
2632 I915_WRITE(reg, temp);
2633
2634 /* enable CPU FDI TX and PCH FDI RX */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2638 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2639 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 temp |= snb_b_fdi_train_param[j/2];
2642 temp |= FDI_COMPOSITE_SYNC;
2643 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2644
2645 I915_WRITE(FDI_RX_MISC(pipe),
2646 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2647
2648 reg = FDI_RX_CTL(pipe);
2649 temp = I915_READ(reg);
2650 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2651 temp |= FDI_COMPOSITE_SYNC;
2652 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2653
2654 POSTING_READ(reg);
2655 udelay(1); /* should be 0.5us */
2656
2657 for (i = 0; i < 4; i++) {
2658 reg = FDI_RX_IIR(pipe);
2659 temp = I915_READ(reg);
2660 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2661
2662 if (temp & FDI_RX_BIT_LOCK ||
2663 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2664 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2665 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2666 i);
2667 break;
2668 }
2669 udelay(1); /* should be 0.5us */
2670 }
2671 if (i == 4) {
2672 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2673 continue;
2674 }
2675
2676 /* Train 2 */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2680 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2681 I915_WRITE(reg, temp);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2686 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(2); /* should be 1.5us */
2691
2692 for (i = 0; i < 4; i++) {
2693 reg = FDI_RX_IIR(pipe);
2694 temp = I915_READ(reg);
2695 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697 if (temp & FDI_RX_SYMBOL_LOCK ||
2698 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2699 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2701 i);
2702 goto train_done;
2703 }
2704 udelay(2); /* should be 1.5us */
2705 }
2706 if (i == 4)
2707 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2708 }
2709
2710 train_done:
2711 DRM_DEBUG_KMS("FDI train done.\n");
2712 }
2713
2714 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2715 {
2716 struct drm_device *dev = intel_crtc->base.dev;
2717 struct drm_i915_private *dev_priv = dev->dev_private;
2718 int pipe = intel_crtc->pipe;
2719 u32 reg, temp;
2720
2721
2722 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2723 reg = FDI_RX_CTL(pipe);
2724 temp = I915_READ(reg);
2725 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2726 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2727 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2728 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2729
2730 POSTING_READ(reg);
2731 udelay(200);
2732
2733 /* Switch from Rawclk to PCDclk */
2734 temp = I915_READ(reg);
2735 I915_WRITE(reg, temp | FDI_PCDCLK);
2736
2737 POSTING_READ(reg);
2738 udelay(200);
2739
2740 /* Enable CPU FDI TX PLL, always on for Ironlake */
2741 reg = FDI_TX_CTL(pipe);
2742 temp = I915_READ(reg);
2743 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2744 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2745
2746 POSTING_READ(reg);
2747 udelay(100);
2748 }
2749 }
2750
2751 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2752 {
2753 struct drm_device *dev = intel_crtc->base.dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 int pipe = intel_crtc->pipe;
2756 u32 reg, temp;
2757
2758 /* Switch from PCDclk to Rawclk */
2759 reg = FDI_RX_CTL(pipe);
2760 temp = I915_READ(reg);
2761 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2762
2763 /* Disable CPU FDI TX PLL */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2767
2768 POSTING_READ(reg);
2769 udelay(100);
2770
2771 reg = FDI_RX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2774
2775 /* Wait for the clocks to turn off. */
2776 POSTING_READ(reg);
2777 udelay(100);
2778 }
2779
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782 struct drm_device *dev = crtc->dev;
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785 int pipe = intel_crtc->pipe;
2786 u32 reg, temp;
2787
2788 /* disable CPU FDI tx and PCH FDI rx */
2789 reg = FDI_TX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792 POSTING_READ(reg);
2793
2794 reg = FDI_RX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 temp &= ~(0x7 << 16);
2797 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2798 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800 POSTING_READ(reg);
2801 udelay(100);
2802
2803 /* Ironlake workaround, disable clock pointer after downing FDI */
2804 if (HAS_PCH_IBX(dev)) {
2805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806 }
2807
2808 /* still set train pattern 1 */
2809 reg = FDI_TX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 I915_WRITE(reg, temp);
2814
2815 reg = FDI_RX_CTL(pipe);
2816 temp = I915_READ(reg);
2817 if (HAS_PCH_CPT(dev)) {
2818 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2820 } else {
2821 temp &= ~FDI_LINK_TRAIN_NONE;
2822 temp |= FDI_LINK_TRAIN_PATTERN_1;
2823 }
2824 /* BPC in FDI rx is consistent with that in PIPECONF */
2825 temp &= ~(0x07 << 16);
2826 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2827 I915_WRITE(reg, temp);
2828
2829 POSTING_READ(reg);
2830 udelay(100);
2831 }
2832
2833 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2834 {
2835 struct drm_device *dev = crtc->dev;
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 unsigned long flags;
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
2845 spin_lock_irqsave(&dev->event_lock, flags);
2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847 spin_unlock_irqrestore(&dev->event_lock, flags);
2848
2849 return pending;
2850 }
2851
2852 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 {
2854 struct drm_device *dev = crtc->dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856
2857 if (crtc->fb == NULL)
2858 return;
2859
2860 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2861
2862 wait_event(dev_priv->pending_flip_queue,
2863 !intel_crtc_has_pending_flip(crtc));
2864
2865 mutex_lock(&dev->struct_mutex);
2866 intel_finish_fb(crtc->fb);
2867 mutex_unlock(&dev->struct_mutex);
2868 }
2869
2870 /* Program iCLKIP clock to the desired frequency */
2871 static void lpt_program_iclkip(struct drm_crtc *crtc)
2872 {
2873 struct drm_device *dev = crtc->dev;
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2876 u32 temp;
2877
2878 mutex_lock(&dev_priv->dpio_lock);
2879
2880 /* It is necessary to ungate the pixclk gate prior to programming
2881 * the divisors, and gate it back when it is done.
2882 */
2883 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2884
2885 /* Disable SSCCTL */
2886 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2887 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2888 SBI_SSCCTL_DISABLE,
2889 SBI_ICLK);
2890
2891 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892 if (crtc->mode.clock == 20000) {
2893 auxdiv = 1;
2894 divsel = 0x41;
2895 phaseinc = 0x20;
2896 } else {
2897 /* The iCLK virtual clock root frequency is in MHz,
2898 * but the crtc->mode.clock in in KHz. To get the divisors,
2899 * it is necessary to divide one by another, so we
2900 * convert the virtual clock precision to KHz here for higher
2901 * precision.
2902 */
2903 u32 iclk_virtual_root_freq = 172800 * 1000;
2904 u32 iclk_pi_range = 64;
2905 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908 msb_divisor_value = desired_divisor / iclk_pi_range;
2909 pi_value = desired_divisor % iclk_pi_range;
2910
2911 auxdiv = 0;
2912 divsel = msb_divisor_value - 2;
2913 phaseinc = pi_value;
2914 }
2915
2916 /* This should not happen with any sane values */
2917 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923 crtc->mode.clock,
2924 auxdiv,
2925 divsel,
2926 phasedir,
2927 phaseinc);
2928
2929 /* Program SSCDIVINTPHASE6 */
2930 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2931 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2938
2939 /* Program SSCAUXDIV */
2940 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2941 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2942 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2943 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2944
2945 /* Enable modulator and associated divider */
2946 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2947 temp &= ~SBI_SSCCTL_DISABLE;
2948 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2949
2950 /* Wait for initialization time */
2951 udelay(24);
2952
2953 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2954
2955 mutex_unlock(&dev_priv->dpio_lock);
2956 }
2957
2958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2959 enum pipe pch_transcoder)
2960 {
2961 struct drm_device *dev = crtc->base.dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2964
2965 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2966 I915_READ(HTOTAL(cpu_transcoder)));
2967 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2968 I915_READ(HBLANK(cpu_transcoder)));
2969 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2970 I915_READ(HSYNC(cpu_transcoder)));
2971
2972 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2973 I915_READ(VTOTAL(cpu_transcoder)));
2974 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2975 I915_READ(VBLANK(cpu_transcoder)));
2976 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2977 I915_READ(VSYNC(cpu_transcoder)));
2978 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2979 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2980 }
2981
2982 /*
2983 * Enable PCH resources required for PCH ports:
2984 * - PCH PLLs
2985 * - FDI training & RX/TX
2986 * - update transcoder timings
2987 * - DP transcoding bits
2988 * - transcoder
2989 */
2990 static void ironlake_pch_enable(struct drm_crtc *crtc)
2991 {
2992 struct drm_device *dev = crtc->dev;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995 int pipe = intel_crtc->pipe;
2996 u32 reg, temp;
2997
2998 assert_pch_transcoder_disabled(dev_priv, pipe);
2999
3000 /* Write the TU size bits before fdi link training, so that error
3001 * detection works. */
3002 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3003 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3004
3005 /* For PCH output, training FDI link */
3006 dev_priv->display.fdi_link_train(crtc);
3007
3008 /* We need to program the right clock selection before writing the pixel
3009 * mutliplier into the DPLL. */
3010 if (HAS_PCH_CPT(dev)) {
3011 u32 sel;
3012
3013 temp = I915_READ(PCH_DPLL_SEL);
3014 temp |= TRANS_DPLL_ENABLE(pipe);
3015 sel = TRANS_DPLLB_SEL(pipe);
3016 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3017 temp |= sel;
3018 else
3019 temp &= ~sel;
3020 I915_WRITE(PCH_DPLL_SEL, temp);
3021 }
3022
3023 /* XXX: pch pll's can be enabled any time before we enable the PCH
3024 * transcoder, and we actually should do this to not upset any PCH
3025 * transcoder that already use the clock when we share it.
3026 *
3027 * Note that enable_shared_dpll tries to do the right thing, but
3028 * get_shared_dpll unconditionally resets the pll - we need that to have
3029 * the right LVDS enable sequence. */
3030 ironlake_enable_shared_dpll(intel_crtc);
3031
3032 /* set transcoder timing, panel must allow it */
3033 assert_panel_unlocked(dev_priv, pipe);
3034 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3035
3036 intel_fdi_normal_train(crtc);
3037
3038 /* For PCH DP, enable TRANS_DP_CTL */
3039 if (HAS_PCH_CPT(dev) &&
3040 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3041 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3042 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3043 reg = TRANS_DP_CTL(pipe);
3044 temp = I915_READ(reg);
3045 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3046 TRANS_DP_SYNC_MASK |
3047 TRANS_DP_BPC_MASK);
3048 temp |= (TRANS_DP_OUTPUT_ENABLE |
3049 TRANS_DP_ENH_FRAMING);
3050 temp |= bpc << 9; /* same format but at 11:9 */
3051
3052 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3053 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3054 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3055 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3056
3057 switch (intel_trans_dp_port_sel(crtc)) {
3058 case PCH_DP_B:
3059 temp |= TRANS_DP_PORT_SEL_B;
3060 break;
3061 case PCH_DP_C:
3062 temp |= TRANS_DP_PORT_SEL_C;
3063 break;
3064 case PCH_DP_D:
3065 temp |= TRANS_DP_PORT_SEL_D;
3066 break;
3067 default:
3068 BUG();
3069 }
3070
3071 I915_WRITE(reg, temp);
3072 }
3073
3074 ironlake_enable_pch_transcoder(dev_priv, pipe);
3075 }
3076
3077 static void lpt_pch_enable(struct drm_crtc *crtc)
3078 {
3079 struct drm_device *dev = crtc->dev;
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3082 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3083
3084 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3085
3086 lpt_program_iclkip(crtc);
3087
3088 /* Set transcoder timing. */
3089 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3090
3091 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3092 }
3093
3094 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3095 {
3096 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3097
3098 if (pll == NULL)
3099 return;
3100
3101 if (pll->refcount == 0) {
3102 WARN(1, "bad %s refcount\n", pll->name);
3103 return;
3104 }
3105
3106 if (--pll->refcount == 0) {
3107 WARN_ON(pll->on);
3108 WARN_ON(pll->active);
3109 }
3110
3111 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3112 }
3113
3114 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3115 {
3116 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3117 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3118 enum intel_dpll_id i;
3119
3120 if (pll) {
3121 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3122 crtc->base.base.id, pll->name);
3123 intel_put_shared_dpll(crtc);
3124 }
3125
3126 if (HAS_PCH_IBX(dev_priv->dev)) {
3127 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3128 i = (enum intel_dpll_id) crtc->pipe;
3129 pll = &dev_priv->shared_dplls[i];
3130
3131 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3132 crtc->base.base.id, pll->name);
3133
3134 goto found;
3135 }
3136
3137 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3138 pll = &dev_priv->shared_dplls[i];
3139
3140 /* Only want to check enabled timings first */
3141 if (pll->refcount == 0)
3142 continue;
3143
3144 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3145 sizeof(pll->hw_state)) == 0) {
3146 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3147 crtc->base.base.id,
3148 pll->name, pll->refcount, pll->active);
3149
3150 goto found;
3151 }
3152 }
3153
3154 /* Ok no matching timings, maybe there's a free one? */
3155 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3156 pll = &dev_priv->shared_dplls[i];
3157 if (pll->refcount == 0) {
3158 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3159 crtc->base.base.id, pll->name);
3160 goto found;
3161 }
3162 }
3163
3164 return NULL;
3165
3166 found:
3167 crtc->config.shared_dpll = i;
3168 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3169 pipe_name(crtc->pipe));
3170
3171 if (pll->active == 0) {
3172 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3173 sizeof(pll->hw_state));
3174
3175 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3176 WARN_ON(pll->on);
3177 assert_shared_dpll_disabled(dev_priv, pll);
3178
3179 pll->mode_set(dev_priv, pll);
3180 }
3181 pll->refcount++;
3182
3183 return pll;
3184 }
3185
3186 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3187 {
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189 int dslreg = PIPEDSL(pipe);
3190 u32 temp;
3191
3192 temp = I915_READ(dslreg);
3193 udelay(500);
3194 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3195 if (wait_for(I915_READ(dslreg) != temp, 5))
3196 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3197 }
3198 }
3199
3200 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3201 {
3202 struct drm_device *dev = crtc->base.dev;
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 int pipe = crtc->pipe;
3205
3206 if (crtc->config.pch_pfit.enabled) {
3207 /* Force use of hard-coded filter coefficients
3208 * as some pre-programmed values are broken,
3209 * e.g. x201.
3210 */
3211 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3212 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3213 PF_PIPE_SEL_IVB(pipe));
3214 else
3215 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3216 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3217 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3218 }
3219 }
3220
3221 static void intel_enable_planes(struct drm_crtc *crtc)
3222 {
3223 struct drm_device *dev = crtc->dev;
3224 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3225 struct intel_plane *intel_plane;
3226
3227 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3228 if (intel_plane->pipe == pipe)
3229 intel_plane_restore(&intel_plane->base);
3230 }
3231
3232 static void intel_disable_planes(struct drm_crtc *crtc)
3233 {
3234 struct drm_device *dev = crtc->dev;
3235 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3236 struct intel_plane *intel_plane;
3237
3238 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3239 if (intel_plane->pipe == pipe)
3240 intel_plane_disable(&intel_plane->base);
3241 }
3242
3243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248 struct intel_encoder *encoder;
3249 int pipe = intel_crtc->pipe;
3250 int plane = intel_crtc->plane;
3251
3252 WARN_ON(!crtc->enabled);
3253
3254 if (intel_crtc->active)
3255 return;
3256
3257 intel_crtc->active = true;
3258
3259 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3260 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3261
3262 intel_update_watermarks(dev);
3263
3264 for_each_encoder_on_crtc(dev, crtc, encoder)
3265 if (encoder->pre_enable)
3266 encoder->pre_enable(encoder);
3267
3268 if (intel_crtc->config.has_pch_encoder) {
3269 /* Note: FDI PLL enabling _must_ be done before we enable the
3270 * cpu pipes, hence this is separate from all the other fdi/pch
3271 * enabling. */
3272 ironlake_fdi_pll_enable(intel_crtc);
3273 } else {
3274 assert_fdi_tx_disabled(dev_priv, pipe);
3275 assert_fdi_rx_disabled(dev_priv, pipe);
3276 }
3277
3278 ironlake_pfit_enable(intel_crtc);
3279
3280 /*
3281 * On ILK+ LUT must be loaded before the pipe is running but with
3282 * clocks enabled
3283 */
3284 intel_crtc_load_lut(crtc);
3285
3286 intel_enable_pipe(dev_priv, pipe,
3287 intel_crtc->config.has_pch_encoder);
3288 intel_enable_plane(dev_priv, plane, pipe);
3289 intel_enable_planes(crtc);
3290 intel_crtc_update_cursor(crtc, true);
3291
3292 if (intel_crtc->config.has_pch_encoder)
3293 ironlake_pch_enable(crtc);
3294
3295 mutex_lock(&dev->struct_mutex);
3296 intel_update_fbc(dev);
3297 mutex_unlock(&dev->struct_mutex);
3298
3299 for_each_encoder_on_crtc(dev, crtc, encoder)
3300 encoder->enable(encoder);
3301
3302 if (HAS_PCH_CPT(dev))
3303 cpt_verify_modeset(dev, intel_crtc->pipe);
3304
3305 /*
3306 * There seems to be a race in PCH platform hw (at least on some
3307 * outputs) where an enabled pipe still completes any pageflip right
3308 * away (as if the pipe is off) instead of waiting for vblank. As soon
3309 * as the first vblank happend, everything works as expected. Hence just
3310 * wait for one vblank before returning to avoid strange things
3311 * happening.
3312 */
3313 intel_wait_for_vblank(dev, intel_crtc->pipe);
3314 }
3315
3316 /* IPS only exists on ULT machines and is tied to pipe A. */
3317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3318 {
3319 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3320 }
3321
3322 static void hsw_enable_ips(struct intel_crtc *crtc)
3323 {
3324 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3325
3326 if (!crtc->config.ips_enabled)
3327 return;
3328
3329 /* We can only enable IPS after we enable a plane and wait for a vblank.
3330 * We guarantee that the plane is enabled by calling intel_enable_ips
3331 * only after intel_enable_plane. And intel_enable_plane already waits
3332 * for a vblank, so all we need to do here is to enable the IPS bit. */
3333 assert_plane_enabled(dev_priv, crtc->plane);
3334 I915_WRITE(IPS_CTL, IPS_ENABLE);
3335 }
3336
3337 static void hsw_disable_ips(struct intel_crtc *crtc)
3338 {
3339 struct drm_device *dev = crtc->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341
3342 if (!crtc->config.ips_enabled)
3343 return;
3344
3345 assert_plane_enabled(dev_priv, crtc->plane);
3346 I915_WRITE(IPS_CTL, 0);
3347
3348 /* We need to wait for a vblank before we can disable the plane. */
3349 intel_wait_for_vblank(dev, crtc->pipe);
3350 }
3351
3352 static void haswell_crtc_enable(struct drm_crtc *crtc)
3353 {
3354 struct drm_device *dev = crtc->dev;
3355 struct drm_i915_private *dev_priv = dev->dev_private;
3356 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357 struct intel_encoder *encoder;
3358 int pipe = intel_crtc->pipe;
3359 int plane = intel_crtc->plane;
3360
3361 WARN_ON(!crtc->enabled);
3362
3363 if (intel_crtc->active)
3364 return;
3365
3366 intel_crtc->active = true;
3367
3368 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3369 if (intel_crtc->config.has_pch_encoder)
3370 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3371
3372 intel_update_watermarks(dev);
3373
3374 if (intel_crtc->config.has_pch_encoder)
3375 dev_priv->display.fdi_link_train(crtc);
3376
3377 for_each_encoder_on_crtc(dev, crtc, encoder)
3378 if (encoder->pre_enable)
3379 encoder->pre_enable(encoder);
3380
3381 intel_ddi_enable_pipe_clock(intel_crtc);
3382
3383 ironlake_pfit_enable(intel_crtc);
3384
3385 /*
3386 * On ILK+ LUT must be loaded before the pipe is running but with
3387 * clocks enabled
3388 */
3389 intel_crtc_load_lut(crtc);
3390
3391 intel_ddi_set_pipe_settings(crtc);
3392 intel_ddi_enable_transcoder_func(crtc);
3393
3394 intel_enable_pipe(dev_priv, pipe,
3395 intel_crtc->config.has_pch_encoder);
3396 intel_enable_plane(dev_priv, plane, pipe);
3397 intel_enable_planes(crtc);
3398 intel_crtc_update_cursor(crtc, true);
3399
3400 hsw_enable_ips(intel_crtc);
3401
3402 if (intel_crtc->config.has_pch_encoder)
3403 lpt_pch_enable(crtc);
3404
3405 mutex_lock(&dev->struct_mutex);
3406 intel_update_fbc(dev);
3407 mutex_unlock(&dev->struct_mutex);
3408
3409 for_each_encoder_on_crtc(dev, crtc, encoder)
3410 encoder->enable(encoder);
3411
3412 /*
3413 * There seems to be a race in PCH platform hw (at least on some
3414 * outputs) where an enabled pipe still completes any pageflip right
3415 * away (as if the pipe is off) instead of waiting for vblank. As soon
3416 * as the first vblank happend, everything works as expected. Hence just
3417 * wait for one vblank before returning to avoid strange things
3418 * happening.
3419 */
3420 intel_wait_for_vblank(dev, intel_crtc->pipe);
3421 }
3422
3423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3424 {
3425 struct drm_device *dev = crtc->base.dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 int pipe = crtc->pipe;
3428
3429 /* To avoid upsetting the power well on haswell only disable the pfit if
3430 * it's in use. The hw state code will make sure we get this right. */
3431 if (crtc->config.pch_pfit.enabled) {
3432 I915_WRITE(PF_CTL(pipe), 0);
3433 I915_WRITE(PF_WIN_POS(pipe), 0);
3434 I915_WRITE(PF_WIN_SZ(pipe), 0);
3435 }
3436 }
3437
3438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3439 {
3440 struct drm_device *dev = crtc->dev;
3441 struct drm_i915_private *dev_priv = dev->dev_private;
3442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3443 struct intel_encoder *encoder;
3444 int pipe = intel_crtc->pipe;
3445 int plane = intel_crtc->plane;
3446 u32 reg, temp;
3447
3448
3449 if (!intel_crtc->active)
3450 return;
3451
3452 for_each_encoder_on_crtc(dev, crtc, encoder)
3453 encoder->disable(encoder);
3454
3455 intel_crtc_wait_for_pending_flips(crtc);
3456 drm_vblank_off(dev, pipe);
3457
3458 if (dev_priv->fbc.plane == plane)
3459 intel_disable_fbc(dev);
3460
3461 intel_crtc_update_cursor(crtc, false);
3462 intel_disable_planes(crtc);
3463 intel_disable_plane(dev_priv, plane, pipe);
3464
3465 if (intel_crtc->config.has_pch_encoder)
3466 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3467
3468 intel_disable_pipe(dev_priv, pipe);
3469
3470 ironlake_pfit_disable(intel_crtc);
3471
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 if (encoder->post_disable)
3474 encoder->post_disable(encoder);
3475
3476 if (intel_crtc->config.has_pch_encoder) {
3477 ironlake_fdi_disable(crtc);
3478
3479 ironlake_disable_pch_transcoder(dev_priv, pipe);
3480 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3481
3482 if (HAS_PCH_CPT(dev)) {
3483 /* disable TRANS_DP_CTL */
3484 reg = TRANS_DP_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3487 TRANS_DP_PORT_SEL_MASK);
3488 temp |= TRANS_DP_PORT_SEL_NONE;
3489 I915_WRITE(reg, temp);
3490
3491 /* disable DPLL_SEL */
3492 temp = I915_READ(PCH_DPLL_SEL);
3493 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3494 I915_WRITE(PCH_DPLL_SEL, temp);
3495 }
3496
3497 /* disable PCH DPLL */
3498 intel_disable_shared_dpll(intel_crtc);
3499
3500 ironlake_fdi_pll_disable(intel_crtc);
3501 }
3502
3503 intel_crtc->active = false;
3504 intel_update_watermarks(dev);
3505
3506 mutex_lock(&dev->struct_mutex);
3507 intel_update_fbc(dev);
3508 mutex_unlock(&dev->struct_mutex);
3509 }
3510
3511 static void haswell_crtc_disable(struct drm_crtc *crtc)
3512 {
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 struct intel_encoder *encoder;
3517 int pipe = intel_crtc->pipe;
3518 int plane = intel_crtc->plane;
3519 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3520
3521 if (!intel_crtc->active)
3522 return;
3523
3524 for_each_encoder_on_crtc(dev, crtc, encoder)
3525 encoder->disable(encoder);
3526
3527 intel_crtc_wait_for_pending_flips(crtc);
3528 drm_vblank_off(dev, pipe);
3529
3530 /* FBC must be disabled before disabling the plane on HSW. */
3531 if (dev_priv->fbc.plane == plane)
3532 intel_disable_fbc(dev);
3533
3534 hsw_disable_ips(intel_crtc);
3535
3536 intel_crtc_update_cursor(crtc, false);
3537 intel_disable_planes(crtc);
3538 intel_disable_plane(dev_priv, plane, pipe);
3539
3540 if (intel_crtc->config.has_pch_encoder)
3541 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3542 intel_disable_pipe(dev_priv, pipe);
3543
3544 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3545
3546 ironlake_pfit_disable(intel_crtc);
3547
3548 intel_ddi_disable_pipe_clock(intel_crtc);
3549
3550 for_each_encoder_on_crtc(dev, crtc, encoder)
3551 if (encoder->post_disable)
3552 encoder->post_disable(encoder);
3553
3554 if (intel_crtc->config.has_pch_encoder) {
3555 lpt_disable_pch_transcoder(dev_priv);
3556 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3557 intel_ddi_fdi_disable(crtc);
3558 }
3559
3560 intel_crtc->active = false;
3561 intel_update_watermarks(dev);
3562
3563 mutex_lock(&dev->struct_mutex);
3564 intel_update_fbc(dev);
3565 mutex_unlock(&dev->struct_mutex);
3566 }
3567
3568 static void ironlake_crtc_off(struct drm_crtc *crtc)
3569 {
3570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571 intel_put_shared_dpll(intel_crtc);
3572 }
3573
3574 static void haswell_crtc_off(struct drm_crtc *crtc)
3575 {
3576 intel_ddi_put_crtc_pll(crtc);
3577 }
3578
3579 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3580 {
3581 if (!enable && intel_crtc->overlay) {
3582 struct drm_device *dev = intel_crtc->base.dev;
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585 mutex_lock(&dev->struct_mutex);
3586 dev_priv->mm.interruptible = false;
3587 (void) intel_overlay_switch_off(intel_crtc->overlay);
3588 dev_priv->mm.interruptible = true;
3589 mutex_unlock(&dev->struct_mutex);
3590 }
3591
3592 /* Let userspace switch the overlay on again. In most cases userspace
3593 * has to recompute where to put it anyway.
3594 */
3595 }
3596
3597 /**
3598 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3599 * cursor plane briefly if not already running after enabling the display
3600 * plane.
3601 * This workaround avoids occasional blank screens when self refresh is
3602 * enabled.
3603 */
3604 static void
3605 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3606 {
3607 u32 cntl = I915_READ(CURCNTR(pipe));
3608
3609 if ((cntl & CURSOR_MODE) == 0) {
3610 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3611
3612 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3613 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3614 intel_wait_for_vblank(dev_priv->dev, pipe);
3615 I915_WRITE(CURCNTR(pipe), cntl);
3616 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3617 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3618 }
3619 }
3620
3621 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3622 {
3623 struct drm_device *dev = crtc->base.dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc_config *pipe_config = &crtc->config;
3626
3627 if (!crtc->config.gmch_pfit.control)
3628 return;
3629
3630 /*
3631 * The panel fitter should only be adjusted whilst the pipe is disabled,
3632 * according to register description and PRM.
3633 */
3634 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3635 assert_pipe_disabled(dev_priv, crtc->pipe);
3636
3637 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3638 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3639
3640 /* Border color in case we don't scale up to the full screen. Black by
3641 * default, change to something else for debugging. */
3642 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3643 }
3644
3645 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 struct intel_encoder *encoder;
3651 int pipe = intel_crtc->pipe;
3652 int plane = intel_crtc->plane;
3653
3654 WARN_ON(!crtc->enabled);
3655
3656 if (intel_crtc->active)
3657 return;
3658
3659 intel_crtc->active = true;
3660 intel_update_watermarks(dev);
3661
3662 for_each_encoder_on_crtc(dev, crtc, encoder)
3663 if (encoder->pre_pll_enable)
3664 encoder->pre_pll_enable(encoder);
3665
3666 vlv_enable_pll(intel_crtc);
3667
3668 for_each_encoder_on_crtc(dev, crtc, encoder)
3669 if (encoder->pre_enable)
3670 encoder->pre_enable(encoder);
3671
3672 i9xx_pfit_enable(intel_crtc);
3673
3674 intel_crtc_load_lut(crtc);
3675
3676 intel_enable_pipe(dev_priv, pipe, false);
3677 intel_enable_plane(dev_priv, plane, pipe);
3678 intel_enable_planes(crtc);
3679 intel_crtc_update_cursor(crtc, true);
3680
3681 intel_update_fbc(dev);
3682
3683 for_each_encoder_on_crtc(dev, crtc, encoder)
3684 encoder->enable(encoder);
3685 }
3686
3687 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3688 {
3689 struct drm_device *dev = crtc->dev;
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692 struct intel_encoder *encoder;
3693 int pipe = intel_crtc->pipe;
3694 int plane = intel_crtc->plane;
3695
3696 WARN_ON(!crtc->enabled);
3697
3698 if (intel_crtc->active)
3699 return;
3700
3701 intel_crtc->active = true;
3702 intel_update_watermarks(dev);
3703
3704 for_each_encoder_on_crtc(dev, crtc, encoder)
3705 if (encoder->pre_enable)
3706 encoder->pre_enable(encoder);
3707
3708 i9xx_enable_pll(intel_crtc);
3709
3710 i9xx_pfit_enable(intel_crtc);
3711
3712 intel_crtc_load_lut(crtc);
3713
3714 intel_enable_pipe(dev_priv, pipe, false);
3715 intel_enable_plane(dev_priv, plane, pipe);
3716 intel_enable_planes(crtc);
3717 /* The fixup needs to happen before cursor is enabled */
3718 if (IS_G4X(dev))
3719 g4x_fixup_plane(dev_priv, pipe);
3720 intel_crtc_update_cursor(crtc, true);
3721
3722 /* Give the overlay scaler a chance to enable if it's on this pipe */
3723 intel_crtc_dpms_overlay(intel_crtc, true);
3724
3725 intel_update_fbc(dev);
3726
3727 for_each_encoder_on_crtc(dev, crtc, encoder)
3728 encoder->enable(encoder);
3729 }
3730
3731 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3732 {
3733 struct drm_device *dev = crtc->base.dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736 if (!crtc->config.gmch_pfit.control)
3737 return;
3738
3739 assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3742 I915_READ(PFIT_CONTROL));
3743 I915_WRITE(PFIT_CONTROL, 0);
3744 }
3745
3746 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 struct intel_encoder *encoder;
3752 int pipe = intel_crtc->pipe;
3753 int plane = intel_crtc->plane;
3754
3755 if (!intel_crtc->active)
3756 return;
3757
3758 for_each_encoder_on_crtc(dev, crtc, encoder)
3759 encoder->disable(encoder);
3760
3761 /* Give the overlay scaler a chance to disable if it's on this pipe */
3762 intel_crtc_wait_for_pending_flips(crtc);
3763 drm_vblank_off(dev, pipe);
3764
3765 if (dev_priv->fbc.plane == plane)
3766 intel_disable_fbc(dev);
3767
3768 intel_crtc_dpms_overlay(intel_crtc, false);
3769 intel_crtc_update_cursor(crtc, false);
3770 intel_disable_planes(crtc);
3771 intel_disable_plane(dev_priv, plane, pipe);
3772
3773 intel_disable_pipe(dev_priv, pipe);
3774
3775 i9xx_pfit_disable(intel_crtc);
3776
3777 for_each_encoder_on_crtc(dev, crtc, encoder)
3778 if (encoder->post_disable)
3779 encoder->post_disable(encoder);
3780
3781 i9xx_disable_pll(dev_priv, pipe);
3782
3783 intel_crtc->active = false;
3784 intel_update_fbc(dev);
3785 intel_update_watermarks(dev);
3786 }
3787
3788 static void i9xx_crtc_off(struct drm_crtc *crtc)
3789 {
3790 }
3791
3792 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3793 bool enabled)
3794 {
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_master_private *master_priv;
3797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3798 int pipe = intel_crtc->pipe;
3799
3800 if (!dev->primary->master)
3801 return;
3802
3803 master_priv = dev->primary->master->driver_priv;
3804 if (!master_priv->sarea_priv)
3805 return;
3806
3807 switch (pipe) {
3808 case 0:
3809 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3810 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3811 break;
3812 case 1:
3813 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3814 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3815 break;
3816 default:
3817 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3818 break;
3819 }
3820 }
3821
3822 /**
3823 * Sets the power management mode of the pipe and plane.
3824 */
3825 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3826 {
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_encoder *intel_encoder;
3830 bool enable = false;
3831
3832 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3833 enable |= intel_encoder->connectors_active;
3834
3835 if (enable)
3836 dev_priv->display.crtc_enable(crtc);
3837 else
3838 dev_priv->display.crtc_disable(crtc);
3839
3840 intel_crtc_update_sarea(crtc, enable);
3841 }
3842
3843 static void intel_crtc_disable(struct drm_crtc *crtc)
3844 {
3845 struct drm_device *dev = crtc->dev;
3846 struct drm_connector *connector;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850 /* crtc should still be enabled when we disable it. */
3851 WARN_ON(!crtc->enabled);
3852
3853 dev_priv->display.crtc_disable(crtc);
3854 intel_crtc->eld_vld = false;
3855 intel_crtc_update_sarea(crtc, false);
3856 dev_priv->display.off(crtc);
3857
3858 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861 if (crtc->fb) {
3862 mutex_lock(&dev->struct_mutex);
3863 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864 mutex_unlock(&dev->struct_mutex);
3865 crtc->fb = NULL;
3866 }
3867
3868 /* Update computed state. */
3869 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870 if (!connector->encoder || !connector->encoder->crtc)
3871 continue;
3872
3873 if (connector->encoder->crtc != crtc)
3874 continue;
3875
3876 connector->dpms = DRM_MODE_DPMS_OFF;
3877 to_intel_encoder(connector->encoder)->connectors_active = false;
3878 }
3879 }
3880
3881 void intel_encoder_destroy(struct drm_encoder *encoder)
3882 {
3883 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3884
3885 drm_encoder_cleanup(encoder);
3886 kfree(intel_encoder);
3887 }
3888
3889 /* Simple dpms helper for encoders with just one connector, no cloning and only
3890 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3891 * state of the entire output pipe. */
3892 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3893 {
3894 if (mode == DRM_MODE_DPMS_ON) {
3895 encoder->connectors_active = true;
3896
3897 intel_crtc_update_dpms(encoder->base.crtc);
3898 } else {
3899 encoder->connectors_active = false;
3900
3901 intel_crtc_update_dpms(encoder->base.crtc);
3902 }
3903 }
3904
3905 /* Cross check the actual hw state with our own modeset state tracking (and it's
3906 * internal consistency). */
3907 static void intel_connector_check_state(struct intel_connector *connector)
3908 {
3909 if (connector->get_hw_state(connector)) {
3910 struct intel_encoder *encoder = connector->encoder;
3911 struct drm_crtc *crtc;
3912 bool encoder_enabled;
3913 enum pipe pipe;
3914
3915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3916 connector->base.base.id,
3917 drm_get_connector_name(&connector->base));
3918
3919 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3920 "wrong connector dpms state\n");
3921 WARN(connector->base.encoder != &encoder->base,
3922 "active connector not linked to encoder\n");
3923 WARN(!encoder->connectors_active,
3924 "encoder->connectors_active not set\n");
3925
3926 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3927 WARN(!encoder_enabled, "encoder not enabled\n");
3928 if (WARN_ON(!encoder->base.crtc))
3929 return;
3930
3931 crtc = encoder->base.crtc;
3932
3933 WARN(!crtc->enabled, "crtc not enabled\n");
3934 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3935 WARN(pipe != to_intel_crtc(crtc)->pipe,
3936 "encoder active on the wrong pipe\n");
3937 }
3938 }
3939
3940 /* Even simpler default implementation, if there's really no special case to
3941 * consider. */
3942 void intel_connector_dpms(struct drm_connector *connector, int mode)
3943 {
3944 /* All the simple cases only support two dpms states. */
3945 if (mode != DRM_MODE_DPMS_ON)
3946 mode = DRM_MODE_DPMS_OFF;
3947
3948 if (mode == connector->dpms)
3949 return;
3950
3951 connector->dpms = mode;
3952
3953 /* Only need to change hw state when actually enabled */
3954 if (connector->encoder)
3955 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
3956
3957 intel_modeset_check_state(connector->dev);
3958 }
3959
3960 /* Simple connector->get_hw_state implementation for encoders that support only
3961 * one connector and no cloning and hence the encoder state determines the state
3962 * of the connector. */
3963 bool intel_connector_get_hw_state(struct intel_connector *connector)
3964 {
3965 enum pipe pipe = 0;
3966 struct intel_encoder *encoder = connector->encoder;
3967
3968 return encoder->get_hw_state(encoder, &pipe);
3969 }
3970
3971 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3972 struct intel_crtc_config *pipe_config)
3973 {
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 struct intel_crtc *pipe_B_crtc =
3976 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3977
3978 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3979 pipe_name(pipe), pipe_config->fdi_lanes);
3980 if (pipe_config->fdi_lanes > 4) {
3981 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3982 pipe_name(pipe), pipe_config->fdi_lanes);
3983 return false;
3984 }
3985
3986 if (IS_HASWELL(dev)) {
3987 if (pipe_config->fdi_lanes > 2) {
3988 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3989 pipe_config->fdi_lanes);
3990 return false;
3991 } else {
3992 return true;
3993 }
3994 }
3995
3996 if (INTEL_INFO(dev)->num_pipes == 2)
3997 return true;
3998
3999 /* Ivybridge 3 pipe is really complicated */
4000 switch (pipe) {
4001 case PIPE_A:
4002 return true;
4003 case PIPE_B:
4004 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4005 pipe_config->fdi_lanes > 2) {
4006 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4007 pipe_name(pipe), pipe_config->fdi_lanes);
4008 return false;
4009 }
4010 return true;
4011 case PIPE_C:
4012 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4013 pipe_B_crtc->config.fdi_lanes <= 2) {
4014 if (pipe_config->fdi_lanes > 2) {
4015 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4016 pipe_name(pipe), pipe_config->fdi_lanes);
4017 return false;
4018 }
4019 } else {
4020 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4021 return false;
4022 }
4023 return true;
4024 default:
4025 BUG();
4026 }
4027 }
4028
4029 #define RETRY 1
4030 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4031 struct intel_crtc_config *pipe_config)
4032 {
4033 struct drm_device *dev = intel_crtc->base.dev;
4034 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4035 int lane, link_bw, fdi_dotclock;
4036 bool setup_ok, needs_recompute = false;
4037
4038 retry:
4039 /* FDI is a binary signal running at ~2.7GHz, encoding
4040 * each output octet as 10 bits. The actual frequency
4041 * is stored as a divider into a 100MHz clock, and the
4042 * mode pixel clock is stored in units of 1KHz.
4043 * Hence the bw of each lane in terms of the mode signal
4044 * is:
4045 */
4046 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4047
4048 fdi_dotclock = adjusted_mode->clock;
4049 fdi_dotclock /= pipe_config->pixel_multiplier;
4050
4051 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4052 pipe_config->pipe_bpp);
4053
4054 pipe_config->fdi_lanes = lane;
4055
4056 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4057 link_bw, &pipe_config->fdi_m_n);
4058
4059 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4060 intel_crtc->pipe, pipe_config);
4061 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4062 pipe_config->pipe_bpp -= 2*3;
4063 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4064 pipe_config->pipe_bpp);
4065 needs_recompute = true;
4066 pipe_config->bw_constrained = true;
4067
4068 goto retry;
4069 }
4070
4071 if (needs_recompute)
4072 return RETRY;
4073
4074 return setup_ok ? 0 : -EINVAL;
4075 }
4076
4077 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4078 struct intel_crtc_config *pipe_config)
4079 {
4080 pipe_config->ips_enabled = i915_enable_ips &&
4081 hsw_crtc_supports_ips(crtc) &&
4082 pipe_config->pipe_bpp <= 24;
4083 }
4084
4085 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4086 struct intel_crtc_config *pipe_config)
4087 {
4088 struct drm_device *dev = crtc->base.dev;
4089 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4090
4091 if (HAS_PCH_SPLIT(dev)) {
4092 /* FDI link clock is fixed at 2.7G */
4093 if (pipe_config->requested_mode.clock * 3
4094 > IRONLAKE_FDI_FREQ * 4)
4095 return -EINVAL;
4096 }
4097
4098 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4099 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4100 */
4101 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4102 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4103 return -EINVAL;
4104
4105 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4106 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4107 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4108 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4109 * for lvds. */
4110 pipe_config->pipe_bpp = 8*3;
4111 }
4112
4113 if (HAS_IPS(dev))
4114 hsw_compute_ips_config(crtc, pipe_config);
4115
4116 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4117 * clock survives for now. */
4118 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4119 pipe_config->shared_dpll = crtc->config.shared_dpll;
4120
4121 if (pipe_config->has_pch_encoder)
4122 return ironlake_fdi_compute_config(crtc, pipe_config);
4123
4124 return 0;
4125 }
4126
4127 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4128 {
4129 return 400000; /* FIXME */
4130 }
4131
4132 static int i945_get_display_clock_speed(struct drm_device *dev)
4133 {
4134 return 400000;
4135 }
4136
4137 static int i915_get_display_clock_speed(struct drm_device *dev)
4138 {
4139 return 333000;
4140 }
4141
4142 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4143 {
4144 return 200000;
4145 }
4146
4147 static int pnv_get_display_clock_speed(struct drm_device *dev)
4148 {
4149 u16 gcfgc = 0;
4150
4151 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4152
4153 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4154 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4155 return 267000;
4156 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4157 return 333000;
4158 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4159 return 444000;
4160 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4161 return 200000;
4162 default:
4163 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4164 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4165 return 133000;
4166 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4167 return 167000;
4168 }
4169 }
4170
4171 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4172 {
4173 u16 gcfgc = 0;
4174
4175 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4176
4177 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4178 return 133000;
4179 else {
4180 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4181 case GC_DISPLAY_CLOCK_333_MHZ:
4182 return 333000;
4183 default:
4184 case GC_DISPLAY_CLOCK_190_200_MHZ:
4185 return 190000;
4186 }
4187 }
4188 }
4189
4190 static int i865_get_display_clock_speed(struct drm_device *dev)
4191 {
4192 return 266000;
4193 }
4194
4195 static int i855_get_display_clock_speed(struct drm_device *dev)
4196 {
4197 u16 hpllcc = 0;
4198 /* Assume that the hardware is in the high speed state. This
4199 * should be the default.
4200 */
4201 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4202 case GC_CLOCK_133_200:
4203 case GC_CLOCK_100_200:
4204 return 200000;
4205 case GC_CLOCK_166_250:
4206 return 250000;
4207 case GC_CLOCK_100_133:
4208 return 133000;
4209 }
4210
4211 /* Shouldn't happen */
4212 return 0;
4213 }
4214
4215 static int i830_get_display_clock_speed(struct drm_device *dev)
4216 {
4217 return 133000;
4218 }
4219
4220 static void
4221 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4222 {
4223 while (*num > DATA_LINK_M_N_MASK ||
4224 *den > DATA_LINK_M_N_MASK) {
4225 *num >>= 1;
4226 *den >>= 1;
4227 }
4228 }
4229
4230 static void compute_m_n(unsigned int m, unsigned int n,
4231 uint32_t *ret_m, uint32_t *ret_n)
4232 {
4233 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4234 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4235 intel_reduce_m_n_ratio(ret_m, ret_n);
4236 }
4237
4238 void
4239 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4240 int pixel_clock, int link_clock,
4241 struct intel_link_m_n *m_n)
4242 {
4243 m_n->tu = 64;
4244
4245 compute_m_n(bits_per_pixel * pixel_clock,
4246 link_clock * nlanes * 8,
4247 &m_n->gmch_m, &m_n->gmch_n);
4248
4249 compute_m_n(pixel_clock, link_clock,
4250 &m_n->link_m, &m_n->link_n);
4251 }
4252
4253 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4254 {
4255 if (i915_panel_use_ssc >= 0)
4256 return i915_panel_use_ssc != 0;
4257 return dev_priv->vbt.lvds_use_ssc
4258 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4259 }
4260
4261 static int vlv_get_refclk(struct drm_crtc *crtc)
4262 {
4263 struct drm_device *dev = crtc->dev;
4264 struct drm_i915_private *dev_priv = dev->dev_private;
4265 int refclk = 27000; /* for DP & HDMI */
4266
4267 return 100000; /* only one validated so far */
4268
4269 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4270 refclk = 96000;
4271 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4272 if (intel_panel_use_ssc(dev_priv))
4273 refclk = 100000;
4274 else
4275 refclk = 96000;
4276 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4277 refclk = 100000;
4278 }
4279
4280 return refclk;
4281 }
4282
4283 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4284 {
4285 struct drm_device *dev = crtc->dev;
4286 struct drm_i915_private *dev_priv = dev->dev_private;
4287 int refclk;
4288
4289 if (IS_VALLEYVIEW(dev)) {
4290 refclk = vlv_get_refclk(crtc);
4291 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4292 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4293 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4294 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4295 refclk / 1000);
4296 } else if (!IS_GEN2(dev)) {
4297 refclk = 96000;
4298 } else {
4299 refclk = 48000;
4300 }
4301
4302 return refclk;
4303 }
4304
4305 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4306 {
4307 return (1 << dpll->n) << 16 | dpll->m2;
4308 }
4309
4310 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4311 {
4312 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4313 }
4314
4315 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4316 intel_clock_t *reduced_clock)
4317 {
4318 struct drm_device *dev = crtc->base.dev;
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 int pipe = crtc->pipe;
4321 u32 fp, fp2 = 0;
4322
4323 if (IS_PINEVIEW(dev)) {
4324 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4325 if (reduced_clock)
4326 fp2 = pnv_dpll_compute_fp(reduced_clock);
4327 } else {
4328 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4329 if (reduced_clock)
4330 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4331 }
4332
4333 I915_WRITE(FP0(pipe), fp);
4334 crtc->config.dpll_hw_state.fp0 = fp;
4335
4336 crtc->lowfreq_avail = false;
4337 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4338 reduced_clock && i915_powersave) {
4339 I915_WRITE(FP1(pipe), fp2);
4340 crtc->config.dpll_hw_state.fp1 = fp2;
4341 crtc->lowfreq_avail = true;
4342 } else {
4343 I915_WRITE(FP1(pipe), fp);
4344 crtc->config.dpll_hw_state.fp1 = fp;
4345 }
4346 }
4347
4348 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4349 {
4350 u32 reg_val;
4351
4352 /*
4353 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4354 * and set it to a reasonable value instead.
4355 */
4356 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4357 reg_val &= 0xffffff00;
4358 reg_val |= 0x00000030;
4359 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4360
4361 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4362 reg_val &= 0x8cffffff;
4363 reg_val = 0x8c000000;
4364 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4365
4366 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4367 reg_val &= 0xffffff00;
4368 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4369
4370 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4371 reg_val &= 0x00ffffff;
4372 reg_val |= 0xb0000000;
4373 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4374 }
4375
4376 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4377 struct intel_link_m_n *m_n)
4378 {
4379 struct drm_device *dev = crtc->base.dev;
4380 struct drm_i915_private *dev_priv = dev->dev_private;
4381 int pipe = crtc->pipe;
4382
4383 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4384 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4385 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4386 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4387 }
4388
4389 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4390 struct intel_link_m_n *m_n)
4391 {
4392 struct drm_device *dev = crtc->base.dev;
4393 struct drm_i915_private *dev_priv = dev->dev_private;
4394 int pipe = crtc->pipe;
4395 enum transcoder transcoder = crtc->config.cpu_transcoder;
4396
4397 if (INTEL_INFO(dev)->gen >= 5) {
4398 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4399 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4400 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4401 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4402 } else {
4403 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4404 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4405 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4406 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4407 }
4408 }
4409
4410 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4411 {
4412 if (crtc->config.has_pch_encoder)
4413 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4414 else
4415 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4416 }
4417
4418 static void vlv_update_pll(struct intel_crtc *crtc)
4419 {
4420 struct drm_device *dev = crtc->base.dev;
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 int pipe = crtc->pipe;
4423 u32 dpll, mdiv;
4424 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4425 u32 coreclk, reg_val, dpll_md;
4426
4427 mutex_lock(&dev_priv->dpio_lock);
4428
4429 bestn = crtc->config.dpll.n;
4430 bestm1 = crtc->config.dpll.m1;
4431 bestm2 = crtc->config.dpll.m2;
4432 bestp1 = crtc->config.dpll.p1;
4433 bestp2 = crtc->config.dpll.p2;
4434
4435 /* See eDP HDMI DPIO driver vbios notes doc */
4436
4437 /* PLL B needs special handling */
4438 if (pipe)
4439 vlv_pllb_recal_opamp(dev_priv);
4440
4441 /* Set up Tx target for periodic Rcomp update */
4442 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4443
4444 /* Disable target IRef on PLL */
4445 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4446 reg_val &= 0x00ffffff;
4447 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4448
4449 /* Disable fast lock */
4450 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4451
4452 /* Set idtafcrecal before PLL is enabled */
4453 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4454 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4455 mdiv |= ((bestn << DPIO_N_SHIFT));
4456 mdiv |= (1 << DPIO_K_SHIFT);
4457
4458 /*
4459 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4460 * but we don't support that).
4461 * Note: don't use the DAC post divider as it seems unstable.
4462 */
4463 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4464 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4465
4466 mdiv |= DPIO_ENABLE_CALIBRATION;
4467 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4468
4469 /* Set HBR and RBR LPF coefficients */
4470 if (crtc->config.port_clock == 162000 ||
4471 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4472 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4473 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4474 0x009f0003);
4475 else
4476 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4477 0x00d0000f);
4478
4479 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4480 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4481 /* Use SSC source */
4482 if (!pipe)
4483 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4484 0x0df40000);
4485 else
4486 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4487 0x0df70000);
4488 } else { /* HDMI or VGA */
4489 /* Use bend source */
4490 if (!pipe)
4491 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4492 0x0df70000);
4493 else
4494 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4495 0x0df40000);
4496 }
4497
4498 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4499 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4500 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4501 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4502 coreclk |= 0x01000000;
4503 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4504
4505 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4506
4507 /* Enable DPIO clock input */
4508 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4509 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4510 if (pipe)
4511 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4512
4513 dpll |= DPLL_VCO_ENABLE;
4514 crtc->config.dpll_hw_state.dpll = dpll;
4515
4516 dpll_md = (crtc->config.pixel_multiplier - 1)
4517 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4518 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4519
4520 if (crtc->config.has_dp_encoder)
4521 intel_dp_set_m_n(crtc);
4522
4523 mutex_unlock(&dev_priv->dpio_lock);
4524 }
4525
4526 static void i9xx_update_pll(struct intel_crtc *crtc,
4527 intel_clock_t *reduced_clock,
4528 int num_connectors)
4529 {
4530 struct drm_device *dev = crtc->base.dev;
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4532 u32 dpll;
4533 bool is_sdvo;
4534 struct dpll *clock = &crtc->config.dpll;
4535
4536 i9xx_update_pll_dividers(crtc, reduced_clock);
4537
4538 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4539 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4540
4541 dpll = DPLL_VGA_MODE_DIS;
4542
4543 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4544 dpll |= DPLLB_MODE_LVDS;
4545 else
4546 dpll |= DPLLB_MODE_DAC_SERIAL;
4547
4548 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4549 dpll |= (crtc->config.pixel_multiplier - 1)
4550 << SDVO_MULTIPLIER_SHIFT_HIRES;
4551 }
4552
4553 if (is_sdvo)
4554 dpll |= DPLL_SDVO_HIGH_SPEED;
4555
4556 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4557 dpll |= DPLL_SDVO_HIGH_SPEED;
4558
4559 /* compute bitmask from p1 value */
4560 if (IS_PINEVIEW(dev))
4561 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4562 else {
4563 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4564 if (IS_G4X(dev) && reduced_clock)
4565 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4566 }
4567 switch (clock->p2) {
4568 case 5:
4569 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4570 break;
4571 case 7:
4572 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4573 break;
4574 case 10:
4575 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4576 break;
4577 case 14:
4578 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4579 break;
4580 }
4581 if (INTEL_INFO(dev)->gen >= 4)
4582 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4583
4584 if (crtc->config.sdvo_tv_clock)
4585 dpll |= PLL_REF_INPUT_TVCLKINBC;
4586 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4587 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4588 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4589 else
4590 dpll |= PLL_REF_INPUT_DREFCLK;
4591
4592 dpll |= DPLL_VCO_ENABLE;
4593 crtc->config.dpll_hw_state.dpll = dpll;
4594
4595 if (INTEL_INFO(dev)->gen >= 4) {
4596 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4597 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4598 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4599 }
4600
4601 if (crtc->config.has_dp_encoder)
4602 intel_dp_set_m_n(crtc);
4603 }
4604
4605 static void i8xx_update_pll(struct intel_crtc *crtc,
4606 intel_clock_t *reduced_clock,
4607 int num_connectors)
4608 {
4609 struct drm_device *dev = crtc->base.dev;
4610 struct drm_i915_private *dev_priv = dev->dev_private;
4611 u32 dpll;
4612 struct dpll *clock = &crtc->config.dpll;
4613
4614 i9xx_update_pll_dividers(crtc, reduced_clock);
4615
4616 dpll = DPLL_VGA_MODE_DIS;
4617
4618 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4619 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4620 } else {
4621 if (clock->p1 == 2)
4622 dpll |= PLL_P1_DIVIDE_BY_TWO;
4623 else
4624 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4625 if (clock->p2 == 4)
4626 dpll |= PLL_P2_DIVIDE_BY_4;
4627 }
4628
4629 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4630 dpll |= DPLL_DVO_2X_MODE;
4631
4632 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4633 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4634 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4635 else
4636 dpll |= PLL_REF_INPUT_DREFCLK;
4637
4638 dpll |= DPLL_VCO_ENABLE;
4639 crtc->config.dpll_hw_state.dpll = dpll;
4640 }
4641
4642 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4643 {
4644 struct drm_device *dev = intel_crtc->base.dev;
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646 enum pipe pipe = intel_crtc->pipe;
4647 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4648 struct drm_display_mode *adjusted_mode =
4649 &intel_crtc->config.adjusted_mode;
4650 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4651 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4652
4653 /* We need to be careful not to changed the adjusted mode, for otherwise
4654 * the hw state checker will get angry at the mismatch. */
4655 crtc_vtotal = adjusted_mode->crtc_vtotal;
4656 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4657
4658 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4659 /* the chip adds 2 halflines automatically */
4660 crtc_vtotal -= 1;
4661 crtc_vblank_end -= 1;
4662 vsyncshift = adjusted_mode->crtc_hsync_start
4663 - adjusted_mode->crtc_htotal / 2;
4664 } else {
4665 vsyncshift = 0;
4666 }
4667
4668 if (INTEL_INFO(dev)->gen > 3)
4669 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4670
4671 I915_WRITE(HTOTAL(cpu_transcoder),
4672 (adjusted_mode->crtc_hdisplay - 1) |
4673 ((adjusted_mode->crtc_htotal - 1) << 16));
4674 I915_WRITE(HBLANK(cpu_transcoder),
4675 (adjusted_mode->crtc_hblank_start - 1) |
4676 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4677 I915_WRITE(HSYNC(cpu_transcoder),
4678 (adjusted_mode->crtc_hsync_start - 1) |
4679 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4680
4681 I915_WRITE(VTOTAL(cpu_transcoder),
4682 (adjusted_mode->crtc_vdisplay - 1) |
4683 ((crtc_vtotal - 1) << 16));
4684 I915_WRITE(VBLANK(cpu_transcoder),
4685 (adjusted_mode->crtc_vblank_start - 1) |
4686 ((crtc_vblank_end - 1) << 16));
4687 I915_WRITE(VSYNC(cpu_transcoder),
4688 (adjusted_mode->crtc_vsync_start - 1) |
4689 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4690
4691 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4692 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4693 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4694 * bits. */
4695 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4696 (pipe == PIPE_B || pipe == PIPE_C))
4697 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4698
4699 /* pipesrc controls the size that is scaled from, which should
4700 * always be the user's requested size.
4701 */
4702 I915_WRITE(PIPESRC(pipe),
4703 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4704 }
4705
4706 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4707 struct intel_crtc_config *pipe_config)
4708 {
4709 struct drm_device *dev = crtc->base.dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4712 uint32_t tmp;
4713
4714 tmp = I915_READ(HTOTAL(cpu_transcoder));
4715 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4716 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4717 tmp = I915_READ(HBLANK(cpu_transcoder));
4718 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4719 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4720 tmp = I915_READ(HSYNC(cpu_transcoder));
4721 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4722 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4723
4724 tmp = I915_READ(VTOTAL(cpu_transcoder));
4725 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4726 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4727 tmp = I915_READ(VBLANK(cpu_transcoder));
4728 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4729 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4730 tmp = I915_READ(VSYNC(cpu_transcoder));
4731 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4732 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4733
4734 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4735 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4736 pipe_config->adjusted_mode.crtc_vtotal += 1;
4737 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4738 }
4739
4740 tmp = I915_READ(PIPESRC(crtc->pipe));
4741 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4742 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4743 }
4744
4745 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4746 struct intel_crtc_config *pipe_config)
4747 {
4748 struct drm_crtc *crtc = &intel_crtc->base;
4749
4750 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4751 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4752 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4753 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4754
4755 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4756 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4757 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4758 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4759
4760 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4761
4762 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4763 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4764 }
4765
4766 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4767 {
4768 struct drm_device *dev = intel_crtc->base.dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 uint32_t pipeconf;
4771
4772 pipeconf = 0;
4773
4774 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4775 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4776 pipeconf |= PIPECONF_ENABLE;
4777
4778 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4779 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4780 * core speed.
4781 *
4782 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4783 * pipe == 0 check?
4784 */
4785 if (intel_crtc->config.requested_mode.clock >
4786 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4787 pipeconf |= PIPECONF_DOUBLE_WIDE;
4788 }
4789
4790 /* only g4x and later have fancy bpc/dither controls */
4791 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4792 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4793 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4794 pipeconf |= PIPECONF_DITHER_EN |
4795 PIPECONF_DITHER_TYPE_SP;
4796
4797 switch (intel_crtc->config.pipe_bpp) {
4798 case 18:
4799 pipeconf |= PIPECONF_6BPC;
4800 break;
4801 case 24:
4802 pipeconf |= PIPECONF_8BPC;
4803 break;
4804 case 30:
4805 pipeconf |= PIPECONF_10BPC;
4806 break;
4807 default:
4808 /* Case prevented by intel_choose_pipe_bpp_dither. */
4809 BUG();
4810 }
4811 }
4812
4813 if (HAS_PIPE_CXSR(dev)) {
4814 if (intel_crtc->lowfreq_avail) {
4815 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4816 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4817 } else {
4818 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4819 }
4820 }
4821
4822 if (!IS_GEN2(dev) &&
4823 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4824 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4825 else
4826 pipeconf |= PIPECONF_PROGRESSIVE;
4827
4828 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4829 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4830
4831 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4832 POSTING_READ(PIPECONF(intel_crtc->pipe));
4833 }
4834
4835 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4836 int x, int y,
4837 struct drm_framebuffer *fb)
4838 {
4839 struct drm_device *dev = crtc->dev;
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4843 int pipe = intel_crtc->pipe;
4844 int plane = intel_crtc->plane;
4845 int refclk, num_connectors = 0;
4846 intel_clock_t clock, reduced_clock;
4847 u32 dspcntr;
4848 bool ok, has_reduced_clock = false;
4849 bool is_lvds = false;
4850 struct intel_encoder *encoder;
4851 const intel_limit_t *limit;
4852 int ret;
4853
4854 for_each_encoder_on_crtc(dev, crtc, encoder) {
4855 switch (encoder->type) {
4856 case INTEL_OUTPUT_LVDS:
4857 is_lvds = true;
4858 break;
4859 }
4860
4861 num_connectors++;
4862 }
4863
4864 refclk = i9xx_get_refclk(crtc, num_connectors);
4865
4866 /*
4867 * Returns a set of divisors for the desired target clock with the given
4868 * refclk, or FALSE. The returned values represent the clock equation:
4869 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4870 */
4871 limit = intel_limit(crtc, refclk);
4872 ok = dev_priv->display.find_dpll(limit, crtc,
4873 intel_crtc->config.port_clock,
4874 refclk, NULL, &clock);
4875 if (!ok && !intel_crtc->config.clock_set) {
4876 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4877 return -EINVAL;
4878 }
4879
4880 if (is_lvds && dev_priv->lvds_downclock_avail) {
4881 /*
4882 * Ensure we match the reduced clock's P to the target clock.
4883 * If the clocks don't match, we can't switch the display clock
4884 * by using the FP0/FP1. In such case we will disable the LVDS
4885 * downclock feature.
4886 */
4887 has_reduced_clock =
4888 dev_priv->display.find_dpll(limit, crtc,
4889 dev_priv->lvds_downclock,
4890 refclk, &clock,
4891 &reduced_clock);
4892 }
4893 /* Compat-code for transition, will disappear. */
4894 if (!intel_crtc->config.clock_set) {
4895 intel_crtc->config.dpll.n = clock.n;
4896 intel_crtc->config.dpll.m1 = clock.m1;
4897 intel_crtc->config.dpll.m2 = clock.m2;
4898 intel_crtc->config.dpll.p1 = clock.p1;
4899 intel_crtc->config.dpll.p2 = clock.p2;
4900 }
4901
4902 if (IS_GEN2(dev))
4903 i8xx_update_pll(intel_crtc,
4904 has_reduced_clock ? &reduced_clock : NULL,
4905 num_connectors);
4906 else if (IS_VALLEYVIEW(dev))
4907 vlv_update_pll(intel_crtc);
4908 else
4909 i9xx_update_pll(intel_crtc,
4910 has_reduced_clock ? &reduced_clock : NULL,
4911 num_connectors);
4912
4913 /* Set up the display plane register */
4914 dspcntr = DISPPLANE_GAMMA_ENABLE;
4915
4916 if (!IS_VALLEYVIEW(dev)) {
4917 if (pipe == 0)
4918 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4919 else
4920 dspcntr |= DISPPLANE_SEL_PIPE_B;
4921 }
4922
4923 intel_set_pipe_timings(intel_crtc);
4924
4925 /* pipesrc and dspsize control the size that is scaled from,
4926 * which should always be the user's requested size.
4927 */
4928 I915_WRITE(DSPSIZE(plane),
4929 ((mode->vdisplay - 1) << 16) |
4930 (mode->hdisplay - 1));
4931 I915_WRITE(DSPPOS(plane), 0);
4932
4933 i9xx_set_pipeconf(intel_crtc);
4934
4935 I915_WRITE(DSPCNTR(plane), dspcntr);
4936 POSTING_READ(DSPCNTR(plane));
4937
4938 ret = intel_pipe_set_base(crtc, x, y, fb);
4939
4940 intel_update_watermarks(dev);
4941
4942 return ret;
4943 }
4944
4945 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4946 struct intel_crtc_config *pipe_config)
4947 {
4948 struct drm_device *dev = crtc->base.dev;
4949 struct drm_i915_private *dev_priv = dev->dev_private;
4950 uint32_t tmp;
4951
4952 tmp = I915_READ(PFIT_CONTROL);
4953 if (!(tmp & PFIT_ENABLE))
4954 return;
4955
4956 /* Check whether the pfit is attached to our pipe. */
4957 if (INTEL_INFO(dev)->gen < 4) {
4958 if (crtc->pipe != PIPE_B)
4959 return;
4960 } else {
4961 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4962 return;
4963 }
4964
4965 pipe_config->gmch_pfit.control = tmp;
4966 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4967 if (INTEL_INFO(dev)->gen < 5)
4968 pipe_config->gmch_pfit.lvds_border_bits =
4969 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4970 }
4971
4972 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4973 struct intel_crtc_config *pipe_config)
4974 {
4975 struct drm_device *dev = crtc->base.dev;
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 uint32_t tmp;
4978
4979 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4980 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4981
4982 tmp = I915_READ(PIPECONF(crtc->pipe));
4983 if (!(tmp & PIPECONF_ENABLE))
4984 return false;
4985
4986 intel_get_pipe_timings(crtc, pipe_config);
4987
4988 i9xx_get_pfit_config(crtc, pipe_config);
4989
4990 if (INTEL_INFO(dev)->gen >= 4) {
4991 tmp = I915_READ(DPLL_MD(crtc->pipe));
4992 pipe_config->pixel_multiplier =
4993 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4994 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4995 pipe_config->dpll_hw_state.dpll_md = tmp;
4996 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4997 tmp = I915_READ(DPLL(crtc->pipe));
4998 pipe_config->pixel_multiplier =
4999 ((tmp & SDVO_MULTIPLIER_MASK)
5000 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5001 } else {
5002 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5003 * port and will be fixed up in the encoder->get_config
5004 * function. */
5005 pipe_config->pixel_multiplier = 1;
5006 }
5007 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5008 if (!IS_VALLEYVIEW(dev)) {
5009 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5010 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5011 } else {
5012 /* Mask out read-only status bits. */
5013 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5014 DPLL_PORTC_READY_MASK |
5015 DPLL_PORTB_READY_MASK);
5016 }
5017
5018 return true;
5019 }
5020
5021 static void ironlake_init_pch_refclk(struct drm_device *dev)
5022 {
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 struct drm_mode_config *mode_config = &dev->mode_config;
5025 struct intel_encoder *encoder;
5026 u32 val, final;
5027 bool has_lvds = false;
5028 bool has_cpu_edp = false;
5029 bool has_panel = false;
5030 bool has_ck505 = false;
5031 bool can_ssc = false;
5032
5033 /* We need to take the global config into account */
5034 list_for_each_entry(encoder, &mode_config->encoder_list,
5035 base.head) {
5036 switch (encoder->type) {
5037 case INTEL_OUTPUT_LVDS:
5038 has_panel = true;
5039 has_lvds = true;
5040 break;
5041 case INTEL_OUTPUT_EDP:
5042 has_panel = true;
5043 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5044 has_cpu_edp = true;
5045 break;
5046 }
5047 }
5048
5049 if (HAS_PCH_IBX(dev)) {
5050 has_ck505 = dev_priv->vbt.display_clock_mode;
5051 can_ssc = has_ck505;
5052 } else {
5053 has_ck505 = false;
5054 can_ssc = true;
5055 }
5056
5057 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5058 has_panel, has_lvds, has_ck505);
5059
5060 /* Ironlake: try to setup display ref clock before DPLL
5061 * enabling. This is only under driver's control after
5062 * PCH B stepping, previous chipset stepping should be
5063 * ignoring this setting.
5064 */
5065 val = I915_READ(PCH_DREF_CONTROL);
5066
5067 /* As we must carefully and slowly disable/enable each source in turn,
5068 * compute the final state we want first and check if we need to
5069 * make any changes at all.
5070 */
5071 final = val;
5072 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5073 if (has_ck505)
5074 final |= DREF_NONSPREAD_CK505_ENABLE;
5075 else
5076 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5077
5078 final &= ~DREF_SSC_SOURCE_MASK;
5079 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5080 final &= ~DREF_SSC1_ENABLE;
5081
5082 if (has_panel) {
5083 final |= DREF_SSC_SOURCE_ENABLE;
5084
5085 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5086 final |= DREF_SSC1_ENABLE;
5087
5088 if (has_cpu_edp) {
5089 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5090 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5091 else
5092 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5093 } else
5094 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5095 } else {
5096 final |= DREF_SSC_SOURCE_DISABLE;
5097 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5098 }
5099
5100 if (final == val)
5101 return;
5102
5103 /* Always enable nonspread source */
5104 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5105
5106 if (has_ck505)
5107 val |= DREF_NONSPREAD_CK505_ENABLE;
5108 else
5109 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5110
5111 if (has_panel) {
5112 val &= ~DREF_SSC_SOURCE_MASK;
5113 val |= DREF_SSC_SOURCE_ENABLE;
5114
5115 /* SSC must be turned on before enabling the CPU output */
5116 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5117 DRM_DEBUG_KMS("Using SSC on panel\n");
5118 val |= DREF_SSC1_ENABLE;
5119 } else
5120 val &= ~DREF_SSC1_ENABLE;
5121
5122 /* Get SSC going before enabling the outputs */
5123 I915_WRITE(PCH_DREF_CONTROL, val);
5124 POSTING_READ(PCH_DREF_CONTROL);
5125 udelay(200);
5126
5127 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5128
5129 /* Enable CPU source on CPU attached eDP */
5130 if (has_cpu_edp) {
5131 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5132 DRM_DEBUG_KMS("Using SSC on eDP\n");
5133 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5134 }
5135 else
5136 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5137 } else
5138 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5139
5140 I915_WRITE(PCH_DREF_CONTROL, val);
5141 POSTING_READ(PCH_DREF_CONTROL);
5142 udelay(200);
5143 } else {
5144 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5145
5146 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5147
5148 /* Turn off CPU output */
5149 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5150
5151 I915_WRITE(PCH_DREF_CONTROL, val);
5152 POSTING_READ(PCH_DREF_CONTROL);
5153 udelay(200);
5154
5155 /* Turn off the SSC source */
5156 val &= ~DREF_SSC_SOURCE_MASK;
5157 val |= DREF_SSC_SOURCE_DISABLE;
5158
5159 /* Turn off SSC1 */
5160 val &= ~DREF_SSC1_ENABLE;
5161
5162 I915_WRITE(PCH_DREF_CONTROL, val);
5163 POSTING_READ(PCH_DREF_CONTROL);
5164 udelay(200);
5165 }
5166
5167 BUG_ON(val != final);
5168 }
5169
5170 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5171 {
5172 uint32_t tmp;
5173
5174 tmp = I915_READ(SOUTH_CHICKEN2);
5175 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5176 I915_WRITE(SOUTH_CHICKEN2, tmp);
5177
5178 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5179 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5180 DRM_ERROR("FDI mPHY reset assert timeout\n");
5181
5182 tmp = I915_READ(SOUTH_CHICKEN2);
5183 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5184 I915_WRITE(SOUTH_CHICKEN2, tmp);
5185
5186 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5187 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5188 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5189 }
5190
5191 /* WaMPhyProgramming:hsw */
5192 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5193 {
5194 uint32_t tmp;
5195
5196 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5197 tmp &= ~(0xFF << 24);
5198 tmp |= (0x12 << 24);
5199 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5200
5201 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5202 tmp |= (1 << 11);
5203 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5204
5205 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5206 tmp |= (1 << 11);
5207 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5208
5209 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5210 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5211 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5212
5213 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5214 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5215 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5216
5217 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5218 tmp &= ~(7 << 13);
5219 tmp |= (5 << 13);
5220 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5221
5222 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5223 tmp &= ~(7 << 13);
5224 tmp |= (5 << 13);
5225 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5226
5227 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5228 tmp &= ~0xFF;
5229 tmp |= 0x1C;
5230 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5231
5232 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5233 tmp &= ~0xFF;
5234 tmp |= 0x1C;
5235 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5236
5237 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5238 tmp &= ~(0xFF << 16);
5239 tmp |= (0x1C << 16);
5240 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5241
5242 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5243 tmp &= ~(0xFF << 16);
5244 tmp |= (0x1C << 16);
5245 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5246
5247 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5248 tmp |= (1 << 27);
5249 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5250
5251 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5252 tmp |= (1 << 27);
5253 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5254
5255 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5256 tmp &= ~(0xF << 28);
5257 tmp |= (4 << 28);
5258 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5259
5260 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5261 tmp &= ~(0xF << 28);
5262 tmp |= (4 << 28);
5263 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5264 }
5265
5266 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5267 * Programming" based on the parameters passed:
5268 * - Sequence to enable CLKOUT_DP
5269 * - Sequence to enable CLKOUT_DP without spread
5270 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5271 */
5272 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5273 bool with_fdi)
5274 {
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 uint32_t reg, tmp;
5277
5278 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5279 with_spread = true;
5280 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5281 with_fdi, "LP PCH doesn't have FDI\n"))
5282 with_fdi = false;
5283
5284 mutex_lock(&dev_priv->dpio_lock);
5285
5286 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5287 tmp &= ~SBI_SSCCTL_DISABLE;
5288 tmp |= SBI_SSCCTL_PATHALT;
5289 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5290
5291 udelay(24);
5292
5293 if (with_spread) {
5294 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5295 tmp &= ~SBI_SSCCTL_PATHALT;
5296 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5297
5298 if (with_fdi) {
5299 lpt_reset_fdi_mphy(dev_priv);
5300 lpt_program_fdi_mphy(dev_priv);
5301 }
5302 }
5303
5304 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5305 SBI_GEN0 : SBI_DBUFF0;
5306 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5307 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5308 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5309
5310 mutex_unlock(&dev_priv->dpio_lock);
5311 }
5312
5313 /* Sequence to disable CLKOUT_DP */
5314 static void lpt_disable_clkout_dp(struct drm_device *dev)
5315 {
5316 struct drm_i915_private *dev_priv = dev->dev_private;
5317 uint32_t reg, tmp;
5318
5319 mutex_lock(&dev_priv->dpio_lock);
5320
5321 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5322 SBI_GEN0 : SBI_DBUFF0;
5323 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5324 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5325 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5326
5327 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5328 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5329 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5330 tmp |= SBI_SSCCTL_PATHALT;
5331 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5332 udelay(32);
5333 }
5334 tmp |= SBI_SSCCTL_DISABLE;
5335 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5336 }
5337
5338 mutex_unlock(&dev_priv->dpio_lock);
5339 }
5340
5341 static void lpt_init_pch_refclk(struct drm_device *dev)
5342 {
5343 struct drm_mode_config *mode_config = &dev->mode_config;
5344 struct intel_encoder *encoder;
5345 bool has_vga = false;
5346
5347 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5348 switch (encoder->type) {
5349 case INTEL_OUTPUT_ANALOG:
5350 has_vga = true;
5351 break;
5352 }
5353 }
5354
5355 if (has_vga)
5356 lpt_enable_clkout_dp(dev, true, true);
5357 else
5358 lpt_disable_clkout_dp(dev);
5359 }
5360
5361 /*
5362 * Initialize reference clocks when the driver loads
5363 */
5364 void intel_init_pch_refclk(struct drm_device *dev)
5365 {
5366 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5367 ironlake_init_pch_refclk(dev);
5368 else if (HAS_PCH_LPT(dev))
5369 lpt_init_pch_refclk(dev);
5370 }
5371
5372 static int ironlake_get_refclk(struct drm_crtc *crtc)
5373 {
5374 struct drm_device *dev = crtc->dev;
5375 struct drm_i915_private *dev_priv = dev->dev_private;
5376 struct intel_encoder *encoder;
5377 int num_connectors = 0;
5378 bool is_lvds = false;
5379
5380 for_each_encoder_on_crtc(dev, crtc, encoder) {
5381 switch (encoder->type) {
5382 case INTEL_OUTPUT_LVDS:
5383 is_lvds = true;
5384 break;
5385 }
5386 num_connectors++;
5387 }
5388
5389 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5390 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5391 dev_priv->vbt.lvds_ssc_freq);
5392 return dev_priv->vbt.lvds_ssc_freq * 1000;
5393 }
5394
5395 return 120000;
5396 }
5397
5398 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5399 {
5400 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5402 int pipe = intel_crtc->pipe;
5403 uint32_t val;
5404
5405 val = 0;
5406
5407 switch (intel_crtc->config.pipe_bpp) {
5408 case 18:
5409 val |= PIPECONF_6BPC;
5410 break;
5411 case 24:
5412 val |= PIPECONF_8BPC;
5413 break;
5414 case 30:
5415 val |= PIPECONF_10BPC;
5416 break;
5417 case 36:
5418 val |= PIPECONF_12BPC;
5419 break;
5420 default:
5421 /* Case prevented by intel_choose_pipe_bpp_dither. */
5422 BUG();
5423 }
5424
5425 if (intel_crtc->config.dither)
5426 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5427
5428 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5429 val |= PIPECONF_INTERLACED_ILK;
5430 else
5431 val |= PIPECONF_PROGRESSIVE;
5432
5433 if (intel_crtc->config.limited_color_range)
5434 val |= PIPECONF_COLOR_RANGE_SELECT;
5435
5436 I915_WRITE(PIPECONF(pipe), val);
5437 POSTING_READ(PIPECONF(pipe));
5438 }
5439
5440 /*
5441 * Set up the pipe CSC unit.
5442 *
5443 * Currently only full range RGB to limited range RGB conversion
5444 * is supported, but eventually this should handle various
5445 * RGB<->YCbCr scenarios as well.
5446 */
5447 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5448 {
5449 struct drm_device *dev = crtc->dev;
5450 struct drm_i915_private *dev_priv = dev->dev_private;
5451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5452 int pipe = intel_crtc->pipe;
5453 uint16_t coeff = 0x7800; /* 1.0 */
5454
5455 /*
5456 * TODO: Check what kind of values actually come out of the pipe
5457 * with these coeff/postoff values and adjust to get the best
5458 * accuracy. Perhaps we even need to take the bpc value into
5459 * consideration.
5460 */
5461
5462 if (intel_crtc->config.limited_color_range)
5463 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5464
5465 /*
5466 * GY/GU and RY/RU should be the other way around according
5467 * to BSpec, but reality doesn't agree. Just set them up in
5468 * a way that results in the correct picture.
5469 */
5470 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5471 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5472
5473 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5474 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5475
5476 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5477 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5478
5479 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5480 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5481 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5482
5483 if (INTEL_INFO(dev)->gen > 6) {
5484 uint16_t postoff = 0;
5485
5486 if (intel_crtc->config.limited_color_range)
5487 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5488
5489 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5490 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5491 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5492
5493 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5494 } else {
5495 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5496
5497 if (intel_crtc->config.limited_color_range)
5498 mode |= CSC_BLACK_SCREEN_OFFSET;
5499
5500 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5501 }
5502 }
5503
5504 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5505 {
5506 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5508 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5509 uint32_t val;
5510
5511 val = 0;
5512
5513 if (intel_crtc->config.dither)
5514 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5515
5516 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5517 val |= PIPECONF_INTERLACED_ILK;
5518 else
5519 val |= PIPECONF_PROGRESSIVE;
5520
5521 I915_WRITE(PIPECONF(cpu_transcoder), val);
5522 POSTING_READ(PIPECONF(cpu_transcoder));
5523
5524 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5525 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5526 }
5527
5528 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5529 intel_clock_t *clock,
5530 bool *has_reduced_clock,
5531 intel_clock_t *reduced_clock)
5532 {
5533 struct drm_device *dev = crtc->dev;
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535 struct intel_encoder *intel_encoder;
5536 int refclk;
5537 const intel_limit_t *limit;
5538 bool ret, is_lvds = false;
5539
5540 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5541 switch (intel_encoder->type) {
5542 case INTEL_OUTPUT_LVDS:
5543 is_lvds = true;
5544 break;
5545 }
5546 }
5547
5548 refclk = ironlake_get_refclk(crtc);
5549
5550 /*
5551 * Returns a set of divisors for the desired target clock with the given
5552 * refclk, or FALSE. The returned values represent the clock equation:
5553 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5554 */
5555 limit = intel_limit(crtc, refclk);
5556 ret = dev_priv->display.find_dpll(limit, crtc,
5557 to_intel_crtc(crtc)->config.port_clock,
5558 refclk, NULL, clock);
5559 if (!ret)
5560 return false;
5561
5562 if (is_lvds && dev_priv->lvds_downclock_avail) {
5563 /*
5564 * Ensure we match the reduced clock's P to the target clock.
5565 * If the clocks don't match, we can't switch the display clock
5566 * by using the FP0/FP1. In such case we will disable the LVDS
5567 * downclock feature.
5568 */
5569 *has_reduced_clock =
5570 dev_priv->display.find_dpll(limit, crtc,
5571 dev_priv->lvds_downclock,
5572 refclk, clock,
5573 reduced_clock);
5574 }
5575
5576 return true;
5577 }
5578
5579 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5580 {
5581 struct drm_i915_private *dev_priv = dev->dev_private;
5582 uint32_t temp;
5583
5584 temp = I915_READ(SOUTH_CHICKEN1);
5585 if (temp & FDI_BC_BIFURCATION_SELECT)
5586 return;
5587
5588 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5589 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5590
5591 temp |= FDI_BC_BIFURCATION_SELECT;
5592 DRM_DEBUG_KMS("enabling fdi C rx\n");
5593 I915_WRITE(SOUTH_CHICKEN1, temp);
5594 POSTING_READ(SOUTH_CHICKEN1);
5595 }
5596
5597 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5598 {
5599 struct drm_device *dev = intel_crtc->base.dev;
5600 struct drm_i915_private *dev_priv = dev->dev_private;
5601
5602 switch (intel_crtc->pipe) {
5603 case PIPE_A:
5604 break;
5605 case PIPE_B:
5606 if (intel_crtc->config.fdi_lanes > 2)
5607 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5608 else
5609 cpt_enable_fdi_bc_bifurcation(dev);
5610
5611 break;
5612 case PIPE_C:
5613 cpt_enable_fdi_bc_bifurcation(dev);
5614
5615 break;
5616 default:
5617 BUG();
5618 }
5619 }
5620
5621 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5622 {
5623 /*
5624 * Account for spread spectrum to avoid
5625 * oversubscribing the link. Max center spread
5626 * is 2.5%; use 5% for safety's sake.
5627 */
5628 u32 bps = target_clock * bpp * 21 / 20;
5629 return bps / (link_bw * 8) + 1;
5630 }
5631
5632 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5633 {
5634 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5635 }
5636
5637 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5638 u32 *fp,
5639 intel_clock_t *reduced_clock, u32 *fp2)
5640 {
5641 struct drm_crtc *crtc = &intel_crtc->base;
5642 struct drm_device *dev = crtc->dev;
5643 struct drm_i915_private *dev_priv = dev->dev_private;
5644 struct intel_encoder *intel_encoder;
5645 uint32_t dpll;
5646 int factor, num_connectors = 0;
5647 bool is_lvds = false, is_sdvo = false;
5648
5649 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5650 switch (intel_encoder->type) {
5651 case INTEL_OUTPUT_LVDS:
5652 is_lvds = true;
5653 break;
5654 case INTEL_OUTPUT_SDVO:
5655 case INTEL_OUTPUT_HDMI:
5656 is_sdvo = true;
5657 break;
5658 }
5659
5660 num_connectors++;
5661 }
5662
5663 /* Enable autotuning of the PLL clock (if permissible) */
5664 factor = 21;
5665 if (is_lvds) {
5666 if ((intel_panel_use_ssc(dev_priv) &&
5667 dev_priv->vbt.lvds_ssc_freq == 100) ||
5668 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5669 factor = 25;
5670 } else if (intel_crtc->config.sdvo_tv_clock)
5671 factor = 20;
5672
5673 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5674 *fp |= FP_CB_TUNE;
5675
5676 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5677 *fp2 |= FP_CB_TUNE;
5678
5679 dpll = 0;
5680
5681 if (is_lvds)
5682 dpll |= DPLLB_MODE_LVDS;
5683 else
5684 dpll |= DPLLB_MODE_DAC_SERIAL;
5685
5686 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5687 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5688
5689 if (is_sdvo)
5690 dpll |= DPLL_SDVO_HIGH_SPEED;
5691 if (intel_crtc->config.has_dp_encoder)
5692 dpll |= DPLL_SDVO_HIGH_SPEED;
5693
5694 /* compute bitmask from p1 value */
5695 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5696 /* also FPA1 */
5697 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5698
5699 switch (intel_crtc->config.dpll.p2) {
5700 case 5:
5701 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5702 break;
5703 case 7:
5704 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5705 break;
5706 case 10:
5707 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5708 break;
5709 case 14:
5710 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5711 break;
5712 }
5713
5714 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5715 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5716 else
5717 dpll |= PLL_REF_INPUT_DREFCLK;
5718
5719 return dpll | DPLL_VCO_ENABLE;
5720 }
5721
5722 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5723 int x, int y,
5724 struct drm_framebuffer *fb)
5725 {
5726 struct drm_device *dev = crtc->dev;
5727 struct drm_i915_private *dev_priv = dev->dev_private;
5728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5729 int pipe = intel_crtc->pipe;
5730 int plane = intel_crtc->plane;
5731 int num_connectors = 0;
5732 intel_clock_t clock, reduced_clock;
5733 u32 dpll = 0, fp = 0, fp2 = 0;
5734 bool ok, has_reduced_clock = false;
5735 bool is_lvds = false;
5736 struct intel_encoder *encoder;
5737 struct intel_shared_dpll *pll;
5738 int ret;
5739
5740 for_each_encoder_on_crtc(dev, crtc, encoder) {
5741 switch (encoder->type) {
5742 case INTEL_OUTPUT_LVDS:
5743 is_lvds = true;
5744 break;
5745 }
5746
5747 num_connectors++;
5748 }
5749
5750 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5751 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5752
5753 ok = ironlake_compute_clocks(crtc, &clock,
5754 &has_reduced_clock, &reduced_clock);
5755 if (!ok && !intel_crtc->config.clock_set) {
5756 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5757 return -EINVAL;
5758 }
5759 /* Compat-code for transition, will disappear. */
5760 if (!intel_crtc->config.clock_set) {
5761 intel_crtc->config.dpll.n = clock.n;
5762 intel_crtc->config.dpll.m1 = clock.m1;
5763 intel_crtc->config.dpll.m2 = clock.m2;
5764 intel_crtc->config.dpll.p1 = clock.p1;
5765 intel_crtc->config.dpll.p2 = clock.p2;
5766 }
5767
5768 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5769 if (intel_crtc->config.has_pch_encoder) {
5770 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5771 if (has_reduced_clock)
5772 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5773
5774 dpll = ironlake_compute_dpll(intel_crtc,
5775 &fp, &reduced_clock,
5776 has_reduced_clock ? &fp2 : NULL);
5777
5778 intel_crtc->config.dpll_hw_state.dpll = dpll;
5779 intel_crtc->config.dpll_hw_state.fp0 = fp;
5780 if (has_reduced_clock)
5781 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5782 else
5783 intel_crtc->config.dpll_hw_state.fp1 = fp;
5784
5785 pll = intel_get_shared_dpll(intel_crtc);
5786 if (pll == NULL) {
5787 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5788 pipe_name(pipe));
5789 return -EINVAL;
5790 }
5791 } else
5792 intel_put_shared_dpll(intel_crtc);
5793
5794 if (intel_crtc->config.has_dp_encoder)
5795 intel_dp_set_m_n(intel_crtc);
5796
5797 if (is_lvds && has_reduced_clock && i915_powersave)
5798 intel_crtc->lowfreq_avail = true;
5799 else
5800 intel_crtc->lowfreq_avail = false;
5801
5802 if (intel_crtc->config.has_pch_encoder) {
5803 pll = intel_crtc_to_shared_dpll(intel_crtc);
5804
5805 }
5806
5807 intel_set_pipe_timings(intel_crtc);
5808
5809 if (intel_crtc->config.has_pch_encoder) {
5810 intel_cpu_transcoder_set_m_n(intel_crtc,
5811 &intel_crtc->config.fdi_m_n);
5812 }
5813
5814 if (IS_IVYBRIDGE(dev))
5815 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5816
5817 ironlake_set_pipeconf(crtc);
5818
5819 /* Set up the display plane register */
5820 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5821 POSTING_READ(DSPCNTR(plane));
5822
5823 ret = intel_pipe_set_base(crtc, x, y, fb);
5824
5825 intel_update_watermarks(dev);
5826
5827 return ret;
5828 }
5829
5830 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5831 struct intel_crtc_config *pipe_config)
5832 {
5833 struct drm_device *dev = crtc->base.dev;
5834 struct drm_i915_private *dev_priv = dev->dev_private;
5835 enum transcoder transcoder = pipe_config->cpu_transcoder;
5836
5837 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5838 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5839 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5840 & ~TU_SIZE_MASK;
5841 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5842 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5843 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5844 }
5845
5846 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5847 struct intel_crtc_config *pipe_config)
5848 {
5849 struct drm_device *dev = crtc->base.dev;
5850 struct drm_i915_private *dev_priv = dev->dev_private;
5851 uint32_t tmp;
5852
5853 tmp = I915_READ(PF_CTL(crtc->pipe));
5854
5855 if (tmp & PF_ENABLE) {
5856 pipe_config->pch_pfit.enabled = true;
5857 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5858 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5859
5860 /* We currently do not free assignements of panel fitters on
5861 * ivb/hsw (since we don't use the higher upscaling modes which
5862 * differentiates them) so just WARN about this case for now. */
5863 if (IS_GEN7(dev)) {
5864 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5865 PF_PIPE_SEL_IVB(crtc->pipe));
5866 }
5867 }
5868 }
5869
5870 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5871 struct intel_crtc_config *pipe_config)
5872 {
5873 struct drm_device *dev = crtc->base.dev;
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 uint32_t tmp;
5876
5877 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5878 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5879
5880 tmp = I915_READ(PIPECONF(crtc->pipe));
5881 if (!(tmp & PIPECONF_ENABLE))
5882 return false;
5883
5884 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5885 struct intel_shared_dpll *pll;
5886
5887 pipe_config->has_pch_encoder = true;
5888
5889 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5890 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5891 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5892
5893 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5894
5895 if (HAS_PCH_IBX(dev_priv->dev)) {
5896 pipe_config->shared_dpll =
5897 (enum intel_dpll_id) crtc->pipe;
5898 } else {
5899 tmp = I915_READ(PCH_DPLL_SEL);
5900 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5901 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5902 else
5903 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5904 }
5905
5906 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5907
5908 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5909 &pipe_config->dpll_hw_state));
5910
5911 tmp = pipe_config->dpll_hw_state.dpll;
5912 pipe_config->pixel_multiplier =
5913 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5914 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5915 } else {
5916 pipe_config->pixel_multiplier = 1;
5917 }
5918
5919 intel_get_pipe_timings(crtc, pipe_config);
5920
5921 ironlake_get_pfit_config(crtc, pipe_config);
5922
5923 return true;
5924 }
5925
5926 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5927 {
5928 struct drm_device *dev = dev_priv->dev;
5929 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5930 struct intel_crtc *crtc;
5931 unsigned long irqflags;
5932 uint32_t val;
5933
5934 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5935 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5936 pipe_name(crtc->pipe));
5937
5938 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5939 WARN(plls->spll_refcount, "SPLL enabled\n");
5940 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5941 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5942 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5943 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5944 "CPU PWM1 enabled\n");
5945 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5946 "CPU PWM2 enabled\n");
5947 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5948 "PCH PWM1 enabled\n");
5949 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5950 "Utility pin enabled\n");
5951 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5952
5953 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5954 val = I915_READ(DEIMR);
5955 WARN((val & ~DE_PCH_EVENT_IVB) != val,
5956 "Unexpected DEIMR bits enabled: 0x%x\n", val);
5957 val = I915_READ(SDEIMR);
5958 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5959 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5960 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5961 }
5962
5963 /*
5964 * This function implements pieces of two sequences from BSpec:
5965 * - Sequence for display software to disable LCPLL
5966 * - Sequence for display software to allow package C8+
5967 * The steps implemented here are just the steps that actually touch the LCPLL
5968 * register. Callers should take care of disabling all the display engine
5969 * functions, doing the mode unset, fixing interrupts, etc.
5970 */
5971 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5972 bool switch_to_fclk, bool allow_power_down)
5973 {
5974 uint32_t val;
5975
5976 assert_can_disable_lcpll(dev_priv);
5977
5978 val = I915_READ(LCPLL_CTL);
5979
5980 if (switch_to_fclk) {
5981 val |= LCPLL_CD_SOURCE_FCLK;
5982 I915_WRITE(LCPLL_CTL, val);
5983
5984 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5985 LCPLL_CD_SOURCE_FCLK_DONE, 1))
5986 DRM_ERROR("Switching to FCLK failed\n");
5987
5988 val = I915_READ(LCPLL_CTL);
5989 }
5990
5991 val |= LCPLL_PLL_DISABLE;
5992 I915_WRITE(LCPLL_CTL, val);
5993 POSTING_READ(LCPLL_CTL);
5994
5995 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
5996 DRM_ERROR("LCPLL still locked\n");
5997
5998 val = I915_READ(D_COMP);
5999 val |= D_COMP_COMP_DISABLE;
6000 I915_WRITE(D_COMP, val);
6001 POSTING_READ(D_COMP);
6002 ndelay(100);
6003
6004 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6005 DRM_ERROR("D_COMP RCOMP still in progress\n");
6006
6007 if (allow_power_down) {
6008 val = I915_READ(LCPLL_CTL);
6009 val |= LCPLL_POWER_DOWN_ALLOW;
6010 I915_WRITE(LCPLL_CTL, val);
6011 POSTING_READ(LCPLL_CTL);
6012 }
6013 }
6014
6015 /*
6016 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6017 * source.
6018 */
6019 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6020 {
6021 uint32_t val;
6022
6023 val = I915_READ(LCPLL_CTL);
6024
6025 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6026 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6027 return;
6028
6029 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6030 * we'll hang the machine! */
6031 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6032
6033 if (val & LCPLL_POWER_DOWN_ALLOW) {
6034 val &= ~LCPLL_POWER_DOWN_ALLOW;
6035 I915_WRITE(LCPLL_CTL, val);
6036 POSTING_READ(LCPLL_CTL);
6037 }
6038
6039 val = I915_READ(D_COMP);
6040 val |= D_COMP_COMP_FORCE;
6041 val &= ~D_COMP_COMP_DISABLE;
6042 I915_WRITE(D_COMP, val);
6043 POSTING_READ(D_COMP);
6044
6045 val = I915_READ(LCPLL_CTL);
6046 val &= ~LCPLL_PLL_DISABLE;
6047 I915_WRITE(LCPLL_CTL, val);
6048
6049 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6050 DRM_ERROR("LCPLL not locked yet\n");
6051
6052 if (val & LCPLL_CD_SOURCE_FCLK) {
6053 val = I915_READ(LCPLL_CTL);
6054 val &= ~LCPLL_CD_SOURCE_FCLK;
6055 I915_WRITE(LCPLL_CTL, val);
6056
6057 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6058 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6059 DRM_ERROR("Switching back to LCPLL failed\n");
6060 }
6061
6062 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6063 }
6064
6065 void hsw_enable_pc8_work(struct work_struct *__work)
6066 {
6067 struct drm_i915_private *dev_priv =
6068 container_of(to_delayed_work(__work), struct drm_i915_private,
6069 pc8.enable_work);
6070 struct drm_device *dev = dev_priv->dev;
6071 uint32_t val;
6072
6073 if (dev_priv->pc8.enabled)
6074 return;
6075
6076 DRM_DEBUG_KMS("Enabling package C8+\n");
6077
6078 dev_priv->pc8.enabled = true;
6079
6080 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6081 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6082 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6083 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6084 }
6085
6086 lpt_disable_clkout_dp(dev);
6087 hsw_pc8_disable_interrupts(dev);
6088 hsw_disable_lcpll(dev_priv, true, true);
6089 }
6090
6091 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6092 {
6093 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6094 WARN(dev_priv->pc8.disable_count < 1,
6095 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6096
6097 dev_priv->pc8.disable_count--;
6098 if (dev_priv->pc8.disable_count != 0)
6099 return;
6100
6101 schedule_delayed_work(&dev_priv->pc8.enable_work,
6102 msecs_to_jiffies(i915_pc8_timeout));
6103 }
6104
6105 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6106 {
6107 struct drm_device *dev = dev_priv->dev;
6108 uint32_t val;
6109
6110 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6111 WARN(dev_priv->pc8.disable_count < 0,
6112 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6113
6114 dev_priv->pc8.disable_count++;
6115 if (dev_priv->pc8.disable_count != 1)
6116 return;
6117
6118 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6119 if (!dev_priv->pc8.enabled)
6120 return;
6121
6122 DRM_DEBUG_KMS("Disabling package C8+\n");
6123
6124 hsw_restore_lcpll(dev_priv);
6125 hsw_pc8_restore_interrupts(dev);
6126 lpt_init_pch_refclk(dev);
6127
6128 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6129 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6130 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6131 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6132 }
6133
6134 intel_prepare_ddi(dev);
6135 i915_gem_init_swizzling(dev);
6136 mutex_lock(&dev_priv->rps.hw_lock);
6137 gen6_update_ring_freq(dev);
6138 mutex_unlock(&dev_priv->rps.hw_lock);
6139 dev_priv->pc8.enabled = false;
6140 }
6141
6142 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6143 {
6144 mutex_lock(&dev_priv->pc8.lock);
6145 __hsw_enable_package_c8(dev_priv);
6146 mutex_unlock(&dev_priv->pc8.lock);
6147 }
6148
6149 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6150 {
6151 mutex_lock(&dev_priv->pc8.lock);
6152 __hsw_disable_package_c8(dev_priv);
6153 mutex_unlock(&dev_priv->pc8.lock);
6154 }
6155
6156 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6157 {
6158 struct drm_device *dev = dev_priv->dev;
6159 struct intel_crtc *crtc;
6160 uint32_t val;
6161
6162 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6163 if (crtc->base.enabled)
6164 return false;
6165
6166 /* This case is still possible since we have the i915.disable_power_well
6167 * parameter and also the KVMr or something else might be requesting the
6168 * power well. */
6169 val = I915_READ(HSW_PWR_WELL_DRIVER);
6170 if (val != 0) {
6171 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6172 return false;
6173 }
6174
6175 return true;
6176 }
6177
6178 /* Since we're called from modeset_global_resources there's no way to
6179 * symmetrically increase and decrease the refcount, so we use
6180 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6181 * or not.
6182 */
6183 static void hsw_update_package_c8(struct drm_device *dev)
6184 {
6185 struct drm_i915_private *dev_priv = dev->dev_private;
6186 bool allow;
6187
6188 if (!i915_enable_pc8)
6189 return;
6190
6191 mutex_lock(&dev_priv->pc8.lock);
6192
6193 allow = hsw_can_enable_package_c8(dev_priv);
6194
6195 if (allow == dev_priv->pc8.requirements_met)
6196 goto done;
6197
6198 dev_priv->pc8.requirements_met = allow;
6199
6200 if (allow)
6201 __hsw_enable_package_c8(dev_priv);
6202 else
6203 __hsw_disable_package_c8(dev_priv);
6204
6205 done:
6206 mutex_unlock(&dev_priv->pc8.lock);
6207 }
6208
6209 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6210 {
6211 if (!dev_priv->pc8.gpu_idle) {
6212 dev_priv->pc8.gpu_idle = true;
6213 hsw_enable_package_c8(dev_priv);
6214 }
6215 }
6216
6217 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6218 {
6219 if (dev_priv->pc8.gpu_idle) {
6220 dev_priv->pc8.gpu_idle = false;
6221 hsw_disable_package_c8(dev_priv);
6222 }
6223 }
6224
6225 static void haswell_modeset_global_resources(struct drm_device *dev)
6226 {
6227 bool enable = false;
6228 struct intel_crtc *crtc;
6229
6230 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6231 if (!crtc->base.enabled)
6232 continue;
6233
6234 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6235 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6236 enable = true;
6237 }
6238
6239 intel_set_power_well(dev, enable);
6240
6241 hsw_update_package_c8(dev);
6242 }
6243
6244 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6245 int x, int y,
6246 struct drm_framebuffer *fb)
6247 {
6248 struct drm_device *dev = crtc->dev;
6249 struct drm_i915_private *dev_priv = dev->dev_private;
6250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251 int plane = intel_crtc->plane;
6252 int ret;
6253
6254 if (!intel_ddi_pll_mode_set(crtc))
6255 return -EINVAL;
6256
6257 if (intel_crtc->config.has_dp_encoder)
6258 intel_dp_set_m_n(intel_crtc);
6259
6260 intel_crtc->lowfreq_avail = false;
6261
6262 intel_set_pipe_timings(intel_crtc);
6263
6264 if (intel_crtc->config.has_pch_encoder) {
6265 intel_cpu_transcoder_set_m_n(intel_crtc,
6266 &intel_crtc->config.fdi_m_n);
6267 }
6268
6269 haswell_set_pipeconf(crtc);
6270
6271 intel_set_pipe_csc(crtc);
6272
6273 /* Set up the display plane register */
6274 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6275 POSTING_READ(DSPCNTR(plane));
6276
6277 ret = intel_pipe_set_base(crtc, x, y, fb);
6278
6279 intel_update_watermarks(dev);
6280
6281 return ret;
6282 }
6283
6284 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6285 struct intel_crtc_config *pipe_config)
6286 {
6287 struct drm_device *dev = crtc->base.dev;
6288 struct drm_i915_private *dev_priv = dev->dev_private;
6289 enum intel_display_power_domain pfit_domain;
6290 uint32_t tmp;
6291
6292 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6293 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6294
6295 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6296 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6297 enum pipe trans_edp_pipe;
6298 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6299 default:
6300 WARN(1, "unknown pipe linked to edp transcoder\n");
6301 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6302 case TRANS_DDI_EDP_INPUT_A_ON:
6303 trans_edp_pipe = PIPE_A;
6304 break;
6305 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6306 trans_edp_pipe = PIPE_B;
6307 break;
6308 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6309 trans_edp_pipe = PIPE_C;
6310 break;
6311 }
6312
6313 if (trans_edp_pipe == crtc->pipe)
6314 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6315 }
6316
6317 if (!intel_display_power_enabled(dev,
6318 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6319 return false;
6320
6321 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6322 if (!(tmp & PIPECONF_ENABLE))
6323 return false;
6324
6325 /*
6326 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6327 * DDI E. So just check whether this pipe is wired to DDI E and whether
6328 * the PCH transcoder is on.
6329 */
6330 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6331 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6332 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6333 pipe_config->has_pch_encoder = true;
6334
6335 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6336 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6337 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6338
6339 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6340 }
6341
6342 intel_get_pipe_timings(crtc, pipe_config);
6343
6344 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6345 if (intel_display_power_enabled(dev, pfit_domain))
6346 ironlake_get_pfit_config(crtc, pipe_config);
6347
6348 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6349 (I915_READ(IPS_CTL) & IPS_ENABLE);
6350
6351 pipe_config->pixel_multiplier = 1;
6352
6353 return true;
6354 }
6355
6356 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6357 int x, int y,
6358 struct drm_framebuffer *fb)
6359 {
6360 struct drm_device *dev = crtc->dev;
6361 struct drm_i915_private *dev_priv = dev->dev_private;
6362 struct intel_encoder *encoder;
6363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6364 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6365 int pipe = intel_crtc->pipe;
6366 int ret;
6367
6368 drm_vblank_pre_modeset(dev, pipe);
6369
6370 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6371
6372 drm_vblank_post_modeset(dev, pipe);
6373
6374 if (ret != 0)
6375 return ret;
6376
6377 for_each_encoder_on_crtc(dev, crtc, encoder) {
6378 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6379 encoder->base.base.id,
6380 drm_get_encoder_name(&encoder->base),
6381 mode->base.id, mode->name);
6382 encoder->mode_set(encoder);
6383 }
6384
6385 return 0;
6386 }
6387
6388 static bool intel_eld_uptodate(struct drm_connector *connector,
6389 int reg_eldv, uint32_t bits_eldv,
6390 int reg_elda, uint32_t bits_elda,
6391 int reg_edid)
6392 {
6393 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6394 uint8_t *eld = connector->eld;
6395 uint32_t i;
6396
6397 i = I915_READ(reg_eldv);
6398 i &= bits_eldv;
6399
6400 if (!eld[0])
6401 return !i;
6402
6403 if (!i)
6404 return false;
6405
6406 i = I915_READ(reg_elda);
6407 i &= ~bits_elda;
6408 I915_WRITE(reg_elda, i);
6409
6410 for (i = 0; i < eld[2]; i++)
6411 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6412 return false;
6413
6414 return true;
6415 }
6416
6417 static void g4x_write_eld(struct drm_connector *connector,
6418 struct drm_crtc *crtc)
6419 {
6420 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6421 uint8_t *eld = connector->eld;
6422 uint32_t eldv;
6423 uint32_t len;
6424 uint32_t i;
6425
6426 i = I915_READ(G4X_AUD_VID_DID);
6427
6428 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6429 eldv = G4X_ELDV_DEVCL_DEVBLC;
6430 else
6431 eldv = G4X_ELDV_DEVCTG;
6432
6433 if (intel_eld_uptodate(connector,
6434 G4X_AUD_CNTL_ST, eldv,
6435 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6436 G4X_HDMIW_HDMIEDID))
6437 return;
6438
6439 i = I915_READ(G4X_AUD_CNTL_ST);
6440 i &= ~(eldv | G4X_ELD_ADDR);
6441 len = (i >> 9) & 0x1f; /* ELD buffer size */
6442 I915_WRITE(G4X_AUD_CNTL_ST, i);
6443
6444 if (!eld[0])
6445 return;
6446
6447 len = min_t(uint8_t, eld[2], len);
6448 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6449 for (i = 0; i < len; i++)
6450 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6451
6452 i = I915_READ(G4X_AUD_CNTL_ST);
6453 i |= eldv;
6454 I915_WRITE(G4X_AUD_CNTL_ST, i);
6455 }
6456
6457 static void haswell_write_eld(struct drm_connector *connector,
6458 struct drm_crtc *crtc)
6459 {
6460 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6461 uint8_t *eld = connector->eld;
6462 struct drm_device *dev = crtc->dev;
6463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6464 uint32_t eldv;
6465 uint32_t i;
6466 int len;
6467 int pipe = to_intel_crtc(crtc)->pipe;
6468 int tmp;
6469
6470 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6471 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6472 int aud_config = HSW_AUD_CFG(pipe);
6473 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6474
6475
6476 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6477
6478 /* Audio output enable */
6479 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6480 tmp = I915_READ(aud_cntrl_st2);
6481 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6482 I915_WRITE(aud_cntrl_st2, tmp);
6483
6484 /* Wait for 1 vertical blank */
6485 intel_wait_for_vblank(dev, pipe);
6486
6487 /* Set ELD valid state */
6488 tmp = I915_READ(aud_cntrl_st2);
6489 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6490 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6491 I915_WRITE(aud_cntrl_st2, tmp);
6492 tmp = I915_READ(aud_cntrl_st2);
6493 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6494
6495 /* Enable HDMI mode */
6496 tmp = I915_READ(aud_config);
6497 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6498 /* clear N_programing_enable and N_value_index */
6499 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6500 I915_WRITE(aud_config, tmp);
6501
6502 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6503
6504 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6505 intel_crtc->eld_vld = true;
6506
6507 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6508 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6509 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6510 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6511 } else
6512 I915_WRITE(aud_config, 0);
6513
6514 if (intel_eld_uptodate(connector,
6515 aud_cntrl_st2, eldv,
6516 aud_cntl_st, IBX_ELD_ADDRESS,
6517 hdmiw_hdmiedid))
6518 return;
6519
6520 i = I915_READ(aud_cntrl_st2);
6521 i &= ~eldv;
6522 I915_WRITE(aud_cntrl_st2, i);
6523
6524 if (!eld[0])
6525 return;
6526
6527 i = I915_READ(aud_cntl_st);
6528 i &= ~IBX_ELD_ADDRESS;
6529 I915_WRITE(aud_cntl_st, i);
6530 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6531 DRM_DEBUG_DRIVER("port num:%d\n", i);
6532
6533 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6534 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6535 for (i = 0; i < len; i++)
6536 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6537
6538 i = I915_READ(aud_cntrl_st2);
6539 i |= eldv;
6540 I915_WRITE(aud_cntrl_st2, i);
6541
6542 }
6543
6544 static void ironlake_write_eld(struct drm_connector *connector,
6545 struct drm_crtc *crtc)
6546 {
6547 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6548 uint8_t *eld = connector->eld;
6549 uint32_t eldv;
6550 uint32_t i;
6551 int len;
6552 int hdmiw_hdmiedid;
6553 int aud_config;
6554 int aud_cntl_st;
6555 int aud_cntrl_st2;
6556 int pipe = to_intel_crtc(crtc)->pipe;
6557
6558 if (HAS_PCH_IBX(connector->dev)) {
6559 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6560 aud_config = IBX_AUD_CFG(pipe);
6561 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6562 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6563 } else {
6564 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6565 aud_config = CPT_AUD_CFG(pipe);
6566 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6567 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6568 }
6569
6570 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6571
6572 i = I915_READ(aud_cntl_st);
6573 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6574 if (!i) {
6575 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6576 /* operate blindly on all ports */
6577 eldv = IBX_ELD_VALIDB;
6578 eldv |= IBX_ELD_VALIDB << 4;
6579 eldv |= IBX_ELD_VALIDB << 8;
6580 } else {
6581 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6582 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6583 }
6584
6585 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6586 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6587 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6588 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6589 } else
6590 I915_WRITE(aud_config, 0);
6591
6592 if (intel_eld_uptodate(connector,
6593 aud_cntrl_st2, eldv,
6594 aud_cntl_st, IBX_ELD_ADDRESS,
6595 hdmiw_hdmiedid))
6596 return;
6597
6598 i = I915_READ(aud_cntrl_st2);
6599 i &= ~eldv;
6600 I915_WRITE(aud_cntrl_st2, i);
6601
6602 if (!eld[0])
6603 return;
6604
6605 i = I915_READ(aud_cntl_st);
6606 i &= ~IBX_ELD_ADDRESS;
6607 I915_WRITE(aud_cntl_st, i);
6608
6609 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6610 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6611 for (i = 0; i < len; i++)
6612 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6613
6614 i = I915_READ(aud_cntrl_st2);
6615 i |= eldv;
6616 I915_WRITE(aud_cntrl_st2, i);
6617 }
6618
6619 void intel_write_eld(struct drm_encoder *encoder,
6620 struct drm_display_mode *mode)
6621 {
6622 struct drm_crtc *crtc = encoder->crtc;
6623 struct drm_connector *connector;
6624 struct drm_device *dev = encoder->dev;
6625 struct drm_i915_private *dev_priv = dev->dev_private;
6626
6627 connector = drm_select_eld(encoder, mode);
6628 if (!connector)
6629 return;
6630
6631 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6632 connector->base.id,
6633 drm_get_connector_name(connector),
6634 connector->encoder->base.id,
6635 drm_get_encoder_name(connector->encoder));
6636
6637 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6638
6639 if (dev_priv->display.write_eld)
6640 dev_priv->display.write_eld(connector, crtc);
6641 }
6642
6643 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6644 void intel_crtc_load_lut(struct drm_crtc *crtc)
6645 {
6646 struct drm_device *dev = crtc->dev;
6647 struct drm_i915_private *dev_priv = dev->dev_private;
6648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6649 enum pipe pipe = intel_crtc->pipe;
6650 int palreg = PALETTE(pipe);
6651 int i;
6652 bool reenable_ips = false;
6653
6654 /* The clocks have to be on to load the palette. */
6655 if (!crtc->enabled || !intel_crtc->active)
6656 return;
6657
6658 if (!HAS_PCH_SPLIT(dev_priv->dev))
6659 assert_pll_enabled(dev_priv, pipe);
6660
6661 /* use legacy palette for Ironlake */
6662 if (HAS_PCH_SPLIT(dev))
6663 palreg = LGC_PALETTE(pipe);
6664
6665 /* Workaround : Do not read or write the pipe palette/gamma data while
6666 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6667 */
6668 if (intel_crtc->config.ips_enabled &&
6669 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6670 GAMMA_MODE_MODE_SPLIT)) {
6671 hsw_disable_ips(intel_crtc);
6672 reenable_ips = true;
6673 }
6674
6675 for (i = 0; i < 256; i++) {
6676 I915_WRITE(palreg + 4 * i,
6677 (intel_crtc->lut_r[i] << 16) |
6678 (intel_crtc->lut_g[i] << 8) |
6679 intel_crtc->lut_b[i]);
6680 }
6681
6682 if (reenable_ips)
6683 hsw_enable_ips(intel_crtc);
6684 }
6685
6686 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6687 {
6688 struct drm_device *dev = crtc->dev;
6689 struct drm_i915_private *dev_priv = dev->dev_private;
6690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6691 bool visible = base != 0;
6692 u32 cntl;
6693
6694 if (intel_crtc->cursor_visible == visible)
6695 return;
6696
6697 cntl = I915_READ(_CURACNTR);
6698 if (visible) {
6699 /* On these chipsets we can only modify the base whilst
6700 * the cursor is disabled.
6701 */
6702 I915_WRITE(_CURABASE, base);
6703
6704 cntl &= ~(CURSOR_FORMAT_MASK);
6705 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6706 cntl |= CURSOR_ENABLE |
6707 CURSOR_GAMMA_ENABLE |
6708 CURSOR_FORMAT_ARGB;
6709 } else
6710 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6711 I915_WRITE(_CURACNTR, cntl);
6712
6713 intel_crtc->cursor_visible = visible;
6714 }
6715
6716 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6717 {
6718 struct drm_device *dev = crtc->dev;
6719 struct drm_i915_private *dev_priv = dev->dev_private;
6720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6721 int pipe = intel_crtc->pipe;
6722 bool visible = base != 0;
6723
6724 if (intel_crtc->cursor_visible != visible) {
6725 uint32_t cntl = I915_READ(CURCNTR(pipe));
6726 if (base) {
6727 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6728 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6729 cntl |= pipe << 28; /* Connect to correct pipe */
6730 } else {
6731 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6732 cntl |= CURSOR_MODE_DISABLE;
6733 }
6734 I915_WRITE(CURCNTR(pipe), cntl);
6735
6736 intel_crtc->cursor_visible = visible;
6737 }
6738 /* and commit changes on next vblank */
6739 I915_WRITE(CURBASE(pipe), base);
6740 }
6741
6742 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6743 {
6744 struct drm_device *dev = crtc->dev;
6745 struct drm_i915_private *dev_priv = dev->dev_private;
6746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6747 int pipe = intel_crtc->pipe;
6748 bool visible = base != 0;
6749
6750 if (intel_crtc->cursor_visible != visible) {
6751 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6752 if (base) {
6753 cntl &= ~CURSOR_MODE;
6754 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6755 } else {
6756 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6757 cntl |= CURSOR_MODE_DISABLE;
6758 }
6759 if (IS_HASWELL(dev)) {
6760 cntl |= CURSOR_PIPE_CSC_ENABLE;
6761 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6762 }
6763 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6764
6765 intel_crtc->cursor_visible = visible;
6766 }
6767 /* and commit changes on next vblank */
6768 I915_WRITE(CURBASE_IVB(pipe), base);
6769 }
6770
6771 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6772 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6773 bool on)
6774 {
6775 struct drm_device *dev = crtc->dev;
6776 struct drm_i915_private *dev_priv = dev->dev_private;
6777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6778 int pipe = intel_crtc->pipe;
6779 int x = intel_crtc->cursor_x;
6780 int y = intel_crtc->cursor_y;
6781 u32 base, pos;
6782 bool visible;
6783
6784 pos = 0;
6785
6786 if (on && crtc->enabled && crtc->fb) {
6787 base = intel_crtc->cursor_addr;
6788 if (x > (int) crtc->fb->width)
6789 base = 0;
6790
6791 if (y > (int) crtc->fb->height)
6792 base = 0;
6793 } else
6794 base = 0;
6795
6796 if (x < 0) {
6797 if (x + intel_crtc->cursor_width < 0)
6798 base = 0;
6799
6800 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6801 x = -x;
6802 }
6803 pos |= x << CURSOR_X_SHIFT;
6804
6805 if (y < 0) {
6806 if (y + intel_crtc->cursor_height < 0)
6807 base = 0;
6808
6809 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6810 y = -y;
6811 }
6812 pos |= y << CURSOR_Y_SHIFT;
6813
6814 visible = base != 0;
6815 if (!visible && !intel_crtc->cursor_visible)
6816 return;
6817
6818 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6819 I915_WRITE(CURPOS_IVB(pipe), pos);
6820 ivb_update_cursor(crtc, base);
6821 } else {
6822 I915_WRITE(CURPOS(pipe), pos);
6823 if (IS_845G(dev) || IS_I865G(dev))
6824 i845_update_cursor(crtc, base);
6825 else
6826 i9xx_update_cursor(crtc, base);
6827 }
6828 }
6829
6830 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6831 struct drm_file *file,
6832 uint32_t handle,
6833 uint32_t width, uint32_t height)
6834 {
6835 struct drm_device *dev = crtc->dev;
6836 struct drm_i915_private *dev_priv = dev->dev_private;
6837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6838 struct drm_i915_gem_object *obj;
6839 uint32_t addr;
6840 int ret;
6841
6842 /* if we want to turn off the cursor ignore width and height */
6843 if (!handle) {
6844 DRM_DEBUG_KMS("cursor off\n");
6845 addr = 0;
6846 obj = NULL;
6847 mutex_lock(&dev->struct_mutex);
6848 goto finish;
6849 }
6850
6851 /* Currently we only support 64x64 cursors */
6852 if (width != 64 || height != 64) {
6853 DRM_ERROR("we currently only support 64x64 cursors\n");
6854 return -EINVAL;
6855 }
6856
6857 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6858 if (&obj->base == NULL)
6859 return -ENOENT;
6860
6861 if (obj->base.size < width * height * 4) {
6862 DRM_ERROR("buffer is to small\n");
6863 ret = -ENOMEM;
6864 goto fail;
6865 }
6866
6867 /* we only need to pin inside GTT if cursor is non-phy */
6868 mutex_lock(&dev->struct_mutex);
6869 if (!dev_priv->info->cursor_needs_physical) {
6870 unsigned alignment;
6871
6872 if (obj->tiling_mode) {
6873 DRM_ERROR("cursor cannot be tiled\n");
6874 ret = -EINVAL;
6875 goto fail_locked;
6876 }
6877
6878 /* Note that the w/a also requires 2 PTE of padding following
6879 * the bo. We currently fill all unused PTE with the shadow
6880 * page and so we should always have valid PTE following the
6881 * cursor preventing the VT-d warning.
6882 */
6883 alignment = 0;
6884 if (need_vtd_wa(dev))
6885 alignment = 64*1024;
6886
6887 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6888 if (ret) {
6889 DRM_ERROR("failed to move cursor bo into the GTT\n");
6890 goto fail_locked;
6891 }
6892
6893 ret = i915_gem_object_put_fence(obj);
6894 if (ret) {
6895 DRM_ERROR("failed to release fence for cursor");
6896 goto fail_unpin;
6897 }
6898
6899 addr = i915_gem_obj_ggtt_offset(obj);
6900 } else {
6901 int align = IS_I830(dev) ? 16 * 1024 : 256;
6902 ret = i915_gem_attach_phys_object(dev, obj,
6903 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6904 align);
6905 if (ret) {
6906 DRM_ERROR("failed to attach phys object\n");
6907 goto fail_locked;
6908 }
6909 addr = obj->phys_obj->handle->busaddr;
6910 }
6911
6912 if (IS_GEN2(dev))
6913 I915_WRITE(CURSIZE, (height << 12) | width);
6914
6915 finish:
6916 if (intel_crtc->cursor_bo) {
6917 if (dev_priv->info->cursor_needs_physical) {
6918 if (intel_crtc->cursor_bo != obj)
6919 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6920 } else
6921 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6922 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6923 }
6924
6925 mutex_unlock(&dev->struct_mutex);
6926
6927 intel_crtc->cursor_addr = addr;
6928 intel_crtc->cursor_bo = obj;
6929 intel_crtc->cursor_width = width;
6930 intel_crtc->cursor_height = height;
6931
6932 if (intel_crtc->active)
6933 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6934
6935 return 0;
6936 fail_unpin:
6937 i915_gem_object_unpin_from_display_plane(obj);
6938 fail_locked:
6939 mutex_unlock(&dev->struct_mutex);
6940 fail:
6941 drm_gem_object_unreference_unlocked(&obj->base);
6942 return ret;
6943 }
6944
6945 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6946 {
6947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6948
6949 intel_crtc->cursor_x = x;
6950 intel_crtc->cursor_y = y;
6951
6952 if (intel_crtc->active)
6953 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6954
6955 return 0;
6956 }
6957
6958 /** Sets the color ramps on behalf of RandR */
6959 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6960 u16 blue, int regno)
6961 {
6962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6963
6964 intel_crtc->lut_r[regno] = red >> 8;
6965 intel_crtc->lut_g[regno] = green >> 8;
6966 intel_crtc->lut_b[regno] = blue >> 8;
6967 }
6968
6969 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6970 u16 *blue, int regno)
6971 {
6972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973
6974 *red = intel_crtc->lut_r[regno] << 8;
6975 *green = intel_crtc->lut_g[regno] << 8;
6976 *blue = intel_crtc->lut_b[regno] << 8;
6977 }
6978
6979 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6980 u16 *blue, uint32_t start, uint32_t size)
6981 {
6982 int end = (start + size > 256) ? 256 : start + size, i;
6983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6984
6985 for (i = start; i < end; i++) {
6986 intel_crtc->lut_r[i] = red[i] >> 8;
6987 intel_crtc->lut_g[i] = green[i] >> 8;
6988 intel_crtc->lut_b[i] = blue[i] >> 8;
6989 }
6990
6991 intel_crtc_load_lut(crtc);
6992 }
6993
6994 /* VESA 640x480x72Hz mode to set on the pipe */
6995 static struct drm_display_mode load_detect_mode = {
6996 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6997 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6998 };
6999
7000 static struct drm_framebuffer *
7001 intel_framebuffer_create(struct drm_device *dev,
7002 struct drm_mode_fb_cmd2 *mode_cmd,
7003 struct drm_i915_gem_object *obj)
7004 {
7005 struct intel_framebuffer *intel_fb;
7006 int ret;
7007
7008 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7009 if (!intel_fb) {
7010 drm_gem_object_unreference_unlocked(&obj->base);
7011 return ERR_PTR(-ENOMEM);
7012 }
7013
7014 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7015 if (ret) {
7016 drm_gem_object_unreference_unlocked(&obj->base);
7017 kfree(intel_fb);
7018 return ERR_PTR(ret);
7019 }
7020
7021 return &intel_fb->base;
7022 }
7023
7024 static u32
7025 intel_framebuffer_pitch_for_width(int width, int bpp)
7026 {
7027 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7028 return ALIGN(pitch, 64);
7029 }
7030
7031 static u32
7032 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7033 {
7034 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7035 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7036 }
7037
7038 static struct drm_framebuffer *
7039 intel_framebuffer_create_for_mode(struct drm_device *dev,
7040 struct drm_display_mode *mode,
7041 int depth, int bpp)
7042 {
7043 struct drm_i915_gem_object *obj;
7044 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7045
7046 obj = i915_gem_alloc_object(dev,
7047 intel_framebuffer_size_for_mode(mode, bpp));
7048 if (obj == NULL)
7049 return ERR_PTR(-ENOMEM);
7050
7051 mode_cmd.width = mode->hdisplay;
7052 mode_cmd.height = mode->vdisplay;
7053 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7054 bpp);
7055 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7056
7057 return intel_framebuffer_create(dev, &mode_cmd, obj);
7058 }
7059
7060 static struct drm_framebuffer *
7061 mode_fits_in_fbdev(struct drm_device *dev,
7062 struct drm_display_mode *mode)
7063 {
7064 struct drm_i915_private *dev_priv = dev->dev_private;
7065 struct drm_i915_gem_object *obj;
7066 struct drm_framebuffer *fb;
7067
7068 if (dev_priv->fbdev == NULL)
7069 return NULL;
7070
7071 obj = dev_priv->fbdev->ifb.obj;
7072 if (obj == NULL)
7073 return NULL;
7074
7075 fb = &dev_priv->fbdev->ifb.base;
7076 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7077 fb->bits_per_pixel))
7078 return NULL;
7079
7080 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7081 return NULL;
7082
7083 return fb;
7084 }
7085
7086 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7087 struct drm_display_mode *mode,
7088 struct intel_load_detect_pipe *old)
7089 {
7090 struct intel_crtc *intel_crtc;
7091 struct intel_encoder *intel_encoder =
7092 intel_attached_encoder(connector);
7093 struct drm_crtc *possible_crtc;
7094 struct drm_encoder *encoder = &intel_encoder->base;
7095 struct drm_crtc *crtc = NULL;
7096 struct drm_device *dev = encoder->dev;
7097 struct drm_framebuffer *fb;
7098 int i = -1;
7099
7100 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7101 connector->base.id, drm_get_connector_name(connector),
7102 encoder->base.id, drm_get_encoder_name(encoder));
7103
7104 /*
7105 * Algorithm gets a little messy:
7106 *
7107 * - if the connector already has an assigned crtc, use it (but make
7108 * sure it's on first)
7109 *
7110 * - try to find the first unused crtc that can drive this connector,
7111 * and use that if we find one
7112 */
7113
7114 /* See if we already have a CRTC for this connector */
7115 if (encoder->crtc) {
7116 crtc = encoder->crtc;
7117
7118 mutex_lock(&crtc->mutex);
7119
7120 old->dpms_mode = connector->dpms;
7121 old->load_detect_temp = false;
7122
7123 /* Make sure the crtc and connector are running */
7124 if (connector->dpms != DRM_MODE_DPMS_ON)
7125 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7126
7127 return true;
7128 }
7129
7130 /* Find an unused one (if possible) */
7131 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7132 i++;
7133 if (!(encoder->possible_crtcs & (1 << i)))
7134 continue;
7135 if (!possible_crtc->enabled) {
7136 crtc = possible_crtc;
7137 break;
7138 }
7139 }
7140
7141 /*
7142 * If we didn't find an unused CRTC, don't use any.
7143 */
7144 if (!crtc) {
7145 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7146 return false;
7147 }
7148
7149 mutex_lock(&crtc->mutex);
7150 intel_encoder->new_crtc = to_intel_crtc(crtc);
7151 to_intel_connector(connector)->new_encoder = intel_encoder;
7152
7153 intel_crtc = to_intel_crtc(crtc);
7154 old->dpms_mode = connector->dpms;
7155 old->load_detect_temp = true;
7156 old->release_fb = NULL;
7157
7158 if (!mode)
7159 mode = &load_detect_mode;
7160
7161 /* We need a framebuffer large enough to accommodate all accesses
7162 * that the plane may generate whilst we perform load detection.
7163 * We can not rely on the fbcon either being present (we get called
7164 * during its initialisation to detect all boot displays, or it may
7165 * not even exist) or that it is large enough to satisfy the
7166 * requested mode.
7167 */
7168 fb = mode_fits_in_fbdev(dev, mode);
7169 if (fb == NULL) {
7170 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7171 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7172 old->release_fb = fb;
7173 } else
7174 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7175 if (IS_ERR(fb)) {
7176 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7177 mutex_unlock(&crtc->mutex);
7178 return false;
7179 }
7180
7181 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7182 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7183 if (old->release_fb)
7184 old->release_fb->funcs->destroy(old->release_fb);
7185 mutex_unlock(&crtc->mutex);
7186 return false;
7187 }
7188
7189 /* let the connector get through one full cycle before testing */
7190 intel_wait_for_vblank(dev, intel_crtc->pipe);
7191 return true;
7192 }
7193
7194 void intel_release_load_detect_pipe(struct drm_connector *connector,
7195 struct intel_load_detect_pipe *old)
7196 {
7197 struct intel_encoder *intel_encoder =
7198 intel_attached_encoder(connector);
7199 struct drm_encoder *encoder = &intel_encoder->base;
7200 struct drm_crtc *crtc = encoder->crtc;
7201
7202 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7203 connector->base.id, drm_get_connector_name(connector),
7204 encoder->base.id, drm_get_encoder_name(encoder));
7205
7206 if (old->load_detect_temp) {
7207 to_intel_connector(connector)->new_encoder = NULL;
7208 intel_encoder->new_crtc = NULL;
7209 intel_set_mode(crtc, NULL, 0, 0, NULL);
7210
7211 if (old->release_fb) {
7212 drm_framebuffer_unregister_private(old->release_fb);
7213 drm_framebuffer_unreference(old->release_fb);
7214 }
7215
7216 mutex_unlock(&crtc->mutex);
7217 return;
7218 }
7219
7220 /* Switch crtc and encoder back off if necessary */
7221 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7222 connector->funcs->dpms(connector, old->dpms_mode);
7223
7224 mutex_unlock(&crtc->mutex);
7225 }
7226
7227 /* Returns the clock of the currently programmed mode of the given pipe. */
7228 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7229 struct intel_crtc_config *pipe_config)
7230 {
7231 struct drm_device *dev = crtc->base.dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 int pipe = pipe_config->cpu_transcoder;
7234 u32 dpll = I915_READ(DPLL(pipe));
7235 u32 fp;
7236 intel_clock_t clock;
7237
7238 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7239 fp = I915_READ(FP0(pipe));
7240 else
7241 fp = I915_READ(FP1(pipe));
7242
7243 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7244 if (IS_PINEVIEW(dev)) {
7245 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7246 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7247 } else {
7248 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7249 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7250 }
7251
7252 if (!IS_GEN2(dev)) {
7253 if (IS_PINEVIEW(dev))
7254 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7255 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7256 else
7257 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7258 DPLL_FPA01_P1_POST_DIV_SHIFT);
7259
7260 switch (dpll & DPLL_MODE_MASK) {
7261 case DPLLB_MODE_DAC_SERIAL:
7262 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7263 5 : 10;
7264 break;
7265 case DPLLB_MODE_LVDS:
7266 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7267 7 : 14;
7268 break;
7269 default:
7270 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7271 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7272 pipe_config->adjusted_mode.clock = 0;
7273 return;
7274 }
7275
7276 if (IS_PINEVIEW(dev))
7277 pineview_clock(96000, &clock);
7278 else
7279 i9xx_clock(96000, &clock);
7280 } else {
7281 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7282
7283 if (is_lvds) {
7284 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7285 DPLL_FPA01_P1_POST_DIV_SHIFT);
7286 clock.p2 = 14;
7287
7288 if ((dpll & PLL_REF_INPUT_MASK) ==
7289 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7290 /* XXX: might not be 66MHz */
7291 i9xx_clock(66000, &clock);
7292 } else
7293 i9xx_clock(48000, &clock);
7294 } else {
7295 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7296 clock.p1 = 2;
7297 else {
7298 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7299 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7300 }
7301 if (dpll & PLL_P2_DIVIDE_BY_4)
7302 clock.p2 = 4;
7303 else
7304 clock.p2 = 2;
7305
7306 i9xx_clock(48000, &clock);
7307 }
7308 }
7309
7310 pipe_config->adjusted_mode.clock = clock.dot;
7311 }
7312
7313 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7314 struct intel_crtc_config *pipe_config)
7315 {
7316 struct drm_device *dev = crtc->base.dev;
7317 struct drm_i915_private *dev_priv = dev->dev_private;
7318 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7319 int link_freq, repeat;
7320 u64 clock;
7321 u32 link_m, link_n;
7322
7323 repeat = pipe_config->pixel_multiplier;
7324
7325 /*
7326 * The calculation for the data clock is:
7327 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7328 * But we want to avoid losing precison if possible, so:
7329 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7330 *
7331 * and the link clock is simpler:
7332 * link_clock = (m * link_clock * repeat) / n
7333 */
7334
7335 /*
7336 * We need to get the FDI or DP link clock here to derive
7337 * the M/N dividers.
7338 *
7339 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7340 * For DP, it's either 1.62GHz or 2.7GHz.
7341 * We do our calculations in 10*MHz since we don't need much precison.
7342 */
7343 if (pipe_config->has_pch_encoder)
7344 link_freq = intel_fdi_link_freq(dev) * 10000;
7345 else
7346 link_freq = pipe_config->port_clock;
7347
7348 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7349 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7350
7351 if (!link_m || !link_n)
7352 return;
7353
7354 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7355 do_div(clock, link_n);
7356
7357 pipe_config->adjusted_mode.clock = clock;
7358 }
7359
7360 /** Returns the currently programmed mode of the given pipe. */
7361 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7362 struct drm_crtc *crtc)
7363 {
7364 struct drm_i915_private *dev_priv = dev->dev_private;
7365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7366 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7367 struct drm_display_mode *mode;
7368 struct intel_crtc_config pipe_config;
7369 int htot = I915_READ(HTOTAL(cpu_transcoder));
7370 int hsync = I915_READ(HSYNC(cpu_transcoder));
7371 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7372 int vsync = I915_READ(VSYNC(cpu_transcoder));
7373
7374 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7375 if (!mode)
7376 return NULL;
7377
7378 /*
7379 * Construct a pipe_config sufficient for getting the clock info
7380 * back out of crtc_clock_get.
7381 *
7382 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7383 * to use a real value here instead.
7384 */
7385 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7386 pipe_config.pixel_multiplier = 1;
7387 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7388
7389 mode->clock = pipe_config.adjusted_mode.clock;
7390 mode->hdisplay = (htot & 0xffff) + 1;
7391 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7392 mode->hsync_start = (hsync & 0xffff) + 1;
7393 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7394 mode->vdisplay = (vtot & 0xffff) + 1;
7395 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7396 mode->vsync_start = (vsync & 0xffff) + 1;
7397 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7398
7399 drm_mode_set_name(mode);
7400
7401 return mode;
7402 }
7403
7404 static void intel_increase_pllclock(struct drm_crtc *crtc)
7405 {
7406 struct drm_device *dev = crtc->dev;
7407 drm_i915_private_t *dev_priv = dev->dev_private;
7408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7409 int pipe = intel_crtc->pipe;
7410 int dpll_reg = DPLL(pipe);
7411 int dpll;
7412
7413 if (HAS_PCH_SPLIT(dev))
7414 return;
7415
7416 if (!dev_priv->lvds_downclock_avail)
7417 return;
7418
7419 dpll = I915_READ(dpll_reg);
7420 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7421 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7422
7423 assert_panel_unlocked(dev_priv, pipe);
7424
7425 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7426 I915_WRITE(dpll_reg, dpll);
7427 intel_wait_for_vblank(dev, pipe);
7428
7429 dpll = I915_READ(dpll_reg);
7430 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7431 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7432 }
7433 }
7434
7435 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7436 {
7437 struct drm_device *dev = crtc->dev;
7438 drm_i915_private_t *dev_priv = dev->dev_private;
7439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7440
7441 if (HAS_PCH_SPLIT(dev))
7442 return;
7443
7444 if (!dev_priv->lvds_downclock_avail)
7445 return;
7446
7447 /*
7448 * Since this is called by a timer, we should never get here in
7449 * the manual case.
7450 */
7451 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7452 int pipe = intel_crtc->pipe;
7453 int dpll_reg = DPLL(pipe);
7454 int dpll;
7455
7456 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7457
7458 assert_panel_unlocked(dev_priv, pipe);
7459
7460 dpll = I915_READ(dpll_reg);
7461 dpll |= DISPLAY_RATE_SELECT_FPA1;
7462 I915_WRITE(dpll_reg, dpll);
7463 intel_wait_for_vblank(dev, pipe);
7464 dpll = I915_READ(dpll_reg);
7465 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7466 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7467 }
7468
7469 }
7470
7471 void intel_mark_busy(struct drm_device *dev)
7472 {
7473 struct drm_i915_private *dev_priv = dev->dev_private;
7474
7475 hsw_package_c8_gpu_busy(dev_priv);
7476 i915_update_gfx_val(dev_priv);
7477 }
7478
7479 void intel_mark_idle(struct drm_device *dev)
7480 {
7481 struct drm_i915_private *dev_priv = dev->dev_private;
7482 struct drm_crtc *crtc;
7483
7484 hsw_package_c8_gpu_idle(dev_priv);
7485
7486 if (!i915_powersave)
7487 return;
7488
7489 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7490 if (!crtc->fb)
7491 continue;
7492
7493 intel_decrease_pllclock(crtc);
7494 }
7495 }
7496
7497 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7498 struct intel_ring_buffer *ring)
7499 {
7500 struct drm_device *dev = obj->base.dev;
7501 struct drm_crtc *crtc;
7502
7503 if (!i915_powersave)
7504 return;
7505
7506 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7507 if (!crtc->fb)
7508 continue;
7509
7510 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7511 continue;
7512
7513 intel_increase_pllclock(crtc);
7514 if (ring && intel_fbc_enabled(dev))
7515 ring->fbc_dirty = true;
7516 }
7517 }
7518
7519 static void intel_crtc_destroy(struct drm_crtc *crtc)
7520 {
7521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7522 struct drm_device *dev = crtc->dev;
7523 struct intel_unpin_work *work;
7524 unsigned long flags;
7525
7526 spin_lock_irqsave(&dev->event_lock, flags);
7527 work = intel_crtc->unpin_work;
7528 intel_crtc->unpin_work = NULL;
7529 spin_unlock_irqrestore(&dev->event_lock, flags);
7530
7531 if (work) {
7532 cancel_work_sync(&work->work);
7533 kfree(work);
7534 }
7535
7536 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7537
7538 drm_crtc_cleanup(crtc);
7539
7540 kfree(intel_crtc);
7541 }
7542
7543 static void intel_unpin_work_fn(struct work_struct *__work)
7544 {
7545 struct intel_unpin_work *work =
7546 container_of(__work, struct intel_unpin_work, work);
7547 struct drm_device *dev = work->crtc->dev;
7548
7549 mutex_lock(&dev->struct_mutex);
7550 intel_unpin_fb_obj(work->old_fb_obj);
7551 drm_gem_object_unreference(&work->pending_flip_obj->base);
7552 drm_gem_object_unreference(&work->old_fb_obj->base);
7553
7554 intel_update_fbc(dev);
7555 mutex_unlock(&dev->struct_mutex);
7556
7557 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7558 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7559
7560 kfree(work);
7561 }
7562
7563 static void do_intel_finish_page_flip(struct drm_device *dev,
7564 struct drm_crtc *crtc)
7565 {
7566 drm_i915_private_t *dev_priv = dev->dev_private;
7567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7568 struct intel_unpin_work *work;
7569 unsigned long flags;
7570
7571 /* Ignore early vblank irqs */
7572 if (intel_crtc == NULL)
7573 return;
7574
7575 spin_lock_irqsave(&dev->event_lock, flags);
7576 work = intel_crtc->unpin_work;
7577
7578 /* Ensure we don't miss a work->pending update ... */
7579 smp_rmb();
7580
7581 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7582 spin_unlock_irqrestore(&dev->event_lock, flags);
7583 return;
7584 }
7585
7586 /* and that the unpin work is consistent wrt ->pending. */
7587 smp_rmb();
7588
7589 intel_crtc->unpin_work = NULL;
7590
7591 if (work->event)
7592 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7593
7594 drm_vblank_put(dev, intel_crtc->pipe);
7595
7596 spin_unlock_irqrestore(&dev->event_lock, flags);
7597
7598 wake_up_all(&dev_priv->pending_flip_queue);
7599
7600 queue_work(dev_priv->wq, &work->work);
7601
7602 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7603 }
7604
7605 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7606 {
7607 drm_i915_private_t *dev_priv = dev->dev_private;
7608 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7609
7610 do_intel_finish_page_flip(dev, crtc);
7611 }
7612
7613 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7614 {
7615 drm_i915_private_t *dev_priv = dev->dev_private;
7616 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7617
7618 do_intel_finish_page_flip(dev, crtc);
7619 }
7620
7621 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7622 {
7623 drm_i915_private_t *dev_priv = dev->dev_private;
7624 struct intel_crtc *intel_crtc =
7625 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7626 unsigned long flags;
7627
7628 /* NB: An MMIO update of the plane base pointer will also
7629 * generate a page-flip completion irq, i.e. every modeset
7630 * is also accompanied by a spurious intel_prepare_page_flip().
7631 */
7632 spin_lock_irqsave(&dev->event_lock, flags);
7633 if (intel_crtc->unpin_work)
7634 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7635 spin_unlock_irqrestore(&dev->event_lock, flags);
7636 }
7637
7638 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7639 {
7640 /* Ensure that the work item is consistent when activating it ... */
7641 smp_wmb();
7642 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7643 /* and that it is marked active as soon as the irq could fire. */
7644 smp_wmb();
7645 }
7646
7647 static int intel_gen2_queue_flip(struct drm_device *dev,
7648 struct drm_crtc *crtc,
7649 struct drm_framebuffer *fb,
7650 struct drm_i915_gem_object *obj,
7651 uint32_t flags)
7652 {
7653 struct drm_i915_private *dev_priv = dev->dev_private;
7654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7655 u32 flip_mask;
7656 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7657 int ret;
7658
7659 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7660 if (ret)
7661 goto err;
7662
7663 ret = intel_ring_begin(ring, 6);
7664 if (ret)
7665 goto err_unpin;
7666
7667 /* Can't queue multiple flips, so wait for the previous
7668 * one to finish before executing the next.
7669 */
7670 if (intel_crtc->plane)
7671 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7672 else
7673 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7674 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7675 intel_ring_emit(ring, MI_NOOP);
7676 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7677 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7678 intel_ring_emit(ring, fb->pitches[0]);
7679 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7680 intel_ring_emit(ring, 0); /* aux display base address, unused */
7681
7682 intel_mark_page_flip_active(intel_crtc);
7683 intel_ring_advance(ring);
7684 return 0;
7685
7686 err_unpin:
7687 intel_unpin_fb_obj(obj);
7688 err:
7689 return ret;
7690 }
7691
7692 static int intel_gen3_queue_flip(struct drm_device *dev,
7693 struct drm_crtc *crtc,
7694 struct drm_framebuffer *fb,
7695 struct drm_i915_gem_object *obj,
7696 uint32_t flags)
7697 {
7698 struct drm_i915_private *dev_priv = dev->dev_private;
7699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7700 u32 flip_mask;
7701 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7702 int ret;
7703
7704 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7705 if (ret)
7706 goto err;
7707
7708 ret = intel_ring_begin(ring, 6);
7709 if (ret)
7710 goto err_unpin;
7711
7712 if (intel_crtc->plane)
7713 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7714 else
7715 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7716 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7717 intel_ring_emit(ring, MI_NOOP);
7718 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7719 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7720 intel_ring_emit(ring, fb->pitches[0]);
7721 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7722 intel_ring_emit(ring, MI_NOOP);
7723
7724 intel_mark_page_flip_active(intel_crtc);
7725 intel_ring_advance(ring);
7726 return 0;
7727
7728 err_unpin:
7729 intel_unpin_fb_obj(obj);
7730 err:
7731 return ret;
7732 }
7733
7734 static int intel_gen4_queue_flip(struct drm_device *dev,
7735 struct drm_crtc *crtc,
7736 struct drm_framebuffer *fb,
7737 struct drm_i915_gem_object *obj,
7738 uint32_t flags)
7739 {
7740 struct drm_i915_private *dev_priv = dev->dev_private;
7741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7742 uint32_t pf, pipesrc;
7743 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7744 int ret;
7745
7746 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7747 if (ret)
7748 goto err;
7749
7750 ret = intel_ring_begin(ring, 4);
7751 if (ret)
7752 goto err_unpin;
7753
7754 /* i965+ uses the linear or tiled offsets from the
7755 * Display Registers (which do not change across a page-flip)
7756 * so we need only reprogram the base address.
7757 */
7758 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7759 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7760 intel_ring_emit(ring, fb->pitches[0]);
7761 intel_ring_emit(ring,
7762 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7763 obj->tiling_mode);
7764
7765 /* XXX Enabling the panel-fitter across page-flip is so far
7766 * untested on non-native modes, so ignore it for now.
7767 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7768 */
7769 pf = 0;
7770 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7771 intel_ring_emit(ring, pf | pipesrc);
7772
7773 intel_mark_page_flip_active(intel_crtc);
7774 intel_ring_advance(ring);
7775 return 0;
7776
7777 err_unpin:
7778 intel_unpin_fb_obj(obj);
7779 err:
7780 return ret;
7781 }
7782
7783 static int intel_gen6_queue_flip(struct drm_device *dev,
7784 struct drm_crtc *crtc,
7785 struct drm_framebuffer *fb,
7786 struct drm_i915_gem_object *obj,
7787 uint32_t flags)
7788 {
7789 struct drm_i915_private *dev_priv = dev->dev_private;
7790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7791 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7792 uint32_t pf, pipesrc;
7793 int ret;
7794
7795 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7796 if (ret)
7797 goto err;
7798
7799 ret = intel_ring_begin(ring, 4);
7800 if (ret)
7801 goto err_unpin;
7802
7803 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7804 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7805 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7806 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7807
7808 /* Contrary to the suggestions in the documentation,
7809 * "Enable Panel Fitter" does not seem to be required when page
7810 * flipping with a non-native mode, and worse causes a normal
7811 * modeset to fail.
7812 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7813 */
7814 pf = 0;
7815 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7816 intel_ring_emit(ring, pf | pipesrc);
7817
7818 intel_mark_page_flip_active(intel_crtc);
7819 intel_ring_advance(ring);
7820 return 0;
7821
7822 err_unpin:
7823 intel_unpin_fb_obj(obj);
7824 err:
7825 return ret;
7826 }
7827
7828 static int intel_gen7_queue_flip(struct drm_device *dev,
7829 struct drm_crtc *crtc,
7830 struct drm_framebuffer *fb,
7831 struct drm_i915_gem_object *obj,
7832 uint32_t flags)
7833 {
7834 struct drm_i915_private *dev_priv = dev->dev_private;
7835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7836 struct intel_ring_buffer *ring;
7837 uint32_t plane_bit = 0;
7838 int len, ret;
7839
7840 ring = obj->ring;
7841 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7842 ring = &dev_priv->ring[BCS];
7843
7844 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7845 if (ret)
7846 goto err;
7847
7848 switch(intel_crtc->plane) {
7849 case PLANE_A:
7850 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7851 break;
7852 case PLANE_B:
7853 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7854 break;
7855 case PLANE_C:
7856 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7857 break;
7858 default:
7859 WARN_ONCE(1, "unknown plane in flip command\n");
7860 ret = -ENODEV;
7861 goto err_unpin;
7862 }
7863
7864 len = 4;
7865 if (ring->id == RCS)
7866 len += 6;
7867
7868 ret = intel_ring_begin(ring, len);
7869 if (ret)
7870 goto err_unpin;
7871
7872 /* Unmask the flip-done completion message. Note that the bspec says that
7873 * we should do this for both the BCS and RCS, and that we must not unmask
7874 * more than one flip event at any time (or ensure that one flip message
7875 * can be sent by waiting for flip-done prior to queueing new flips).
7876 * Experimentation says that BCS works despite DERRMR masking all
7877 * flip-done completion events and that unmasking all planes at once
7878 * for the RCS also doesn't appear to drop events. Setting the DERRMR
7879 * to zero does lead to lockups within MI_DISPLAY_FLIP.
7880 */
7881 if (ring->id == RCS) {
7882 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7883 intel_ring_emit(ring, DERRMR);
7884 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7885 DERRMR_PIPEB_PRI_FLIP_DONE |
7886 DERRMR_PIPEC_PRI_FLIP_DONE));
7887 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7888 intel_ring_emit(ring, DERRMR);
7889 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7890 }
7891
7892 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7893 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7894 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7895 intel_ring_emit(ring, (MI_NOOP));
7896
7897 intel_mark_page_flip_active(intel_crtc);
7898 intel_ring_advance(ring);
7899 return 0;
7900
7901 err_unpin:
7902 intel_unpin_fb_obj(obj);
7903 err:
7904 return ret;
7905 }
7906
7907 static int intel_default_queue_flip(struct drm_device *dev,
7908 struct drm_crtc *crtc,
7909 struct drm_framebuffer *fb,
7910 struct drm_i915_gem_object *obj,
7911 uint32_t flags)
7912 {
7913 return -ENODEV;
7914 }
7915
7916 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7917 struct drm_framebuffer *fb,
7918 struct drm_pending_vblank_event *event,
7919 uint32_t page_flip_flags)
7920 {
7921 struct drm_device *dev = crtc->dev;
7922 struct drm_i915_private *dev_priv = dev->dev_private;
7923 struct drm_framebuffer *old_fb = crtc->fb;
7924 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7926 struct intel_unpin_work *work;
7927 unsigned long flags;
7928 int ret;
7929
7930 /* Can't change pixel format via MI display flips. */
7931 if (fb->pixel_format != crtc->fb->pixel_format)
7932 return -EINVAL;
7933
7934 /*
7935 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7936 * Note that pitch changes could also affect these register.
7937 */
7938 if (INTEL_INFO(dev)->gen > 3 &&
7939 (fb->offsets[0] != crtc->fb->offsets[0] ||
7940 fb->pitches[0] != crtc->fb->pitches[0]))
7941 return -EINVAL;
7942
7943 work = kzalloc(sizeof *work, GFP_KERNEL);
7944 if (work == NULL)
7945 return -ENOMEM;
7946
7947 work->event = event;
7948 work->crtc = crtc;
7949 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7950 INIT_WORK(&work->work, intel_unpin_work_fn);
7951
7952 ret = drm_vblank_get(dev, intel_crtc->pipe);
7953 if (ret)
7954 goto free_work;
7955
7956 /* We borrow the event spin lock for protecting unpin_work */
7957 spin_lock_irqsave(&dev->event_lock, flags);
7958 if (intel_crtc->unpin_work) {
7959 spin_unlock_irqrestore(&dev->event_lock, flags);
7960 kfree(work);
7961 drm_vblank_put(dev, intel_crtc->pipe);
7962
7963 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7964 return -EBUSY;
7965 }
7966 intel_crtc->unpin_work = work;
7967 spin_unlock_irqrestore(&dev->event_lock, flags);
7968
7969 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7970 flush_workqueue(dev_priv->wq);
7971
7972 ret = i915_mutex_lock_interruptible(dev);
7973 if (ret)
7974 goto cleanup;
7975
7976 /* Reference the objects for the scheduled work. */
7977 drm_gem_object_reference(&work->old_fb_obj->base);
7978 drm_gem_object_reference(&obj->base);
7979
7980 crtc->fb = fb;
7981
7982 work->pending_flip_obj = obj;
7983
7984 work->enable_stall_check = true;
7985
7986 atomic_inc(&intel_crtc->unpin_work_count);
7987 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7988
7989 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
7990 if (ret)
7991 goto cleanup_pending;
7992
7993 intel_disable_fbc(dev);
7994 intel_mark_fb_busy(obj, NULL);
7995 mutex_unlock(&dev->struct_mutex);
7996
7997 trace_i915_flip_request(intel_crtc->plane, obj);
7998
7999 return 0;
8000
8001 cleanup_pending:
8002 atomic_dec(&intel_crtc->unpin_work_count);
8003 crtc->fb = old_fb;
8004 drm_gem_object_unreference(&work->old_fb_obj->base);
8005 drm_gem_object_unreference(&obj->base);
8006 mutex_unlock(&dev->struct_mutex);
8007
8008 cleanup:
8009 spin_lock_irqsave(&dev->event_lock, flags);
8010 intel_crtc->unpin_work = NULL;
8011 spin_unlock_irqrestore(&dev->event_lock, flags);
8012
8013 drm_vblank_put(dev, intel_crtc->pipe);
8014 free_work:
8015 kfree(work);
8016
8017 return ret;
8018 }
8019
8020 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8021 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8022 .load_lut = intel_crtc_load_lut,
8023 };
8024
8025 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8026 struct drm_crtc *crtc)
8027 {
8028 struct drm_device *dev;
8029 struct drm_crtc *tmp;
8030 int crtc_mask = 1;
8031
8032 WARN(!crtc, "checking null crtc?\n");
8033
8034 dev = crtc->dev;
8035
8036 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8037 if (tmp == crtc)
8038 break;
8039 crtc_mask <<= 1;
8040 }
8041
8042 if (encoder->possible_crtcs & crtc_mask)
8043 return true;
8044 return false;
8045 }
8046
8047 /**
8048 * intel_modeset_update_staged_output_state
8049 *
8050 * Updates the staged output configuration state, e.g. after we've read out the
8051 * current hw state.
8052 */
8053 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8054 {
8055 struct intel_encoder *encoder;
8056 struct intel_connector *connector;
8057
8058 list_for_each_entry(connector, &dev->mode_config.connector_list,
8059 base.head) {
8060 connector->new_encoder =
8061 to_intel_encoder(connector->base.encoder);
8062 }
8063
8064 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8065 base.head) {
8066 encoder->new_crtc =
8067 to_intel_crtc(encoder->base.crtc);
8068 }
8069 }
8070
8071 /**
8072 * intel_modeset_commit_output_state
8073 *
8074 * This function copies the stage display pipe configuration to the real one.
8075 */
8076 static void intel_modeset_commit_output_state(struct drm_device *dev)
8077 {
8078 struct intel_encoder *encoder;
8079 struct intel_connector *connector;
8080
8081 list_for_each_entry(connector, &dev->mode_config.connector_list,
8082 base.head) {
8083 connector->base.encoder = &connector->new_encoder->base;
8084 }
8085
8086 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8087 base.head) {
8088 encoder->base.crtc = &encoder->new_crtc->base;
8089 }
8090 }
8091
8092 static void
8093 connected_sink_compute_bpp(struct intel_connector * connector,
8094 struct intel_crtc_config *pipe_config)
8095 {
8096 int bpp = pipe_config->pipe_bpp;
8097
8098 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8099 connector->base.base.id,
8100 drm_get_connector_name(&connector->base));
8101
8102 /* Don't use an invalid EDID bpc value */
8103 if (connector->base.display_info.bpc &&
8104 connector->base.display_info.bpc * 3 < bpp) {
8105 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8106 bpp, connector->base.display_info.bpc*3);
8107 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8108 }
8109
8110 /* Clamp bpp to 8 on screens without EDID 1.4 */
8111 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8112 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8113 bpp);
8114 pipe_config->pipe_bpp = 24;
8115 }
8116 }
8117
8118 static int
8119 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8120 struct drm_framebuffer *fb,
8121 struct intel_crtc_config *pipe_config)
8122 {
8123 struct drm_device *dev = crtc->base.dev;
8124 struct intel_connector *connector;
8125 int bpp;
8126
8127 switch (fb->pixel_format) {
8128 case DRM_FORMAT_C8:
8129 bpp = 8*3; /* since we go through a colormap */
8130 break;
8131 case DRM_FORMAT_XRGB1555:
8132 case DRM_FORMAT_ARGB1555:
8133 /* checked in intel_framebuffer_init already */
8134 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8135 return -EINVAL;
8136 case DRM_FORMAT_RGB565:
8137 bpp = 6*3; /* min is 18bpp */
8138 break;
8139 case DRM_FORMAT_XBGR8888:
8140 case DRM_FORMAT_ABGR8888:
8141 /* checked in intel_framebuffer_init already */
8142 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8143 return -EINVAL;
8144 case DRM_FORMAT_XRGB8888:
8145 case DRM_FORMAT_ARGB8888:
8146 bpp = 8*3;
8147 break;
8148 case DRM_FORMAT_XRGB2101010:
8149 case DRM_FORMAT_ARGB2101010:
8150 case DRM_FORMAT_XBGR2101010:
8151 case DRM_FORMAT_ABGR2101010:
8152 /* checked in intel_framebuffer_init already */
8153 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8154 return -EINVAL;
8155 bpp = 10*3;
8156 break;
8157 /* TODO: gen4+ supports 16 bpc floating point, too. */
8158 default:
8159 DRM_DEBUG_KMS("unsupported depth\n");
8160 return -EINVAL;
8161 }
8162
8163 pipe_config->pipe_bpp = bpp;
8164
8165 /* Clamp display bpp to EDID value */
8166 list_for_each_entry(connector, &dev->mode_config.connector_list,
8167 base.head) {
8168 if (!connector->new_encoder ||
8169 connector->new_encoder->new_crtc != crtc)
8170 continue;
8171
8172 connected_sink_compute_bpp(connector, pipe_config);
8173 }
8174
8175 return bpp;
8176 }
8177
8178 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8179 struct intel_crtc_config *pipe_config,
8180 const char *context)
8181 {
8182 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8183 context, pipe_name(crtc->pipe));
8184
8185 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8186 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8187 pipe_config->pipe_bpp, pipe_config->dither);
8188 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8189 pipe_config->has_pch_encoder,
8190 pipe_config->fdi_lanes,
8191 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8192 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8193 pipe_config->fdi_m_n.tu);
8194 DRM_DEBUG_KMS("requested mode:\n");
8195 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8196 DRM_DEBUG_KMS("adjusted mode:\n");
8197 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8198 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8199 pipe_config->gmch_pfit.control,
8200 pipe_config->gmch_pfit.pgm_ratios,
8201 pipe_config->gmch_pfit.lvds_border_bits);
8202 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8203 pipe_config->pch_pfit.pos,
8204 pipe_config->pch_pfit.size,
8205 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8206 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8207 }
8208
8209 static bool check_encoder_cloning(struct drm_crtc *crtc)
8210 {
8211 int num_encoders = 0;
8212 bool uncloneable_encoders = false;
8213 struct intel_encoder *encoder;
8214
8215 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8216 base.head) {
8217 if (&encoder->new_crtc->base != crtc)
8218 continue;
8219
8220 num_encoders++;
8221 if (!encoder->cloneable)
8222 uncloneable_encoders = true;
8223 }
8224
8225 return !(num_encoders > 1 && uncloneable_encoders);
8226 }
8227
8228 static struct intel_crtc_config *
8229 intel_modeset_pipe_config(struct drm_crtc *crtc,
8230 struct drm_framebuffer *fb,
8231 struct drm_display_mode *mode)
8232 {
8233 struct drm_device *dev = crtc->dev;
8234 struct intel_encoder *encoder;
8235 struct intel_crtc_config *pipe_config;
8236 int plane_bpp, ret = -EINVAL;
8237 bool retry = true;
8238
8239 if (!check_encoder_cloning(crtc)) {
8240 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8241 return ERR_PTR(-EINVAL);
8242 }
8243
8244 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8245 if (!pipe_config)
8246 return ERR_PTR(-ENOMEM);
8247
8248 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8249 drm_mode_copy(&pipe_config->requested_mode, mode);
8250 pipe_config->cpu_transcoder =
8251 (enum transcoder) to_intel_crtc(crtc)->pipe;
8252 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8253
8254 /*
8255 * Sanitize sync polarity flags based on requested ones. If neither
8256 * positive or negative polarity is requested, treat this as meaning
8257 * negative polarity.
8258 */
8259 if (!(pipe_config->adjusted_mode.flags &
8260 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8261 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8262
8263 if (!(pipe_config->adjusted_mode.flags &
8264 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8265 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8266
8267 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8268 * plane pixel format and any sink constraints into account. Returns the
8269 * source plane bpp so that dithering can be selected on mismatches
8270 * after encoders and crtc also have had their say. */
8271 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8272 fb, pipe_config);
8273 if (plane_bpp < 0)
8274 goto fail;
8275
8276 encoder_retry:
8277 /* Ensure the port clock defaults are reset when retrying. */
8278 pipe_config->port_clock = 0;
8279 pipe_config->pixel_multiplier = 1;
8280
8281 /* Fill in default crtc timings, allow encoders to overwrite them. */
8282 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8283
8284 /* Pass our mode to the connectors and the CRTC to give them a chance to
8285 * adjust it according to limitations or connector properties, and also
8286 * a chance to reject the mode entirely.
8287 */
8288 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8289 base.head) {
8290
8291 if (&encoder->new_crtc->base != crtc)
8292 continue;
8293
8294 if (!(encoder->compute_config(encoder, pipe_config))) {
8295 DRM_DEBUG_KMS("Encoder config failure\n");
8296 goto fail;
8297 }
8298 }
8299
8300 /* Set default port clock if not overwritten by the encoder. Needs to be
8301 * done afterwards in case the encoder adjusts the mode. */
8302 if (!pipe_config->port_clock)
8303 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8304
8305 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8306 if (ret < 0) {
8307 DRM_DEBUG_KMS("CRTC fixup failed\n");
8308 goto fail;
8309 }
8310
8311 if (ret == RETRY) {
8312 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8313 ret = -EINVAL;
8314 goto fail;
8315 }
8316
8317 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8318 retry = false;
8319 goto encoder_retry;
8320 }
8321
8322 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8323 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8324 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8325
8326 return pipe_config;
8327 fail:
8328 kfree(pipe_config);
8329 return ERR_PTR(ret);
8330 }
8331
8332 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8333 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8334 static void
8335 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8336 unsigned *prepare_pipes, unsigned *disable_pipes)
8337 {
8338 struct intel_crtc *intel_crtc;
8339 struct drm_device *dev = crtc->dev;
8340 struct intel_encoder *encoder;
8341 struct intel_connector *connector;
8342 struct drm_crtc *tmp_crtc;
8343
8344 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8345
8346 /* Check which crtcs have changed outputs connected to them, these need
8347 * to be part of the prepare_pipes mask. We don't (yet) support global
8348 * modeset across multiple crtcs, so modeset_pipes will only have one
8349 * bit set at most. */
8350 list_for_each_entry(connector, &dev->mode_config.connector_list,
8351 base.head) {
8352 if (connector->base.encoder == &connector->new_encoder->base)
8353 continue;
8354
8355 if (connector->base.encoder) {
8356 tmp_crtc = connector->base.encoder->crtc;
8357
8358 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8359 }
8360
8361 if (connector->new_encoder)
8362 *prepare_pipes |=
8363 1 << connector->new_encoder->new_crtc->pipe;
8364 }
8365
8366 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8367 base.head) {
8368 if (encoder->base.crtc == &encoder->new_crtc->base)
8369 continue;
8370
8371 if (encoder->base.crtc) {
8372 tmp_crtc = encoder->base.crtc;
8373
8374 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8375 }
8376
8377 if (encoder->new_crtc)
8378 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8379 }
8380
8381 /* Check for any pipes that will be fully disabled ... */
8382 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8383 base.head) {
8384 bool used = false;
8385
8386 /* Don't try to disable disabled crtcs. */
8387 if (!intel_crtc->base.enabled)
8388 continue;
8389
8390 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8391 base.head) {
8392 if (encoder->new_crtc == intel_crtc)
8393 used = true;
8394 }
8395
8396 if (!used)
8397 *disable_pipes |= 1 << intel_crtc->pipe;
8398 }
8399
8400
8401 /* set_mode is also used to update properties on life display pipes. */
8402 intel_crtc = to_intel_crtc(crtc);
8403 if (crtc->enabled)
8404 *prepare_pipes |= 1 << intel_crtc->pipe;
8405
8406 /*
8407 * For simplicity do a full modeset on any pipe where the output routing
8408 * changed. We could be more clever, but that would require us to be
8409 * more careful with calling the relevant encoder->mode_set functions.
8410 */
8411 if (*prepare_pipes)
8412 *modeset_pipes = *prepare_pipes;
8413
8414 /* ... and mask these out. */
8415 *modeset_pipes &= ~(*disable_pipes);
8416 *prepare_pipes &= ~(*disable_pipes);
8417
8418 /*
8419 * HACK: We don't (yet) fully support global modesets. intel_set_config
8420 * obies this rule, but the modeset restore mode of
8421 * intel_modeset_setup_hw_state does not.
8422 */
8423 *modeset_pipes &= 1 << intel_crtc->pipe;
8424 *prepare_pipes &= 1 << intel_crtc->pipe;
8425
8426 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8427 *modeset_pipes, *prepare_pipes, *disable_pipes);
8428 }
8429
8430 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8431 {
8432 struct drm_encoder *encoder;
8433 struct drm_device *dev = crtc->dev;
8434
8435 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8436 if (encoder->crtc == crtc)
8437 return true;
8438
8439 return false;
8440 }
8441
8442 static void
8443 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8444 {
8445 struct intel_encoder *intel_encoder;
8446 struct intel_crtc *intel_crtc;
8447 struct drm_connector *connector;
8448
8449 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8450 base.head) {
8451 if (!intel_encoder->base.crtc)
8452 continue;
8453
8454 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8455
8456 if (prepare_pipes & (1 << intel_crtc->pipe))
8457 intel_encoder->connectors_active = false;
8458 }
8459
8460 intel_modeset_commit_output_state(dev);
8461
8462 /* Update computed state. */
8463 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8464 base.head) {
8465 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8466 }
8467
8468 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8469 if (!connector->encoder || !connector->encoder->crtc)
8470 continue;
8471
8472 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8473
8474 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8475 struct drm_property *dpms_property =
8476 dev->mode_config.dpms_property;
8477
8478 connector->dpms = DRM_MODE_DPMS_ON;
8479 drm_object_property_set_value(&connector->base,
8480 dpms_property,
8481 DRM_MODE_DPMS_ON);
8482
8483 intel_encoder = to_intel_encoder(connector->encoder);
8484 intel_encoder->connectors_active = true;
8485 }
8486 }
8487
8488 }
8489
8490 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8491 struct intel_crtc_config *new)
8492 {
8493 int clock1, clock2, diff;
8494
8495 clock1 = cur->adjusted_mode.clock;
8496 clock2 = new->adjusted_mode.clock;
8497
8498 if (clock1 == clock2)
8499 return true;
8500
8501 if (!clock1 || !clock2)
8502 return false;
8503
8504 diff = abs(clock1 - clock2);
8505
8506 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8507 return true;
8508
8509 return false;
8510 }
8511
8512 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8513 list_for_each_entry((intel_crtc), \
8514 &(dev)->mode_config.crtc_list, \
8515 base.head) \
8516 if (mask & (1 <<(intel_crtc)->pipe))
8517
8518 static bool
8519 intel_pipe_config_compare(struct drm_device *dev,
8520 struct intel_crtc_config *current_config,
8521 struct intel_crtc_config *pipe_config)
8522 {
8523 #define PIPE_CONF_CHECK_X(name) \
8524 if (current_config->name != pipe_config->name) { \
8525 DRM_ERROR("mismatch in " #name " " \
8526 "(expected 0x%08x, found 0x%08x)\n", \
8527 current_config->name, \
8528 pipe_config->name); \
8529 return false; \
8530 }
8531
8532 #define PIPE_CONF_CHECK_I(name) \
8533 if (current_config->name != pipe_config->name) { \
8534 DRM_ERROR("mismatch in " #name " " \
8535 "(expected %i, found %i)\n", \
8536 current_config->name, \
8537 pipe_config->name); \
8538 return false; \
8539 }
8540
8541 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8542 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8543 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8544 "(expected %i, found %i)\n", \
8545 current_config->name & (mask), \
8546 pipe_config->name & (mask)); \
8547 return false; \
8548 }
8549
8550 #define PIPE_CONF_QUIRK(quirk) \
8551 ((current_config->quirks | pipe_config->quirks) & (quirk))
8552
8553 PIPE_CONF_CHECK_I(cpu_transcoder);
8554
8555 PIPE_CONF_CHECK_I(has_pch_encoder);
8556 PIPE_CONF_CHECK_I(fdi_lanes);
8557 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8558 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8559 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8560 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8561 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8562
8563 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8564 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8565 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8566 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8567 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8568 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8569
8570 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8571 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8572 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8573 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8574 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8575 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8576
8577 PIPE_CONF_CHECK_I(pixel_multiplier);
8578
8579 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8580 DRM_MODE_FLAG_INTERLACE);
8581
8582 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8583 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8584 DRM_MODE_FLAG_PHSYNC);
8585 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8586 DRM_MODE_FLAG_NHSYNC);
8587 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8588 DRM_MODE_FLAG_PVSYNC);
8589 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8590 DRM_MODE_FLAG_NVSYNC);
8591 }
8592
8593 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8594 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8595
8596 PIPE_CONF_CHECK_I(gmch_pfit.control);
8597 /* pfit ratios are autocomputed by the hw on gen4+ */
8598 if (INTEL_INFO(dev)->gen < 4)
8599 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8600 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8601 PIPE_CONF_CHECK_I(pch_pfit.enabled);
8602 if (current_config->pch_pfit.enabled) {
8603 PIPE_CONF_CHECK_I(pch_pfit.pos);
8604 PIPE_CONF_CHECK_I(pch_pfit.size);
8605 }
8606
8607 PIPE_CONF_CHECK_I(ips_enabled);
8608
8609 PIPE_CONF_CHECK_I(shared_dpll);
8610 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8611 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8612 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8613 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8614
8615 #undef PIPE_CONF_CHECK_X
8616 #undef PIPE_CONF_CHECK_I
8617 #undef PIPE_CONF_CHECK_FLAGS
8618 #undef PIPE_CONF_QUIRK
8619
8620 if (!IS_HASWELL(dev)) {
8621 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8622 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8623 current_config->adjusted_mode.clock,
8624 pipe_config->adjusted_mode.clock);
8625 return false;
8626 }
8627 }
8628
8629 return true;
8630 }
8631
8632 static void
8633 check_connector_state(struct drm_device *dev)
8634 {
8635 struct intel_connector *connector;
8636
8637 list_for_each_entry(connector, &dev->mode_config.connector_list,
8638 base.head) {
8639 /* This also checks the encoder/connector hw state with the
8640 * ->get_hw_state callbacks. */
8641 intel_connector_check_state(connector);
8642
8643 WARN(&connector->new_encoder->base != connector->base.encoder,
8644 "connector's staged encoder doesn't match current encoder\n");
8645 }
8646 }
8647
8648 static void
8649 check_encoder_state(struct drm_device *dev)
8650 {
8651 struct intel_encoder *encoder;
8652 struct intel_connector *connector;
8653
8654 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8655 base.head) {
8656 bool enabled = false;
8657 bool active = false;
8658 enum pipe pipe, tracked_pipe;
8659
8660 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8661 encoder->base.base.id,
8662 drm_get_encoder_name(&encoder->base));
8663
8664 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8665 "encoder's stage crtc doesn't match current crtc\n");
8666 WARN(encoder->connectors_active && !encoder->base.crtc,
8667 "encoder's active_connectors set, but no crtc\n");
8668
8669 list_for_each_entry(connector, &dev->mode_config.connector_list,
8670 base.head) {
8671 if (connector->base.encoder != &encoder->base)
8672 continue;
8673 enabled = true;
8674 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8675 active = true;
8676 }
8677 WARN(!!encoder->base.crtc != enabled,
8678 "encoder's enabled state mismatch "
8679 "(expected %i, found %i)\n",
8680 !!encoder->base.crtc, enabled);
8681 WARN(active && !encoder->base.crtc,
8682 "active encoder with no crtc\n");
8683
8684 WARN(encoder->connectors_active != active,
8685 "encoder's computed active state doesn't match tracked active state "
8686 "(expected %i, found %i)\n", active, encoder->connectors_active);
8687
8688 active = encoder->get_hw_state(encoder, &pipe);
8689 WARN(active != encoder->connectors_active,
8690 "encoder's hw state doesn't match sw tracking "
8691 "(expected %i, found %i)\n",
8692 encoder->connectors_active, active);
8693
8694 if (!encoder->base.crtc)
8695 continue;
8696
8697 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8698 WARN(active && pipe != tracked_pipe,
8699 "active encoder's pipe doesn't match"
8700 "(expected %i, found %i)\n",
8701 tracked_pipe, pipe);
8702
8703 }
8704 }
8705
8706 static void
8707 check_crtc_state(struct drm_device *dev)
8708 {
8709 drm_i915_private_t *dev_priv = dev->dev_private;
8710 struct intel_crtc *crtc;
8711 struct intel_encoder *encoder;
8712 struct intel_crtc_config pipe_config;
8713
8714 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8715 base.head) {
8716 bool enabled = false;
8717 bool active = false;
8718
8719 memset(&pipe_config, 0, sizeof(pipe_config));
8720
8721 DRM_DEBUG_KMS("[CRTC:%d]\n",
8722 crtc->base.base.id);
8723
8724 WARN(crtc->active && !crtc->base.enabled,
8725 "active crtc, but not enabled in sw tracking\n");
8726
8727 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8728 base.head) {
8729 if (encoder->base.crtc != &crtc->base)
8730 continue;
8731 enabled = true;
8732 if (encoder->connectors_active)
8733 active = true;
8734 }
8735
8736 WARN(active != crtc->active,
8737 "crtc's computed active state doesn't match tracked active state "
8738 "(expected %i, found %i)\n", active, crtc->active);
8739 WARN(enabled != crtc->base.enabled,
8740 "crtc's computed enabled state doesn't match tracked enabled state "
8741 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8742
8743 active = dev_priv->display.get_pipe_config(crtc,
8744 &pipe_config);
8745
8746 /* hw state is inconsistent with the pipe A quirk */
8747 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8748 active = crtc->active;
8749
8750 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8751 base.head) {
8752 enum pipe pipe;
8753 if (encoder->base.crtc != &crtc->base)
8754 continue;
8755 if (encoder->get_config &&
8756 encoder->get_hw_state(encoder, &pipe))
8757 encoder->get_config(encoder, &pipe_config);
8758 }
8759
8760 if (dev_priv->display.get_clock)
8761 dev_priv->display.get_clock(crtc, &pipe_config);
8762
8763 WARN(crtc->active != active,
8764 "crtc active state doesn't match with hw state "
8765 "(expected %i, found %i)\n", crtc->active, active);
8766
8767 if (active &&
8768 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8769 WARN(1, "pipe state doesn't match!\n");
8770 intel_dump_pipe_config(crtc, &pipe_config,
8771 "[hw state]");
8772 intel_dump_pipe_config(crtc, &crtc->config,
8773 "[sw state]");
8774 }
8775 }
8776 }
8777
8778 static void
8779 check_shared_dpll_state(struct drm_device *dev)
8780 {
8781 drm_i915_private_t *dev_priv = dev->dev_private;
8782 struct intel_crtc *crtc;
8783 struct intel_dpll_hw_state dpll_hw_state;
8784 int i;
8785
8786 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8787 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8788 int enabled_crtcs = 0, active_crtcs = 0;
8789 bool active;
8790
8791 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8792
8793 DRM_DEBUG_KMS("%s\n", pll->name);
8794
8795 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8796
8797 WARN(pll->active > pll->refcount,
8798 "more active pll users than references: %i vs %i\n",
8799 pll->active, pll->refcount);
8800 WARN(pll->active && !pll->on,
8801 "pll in active use but not on in sw tracking\n");
8802 WARN(pll->on && !pll->active,
8803 "pll in on but not on in use in sw tracking\n");
8804 WARN(pll->on != active,
8805 "pll on state mismatch (expected %i, found %i)\n",
8806 pll->on, active);
8807
8808 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8809 base.head) {
8810 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8811 enabled_crtcs++;
8812 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8813 active_crtcs++;
8814 }
8815 WARN(pll->active != active_crtcs,
8816 "pll active crtcs mismatch (expected %i, found %i)\n",
8817 pll->active, active_crtcs);
8818 WARN(pll->refcount != enabled_crtcs,
8819 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8820 pll->refcount, enabled_crtcs);
8821
8822 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8823 sizeof(dpll_hw_state)),
8824 "pll hw state mismatch\n");
8825 }
8826 }
8827
8828 void
8829 intel_modeset_check_state(struct drm_device *dev)
8830 {
8831 check_connector_state(dev);
8832 check_encoder_state(dev);
8833 check_crtc_state(dev);
8834 check_shared_dpll_state(dev);
8835 }
8836
8837 static int __intel_set_mode(struct drm_crtc *crtc,
8838 struct drm_display_mode *mode,
8839 int x, int y, struct drm_framebuffer *fb)
8840 {
8841 struct drm_device *dev = crtc->dev;
8842 drm_i915_private_t *dev_priv = dev->dev_private;
8843 struct drm_display_mode *saved_mode, *saved_hwmode;
8844 struct intel_crtc_config *pipe_config = NULL;
8845 struct intel_crtc *intel_crtc;
8846 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8847 int ret = 0;
8848
8849 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8850 if (!saved_mode)
8851 return -ENOMEM;
8852 saved_hwmode = saved_mode + 1;
8853
8854 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8855 &prepare_pipes, &disable_pipes);
8856
8857 *saved_hwmode = crtc->hwmode;
8858 *saved_mode = crtc->mode;
8859
8860 /* Hack: Because we don't (yet) support global modeset on multiple
8861 * crtcs, we don't keep track of the new mode for more than one crtc.
8862 * Hence simply check whether any bit is set in modeset_pipes in all the
8863 * pieces of code that are not yet converted to deal with mutliple crtcs
8864 * changing their mode at the same time. */
8865 if (modeset_pipes) {
8866 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8867 if (IS_ERR(pipe_config)) {
8868 ret = PTR_ERR(pipe_config);
8869 pipe_config = NULL;
8870
8871 goto out;
8872 }
8873 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8874 "[modeset]");
8875 }
8876
8877 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8878 intel_crtc_disable(&intel_crtc->base);
8879
8880 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8881 if (intel_crtc->base.enabled)
8882 dev_priv->display.crtc_disable(&intel_crtc->base);
8883 }
8884
8885 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8886 * to set it here already despite that we pass it down the callchain.
8887 */
8888 if (modeset_pipes) {
8889 crtc->mode = *mode;
8890 /* mode_set/enable/disable functions rely on a correct pipe
8891 * config. */
8892 to_intel_crtc(crtc)->config = *pipe_config;
8893 }
8894
8895 /* Only after disabling all output pipelines that will be changed can we
8896 * update the the output configuration. */
8897 intel_modeset_update_state(dev, prepare_pipes);
8898
8899 if (dev_priv->display.modeset_global_resources)
8900 dev_priv->display.modeset_global_resources(dev);
8901
8902 /* Set up the DPLL and any encoders state that needs to adjust or depend
8903 * on the DPLL.
8904 */
8905 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8906 ret = intel_crtc_mode_set(&intel_crtc->base,
8907 x, y, fb);
8908 if (ret)
8909 goto done;
8910 }
8911
8912 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8913 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8914 dev_priv->display.crtc_enable(&intel_crtc->base);
8915
8916 if (modeset_pipes) {
8917 /* Store real post-adjustment hardware mode. */
8918 crtc->hwmode = pipe_config->adjusted_mode;
8919
8920 /* Calculate and store various constants which
8921 * are later needed by vblank and swap-completion
8922 * timestamping. They are derived from true hwmode.
8923 */
8924 drm_calc_timestamping_constants(crtc);
8925 }
8926
8927 /* FIXME: add subpixel order */
8928 done:
8929 if (ret && crtc->enabled) {
8930 crtc->hwmode = *saved_hwmode;
8931 crtc->mode = *saved_mode;
8932 }
8933
8934 out:
8935 kfree(pipe_config);
8936 kfree(saved_mode);
8937 return ret;
8938 }
8939
8940 static int intel_set_mode(struct drm_crtc *crtc,
8941 struct drm_display_mode *mode,
8942 int x, int y, struct drm_framebuffer *fb)
8943 {
8944 int ret;
8945
8946 ret = __intel_set_mode(crtc, mode, x, y, fb);
8947
8948 if (ret == 0)
8949 intel_modeset_check_state(crtc->dev);
8950
8951 return ret;
8952 }
8953
8954 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8955 {
8956 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8957 }
8958
8959 #undef for_each_intel_crtc_masked
8960
8961 static void intel_set_config_free(struct intel_set_config *config)
8962 {
8963 if (!config)
8964 return;
8965
8966 kfree(config->save_connector_encoders);
8967 kfree(config->save_encoder_crtcs);
8968 kfree(config);
8969 }
8970
8971 static int intel_set_config_save_state(struct drm_device *dev,
8972 struct intel_set_config *config)
8973 {
8974 struct drm_encoder *encoder;
8975 struct drm_connector *connector;
8976 int count;
8977
8978 config->save_encoder_crtcs =
8979 kcalloc(dev->mode_config.num_encoder,
8980 sizeof(struct drm_crtc *), GFP_KERNEL);
8981 if (!config->save_encoder_crtcs)
8982 return -ENOMEM;
8983
8984 config->save_connector_encoders =
8985 kcalloc(dev->mode_config.num_connector,
8986 sizeof(struct drm_encoder *), GFP_KERNEL);
8987 if (!config->save_connector_encoders)
8988 return -ENOMEM;
8989
8990 /* Copy data. Note that driver private data is not affected.
8991 * Should anything bad happen only the expected state is
8992 * restored, not the drivers personal bookkeeping.
8993 */
8994 count = 0;
8995 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8996 config->save_encoder_crtcs[count++] = encoder->crtc;
8997 }
8998
8999 count = 0;
9000 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9001 config->save_connector_encoders[count++] = connector->encoder;
9002 }
9003
9004 return 0;
9005 }
9006
9007 static void intel_set_config_restore_state(struct drm_device *dev,
9008 struct intel_set_config *config)
9009 {
9010 struct intel_encoder *encoder;
9011 struct intel_connector *connector;
9012 int count;
9013
9014 count = 0;
9015 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9016 encoder->new_crtc =
9017 to_intel_crtc(config->save_encoder_crtcs[count++]);
9018 }
9019
9020 count = 0;
9021 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9022 connector->new_encoder =
9023 to_intel_encoder(config->save_connector_encoders[count++]);
9024 }
9025 }
9026
9027 static bool
9028 is_crtc_connector_off(struct drm_mode_set *set)
9029 {
9030 int i;
9031
9032 if (set->num_connectors == 0)
9033 return false;
9034
9035 if (WARN_ON(set->connectors == NULL))
9036 return false;
9037
9038 for (i = 0; i < set->num_connectors; i++)
9039 if (set->connectors[i]->encoder &&
9040 set->connectors[i]->encoder->crtc == set->crtc &&
9041 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9042 return true;
9043
9044 return false;
9045 }
9046
9047 static void
9048 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9049 struct intel_set_config *config)
9050 {
9051
9052 /* We should be able to check here if the fb has the same properties
9053 * and then just flip_or_move it */
9054 if (is_crtc_connector_off(set)) {
9055 config->mode_changed = true;
9056 } else if (set->crtc->fb != set->fb) {
9057 /* If we have no fb then treat it as a full mode set */
9058 if (set->crtc->fb == NULL) {
9059 struct intel_crtc *intel_crtc =
9060 to_intel_crtc(set->crtc);
9061
9062 if (intel_crtc->active && i915_fastboot) {
9063 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9064 config->fb_changed = true;
9065 } else {
9066 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9067 config->mode_changed = true;
9068 }
9069 } else if (set->fb == NULL) {
9070 config->mode_changed = true;
9071 } else if (set->fb->pixel_format !=
9072 set->crtc->fb->pixel_format) {
9073 config->mode_changed = true;
9074 } else {
9075 config->fb_changed = true;
9076 }
9077 }
9078
9079 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9080 config->fb_changed = true;
9081
9082 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9083 DRM_DEBUG_KMS("modes are different, full mode set\n");
9084 drm_mode_debug_printmodeline(&set->crtc->mode);
9085 drm_mode_debug_printmodeline(set->mode);
9086 config->mode_changed = true;
9087 }
9088
9089 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9090 set->crtc->base.id, config->mode_changed, config->fb_changed);
9091 }
9092
9093 static int
9094 intel_modeset_stage_output_state(struct drm_device *dev,
9095 struct drm_mode_set *set,
9096 struct intel_set_config *config)
9097 {
9098 struct drm_crtc *new_crtc;
9099 struct intel_connector *connector;
9100 struct intel_encoder *encoder;
9101 int ro;
9102
9103 /* The upper layers ensure that we either disable a crtc or have a list
9104 * of connectors. For paranoia, double-check this. */
9105 WARN_ON(!set->fb && (set->num_connectors != 0));
9106 WARN_ON(set->fb && (set->num_connectors == 0));
9107
9108 list_for_each_entry(connector, &dev->mode_config.connector_list,
9109 base.head) {
9110 /* Otherwise traverse passed in connector list and get encoders
9111 * for them. */
9112 for (ro = 0; ro < set->num_connectors; ro++) {
9113 if (set->connectors[ro] == &connector->base) {
9114 connector->new_encoder = connector->encoder;
9115 break;
9116 }
9117 }
9118
9119 /* If we disable the crtc, disable all its connectors. Also, if
9120 * the connector is on the changing crtc but not on the new
9121 * connector list, disable it. */
9122 if ((!set->fb || ro == set->num_connectors) &&
9123 connector->base.encoder &&
9124 connector->base.encoder->crtc == set->crtc) {
9125 connector->new_encoder = NULL;
9126
9127 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9128 connector->base.base.id,
9129 drm_get_connector_name(&connector->base));
9130 }
9131
9132
9133 if (&connector->new_encoder->base != connector->base.encoder) {
9134 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9135 config->mode_changed = true;
9136 }
9137 }
9138 /* connector->new_encoder is now updated for all connectors. */
9139
9140 /* Update crtc of enabled connectors. */
9141 list_for_each_entry(connector, &dev->mode_config.connector_list,
9142 base.head) {
9143 if (!connector->new_encoder)
9144 continue;
9145
9146 new_crtc = connector->new_encoder->base.crtc;
9147
9148 for (ro = 0; ro < set->num_connectors; ro++) {
9149 if (set->connectors[ro] == &connector->base)
9150 new_crtc = set->crtc;
9151 }
9152
9153 /* Make sure the new CRTC will work with the encoder */
9154 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9155 new_crtc)) {
9156 return -EINVAL;
9157 }
9158 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9159
9160 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9161 connector->base.base.id,
9162 drm_get_connector_name(&connector->base),
9163 new_crtc->base.id);
9164 }
9165
9166 /* Check for any encoders that needs to be disabled. */
9167 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9168 base.head) {
9169 list_for_each_entry(connector,
9170 &dev->mode_config.connector_list,
9171 base.head) {
9172 if (connector->new_encoder == encoder) {
9173 WARN_ON(!connector->new_encoder->new_crtc);
9174
9175 goto next_encoder;
9176 }
9177 }
9178 encoder->new_crtc = NULL;
9179 next_encoder:
9180 /* Only now check for crtc changes so we don't miss encoders
9181 * that will be disabled. */
9182 if (&encoder->new_crtc->base != encoder->base.crtc) {
9183 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9184 config->mode_changed = true;
9185 }
9186 }
9187 /* Now we've also updated encoder->new_crtc for all encoders. */
9188
9189 return 0;
9190 }
9191
9192 static int intel_crtc_set_config(struct drm_mode_set *set)
9193 {
9194 struct drm_device *dev;
9195 struct drm_mode_set save_set;
9196 struct intel_set_config *config;
9197 int ret;
9198
9199 BUG_ON(!set);
9200 BUG_ON(!set->crtc);
9201 BUG_ON(!set->crtc->helper_private);
9202
9203 /* Enforce sane interface api - has been abused by the fb helper. */
9204 BUG_ON(!set->mode && set->fb);
9205 BUG_ON(set->fb && set->num_connectors == 0);
9206
9207 if (set->fb) {
9208 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9209 set->crtc->base.id, set->fb->base.id,
9210 (int)set->num_connectors, set->x, set->y);
9211 } else {
9212 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9213 }
9214
9215 dev = set->crtc->dev;
9216
9217 ret = -ENOMEM;
9218 config = kzalloc(sizeof(*config), GFP_KERNEL);
9219 if (!config)
9220 goto out_config;
9221
9222 ret = intel_set_config_save_state(dev, config);
9223 if (ret)
9224 goto out_config;
9225
9226 save_set.crtc = set->crtc;
9227 save_set.mode = &set->crtc->mode;
9228 save_set.x = set->crtc->x;
9229 save_set.y = set->crtc->y;
9230 save_set.fb = set->crtc->fb;
9231
9232 /* Compute whether we need a full modeset, only an fb base update or no
9233 * change at all. In the future we might also check whether only the
9234 * mode changed, e.g. for LVDS where we only change the panel fitter in
9235 * such cases. */
9236 intel_set_config_compute_mode_changes(set, config);
9237
9238 ret = intel_modeset_stage_output_state(dev, set, config);
9239 if (ret)
9240 goto fail;
9241
9242 if (config->mode_changed) {
9243 ret = intel_set_mode(set->crtc, set->mode,
9244 set->x, set->y, set->fb);
9245 } else if (config->fb_changed) {
9246 intel_crtc_wait_for_pending_flips(set->crtc);
9247
9248 ret = intel_pipe_set_base(set->crtc,
9249 set->x, set->y, set->fb);
9250 }
9251
9252 if (ret) {
9253 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9254 set->crtc->base.id, ret);
9255 fail:
9256 intel_set_config_restore_state(dev, config);
9257
9258 /* Try to restore the config */
9259 if (config->mode_changed &&
9260 intel_set_mode(save_set.crtc, save_set.mode,
9261 save_set.x, save_set.y, save_set.fb))
9262 DRM_ERROR("failed to restore config after modeset failure\n");
9263 }
9264
9265 out_config:
9266 intel_set_config_free(config);
9267 return ret;
9268 }
9269
9270 static const struct drm_crtc_funcs intel_crtc_funcs = {
9271 .cursor_set = intel_crtc_cursor_set,
9272 .cursor_move = intel_crtc_cursor_move,
9273 .gamma_set = intel_crtc_gamma_set,
9274 .set_config = intel_crtc_set_config,
9275 .destroy = intel_crtc_destroy,
9276 .page_flip = intel_crtc_page_flip,
9277 };
9278
9279 static void intel_cpu_pll_init(struct drm_device *dev)
9280 {
9281 if (HAS_DDI(dev))
9282 intel_ddi_pll_init(dev);
9283 }
9284
9285 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9286 struct intel_shared_dpll *pll,
9287 struct intel_dpll_hw_state *hw_state)
9288 {
9289 uint32_t val;
9290
9291 val = I915_READ(PCH_DPLL(pll->id));
9292 hw_state->dpll = val;
9293 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9294 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9295
9296 return val & DPLL_VCO_ENABLE;
9297 }
9298
9299 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9300 struct intel_shared_dpll *pll)
9301 {
9302 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9303 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9304 }
9305
9306 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9307 struct intel_shared_dpll *pll)
9308 {
9309 /* PCH refclock must be enabled first */
9310 assert_pch_refclk_enabled(dev_priv);
9311
9312 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9313
9314 /* Wait for the clocks to stabilize. */
9315 POSTING_READ(PCH_DPLL(pll->id));
9316 udelay(150);
9317
9318 /* The pixel multiplier can only be updated once the
9319 * DPLL is enabled and the clocks are stable.
9320 *
9321 * So write it again.
9322 */
9323 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9324 POSTING_READ(PCH_DPLL(pll->id));
9325 udelay(200);
9326 }
9327
9328 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9329 struct intel_shared_dpll *pll)
9330 {
9331 struct drm_device *dev = dev_priv->dev;
9332 struct intel_crtc *crtc;
9333
9334 /* Make sure no transcoder isn't still depending on us. */
9335 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9336 if (intel_crtc_to_shared_dpll(crtc) == pll)
9337 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9338 }
9339
9340 I915_WRITE(PCH_DPLL(pll->id), 0);
9341 POSTING_READ(PCH_DPLL(pll->id));
9342 udelay(200);
9343 }
9344
9345 static char *ibx_pch_dpll_names[] = {
9346 "PCH DPLL A",
9347 "PCH DPLL B",
9348 };
9349
9350 static void ibx_pch_dpll_init(struct drm_device *dev)
9351 {
9352 struct drm_i915_private *dev_priv = dev->dev_private;
9353 int i;
9354
9355 dev_priv->num_shared_dpll = 2;
9356
9357 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9358 dev_priv->shared_dplls[i].id = i;
9359 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9360 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9361 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9362 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9363 dev_priv->shared_dplls[i].get_hw_state =
9364 ibx_pch_dpll_get_hw_state;
9365 }
9366 }
9367
9368 static void intel_shared_dpll_init(struct drm_device *dev)
9369 {
9370 struct drm_i915_private *dev_priv = dev->dev_private;
9371
9372 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9373 ibx_pch_dpll_init(dev);
9374 else
9375 dev_priv->num_shared_dpll = 0;
9376
9377 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9378 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9379 dev_priv->num_shared_dpll);
9380 }
9381
9382 static void intel_crtc_init(struct drm_device *dev, int pipe)
9383 {
9384 drm_i915_private_t *dev_priv = dev->dev_private;
9385 struct intel_crtc *intel_crtc;
9386 int i;
9387
9388 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9389 if (intel_crtc == NULL)
9390 return;
9391
9392 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9393
9394 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9395 for (i = 0; i < 256; i++) {
9396 intel_crtc->lut_r[i] = i;
9397 intel_crtc->lut_g[i] = i;
9398 intel_crtc->lut_b[i] = i;
9399 }
9400
9401 /* Swap pipes & planes for FBC on pre-965 */
9402 intel_crtc->pipe = pipe;
9403 intel_crtc->plane = pipe;
9404 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9405 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9406 intel_crtc->plane = !pipe;
9407 }
9408
9409 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9410 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9411 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9412 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9413
9414 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9415 }
9416
9417 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9418 struct drm_file *file)
9419 {
9420 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9421 struct drm_mode_object *drmmode_obj;
9422 struct intel_crtc *crtc;
9423
9424 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9425 return -ENODEV;
9426
9427 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9428 DRM_MODE_OBJECT_CRTC);
9429
9430 if (!drmmode_obj) {
9431 DRM_ERROR("no such CRTC id\n");
9432 return -EINVAL;
9433 }
9434
9435 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9436 pipe_from_crtc_id->pipe = crtc->pipe;
9437
9438 return 0;
9439 }
9440
9441 static int intel_encoder_clones(struct intel_encoder *encoder)
9442 {
9443 struct drm_device *dev = encoder->base.dev;
9444 struct intel_encoder *source_encoder;
9445 int index_mask = 0;
9446 int entry = 0;
9447
9448 list_for_each_entry(source_encoder,
9449 &dev->mode_config.encoder_list, base.head) {
9450
9451 if (encoder == source_encoder)
9452 index_mask |= (1 << entry);
9453
9454 /* Intel hw has only one MUX where enocoders could be cloned. */
9455 if (encoder->cloneable && source_encoder->cloneable)
9456 index_mask |= (1 << entry);
9457
9458 entry++;
9459 }
9460
9461 return index_mask;
9462 }
9463
9464 static bool has_edp_a(struct drm_device *dev)
9465 {
9466 struct drm_i915_private *dev_priv = dev->dev_private;
9467
9468 if (!IS_MOBILE(dev))
9469 return false;
9470
9471 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9472 return false;
9473
9474 if (IS_GEN5(dev) &&
9475 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9476 return false;
9477
9478 return true;
9479 }
9480
9481 static void intel_setup_outputs(struct drm_device *dev)
9482 {
9483 struct drm_i915_private *dev_priv = dev->dev_private;
9484 struct intel_encoder *encoder;
9485 bool dpd_is_edp = false;
9486
9487 intel_lvds_init(dev);
9488
9489 if (!IS_ULT(dev))
9490 intel_crt_init(dev);
9491
9492 if (HAS_DDI(dev)) {
9493 int found;
9494
9495 /* Haswell uses DDI functions to detect digital outputs */
9496 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9497 /* DDI A only supports eDP */
9498 if (found)
9499 intel_ddi_init(dev, PORT_A);
9500
9501 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9502 * register */
9503 found = I915_READ(SFUSE_STRAP);
9504
9505 if (found & SFUSE_STRAP_DDIB_DETECTED)
9506 intel_ddi_init(dev, PORT_B);
9507 if (found & SFUSE_STRAP_DDIC_DETECTED)
9508 intel_ddi_init(dev, PORT_C);
9509 if (found & SFUSE_STRAP_DDID_DETECTED)
9510 intel_ddi_init(dev, PORT_D);
9511 } else if (HAS_PCH_SPLIT(dev)) {
9512 int found;
9513 dpd_is_edp = intel_dpd_is_edp(dev);
9514
9515 if (has_edp_a(dev))
9516 intel_dp_init(dev, DP_A, PORT_A);
9517
9518 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9519 /* PCH SDVOB multiplex with HDMIB */
9520 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9521 if (!found)
9522 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9523 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9524 intel_dp_init(dev, PCH_DP_B, PORT_B);
9525 }
9526
9527 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9528 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9529
9530 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9531 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9532
9533 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9534 intel_dp_init(dev, PCH_DP_C, PORT_C);
9535
9536 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9537 intel_dp_init(dev, PCH_DP_D, PORT_D);
9538 } else if (IS_VALLEYVIEW(dev)) {
9539 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9540 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9541 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9542 PORT_C);
9543 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9544 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9545 PORT_C);
9546 }
9547
9548 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9549 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9550 PORT_B);
9551 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9552 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9553 }
9554 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9555 bool found = false;
9556
9557 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9558 DRM_DEBUG_KMS("probing SDVOB\n");
9559 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9560 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9561 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9562 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9563 }
9564
9565 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9566 intel_dp_init(dev, DP_B, PORT_B);
9567 }
9568
9569 /* Before G4X SDVOC doesn't have its own detect register */
9570
9571 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9572 DRM_DEBUG_KMS("probing SDVOC\n");
9573 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9574 }
9575
9576 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9577
9578 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9579 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9580 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9581 }
9582 if (SUPPORTS_INTEGRATED_DP(dev))
9583 intel_dp_init(dev, DP_C, PORT_C);
9584 }
9585
9586 if (SUPPORTS_INTEGRATED_DP(dev) &&
9587 (I915_READ(DP_D) & DP_DETECTED))
9588 intel_dp_init(dev, DP_D, PORT_D);
9589 } else if (IS_GEN2(dev))
9590 intel_dvo_init(dev);
9591
9592 if (SUPPORTS_TV(dev))
9593 intel_tv_init(dev);
9594
9595 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9596 encoder->base.possible_crtcs = encoder->crtc_mask;
9597 encoder->base.possible_clones =
9598 intel_encoder_clones(encoder);
9599 }
9600
9601 intel_init_pch_refclk(dev);
9602
9603 drm_helper_move_panel_connectors_to_head(dev);
9604 }
9605
9606 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9607 {
9608 drm_framebuffer_cleanup(&fb->base);
9609 drm_gem_object_unreference_unlocked(&fb->obj->base);
9610 }
9611
9612 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9613 {
9614 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9615
9616 intel_framebuffer_fini(intel_fb);
9617 kfree(intel_fb);
9618 }
9619
9620 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9621 struct drm_file *file,
9622 unsigned int *handle)
9623 {
9624 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9625 struct drm_i915_gem_object *obj = intel_fb->obj;
9626
9627 return drm_gem_handle_create(file, &obj->base, handle);
9628 }
9629
9630 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9631 .destroy = intel_user_framebuffer_destroy,
9632 .create_handle = intel_user_framebuffer_create_handle,
9633 };
9634
9635 int intel_framebuffer_init(struct drm_device *dev,
9636 struct intel_framebuffer *intel_fb,
9637 struct drm_mode_fb_cmd2 *mode_cmd,
9638 struct drm_i915_gem_object *obj)
9639 {
9640 int pitch_limit;
9641 int ret;
9642
9643 if (obj->tiling_mode == I915_TILING_Y) {
9644 DRM_DEBUG("hardware does not support tiling Y\n");
9645 return -EINVAL;
9646 }
9647
9648 if (mode_cmd->pitches[0] & 63) {
9649 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9650 mode_cmd->pitches[0]);
9651 return -EINVAL;
9652 }
9653
9654 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9655 pitch_limit = 32*1024;
9656 } else if (INTEL_INFO(dev)->gen >= 4) {
9657 if (obj->tiling_mode)
9658 pitch_limit = 16*1024;
9659 else
9660 pitch_limit = 32*1024;
9661 } else if (INTEL_INFO(dev)->gen >= 3) {
9662 if (obj->tiling_mode)
9663 pitch_limit = 8*1024;
9664 else
9665 pitch_limit = 16*1024;
9666 } else
9667 /* XXX DSPC is limited to 4k tiled */
9668 pitch_limit = 8*1024;
9669
9670 if (mode_cmd->pitches[0] > pitch_limit) {
9671 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9672 obj->tiling_mode ? "tiled" : "linear",
9673 mode_cmd->pitches[0], pitch_limit);
9674 return -EINVAL;
9675 }
9676
9677 if (obj->tiling_mode != I915_TILING_NONE &&
9678 mode_cmd->pitches[0] != obj->stride) {
9679 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9680 mode_cmd->pitches[0], obj->stride);
9681 return -EINVAL;
9682 }
9683
9684 /* Reject formats not supported by any plane early. */
9685 switch (mode_cmd->pixel_format) {
9686 case DRM_FORMAT_C8:
9687 case DRM_FORMAT_RGB565:
9688 case DRM_FORMAT_XRGB8888:
9689 case DRM_FORMAT_ARGB8888:
9690 break;
9691 case DRM_FORMAT_XRGB1555:
9692 case DRM_FORMAT_ARGB1555:
9693 if (INTEL_INFO(dev)->gen > 3) {
9694 DRM_DEBUG("unsupported pixel format: %s\n",
9695 drm_get_format_name(mode_cmd->pixel_format));
9696 return -EINVAL;
9697 }
9698 break;
9699 case DRM_FORMAT_XBGR8888:
9700 case DRM_FORMAT_ABGR8888:
9701 case DRM_FORMAT_XRGB2101010:
9702 case DRM_FORMAT_ARGB2101010:
9703 case DRM_FORMAT_XBGR2101010:
9704 case DRM_FORMAT_ABGR2101010:
9705 if (INTEL_INFO(dev)->gen < 4) {
9706 DRM_DEBUG("unsupported pixel format: %s\n",
9707 drm_get_format_name(mode_cmd->pixel_format));
9708 return -EINVAL;
9709 }
9710 break;
9711 case DRM_FORMAT_YUYV:
9712 case DRM_FORMAT_UYVY:
9713 case DRM_FORMAT_YVYU:
9714 case DRM_FORMAT_VYUY:
9715 if (INTEL_INFO(dev)->gen < 5) {
9716 DRM_DEBUG("unsupported pixel format: %s\n",
9717 drm_get_format_name(mode_cmd->pixel_format));
9718 return -EINVAL;
9719 }
9720 break;
9721 default:
9722 DRM_DEBUG("unsupported pixel format: %s\n",
9723 drm_get_format_name(mode_cmd->pixel_format));
9724 return -EINVAL;
9725 }
9726
9727 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9728 if (mode_cmd->offsets[0] != 0)
9729 return -EINVAL;
9730
9731 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9732 intel_fb->obj = obj;
9733
9734 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9735 if (ret) {
9736 DRM_ERROR("framebuffer init failed %d\n", ret);
9737 return ret;
9738 }
9739
9740 return 0;
9741 }
9742
9743 static struct drm_framebuffer *
9744 intel_user_framebuffer_create(struct drm_device *dev,
9745 struct drm_file *filp,
9746 struct drm_mode_fb_cmd2 *mode_cmd)
9747 {
9748 struct drm_i915_gem_object *obj;
9749
9750 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9751 mode_cmd->handles[0]));
9752 if (&obj->base == NULL)
9753 return ERR_PTR(-ENOENT);
9754
9755 return intel_framebuffer_create(dev, mode_cmd, obj);
9756 }
9757
9758 static const struct drm_mode_config_funcs intel_mode_funcs = {
9759 .fb_create = intel_user_framebuffer_create,
9760 .output_poll_changed = intel_fb_output_poll_changed,
9761 };
9762
9763 /* Set up chip specific display functions */
9764 static void intel_init_display(struct drm_device *dev)
9765 {
9766 struct drm_i915_private *dev_priv = dev->dev_private;
9767
9768 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9769 dev_priv->display.find_dpll = g4x_find_best_dpll;
9770 else if (IS_VALLEYVIEW(dev))
9771 dev_priv->display.find_dpll = vlv_find_best_dpll;
9772 else if (IS_PINEVIEW(dev))
9773 dev_priv->display.find_dpll = pnv_find_best_dpll;
9774 else
9775 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9776
9777 if (HAS_DDI(dev)) {
9778 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9779 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9780 dev_priv->display.crtc_enable = haswell_crtc_enable;
9781 dev_priv->display.crtc_disable = haswell_crtc_disable;
9782 dev_priv->display.off = haswell_crtc_off;
9783 dev_priv->display.update_plane = ironlake_update_plane;
9784 } else if (HAS_PCH_SPLIT(dev)) {
9785 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9786 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9787 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9788 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9789 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9790 dev_priv->display.off = ironlake_crtc_off;
9791 dev_priv->display.update_plane = ironlake_update_plane;
9792 } else if (IS_VALLEYVIEW(dev)) {
9793 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9794 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9795 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9796 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9797 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9798 dev_priv->display.off = i9xx_crtc_off;
9799 dev_priv->display.update_plane = i9xx_update_plane;
9800 } else {
9801 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9802 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9803 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9804 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9805 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9806 dev_priv->display.off = i9xx_crtc_off;
9807 dev_priv->display.update_plane = i9xx_update_plane;
9808 }
9809
9810 /* Returns the core display clock speed */
9811 if (IS_VALLEYVIEW(dev))
9812 dev_priv->display.get_display_clock_speed =
9813 valleyview_get_display_clock_speed;
9814 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9815 dev_priv->display.get_display_clock_speed =
9816 i945_get_display_clock_speed;
9817 else if (IS_I915G(dev))
9818 dev_priv->display.get_display_clock_speed =
9819 i915_get_display_clock_speed;
9820 else if (IS_I945GM(dev) || IS_845G(dev))
9821 dev_priv->display.get_display_clock_speed =
9822 i9xx_misc_get_display_clock_speed;
9823 else if (IS_PINEVIEW(dev))
9824 dev_priv->display.get_display_clock_speed =
9825 pnv_get_display_clock_speed;
9826 else if (IS_I915GM(dev))
9827 dev_priv->display.get_display_clock_speed =
9828 i915gm_get_display_clock_speed;
9829 else if (IS_I865G(dev))
9830 dev_priv->display.get_display_clock_speed =
9831 i865_get_display_clock_speed;
9832 else if (IS_I85X(dev))
9833 dev_priv->display.get_display_clock_speed =
9834 i855_get_display_clock_speed;
9835 else /* 852, 830 */
9836 dev_priv->display.get_display_clock_speed =
9837 i830_get_display_clock_speed;
9838
9839 if (HAS_PCH_SPLIT(dev)) {
9840 if (IS_GEN5(dev)) {
9841 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9842 dev_priv->display.write_eld = ironlake_write_eld;
9843 } else if (IS_GEN6(dev)) {
9844 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9845 dev_priv->display.write_eld = ironlake_write_eld;
9846 } else if (IS_IVYBRIDGE(dev)) {
9847 /* FIXME: detect B0+ stepping and use auto training */
9848 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9849 dev_priv->display.write_eld = ironlake_write_eld;
9850 dev_priv->display.modeset_global_resources =
9851 ivb_modeset_global_resources;
9852 } else if (IS_HASWELL(dev)) {
9853 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9854 dev_priv->display.write_eld = haswell_write_eld;
9855 dev_priv->display.modeset_global_resources =
9856 haswell_modeset_global_resources;
9857 }
9858 } else if (IS_G4X(dev)) {
9859 dev_priv->display.write_eld = g4x_write_eld;
9860 }
9861
9862 /* Default just returns -ENODEV to indicate unsupported */
9863 dev_priv->display.queue_flip = intel_default_queue_flip;
9864
9865 switch (INTEL_INFO(dev)->gen) {
9866 case 2:
9867 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9868 break;
9869
9870 case 3:
9871 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9872 break;
9873
9874 case 4:
9875 case 5:
9876 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9877 break;
9878
9879 case 6:
9880 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9881 break;
9882 case 7:
9883 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9884 break;
9885 }
9886 }
9887
9888 /*
9889 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9890 * resume, or other times. This quirk makes sure that's the case for
9891 * affected systems.
9892 */
9893 static void quirk_pipea_force(struct drm_device *dev)
9894 {
9895 struct drm_i915_private *dev_priv = dev->dev_private;
9896
9897 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9898 DRM_INFO("applying pipe a force quirk\n");
9899 }
9900
9901 /*
9902 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9903 */
9904 static void quirk_ssc_force_disable(struct drm_device *dev)
9905 {
9906 struct drm_i915_private *dev_priv = dev->dev_private;
9907 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9908 DRM_INFO("applying lvds SSC disable quirk\n");
9909 }
9910
9911 /*
9912 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9913 * brightness value
9914 */
9915 static void quirk_invert_brightness(struct drm_device *dev)
9916 {
9917 struct drm_i915_private *dev_priv = dev->dev_private;
9918 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9919 DRM_INFO("applying inverted panel brightness quirk\n");
9920 }
9921
9922 /*
9923 * Some machines (Dell XPS13) suffer broken backlight controls if
9924 * BLM_PCH_PWM_ENABLE is set.
9925 */
9926 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9927 {
9928 struct drm_i915_private *dev_priv = dev->dev_private;
9929 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9930 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9931 }
9932
9933 struct intel_quirk {
9934 int device;
9935 int subsystem_vendor;
9936 int subsystem_device;
9937 void (*hook)(struct drm_device *dev);
9938 };
9939
9940 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9941 struct intel_dmi_quirk {
9942 void (*hook)(struct drm_device *dev);
9943 const struct dmi_system_id (*dmi_id_list)[];
9944 };
9945
9946 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9947 {
9948 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9949 return 1;
9950 }
9951
9952 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9953 {
9954 .dmi_id_list = &(const struct dmi_system_id[]) {
9955 {
9956 .callback = intel_dmi_reverse_brightness,
9957 .ident = "NCR Corporation",
9958 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9959 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9960 },
9961 },
9962 { } /* terminating entry */
9963 },
9964 .hook = quirk_invert_brightness,
9965 },
9966 };
9967
9968 static struct intel_quirk intel_quirks[] = {
9969 /* HP Mini needs pipe A force quirk (LP: #322104) */
9970 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9971
9972 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9973 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9974
9975 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9976 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9977
9978 /* 830/845 need to leave pipe A & dpll A up */
9979 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9980 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9981
9982 /* Lenovo U160 cannot use SSC on LVDS */
9983 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9984
9985 /* Sony Vaio Y cannot use SSC on LVDS */
9986 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9987
9988 /* Acer Aspire 5734Z must invert backlight brightness */
9989 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9990
9991 /* Acer/eMachines G725 */
9992 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9993
9994 /* Acer/eMachines e725 */
9995 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9996
9997 /* Acer/Packard Bell NCL20 */
9998 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9999
10000 /* Acer Aspire 4736Z */
10001 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10002
10003 /* Dell XPS13 HD Sandy Bridge */
10004 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10005 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10006 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10007 };
10008
10009 static void intel_init_quirks(struct drm_device *dev)
10010 {
10011 struct pci_dev *d = dev->pdev;
10012 int i;
10013
10014 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10015 struct intel_quirk *q = &intel_quirks[i];
10016
10017 if (d->device == q->device &&
10018 (d->subsystem_vendor == q->subsystem_vendor ||
10019 q->subsystem_vendor == PCI_ANY_ID) &&
10020 (d->subsystem_device == q->subsystem_device ||
10021 q->subsystem_device == PCI_ANY_ID))
10022 q->hook(dev);
10023 }
10024 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10025 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10026 intel_dmi_quirks[i].hook(dev);
10027 }
10028 }
10029
10030 /* Disable the VGA plane that we never use */
10031 static void i915_disable_vga(struct drm_device *dev)
10032 {
10033 struct drm_i915_private *dev_priv = dev->dev_private;
10034 u8 sr1;
10035 u32 vga_reg = i915_vgacntrl_reg(dev);
10036
10037 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10038 outb(SR01, VGA_SR_INDEX);
10039 sr1 = inb(VGA_SR_DATA);
10040 outb(sr1 | 1<<5, VGA_SR_DATA);
10041 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10042 udelay(300);
10043
10044 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10045 POSTING_READ(vga_reg);
10046 }
10047
10048 void intel_modeset_init_hw(struct drm_device *dev)
10049 {
10050 intel_init_power_well(dev);
10051
10052 intel_prepare_ddi(dev);
10053
10054 intel_init_clock_gating(dev);
10055
10056 mutex_lock(&dev->struct_mutex);
10057 intel_enable_gt_powersave(dev);
10058 mutex_unlock(&dev->struct_mutex);
10059 }
10060
10061 void intel_modeset_suspend_hw(struct drm_device *dev)
10062 {
10063 intel_suspend_hw(dev);
10064 }
10065
10066 void intel_modeset_init(struct drm_device *dev)
10067 {
10068 struct drm_i915_private *dev_priv = dev->dev_private;
10069 int i, j, ret;
10070
10071 drm_mode_config_init(dev);
10072
10073 dev->mode_config.min_width = 0;
10074 dev->mode_config.min_height = 0;
10075
10076 dev->mode_config.preferred_depth = 24;
10077 dev->mode_config.prefer_shadow = 1;
10078
10079 dev->mode_config.funcs = &intel_mode_funcs;
10080
10081 intel_init_quirks(dev);
10082
10083 intel_init_pm(dev);
10084
10085 if (INTEL_INFO(dev)->num_pipes == 0)
10086 return;
10087
10088 intel_init_display(dev);
10089
10090 if (IS_GEN2(dev)) {
10091 dev->mode_config.max_width = 2048;
10092 dev->mode_config.max_height = 2048;
10093 } else if (IS_GEN3(dev)) {
10094 dev->mode_config.max_width = 4096;
10095 dev->mode_config.max_height = 4096;
10096 } else {
10097 dev->mode_config.max_width = 8192;
10098 dev->mode_config.max_height = 8192;
10099 }
10100 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10101
10102 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10103 INTEL_INFO(dev)->num_pipes,
10104 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10105
10106 for_each_pipe(i) {
10107 intel_crtc_init(dev, i);
10108 for (j = 0; j < dev_priv->num_plane; j++) {
10109 ret = intel_plane_init(dev, i, j);
10110 if (ret)
10111 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10112 pipe_name(i), sprite_name(i, j), ret);
10113 }
10114 }
10115
10116 intel_cpu_pll_init(dev);
10117 intel_shared_dpll_init(dev);
10118
10119 /* Just disable it once at startup */
10120 i915_disable_vga(dev);
10121 intel_setup_outputs(dev);
10122
10123 /* Just in case the BIOS is doing something questionable. */
10124 intel_disable_fbc(dev);
10125 }
10126
10127 static void
10128 intel_connector_break_all_links(struct intel_connector *connector)
10129 {
10130 connector->base.dpms = DRM_MODE_DPMS_OFF;
10131 connector->base.encoder = NULL;
10132 connector->encoder->connectors_active = false;
10133 connector->encoder->base.crtc = NULL;
10134 }
10135
10136 static void intel_enable_pipe_a(struct drm_device *dev)
10137 {
10138 struct intel_connector *connector;
10139 struct drm_connector *crt = NULL;
10140 struct intel_load_detect_pipe load_detect_temp;
10141
10142 /* We can't just switch on the pipe A, we need to set things up with a
10143 * proper mode and output configuration. As a gross hack, enable pipe A
10144 * by enabling the load detect pipe once. */
10145 list_for_each_entry(connector,
10146 &dev->mode_config.connector_list,
10147 base.head) {
10148 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10149 crt = &connector->base;
10150 break;
10151 }
10152 }
10153
10154 if (!crt)
10155 return;
10156
10157 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10158 intel_release_load_detect_pipe(crt, &load_detect_temp);
10159
10160
10161 }
10162
10163 static bool
10164 intel_check_plane_mapping(struct intel_crtc *crtc)
10165 {
10166 struct drm_device *dev = crtc->base.dev;
10167 struct drm_i915_private *dev_priv = dev->dev_private;
10168 u32 reg, val;
10169
10170 if (INTEL_INFO(dev)->num_pipes == 1)
10171 return true;
10172
10173 reg = DSPCNTR(!crtc->plane);
10174 val = I915_READ(reg);
10175
10176 if ((val & DISPLAY_PLANE_ENABLE) &&
10177 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10178 return false;
10179
10180 return true;
10181 }
10182
10183 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10184 {
10185 struct drm_device *dev = crtc->base.dev;
10186 struct drm_i915_private *dev_priv = dev->dev_private;
10187 u32 reg;
10188
10189 /* Clear any frame start delays used for debugging left by the BIOS */
10190 reg = PIPECONF(crtc->config.cpu_transcoder);
10191 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10192
10193 /* We need to sanitize the plane -> pipe mapping first because this will
10194 * disable the crtc (and hence change the state) if it is wrong. Note
10195 * that gen4+ has a fixed plane -> pipe mapping. */
10196 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10197 struct intel_connector *connector;
10198 bool plane;
10199
10200 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10201 crtc->base.base.id);
10202
10203 /* Pipe has the wrong plane attached and the plane is active.
10204 * Temporarily change the plane mapping and disable everything
10205 * ... */
10206 plane = crtc->plane;
10207 crtc->plane = !plane;
10208 dev_priv->display.crtc_disable(&crtc->base);
10209 crtc->plane = plane;
10210
10211 /* ... and break all links. */
10212 list_for_each_entry(connector, &dev->mode_config.connector_list,
10213 base.head) {
10214 if (connector->encoder->base.crtc != &crtc->base)
10215 continue;
10216
10217 intel_connector_break_all_links(connector);
10218 }
10219
10220 WARN_ON(crtc->active);
10221 crtc->base.enabled = false;
10222 }
10223
10224 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10225 crtc->pipe == PIPE_A && !crtc->active) {
10226 /* BIOS forgot to enable pipe A, this mostly happens after
10227 * resume. Force-enable the pipe to fix this, the update_dpms
10228 * call below we restore the pipe to the right state, but leave
10229 * the required bits on. */
10230 intel_enable_pipe_a(dev);
10231 }
10232
10233 /* Adjust the state of the output pipe according to whether we
10234 * have active connectors/encoders. */
10235 intel_crtc_update_dpms(&crtc->base);
10236
10237 if (crtc->active != crtc->base.enabled) {
10238 struct intel_encoder *encoder;
10239
10240 /* This can happen either due to bugs in the get_hw_state
10241 * functions or because the pipe is force-enabled due to the
10242 * pipe A quirk. */
10243 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10244 crtc->base.base.id,
10245 crtc->base.enabled ? "enabled" : "disabled",
10246 crtc->active ? "enabled" : "disabled");
10247
10248 crtc->base.enabled = crtc->active;
10249
10250 /* Because we only establish the connector -> encoder ->
10251 * crtc links if something is active, this means the
10252 * crtc is now deactivated. Break the links. connector
10253 * -> encoder links are only establish when things are
10254 * actually up, hence no need to break them. */
10255 WARN_ON(crtc->active);
10256
10257 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10258 WARN_ON(encoder->connectors_active);
10259 encoder->base.crtc = NULL;
10260 }
10261 }
10262 }
10263
10264 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10265 {
10266 struct intel_connector *connector;
10267 struct drm_device *dev = encoder->base.dev;
10268
10269 /* We need to check both for a crtc link (meaning that the
10270 * encoder is active and trying to read from a pipe) and the
10271 * pipe itself being active. */
10272 bool has_active_crtc = encoder->base.crtc &&
10273 to_intel_crtc(encoder->base.crtc)->active;
10274
10275 if (encoder->connectors_active && !has_active_crtc) {
10276 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10277 encoder->base.base.id,
10278 drm_get_encoder_name(&encoder->base));
10279
10280 /* Connector is active, but has no active pipe. This is
10281 * fallout from our resume register restoring. Disable
10282 * the encoder manually again. */
10283 if (encoder->base.crtc) {
10284 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10285 encoder->base.base.id,
10286 drm_get_encoder_name(&encoder->base));
10287 encoder->disable(encoder);
10288 }
10289
10290 /* Inconsistent output/port/pipe state happens presumably due to
10291 * a bug in one of the get_hw_state functions. Or someplace else
10292 * in our code, like the register restore mess on resume. Clamp
10293 * things to off as a safer default. */
10294 list_for_each_entry(connector,
10295 &dev->mode_config.connector_list,
10296 base.head) {
10297 if (connector->encoder != encoder)
10298 continue;
10299
10300 intel_connector_break_all_links(connector);
10301 }
10302 }
10303 /* Enabled encoders without active connectors will be fixed in
10304 * the crtc fixup. */
10305 }
10306
10307 void i915_redisable_vga(struct drm_device *dev)
10308 {
10309 struct drm_i915_private *dev_priv = dev->dev_private;
10310 u32 vga_reg = i915_vgacntrl_reg(dev);
10311
10312 /* This function can be called both from intel_modeset_setup_hw_state or
10313 * at a very early point in our resume sequence, where the power well
10314 * structures are not yet restored. Since this function is at a very
10315 * paranoid "someone might have enabled VGA while we were not looking"
10316 * level, just check if the power well is enabled instead of trying to
10317 * follow the "don't touch the power well if we don't need it" policy
10318 * the rest of the driver uses. */
10319 if (HAS_POWER_WELL(dev) &&
10320 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10321 return;
10322
10323 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10324 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10325 i915_disable_vga(dev);
10326 }
10327 }
10328
10329 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10330 {
10331 struct drm_i915_private *dev_priv = dev->dev_private;
10332 enum pipe pipe;
10333 struct intel_crtc *crtc;
10334 struct intel_encoder *encoder;
10335 struct intel_connector *connector;
10336 int i;
10337
10338 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10339 base.head) {
10340 memset(&crtc->config, 0, sizeof(crtc->config));
10341
10342 crtc->active = dev_priv->display.get_pipe_config(crtc,
10343 &crtc->config);
10344
10345 crtc->base.enabled = crtc->active;
10346
10347 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10348 crtc->base.base.id,
10349 crtc->active ? "enabled" : "disabled");
10350 }
10351
10352 /* FIXME: Smash this into the new shared dpll infrastructure. */
10353 if (HAS_DDI(dev))
10354 intel_ddi_setup_hw_pll_state(dev);
10355
10356 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10357 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10358
10359 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10360 pll->active = 0;
10361 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10362 base.head) {
10363 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10364 pll->active++;
10365 }
10366 pll->refcount = pll->active;
10367
10368 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10369 pll->name, pll->refcount, pll->on);
10370 }
10371
10372 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10373 base.head) {
10374 pipe = 0;
10375
10376 if (encoder->get_hw_state(encoder, &pipe)) {
10377 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10378 encoder->base.crtc = &crtc->base;
10379 if (encoder->get_config)
10380 encoder->get_config(encoder, &crtc->config);
10381 } else {
10382 encoder->base.crtc = NULL;
10383 }
10384
10385 encoder->connectors_active = false;
10386 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10387 encoder->base.base.id,
10388 drm_get_encoder_name(&encoder->base),
10389 encoder->base.crtc ? "enabled" : "disabled",
10390 pipe);
10391 }
10392
10393 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10394 base.head) {
10395 if (!crtc->active)
10396 continue;
10397 if (dev_priv->display.get_clock)
10398 dev_priv->display.get_clock(crtc,
10399 &crtc->config);
10400 }
10401
10402 list_for_each_entry(connector, &dev->mode_config.connector_list,
10403 base.head) {
10404 if (connector->get_hw_state(connector)) {
10405 connector->base.dpms = DRM_MODE_DPMS_ON;
10406 connector->encoder->connectors_active = true;
10407 connector->base.encoder = &connector->encoder->base;
10408 } else {
10409 connector->base.dpms = DRM_MODE_DPMS_OFF;
10410 connector->base.encoder = NULL;
10411 }
10412 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10413 connector->base.base.id,
10414 drm_get_connector_name(&connector->base),
10415 connector->base.encoder ? "enabled" : "disabled");
10416 }
10417 }
10418
10419 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10420 * and i915 state tracking structures. */
10421 void intel_modeset_setup_hw_state(struct drm_device *dev,
10422 bool force_restore)
10423 {
10424 struct drm_i915_private *dev_priv = dev->dev_private;
10425 enum pipe pipe;
10426 struct drm_plane *plane;
10427 struct intel_crtc *crtc;
10428 struct intel_encoder *encoder;
10429 int i;
10430
10431 intel_modeset_readout_hw_state(dev);
10432
10433 /*
10434 * Now that we have the config, copy it to each CRTC struct
10435 * Note that this could go away if we move to using crtc_config
10436 * checking everywhere.
10437 */
10438 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10439 base.head) {
10440 if (crtc->active && i915_fastboot) {
10441 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10442
10443 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10444 crtc->base.base.id);
10445 drm_mode_debug_printmodeline(&crtc->base.mode);
10446 }
10447 }
10448
10449 /* HW state is read out, now we need to sanitize this mess. */
10450 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10451 base.head) {
10452 intel_sanitize_encoder(encoder);
10453 }
10454
10455 for_each_pipe(pipe) {
10456 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10457 intel_sanitize_crtc(crtc);
10458 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10459 }
10460
10461 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10462 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10463
10464 if (!pll->on || pll->active)
10465 continue;
10466
10467 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10468
10469 pll->disable(dev_priv, pll);
10470 pll->on = false;
10471 }
10472
10473 if (force_restore) {
10474 /*
10475 * We need to use raw interfaces for restoring state to avoid
10476 * checking (bogus) intermediate states.
10477 */
10478 for_each_pipe(pipe) {
10479 struct drm_crtc *crtc =
10480 dev_priv->pipe_to_crtc_mapping[pipe];
10481
10482 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10483 crtc->fb);
10484 }
10485 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10486 intel_plane_restore(plane);
10487
10488 i915_redisable_vga(dev);
10489 } else {
10490 intel_modeset_update_staged_output_state(dev);
10491 }
10492
10493 intel_modeset_check_state(dev);
10494
10495 drm_mode_config_reset(dev);
10496 }
10497
10498 void intel_modeset_gem_init(struct drm_device *dev)
10499 {
10500 intel_modeset_init_hw(dev);
10501
10502 intel_setup_overlay(dev);
10503
10504 intel_modeset_setup_hw_state(dev, false);
10505 }
10506
10507 void intel_modeset_cleanup(struct drm_device *dev)
10508 {
10509 struct drm_i915_private *dev_priv = dev->dev_private;
10510 struct drm_crtc *crtc;
10511
10512 /*
10513 * Interrupts and polling as the first thing to avoid creating havoc.
10514 * Too much stuff here (turning of rps, connectors, ...) would
10515 * experience fancy races otherwise.
10516 */
10517 drm_irq_uninstall(dev);
10518 cancel_work_sync(&dev_priv->hotplug_work);
10519 /*
10520 * Due to the hpd irq storm handling the hotplug work can re-arm the
10521 * poll handlers. Hence disable polling after hpd handling is shut down.
10522 */
10523 drm_kms_helper_poll_fini(dev);
10524
10525 mutex_lock(&dev->struct_mutex);
10526
10527 intel_unregister_dsm_handler();
10528
10529 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10530 /* Skip inactive CRTCs */
10531 if (!crtc->fb)
10532 continue;
10533
10534 intel_increase_pllclock(crtc);
10535 }
10536
10537 intel_disable_fbc(dev);
10538
10539 intel_disable_gt_powersave(dev);
10540
10541 ironlake_teardown_rc6(dev);
10542
10543 mutex_unlock(&dev->struct_mutex);
10544
10545 /* flush any delayed tasks or pending work */
10546 flush_scheduled_work();
10547
10548 /* destroy backlight, if any, before the connectors */
10549 intel_panel_destroy_backlight(dev);
10550
10551 drm_mode_config_cleanup(dev);
10552
10553 intel_cleanup_overlay(dev);
10554 }
10555
10556 /*
10557 * Return which encoder is currently attached for connector.
10558 */
10559 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10560 {
10561 return &intel_attached_encoder(connector)->base;
10562 }
10563
10564 void intel_connector_attach_encoder(struct intel_connector *connector,
10565 struct intel_encoder *encoder)
10566 {
10567 connector->encoder = encoder;
10568 drm_mode_connector_attach_encoder(&connector->base,
10569 &encoder->base);
10570 }
10571
10572 /*
10573 * set vga decode state - true == enable VGA decode
10574 */
10575 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10576 {
10577 struct drm_i915_private *dev_priv = dev->dev_private;
10578 u16 gmch_ctrl;
10579
10580 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10581 if (state)
10582 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10583 else
10584 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10585 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10586 return 0;
10587 }
10588
10589 struct intel_display_error_state {
10590
10591 u32 power_well_driver;
10592
10593 int num_transcoders;
10594
10595 struct intel_cursor_error_state {
10596 u32 control;
10597 u32 position;
10598 u32 base;
10599 u32 size;
10600 } cursor[I915_MAX_PIPES];
10601
10602 struct intel_pipe_error_state {
10603 u32 source;
10604 } pipe[I915_MAX_PIPES];
10605
10606 struct intel_plane_error_state {
10607 u32 control;
10608 u32 stride;
10609 u32 size;
10610 u32 pos;
10611 u32 addr;
10612 u32 surface;
10613 u32 tile_offset;
10614 } plane[I915_MAX_PIPES];
10615
10616 struct intel_transcoder_error_state {
10617 enum transcoder cpu_transcoder;
10618
10619 u32 conf;
10620
10621 u32 htotal;
10622 u32 hblank;
10623 u32 hsync;
10624 u32 vtotal;
10625 u32 vblank;
10626 u32 vsync;
10627 } transcoder[4];
10628 };
10629
10630 struct intel_display_error_state *
10631 intel_display_capture_error_state(struct drm_device *dev)
10632 {
10633 drm_i915_private_t *dev_priv = dev->dev_private;
10634 struct intel_display_error_state *error;
10635 int transcoders[] = {
10636 TRANSCODER_A,
10637 TRANSCODER_B,
10638 TRANSCODER_C,
10639 TRANSCODER_EDP,
10640 };
10641 int i;
10642
10643 if (INTEL_INFO(dev)->num_pipes == 0)
10644 return NULL;
10645
10646 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10647 if (error == NULL)
10648 return NULL;
10649
10650 if (HAS_POWER_WELL(dev))
10651 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10652
10653 for_each_pipe(i) {
10654 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10655 error->cursor[i].control = I915_READ(CURCNTR(i));
10656 error->cursor[i].position = I915_READ(CURPOS(i));
10657 error->cursor[i].base = I915_READ(CURBASE(i));
10658 } else {
10659 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10660 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10661 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10662 }
10663
10664 error->plane[i].control = I915_READ(DSPCNTR(i));
10665 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10666 if (INTEL_INFO(dev)->gen <= 3) {
10667 error->plane[i].size = I915_READ(DSPSIZE(i));
10668 error->plane[i].pos = I915_READ(DSPPOS(i));
10669 }
10670 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10671 error->plane[i].addr = I915_READ(DSPADDR(i));
10672 if (INTEL_INFO(dev)->gen >= 4) {
10673 error->plane[i].surface = I915_READ(DSPSURF(i));
10674 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10675 }
10676
10677 error->pipe[i].source = I915_READ(PIPESRC(i));
10678 }
10679
10680 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10681 if (HAS_DDI(dev_priv->dev))
10682 error->num_transcoders++; /* Account for eDP. */
10683
10684 for (i = 0; i < error->num_transcoders; i++) {
10685 enum transcoder cpu_transcoder = transcoders[i];
10686
10687 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10688
10689 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10690 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10691 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10692 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10693 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10694 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10695 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10696 }
10697
10698 /* In the code above we read the registers without checking if the power
10699 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10700 * prevent the next I915_WRITE from detecting it and printing an error
10701 * message. */
10702 intel_uncore_clear_errors(dev);
10703
10704 return error;
10705 }
10706
10707 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10708
10709 void
10710 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10711 struct drm_device *dev,
10712 struct intel_display_error_state *error)
10713 {
10714 int i;
10715
10716 if (!error)
10717 return;
10718
10719 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10720 if (HAS_POWER_WELL(dev))
10721 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10722 error->power_well_driver);
10723 for_each_pipe(i) {
10724 err_printf(m, "Pipe [%d]:\n", i);
10725 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10726
10727 err_printf(m, "Plane [%d]:\n", i);
10728 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10729 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10730 if (INTEL_INFO(dev)->gen <= 3) {
10731 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10732 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10733 }
10734 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10735 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10736 if (INTEL_INFO(dev)->gen >= 4) {
10737 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10738 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10739 }
10740
10741 err_printf(m, "Cursor [%d]:\n", i);
10742 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10743 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10744 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10745 }
10746
10747 for (i = 0; i < error->num_transcoders; i++) {
10748 err_printf(m, " CPU transcoder: %c\n",
10749 transcoder_name(error->transcoder[i].cpu_transcoder));
10750 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10751 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10752 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10753 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10754 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10755 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10756 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10757 }
10758 }
This page took 0.269207 seconds and 5 git commands to generate.