drm/i915: make DP configuration vars less confusing in ironlake_crtc_mode_se
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/input.h>
31 #include <linux/i2c.h>
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 #include <drm/drm_edid.h>
36 #include "drmP.h"
37 #include "intel_drv.h"
38 #include "i915_drm.h"
39 #include "i915_drv.h"
40 #include "i915_trace.h"
41 #include "drm_dp_helper.h"
42 #include "drm_crtc_helper.h"
43 #include <linux/dma_remapping.h>
44
45 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46
47 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
48 static void intel_update_watermarks(struct drm_device *dev);
49 static void intel_increase_pllclock(struct drm_crtc *crtc);
50 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
51
52 typedef struct {
53 /* given values */
54 int n;
55 int m1, m2;
56 int p1, p2;
57 /* derived values */
58 int dot;
59 int vco;
60 int m;
61 int p;
62 } intel_clock_t;
63
64 typedef struct {
65 int min, max;
66 } intel_range_t;
67
68 typedef struct {
69 int dot_limit;
70 int p2_slow, p2_fast;
71 } intel_p2_t;
72
73 #define INTEL_P2_NUM 2
74 typedef struct intel_limit intel_limit_t;
75 struct intel_limit {
76 intel_range_t dot, vco, n, m, m1, m2, p, p1;
77 intel_p2_t p2;
78 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
79 int, int, intel_clock_t *, intel_clock_t *);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
84
85 static bool
86 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87 int target, int refclk, intel_clock_t *match_clock,
88 intel_clock_t *best_clock);
89 static bool
90 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
91 int target, int refclk, intel_clock_t *match_clock,
92 intel_clock_t *best_clock);
93
94 static bool
95 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *match_clock,
97 intel_clock_t *best_clock);
98 static bool
99 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
100 int target, int refclk, intel_clock_t *match_clock,
101 intel_clock_t *best_clock);
102
103 static inline u32 /* units of 100MHz */
104 intel_fdi_link_freq(struct drm_device *dev)
105 {
106 if (IS_GEN5(dev)) {
107 struct drm_i915_private *dev_priv = dev->dev_private;
108 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
109 } else
110 return 27;
111 }
112
113 static const intel_limit_t intel_limits_i8xx_dvo = {
114 .dot = { .min = 25000, .max = 350000 },
115 .vco = { .min = 930000, .max = 1400000 },
116 .n = { .min = 3, .max = 16 },
117 .m = { .min = 96, .max = 140 },
118 .m1 = { .min = 18, .max = 26 },
119 .m2 = { .min = 6, .max = 16 },
120 .p = { .min = 4, .max = 128 },
121 .p1 = { .min = 2, .max = 33 },
122 .p2 = { .dot_limit = 165000,
123 .p2_slow = 4, .p2_fast = 2 },
124 .find_pll = intel_find_best_PLL,
125 };
126
127 static const intel_limit_t intel_limits_i8xx_lvds = {
128 .dot = { .min = 25000, .max = 350000 },
129 .vco = { .min = 930000, .max = 1400000 },
130 .n = { .min = 3, .max = 16 },
131 .m = { .min = 96, .max = 140 },
132 .m1 = { .min = 18, .max = 26 },
133 .m2 = { .min = 6, .max = 16 },
134 .p = { .min = 4, .max = 128 },
135 .p1 = { .min = 1, .max = 6 },
136 .p2 = { .dot_limit = 165000,
137 .p2_slow = 14, .p2_fast = 7 },
138 .find_pll = intel_find_best_PLL,
139 };
140
141 static const intel_limit_t intel_limits_i9xx_sdvo = {
142 .dot = { .min = 20000, .max = 400000 },
143 .vco = { .min = 1400000, .max = 2800000 },
144 .n = { .min = 1, .max = 6 },
145 .m = { .min = 70, .max = 120 },
146 .m1 = { .min = 10, .max = 22 },
147 .m2 = { .min = 5, .max = 9 },
148 .p = { .min = 5, .max = 80 },
149 .p1 = { .min = 1, .max = 8 },
150 .p2 = { .dot_limit = 200000,
151 .p2_slow = 10, .p2_fast = 5 },
152 .find_pll = intel_find_best_PLL,
153 };
154
155 static const intel_limit_t intel_limits_i9xx_lvds = {
156 .dot = { .min = 20000, .max = 400000 },
157 .vco = { .min = 1400000, .max = 2800000 },
158 .n = { .min = 1, .max = 6 },
159 .m = { .min = 70, .max = 120 },
160 .m1 = { .min = 10, .max = 22 },
161 .m2 = { .min = 5, .max = 9 },
162 .p = { .min = 7, .max = 98 },
163 .p1 = { .min = 1, .max = 8 },
164 .p2 = { .dot_limit = 112000,
165 .p2_slow = 14, .p2_fast = 7 },
166 .find_pll = intel_find_best_PLL,
167 };
168
169
170 static const intel_limit_t intel_limits_g4x_sdvo = {
171 .dot = { .min = 25000, .max = 270000 },
172 .vco = { .min = 1750000, .max = 3500000},
173 .n = { .min = 1, .max = 4 },
174 .m = { .min = 104, .max = 138 },
175 .m1 = { .min = 17, .max = 23 },
176 .m2 = { .min = 5, .max = 11 },
177 .p = { .min = 10, .max = 30 },
178 .p1 = { .min = 1, .max = 3},
179 .p2 = { .dot_limit = 270000,
180 .p2_slow = 10,
181 .p2_fast = 10
182 },
183 .find_pll = intel_g4x_find_best_PLL,
184 };
185
186 static const intel_limit_t intel_limits_g4x_hdmi = {
187 .dot = { .min = 22000, .max = 400000 },
188 .vco = { .min = 1750000, .max = 3500000},
189 .n = { .min = 1, .max = 4 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 16, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8},
195 .p2 = { .dot_limit = 165000,
196 .p2_slow = 10, .p2_fast = 5 },
197 .find_pll = intel_g4x_find_best_PLL,
198 };
199
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201 .dot = { .min = 20000, .max = 115000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 28, .max = 112 },
208 .p1 = { .min = 2, .max = 8 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 14, .p2_fast = 14
211 },
212 .find_pll = intel_g4x_find_best_PLL,
213 };
214
215 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
216 .dot = { .min = 80000, .max = 224000 },
217 .vco = { .min = 1750000, .max = 3500000 },
218 .n = { .min = 1, .max = 3 },
219 .m = { .min = 104, .max = 138 },
220 .m1 = { .min = 17, .max = 23 },
221 .m2 = { .min = 5, .max = 11 },
222 .p = { .min = 14, .max = 42 },
223 .p1 = { .min = 2, .max = 6 },
224 .p2 = { .dot_limit = 0,
225 .p2_slow = 7, .p2_fast = 7
226 },
227 .find_pll = intel_g4x_find_best_PLL,
228 };
229
230 static const intel_limit_t intel_limits_g4x_display_port = {
231 .dot = { .min = 161670, .max = 227000 },
232 .vco = { .min = 1750000, .max = 3500000},
233 .n = { .min = 1, .max = 2 },
234 .m = { .min = 97, .max = 108 },
235 .m1 = { .min = 0x10, .max = 0x12 },
236 .m2 = { .min = 0x05, .max = 0x06 },
237 .p = { .min = 10, .max = 20 },
238 .p1 = { .min = 1, .max = 2},
239 .p2 = { .dot_limit = 0,
240 .p2_slow = 10, .p2_fast = 10 },
241 .find_pll = intel_find_pll_g4x_dp,
242 };
243
244 static const intel_limit_t intel_limits_pineview_sdvo = {
245 .dot = { .min = 20000, .max = 400000},
246 .vco = { .min = 1700000, .max = 3500000 },
247 /* Pineview's Ncounter is a ring counter */
248 .n = { .min = 3, .max = 6 },
249 .m = { .min = 2, .max = 256 },
250 /* Pineview only has one combined m divider, which we treat as m2. */
251 .m1 = { .min = 0, .max = 0 },
252 .m2 = { .min = 0, .max = 254 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 200000,
256 .p2_slow = 10, .p2_fast = 5 },
257 .find_pll = intel_find_best_PLL,
258 };
259
260 static const intel_limit_t intel_limits_pineview_lvds = {
261 .dot = { .min = 20000, .max = 400000 },
262 .vco = { .min = 1700000, .max = 3500000 },
263 .n = { .min = 3, .max = 6 },
264 .m = { .min = 2, .max = 256 },
265 .m1 = { .min = 0, .max = 0 },
266 .m2 = { .min = 0, .max = 254 },
267 .p = { .min = 7, .max = 112 },
268 .p1 = { .min = 1, .max = 8 },
269 .p2 = { .dot_limit = 112000,
270 .p2_slow = 14, .p2_fast = 14 },
271 .find_pll = intel_find_best_PLL,
272 };
273
274 /* Ironlake / Sandybridge
275 *
276 * We calculate clock using (register_value + 2) for N/M1/M2, so here
277 * the range value for them is (actual_value - 2).
278 */
279 static const intel_limit_t intel_limits_ironlake_dac = {
280 .dot = { .min = 25000, .max = 350000 },
281 .vco = { .min = 1760000, .max = 3510000 },
282 .n = { .min = 1, .max = 5 },
283 .m = { .min = 79, .max = 127 },
284 .m1 = { .min = 12, .max = 22 },
285 .m2 = { .min = 5, .max = 9 },
286 .p = { .min = 5, .max = 80 },
287 .p1 = { .min = 1, .max = 8 },
288 .p2 = { .dot_limit = 225000,
289 .p2_slow = 10, .p2_fast = 5 },
290 .find_pll = intel_g4x_find_best_PLL,
291 };
292
293 static const intel_limit_t intel_limits_ironlake_single_lvds = {
294 .dot = { .min = 25000, .max = 350000 },
295 .vco = { .min = 1760000, .max = 3510000 },
296 .n = { .min = 1, .max = 3 },
297 .m = { .min = 79, .max = 118 },
298 .m1 = { .min = 12, .max = 22 },
299 .m2 = { .min = 5, .max = 9 },
300 .p = { .min = 28, .max = 112 },
301 .p1 = { .min = 2, .max = 8 },
302 .p2 = { .dot_limit = 225000,
303 .p2_slow = 14, .p2_fast = 14 },
304 .find_pll = intel_g4x_find_best_PLL,
305 };
306
307 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 127 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 14, .max = 56 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 7, .p2_fast = 7 },
318 .find_pll = intel_g4x_find_best_PLL,
319 };
320
321 /* LVDS 100mhz refclk limits. */
322 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
323 .dot = { .min = 25000, .max = 350000 },
324 .vco = { .min = 1760000, .max = 3510000 },
325 .n = { .min = 1, .max = 2 },
326 .m = { .min = 79, .max = 126 },
327 .m1 = { .min = 12, .max = 22 },
328 .m2 = { .min = 5, .max = 9 },
329 .p = { .min = 28, .max = 112 },
330 .p1 = { .min = 2, .max = 8 },
331 .p2 = { .dot_limit = 225000,
332 .p2_slow = 14, .p2_fast = 14 },
333 .find_pll = intel_g4x_find_best_PLL,
334 };
335
336 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
337 .dot = { .min = 25000, .max = 350000 },
338 .vco = { .min = 1760000, .max = 3510000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 79, .max = 126 },
341 .m1 = { .min = 12, .max = 22 },
342 .m2 = { .min = 5, .max = 9 },
343 .p = { .min = 14, .max = 42 },
344 .p1 = { .min = 2, .max = 6 },
345 .p2 = { .dot_limit = 225000,
346 .p2_slow = 7, .p2_fast = 7 },
347 .find_pll = intel_g4x_find_best_PLL,
348 };
349
350 static const intel_limit_t intel_limits_ironlake_display_port = {
351 .dot = { .min = 25000, .max = 350000 },
352 .vco = { .min = 1760000, .max = 3510000},
353 .n = { .min = 1, .max = 2 },
354 .m = { .min = 81, .max = 90 },
355 .m1 = { .min = 12, .max = 22 },
356 .m2 = { .min = 5, .max = 9 },
357 .p = { .min = 10, .max = 20 },
358 .p1 = { .min = 1, .max = 2},
359 .p2 = { .dot_limit = 0,
360 .p2_slow = 10, .p2_fast = 10 },
361 .find_pll = intel_find_pll_ironlake_dp,
362 };
363
364 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
365 {
366 unsigned long flags;
367 u32 val = 0;
368
369 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
370 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
371 DRM_ERROR("DPIO idle wait timed out\n");
372 goto out_unlock;
373 }
374
375 I915_WRITE(DPIO_REG, reg);
376 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
377 DPIO_BYTE);
378 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
379 DRM_ERROR("DPIO read wait timed out\n");
380 goto out_unlock;
381 }
382 val = I915_READ(DPIO_DATA);
383
384 out_unlock:
385 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
386 return val;
387 }
388
389 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
390 u32 val)
391 {
392 unsigned long flags;
393
394 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
395 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
396 DRM_ERROR("DPIO idle wait timed out\n");
397 goto out_unlock;
398 }
399
400 I915_WRITE(DPIO_DATA, val);
401 I915_WRITE(DPIO_REG, reg);
402 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
403 DPIO_BYTE);
404 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
405 DRM_ERROR("DPIO write wait timed out\n");
406
407 out_unlock:
408 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
409 }
410
411 static void vlv_init_dpio(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 /* Reset the DPIO config */
416 I915_WRITE(DPIO_CTL, 0);
417 POSTING_READ(DPIO_CTL);
418 I915_WRITE(DPIO_CTL, 1);
419 POSTING_READ(DPIO_CTL);
420 }
421
422 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
423 {
424 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
425 return 1;
426 }
427
428 static const struct dmi_system_id intel_dual_link_lvds[] = {
429 {
430 .callback = intel_dual_link_lvds_callback,
431 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
432 .matches = {
433 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
434 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
435 },
436 },
437 { } /* terminating entry */
438 };
439
440 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
441 unsigned int reg)
442 {
443 unsigned int val;
444
445 /* use the module option value if specified */
446 if (i915_lvds_channel_mode > 0)
447 return i915_lvds_channel_mode == 2;
448
449 if (dmi_check_system(intel_dual_link_lvds))
450 return true;
451
452 if (dev_priv->lvds_val)
453 val = dev_priv->lvds_val;
454 else {
455 /* BIOS should set the proper LVDS register value at boot, but
456 * in reality, it doesn't set the value when the lid is closed;
457 * we need to check "the value to be set" in VBT when LVDS
458 * register is uninitialized.
459 */
460 val = I915_READ(reg);
461 if (!(val & ~LVDS_DETECTED))
462 val = dev_priv->bios_lvds_val;
463 dev_priv->lvds_val = val;
464 }
465 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
466 }
467
468 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
469 int refclk)
470 {
471 struct drm_device *dev = crtc->dev;
472 struct drm_i915_private *dev_priv = dev->dev_private;
473 const intel_limit_t *limit;
474
475 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
476 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
477 /* LVDS dual channel */
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_dual_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_dual_lvds;
482 } else {
483 if (refclk == 100000)
484 limit = &intel_limits_ironlake_single_lvds_100m;
485 else
486 limit = &intel_limits_ironlake_single_lvds;
487 }
488 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
489 HAS_eDP)
490 limit = &intel_limits_ironlake_display_port;
491 else
492 limit = &intel_limits_ironlake_dac;
493
494 return limit;
495 }
496
497 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
498 {
499 struct drm_device *dev = crtc->dev;
500 struct drm_i915_private *dev_priv = dev->dev_private;
501 const intel_limit_t *limit;
502
503 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
504 if (is_dual_link_lvds(dev_priv, LVDS))
505 /* LVDS with dual channel */
506 limit = &intel_limits_g4x_dual_channel_lvds;
507 else
508 /* LVDS with dual channel */
509 limit = &intel_limits_g4x_single_channel_lvds;
510 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
511 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
512 limit = &intel_limits_g4x_hdmi;
513 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
514 limit = &intel_limits_g4x_sdvo;
515 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
516 limit = &intel_limits_g4x_display_port;
517 } else /* The option is for other outputs */
518 limit = &intel_limits_i9xx_sdvo;
519
520 return limit;
521 }
522
523 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
524 {
525 struct drm_device *dev = crtc->dev;
526 const intel_limit_t *limit;
527
528 if (HAS_PCH_SPLIT(dev))
529 limit = intel_ironlake_limit(crtc, refclk);
530 else if (IS_G4X(dev)) {
531 limit = intel_g4x_limit(crtc);
532 } else if (IS_PINEVIEW(dev)) {
533 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_pineview_lvds;
535 else
536 limit = &intel_limits_pineview_sdvo;
537 } else if (!IS_GEN2(dev)) {
538 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i9xx_lvds;
540 else
541 limit = &intel_limits_i9xx_sdvo;
542 } else {
543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
544 limit = &intel_limits_i8xx_lvds;
545 else
546 limit = &intel_limits_i8xx_dvo;
547 }
548 return limit;
549 }
550
551 /* m1 is reserved as 0 in Pineview, n is a ring counter */
552 static void pineview_clock(int refclk, intel_clock_t *clock)
553 {
554 clock->m = clock->m2 + 2;
555 clock->p = clock->p1 * clock->p2;
556 clock->vco = refclk * clock->m / clock->n;
557 clock->dot = clock->vco / clock->p;
558 }
559
560 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
561 {
562 if (IS_PINEVIEW(dev)) {
563 pineview_clock(refclk, clock);
564 return;
565 }
566 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
567 clock->p = clock->p1 * clock->p2;
568 clock->vco = refclk * clock->m / (clock->n + 2);
569 clock->dot = clock->vco / clock->p;
570 }
571
572 /**
573 * Returns whether any output on the specified pipe is of the specified type
574 */
575 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
576 {
577 struct drm_device *dev = crtc->dev;
578 struct drm_mode_config *mode_config = &dev->mode_config;
579 struct intel_encoder *encoder;
580
581 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
582 if (encoder->base.crtc == crtc && encoder->type == type)
583 return true;
584
585 return false;
586 }
587
588 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
589 /**
590 * Returns whether the given set of divisors are valid for a given refclk with
591 * the given connectors.
592 */
593
594 static bool intel_PLL_is_valid(struct drm_device *dev,
595 const intel_limit_t *limit,
596 const intel_clock_t *clock)
597 {
598 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
599 INTELPllInvalid("p1 out of range\n");
600 if (clock->p < limit->p.min || limit->p.max < clock->p)
601 INTELPllInvalid("p out of range\n");
602 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
603 INTELPllInvalid("m2 out of range\n");
604 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
605 INTELPllInvalid("m1 out of range\n");
606 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
607 INTELPllInvalid("m1 <= m2\n");
608 if (clock->m < limit->m.min || limit->m.max < clock->m)
609 INTELPllInvalid("m out of range\n");
610 if (clock->n < limit->n.min || limit->n.max < clock->n)
611 INTELPllInvalid("n out of range\n");
612 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
613 INTELPllInvalid("vco out of range\n");
614 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
615 * connector, etc., rather than just a single range.
616 */
617 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
618 INTELPllInvalid("dot out of range\n");
619
620 return true;
621 }
622
623 static bool
624 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
625 int target, int refclk, intel_clock_t *match_clock,
626 intel_clock_t *best_clock)
627
628 {
629 struct drm_device *dev = crtc->dev;
630 struct drm_i915_private *dev_priv = dev->dev_private;
631 intel_clock_t clock;
632 int err = target;
633
634 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
635 (I915_READ(LVDS)) != 0) {
636 /*
637 * For LVDS, if the panel is on, just rely on its current
638 * settings for dual-channel. We haven't figured out how to
639 * reliably set up different single/dual channel state, if we
640 * even can.
641 */
642 if (is_dual_link_lvds(dev_priv, LVDS))
643 clock.p2 = limit->p2.p2_fast;
644 else
645 clock.p2 = limit->p2.p2_slow;
646 } else {
647 if (target < limit->p2.dot_limit)
648 clock.p2 = limit->p2.p2_slow;
649 else
650 clock.p2 = limit->p2.p2_fast;
651 }
652
653 memset(best_clock, 0, sizeof(*best_clock));
654
655 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
656 clock.m1++) {
657 for (clock.m2 = limit->m2.min;
658 clock.m2 <= limit->m2.max; clock.m2++) {
659 /* m1 is always 0 in Pineview */
660 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
661 break;
662 for (clock.n = limit->n.min;
663 clock.n <= limit->n.max; clock.n++) {
664 for (clock.p1 = limit->p1.min;
665 clock.p1 <= limit->p1.max; clock.p1++) {
666 int this_err;
667
668 intel_clock(dev, refclk, &clock);
669 if (!intel_PLL_is_valid(dev, limit,
670 &clock))
671 continue;
672 if (match_clock &&
673 clock.p != match_clock->p)
674 continue;
675
676 this_err = abs(clock.dot - target);
677 if (this_err < err) {
678 *best_clock = clock;
679 err = this_err;
680 }
681 }
682 }
683 }
684 }
685
686 return (err != target);
687 }
688
689 static bool
690 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
691 int target, int refclk, intel_clock_t *match_clock,
692 intel_clock_t *best_clock)
693 {
694 struct drm_device *dev = crtc->dev;
695 struct drm_i915_private *dev_priv = dev->dev_private;
696 intel_clock_t clock;
697 int max_n;
698 bool found;
699 /* approximately equals target * 0.00585 */
700 int err_most = (target >> 8) + (target >> 9);
701 found = false;
702
703 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
704 int lvds_reg;
705
706 if (HAS_PCH_SPLIT(dev))
707 lvds_reg = PCH_LVDS;
708 else
709 lvds_reg = LVDS;
710 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
711 LVDS_CLKB_POWER_UP)
712 clock.p2 = limit->p2.p2_fast;
713 else
714 clock.p2 = limit->p2.p2_slow;
715 } else {
716 if (target < limit->p2.dot_limit)
717 clock.p2 = limit->p2.p2_slow;
718 else
719 clock.p2 = limit->p2.p2_fast;
720 }
721
722 memset(best_clock, 0, sizeof(*best_clock));
723 max_n = limit->n.max;
724 /* based on hardware requirement, prefer smaller n to precision */
725 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
726 /* based on hardware requirement, prefere larger m1,m2 */
727 for (clock.m1 = limit->m1.max;
728 clock.m1 >= limit->m1.min; clock.m1--) {
729 for (clock.m2 = limit->m2.max;
730 clock.m2 >= limit->m2.min; clock.m2--) {
731 for (clock.p1 = limit->p1.max;
732 clock.p1 >= limit->p1.min; clock.p1--) {
733 int this_err;
734
735 intel_clock(dev, refclk, &clock);
736 if (!intel_PLL_is_valid(dev, limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err_most) {
745 *best_clock = clock;
746 err_most = this_err;
747 max_n = clock.n;
748 found = true;
749 }
750 }
751 }
752 }
753 }
754 return found;
755 }
756
757 static bool
758 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
759 int target, int refclk, intel_clock_t *match_clock,
760 intel_clock_t *best_clock)
761 {
762 struct drm_device *dev = crtc->dev;
763 intel_clock_t clock;
764
765 if (target < 200000) {
766 clock.n = 1;
767 clock.p1 = 2;
768 clock.p2 = 10;
769 clock.m1 = 12;
770 clock.m2 = 9;
771 } else {
772 clock.n = 2;
773 clock.p1 = 1;
774 clock.p2 = 10;
775 clock.m1 = 14;
776 clock.m2 = 8;
777 }
778 intel_clock(dev, refclk, &clock);
779 memcpy(best_clock, &clock, sizeof(intel_clock_t));
780 return true;
781 }
782
783 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
784 static bool
785 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
786 int target, int refclk, intel_clock_t *match_clock,
787 intel_clock_t *best_clock)
788 {
789 intel_clock_t clock;
790 if (target < 200000) {
791 clock.p1 = 2;
792 clock.p2 = 10;
793 clock.n = 2;
794 clock.m1 = 23;
795 clock.m2 = 8;
796 } else {
797 clock.p1 = 1;
798 clock.p2 = 10;
799 clock.n = 1;
800 clock.m1 = 14;
801 clock.m2 = 2;
802 }
803 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
804 clock.p = (clock.p1 * clock.p2);
805 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
806 clock.vco = 0;
807 memcpy(best_clock, &clock, sizeof(intel_clock_t));
808 return true;
809 }
810
811 /**
812 * intel_wait_for_vblank - wait for vblank on a given pipe
813 * @dev: drm device
814 * @pipe: pipe to wait for
815 *
816 * Wait for vblank to occur on a given pipe. Needed for various bits of
817 * mode setting code.
818 */
819 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
820 {
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 int pipestat_reg = PIPESTAT(pipe);
823
824 /* Clear existing vblank status. Note this will clear any other
825 * sticky status fields as well.
826 *
827 * This races with i915_driver_irq_handler() with the result
828 * that either function could miss a vblank event. Here it is not
829 * fatal, as we will either wait upon the next vblank interrupt or
830 * timeout. Generally speaking intel_wait_for_vblank() is only
831 * called during modeset at which time the GPU should be idle and
832 * should *not* be performing page flips and thus not waiting on
833 * vblanks...
834 * Currently, the result of us stealing a vblank from the irq
835 * handler is that a single frame will be skipped during swapbuffers.
836 */
837 I915_WRITE(pipestat_reg,
838 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
839
840 /* Wait for vblank interrupt bit to set */
841 if (wait_for(I915_READ(pipestat_reg) &
842 PIPE_VBLANK_INTERRUPT_STATUS,
843 50))
844 DRM_DEBUG_KMS("vblank wait timed out\n");
845 }
846
847 /*
848 * intel_wait_for_pipe_off - wait for pipe to turn off
849 * @dev: drm device
850 * @pipe: pipe to wait for
851 *
852 * After disabling a pipe, we can't wait for vblank in the usual way,
853 * spinning on the vblank interrupt status bit, since we won't actually
854 * see an interrupt when the pipe is disabled.
855 *
856 * On Gen4 and above:
857 * wait for the pipe register state bit to turn off
858 *
859 * Otherwise:
860 * wait for the display line value to settle (it usually
861 * ends up stopping at the start of the next frame).
862 *
863 */
864 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
865 {
866 struct drm_i915_private *dev_priv = dev->dev_private;
867
868 if (INTEL_INFO(dev)->gen >= 4) {
869 int reg = PIPECONF(pipe);
870
871 /* Wait for the Pipe State to go off */
872 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
873 100))
874 DRM_DEBUG_KMS("pipe_off wait timed out\n");
875 } else {
876 u32 last_line;
877 int reg = PIPEDSL(pipe);
878 unsigned long timeout = jiffies + msecs_to_jiffies(100);
879
880 /* Wait for the display line to settle */
881 do {
882 last_line = I915_READ(reg) & DSL_LINEMASK;
883 mdelay(5);
884 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
885 time_after(timeout, jiffies));
886 if (time_after(jiffies, timeout))
887 DRM_DEBUG_KMS("pipe_off wait timed out\n");
888 }
889 }
890
891 static const char *state_string(bool enabled)
892 {
893 return enabled ? "on" : "off";
894 }
895
896 /* Only for pre-ILK configs */
897 static void assert_pll(struct drm_i915_private *dev_priv,
898 enum pipe pipe, bool state)
899 {
900 int reg;
901 u32 val;
902 bool cur_state;
903
904 reg = DPLL(pipe);
905 val = I915_READ(reg);
906 cur_state = !!(val & DPLL_VCO_ENABLE);
907 WARN(cur_state != state,
908 "PLL state assertion failure (expected %s, current %s)\n",
909 state_string(state), state_string(cur_state));
910 }
911 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
912 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
913
914 /* For ILK+ */
915 static void assert_pch_pll(struct drm_i915_private *dev_priv,
916 enum pipe pipe, bool state)
917 {
918 int reg;
919 u32 val;
920 bool cur_state;
921
922 if (HAS_PCH_CPT(dev_priv->dev)) {
923 u32 pch_dpll;
924
925 pch_dpll = I915_READ(PCH_DPLL_SEL);
926
927 /* Make sure the selected PLL is enabled to the transcoder */
928 WARN(!((pch_dpll >> (4 * pipe)) & 8),
929 "transcoder %d PLL not enabled\n", pipe);
930
931 /* Convert the transcoder pipe number to a pll pipe number */
932 pipe = (pch_dpll >> (4 * pipe)) & 1;
933 }
934
935 reg = PCH_DPLL(pipe);
936 val = I915_READ(reg);
937 cur_state = !!(val & DPLL_VCO_ENABLE);
938 WARN(cur_state != state,
939 "PCH PLL state assertion failure (expected %s, current %s)\n",
940 state_string(state), state_string(cur_state));
941 }
942 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
943 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
944
945 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
946 enum pipe pipe, bool state)
947 {
948 int reg;
949 u32 val;
950 bool cur_state;
951
952 reg = FDI_TX_CTL(pipe);
953 val = I915_READ(reg);
954 cur_state = !!(val & FDI_TX_ENABLE);
955 WARN(cur_state != state,
956 "FDI TX state assertion failure (expected %s, current %s)\n",
957 state_string(state), state_string(cur_state));
958 }
959 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
960 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
961
962 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
963 enum pipe pipe, bool state)
964 {
965 int reg;
966 u32 val;
967 bool cur_state;
968
969 reg = FDI_RX_CTL(pipe);
970 val = I915_READ(reg);
971 cur_state = !!(val & FDI_RX_ENABLE);
972 WARN(cur_state != state,
973 "FDI RX state assertion failure (expected %s, current %s)\n",
974 state_string(state), state_string(cur_state));
975 }
976 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
977 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
978
979 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
980 enum pipe pipe)
981 {
982 int reg;
983 u32 val;
984
985 /* ILK FDI PLL is always enabled */
986 if (dev_priv->info->gen == 5)
987 return;
988
989 reg = FDI_TX_CTL(pipe);
990 val = I915_READ(reg);
991 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
992 }
993
994 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
995 enum pipe pipe)
996 {
997 int reg;
998 u32 val;
999
1000 reg = FDI_RX_CTL(pipe);
1001 val = I915_READ(reg);
1002 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1003 }
1004
1005 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1006 enum pipe pipe)
1007 {
1008 int pp_reg, lvds_reg;
1009 u32 val;
1010 enum pipe panel_pipe = PIPE_A;
1011 bool locked = true;
1012
1013 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1014 pp_reg = PCH_PP_CONTROL;
1015 lvds_reg = PCH_LVDS;
1016 } else {
1017 pp_reg = PP_CONTROL;
1018 lvds_reg = LVDS;
1019 }
1020
1021 val = I915_READ(pp_reg);
1022 if (!(val & PANEL_POWER_ON) ||
1023 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1024 locked = false;
1025
1026 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1027 panel_pipe = PIPE_B;
1028
1029 WARN(panel_pipe == pipe && locked,
1030 "panel assertion failure, pipe %c regs locked\n",
1031 pipe_name(pipe));
1032 }
1033
1034 void assert_pipe(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, bool state)
1036 {
1037 int reg;
1038 u32 val;
1039 bool cur_state;
1040
1041 /* if we need the pipe A quirk it must be always on */
1042 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1043 state = true;
1044
1045 reg = PIPECONF(pipe);
1046 val = I915_READ(reg);
1047 cur_state = !!(val & PIPECONF_ENABLE);
1048 WARN(cur_state != state,
1049 "pipe %c assertion failure (expected %s, current %s)\n",
1050 pipe_name(pipe), state_string(state), state_string(cur_state));
1051 }
1052
1053 static void assert_plane(struct drm_i915_private *dev_priv,
1054 enum plane plane, bool state)
1055 {
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DSPCNTR(plane);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1063 WARN(cur_state != state,
1064 "plane %c assertion failure (expected %s, current %s)\n",
1065 plane_name(plane), state_string(state), state_string(cur_state));
1066 }
1067
1068 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1069 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1070
1071 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe)
1073 {
1074 int reg, i;
1075 u32 val;
1076 int cur_pipe;
1077
1078 /* Planes are fixed to pipes on ILK+ */
1079 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080 reg = DSPCNTR(pipe);
1081 val = I915_READ(reg);
1082 WARN((val & DISPLAY_PLANE_ENABLE),
1083 "plane %c assertion failure, should be disabled but not\n",
1084 plane_name(pipe));
1085 return;
1086 }
1087
1088 /* Need to check both planes against the pipe */
1089 for (i = 0; i < 2; i++) {
1090 reg = DSPCNTR(i);
1091 val = I915_READ(reg);
1092 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1093 DISPPLANE_SEL_PIPE_SHIFT;
1094 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1095 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1096 plane_name(i), pipe_name(pipe));
1097 }
1098 }
1099
1100 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1101 {
1102 u32 val;
1103 bool enabled;
1104
1105 val = I915_READ(PCH_DREF_CONTROL);
1106 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1107 DREF_SUPERSPREAD_SOURCE_MASK));
1108 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1109 }
1110
1111 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1112 enum pipe pipe)
1113 {
1114 int reg;
1115 u32 val;
1116 bool enabled;
1117
1118 reg = TRANSCONF(pipe);
1119 val = I915_READ(reg);
1120 enabled = !!(val & TRANS_ENABLE);
1121 WARN(enabled,
1122 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1123 pipe_name(pipe));
1124 }
1125
1126 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1127 enum pipe pipe, u32 port_sel, u32 val)
1128 {
1129 if ((val & DP_PORT_EN) == 0)
1130 return false;
1131
1132 if (HAS_PCH_CPT(dev_priv->dev)) {
1133 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1134 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1135 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1136 return false;
1137 } else {
1138 if ((val & DP_PIPE_MASK) != (pipe << 30))
1139 return false;
1140 }
1141 return true;
1142 }
1143
1144 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, u32 val)
1146 {
1147 if ((val & PORT_ENABLE) == 0)
1148 return false;
1149
1150 if (HAS_PCH_CPT(dev_priv->dev)) {
1151 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1152 return false;
1153 } else {
1154 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1155 return false;
1156 }
1157 return true;
1158 }
1159
1160 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe, u32 val)
1162 {
1163 if ((val & LVDS_PORT_EN) == 0)
1164 return false;
1165
1166 if (HAS_PCH_CPT(dev_priv->dev)) {
1167 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1168 return false;
1169 } else {
1170 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1171 return false;
1172 }
1173 return true;
1174 }
1175
1176 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, u32 val)
1178 {
1179 if ((val & ADPA_DAC_ENABLE) == 0)
1180 return false;
1181 if (HAS_PCH_CPT(dev_priv->dev)) {
1182 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1183 return false;
1184 } else {
1185 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1186 return false;
1187 }
1188 return true;
1189 }
1190
1191 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, int reg, u32 port_sel)
1193 {
1194 u32 val = I915_READ(reg);
1195 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1196 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1197 reg, pipe_name(pipe));
1198 }
1199
1200 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, int reg)
1202 {
1203 u32 val = I915_READ(reg);
1204 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1205 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1206 reg, pipe_name(pipe));
1207 }
1208
1209 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1210 enum pipe pipe)
1211 {
1212 int reg;
1213 u32 val;
1214
1215 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1216 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1217 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1218
1219 reg = PCH_ADPA;
1220 val = I915_READ(reg);
1221 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1222 "PCH VGA enabled on transcoder %c, should be disabled\n",
1223 pipe_name(pipe));
1224
1225 reg = PCH_LVDS;
1226 val = I915_READ(reg);
1227 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1228 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1229 pipe_name(pipe));
1230
1231 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1232 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1233 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1234 }
1235
1236 /**
1237 * intel_enable_pll - enable a PLL
1238 * @dev_priv: i915 private structure
1239 * @pipe: pipe PLL to enable
1240 *
1241 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1242 * make sure the PLL reg is writable first though, since the panel write
1243 * protect mechanism may be enabled.
1244 *
1245 * Note! This is for pre-ILK only.
1246 */
1247 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1248 {
1249 int reg;
1250 u32 val;
1251
1252 /* No really, not for ILK+ */
1253 BUG_ON(dev_priv->info->gen >= 5);
1254
1255 /* PLL is protected by panel, make sure we can write it */
1256 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1257 assert_panel_unlocked(dev_priv, pipe);
1258
1259 reg = DPLL(pipe);
1260 val = I915_READ(reg);
1261 val |= DPLL_VCO_ENABLE;
1262
1263 /* We do this three times for luck */
1264 I915_WRITE(reg, val);
1265 POSTING_READ(reg);
1266 udelay(150); /* wait for warmup */
1267 I915_WRITE(reg, val);
1268 POSTING_READ(reg);
1269 udelay(150); /* wait for warmup */
1270 I915_WRITE(reg, val);
1271 POSTING_READ(reg);
1272 udelay(150); /* wait for warmup */
1273 }
1274
1275 /**
1276 * intel_disable_pll - disable a PLL
1277 * @dev_priv: i915 private structure
1278 * @pipe: pipe PLL to disable
1279 *
1280 * Disable the PLL for @pipe, making sure the pipe is off first.
1281 *
1282 * Note! This is for pre-ILK only.
1283 */
1284 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1285 {
1286 int reg;
1287 u32 val;
1288
1289 /* Don't disable pipe A or pipe A PLLs if needed */
1290 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1291 return;
1292
1293 /* Make sure the pipe isn't still relying on us */
1294 assert_pipe_disabled(dev_priv, pipe);
1295
1296 reg = DPLL(pipe);
1297 val = I915_READ(reg);
1298 val &= ~DPLL_VCO_ENABLE;
1299 I915_WRITE(reg, val);
1300 POSTING_READ(reg);
1301 }
1302
1303 /**
1304 * intel_enable_pch_pll - enable PCH PLL
1305 * @dev_priv: i915 private structure
1306 * @pipe: pipe PLL to enable
1307 *
1308 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1309 * drives the transcoder clock.
1310 */
1311 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313 {
1314 int reg;
1315 u32 val;
1316
1317 if (pipe > 1)
1318 return;
1319
1320 /* PCH only available on ILK+ */
1321 BUG_ON(dev_priv->info->gen < 5);
1322
1323 /* PCH refclock must be enabled first */
1324 assert_pch_refclk_enabled(dev_priv);
1325
1326 reg = PCH_DPLL(pipe);
1327 val = I915_READ(reg);
1328 val |= DPLL_VCO_ENABLE;
1329 I915_WRITE(reg, val);
1330 POSTING_READ(reg);
1331 udelay(200);
1332 }
1333
1334 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1335 enum pipe pipe)
1336 {
1337 int reg;
1338 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1339 pll_sel = TRANSC_DPLL_ENABLE;
1340
1341 if (pipe > 1)
1342 return;
1343
1344 /* PCH only available on ILK+ */
1345 BUG_ON(dev_priv->info->gen < 5);
1346
1347 /* Make sure transcoder isn't still depending on us */
1348 assert_transcoder_disabled(dev_priv, pipe);
1349
1350 if (pipe == 0)
1351 pll_sel |= TRANSC_DPLLA_SEL;
1352 else if (pipe == 1)
1353 pll_sel |= TRANSC_DPLLB_SEL;
1354
1355
1356 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1357 return;
1358
1359 reg = PCH_DPLL(pipe);
1360 val = I915_READ(reg);
1361 val &= ~DPLL_VCO_ENABLE;
1362 I915_WRITE(reg, val);
1363 POSTING_READ(reg);
1364 udelay(200);
1365 }
1366
1367 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1368 enum pipe pipe)
1369 {
1370 int reg;
1371 u32 val, pipeconf_val;
1372 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1373
1374 /* PCH only available on ILK+ */
1375 BUG_ON(dev_priv->info->gen < 5);
1376
1377 /* Make sure PCH DPLL is enabled */
1378 assert_pch_pll_enabled(dev_priv, pipe);
1379
1380 /* FDI must be feeding us bits for PCH ports */
1381 assert_fdi_tx_enabled(dev_priv, pipe);
1382 assert_fdi_rx_enabled(dev_priv, pipe);
1383
1384 reg = TRANSCONF(pipe);
1385 val = I915_READ(reg);
1386 pipeconf_val = I915_READ(PIPECONF(pipe));
1387
1388 if (HAS_PCH_IBX(dev_priv->dev)) {
1389 /*
1390 * make the BPC in transcoder be consistent with
1391 * that in pipeconf reg.
1392 */
1393 val &= ~PIPE_BPC_MASK;
1394 val |= pipeconf_val & PIPE_BPC_MASK;
1395 }
1396
1397 val &= ~TRANS_INTERLACE_MASK;
1398 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1399 if (HAS_PCH_IBX(dev_priv->dev) &&
1400 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1401 val |= TRANS_LEGACY_INTERLACED_ILK;
1402 else
1403 val |= TRANS_INTERLACED;
1404 else
1405 val |= TRANS_PROGRESSIVE;
1406
1407 I915_WRITE(reg, val | TRANS_ENABLE);
1408 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1409 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1410 }
1411
1412 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1413 enum pipe pipe)
1414 {
1415 int reg;
1416 u32 val;
1417
1418 /* FDI relies on the transcoder */
1419 assert_fdi_tx_disabled(dev_priv, pipe);
1420 assert_fdi_rx_disabled(dev_priv, pipe);
1421
1422 /* Ports must be off as well */
1423 assert_pch_ports_disabled(dev_priv, pipe);
1424
1425 reg = TRANSCONF(pipe);
1426 val = I915_READ(reg);
1427 val &= ~TRANS_ENABLE;
1428 I915_WRITE(reg, val);
1429 /* wait for PCH transcoder off, transcoder state */
1430 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1431 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1432 }
1433
1434 /**
1435 * intel_enable_pipe - enable a pipe, asserting requirements
1436 * @dev_priv: i915 private structure
1437 * @pipe: pipe to enable
1438 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1439 *
1440 * Enable @pipe, making sure that various hardware specific requirements
1441 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1442 *
1443 * @pipe should be %PIPE_A or %PIPE_B.
1444 *
1445 * Will wait until the pipe is actually running (i.e. first vblank) before
1446 * returning.
1447 */
1448 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1449 bool pch_port)
1450 {
1451 int reg;
1452 u32 val;
1453
1454 /*
1455 * A pipe without a PLL won't actually be able to drive bits from
1456 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1457 * need the check.
1458 */
1459 if (!HAS_PCH_SPLIT(dev_priv->dev))
1460 assert_pll_enabled(dev_priv, pipe);
1461 else {
1462 if (pch_port) {
1463 /* if driving the PCH, we need FDI enabled */
1464 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1465 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1466 }
1467 /* FIXME: assert CPU port conditions for SNB+ */
1468 }
1469
1470 reg = PIPECONF(pipe);
1471 val = I915_READ(reg);
1472 if (val & PIPECONF_ENABLE)
1473 return;
1474
1475 I915_WRITE(reg, val | PIPECONF_ENABLE);
1476 intel_wait_for_vblank(dev_priv->dev, pipe);
1477 }
1478
1479 /**
1480 * intel_disable_pipe - disable a pipe, asserting requirements
1481 * @dev_priv: i915 private structure
1482 * @pipe: pipe to disable
1483 *
1484 * Disable @pipe, making sure that various hardware specific requirements
1485 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1486 *
1487 * @pipe should be %PIPE_A or %PIPE_B.
1488 *
1489 * Will wait until the pipe has shut down before returning.
1490 */
1491 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1492 enum pipe pipe)
1493 {
1494 int reg;
1495 u32 val;
1496
1497 /*
1498 * Make sure planes won't keep trying to pump pixels to us,
1499 * or we might hang the display.
1500 */
1501 assert_planes_disabled(dev_priv, pipe);
1502
1503 /* Don't disable pipe A or pipe A PLLs if needed */
1504 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1505 return;
1506
1507 reg = PIPECONF(pipe);
1508 val = I915_READ(reg);
1509 if ((val & PIPECONF_ENABLE) == 0)
1510 return;
1511
1512 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1513 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1514 }
1515
1516 /*
1517 * Plane regs are double buffered, going from enabled->disabled needs a
1518 * trigger in order to latch. The display address reg provides this.
1519 */
1520 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1521 enum plane plane)
1522 {
1523 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1524 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1525 }
1526
1527 /**
1528 * intel_enable_plane - enable a display plane on a given pipe
1529 * @dev_priv: i915 private structure
1530 * @plane: plane to enable
1531 * @pipe: pipe being fed
1532 *
1533 * Enable @plane on @pipe, making sure that @pipe is running first.
1534 */
1535 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1536 enum plane plane, enum pipe pipe)
1537 {
1538 int reg;
1539 u32 val;
1540
1541 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1542 assert_pipe_enabled(dev_priv, pipe);
1543
1544 reg = DSPCNTR(plane);
1545 val = I915_READ(reg);
1546 if (val & DISPLAY_PLANE_ENABLE)
1547 return;
1548
1549 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1550 intel_flush_display_plane(dev_priv, plane);
1551 intel_wait_for_vblank(dev_priv->dev, pipe);
1552 }
1553
1554 /**
1555 * intel_disable_plane - disable a display plane
1556 * @dev_priv: i915 private structure
1557 * @plane: plane to disable
1558 * @pipe: pipe consuming the data
1559 *
1560 * Disable @plane; should be an independent operation.
1561 */
1562 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1563 enum plane plane, enum pipe pipe)
1564 {
1565 int reg;
1566 u32 val;
1567
1568 reg = DSPCNTR(plane);
1569 val = I915_READ(reg);
1570 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1571 return;
1572
1573 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1574 intel_flush_display_plane(dev_priv, plane);
1575 intel_wait_for_vblank(dev_priv->dev, pipe);
1576 }
1577
1578 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1579 enum pipe pipe, int reg, u32 port_sel)
1580 {
1581 u32 val = I915_READ(reg);
1582 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1583 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1584 I915_WRITE(reg, val & ~DP_PORT_EN);
1585 }
1586 }
1587
1588 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1589 enum pipe pipe, int reg)
1590 {
1591 u32 val = I915_READ(reg);
1592 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1593 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1594 reg, pipe);
1595 I915_WRITE(reg, val & ~PORT_ENABLE);
1596 }
1597 }
1598
1599 /* Disable any ports connected to this transcoder */
1600 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1601 enum pipe pipe)
1602 {
1603 u32 reg, val;
1604
1605 val = I915_READ(PCH_PP_CONTROL);
1606 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1607
1608 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1609 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1610 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1611
1612 reg = PCH_ADPA;
1613 val = I915_READ(reg);
1614 if (adpa_pipe_enabled(dev_priv, val, pipe))
1615 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1616
1617 reg = PCH_LVDS;
1618 val = I915_READ(reg);
1619 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1620 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1621 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1622 POSTING_READ(reg);
1623 udelay(100);
1624 }
1625
1626 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1627 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1628 disable_pch_hdmi(dev_priv, pipe, HDMID);
1629 }
1630
1631 static void i8xx_disable_fbc(struct drm_device *dev)
1632 {
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 u32 fbc_ctl;
1635
1636 /* Disable compression */
1637 fbc_ctl = I915_READ(FBC_CONTROL);
1638 if ((fbc_ctl & FBC_CTL_EN) == 0)
1639 return;
1640
1641 fbc_ctl &= ~FBC_CTL_EN;
1642 I915_WRITE(FBC_CONTROL, fbc_ctl);
1643
1644 /* Wait for compressing bit to clear */
1645 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1646 DRM_DEBUG_KMS("FBC idle timed out\n");
1647 return;
1648 }
1649
1650 DRM_DEBUG_KMS("disabled FBC\n");
1651 }
1652
1653 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1654 {
1655 struct drm_device *dev = crtc->dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 struct drm_framebuffer *fb = crtc->fb;
1658 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1659 struct drm_i915_gem_object *obj = intel_fb->obj;
1660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1661 int cfb_pitch;
1662 int plane, i;
1663 u32 fbc_ctl, fbc_ctl2;
1664
1665 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1666 if (fb->pitches[0] < cfb_pitch)
1667 cfb_pitch = fb->pitches[0];
1668
1669 /* FBC_CTL wants 64B units */
1670 cfb_pitch = (cfb_pitch / 64) - 1;
1671 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1672
1673 /* Clear old tags */
1674 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1675 I915_WRITE(FBC_TAG + (i * 4), 0);
1676
1677 /* Set it up... */
1678 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1679 fbc_ctl2 |= plane;
1680 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1681 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1682
1683 /* enable it... */
1684 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1685 if (IS_I945GM(dev))
1686 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1687 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1688 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1689 fbc_ctl |= obj->fence_reg;
1690 I915_WRITE(FBC_CONTROL, fbc_ctl);
1691
1692 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1693 cfb_pitch, crtc->y, intel_crtc->plane);
1694 }
1695
1696 static bool i8xx_fbc_enabled(struct drm_device *dev)
1697 {
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1701 }
1702
1703 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1704 {
1705 struct drm_device *dev = crtc->dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707 struct drm_framebuffer *fb = crtc->fb;
1708 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1709 struct drm_i915_gem_object *obj = intel_fb->obj;
1710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1711 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1712 unsigned long stall_watermark = 200;
1713 u32 dpfc_ctl;
1714
1715 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1716 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1717 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1718
1719 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1720 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1721 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1722 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1723
1724 /* enable it... */
1725 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1726
1727 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1728 }
1729
1730 static void g4x_disable_fbc(struct drm_device *dev)
1731 {
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 u32 dpfc_ctl;
1734
1735 /* Disable compression */
1736 dpfc_ctl = I915_READ(DPFC_CONTROL);
1737 if (dpfc_ctl & DPFC_CTL_EN) {
1738 dpfc_ctl &= ~DPFC_CTL_EN;
1739 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1740
1741 DRM_DEBUG_KMS("disabled FBC\n");
1742 }
1743 }
1744
1745 static bool g4x_fbc_enabled(struct drm_device *dev)
1746 {
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748
1749 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1750 }
1751
1752 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1753 {
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 u32 blt_ecoskpd;
1756
1757 /* Make sure blitter notifies FBC of writes */
1758 gen6_gt_force_wake_get(dev_priv);
1759 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1760 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1761 GEN6_BLITTER_LOCK_SHIFT;
1762 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1763 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1764 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1765 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1766 GEN6_BLITTER_LOCK_SHIFT);
1767 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1768 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1769 gen6_gt_force_wake_put(dev_priv);
1770 }
1771
1772 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1773 {
1774 struct drm_device *dev = crtc->dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 struct drm_framebuffer *fb = crtc->fb;
1777 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1778 struct drm_i915_gem_object *obj = intel_fb->obj;
1779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1780 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1781 unsigned long stall_watermark = 200;
1782 u32 dpfc_ctl;
1783
1784 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1785 dpfc_ctl &= DPFC_RESERVED;
1786 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1787 /* Set persistent mode for front-buffer rendering, ala X. */
1788 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1789 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1790 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1791
1792 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1793 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1794 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1795 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1796 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1797 /* enable it... */
1798 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1799
1800 if (IS_GEN6(dev)) {
1801 I915_WRITE(SNB_DPFC_CTL_SA,
1802 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1803 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1804 sandybridge_blit_fbc_update(dev);
1805 }
1806
1807 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1808 }
1809
1810 static void ironlake_disable_fbc(struct drm_device *dev)
1811 {
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813 u32 dpfc_ctl;
1814
1815 /* Disable compression */
1816 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1817 if (dpfc_ctl & DPFC_CTL_EN) {
1818 dpfc_ctl &= ~DPFC_CTL_EN;
1819 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1820
1821 DRM_DEBUG_KMS("disabled FBC\n");
1822 }
1823 }
1824
1825 static bool ironlake_fbc_enabled(struct drm_device *dev)
1826 {
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828
1829 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1830 }
1831
1832 bool intel_fbc_enabled(struct drm_device *dev)
1833 {
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835
1836 if (!dev_priv->display.fbc_enabled)
1837 return false;
1838
1839 return dev_priv->display.fbc_enabled(dev);
1840 }
1841
1842 static void intel_fbc_work_fn(struct work_struct *__work)
1843 {
1844 struct intel_fbc_work *work =
1845 container_of(to_delayed_work(__work),
1846 struct intel_fbc_work, work);
1847 struct drm_device *dev = work->crtc->dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849
1850 mutex_lock(&dev->struct_mutex);
1851 if (work == dev_priv->fbc_work) {
1852 /* Double check that we haven't switched fb without cancelling
1853 * the prior work.
1854 */
1855 if (work->crtc->fb == work->fb) {
1856 dev_priv->display.enable_fbc(work->crtc,
1857 work->interval);
1858
1859 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1860 dev_priv->cfb_fb = work->crtc->fb->base.id;
1861 dev_priv->cfb_y = work->crtc->y;
1862 }
1863
1864 dev_priv->fbc_work = NULL;
1865 }
1866 mutex_unlock(&dev->struct_mutex);
1867
1868 kfree(work);
1869 }
1870
1871 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1872 {
1873 if (dev_priv->fbc_work == NULL)
1874 return;
1875
1876 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1877
1878 /* Synchronisation is provided by struct_mutex and checking of
1879 * dev_priv->fbc_work, so we can perform the cancellation
1880 * entirely asynchronously.
1881 */
1882 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1883 /* tasklet was killed before being run, clean up */
1884 kfree(dev_priv->fbc_work);
1885
1886 /* Mark the work as no longer wanted so that if it does
1887 * wake-up (because the work was already running and waiting
1888 * for our mutex), it will discover that is no longer
1889 * necessary to run.
1890 */
1891 dev_priv->fbc_work = NULL;
1892 }
1893
1894 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1895 {
1896 struct intel_fbc_work *work;
1897 struct drm_device *dev = crtc->dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899
1900 if (!dev_priv->display.enable_fbc)
1901 return;
1902
1903 intel_cancel_fbc_work(dev_priv);
1904
1905 work = kzalloc(sizeof *work, GFP_KERNEL);
1906 if (work == NULL) {
1907 dev_priv->display.enable_fbc(crtc, interval);
1908 return;
1909 }
1910
1911 work->crtc = crtc;
1912 work->fb = crtc->fb;
1913 work->interval = interval;
1914 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1915
1916 dev_priv->fbc_work = work;
1917
1918 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1919
1920 /* Delay the actual enabling to let pageflipping cease and the
1921 * display to settle before starting the compression. Note that
1922 * this delay also serves a second purpose: it allows for a
1923 * vblank to pass after disabling the FBC before we attempt
1924 * to modify the control registers.
1925 *
1926 * A more complicated solution would involve tracking vblanks
1927 * following the termination of the page-flipping sequence
1928 * and indeed performing the enable as a co-routine and not
1929 * waiting synchronously upon the vblank.
1930 */
1931 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1932 }
1933
1934 void intel_disable_fbc(struct drm_device *dev)
1935 {
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937
1938 intel_cancel_fbc_work(dev_priv);
1939
1940 if (!dev_priv->display.disable_fbc)
1941 return;
1942
1943 dev_priv->display.disable_fbc(dev);
1944 dev_priv->cfb_plane = -1;
1945 }
1946
1947 /**
1948 * intel_update_fbc - enable/disable FBC as needed
1949 * @dev: the drm_device
1950 *
1951 * Set up the framebuffer compression hardware at mode set time. We
1952 * enable it if possible:
1953 * - plane A only (on pre-965)
1954 * - no pixel mulitply/line duplication
1955 * - no alpha buffer discard
1956 * - no dual wide
1957 * - framebuffer <= 2048 in width, 1536 in height
1958 *
1959 * We can't assume that any compression will take place (worst case),
1960 * so the compressed buffer has to be the same size as the uncompressed
1961 * one. It also must reside (along with the line length buffer) in
1962 * stolen memory.
1963 *
1964 * We need to enable/disable FBC on a global basis.
1965 */
1966 static void intel_update_fbc(struct drm_device *dev)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 struct drm_crtc *crtc = NULL, *tmp_crtc;
1970 struct intel_crtc *intel_crtc;
1971 struct drm_framebuffer *fb;
1972 struct intel_framebuffer *intel_fb;
1973 struct drm_i915_gem_object *obj;
1974 int enable_fbc;
1975
1976 DRM_DEBUG_KMS("\n");
1977
1978 if (!i915_powersave)
1979 return;
1980
1981 if (!I915_HAS_FBC(dev))
1982 return;
1983
1984 /*
1985 * If FBC is already on, we just have to verify that we can
1986 * keep it that way...
1987 * Need to disable if:
1988 * - more than one pipe is active
1989 * - changing FBC params (stride, fence, mode)
1990 * - new fb is too large to fit in compressed buffer
1991 * - going to an unsupported config (interlace, pixel multiply, etc.)
1992 */
1993 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1994 if (tmp_crtc->enabled && tmp_crtc->fb) {
1995 if (crtc) {
1996 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1997 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1998 goto out_disable;
1999 }
2000 crtc = tmp_crtc;
2001 }
2002 }
2003
2004 if (!crtc || crtc->fb == NULL) {
2005 DRM_DEBUG_KMS("no output, disabling\n");
2006 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2007 goto out_disable;
2008 }
2009
2010 intel_crtc = to_intel_crtc(crtc);
2011 fb = crtc->fb;
2012 intel_fb = to_intel_framebuffer(fb);
2013 obj = intel_fb->obj;
2014
2015 enable_fbc = i915_enable_fbc;
2016 if (enable_fbc < 0) {
2017 DRM_DEBUG_KMS("fbc set to per-chip default\n");
2018 enable_fbc = 1;
2019 if (INTEL_INFO(dev)->gen <= 6)
2020 enable_fbc = 0;
2021 }
2022 if (!enable_fbc) {
2023 DRM_DEBUG_KMS("fbc disabled per module param\n");
2024 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
2025 goto out_disable;
2026 }
2027 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2028 DRM_DEBUG_KMS("framebuffer too large, disabling "
2029 "compression\n");
2030 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2031 goto out_disable;
2032 }
2033 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2034 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2035 DRM_DEBUG_KMS("mode incompatible with compression, "
2036 "disabling\n");
2037 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2038 goto out_disable;
2039 }
2040 if ((crtc->mode.hdisplay > 2048) ||
2041 (crtc->mode.vdisplay > 1536)) {
2042 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2043 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2044 goto out_disable;
2045 }
2046 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2047 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2048 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2049 goto out_disable;
2050 }
2051
2052 /* The use of a CPU fence is mandatory in order to detect writes
2053 * by the CPU to the scanout and trigger updates to the FBC.
2054 */
2055 if (obj->tiling_mode != I915_TILING_X ||
2056 obj->fence_reg == I915_FENCE_REG_NONE) {
2057 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
2058 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2059 goto out_disable;
2060 }
2061
2062 /* If the kernel debugger is active, always disable compression */
2063 if (in_dbg_master())
2064 goto out_disable;
2065
2066 /* If the scanout has not changed, don't modify the FBC settings.
2067 * Note that we make the fundamental assumption that the fb->obj
2068 * cannot be unpinned (and have its GTT offset and fence revoked)
2069 * without first being decoupled from the scanout and FBC disabled.
2070 */
2071 if (dev_priv->cfb_plane == intel_crtc->plane &&
2072 dev_priv->cfb_fb == fb->base.id &&
2073 dev_priv->cfb_y == crtc->y)
2074 return;
2075
2076 if (intel_fbc_enabled(dev)) {
2077 /* We update FBC along two paths, after changing fb/crtc
2078 * configuration (modeswitching) and after page-flipping
2079 * finishes. For the latter, we know that not only did
2080 * we disable the FBC at the start of the page-flip
2081 * sequence, but also more than one vblank has passed.
2082 *
2083 * For the former case of modeswitching, it is possible
2084 * to switch between two FBC valid configurations
2085 * instantaneously so we do need to disable the FBC
2086 * before we can modify its control registers. We also
2087 * have to wait for the next vblank for that to take
2088 * effect. However, since we delay enabling FBC we can
2089 * assume that a vblank has passed since disabling and
2090 * that we can safely alter the registers in the deferred
2091 * callback.
2092 *
2093 * In the scenario that we go from a valid to invalid
2094 * and then back to valid FBC configuration we have
2095 * no strict enforcement that a vblank occurred since
2096 * disabling the FBC. However, along all current pipe
2097 * disabling paths we do need to wait for a vblank at
2098 * some point. And we wait before enabling FBC anyway.
2099 */
2100 DRM_DEBUG_KMS("disabling active FBC for update\n");
2101 intel_disable_fbc(dev);
2102 }
2103
2104 intel_enable_fbc(crtc, 500);
2105 return;
2106
2107 out_disable:
2108 /* Multiple disables should be harmless */
2109 if (intel_fbc_enabled(dev)) {
2110 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2111 intel_disable_fbc(dev);
2112 }
2113 }
2114
2115 int
2116 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2117 struct drm_i915_gem_object *obj,
2118 struct intel_ring_buffer *pipelined)
2119 {
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 u32 alignment;
2122 int ret;
2123
2124 switch (obj->tiling_mode) {
2125 case I915_TILING_NONE:
2126 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2127 alignment = 128 * 1024;
2128 else if (INTEL_INFO(dev)->gen >= 4)
2129 alignment = 4 * 1024;
2130 else
2131 alignment = 64 * 1024;
2132 break;
2133 case I915_TILING_X:
2134 /* pin() will align the object as required by fence */
2135 alignment = 0;
2136 break;
2137 case I915_TILING_Y:
2138 /* FIXME: Is this true? */
2139 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2140 return -EINVAL;
2141 default:
2142 BUG();
2143 }
2144
2145 dev_priv->mm.interruptible = false;
2146 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2147 if (ret)
2148 goto err_interruptible;
2149
2150 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2151 * fence, whereas 965+ only requires a fence if using
2152 * framebuffer compression. For simplicity, we always install
2153 * a fence as the cost is not that onerous.
2154 */
2155 ret = i915_gem_object_get_fence(obj, pipelined);
2156 if (ret)
2157 goto err_unpin;
2158
2159 i915_gem_object_pin_fence(obj);
2160
2161 dev_priv->mm.interruptible = true;
2162 return 0;
2163
2164 err_unpin:
2165 i915_gem_object_unpin(obj);
2166 err_interruptible:
2167 dev_priv->mm.interruptible = true;
2168 return ret;
2169 }
2170
2171 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2172 {
2173 i915_gem_object_unpin_fence(obj);
2174 i915_gem_object_unpin(obj);
2175 }
2176
2177 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2178 int x, int y)
2179 {
2180 struct drm_device *dev = crtc->dev;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183 struct intel_framebuffer *intel_fb;
2184 struct drm_i915_gem_object *obj;
2185 int plane = intel_crtc->plane;
2186 unsigned long Start, Offset;
2187 u32 dspcntr;
2188 u32 reg;
2189
2190 switch (plane) {
2191 case 0:
2192 case 1:
2193 break;
2194 default:
2195 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2196 return -EINVAL;
2197 }
2198
2199 intel_fb = to_intel_framebuffer(fb);
2200 obj = intel_fb->obj;
2201
2202 reg = DSPCNTR(plane);
2203 dspcntr = I915_READ(reg);
2204 /* Mask out pixel format bits in case we change it */
2205 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2206 switch (fb->bits_per_pixel) {
2207 case 8:
2208 dspcntr |= DISPPLANE_8BPP;
2209 break;
2210 case 16:
2211 if (fb->depth == 15)
2212 dspcntr |= DISPPLANE_15_16BPP;
2213 else
2214 dspcntr |= DISPPLANE_16BPP;
2215 break;
2216 case 24:
2217 case 32:
2218 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2219 break;
2220 default:
2221 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2222 return -EINVAL;
2223 }
2224 if (INTEL_INFO(dev)->gen >= 4) {
2225 if (obj->tiling_mode != I915_TILING_NONE)
2226 dspcntr |= DISPPLANE_TILED;
2227 else
2228 dspcntr &= ~DISPPLANE_TILED;
2229 }
2230
2231 I915_WRITE(reg, dspcntr);
2232
2233 Start = obj->gtt_offset;
2234 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2235
2236 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2237 Start, Offset, x, y, fb->pitches[0]);
2238 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2239 if (INTEL_INFO(dev)->gen >= 4) {
2240 I915_WRITE(DSPSURF(plane), Start);
2241 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2242 I915_WRITE(DSPADDR(plane), Offset);
2243 } else
2244 I915_WRITE(DSPADDR(plane), Start + Offset);
2245 POSTING_READ(reg);
2246
2247 return 0;
2248 }
2249
2250 static int ironlake_update_plane(struct drm_crtc *crtc,
2251 struct drm_framebuffer *fb, int x, int y)
2252 {
2253 struct drm_device *dev = crtc->dev;
2254 struct drm_i915_private *dev_priv = dev->dev_private;
2255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2256 struct intel_framebuffer *intel_fb;
2257 struct drm_i915_gem_object *obj;
2258 int plane = intel_crtc->plane;
2259 unsigned long Start, Offset;
2260 u32 dspcntr;
2261 u32 reg;
2262
2263 switch (plane) {
2264 case 0:
2265 case 1:
2266 case 2:
2267 break;
2268 default:
2269 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2270 return -EINVAL;
2271 }
2272
2273 intel_fb = to_intel_framebuffer(fb);
2274 obj = intel_fb->obj;
2275
2276 reg = DSPCNTR(plane);
2277 dspcntr = I915_READ(reg);
2278 /* Mask out pixel format bits in case we change it */
2279 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2280 switch (fb->bits_per_pixel) {
2281 case 8:
2282 dspcntr |= DISPPLANE_8BPP;
2283 break;
2284 case 16:
2285 if (fb->depth != 16)
2286 return -EINVAL;
2287
2288 dspcntr |= DISPPLANE_16BPP;
2289 break;
2290 case 24:
2291 case 32:
2292 if (fb->depth == 24)
2293 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2294 else if (fb->depth == 30)
2295 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2296 else
2297 return -EINVAL;
2298 break;
2299 default:
2300 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2301 return -EINVAL;
2302 }
2303
2304 if (obj->tiling_mode != I915_TILING_NONE)
2305 dspcntr |= DISPPLANE_TILED;
2306 else
2307 dspcntr &= ~DISPPLANE_TILED;
2308
2309 /* must disable */
2310 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2311
2312 I915_WRITE(reg, dspcntr);
2313
2314 Start = obj->gtt_offset;
2315 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2316
2317 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2318 Start, Offset, x, y, fb->pitches[0]);
2319 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2320 I915_WRITE(DSPSURF(plane), Start);
2321 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2322 I915_WRITE(DSPADDR(plane), Offset);
2323 POSTING_READ(reg);
2324
2325 return 0;
2326 }
2327
2328 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2329 static int
2330 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2331 int x, int y, enum mode_set_atomic state)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 int ret;
2336
2337 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2338 if (ret)
2339 return ret;
2340
2341 intel_update_fbc(dev);
2342 intel_increase_pllclock(crtc);
2343
2344 return 0;
2345 }
2346
2347 static int
2348 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2349 struct drm_framebuffer *old_fb)
2350 {
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_master_private *master_priv;
2353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2354 int ret;
2355
2356 /* no fb bound */
2357 if (!crtc->fb) {
2358 DRM_ERROR("No FB bound\n");
2359 return 0;
2360 }
2361
2362 switch (intel_crtc->plane) {
2363 case 0:
2364 case 1:
2365 break;
2366 case 2:
2367 if (IS_IVYBRIDGE(dev))
2368 break;
2369 /* fall through otherwise */
2370 default:
2371 DRM_ERROR("no plane for crtc\n");
2372 return -EINVAL;
2373 }
2374
2375 mutex_lock(&dev->struct_mutex);
2376 ret = intel_pin_and_fence_fb_obj(dev,
2377 to_intel_framebuffer(crtc->fb)->obj,
2378 NULL);
2379 if (ret != 0) {
2380 mutex_unlock(&dev->struct_mutex);
2381 DRM_ERROR("pin & fence failed\n");
2382 return ret;
2383 }
2384
2385 if (old_fb) {
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2388
2389 wait_event(dev_priv->pending_flip_queue,
2390 atomic_read(&dev_priv->mm.wedged) ||
2391 atomic_read(&obj->pending_flip) == 0);
2392
2393 /* Big Hammer, we also need to ensure that any pending
2394 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2395 * current scanout is retired before unpinning the old
2396 * framebuffer.
2397 *
2398 * This should only fail upon a hung GPU, in which case we
2399 * can safely continue.
2400 */
2401 ret = i915_gem_object_finish_gpu(obj);
2402 (void) ret;
2403 }
2404
2405 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2406 LEAVE_ATOMIC_MODE_SET);
2407 if (ret) {
2408 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2409 mutex_unlock(&dev->struct_mutex);
2410 DRM_ERROR("failed to update base address\n");
2411 return ret;
2412 }
2413
2414 if (old_fb) {
2415 intel_wait_for_vblank(dev, intel_crtc->pipe);
2416 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2417 }
2418
2419 mutex_unlock(&dev->struct_mutex);
2420
2421 if (!dev->primary->master)
2422 return 0;
2423
2424 master_priv = dev->primary->master->driver_priv;
2425 if (!master_priv->sarea_priv)
2426 return 0;
2427
2428 if (intel_crtc->pipe) {
2429 master_priv->sarea_priv->pipeB_x = x;
2430 master_priv->sarea_priv->pipeB_y = y;
2431 } else {
2432 master_priv->sarea_priv->pipeA_x = x;
2433 master_priv->sarea_priv->pipeA_y = y;
2434 }
2435
2436 return 0;
2437 }
2438
2439 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2440 {
2441 struct drm_device *dev = crtc->dev;
2442 struct drm_i915_private *dev_priv = dev->dev_private;
2443 u32 dpa_ctl;
2444
2445 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2446 dpa_ctl = I915_READ(DP_A);
2447 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2448
2449 if (clock < 200000) {
2450 u32 temp;
2451 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2452 /* workaround for 160Mhz:
2453 1) program 0x4600c bits 15:0 = 0x8124
2454 2) program 0x46010 bit 0 = 1
2455 3) program 0x46034 bit 24 = 1
2456 4) program 0x64000 bit 14 = 1
2457 */
2458 temp = I915_READ(0x4600c);
2459 temp &= 0xffff0000;
2460 I915_WRITE(0x4600c, temp | 0x8124);
2461
2462 temp = I915_READ(0x46010);
2463 I915_WRITE(0x46010, temp | 1);
2464
2465 temp = I915_READ(0x46034);
2466 I915_WRITE(0x46034, temp | (1 << 24));
2467 } else {
2468 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2469 }
2470 I915_WRITE(DP_A, dpa_ctl);
2471
2472 POSTING_READ(DP_A);
2473 udelay(500);
2474 }
2475
2476 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2477 {
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe;
2482 u32 reg, temp;
2483
2484 /* enable normal train */
2485 reg = FDI_TX_CTL(pipe);
2486 temp = I915_READ(reg);
2487 if (IS_IVYBRIDGE(dev)) {
2488 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2489 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2490 } else {
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2493 }
2494 I915_WRITE(reg, temp);
2495
2496 reg = FDI_RX_CTL(pipe);
2497 temp = I915_READ(reg);
2498 if (HAS_PCH_CPT(dev)) {
2499 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2501 } else {
2502 temp &= ~FDI_LINK_TRAIN_NONE;
2503 temp |= FDI_LINK_TRAIN_NONE;
2504 }
2505 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2506
2507 /* wait one idle pattern time */
2508 POSTING_READ(reg);
2509 udelay(1000);
2510
2511 /* IVB wants error correction enabled */
2512 if (IS_IVYBRIDGE(dev))
2513 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2514 FDI_FE_ERRC_ENABLE);
2515 }
2516
2517 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2518 {
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520 u32 flags = I915_READ(SOUTH_CHICKEN1);
2521
2522 flags |= FDI_PHASE_SYNC_OVR(pipe);
2523 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2524 flags |= FDI_PHASE_SYNC_EN(pipe);
2525 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2526 POSTING_READ(SOUTH_CHICKEN1);
2527 }
2528
2529 /* The FDI link training functions for ILK/Ibexpeak. */
2530 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2531 {
2532 struct drm_device *dev = crtc->dev;
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2535 int pipe = intel_crtc->pipe;
2536 int plane = intel_crtc->plane;
2537 u32 reg, temp, tries;
2538
2539 /* FDI needs bits from pipe & plane first */
2540 assert_pipe_enabled(dev_priv, pipe);
2541 assert_plane_enabled(dev_priv, plane);
2542
2543 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2544 for train result */
2545 reg = FDI_RX_IMR(pipe);
2546 temp = I915_READ(reg);
2547 temp &= ~FDI_RX_SYMBOL_LOCK;
2548 temp &= ~FDI_RX_BIT_LOCK;
2549 I915_WRITE(reg, temp);
2550 I915_READ(reg);
2551 udelay(150);
2552
2553 /* enable CPU FDI TX and PCH FDI RX */
2554 reg = FDI_TX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~(7 << 19);
2557 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_1;
2560 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2561
2562 reg = FDI_RX_CTL(pipe);
2563 temp = I915_READ(reg);
2564 temp &= ~FDI_LINK_TRAIN_NONE;
2565 temp |= FDI_LINK_TRAIN_PATTERN_1;
2566 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2567
2568 POSTING_READ(reg);
2569 udelay(150);
2570
2571 /* Ironlake workaround, enable clock pointer after FDI enable*/
2572 if (HAS_PCH_IBX(dev)) {
2573 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2574 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2575 FDI_RX_PHASE_SYNC_POINTER_EN);
2576 }
2577
2578 reg = FDI_RX_IIR(pipe);
2579 for (tries = 0; tries < 5; tries++) {
2580 temp = I915_READ(reg);
2581 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582
2583 if ((temp & FDI_RX_BIT_LOCK)) {
2584 DRM_DEBUG_KMS("FDI train 1 done.\n");
2585 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2586 break;
2587 }
2588 }
2589 if (tries == 5)
2590 DRM_ERROR("FDI train 1 fail!\n");
2591
2592 /* Train 2 */
2593 reg = FDI_TX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 temp &= ~FDI_LINK_TRAIN_NONE;
2596 temp |= FDI_LINK_TRAIN_PATTERN_2;
2597 I915_WRITE(reg, temp);
2598
2599 reg = FDI_RX_CTL(pipe);
2600 temp = I915_READ(reg);
2601 temp &= ~FDI_LINK_TRAIN_NONE;
2602 temp |= FDI_LINK_TRAIN_PATTERN_2;
2603 I915_WRITE(reg, temp);
2604
2605 POSTING_READ(reg);
2606 udelay(150);
2607
2608 reg = FDI_RX_IIR(pipe);
2609 for (tries = 0; tries < 5; tries++) {
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_SYMBOL_LOCK) {
2614 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2615 DRM_DEBUG_KMS("FDI train 2 done.\n");
2616 break;
2617 }
2618 }
2619 if (tries == 5)
2620 DRM_ERROR("FDI train 2 fail!\n");
2621
2622 DRM_DEBUG_KMS("FDI train done\n");
2623
2624 }
2625
2626 static const int snb_b_fdi_train_param[] = {
2627 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2628 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2629 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2630 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2631 };
2632
2633 /* The FDI link training functions for SNB/Cougarpoint. */
2634 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2635 {
2636 struct drm_device *dev = crtc->dev;
2637 struct drm_i915_private *dev_priv = dev->dev_private;
2638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2639 int pipe = intel_crtc->pipe;
2640 u32 reg, temp, i, retry;
2641
2642 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2643 for train result */
2644 reg = FDI_RX_IMR(pipe);
2645 temp = I915_READ(reg);
2646 temp &= ~FDI_RX_SYMBOL_LOCK;
2647 temp &= ~FDI_RX_BIT_LOCK;
2648 I915_WRITE(reg, temp);
2649
2650 POSTING_READ(reg);
2651 udelay(150);
2652
2653 /* enable CPU FDI TX and PCH FDI RX */
2654 reg = FDI_TX_CTL(pipe);
2655 temp = I915_READ(reg);
2656 temp &= ~(7 << 19);
2657 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2658 temp &= ~FDI_LINK_TRAIN_NONE;
2659 temp |= FDI_LINK_TRAIN_PATTERN_1;
2660 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2661 /* SNB-B */
2662 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2663 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2664
2665 reg = FDI_RX_CTL(pipe);
2666 temp = I915_READ(reg);
2667 if (HAS_PCH_CPT(dev)) {
2668 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2669 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2670 } else {
2671 temp &= ~FDI_LINK_TRAIN_NONE;
2672 temp |= FDI_LINK_TRAIN_PATTERN_1;
2673 }
2674 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2675
2676 POSTING_READ(reg);
2677 udelay(150);
2678
2679 if (HAS_PCH_CPT(dev))
2680 cpt_phase_pointer_enable(dev, pipe);
2681
2682 for (i = 0; i < 4; i++) {
2683 reg = FDI_TX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2686 temp |= snb_b_fdi_train_param[i];
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(500);
2691
2692 for (retry = 0; retry < 5; retry++) {
2693 reg = FDI_RX_IIR(pipe);
2694 temp = I915_READ(reg);
2695 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696 if (temp & FDI_RX_BIT_LOCK) {
2697 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2698 DRM_DEBUG_KMS("FDI train 1 done.\n");
2699 break;
2700 }
2701 udelay(50);
2702 }
2703 if (retry < 5)
2704 break;
2705 }
2706 if (i == 4)
2707 DRM_ERROR("FDI train 1 fail!\n");
2708
2709 /* Train 2 */
2710 reg = FDI_TX_CTL(pipe);
2711 temp = I915_READ(reg);
2712 temp &= ~FDI_LINK_TRAIN_NONE;
2713 temp |= FDI_LINK_TRAIN_PATTERN_2;
2714 if (IS_GEN6(dev)) {
2715 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2716 /* SNB-B */
2717 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2718 }
2719 I915_WRITE(reg, temp);
2720
2721 reg = FDI_RX_CTL(pipe);
2722 temp = I915_READ(reg);
2723 if (HAS_PCH_CPT(dev)) {
2724 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2725 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2726 } else {
2727 temp &= ~FDI_LINK_TRAIN_NONE;
2728 temp |= FDI_LINK_TRAIN_PATTERN_2;
2729 }
2730 I915_WRITE(reg, temp);
2731
2732 POSTING_READ(reg);
2733 udelay(150);
2734
2735 for (i = 0; i < 4; i++) {
2736 reg = FDI_TX_CTL(pipe);
2737 temp = I915_READ(reg);
2738 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2739 temp |= snb_b_fdi_train_param[i];
2740 I915_WRITE(reg, temp);
2741
2742 POSTING_READ(reg);
2743 udelay(500);
2744
2745 for (retry = 0; retry < 5; retry++) {
2746 reg = FDI_RX_IIR(pipe);
2747 temp = I915_READ(reg);
2748 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2749 if (temp & FDI_RX_SYMBOL_LOCK) {
2750 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2751 DRM_DEBUG_KMS("FDI train 2 done.\n");
2752 break;
2753 }
2754 udelay(50);
2755 }
2756 if (retry < 5)
2757 break;
2758 }
2759 if (i == 4)
2760 DRM_ERROR("FDI train 2 fail!\n");
2761
2762 DRM_DEBUG_KMS("FDI train done.\n");
2763 }
2764
2765 /* Manual link training for Ivy Bridge A0 parts */
2766 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2767 {
2768 struct drm_device *dev = crtc->dev;
2769 struct drm_i915_private *dev_priv = dev->dev_private;
2770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2771 int pipe = intel_crtc->pipe;
2772 u32 reg, temp, i;
2773
2774 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2775 for train result */
2776 reg = FDI_RX_IMR(pipe);
2777 temp = I915_READ(reg);
2778 temp &= ~FDI_RX_SYMBOL_LOCK;
2779 temp &= ~FDI_RX_BIT_LOCK;
2780 I915_WRITE(reg, temp);
2781
2782 POSTING_READ(reg);
2783 udelay(150);
2784
2785 /* enable CPU FDI TX and PCH FDI RX */
2786 reg = FDI_TX_CTL(pipe);
2787 temp = I915_READ(reg);
2788 temp &= ~(7 << 19);
2789 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2790 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2791 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2792 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2793 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2794 temp |= FDI_COMPOSITE_SYNC;
2795 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2796
2797 reg = FDI_RX_CTL(pipe);
2798 temp = I915_READ(reg);
2799 temp &= ~FDI_LINK_TRAIN_AUTO;
2800 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2801 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2802 temp |= FDI_COMPOSITE_SYNC;
2803 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2804
2805 POSTING_READ(reg);
2806 udelay(150);
2807
2808 if (HAS_PCH_CPT(dev))
2809 cpt_phase_pointer_enable(dev, pipe);
2810
2811 for (i = 0; i < 4; i++) {
2812 reg = FDI_TX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2815 temp |= snb_b_fdi_train_param[i];
2816 I915_WRITE(reg, temp);
2817
2818 POSTING_READ(reg);
2819 udelay(500);
2820
2821 reg = FDI_RX_IIR(pipe);
2822 temp = I915_READ(reg);
2823 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2824
2825 if (temp & FDI_RX_BIT_LOCK ||
2826 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2827 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2828 DRM_DEBUG_KMS("FDI train 1 done.\n");
2829 break;
2830 }
2831 }
2832 if (i == 4)
2833 DRM_ERROR("FDI train 1 fail!\n");
2834
2835 /* Train 2 */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2839 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2840 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2841 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2842 I915_WRITE(reg, temp);
2843
2844 reg = FDI_RX_CTL(pipe);
2845 temp = I915_READ(reg);
2846 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2847 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2848 I915_WRITE(reg, temp);
2849
2850 POSTING_READ(reg);
2851 udelay(150);
2852
2853 for (i = 0; i < 4; i++) {
2854 reg = FDI_TX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2857 temp |= snb_b_fdi_train_param[i];
2858 I915_WRITE(reg, temp);
2859
2860 POSTING_READ(reg);
2861 udelay(500);
2862
2863 reg = FDI_RX_IIR(pipe);
2864 temp = I915_READ(reg);
2865 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2866
2867 if (temp & FDI_RX_SYMBOL_LOCK) {
2868 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2869 DRM_DEBUG_KMS("FDI train 2 done.\n");
2870 break;
2871 }
2872 }
2873 if (i == 4)
2874 DRM_ERROR("FDI train 2 fail!\n");
2875
2876 DRM_DEBUG_KMS("FDI train done.\n");
2877 }
2878
2879 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2880 {
2881 struct drm_device *dev = crtc->dev;
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2884 int pipe = intel_crtc->pipe;
2885 u32 reg, temp;
2886
2887 /* Write the TU size bits so error detection works */
2888 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2889 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2890
2891 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2892 reg = FDI_RX_CTL(pipe);
2893 temp = I915_READ(reg);
2894 temp &= ~((0x7 << 19) | (0x7 << 16));
2895 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2896 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2897 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2898
2899 POSTING_READ(reg);
2900 udelay(200);
2901
2902 /* Switch from Rawclk to PCDclk */
2903 temp = I915_READ(reg);
2904 I915_WRITE(reg, temp | FDI_PCDCLK);
2905
2906 POSTING_READ(reg);
2907 udelay(200);
2908
2909 /* Enable CPU FDI TX PLL, always on for Ironlake */
2910 reg = FDI_TX_CTL(pipe);
2911 temp = I915_READ(reg);
2912 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2913 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2914
2915 POSTING_READ(reg);
2916 udelay(100);
2917 }
2918 }
2919
2920 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2921 {
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923 u32 flags = I915_READ(SOUTH_CHICKEN1);
2924
2925 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2926 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2927 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2928 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2929 POSTING_READ(SOUTH_CHICKEN1);
2930 }
2931 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2932 {
2933 struct drm_device *dev = crtc->dev;
2934 struct drm_i915_private *dev_priv = dev->dev_private;
2935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2936 int pipe = intel_crtc->pipe;
2937 u32 reg, temp;
2938
2939 /* disable CPU FDI tx and PCH FDI rx */
2940 reg = FDI_TX_CTL(pipe);
2941 temp = I915_READ(reg);
2942 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2943 POSTING_READ(reg);
2944
2945 reg = FDI_RX_CTL(pipe);
2946 temp = I915_READ(reg);
2947 temp &= ~(0x7 << 16);
2948 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2949 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2950
2951 POSTING_READ(reg);
2952 udelay(100);
2953
2954 /* Ironlake workaround, disable clock pointer after downing FDI */
2955 if (HAS_PCH_IBX(dev)) {
2956 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2957 I915_WRITE(FDI_RX_CHICKEN(pipe),
2958 I915_READ(FDI_RX_CHICKEN(pipe) &
2959 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2960 } else if (HAS_PCH_CPT(dev)) {
2961 cpt_phase_pointer_disable(dev, pipe);
2962 }
2963
2964 /* still set train pattern 1 */
2965 reg = FDI_TX_CTL(pipe);
2966 temp = I915_READ(reg);
2967 temp &= ~FDI_LINK_TRAIN_NONE;
2968 temp |= FDI_LINK_TRAIN_PATTERN_1;
2969 I915_WRITE(reg, temp);
2970
2971 reg = FDI_RX_CTL(pipe);
2972 temp = I915_READ(reg);
2973 if (HAS_PCH_CPT(dev)) {
2974 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2975 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2976 } else {
2977 temp &= ~FDI_LINK_TRAIN_NONE;
2978 temp |= FDI_LINK_TRAIN_PATTERN_1;
2979 }
2980 /* BPC in FDI rx is consistent with that in PIPECONF */
2981 temp &= ~(0x07 << 16);
2982 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2983 I915_WRITE(reg, temp);
2984
2985 POSTING_READ(reg);
2986 udelay(100);
2987 }
2988
2989 /*
2990 * When we disable a pipe, we need to clear any pending scanline wait events
2991 * to avoid hanging the ring, which we assume we are waiting on.
2992 */
2993 static void intel_clear_scanline_wait(struct drm_device *dev)
2994 {
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct intel_ring_buffer *ring;
2997 u32 tmp;
2998
2999 if (IS_GEN2(dev))
3000 /* Can't break the hang on i8xx */
3001 return;
3002
3003 ring = LP_RING(dev_priv);
3004 tmp = I915_READ_CTL(ring);
3005 if (tmp & RING_WAIT)
3006 I915_WRITE_CTL(ring, tmp);
3007 }
3008
3009 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3010 {
3011 struct drm_i915_gem_object *obj;
3012 struct drm_i915_private *dev_priv;
3013
3014 if (crtc->fb == NULL)
3015 return;
3016
3017 obj = to_intel_framebuffer(crtc->fb)->obj;
3018 dev_priv = crtc->dev->dev_private;
3019 wait_event(dev_priv->pending_flip_queue,
3020 atomic_read(&obj->pending_flip) == 0);
3021 }
3022
3023 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
3024 {
3025 struct drm_device *dev = crtc->dev;
3026 struct drm_mode_config *mode_config = &dev->mode_config;
3027 struct intel_encoder *encoder;
3028
3029 /*
3030 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3031 * must be driven by its own crtc; no sharing is possible.
3032 */
3033 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3034 if (encoder->base.crtc != crtc)
3035 continue;
3036
3037 switch (encoder->type) {
3038 case INTEL_OUTPUT_EDP:
3039 if (!intel_encoder_is_pch_edp(&encoder->base))
3040 return false;
3041 continue;
3042 }
3043 }
3044
3045 return true;
3046 }
3047
3048 /*
3049 * Enable PCH resources required for PCH ports:
3050 * - PCH PLLs
3051 * - FDI training & RX/TX
3052 * - update transcoder timings
3053 * - DP transcoding bits
3054 * - transcoder
3055 */
3056 static void ironlake_pch_enable(struct drm_crtc *crtc)
3057 {
3058 struct drm_device *dev = crtc->dev;
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3061 int pipe = intel_crtc->pipe;
3062 u32 reg, temp, transc_sel;
3063
3064 /* For PCH output, training FDI link */
3065 dev_priv->display.fdi_link_train(crtc);
3066
3067 intel_enable_pch_pll(dev_priv, pipe);
3068
3069 if (HAS_PCH_CPT(dev)) {
3070 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3071 TRANSC_DPLLB_SEL;
3072
3073 /* Be sure PCH DPLL SEL is set */
3074 temp = I915_READ(PCH_DPLL_SEL);
3075 if (pipe == 0) {
3076 temp &= ~(TRANSA_DPLLB_SEL);
3077 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3078 } else if (pipe == 1) {
3079 temp &= ~(TRANSB_DPLLB_SEL);
3080 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3081 } else if (pipe == 2) {
3082 temp &= ~(TRANSC_DPLLB_SEL);
3083 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3084 }
3085 I915_WRITE(PCH_DPLL_SEL, temp);
3086 }
3087
3088 /* set transcoder timing, panel must allow it */
3089 assert_panel_unlocked(dev_priv, pipe);
3090 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3091 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3092 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3093
3094 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3095 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3096 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3097 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3098
3099 intel_fdi_normal_train(crtc);
3100
3101 /* For PCH DP, enable TRANS_DP_CTL */
3102 if (HAS_PCH_CPT(dev) &&
3103 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3104 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3105 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3106 reg = TRANS_DP_CTL(pipe);
3107 temp = I915_READ(reg);
3108 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3109 TRANS_DP_SYNC_MASK |
3110 TRANS_DP_BPC_MASK);
3111 temp |= (TRANS_DP_OUTPUT_ENABLE |
3112 TRANS_DP_ENH_FRAMING);
3113 temp |= bpc << 9; /* same format but at 11:9 */
3114
3115 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3116 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3117 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3118 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3119
3120 switch (intel_trans_dp_port_sel(crtc)) {
3121 case PCH_DP_B:
3122 temp |= TRANS_DP_PORT_SEL_B;
3123 break;
3124 case PCH_DP_C:
3125 temp |= TRANS_DP_PORT_SEL_C;
3126 break;
3127 case PCH_DP_D:
3128 temp |= TRANS_DP_PORT_SEL_D;
3129 break;
3130 default:
3131 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3132 temp |= TRANS_DP_PORT_SEL_B;
3133 break;
3134 }
3135
3136 I915_WRITE(reg, temp);
3137 }
3138
3139 intel_enable_transcoder(dev_priv, pipe);
3140 }
3141
3142 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3143 {
3144 struct drm_i915_private *dev_priv = dev->dev_private;
3145 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3146 u32 temp;
3147
3148 temp = I915_READ(dslreg);
3149 udelay(500);
3150 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3151 /* Without this, mode sets may fail silently on FDI */
3152 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3153 udelay(250);
3154 I915_WRITE(tc2reg, 0);
3155 if (wait_for(I915_READ(dslreg) != temp, 5))
3156 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3157 }
3158 }
3159
3160 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3161 {
3162 struct drm_device *dev = crtc->dev;
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3165 int pipe = intel_crtc->pipe;
3166 int plane = intel_crtc->plane;
3167 u32 temp;
3168 bool is_pch_port;
3169
3170 if (intel_crtc->active)
3171 return;
3172
3173 intel_crtc->active = true;
3174 intel_update_watermarks(dev);
3175
3176 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3177 temp = I915_READ(PCH_LVDS);
3178 if ((temp & LVDS_PORT_EN) == 0)
3179 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3180 }
3181
3182 is_pch_port = intel_crtc_driving_pch(crtc);
3183
3184 if (is_pch_port)
3185 ironlake_fdi_pll_enable(crtc);
3186 else
3187 ironlake_fdi_disable(crtc);
3188
3189 /* Enable panel fitting for LVDS */
3190 if (dev_priv->pch_pf_size &&
3191 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3192 /* Force use of hard-coded filter coefficients
3193 * as some pre-programmed values are broken,
3194 * e.g. x201.
3195 */
3196 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3197 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3198 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3199 }
3200
3201 /*
3202 * On ILK+ LUT must be loaded before the pipe is running but with
3203 * clocks enabled
3204 */
3205 intel_crtc_load_lut(crtc);
3206
3207 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3208 intel_enable_plane(dev_priv, plane, pipe);
3209
3210 if (is_pch_port)
3211 ironlake_pch_enable(crtc);
3212
3213 mutex_lock(&dev->struct_mutex);
3214 intel_update_fbc(dev);
3215 mutex_unlock(&dev->struct_mutex);
3216
3217 intel_crtc_update_cursor(crtc, true);
3218 }
3219
3220 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3221 {
3222 struct drm_device *dev = crtc->dev;
3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3225 int pipe = intel_crtc->pipe;
3226 int plane = intel_crtc->plane;
3227 u32 reg, temp;
3228
3229 if (!intel_crtc->active)
3230 return;
3231
3232 intel_crtc_wait_for_pending_flips(crtc);
3233 drm_vblank_off(dev, pipe);
3234 intel_crtc_update_cursor(crtc, false);
3235
3236 intel_disable_plane(dev_priv, plane, pipe);
3237
3238 if (dev_priv->cfb_plane == plane)
3239 intel_disable_fbc(dev);
3240
3241 intel_disable_pipe(dev_priv, pipe);
3242
3243 /* Disable PF */
3244 I915_WRITE(PF_CTL(pipe), 0);
3245 I915_WRITE(PF_WIN_SZ(pipe), 0);
3246
3247 ironlake_fdi_disable(crtc);
3248
3249 /* This is a horrible layering violation; we should be doing this in
3250 * the connector/encoder ->prepare instead, but we don't always have
3251 * enough information there about the config to know whether it will
3252 * actually be necessary or just cause undesired flicker.
3253 */
3254 intel_disable_pch_ports(dev_priv, pipe);
3255
3256 intel_disable_transcoder(dev_priv, pipe);
3257
3258 if (HAS_PCH_CPT(dev)) {
3259 /* disable TRANS_DP_CTL */
3260 reg = TRANS_DP_CTL(pipe);
3261 temp = I915_READ(reg);
3262 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3263 temp |= TRANS_DP_PORT_SEL_NONE;
3264 I915_WRITE(reg, temp);
3265
3266 /* disable DPLL_SEL */
3267 temp = I915_READ(PCH_DPLL_SEL);
3268 switch (pipe) {
3269 case 0:
3270 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3271 break;
3272 case 1:
3273 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3274 break;
3275 case 2:
3276 /* C shares PLL A or B */
3277 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3278 break;
3279 default:
3280 BUG(); /* wtf */
3281 }
3282 I915_WRITE(PCH_DPLL_SEL, temp);
3283 }
3284
3285 /* disable PCH DPLL */
3286 if (!intel_crtc->no_pll)
3287 intel_disable_pch_pll(dev_priv, pipe);
3288
3289 /* Switch from PCDclk to Rawclk */
3290 reg = FDI_RX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3293
3294 /* Disable CPU FDI TX PLL */
3295 reg = FDI_TX_CTL(pipe);
3296 temp = I915_READ(reg);
3297 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3298
3299 POSTING_READ(reg);
3300 udelay(100);
3301
3302 reg = FDI_RX_CTL(pipe);
3303 temp = I915_READ(reg);
3304 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3305
3306 /* Wait for the clocks to turn off. */
3307 POSTING_READ(reg);
3308 udelay(100);
3309
3310 intel_crtc->active = false;
3311 intel_update_watermarks(dev);
3312
3313 mutex_lock(&dev->struct_mutex);
3314 intel_update_fbc(dev);
3315 intel_clear_scanline_wait(dev);
3316 mutex_unlock(&dev->struct_mutex);
3317 }
3318
3319 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3320 {
3321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322 int pipe = intel_crtc->pipe;
3323 int plane = intel_crtc->plane;
3324
3325 /* XXX: When our outputs are all unaware of DPMS modes other than off
3326 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3327 */
3328 switch (mode) {
3329 case DRM_MODE_DPMS_ON:
3330 case DRM_MODE_DPMS_STANDBY:
3331 case DRM_MODE_DPMS_SUSPEND:
3332 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3333 ironlake_crtc_enable(crtc);
3334 break;
3335
3336 case DRM_MODE_DPMS_OFF:
3337 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3338 ironlake_crtc_disable(crtc);
3339 break;
3340 }
3341 }
3342
3343 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3344 {
3345 if (!enable && intel_crtc->overlay) {
3346 struct drm_device *dev = intel_crtc->base.dev;
3347 struct drm_i915_private *dev_priv = dev->dev_private;
3348
3349 mutex_lock(&dev->struct_mutex);
3350 dev_priv->mm.interruptible = false;
3351 (void) intel_overlay_switch_off(intel_crtc->overlay);
3352 dev_priv->mm.interruptible = true;
3353 mutex_unlock(&dev->struct_mutex);
3354 }
3355
3356 /* Let userspace switch the overlay on again. In most cases userspace
3357 * has to recompute where to put it anyway.
3358 */
3359 }
3360
3361 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3362 {
3363 struct drm_device *dev = crtc->dev;
3364 struct drm_i915_private *dev_priv = dev->dev_private;
3365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366 int pipe = intel_crtc->pipe;
3367 int plane = intel_crtc->plane;
3368
3369 if (intel_crtc->active)
3370 return;
3371
3372 intel_crtc->active = true;
3373 intel_update_watermarks(dev);
3374
3375 intel_enable_pll(dev_priv, pipe);
3376 intel_enable_pipe(dev_priv, pipe, false);
3377 intel_enable_plane(dev_priv, plane, pipe);
3378
3379 intel_crtc_load_lut(crtc);
3380 intel_update_fbc(dev);
3381
3382 /* Give the overlay scaler a chance to enable if it's on this pipe */
3383 intel_crtc_dpms_overlay(intel_crtc, true);
3384 intel_crtc_update_cursor(crtc, true);
3385 }
3386
3387 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3388 {
3389 struct drm_device *dev = crtc->dev;
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392 int pipe = intel_crtc->pipe;
3393 int plane = intel_crtc->plane;
3394
3395 if (!intel_crtc->active)
3396 return;
3397
3398 /* Give the overlay scaler a chance to disable if it's on this pipe */
3399 intel_crtc_wait_for_pending_flips(crtc);
3400 drm_vblank_off(dev, pipe);
3401 intel_crtc_dpms_overlay(intel_crtc, false);
3402 intel_crtc_update_cursor(crtc, false);
3403
3404 if (dev_priv->cfb_plane == plane)
3405 intel_disable_fbc(dev);
3406
3407 intel_disable_plane(dev_priv, plane, pipe);
3408 intel_disable_pipe(dev_priv, pipe);
3409 intel_disable_pll(dev_priv, pipe);
3410
3411 intel_crtc->active = false;
3412 intel_update_fbc(dev);
3413 intel_update_watermarks(dev);
3414 intel_clear_scanline_wait(dev);
3415 }
3416
3417 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3418 {
3419 /* XXX: When our outputs are all unaware of DPMS modes other than off
3420 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3421 */
3422 switch (mode) {
3423 case DRM_MODE_DPMS_ON:
3424 case DRM_MODE_DPMS_STANDBY:
3425 case DRM_MODE_DPMS_SUSPEND:
3426 i9xx_crtc_enable(crtc);
3427 break;
3428 case DRM_MODE_DPMS_OFF:
3429 i9xx_crtc_disable(crtc);
3430 break;
3431 }
3432 }
3433
3434 /**
3435 * Sets the power management mode of the pipe and plane.
3436 */
3437 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3438 {
3439 struct drm_device *dev = crtc->dev;
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 struct drm_i915_master_private *master_priv;
3442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3443 int pipe = intel_crtc->pipe;
3444 bool enabled;
3445
3446 if (intel_crtc->dpms_mode == mode)
3447 return;
3448
3449 intel_crtc->dpms_mode = mode;
3450
3451 dev_priv->display.dpms(crtc, mode);
3452
3453 if (!dev->primary->master)
3454 return;
3455
3456 master_priv = dev->primary->master->driver_priv;
3457 if (!master_priv->sarea_priv)
3458 return;
3459
3460 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3461
3462 switch (pipe) {
3463 case 0:
3464 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3465 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3466 break;
3467 case 1:
3468 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3469 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3470 break;
3471 default:
3472 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3473 break;
3474 }
3475 }
3476
3477 static void intel_crtc_disable(struct drm_crtc *crtc)
3478 {
3479 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3480 struct drm_device *dev = crtc->dev;
3481
3482 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3483 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3484 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3485
3486 if (crtc->fb) {
3487 mutex_lock(&dev->struct_mutex);
3488 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3489 mutex_unlock(&dev->struct_mutex);
3490 }
3491 }
3492
3493 /* Prepare for a mode set.
3494 *
3495 * Note we could be a lot smarter here. We need to figure out which outputs
3496 * will be enabled, which disabled (in short, how the config will changes)
3497 * and perform the minimum necessary steps to accomplish that, e.g. updating
3498 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3499 * panel fitting is in the proper state, etc.
3500 */
3501 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3502 {
3503 i9xx_crtc_disable(crtc);
3504 }
3505
3506 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3507 {
3508 i9xx_crtc_enable(crtc);
3509 }
3510
3511 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3512 {
3513 ironlake_crtc_disable(crtc);
3514 }
3515
3516 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3517 {
3518 ironlake_crtc_enable(crtc);
3519 }
3520
3521 void intel_encoder_prepare(struct drm_encoder *encoder)
3522 {
3523 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3524 /* lvds has its own version of prepare see intel_lvds_prepare */
3525 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3526 }
3527
3528 void intel_encoder_commit(struct drm_encoder *encoder)
3529 {
3530 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3531 struct drm_device *dev = encoder->dev;
3532 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3533 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3534
3535 /* lvds has its own version of commit see intel_lvds_commit */
3536 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3537
3538 if (HAS_PCH_CPT(dev))
3539 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3540 }
3541
3542 void intel_encoder_destroy(struct drm_encoder *encoder)
3543 {
3544 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3545
3546 drm_encoder_cleanup(encoder);
3547 kfree(intel_encoder);
3548 }
3549
3550 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3551 struct drm_display_mode *mode,
3552 struct drm_display_mode *adjusted_mode)
3553 {
3554 struct drm_device *dev = crtc->dev;
3555
3556 if (HAS_PCH_SPLIT(dev)) {
3557 /* FDI link clock is fixed at 2.7G */
3558 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3559 return false;
3560 }
3561
3562 /* All interlaced capable intel hw wants timings in frames. */
3563 drm_mode_set_crtcinfo(adjusted_mode, 0);
3564
3565 return true;
3566 }
3567
3568 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3569 {
3570 return 400000; /* FIXME */
3571 }
3572
3573 static int i945_get_display_clock_speed(struct drm_device *dev)
3574 {
3575 return 400000;
3576 }
3577
3578 static int i915_get_display_clock_speed(struct drm_device *dev)
3579 {
3580 return 333000;
3581 }
3582
3583 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3584 {
3585 return 200000;
3586 }
3587
3588 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3589 {
3590 u16 gcfgc = 0;
3591
3592 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3593
3594 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3595 return 133000;
3596 else {
3597 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3598 case GC_DISPLAY_CLOCK_333_MHZ:
3599 return 333000;
3600 default:
3601 case GC_DISPLAY_CLOCK_190_200_MHZ:
3602 return 190000;
3603 }
3604 }
3605 }
3606
3607 static int i865_get_display_clock_speed(struct drm_device *dev)
3608 {
3609 return 266000;
3610 }
3611
3612 static int i855_get_display_clock_speed(struct drm_device *dev)
3613 {
3614 u16 hpllcc = 0;
3615 /* Assume that the hardware is in the high speed state. This
3616 * should be the default.
3617 */
3618 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3619 case GC_CLOCK_133_200:
3620 case GC_CLOCK_100_200:
3621 return 200000;
3622 case GC_CLOCK_166_250:
3623 return 250000;
3624 case GC_CLOCK_100_133:
3625 return 133000;
3626 }
3627
3628 /* Shouldn't happen */
3629 return 0;
3630 }
3631
3632 static int i830_get_display_clock_speed(struct drm_device *dev)
3633 {
3634 return 133000;
3635 }
3636
3637 struct fdi_m_n {
3638 u32 tu;
3639 u32 gmch_m;
3640 u32 gmch_n;
3641 u32 link_m;
3642 u32 link_n;
3643 };
3644
3645 static void
3646 fdi_reduce_ratio(u32 *num, u32 *den)
3647 {
3648 while (*num > 0xffffff || *den > 0xffffff) {
3649 *num >>= 1;
3650 *den >>= 1;
3651 }
3652 }
3653
3654 static void
3655 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3656 int link_clock, struct fdi_m_n *m_n)
3657 {
3658 m_n->tu = 64; /* default size */
3659
3660 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3661 m_n->gmch_m = bits_per_pixel * pixel_clock;
3662 m_n->gmch_n = link_clock * nlanes * 8;
3663 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3664
3665 m_n->link_m = pixel_clock;
3666 m_n->link_n = link_clock;
3667 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3668 }
3669
3670
3671 struct intel_watermark_params {
3672 unsigned long fifo_size;
3673 unsigned long max_wm;
3674 unsigned long default_wm;
3675 unsigned long guard_size;
3676 unsigned long cacheline_size;
3677 };
3678
3679 /* Pineview has different values for various configs */
3680 static const struct intel_watermark_params pineview_display_wm = {
3681 PINEVIEW_DISPLAY_FIFO,
3682 PINEVIEW_MAX_WM,
3683 PINEVIEW_DFT_WM,
3684 PINEVIEW_GUARD_WM,
3685 PINEVIEW_FIFO_LINE_SIZE
3686 };
3687 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3688 PINEVIEW_DISPLAY_FIFO,
3689 PINEVIEW_MAX_WM,
3690 PINEVIEW_DFT_HPLLOFF_WM,
3691 PINEVIEW_GUARD_WM,
3692 PINEVIEW_FIFO_LINE_SIZE
3693 };
3694 static const struct intel_watermark_params pineview_cursor_wm = {
3695 PINEVIEW_CURSOR_FIFO,
3696 PINEVIEW_CURSOR_MAX_WM,
3697 PINEVIEW_CURSOR_DFT_WM,
3698 PINEVIEW_CURSOR_GUARD_WM,
3699 PINEVIEW_FIFO_LINE_SIZE,
3700 };
3701 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3702 PINEVIEW_CURSOR_FIFO,
3703 PINEVIEW_CURSOR_MAX_WM,
3704 PINEVIEW_CURSOR_DFT_WM,
3705 PINEVIEW_CURSOR_GUARD_WM,
3706 PINEVIEW_FIFO_LINE_SIZE
3707 };
3708 static const struct intel_watermark_params g4x_wm_info = {
3709 G4X_FIFO_SIZE,
3710 G4X_MAX_WM,
3711 G4X_MAX_WM,
3712 2,
3713 G4X_FIFO_LINE_SIZE,
3714 };
3715 static const struct intel_watermark_params g4x_cursor_wm_info = {
3716 I965_CURSOR_FIFO,
3717 I965_CURSOR_MAX_WM,
3718 I965_CURSOR_DFT_WM,
3719 2,
3720 G4X_FIFO_LINE_SIZE,
3721 };
3722 static const struct intel_watermark_params valleyview_wm_info = {
3723 VALLEYVIEW_FIFO_SIZE,
3724 VALLEYVIEW_MAX_WM,
3725 VALLEYVIEW_MAX_WM,
3726 2,
3727 G4X_FIFO_LINE_SIZE,
3728 };
3729 static const struct intel_watermark_params valleyview_cursor_wm_info = {
3730 I965_CURSOR_FIFO,
3731 VALLEYVIEW_CURSOR_MAX_WM,
3732 I965_CURSOR_DFT_WM,
3733 2,
3734 G4X_FIFO_LINE_SIZE,
3735 };
3736 static const struct intel_watermark_params i965_cursor_wm_info = {
3737 I965_CURSOR_FIFO,
3738 I965_CURSOR_MAX_WM,
3739 I965_CURSOR_DFT_WM,
3740 2,
3741 I915_FIFO_LINE_SIZE,
3742 };
3743 static const struct intel_watermark_params i945_wm_info = {
3744 I945_FIFO_SIZE,
3745 I915_MAX_WM,
3746 1,
3747 2,
3748 I915_FIFO_LINE_SIZE
3749 };
3750 static const struct intel_watermark_params i915_wm_info = {
3751 I915_FIFO_SIZE,
3752 I915_MAX_WM,
3753 1,
3754 2,
3755 I915_FIFO_LINE_SIZE
3756 };
3757 static const struct intel_watermark_params i855_wm_info = {
3758 I855GM_FIFO_SIZE,
3759 I915_MAX_WM,
3760 1,
3761 2,
3762 I830_FIFO_LINE_SIZE
3763 };
3764 static const struct intel_watermark_params i830_wm_info = {
3765 I830_FIFO_SIZE,
3766 I915_MAX_WM,
3767 1,
3768 2,
3769 I830_FIFO_LINE_SIZE
3770 };
3771
3772 static const struct intel_watermark_params ironlake_display_wm_info = {
3773 ILK_DISPLAY_FIFO,
3774 ILK_DISPLAY_MAXWM,
3775 ILK_DISPLAY_DFTWM,
3776 2,
3777 ILK_FIFO_LINE_SIZE
3778 };
3779 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3780 ILK_CURSOR_FIFO,
3781 ILK_CURSOR_MAXWM,
3782 ILK_CURSOR_DFTWM,
3783 2,
3784 ILK_FIFO_LINE_SIZE
3785 };
3786 static const struct intel_watermark_params ironlake_display_srwm_info = {
3787 ILK_DISPLAY_SR_FIFO,
3788 ILK_DISPLAY_MAX_SRWM,
3789 ILK_DISPLAY_DFT_SRWM,
3790 2,
3791 ILK_FIFO_LINE_SIZE
3792 };
3793 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3794 ILK_CURSOR_SR_FIFO,
3795 ILK_CURSOR_MAX_SRWM,
3796 ILK_CURSOR_DFT_SRWM,
3797 2,
3798 ILK_FIFO_LINE_SIZE
3799 };
3800
3801 static const struct intel_watermark_params sandybridge_display_wm_info = {
3802 SNB_DISPLAY_FIFO,
3803 SNB_DISPLAY_MAXWM,
3804 SNB_DISPLAY_DFTWM,
3805 2,
3806 SNB_FIFO_LINE_SIZE
3807 };
3808 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3809 SNB_CURSOR_FIFO,
3810 SNB_CURSOR_MAXWM,
3811 SNB_CURSOR_DFTWM,
3812 2,
3813 SNB_FIFO_LINE_SIZE
3814 };
3815 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3816 SNB_DISPLAY_SR_FIFO,
3817 SNB_DISPLAY_MAX_SRWM,
3818 SNB_DISPLAY_DFT_SRWM,
3819 2,
3820 SNB_FIFO_LINE_SIZE
3821 };
3822 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3823 SNB_CURSOR_SR_FIFO,
3824 SNB_CURSOR_MAX_SRWM,
3825 SNB_CURSOR_DFT_SRWM,
3826 2,
3827 SNB_FIFO_LINE_SIZE
3828 };
3829
3830
3831 /**
3832 * intel_calculate_wm - calculate watermark level
3833 * @clock_in_khz: pixel clock
3834 * @wm: chip FIFO params
3835 * @pixel_size: display pixel size
3836 * @latency_ns: memory latency for the platform
3837 *
3838 * Calculate the watermark level (the level at which the display plane will
3839 * start fetching from memory again). Each chip has a different display
3840 * FIFO size and allocation, so the caller needs to figure that out and pass
3841 * in the correct intel_watermark_params structure.
3842 *
3843 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3844 * on the pixel size. When it reaches the watermark level, it'll start
3845 * fetching FIFO line sized based chunks from memory until the FIFO fills
3846 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3847 * will occur, and a display engine hang could result.
3848 */
3849 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3850 const struct intel_watermark_params *wm,
3851 int fifo_size,
3852 int pixel_size,
3853 unsigned long latency_ns)
3854 {
3855 long entries_required, wm_size;
3856
3857 /*
3858 * Note: we need to make sure we don't overflow for various clock &
3859 * latency values.
3860 * clocks go from a few thousand to several hundred thousand.
3861 * latency is usually a few thousand
3862 */
3863 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3864 1000;
3865 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3866
3867 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3868
3869 wm_size = fifo_size - (entries_required + wm->guard_size);
3870
3871 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3872
3873 /* Don't promote wm_size to unsigned... */
3874 if (wm_size > (long)wm->max_wm)
3875 wm_size = wm->max_wm;
3876 if (wm_size <= 0)
3877 wm_size = wm->default_wm;
3878 return wm_size;
3879 }
3880
3881 struct cxsr_latency {
3882 int is_desktop;
3883 int is_ddr3;
3884 unsigned long fsb_freq;
3885 unsigned long mem_freq;
3886 unsigned long display_sr;
3887 unsigned long display_hpll_disable;
3888 unsigned long cursor_sr;
3889 unsigned long cursor_hpll_disable;
3890 };
3891
3892 static const struct cxsr_latency cxsr_latency_table[] = {
3893 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3894 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3895 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3896 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3897 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3898
3899 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3900 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3901 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3902 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3903 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3904
3905 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3906 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3907 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3908 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3909 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3910
3911 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3912 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3913 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3914 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3915 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3916
3917 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3918 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3919 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3920 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3921 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3922
3923 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3924 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3925 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3926 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3927 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3928 };
3929
3930 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3931 int is_ddr3,
3932 int fsb,
3933 int mem)
3934 {
3935 const struct cxsr_latency *latency;
3936 int i;
3937
3938 if (fsb == 0 || mem == 0)
3939 return NULL;
3940
3941 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3942 latency = &cxsr_latency_table[i];
3943 if (is_desktop == latency->is_desktop &&
3944 is_ddr3 == latency->is_ddr3 &&
3945 fsb == latency->fsb_freq && mem == latency->mem_freq)
3946 return latency;
3947 }
3948
3949 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3950
3951 return NULL;
3952 }
3953
3954 static void pineview_disable_cxsr(struct drm_device *dev)
3955 {
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3957
3958 /* deactivate cxsr */
3959 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3960 }
3961
3962 /*
3963 * Latency for FIFO fetches is dependent on several factors:
3964 * - memory configuration (speed, channels)
3965 * - chipset
3966 * - current MCH state
3967 * It can be fairly high in some situations, so here we assume a fairly
3968 * pessimal value. It's a tradeoff between extra memory fetches (if we
3969 * set this value too high, the FIFO will fetch frequently to stay full)
3970 * and power consumption (set it too low to save power and we might see
3971 * FIFO underruns and display "flicker").
3972 *
3973 * A value of 5us seems to be a good balance; safe for very low end
3974 * platforms but not overly aggressive on lower latency configs.
3975 */
3976 static const int latency_ns = 5000;
3977
3978 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3979 {
3980 struct drm_i915_private *dev_priv = dev->dev_private;
3981 uint32_t dsparb = I915_READ(DSPARB);
3982 int size;
3983
3984 size = dsparb & 0x7f;
3985 if (plane)
3986 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3987
3988 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3989 plane ? "B" : "A", size);
3990
3991 return size;
3992 }
3993
3994 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3995 {
3996 struct drm_i915_private *dev_priv = dev->dev_private;
3997 uint32_t dsparb = I915_READ(DSPARB);
3998 int size;
3999
4000 size = dsparb & 0x1ff;
4001 if (plane)
4002 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
4003 size >>= 1; /* Convert to cachelines */
4004
4005 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4006 plane ? "B" : "A", size);
4007
4008 return size;
4009 }
4010
4011 static int i845_get_fifo_size(struct drm_device *dev, int plane)
4012 {
4013 struct drm_i915_private *dev_priv = dev->dev_private;
4014 uint32_t dsparb = I915_READ(DSPARB);
4015 int size;
4016
4017 size = dsparb & 0x7f;
4018 size >>= 2; /* Convert to cachelines */
4019
4020 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4021 plane ? "B" : "A",
4022 size);
4023
4024 return size;
4025 }
4026
4027 static int i830_get_fifo_size(struct drm_device *dev, int plane)
4028 {
4029 struct drm_i915_private *dev_priv = dev->dev_private;
4030 uint32_t dsparb = I915_READ(DSPARB);
4031 int size;
4032
4033 size = dsparb & 0x7f;
4034 size >>= 1; /* Convert to cachelines */
4035
4036 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4037 plane ? "B" : "A", size);
4038
4039 return size;
4040 }
4041
4042 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
4043 {
4044 struct drm_crtc *crtc, *enabled = NULL;
4045
4046 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4047 if (crtc->enabled && crtc->fb) {
4048 if (enabled)
4049 return NULL;
4050 enabled = crtc;
4051 }
4052 }
4053
4054 return enabled;
4055 }
4056
4057 static void pineview_update_wm(struct drm_device *dev)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 struct drm_crtc *crtc;
4061 const struct cxsr_latency *latency;
4062 u32 reg;
4063 unsigned long wm;
4064
4065 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4066 dev_priv->fsb_freq, dev_priv->mem_freq);
4067 if (!latency) {
4068 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4069 pineview_disable_cxsr(dev);
4070 return;
4071 }
4072
4073 crtc = single_enabled_crtc(dev);
4074 if (crtc) {
4075 int clock = crtc->mode.clock;
4076 int pixel_size = crtc->fb->bits_per_pixel / 8;
4077
4078 /* Display SR */
4079 wm = intel_calculate_wm(clock, &pineview_display_wm,
4080 pineview_display_wm.fifo_size,
4081 pixel_size, latency->display_sr);
4082 reg = I915_READ(DSPFW1);
4083 reg &= ~DSPFW_SR_MASK;
4084 reg |= wm << DSPFW_SR_SHIFT;
4085 I915_WRITE(DSPFW1, reg);
4086 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4087
4088 /* cursor SR */
4089 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4090 pineview_display_wm.fifo_size,
4091 pixel_size, latency->cursor_sr);
4092 reg = I915_READ(DSPFW3);
4093 reg &= ~DSPFW_CURSOR_SR_MASK;
4094 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4095 I915_WRITE(DSPFW3, reg);
4096
4097 /* Display HPLL off SR */
4098 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4099 pineview_display_hplloff_wm.fifo_size,
4100 pixel_size, latency->display_hpll_disable);
4101 reg = I915_READ(DSPFW3);
4102 reg &= ~DSPFW_HPLL_SR_MASK;
4103 reg |= wm & DSPFW_HPLL_SR_MASK;
4104 I915_WRITE(DSPFW3, reg);
4105
4106 /* cursor HPLL off SR */
4107 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4108 pineview_display_hplloff_wm.fifo_size,
4109 pixel_size, latency->cursor_hpll_disable);
4110 reg = I915_READ(DSPFW3);
4111 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4112 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4113 I915_WRITE(DSPFW3, reg);
4114 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4115
4116 /* activate cxsr */
4117 I915_WRITE(DSPFW3,
4118 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4119 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4120 } else {
4121 pineview_disable_cxsr(dev);
4122 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4123 }
4124 }
4125
4126 static bool g4x_compute_wm0(struct drm_device *dev,
4127 int plane,
4128 const struct intel_watermark_params *display,
4129 int display_latency_ns,
4130 const struct intel_watermark_params *cursor,
4131 int cursor_latency_ns,
4132 int *plane_wm,
4133 int *cursor_wm)
4134 {
4135 struct drm_crtc *crtc;
4136 int htotal, hdisplay, clock, pixel_size;
4137 int line_time_us, line_count;
4138 int entries, tlb_miss;
4139
4140 crtc = intel_get_crtc_for_plane(dev, plane);
4141 if (crtc->fb == NULL || !crtc->enabled) {
4142 *cursor_wm = cursor->guard_size;
4143 *plane_wm = display->guard_size;
4144 return false;
4145 }
4146
4147 htotal = crtc->mode.htotal;
4148 hdisplay = crtc->mode.hdisplay;
4149 clock = crtc->mode.clock;
4150 pixel_size = crtc->fb->bits_per_pixel / 8;
4151
4152 /* Use the small buffer method to calculate plane watermark */
4153 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4154 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4155 if (tlb_miss > 0)
4156 entries += tlb_miss;
4157 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4158 *plane_wm = entries + display->guard_size;
4159 if (*plane_wm > (int)display->max_wm)
4160 *plane_wm = display->max_wm;
4161
4162 /* Use the large buffer method to calculate cursor watermark */
4163 line_time_us = ((htotal * 1000) / clock);
4164 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4165 entries = line_count * 64 * pixel_size;
4166 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4167 if (tlb_miss > 0)
4168 entries += tlb_miss;
4169 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4170 *cursor_wm = entries + cursor->guard_size;
4171 if (*cursor_wm > (int)cursor->max_wm)
4172 *cursor_wm = (int)cursor->max_wm;
4173
4174 return true;
4175 }
4176
4177 /*
4178 * Check the wm result.
4179 *
4180 * If any calculated watermark values is larger than the maximum value that
4181 * can be programmed into the associated watermark register, that watermark
4182 * must be disabled.
4183 */
4184 static bool g4x_check_srwm(struct drm_device *dev,
4185 int display_wm, int cursor_wm,
4186 const struct intel_watermark_params *display,
4187 const struct intel_watermark_params *cursor)
4188 {
4189 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4190 display_wm, cursor_wm);
4191
4192 if (display_wm > display->max_wm) {
4193 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4194 display_wm, display->max_wm);
4195 return false;
4196 }
4197
4198 if (cursor_wm > cursor->max_wm) {
4199 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4200 cursor_wm, cursor->max_wm);
4201 return false;
4202 }
4203
4204 if (!(display_wm || cursor_wm)) {
4205 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4206 return false;
4207 }
4208
4209 return true;
4210 }
4211
4212 static bool g4x_compute_srwm(struct drm_device *dev,
4213 int plane,
4214 int latency_ns,
4215 const struct intel_watermark_params *display,
4216 const struct intel_watermark_params *cursor,
4217 int *display_wm, int *cursor_wm)
4218 {
4219 struct drm_crtc *crtc;
4220 int hdisplay, htotal, pixel_size, clock;
4221 unsigned long line_time_us;
4222 int line_count, line_size;
4223 int small, large;
4224 int entries;
4225
4226 if (!latency_ns) {
4227 *display_wm = *cursor_wm = 0;
4228 return false;
4229 }
4230
4231 crtc = intel_get_crtc_for_plane(dev, plane);
4232 hdisplay = crtc->mode.hdisplay;
4233 htotal = crtc->mode.htotal;
4234 clock = crtc->mode.clock;
4235 pixel_size = crtc->fb->bits_per_pixel / 8;
4236
4237 line_time_us = (htotal * 1000) / clock;
4238 line_count = (latency_ns / line_time_us + 1000) / 1000;
4239 line_size = hdisplay * pixel_size;
4240
4241 /* Use the minimum of the small and large buffer method for primary */
4242 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4243 large = line_count * line_size;
4244
4245 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4246 *display_wm = entries + display->guard_size;
4247
4248 /* calculate the self-refresh watermark for display cursor */
4249 entries = line_count * pixel_size * 64;
4250 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4251 *cursor_wm = entries + cursor->guard_size;
4252
4253 return g4x_check_srwm(dev,
4254 *display_wm, *cursor_wm,
4255 display, cursor);
4256 }
4257
4258 static bool vlv_compute_drain_latency(struct drm_device *dev,
4259 int plane,
4260 int *plane_prec_mult,
4261 int *plane_dl,
4262 int *cursor_prec_mult,
4263 int *cursor_dl)
4264 {
4265 struct drm_crtc *crtc;
4266 int clock, pixel_size;
4267 int entries;
4268
4269 crtc = intel_get_crtc_for_plane(dev, plane);
4270 if (crtc->fb == NULL || !crtc->enabled)
4271 return false;
4272
4273 clock = crtc->mode.clock; /* VESA DOT Clock */
4274 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
4275
4276 entries = (clock / 1000) * pixel_size;
4277 *plane_prec_mult = (entries > 256) ?
4278 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4279 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
4280 pixel_size);
4281
4282 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
4283 *cursor_prec_mult = (entries > 256) ?
4284 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4285 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
4286
4287 return true;
4288 }
4289
4290 /*
4291 * Update drain latency registers of memory arbiter
4292 *
4293 * Valleyview SoC has a new memory arbiter and needs drain latency registers
4294 * to be programmed. Each plane has a drain latency multiplier and a drain
4295 * latency value.
4296 */
4297
4298 static void vlv_update_drain_latency(struct drm_device *dev)
4299 {
4300 struct drm_i915_private *dev_priv = dev->dev_private;
4301 int planea_prec, planea_dl, planeb_prec, planeb_dl;
4302 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
4303 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
4304 either 16 or 32 */
4305
4306 /* For plane A, Cursor A */
4307 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
4308 &cursor_prec_mult, &cursora_dl)) {
4309 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4310 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
4311 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4312 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
4313
4314 I915_WRITE(VLV_DDL1, cursora_prec |
4315 (cursora_dl << DDL_CURSORA_SHIFT) |
4316 planea_prec | planea_dl);
4317 }
4318
4319 /* For plane B, Cursor B */
4320 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
4321 &cursor_prec_mult, &cursorb_dl)) {
4322 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4323 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
4324 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4325 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
4326
4327 I915_WRITE(VLV_DDL2, cursorb_prec |
4328 (cursorb_dl << DDL_CURSORB_SHIFT) |
4329 planeb_prec | planeb_dl);
4330 }
4331 }
4332
4333 #define single_plane_enabled(mask) is_power_of_2(mask)
4334
4335 static void valleyview_update_wm(struct drm_device *dev)
4336 {
4337 static const int sr_latency_ns = 12000;
4338 struct drm_i915_private *dev_priv = dev->dev_private;
4339 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4340 int plane_sr, cursor_sr;
4341 unsigned int enabled = 0;
4342
4343 vlv_update_drain_latency(dev);
4344
4345 if (g4x_compute_wm0(dev, 0,
4346 &valleyview_wm_info, latency_ns,
4347 &valleyview_cursor_wm_info, latency_ns,
4348 &planea_wm, &cursora_wm))
4349 enabled |= 1;
4350
4351 if (g4x_compute_wm0(dev, 1,
4352 &valleyview_wm_info, latency_ns,
4353 &valleyview_cursor_wm_info, latency_ns,
4354 &planeb_wm, &cursorb_wm))
4355 enabled |= 2;
4356
4357 plane_sr = cursor_sr = 0;
4358 if (single_plane_enabled(enabled) &&
4359 g4x_compute_srwm(dev, ffs(enabled) - 1,
4360 sr_latency_ns,
4361 &valleyview_wm_info,
4362 &valleyview_cursor_wm_info,
4363 &plane_sr, &cursor_sr))
4364 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
4365 else
4366 I915_WRITE(FW_BLC_SELF_VLV,
4367 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
4368
4369 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4370 planea_wm, cursora_wm,
4371 planeb_wm, cursorb_wm,
4372 plane_sr, cursor_sr);
4373
4374 I915_WRITE(DSPFW1,
4375 (plane_sr << DSPFW_SR_SHIFT) |
4376 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4377 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4378 planea_wm);
4379 I915_WRITE(DSPFW2,
4380 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4381 (cursora_wm << DSPFW_CURSORA_SHIFT));
4382 I915_WRITE(DSPFW3,
4383 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
4384 }
4385
4386 static void g4x_update_wm(struct drm_device *dev)
4387 {
4388 static const int sr_latency_ns = 12000;
4389 struct drm_i915_private *dev_priv = dev->dev_private;
4390 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4391 int plane_sr, cursor_sr;
4392 unsigned int enabled = 0;
4393
4394 if (g4x_compute_wm0(dev, 0,
4395 &g4x_wm_info, latency_ns,
4396 &g4x_cursor_wm_info, latency_ns,
4397 &planea_wm, &cursora_wm))
4398 enabled |= 1;
4399
4400 if (g4x_compute_wm0(dev, 1,
4401 &g4x_wm_info, latency_ns,
4402 &g4x_cursor_wm_info, latency_ns,
4403 &planeb_wm, &cursorb_wm))
4404 enabled |= 2;
4405
4406 plane_sr = cursor_sr = 0;
4407 if (single_plane_enabled(enabled) &&
4408 g4x_compute_srwm(dev, ffs(enabled) - 1,
4409 sr_latency_ns,
4410 &g4x_wm_info,
4411 &g4x_cursor_wm_info,
4412 &plane_sr, &cursor_sr))
4413 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4414 else
4415 I915_WRITE(FW_BLC_SELF,
4416 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4417
4418 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4419 planea_wm, cursora_wm,
4420 planeb_wm, cursorb_wm,
4421 plane_sr, cursor_sr);
4422
4423 I915_WRITE(DSPFW1,
4424 (plane_sr << DSPFW_SR_SHIFT) |
4425 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4426 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4427 planea_wm);
4428 I915_WRITE(DSPFW2,
4429 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4430 (cursora_wm << DSPFW_CURSORA_SHIFT));
4431 /* HPLL off in SR has some issues on G4x... disable it */
4432 I915_WRITE(DSPFW3,
4433 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4434 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4435 }
4436
4437 static void i965_update_wm(struct drm_device *dev)
4438 {
4439 struct drm_i915_private *dev_priv = dev->dev_private;
4440 struct drm_crtc *crtc;
4441 int srwm = 1;
4442 int cursor_sr = 16;
4443
4444 /* Calc sr entries for one plane configs */
4445 crtc = single_enabled_crtc(dev);
4446 if (crtc) {
4447 /* self-refresh has much higher latency */
4448 static const int sr_latency_ns = 12000;
4449 int clock = crtc->mode.clock;
4450 int htotal = crtc->mode.htotal;
4451 int hdisplay = crtc->mode.hdisplay;
4452 int pixel_size = crtc->fb->bits_per_pixel / 8;
4453 unsigned long line_time_us;
4454 int entries;
4455
4456 line_time_us = ((htotal * 1000) / clock);
4457
4458 /* Use ns/us then divide to preserve precision */
4459 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4460 pixel_size * hdisplay;
4461 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4462 srwm = I965_FIFO_SIZE - entries;
4463 if (srwm < 0)
4464 srwm = 1;
4465 srwm &= 0x1ff;
4466 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4467 entries, srwm);
4468
4469 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4470 pixel_size * 64;
4471 entries = DIV_ROUND_UP(entries,
4472 i965_cursor_wm_info.cacheline_size);
4473 cursor_sr = i965_cursor_wm_info.fifo_size -
4474 (entries + i965_cursor_wm_info.guard_size);
4475
4476 if (cursor_sr > i965_cursor_wm_info.max_wm)
4477 cursor_sr = i965_cursor_wm_info.max_wm;
4478
4479 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4480 "cursor %d\n", srwm, cursor_sr);
4481
4482 if (IS_CRESTLINE(dev))
4483 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4484 } else {
4485 /* Turn off self refresh if both pipes are enabled */
4486 if (IS_CRESTLINE(dev))
4487 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4488 & ~FW_BLC_SELF_EN);
4489 }
4490
4491 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4492 srwm);
4493
4494 /* 965 has limitations... */
4495 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4496 (8 << 16) | (8 << 8) | (8 << 0));
4497 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4498 /* update cursor SR watermark */
4499 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4500 }
4501
4502 static void i9xx_update_wm(struct drm_device *dev)
4503 {
4504 struct drm_i915_private *dev_priv = dev->dev_private;
4505 const struct intel_watermark_params *wm_info;
4506 uint32_t fwater_lo;
4507 uint32_t fwater_hi;
4508 int cwm, srwm = 1;
4509 int fifo_size;
4510 int planea_wm, planeb_wm;
4511 struct drm_crtc *crtc, *enabled = NULL;
4512
4513 if (IS_I945GM(dev))
4514 wm_info = &i945_wm_info;
4515 else if (!IS_GEN2(dev))
4516 wm_info = &i915_wm_info;
4517 else
4518 wm_info = &i855_wm_info;
4519
4520 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4521 crtc = intel_get_crtc_for_plane(dev, 0);
4522 if (crtc->enabled && crtc->fb) {
4523 planea_wm = intel_calculate_wm(crtc->mode.clock,
4524 wm_info, fifo_size,
4525 crtc->fb->bits_per_pixel / 8,
4526 latency_ns);
4527 enabled = crtc;
4528 } else
4529 planea_wm = fifo_size - wm_info->guard_size;
4530
4531 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4532 crtc = intel_get_crtc_for_plane(dev, 1);
4533 if (crtc->enabled && crtc->fb) {
4534 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4535 wm_info, fifo_size,
4536 crtc->fb->bits_per_pixel / 8,
4537 latency_ns);
4538 if (enabled == NULL)
4539 enabled = crtc;
4540 else
4541 enabled = NULL;
4542 } else
4543 planeb_wm = fifo_size - wm_info->guard_size;
4544
4545 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4546
4547 /*
4548 * Overlay gets an aggressive default since video jitter is bad.
4549 */
4550 cwm = 2;
4551
4552 /* Play safe and disable self-refresh before adjusting watermarks. */
4553 if (IS_I945G(dev) || IS_I945GM(dev))
4554 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4555 else if (IS_I915GM(dev))
4556 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4557
4558 /* Calc sr entries for one plane configs */
4559 if (HAS_FW_BLC(dev) && enabled) {
4560 /* self-refresh has much higher latency */
4561 static const int sr_latency_ns = 6000;
4562 int clock = enabled->mode.clock;
4563 int htotal = enabled->mode.htotal;
4564 int hdisplay = enabled->mode.hdisplay;
4565 int pixel_size = enabled->fb->bits_per_pixel / 8;
4566 unsigned long line_time_us;
4567 int entries;
4568
4569 line_time_us = (htotal * 1000) / clock;
4570
4571 /* Use ns/us then divide to preserve precision */
4572 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4573 pixel_size * hdisplay;
4574 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4575 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4576 srwm = wm_info->fifo_size - entries;
4577 if (srwm < 0)
4578 srwm = 1;
4579
4580 if (IS_I945G(dev) || IS_I945GM(dev))
4581 I915_WRITE(FW_BLC_SELF,
4582 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4583 else if (IS_I915GM(dev))
4584 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4585 }
4586
4587 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4588 planea_wm, planeb_wm, cwm, srwm);
4589
4590 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4591 fwater_hi = (cwm & 0x1f);
4592
4593 /* Set request length to 8 cachelines per fetch */
4594 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4595 fwater_hi = fwater_hi | (1 << 8);
4596
4597 I915_WRITE(FW_BLC, fwater_lo);
4598 I915_WRITE(FW_BLC2, fwater_hi);
4599
4600 if (HAS_FW_BLC(dev)) {
4601 if (enabled) {
4602 if (IS_I945G(dev) || IS_I945GM(dev))
4603 I915_WRITE(FW_BLC_SELF,
4604 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4605 else if (IS_I915GM(dev))
4606 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4607 DRM_DEBUG_KMS("memory self refresh enabled\n");
4608 } else
4609 DRM_DEBUG_KMS("memory self refresh disabled\n");
4610 }
4611 }
4612
4613 static void i830_update_wm(struct drm_device *dev)
4614 {
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616 struct drm_crtc *crtc;
4617 uint32_t fwater_lo;
4618 int planea_wm;
4619
4620 crtc = single_enabled_crtc(dev);
4621 if (crtc == NULL)
4622 return;
4623
4624 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4625 dev_priv->display.get_fifo_size(dev, 0),
4626 crtc->fb->bits_per_pixel / 8,
4627 latency_ns);
4628 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4629 fwater_lo |= (3<<8) | planea_wm;
4630
4631 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4632
4633 I915_WRITE(FW_BLC, fwater_lo);
4634 }
4635
4636 #define ILK_LP0_PLANE_LATENCY 700
4637 #define ILK_LP0_CURSOR_LATENCY 1300
4638
4639 /*
4640 * Check the wm result.
4641 *
4642 * If any calculated watermark values is larger than the maximum value that
4643 * can be programmed into the associated watermark register, that watermark
4644 * must be disabled.
4645 */
4646 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4647 int fbc_wm, int display_wm, int cursor_wm,
4648 const struct intel_watermark_params *display,
4649 const struct intel_watermark_params *cursor)
4650 {
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652
4653 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4654 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4655
4656 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4657 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4658 fbc_wm, SNB_FBC_MAX_SRWM, level);
4659
4660 /* fbc has it's own way to disable FBC WM */
4661 I915_WRITE(DISP_ARB_CTL,
4662 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4663 return false;
4664 }
4665
4666 if (display_wm > display->max_wm) {
4667 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4668 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4669 return false;
4670 }
4671
4672 if (cursor_wm > cursor->max_wm) {
4673 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4674 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4675 return false;
4676 }
4677
4678 if (!(fbc_wm || display_wm || cursor_wm)) {
4679 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4680 return false;
4681 }
4682
4683 return true;
4684 }
4685
4686 /*
4687 * Compute watermark values of WM[1-3],
4688 */
4689 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4690 int latency_ns,
4691 const struct intel_watermark_params *display,
4692 const struct intel_watermark_params *cursor,
4693 int *fbc_wm, int *display_wm, int *cursor_wm)
4694 {
4695 struct drm_crtc *crtc;
4696 unsigned long line_time_us;
4697 int hdisplay, htotal, pixel_size, clock;
4698 int line_count, line_size;
4699 int small, large;
4700 int entries;
4701
4702 if (!latency_ns) {
4703 *fbc_wm = *display_wm = *cursor_wm = 0;
4704 return false;
4705 }
4706
4707 crtc = intel_get_crtc_for_plane(dev, plane);
4708 hdisplay = crtc->mode.hdisplay;
4709 htotal = crtc->mode.htotal;
4710 clock = crtc->mode.clock;
4711 pixel_size = crtc->fb->bits_per_pixel / 8;
4712
4713 line_time_us = (htotal * 1000) / clock;
4714 line_count = (latency_ns / line_time_us + 1000) / 1000;
4715 line_size = hdisplay * pixel_size;
4716
4717 /* Use the minimum of the small and large buffer method for primary */
4718 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4719 large = line_count * line_size;
4720
4721 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4722 *display_wm = entries + display->guard_size;
4723
4724 /*
4725 * Spec says:
4726 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4727 */
4728 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4729
4730 /* calculate the self-refresh watermark for display cursor */
4731 entries = line_count * pixel_size * 64;
4732 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4733 *cursor_wm = entries + cursor->guard_size;
4734
4735 return ironlake_check_srwm(dev, level,
4736 *fbc_wm, *display_wm, *cursor_wm,
4737 display, cursor);
4738 }
4739
4740 static void ironlake_update_wm(struct drm_device *dev)
4741 {
4742 struct drm_i915_private *dev_priv = dev->dev_private;
4743 int fbc_wm, plane_wm, cursor_wm;
4744 unsigned int enabled;
4745
4746 enabled = 0;
4747 if (g4x_compute_wm0(dev, 0,
4748 &ironlake_display_wm_info,
4749 ILK_LP0_PLANE_LATENCY,
4750 &ironlake_cursor_wm_info,
4751 ILK_LP0_CURSOR_LATENCY,
4752 &plane_wm, &cursor_wm)) {
4753 I915_WRITE(WM0_PIPEA_ILK,
4754 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4755 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4756 " plane %d, " "cursor: %d\n",
4757 plane_wm, cursor_wm);
4758 enabled |= 1;
4759 }
4760
4761 if (g4x_compute_wm0(dev, 1,
4762 &ironlake_display_wm_info,
4763 ILK_LP0_PLANE_LATENCY,
4764 &ironlake_cursor_wm_info,
4765 ILK_LP0_CURSOR_LATENCY,
4766 &plane_wm, &cursor_wm)) {
4767 I915_WRITE(WM0_PIPEB_ILK,
4768 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4769 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4770 " plane %d, cursor: %d\n",
4771 plane_wm, cursor_wm);
4772 enabled |= 2;
4773 }
4774
4775 /*
4776 * Calculate and update the self-refresh watermark only when one
4777 * display plane is used.
4778 */
4779 I915_WRITE(WM3_LP_ILK, 0);
4780 I915_WRITE(WM2_LP_ILK, 0);
4781 I915_WRITE(WM1_LP_ILK, 0);
4782
4783 if (!single_plane_enabled(enabled))
4784 return;
4785 enabled = ffs(enabled) - 1;
4786
4787 /* WM1 */
4788 if (!ironlake_compute_srwm(dev, 1, enabled,
4789 ILK_READ_WM1_LATENCY() * 500,
4790 &ironlake_display_srwm_info,
4791 &ironlake_cursor_srwm_info,
4792 &fbc_wm, &plane_wm, &cursor_wm))
4793 return;
4794
4795 I915_WRITE(WM1_LP_ILK,
4796 WM1_LP_SR_EN |
4797 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4798 (fbc_wm << WM1_LP_FBC_SHIFT) |
4799 (plane_wm << WM1_LP_SR_SHIFT) |
4800 cursor_wm);
4801
4802 /* WM2 */
4803 if (!ironlake_compute_srwm(dev, 2, enabled,
4804 ILK_READ_WM2_LATENCY() * 500,
4805 &ironlake_display_srwm_info,
4806 &ironlake_cursor_srwm_info,
4807 &fbc_wm, &plane_wm, &cursor_wm))
4808 return;
4809
4810 I915_WRITE(WM2_LP_ILK,
4811 WM2_LP_EN |
4812 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4813 (fbc_wm << WM1_LP_FBC_SHIFT) |
4814 (plane_wm << WM1_LP_SR_SHIFT) |
4815 cursor_wm);
4816
4817 /*
4818 * WM3 is unsupported on ILK, probably because we don't have latency
4819 * data for that power state
4820 */
4821 }
4822
4823 void sandybridge_update_wm(struct drm_device *dev)
4824 {
4825 struct drm_i915_private *dev_priv = dev->dev_private;
4826 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4827 u32 val;
4828 int fbc_wm, plane_wm, cursor_wm;
4829 unsigned int enabled;
4830
4831 enabled = 0;
4832 if (g4x_compute_wm0(dev, 0,
4833 &sandybridge_display_wm_info, latency,
4834 &sandybridge_cursor_wm_info, latency,
4835 &plane_wm, &cursor_wm)) {
4836 val = I915_READ(WM0_PIPEA_ILK);
4837 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4838 I915_WRITE(WM0_PIPEA_ILK, val |
4839 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4840 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4841 " plane %d, " "cursor: %d\n",
4842 plane_wm, cursor_wm);
4843 enabled |= 1;
4844 }
4845
4846 if (g4x_compute_wm0(dev, 1,
4847 &sandybridge_display_wm_info, latency,
4848 &sandybridge_cursor_wm_info, latency,
4849 &plane_wm, &cursor_wm)) {
4850 val = I915_READ(WM0_PIPEB_ILK);
4851 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4852 I915_WRITE(WM0_PIPEB_ILK, val |
4853 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4854 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4855 " plane %d, cursor: %d\n",
4856 plane_wm, cursor_wm);
4857 enabled |= 2;
4858 }
4859
4860 /* IVB has 3 pipes */
4861 if (IS_IVYBRIDGE(dev) &&
4862 g4x_compute_wm0(dev, 2,
4863 &sandybridge_display_wm_info, latency,
4864 &sandybridge_cursor_wm_info, latency,
4865 &plane_wm, &cursor_wm)) {
4866 val = I915_READ(WM0_PIPEC_IVB);
4867 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4868 I915_WRITE(WM0_PIPEC_IVB, val |
4869 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4870 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4871 " plane %d, cursor: %d\n",
4872 plane_wm, cursor_wm);
4873 enabled |= 3;
4874 }
4875
4876 /*
4877 * Calculate and update the self-refresh watermark only when one
4878 * display plane is used.
4879 *
4880 * SNB support 3 levels of watermark.
4881 *
4882 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4883 * and disabled in the descending order
4884 *
4885 */
4886 I915_WRITE(WM3_LP_ILK, 0);
4887 I915_WRITE(WM2_LP_ILK, 0);
4888 I915_WRITE(WM1_LP_ILK, 0);
4889
4890 if (!single_plane_enabled(enabled) ||
4891 dev_priv->sprite_scaling_enabled)
4892 return;
4893 enabled = ffs(enabled) - 1;
4894
4895 /* WM1 */
4896 if (!ironlake_compute_srwm(dev, 1, enabled,
4897 SNB_READ_WM1_LATENCY() * 500,
4898 &sandybridge_display_srwm_info,
4899 &sandybridge_cursor_srwm_info,
4900 &fbc_wm, &plane_wm, &cursor_wm))
4901 return;
4902
4903 I915_WRITE(WM1_LP_ILK,
4904 WM1_LP_SR_EN |
4905 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4906 (fbc_wm << WM1_LP_FBC_SHIFT) |
4907 (plane_wm << WM1_LP_SR_SHIFT) |
4908 cursor_wm);
4909
4910 /* WM2 */
4911 if (!ironlake_compute_srwm(dev, 2, enabled,
4912 SNB_READ_WM2_LATENCY() * 500,
4913 &sandybridge_display_srwm_info,
4914 &sandybridge_cursor_srwm_info,
4915 &fbc_wm, &plane_wm, &cursor_wm))
4916 return;
4917
4918 I915_WRITE(WM2_LP_ILK,
4919 WM2_LP_EN |
4920 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4921 (fbc_wm << WM1_LP_FBC_SHIFT) |
4922 (plane_wm << WM1_LP_SR_SHIFT) |
4923 cursor_wm);
4924
4925 /* WM3 */
4926 if (!ironlake_compute_srwm(dev, 3, enabled,
4927 SNB_READ_WM3_LATENCY() * 500,
4928 &sandybridge_display_srwm_info,
4929 &sandybridge_cursor_srwm_info,
4930 &fbc_wm, &plane_wm, &cursor_wm))
4931 return;
4932
4933 I915_WRITE(WM3_LP_ILK,
4934 WM3_LP_EN |
4935 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4936 (fbc_wm << WM1_LP_FBC_SHIFT) |
4937 (plane_wm << WM1_LP_SR_SHIFT) |
4938 cursor_wm);
4939 }
4940
4941 static bool
4942 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4943 uint32_t sprite_width, int pixel_size,
4944 const struct intel_watermark_params *display,
4945 int display_latency_ns, int *sprite_wm)
4946 {
4947 struct drm_crtc *crtc;
4948 int clock;
4949 int entries, tlb_miss;
4950
4951 crtc = intel_get_crtc_for_plane(dev, plane);
4952 if (crtc->fb == NULL || !crtc->enabled) {
4953 *sprite_wm = display->guard_size;
4954 return false;
4955 }
4956
4957 clock = crtc->mode.clock;
4958
4959 /* Use the small buffer method to calculate the sprite watermark */
4960 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4961 tlb_miss = display->fifo_size*display->cacheline_size -
4962 sprite_width * 8;
4963 if (tlb_miss > 0)
4964 entries += tlb_miss;
4965 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4966 *sprite_wm = entries + display->guard_size;
4967 if (*sprite_wm > (int)display->max_wm)
4968 *sprite_wm = display->max_wm;
4969
4970 return true;
4971 }
4972
4973 static bool
4974 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4975 uint32_t sprite_width, int pixel_size,
4976 const struct intel_watermark_params *display,
4977 int latency_ns, int *sprite_wm)
4978 {
4979 struct drm_crtc *crtc;
4980 unsigned long line_time_us;
4981 int clock;
4982 int line_count, line_size;
4983 int small, large;
4984 int entries;
4985
4986 if (!latency_ns) {
4987 *sprite_wm = 0;
4988 return false;
4989 }
4990
4991 crtc = intel_get_crtc_for_plane(dev, plane);
4992 clock = crtc->mode.clock;
4993 if (!clock) {
4994 *sprite_wm = 0;
4995 return false;
4996 }
4997
4998 line_time_us = (sprite_width * 1000) / clock;
4999 if (!line_time_us) {
5000 *sprite_wm = 0;
5001 return false;
5002 }
5003
5004 line_count = (latency_ns / line_time_us + 1000) / 1000;
5005 line_size = sprite_width * pixel_size;
5006
5007 /* Use the minimum of the small and large buffer method for primary */
5008 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
5009 large = line_count * line_size;
5010
5011 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
5012 *sprite_wm = entries + display->guard_size;
5013
5014 return *sprite_wm > 0x3ff ? false : true;
5015 }
5016
5017 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
5018 uint32_t sprite_width, int pixel_size)
5019 {
5020 struct drm_i915_private *dev_priv = dev->dev_private;
5021 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
5022 u32 val;
5023 int sprite_wm, reg;
5024 int ret;
5025
5026 switch (pipe) {
5027 case 0:
5028 reg = WM0_PIPEA_ILK;
5029 break;
5030 case 1:
5031 reg = WM0_PIPEB_ILK;
5032 break;
5033 case 2:
5034 reg = WM0_PIPEC_IVB;
5035 break;
5036 default:
5037 return; /* bad pipe */
5038 }
5039
5040 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
5041 &sandybridge_display_wm_info,
5042 latency, &sprite_wm);
5043 if (!ret) {
5044 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
5045 pipe);
5046 return;
5047 }
5048
5049 val = I915_READ(reg);
5050 val &= ~WM0_PIPE_SPRITE_MASK;
5051 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
5052 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
5053
5054
5055 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5056 pixel_size,
5057 &sandybridge_display_srwm_info,
5058 SNB_READ_WM1_LATENCY() * 500,
5059 &sprite_wm);
5060 if (!ret) {
5061 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
5062 pipe);
5063 return;
5064 }
5065 I915_WRITE(WM1S_LP_ILK, sprite_wm);
5066
5067 /* Only IVB has two more LP watermarks for sprite */
5068 if (!IS_IVYBRIDGE(dev))
5069 return;
5070
5071 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5072 pixel_size,
5073 &sandybridge_display_srwm_info,
5074 SNB_READ_WM2_LATENCY() * 500,
5075 &sprite_wm);
5076 if (!ret) {
5077 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
5078 pipe);
5079 return;
5080 }
5081 I915_WRITE(WM2S_LP_IVB, sprite_wm);
5082
5083 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5084 pixel_size,
5085 &sandybridge_display_srwm_info,
5086 SNB_READ_WM3_LATENCY() * 500,
5087 &sprite_wm);
5088 if (!ret) {
5089 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
5090 pipe);
5091 return;
5092 }
5093 I915_WRITE(WM3S_LP_IVB, sprite_wm);
5094 }
5095
5096 /**
5097 * intel_update_watermarks - update FIFO watermark values based on current modes
5098 *
5099 * Calculate watermark values for the various WM regs based on current mode
5100 * and plane configuration.
5101 *
5102 * There are several cases to deal with here:
5103 * - normal (i.e. non-self-refresh)
5104 * - self-refresh (SR) mode
5105 * - lines are large relative to FIFO size (buffer can hold up to 2)
5106 * - lines are small relative to FIFO size (buffer can hold more than 2
5107 * lines), so need to account for TLB latency
5108 *
5109 * The normal calculation is:
5110 * watermark = dotclock * bytes per pixel * latency
5111 * where latency is platform & configuration dependent (we assume pessimal
5112 * values here).
5113 *
5114 * The SR calculation is:
5115 * watermark = (trunc(latency/line time)+1) * surface width *
5116 * bytes per pixel
5117 * where
5118 * line time = htotal / dotclock
5119 * surface width = hdisplay for normal plane and 64 for cursor
5120 * and latency is assumed to be high, as above.
5121 *
5122 * The final value programmed to the register should always be rounded up,
5123 * and include an extra 2 entries to account for clock crossings.
5124 *
5125 * We don't use the sprite, so we can ignore that. And on Crestline we have
5126 * to set the non-SR watermarks to 8.
5127 */
5128 static void intel_update_watermarks(struct drm_device *dev)
5129 {
5130 struct drm_i915_private *dev_priv = dev->dev_private;
5131
5132 if (dev_priv->display.update_wm)
5133 dev_priv->display.update_wm(dev);
5134 }
5135
5136 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
5137 uint32_t sprite_width, int pixel_size)
5138 {
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140
5141 if (dev_priv->display.update_sprite_wm)
5142 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
5143 pixel_size);
5144 }
5145
5146 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5147 {
5148 if (i915_panel_use_ssc >= 0)
5149 return i915_panel_use_ssc != 0;
5150 return dev_priv->lvds_use_ssc
5151 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5152 }
5153
5154 /**
5155 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
5156 * @crtc: CRTC structure
5157 * @mode: requested mode
5158 *
5159 * A pipe may be connected to one or more outputs. Based on the depth of the
5160 * attached framebuffer, choose a good color depth to use on the pipe.
5161 *
5162 * If possible, match the pipe depth to the fb depth. In some cases, this
5163 * isn't ideal, because the connected output supports a lesser or restricted
5164 * set of depths. Resolve that here:
5165 * LVDS typically supports only 6bpc, so clamp down in that case
5166 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
5167 * Displays may support a restricted set as well, check EDID and clamp as
5168 * appropriate.
5169 * DP may want to dither down to 6bpc to fit larger modes
5170 *
5171 * RETURNS:
5172 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
5173 * true if they don't match).
5174 */
5175 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
5176 unsigned int *pipe_bpp,
5177 struct drm_display_mode *mode)
5178 {
5179 struct drm_device *dev = crtc->dev;
5180 struct drm_i915_private *dev_priv = dev->dev_private;
5181 struct drm_encoder *encoder;
5182 struct drm_connector *connector;
5183 unsigned int display_bpc = UINT_MAX, bpc;
5184
5185 /* Walk the encoders & connectors on this crtc, get min bpc */
5186 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5187 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5188
5189 if (encoder->crtc != crtc)
5190 continue;
5191
5192 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5193 unsigned int lvds_bpc;
5194
5195 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5196 LVDS_A3_POWER_UP)
5197 lvds_bpc = 8;
5198 else
5199 lvds_bpc = 6;
5200
5201 if (lvds_bpc < display_bpc) {
5202 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5203 display_bpc = lvds_bpc;
5204 }
5205 continue;
5206 }
5207
5208 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5209 /* Use VBT settings if we have an eDP panel */
5210 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5211
5212 if (edp_bpc < display_bpc) {
5213 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5214 display_bpc = edp_bpc;
5215 }
5216 continue;
5217 }
5218
5219 /* Not one of the known troublemakers, check the EDID */
5220 list_for_each_entry(connector, &dev->mode_config.connector_list,
5221 head) {
5222 if (connector->encoder != encoder)
5223 continue;
5224
5225 /* Don't use an invalid EDID bpc value */
5226 if (connector->display_info.bpc &&
5227 connector->display_info.bpc < display_bpc) {
5228 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5229 display_bpc = connector->display_info.bpc;
5230 }
5231 }
5232
5233 /*
5234 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5235 * through, clamp it down. (Note: >12bpc will be caught below.)
5236 */
5237 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5238 if (display_bpc > 8 && display_bpc < 12) {
5239 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5240 display_bpc = 12;
5241 } else {
5242 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5243 display_bpc = 8;
5244 }
5245 }
5246 }
5247
5248 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5249 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5250 display_bpc = 6;
5251 }
5252
5253 /*
5254 * We could just drive the pipe at the highest bpc all the time and
5255 * enable dithering as needed, but that costs bandwidth. So choose
5256 * the minimum value that expresses the full color range of the fb but
5257 * also stays within the max display bpc discovered above.
5258 */
5259
5260 switch (crtc->fb->depth) {
5261 case 8:
5262 bpc = 8; /* since we go through a colormap */
5263 break;
5264 case 15:
5265 case 16:
5266 bpc = 6; /* min is 18bpp */
5267 break;
5268 case 24:
5269 bpc = 8;
5270 break;
5271 case 30:
5272 bpc = 10;
5273 break;
5274 case 48:
5275 bpc = 12;
5276 break;
5277 default:
5278 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5279 bpc = min((unsigned int)8, display_bpc);
5280 break;
5281 }
5282
5283 display_bpc = min(display_bpc, bpc);
5284
5285 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5286 bpc, display_bpc);
5287
5288 *pipe_bpp = display_bpc * 3;
5289
5290 return display_bpc != bpc;
5291 }
5292
5293 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5294 {
5295 struct drm_device *dev = crtc->dev;
5296 struct drm_i915_private *dev_priv = dev->dev_private;
5297 int refclk;
5298
5299 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5300 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5301 refclk = dev_priv->lvds_ssc_freq * 1000;
5302 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5303 refclk / 1000);
5304 } else if (!IS_GEN2(dev)) {
5305 refclk = 96000;
5306 } else {
5307 refclk = 48000;
5308 }
5309
5310 return refclk;
5311 }
5312
5313 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5314 intel_clock_t *clock)
5315 {
5316 /* SDVO TV has fixed PLL values depend on its clock range,
5317 this mirrors vbios setting. */
5318 if (adjusted_mode->clock >= 100000
5319 && adjusted_mode->clock < 140500) {
5320 clock->p1 = 2;
5321 clock->p2 = 10;
5322 clock->n = 3;
5323 clock->m1 = 16;
5324 clock->m2 = 8;
5325 } else if (adjusted_mode->clock >= 140500
5326 && adjusted_mode->clock <= 200000) {
5327 clock->p1 = 1;
5328 clock->p2 = 10;
5329 clock->n = 6;
5330 clock->m1 = 12;
5331 clock->m2 = 8;
5332 }
5333 }
5334
5335 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5336 intel_clock_t *clock,
5337 intel_clock_t *reduced_clock)
5338 {
5339 struct drm_device *dev = crtc->dev;
5340 struct drm_i915_private *dev_priv = dev->dev_private;
5341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5342 int pipe = intel_crtc->pipe;
5343 u32 fp, fp2 = 0;
5344
5345 if (IS_PINEVIEW(dev)) {
5346 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5347 if (reduced_clock)
5348 fp2 = (1 << reduced_clock->n) << 16 |
5349 reduced_clock->m1 << 8 | reduced_clock->m2;
5350 } else {
5351 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5352 if (reduced_clock)
5353 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5354 reduced_clock->m2;
5355 }
5356
5357 I915_WRITE(FP0(pipe), fp);
5358
5359 intel_crtc->lowfreq_avail = false;
5360 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5361 reduced_clock && i915_powersave) {
5362 I915_WRITE(FP1(pipe), fp2);
5363 intel_crtc->lowfreq_avail = true;
5364 } else {
5365 I915_WRITE(FP1(pipe), fp);
5366 }
5367 }
5368
5369 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
5370 struct drm_display_mode *adjusted_mode)
5371 {
5372 struct drm_device *dev = crtc->dev;
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5375 int pipe = intel_crtc->pipe;
5376 u32 temp, lvds_sync = 0;
5377
5378 temp = I915_READ(LVDS);
5379 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5380 if (pipe == 1) {
5381 temp |= LVDS_PIPEB_SELECT;
5382 } else {
5383 temp &= ~LVDS_PIPEB_SELECT;
5384 }
5385 /* set the corresponsding LVDS_BORDER bit */
5386 temp |= dev_priv->lvds_border_bits;
5387 /* Set the B0-B3 data pairs corresponding to whether we're going to
5388 * set the DPLLs for dual-channel mode or not.
5389 */
5390 if (clock->p2 == 7)
5391 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5392 else
5393 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5394
5395 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5396 * appropriately here, but we need to look more thoroughly into how
5397 * panels behave in the two modes.
5398 */
5399 /* set the dithering flag on LVDS as needed */
5400 if (INTEL_INFO(dev)->gen >= 4) {
5401 if (dev_priv->lvds_dither)
5402 temp |= LVDS_ENABLE_DITHER;
5403 else
5404 temp &= ~LVDS_ENABLE_DITHER;
5405 }
5406 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5407 lvds_sync |= LVDS_HSYNC_POLARITY;
5408 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5409 lvds_sync |= LVDS_VSYNC_POLARITY;
5410 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5411 != lvds_sync) {
5412 char flags[2] = "-+";
5413 DRM_INFO("Changing LVDS panel from "
5414 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5415 flags[!(temp & LVDS_HSYNC_POLARITY)],
5416 flags[!(temp & LVDS_VSYNC_POLARITY)],
5417 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5418 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5419 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5420 temp |= lvds_sync;
5421 }
5422 I915_WRITE(LVDS, temp);
5423 }
5424
5425 static void i9xx_update_pll(struct drm_crtc *crtc,
5426 struct drm_display_mode *mode,
5427 struct drm_display_mode *adjusted_mode,
5428 intel_clock_t *clock, intel_clock_t *reduced_clock,
5429 int num_connectors)
5430 {
5431 struct drm_device *dev = crtc->dev;
5432 struct drm_i915_private *dev_priv = dev->dev_private;
5433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5434 int pipe = intel_crtc->pipe;
5435 u32 dpll;
5436 bool is_sdvo;
5437
5438 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
5439 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
5440
5441 dpll = DPLL_VGA_MODE_DIS;
5442
5443 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5444 dpll |= DPLLB_MODE_LVDS;
5445 else
5446 dpll |= DPLLB_MODE_DAC_SERIAL;
5447 if (is_sdvo) {
5448 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5449 if (pixel_multiplier > 1) {
5450 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5451 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5452 }
5453 dpll |= DPLL_DVO_HIGH_SPEED;
5454 }
5455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5456 dpll |= DPLL_DVO_HIGH_SPEED;
5457
5458 /* compute bitmask from p1 value */
5459 if (IS_PINEVIEW(dev))
5460 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5461 else {
5462 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5463 if (IS_G4X(dev) && reduced_clock)
5464 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5465 }
5466 switch (clock->p2) {
5467 case 5:
5468 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5469 break;
5470 case 7:
5471 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5472 break;
5473 case 10:
5474 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5475 break;
5476 case 14:
5477 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5478 break;
5479 }
5480 if (INTEL_INFO(dev)->gen >= 4)
5481 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5482
5483 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5484 dpll |= PLL_REF_INPUT_TVCLKINBC;
5485 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5486 /* XXX: just matching BIOS for now */
5487 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5488 dpll |= 3;
5489 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5490 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5491 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5492 else
5493 dpll |= PLL_REF_INPUT_DREFCLK;
5494
5495 dpll |= DPLL_VCO_ENABLE;
5496 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5497 POSTING_READ(DPLL(pipe));
5498 udelay(150);
5499
5500 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5501 * This is an exception to the general rule that mode_set doesn't turn
5502 * things on.
5503 */
5504 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5505 intel_update_lvds(crtc, clock, adjusted_mode);
5506
5507 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5508 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5509
5510 I915_WRITE(DPLL(pipe), dpll);
5511
5512 /* Wait for the clocks to stabilize. */
5513 POSTING_READ(DPLL(pipe));
5514 udelay(150);
5515
5516 if (INTEL_INFO(dev)->gen >= 4) {
5517 u32 temp = 0;
5518 if (is_sdvo) {
5519 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5520 if (temp > 1)
5521 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5522 else
5523 temp = 0;
5524 }
5525 I915_WRITE(DPLL_MD(pipe), temp);
5526 } else {
5527 /* The pixel multiplier can only be updated once the
5528 * DPLL is enabled and the clocks are stable.
5529 *
5530 * So write it again.
5531 */
5532 I915_WRITE(DPLL(pipe), dpll);
5533 }
5534 }
5535
5536 static void i8xx_update_pll(struct drm_crtc *crtc,
5537 struct drm_display_mode *adjusted_mode,
5538 intel_clock_t *clock,
5539 int num_connectors)
5540 {
5541 struct drm_device *dev = crtc->dev;
5542 struct drm_i915_private *dev_priv = dev->dev_private;
5543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5544 int pipe = intel_crtc->pipe;
5545 u32 dpll;
5546
5547 dpll = DPLL_VGA_MODE_DIS;
5548
5549 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
5550 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5551 } else {
5552 if (clock->p1 == 2)
5553 dpll |= PLL_P1_DIVIDE_BY_TWO;
5554 else
5555 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5556 if (clock->p2 == 4)
5557 dpll |= PLL_P2_DIVIDE_BY_4;
5558 }
5559
5560 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5561 /* XXX: just matching BIOS for now */
5562 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5563 dpll |= 3;
5564 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5565 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5566 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5567 else
5568 dpll |= PLL_REF_INPUT_DREFCLK;
5569
5570 dpll |= DPLL_VCO_ENABLE;
5571 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5572 POSTING_READ(DPLL(pipe));
5573 udelay(150);
5574
5575 I915_WRITE(DPLL(pipe), dpll);
5576
5577 /* Wait for the clocks to stabilize. */
5578 POSTING_READ(DPLL(pipe));
5579 udelay(150);
5580
5581 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5582 * This is an exception to the general rule that mode_set doesn't turn
5583 * things on.
5584 */
5585 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5586 intel_update_lvds(crtc, clock, adjusted_mode);
5587
5588 /* The pixel multiplier can only be updated once the
5589 * DPLL is enabled and the clocks are stable.
5590 *
5591 * So write it again.
5592 */
5593 I915_WRITE(DPLL(pipe), dpll);
5594 }
5595
5596 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5597 struct drm_display_mode *mode,
5598 struct drm_display_mode *adjusted_mode,
5599 int x, int y,
5600 struct drm_framebuffer *old_fb)
5601 {
5602 struct drm_device *dev = crtc->dev;
5603 struct drm_i915_private *dev_priv = dev->dev_private;
5604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5605 int pipe = intel_crtc->pipe;
5606 int plane = intel_crtc->plane;
5607 int refclk, num_connectors = 0;
5608 intel_clock_t clock, reduced_clock;
5609 u32 dspcntr, pipeconf, vsyncshift;
5610 bool ok, has_reduced_clock = false, is_sdvo = false;
5611 bool is_lvds = false, is_tv = false, is_dp = false;
5612 struct drm_mode_config *mode_config = &dev->mode_config;
5613 struct intel_encoder *encoder;
5614 const intel_limit_t *limit;
5615 int ret;
5616
5617 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5618 if (encoder->base.crtc != crtc)
5619 continue;
5620
5621 switch (encoder->type) {
5622 case INTEL_OUTPUT_LVDS:
5623 is_lvds = true;
5624 break;
5625 case INTEL_OUTPUT_SDVO:
5626 case INTEL_OUTPUT_HDMI:
5627 is_sdvo = true;
5628 if (encoder->needs_tv_clock)
5629 is_tv = true;
5630 break;
5631 case INTEL_OUTPUT_TVOUT:
5632 is_tv = true;
5633 break;
5634 case INTEL_OUTPUT_DISPLAYPORT:
5635 is_dp = true;
5636 break;
5637 }
5638
5639 num_connectors++;
5640 }
5641
5642 refclk = i9xx_get_refclk(crtc, num_connectors);
5643
5644 /*
5645 * Returns a set of divisors for the desired target clock with the given
5646 * refclk, or FALSE. The returned values represent the clock equation:
5647 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5648 */
5649 limit = intel_limit(crtc, refclk);
5650 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5651 &clock);
5652 if (!ok) {
5653 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5654 return -EINVAL;
5655 }
5656
5657 /* Ensure that the cursor is valid for the new mode before changing... */
5658 intel_crtc_update_cursor(crtc, true);
5659
5660 if (is_lvds && dev_priv->lvds_downclock_avail) {
5661 /*
5662 * Ensure we match the reduced clock's P to the target clock.
5663 * If the clocks don't match, we can't switch the display clock
5664 * by using the FP0/FP1. In such case we will disable the LVDS
5665 * downclock feature.
5666 */
5667 has_reduced_clock = limit->find_pll(limit, crtc,
5668 dev_priv->lvds_downclock,
5669 refclk,
5670 &clock,
5671 &reduced_clock);
5672 }
5673
5674 if (is_sdvo && is_tv)
5675 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5676
5677 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5678 &reduced_clock : NULL);
5679
5680 if (IS_GEN2(dev))
5681 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
5682 else
5683 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
5684 has_reduced_clock ? &reduced_clock : NULL,
5685 num_connectors);
5686
5687 /* setup pipeconf */
5688 pipeconf = I915_READ(PIPECONF(pipe));
5689
5690 /* Set up the display plane register */
5691 dspcntr = DISPPLANE_GAMMA_ENABLE;
5692
5693 if (pipe == 0)
5694 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5695 else
5696 dspcntr |= DISPPLANE_SEL_PIPE_B;
5697
5698 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5699 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5700 * core speed.
5701 *
5702 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5703 * pipe == 0 check?
5704 */
5705 if (mode->clock >
5706 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5707 pipeconf |= PIPECONF_DOUBLE_WIDE;
5708 else
5709 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5710 }
5711
5712 /* default to 8bpc */
5713 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5714 if (is_dp) {
5715 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5716 pipeconf |= PIPECONF_BPP_6 |
5717 PIPECONF_DITHER_EN |
5718 PIPECONF_DITHER_TYPE_SP;
5719 }
5720 }
5721
5722 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5723 drm_mode_debug_printmodeline(mode);
5724
5725 if (HAS_PIPE_CXSR(dev)) {
5726 if (intel_crtc->lowfreq_avail) {
5727 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5728 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5729 } else {
5730 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5731 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5732 }
5733 }
5734
5735 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5736 if (!IS_GEN2(dev) &&
5737 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5738 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5739 /* the chip adds 2 halflines automatically */
5740 adjusted_mode->crtc_vtotal -= 1;
5741 adjusted_mode->crtc_vblank_end -= 1;
5742 vsyncshift = adjusted_mode->crtc_hsync_start
5743 - adjusted_mode->crtc_htotal/2;
5744 } else {
5745 pipeconf |= PIPECONF_PROGRESSIVE;
5746 vsyncshift = 0;
5747 }
5748
5749 if (!IS_GEN3(dev))
5750 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5751
5752 I915_WRITE(HTOTAL(pipe),
5753 (adjusted_mode->crtc_hdisplay - 1) |
5754 ((adjusted_mode->crtc_htotal - 1) << 16));
5755 I915_WRITE(HBLANK(pipe),
5756 (adjusted_mode->crtc_hblank_start - 1) |
5757 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5758 I915_WRITE(HSYNC(pipe),
5759 (adjusted_mode->crtc_hsync_start - 1) |
5760 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5761
5762 I915_WRITE(VTOTAL(pipe),
5763 (adjusted_mode->crtc_vdisplay - 1) |
5764 ((adjusted_mode->crtc_vtotal - 1) << 16));
5765 I915_WRITE(VBLANK(pipe),
5766 (adjusted_mode->crtc_vblank_start - 1) |
5767 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5768 I915_WRITE(VSYNC(pipe),
5769 (adjusted_mode->crtc_vsync_start - 1) |
5770 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5771
5772 /* pipesrc and dspsize control the size that is scaled from,
5773 * which should always be the user's requested size.
5774 */
5775 I915_WRITE(DSPSIZE(plane),
5776 ((mode->vdisplay - 1) << 16) |
5777 (mode->hdisplay - 1));
5778 I915_WRITE(DSPPOS(plane), 0);
5779 I915_WRITE(PIPESRC(pipe),
5780 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5781
5782 I915_WRITE(PIPECONF(pipe), pipeconf);
5783 POSTING_READ(PIPECONF(pipe));
5784 intel_enable_pipe(dev_priv, pipe, false);
5785
5786 intel_wait_for_vblank(dev, pipe);
5787
5788 I915_WRITE(DSPCNTR(plane), dspcntr);
5789 POSTING_READ(DSPCNTR(plane));
5790 intel_enable_plane(dev_priv, plane, pipe);
5791
5792 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5793
5794 intel_update_watermarks(dev);
5795
5796 return ret;
5797 }
5798
5799 /*
5800 * Initialize reference clocks when the driver loads
5801 */
5802 void ironlake_init_pch_refclk(struct drm_device *dev)
5803 {
5804 struct drm_i915_private *dev_priv = dev->dev_private;
5805 struct drm_mode_config *mode_config = &dev->mode_config;
5806 struct intel_encoder *encoder;
5807 u32 temp;
5808 bool has_lvds = false;
5809 bool has_cpu_edp = false;
5810 bool has_pch_edp = false;
5811 bool has_panel = false;
5812 bool has_ck505 = false;
5813 bool can_ssc = false;
5814
5815 /* We need to take the global config into account */
5816 list_for_each_entry(encoder, &mode_config->encoder_list,
5817 base.head) {
5818 switch (encoder->type) {
5819 case INTEL_OUTPUT_LVDS:
5820 has_panel = true;
5821 has_lvds = true;
5822 break;
5823 case INTEL_OUTPUT_EDP:
5824 has_panel = true;
5825 if (intel_encoder_is_pch_edp(&encoder->base))
5826 has_pch_edp = true;
5827 else
5828 has_cpu_edp = true;
5829 break;
5830 }
5831 }
5832
5833 if (HAS_PCH_IBX(dev)) {
5834 has_ck505 = dev_priv->display_clock_mode;
5835 can_ssc = has_ck505;
5836 } else {
5837 has_ck505 = false;
5838 can_ssc = true;
5839 }
5840
5841 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5842 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5843 has_ck505);
5844
5845 /* Ironlake: try to setup display ref clock before DPLL
5846 * enabling. This is only under driver's control after
5847 * PCH B stepping, previous chipset stepping should be
5848 * ignoring this setting.
5849 */
5850 temp = I915_READ(PCH_DREF_CONTROL);
5851 /* Always enable nonspread source */
5852 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5853
5854 if (has_ck505)
5855 temp |= DREF_NONSPREAD_CK505_ENABLE;
5856 else
5857 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5858
5859 if (has_panel) {
5860 temp &= ~DREF_SSC_SOURCE_MASK;
5861 temp |= DREF_SSC_SOURCE_ENABLE;
5862
5863 /* SSC must be turned on before enabling the CPU output */
5864 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5865 DRM_DEBUG_KMS("Using SSC on panel\n");
5866 temp |= DREF_SSC1_ENABLE;
5867 } else
5868 temp &= ~DREF_SSC1_ENABLE;
5869
5870 /* Get SSC going before enabling the outputs */
5871 I915_WRITE(PCH_DREF_CONTROL, temp);
5872 POSTING_READ(PCH_DREF_CONTROL);
5873 udelay(200);
5874
5875 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5876
5877 /* Enable CPU source on CPU attached eDP */
5878 if (has_cpu_edp) {
5879 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5880 DRM_DEBUG_KMS("Using SSC on eDP\n");
5881 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5882 }
5883 else
5884 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5885 } else
5886 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5887
5888 I915_WRITE(PCH_DREF_CONTROL, temp);
5889 POSTING_READ(PCH_DREF_CONTROL);
5890 udelay(200);
5891 } else {
5892 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5893
5894 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5895
5896 /* Turn off CPU output */
5897 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5898
5899 I915_WRITE(PCH_DREF_CONTROL, temp);
5900 POSTING_READ(PCH_DREF_CONTROL);
5901 udelay(200);
5902
5903 /* Turn off the SSC source */
5904 temp &= ~DREF_SSC_SOURCE_MASK;
5905 temp |= DREF_SSC_SOURCE_DISABLE;
5906
5907 /* Turn off SSC1 */
5908 temp &= ~ DREF_SSC1_ENABLE;
5909
5910 I915_WRITE(PCH_DREF_CONTROL, temp);
5911 POSTING_READ(PCH_DREF_CONTROL);
5912 udelay(200);
5913 }
5914 }
5915
5916 static int ironlake_get_refclk(struct drm_crtc *crtc)
5917 {
5918 struct drm_device *dev = crtc->dev;
5919 struct drm_i915_private *dev_priv = dev->dev_private;
5920 struct intel_encoder *encoder;
5921 struct drm_mode_config *mode_config = &dev->mode_config;
5922 struct intel_encoder *edp_encoder = NULL;
5923 int num_connectors = 0;
5924 bool is_lvds = false;
5925
5926 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5927 if (encoder->base.crtc != crtc)
5928 continue;
5929
5930 switch (encoder->type) {
5931 case INTEL_OUTPUT_LVDS:
5932 is_lvds = true;
5933 break;
5934 case INTEL_OUTPUT_EDP:
5935 edp_encoder = encoder;
5936 break;
5937 }
5938 num_connectors++;
5939 }
5940
5941 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5942 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5943 dev_priv->lvds_ssc_freq);
5944 return dev_priv->lvds_ssc_freq * 1000;
5945 }
5946
5947 return 120000;
5948 }
5949
5950 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5951 struct drm_display_mode *mode,
5952 struct drm_display_mode *adjusted_mode,
5953 int x, int y,
5954 struct drm_framebuffer *old_fb)
5955 {
5956 struct drm_device *dev = crtc->dev;
5957 struct drm_i915_private *dev_priv = dev->dev_private;
5958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5959 int pipe = intel_crtc->pipe;
5960 int plane = intel_crtc->plane;
5961 int refclk, num_connectors = 0;
5962 intel_clock_t clock, reduced_clock;
5963 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5964 bool ok, has_reduced_clock = false, is_sdvo = false;
5965 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5966 struct drm_mode_config *mode_config = &dev->mode_config;
5967 struct intel_encoder *encoder, *edp_encoder = NULL;
5968 const intel_limit_t *limit;
5969 int ret;
5970 struct fdi_m_n m_n = {0};
5971 u32 temp;
5972 u32 lvds_sync = 0;
5973 int target_clock, pixel_multiplier, lane, link_bw, factor;
5974 unsigned int pipe_bpp;
5975 bool dither;
5976 bool is_cpu_edp = false, is_pch_edp = false;
5977
5978 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5979 if (encoder->base.crtc != crtc)
5980 continue;
5981
5982 switch (encoder->type) {
5983 case INTEL_OUTPUT_LVDS:
5984 is_lvds = true;
5985 break;
5986 case INTEL_OUTPUT_SDVO:
5987 case INTEL_OUTPUT_HDMI:
5988 is_sdvo = true;
5989 if (encoder->needs_tv_clock)
5990 is_tv = true;
5991 break;
5992 case INTEL_OUTPUT_TVOUT:
5993 is_tv = true;
5994 break;
5995 case INTEL_OUTPUT_ANALOG:
5996 is_crt = true;
5997 break;
5998 case INTEL_OUTPUT_DISPLAYPORT:
5999 is_dp = true;
6000 break;
6001 case INTEL_OUTPUT_EDP:
6002 is_dp = true;
6003 if (intel_encoder_is_pch_edp(&encoder->base))
6004 is_pch_edp = true;
6005 else
6006 is_cpu_edp = true;
6007 edp_encoder = encoder;
6008 break;
6009 }
6010
6011 num_connectors++;
6012 }
6013
6014 refclk = ironlake_get_refclk(crtc);
6015
6016 /*
6017 * Returns a set of divisors for the desired target clock with the given
6018 * refclk, or FALSE. The returned values represent the clock equation:
6019 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6020 */
6021 limit = intel_limit(crtc, refclk);
6022 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
6023 &clock);
6024 if (!ok) {
6025 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6026 return -EINVAL;
6027 }
6028
6029 /* Ensure that the cursor is valid for the new mode before changing... */
6030 intel_crtc_update_cursor(crtc, true);
6031
6032 if (is_lvds && dev_priv->lvds_downclock_avail) {
6033 /*
6034 * Ensure we match the reduced clock's P to the target clock.
6035 * If the clocks don't match, we can't switch the display clock
6036 * by using the FP0/FP1. In such case we will disable the LVDS
6037 * downclock feature.
6038 */
6039 has_reduced_clock = limit->find_pll(limit, crtc,
6040 dev_priv->lvds_downclock,
6041 refclk,
6042 &clock,
6043 &reduced_clock);
6044 }
6045 /* SDVO TV has fixed PLL values depend on its clock range,
6046 this mirrors vbios setting. */
6047 if (is_sdvo && is_tv) {
6048 if (adjusted_mode->clock >= 100000
6049 && adjusted_mode->clock < 140500) {
6050 clock.p1 = 2;
6051 clock.p2 = 10;
6052 clock.n = 3;
6053 clock.m1 = 16;
6054 clock.m2 = 8;
6055 } else if (adjusted_mode->clock >= 140500
6056 && adjusted_mode->clock <= 200000) {
6057 clock.p1 = 1;
6058 clock.p2 = 10;
6059 clock.n = 6;
6060 clock.m1 = 12;
6061 clock.m2 = 8;
6062 }
6063 }
6064
6065 /* FDI link */
6066 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6067 lane = 0;
6068 /* CPU eDP doesn't require FDI link, so just set DP M/N
6069 according to current link config */
6070 if (is_cpu_edp) {
6071 target_clock = mode->clock;
6072 intel_edp_link_config(edp_encoder, &lane, &link_bw);
6073 } else {
6074 /* [e]DP over FDI requires target mode clock
6075 instead of link clock */
6076 if (is_dp)
6077 target_clock = mode->clock;
6078 else
6079 target_clock = adjusted_mode->clock;
6080
6081 /* FDI is a binary signal running at ~2.7GHz, encoding
6082 * each output octet as 10 bits. The actual frequency
6083 * is stored as a divider into a 100MHz clock, and the
6084 * mode pixel clock is stored in units of 1KHz.
6085 * Hence the bw of each lane in terms of the mode signal
6086 * is:
6087 */
6088 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6089 }
6090
6091 /* determine panel color depth */
6092 temp = I915_READ(PIPECONF(pipe));
6093 temp &= ~PIPE_BPC_MASK;
6094 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
6095 switch (pipe_bpp) {
6096 case 18:
6097 temp |= PIPE_6BPC;
6098 break;
6099 case 24:
6100 temp |= PIPE_8BPC;
6101 break;
6102 case 30:
6103 temp |= PIPE_10BPC;
6104 break;
6105 case 36:
6106 temp |= PIPE_12BPC;
6107 break;
6108 default:
6109 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
6110 pipe_bpp);
6111 temp |= PIPE_8BPC;
6112 pipe_bpp = 24;
6113 break;
6114 }
6115
6116 intel_crtc->bpp = pipe_bpp;
6117 I915_WRITE(PIPECONF(pipe), temp);
6118
6119 if (!lane) {
6120 /*
6121 * Account for spread spectrum to avoid
6122 * oversubscribing the link. Max center spread
6123 * is 2.5%; use 5% for safety's sake.
6124 */
6125 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
6126 lane = bps / (link_bw * 8) + 1;
6127 }
6128
6129 intel_crtc->fdi_lanes = lane;
6130
6131 if (pixel_multiplier > 1)
6132 link_bw *= pixel_multiplier;
6133 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
6134 &m_n);
6135
6136 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
6137 if (has_reduced_clock)
6138 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
6139 reduced_clock.m2;
6140
6141 /* Enable autotuning of the PLL clock (if permissible) */
6142 factor = 21;
6143 if (is_lvds) {
6144 if ((intel_panel_use_ssc(dev_priv) &&
6145 dev_priv->lvds_ssc_freq == 100) ||
6146 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
6147 factor = 25;
6148 } else if (is_sdvo && is_tv)
6149 factor = 20;
6150
6151 if (clock.m < factor * clock.n)
6152 fp |= FP_CB_TUNE;
6153
6154 dpll = 0;
6155
6156 if (is_lvds)
6157 dpll |= DPLLB_MODE_LVDS;
6158 else
6159 dpll |= DPLLB_MODE_DAC_SERIAL;
6160 if (is_sdvo) {
6161 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6162 if (pixel_multiplier > 1) {
6163 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6164 }
6165 dpll |= DPLL_DVO_HIGH_SPEED;
6166 }
6167 if (is_dp && !is_cpu_edp)
6168 dpll |= DPLL_DVO_HIGH_SPEED;
6169
6170 /* compute bitmask from p1 value */
6171 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6172 /* also FPA1 */
6173 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6174
6175 switch (clock.p2) {
6176 case 5:
6177 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6178 break;
6179 case 7:
6180 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6181 break;
6182 case 10:
6183 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6184 break;
6185 case 14:
6186 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6187 break;
6188 }
6189
6190 if (is_sdvo && is_tv)
6191 dpll |= PLL_REF_INPUT_TVCLKINBC;
6192 else if (is_tv)
6193 /* XXX: just matching BIOS for now */
6194 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
6195 dpll |= 3;
6196 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198 else
6199 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201 /* setup pipeconf */
6202 pipeconf = I915_READ(PIPECONF(pipe));
6203
6204 /* Set up the display plane register */
6205 dspcntr = DISPPLANE_GAMMA_ENABLE;
6206
6207 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
6208 drm_mode_debug_printmodeline(mode);
6209
6210 /* PCH eDP needs FDI, but CPU eDP does not */
6211 if (!intel_crtc->no_pll) {
6212 if (!is_cpu_edp) {
6213 I915_WRITE(PCH_FP0(pipe), fp);
6214 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
6215
6216 POSTING_READ(PCH_DPLL(pipe));
6217 udelay(150);
6218 }
6219 } else {
6220 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
6221 fp == I915_READ(PCH_FP0(0))) {
6222 intel_crtc->use_pll_a = true;
6223 DRM_DEBUG_KMS("using pipe a dpll\n");
6224 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
6225 fp == I915_READ(PCH_FP0(1))) {
6226 intel_crtc->use_pll_a = false;
6227 DRM_DEBUG_KMS("using pipe b dpll\n");
6228 } else {
6229 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
6230 return -EINVAL;
6231 }
6232 }
6233
6234 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
6235 * This is an exception to the general rule that mode_set doesn't turn
6236 * things on.
6237 */
6238 if (is_lvds) {
6239 temp = I915_READ(PCH_LVDS);
6240 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
6241 if (HAS_PCH_CPT(dev)) {
6242 temp &= ~PORT_TRANS_SEL_MASK;
6243 temp |= PORT_TRANS_SEL_CPT(pipe);
6244 } else {
6245 if (pipe == 1)
6246 temp |= LVDS_PIPEB_SELECT;
6247 else
6248 temp &= ~LVDS_PIPEB_SELECT;
6249 }
6250
6251 /* set the corresponsding LVDS_BORDER bit */
6252 temp |= dev_priv->lvds_border_bits;
6253 /* Set the B0-B3 data pairs corresponding to whether we're going to
6254 * set the DPLLs for dual-channel mode or not.
6255 */
6256 if (clock.p2 == 7)
6257 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6258 else
6259 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6260
6261 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6262 * appropriately here, but we need to look more thoroughly into how
6263 * panels behave in the two modes.
6264 */
6265 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6266 lvds_sync |= LVDS_HSYNC_POLARITY;
6267 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6268 lvds_sync |= LVDS_VSYNC_POLARITY;
6269 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6270 != lvds_sync) {
6271 char flags[2] = "-+";
6272 DRM_INFO("Changing LVDS panel from "
6273 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6274 flags[!(temp & LVDS_HSYNC_POLARITY)],
6275 flags[!(temp & LVDS_VSYNC_POLARITY)],
6276 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6277 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6278 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6279 temp |= lvds_sync;
6280 }
6281 I915_WRITE(PCH_LVDS, temp);
6282 }
6283
6284 pipeconf &= ~PIPECONF_DITHER_EN;
6285 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6286 if ((is_lvds && dev_priv->lvds_dither) || dither) {
6287 pipeconf |= PIPECONF_DITHER_EN;
6288 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6289 }
6290 if (is_dp && !is_cpu_edp) {
6291 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6292 } else {
6293 /* For non-DP output, clear any trans DP clock recovery setting.*/
6294 I915_WRITE(TRANSDATA_M1(pipe), 0);
6295 I915_WRITE(TRANSDATA_N1(pipe), 0);
6296 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6297 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6298 }
6299
6300 if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
6301 I915_WRITE(PCH_DPLL(pipe), dpll);
6302
6303 /* Wait for the clocks to stabilize. */
6304 POSTING_READ(PCH_DPLL(pipe));
6305 udelay(150);
6306
6307 /* The pixel multiplier can only be updated once the
6308 * DPLL is enabled and the clocks are stable.
6309 *
6310 * So write it again.
6311 */
6312 I915_WRITE(PCH_DPLL(pipe), dpll);
6313 }
6314
6315 intel_crtc->lowfreq_avail = false;
6316 if (!intel_crtc->no_pll) {
6317 if (is_lvds && has_reduced_clock && i915_powersave) {
6318 I915_WRITE(PCH_FP1(pipe), fp2);
6319 intel_crtc->lowfreq_avail = true;
6320 if (HAS_PIPE_CXSR(dev)) {
6321 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6322 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6323 }
6324 } else {
6325 I915_WRITE(PCH_FP1(pipe), fp);
6326 if (HAS_PIPE_CXSR(dev)) {
6327 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6328 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6329 }
6330 }
6331 }
6332
6333 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6334 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6335 pipeconf |= PIPECONF_INTERLACED_ILK;
6336 /* the chip adds 2 halflines automatically */
6337 adjusted_mode->crtc_vtotal -= 1;
6338 adjusted_mode->crtc_vblank_end -= 1;
6339 I915_WRITE(VSYNCSHIFT(pipe),
6340 adjusted_mode->crtc_hsync_start
6341 - adjusted_mode->crtc_htotal/2);
6342 } else {
6343 pipeconf |= PIPECONF_PROGRESSIVE;
6344 I915_WRITE(VSYNCSHIFT(pipe), 0);
6345 }
6346
6347 I915_WRITE(HTOTAL(pipe),
6348 (adjusted_mode->crtc_hdisplay - 1) |
6349 ((adjusted_mode->crtc_htotal - 1) << 16));
6350 I915_WRITE(HBLANK(pipe),
6351 (adjusted_mode->crtc_hblank_start - 1) |
6352 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6353 I915_WRITE(HSYNC(pipe),
6354 (adjusted_mode->crtc_hsync_start - 1) |
6355 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6356
6357 I915_WRITE(VTOTAL(pipe),
6358 (adjusted_mode->crtc_vdisplay - 1) |
6359 ((adjusted_mode->crtc_vtotal - 1) << 16));
6360 I915_WRITE(VBLANK(pipe),
6361 (adjusted_mode->crtc_vblank_start - 1) |
6362 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6363 I915_WRITE(VSYNC(pipe),
6364 (adjusted_mode->crtc_vsync_start - 1) |
6365 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6366
6367 /* pipesrc controls the size that is scaled from, which should
6368 * always be the user's requested size.
6369 */
6370 I915_WRITE(PIPESRC(pipe),
6371 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6372
6373 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6374 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6375 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6376 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6377
6378 if (is_cpu_edp)
6379 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6380
6381 I915_WRITE(PIPECONF(pipe), pipeconf);
6382 POSTING_READ(PIPECONF(pipe));
6383
6384 intel_wait_for_vblank(dev, pipe);
6385
6386 I915_WRITE(DSPCNTR(plane), dspcntr);
6387 POSTING_READ(DSPCNTR(plane));
6388
6389 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6390
6391 intel_update_watermarks(dev);
6392
6393 return ret;
6394 }
6395
6396 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6397 struct drm_display_mode *mode,
6398 struct drm_display_mode *adjusted_mode,
6399 int x, int y,
6400 struct drm_framebuffer *old_fb)
6401 {
6402 struct drm_device *dev = crtc->dev;
6403 struct drm_i915_private *dev_priv = dev->dev_private;
6404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6405 int pipe = intel_crtc->pipe;
6406 int ret;
6407
6408 drm_vblank_pre_modeset(dev, pipe);
6409
6410 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6411 x, y, old_fb);
6412 drm_vblank_post_modeset(dev, pipe);
6413
6414 if (ret)
6415 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6416 else
6417 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6418
6419 return ret;
6420 }
6421
6422 static bool intel_eld_uptodate(struct drm_connector *connector,
6423 int reg_eldv, uint32_t bits_eldv,
6424 int reg_elda, uint32_t bits_elda,
6425 int reg_edid)
6426 {
6427 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6428 uint8_t *eld = connector->eld;
6429 uint32_t i;
6430
6431 i = I915_READ(reg_eldv);
6432 i &= bits_eldv;
6433
6434 if (!eld[0])
6435 return !i;
6436
6437 if (!i)
6438 return false;
6439
6440 i = I915_READ(reg_elda);
6441 i &= ~bits_elda;
6442 I915_WRITE(reg_elda, i);
6443
6444 for (i = 0; i < eld[2]; i++)
6445 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6446 return false;
6447
6448 return true;
6449 }
6450
6451 static void g4x_write_eld(struct drm_connector *connector,
6452 struct drm_crtc *crtc)
6453 {
6454 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6455 uint8_t *eld = connector->eld;
6456 uint32_t eldv;
6457 uint32_t len;
6458 uint32_t i;
6459
6460 i = I915_READ(G4X_AUD_VID_DID);
6461
6462 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6463 eldv = G4X_ELDV_DEVCL_DEVBLC;
6464 else
6465 eldv = G4X_ELDV_DEVCTG;
6466
6467 if (intel_eld_uptodate(connector,
6468 G4X_AUD_CNTL_ST, eldv,
6469 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6470 G4X_HDMIW_HDMIEDID))
6471 return;
6472
6473 i = I915_READ(G4X_AUD_CNTL_ST);
6474 i &= ~(eldv | G4X_ELD_ADDR);
6475 len = (i >> 9) & 0x1f; /* ELD buffer size */
6476 I915_WRITE(G4X_AUD_CNTL_ST, i);
6477
6478 if (!eld[0])
6479 return;
6480
6481 len = min_t(uint8_t, eld[2], len);
6482 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6483 for (i = 0; i < len; i++)
6484 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6485
6486 i = I915_READ(G4X_AUD_CNTL_ST);
6487 i |= eldv;
6488 I915_WRITE(G4X_AUD_CNTL_ST, i);
6489 }
6490
6491 static void ironlake_write_eld(struct drm_connector *connector,
6492 struct drm_crtc *crtc)
6493 {
6494 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6495 uint8_t *eld = connector->eld;
6496 uint32_t eldv;
6497 uint32_t i;
6498 int len;
6499 int hdmiw_hdmiedid;
6500 int aud_config;
6501 int aud_cntl_st;
6502 int aud_cntrl_st2;
6503
6504 if (HAS_PCH_IBX(connector->dev)) {
6505 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6506 aud_config = IBX_AUD_CONFIG_A;
6507 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6508 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6509 } else {
6510 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6511 aud_config = CPT_AUD_CONFIG_A;
6512 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6513 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6514 }
6515
6516 i = to_intel_crtc(crtc)->pipe;
6517 hdmiw_hdmiedid += i * 0x100;
6518 aud_cntl_st += i * 0x100;
6519 aud_config += i * 0x100;
6520
6521 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6522
6523 i = I915_READ(aud_cntl_st);
6524 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6525 if (!i) {
6526 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6527 /* operate blindly on all ports */
6528 eldv = IBX_ELD_VALIDB;
6529 eldv |= IBX_ELD_VALIDB << 4;
6530 eldv |= IBX_ELD_VALIDB << 8;
6531 } else {
6532 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6533 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6534 }
6535
6536 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6537 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6538 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6539 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6540 } else
6541 I915_WRITE(aud_config, 0);
6542
6543 if (intel_eld_uptodate(connector,
6544 aud_cntrl_st2, eldv,
6545 aud_cntl_st, IBX_ELD_ADDRESS,
6546 hdmiw_hdmiedid))
6547 return;
6548
6549 i = I915_READ(aud_cntrl_st2);
6550 i &= ~eldv;
6551 I915_WRITE(aud_cntrl_st2, i);
6552
6553 if (!eld[0])
6554 return;
6555
6556 i = I915_READ(aud_cntl_st);
6557 i &= ~IBX_ELD_ADDRESS;
6558 I915_WRITE(aud_cntl_st, i);
6559
6560 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6561 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6562 for (i = 0; i < len; i++)
6563 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6564
6565 i = I915_READ(aud_cntrl_st2);
6566 i |= eldv;
6567 I915_WRITE(aud_cntrl_st2, i);
6568 }
6569
6570 void intel_write_eld(struct drm_encoder *encoder,
6571 struct drm_display_mode *mode)
6572 {
6573 struct drm_crtc *crtc = encoder->crtc;
6574 struct drm_connector *connector;
6575 struct drm_device *dev = encoder->dev;
6576 struct drm_i915_private *dev_priv = dev->dev_private;
6577
6578 connector = drm_select_eld(encoder, mode);
6579 if (!connector)
6580 return;
6581
6582 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6583 connector->base.id,
6584 drm_get_connector_name(connector),
6585 connector->encoder->base.id,
6586 drm_get_encoder_name(connector->encoder));
6587
6588 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6589
6590 if (dev_priv->display.write_eld)
6591 dev_priv->display.write_eld(connector, crtc);
6592 }
6593
6594 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6595 void intel_crtc_load_lut(struct drm_crtc *crtc)
6596 {
6597 struct drm_device *dev = crtc->dev;
6598 struct drm_i915_private *dev_priv = dev->dev_private;
6599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6600 int palreg = PALETTE(intel_crtc->pipe);
6601 int i;
6602
6603 /* The clocks have to be on to load the palette. */
6604 if (!crtc->enabled || !intel_crtc->active)
6605 return;
6606
6607 /* use legacy palette for Ironlake */
6608 if (HAS_PCH_SPLIT(dev))
6609 palreg = LGC_PALETTE(intel_crtc->pipe);
6610
6611 for (i = 0; i < 256; i++) {
6612 I915_WRITE(palreg + 4 * i,
6613 (intel_crtc->lut_r[i] << 16) |
6614 (intel_crtc->lut_g[i] << 8) |
6615 intel_crtc->lut_b[i]);
6616 }
6617 }
6618
6619 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6620 {
6621 struct drm_device *dev = crtc->dev;
6622 struct drm_i915_private *dev_priv = dev->dev_private;
6623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6624 bool visible = base != 0;
6625 u32 cntl;
6626
6627 if (intel_crtc->cursor_visible == visible)
6628 return;
6629
6630 cntl = I915_READ(_CURACNTR);
6631 if (visible) {
6632 /* On these chipsets we can only modify the base whilst
6633 * the cursor is disabled.
6634 */
6635 I915_WRITE(_CURABASE, base);
6636
6637 cntl &= ~(CURSOR_FORMAT_MASK);
6638 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6639 cntl |= CURSOR_ENABLE |
6640 CURSOR_GAMMA_ENABLE |
6641 CURSOR_FORMAT_ARGB;
6642 } else
6643 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6644 I915_WRITE(_CURACNTR, cntl);
6645
6646 intel_crtc->cursor_visible = visible;
6647 }
6648
6649 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6650 {
6651 struct drm_device *dev = crtc->dev;
6652 struct drm_i915_private *dev_priv = dev->dev_private;
6653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6654 int pipe = intel_crtc->pipe;
6655 bool visible = base != 0;
6656
6657 if (intel_crtc->cursor_visible != visible) {
6658 uint32_t cntl = I915_READ(CURCNTR(pipe));
6659 if (base) {
6660 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6661 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6662 cntl |= pipe << 28; /* Connect to correct pipe */
6663 } else {
6664 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6665 cntl |= CURSOR_MODE_DISABLE;
6666 }
6667 I915_WRITE(CURCNTR(pipe), cntl);
6668
6669 intel_crtc->cursor_visible = visible;
6670 }
6671 /* and commit changes on next vblank */
6672 I915_WRITE(CURBASE(pipe), base);
6673 }
6674
6675 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6676 {
6677 struct drm_device *dev = crtc->dev;
6678 struct drm_i915_private *dev_priv = dev->dev_private;
6679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6680 int pipe = intel_crtc->pipe;
6681 bool visible = base != 0;
6682
6683 if (intel_crtc->cursor_visible != visible) {
6684 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6685 if (base) {
6686 cntl &= ~CURSOR_MODE;
6687 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6688 } else {
6689 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6690 cntl |= CURSOR_MODE_DISABLE;
6691 }
6692 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6693
6694 intel_crtc->cursor_visible = visible;
6695 }
6696 /* and commit changes on next vblank */
6697 I915_WRITE(CURBASE_IVB(pipe), base);
6698 }
6699
6700 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6701 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6702 bool on)
6703 {
6704 struct drm_device *dev = crtc->dev;
6705 struct drm_i915_private *dev_priv = dev->dev_private;
6706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6707 int pipe = intel_crtc->pipe;
6708 int x = intel_crtc->cursor_x;
6709 int y = intel_crtc->cursor_y;
6710 u32 base, pos;
6711 bool visible;
6712
6713 pos = 0;
6714
6715 if (on && crtc->enabled && crtc->fb) {
6716 base = intel_crtc->cursor_addr;
6717 if (x > (int) crtc->fb->width)
6718 base = 0;
6719
6720 if (y > (int) crtc->fb->height)
6721 base = 0;
6722 } else
6723 base = 0;
6724
6725 if (x < 0) {
6726 if (x + intel_crtc->cursor_width < 0)
6727 base = 0;
6728
6729 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6730 x = -x;
6731 }
6732 pos |= x << CURSOR_X_SHIFT;
6733
6734 if (y < 0) {
6735 if (y + intel_crtc->cursor_height < 0)
6736 base = 0;
6737
6738 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6739 y = -y;
6740 }
6741 pos |= y << CURSOR_Y_SHIFT;
6742
6743 visible = base != 0;
6744 if (!visible && !intel_crtc->cursor_visible)
6745 return;
6746
6747 if (IS_IVYBRIDGE(dev)) {
6748 I915_WRITE(CURPOS_IVB(pipe), pos);
6749 ivb_update_cursor(crtc, base);
6750 } else {
6751 I915_WRITE(CURPOS(pipe), pos);
6752 if (IS_845G(dev) || IS_I865G(dev))
6753 i845_update_cursor(crtc, base);
6754 else
6755 i9xx_update_cursor(crtc, base);
6756 }
6757
6758 if (visible)
6759 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6760 }
6761
6762 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6763 struct drm_file *file,
6764 uint32_t handle,
6765 uint32_t width, uint32_t height)
6766 {
6767 struct drm_device *dev = crtc->dev;
6768 struct drm_i915_private *dev_priv = dev->dev_private;
6769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6770 struct drm_i915_gem_object *obj;
6771 uint32_t addr;
6772 int ret;
6773
6774 DRM_DEBUG_KMS("\n");
6775
6776 /* if we want to turn off the cursor ignore width and height */
6777 if (!handle) {
6778 DRM_DEBUG_KMS("cursor off\n");
6779 addr = 0;
6780 obj = NULL;
6781 mutex_lock(&dev->struct_mutex);
6782 goto finish;
6783 }
6784
6785 /* Currently we only support 64x64 cursors */
6786 if (width != 64 || height != 64) {
6787 DRM_ERROR("we currently only support 64x64 cursors\n");
6788 return -EINVAL;
6789 }
6790
6791 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6792 if (&obj->base == NULL)
6793 return -ENOENT;
6794
6795 if (obj->base.size < width * height * 4) {
6796 DRM_ERROR("buffer is to small\n");
6797 ret = -ENOMEM;
6798 goto fail;
6799 }
6800
6801 /* we only need to pin inside GTT if cursor is non-phy */
6802 mutex_lock(&dev->struct_mutex);
6803 if (!dev_priv->info->cursor_needs_physical) {
6804 if (obj->tiling_mode) {
6805 DRM_ERROR("cursor cannot be tiled\n");
6806 ret = -EINVAL;
6807 goto fail_locked;
6808 }
6809
6810 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6811 if (ret) {
6812 DRM_ERROR("failed to move cursor bo into the GTT\n");
6813 goto fail_locked;
6814 }
6815
6816 ret = i915_gem_object_put_fence(obj);
6817 if (ret) {
6818 DRM_ERROR("failed to release fence for cursor");
6819 goto fail_unpin;
6820 }
6821
6822 addr = obj->gtt_offset;
6823 } else {
6824 int align = IS_I830(dev) ? 16 * 1024 : 256;
6825 ret = i915_gem_attach_phys_object(dev, obj,
6826 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6827 align);
6828 if (ret) {
6829 DRM_ERROR("failed to attach phys object\n");
6830 goto fail_locked;
6831 }
6832 addr = obj->phys_obj->handle->busaddr;
6833 }
6834
6835 if (IS_GEN2(dev))
6836 I915_WRITE(CURSIZE, (height << 12) | width);
6837
6838 finish:
6839 if (intel_crtc->cursor_bo) {
6840 if (dev_priv->info->cursor_needs_physical) {
6841 if (intel_crtc->cursor_bo != obj)
6842 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6843 } else
6844 i915_gem_object_unpin(intel_crtc->cursor_bo);
6845 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6846 }
6847
6848 mutex_unlock(&dev->struct_mutex);
6849
6850 intel_crtc->cursor_addr = addr;
6851 intel_crtc->cursor_bo = obj;
6852 intel_crtc->cursor_width = width;
6853 intel_crtc->cursor_height = height;
6854
6855 intel_crtc_update_cursor(crtc, true);
6856
6857 return 0;
6858 fail_unpin:
6859 i915_gem_object_unpin(obj);
6860 fail_locked:
6861 mutex_unlock(&dev->struct_mutex);
6862 fail:
6863 drm_gem_object_unreference_unlocked(&obj->base);
6864 return ret;
6865 }
6866
6867 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6868 {
6869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6870
6871 intel_crtc->cursor_x = x;
6872 intel_crtc->cursor_y = y;
6873
6874 intel_crtc_update_cursor(crtc, true);
6875
6876 return 0;
6877 }
6878
6879 /** Sets the color ramps on behalf of RandR */
6880 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6881 u16 blue, int regno)
6882 {
6883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6884
6885 intel_crtc->lut_r[regno] = red >> 8;
6886 intel_crtc->lut_g[regno] = green >> 8;
6887 intel_crtc->lut_b[regno] = blue >> 8;
6888 }
6889
6890 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6891 u16 *blue, int regno)
6892 {
6893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6894
6895 *red = intel_crtc->lut_r[regno] << 8;
6896 *green = intel_crtc->lut_g[regno] << 8;
6897 *blue = intel_crtc->lut_b[regno] << 8;
6898 }
6899
6900 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6901 u16 *blue, uint32_t start, uint32_t size)
6902 {
6903 int end = (start + size > 256) ? 256 : start + size, i;
6904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6905
6906 for (i = start; i < end; i++) {
6907 intel_crtc->lut_r[i] = red[i] >> 8;
6908 intel_crtc->lut_g[i] = green[i] >> 8;
6909 intel_crtc->lut_b[i] = blue[i] >> 8;
6910 }
6911
6912 intel_crtc_load_lut(crtc);
6913 }
6914
6915 /**
6916 * Get a pipe with a simple mode set on it for doing load-based monitor
6917 * detection.
6918 *
6919 * It will be up to the load-detect code to adjust the pipe as appropriate for
6920 * its requirements. The pipe will be connected to no other encoders.
6921 *
6922 * Currently this code will only succeed if there is a pipe with no encoders
6923 * configured for it. In the future, it could choose to temporarily disable
6924 * some outputs to free up a pipe for its use.
6925 *
6926 * \return crtc, or NULL if no pipes are available.
6927 */
6928
6929 /* VESA 640x480x72Hz mode to set on the pipe */
6930 static struct drm_display_mode load_detect_mode = {
6931 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6932 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6933 };
6934
6935 static struct drm_framebuffer *
6936 intel_framebuffer_create(struct drm_device *dev,
6937 struct drm_mode_fb_cmd2 *mode_cmd,
6938 struct drm_i915_gem_object *obj)
6939 {
6940 struct intel_framebuffer *intel_fb;
6941 int ret;
6942
6943 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6944 if (!intel_fb) {
6945 drm_gem_object_unreference_unlocked(&obj->base);
6946 return ERR_PTR(-ENOMEM);
6947 }
6948
6949 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6950 if (ret) {
6951 drm_gem_object_unreference_unlocked(&obj->base);
6952 kfree(intel_fb);
6953 return ERR_PTR(ret);
6954 }
6955
6956 return &intel_fb->base;
6957 }
6958
6959 static u32
6960 intel_framebuffer_pitch_for_width(int width, int bpp)
6961 {
6962 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6963 return ALIGN(pitch, 64);
6964 }
6965
6966 static u32
6967 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6968 {
6969 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6970 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6971 }
6972
6973 static struct drm_framebuffer *
6974 intel_framebuffer_create_for_mode(struct drm_device *dev,
6975 struct drm_display_mode *mode,
6976 int depth, int bpp)
6977 {
6978 struct drm_i915_gem_object *obj;
6979 struct drm_mode_fb_cmd2 mode_cmd;
6980
6981 obj = i915_gem_alloc_object(dev,
6982 intel_framebuffer_size_for_mode(mode, bpp));
6983 if (obj == NULL)
6984 return ERR_PTR(-ENOMEM);
6985
6986 mode_cmd.width = mode->hdisplay;
6987 mode_cmd.height = mode->vdisplay;
6988 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6989 bpp);
6990 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6991
6992 return intel_framebuffer_create(dev, &mode_cmd, obj);
6993 }
6994
6995 static struct drm_framebuffer *
6996 mode_fits_in_fbdev(struct drm_device *dev,
6997 struct drm_display_mode *mode)
6998 {
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000 struct drm_i915_gem_object *obj;
7001 struct drm_framebuffer *fb;
7002
7003 if (dev_priv->fbdev == NULL)
7004 return NULL;
7005
7006 obj = dev_priv->fbdev->ifb.obj;
7007 if (obj == NULL)
7008 return NULL;
7009
7010 fb = &dev_priv->fbdev->ifb.base;
7011 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7012 fb->bits_per_pixel))
7013 return NULL;
7014
7015 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7016 return NULL;
7017
7018 return fb;
7019 }
7020
7021 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
7022 struct drm_connector *connector,
7023 struct drm_display_mode *mode,
7024 struct intel_load_detect_pipe *old)
7025 {
7026 struct intel_crtc *intel_crtc;
7027 struct drm_crtc *possible_crtc;
7028 struct drm_encoder *encoder = &intel_encoder->base;
7029 struct drm_crtc *crtc = NULL;
7030 struct drm_device *dev = encoder->dev;
7031 struct drm_framebuffer *old_fb;
7032 int i = -1;
7033
7034 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7035 connector->base.id, drm_get_connector_name(connector),
7036 encoder->base.id, drm_get_encoder_name(encoder));
7037
7038 /*
7039 * Algorithm gets a little messy:
7040 *
7041 * - if the connector already has an assigned crtc, use it (but make
7042 * sure it's on first)
7043 *
7044 * - try to find the first unused crtc that can drive this connector,
7045 * and use that if we find one
7046 */
7047
7048 /* See if we already have a CRTC for this connector */
7049 if (encoder->crtc) {
7050 crtc = encoder->crtc;
7051
7052 intel_crtc = to_intel_crtc(crtc);
7053 old->dpms_mode = intel_crtc->dpms_mode;
7054 old->load_detect_temp = false;
7055
7056 /* Make sure the crtc and connector are running */
7057 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
7058 struct drm_encoder_helper_funcs *encoder_funcs;
7059 struct drm_crtc_helper_funcs *crtc_funcs;
7060
7061 crtc_funcs = crtc->helper_private;
7062 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
7063
7064 encoder_funcs = encoder->helper_private;
7065 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
7066 }
7067
7068 return true;
7069 }
7070
7071 /* Find an unused one (if possible) */
7072 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7073 i++;
7074 if (!(encoder->possible_crtcs & (1 << i)))
7075 continue;
7076 if (!possible_crtc->enabled) {
7077 crtc = possible_crtc;
7078 break;
7079 }
7080 }
7081
7082 /*
7083 * If we didn't find an unused CRTC, don't use any.
7084 */
7085 if (!crtc) {
7086 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7087 return false;
7088 }
7089
7090 encoder->crtc = crtc;
7091 connector->encoder = encoder;
7092
7093 intel_crtc = to_intel_crtc(crtc);
7094 old->dpms_mode = intel_crtc->dpms_mode;
7095 old->load_detect_temp = true;
7096 old->release_fb = NULL;
7097
7098 if (!mode)
7099 mode = &load_detect_mode;
7100
7101 old_fb = crtc->fb;
7102
7103 /* We need a framebuffer large enough to accommodate all accesses
7104 * that the plane may generate whilst we perform load detection.
7105 * We can not rely on the fbcon either being present (we get called
7106 * during its initialisation to detect all boot displays, or it may
7107 * not even exist) or that it is large enough to satisfy the
7108 * requested mode.
7109 */
7110 crtc->fb = mode_fits_in_fbdev(dev, mode);
7111 if (crtc->fb == NULL) {
7112 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7113 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7114 old->release_fb = crtc->fb;
7115 } else
7116 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7117 if (IS_ERR(crtc->fb)) {
7118 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7119 crtc->fb = old_fb;
7120 return false;
7121 }
7122
7123 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
7124 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7125 if (old->release_fb)
7126 old->release_fb->funcs->destroy(old->release_fb);
7127 crtc->fb = old_fb;
7128 return false;
7129 }
7130
7131 /* let the connector get through one full cycle before testing */
7132 intel_wait_for_vblank(dev, intel_crtc->pipe);
7133
7134 return true;
7135 }
7136
7137 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
7138 struct drm_connector *connector,
7139 struct intel_load_detect_pipe *old)
7140 {
7141 struct drm_encoder *encoder = &intel_encoder->base;
7142 struct drm_device *dev = encoder->dev;
7143 struct drm_crtc *crtc = encoder->crtc;
7144 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
7145 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
7146
7147 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7148 connector->base.id, drm_get_connector_name(connector),
7149 encoder->base.id, drm_get_encoder_name(encoder));
7150
7151 if (old->load_detect_temp) {
7152 connector->encoder = NULL;
7153 drm_helper_disable_unused_functions(dev);
7154
7155 if (old->release_fb)
7156 old->release_fb->funcs->destroy(old->release_fb);
7157
7158 return;
7159 }
7160
7161 /* Switch crtc and encoder back off if necessary */
7162 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
7163 encoder_funcs->dpms(encoder, old->dpms_mode);
7164 crtc_funcs->dpms(crtc, old->dpms_mode);
7165 }
7166 }
7167
7168 /* Returns the clock of the currently programmed mode of the given pipe. */
7169 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
7170 {
7171 struct drm_i915_private *dev_priv = dev->dev_private;
7172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7173 int pipe = intel_crtc->pipe;
7174 u32 dpll = I915_READ(DPLL(pipe));
7175 u32 fp;
7176 intel_clock_t clock;
7177
7178 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7179 fp = I915_READ(FP0(pipe));
7180 else
7181 fp = I915_READ(FP1(pipe));
7182
7183 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7184 if (IS_PINEVIEW(dev)) {
7185 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7186 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7187 } else {
7188 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7189 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7190 }
7191
7192 if (!IS_GEN2(dev)) {
7193 if (IS_PINEVIEW(dev))
7194 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7195 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7196 else
7197 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7198 DPLL_FPA01_P1_POST_DIV_SHIFT);
7199
7200 switch (dpll & DPLL_MODE_MASK) {
7201 case DPLLB_MODE_DAC_SERIAL:
7202 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7203 5 : 10;
7204 break;
7205 case DPLLB_MODE_LVDS:
7206 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7207 7 : 14;
7208 break;
7209 default:
7210 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7211 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7212 return 0;
7213 }
7214
7215 /* XXX: Handle the 100Mhz refclk */
7216 intel_clock(dev, 96000, &clock);
7217 } else {
7218 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7219
7220 if (is_lvds) {
7221 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7222 DPLL_FPA01_P1_POST_DIV_SHIFT);
7223 clock.p2 = 14;
7224
7225 if ((dpll & PLL_REF_INPUT_MASK) ==
7226 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7227 /* XXX: might not be 66MHz */
7228 intel_clock(dev, 66000, &clock);
7229 } else
7230 intel_clock(dev, 48000, &clock);
7231 } else {
7232 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7233 clock.p1 = 2;
7234 else {
7235 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7236 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7237 }
7238 if (dpll & PLL_P2_DIVIDE_BY_4)
7239 clock.p2 = 4;
7240 else
7241 clock.p2 = 2;
7242
7243 intel_clock(dev, 48000, &clock);
7244 }
7245 }
7246
7247 /* XXX: It would be nice to validate the clocks, but we can't reuse
7248 * i830PllIsValid() because it relies on the xf86_config connector
7249 * configuration being accurate, which it isn't necessarily.
7250 */
7251
7252 return clock.dot;
7253 }
7254
7255 /** Returns the currently programmed mode of the given pipe. */
7256 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7257 struct drm_crtc *crtc)
7258 {
7259 struct drm_i915_private *dev_priv = dev->dev_private;
7260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7261 int pipe = intel_crtc->pipe;
7262 struct drm_display_mode *mode;
7263 int htot = I915_READ(HTOTAL(pipe));
7264 int hsync = I915_READ(HSYNC(pipe));
7265 int vtot = I915_READ(VTOTAL(pipe));
7266 int vsync = I915_READ(VSYNC(pipe));
7267
7268 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7269 if (!mode)
7270 return NULL;
7271
7272 mode->clock = intel_crtc_clock_get(dev, crtc);
7273 mode->hdisplay = (htot & 0xffff) + 1;
7274 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7275 mode->hsync_start = (hsync & 0xffff) + 1;
7276 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7277 mode->vdisplay = (vtot & 0xffff) + 1;
7278 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7279 mode->vsync_start = (vsync & 0xffff) + 1;
7280 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7281
7282 drm_mode_set_name(mode);
7283 drm_mode_set_crtcinfo(mode, 0);
7284
7285 return mode;
7286 }
7287
7288 #define GPU_IDLE_TIMEOUT 500 /* ms */
7289
7290 /* When this timer fires, we've been idle for awhile */
7291 static void intel_gpu_idle_timer(unsigned long arg)
7292 {
7293 struct drm_device *dev = (struct drm_device *)arg;
7294 drm_i915_private_t *dev_priv = dev->dev_private;
7295
7296 if (!list_empty(&dev_priv->mm.active_list)) {
7297 /* Still processing requests, so just re-arm the timer. */
7298 mod_timer(&dev_priv->idle_timer, jiffies +
7299 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7300 return;
7301 }
7302
7303 dev_priv->busy = false;
7304 queue_work(dev_priv->wq, &dev_priv->idle_work);
7305 }
7306
7307 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
7308
7309 static void intel_crtc_idle_timer(unsigned long arg)
7310 {
7311 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
7312 struct drm_crtc *crtc = &intel_crtc->base;
7313 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7314 struct intel_framebuffer *intel_fb;
7315
7316 intel_fb = to_intel_framebuffer(crtc->fb);
7317 if (intel_fb && intel_fb->obj->active) {
7318 /* The framebuffer is still being accessed by the GPU. */
7319 mod_timer(&intel_crtc->idle_timer, jiffies +
7320 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7321 return;
7322 }
7323
7324 intel_crtc->busy = false;
7325 queue_work(dev_priv->wq, &dev_priv->idle_work);
7326 }
7327
7328 static void intel_increase_pllclock(struct drm_crtc *crtc)
7329 {
7330 struct drm_device *dev = crtc->dev;
7331 drm_i915_private_t *dev_priv = dev->dev_private;
7332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7333 int pipe = intel_crtc->pipe;
7334 int dpll_reg = DPLL(pipe);
7335 int dpll;
7336
7337 if (HAS_PCH_SPLIT(dev))
7338 return;
7339
7340 if (!dev_priv->lvds_downclock_avail)
7341 return;
7342
7343 dpll = I915_READ(dpll_reg);
7344 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7345 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7346
7347 assert_panel_unlocked(dev_priv, pipe);
7348
7349 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7350 I915_WRITE(dpll_reg, dpll);
7351 intel_wait_for_vblank(dev, pipe);
7352
7353 dpll = I915_READ(dpll_reg);
7354 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7355 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7356 }
7357
7358 /* Schedule downclock */
7359 mod_timer(&intel_crtc->idle_timer, jiffies +
7360 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7361 }
7362
7363 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7364 {
7365 struct drm_device *dev = crtc->dev;
7366 drm_i915_private_t *dev_priv = dev->dev_private;
7367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7368 int pipe = intel_crtc->pipe;
7369 int dpll_reg = DPLL(pipe);
7370 int dpll = I915_READ(dpll_reg);
7371
7372 if (HAS_PCH_SPLIT(dev))
7373 return;
7374
7375 if (!dev_priv->lvds_downclock_avail)
7376 return;
7377
7378 /*
7379 * Since this is called by a timer, we should never get here in
7380 * the manual case.
7381 */
7382 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7383 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7384
7385 assert_panel_unlocked(dev_priv, pipe);
7386
7387 dpll |= DISPLAY_RATE_SELECT_FPA1;
7388 I915_WRITE(dpll_reg, dpll);
7389 intel_wait_for_vblank(dev, pipe);
7390 dpll = I915_READ(dpll_reg);
7391 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7392 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7393 }
7394
7395 }
7396
7397 /**
7398 * intel_idle_update - adjust clocks for idleness
7399 * @work: work struct
7400 *
7401 * Either the GPU or display (or both) went idle. Check the busy status
7402 * here and adjust the CRTC and GPU clocks as necessary.
7403 */
7404 static void intel_idle_update(struct work_struct *work)
7405 {
7406 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7407 idle_work);
7408 struct drm_device *dev = dev_priv->dev;
7409 struct drm_crtc *crtc;
7410 struct intel_crtc *intel_crtc;
7411
7412 if (!i915_powersave)
7413 return;
7414
7415 mutex_lock(&dev->struct_mutex);
7416
7417 i915_update_gfx_val(dev_priv);
7418
7419 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7420 /* Skip inactive CRTCs */
7421 if (!crtc->fb)
7422 continue;
7423
7424 intel_crtc = to_intel_crtc(crtc);
7425 if (!intel_crtc->busy)
7426 intel_decrease_pllclock(crtc);
7427 }
7428
7429
7430 mutex_unlock(&dev->struct_mutex);
7431 }
7432
7433 /**
7434 * intel_mark_busy - mark the GPU and possibly the display busy
7435 * @dev: drm device
7436 * @obj: object we're operating on
7437 *
7438 * Callers can use this function to indicate that the GPU is busy processing
7439 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7440 * buffer), we'll also mark the display as busy, so we know to increase its
7441 * clock frequency.
7442 */
7443 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7444 {
7445 drm_i915_private_t *dev_priv = dev->dev_private;
7446 struct drm_crtc *crtc = NULL;
7447 struct intel_framebuffer *intel_fb;
7448 struct intel_crtc *intel_crtc;
7449
7450 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7451 return;
7452
7453 if (!dev_priv->busy)
7454 dev_priv->busy = true;
7455 else
7456 mod_timer(&dev_priv->idle_timer, jiffies +
7457 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7458
7459 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7460 if (!crtc->fb)
7461 continue;
7462
7463 intel_crtc = to_intel_crtc(crtc);
7464 intel_fb = to_intel_framebuffer(crtc->fb);
7465 if (intel_fb->obj == obj) {
7466 if (!intel_crtc->busy) {
7467 /* Non-busy -> busy, upclock */
7468 intel_increase_pllclock(crtc);
7469 intel_crtc->busy = true;
7470 } else {
7471 /* Busy -> busy, put off timer */
7472 mod_timer(&intel_crtc->idle_timer, jiffies +
7473 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7474 }
7475 }
7476 }
7477 }
7478
7479 static void intel_crtc_destroy(struct drm_crtc *crtc)
7480 {
7481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7482 struct drm_device *dev = crtc->dev;
7483 struct intel_unpin_work *work;
7484 unsigned long flags;
7485
7486 spin_lock_irqsave(&dev->event_lock, flags);
7487 work = intel_crtc->unpin_work;
7488 intel_crtc->unpin_work = NULL;
7489 spin_unlock_irqrestore(&dev->event_lock, flags);
7490
7491 if (work) {
7492 cancel_work_sync(&work->work);
7493 kfree(work);
7494 }
7495
7496 drm_crtc_cleanup(crtc);
7497
7498 kfree(intel_crtc);
7499 }
7500
7501 static void intel_unpin_work_fn(struct work_struct *__work)
7502 {
7503 struct intel_unpin_work *work =
7504 container_of(__work, struct intel_unpin_work, work);
7505
7506 mutex_lock(&work->dev->struct_mutex);
7507 intel_unpin_fb_obj(work->old_fb_obj);
7508 drm_gem_object_unreference(&work->pending_flip_obj->base);
7509 drm_gem_object_unreference(&work->old_fb_obj->base);
7510
7511 intel_update_fbc(work->dev);
7512 mutex_unlock(&work->dev->struct_mutex);
7513 kfree(work);
7514 }
7515
7516 static void do_intel_finish_page_flip(struct drm_device *dev,
7517 struct drm_crtc *crtc)
7518 {
7519 drm_i915_private_t *dev_priv = dev->dev_private;
7520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7521 struct intel_unpin_work *work;
7522 struct drm_i915_gem_object *obj;
7523 struct drm_pending_vblank_event *e;
7524 struct timeval tnow, tvbl;
7525 unsigned long flags;
7526
7527 /* Ignore early vblank irqs */
7528 if (intel_crtc == NULL)
7529 return;
7530
7531 do_gettimeofday(&tnow);
7532
7533 spin_lock_irqsave(&dev->event_lock, flags);
7534 work = intel_crtc->unpin_work;
7535 if (work == NULL || !work->pending) {
7536 spin_unlock_irqrestore(&dev->event_lock, flags);
7537 return;
7538 }
7539
7540 intel_crtc->unpin_work = NULL;
7541
7542 if (work->event) {
7543 e = work->event;
7544 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7545
7546 /* Called before vblank count and timestamps have
7547 * been updated for the vblank interval of flip
7548 * completion? Need to increment vblank count and
7549 * add one videorefresh duration to returned timestamp
7550 * to account for this. We assume this happened if we
7551 * get called over 0.9 frame durations after the last
7552 * timestamped vblank.
7553 *
7554 * This calculation can not be used with vrefresh rates
7555 * below 5Hz (10Hz to be on the safe side) without
7556 * promoting to 64 integers.
7557 */
7558 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7559 9 * crtc->framedur_ns) {
7560 e->event.sequence++;
7561 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7562 crtc->framedur_ns);
7563 }
7564
7565 e->event.tv_sec = tvbl.tv_sec;
7566 e->event.tv_usec = tvbl.tv_usec;
7567
7568 list_add_tail(&e->base.link,
7569 &e->base.file_priv->event_list);
7570 wake_up_interruptible(&e->base.file_priv->event_wait);
7571 }
7572
7573 drm_vblank_put(dev, intel_crtc->pipe);
7574
7575 spin_unlock_irqrestore(&dev->event_lock, flags);
7576
7577 obj = work->old_fb_obj;
7578
7579 atomic_clear_mask(1 << intel_crtc->plane,
7580 &obj->pending_flip.counter);
7581 if (atomic_read(&obj->pending_flip) == 0)
7582 wake_up(&dev_priv->pending_flip_queue);
7583
7584 schedule_work(&work->work);
7585
7586 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7587 }
7588
7589 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7590 {
7591 drm_i915_private_t *dev_priv = dev->dev_private;
7592 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7593
7594 do_intel_finish_page_flip(dev, crtc);
7595 }
7596
7597 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7598 {
7599 drm_i915_private_t *dev_priv = dev->dev_private;
7600 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7601
7602 do_intel_finish_page_flip(dev, crtc);
7603 }
7604
7605 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7606 {
7607 drm_i915_private_t *dev_priv = dev->dev_private;
7608 struct intel_crtc *intel_crtc =
7609 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7610 unsigned long flags;
7611
7612 spin_lock_irqsave(&dev->event_lock, flags);
7613 if (intel_crtc->unpin_work) {
7614 if ((++intel_crtc->unpin_work->pending) > 1)
7615 DRM_ERROR("Prepared flip multiple times\n");
7616 } else {
7617 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7618 }
7619 spin_unlock_irqrestore(&dev->event_lock, flags);
7620 }
7621
7622 static int intel_gen2_queue_flip(struct drm_device *dev,
7623 struct drm_crtc *crtc,
7624 struct drm_framebuffer *fb,
7625 struct drm_i915_gem_object *obj)
7626 {
7627 struct drm_i915_private *dev_priv = dev->dev_private;
7628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7629 unsigned long offset;
7630 u32 flip_mask;
7631 int ret;
7632
7633 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7634 if (ret)
7635 goto out;
7636
7637 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7638 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7639
7640 ret = BEGIN_LP_RING(6);
7641 if (ret)
7642 goto out;
7643
7644 /* Can't queue multiple flips, so wait for the previous
7645 * one to finish before executing the next.
7646 */
7647 if (intel_crtc->plane)
7648 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7649 else
7650 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7651 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7652 OUT_RING(MI_NOOP);
7653 OUT_RING(MI_DISPLAY_FLIP |
7654 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7655 OUT_RING(fb->pitches[0]);
7656 OUT_RING(obj->gtt_offset + offset);
7657 OUT_RING(0); /* aux display base address, unused */
7658 ADVANCE_LP_RING();
7659 out:
7660 return ret;
7661 }
7662
7663 static int intel_gen3_queue_flip(struct drm_device *dev,
7664 struct drm_crtc *crtc,
7665 struct drm_framebuffer *fb,
7666 struct drm_i915_gem_object *obj)
7667 {
7668 struct drm_i915_private *dev_priv = dev->dev_private;
7669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7670 unsigned long offset;
7671 u32 flip_mask;
7672 int ret;
7673
7674 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7675 if (ret)
7676 goto out;
7677
7678 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7679 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7680
7681 ret = BEGIN_LP_RING(6);
7682 if (ret)
7683 goto out;
7684
7685 if (intel_crtc->plane)
7686 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7687 else
7688 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7689 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7690 OUT_RING(MI_NOOP);
7691 OUT_RING(MI_DISPLAY_FLIP_I915 |
7692 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7693 OUT_RING(fb->pitches[0]);
7694 OUT_RING(obj->gtt_offset + offset);
7695 OUT_RING(MI_NOOP);
7696
7697 ADVANCE_LP_RING();
7698 out:
7699 return ret;
7700 }
7701
7702 static int intel_gen4_queue_flip(struct drm_device *dev,
7703 struct drm_crtc *crtc,
7704 struct drm_framebuffer *fb,
7705 struct drm_i915_gem_object *obj)
7706 {
7707 struct drm_i915_private *dev_priv = dev->dev_private;
7708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7709 uint32_t pf, pipesrc;
7710 int ret;
7711
7712 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7713 if (ret)
7714 goto out;
7715
7716 ret = BEGIN_LP_RING(4);
7717 if (ret)
7718 goto out;
7719
7720 /* i965+ uses the linear or tiled offsets from the
7721 * Display Registers (which do not change across a page-flip)
7722 * so we need only reprogram the base address.
7723 */
7724 OUT_RING(MI_DISPLAY_FLIP |
7725 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7726 OUT_RING(fb->pitches[0]);
7727 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7728
7729 /* XXX Enabling the panel-fitter across page-flip is so far
7730 * untested on non-native modes, so ignore it for now.
7731 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7732 */
7733 pf = 0;
7734 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7735 OUT_RING(pf | pipesrc);
7736 ADVANCE_LP_RING();
7737 out:
7738 return ret;
7739 }
7740
7741 static int intel_gen6_queue_flip(struct drm_device *dev,
7742 struct drm_crtc *crtc,
7743 struct drm_framebuffer *fb,
7744 struct drm_i915_gem_object *obj)
7745 {
7746 struct drm_i915_private *dev_priv = dev->dev_private;
7747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7748 uint32_t pf, pipesrc;
7749 int ret;
7750
7751 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7752 if (ret)
7753 goto out;
7754
7755 ret = BEGIN_LP_RING(4);
7756 if (ret)
7757 goto out;
7758
7759 OUT_RING(MI_DISPLAY_FLIP |
7760 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7761 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7762 OUT_RING(obj->gtt_offset);
7763
7764 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7765 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7766 OUT_RING(pf | pipesrc);
7767 ADVANCE_LP_RING();
7768 out:
7769 return ret;
7770 }
7771
7772 /*
7773 * On gen7 we currently use the blit ring because (in early silicon at least)
7774 * the render ring doesn't give us interrpts for page flip completion, which
7775 * means clients will hang after the first flip is queued. Fortunately the
7776 * blit ring generates interrupts properly, so use it instead.
7777 */
7778 static int intel_gen7_queue_flip(struct drm_device *dev,
7779 struct drm_crtc *crtc,
7780 struct drm_framebuffer *fb,
7781 struct drm_i915_gem_object *obj)
7782 {
7783 struct drm_i915_private *dev_priv = dev->dev_private;
7784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7785 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7786 int ret;
7787
7788 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7789 if (ret)
7790 goto out;
7791
7792 ret = intel_ring_begin(ring, 4);
7793 if (ret)
7794 goto out;
7795
7796 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7797 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7798 intel_ring_emit(ring, (obj->gtt_offset));
7799 intel_ring_emit(ring, (MI_NOOP));
7800 intel_ring_advance(ring);
7801 out:
7802 return ret;
7803 }
7804
7805 static int intel_default_queue_flip(struct drm_device *dev,
7806 struct drm_crtc *crtc,
7807 struct drm_framebuffer *fb,
7808 struct drm_i915_gem_object *obj)
7809 {
7810 return -ENODEV;
7811 }
7812
7813 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7814 struct drm_framebuffer *fb,
7815 struct drm_pending_vblank_event *event)
7816 {
7817 struct drm_device *dev = crtc->dev;
7818 struct drm_i915_private *dev_priv = dev->dev_private;
7819 struct intel_framebuffer *intel_fb;
7820 struct drm_i915_gem_object *obj;
7821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7822 struct intel_unpin_work *work;
7823 unsigned long flags;
7824 int ret;
7825
7826 work = kzalloc(sizeof *work, GFP_KERNEL);
7827 if (work == NULL)
7828 return -ENOMEM;
7829
7830 work->event = event;
7831 work->dev = crtc->dev;
7832 intel_fb = to_intel_framebuffer(crtc->fb);
7833 work->old_fb_obj = intel_fb->obj;
7834 INIT_WORK(&work->work, intel_unpin_work_fn);
7835
7836 ret = drm_vblank_get(dev, intel_crtc->pipe);
7837 if (ret)
7838 goto free_work;
7839
7840 /* We borrow the event spin lock for protecting unpin_work */
7841 spin_lock_irqsave(&dev->event_lock, flags);
7842 if (intel_crtc->unpin_work) {
7843 spin_unlock_irqrestore(&dev->event_lock, flags);
7844 kfree(work);
7845 drm_vblank_put(dev, intel_crtc->pipe);
7846
7847 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7848 return -EBUSY;
7849 }
7850 intel_crtc->unpin_work = work;
7851 spin_unlock_irqrestore(&dev->event_lock, flags);
7852
7853 intel_fb = to_intel_framebuffer(fb);
7854 obj = intel_fb->obj;
7855
7856 mutex_lock(&dev->struct_mutex);
7857
7858 /* Reference the objects for the scheduled work. */
7859 drm_gem_object_reference(&work->old_fb_obj->base);
7860 drm_gem_object_reference(&obj->base);
7861
7862 crtc->fb = fb;
7863
7864 work->pending_flip_obj = obj;
7865
7866 work->enable_stall_check = true;
7867
7868 /* Block clients from rendering to the new back buffer until
7869 * the flip occurs and the object is no longer visible.
7870 */
7871 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7872
7873 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7874 if (ret)
7875 goto cleanup_pending;
7876
7877 intel_disable_fbc(dev);
7878 mutex_unlock(&dev->struct_mutex);
7879
7880 trace_i915_flip_request(intel_crtc->plane, obj);
7881
7882 return 0;
7883
7884 cleanup_pending:
7885 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7886 drm_gem_object_unreference(&work->old_fb_obj->base);
7887 drm_gem_object_unreference(&obj->base);
7888 mutex_unlock(&dev->struct_mutex);
7889
7890 spin_lock_irqsave(&dev->event_lock, flags);
7891 intel_crtc->unpin_work = NULL;
7892 spin_unlock_irqrestore(&dev->event_lock, flags);
7893
7894 drm_vblank_put(dev, intel_crtc->pipe);
7895 free_work:
7896 kfree(work);
7897
7898 return ret;
7899 }
7900
7901 static void intel_sanitize_modesetting(struct drm_device *dev,
7902 int pipe, int plane)
7903 {
7904 struct drm_i915_private *dev_priv = dev->dev_private;
7905 u32 reg, val;
7906
7907 /* Clear any frame start delays used for debugging left by the BIOS */
7908 for_each_pipe(pipe) {
7909 reg = PIPECONF(pipe);
7910 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7911 }
7912
7913 if (HAS_PCH_SPLIT(dev))
7914 return;
7915
7916 /* Who knows what state these registers were left in by the BIOS or
7917 * grub?
7918 *
7919 * If we leave the registers in a conflicting state (e.g. with the
7920 * display plane reading from the other pipe than the one we intend
7921 * to use) then when we attempt to teardown the active mode, we will
7922 * not disable the pipes and planes in the correct order -- leaving
7923 * a plane reading from a disabled pipe and possibly leading to
7924 * undefined behaviour.
7925 */
7926
7927 reg = DSPCNTR(plane);
7928 val = I915_READ(reg);
7929
7930 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7931 return;
7932 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7933 return;
7934
7935 /* This display plane is active and attached to the other CPU pipe. */
7936 pipe = !pipe;
7937
7938 /* Disable the plane and wait for it to stop reading from the pipe. */
7939 intel_disable_plane(dev_priv, plane, pipe);
7940 intel_disable_pipe(dev_priv, pipe);
7941 }
7942
7943 static void intel_crtc_reset(struct drm_crtc *crtc)
7944 {
7945 struct drm_device *dev = crtc->dev;
7946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7947
7948 /* Reset flags back to the 'unknown' status so that they
7949 * will be correctly set on the initial modeset.
7950 */
7951 intel_crtc->dpms_mode = -1;
7952
7953 /* We need to fix up any BIOS configuration that conflicts with
7954 * our expectations.
7955 */
7956 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7957 }
7958
7959 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7960 .dpms = intel_crtc_dpms,
7961 .mode_fixup = intel_crtc_mode_fixup,
7962 .mode_set = intel_crtc_mode_set,
7963 .mode_set_base = intel_pipe_set_base,
7964 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7965 .load_lut = intel_crtc_load_lut,
7966 .disable = intel_crtc_disable,
7967 };
7968
7969 static const struct drm_crtc_funcs intel_crtc_funcs = {
7970 .reset = intel_crtc_reset,
7971 .cursor_set = intel_crtc_cursor_set,
7972 .cursor_move = intel_crtc_cursor_move,
7973 .gamma_set = intel_crtc_gamma_set,
7974 .set_config = drm_crtc_helper_set_config,
7975 .destroy = intel_crtc_destroy,
7976 .page_flip = intel_crtc_page_flip,
7977 };
7978
7979 static void intel_crtc_init(struct drm_device *dev, int pipe)
7980 {
7981 drm_i915_private_t *dev_priv = dev->dev_private;
7982 struct intel_crtc *intel_crtc;
7983 int i;
7984
7985 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7986 if (intel_crtc == NULL)
7987 return;
7988
7989 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7990
7991 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7992 for (i = 0; i < 256; i++) {
7993 intel_crtc->lut_r[i] = i;
7994 intel_crtc->lut_g[i] = i;
7995 intel_crtc->lut_b[i] = i;
7996 }
7997
7998 /* Swap pipes & planes for FBC on pre-965 */
7999 intel_crtc->pipe = pipe;
8000 intel_crtc->plane = pipe;
8001 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8002 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8003 intel_crtc->plane = !pipe;
8004 }
8005
8006 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8007 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8008 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8009 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8010
8011 intel_crtc_reset(&intel_crtc->base);
8012 intel_crtc->active = true; /* force the pipe off on setup_init_config */
8013 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8014
8015 if (HAS_PCH_SPLIT(dev)) {
8016 if (pipe == 2 && IS_IVYBRIDGE(dev))
8017 intel_crtc->no_pll = true;
8018 intel_helper_funcs.prepare = ironlake_crtc_prepare;
8019 intel_helper_funcs.commit = ironlake_crtc_commit;
8020 } else {
8021 intel_helper_funcs.prepare = i9xx_crtc_prepare;
8022 intel_helper_funcs.commit = i9xx_crtc_commit;
8023 }
8024
8025 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8026
8027 intel_crtc->busy = false;
8028
8029 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
8030 (unsigned long)intel_crtc);
8031 }
8032
8033 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8034 struct drm_file *file)
8035 {
8036 drm_i915_private_t *dev_priv = dev->dev_private;
8037 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8038 struct drm_mode_object *drmmode_obj;
8039 struct intel_crtc *crtc;
8040
8041 if (!dev_priv) {
8042 DRM_ERROR("called with no initialization\n");
8043 return -EINVAL;
8044 }
8045
8046 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8047 DRM_MODE_OBJECT_CRTC);
8048
8049 if (!drmmode_obj) {
8050 DRM_ERROR("no such CRTC id\n");
8051 return -EINVAL;
8052 }
8053
8054 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8055 pipe_from_crtc_id->pipe = crtc->pipe;
8056
8057 return 0;
8058 }
8059
8060 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
8061 {
8062 struct intel_encoder *encoder;
8063 int index_mask = 0;
8064 int entry = 0;
8065
8066 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8067 if (type_mask & encoder->clone_mask)
8068 index_mask |= (1 << entry);
8069 entry++;
8070 }
8071
8072 return index_mask;
8073 }
8074
8075 static bool has_edp_a(struct drm_device *dev)
8076 {
8077 struct drm_i915_private *dev_priv = dev->dev_private;
8078
8079 if (!IS_MOBILE(dev))
8080 return false;
8081
8082 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8083 return false;
8084
8085 if (IS_GEN5(dev) &&
8086 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8087 return false;
8088
8089 return true;
8090 }
8091
8092 static void intel_setup_outputs(struct drm_device *dev)
8093 {
8094 struct drm_i915_private *dev_priv = dev->dev_private;
8095 struct intel_encoder *encoder;
8096 bool dpd_is_edp = false;
8097 bool has_lvds;
8098
8099 has_lvds = intel_lvds_init(dev);
8100 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8101 /* disable the panel fitter on everything but LVDS */
8102 I915_WRITE(PFIT_CONTROL, 0);
8103 }
8104
8105 if (HAS_PCH_SPLIT(dev)) {
8106 dpd_is_edp = intel_dpd_is_edp(dev);
8107
8108 if (has_edp_a(dev))
8109 intel_dp_init(dev, DP_A);
8110
8111 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8112 intel_dp_init(dev, PCH_DP_D);
8113 }
8114
8115 intel_crt_init(dev);
8116
8117 if (HAS_PCH_SPLIT(dev)) {
8118 int found;
8119
8120 if (I915_READ(HDMIB) & PORT_DETECTED) {
8121 /* PCH SDVOB multiplex with HDMIB */
8122 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8123 if (!found)
8124 intel_hdmi_init(dev, HDMIB);
8125 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8126 intel_dp_init(dev, PCH_DP_B);
8127 }
8128
8129 if (I915_READ(HDMIC) & PORT_DETECTED)
8130 intel_hdmi_init(dev, HDMIC);
8131
8132 if (I915_READ(HDMID) & PORT_DETECTED)
8133 intel_hdmi_init(dev, HDMID);
8134
8135 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8136 intel_dp_init(dev, PCH_DP_C);
8137
8138 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8139 intel_dp_init(dev, PCH_DP_D);
8140
8141 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8142 bool found = false;
8143
8144 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8145 DRM_DEBUG_KMS("probing SDVOB\n");
8146 found = intel_sdvo_init(dev, SDVOB, true);
8147 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8148 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8149 intel_hdmi_init(dev, SDVOB);
8150 }
8151
8152 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8153 DRM_DEBUG_KMS("probing DP_B\n");
8154 intel_dp_init(dev, DP_B);
8155 }
8156 }
8157
8158 /* Before G4X SDVOC doesn't have its own detect register */
8159
8160 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8161 DRM_DEBUG_KMS("probing SDVOC\n");
8162 found = intel_sdvo_init(dev, SDVOC, false);
8163 }
8164
8165 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8166
8167 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8168 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8169 intel_hdmi_init(dev, SDVOC);
8170 }
8171 if (SUPPORTS_INTEGRATED_DP(dev)) {
8172 DRM_DEBUG_KMS("probing DP_C\n");
8173 intel_dp_init(dev, DP_C);
8174 }
8175 }
8176
8177 if (SUPPORTS_INTEGRATED_DP(dev) &&
8178 (I915_READ(DP_D) & DP_DETECTED)) {
8179 DRM_DEBUG_KMS("probing DP_D\n");
8180 intel_dp_init(dev, DP_D);
8181 }
8182 } else if (IS_GEN2(dev))
8183 intel_dvo_init(dev);
8184
8185 if (SUPPORTS_TV(dev))
8186 intel_tv_init(dev);
8187
8188 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8189 encoder->base.possible_crtcs = encoder->crtc_mask;
8190 encoder->base.possible_clones =
8191 intel_encoder_clones(dev, encoder->clone_mask);
8192 }
8193
8194 /* disable all the possible outputs/crtcs before entering KMS mode */
8195 drm_helper_disable_unused_functions(dev);
8196
8197 if (HAS_PCH_SPLIT(dev))
8198 ironlake_init_pch_refclk(dev);
8199 }
8200
8201 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8202 {
8203 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8204
8205 drm_framebuffer_cleanup(fb);
8206 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8207
8208 kfree(intel_fb);
8209 }
8210
8211 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8212 struct drm_file *file,
8213 unsigned int *handle)
8214 {
8215 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8216 struct drm_i915_gem_object *obj = intel_fb->obj;
8217
8218 return drm_gem_handle_create(file, &obj->base, handle);
8219 }
8220
8221 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8222 .destroy = intel_user_framebuffer_destroy,
8223 .create_handle = intel_user_framebuffer_create_handle,
8224 };
8225
8226 int intel_framebuffer_init(struct drm_device *dev,
8227 struct intel_framebuffer *intel_fb,
8228 struct drm_mode_fb_cmd2 *mode_cmd,
8229 struct drm_i915_gem_object *obj)
8230 {
8231 int ret;
8232
8233 if (obj->tiling_mode == I915_TILING_Y)
8234 return -EINVAL;
8235
8236 if (mode_cmd->pitches[0] & 63)
8237 return -EINVAL;
8238
8239 switch (mode_cmd->pixel_format) {
8240 case DRM_FORMAT_RGB332:
8241 case DRM_FORMAT_RGB565:
8242 case DRM_FORMAT_XRGB8888:
8243 case DRM_FORMAT_XBGR8888:
8244 case DRM_FORMAT_ARGB8888:
8245 case DRM_FORMAT_XRGB2101010:
8246 case DRM_FORMAT_ARGB2101010:
8247 /* RGB formats are common across chipsets */
8248 break;
8249 case DRM_FORMAT_YUYV:
8250 case DRM_FORMAT_UYVY:
8251 case DRM_FORMAT_YVYU:
8252 case DRM_FORMAT_VYUY:
8253 break;
8254 default:
8255 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8256 mode_cmd->pixel_format);
8257 return -EINVAL;
8258 }
8259
8260 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8261 if (ret) {
8262 DRM_ERROR("framebuffer init failed %d\n", ret);
8263 return ret;
8264 }
8265
8266 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8267 intel_fb->obj = obj;
8268 return 0;
8269 }
8270
8271 static struct drm_framebuffer *
8272 intel_user_framebuffer_create(struct drm_device *dev,
8273 struct drm_file *filp,
8274 struct drm_mode_fb_cmd2 *mode_cmd)
8275 {
8276 struct drm_i915_gem_object *obj;
8277
8278 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8279 mode_cmd->handles[0]));
8280 if (&obj->base == NULL)
8281 return ERR_PTR(-ENOENT);
8282
8283 return intel_framebuffer_create(dev, mode_cmd, obj);
8284 }
8285
8286 static const struct drm_mode_config_funcs intel_mode_funcs = {
8287 .fb_create = intel_user_framebuffer_create,
8288 .output_poll_changed = intel_fb_output_poll_changed,
8289 };
8290
8291 static struct drm_i915_gem_object *
8292 intel_alloc_context_page(struct drm_device *dev)
8293 {
8294 struct drm_i915_gem_object *ctx;
8295 int ret;
8296
8297 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8298
8299 ctx = i915_gem_alloc_object(dev, 4096);
8300 if (!ctx) {
8301 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8302 return NULL;
8303 }
8304
8305 ret = i915_gem_object_pin(ctx, 4096, true);
8306 if (ret) {
8307 DRM_ERROR("failed to pin power context: %d\n", ret);
8308 goto err_unref;
8309 }
8310
8311 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8312 if (ret) {
8313 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8314 goto err_unpin;
8315 }
8316
8317 return ctx;
8318
8319 err_unpin:
8320 i915_gem_object_unpin(ctx);
8321 err_unref:
8322 drm_gem_object_unreference(&ctx->base);
8323 mutex_unlock(&dev->struct_mutex);
8324 return NULL;
8325 }
8326
8327 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8328 {
8329 struct drm_i915_private *dev_priv = dev->dev_private;
8330 u16 rgvswctl;
8331
8332 rgvswctl = I915_READ16(MEMSWCTL);
8333 if (rgvswctl & MEMCTL_CMD_STS) {
8334 DRM_DEBUG("gpu busy, RCS change rejected\n");
8335 return false; /* still busy with another command */
8336 }
8337
8338 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8339 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8340 I915_WRITE16(MEMSWCTL, rgvswctl);
8341 POSTING_READ16(MEMSWCTL);
8342
8343 rgvswctl |= MEMCTL_CMD_STS;
8344 I915_WRITE16(MEMSWCTL, rgvswctl);
8345
8346 return true;
8347 }
8348
8349 void ironlake_enable_drps(struct drm_device *dev)
8350 {
8351 struct drm_i915_private *dev_priv = dev->dev_private;
8352 u32 rgvmodectl = I915_READ(MEMMODECTL);
8353 u8 fmax, fmin, fstart, vstart;
8354
8355 /* Enable temp reporting */
8356 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8357 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8358
8359 /* 100ms RC evaluation intervals */
8360 I915_WRITE(RCUPEI, 100000);
8361 I915_WRITE(RCDNEI, 100000);
8362
8363 /* Set max/min thresholds to 90ms and 80ms respectively */
8364 I915_WRITE(RCBMAXAVG, 90000);
8365 I915_WRITE(RCBMINAVG, 80000);
8366
8367 I915_WRITE(MEMIHYST, 1);
8368
8369 /* Set up min, max, and cur for interrupt handling */
8370 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8371 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8372 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8373 MEMMODE_FSTART_SHIFT;
8374
8375 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8376 PXVFREQ_PX_SHIFT;
8377
8378 dev_priv->fmax = fmax; /* IPS callback will increase this */
8379 dev_priv->fstart = fstart;
8380
8381 dev_priv->max_delay = fstart;
8382 dev_priv->min_delay = fmin;
8383 dev_priv->cur_delay = fstart;
8384
8385 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8386 fmax, fmin, fstart);
8387
8388 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8389
8390 /*
8391 * Interrupts will be enabled in ironlake_irq_postinstall
8392 */
8393
8394 I915_WRITE(VIDSTART, vstart);
8395 POSTING_READ(VIDSTART);
8396
8397 rgvmodectl |= MEMMODE_SWMODE_EN;
8398 I915_WRITE(MEMMODECTL, rgvmodectl);
8399
8400 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8401 DRM_ERROR("stuck trying to change perf mode\n");
8402 msleep(1);
8403
8404 ironlake_set_drps(dev, fstart);
8405
8406 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8407 I915_READ(0x112e0);
8408 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8409 dev_priv->last_count2 = I915_READ(0x112f4);
8410 getrawmonotonic(&dev_priv->last_time2);
8411 }
8412
8413 void ironlake_disable_drps(struct drm_device *dev)
8414 {
8415 struct drm_i915_private *dev_priv = dev->dev_private;
8416 u16 rgvswctl = I915_READ16(MEMSWCTL);
8417
8418 /* Ack interrupts, disable EFC interrupt */
8419 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8420 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8421 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8422 I915_WRITE(DEIIR, DE_PCU_EVENT);
8423 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8424
8425 /* Go back to the starting frequency */
8426 ironlake_set_drps(dev, dev_priv->fstart);
8427 msleep(1);
8428 rgvswctl |= MEMCTL_CMD_STS;
8429 I915_WRITE(MEMSWCTL, rgvswctl);
8430 msleep(1);
8431
8432 }
8433
8434 void gen6_set_rps(struct drm_device *dev, u8 val)
8435 {
8436 struct drm_i915_private *dev_priv = dev->dev_private;
8437 u32 swreq;
8438
8439 swreq = (val & 0x3ff) << 25;
8440 I915_WRITE(GEN6_RPNSWREQ, swreq);
8441 }
8442
8443 void gen6_disable_rps(struct drm_device *dev)
8444 {
8445 struct drm_i915_private *dev_priv = dev->dev_private;
8446
8447 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8448 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8449 I915_WRITE(GEN6_PMIER, 0);
8450 /* Complete PM interrupt masking here doesn't race with the rps work
8451 * item again unmasking PM interrupts because that is using a different
8452 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8453 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8454
8455 spin_lock_irq(&dev_priv->rps_lock);
8456 dev_priv->pm_iir = 0;
8457 spin_unlock_irq(&dev_priv->rps_lock);
8458
8459 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8460 }
8461
8462 static unsigned long intel_pxfreq(u32 vidfreq)
8463 {
8464 unsigned long freq;
8465 int div = (vidfreq & 0x3f0000) >> 16;
8466 int post = (vidfreq & 0x3000) >> 12;
8467 int pre = (vidfreq & 0x7);
8468
8469 if (!pre)
8470 return 0;
8471
8472 freq = ((div * 133333) / ((1<<post) * pre));
8473
8474 return freq;
8475 }
8476
8477 void intel_init_emon(struct drm_device *dev)
8478 {
8479 struct drm_i915_private *dev_priv = dev->dev_private;
8480 u32 lcfuse;
8481 u8 pxw[16];
8482 int i;
8483
8484 /* Disable to program */
8485 I915_WRITE(ECR, 0);
8486 POSTING_READ(ECR);
8487
8488 /* Program energy weights for various events */
8489 I915_WRITE(SDEW, 0x15040d00);
8490 I915_WRITE(CSIEW0, 0x007f0000);
8491 I915_WRITE(CSIEW1, 0x1e220004);
8492 I915_WRITE(CSIEW2, 0x04000004);
8493
8494 for (i = 0; i < 5; i++)
8495 I915_WRITE(PEW + (i * 4), 0);
8496 for (i = 0; i < 3; i++)
8497 I915_WRITE(DEW + (i * 4), 0);
8498
8499 /* Program P-state weights to account for frequency power adjustment */
8500 for (i = 0; i < 16; i++) {
8501 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8502 unsigned long freq = intel_pxfreq(pxvidfreq);
8503 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8504 PXVFREQ_PX_SHIFT;
8505 unsigned long val;
8506
8507 val = vid * vid;
8508 val *= (freq / 1000);
8509 val *= 255;
8510 val /= (127*127*900);
8511 if (val > 0xff)
8512 DRM_ERROR("bad pxval: %ld\n", val);
8513 pxw[i] = val;
8514 }
8515 /* Render standby states get 0 weight */
8516 pxw[14] = 0;
8517 pxw[15] = 0;
8518
8519 for (i = 0; i < 4; i++) {
8520 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8521 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8522 I915_WRITE(PXW + (i * 4), val);
8523 }
8524
8525 /* Adjust magic regs to magic values (more experimental results) */
8526 I915_WRITE(OGW0, 0);
8527 I915_WRITE(OGW1, 0);
8528 I915_WRITE(EG0, 0x00007f00);
8529 I915_WRITE(EG1, 0x0000000e);
8530 I915_WRITE(EG2, 0x000e0000);
8531 I915_WRITE(EG3, 0x68000300);
8532 I915_WRITE(EG4, 0x42000000);
8533 I915_WRITE(EG5, 0x00140031);
8534 I915_WRITE(EG6, 0);
8535 I915_WRITE(EG7, 0);
8536
8537 for (i = 0; i < 8; i++)
8538 I915_WRITE(PXWL + (i * 4), 0);
8539
8540 /* Enable PMON + select events */
8541 I915_WRITE(ECR, 0x80000019);
8542
8543 lcfuse = I915_READ(LCFUSE02);
8544
8545 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8546 }
8547
8548 int intel_enable_rc6(const struct drm_device *dev)
8549 {
8550 /*
8551 * Respect the kernel parameter if it is set
8552 */
8553 if (i915_enable_rc6 >= 0)
8554 return i915_enable_rc6;
8555
8556 /*
8557 * Disable RC6 on Ironlake
8558 */
8559 if (INTEL_INFO(dev)->gen == 5)
8560 return 0;
8561
8562 /*
8563 * Disable rc6 on Sandybridge
8564 */
8565 if (INTEL_INFO(dev)->gen == 6) {
8566 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
8567 return INTEL_RC6_ENABLE;
8568 }
8569 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8570 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8571 }
8572
8573 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8574 {
8575 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8576 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8577 u32 pcu_mbox, rc6_mask = 0;
8578 u32 gtfifodbg;
8579 int cur_freq, min_freq, max_freq;
8580 int rc6_mode;
8581 int i;
8582
8583 /* Here begins a magic sequence of register writes to enable
8584 * auto-downclocking.
8585 *
8586 * Perhaps there might be some value in exposing these to
8587 * userspace...
8588 */
8589 I915_WRITE(GEN6_RC_STATE, 0);
8590 mutex_lock(&dev_priv->dev->struct_mutex);
8591
8592 /* Clear the DBG now so we don't confuse earlier errors */
8593 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8594 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8595 I915_WRITE(GTFIFODBG, gtfifodbg);
8596 }
8597
8598 gen6_gt_force_wake_get(dev_priv);
8599
8600 /* disable the counters and set deterministic thresholds */
8601 I915_WRITE(GEN6_RC_CONTROL, 0);
8602
8603 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8604 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8605 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8606 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8607 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8608
8609 for (i = 0; i < I915_NUM_RINGS; i++)
8610 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8611
8612 I915_WRITE(GEN6_RC_SLEEP, 0);
8613 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8614 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8615 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8616 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8617
8618 rc6_mode = intel_enable_rc6(dev_priv->dev);
8619 if (rc6_mode & INTEL_RC6_ENABLE)
8620 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8621
8622 if (rc6_mode & INTEL_RC6p_ENABLE)
8623 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8624
8625 if (rc6_mode & INTEL_RC6pp_ENABLE)
8626 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8627
8628 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8629 (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8630 (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8631 (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8632
8633 I915_WRITE(GEN6_RC_CONTROL,
8634 rc6_mask |
8635 GEN6_RC_CTL_EI_MODE(1) |
8636 GEN6_RC_CTL_HW_ENABLE);
8637
8638 I915_WRITE(GEN6_RPNSWREQ,
8639 GEN6_FREQUENCY(10) |
8640 GEN6_OFFSET(0) |
8641 GEN6_AGGRESSIVE_TURBO);
8642 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8643 GEN6_FREQUENCY(12));
8644
8645 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8646 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8647 18 << 24 |
8648 6 << 16);
8649 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8650 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8651 I915_WRITE(GEN6_RP_UP_EI, 100000);
8652 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8653 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8654 I915_WRITE(GEN6_RP_CONTROL,
8655 GEN6_RP_MEDIA_TURBO |
8656 GEN6_RP_MEDIA_HW_MODE |
8657 GEN6_RP_MEDIA_IS_GFX |
8658 GEN6_RP_ENABLE |
8659 GEN6_RP_UP_BUSY_AVG |
8660 GEN6_RP_DOWN_IDLE_CONT);
8661
8662 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8663 500))
8664 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8665
8666 I915_WRITE(GEN6_PCODE_DATA, 0);
8667 I915_WRITE(GEN6_PCODE_MAILBOX,
8668 GEN6_PCODE_READY |
8669 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8670 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8671 500))
8672 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8673
8674 min_freq = (rp_state_cap & 0xff0000) >> 16;
8675 max_freq = rp_state_cap & 0xff;
8676 cur_freq = (gt_perf_status & 0xff00) >> 8;
8677
8678 /* Check for overclock support */
8679 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8680 500))
8681 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8682 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8683 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8684 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8685 500))
8686 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8687 if (pcu_mbox & (1<<31)) { /* OC supported */
8688 max_freq = pcu_mbox & 0xff;
8689 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8690 }
8691
8692 /* In units of 100MHz */
8693 dev_priv->max_delay = max_freq;
8694 dev_priv->min_delay = min_freq;
8695 dev_priv->cur_delay = cur_freq;
8696
8697 /* requires MSI enabled */
8698 I915_WRITE(GEN6_PMIER,
8699 GEN6_PM_MBOX_EVENT |
8700 GEN6_PM_THERMAL_EVENT |
8701 GEN6_PM_RP_DOWN_TIMEOUT |
8702 GEN6_PM_RP_UP_THRESHOLD |
8703 GEN6_PM_RP_DOWN_THRESHOLD |
8704 GEN6_PM_RP_UP_EI_EXPIRED |
8705 GEN6_PM_RP_DOWN_EI_EXPIRED);
8706 spin_lock_irq(&dev_priv->rps_lock);
8707 WARN_ON(dev_priv->pm_iir != 0);
8708 I915_WRITE(GEN6_PMIMR, 0);
8709 spin_unlock_irq(&dev_priv->rps_lock);
8710 /* enable all PM interrupts */
8711 I915_WRITE(GEN6_PMINTRMSK, 0);
8712
8713 gen6_gt_force_wake_put(dev_priv);
8714 mutex_unlock(&dev_priv->dev->struct_mutex);
8715 }
8716
8717 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8718 {
8719 int min_freq = 15;
8720 int gpu_freq, ia_freq, max_ia_freq;
8721 int scaling_factor = 180;
8722
8723 max_ia_freq = cpufreq_quick_get_max(0);
8724 /*
8725 * Default to measured freq if none found, PCU will ensure we don't go
8726 * over
8727 */
8728 if (!max_ia_freq)
8729 max_ia_freq = tsc_khz;
8730
8731 /* Convert from kHz to MHz */
8732 max_ia_freq /= 1000;
8733
8734 mutex_lock(&dev_priv->dev->struct_mutex);
8735
8736 /*
8737 * For each potential GPU frequency, load a ring frequency we'd like
8738 * to use for memory access. We do this by specifying the IA frequency
8739 * the PCU should use as a reference to determine the ring frequency.
8740 */
8741 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8742 gpu_freq--) {
8743 int diff = dev_priv->max_delay - gpu_freq;
8744
8745 /*
8746 * For GPU frequencies less than 750MHz, just use the lowest
8747 * ring freq.
8748 */
8749 if (gpu_freq < min_freq)
8750 ia_freq = 800;
8751 else
8752 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8753 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8754
8755 I915_WRITE(GEN6_PCODE_DATA,
8756 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8757 gpu_freq);
8758 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8759 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8760 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8761 GEN6_PCODE_READY) == 0, 10)) {
8762 DRM_ERROR("pcode write of freq table timed out\n");
8763 continue;
8764 }
8765 }
8766
8767 mutex_unlock(&dev_priv->dev->struct_mutex);
8768 }
8769
8770 static void ironlake_init_clock_gating(struct drm_device *dev)
8771 {
8772 struct drm_i915_private *dev_priv = dev->dev_private;
8773 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8774
8775 /* Required for FBC */
8776 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8777 DPFCRUNIT_CLOCK_GATE_DISABLE |
8778 DPFDUNIT_CLOCK_GATE_DISABLE;
8779 /* Required for CxSR */
8780 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8781
8782 I915_WRITE(PCH_3DCGDIS0,
8783 MARIUNIT_CLOCK_GATE_DISABLE |
8784 SVSMUNIT_CLOCK_GATE_DISABLE);
8785 I915_WRITE(PCH_3DCGDIS1,
8786 VFMUNIT_CLOCK_GATE_DISABLE);
8787
8788 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8789
8790 /*
8791 * According to the spec the following bits should be set in
8792 * order to enable memory self-refresh
8793 * The bit 22/21 of 0x42004
8794 * The bit 5 of 0x42020
8795 * The bit 15 of 0x45000
8796 */
8797 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8798 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8799 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8800 I915_WRITE(ILK_DSPCLK_GATE,
8801 (I915_READ(ILK_DSPCLK_GATE) |
8802 ILK_DPARB_CLK_GATE));
8803 I915_WRITE(DISP_ARB_CTL,
8804 (I915_READ(DISP_ARB_CTL) |
8805 DISP_FBC_WM_DIS));
8806 I915_WRITE(WM3_LP_ILK, 0);
8807 I915_WRITE(WM2_LP_ILK, 0);
8808 I915_WRITE(WM1_LP_ILK, 0);
8809
8810 /*
8811 * Based on the document from hardware guys the following bits
8812 * should be set unconditionally in order to enable FBC.
8813 * The bit 22 of 0x42000
8814 * The bit 22 of 0x42004
8815 * The bit 7,8,9 of 0x42020.
8816 */
8817 if (IS_IRONLAKE_M(dev)) {
8818 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8819 I915_READ(ILK_DISPLAY_CHICKEN1) |
8820 ILK_FBCQ_DIS);
8821 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8822 I915_READ(ILK_DISPLAY_CHICKEN2) |
8823 ILK_DPARB_GATE);
8824 I915_WRITE(ILK_DSPCLK_GATE,
8825 I915_READ(ILK_DSPCLK_GATE) |
8826 ILK_DPFC_DIS1 |
8827 ILK_DPFC_DIS2 |
8828 ILK_CLK_FBC);
8829 }
8830
8831 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8832 I915_READ(ILK_DISPLAY_CHICKEN2) |
8833 ILK_ELPIN_409_SELECT);
8834 I915_WRITE(_3D_CHICKEN2,
8835 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8836 _3D_CHICKEN2_WM_READ_PIPELINED);
8837 }
8838
8839 static void gen6_init_clock_gating(struct drm_device *dev)
8840 {
8841 struct drm_i915_private *dev_priv = dev->dev_private;
8842 int pipe;
8843 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8844
8845 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8846
8847 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8848 I915_READ(ILK_DISPLAY_CHICKEN2) |
8849 ILK_ELPIN_409_SELECT);
8850
8851 I915_WRITE(WM3_LP_ILK, 0);
8852 I915_WRITE(WM2_LP_ILK, 0);
8853 I915_WRITE(WM1_LP_ILK, 0);
8854
8855 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8856 * gating disable must be set. Failure to set it results in
8857 * flickering pixels due to Z write ordering failures after
8858 * some amount of runtime in the Mesa "fire" demo, and Unigine
8859 * Sanctuary and Tropics, and apparently anything else with
8860 * alpha test or pixel discard.
8861 *
8862 * According to the spec, bit 11 (RCCUNIT) must also be set,
8863 * but we didn't debug actual testcases to find it out.
8864 */
8865 I915_WRITE(GEN6_UCGCTL2,
8866 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8867 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8868
8869 /*
8870 * According to the spec the following bits should be
8871 * set in order to enable memory self-refresh and fbc:
8872 * The bit21 and bit22 of 0x42000
8873 * The bit21 and bit22 of 0x42004
8874 * The bit5 and bit7 of 0x42020
8875 * The bit14 of 0x70180
8876 * The bit14 of 0x71180
8877 */
8878 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8879 I915_READ(ILK_DISPLAY_CHICKEN1) |
8880 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8881 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8882 I915_READ(ILK_DISPLAY_CHICKEN2) |
8883 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8884 I915_WRITE(ILK_DSPCLK_GATE,
8885 I915_READ(ILK_DSPCLK_GATE) |
8886 ILK_DPARB_CLK_GATE |
8887 ILK_DPFD_CLK_GATE);
8888
8889 for_each_pipe(pipe) {
8890 I915_WRITE(DSPCNTR(pipe),
8891 I915_READ(DSPCNTR(pipe)) |
8892 DISPPLANE_TRICKLE_FEED_DISABLE);
8893 intel_flush_display_plane(dev_priv, pipe);
8894 }
8895 }
8896
8897 static void ivybridge_init_clock_gating(struct drm_device *dev)
8898 {
8899 struct drm_i915_private *dev_priv = dev->dev_private;
8900 int pipe;
8901 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8902
8903 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8904
8905 I915_WRITE(WM3_LP_ILK, 0);
8906 I915_WRITE(WM2_LP_ILK, 0);
8907 I915_WRITE(WM1_LP_ILK, 0);
8908
8909 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8910 * This implements the WaDisableRCZUnitClockGating workaround.
8911 */
8912 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8913
8914 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8915
8916 I915_WRITE(IVB_CHICKEN3,
8917 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8918 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8919
8920 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8921 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8922 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8923
8924 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8925 I915_WRITE(GEN7_L3CNTLREG1,
8926 GEN7_WA_FOR_GEN7_L3_CONTROL);
8927 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8928 GEN7_WA_L3_CHICKEN_MODE);
8929
8930 /* This is required by WaCatErrorRejectionIssue */
8931 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8932 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8933 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8934
8935 for_each_pipe(pipe) {
8936 I915_WRITE(DSPCNTR(pipe),
8937 I915_READ(DSPCNTR(pipe)) |
8938 DISPPLANE_TRICKLE_FEED_DISABLE);
8939 intel_flush_display_plane(dev_priv, pipe);
8940 }
8941 }
8942
8943 static void valleyview_init_clock_gating(struct drm_device *dev)
8944 {
8945 struct drm_i915_private *dev_priv = dev->dev_private;
8946 int pipe;
8947 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8948
8949 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8950
8951 I915_WRITE(WM3_LP_ILK, 0);
8952 I915_WRITE(WM2_LP_ILK, 0);
8953 I915_WRITE(WM1_LP_ILK, 0);
8954
8955 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8956 * This implements the WaDisableRCZUnitClockGating workaround.
8957 */
8958 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8959
8960 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8961
8962 I915_WRITE(IVB_CHICKEN3,
8963 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8964 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8965
8966 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8967 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8968 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8969
8970 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8971 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
8972 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
8973
8974 /* This is required by WaCatErrorRejectionIssue */
8975 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8976 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8977 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8978
8979 for_each_pipe(pipe) {
8980 I915_WRITE(DSPCNTR(pipe),
8981 I915_READ(DSPCNTR(pipe)) |
8982 DISPPLANE_TRICKLE_FEED_DISABLE);
8983 intel_flush_display_plane(dev_priv, pipe);
8984 }
8985
8986 I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
8987 (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
8988 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
8989 }
8990
8991 static void g4x_init_clock_gating(struct drm_device *dev)
8992 {
8993 struct drm_i915_private *dev_priv = dev->dev_private;
8994 uint32_t dspclk_gate;
8995
8996 I915_WRITE(RENCLK_GATE_D1, 0);
8997 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8998 GS_UNIT_CLOCK_GATE_DISABLE |
8999 CL_UNIT_CLOCK_GATE_DISABLE);
9000 I915_WRITE(RAMCLK_GATE_D, 0);
9001 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9002 OVRUNIT_CLOCK_GATE_DISABLE |
9003 OVCUNIT_CLOCK_GATE_DISABLE;
9004 if (IS_GM45(dev))
9005 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9006 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9007 }
9008
9009 static void crestline_init_clock_gating(struct drm_device *dev)
9010 {
9011 struct drm_i915_private *dev_priv = dev->dev_private;
9012
9013 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9014 I915_WRITE(RENCLK_GATE_D2, 0);
9015 I915_WRITE(DSPCLK_GATE_D, 0);
9016 I915_WRITE(RAMCLK_GATE_D, 0);
9017 I915_WRITE16(DEUC, 0);
9018 }
9019
9020 static void broadwater_init_clock_gating(struct drm_device *dev)
9021 {
9022 struct drm_i915_private *dev_priv = dev->dev_private;
9023
9024 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9025 I965_RCC_CLOCK_GATE_DISABLE |
9026 I965_RCPB_CLOCK_GATE_DISABLE |
9027 I965_ISC_CLOCK_GATE_DISABLE |
9028 I965_FBC_CLOCK_GATE_DISABLE);
9029 I915_WRITE(RENCLK_GATE_D2, 0);
9030 }
9031
9032 static void gen3_init_clock_gating(struct drm_device *dev)
9033 {
9034 struct drm_i915_private *dev_priv = dev->dev_private;
9035 u32 dstate = I915_READ(D_STATE);
9036
9037 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9038 DSTATE_DOT_CLOCK_GATING;
9039 I915_WRITE(D_STATE, dstate);
9040 }
9041
9042 static void i85x_init_clock_gating(struct drm_device *dev)
9043 {
9044 struct drm_i915_private *dev_priv = dev->dev_private;
9045
9046 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9047 }
9048
9049 static void i830_init_clock_gating(struct drm_device *dev)
9050 {
9051 struct drm_i915_private *dev_priv = dev->dev_private;
9052
9053 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
9054 }
9055
9056 static void ibx_init_clock_gating(struct drm_device *dev)
9057 {
9058 struct drm_i915_private *dev_priv = dev->dev_private;
9059
9060 /*
9061 * On Ibex Peak and Cougar Point, we need to disable clock
9062 * gating for the panel power sequencer or it will fail to
9063 * start up when no ports are active.
9064 */
9065 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9066 }
9067
9068 static void cpt_init_clock_gating(struct drm_device *dev)
9069 {
9070 struct drm_i915_private *dev_priv = dev->dev_private;
9071 int pipe;
9072
9073 /*
9074 * On Ibex Peak and Cougar Point, we need to disable clock
9075 * gating for the panel power sequencer or it will fail to
9076 * start up when no ports are active.
9077 */
9078 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9079 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
9080 DPLS_EDP_PPS_FIX_DIS);
9081 /* Without this, mode sets may fail silently on FDI */
9082 for_each_pipe(pipe)
9083 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
9084 }
9085
9086 static void ironlake_teardown_rc6(struct drm_device *dev)
9087 {
9088 struct drm_i915_private *dev_priv = dev->dev_private;
9089
9090 if (dev_priv->renderctx) {
9091 i915_gem_object_unpin(dev_priv->renderctx);
9092 drm_gem_object_unreference(&dev_priv->renderctx->base);
9093 dev_priv->renderctx = NULL;
9094 }
9095
9096 if (dev_priv->pwrctx) {
9097 i915_gem_object_unpin(dev_priv->pwrctx);
9098 drm_gem_object_unreference(&dev_priv->pwrctx->base);
9099 dev_priv->pwrctx = NULL;
9100 }
9101 }
9102
9103 static void ironlake_disable_rc6(struct drm_device *dev)
9104 {
9105 struct drm_i915_private *dev_priv = dev->dev_private;
9106
9107 if (I915_READ(PWRCTXA)) {
9108 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
9109 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
9110 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
9111 50);
9112
9113 I915_WRITE(PWRCTXA, 0);
9114 POSTING_READ(PWRCTXA);
9115
9116 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9117 POSTING_READ(RSTDBYCTL);
9118 }
9119
9120 ironlake_teardown_rc6(dev);
9121 }
9122
9123 static int ironlake_setup_rc6(struct drm_device *dev)
9124 {
9125 struct drm_i915_private *dev_priv = dev->dev_private;
9126
9127 if (dev_priv->renderctx == NULL)
9128 dev_priv->renderctx = intel_alloc_context_page(dev);
9129 if (!dev_priv->renderctx)
9130 return -ENOMEM;
9131
9132 if (dev_priv->pwrctx == NULL)
9133 dev_priv->pwrctx = intel_alloc_context_page(dev);
9134 if (!dev_priv->pwrctx) {
9135 ironlake_teardown_rc6(dev);
9136 return -ENOMEM;
9137 }
9138
9139 return 0;
9140 }
9141
9142 void ironlake_enable_rc6(struct drm_device *dev)
9143 {
9144 struct drm_i915_private *dev_priv = dev->dev_private;
9145 int ret;
9146
9147 /* rc6 disabled by default due to repeated reports of hanging during
9148 * boot and resume.
9149 */
9150 if (!intel_enable_rc6(dev))
9151 return;
9152
9153 mutex_lock(&dev->struct_mutex);
9154 ret = ironlake_setup_rc6(dev);
9155 if (ret) {
9156 mutex_unlock(&dev->struct_mutex);
9157 return;
9158 }
9159
9160 /*
9161 * GPU can automatically power down the render unit if given a page
9162 * to save state.
9163 */
9164 ret = BEGIN_LP_RING(6);
9165 if (ret) {
9166 ironlake_teardown_rc6(dev);
9167 mutex_unlock(&dev->struct_mutex);
9168 return;
9169 }
9170
9171 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
9172 OUT_RING(MI_SET_CONTEXT);
9173 OUT_RING(dev_priv->renderctx->gtt_offset |
9174 MI_MM_SPACE_GTT |
9175 MI_SAVE_EXT_STATE_EN |
9176 MI_RESTORE_EXT_STATE_EN |
9177 MI_RESTORE_INHIBIT);
9178 OUT_RING(MI_SUSPEND_FLUSH);
9179 OUT_RING(MI_NOOP);
9180 OUT_RING(MI_FLUSH);
9181 ADVANCE_LP_RING();
9182
9183 /*
9184 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
9185 * does an implicit flush, combined with MI_FLUSH above, it should be
9186 * safe to assume that renderctx is valid
9187 */
9188 ret = intel_wait_ring_idle(LP_RING(dev_priv));
9189 if (ret) {
9190 DRM_ERROR("failed to enable ironlake power power savings\n");
9191 ironlake_teardown_rc6(dev);
9192 mutex_unlock(&dev->struct_mutex);
9193 return;
9194 }
9195
9196 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
9197 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9198 mutex_unlock(&dev->struct_mutex);
9199 }
9200
9201 void intel_init_clock_gating(struct drm_device *dev)
9202 {
9203 struct drm_i915_private *dev_priv = dev->dev_private;
9204
9205 dev_priv->display.init_clock_gating(dev);
9206
9207 if (dev_priv->display.init_pch_clock_gating)
9208 dev_priv->display.init_pch_clock_gating(dev);
9209 }
9210
9211 /* Set up chip specific display functions */
9212 static void intel_init_display(struct drm_device *dev)
9213 {
9214 struct drm_i915_private *dev_priv = dev->dev_private;
9215
9216 /* We always want a DPMS function */
9217 if (HAS_PCH_SPLIT(dev)) {
9218 dev_priv->display.dpms = ironlake_crtc_dpms;
9219 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9220 dev_priv->display.update_plane = ironlake_update_plane;
9221 } else {
9222 dev_priv->display.dpms = i9xx_crtc_dpms;
9223 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9224 dev_priv->display.update_plane = i9xx_update_plane;
9225 }
9226
9227 if (I915_HAS_FBC(dev)) {
9228 if (HAS_PCH_SPLIT(dev)) {
9229 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
9230 dev_priv->display.enable_fbc = ironlake_enable_fbc;
9231 dev_priv->display.disable_fbc = ironlake_disable_fbc;
9232 } else if (IS_GM45(dev)) {
9233 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
9234 dev_priv->display.enable_fbc = g4x_enable_fbc;
9235 dev_priv->display.disable_fbc = g4x_disable_fbc;
9236 } else if (IS_CRESTLINE(dev)) {
9237 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
9238 dev_priv->display.enable_fbc = i8xx_enable_fbc;
9239 dev_priv->display.disable_fbc = i8xx_disable_fbc;
9240 }
9241 /* 855GM needs testing */
9242 }
9243
9244 /* Returns the core display clock speed */
9245 if (IS_VALLEYVIEW(dev))
9246 dev_priv->display.get_display_clock_speed =
9247 valleyview_get_display_clock_speed;
9248 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9249 dev_priv->display.get_display_clock_speed =
9250 i945_get_display_clock_speed;
9251 else if (IS_I915G(dev))
9252 dev_priv->display.get_display_clock_speed =
9253 i915_get_display_clock_speed;
9254 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9255 dev_priv->display.get_display_clock_speed =
9256 i9xx_misc_get_display_clock_speed;
9257 else if (IS_I915GM(dev))
9258 dev_priv->display.get_display_clock_speed =
9259 i915gm_get_display_clock_speed;
9260 else if (IS_I865G(dev))
9261 dev_priv->display.get_display_clock_speed =
9262 i865_get_display_clock_speed;
9263 else if (IS_I85X(dev))
9264 dev_priv->display.get_display_clock_speed =
9265 i855_get_display_clock_speed;
9266 else /* 852, 830 */
9267 dev_priv->display.get_display_clock_speed =
9268 i830_get_display_clock_speed;
9269
9270 /* For FIFO watermark updates */
9271 if (HAS_PCH_SPLIT(dev)) {
9272 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9273 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9274
9275 /* IVB configs may use multi-threaded forcewake */
9276 if (IS_IVYBRIDGE(dev)) {
9277 u32 ecobus;
9278
9279 /* A small trick here - if the bios hasn't configured MT forcewake,
9280 * and if the device is in RC6, then force_wake_mt_get will not wake
9281 * the device and the ECOBUS read will return zero. Which will be
9282 * (correctly) interpreted by the test below as MT forcewake being
9283 * disabled.
9284 */
9285 mutex_lock(&dev->struct_mutex);
9286 __gen6_gt_force_wake_mt_get(dev_priv);
9287 ecobus = I915_READ_NOTRACE(ECOBUS);
9288 __gen6_gt_force_wake_mt_put(dev_priv);
9289 mutex_unlock(&dev->struct_mutex);
9290
9291 if (ecobus & FORCEWAKE_MT_ENABLE) {
9292 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9293 dev_priv->display.force_wake_get =
9294 __gen6_gt_force_wake_mt_get;
9295 dev_priv->display.force_wake_put =
9296 __gen6_gt_force_wake_mt_put;
9297 }
9298 }
9299
9300 if (HAS_PCH_IBX(dev))
9301 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9302 else if (HAS_PCH_CPT(dev))
9303 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9304
9305 if (IS_GEN5(dev)) {
9306 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9307 dev_priv->display.update_wm = ironlake_update_wm;
9308 else {
9309 DRM_DEBUG_KMS("Failed to get proper latency. "
9310 "Disable CxSR\n");
9311 dev_priv->display.update_wm = NULL;
9312 }
9313 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9314 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9315 dev_priv->display.write_eld = ironlake_write_eld;
9316 } else if (IS_GEN6(dev)) {
9317 if (SNB_READ_WM0_LATENCY()) {
9318 dev_priv->display.update_wm = sandybridge_update_wm;
9319 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9320 } else {
9321 DRM_DEBUG_KMS("Failed to read display plane latency. "
9322 "Disable CxSR\n");
9323 dev_priv->display.update_wm = NULL;
9324 }
9325 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9326 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9327 dev_priv->display.write_eld = ironlake_write_eld;
9328 } else if (IS_IVYBRIDGE(dev)) {
9329 /* FIXME: detect B0+ stepping and use auto training */
9330 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9331 if (SNB_READ_WM0_LATENCY()) {
9332 dev_priv->display.update_wm = sandybridge_update_wm;
9333 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9334 } else {
9335 DRM_DEBUG_KMS("Failed to read display plane latency. "
9336 "Disable CxSR\n");
9337 dev_priv->display.update_wm = NULL;
9338 }
9339 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9340 dev_priv->display.write_eld = ironlake_write_eld;
9341 } else
9342 dev_priv->display.update_wm = NULL;
9343 } else if (IS_VALLEYVIEW(dev)) {
9344 dev_priv->display.update_wm = valleyview_update_wm;
9345 dev_priv->display.init_clock_gating =
9346 valleyview_init_clock_gating;
9347 dev_priv->display.force_wake_get = vlv_force_wake_get;
9348 dev_priv->display.force_wake_put = vlv_force_wake_put;
9349 } else if (IS_PINEVIEW(dev)) {
9350 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9351 dev_priv->is_ddr3,
9352 dev_priv->fsb_freq,
9353 dev_priv->mem_freq)) {
9354 DRM_INFO("failed to find known CxSR latency "
9355 "(found ddr%s fsb freq %d, mem freq %d), "
9356 "disabling CxSR\n",
9357 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9358 dev_priv->fsb_freq, dev_priv->mem_freq);
9359 /* Disable CxSR and never update its watermark again */
9360 pineview_disable_cxsr(dev);
9361 dev_priv->display.update_wm = NULL;
9362 } else
9363 dev_priv->display.update_wm = pineview_update_wm;
9364 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9365 } else if (IS_G4X(dev)) {
9366 dev_priv->display.write_eld = g4x_write_eld;
9367 dev_priv->display.update_wm = g4x_update_wm;
9368 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9369 } else if (IS_GEN4(dev)) {
9370 dev_priv->display.update_wm = i965_update_wm;
9371 if (IS_CRESTLINE(dev))
9372 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9373 else if (IS_BROADWATER(dev))
9374 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9375 } else if (IS_GEN3(dev)) {
9376 dev_priv->display.update_wm = i9xx_update_wm;
9377 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9378 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9379 } else if (IS_I865G(dev)) {
9380 dev_priv->display.update_wm = i830_update_wm;
9381 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9382 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9383 } else if (IS_I85X(dev)) {
9384 dev_priv->display.update_wm = i9xx_update_wm;
9385 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9386 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9387 } else {
9388 dev_priv->display.update_wm = i830_update_wm;
9389 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9390 if (IS_845G(dev))
9391 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9392 else
9393 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9394 }
9395
9396 /* Default just returns -ENODEV to indicate unsupported */
9397 dev_priv->display.queue_flip = intel_default_queue_flip;
9398
9399 switch (INTEL_INFO(dev)->gen) {
9400 case 2:
9401 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9402 break;
9403
9404 case 3:
9405 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9406 break;
9407
9408 case 4:
9409 case 5:
9410 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9411 break;
9412
9413 case 6:
9414 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9415 break;
9416 case 7:
9417 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9418 break;
9419 }
9420 }
9421
9422 /*
9423 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9424 * resume, or other times. This quirk makes sure that's the case for
9425 * affected systems.
9426 */
9427 static void quirk_pipea_force(struct drm_device *dev)
9428 {
9429 struct drm_i915_private *dev_priv = dev->dev_private;
9430
9431 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9432 DRM_INFO("applying pipe a force quirk\n");
9433 }
9434
9435 /*
9436 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9437 */
9438 static void quirk_ssc_force_disable(struct drm_device *dev)
9439 {
9440 struct drm_i915_private *dev_priv = dev->dev_private;
9441 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9442 DRM_INFO("applying lvds SSC disable quirk\n");
9443 }
9444
9445 /*
9446 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9447 * brightness value
9448 */
9449 static void quirk_invert_brightness(struct drm_device *dev)
9450 {
9451 struct drm_i915_private *dev_priv = dev->dev_private;
9452 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9453 DRM_INFO("applying inverted panel brightness quirk\n");
9454 }
9455
9456 struct intel_quirk {
9457 int device;
9458 int subsystem_vendor;
9459 int subsystem_device;
9460 void (*hook)(struct drm_device *dev);
9461 };
9462
9463 struct intel_quirk intel_quirks[] = {
9464 /* HP Mini needs pipe A force quirk (LP: #322104) */
9465 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9466
9467 /* Thinkpad R31 needs pipe A force quirk */
9468 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9469 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9470 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9471
9472 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9473 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9474 /* ThinkPad X40 needs pipe A force quirk */
9475
9476 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9477 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9478
9479 /* 855 & before need to leave pipe A & dpll A up */
9480 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9481 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9482
9483 /* Lenovo U160 cannot use SSC on LVDS */
9484 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9485
9486 /* Sony Vaio Y cannot use SSC on LVDS */
9487 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9488
9489 /* Acer Aspire 5734Z must invert backlight brightness */
9490 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9491 };
9492
9493 static void intel_init_quirks(struct drm_device *dev)
9494 {
9495 struct pci_dev *d = dev->pdev;
9496 int i;
9497
9498 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9499 struct intel_quirk *q = &intel_quirks[i];
9500
9501 if (d->device == q->device &&
9502 (d->subsystem_vendor == q->subsystem_vendor ||
9503 q->subsystem_vendor == PCI_ANY_ID) &&
9504 (d->subsystem_device == q->subsystem_device ||
9505 q->subsystem_device == PCI_ANY_ID))
9506 q->hook(dev);
9507 }
9508 }
9509
9510 /* Disable the VGA plane that we never use */
9511 static void i915_disable_vga(struct drm_device *dev)
9512 {
9513 struct drm_i915_private *dev_priv = dev->dev_private;
9514 u8 sr1;
9515 u32 vga_reg;
9516
9517 if (HAS_PCH_SPLIT(dev))
9518 vga_reg = CPU_VGACNTRL;
9519 else
9520 vga_reg = VGACNTRL;
9521
9522 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9523 outb(SR01, VGA_SR_INDEX);
9524 sr1 = inb(VGA_SR_DATA);
9525 outb(sr1 | 1<<5, VGA_SR_DATA);
9526 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9527 udelay(300);
9528
9529 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9530 POSTING_READ(vga_reg);
9531 }
9532
9533 void intel_modeset_init(struct drm_device *dev)
9534 {
9535 struct drm_i915_private *dev_priv = dev->dev_private;
9536 int i, ret;
9537
9538 drm_mode_config_init(dev);
9539
9540 dev->mode_config.min_width = 0;
9541 dev->mode_config.min_height = 0;
9542
9543 dev->mode_config.preferred_depth = 24;
9544 dev->mode_config.prefer_shadow = 1;
9545
9546 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9547
9548 intel_init_quirks(dev);
9549
9550 intel_init_display(dev);
9551
9552 if (IS_GEN2(dev)) {
9553 dev->mode_config.max_width = 2048;
9554 dev->mode_config.max_height = 2048;
9555 } else if (IS_GEN3(dev)) {
9556 dev->mode_config.max_width = 4096;
9557 dev->mode_config.max_height = 4096;
9558 } else {
9559 dev->mode_config.max_width = 8192;
9560 dev->mode_config.max_height = 8192;
9561 }
9562 dev->mode_config.fb_base = dev->agp->base;
9563
9564 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9565 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9566
9567 for (i = 0; i < dev_priv->num_pipe; i++) {
9568 intel_crtc_init(dev, i);
9569 ret = intel_plane_init(dev, i);
9570 if (ret)
9571 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9572 }
9573
9574 /* Just disable it once at startup */
9575 i915_disable_vga(dev);
9576 intel_setup_outputs(dev);
9577
9578 intel_init_clock_gating(dev);
9579
9580 if (IS_IRONLAKE_M(dev)) {
9581 ironlake_enable_drps(dev);
9582 intel_init_emon(dev);
9583 }
9584
9585 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9586 gen6_enable_rps(dev_priv);
9587 gen6_update_ring_freq(dev_priv);
9588 }
9589
9590 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9591 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9592 (unsigned long)dev);
9593 }
9594
9595 void intel_modeset_gem_init(struct drm_device *dev)
9596 {
9597 if (IS_IRONLAKE_M(dev))
9598 ironlake_enable_rc6(dev);
9599
9600 intel_setup_overlay(dev);
9601 }
9602
9603 void intel_modeset_cleanup(struct drm_device *dev)
9604 {
9605 struct drm_i915_private *dev_priv = dev->dev_private;
9606 struct drm_crtc *crtc;
9607 struct intel_crtc *intel_crtc;
9608
9609 drm_kms_helper_poll_fini(dev);
9610 mutex_lock(&dev->struct_mutex);
9611
9612 intel_unregister_dsm_handler();
9613
9614
9615 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9616 /* Skip inactive CRTCs */
9617 if (!crtc->fb)
9618 continue;
9619
9620 intel_crtc = to_intel_crtc(crtc);
9621 intel_increase_pllclock(crtc);
9622 }
9623
9624 intel_disable_fbc(dev);
9625
9626 if (IS_IRONLAKE_M(dev))
9627 ironlake_disable_drps(dev);
9628 if (IS_GEN6(dev) || IS_GEN7(dev))
9629 gen6_disable_rps(dev);
9630
9631 if (IS_IRONLAKE_M(dev))
9632 ironlake_disable_rc6(dev);
9633
9634 if (IS_VALLEYVIEW(dev))
9635 vlv_init_dpio(dev);
9636
9637 mutex_unlock(&dev->struct_mutex);
9638
9639 /* Disable the irq before mode object teardown, for the irq might
9640 * enqueue unpin/hotplug work. */
9641 drm_irq_uninstall(dev);
9642 cancel_work_sync(&dev_priv->hotplug_work);
9643 cancel_work_sync(&dev_priv->rps_work);
9644
9645 /* flush any delayed tasks or pending work */
9646 flush_scheduled_work();
9647
9648 /* Shut off idle work before the crtcs get freed. */
9649 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9650 intel_crtc = to_intel_crtc(crtc);
9651 del_timer_sync(&intel_crtc->idle_timer);
9652 }
9653 del_timer_sync(&dev_priv->idle_timer);
9654 cancel_work_sync(&dev_priv->idle_work);
9655
9656 drm_mode_config_cleanup(dev);
9657 }
9658
9659 /*
9660 * Return which encoder is currently attached for connector.
9661 */
9662 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9663 {
9664 return &intel_attached_encoder(connector)->base;
9665 }
9666
9667 void intel_connector_attach_encoder(struct intel_connector *connector,
9668 struct intel_encoder *encoder)
9669 {
9670 connector->encoder = encoder;
9671 drm_mode_connector_attach_encoder(&connector->base,
9672 &encoder->base);
9673 }
9674
9675 /*
9676 * set vga decode state - true == enable VGA decode
9677 */
9678 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9679 {
9680 struct drm_i915_private *dev_priv = dev->dev_private;
9681 u16 gmch_ctrl;
9682
9683 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9684 if (state)
9685 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9686 else
9687 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9688 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9689 return 0;
9690 }
9691
9692 #ifdef CONFIG_DEBUG_FS
9693 #include <linux/seq_file.h>
9694
9695 struct intel_display_error_state {
9696 struct intel_cursor_error_state {
9697 u32 control;
9698 u32 position;
9699 u32 base;
9700 u32 size;
9701 } cursor[2];
9702
9703 struct intel_pipe_error_state {
9704 u32 conf;
9705 u32 source;
9706
9707 u32 htotal;
9708 u32 hblank;
9709 u32 hsync;
9710 u32 vtotal;
9711 u32 vblank;
9712 u32 vsync;
9713 } pipe[2];
9714
9715 struct intel_plane_error_state {
9716 u32 control;
9717 u32 stride;
9718 u32 size;
9719 u32 pos;
9720 u32 addr;
9721 u32 surface;
9722 u32 tile_offset;
9723 } plane[2];
9724 };
9725
9726 struct intel_display_error_state *
9727 intel_display_capture_error_state(struct drm_device *dev)
9728 {
9729 drm_i915_private_t *dev_priv = dev->dev_private;
9730 struct intel_display_error_state *error;
9731 int i;
9732
9733 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9734 if (error == NULL)
9735 return NULL;
9736
9737 for (i = 0; i < 2; i++) {
9738 error->cursor[i].control = I915_READ(CURCNTR(i));
9739 error->cursor[i].position = I915_READ(CURPOS(i));
9740 error->cursor[i].base = I915_READ(CURBASE(i));
9741
9742 error->plane[i].control = I915_READ(DSPCNTR(i));
9743 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9744 error->plane[i].size = I915_READ(DSPSIZE(i));
9745 error->plane[i].pos = I915_READ(DSPPOS(i));
9746 error->plane[i].addr = I915_READ(DSPADDR(i));
9747 if (INTEL_INFO(dev)->gen >= 4) {
9748 error->plane[i].surface = I915_READ(DSPSURF(i));
9749 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9750 }
9751
9752 error->pipe[i].conf = I915_READ(PIPECONF(i));
9753 error->pipe[i].source = I915_READ(PIPESRC(i));
9754 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9755 error->pipe[i].hblank = I915_READ(HBLANK(i));
9756 error->pipe[i].hsync = I915_READ(HSYNC(i));
9757 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9758 error->pipe[i].vblank = I915_READ(VBLANK(i));
9759 error->pipe[i].vsync = I915_READ(VSYNC(i));
9760 }
9761
9762 return error;
9763 }
9764
9765 void
9766 intel_display_print_error_state(struct seq_file *m,
9767 struct drm_device *dev,
9768 struct intel_display_error_state *error)
9769 {
9770 int i;
9771
9772 for (i = 0; i < 2; i++) {
9773 seq_printf(m, "Pipe [%d]:\n", i);
9774 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9775 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9776 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9777 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9778 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9779 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9780 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9781 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9782
9783 seq_printf(m, "Plane [%d]:\n", i);
9784 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9785 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9786 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9787 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9788 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9789 if (INTEL_INFO(dev)->gen >= 4) {
9790 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9791 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9792 }
9793
9794 seq_printf(m, "Cursor [%d]:\n", i);
9795 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9796 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9797 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9798 }
9799 }
9800 #endif
This page took 0.451071 seconds and 5 git commands to generate.