769b864465a989201339870db2eb122770886c72
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57 int min, max;
58 } intel_range_t;
59
60 typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 930000, .max = 1400000 },
94 .n = { .min = 3, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 930000, .max = 1400000 },
107 .n = { .min = 3, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 930000, .max = 1400000 },
120 .n = { .min = 3, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313 /*
314 * These are the data rate limits (measured in fast clocks)
315 * since those are the strictest limits we have. The fast
316 * clock and actual rate limits are more relaxed, so checking
317 * them would make no difference.
318 */
319 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320 .vco = { .min = 4000000, .max = 6000000 },
321 .n = { .min = 1, .max = 7 },
322 .m1 = { .min = 2, .max = 3 },
323 .m2 = { .min = 11, .max = 156 },
324 .p1 = { .min = 2, .max = 3 },
325 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330 clock->m = clock->m1 * clock->m2;
331 clock->p = clock->p1 * clock->p2;
332 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337 * Returns whether any output on the specified pipe is of the specified type
338 */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341 struct drm_device *dev = crtc->dev;
342 struct intel_encoder *encoder;
343
344 for_each_encoder_on_crtc(dev, crtc, encoder)
345 if (encoder->type == type)
346 return true;
347
348 return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352 int refclk)
353 {
354 struct drm_device *dev = crtc->dev;
355 const intel_limit_t *limit;
356
357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358 if (intel_is_dual_link_lvds(dev)) {
359 if (refclk == 100000)
360 limit = &intel_limits_ironlake_dual_lvds_100m;
361 else
362 limit = &intel_limits_ironlake_dual_lvds;
363 } else {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_single_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_single_lvds;
368 }
369 } else
370 limit = &intel_limits_ironlake_dac;
371
372 return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377 struct drm_device *dev = crtc->dev;
378 const intel_limit_t *limit;
379
380 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381 if (intel_is_dual_link_lvds(dev))
382 limit = &intel_limits_g4x_dual_channel_lvds;
383 else
384 limit = &intel_limits_g4x_single_channel_lvds;
385 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387 limit = &intel_limits_g4x_hdmi;
388 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389 limit = &intel_limits_g4x_sdvo;
390 } else /* The option is for other outputs */
391 limit = &intel_limits_i9xx_sdvo;
392
393 return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398 struct drm_device *dev = crtc->dev;
399 const intel_limit_t *limit;
400
401 if (HAS_PCH_SPLIT(dev))
402 limit = intel_ironlake_limit(crtc, refclk);
403 else if (IS_G4X(dev)) {
404 limit = intel_g4x_limit(crtc);
405 } else if (IS_PINEVIEW(dev)) {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_pineview_lvds;
408 else
409 limit = &intel_limits_pineview_sdvo;
410 } else if (IS_VALLEYVIEW(dev)) {
411 limit = &intel_limits_vlv;
412 } else if (!IS_GEN2(dev)) {
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414 limit = &intel_limits_i9xx_lvds;
415 else
416 limit = &intel_limits_i9xx_sdvo;
417 } else {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i8xx_lvds;
420 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421 limit = &intel_limits_i8xx_dvo;
422 else
423 limit = &intel_limits_i8xx_dac;
424 }
425 return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431 clock->m = clock->m2 + 2;
432 clock->p = clock->p1 * clock->p2;
433 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444 clock->m = i9xx_dpll_compute_m(clock);
445 clock->p = clock->p1 * clock->p2;
446 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452 * Returns whether the given set of divisors are valid for a given refclk with
453 * the given connectors.
454 */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457 const intel_limit_t *limit,
458 const intel_clock_t *clock)
459 {
460 if (clock->n < limit->n.min || limit->n.max < clock->n)
461 INTELPllInvalid("n out of range\n");
462 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
463 INTELPllInvalid("p1 out of range\n");
464 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
465 INTELPllInvalid("m2 out of range\n");
466 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
467 INTELPllInvalid("m1 out of range\n");
468
469 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470 if (clock->m1 <= clock->m2)
471 INTELPllInvalid("m1 <= m2\n");
472
473 if (!IS_VALLEYVIEW(dev)) {
474 if (clock->p < limit->p.min || limit->p.max < clock->p)
475 INTELPllInvalid("p out of range\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 }
479
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 struct drm_device *dev = crtc->dev;
674 intel_clock_t clock;
675 unsigned int bestppm = 1000000;
676 /* min update 19.2 MHz */
677 int max_n = min(limit->n.max, refclk / 19200);
678 bool found = false;
679
680 target *= 5; /* fast clock */
681
682 memset(best_clock, 0, sizeof(*best_clock));
683
684 /* based on hardware requirement, prefer smaller n to precision */
685 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689 clock.p = clock.p1 * clock.p2;
690 /* based on hardware requirement, prefer bigger m1,m2 values */
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692 unsigned int ppm, diff;
693
694 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695 refclk * clock.m1);
696
697 vlv_clock(refclk, &clock);
698
699 if (!intel_PLL_is_valid(dev, limit,
700 &clock))
701 continue;
702
703 diff = abs(clock.dot - target);
704 ppm = div_u64(1000000ULL * diff, target);
705
706 if (ppm < 100 && clock.p > best_clock->p) {
707 bestppm = 0;
708 *best_clock = clock;
709 found = true;
710 }
711
712 if (bestppm >= 10 && ppm < bestppm - 10) {
713 bestppm = ppm;
714 *best_clock = clock;
715 found = true;
716 }
717 }
718 }
719 }
720 }
721
722 return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729 /* Be paranoid as we can arrive here with only partial
730 * state retrieved from the hardware during setup.
731 *
732 * We can ditch the adjusted_mode.crtc_clock check as soon
733 * as Haswell has gained clock readout/fastboot support.
734 *
735 * We can ditch the crtc->fb check as soon as we can
736 * properly reconstruct framebuffers.
737 */
738 return intel_crtc->active && crtc->fb &&
739 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743 enum pipe pipe)
744 {
745 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748 return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 u32 frame, frame_reg = PIPEFRAME(pipe);
755
756 frame = I915_READ(frame_reg);
757
758 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763 * intel_wait_for_vblank - wait for vblank on a given pipe
764 * @dev: drm device
765 * @pipe: pipe to wait for
766 *
767 * Wait for vblank to occur on a given pipe. Needed for various bits of
768 * mode setting code.
769 */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772 struct drm_i915_private *dev_priv = dev->dev_private;
773 int pipestat_reg = PIPESTAT(pipe);
774
775 if (INTEL_INFO(dev)->gen >= 5) {
776 ironlake_wait_for_vblank(dev, pipe);
777 return;
778 }
779
780 /* Clear existing vblank status. Note this will clear any other
781 * sticky status fields as well.
782 *
783 * This races with i915_driver_irq_handler() with the result
784 * that either function could miss a vblank event. Here it is not
785 * fatal, as we will either wait upon the next vblank interrupt or
786 * timeout. Generally speaking intel_wait_for_vblank() is only
787 * called during modeset at which time the GPU should be idle and
788 * should *not* be performing page flips and thus not waiting on
789 * vblanks...
790 * Currently, the result of us stealing a vblank from the irq
791 * handler is that a single frame will be skipped during swapbuffers.
792 */
793 I915_WRITE(pipestat_reg,
794 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796 /* Wait for vblank interrupt bit to set */
797 if (wait_for(I915_READ(pipestat_reg) &
798 PIPE_VBLANK_INTERRUPT_STATUS,
799 50))
800 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 u32 reg = PIPEDSL(pipe);
807 u32 line1, line2;
808 u32 line_mask;
809
810 if (IS_GEN2(dev))
811 line_mask = DSL_LINEMASK_GEN2;
812 else
813 line_mask = DSL_LINEMASK_GEN3;
814
815 line1 = I915_READ(reg) & line_mask;
816 mdelay(5);
817 line2 = I915_READ(reg) & line_mask;
818
819 return line1 == line2;
820 }
821
822 /*
823 * intel_wait_for_pipe_off - wait for pipe to turn off
824 * @dev: drm device
825 * @pipe: pipe to wait for
826 *
827 * After disabling a pipe, we can't wait for vblank in the usual way,
828 * spinning on the vblank interrupt status bit, since we won't actually
829 * see an interrupt when the pipe is disabled.
830 *
831 * On Gen4 and above:
832 * wait for the pipe register state bit to turn off
833 *
834 * Otherwise:
835 * wait for the display line value to settle (it usually
836 * ends up stopping at the start of the next frame).
837 *
838 */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841 struct drm_i915_private *dev_priv = dev->dev_private;
842 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843 pipe);
844
845 if (INTEL_INFO(dev)->gen >= 4) {
846 int reg = PIPECONF(cpu_transcoder);
847
848 /* Wait for the Pipe State to go off */
849 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850 100))
851 WARN(1, "pipe_off wait timed out\n");
852 } else {
853 /* Wait for the display line to settle */
854 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855 WARN(1, "pipe_off wait timed out\n");
856 }
857 }
858
859 /*
860 * ibx_digital_port_connected - is the specified port connected?
861 * @dev_priv: i915 private structure
862 * @port: the port to test
863 *
864 * Returns true if @port is connected, false otherwise.
865 */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867 struct intel_digital_port *port)
868 {
869 u32 bit;
870
871 if (HAS_PCH_IBX(dev_priv->dev)) {
872 switch(port->port) {
873 case PORT_B:
874 bit = SDE_PORTB_HOTPLUG;
875 break;
876 case PORT_C:
877 bit = SDE_PORTC_HOTPLUG;
878 break;
879 case PORT_D:
880 bit = SDE_PORTD_HOTPLUG;
881 break;
882 default:
883 return true;
884 }
885 } else {
886 switch(port->port) {
887 case PORT_B:
888 bit = SDE_PORTB_HOTPLUG_CPT;
889 break;
890 case PORT_C:
891 bit = SDE_PORTC_HOTPLUG_CPT;
892 break;
893 case PORT_D:
894 bit = SDE_PORTD_HOTPLUG_CPT;
895 break;
896 default:
897 return true;
898 }
899 }
900
901 return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906 return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911 enum pipe pipe, bool state)
912 {
913 int reg;
914 u32 val;
915 bool cur_state;
916
917 reg = DPLL(pipe);
918 val = I915_READ(reg);
919 cur_state = !!(val & DPLL_VCO_ENABLE);
920 WARN(cur_state != state,
921 "PLL state assertion failure (expected %s, current %s)\n",
922 state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928 u32 val;
929 bool cur_state;
930
931 mutex_lock(&dev_priv->dpio_lock);
932 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933 mutex_unlock(&dev_priv->dpio_lock);
934
935 cur_state = val & DSI_PLL_VCO_EN;
936 WARN(cur_state != state,
937 "DSI PLL state assertion failure (expected %s, current %s)\n",
938 state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948 if (crtc->config.shared_dpll < 0)
949 return NULL;
950
951 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956 struct intel_shared_dpll *pll,
957 bool state)
958 {
959 bool cur_state;
960 struct intel_dpll_hw_state hw_state;
961
962 if (HAS_PCH_LPT(dev_priv->dev)) {
963 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964 return;
965 }
966
967 if (WARN (!pll,
968 "asserting DPLL %s with no DPLL\n", state_string(state)))
969 return;
970
971 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972 WARN(cur_state != state,
973 "%s assertion failure (expected %s, current %s)\n",
974 pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978 enum pipe pipe, bool state)
979 {
980 int reg;
981 u32 val;
982 bool cur_state;
983 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984 pipe);
985
986 if (HAS_DDI(dev_priv->dev)) {
987 /* DDI does not have a specific FDI_TX register */
988 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989 val = I915_READ(reg);
990 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991 } else {
992 reg = FDI_TX_CTL(pipe);
993 val = I915_READ(reg);
994 cur_state = !!(val & FDI_TX_ENABLE);
995 }
996 WARN(cur_state != state,
997 "FDI TX state assertion failure (expected %s, current %s)\n",
998 state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005 {
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = FDI_RX_CTL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & FDI_RX_ENABLE);
1013 WARN(cur_state != state,
1014 "FDI RX state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021 enum pipe pipe)
1022 {
1023 int reg;
1024 u32 val;
1025
1026 /* ILK FDI PLL is always enabled */
1027 if (dev_priv->info->gen == 5)
1028 return;
1029
1030 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031 if (HAS_DDI(dev_priv->dev))
1032 return;
1033
1034 reg = FDI_TX_CTL(pipe);
1035 val = I915_READ(reg);
1036 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040 enum pipe pipe, bool state)
1041 {
1042 int reg;
1043 u32 val;
1044 bool cur_state;
1045
1046 reg = FDI_RX_CTL(pipe);
1047 val = I915_READ(reg);
1048 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049 WARN(cur_state != state,
1050 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051 state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055 enum pipe pipe)
1056 {
1057 int pp_reg, lvds_reg;
1058 u32 val;
1059 enum pipe panel_pipe = PIPE_A;
1060 bool locked = true;
1061
1062 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063 pp_reg = PCH_PP_CONTROL;
1064 lvds_reg = PCH_LVDS;
1065 } else {
1066 pp_reg = PP_CONTROL;
1067 lvds_reg = LVDS;
1068 }
1069
1070 val = I915_READ(pp_reg);
1071 if (!(val & PANEL_POWER_ON) ||
1072 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073 locked = false;
1074
1075 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076 panel_pipe = PIPE_B;
1077
1078 WARN(panel_pipe == pipe && locked,
1079 "panel assertion failure, pipe %c regs locked\n",
1080 pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084 enum pipe pipe, bool state)
1085 {
1086 struct drm_device *dev = dev_priv->dev;
1087 bool cur_state;
1088
1089 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091 else if (IS_845G(dev) || IS_I865G(dev))
1092 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093 else
1094 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096 WARN(cur_state != state,
1097 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098 pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104 enum pipe pipe, bool state)
1105 {
1106 int reg;
1107 u32 val;
1108 bool cur_state;
1109 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110 pipe);
1111
1112 /* if we need the pipe A quirk it must be always on */
1113 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114 state = true;
1115
1116 if (!intel_display_power_enabled(dev_priv->dev,
1117 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118 cur_state = false;
1119 } else {
1120 reg = PIPECONF(cpu_transcoder);
1121 val = I915_READ(reg);
1122 cur_state = !!(val & PIPECONF_ENABLE);
1123 }
1124
1125 WARN(cur_state != state,
1126 "pipe %c assertion failure (expected %s, current %s)\n",
1127 pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131 enum plane plane, bool state)
1132 {
1133 int reg;
1134 u32 val;
1135 bool cur_state;
1136
1137 reg = DSPCNTR(plane);
1138 val = I915_READ(reg);
1139 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140 WARN(cur_state != state,
1141 "plane %c assertion failure (expected %s, current %s)\n",
1142 plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149 enum pipe pipe)
1150 {
1151 struct drm_device *dev = dev_priv->dev;
1152 int reg, i;
1153 u32 val;
1154 int cur_pipe;
1155
1156 /* Primary planes are fixed to pipes on gen4+ */
1157 if (INTEL_INFO(dev)->gen >= 4) {
1158 reg = DSPCNTR(pipe);
1159 val = I915_READ(reg);
1160 WARN((val & DISPLAY_PLANE_ENABLE),
1161 "plane %c assertion failure, should be disabled but not\n",
1162 plane_name(pipe));
1163 return;
1164 }
1165
1166 /* Need to check both planes against the pipe */
1167 for_each_pipe(i) {
1168 reg = DSPCNTR(i);
1169 val = I915_READ(reg);
1170 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171 DISPPLANE_SEL_PIPE_SHIFT;
1172 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174 plane_name(i), pipe_name(pipe));
1175 }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180 {
1181 struct drm_device *dev = dev_priv->dev;
1182 int reg, i;
1183 u32 val;
1184
1185 if (IS_VALLEYVIEW(dev)) {
1186 for (i = 0; i < dev_priv->num_plane; i++) {
1187 reg = SPCNTR(pipe, i);
1188 val = I915_READ(reg);
1189 WARN((val & SP_ENABLE),
1190 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191 sprite_name(pipe, i), pipe_name(pipe));
1192 }
1193 } else if (INTEL_INFO(dev)->gen >= 7) {
1194 reg = SPRCTL(pipe);
1195 val = I915_READ(reg);
1196 WARN((val & SPRITE_ENABLE),
1197 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198 plane_name(pipe), pipe_name(pipe));
1199 } else if (INTEL_INFO(dev)->gen >= 5) {
1200 reg = DVSCNTR(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & DVS_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210 u32 val;
1211 bool enabled;
1212
1213 if (HAS_PCH_LPT(dev_priv->dev)) {
1214 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215 return;
1216 }
1217
1218 val = I915_READ(PCH_DREF_CONTROL);
1219 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220 DREF_SUPERSPREAD_SOURCE_MASK));
1221 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225 enum pipe pipe)
1226 {
1227 int reg;
1228 u32 val;
1229 bool enabled;
1230
1231 reg = PCH_TRANSCONF(pipe);
1232 val = I915_READ(reg);
1233 enabled = !!(val & TRANS_ENABLE);
1234 WARN(enabled,
1235 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236 pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242 if ((val & DP_PORT_EN) == 0)
1243 return false;
1244
1245 if (HAS_PCH_CPT(dev_priv->dev)) {
1246 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249 return false;
1250 } else {
1251 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252 return false;
1253 }
1254 return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258 enum pipe pipe, u32 val)
1259 {
1260 if ((val & SDVO_ENABLE) == 0)
1261 return false;
1262
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, u32 val)
1275 {
1276 if ((val & LVDS_PORT_EN) == 0)
1277 return false;
1278
1279 if (HAS_PCH_CPT(dev_priv->dev)) {
1280 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281 return false;
1282 } else {
1283 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284 return false;
1285 }
1286 return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290 enum pipe pipe, u32 val)
1291 {
1292 if ((val & ADPA_DAC_ENABLE) == 0)
1293 return false;
1294 if (HAS_PCH_CPT(dev_priv->dev)) {
1295 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296 return false;
1297 } else {
1298 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299 return false;
1300 }
1301 return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305 enum pipe pipe, int reg, u32 port_sel)
1306 {
1307 u32 val = I915_READ(reg);
1308 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310 reg, pipe_name(pipe));
1311
1312 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313 && (val & DP_PIPEB_SELECT),
1314 "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, int reg)
1319 {
1320 u32 val = I915_READ(reg);
1321 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323 reg, pipe_name(pipe));
1324
1325 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326 && (val & SDVO_PIPE_B_SELECT),
1327 "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331 enum pipe pipe)
1332 {
1333 int reg;
1334 u32 val;
1335
1336 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340 reg = PCH_ADPA;
1341 val = I915_READ(reg);
1342 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343 "PCH VGA enabled on transcoder %c, should be disabled\n",
1344 pipe_name(pipe));
1345
1346 reg = PCH_LVDS;
1347 val = I915_READ(reg);
1348 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361 if (!IS_VALLEYVIEW(dev))
1362 return;
1363
1364 /*
1365 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1367 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368 * b. The other bits such as sfr settings / modesel may all be set
1369 * to 0.
1370 *
1371 * This should only be done on init and resume from S3 with both
1372 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373 */
1374 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375 }
1376
1377 static void vlv_enable_pll(struct intel_crtc *crtc)
1378 {
1379 struct drm_device *dev = crtc->base.dev;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 int reg = DPLL(crtc->pipe);
1382 u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384 assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386 /* No really, not for ILK+ */
1387 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389 /* PLL is protected by panel, make sure we can write it */
1390 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150);
1396
1397 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401 POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403 /* We do this three times for luck */
1404 I915_WRITE(reg, dpll);
1405 POSTING_READ(reg);
1406 udelay(150); /* wait for warmup */
1407 I915_WRITE(reg, dpll);
1408 POSTING_READ(reg);
1409 udelay(150); /* wait for warmup */
1410 I915_WRITE(reg, dpll);
1411 POSTING_READ(reg);
1412 udelay(150); /* wait for warmup */
1413 }
1414
1415 static void i9xx_enable_pll(struct intel_crtc *crtc)
1416 {
1417 struct drm_device *dev = crtc->base.dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 int reg = DPLL(crtc->pipe);
1420 u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422 assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424 /* No really, not for ILK+ */
1425 BUG_ON(dev_priv->info->gen >= 5);
1426
1427 /* PLL is protected by panel, make sure we can write it */
1428 if (IS_MOBILE(dev) && !IS_I830(dev))
1429 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431 I915_WRITE(reg, dpll);
1432
1433 /* Wait for the clocks to stabilize. */
1434 POSTING_READ(reg);
1435 udelay(150);
1436
1437 if (INTEL_INFO(dev)->gen >= 4) {
1438 I915_WRITE(DPLL_MD(crtc->pipe),
1439 crtc->config.dpll_hw_state.dpll_md);
1440 } else {
1441 /* The pixel multiplier can only be updated once the
1442 * DPLL is enabled and the clocks are stable.
1443 *
1444 * So write it again.
1445 */
1446 I915_WRITE(reg, dpll);
1447 }
1448
1449 /* We do this three times for luck */
1450 I915_WRITE(reg, dpll);
1451 POSTING_READ(reg);
1452 udelay(150); /* wait for warmup */
1453 I915_WRITE(reg, dpll);
1454 POSTING_READ(reg);
1455 udelay(150); /* wait for warmup */
1456 I915_WRITE(reg, dpll);
1457 POSTING_READ(reg);
1458 udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462 * i9xx_disable_pll - disable a PLL
1463 * @dev_priv: i915 private structure
1464 * @pipe: pipe PLL to disable
1465 *
1466 * Disable the PLL for @pipe, making sure the pipe is off first.
1467 *
1468 * Note! This is for pre-ILK only.
1469 */
1470 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472 /* Don't disable pipe A or pipe A PLLs if needed */
1473 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474 return;
1475
1476 /* Make sure the pipe isn't still relying on us */
1477 assert_pipe_disabled(dev_priv, pipe);
1478
1479 I915_WRITE(DPLL(pipe), 0);
1480 POSTING_READ(DPLL(pipe));
1481 }
1482
1483 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484 {
1485 u32 val = 0;
1486
1487 /* Make sure the pipe isn't still relying on us */
1488 assert_pipe_disabled(dev_priv, pipe);
1489
1490 /* Leave integrated clock source enabled */
1491 if (pipe == PIPE_B)
1492 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493 I915_WRITE(DPLL(pipe), val);
1494 POSTING_READ(DPLL(pipe));
1495 }
1496
1497 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498 {
1499 u32 port_mask;
1500
1501 if (!port)
1502 port_mask = DPLL_PORTB_READY_MASK;
1503 else
1504 port_mask = DPLL_PORTC_READY_MASK;
1505
1506 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508 'B' + port, I915_READ(DPLL(0)));
1509 }
1510
1511 /**
1512 * ironlake_enable_shared_dpll - enable PCH PLL
1513 * @dev_priv: i915 private structure
1514 * @pipe: pipe PLL to enable
1515 *
1516 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517 * drives the transcoder clock.
1518 */
1519 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524 /* PCH PLLs only available on ILK, SNB and IVB */
1525 BUG_ON(dev_priv->info->gen < 5);
1526 if (WARN_ON(pll == NULL))
1527 return;
1528
1529 if (WARN_ON(pll->refcount == 0))
1530 return;
1531
1532 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533 pll->name, pll->active, pll->on,
1534 crtc->base.base.id);
1535
1536 if (pll->active++) {
1537 WARN_ON(!pll->on);
1538 assert_shared_dpll_enabled(dev_priv, pll);
1539 return;
1540 }
1541 WARN_ON(pll->on);
1542
1543 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544 pll->enable(dev_priv, pll);
1545 pll->on = true;
1546 }
1547
1548 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549 {
1550 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553 /* PCH only available on ILK+ */
1554 BUG_ON(dev_priv->info->gen < 5);
1555 if (WARN_ON(pll == NULL))
1556 return;
1557
1558 if (WARN_ON(pll->refcount == 0))
1559 return;
1560
1561 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562 pll->name, pll->active, pll->on,
1563 crtc->base.base.id);
1564
1565 if (WARN_ON(pll->active == 0)) {
1566 assert_shared_dpll_disabled(dev_priv, pll);
1567 return;
1568 }
1569
1570 assert_shared_dpll_enabled(dev_priv, pll);
1571 WARN_ON(!pll->on);
1572 if (--pll->active)
1573 return;
1574
1575 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576 pll->disable(dev_priv, pll);
1577 pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581 enum pipe pipe)
1582 {
1583 struct drm_device *dev = dev_priv->dev;
1584 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586 uint32_t reg, val, pipeconf_val;
1587
1588 /* PCH only available on ILK+ */
1589 BUG_ON(dev_priv->info->gen < 5);
1590
1591 /* Make sure PCH DPLL is enabled */
1592 assert_shared_dpll_enabled(dev_priv,
1593 intel_crtc_to_shared_dpll(intel_crtc));
1594
1595 /* FDI must be feeding us bits for PCH ports */
1596 assert_fdi_tx_enabled(dev_priv, pipe);
1597 assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599 if (HAS_PCH_CPT(dev)) {
1600 /* Workaround: Set the timing override bit before enabling the
1601 * pch transcoder. */
1602 reg = TRANS_CHICKEN2(pipe);
1603 val = I915_READ(reg);
1604 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605 I915_WRITE(reg, val);
1606 }
1607
1608 reg = PCH_TRANSCONF(pipe);
1609 val = I915_READ(reg);
1610 pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612 if (HAS_PCH_IBX(dev_priv->dev)) {
1613 /*
1614 * make the BPC in transcoder be consistent with
1615 * that in pipeconf reg.
1616 */
1617 val &= ~PIPECONF_BPC_MASK;
1618 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619 }
1620
1621 val &= ~TRANS_INTERLACE_MASK;
1622 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623 if (HAS_PCH_IBX(dev_priv->dev) &&
1624 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625 val |= TRANS_LEGACY_INTERLACED_ILK;
1626 else
1627 val |= TRANS_INTERLACED;
1628 else
1629 val |= TRANS_PROGRESSIVE;
1630
1631 I915_WRITE(reg, val | TRANS_ENABLE);
1632 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637 enum transcoder cpu_transcoder)
1638 {
1639 u32 val, pipeconf_val;
1640
1641 /* PCH only available on ILK+ */
1642 BUG_ON(dev_priv->info->gen < 5);
1643
1644 /* FDI must be feeding us bits for PCH ports */
1645 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648 /* Workaround: set timing override bit. */
1649 val = I915_READ(_TRANSA_CHICKEN2);
1650 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651 I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653 val = TRANS_ENABLE;
1654 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657 PIPECONF_INTERLACED_ILK)
1658 val |= TRANS_INTERLACED;
1659 else
1660 val |= TRANS_PROGRESSIVE;
1661
1662 I915_WRITE(LPT_TRANSCONF, val);
1663 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668 enum pipe pipe)
1669 {
1670 struct drm_device *dev = dev_priv->dev;
1671 uint32_t reg, val;
1672
1673 /* FDI relies on the transcoder */
1674 assert_fdi_tx_disabled(dev_priv, pipe);
1675 assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677 /* Ports must be off as well */
1678 assert_pch_ports_disabled(dev_priv, pipe);
1679
1680 reg = PCH_TRANSCONF(pipe);
1681 val = I915_READ(reg);
1682 val &= ~TRANS_ENABLE;
1683 I915_WRITE(reg, val);
1684 /* wait for PCH transcoder off, transcoder state */
1685 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688 if (!HAS_PCH_IBX(dev)) {
1689 /* Workaround: Clear the timing override chicken bit again. */
1690 reg = TRANS_CHICKEN2(pipe);
1691 val = I915_READ(reg);
1692 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693 I915_WRITE(reg, val);
1694 }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699 u32 val;
1700
1701 val = I915_READ(LPT_TRANSCONF);
1702 val &= ~TRANS_ENABLE;
1703 I915_WRITE(LPT_TRANSCONF, val);
1704 /* wait for PCH transcoder off, transcoder state */
1705 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708 /* Workaround: clear timing override bit. */
1709 val = I915_READ(_TRANSA_CHICKEN2);
1710 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711 I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715 * intel_enable_pipe - enable a pipe, asserting requirements
1716 * @dev_priv: i915 private structure
1717 * @pipe: pipe to enable
1718 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719 *
1720 * Enable @pipe, making sure that various hardware specific requirements
1721 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722 *
1723 * @pipe should be %PIPE_A or %PIPE_B.
1724 *
1725 * Will wait until the pipe is actually running (i.e. first vblank) before
1726 * returning.
1727 */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729 bool pch_port, bool dsi)
1730 {
1731 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732 pipe);
1733 enum pipe pch_transcoder;
1734 int reg;
1735 u32 val;
1736
1737 assert_planes_disabled(dev_priv, pipe);
1738 assert_cursor_disabled(dev_priv, pipe);
1739 assert_sprites_disabled(dev_priv, pipe);
1740
1741 if (HAS_PCH_LPT(dev_priv->dev))
1742 pch_transcoder = TRANSCODER_A;
1743 else
1744 pch_transcoder = pipe;
1745
1746 /*
1747 * A pipe without a PLL won't actually be able to drive bits from
1748 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1749 * need the check.
1750 */
1751 if (!HAS_PCH_SPLIT(dev_priv->dev))
1752 if (dsi)
1753 assert_dsi_pll_enabled(dev_priv);
1754 else
1755 assert_pll_enabled(dev_priv, pipe);
1756 else {
1757 if (pch_port) {
1758 /* if driving the PCH, we need FDI enabled */
1759 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760 assert_fdi_tx_pll_enabled(dev_priv,
1761 (enum pipe) cpu_transcoder);
1762 }
1763 /* FIXME: assert CPU port conditions for SNB+ */
1764 }
1765
1766 reg = PIPECONF(cpu_transcoder);
1767 val = I915_READ(reg);
1768 if (val & PIPECONF_ENABLE)
1769 return;
1770
1771 I915_WRITE(reg, val | PIPECONF_ENABLE);
1772 intel_wait_for_vblank(dev_priv->dev, pipe);
1773 }
1774
1775 /**
1776 * intel_disable_pipe - disable a pipe, asserting requirements
1777 * @dev_priv: i915 private structure
1778 * @pipe: pipe to disable
1779 *
1780 * Disable @pipe, making sure that various hardware specific requirements
1781 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782 *
1783 * @pipe should be %PIPE_A or %PIPE_B.
1784 *
1785 * Will wait until the pipe has shut down before returning.
1786 */
1787 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788 enum pipe pipe)
1789 {
1790 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791 pipe);
1792 int reg;
1793 u32 val;
1794
1795 /*
1796 * Make sure planes won't keep trying to pump pixels to us,
1797 * or we might hang the display.
1798 */
1799 assert_planes_disabled(dev_priv, pipe);
1800 assert_cursor_disabled(dev_priv, pipe);
1801 assert_sprites_disabled(dev_priv, pipe);
1802
1803 /* Don't disable pipe A or pipe A PLLs if needed */
1804 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805 return;
1806
1807 reg = PIPECONF(cpu_transcoder);
1808 val = I915_READ(reg);
1809 if ((val & PIPECONF_ENABLE) == 0)
1810 return;
1811
1812 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814 }
1815
1816 /*
1817 * Plane regs are double buffered, going from enabled->disabled needs a
1818 * trigger in order to latch. The display address reg provides this.
1819 */
1820 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane)
1822 {
1823 u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825 I915_WRITE(reg, I915_READ(reg));
1826 POSTING_READ(reg);
1827 }
1828
1829 /**
1830 * intel_enable_primary_plane - enable the primary plane on a given pipe
1831 * @dev_priv: i915 private structure
1832 * @plane: plane to enable
1833 * @pipe: pipe being fed
1834 *
1835 * Enable @plane on @pipe, making sure that @pipe is running first.
1836 */
1837 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838 enum plane plane, enum pipe pipe)
1839 {
1840 struct intel_crtc *intel_crtc =
1841 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842 int reg;
1843 u32 val;
1844
1845 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846 assert_pipe_enabled(dev_priv, pipe);
1847
1848 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850 intel_crtc->primary_enabled = true;
1851
1852 reg = DSPCNTR(plane);
1853 val = I915_READ(reg);
1854 if (val & DISPLAY_PLANE_ENABLE)
1855 return;
1856
1857 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858 intel_flush_primary_plane(dev_priv, plane);
1859 intel_wait_for_vblank(dev_priv->dev, pipe);
1860 }
1861
1862 /**
1863 * intel_disable_primary_plane - disable the primary plane
1864 * @dev_priv: i915 private structure
1865 * @plane: plane to disable
1866 * @pipe: pipe consuming the data
1867 *
1868 * Disable @plane; should be an independent operation.
1869 */
1870 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871 enum plane plane, enum pipe pipe)
1872 {
1873 struct intel_crtc *intel_crtc =
1874 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875 int reg;
1876 u32 val;
1877
1878 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880 intel_crtc->primary_enabled = false;
1881
1882 reg = DSPCNTR(plane);
1883 val = I915_READ(reg);
1884 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885 return;
1886
1887 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888 intel_flush_primary_plane(dev_priv, plane);
1889 intel_wait_for_vblank(dev_priv->dev, pipe);
1890 }
1891
1892 static bool need_vtd_wa(struct drm_device *dev)
1893 {
1894 #ifdef CONFIG_INTEL_IOMMU
1895 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896 return true;
1897 #endif
1898 return false;
1899 }
1900
1901 int
1902 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903 struct drm_i915_gem_object *obj,
1904 struct intel_ring_buffer *pipelined)
1905 {
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 u32 alignment;
1908 int ret;
1909
1910 switch (obj->tiling_mode) {
1911 case I915_TILING_NONE:
1912 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913 alignment = 128 * 1024;
1914 else if (INTEL_INFO(dev)->gen >= 4)
1915 alignment = 4 * 1024;
1916 else
1917 alignment = 64 * 1024;
1918 break;
1919 case I915_TILING_X:
1920 /* pin() will align the object as required by fence */
1921 alignment = 0;
1922 break;
1923 case I915_TILING_Y:
1924 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925 return -EINVAL;
1926 default:
1927 BUG();
1928 }
1929
1930 /* Note that the w/a also requires 64 PTE of padding following the
1931 * bo. We currently fill all unused PTE with the shadow page and so
1932 * we should always have valid PTE following the scanout preventing
1933 * the VT-d warning.
1934 */
1935 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936 alignment = 256 * 1024;
1937
1938 dev_priv->mm.interruptible = false;
1939 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940 if (ret)
1941 goto err_interruptible;
1942
1943 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944 * fence, whereas 965+ only requires a fence if using
1945 * framebuffer compression. For simplicity, we always install
1946 * a fence as the cost is not that onerous.
1947 */
1948 ret = i915_gem_object_get_fence(obj);
1949 if (ret)
1950 goto err_unpin;
1951
1952 i915_gem_object_pin_fence(obj);
1953
1954 dev_priv->mm.interruptible = true;
1955 return 0;
1956
1957 err_unpin:
1958 i915_gem_object_unpin_from_display_plane(obj);
1959 err_interruptible:
1960 dev_priv->mm.interruptible = true;
1961 return ret;
1962 }
1963
1964 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965 {
1966 i915_gem_object_unpin_fence(obj);
1967 i915_gem_object_unpin_from_display_plane(obj);
1968 }
1969
1970 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971 * is assumed to be a power-of-two. */
1972 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973 unsigned int tiling_mode,
1974 unsigned int cpp,
1975 unsigned int pitch)
1976 {
1977 if (tiling_mode != I915_TILING_NONE) {
1978 unsigned int tile_rows, tiles;
1979
1980 tile_rows = *y / 8;
1981 *y %= 8;
1982
1983 tiles = *x / (512/cpp);
1984 *x %= 512/cpp;
1985
1986 return tile_rows * pitch * 8 + tiles * 4096;
1987 } else {
1988 unsigned int offset;
1989
1990 offset = *y * pitch + *x * cpp;
1991 *y = 0;
1992 *x = (offset & 4095) / cpp;
1993 return offset & -4096;
1994 }
1995 }
1996
1997 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998 int x, int y)
1999 {
2000 struct drm_device *dev = crtc->dev;
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003 struct intel_framebuffer *intel_fb;
2004 struct drm_i915_gem_object *obj;
2005 int plane = intel_crtc->plane;
2006 unsigned long linear_offset;
2007 u32 dspcntr;
2008 u32 reg;
2009
2010 switch (plane) {
2011 case 0:
2012 case 1:
2013 break;
2014 default:
2015 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016 return -EINVAL;
2017 }
2018
2019 intel_fb = to_intel_framebuffer(fb);
2020 obj = intel_fb->obj;
2021
2022 reg = DSPCNTR(plane);
2023 dspcntr = I915_READ(reg);
2024 /* Mask out pixel format bits in case we change it */
2025 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026 switch (fb->pixel_format) {
2027 case DRM_FORMAT_C8:
2028 dspcntr |= DISPPLANE_8BPP;
2029 break;
2030 case DRM_FORMAT_XRGB1555:
2031 case DRM_FORMAT_ARGB1555:
2032 dspcntr |= DISPPLANE_BGRX555;
2033 break;
2034 case DRM_FORMAT_RGB565:
2035 dspcntr |= DISPPLANE_BGRX565;
2036 break;
2037 case DRM_FORMAT_XRGB8888:
2038 case DRM_FORMAT_ARGB8888:
2039 dspcntr |= DISPPLANE_BGRX888;
2040 break;
2041 case DRM_FORMAT_XBGR8888:
2042 case DRM_FORMAT_ABGR8888:
2043 dspcntr |= DISPPLANE_RGBX888;
2044 break;
2045 case DRM_FORMAT_XRGB2101010:
2046 case DRM_FORMAT_ARGB2101010:
2047 dspcntr |= DISPPLANE_BGRX101010;
2048 break;
2049 case DRM_FORMAT_XBGR2101010:
2050 case DRM_FORMAT_ABGR2101010:
2051 dspcntr |= DISPPLANE_RGBX101010;
2052 break;
2053 default:
2054 BUG();
2055 }
2056
2057 if (INTEL_INFO(dev)->gen >= 4) {
2058 if (obj->tiling_mode != I915_TILING_NONE)
2059 dspcntr |= DISPPLANE_TILED;
2060 else
2061 dspcntr &= ~DISPPLANE_TILED;
2062 }
2063
2064 if (IS_G4X(dev))
2065 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067 I915_WRITE(reg, dspcntr);
2068
2069 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071 if (INTEL_INFO(dev)->gen >= 4) {
2072 intel_crtc->dspaddr_offset =
2073 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074 fb->bits_per_pixel / 8,
2075 fb->pitches[0]);
2076 linear_offset -= intel_crtc->dspaddr_offset;
2077 } else {
2078 intel_crtc->dspaddr_offset = linear_offset;
2079 }
2080
2081 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083 fb->pitches[0]);
2084 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085 if (INTEL_INFO(dev)->gen >= 4) {
2086 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090 } else
2091 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092 POSTING_READ(reg);
2093
2094 return 0;
2095 }
2096
2097 static int ironlake_update_plane(struct drm_crtc *crtc,
2098 struct drm_framebuffer *fb, int x, int y)
2099 {
2100 struct drm_device *dev = crtc->dev;
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103 struct intel_framebuffer *intel_fb;
2104 struct drm_i915_gem_object *obj;
2105 int plane = intel_crtc->plane;
2106 unsigned long linear_offset;
2107 u32 dspcntr;
2108 u32 reg;
2109
2110 switch (plane) {
2111 case 0:
2112 case 1:
2113 case 2:
2114 break;
2115 default:
2116 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117 return -EINVAL;
2118 }
2119
2120 intel_fb = to_intel_framebuffer(fb);
2121 obj = intel_fb->obj;
2122
2123 reg = DSPCNTR(plane);
2124 dspcntr = I915_READ(reg);
2125 /* Mask out pixel format bits in case we change it */
2126 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127 switch (fb->pixel_format) {
2128 case DRM_FORMAT_C8:
2129 dspcntr |= DISPPLANE_8BPP;
2130 break;
2131 case DRM_FORMAT_RGB565:
2132 dspcntr |= DISPPLANE_BGRX565;
2133 break;
2134 case DRM_FORMAT_XRGB8888:
2135 case DRM_FORMAT_ARGB8888:
2136 dspcntr |= DISPPLANE_BGRX888;
2137 break;
2138 case DRM_FORMAT_XBGR8888:
2139 case DRM_FORMAT_ABGR8888:
2140 dspcntr |= DISPPLANE_RGBX888;
2141 break;
2142 case DRM_FORMAT_XRGB2101010:
2143 case DRM_FORMAT_ARGB2101010:
2144 dspcntr |= DISPPLANE_BGRX101010;
2145 break;
2146 case DRM_FORMAT_XBGR2101010:
2147 case DRM_FORMAT_ABGR2101010:
2148 dspcntr |= DISPPLANE_RGBX101010;
2149 break;
2150 default:
2151 BUG();
2152 }
2153
2154 if (obj->tiling_mode != I915_TILING_NONE)
2155 dspcntr |= DISPPLANE_TILED;
2156 else
2157 dspcntr &= ~DISPPLANE_TILED;
2158
2159 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2160 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161 else
2162 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164 I915_WRITE(reg, dspcntr);
2165
2166 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167 intel_crtc->dspaddr_offset =
2168 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169 fb->bits_per_pixel / 8,
2170 fb->pitches[0]);
2171 linear_offset -= intel_crtc->dspaddr_offset;
2172
2173 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175 fb->pitches[0]);
2176 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177 I915_MODIFY_DISPBASE(DSPSURF(plane),
2178 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2180 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181 } else {
2182 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184 }
2185 POSTING_READ(reg);
2186
2187 return 0;
2188 }
2189
2190 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2191 static int
2192 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193 int x, int y, enum mode_set_atomic state)
2194 {
2195 struct drm_device *dev = crtc->dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198 if (dev_priv->display.disable_fbc)
2199 dev_priv->display.disable_fbc(dev);
2200 intel_increase_pllclock(crtc);
2201
2202 return dev_priv->display.update_plane(crtc, fb, x, y);
2203 }
2204
2205 void intel_display_handle_reset(struct drm_device *dev)
2206 {
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_crtc *crtc;
2209
2210 /*
2211 * Flips in the rings have been nuked by the reset,
2212 * so complete all pending flips so that user space
2213 * will get its events and not get stuck.
2214 *
2215 * Also update the base address of all primary
2216 * planes to the the last fb to make sure we're
2217 * showing the correct fb after a reset.
2218 *
2219 * Need to make two loops over the crtcs so that we
2220 * don't try to grab a crtc mutex before the
2221 * pending_flip_queue really got woken up.
2222 */
2223
2224 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226 enum plane plane = intel_crtc->plane;
2227
2228 intel_prepare_page_flip(dev, plane);
2229 intel_finish_page_flip_plane(dev, plane);
2230 }
2231
2232 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 mutex_lock(&crtc->mutex);
2236 if (intel_crtc->active)
2237 dev_priv->display.update_plane(crtc, crtc->fb,
2238 crtc->x, crtc->y);
2239 mutex_unlock(&crtc->mutex);
2240 }
2241 }
2242
2243 static int
2244 intel_finish_fb(struct drm_framebuffer *old_fb)
2245 {
2246 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248 bool was_interruptible = dev_priv->mm.interruptible;
2249 int ret;
2250
2251 /* Big Hammer, we also need to ensure that any pending
2252 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253 * current scanout is retired before unpinning the old
2254 * framebuffer.
2255 *
2256 * This should only fail upon a hung GPU, in which case we
2257 * can safely continue.
2258 */
2259 dev_priv->mm.interruptible = false;
2260 ret = i915_gem_object_finish_gpu(obj);
2261 dev_priv->mm.interruptible = was_interruptible;
2262
2263 return ret;
2264 }
2265
2266 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267 {
2268 struct drm_device *dev = crtc->dev;
2269 struct drm_i915_master_private *master_priv;
2270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272 if (!dev->primary->master)
2273 return;
2274
2275 master_priv = dev->primary->master->driver_priv;
2276 if (!master_priv->sarea_priv)
2277 return;
2278
2279 switch (intel_crtc->pipe) {
2280 case 0:
2281 master_priv->sarea_priv->pipeA_x = x;
2282 master_priv->sarea_priv->pipeA_y = y;
2283 break;
2284 case 1:
2285 master_priv->sarea_priv->pipeB_x = x;
2286 master_priv->sarea_priv->pipeB_y = y;
2287 break;
2288 default:
2289 break;
2290 }
2291 }
2292
2293 static int
2294 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295 struct drm_framebuffer *fb)
2296 {
2297 struct drm_device *dev = crtc->dev;
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300 struct drm_framebuffer *old_fb;
2301 int ret;
2302
2303 /* no fb bound */
2304 if (!fb) {
2305 DRM_ERROR("No FB bound\n");
2306 return 0;
2307 }
2308
2309 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311 plane_name(intel_crtc->plane),
2312 INTEL_INFO(dev)->num_pipes);
2313 return -EINVAL;
2314 }
2315
2316 mutex_lock(&dev->struct_mutex);
2317 ret = intel_pin_and_fence_fb_obj(dev,
2318 to_intel_framebuffer(fb)->obj,
2319 NULL);
2320 if (ret != 0) {
2321 mutex_unlock(&dev->struct_mutex);
2322 DRM_ERROR("pin & fence failed\n");
2323 return ret;
2324 }
2325
2326 /*
2327 * Update pipe size and adjust fitter if needed: the reason for this is
2328 * that in compute_mode_changes we check the native mode (not the pfit
2329 * mode) to see if we can flip rather than do a full mode set. In the
2330 * fastboot case, we'll flip, but if we don't update the pipesrc and
2331 * pfit state, we'll end up with a big fb scanned out into the wrong
2332 * sized surface.
2333 *
2334 * To fix this properly, we need to hoist the checks up into
2335 * compute_mode_changes (or above), check the actual pfit state and
2336 * whether the platform allows pfit disable with pipe active, and only
2337 * then update the pipesrc and pfit state, even on the flip path.
2338 */
2339 if (i915_fastboot) {
2340 const struct drm_display_mode *adjusted_mode =
2341 &intel_crtc->config.adjusted_mode;
2342
2343 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345 (adjusted_mode->crtc_vdisplay - 1));
2346 if (!intel_crtc->config.pch_pfit.enabled &&
2347 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352 }
2353 }
2354
2355 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356 if (ret) {
2357 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358 mutex_unlock(&dev->struct_mutex);
2359 DRM_ERROR("failed to update base address\n");
2360 return ret;
2361 }
2362
2363 old_fb = crtc->fb;
2364 crtc->fb = fb;
2365 crtc->x = x;
2366 crtc->y = y;
2367
2368 if (old_fb) {
2369 if (intel_crtc->active && old_fb != fb)
2370 intel_wait_for_vblank(dev, intel_crtc->pipe);
2371 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372 }
2373
2374 intel_update_fbc(dev);
2375 intel_edp_psr_update(dev);
2376 mutex_unlock(&dev->struct_mutex);
2377
2378 intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380 return 0;
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385 struct drm_device *dev = crtc->dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388 int pipe = intel_crtc->pipe;
2389 u32 reg, temp;
2390
2391 /* enable normal train */
2392 reg = FDI_TX_CTL(pipe);
2393 temp = I915_READ(reg);
2394 if (IS_IVYBRIDGE(dev)) {
2395 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397 } else {
2398 temp &= ~FDI_LINK_TRAIN_NONE;
2399 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400 }
2401 I915_WRITE(reg, temp);
2402
2403 reg = FDI_RX_CTL(pipe);
2404 temp = I915_READ(reg);
2405 if (HAS_PCH_CPT(dev)) {
2406 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408 } else {
2409 temp &= ~FDI_LINK_TRAIN_NONE;
2410 temp |= FDI_LINK_TRAIN_NONE;
2411 }
2412 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414 /* wait one idle pattern time */
2415 POSTING_READ(reg);
2416 udelay(1000);
2417
2418 /* IVB wants error correction enabled */
2419 if (IS_IVYBRIDGE(dev))
2420 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421 FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2425 {
2426 return crtc->base.enabled && crtc->active &&
2427 crtc->config.has_pch_encoder;
2428 }
2429
2430 static void ivb_modeset_global_resources(struct drm_device *dev)
2431 {
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *pipe_B_crtc =
2434 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2435 struct intel_crtc *pipe_C_crtc =
2436 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2437 uint32_t temp;
2438
2439 /*
2440 * When everything is off disable fdi C so that we could enable fdi B
2441 * with all lanes. Note that we don't care about enabled pipes without
2442 * an enabled pch encoder.
2443 */
2444 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2445 !pipe_has_enabled_pch(pipe_C_crtc)) {
2446 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449 temp = I915_READ(SOUTH_CHICKEN1);
2450 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452 I915_WRITE(SOUTH_CHICKEN1, temp);
2453 }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459 struct drm_device *dev = crtc->dev;
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462 int pipe = intel_crtc->pipe;
2463 int plane = intel_crtc->plane;
2464 u32 reg, temp, tries;
2465
2466 /* FDI needs bits from pipe & plane first */
2467 assert_pipe_enabled(dev_priv, pipe);
2468 assert_plane_enabled(dev_priv, plane);
2469
2470 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471 for train result */
2472 reg = FDI_RX_IMR(pipe);
2473 temp = I915_READ(reg);
2474 temp &= ~FDI_RX_SYMBOL_LOCK;
2475 temp &= ~FDI_RX_BIT_LOCK;
2476 I915_WRITE(reg, temp);
2477 I915_READ(reg);
2478 udelay(150);
2479
2480 /* enable CPU FDI TX and PCH FDI RX */
2481 reg = FDI_TX_CTL(pipe);
2482 temp = I915_READ(reg);
2483 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2484 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2485 temp &= ~FDI_LINK_TRAIN_NONE;
2486 temp |= FDI_LINK_TRAIN_PATTERN_1;
2487 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489 reg = FDI_RX_CTL(pipe);
2490 temp = I915_READ(reg);
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495 POSTING_READ(reg);
2496 udelay(150);
2497
2498 /* Ironlake workaround, enable clock pointer after FDI enable*/
2499 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501 FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503 reg = FDI_RX_IIR(pipe);
2504 for (tries = 0; tries < 5; tries++) {
2505 temp = I915_READ(reg);
2506 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508 if ((temp & FDI_RX_BIT_LOCK)) {
2509 DRM_DEBUG_KMS("FDI train 1 done.\n");
2510 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511 break;
2512 }
2513 }
2514 if (tries == 5)
2515 DRM_ERROR("FDI train 1 fail!\n");
2516
2517 /* Train 2 */
2518 reg = FDI_TX_CTL(pipe);
2519 temp = I915_READ(reg);
2520 temp &= ~FDI_LINK_TRAIN_NONE;
2521 temp |= FDI_LINK_TRAIN_PATTERN_2;
2522 I915_WRITE(reg, temp);
2523
2524 reg = FDI_RX_CTL(pipe);
2525 temp = I915_READ(reg);
2526 temp &= ~FDI_LINK_TRAIN_NONE;
2527 temp |= FDI_LINK_TRAIN_PATTERN_2;
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
2531 udelay(150);
2532
2533 reg = FDI_RX_IIR(pipe);
2534 for (tries = 0; tries < 5; tries++) {
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538 if (temp & FDI_RX_SYMBOL_LOCK) {
2539 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540 DRM_DEBUG_KMS("FDI train 2 done.\n");
2541 break;
2542 }
2543 }
2544 if (tries == 5)
2545 DRM_ERROR("FDI train 2 fail!\n");
2546
2547 DRM_DEBUG_KMS("FDI train done\n");
2548
2549 }
2550
2551 static const int snb_b_fdi_train_param[] = {
2552 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556 };
2557
2558 /* The FDI link training functions for SNB/Cougarpoint. */
2559 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560 {
2561 struct drm_device *dev = crtc->dev;
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564 int pipe = intel_crtc->pipe;
2565 u32 reg, temp, i, retry;
2566
2567 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568 for train result */
2569 reg = FDI_RX_IMR(pipe);
2570 temp = I915_READ(reg);
2571 temp &= ~FDI_RX_SYMBOL_LOCK;
2572 temp &= ~FDI_RX_BIT_LOCK;
2573 I915_WRITE(reg, temp);
2574
2575 POSTING_READ(reg);
2576 udelay(150);
2577
2578 /* enable CPU FDI TX and PCH FDI RX */
2579 reg = FDI_TX_CTL(pipe);
2580 temp = I915_READ(reg);
2581 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2582 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2583 temp &= ~FDI_LINK_TRAIN_NONE;
2584 temp |= FDI_LINK_TRAIN_PATTERN_1;
2585 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586 /* SNB-B */
2587 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590 I915_WRITE(FDI_RX_MISC(pipe),
2591 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593 reg = FDI_RX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 if (HAS_PCH_CPT(dev)) {
2596 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598 } else {
2599 temp &= ~FDI_LINK_TRAIN_NONE;
2600 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601 }
2602 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 for (i = 0; i < 4; i++) {
2608 reg = FDI_TX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611 temp |= snb_b_fdi_train_param[i];
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(500);
2616
2617 for (retry = 0; retry < 5; retry++) {
2618 reg = FDI_RX_IIR(pipe);
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621 if (temp & FDI_RX_BIT_LOCK) {
2622 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624 break;
2625 }
2626 udelay(50);
2627 }
2628 if (retry < 5)
2629 break;
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 1 fail!\n");
2633
2634 /* Train 2 */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_LINK_TRAIN_NONE;
2638 temp |= FDI_LINK_TRAIN_PATTERN_2;
2639 if (IS_GEN6(dev)) {
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 /* SNB-B */
2642 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643 }
2644 I915_WRITE(reg, temp);
2645
2646 reg = FDI_RX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 if (HAS_PCH_CPT(dev)) {
2649 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651 } else {
2652 temp &= ~FDI_LINK_TRAIN_NONE;
2653 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654 }
2655 I915_WRITE(reg, temp);
2656
2657 POSTING_READ(reg);
2658 udelay(150);
2659
2660 for (i = 0; i < 4; i++) {
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= snb_b_fdi_train_param[i];
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(500);
2669
2670 for (retry = 0; retry < 5; retry++) {
2671 reg = FDI_RX_IIR(pipe);
2672 temp = I915_READ(reg);
2673 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674 if (temp & FDI_RX_SYMBOL_LOCK) {
2675 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677 break;
2678 }
2679 udelay(50);
2680 }
2681 if (retry < 5)
2682 break;
2683 }
2684 if (i == 4)
2685 DRM_ERROR("FDI train 2 fail!\n");
2686
2687 DRM_DEBUG_KMS("FDI train done.\n");
2688 }
2689
2690 /* Manual link training for Ivy Bridge A0 parts */
2691 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692 {
2693 struct drm_device *dev = crtc->dev;
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696 int pipe = intel_crtc->pipe;
2697 u32 reg, temp, i, j;
2698
2699 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700 for train result */
2701 reg = FDI_RX_IMR(pipe);
2702 temp = I915_READ(reg);
2703 temp &= ~FDI_RX_SYMBOL_LOCK;
2704 temp &= ~FDI_RX_BIT_LOCK;
2705 I915_WRITE(reg, temp);
2706
2707 POSTING_READ(reg);
2708 udelay(150);
2709
2710 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711 I915_READ(FDI_RX_IIR(pipe)));
2712
2713 /* Try each vswing and preemphasis setting twice before moving on */
2714 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2715 /* disable first in case we need to retry */
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719 temp &= ~FDI_TX_ENABLE;
2720 I915_WRITE(reg, temp);
2721
2722 reg = FDI_RX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~FDI_LINK_TRAIN_AUTO;
2725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726 temp &= ~FDI_RX_ENABLE;
2727 I915_WRITE(reg, temp);
2728
2729 /* enable CPU FDI TX and PCH FDI RX */
2730 reg = FDI_TX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2733 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2734 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736 temp |= snb_b_fdi_train_param[j/2];
2737 temp |= FDI_COMPOSITE_SYNC;
2738 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740 I915_WRITE(FDI_RX_MISC(pipe),
2741 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743 reg = FDI_RX_CTL(pipe);
2744 temp = I915_READ(reg);
2745 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746 temp |= FDI_COMPOSITE_SYNC;
2747 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749 POSTING_READ(reg);
2750 udelay(1); /* should be 0.5us */
2751
2752 for (i = 0; i < 4; i++) {
2753 reg = FDI_RX_IIR(pipe);
2754 temp = I915_READ(reg);
2755 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757 if (temp & FDI_RX_BIT_LOCK ||
2758 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2761 i);
2762 break;
2763 }
2764 udelay(1); /* should be 0.5us */
2765 }
2766 if (i == 4) {
2767 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2768 continue;
2769 }
2770
2771 /* Train 2 */
2772 reg = FDI_TX_CTL(pipe);
2773 temp = I915_READ(reg);
2774 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776 I915_WRITE(reg, temp);
2777
2778 reg = FDI_RX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2782 I915_WRITE(reg, temp);
2783
2784 POSTING_READ(reg);
2785 udelay(2); /* should be 1.5us */
2786
2787 for (i = 0; i < 4; i++) {
2788 reg = FDI_RX_IIR(pipe);
2789 temp = I915_READ(reg);
2790 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2791
2792 if (temp & FDI_RX_SYMBOL_LOCK ||
2793 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2794 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2796 i);
2797 goto train_done;
2798 }
2799 udelay(2); /* should be 1.5us */
2800 }
2801 if (i == 4)
2802 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2803 }
2804
2805 train_done:
2806 DRM_DEBUG_KMS("FDI train done.\n");
2807 }
2808
2809 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810 {
2811 struct drm_device *dev = intel_crtc->base.dev;
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 int pipe = intel_crtc->pipe;
2814 u32 reg, temp;
2815
2816
2817 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2818 reg = FDI_RX_CTL(pipe);
2819 temp = I915_READ(reg);
2820 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2821 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2822 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824
2825 POSTING_READ(reg);
2826 udelay(200);
2827
2828 /* Switch from Rawclk to PCDclk */
2829 temp = I915_READ(reg);
2830 I915_WRITE(reg, temp | FDI_PCDCLK);
2831
2832 POSTING_READ(reg);
2833 udelay(200);
2834
2835 /* Enable CPU FDI TX PLL, always on for Ironlake */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2840
2841 POSTING_READ(reg);
2842 udelay(100);
2843 }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848 struct drm_device *dev = intel_crtc->base.dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 int pipe = intel_crtc->pipe;
2851 u32 reg, temp;
2852
2853 /* Switch from PCDclk to Rawclk */
2854 reg = FDI_RX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858 /* Disable CPU FDI TX PLL */
2859 reg = FDI_TX_CTL(pipe);
2860 temp = I915_READ(reg);
2861 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863 POSTING_READ(reg);
2864 udelay(100);
2865
2866 reg = FDI_RX_CTL(pipe);
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870 /* Wait for the clocks to turn off. */
2871 POSTING_READ(reg);
2872 udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 int pipe = intel_crtc->pipe;
2881 u32 reg, temp;
2882
2883 /* disable CPU FDI tx and PCH FDI rx */
2884 reg = FDI_TX_CTL(pipe);
2885 temp = I915_READ(reg);
2886 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887 POSTING_READ(reg);
2888
2889 reg = FDI_RX_CTL(pipe);
2890 temp = I915_READ(reg);
2891 temp &= ~(0x7 << 16);
2892 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2893 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895 POSTING_READ(reg);
2896 udelay(100);
2897
2898 /* Ironlake workaround, disable clock pointer after downing FDI */
2899 if (HAS_PCH_IBX(dev)) {
2900 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901 }
2902
2903 /* still set train pattern 1 */
2904 reg = FDI_TX_CTL(pipe);
2905 temp = I915_READ(reg);
2906 temp &= ~FDI_LINK_TRAIN_NONE;
2907 temp |= FDI_LINK_TRAIN_PATTERN_1;
2908 I915_WRITE(reg, temp);
2909
2910 reg = FDI_RX_CTL(pipe);
2911 temp = I915_READ(reg);
2912 if (HAS_PCH_CPT(dev)) {
2913 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915 } else {
2916 temp &= ~FDI_LINK_TRAIN_NONE;
2917 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918 }
2919 /* BPC in FDI rx is consistent with that in PIPECONF */
2920 temp &= ~(0x07 << 16);
2921 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2922 I915_WRITE(reg, temp);
2923
2924 POSTING_READ(reg);
2925 udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930 struct drm_device *dev = crtc->dev;
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2933 unsigned long flags;
2934 bool pending;
2935
2936 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2937 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2938 return false;
2939
2940 spin_lock_irqsave(&dev->event_lock, flags);
2941 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2942 spin_unlock_irqrestore(&dev->event_lock, flags);
2943
2944 return pending;
2945 }
2946
2947 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2948 {
2949 struct drm_device *dev = crtc->dev;
2950 struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952 if (crtc->fb == NULL)
2953 return;
2954
2955 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2956
2957 wait_event(dev_priv->pending_flip_queue,
2958 !intel_crtc_has_pending_flip(crtc));
2959
2960 mutex_lock(&dev->struct_mutex);
2961 intel_finish_fb(crtc->fb);
2962 mutex_unlock(&dev->struct_mutex);
2963 }
2964
2965 /* Program iCLKIP clock to the desired frequency */
2966 static void lpt_program_iclkip(struct drm_crtc *crtc)
2967 {
2968 struct drm_device *dev = crtc->dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2971 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2972 u32 temp;
2973
2974 mutex_lock(&dev_priv->dpio_lock);
2975
2976 /* It is necessary to ungate the pixclk gate prior to programming
2977 * the divisors, and gate it back when it is done.
2978 */
2979 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2980
2981 /* Disable SSCCTL */
2982 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2983 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2984 SBI_SSCCTL_DISABLE,
2985 SBI_ICLK);
2986
2987 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2988 if (clock == 20000) {
2989 auxdiv = 1;
2990 divsel = 0x41;
2991 phaseinc = 0x20;
2992 } else {
2993 /* The iCLK virtual clock root frequency is in MHz,
2994 * but the adjusted_mode->crtc_clock in in KHz. To get the
2995 * divisors, it is necessary to divide one by another, so we
2996 * convert the virtual clock precision to KHz here for higher
2997 * precision.
2998 */
2999 u32 iclk_virtual_root_freq = 172800 * 1000;
3000 u32 iclk_pi_range = 64;
3001 u32 desired_divisor, msb_divisor_value, pi_value;
3002
3003 desired_divisor = (iclk_virtual_root_freq / clock);
3004 msb_divisor_value = desired_divisor / iclk_pi_range;
3005 pi_value = desired_divisor % iclk_pi_range;
3006
3007 auxdiv = 0;
3008 divsel = msb_divisor_value - 2;
3009 phaseinc = pi_value;
3010 }
3011
3012 /* This should not happen with any sane values */
3013 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3014 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3015 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3016 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3017
3018 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3019 clock,
3020 auxdiv,
3021 divsel,
3022 phasedir,
3023 phaseinc);
3024
3025 /* Program SSCDIVINTPHASE6 */
3026 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3027 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3028 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3029 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3030 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3031 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3032 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3033 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3034
3035 /* Program SSCAUXDIV */
3036 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3037 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3038 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3039 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3040
3041 /* Enable modulator and associated divider */
3042 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3043 temp &= ~SBI_SSCCTL_DISABLE;
3044 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3045
3046 /* Wait for initialization time */
3047 udelay(24);
3048
3049 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3050
3051 mutex_unlock(&dev_priv->dpio_lock);
3052 }
3053
3054 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3055 enum pipe pch_transcoder)
3056 {
3057 struct drm_device *dev = crtc->base.dev;
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3060
3061 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3062 I915_READ(HTOTAL(cpu_transcoder)));
3063 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3064 I915_READ(HBLANK(cpu_transcoder)));
3065 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3066 I915_READ(HSYNC(cpu_transcoder)));
3067
3068 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3069 I915_READ(VTOTAL(cpu_transcoder)));
3070 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3071 I915_READ(VBLANK(cpu_transcoder)));
3072 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3073 I915_READ(VSYNC(cpu_transcoder)));
3074 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3075 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3076 }
3077
3078 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3079 {
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 uint32_t temp;
3082
3083 temp = I915_READ(SOUTH_CHICKEN1);
3084 if (temp & FDI_BC_BIFURCATION_SELECT)
3085 return;
3086
3087 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3088 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3089
3090 temp |= FDI_BC_BIFURCATION_SELECT;
3091 DRM_DEBUG_KMS("enabling fdi C rx\n");
3092 I915_WRITE(SOUTH_CHICKEN1, temp);
3093 POSTING_READ(SOUTH_CHICKEN1);
3094 }
3095
3096 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3097 {
3098 struct drm_device *dev = intel_crtc->base.dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100
3101 switch (intel_crtc->pipe) {
3102 case PIPE_A:
3103 break;
3104 case PIPE_B:
3105 if (intel_crtc->config.fdi_lanes > 2)
3106 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3107 else
3108 cpt_enable_fdi_bc_bifurcation(dev);
3109
3110 break;
3111 case PIPE_C:
3112 cpt_enable_fdi_bc_bifurcation(dev);
3113
3114 break;
3115 default:
3116 BUG();
3117 }
3118 }
3119
3120 /*
3121 * Enable PCH resources required for PCH ports:
3122 * - PCH PLLs
3123 * - FDI training & RX/TX
3124 * - update transcoder timings
3125 * - DP transcoding bits
3126 * - transcoder
3127 */
3128 static void ironlake_pch_enable(struct drm_crtc *crtc)
3129 {
3130 struct drm_device *dev = crtc->dev;
3131 struct drm_i915_private *dev_priv = dev->dev_private;
3132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133 int pipe = intel_crtc->pipe;
3134 u32 reg, temp;
3135
3136 assert_pch_transcoder_disabled(dev_priv, pipe);
3137
3138 if (IS_IVYBRIDGE(dev))
3139 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3140
3141 /* Write the TU size bits before fdi link training, so that error
3142 * detection works. */
3143 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3144 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3145
3146 /* For PCH output, training FDI link */
3147 dev_priv->display.fdi_link_train(crtc);
3148
3149 /* We need to program the right clock selection before writing the pixel
3150 * mutliplier into the DPLL. */
3151 if (HAS_PCH_CPT(dev)) {
3152 u32 sel;
3153
3154 temp = I915_READ(PCH_DPLL_SEL);
3155 temp |= TRANS_DPLL_ENABLE(pipe);
3156 sel = TRANS_DPLLB_SEL(pipe);
3157 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3158 temp |= sel;
3159 else
3160 temp &= ~sel;
3161 I915_WRITE(PCH_DPLL_SEL, temp);
3162 }
3163
3164 /* XXX: pch pll's can be enabled any time before we enable the PCH
3165 * transcoder, and we actually should do this to not upset any PCH
3166 * transcoder that already use the clock when we share it.
3167 *
3168 * Note that enable_shared_dpll tries to do the right thing, but
3169 * get_shared_dpll unconditionally resets the pll - we need that to have
3170 * the right LVDS enable sequence. */
3171 ironlake_enable_shared_dpll(intel_crtc);
3172
3173 /* set transcoder timing, panel must allow it */
3174 assert_panel_unlocked(dev_priv, pipe);
3175 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3176
3177 intel_fdi_normal_train(crtc);
3178
3179 /* For PCH DP, enable TRANS_DP_CTL */
3180 if (HAS_PCH_CPT(dev) &&
3181 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3182 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3183 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3184 reg = TRANS_DP_CTL(pipe);
3185 temp = I915_READ(reg);
3186 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3187 TRANS_DP_SYNC_MASK |
3188 TRANS_DP_BPC_MASK);
3189 temp |= (TRANS_DP_OUTPUT_ENABLE |
3190 TRANS_DP_ENH_FRAMING);
3191 temp |= bpc << 9; /* same format but at 11:9 */
3192
3193 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3194 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3195 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3196 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3197
3198 switch (intel_trans_dp_port_sel(crtc)) {
3199 case PCH_DP_B:
3200 temp |= TRANS_DP_PORT_SEL_B;
3201 break;
3202 case PCH_DP_C:
3203 temp |= TRANS_DP_PORT_SEL_C;
3204 break;
3205 case PCH_DP_D:
3206 temp |= TRANS_DP_PORT_SEL_D;
3207 break;
3208 default:
3209 BUG();
3210 }
3211
3212 I915_WRITE(reg, temp);
3213 }
3214
3215 ironlake_enable_pch_transcoder(dev_priv, pipe);
3216 }
3217
3218 static void lpt_pch_enable(struct drm_crtc *crtc)
3219 {
3220 struct drm_device *dev = crtc->dev;
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3224
3225 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227 lpt_program_iclkip(crtc);
3228
3229 /* Set transcoder timing. */
3230 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3231
3232 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3233 }
3234
3235 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3236 {
3237 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3238
3239 if (pll == NULL)
3240 return;
3241
3242 if (pll->refcount == 0) {
3243 WARN(1, "bad %s refcount\n", pll->name);
3244 return;
3245 }
3246
3247 if (--pll->refcount == 0) {
3248 WARN_ON(pll->on);
3249 WARN_ON(pll->active);
3250 }
3251
3252 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3253 }
3254
3255 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3256 {
3257 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3259 enum intel_dpll_id i;
3260
3261 if (pll) {
3262 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3263 crtc->base.base.id, pll->name);
3264 intel_put_shared_dpll(crtc);
3265 }
3266
3267 if (HAS_PCH_IBX(dev_priv->dev)) {
3268 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3269 i = (enum intel_dpll_id) crtc->pipe;
3270 pll = &dev_priv->shared_dplls[i];
3271
3272 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3273 crtc->base.base.id, pll->name);
3274
3275 goto found;
3276 }
3277
3278 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3279 pll = &dev_priv->shared_dplls[i];
3280
3281 /* Only want to check enabled timings first */
3282 if (pll->refcount == 0)
3283 continue;
3284
3285 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3286 sizeof(pll->hw_state)) == 0) {
3287 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3288 crtc->base.base.id,
3289 pll->name, pll->refcount, pll->active);
3290
3291 goto found;
3292 }
3293 }
3294
3295 /* Ok no matching timings, maybe there's a free one? */
3296 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3297 pll = &dev_priv->shared_dplls[i];
3298 if (pll->refcount == 0) {
3299 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3300 crtc->base.base.id, pll->name);
3301 goto found;
3302 }
3303 }
3304
3305 return NULL;
3306
3307 found:
3308 crtc->config.shared_dpll = i;
3309 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3310 pipe_name(crtc->pipe));
3311
3312 if (pll->active == 0) {
3313 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3314 sizeof(pll->hw_state));
3315
3316 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3317 WARN_ON(pll->on);
3318 assert_shared_dpll_disabled(dev_priv, pll);
3319
3320 pll->mode_set(dev_priv, pll);
3321 }
3322 pll->refcount++;
3323
3324 return pll;
3325 }
3326
3327 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3328 {
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 int dslreg = PIPEDSL(pipe);
3331 u32 temp;
3332
3333 temp = I915_READ(dslreg);
3334 udelay(500);
3335 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3336 if (wait_for(I915_READ(dslreg) != temp, 5))
3337 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3338 }
3339 }
3340
3341 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3342 {
3343 struct drm_device *dev = crtc->base.dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 int pipe = crtc->pipe;
3346
3347 if (crtc->config.pch_pfit.enabled) {
3348 /* Force use of hard-coded filter coefficients
3349 * as some pre-programmed values are broken,
3350 * e.g. x201.
3351 */
3352 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3353 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3354 PF_PIPE_SEL_IVB(pipe));
3355 else
3356 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3357 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3358 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3359 }
3360 }
3361
3362 static void intel_enable_planes(struct drm_crtc *crtc)
3363 {
3364 struct drm_device *dev = crtc->dev;
3365 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3366 struct intel_plane *intel_plane;
3367
3368 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3369 if (intel_plane->pipe == pipe)
3370 intel_plane_restore(&intel_plane->base);
3371 }
3372
3373 static void intel_disable_planes(struct drm_crtc *crtc)
3374 {
3375 struct drm_device *dev = crtc->dev;
3376 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3377 struct intel_plane *intel_plane;
3378
3379 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3380 if (intel_plane->pipe == pipe)
3381 intel_plane_disable(&intel_plane->base);
3382 }
3383
3384 void hsw_enable_ips(struct intel_crtc *crtc)
3385 {
3386 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3387
3388 if (!crtc->config.ips_enabled)
3389 return;
3390
3391 /* We can only enable IPS after we enable a plane and wait for a vblank.
3392 * We guarantee that the plane is enabled by calling intel_enable_ips
3393 * only after intel_enable_plane. And intel_enable_plane already waits
3394 * for a vblank, so all we need to do here is to enable the IPS bit. */
3395 assert_plane_enabled(dev_priv, crtc->plane);
3396 if (IS_BROADWELL(crtc->base.dev)) {
3397 mutex_lock(&dev_priv->rps.hw_lock);
3398 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3399 mutex_unlock(&dev_priv->rps.hw_lock);
3400 /* Quoting Art Runyan: "its not safe to expect any particular
3401 * value in IPS_CTL bit 31 after enabling IPS through the
3402 * mailbox." Therefore we need to defer waiting on the state
3403 * change.
3404 * TODO: need to fix this for state checker
3405 */
3406 } else {
3407 I915_WRITE(IPS_CTL, IPS_ENABLE);
3408 /* The bit only becomes 1 in the next vblank, so this wait here
3409 * is essentially intel_wait_for_vblank. If we don't have this
3410 * and don't wait for vblanks until the end of crtc_enable, then
3411 * the HW state readout code will complain that the expected
3412 * IPS_CTL value is not the one we read. */
3413 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3414 DRM_ERROR("Timed out waiting for IPS enable\n");
3415 }
3416 }
3417
3418 void hsw_disable_ips(struct intel_crtc *crtc)
3419 {
3420 struct drm_device *dev = crtc->base.dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423 if (!crtc->config.ips_enabled)
3424 return;
3425
3426 assert_plane_enabled(dev_priv, crtc->plane);
3427 if (IS_BROADWELL(crtc->base.dev)) {
3428 mutex_lock(&dev_priv->rps.hw_lock);
3429 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3430 mutex_unlock(&dev_priv->rps.hw_lock);
3431 } else
3432 I915_WRITE(IPS_CTL, 0);
3433 POSTING_READ(IPS_CTL);
3434
3435 /* We need to wait for a vblank before we can disable the plane. */
3436 intel_wait_for_vblank(dev, crtc->pipe);
3437 }
3438
3439 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3440 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3441 {
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 enum pipe pipe = intel_crtc->pipe;
3446 int palreg = PALETTE(pipe);
3447 int i;
3448 bool reenable_ips = false;
3449
3450 /* The clocks have to be on to load the palette. */
3451 if (!crtc->enabled || !intel_crtc->active)
3452 return;
3453
3454 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3456 assert_dsi_pll_enabled(dev_priv);
3457 else
3458 assert_pll_enabled(dev_priv, pipe);
3459 }
3460
3461 /* use legacy palette for Ironlake */
3462 if (HAS_PCH_SPLIT(dev))
3463 palreg = LGC_PALETTE(pipe);
3464
3465 /* Workaround : Do not read or write the pipe palette/gamma data while
3466 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3467 */
3468 if (intel_crtc->config.ips_enabled &&
3469 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3470 GAMMA_MODE_MODE_SPLIT)) {
3471 hsw_disable_ips(intel_crtc);
3472 reenable_ips = true;
3473 }
3474
3475 for (i = 0; i < 256; i++) {
3476 I915_WRITE(palreg + 4 * i,
3477 (intel_crtc->lut_r[i] << 16) |
3478 (intel_crtc->lut_g[i] << 8) |
3479 intel_crtc->lut_b[i]);
3480 }
3481
3482 if (reenable_ips)
3483 hsw_enable_ips(intel_crtc);
3484 }
3485
3486 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3487 {
3488 struct drm_device *dev = crtc->dev;
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3491 struct intel_encoder *encoder;
3492 int pipe = intel_crtc->pipe;
3493 int plane = intel_crtc->plane;
3494
3495 WARN_ON(!crtc->enabled);
3496
3497 if (intel_crtc->active)
3498 return;
3499
3500 intel_crtc->active = true;
3501
3502 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3503 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3504
3505 for_each_encoder_on_crtc(dev, crtc, encoder)
3506 if (encoder->pre_enable)
3507 encoder->pre_enable(encoder);
3508
3509 if (intel_crtc->config.has_pch_encoder) {
3510 /* Note: FDI PLL enabling _must_ be done before we enable the
3511 * cpu pipes, hence this is separate from all the other fdi/pch
3512 * enabling. */
3513 ironlake_fdi_pll_enable(intel_crtc);
3514 } else {
3515 assert_fdi_tx_disabled(dev_priv, pipe);
3516 assert_fdi_rx_disabled(dev_priv, pipe);
3517 }
3518
3519 ironlake_pfit_enable(intel_crtc);
3520
3521 /*
3522 * On ILK+ LUT must be loaded before the pipe is running but with
3523 * clocks enabled
3524 */
3525 intel_crtc_load_lut(crtc);
3526
3527 intel_update_watermarks(crtc);
3528 intel_enable_pipe(dev_priv, pipe,
3529 intel_crtc->config.has_pch_encoder, false);
3530 intel_enable_primary_plane(dev_priv, plane, pipe);
3531 intel_enable_planes(crtc);
3532 intel_crtc_update_cursor(crtc, true);
3533
3534 if (intel_crtc->config.has_pch_encoder)
3535 ironlake_pch_enable(crtc);
3536
3537 mutex_lock(&dev->struct_mutex);
3538 intel_update_fbc(dev);
3539 mutex_unlock(&dev->struct_mutex);
3540
3541 for_each_encoder_on_crtc(dev, crtc, encoder)
3542 encoder->enable(encoder);
3543
3544 if (HAS_PCH_CPT(dev))
3545 cpt_verify_modeset(dev, intel_crtc->pipe);
3546
3547 /*
3548 * There seems to be a race in PCH platform hw (at least on some
3549 * outputs) where an enabled pipe still completes any pageflip right
3550 * away (as if the pipe is off) instead of waiting for vblank. As soon
3551 * as the first vblank happend, everything works as expected. Hence just
3552 * wait for one vblank before returning to avoid strange things
3553 * happening.
3554 */
3555 intel_wait_for_vblank(dev, intel_crtc->pipe);
3556 }
3557
3558 /* IPS only exists on ULT machines and is tied to pipe A. */
3559 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3560 {
3561 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3562 }
3563
3564 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3565 {
3566 struct drm_device *dev = crtc->dev;
3567 struct drm_i915_private *dev_priv = dev->dev_private;
3568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569 int pipe = intel_crtc->pipe;
3570 int plane = intel_crtc->plane;
3571
3572 intel_enable_primary_plane(dev_priv, plane, pipe);
3573 intel_enable_planes(crtc);
3574 intel_crtc_update_cursor(crtc, true);
3575
3576 hsw_enable_ips(intel_crtc);
3577
3578 mutex_lock(&dev->struct_mutex);
3579 intel_update_fbc(dev);
3580 mutex_unlock(&dev->struct_mutex);
3581 }
3582
3583 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3584 {
3585 struct drm_device *dev = crtc->dev;
3586 struct drm_i915_private *dev_priv = dev->dev_private;
3587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3588 int pipe = intel_crtc->pipe;
3589 int plane = intel_crtc->plane;
3590
3591 intel_crtc_wait_for_pending_flips(crtc);
3592 drm_vblank_off(dev, pipe);
3593
3594 /* FBC must be disabled before disabling the plane on HSW. */
3595 if (dev_priv->fbc.plane == plane)
3596 intel_disable_fbc(dev);
3597
3598 hsw_disable_ips(intel_crtc);
3599
3600 intel_crtc_update_cursor(crtc, false);
3601 intel_disable_planes(crtc);
3602 intel_disable_primary_plane(dev_priv, plane, pipe);
3603 }
3604
3605 /*
3606 * This implements the workaround described in the "notes" section of the mode
3607 * set sequence documentation. When going from no pipes or single pipe to
3608 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3609 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3610 */
3611 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3612 {
3613 struct drm_device *dev = crtc->base.dev;
3614 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3615
3616 /* We want to get the other_active_crtc only if there's only 1 other
3617 * active crtc. */
3618 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3619 if (!crtc_it->active || crtc_it == crtc)
3620 continue;
3621
3622 if (other_active_crtc)
3623 return;
3624
3625 other_active_crtc = crtc_it;
3626 }
3627 if (!other_active_crtc)
3628 return;
3629
3630 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3631 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3632 }
3633
3634 static void haswell_crtc_enable(struct drm_crtc *crtc)
3635 {
3636 struct drm_device *dev = crtc->dev;
3637 struct drm_i915_private *dev_priv = dev->dev_private;
3638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3639 struct intel_encoder *encoder;
3640 int pipe = intel_crtc->pipe;
3641
3642 WARN_ON(!crtc->enabled);
3643
3644 if (intel_crtc->active)
3645 return;
3646
3647 intel_crtc->active = true;
3648
3649 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3650 if (intel_crtc->config.has_pch_encoder)
3651 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3652
3653 if (intel_crtc->config.has_pch_encoder)
3654 dev_priv->display.fdi_link_train(crtc);
3655
3656 for_each_encoder_on_crtc(dev, crtc, encoder)
3657 if (encoder->pre_enable)
3658 encoder->pre_enable(encoder);
3659
3660 intel_ddi_enable_pipe_clock(intel_crtc);
3661
3662 ironlake_pfit_enable(intel_crtc);
3663
3664 /*
3665 * On ILK+ LUT must be loaded before the pipe is running but with
3666 * clocks enabled
3667 */
3668 intel_crtc_load_lut(crtc);
3669
3670 intel_ddi_set_pipe_settings(crtc);
3671 intel_ddi_enable_transcoder_func(crtc);
3672
3673 intel_update_watermarks(crtc);
3674 intel_enable_pipe(dev_priv, pipe,
3675 intel_crtc->config.has_pch_encoder, false);
3676
3677 if (intel_crtc->config.has_pch_encoder)
3678 lpt_pch_enable(crtc);
3679
3680 for_each_encoder_on_crtc(dev, crtc, encoder) {
3681 encoder->enable(encoder);
3682 intel_opregion_notify_encoder(encoder, true);
3683 }
3684
3685 /* If we change the relative order between pipe/planes enabling, we need
3686 * to change the workaround. */
3687 haswell_mode_set_planes_workaround(intel_crtc);
3688 haswell_crtc_enable_planes(crtc);
3689
3690 /*
3691 * There seems to be a race in PCH platform hw (at least on some
3692 * outputs) where an enabled pipe still completes any pageflip right
3693 * away (as if the pipe is off) instead of waiting for vblank. As soon
3694 * as the first vblank happend, everything works as expected. Hence just
3695 * wait for one vblank before returning to avoid strange things
3696 * happening.
3697 */
3698 intel_wait_for_vblank(dev, intel_crtc->pipe);
3699 }
3700
3701 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3702 {
3703 struct drm_device *dev = crtc->base.dev;
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705 int pipe = crtc->pipe;
3706
3707 /* To avoid upsetting the power well on haswell only disable the pfit if
3708 * it's in use. The hw state code will make sure we get this right. */
3709 if (crtc->config.pch_pfit.enabled) {
3710 I915_WRITE(PF_CTL(pipe), 0);
3711 I915_WRITE(PF_WIN_POS(pipe), 0);
3712 I915_WRITE(PF_WIN_SZ(pipe), 0);
3713 }
3714 }
3715
3716 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3717 {
3718 struct drm_device *dev = crtc->dev;
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3721 struct intel_encoder *encoder;
3722 int pipe = intel_crtc->pipe;
3723 int plane = intel_crtc->plane;
3724 u32 reg, temp;
3725
3726
3727 if (!intel_crtc->active)
3728 return;
3729
3730 for_each_encoder_on_crtc(dev, crtc, encoder)
3731 encoder->disable(encoder);
3732
3733 intel_crtc_wait_for_pending_flips(crtc);
3734 drm_vblank_off(dev, pipe);
3735
3736 if (dev_priv->fbc.plane == plane)
3737 intel_disable_fbc(dev);
3738
3739 intel_crtc_update_cursor(crtc, false);
3740 intel_disable_planes(crtc);
3741 intel_disable_primary_plane(dev_priv, plane, pipe);
3742
3743 if (intel_crtc->config.has_pch_encoder)
3744 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3745
3746 intel_disable_pipe(dev_priv, pipe);
3747
3748 ironlake_pfit_disable(intel_crtc);
3749
3750 for_each_encoder_on_crtc(dev, crtc, encoder)
3751 if (encoder->post_disable)
3752 encoder->post_disable(encoder);
3753
3754 if (intel_crtc->config.has_pch_encoder) {
3755 ironlake_fdi_disable(crtc);
3756
3757 ironlake_disable_pch_transcoder(dev_priv, pipe);
3758 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3759
3760 if (HAS_PCH_CPT(dev)) {
3761 /* disable TRANS_DP_CTL */
3762 reg = TRANS_DP_CTL(pipe);
3763 temp = I915_READ(reg);
3764 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3765 TRANS_DP_PORT_SEL_MASK);
3766 temp |= TRANS_DP_PORT_SEL_NONE;
3767 I915_WRITE(reg, temp);
3768
3769 /* disable DPLL_SEL */
3770 temp = I915_READ(PCH_DPLL_SEL);
3771 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3772 I915_WRITE(PCH_DPLL_SEL, temp);
3773 }
3774
3775 /* disable PCH DPLL */
3776 intel_disable_shared_dpll(intel_crtc);
3777
3778 ironlake_fdi_pll_disable(intel_crtc);
3779 }
3780
3781 intel_crtc->active = false;
3782 intel_update_watermarks(crtc);
3783
3784 mutex_lock(&dev->struct_mutex);
3785 intel_update_fbc(dev);
3786 mutex_unlock(&dev->struct_mutex);
3787 }
3788
3789 static void haswell_crtc_disable(struct drm_crtc *crtc)
3790 {
3791 struct drm_device *dev = crtc->dev;
3792 struct drm_i915_private *dev_priv = dev->dev_private;
3793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3794 struct intel_encoder *encoder;
3795 int pipe = intel_crtc->pipe;
3796 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3797
3798 if (!intel_crtc->active)
3799 return;
3800
3801 haswell_crtc_disable_planes(crtc);
3802
3803 for_each_encoder_on_crtc(dev, crtc, encoder) {
3804 intel_opregion_notify_encoder(encoder, false);
3805 encoder->disable(encoder);
3806 }
3807
3808 if (intel_crtc->config.has_pch_encoder)
3809 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3810 intel_disable_pipe(dev_priv, pipe);
3811
3812 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3813
3814 ironlake_pfit_disable(intel_crtc);
3815
3816 intel_ddi_disable_pipe_clock(intel_crtc);
3817
3818 for_each_encoder_on_crtc(dev, crtc, encoder)
3819 if (encoder->post_disable)
3820 encoder->post_disable(encoder);
3821
3822 if (intel_crtc->config.has_pch_encoder) {
3823 lpt_disable_pch_transcoder(dev_priv);
3824 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3825 intel_ddi_fdi_disable(crtc);
3826 }
3827
3828 intel_crtc->active = false;
3829 intel_update_watermarks(crtc);
3830
3831 mutex_lock(&dev->struct_mutex);
3832 intel_update_fbc(dev);
3833 mutex_unlock(&dev->struct_mutex);
3834 }
3835
3836 static void ironlake_crtc_off(struct drm_crtc *crtc)
3837 {
3838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3839 intel_put_shared_dpll(intel_crtc);
3840 }
3841
3842 static void haswell_crtc_off(struct drm_crtc *crtc)
3843 {
3844 intel_ddi_put_crtc_pll(crtc);
3845 }
3846
3847 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3848 {
3849 if (!enable && intel_crtc->overlay) {
3850 struct drm_device *dev = intel_crtc->base.dev;
3851 struct drm_i915_private *dev_priv = dev->dev_private;
3852
3853 mutex_lock(&dev->struct_mutex);
3854 dev_priv->mm.interruptible = false;
3855 (void) intel_overlay_switch_off(intel_crtc->overlay);
3856 dev_priv->mm.interruptible = true;
3857 mutex_unlock(&dev->struct_mutex);
3858 }
3859
3860 /* Let userspace switch the overlay on again. In most cases userspace
3861 * has to recompute where to put it anyway.
3862 */
3863 }
3864
3865 /**
3866 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3867 * cursor plane briefly if not already running after enabling the display
3868 * plane.
3869 * This workaround avoids occasional blank screens when self refresh is
3870 * enabled.
3871 */
3872 static void
3873 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3874 {
3875 u32 cntl = I915_READ(CURCNTR(pipe));
3876
3877 if ((cntl & CURSOR_MODE) == 0) {
3878 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3879
3880 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3881 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3882 intel_wait_for_vblank(dev_priv->dev, pipe);
3883 I915_WRITE(CURCNTR(pipe), cntl);
3884 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3885 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3886 }
3887 }
3888
3889 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3890 {
3891 struct drm_device *dev = crtc->base.dev;
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 struct intel_crtc_config *pipe_config = &crtc->config;
3894
3895 if (!crtc->config.gmch_pfit.control)
3896 return;
3897
3898 /*
3899 * The panel fitter should only be adjusted whilst the pipe is disabled,
3900 * according to register description and PRM.
3901 */
3902 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3903 assert_pipe_disabled(dev_priv, crtc->pipe);
3904
3905 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3906 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3907
3908 /* Border color in case we don't scale up to the full screen. Black by
3909 * default, change to something else for debugging. */
3910 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3911 }
3912
3913 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3914 {
3915 struct drm_device *dev = crtc->dev;
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918 struct intel_encoder *encoder;
3919 int pipe = intel_crtc->pipe;
3920 int plane = intel_crtc->plane;
3921 bool is_dsi;
3922
3923 WARN_ON(!crtc->enabled);
3924
3925 if (intel_crtc->active)
3926 return;
3927
3928 intel_crtc->active = true;
3929
3930 for_each_encoder_on_crtc(dev, crtc, encoder)
3931 if (encoder->pre_pll_enable)
3932 encoder->pre_pll_enable(encoder);
3933
3934 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3935
3936 if (!is_dsi)
3937 vlv_enable_pll(intel_crtc);
3938
3939 for_each_encoder_on_crtc(dev, crtc, encoder)
3940 if (encoder->pre_enable)
3941 encoder->pre_enable(encoder);
3942
3943 i9xx_pfit_enable(intel_crtc);
3944
3945 intel_crtc_load_lut(crtc);
3946
3947 intel_update_watermarks(crtc);
3948 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3949 intel_enable_primary_plane(dev_priv, plane, pipe);
3950 intel_enable_planes(crtc);
3951 intel_crtc_update_cursor(crtc, true);
3952
3953 intel_update_fbc(dev);
3954
3955 for_each_encoder_on_crtc(dev, crtc, encoder)
3956 encoder->enable(encoder);
3957 }
3958
3959 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3960 {
3961 struct drm_device *dev = crtc->dev;
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964 struct intel_encoder *encoder;
3965 int pipe = intel_crtc->pipe;
3966 int plane = intel_crtc->plane;
3967
3968 WARN_ON(!crtc->enabled);
3969
3970 if (intel_crtc->active)
3971 return;
3972
3973 intel_crtc->active = true;
3974
3975 for_each_encoder_on_crtc(dev, crtc, encoder)
3976 if (encoder->pre_enable)
3977 encoder->pre_enable(encoder);
3978
3979 i9xx_enable_pll(intel_crtc);
3980
3981 i9xx_pfit_enable(intel_crtc);
3982
3983 intel_crtc_load_lut(crtc);
3984
3985 intel_update_watermarks(crtc);
3986 intel_enable_pipe(dev_priv, pipe, false, false);
3987 intel_enable_primary_plane(dev_priv, plane, pipe);
3988 intel_enable_planes(crtc);
3989 /* The fixup needs to happen before cursor is enabled */
3990 if (IS_G4X(dev))
3991 g4x_fixup_plane(dev_priv, pipe);
3992 intel_crtc_update_cursor(crtc, true);
3993
3994 /* Give the overlay scaler a chance to enable if it's on this pipe */
3995 intel_crtc_dpms_overlay(intel_crtc, true);
3996
3997 intel_update_fbc(dev);
3998
3999 for_each_encoder_on_crtc(dev, crtc, encoder)
4000 encoder->enable(encoder);
4001 }
4002
4003 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4004 {
4005 struct drm_device *dev = crtc->base.dev;
4006 struct drm_i915_private *dev_priv = dev->dev_private;
4007
4008 if (!crtc->config.gmch_pfit.control)
4009 return;
4010
4011 assert_pipe_disabled(dev_priv, crtc->pipe);
4012
4013 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4014 I915_READ(PFIT_CONTROL));
4015 I915_WRITE(PFIT_CONTROL, 0);
4016 }
4017
4018 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4019 {
4020 struct drm_device *dev = crtc->dev;
4021 struct drm_i915_private *dev_priv = dev->dev_private;
4022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4023 struct intel_encoder *encoder;
4024 int pipe = intel_crtc->pipe;
4025 int plane = intel_crtc->plane;
4026
4027 if (!intel_crtc->active)
4028 return;
4029
4030 for_each_encoder_on_crtc(dev, crtc, encoder)
4031 encoder->disable(encoder);
4032
4033 /* Give the overlay scaler a chance to disable if it's on this pipe */
4034 intel_crtc_wait_for_pending_flips(crtc);
4035 drm_vblank_off(dev, pipe);
4036
4037 if (dev_priv->fbc.plane == plane)
4038 intel_disable_fbc(dev);
4039
4040 intel_crtc_dpms_overlay(intel_crtc, false);
4041 intel_crtc_update_cursor(crtc, false);
4042 intel_disable_planes(crtc);
4043 intel_disable_primary_plane(dev_priv, plane, pipe);
4044
4045 intel_disable_pipe(dev_priv, pipe);
4046
4047 i9xx_pfit_disable(intel_crtc);
4048
4049 for_each_encoder_on_crtc(dev, crtc, encoder)
4050 if (encoder->post_disable)
4051 encoder->post_disable(encoder);
4052
4053 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4054 vlv_disable_pll(dev_priv, pipe);
4055 else if (!IS_VALLEYVIEW(dev))
4056 i9xx_disable_pll(dev_priv, pipe);
4057
4058 intel_crtc->active = false;
4059 intel_update_watermarks(crtc);
4060
4061 intel_update_fbc(dev);
4062 }
4063
4064 static void i9xx_crtc_off(struct drm_crtc *crtc)
4065 {
4066 }
4067
4068 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4069 bool enabled)
4070 {
4071 struct drm_device *dev = crtc->dev;
4072 struct drm_i915_master_private *master_priv;
4073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074 int pipe = intel_crtc->pipe;
4075
4076 if (!dev->primary->master)
4077 return;
4078
4079 master_priv = dev->primary->master->driver_priv;
4080 if (!master_priv->sarea_priv)
4081 return;
4082
4083 switch (pipe) {
4084 case 0:
4085 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4086 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4087 break;
4088 case 1:
4089 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4090 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4091 break;
4092 default:
4093 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4094 break;
4095 }
4096 }
4097
4098 /**
4099 * Sets the power management mode of the pipe and plane.
4100 */
4101 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4102 {
4103 struct drm_device *dev = crtc->dev;
4104 struct drm_i915_private *dev_priv = dev->dev_private;
4105 struct intel_encoder *intel_encoder;
4106 bool enable = false;
4107
4108 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4109 enable |= intel_encoder->connectors_active;
4110
4111 if (enable)
4112 dev_priv->display.crtc_enable(crtc);
4113 else
4114 dev_priv->display.crtc_disable(crtc);
4115
4116 intel_crtc_update_sarea(crtc, enable);
4117 }
4118
4119 static void intel_crtc_disable(struct drm_crtc *crtc)
4120 {
4121 struct drm_device *dev = crtc->dev;
4122 struct drm_connector *connector;
4123 struct drm_i915_private *dev_priv = dev->dev_private;
4124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125
4126 /* crtc should still be enabled when we disable it. */
4127 WARN_ON(!crtc->enabled);
4128
4129 dev_priv->display.crtc_disable(crtc);
4130 intel_crtc->eld_vld = false;
4131 intel_crtc_update_sarea(crtc, false);
4132 dev_priv->display.off(crtc);
4133
4134 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4135 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4136 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4137
4138 if (crtc->fb) {
4139 mutex_lock(&dev->struct_mutex);
4140 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4141 mutex_unlock(&dev->struct_mutex);
4142 crtc->fb = NULL;
4143 }
4144
4145 /* Update computed state. */
4146 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4147 if (!connector->encoder || !connector->encoder->crtc)
4148 continue;
4149
4150 if (connector->encoder->crtc != crtc)
4151 continue;
4152
4153 connector->dpms = DRM_MODE_DPMS_OFF;
4154 to_intel_encoder(connector->encoder)->connectors_active = false;
4155 }
4156 }
4157
4158 void intel_encoder_destroy(struct drm_encoder *encoder)
4159 {
4160 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4161
4162 drm_encoder_cleanup(encoder);
4163 kfree(intel_encoder);
4164 }
4165
4166 /* Simple dpms helper for encoders with just one connector, no cloning and only
4167 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4168 * state of the entire output pipe. */
4169 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4170 {
4171 if (mode == DRM_MODE_DPMS_ON) {
4172 encoder->connectors_active = true;
4173
4174 intel_crtc_update_dpms(encoder->base.crtc);
4175 } else {
4176 encoder->connectors_active = false;
4177
4178 intel_crtc_update_dpms(encoder->base.crtc);
4179 }
4180 }
4181
4182 /* Cross check the actual hw state with our own modeset state tracking (and it's
4183 * internal consistency). */
4184 static void intel_connector_check_state(struct intel_connector *connector)
4185 {
4186 if (connector->get_hw_state(connector)) {
4187 struct intel_encoder *encoder = connector->encoder;
4188 struct drm_crtc *crtc;
4189 bool encoder_enabled;
4190 enum pipe pipe;
4191
4192 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4193 connector->base.base.id,
4194 drm_get_connector_name(&connector->base));
4195
4196 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4197 "wrong connector dpms state\n");
4198 WARN(connector->base.encoder != &encoder->base,
4199 "active connector not linked to encoder\n");
4200 WARN(!encoder->connectors_active,
4201 "encoder->connectors_active not set\n");
4202
4203 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4204 WARN(!encoder_enabled, "encoder not enabled\n");
4205 if (WARN_ON(!encoder->base.crtc))
4206 return;
4207
4208 crtc = encoder->base.crtc;
4209
4210 WARN(!crtc->enabled, "crtc not enabled\n");
4211 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4212 WARN(pipe != to_intel_crtc(crtc)->pipe,
4213 "encoder active on the wrong pipe\n");
4214 }
4215 }
4216
4217 /* Even simpler default implementation, if there's really no special case to
4218 * consider. */
4219 void intel_connector_dpms(struct drm_connector *connector, int mode)
4220 {
4221 /* All the simple cases only support two dpms states. */
4222 if (mode != DRM_MODE_DPMS_ON)
4223 mode = DRM_MODE_DPMS_OFF;
4224
4225 if (mode == connector->dpms)
4226 return;
4227
4228 connector->dpms = mode;
4229
4230 /* Only need to change hw state when actually enabled */
4231 if (connector->encoder)
4232 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4233
4234 intel_modeset_check_state(connector->dev);
4235 }
4236
4237 /* Simple connector->get_hw_state implementation for encoders that support only
4238 * one connector and no cloning and hence the encoder state determines the state
4239 * of the connector. */
4240 bool intel_connector_get_hw_state(struct intel_connector *connector)
4241 {
4242 enum pipe pipe = 0;
4243 struct intel_encoder *encoder = connector->encoder;
4244
4245 return encoder->get_hw_state(encoder, &pipe);
4246 }
4247
4248 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4249 struct intel_crtc_config *pipe_config)
4250 {
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 struct intel_crtc *pipe_B_crtc =
4253 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4254
4255 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4256 pipe_name(pipe), pipe_config->fdi_lanes);
4257 if (pipe_config->fdi_lanes > 4) {
4258 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4259 pipe_name(pipe), pipe_config->fdi_lanes);
4260 return false;
4261 }
4262
4263 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4264 if (pipe_config->fdi_lanes > 2) {
4265 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4266 pipe_config->fdi_lanes);
4267 return false;
4268 } else {
4269 return true;
4270 }
4271 }
4272
4273 if (INTEL_INFO(dev)->num_pipes == 2)
4274 return true;
4275
4276 /* Ivybridge 3 pipe is really complicated */
4277 switch (pipe) {
4278 case PIPE_A:
4279 return true;
4280 case PIPE_B:
4281 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4282 pipe_config->fdi_lanes > 2) {
4283 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4284 pipe_name(pipe), pipe_config->fdi_lanes);
4285 return false;
4286 }
4287 return true;
4288 case PIPE_C:
4289 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4290 pipe_B_crtc->config.fdi_lanes <= 2) {
4291 if (pipe_config->fdi_lanes > 2) {
4292 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4293 pipe_name(pipe), pipe_config->fdi_lanes);
4294 return false;
4295 }
4296 } else {
4297 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4298 return false;
4299 }
4300 return true;
4301 default:
4302 BUG();
4303 }
4304 }
4305
4306 #define RETRY 1
4307 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4308 struct intel_crtc_config *pipe_config)
4309 {
4310 struct drm_device *dev = intel_crtc->base.dev;
4311 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4312 int lane, link_bw, fdi_dotclock;
4313 bool setup_ok, needs_recompute = false;
4314
4315 retry:
4316 /* FDI is a binary signal running at ~2.7GHz, encoding
4317 * each output octet as 10 bits. The actual frequency
4318 * is stored as a divider into a 100MHz clock, and the
4319 * mode pixel clock is stored in units of 1KHz.
4320 * Hence the bw of each lane in terms of the mode signal
4321 * is:
4322 */
4323 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4324
4325 fdi_dotclock = adjusted_mode->crtc_clock;
4326
4327 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4328 pipe_config->pipe_bpp);
4329
4330 pipe_config->fdi_lanes = lane;
4331
4332 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4333 link_bw, &pipe_config->fdi_m_n);
4334
4335 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4336 intel_crtc->pipe, pipe_config);
4337 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4338 pipe_config->pipe_bpp -= 2*3;
4339 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4340 pipe_config->pipe_bpp);
4341 needs_recompute = true;
4342 pipe_config->bw_constrained = true;
4343
4344 goto retry;
4345 }
4346
4347 if (needs_recompute)
4348 return RETRY;
4349
4350 return setup_ok ? 0 : -EINVAL;
4351 }
4352
4353 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4354 struct intel_crtc_config *pipe_config)
4355 {
4356 pipe_config->ips_enabled = i915_enable_ips &&
4357 hsw_crtc_supports_ips(crtc) &&
4358 pipe_config->pipe_bpp <= 24;
4359 }
4360
4361 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4362 struct intel_crtc_config *pipe_config)
4363 {
4364 struct drm_device *dev = crtc->base.dev;
4365 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4366
4367 /* FIXME should check pixel clock limits on all platforms */
4368 if (INTEL_INFO(dev)->gen < 4) {
4369 struct drm_i915_private *dev_priv = dev->dev_private;
4370 int clock_limit =
4371 dev_priv->display.get_display_clock_speed(dev);
4372
4373 /*
4374 * Enable pixel doubling when the dot clock
4375 * is > 90% of the (display) core speed.
4376 *
4377 * GDG double wide on either pipe,
4378 * otherwise pipe A only.
4379 */
4380 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4381 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4382 clock_limit *= 2;
4383 pipe_config->double_wide = true;
4384 }
4385
4386 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4387 return -EINVAL;
4388 }
4389
4390 /*
4391 * Pipe horizontal size must be even in:
4392 * - DVO ganged mode
4393 * - LVDS dual channel mode
4394 * - Double wide pipe
4395 */
4396 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4397 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4398 pipe_config->pipe_src_w &= ~1;
4399
4400 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4401 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4402 */
4403 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4404 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4405 return -EINVAL;
4406
4407 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4408 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4409 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4410 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4411 * for lvds. */
4412 pipe_config->pipe_bpp = 8*3;
4413 }
4414
4415 if (HAS_IPS(dev))
4416 hsw_compute_ips_config(crtc, pipe_config);
4417
4418 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4419 * clock survives for now. */
4420 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4421 pipe_config->shared_dpll = crtc->config.shared_dpll;
4422
4423 if (pipe_config->has_pch_encoder)
4424 return ironlake_fdi_compute_config(crtc, pipe_config);
4425
4426 return 0;
4427 }
4428
4429 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4430 {
4431 return 400000; /* FIXME */
4432 }
4433
4434 static int i945_get_display_clock_speed(struct drm_device *dev)
4435 {
4436 return 400000;
4437 }
4438
4439 static int i915_get_display_clock_speed(struct drm_device *dev)
4440 {
4441 return 333000;
4442 }
4443
4444 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4445 {
4446 return 200000;
4447 }
4448
4449 static int pnv_get_display_clock_speed(struct drm_device *dev)
4450 {
4451 u16 gcfgc = 0;
4452
4453 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4454
4455 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4456 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4457 return 267000;
4458 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4459 return 333000;
4460 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4461 return 444000;
4462 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4463 return 200000;
4464 default:
4465 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4466 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4467 return 133000;
4468 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4469 return 167000;
4470 }
4471 }
4472
4473 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4474 {
4475 u16 gcfgc = 0;
4476
4477 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4478
4479 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4480 return 133000;
4481 else {
4482 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4483 case GC_DISPLAY_CLOCK_333_MHZ:
4484 return 333000;
4485 default:
4486 case GC_DISPLAY_CLOCK_190_200_MHZ:
4487 return 190000;
4488 }
4489 }
4490 }
4491
4492 static int i865_get_display_clock_speed(struct drm_device *dev)
4493 {
4494 return 266000;
4495 }
4496
4497 static int i855_get_display_clock_speed(struct drm_device *dev)
4498 {
4499 u16 hpllcc = 0;
4500 /* Assume that the hardware is in the high speed state. This
4501 * should be the default.
4502 */
4503 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4504 case GC_CLOCK_133_200:
4505 case GC_CLOCK_100_200:
4506 return 200000;
4507 case GC_CLOCK_166_250:
4508 return 250000;
4509 case GC_CLOCK_100_133:
4510 return 133000;
4511 }
4512
4513 /* Shouldn't happen */
4514 return 0;
4515 }
4516
4517 static int i830_get_display_clock_speed(struct drm_device *dev)
4518 {
4519 return 133000;
4520 }
4521
4522 static void
4523 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4524 {
4525 while (*num > DATA_LINK_M_N_MASK ||
4526 *den > DATA_LINK_M_N_MASK) {
4527 *num >>= 1;
4528 *den >>= 1;
4529 }
4530 }
4531
4532 static void compute_m_n(unsigned int m, unsigned int n,
4533 uint32_t *ret_m, uint32_t *ret_n)
4534 {
4535 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4536 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4537 intel_reduce_m_n_ratio(ret_m, ret_n);
4538 }
4539
4540 void
4541 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4542 int pixel_clock, int link_clock,
4543 struct intel_link_m_n *m_n)
4544 {
4545 m_n->tu = 64;
4546
4547 compute_m_n(bits_per_pixel * pixel_clock,
4548 link_clock * nlanes * 8,
4549 &m_n->gmch_m, &m_n->gmch_n);
4550
4551 compute_m_n(pixel_clock, link_clock,
4552 &m_n->link_m, &m_n->link_n);
4553 }
4554
4555 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4556 {
4557 if (i915_panel_use_ssc >= 0)
4558 return i915_panel_use_ssc != 0;
4559 return dev_priv->vbt.lvds_use_ssc
4560 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4561 }
4562
4563 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4564 {
4565 struct drm_device *dev = crtc->dev;
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 int refclk;
4568
4569 if (IS_VALLEYVIEW(dev)) {
4570 refclk = 100000;
4571 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4572 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4573 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4574 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4575 refclk / 1000);
4576 } else if (!IS_GEN2(dev)) {
4577 refclk = 96000;
4578 } else {
4579 refclk = 48000;
4580 }
4581
4582 return refclk;
4583 }
4584
4585 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4586 {
4587 return (1 << dpll->n) << 16 | dpll->m2;
4588 }
4589
4590 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4591 {
4592 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4593 }
4594
4595 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4596 intel_clock_t *reduced_clock)
4597 {
4598 struct drm_device *dev = crtc->base.dev;
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600 int pipe = crtc->pipe;
4601 u32 fp, fp2 = 0;
4602
4603 if (IS_PINEVIEW(dev)) {
4604 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4605 if (reduced_clock)
4606 fp2 = pnv_dpll_compute_fp(reduced_clock);
4607 } else {
4608 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4609 if (reduced_clock)
4610 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4611 }
4612
4613 I915_WRITE(FP0(pipe), fp);
4614 crtc->config.dpll_hw_state.fp0 = fp;
4615
4616 crtc->lowfreq_avail = false;
4617 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4618 reduced_clock && i915_powersave) {
4619 I915_WRITE(FP1(pipe), fp2);
4620 crtc->config.dpll_hw_state.fp1 = fp2;
4621 crtc->lowfreq_avail = true;
4622 } else {
4623 I915_WRITE(FP1(pipe), fp);
4624 crtc->config.dpll_hw_state.fp1 = fp;
4625 }
4626 }
4627
4628 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4629 pipe)
4630 {
4631 u32 reg_val;
4632
4633 /*
4634 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4635 * and set it to a reasonable value instead.
4636 */
4637 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4638 reg_val &= 0xffffff00;
4639 reg_val |= 0x00000030;
4640 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4641
4642 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4643 reg_val &= 0x8cffffff;
4644 reg_val = 0x8c000000;
4645 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4646
4647 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4648 reg_val &= 0xffffff00;
4649 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4650
4651 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4652 reg_val &= 0x00ffffff;
4653 reg_val |= 0xb0000000;
4654 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4655 }
4656
4657 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4658 struct intel_link_m_n *m_n)
4659 {
4660 struct drm_device *dev = crtc->base.dev;
4661 struct drm_i915_private *dev_priv = dev->dev_private;
4662 int pipe = crtc->pipe;
4663
4664 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4665 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4666 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4667 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4668 }
4669
4670 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4671 struct intel_link_m_n *m_n)
4672 {
4673 struct drm_device *dev = crtc->base.dev;
4674 struct drm_i915_private *dev_priv = dev->dev_private;
4675 int pipe = crtc->pipe;
4676 enum transcoder transcoder = crtc->config.cpu_transcoder;
4677
4678 if (INTEL_INFO(dev)->gen >= 5) {
4679 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4680 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4681 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4682 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4683 } else {
4684 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4685 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4686 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4687 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4688 }
4689 }
4690
4691 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4692 {
4693 if (crtc->config.has_pch_encoder)
4694 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4695 else
4696 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4697 }
4698
4699 static void vlv_update_pll(struct intel_crtc *crtc)
4700 {
4701 struct drm_device *dev = crtc->base.dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 int pipe = crtc->pipe;
4704 u32 dpll, mdiv;
4705 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4706 u32 coreclk, reg_val, dpll_md;
4707
4708 mutex_lock(&dev_priv->dpio_lock);
4709
4710 bestn = crtc->config.dpll.n;
4711 bestm1 = crtc->config.dpll.m1;
4712 bestm2 = crtc->config.dpll.m2;
4713 bestp1 = crtc->config.dpll.p1;
4714 bestp2 = crtc->config.dpll.p2;
4715
4716 /* See eDP HDMI DPIO driver vbios notes doc */
4717
4718 /* PLL B needs special handling */
4719 if (pipe)
4720 vlv_pllb_recal_opamp(dev_priv, pipe);
4721
4722 /* Set up Tx target for periodic Rcomp update */
4723 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4724
4725 /* Disable target IRef on PLL */
4726 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4727 reg_val &= 0x00ffffff;
4728 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4729
4730 /* Disable fast lock */
4731 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4732
4733 /* Set idtafcrecal before PLL is enabled */
4734 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4735 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4736 mdiv |= ((bestn << DPIO_N_SHIFT));
4737 mdiv |= (1 << DPIO_K_SHIFT);
4738
4739 /*
4740 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4741 * but we don't support that).
4742 * Note: don't use the DAC post divider as it seems unstable.
4743 */
4744 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4745 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4746
4747 mdiv |= DPIO_ENABLE_CALIBRATION;
4748 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4749
4750 /* Set HBR and RBR LPF coefficients */
4751 if (crtc->config.port_clock == 162000 ||
4752 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4753 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4754 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4755 0x009f0003);
4756 else
4757 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4758 0x00d0000f);
4759
4760 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4761 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4762 /* Use SSC source */
4763 if (!pipe)
4764 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4765 0x0df40000);
4766 else
4767 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4768 0x0df70000);
4769 } else { /* HDMI or VGA */
4770 /* Use bend source */
4771 if (!pipe)
4772 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4773 0x0df70000);
4774 else
4775 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4776 0x0df40000);
4777 }
4778
4779 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4780 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4781 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4782 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4783 coreclk |= 0x01000000;
4784 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4785
4786 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4787
4788 /* Enable DPIO clock input */
4789 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4790 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4791 /* We should never disable this, set it here for state tracking */
4792 if (pipe == PIPE_B)
4793 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4794 dpll |= DPLL_VCO_ENABLE;
4795 crtc->config.dpll_hw_state.dpll = dpll;
4796
4797 dpll_md = (crtc->config.pixel_multiplier - 1)
4798 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4799 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4800
4801 if (crtc->config.has_dp_encoder)
4802 intel_dp_set_m_n(crtc);
4803
4804 mutex_unlock(&dev_priv->dpio_lock);
4805 }
4806
4807 static void i9xx_update_pll(struct intel_crtc *crtc,
4808 intel_clock_t *reduced_clock,
4809 int num_connectors)
4810 {
4811 struct drm_device *dev = crtc->base.dev;
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 u32 dpll;
4814 bool is_sdvo;
4815 struct dpll *clock = &crtc->config.dpll;
4816
4817 i9xx_update_pll_dividers(crtc, reduced_clock);
4818
4819 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4820 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4821
4822 dpll = DPLL_VGA_MODE_DIS;
4823
4824 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4825 dpll |= DPLLB_MODE_LVDS;
4826 else
4827 dpll |= DPLLB_MODE_DAC_SERIAL;
4828
4829 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4830 dpll |= (crtc->config.pixel_multiplier - 1)
4831 << SDVO_MULTIPLIER_SHIFT_HIRES;
4832 }
4833
4834 if (is_sdvo)
4835 dpll |= DPLL_SDVO_HIGH_SPEED;
4836
4837 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4838 dpll |= DPLL_SDVO_HIGH_SPEED;
4839
4840 /* compute bitmask from p1 value */
4841 if (IS_PINEVIEW(dev))
4842 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4843 else {
4844 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4845 if (IS_G4X(dev) && reduced_clock)
4846 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4847 }
4848 switch (clock->p2) {
4849 case 5:
4850 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4851 break;
4852 case 7:
4853 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4854 break;
4855 case 10:
4856 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4857 break;
4858 case 14:
4859 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4860 break;
4861 }
4862 if (INTEL_INFO(dev)->gen >= 4)
4863 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4864
4865 if (crtc->config.sdvo_tv_clock)
4866 dpll |= PLL_REF_INPUT_TVCLKINBC;
4867 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4868 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4869 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4870 else
4871 dpll |= PLL_REF_INPUT_DREFCLK;
4872
4873 dpll |= DPLL_VCO_ENABLE;
4874 crtc->config.dpll_hw_state.dpll = dpll;
4875
4876 if (INTEL_INFO(dev)->gen >= 4) {
4877 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4878 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4879 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4880 }
4881
4882 if (crtc->config.has_dp_encoder)
4883 intel_dp_set_m_n(crtc);
4884 }
4885
4886 static void i8xx_update_pll(struct intel_crtc *crtc,
4887 intel_clock_t *reduced_clock,
4888 int num_connectors)
4889 {
4890 struct drm_device *dev = crtc->base.dev;
4891 struct drm_i915_private *dev_priv = dev->dev_private;
4892 u32 dpll;
4893 struct dpll *clock = &crtc->config.dpll;
4894
4895 i9xx_update_pll_dividers(crtc, reduced_clock);
4896
4897 dpll = DPLL_VGA_MODE_DIS;
4898
4899 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4900 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4901 } else {
4902 if (clock->p1 == 2)
4903 dpll |= PLL_P1_DIVIDE_BY_TWO;
4904 else
4905 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4906 if (clock->p2 == 4)
4907 dpll |= PLL_P2_DIVIDE_BY_4;
4908 }
4909
4910 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4911 dpll |= DPLL_DVO_2X_MODE;
4912
4913 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4914 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4915 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4916 else
4917 dpll |= PLL_REF_INPUT_DREFCLK;
4918
4919 dpll |= DPLL_VCO_ENABLE;
4920 crtc->config.dpll_hw_state.dpll = dpll;
4921 }
4922
4923 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4924 {
4925 struct drm_device *dev = intel_crtc->base.dev;
4926 struct drm_i915_private *dev_priv = dev->dev_private;
4927 enum pipe pipe = intel_crtc->pipe;
4928 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4929 struct drm_display_mode *adjusted_mode =
4930 &intel_crtc->config.adjusted_mode;
4931 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4932
4933 /* We need to be careful not to changed the adjusted mode, for otherwise
4934 * the hw state checker will get angry at the mismatch. */
4935 crtc_vtotal = adjusted_mode->crtc_vtotal;
4936 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4937
4938 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4939 /* the chip adds 2 halflines automatically */
4940 crtc_vtotal -= 1;
4941 crtc_vblank_end -= 1;
4942 vsyncshift = adjusted_mode->crtc_hsync_start
4943 - adjusted_mode->crtc_htotal / 2;
4944 } else {
4945 vsyncshift = 0;
4946 }
4947
4948 if (INTEL_INFO(dev)->gen > 3)
4949 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4950
4951 I915_WRITE(HTOTAL(cpu_transcoder),
4952 (adjusted_mode->crtc_hdisplay - 1) |
4953 ((adjusted_mode->crtc_htotal - 1) << 16));
4954 I915_WRITE(HBLANK(cpu_transcoder),
4955 (adjusted_mode->crtc_hblank_start - 1) |
4956 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4957 I915_WRITE(HSYNC(cpu_transcoder),
4958 (adjusted_mode->crtc_hsync_start - 1) |
4959 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4960
4961 I915_WRITE(VTOTAL(cpu_transcoder),
4962 (adjusted_mode->crtc_vdisplay - 1) |
4963 ((crtc_vtotal - 1) << 16));
4964 I915_WRITE(VBLANK(cpu_transcoder),
4965 (adjusted_mode->crtc_vblank_start - 1) |
4966 ((crtc_vblank_end - 1) << 16));
4967 I915_WRITE(VSYNC(cpu_transcoder),
4968 (adjusted_mode->crtc_vsync_start - 1) |
4969 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4970
4971 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4972 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4973 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4974 * bits. */
4975 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4976 (pipe == PIPE_B || pipe == PIPE_C))
4977 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4978
4979 /* pipesrc controls the size that is scaled from, which should
4980 * always be the user's requested size.
4981 */
4982 I915_WRITE(PIPESRC(pipe),
4983 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4984 (intel_crtc->config.pipe_src_h - 1));
4985 }
4986
4987 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4988 struct intel_crtc_config *pipe_config)
4989 {
4990 struct drm_device *dev = crtc->base.dev;
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4993 uint32_t tmp;
4994
4995 tmp = I915_READ(HTOTAL(cpu_transcoder));
4996 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4997 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4998 tmp = I915_READ(HBLANK(cpu_transcoder));
4999 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5000 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5001 tmp = I915_READ(HSYNC(cpu_transcoder));
5002 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5003 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5004
5005 tmp = I915_READ(VTOTAL(cpu_transcoder));
5006 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5007 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5008 tmp = I915_READ(VBLANK(cpu_transcoder));
5009 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5010 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5011 tmp = I915_READ(VSYNC(cpu_transcoder));
5012 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5013 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5014
5015 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5016 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5017 pipe_config->adjusted_mode.crtc_vtotal += 1;
5018 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5019 }
5020
5021 tmp = I915_READ(PIPESRC(crtc->pipe));
5022 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5023 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5024
5025 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5026 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5027 }
5028
5029 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5030 struct intel_crtc_config *pipe_config)
5031 {
5032 struct drm_crtc *crtc = &intel_crtc->base;
5033
5034 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5035 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5036 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5037 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5038
5039 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5040 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5041 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5042 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5043
5044 crtc->mode.flags = pipe_config->adjusted_mode.flags;
5045
5046 crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5047 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5048 }
5049
5050 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5051 {
5052 struct drm_device *dev = intel_crtc->base.dev;
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 uint32_t pipeconf;
5055
5056 pipeconf = 0;
5057
5058 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5059 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5060 pipeconf |= PIPECONF_ENABLE;
5061
5062 if (intel_crtc->config.double_wide)
5063 pipeconf |= PIPECONF_DOUBLE_WIDE;
5064
5065 /* only g4x and later have fancy bpc/dither controls */
5066 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5067 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5068 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5069 pipeconf |= PIPECONF_DITHER_EN |
5070 PIPECONF_DITHER_TYPE_SP;
5071
5072 switch (intel_crtc->config.pipe_bpp) {
5073 case 18:
5074 pipeconf |= PIPECONF_6BPC;
5075 break;
5076 case 24:
5077 pipeconf |= PIPECONF_8BPC;
5078 break;
5079 case 30:
5080 pipeconf |= PIPECONF_10BPC;
5081 break;
5082 default:
5083 /* Case prevented by intel_choose_pipe_bpp_dither. */
5084 BUG();
5085 }
5086 }
5087
5088 if (HAS_PIPE_CXSR(dev)) {
5089 if (intel_crtc->lowfreq_avail) {
5090 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5091 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5092 } else {
5093 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5094 }
5095 }
5096
5097 if (!IS_GEN2(dev) &&
5098 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5099 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5100 else
5101 pipeconf |= PIPECONF_PROGRESSIVE;
5102
5103 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5104 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5105
5106 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5107 POSTING_READ(PIPECONF(intel_crtc->pipe));
5108 }
5109
5110 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5111 int x, int y,
5112 struct drm_framebuffer *fb)
5113 {
5114 struct drm_device *dev = crtc->dev;
5115 struct drm_i915_private *dev_priv = dev->dev_private;
5116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5117 int pipe = intel_crtc->pipe;
5118 int plane = intel_crtc->plane;
5119 int refclk, num_connectors = 0;
5120 intel_clock_t clock, reduced_clock;
5121 u32 dspcntr;
5122 bool ok, has_reduced_clock = false;
5123 bool is_lvds = false, is_dsi = false;
5124 struct intel_encoder *encoder;
5125 const intel_limit_t *limit;
5126 int ret;
5127
5128 for_each_encoder_on_crtc(dev, crtc, encoder) {
5129 switch (encoder->type) {
5130 case INTEL_OUTPUT_LVDS:
5131 is_lvds = true;
5132 break;
5133 case INTEL_OUTPUT_DSI:
5134 is_dsi = true;
5135 break;
5136 }
5137
5138 num_connectors++;
5139 }
5140
5141 if (is_dsi)
5142 goto skip_dpll;
5143
5144 if (!intel_crtc->config.clock_set) {
5145 refclk = i9xx_get_refclk(crtc, num_connectors);
5146
5147 /*
5148 * Returns a set of divisors for the desired target clock with
5149 * the given refclk, or FALSE. The returned values represent
5150 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5151 * 2) / p1 / p2.
5152 */
5153 limit = intel_limit(crtc, refclk);
5154 ok = dev_priv->display.find_dpll(limit, crtc,
5155 intel_crtc->config.port_clock,
5156 refclk, NULL, &clock);
5157 if (!ok) {
5158 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5159 return -EINVAL;
5160 }
5161
5162 if (is_lvds && dev_priv->lvds_downclock_avail) {
5163 /*
5164 * Ensure we match the reduced clock's P to the target
5165 * clock. If the clocks don't match, we can't switch
5166 * the display clock by using the FP0/FP1. In such case
5167 * we will disable the LVDS downclock feature.
5168 */
5169 has_reduced_clock =
5170 dev_priv->display.find_dpll(limit, crtc,
5171 dev_priv->lvds_downclock,
5172 refclk, &clock,
5173 &reduced_clock);
5174 }
5175 /* Compat-code for transition, will disappear. */
5176 intel_crtc->config.dpll.n = clock.n;
5177 intel_crtc->config.dpll.m1 = clock.m1;
5178 intel_crtc->config.dpll.m2 = clock.m2;
5179 intel_crtc->config.dpll.p1 = clock.p1;
5180 intel_crtc->config.dpll.p2 = clock.p2;
5181 }
5182
5183 if (IS_GEN2(dev)) {
5184 i8xx_update_pll(intel_crtc,
5185 has_reduced_clock ? &reduced_clock : NULL,
5186 num_connectors);
5187 } else if (IS_VALLEYVIEW(dev)) {
5188 vlv_update_pll(intel_crtc);
5189 } else {
5190 i9xx_update_pll(intel_crtc,
5191 has_reduced_clock ? &reduced_clock : NULL,
5192 num_connectors);
5193 }
5194
5195 skip_dpll:
5196 /* Set up the display plane register */
5197 dspcntr = DISPPLANE_GAMMA_ENABLE;
5198
5199 if (!IS_VALLEYVIEW(dev)) {
5200 if (pipe == 0)
5201 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5202 else
5203 dspcntr |= DISPPLANE_SEL_PIPE_B;
5204 }
5205
5206 intel_set_pipe_timings(intel_crtc);
5207
5208 /* pipesrc and dspsize control the size that is scaled from,
5209 * which should always be the user's requested size.
5210 */
5211 I915_WRITE(DSPSIZE(plane),
5212 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5213 (intel_crtc->config.pipe_src_w - 1));
5214 I915_WRITE(DSPPOS(plane), 0);
5215
5216 i9xx_set_pipeconf(intel_crtc);
5217
5218 I915_WRITE(DSPCNTR(plane), dspcntr);
5219 POSTING_READ(DSPCNTR(plane));
5220
5221 ret = intel_pipe_set_base(crtc, x, y, fb);
5222
5223 return ret;
5224 }
5225
5226 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5227 struct intel_crtc_config *pipe_config)
5228 {
5229 struct drm_device *dev = crtc->base.dev;
5230 struct drm_i915_private *dev_priv = dev->dev_private;
5231 uint32_t tmp;
5232
5233 tmp = I915_READ(PFIT_CONTROL);
5234 if (!(tmp & PFIT_ENABLE))
5235 return;
5236
5237 /* Check whether the pfit is attached to our pipe. */
5238 if (INTEL_INFO(dev)->gen < 4) {
5239 if (crtc->pipe != PIPE_B)
5240 return;
5241 } else {
5242 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5243 return;
5244 }
5245
5246 pipe_config->gmch_pfit.control = tmp;
5247 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5248 if (INTEL_INFO(dev)->gen < 5)
5249 pipe_config->gmch_pfit.lvds_border_bits =
5250 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5251 }
5252
5253 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5254 struct intel_crtc_config *pipe_config)
5255 {
5256 struct drm_device *dev = crtc->base.dev;
5257 struct drm_i915_private *dev_priv = dev->dev_private;
5258 int pipe = pipe_config->cpu_transcoder;
5259 intel_clock_t clock;
5260 u32 mdiv;
5261 int refclk = 100000;
5262
5263 mutex_lock(&dev_priv->dpio_lock);
5264 mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5265 mutex_unlock(&dev_priv->dpio_lock);
5266
5267 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5268 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5269 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5270 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5271 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5272
5273 vlv_clock(refclk, &clock);
5274
5275 /* clock.dot is the fast clock */
5276 pipe_config->port_clock = clock.dot / 5;
5277 }
5278
5279 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5280 struct intel_crtc_config *pipe_config)
5281 {
5282 struct drm_device *dev = crtc->base.dev;
5283 struct drm_i915_private *dev_priv = dev->dev_private;
5284 uint32_t tmp;
5285
5286 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5287 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5288
5289 tmp = I915_READ(PIPECONF(crtc->pipe));
5290 if (!(tmp & PIPECONF_ENABLE))
5291 return false;
5292
5293 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5294 switch (tmp & PIPECONF_BPC_MASK) {
5295 case PIPECONF_6BPC:
5296 pipe_config->pipe_bpp = 18;
5297 break;
5298 case PIPECONF_8BPC:
5299 pipe_config->pipe_bpp = 24;
5300 break;
5301 case PIPECONF_10BPC:
5302 pipe_config->pipe_bpp = 30;
5303 break;
5304 default:
5305 break;
5306 }
5307 }
5308
5309 if (INTEL_INFO(dev)->gen < 4)
5310 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5311
5312 intel_get_pipe_timings(crtc, pipe_config);
5313
5314 i9xx_get_pfit_config(crtc, pipe_config);
5315
5316 if (INTEL_INFO(dev)->gen >= 4) {
5317 tmp = I915_READ(DPLL_MD(crtc->pipe));
5318 pipe_config->pixel_multiplier =
5319 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5320 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5321 pipe_config->dpll_hw_state.dpll_md = tmp;
5322 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5323 tmp = I915_READ(DPLL(crtc->pipe));
5324 pipe_config->pixel_multiplier =
5325 ((tmp & SDVO_MULTIPLIER_MASK)
5326 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5327 } else {
5328 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5329 * port and will be fixed up in the encoder->get_config
5330 * function. */
5331 pipe_config->pixel_multiplier = 1;
5332 }
5333 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5334 if (!IS_VALLEYVIEW(dev)) {
5335 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5336 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5337 } else {
5338 /* Mask out read-only status bits. */
5339 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5340 DPLL_PORTC_READY_MASK |
5341 DPLL_PORTB_READY_MASK);
5342 }
5343
5344 if (IS_VALLEYVIEW(dev))
5345 vlv_crtc_clock_get(crtc, pipe_config);
5346 else
5347 i9xx_crtc_clock_get(crtc, pipe_config);
5348
5349 return true;
5350 }
5351
5352 static void ironlake_init_pch_refclk(struct drm_device *dev)
5353 {
5354 struct drm_i915_private *dev_priv = dev->dev_private;
5355 struct drm_mode_config *mode_config = &dev->mode_config;
5356 struct intel_encoder *encoder;
5357 u32 val, final;
5358 bool has_lvds = false;
5359 bool has_cpu_edp = false;
5360 bool has_panel = false;
5361 bool has_ck505 = false;
5362 bool can_ssc = false;
5363
5364 /* We need to take the global config into account */
5365 list_for_each_entry(encoder, &mode_config->encoder_list,
5366 base.head) {
5367 switch (encoder->type) {
5368 case INTEL_OUTPUT_LVDS:
5369 has_panel = true;
5370 has_lvds = true;
5371 break;
5372 case INTEL_OUTPUT_EDP:
5373 has_panel = true;
5374 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5375 has_cpu_edp = true;
5376 break;
5377 }
5378 }
5379
5380 if (HAS_PCH_IBX(dev)) {
5381 has_ck505 = dev_priv->vbt.display_clock_mode;
5382 can_ssc = has_ck505;
5383 } else {
5384 has_ck505 = false;
5385 can_ssc = true;
5386 }
5387
5388 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5389 has_panel, has_lvds, has_ck505);
5390
5391 /* Ironlake: try to setup display ref clock before DPLL
5392 * enabling. This is only under driver's control after
5393 * PCH B stepping, previous chipset stepping should be
5394 * ignoring this setting.
5395 */
5396 val = I915_READ(PCH_DREF_CONTROL);
5397
5398 /* As we must carefully and slowly disable/enable each source in turn,
5399 * compute the final state we want first and check if we need to
5400 * make any changes at all.
5401 */
5402 final = val;
5403 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5404 if (has_ck505)
5405 final |= DREF_NONSPREAD_CK505_ENABLE;
5406 else
5407 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5408
5409 final &= ~DREF_SSC_SOURCE_MASK;
5410 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5411 final &= ~DREF_SSC1_ENABLE;
5412
5413 if (has_panel) {
5414 final |= DREF_SSC_SOURCE_ENABLE;
5415
5416 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5417 final |= DREF_SSC1_ENABLE;
5418
5419 if (has_cpu_edp) {
5420 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5421 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5422 else
5423 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5424 } else
5425 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5426 } else {
5427 final |= DREF_SSC_SOURCE_DISABLE;
5428 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5429 }
5430
5431 if (final == val)
5432 return;
5433
5434 /* Always enable nonspread source */
5435 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5436
5437 if (has_ck505)
5438 val |= DREF_NONSPREAD_CK505_ENABLE;
5439 else
5440 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5441
5442 if (has_panel) {
5443 val &= ~DREF_SSC_SOURCE_MASK;
5444 val |= DREF_SSC_SOURCE_ENABLE;
5445
5446 /* SSC must be turned on before enabling the CPU output */
5447 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5448 DRM_DEBUG_KMS("Using SSC on panel\n");
5449 val |= DREF_SSC1_ENABLE;
5450 } else
5451 val &= ~DREF_SSC1_ENABLE;
5452
5453 /* Get SSC going before enabling the outputs */
5454 I915_WRITE(PCH_DREF_CONTROL, val);
5455 POSTING_READ(PCH_DREF_CONTROL);
5456 udelay(200);
5457
5458 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5459
5460 /* Enable CPU source on CPU attached eDP */
5461 if (has_cpu_edp) {
5462 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5463 DRM_DEBUG_KMS("Using SSC on eDP\n");
5464 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5465 }
5466 else
5467 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5468 } else
5469 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5470
5471 I915_WRITE(PCH_DREF_CONTROL, val);
5472 POSTING_READ(PCH_DREF_CONTROL);
5473 udelay(200);
5474 } else {
5475 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5476
5477 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5478
5479 /* Turn off CPU output */
5480 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5481
5482 I915_WRITE(PCH_DREF_CONTROL, val);
5483 POSTING_READ(PCH_DREF_CONTROL);
5484 udelay(200);
5485
5486 /* Turn off the SSC source */
5487 val &= ~DREF_SSC_SOURCE_MASK;
5488 val |= DREF_SSC_SOURCE_DISABLE;
5489
5490 /* Turn off SSC1 */
5491 val &= ~DREF_SSC1_ENABLE;
5492
5493 I915_WRITE(PCH_DREF_CONTROL, val);
5494 POSTING_READ(PCH_DREF_CONTROL);
5495 udelay(200);
5496 }
5497
5498 BUG_ON(val != final);
5499 }
5500
5501 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5502 {
5503 uint32_t tmp;
5504
5505 tmp = I915_READ(SOUTH_CHICKEN2);
5506 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5507 I915_WRITE(SOUTH_CHICKEN2, tmp);
5508
5509 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5510 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5511 DRM_ERROR("FDI mPHY reset assert timeout\n");
5512
5513 tmp = I915_READ(SOUTH_CHICKEN2);
5514 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5515 I915_WRITE(SOUTH_CHICKEN2, tmp);
5516
5517 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5518 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5519 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5520 }
5521
5522 /* WaMPhyProgramming:hsw */
5523 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5524 {
5525 uint32_t tmp;
5526
5527 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5528 tmp &= ~(0xFF << 24);
5529 tmp |= (0x12 << 24);
5530 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5531
5532 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5533 tmp |= (1 << 11);
5534 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5535
5536 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5537 tmp |= (1 << 11);
5538 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5539
5540 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5541 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5542 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5543
5544 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5545 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5546 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5547
5548 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5549 tmp &= ~(7 << 13);
5550 tmp |= (5 << 13);
5551 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5552
5553 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5554 tmp &= ~(7 << 13);
5555 tmp |= (5 << 13);
5556 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5557
5558 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5559 tmp &= ~0xFF;
5560 tmp |= 0x1C;
5561 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5562
5563 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5564 tmp &= ~0xFF;
5565 tmp |= 0x1C;
5566 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5567
5568 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5569 tmp &= ~(0xFF << 16);
5570 tmp |= (0x1C << 16);
5571 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5572
5573 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5574 tmp &= ~(0xFF << 16);
5575 tmp |= (0x1C << 16);
5576 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5577
5578 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5579 tmp |= (1 << 27);
5580 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5581
5582 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5583 tmp |= (1 << 27);
5584 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5585
5586 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5587 tmp &= ~(0xF << 28);
5588 tmp |= (4 << 28);
5589 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5590
5591 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5592 tmp &= ~(0xF << 28);
5593 tmp |= (4 << 28);
5594 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5595 }
5596
5597 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5598 * Programming" based on the parameters passed:
5599 * - Sequence to enable CLKOUT_DP
5600 * - Sequence to enable CLKOUT_DP without spread
5601 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5602 */
5603 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5604 bool with_fdi)
5605 {
5606 struct drm_i915_private *dev_priv = dev->dev_private;
5607 uint32_t reg, tmp;
5608
5609 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5610 with_spread = true;
5611 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5612 with_fdi, "LP PCH doesn't have FDI\n"))
5613 with_fdi = false;
5614
5615 mutex_lock(&dev_priv->dpio_lock);
5616
5617 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5618 tmp &= ~SBI_SSCCTL_DISABLE;
5619 tmp |= SBI_SSCCTL_PATHALT;
5620 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5621
5622 udelay(24);
5623
5624 if (with_spread) {
5625 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5626 tmp &= ~SBI_SSCCTL_PATHALT;
5627 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5628
5629 if (with_fdi) {
5630 lpt_reset_fdi_mphy(dev_priv);
5631 lpt_program_fdi_mphy(dev_priv);
5632 }
5633 }
5634
5635 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5636 SBI_GEN0 : SBI_DBUFF0;
5637 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5638 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5639 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5640
5641 mutex_unlock(&dev_priv->dpio_lock);
5642 }
5643
5644 /* Sequence to disable CLKOUT_DP */
5645 static void lpt_disable_clkout_dp(struct drm_device *dev)
5646 {
5647 struct drm_i915_private *dev_priv = dev->dev_private;
5648 uint32_t reg, tmp;
5649
5650 mutex_lock(&dev_priv->dpio_lock);
5651
5652 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5653 SBI_GEN0 : SBI_DBUFF0;
5654 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5655 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5656 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5657
5658 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5659 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5660 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5661 tmp |= SBI_SSCCTL_PATHALT;
5662 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5663 udelay(32);
5664 }
5665 tmp |= SBI_SSCCTL_DISABLE;
5666 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5667 }
5668
5669 mutex_unlock(&dev_priv->dpio_lock);
5670 }
5671
5672 static void lpt_init_pch_refclk(struct drm_device *dev)
5673 {
5674 struct drm_mode_config *mode_config = &dev->mode_config;
5675 struct intel_encoder *encoder;
5676 bool has_vga = false;
5677
5678 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5679 switch (encoder->type) {
5680 case INTEL_OUTPUT_ANALOG:
5681 has_vga = true;
5682 break;
5683 }
5684 }
5685
5686 if (has_vga)
5687 lpt_enable_clkout_dp(dev, true, true);
5688 else
5689 lpt_disable_clkout_dp(dev);
5690 }
5691
5692 /*
5693 * Initialize reference clocks when the driver loads
5694 */
5695 void intel_init_pch_refclk(struct drm_device *dev)
5696 {
5697 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5698 ironlake_init_pch_refclk(dev);
5699 else if (HAS_PCH_LPT(dev))
5700 lpt_init_pch_refclk(dev);
5701 }
5702
5703 static int ironlake_get_refclk(struct drm_crtc *crtc)
5704 {
5705 struct drm_device *dev = crtc->dev;
5706 struct drm_i915_private *dev_priv = dev->dev_private;
5707 struct intel_encoder *encoder;
5708 int num_connectors = 0;
5709 bool is_lvds = false;
5710
5711 for_each_encoder_on_crtc(dev, crtc, encoder) {
5712 switch (encoder->type) {
5713 case INTEL_OUTPUT_LVDS:
5714 is_lvds = true;
5715 break;
5716 }
5717 num_connectors++;
5718 }
5719
5720 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5721 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5722 dev_priv->vbt.lvds_ssc_freq);
5723 return dev_priv->vbt.lvds_ssc_freq * 1000;
5724 }
5725
5726 return 120000;
5727 }
5728
5729 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5730 {
5731 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5733 int pipe = intel_crtc->pipe;
5734 uint32_t val;
5735
5736 val = 0;
5737
5738 switch (intel_crtc->config.pipe_bpp) {
5739 case 18:
5740 val |= PIPECONF_6BPC;
5741 break;
5742 case 24:
5743 val |= PIPECONF_8BPC;
5744 break;
5745 case 30:
5746 val |= PIPECONF_10BPC;
5747 break;
5748 case 36:
5749 val |= PIPECONF_12BPC;
5750 break;
5751 default:
5752 /* Case prevented by intel_choose_pipe_bpp_dither. */
5753 BUG();
5754 }
5755
5756 if (intel_crtc->config.dither)
5757 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5758
5759 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5760 val |= PIPECONF_INTERLACED_ILK;
5761 else
5762 val |= PIPECONF_PROGRESSIVE;
5763
5764 if (intel_crtc->config.limited_color_range)
5765 val |= PIPECONF_COLOR_RANGE_SELECT;
5766
5767 I915_WRITE(PIPECONF(pipe), val);
5768 POSTING_READ(PIPECONF(pipe));
5769 }
5770
5771 /*
5772 * Set up the pipe CSC unit.
5773 *
5774 * Currently only full range RGB to limited range RGB conversion
5775 * is supported, but eventually this should handle various
5776 * RGB<->YCbCr scenarios as well.
5777 */
5778 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5779 {
5780 struct drm_device *dev = crtc->dev;
5781 struct drm_i915_private *dev_priv = dev->dev_private;
5782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5783 int pipe = intel_crtc->pipe;
5784 uint16_t coeff = 0x7800; /* 1.0 */
5785
5786 /*
5787 * TODO: Check what kind of values actually come out of the pipe
5788 * with these coeff/postoff values and adjust to get the best
5789 * accuracy. Perhaps we even need to take the bpc value into
5790 * consideration.
5791 */
5792
5793 if (intel_crtc->config.limited_color_range)
5794 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5795
5796 /*
5797 * GY/GU and RY/RU should be the other way around according
5798 * to BSpec, but reality doesn't agree. Just set them up in
5799 * a way that results in the correct picture.
5800 */
5801 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5802 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5803
5804 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5805 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5806
5807 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5808 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5809
5810 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5811 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5812 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5813
5814 if (INTEL_INFO(dev)->gen > 6) {
5815 uint16_t postoff = 0;
5816
5817 if (intel_crtc->config.limited_color_range)
5818 postoff = (16 * (1 << 12) / 255) & 0x1fff;
5819
5820 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5821 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5822 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5823
5824 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5825 } else {
5826 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5827
5828 if (intel_crtc->config.limited_color_range)
5829 mode |= CSC_BLACK_SCREEN_OFFSET;
5830
5831 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5832 }
5833 }
5834
5835 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5836 {
5837 struct drm_device *dev = crtc->dev;
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5840 enum pipe pipe = intel_crtc->pipe;
5841 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5842 uint32_t val;
5843
5844 val = 0;
5845
5846 if (IS_HASWELL(dev) && intel_crtc->config.dither)
5847 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5848
5849 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5850 val |= PIPECONF_INTERLACED_ILK;
5851 else
5852 val |= PIPECONF_PROGRESSIVE;
5853
5854 I915_WRITE(PIPECONF(cpu_transcoder), val);
5855 POSTING_READ(PIPECONF(cpu_transcoder));
5856
5857 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5858 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5859
5860 if (IS_BROADWELL(dev)) {
5861 val = 0;
5862
5863 switch (intel_crtc->config.pipe_bpp) {
5864 case 18:
5865 val |= PIPEMISC_DITHER_6_BPC;
5866 break;
5867 case 24:
5868 val |= PIPEMISC_DITHER_8_BPC;
5869 break;
5870 case 30:
5871 val |= PIPEMISC_DITHER_10_BPC;
5872 break;
5873 case 36:
5874 val |= PIPEMISC_DITHER_12_BPC;
5875 break;
5876 default:
5877 /* Case prevented by pipe_config_set_bpp. */
5878 BUG();
5879 }
5880
5881 if (intel_crtc->config.dither)
5882 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
5883
5884 I915_WRITE(PIPEMISC(pipe), val);
5885 }
5886 }
5887
5888 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5889 intel_clock_t *clock,
5890 bool *has_reduced_clock,
5891 intel_clock_t *reduced_clock)
5892 {
5893 struct drm_device *dev = crtc->dev;
5894 struct drm_i915_private *dev_priv = dev->dev_private;
5895 struct intel_encoder *intel_encoder;
5896 int refclk;
5897 const intel_limit_t *limit;
5898 bool ret, is_lvds = false;
5899
5900 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5901 switch (intel_encoder->type) {
5902 case INTEL_OUTPUT_LVDS:
5903 is_lvds = true;
5904 break;
5905 }
5906 }
5907
5908 refclk = ironlake_get_refclk(crtc);
5909
5910 /*
5911 * Returns a set of divisors for the desired target clock with the given
5912 * refclk, or FALSE. The returned values represent the clock equation:
5913 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5914 */
5915 limit = intel_limit(crtc, refclk);
5916 ret = dev_priv->display.find_dpll(limit, crtc,
5917 to_intel_crtc(crtc)->config.port_clock,
5918 refclk, NULL, clock);
5919 if (!ret)
5920 return false;
5921
5922 if (is_lvds && dev_priv->lvds_downclock_avail) {
5923 /*
5924 * Ensure we match the reduced clock's P to the target clock.
5925 * If the clocks don't match, we can't switch the display clock
5926 * by using the FP0/FP1. In such case we will disable the LVDS
5927 * downclock feature.
5928 */
5929 *has_reduced_clock =
5930 dev_priv->display.find_dpll(limit, crtc,
5931 dev_priv->lvds_downclock,
5932 refclk, clock,
5933 reduced_clock);
5934 }
5935
5936 return true;
5937 }
5938
5939 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5940 {
5941 /*
5942 * Account for spread spectrum to avoid
5943 * oversubscribing the link. Max center spread
5944 * is 2.5%; use 5% for safety's sake.
5945 */
5946 u32 bps = target_clock * bpp * 21 / 20;
5947 return bps / (link_bw * 8) + 1;
5948 }
5949
5950 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5951 {
5952 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5953 }
5954
5955 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5956 u32 *fp,
5957 intel_clock_t *reduced_clock, u32 *fp2)
5958 {
5959 struct drm_crtc *crtc = &intel_crtc->base;
5960 struct drm_device *dev = crtc->dev;
5961 struct drm_i915_private *dev_priv = dev->dev_private;
5962 struct intel_encoder *intel_encoder;
5963 uint32_t dpll;
5964 int factor, num_connectors = 0;
5965 bool is_lvds = false, is_sdvo = false;
5966
5967 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5968 switch (intel_encoder->type) {
5969 case INTEL_OUTPUT_LVDS:
5970 is_lvds = true;
5971 break;
5972 case INTEL_OUTPUT_SDVO:
5973 case INTEL_OUTPUT_HDMI:
5974 is_sdvo = true;
5975 break;
5976 }
5977
5978 num_connectors++;
5979 }
5980
5981 /* Enable autotuning of the PLL clock (if permissible) */
5982 factor = 21;
5983 if (is_lvds) {
5984 if ((intel_panel_use_ssc(dev_priv) &&
5985 dev_priv->vbt.lvds_ssc_freq == 100) ||
5986 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5987 factor = 25;
5988 } else if (intel_crtc->config.sdvo_tv_clock)
5989 factor = 20;
5990
5991 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5992 *fp |= FP_CB_TUNE;
5993
5994 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5995 *fp2 |= FP_CB_TUNE;
5996
5997 dpll = 0;
5998
5999 if (is_lvds)
6000 dpll |= DPLLB_MODE_LVDS;
6001 else
6002 dpll |= DPLLB_MODE_DAC_SERIAL;
6003
6004 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6005 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6006
6007 if (is_sdvo)
6008 dpll |= DPLL_SDVO_HIGH_SPEED;
6009 if (intel_crtc->config.has_dp_encoder)
6010 dpll |= DPLL_SDVO_HIGH_SPEED;
6011
6012 /* compute bitmask from p1 value */
6013 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6014 /* also FPA1 */
6015 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6016
6017 switch (intel_crtc->config.dpll.p2) {
6018 case 5:
6019 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6020 break;
6021 case 7:
6022 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6023 break;
6024 case 10:
6025 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6026 break;
6027 case 14:
6028 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6029 break;
6030 }
6031
6032 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6033 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6034 else
6035 dpll |= PLL_REF_INPUT_DREFCLK;
6036
6037 return dpll | DPLL_VCO_ENABLE;
6038 }
6039
6040 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6041 int x, int y,
6042 struct drm_framebuffer *fb)
6043 {
6044 struct drm_device *dev = crtc->dev;
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6047 int pipe = intel_crtc->pipe;
6048 int plane = intel_crtc->plane;
6049 int num_connectors = 0;
6050 intel_clock_t clock, reduced_clock;
6051 u32 dpll = 0, fp = 0, fp2 = 0;
6052 bool ok, has_reduced_clock = false;
6053 bool is_lvds = false;
6054 struct intel_encoder *encoder;
6055 struct intel_shared_dpll *pll;
6056 int ret;
6057
6058 for_each_encoder_on_crtc(dev, crtc, encoder) {
6059 switch (encoder->type) {
6060 case INTEL_OUTPUT_LVDS:
6061 is_lvds = true;
6062 break;
6063 }
6064
6065 num_connectors++;
6066 }
6067
6068 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6069 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6070
6071 ok = ironlake_compute_clocks(crtc, &clock,
6072 &has_reduced_clock, &reduced_clock);
6073 if (!ok && !intel_crtc->config.clock_set) {
6074 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6075 return -EINVAL;
6076 }
6077 /* Compat-code for transition, will disappear. */
6078 if (!intel_crtc->config.clock_set) {
6079 intel_crtc->config.dpll.n = clock.n;
6080 intel_crtc->config.dpll.m1 = clock.m1;
6081 intel_crtc->config.dpll.m2 = clock.m2;
6082 intel_crtc->config.dpll.p1 = clock.p1;
6083 intel_crtc->config.dpll.p2 = clock.p2;
6084 }
6085
6086 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6087 if (intel_crtc->config.has_pch_encoder) {
6088 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6089 if (has_reduced_clock)
6090 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6091
6092 dpll = ironlake_compute_dpll(intel_crtc,
6093 &fp, &reduced_clock,
6094 has_reduced_clock ? &fp2 : NULL);
6095
6096 intel_crtc->config.dpll_hw_state.dpll = dpll;
6097 intel_crtc->config.dpll_hw_state.fp0 = fp;
6098 if (has_reduced_clock)
6099 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6100 else
6101 intel_crtc->config.dpll_hw_state.fp1 = fp;
6102
6103 pll = intel_get_shared_dpll(intel_crtc);
6104 if (pll == NULL) {
6105 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6106 pipe_name(pipe));
6107 return -EINVAL;
6108 }
6109 } else
6110 intel_put_shared_dpll(intel_crtc);
6111
6112 if (intel_crtc->config.has_dp_encoder)
6113 intel_dp_set_m_n(intel_crtc);
6114
6115 if (is_lvds && has_reduced_clock && i915_powersave)
6116 intel_crtc->lowfreq_avail = true;
6117 else
6118 intel_crtc->lowfreq_avail = false;
6119
6120 intel_set_pipe_timings(intel_crtc);
6121
6122 if (intel_crtc->config.has_pch_encoder) {
6123 intel_cpu_transcoder_set_m_n(intel_crtc,
6124 &intel_crtc->config.fdi_m_n);
6125 }
6126
6127 ironlake_set_pipeconf(crtc);
6128
6129 /* Set up the display plane register */
6130 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6131 POSTING_READ(DSPCNTR(plane));
6132
6133 ret = intel_pipe_set_base(crtc, x, y, fb);
6134
6135 return ret;
6136 }
6137
6138 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6139 struct intel_link_m_n *m_n)
6140 {
6141 struct drm_device *dev = crtc->base.dev;
6142 struct drm_i915_private *dev_priv = dev->dev_private;
6143 enum pipe pipe = crtc->pipe;
6144
6145 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6146 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6147 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6148 & ~TU_SIZE_MASK;
6149 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6150 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6152 }
6153
6154 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6155 enum transcoder transcoder,
6156 struct intel_link_m_n *m_n)
6157 {
6158 struct drm_device *dev = crtc->base.dev;
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6160 enum pipe pipe = crtc->pipe;
6161
6162 if (INTEL_INFO(dev)->gen >= 5) {
6163 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6164 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6165 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6166 & ~TU_SIZE_MASK;
6167 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6168 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6169 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6170 } else {
6171 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6172 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6173 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6174 & ~TU_SIZE_MASK;
6175 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6176 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6177 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6178 }
6179 }
6180
6181 void intel_dp_get_m_n(struct intel_crtc *crtc,
6182 struct intel_crtc_config *pipe_config)
6183 {
6184 if (crtc->config.has_pch_encoder)
6185 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6186 else
6187 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6188 &pipe_config->dp_m_n);
6189 }
6190
6191 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6192 struct intel_crtc_config *pipe_config)
6193 {
6194 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6195 &pipe_config->fdi_m_n);
6196 }
6197
6198 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6199 struct intel_crtc_config *pipe_config)
6200 {
6201 struct drm_device *dev = crtc->base.dev;
6202 struct drm_i915_private *dev_priv = dev->dev_private;
6203 uint32_t tmp;
6204
6205 tmp = I915_READ(PF_CTL(crtc->pipe));
6206
6207 if (tmp & PF_ENABLE) {
6208 pipe_config->pch_pfit.enabled = true;
6209 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6210 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6211
6212 /* We currently do not free assignements of panel fitters on
6213 * ivb/hsw (since we don't use the higher upscaling modes which
6214 * differentiates them) so just WARN about this case for now. */
6215 if (IS_GEN7(dev)) {
6216 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6217 PF_PIPE_SEL_IVB(crtc->pipe));
6218 }
6219 }
6220 }
6221
6222 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6223 struct intel_crtc_config *pipe_config)
6224 {
6225 struct drm_device *dev = crtc->base.dev;
6226 struct drm_i915_private *dev_priv = dev->dev_private;
6227 uint32_t tmp;
6228
6229 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6230 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6231
6232 tmp = I915_READ(PIPECONF(crtc->pipe));
6233 if (!(tmp & PIPECONF_ENABLE))
6234 return false;
6235
6236 switch (tmp & PIPECONF_BPC_MASK) {
6237 case PIPECONF_6BPC:
6238 pipe_config->pipe_bpp = 18;
6239 break;
6240 case PIPECONF_8BPC:
6241 pipe_config->pipe_bpp = 24;
6242 break;
6243 case PIPECONF_10BPC:
6244 pipe_config->pipe_bpp = 30;
6245 break;
6246 case PIPECONF_12BPC:
6247 pipe_config->pipe_bpp = 36;
6248 break;
6249 default:
6250 break;
6251 }
6252
6253 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6254 struct intel_shared_dpll *pll;
6255
6256 pipe_config->has_pch_encoder = true;
6257
6258 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6259 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6260 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6261
6262 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6263
6264 if (HAS_PCH_IBX(dev_priv->dev)) {
6265 pipe_config->shared_dpll =
6266 (enum intel_dpll_id) crtc->pipe;
6267 } else {
6268 tmp = I915_READ(PCH_DPLL_SEL);
6269 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6270 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6271 else
6272 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6273 }
6274
6275 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6276
6277 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6278 &pipe_config->dpll_hw_state));
6279
6280 tmp = pipe_config->dpll_hw_state.dpll;
6281 pipe_config->pixel_multiplier =
6282 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6283 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6284
6285 ironlake_pch_clock_get(crtc, pipe_config);
6286 } else {
6287 pipe_config->pixel_multiplier = 1;
6288 }
6289
6290 intel_get_pipe_timings(crtc, pipe_config);
6291
6292 ironlake_get_pfit_config(crtc, pipe_config);
6293
6294 return true;
6295 }
6296
6297 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6298 {
6299 struct drm_device *dev = dev_priv->dev;
6300 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6301 struct intel_crtc *crtc;
6302 unsigned long irqflags;
6303 uint32_t val;
6304
6305 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6306 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6307 pipe_name(crtc->pipe));
6308
6309 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6310 WARN(plls->spll_refcount, "SPLL enabled\n");
6311 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6312 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6313 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6314 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6315 "CPU PWM1 enabled\n");
6316 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6317 "CPU PWM2 enabled\n");
6318 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6319 "PCH PWM1 enabled\n");
6320 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6321 "Utility pin enabled\n");
6322 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6323
6324 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6325 val = I915_READ(DEIMR);
6326 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6327 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6328 val = I915_READ(SDEIMR);
6329 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6330 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6331 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6332 }
6333
6334 /*
6335 * This function implements pieces of two sequences from BSpec:
6336 * - Sequence for display software to disable LCPLL
6337 * - Sequence for display software to allow package C8+
6338 * The steps implemented here are just the steps that actually touch the LCPLL
6339 * register. Callers should take care of disabling all the display engine
6340 * functions, doing the mode unset, fixing interrupts, etc.
6341 */
6342 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6343 bool switch_to_fclk, bool allow_power_down)
6344 {
6345 uint32_t val;
6346
6347 assert_can_disable_lcpll(dev_priv);
6348
6349 val = I915_READ(LCPLL_CTL);
6350
6351 if (switch_to_fclk) {
6352 val |= LCPLL_CD_SOURCE_FCLK;
6353 I915_WRITE(LCPLL_CTL, val);
6354
6355 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6356 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6357 DRM_ERROR("Switching to FCLK failed\n");
6358
6359 val = I915_READ(LCPLL_CTL);
6360 }
6361
6362 val |= LCPLL_PLL_DISABLE;
6363 I915_WRITE(LCPLL_CTL, val);
6364 POSTING_READ(LCPLL_CTL);
6365
6366 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6367 DRM_ERROR("LCPLL still locked\n");
6368
6369 val = I915_READ(D_COMP);
6370 val |= D_COMP_COMP_DISABLE;
6371 mutex_lock(&dev_priv->rps.hw_lock);
6372 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6373 DRM_ERROR("Failed to disable D_COMP\n");
6374 mutex_unlock(&dev_priv->rps.hw_lock);
6375 POSTING_READ(D_COMP);
6376 ndelay(100);
6377
6378 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6379 DRM_ERROR("D_COMP RCOMP still in progress\n");
6380
6381 if (allow_power_down) {
6382 val = I915_READ(LCPLL_CTL);
6383 val |= LCPLL_POWER_DOWN_ALLOW;
6384 I915_WRITE(LCPLL_CTL, val);
6385 POSTING_READ(LCPLL_CTL);
6386 }
6387 }
6388
6389 /*
6390 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6391 * source.
6392 */
6393 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6394 {
6395 uint32_t val;
6396
6397 val = I915_READ(LCPLL_CTL);
6398
6399 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6400 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6401 return;
6402
6403 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6404 * we'll hang the machine! */
6405 gen6_gt_force_wake_get(dev_priv);
6406
6407 if (val & LCPLL_POWER_DOWN_ALLOW) {
6408 val &= ~LCPLL_POWER_DOWN_ALLOW;
6409 I915_WRITE(LCPLL_CTL, val);
6410 POSTING_READ(LCPLL_CTL);
6411 }
6412
6413 val = I915_READ(D_COMP);
6414 val |= D_COMP_COMP_FORCE;
6415 val &= ~D_COMP_COMP_DISABLE;
6416 mutex_lock(&dev_priv->rps.hw_lock);
6417 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6418 DRM_ERROR("Failed to enable D_COMP\n");
6419 mutex_unlock(&dev_priv->rps.hw_lock);
6420 POSTING_READ(D_COMP);
6421
6422 val = I915_READ(LCPLL_CTL);
6423 val &= ~LCPLL_PLL_DISABLE;
6424 I915_WRITE(LCPLL_CTL, val);
6425
6426 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6427 DRM_ERROR("LCPLL not locked yet\n");
6428
6429 if (val & LCPLL_CD_SOURCE_FCLK) {
6430 val = I915_READ(LCPLL_CTL);
6431 val &= ~LCPLL_CD_SOURCE_FCLK;
6432 I915_WRITE(LCPLL_CTL, val);
6433
6434 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6435 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6436 DRM_ERROR("Switching back to LCPLL failed\n");
6437 }
6438
6439 gen6_gt_force_wake_put(dev_priv);
6440 }
6441
6442 void hsw_enable_pc8_work(struct work_struct *__work)
6443 {
6444 struct drm_i915_private *dev_priv =
6445 container_of(to_delayed_work(__work), struct drm_i915_private,
6446 pc8.enable_work);
6447 struct drm_device *dev = dev_priv->dev;
6448 uint32_t val;
6449
6450 if (dev_priv->pc8.enabled)
6451 return;
6452
6453 DRM_DEBUG_KMS("Enabling package C8+\n");
6454
6455 dev_priv->pc8.enabled = true;
6456
6457 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6458 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6459 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6460 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6461 }
6462
6463 lpt_disable_clkout_dp(dev);
6464 hsw_pc8_disable_interrupts(dev);
6465 hsw_disable_lcpll(dev_priv, true, true);
6466 }
6467
6468 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6469 {
6470 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6471 WARN(dev_priv->pc8.disable_count < 1,
6472 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6473
6474 dev_priv->pc8.disable_count--;
6475 if (dev_priv->pc8.disable_count != 0)
6476 return;
6477
6478 schedule_delayed_work(&dev_priv->pc8.enable_work,
6479 msecs_to_jiffies(i915_pc8_timeout));
6480 }
6481
6482 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6483 {
6484 struct drm_device *dev = dev_priv->dev;
6485 uint32_t val;
6486
6487 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6488 WARN(dev_priv->pc8.disable_count < 0,
6489 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6490
6491 dev_priv->pc8.disable_count++;
6492 if (dev_priv->pc8.disable_count != 1)
6493 return;
6494
6495 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6496 if (!dev_priv->pc8.enabled)
6497 return;
6498
6499 DRM_DEBUG_KMS("Disabling package C8+\n");
6500
6501 hsw_restore_lcpll(dev_priv);
6502 hsw_pc8_restore_interrupts(dev);
6503 lpt_init_pch_refclk(dev);
6504
6505 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6506 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6507 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6508 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6509 }
6510
6511 intel_prepare_ddi(dev);
6512 i915_gem_init_swizzling(dev);
6513 mutex_lock(&dev_priv->rps.hw_lock);
6514 gen6_update_ring_freq(dev);
6515 mutex_unlock(&dev_priv->rps.hw_lock);
6516 dev_priv->pc8.enabled = false;
6517 }
6518
6519 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6520 {
6521 if (!HAS_PC8(dev_priv->dev))
6522 return;
6523
6524 mutex_lock(&dev_priv->pc8.lock);
6525 __hsw_enable_package_c8(dev_priv);
6526 mutex_unlock(&dev_priv->pc8.lock);
6527 }
6528
6529 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6530 {
6531 if (!HAS_PC8(dev_priv->dev))
6532 return;
6533
6534 mutex_lock(&dev_priv->pc8.lock);
6535 __hsw_disable_package_c8(dev_priv);
6536 mutex_unlock(&dev_priv->pc8.lock);
6537 }
6538
6539 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6540 {
6541 struct drm_device *dev = dev_priv->dev;
6542 struct intel_crtc *crtc;
6543 uint32_t val;
6544
6545 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6546 if (crtc->base.enabled)
6547 return false;
6548
6549 /* This case is still possible since we have the i915.disable_power_well
6550 * parameter and also the KVMr or something else might be requesting the
6551 * power well. */
6552 val = I915_READ(HSW_PWR_WELL_DRIVER);
6553 if (val != 0) {
6554 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6555 return false;
6556 }
6557
6558 return true;
6559 }
6560
6561 /* Since we're called from modeset_global_resources there's no way to
6562 * symmetrically increase and decrease the refcount, so we use
6563 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6564 * or not.
6565 */
6566 static void hsw_update_package_c8(struct drm_device *dev)
6567 {
6568 struct drm_i915_private *dev_priv = dev->dev_private;
6569 bool allow;
6570
6571 if (!HAS_PC8(dev_priv->dev))
6572 return;
6573
6574 if (!i915_enable_pc8)
6575 return;
6576
6577 mutex_lock(&dev_priv->pc8.lock);
6578
6579 allow = hsw_can_enable_package_c8(dev_priv);
6580
6581 if (allow == dev_priv->pc8.requirements_met)
6582 goto done;
6583
6584 dev_priv->pc8.requirements_met = allow;
6585
6586 if (allow)
6587 __hsw_enable_package_c8(dev_priv);
6588 else
6589 __hsw_disable_package_c8(dev_priv);
6590
6591 done:
6592 mutex_unlock(&dev_priv->pc8.lock);
6593 }
6594
6595 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6596 {
6597 if (!HAS_PC8(dev_priv->dev))
6598 return;
6599
6600 mutex_lock(&dev_priv->pc8.lock);
6601 if (!dev_priv->pc8.gpu_idle) {
6602 dev_priv->pc8.gpu_idle = true;
6603 __hsw_enable_package_c8(dev_priv);
6604 }
6605 mutex_unlock(&dev_priv->pc8.lock);
6606 }
6607
6608 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6609 {
6610 if (!HAS_PC8(dev_priv->dev))
6611 return;
6612
6613 mutex_lock(&dev_priv->pc8.lock);
6614 if (dev_priv->pc8.gpu_idle) {
6615 dev_priv->pc8.gpu_idle = false;
6616 __hsw_disable_package_c8(dev_priv);
6617 }
6618 mutex_unlock(&dev_priv->pc8.lock);
6619 }
6620
6621 #define for_each_power_domain(domain, mask) \
6622 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
6623 if ((1 << (domain)) & (mask))
6624
6625 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6626 enum pipe pipe, bool pfit_enabled)
6627 {
6628 unsigned long mask;
6629 enum transcoder transcoder;
6630
6631 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6632
6633 mask = BIT(POWER_DOMAIN_PIPE(pipe));
6634 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6635 if (pfit_enabled)
6636 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6637
6638 return mask;
6639 }
6640
6641 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6642 {
6643 struct drm_i915_private *dev_priv = dev->dev_private;
6644
6645 if (dev_priv->power_domains.init_power_on == enable)
6646 return;
6647
6648 if (enable)
6649 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6650 else
6651 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6652
6653 dev_priv->power_domains.init_power_on = enable;
6654 }
6655
6656 static void modeset_update_power_wells(struct drm_device *dev)
6657 {
6658 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6659 struct intel_crtc *crtc;
6660
6661 /*
6662 * First get all needed power domains, then put all unneeded, to avoid
6663 * any unnecessary toggling of the power wells.
6664 */
6665 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6666 enum intel_display_power_domain domain;
6667
6668 if (!crtc->base.enabled)
6669 continue;
6670
6671 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6672 crtc->pipe,
6673 crtc->config.pch_pfit.enabled);
6674
6675 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6676 intel_display_power_get(dev, domain);
6677 }
6678
6679 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6680 enum intel_display_power_domain domain;
6681
6682 for_each_power_domain(domain, crtc->enabled_power_domains)
6683 intel_display_power_put(dev, domain);
6684
6685 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6686 }
6687
6688 intel_display_set_init_power(dev, false);
6689 }
6690
6691 static void haswell_modeset_global_resources(struct drm_device *dev)
6692 {
6693 modeset_update_power_wells(dev);
6694 hsw_update_package_c8(dev);
6695 }
6696
6697 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6698 int x, int y,
6699 struct drm_framebuffer *fb)
6700 {
6701 struct drm_device *dev = crtc->dev;
6702 struct drm_i915_private *dev_priv = dev->dev_private;
6703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6704 int plane = intel_crtc->plane;
6705 int ret;
6706
6707 if (!intel_ddi_pll_mode_set(crtc))
6708 return -EINVAL;
6709
6710 if (intel_crtc->config.has_dp_encoder)
6711 intel_dp_set_m_n(intel_crtc);
6712
6713 intel_crtc->lowfreq_avail = false;
6714
6715 intel_set_pipe_timings(intel_crtc);
6716
6717 if (intel_crtc->config.has_pch_encoder) {
6718 intel_cpu_transcoder_set_m_n(intel_crtc,
6719 &intel_crtc->config.fdi_m_n);
6720 }
6721
6722 haswell_set_pipeconf(crtc);
6723
6724 intel_set_pipe_csc(crtc);
6725
6726 /* Set up the display plane register */
6727 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6728 POSTING_READ(DSPCNTR(plane));
6729
6730 ret = intel_pipe_set_base(crtc, x, y, fb);
6731
6732 return ret;
6733 }
6734
6735 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6736 struct intel_crtc_config *pipe_config)
6737 {
6738 struct drm_device *dev = crtc->base.dev;
6739 struct drm_i915_private *dev_priv = dev->dev_private;
6740 enum intel_display_power_domain pfit_domain;
6741 uint32_t tmp;
6742
6743 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6744 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6745
6746 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6747 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6748 enum pipe trans_edp_pipe;
6749 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6750 default:
6751 WARN(1, "unknown pipe linked to edp transcoder\n");
6752 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6753 case TRANS_DDI_EDP_INPUT_A_ON:
6754 trans_edp_pipe = PIPE_A;
6755 break;
6756 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6757 trans_edp_pipe = PIPE_B;
6758 break;
6759 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6760 trans_edp_pipe = PIPE_C;
6761 break;
6762 }
6763
6764 if (trans_edp_pipe == crtc->pipe)
6765 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6766 }
6767
6768 if (!intel_display_power_enabled(dev,
6769 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6770 return false;
6771
6772 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6773 if (!(tmp & PIPECONF_ENABLE))
6774 return false;
6775
6776 /*
6777 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6778 * DDI E. So just check whether this pipe is wired to DDI E and whether
6779 * the PCH transcoder is on.
6780 */
6781 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6782 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6783 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6784 pipe_config->has_pch_encoder = true;
6785
6786 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6787 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6788 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6789
6790 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6791 }
6792
6793 intel_get_pipe_timings(crtc, pipe_config);
6794
6795 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6796 if (intel_display_power_enabled(dev, pfit_domain))
6797 ironlake_get_pfit_config(crtc, pipe_config);
6798
6799 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6800 (I915_READ(IPS_CTL) & IPS_ENABLE);
6801
6802 pipe_config->pixel_multiplier = 1;
6803
6804 return true;
6805 }
6806
6807 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6808 int x, int y,
6809 struct drm_framebuffer *fb)
6810 {
6811 struct drm_device *dev = crtc->dev;
6812 struct drm_i915_private *dev_priv = dev->dev_private;
6813 struct intel_encoder *encoder;
6814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6815 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6816 int pipe = intel_crtc->pipe;
6817 int ret;
6818
6819 drm_vblank_pre_modeset(dev, pipe);
6820
6821 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6822
6823 drm_vblank_post_modeset(dev, pipe);
6824
6825 if (ret != 0)
6826 return ret;
6827
6828 for_each_encoder_on_crtc(dev, crtc, encoder) {
6829 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6830 encoder->base.base.id,
6831 drm_get_encoder_name(&encoder->base),
6832 mode->base.id, mode->name);
6833 encoder->mode_set(encoder);
6834 }
6835
6836 return 0;
6837 }
6838
6839 static struct {
6840 int clock;
6841 u32 config;
6842 } hdmi_audio_clock[] = {
6843 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6844 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6845 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6846 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6847 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6848 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6849 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6850 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6851 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6852 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6853 };
6854
6855 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6856 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6857 {
6858 int i;
6859
6860 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6861 if (mode->clock == hdmi_audio_clock[i].clock)
6862 break;
6863 }
6864
6865 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6866 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6867 i = 1;
6868 }
6869
6870 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6871 hdmi_audio_clock[i].clock,
6872 hdmi_audio_clock[i].config);
6873
6874 return hdmi_audio_clock[i].config;
6875 }
6876
6877 static bool intel_eld_uptodate(struct drm_connector *connector,
6878 int reg_eldv, uint32_t bits_eldv,
6879 int reg_elda, uint32_t bits_elda,
6880 int reg_edid)
6881 {
6882 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6883 uint8_t *eld = connector->eld;
6884 uint32_t i;
6885
6886 i = I915_READ(reg_eldv);
6887 i &= bits_eldv;
6888
6889 if (!eld[0])
6890 return !i;
6891
6892 if (!i)
6893 return false;
6894
6895 i = I915_READ(reg_elda);
6896 i &= ~bits_elda;
6897 I915_WRITE(reg_elda, i);
6898
6899 for (i = 0; i < eld[2]; i++)
6900 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6901 return false;
6902
6903 return true;
6904 }
6905
6906 static void g4x_write_eld(struct drm_connector *connector,
6907 struct drm_crtc *crtc,
6908 struct drm_display_mode *mode)
6909 {
6910 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6911 uint8_t *eld = connector->eld;
6912 uint32_t eldv;
6913 uint32_t len;
6914 uint32_t i;
6915
6916 i = I915_READ(G4X_AUD_VID_DID);
6917
6918 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6919 eldv = G4X_ELDV_DEVCL_DEVBLC;
6920 else
6921 eldv = G4X_ELDV_DEVCTG;
6922
6923 if (intel_eld_uptodate(connector,
6924 G4X_AUD_CNTL_ST, eldv,
6925 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6926 G4X_HDMIW_HDMIEDID))
6927 return;
6928
6929 i = I915_READ(G4X_AUD_CNTL_ST);
6930 i &= ~(eldv | G4X_ELD_ADDR);
6931 len = (i >> 9) & 0x1f; /* ELD buffer size */
6932 I915_WRITE(G4X_AUD_CNTL_ST, i);
6933
6934 if (!eld[0])
6935 return;
6936
6937 len = min_t(uint8_t, eld[2], len);
6938 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6939 for (i = 0; i < len; i++)
6940 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6941
6942 i = I915_READ(G4X_AUD_CNTL_ST);
6943 i |= eldv;
6944 I915_WRITE(G4X_AUD_CNTL_ST, i);
6945 }
6946
6947 static void haswell_write_eld(struct drm_connector *connector,
6948 struct drm_crtc *crtc,
6949 struct drm_display_mode *mode)
6950 {
6951 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6952 uint8_t *eld = connector->eld;
6953 struct drm_device *dev = crtc->dev;
6954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6955 uint32_t eldv;
6956 uint32_t i;
6957 int len;
6958 int pipe = to_intel_crtc(crtc)->pipe;
6959 int tmp;
6960
6961 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6962 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6963 int aud_config = HSW_AUD_CFG(pipe);
6964 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6965
6966
6967 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6968
6969 /* Audio output enable */
6970 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6971 tmp = I915_READ(aud_cntrl_st2);
6972 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6973 I915_WRITE(aud_cntrl_st2, tmp);
6974
6975 /* Wait for 1 vertical blank */
6976 intel_wait_for_vblank(dev, pipe);
6977
6978 /* Set ELD valid state */
6979 tmp = I915_READ(aud_cntrl_st2);
6980 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6981 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6982 I915_WRITE(aud_cntrl_st2, tmp);
6983 tmp = I915_READ(aud_cntrl_st2);
6984 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6985
6986 /* Enable HDMI mode */
6987 tmp = I915_READ(aud_config);
6988 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6989 /* clear N_programing_enable and N_value_index */
6990 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6991 I915_WRITE(aud_config, tmp);
6992
6993 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6994
6995 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6996 intel_crtc->eld_vld = true;
6997
6998 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6999 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7000 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7001 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7002 } else {
7003 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7004 }
7005
7006 if (intel_eld_uptodate(connector,
7007 aud_cntrl_st2, eldv,
7008 aud_cntl_st, IBX_ELD_ADDRESS,
7009 hdmiw_hdmiedid))
7010 return;
7011
7012 i = I915_READ(aud_cntrl_st2);
7013 i &= ~eldv;
7014 I915_WRITE(aud_cntrl_st2, i);
7015
7016 if (!eld[0])
7017 return;
7018
7019 i = I915_READ(aud_cntl_st);
7020 i &= ~IBX_ELD_ADDRESS;
7021 I915_WRITE(aud_cntl_st, i);
7022 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7023 DRM_DEBUG_DRIVER("port num:%d\n", i);
7024
7025 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7026 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7027 for (i = 0; i < len; i++)
7028 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7029
7030 i = I915_READ(aud_cntrl_st2);
7031 i |= eldv;
7032 I915_WRITE(aud_cntrl_st2, i);
7033
7034 }
7035
7036 static void ironlake_write_eld(struct drm_connector *connector,
7037 struct drm_crtc *crtc,
7038 struct drm_display_mode *mode)
7039 {
7040 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7041 uint8_t *eld = connector->eld;
7042 uint32_t eldv;
7043 uint32_t i;
7044 int len;
7045 int hdmiw_hdmiedid;
7046 int aud_config;
7047 int aud_cntl_st;
7048 int aud_cntrl_st2;
7049 int pipe = to_intel_crtc(crtc)->pipe;
7050
7051 if (HAS_PCH_IBX(connector->dev)) {
7052 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7053 aud_config = IBX_AUD_CFG(pipe);
7054 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7055 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7056 } else if (IS_VALLEYVIEW(connector->dev)) {
7057 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7058 aud_config = VLV_AUD_CFG(pipe);
7059 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7060 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7061 } else {
7062 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7063 aud_config = CPT_AUD_CFG(pipe);
7064 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7065 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7066 }
7067
7068 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7069
7070 if (IS_VALLEYVIEW(connector->dev)) {
7071 struct intel_encoder *intel_encoder;
7072 struct intel_digital_port *intel_dig_port;
7073
7074 intel_encoder = intel_attached_encoder(connector);
7075 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7076 i = intel_dig_port->port;
7077 } else {
7078 i = I915_READ(aud_cntl_st);
7079 i = (i >> 29) & DIP_PORT_SEL_MASK;
7080 /* DIP_Port_Select, 0x1 = PortB */
7081 }
7082
7083 if (!i) {
7084 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7085 /* operate blindly on all ports */
7086 eldv = IBX_ELD_VALIDB;
7087 eldv |= IBX_ELD_VALIDB << 4;
7088 eldv |= IBX_ELD_VALIDB << 8;
7089 } else {
7090 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7091 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7092 }
7093
7094 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7095 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7096 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7097 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7098 } else {
7099 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7100 }
7101
7102 if (intel_eld_uptodate(connector,
7103 aud_cntrl_st2, eldv,
7104 aud_cntl_st, IBX_ELD_ADDRESS,
7105 hdmiw_hdmiedid))
7106 return;
7107
7108 i = I915_READ(aud_cntrl_st2);
7109 i &= ~eldv;
7110 I915_WRITE(aud_cntrl_st2, i);
7111
7112 if (!eld[0])
7113 return;
7114
7115 i = I915_READ(aud_cntl_st);
7116 i &= ~IBX_ELD_ADDRESS;
7117 I915_WRITE(aud_cntl_st, i);
7118
7119 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7120 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7121 for (i = 0; i < len; i++)
7122 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7123
7124 i = I915_READ(aud_cntrl_st2);
7125 i |= eldv;
7126 I915_WRITE(aud_cntrl_st2, i);
7127 }
7128
7129 void intel_write_eld(struct drm_encoder *encoder,
7130 struct drm_display_mode *mode)
7131 {
7132 struct drm_crtc *crtc = encoder->crtc;
7133 struct drm_connector *connector;
7134 struct drm_device *dev = encoder->dev;
7135 struct drm_i915_private *dev_priv = dev->dev_private;
7136
7137 connector = drm_select_eld(encoder, mode);
7138 if (!connector)
7139 return;
7140
7141 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7142 connector->base.id,
7143 drm_get_connector_name(connector),
7144 connector->encoder->base.id,
7145 drm_get_encoder_name(connector->encoder));
7146
7147 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7148
7149 if (dev_priv->display.write_eld)
7150 dev_priv->display.write_eld(connector, crtc, mode);
7151 }
7152
7153 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7154 {
7155 struct drm_device *dev = crtc->dev;
7156 struct drm_i915_private *dev_priv = dev->dev_private;
7157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7158 bool visible = base != 0;
7159 u32 cntl;
7160
7161 if (intel_crtc->cursor_visible == visible)
7162 return;
7163
7164 cntl = I915_READ(_CURACNTR);
7165 if (visible) {
7166 /* On these chipsets we can only modify the base whilst
7167 * the cursor is disabled.
7168 */
7169 I915_WRITE(_CURABASE, base);
7170
7171 cntl &= ~(CURSOR_FORMAT_MASK);
7172 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7173 cntl |= CURSOR_ENABLE |
7174 CURSOR_GAMMA_ENABLE |
7175 CURSOR_FORMAT_ARGB;
7176 } else
7177 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7178 I915_WRITE(_CURACNTR, cntl);
7179
7180 intel_crtc->cursor_visible = visible;
7181 }
7182
7183 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7184 {
7185 struct drm_device *dev = crtc->dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7188 int pipe = intel_crtc->pipe;
7189 bool visible = base != 0;
7190
7191 if (intel_crtc->cursor_visible != visible) {
7192 uint32_t cntl = I915_READ(CURCNTR(pipe));
7193 if (base) {
7194 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7195 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7196 cntl |= pipe << 28; /* Connect to correct pipe */
7197 } else {
7198 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7199 cntl |= CURSOR_MODE_DISABLE;
7200 }
7201 I915_WRITE(CURCNTR(pipe), cntl);
7202
7203 intel_crtc->cursor_visible = visible;
7204 }
7205 /* and commit changes on next vblank */
7206 POSTING_READ(CURCNTR(pipe));
7207 I915_WRITE(CURBASE(pipe), base);
7208 POSTING_READ(CURBASE(pipe));
7209 }
7210
7211 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7212 {
7213 struct drm_device *dev = crtc->dev;
7214 struct drm_i915_private *dev_priv = dev->dev_private;
7215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7216 int pipe = intel_crtc->pipe;
7217 bool visible = base != 0;
7218
7219 if (intel_crtc->cursor_visible != visible) {
7220 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7221 if (base) {
7222 cntl &= ~CURSOR_MODE;
7223 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7224 } else {
7225 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7226 cntl |= CURSOR_MODE_DISABLE;
7227 }
7228 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7229 cntl |= CURSOR_PIPE_CSC_ENABLE;
7230 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7231 }
7232 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7233
7234 intel_crtc->cursor_visible = visible;
7235 }
7236 /* and commit changes on next vblank */
7237 POSTING_READ(CURCNTR_IVB(pipe));
7238 I915_WRITE(CURBASE_IVB(pipe), base);
7239 POSTING_READ(CURBASE_IVB(pipe));
7240 }
7241
7242 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7243 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7244 bool on)
7245 {
7246 struct drm_device *dev = crtc->dev;
7247 struct drm_i915_private *dev_priv = dev->dev_private;
7248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7249 int pipe = intel_crtc->pipe;
7250 int x = intel_crtc->cursor_x;
7251 int y = intel_crtc->cursor_y;
7252 u32 base = 0, pos = 0;
7253 bool visible;
7254
7255 if (on)
7256 base = intel_crtc->cursor_addr;
7257
7258 if (x >= intel_crtc->config.pipe_src_w)
7259 base = 0;
7260
7261 if (y >= intel_crtc->config.pipe_src_h)
7262 base = 0;
7263
7264 if (x < 0) {
7265 if (x + intel_crtc->cursor_width <= 0)
7266 base = 0;
7267
7268 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7269 x = -x;
7270 }
7271 pos |= x << CURSOR_X_SHIFT;
7272
7273 if (y < 0) {
7274 if (y + intel_crtc->cursor_height <= 0)
7275 base = 0;
7276
7277 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7278 y = -y;
7279 }
7280 pos |= y << CURSOR_Y_SHIFT;
7281
7282 visible = base != 0;
7283 if (!visible && !intel_crtc->cursor_visible)
7284 return;
7285
7286 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7287 I915_WRITE(CURPOS_IVB(pipe), pos);
7288 ivb_update_cursor(crtc, base);
7289 } else {
7290 I915_WRITE(CURPOS(pipe), pos);
7291 if (IS_845G(dev) || IS_I865G(dev))
7292 i845_update_cursor(crtc, base);
7293 else
7294 i9xx_update_cursor(crtc, base);
7295 }
7296 }
7297
7298 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7299 struct drm_file *file,
7300 uint32_t handle,
7301 uint32_t width, uint32_t height)
7302 {
7303 struct drm_device *dev = crtc->dev;
7304 struct drm_i915_private *dev_priv = dev->dev_private;
7305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7306 struct drm_i915_gem_object *obj;
7307 uint32_t addr;
7308 int ret;
7309
7310 /* if we want to turn off the cursor ignore width and height */
7311 if (!handle) {
7312 DRM_DEBUG_KMS("cursor off\n");
7313 addr = 0;
7314 obj = NULL;
7315 mutex_lock(&dev->struct_mutex);
7316 goto finish;
7317 }
7318
7319 /* Currently we only support 64x64 cursors */
7320 if (width != 64 || height != 64) {
7321 DRM_ERROR("we currently only support 64x64 cursors\n");
7322 return -EINVAL;
7323 }
7324
7325 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7326 if (&obj->base == NULL)
7327 return -ENOENT;
7328
7329 if (obj->base.size < width * height * 4) {
7330 DRM_ERROR("buffer is to small\n");
7331 ret = -ENOMEM;
7332 goto fail;
7333 }
7334
7335 /* we only need to pin inside GTT if cursor is non-phy */
7336 mutex_lock(&dev->struct_mutex);
7337 if (!dev_priv->info->cursor_needs_physical) {
7338 unsigned alignment;
7339
7340 if (obj->tiling_mode) {
7341 DRM_ERROR("cursor cannot be tiled\n");
7342 ret = -EINVAL;
7343 goto fail_locked;
7344 }
7345
7346 /* Note that the w/a also requires 2 PTE of padding following
7347 * the bo. We currently fill all unused PTE with the shadow
7348 * page and so we should always have valid PTE following the
7349 * cursor preventing the VT-d warning.
7350 */
7351 alignment = 0;
7352 if (need_vtd_wa(dev))
7353 alignment = 64*1024;
7354
7355 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7356 if (ret) {
7357 DRM_ERROR("failed to move cursor bo into the GTT\n");
7358 goto fail_locked;
7359 }
7360
7361 ret = i915_gem_object_put_fence(obj);
7362 if (ret) {
7363 DRM_ERROR("failed to release fence for cursor");
7364 goto fail_unpin;
7365 }
7366
7367 addr = i915_gem_obj_ggtt_offset(obj);
7368 } else {
7369 int align = IS_I830(dev) ? 16 * 1024 : 256;
7370 ret = i915_gem_attach_phys_object(dev, obj,
7371 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7372 align);
7373 if (ret) {
7374 DRM_ERROR("failed to attach phys object\n");
7375 goto fail_locked;
7376 }
7377 addr = obj->phys_obj->handle->busaddr;
7378 }
7379
7380 if (IS_GEN2(dev))
7381 I915_WRITE(CURSIZE, (height << 12) | width);
7382
7383 finish:
7384 if (intel_crtc->cursor_bo) {
7385 if (dev_priv->info->cursor_needs_physical) {
7386 if (intel_crtc->cursor_bo != obj)
7387 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7388 } else
7389 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7390 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7391 }
7392
7393 mutex_unlock(&dev->struct_mutex);
7394
7395 intel_crtc->cursor_addr = addr;
7396 intel_crtc->cursor_bo = obj;
7397 intel_crtc->cursor_width = width;
7398 intel_crtc->cursor_height = height;
7399
7400 if (intel_crtc->active)
7401 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7402
7403 return 0;
7404 fail_unpin:
7405 i915_gem_object_unpin_from_display_plane(obj);
7406 fail_locked:
7407 mutex_unlock(&dev->struct_mutex);
7408 fail:
7409 drm_gem_object_unreference_unlocked(&obj->base);
7410 return ret;
7411 }
7412
7413 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7414 {
7415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7416
7417 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7418 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7419
7420 if (intel_crtc->active)
7421 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7422
7423 return 0;
7424 }
7425
7426 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7427 u16 *blue, uint32_t start, uint32_t size)
7428 {
7429 int end = (start + size > 256) ? 256 : start + size, i;
7430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7431
7432 for (i = start; i < end; i++) {
7433 intel_crtc->lut_r[i] = red[i] >> 8;
7434 intel_crtc->lut_g[i] = green[i] >> 8;
7435 intel_crtc->lut_b[i] = blue[i] >> 8;
7436 }
7437
7438 intel_crtc_load_lut(crtc);
7439 }
7440
7441 /* VESA 640x480x72Hz mode to set on the pipe */
7442 static struct drm_display_mode load_detect_mode = {
7443 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7444 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7445 };
7446
7447 static struct drm_framebuffer *
7448 intel_framebuffer_create(struct drm_device *dev,
7449 struct drm_mode_fb_cmd2 *mode_cmd,
7450 struct drm_i915_gem_object *obj)
7451 {
7452 struct intel_framebuffer *intel_fb;
7453 int ret;
7454
7455 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7456 if (!intel_fb) {
7457 drm_gem_object_unreference_unlocked(&obj->base);
7458 return ERR_PTR(-ENOMEM);
7459 }
7460
7461 ret = i915_mutex_lock_interruptible(dev);
7462 if (ret)
7463 goto err;
7464
7465 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7466 mutex_unlock(&dev->struct_mutex);
7467 if (ret)
7468 goto err;
7469
7470 return &intel_fb->base;
7471 err:
7472 drm_gem_object_unreference_unlocked(&obj->base);
7473 kfree(intel_fb);
7474
7475 return ERR_PTR(ret);
7476 }
7477
7478 static u32
7479 intel_framebuffer_pitch_for_width(int width, int bpp)
7480 {
7481 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7482 return ALIGN(pitch, 64);
7483 }
7484
7485 static u32
7486 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7487 {
7488 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7489 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7490 }
7491
7492 static struct drm_framebuffer *
7493 intel_framebuffer_create_for_mode(struct drm_device *dev,
7494 struct drm_display_mode *mode,
7495 int depth, int bpp)
7496 {
7497 struct drm_i915_gem_object *obj;
7498 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7499
7500 obj = i915_gem_alloc_object(dev,
7501 intel_framebuffer_size_for_mode(mode, bpp));
7502 if (obj == NULL)
7503 return ERR_PTR(-ENOMEM);
7504
7505 mode_cmd.width = mode->hdisplay;
7506 mode_cmd.height = mode->vdisplay;
7507 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7508 bpp);
7509 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7510
7511 return intel_framebuffer_create(dev, &mode_cmd, obj);
7512 }
7513
7514 static struct drm_framebuffer *
7515 mode_fits_in_fbdev(struct drm_device *dev,
7516 struct drm_display_mode *mode)
7517 {
7518 #ifdef CONFIG_DRM_I915_FBDEV
7519 struct drm_i915_private *dev_priv = dev->dev_private;
7520 struct drm_i915_gem_object *obj;
7521 struct drm_framebuffer *fb;
7522
7523 if (dev_priv->fbdev == NULL)
7524 return NULL;
7525
7526 obj = dev_priv->fbdev->ifb.obj;
7527 if (obj == NULL)
7528 return NULL;
7529
7530 fb = &dev_priv->fbdev->ifb.base;
7531 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7532 fb->bits_per_pixel))
7533 return NULL;
7534
7535 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7536 return NULL;
7537
7538 return fb;
7539 #else
7540 return NULL;
7541 #endif
7542 }
7543
7544 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7545 struct drm_display_mode *mode,
7546 struct intel_load_detect_pipe *old)
7547 {
7548 struct intel_crtc *intel_crtc;
7549 struct intel_encoder *intel_encoder =
7550 intel_attached_encoder(connector);
7551 struct drm_crtc *possible_crtc;
7552 struct drm_encoder *encoder = &intel_encoder->base;
7553 struct drm_crtc *crtc = NULL;
7554 struct drm_device *dev = encoder->dev;
7555 struct drm_framebuffer *fb;
7556 int i = -1;
7557
7558 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7559 connector->base.id, drm_get_connector_name(connector),
7560 encoder->base.id, drm_get_encoder_name(encoder));
7561
7562 /*
7563 * Algorithm gets a little messy:
7564 *
7565 * - if the connector already has an assigned crtc, use it (but make
7566 * sure it's on first)
7567 *
7568 * - try to find the first unused crtc that can drive this connector,
7569 * and use that if we find one
7570 */
7571
7572 /* See if we already have a CRTC for this connector */
7573 if (encoder->crtc) {
7574 crtc = encoder->crtc;
7575
7576 mutex_lock(&crtc->mutex);
7577
7578 old->dpms_mode = connector->dpms;
7579 old->load_detect_temp = false;
7580
7581 /* Make sure the crtc and connector are running */
7582 if (connector->dpms != DRM_MODE_DPMS_ON)
7583 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7584
7585 return true;
7586 }
7587
7588 /* Find an unused one (if possible) */
7589 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7590 i++;
7591 if (!(encoder->possible_crtcs & (1 << i)))
7592 continue;
7593 if (!possible_crtc->enabled) {
7594 crtc = possible_crtc;
7595 break;
7596 }
7597 }
7598
7599 /*
7600 * If we didn't find an unused CRTC, don't use any.
7601 */
7602 if (!crtc) {
7603 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7604 return false;
7605 }
7606
7607 mutex_lock(&crtc->mutex);
7608 intel_encoder->new_crtc = to_intel_crtc(crtc);
7609 to_intel_connector(connector)->new_encoder = intel_encoder;
7610
7611 intel_crtc = to_intel_crtc(crtc);
7612 old->dpms_mode = connector->dpms;
7613 old->load_detect_temp = true;
7614 old->release_fb = NULL;
7615
7616 if (!mode)
7617 mode = &load_detect_mode;
7618
7619 /* We need a framebuffer large enough to accommodate all accesses
7620 * that the plane may generate whilst we perform load detection.
7621 * We can not rely on the fbcon either being present (we get called
7622 * during its initialisation to detect all boot displays, or it may
7623 * not even exist) or that it is large enough to satisfy the
7624 * requested mode.
7625 */
7626 fb = mode_fits_in_fbdev(dev, mode);
7627 if (fb == NULL) {
7628 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7629 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7630 old->release_fb = fb;
7631 } else
7632 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7633 if (IS_ERR(fb)) {
7634 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7635 mutex_unlock(&crtc->mutex);
7636 return false;
7637 }
7638
7639 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7640 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7641 if (old->release_fb)
7642 old->release_fb->funcs->destroy(old->release_fb);
7643 mutex_unlock(&crtc->mutex);
7644 return false;
7645 }
7646
7647 /* let the connector get through one full cycle before testing */
7648 intel_wait_for_vblank(dev, intel_crtc->pipe);
7649 return true;
7650 }
7651
7652 void intel_release_load_detect_pipe(struct drm_connector *connector,
7653 struct intel_load_detect_pipe *old)
7654 {
7655 struct intel_encoder *intel_encoder =
7656 intel_attached_encoder(connector);
7657 struct drm_encoder *encoder = &intel_encoder->base;
7658 struct drm_crtc *crtc = encoder->crtc;
7659
7660 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7661 connector->base.id, drm_get_connector_name(connector),
7662 encoder->base.id, drm_get_encoder_name(encoder));
7663
7664 if (old->load_detect_temp) {
7665 to_intel_connector(connector)->new_encoder = NULL;
7666 intel_encoder->new_crtc = NULL;
7667 intel_set_mode(crtc, NULL, 0, 0, NULL);
7668
7669 if (old->release_fb) {
7670 drm_framebuffer_unregister_private(old->release_fb);
7671 drm_framebuffer_unreference(old->release_fb);
7672 }
7673
7674 mutex_unlock(&crtc->mutex);
7675 return;
7676 }
7677
7678 /* Switch crtc and encoder back off if necessary */
7679 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7680 connector->funcs->dpms(connector, old->dpms_mode);
7681
7682 mutex_unlock(&crtc->mutex);
7683 }
7684
7685 static int i9xx_pll_refclk(struct drm_device *dev,
7686 const struct intel_crtc_config *pipe_config)
7687 {
7688 struct drm_i915_private *dev_priv = dev->dev_private;
7689 u32 dpll = pipe_config->dpll_hw_state.dpll;
7690
7691 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7692 return dev_priv->vbt.lvds_ssc_freq * 1000;
7693 else if (HAS_PCH_SPLIT(dev))
7694 return 120000;
7695 else if (!IS_GEN2(dev))
7696 return 96000;
7697 else
7698 return 48000;
7699 }
7700
7701 /* Returns the clock of the currently programmed mode of the given pipe. */
7702 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7703 struct intel_crtc_config *pipe_config)
7704 {
7705 struct drm_device *dev = crtc->base.dev;
7706 struct drm_i915_private *dev_priv = dev->dev_private;
7707 int pipe = pipe_config->cpu_transcoder;
7708 u32 dpll = pipe_config->dpll_hw_state.dpll;
7709 u32 fp;
7710 intel_clock_t clock;
7711 int refclk = i9xx_pll_refclk(dev, pipe_config);
7712
7713 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7714 fp = pipe_config->dpll_hw_state.fp0;
7715 else
7716 fp = pipe_config->dpll_hw_state.fp1;
7717
7718 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7719 if (IS_PINEVIEW(dev)) {
7720 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7721 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7722 } else {
7723 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7724 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7725 }
7726
7727 if (!IS_GEN2(dev)) {
7728 if (IS_PINEVIEW(dev))
7729 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7730 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7731 else
7732 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7733 DPLL_FPA01_P1_POST_DIV_SHIFT);
7734
7735 switch (dpll & DPLL_MODE_MASK) {
7736 case DPLLB_MODE_DAC_SERIAL:
7737 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7738 5 : 10;
7739 break;
7740 case DPLLB_MODE_LVDS:
7741 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7742 7 : 14;
7743 break;
7744 default:
7745 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7746 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7747 return;
7748 }
7749
7750 if (IS_PINEVIEW(dev))
7751 pineview_clock(refclk, &clock);
7752 else
7753 i9xx_clock(refclk, &clock);
7754 } else {
7755 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7756
7757 if (is_lvds) {
7758 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7759 DPLL_FPA01_P1_POST_DIV_SHIFT);
7760 clock.p2 = 14;
7761 } else {
7762 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7763 clock.p1 = 2;
7764 else {
7765 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7766 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7767 }
7768 if (dpll & PLL_P2_DIVIDE_BY_4)
7769 clock.p2 = 4;
7770 else
7771 clock.p2 = 2;
7772 }
7773
7774 i9xx_clock(refclk, &clock);
7775 }
7776
7777 /*
7778 * This value includes pixel_multiplier. We will use
7779 * port_clock to compute adjusted_mode.crtc_clock in the
7780 * encoder's get_config() function.
7781 */
7782 pipe_config->port_clock = clock.dot;
7783 }
7784
7785 int intel_dotclock_calculate(int link_freq,
7786 const struct intel_link_m_n *m_n)
7787 {
7788 /*
7789 * The calculation for the data clock is:
7790 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7791 * But we want to avoid losing precison if possible, so:
7792 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7793 *
7794 * and the link clock is simpler:
7795 * link_clock = (m * link_clock) / n
7796 */
7797
7798 if (!m_n->link_n)
7799 return 0;
7800
7801 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7802 }
7803
7804 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7805 struct intel_crtc_config *pipe_config)
7806 {
7807 struct drm_device *dev = crtc->base.dev;
7808
7809 /* read out port_clock from the DPLL */
7810 i9xx_crtc_clock_get(crtc, pipe_config);
7811
7812 /*
7813 * This value does not include pixel_multiplier.
7814 * We will check that port_clock and adjusted_mode.crtc_clock
7815 * agree once we know their relationship in the encoder's
7816 * get_config() function.
7817 */
7818 pipe_config->adjusted_mode.crtc_clock =
7819 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7820 &pipe_config->fdi_m_n);
7821 }
7822
7823 /** Returns the currently programmed mode of the given pipe. */
7824 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7825 struct drm_crtc *crtc)
7826 {
7827 struct drm_i915_private *dev_priv = dev->dev_private;
7828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7829 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7830 struct drm_display_mode *mode;
7831 struct intel_crtc_config pipe_config;
7832 int htot = I915_READ(HTOTAL(cpu_transcoder));
7833 int hsync = I915_READ(HSYNC(cpu_transcoder));
7834 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7835 int vsync = I915_READ(VSYNC(cpu_transcoder));
7836 enum pipe pipe = intel_crtc->pipe;
7837
7838 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7839 if (!mode)
7840 return NULL;
7841
7842 /*
7843 * Construct a pipe_config sufficient for getting the clock info
7844 * back out of crtc_clock_get.
7845 *
7846 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7847 * to use a real value here instead.
7848 */
7849 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7850 pipe_config.pixel_multiplier = 1;
7851 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7852 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7853 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7854 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7855
7856 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7857 mode->hdisplay = (htot & 0xffff) + 1;
7858 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7859 mode->hsync_start = (hsync & 0xffff) + 1;
7860 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7861 mode->vdisplay = (vtot & 0xffff) + 1;
7862 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7863 mode->vsync_start = (vsync & 0xffff) + 1;
7864 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7865
7866 drm_mode_set_name(mode);
7867
7868 return mode;
7869 }
7870
7871 static void intel_increase_pllclock(struct drm_crtc *crtc)
7872 {
7873 struct drm_device *dev = crtc->dev;
7874 drm_i915_private_t *dev_priv = dev->dev_private;
7875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7876 int pipe = intel_crtc->pipe;
7877 int dpll_reg = DPLL(pipe);
7878 int dpll;
7879
7880 if (HAS_PCH_SPLIT(dev))
7881 return;
7882
7883 if (!dev_priv->lvds_downclock_avail)
7884 return;
7885
7886 dpll = I915_READ(dpll_reg);
7887 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7888 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7889
7890 assert_panel_unlocked(dev_priv, pipe);
7891
7892 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7893 I915_WRITE(dpll_reg, dpll);
7894 intel_wait_for_vblank(dev, pipe);
7895
7896 dpll = I915_READ(dpll_reg);
7897 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7898 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7899 }
7900 }
7901
7902 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7903 {
7904 struct drm_device *dev = crtc->dev;
7905 drm_i915_private_t *dev_priv = dev->dev_private;
7906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7907
7908 if (HAS_PCH_SPLIT(dev))
7909 return;
7910
7911 if (!dev_priv->lvds_downclock_avail)
7912 return;
7913
7914 /*
7915 * Since this is called by a timer, we should never get here in
7916 * the manual case.
7917 */
7918 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7919 int pipe = intel_crtc->pipe;
7920 int dpll_reg = DPLL(pipe);
7921 int dpll;
7922
7923 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7924
7925 assert_panel_unlocked(dev_priv, pipe);
7926
7927 dpll = I915_READ(dpll_reg);
7928 dpll |= DISPLAY_RATE_SELECT_FPA1;
7929 I915_WRITE(dpll_reg, dpll);
7930 intel_wait_for_vblank(dev, pipe);
7931 dpll = I915_READ(dpll_reg);
7932 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7933 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7934 }
7935
7936 }
7937
7938 void intel_mark_busy(struct drm_device *dev)
7939 {
7940 struct drm_i915_private *dev_priv = dev->dev_private;
7941
7942 hsw_package_c8_gpu_busy(dev_priv);
7943 i915_update_gfx_val(dev_priv);
7944 }
7945
7946 void intel_mark_idle(struct drm_device *dev)
7947 {
7948 struct drm_i915_private *dev_priv = dev->dev_private;
7949 struct drm_crtc *crtc;
7950
7951 hsw_package_c8_gpu_idle(dev_priv);
7952
7953 if (!i915_powersave)
7954 return;
7955
7956 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7957 if (!crtc->fb)
7958 continue;
7959
7960 intel_decrease_pllclock(crtc);
7961 }
7962
7963 if (dev_priv->info->gen >= 6)
7964 gen6_rps_idle(dev->dev_private);
7965 }
7966
7967 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7968 struct intel_ring_buffer *ring)
7969 {
7970 struct drm_device *dev = obj->base.dev;
7971 struct drm_crtc *crtc;
7972
7973 if (!i915_powersave)
7974 return;
7975
7976 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7977 if (!crtc->fb)
7978 continue;
7979
7980 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7981 continue;
7982
7983 intel_increase_pllclock(crtc);
7984 if (ring && intel_fbc_enabled(dev))
7985 ring->fbc_dirty = true;
7986 }
7987 }
7988
7989 static void intel_crtc_destroy(struct drm_crtc *crtc)
7990 {
7991 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7992 struct drm_device *dev = crtc->dev;
7993 struct intel_unpin_work *work;
7994 unsigned long flags;
7995
7996 spin_lock_irqsave(&dev->event_lock, flags);
7997 work = intel_crtc->unpin_work;
7998 intel_crtc->unpin_work = NULL;
7999 spin_unlock_irqrestore(&dev->event_lock, flags);
8000
8001 if (work) {
8002 cancel_work_sync(&work->work);
8003 kfree(work);
8004 }
8005
8006 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8007
8008 drm_crtc_cleanup(crtc);
8009
8010 kfree(intel_crtc);
8011 }
8012
8013 static void intel_unpin_work_fn(struct work_struct *__work)
8014 {
8015 struct intel_unpin_work *work =
8016 container_of(__work, struct intel_unpin_work, work);
8017 struct drm_device *dev = work->crtc->dev;
8018
8019 mutex_lock(&dev->struct_mutex);
8020 intel_unpin_fb_obj(work->old_fb_obj);
8021 drm_gem_object_unreference(&work->pending_flip_obj->base);
8022 drm_gem_object_unreference(&work->old_fb_obj->base);
8023
8024 intel_update_fbc(dev);
8025 mutex_unlock(&dev->struct_mutex);
8026
8027 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8028 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8029
8030 kfree(work);
8031 }
8032
8033 static void do_intel_finish_page_flip(struct drm_device *dev,
8034 struct drm_crtc *crtc)
8035 {
8036 drm_i915_private_t *dev_priv = dev->dev_private;
8037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8038 struct intel_unpin_work *work;
8039 unsigned long flags;
8040
8041 /* Ignore early vblank irqs */
8042 if (intel_crtc == NULL)
8043 return;
8044
8045 spin_lock_irqsave(&dev->event_lock, flags);
8046 work = intel_crtc->unpin_work;
8047
8048 /* Ensure we don't miss a work->pending update ... */
8049 smp_rmb();
8050
8051 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8052 spin_unlock_irqrestore(&dev->event_lock, flags);
8053 return;
8054 }
8055
8056 /* and that the unpin work is consistent wrt ->pending. */
8057 smp_rmb();
8058
8059 intel_crtc->unpin_work = NULL;
8060
8061 if (work->event)
8062 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8063
8064 drm_vblank_put(dev, intel_crtc->pipe);
8065
8066 spin_unlock_irqrestore(&dev->event_lock, flags);
8067
8068 wake_up_all(&dev_priv->pending_flip_queue);
8069
8070 queue_work(dev_priv->wq, &work->work);
8071
8072 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8073 }
8074
8075 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8076 {
8077 drm_i915_private_t *dev_priv = dev->dev_private;
8078 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8079
8080 do_intel_finish_page_flip(dev, crtc);
8081 }
8082
8083 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8084 {
8085 drm_i915_private_t *dev_priv = dev->dev_private;
8086 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8087
8088 do_intel_finish_page_flip(dev, crtc);
8089 }
8090
8091 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8092 {
8093 drm_i915_private_t *dev_priv = dev->dev_private;
8094 struct intel_crtc *intel_crtc =
8095 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8096 unsigned long flags;
8097
8098 /* NB: An MMIO update of the plane base pointer will also
8099 * generate a page-flip completion irq, i.e. every modeset
8100 * is also accompanied by a spurious intel_prepare_page_flip().
8101 */
8102 spin_lock_irqsave(&dev->event_lock, flags);
8103 if (intel_crtc->unpin_work)
8104 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8105 spin_unlock_irqrestore(&dev->event_lock, flags);
8106 }
8107
8108 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8109 {
8110 /* Ensure that the work item is consistent when activating it ... */
8111 smp_wmb();
8112 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8113 /* and that it is marked active as soon as the irq could fire. */
8114 smp_wmb();
8115 }
8116
8117 static int intel_gen2_queue_flip(struct drm_device *dev,
8118 struct drm_crtc *crtc,
8119 struct drm_framebuffer *fb,
8120 struct drm_i915_gem_object *obj,
8121 uint32_t flags)
8122 {
8123 struct drm_i915_private *dev_priv = dev->dev_private;
8124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8125 u32 flip_mask;
8126 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8127 int ret;
8128
8129 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8130 if (ret)
8131 goto err;
8132
8133 ret = intel_ring_begin(ring, 6);
8134 if (ret)
8135 goto err_unpin;
8136
8137 /* Can't queue multiple flips, so wait for the previous
8138 * one to finish before executing the next.
8139 */
8140 if (intel_crtc->plane)
8141 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8142 else
8143 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8144 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8145 intel_ring_emit(ring, MI_NOOP);
8146 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8147 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8148 intel_ring_emit(ring, fb->pitches[0]);
8149 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8150 intel_ring_emit(ring, 0); /* aux display base address, unused */
8151
8152 intel_mark_page_flip_active(intel_crtc);
8153 __intel_ring_advance(ring);
8154 return 0;
8155
8156 err_unpin:
8157 intel_unpin_fb_obj(obj);
8158 err:
8159 return ret;
8160 }
8161
8162 static int intel_gen3_queue_flip(struct drm_device *dev,
8163 struct drm_crtc *crtc,
8164 struct drm_framebuffer *fb,
8165 struct drm_i915_gem_object *obj,
8166 uint32_t flags)
8167 {
8168 struct drm_i915_private *dev_priv = dev->dev_private;
8169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8170 u32 flip_mask;
8171 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8172 int ret;
8173
8174 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8175 if (ret)
8176 goto err;
8177
8178 ret = intel_ring_begin(ring, 6);
8179 if (ret)
8180 goto err_unpin;
8181
8182 if (intel_crtc->plane)
8183 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8184 else
8185 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8186 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8187 intel_ring_emit(ring, MI_NOOP);
8188 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8189 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8190 intel_ring_emit(ring, fb->pitches[0]);
8191 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8192 intel_ring_emit(ring, MI_NOOP);
8193
8194 intel_mark_page_flip_active(intel_crtc);
8195 __intel_ring_advance(ring);
8196 return 0;
8197
8198 err_unpin:
8199 intel_unpin_fb_obj(obj);
8200 err:
8201 return ret;
8202 }
8203
8204 static int intel_gen4_queue_flip(struct drm_device *dev,
8205 struct drm_crtc *crtc,
8206 struct drm_framebuffer *fb,
8207 struct drm_i915_gem_object *obj,
8208 uint32_t flags)
8209 {
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8212 uint32_t pf, pipesrc;
8213 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8214 int ret;
8215
8216 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8217 if (ret)
8218 goto err;
8219
8220 ret = intel_ring_begin(ring, 4);
8221 if (ret)
8222 goto err_unpin;
8223
8224 /* i965+ uses the linear or tiled offsets from the
8225 * Display Registers (which do not change across a page-flip)
8226 * so we need only reprogram the base address.
8227 */
8228 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8229 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8230 intel_ring_emit(ring, fb->pitches[0]);
8231 intel_ring_emit(ring,
8232 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8233 obj->tiling_mode);
8234
8235 /* XXX Enabling the panel-fitter across page-flip is so far
8236 * untested on non-native modes, so ignore it for now.
8237 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8238 */
8239 pf = 0;
8240 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8241 intel_ring_emit(ring, pf | pipesrc);
8242
8243 intel_mark_page_flip_active(intel_crtc);
8244 __intel_ring_advance(ring);
8245 return 0;
8246
8247 err_unpin:
8248 intel_unpin_fb_obj(obj);
8249 err:
8250 return ret;
8251 }
8252
8253 static int intel_gen6_queue_flip(struct drm_device *dev,
8254 struct drm_crtc *crtc,
8255 struct drm_framebuffer *fb,
8256 struct drm_i915_gem_object *obj,
8257 uint32_t flags)
8258 {
8259 struct drm_i915_private *dev_priv = dev->dev_private;
8260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8261 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8262 uint32_t pf, pipesrc;
8263 int ret;
8264
8265 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8266 if (ret)
8267 goto err;
8268
8269 ret = intel_ring_begin(ring, 4);
8270 if (ret)
8271 goto err_unpin;
8272
8273 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8274 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8275 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8276 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8277
8278 /* Contrary to the suggestions in the documentation,
8279 * "Enable Panel Fitter" does not seem to be required when page
8280 * flipping with a non-native mode, and worse causes a normal
8281 * modeset to fail.
8282 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8283 */
8284 pf = 0;
8285 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8286 intel_ring_emit(ring, pf | pipesrc);
8287
8288 intel_mark_page_flip_active(intel_crtc);
8289 __intel_ring_advance(ring);
8290 return 0;
8291
8292 err_unpin:
8293 intel_unpin_fb_obj(obj);
8294 err:
8295 return ret;
8296 }
8297
8298 static int intel_gen7_queue_flip(struct drm_device *dev,
8299 struct drm_crtc *crtc,
8300 struct drm_framebuffer *fb,
8301 struct drm_i915_gem_object *obj,
8302 uint32_t flags)
8303 {
8304 struct drm_i915_private *dev_priv = dev->dev_private;
8305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8306 struct intel_ring_buffer *ring;
8307 uint32_t plane_bit = 0;
8308 int len, ret;
8309
8310 ring = obj->ring;
8311 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8312 ring = &dev_priv->ring[BCS];
8313
8314 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8315 if (ret)
8316 goto err;
8317
8318 switch(intel_crtc->plane) {
8319 case PLANE_A:
8320 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8321 break;
8322 case PLANE_B:
8323 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8324 break;
8325 case PLANE_C:
8326 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8327 break;
8328 default:
8329 WARN_ONCE(1, "unknown plane in flip command\n");
8330 ret = -ENODEV;
8331 goto err_unpin;
8332 }
8333
8334 len = 4;
8335 if (ring->id == RCS)
8336 len += 6;
8337
8338 ret = intel_ring_begin(ring, len);
8339 if (ret)
8340 goto err_unpin;
8341
8342 /* Unmask the flip-done completion message. Note that the bspec says that
8343 * we should do this for both the BCS and RCS, and that we must not unmask
8344 * more than one flip event at any time (or ensure that one flip message
8345 * can be sent by waiting for flip-done prior to queueing new flips).
8346 * Experimentation says that BCS works despite DERRMR masking all
8347 * flip-done completion events and that unmasking all planes at once
8348 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8349 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8350 */
8351 if (ring->id == RCS) {
8352 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8353 intel_ring_emit(ring, DERRMR);
8354 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8355 DERRMR_PIPEB_PRI_FLIP_DONE |
8356 DERRMR_PIPEC_PRI_FLIP_DONE));
8357 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8358 MI_SRM_LRM_GLOBAL_GTT);
8359 intel_ring_emit(ring, DERRMR);
8360 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8361 }
8362
8363 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8364 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8365 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8366 intel_ring_emit(ring, (MI_NOOP));
8367
8368 intel_mark_page_flip_active(intel_crtc);
8369 __intel_ring_advance(ring);
8370 return 0;
8371
8372 err_unpin:
8373 intel_unpin_fb_obj(obj);
8374 err:
8375 return ret;
8376 }
8377
8378 static int intel_default_queue_flip(struct drm_device *dev,
8379 struct drm_crtc *crtc,
8380 struct drm_framebuffer *fb,
8381 struct drm_i915_gem_object *obj,
8382 uint32_t flags)
8383 {
8384 return -ENODEV;
8385 }
8386
8387 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8388 struct drm_framebuffer *fb,
8389 struct drm_pending_vblank_event *event,
8390 uint32_t page_flip_flags)
8391 {
8392 struct drm_device *dev = crtc->dev;
8393 struct drm_i915_private *dev_priv = dev->dev_private;
8394 struct drm_framebuffer *old_fb = crtc->fb;
8395 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8397 struct intel_unpin_work *work;
8398 unsigned long flags;
8399 int ret;
8400
8401 /* Can't change pixel format via MI display flips. */
8402 if (fb->pixel_format != crtc->fb->pixel_format)
8403 return -EINVAL;
8404
8405 /*
8406 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8407 * Note that pitch changes could also affect these register.
8408 */
8409 if (INTEL_INFO(dev)->gen > 3 &&
8410 (fb->offsets[0] != crtc->fb->offsets[0] ||
8411 fb->pitches[0] != crtc->fb->pitches[0]))
8412 return -EINVAL;
8413
8414 work = kzalloc(sizeof(*work), GFP_KERNEL);
8415 if (work == NULL)
8416 return -ENOMEM;
8417
8418 work->event = event;
8419 work->crtc = crtc;
8420 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8421 INIT_WORK(&work->work, intel_unpin_work_fn);
8422
8423 ret = drm_vblank_get(dev, intel_crtc->pipe);
8424 if (ret)
8425 goto free_work;
8426
8427 /* We borrow the event spin lock for protecting unpin_work */
8428 spin_lock_irqsave(&dev->event_lock, flags);
8429 if (intel_crtc->unpin_work) {
8430 spin_unlock_irqrestore(&dev->event_lock, flags);
8431 kfree(work);
8432 drm_vblank_put(dev, intel_crtc->pipe);
8433
8434 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8435 return -EBUSY;
8436 }
8437 intel_crtc->unpin_work = work;
8438 spin_unlock_irqrestore(&dev->event_lock, flags);
8439
8440 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8441 flush_workqueue(dev_priv->wq);
8442
8443 ret = i915_mutex_lock_interruptible(dev);
8444 if (ret)
8445 goto cleanup;
8446
8447 /* Reference the objects for the scheduled work. */
8448 drm_gem_object_reference(&work->old_fb_obj->base);
8449 drm_gem_object_reference(&obj->base);
8450
8451 crtc->fb = fb;
8452
8453 work->pending_flip_obj = obj;
8454
8455 work->enable_stall_check = true;
8456
8457 atomic_inc(&intel_crtc->unpin_work_count);
8458 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8459
8460 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8461 if (ret)
8462 goto cleanup_pending;
8463
8464 intel_disable_fbc(dev);
8465 intel_mark_fb_busy(obj, NULL);
8466 mutex_unlock(&dev->struct_mutex);
8467
8468 trace_i915_flip_request(intel_crtc->plane, obj);
8469
8470 return 0;
8471
8472 cleanup_pending:
8473 atomic_dec(&intel_crtc->unpin_work_count);
8474 crtc->fb = old_fb;
8475 drm_gem_object_unreference(&work->old_fb_obj->base);
8476 drm_gem_object_unreference(&obj->base);
8477 mutex_unlock(&dev->struct_mutex);
8478
8479 cleanup:
8480 spin_lock_irqsave(&dev->event_lock, flags);
8481 intel_crtc->unpin_work = NULL;
8482 spin_unlock_irqrestore(&dev->event_lock, flags);
8483
8484 drm_vblank_put(dev, intel_crtc->pipe);
8485 free_work:
8486 kfree(work);
8487
8488 return ret;
8489 }
8490
8491 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8492 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8493 .load_lut = intel_crtc_load_lut,
8494 };
8495
8496 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8497 struct drm_crtc *crtc)
8498 {
8499 struct drm_device *dev;
8500 struct drm_crtc *tmp;
8501 int crtc_mask = 1;
8502
8503 WARN(!crtc, "checking null crtc?\n");
8504
8505 dev = crtc->dev;
8506
8507 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8508 if (tmp == crtc)
8509 break;
8510 crtc_mask <<= 1;
8511 }
8512
8513 if (encoder->possible_crtcs & crtc_mask)
8514 return true;
8515 return false;
8516 }
8517
8518 /**
8519 * intel_modeset_update_staged_output_state
8520 *
8521 * Updates the staged output configuration state, e.g. after we've read out the
8522 * current hw state.
8523 */
8524 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8525 {
8526 struct intel_encoder *encoder;
8527 struct intel_connector *connector;
8528
8529 list_for_each_entry(connector, &dev->mode_config.connector_list,
8530 base.head) {
8531 connector->new_encoder =
8532 to_intel_encoder(connector->base.encoder);
8533 }
8534
8535 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8536 base.head) {
8537 encoder->new_crtc =
8538 to_intel_crtc(encoder->base.crtc);
8539 }
8540 }
8541
8542 /**
8543 * intel_modeset_commit_output_state
8544 *
8545 * This function copies the stage display pipe configuration to the real one.
8546 */
8547 static void intel_modeset_commit_output_state(struct drm_device *dev)
8548 {
8549 struct intel_encoder *encoder;
8550 struct intel_connector *connector;
8551
8552 list_for_each_entry(connector, &dev->mode_config.connector_list,
8553 base.head) {
8554 connector->base.encoder = &connector->new_encoder->base;
8555 }
8556
8557 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8558 base.head) {
8559 encoder->base.crtc = &encoder->new_crtc->base;
8560 }
8561 }
8562
8563 static void
8564 connected_sink_compute_bpp(struct intel_connector * connector,
8565 struct intel_crtc_config *pipe_config)
8566 {
8567 int bpp = pipe_config->pipe_bpp;
8568
8569 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8570 connector->base.base.id,
8571 drm_get_connector_name(&connector->base));
8572
8573 /* Don't use an invalid EDID bpc value */
8574 if (connector->base.display_info.bpc &&
8575 connector->base.display_info.bpc * 3 < bpp) {
8576 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8577 bpp, connector->base.display_info.bpc*3);
8578 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8579 }
8580
8581 /* Clamp bpp to 8 on screens without EDID 1.4 */
8582 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8583 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8584 bpp);
8585 pipe_config->pipe_bpp = 24;
8586 }
8587 }
8588
8589 static int
8590 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8591 struct drm_framebuffer *fb,
8592 struct intel_crtc_config *pipe_config)
8593 {
8594 struct drm_device *dev = crtc->base.dev;
8595 struct intel_connector *connector;
8596 int bpp;
8597
8598 switch (fb->pixel_format) {
8599 case DRM_FORMAT_C8:
8600 bpp = 8*3; /* since we go through a colormap */
8601 break;
8602 case DRM_FORMAT_XRGB1555:
8603 case DRM_FORMAT_ARGB1555:
8604 /* checked in intel_framebuffer_init already */
8605 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8606 return -EINVAL;
8607 case DRM_FORMAT_RGB565:
8608 bpp = 6*3; /* min is 18bpp */
8609 break;
8610 case DRM_FORMAT_XBGR8888:
8611 case DRM_FORMAT_ABGR8888:
8612 /* checked in intel_framebuffer_init already */
8613 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8614 return -EINVAL;
8615 case DRM_FORMAT_XRGB8888:
8616 case DRM_FORMAT_ARGB8888:
8617 bpp = 8*3;
8618 break;
8619 case DRM_FORMAT_XRGB2101010:
8620 case DRM_FORMAT_ARGB2101010:
8621 case DRM_FORMAT_XBGR2101010:
8622 case DRM_FORMAT_ABGR2101010:
8623 /* checked in intel_framebuffer_init already */
8624 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8625 return -EINVAL;
8626 bpp = 10*3;
8627 break;
8628 /* TODO: gen4+ supports 16 bpc floating point, too. */
8629 default:
8630 DRM_DEBUG_KMS("unsupported depth\n");
8631 return -EINVAL;
8632 }
8633
8634 pipe_config->pipe_bpp = bpp;
8635
8636 /* Clamp display bpp to EDID value */
8637 list_for_each_entry(connector, &dev->mode_config.connector_list,
8638 base.head) {
8639 if (!connector->new_encoder ||
8640 connector->new_encoder->new_crtc != crtc)
8641 continue;
8642
8643 connected_sink_compute_bpp(connector, pipe_config);
8644 }
8645
8646 return bpp;
8647 }
8648
8649 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8650 {
8651 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8652 "type: 0x%x flags: 0x%x\n",
8653 mode->crtc_clock,
8654 mode->crtc_hdisplay, mode->crtc_hsync_start,
8655 mode->crtc_hsync_end, mode->crtc_htotal,
8656 mode->crtc_vdisplay, mode->crtc_vsync_start,
8657 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8658 }
8659
8660 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8661 struct intel_crtc_config *pipe_config,
8662 const char *context)
8663 {
8664 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8665 context, pipe_name(crtc->pipe));
8666
8667 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8668 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8669 pipe_config->pipe_bpp, pipe_config->dither);
8670 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8671 pipe_config->has_pch_encoder,
8672 pipe_config->fdi_lanes,
8673 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8674 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8675 pipe_config->fdi_m_n.tu);
8676 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8677 pipe_config->has_dp_encoder,
8678 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8679 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8680 pipe_config->dp_m_n.tu);
8681 DRM_DEBUG_KMS("requested mode:\n");
8682 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8683 DRM_DEBUG_KMS("adjusted mode:\n");
8684 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8685 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8686 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8687 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8688 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8689 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8690 pipe_config->gmch_pfit.control,
8691 pipe_config->gmch_pfit.pgm_ratios,
8692 pipe_config->gmch_pfit.lvds_border_bits);
8693 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8694 pipe_config->pch_pfit.pos,
8695 pipe_config->pch_pfit.size,
8696 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8697 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8698 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8699 }
8700
8701 static bool check_encoder_cloning(struct drm_crtc *crtc)
8702 {
8703 int num_encoders = 0;
8704 bool uncloneable_encoders = false;
8705 struct intel_encoder *encoder;
8706
8707 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8708 base.head) {
8709 if (&encoder->new_crtc->base != crtc)
8710 continue;
8711
8712 num_encoders++;
8713 if (!encoder->cloneable)
8714 uncloneable_encoders = true;
8715 }
8716
8717 return !(num_encoders > 1 && uncloneable_encoders);
8718 }
8719
8720 static struct intel_crtc_config *
8721 intel_modeset_pipe_config(struct drm_crtc *crtc,
8722 struct drm_framebuffer *fb,
8723 struct drm_display_mode *mode)
8724 {
8725 struct drm_device *dev = crtc->dev;
8726 struct intel_encoder *encoder;
8727 struct intel_crtc_config *pipe_config;
8728 int plane_bpp, ret = -EINVAL;
8729 bool retry = true;
8730
8731 if (!check_encoder_cloning(crtc)) {
8732 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8733 return ERR_PTR(-EINVAL);
8734 }
8735
8736 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8737 if (!pipe_config)
8738 return ERR_PTR(-ENOMEM);
8739
8740 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8741 drm_mode_copy(&pipe_config->requested_mode, mode);
8742
8743 pipe_config->cpu_transcoder =
8744 (enum transcoder) to_intel_crtc(crtc)->pipe;
8745 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8746
8747 /*
8748 * Sanitize sync polarity flags based on requested ones. If neither
8749 * positive or negative polarity is requested, treat this as meaning
8750 * negative polarity.
8751 */
8752 if (!(pipe_config->adjusted_mode.flags &
8753 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8754 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8755
8756 if (!(pipe_config->adjusted_mode.flags &
8757 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8758 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8759
8760 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8761 * plane pixel format and any sink constraints into account. Returns the
8762 * source plane bpp so that dithering can be selected on mismatches
8763 * after encoders and crtc also have had their say. */
8764 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8765 fb, pipe_config);
8766 if (plane_bpp < 0)
8767 goto fail;
8768
8769 /*
8770 * Determine the real pipe dimensions. Note that stereo modes can
8771 * increase the actual pipe size due to the frame doubling and
8772 * insertion of additional space for blanks between the frame. This
8773 * is stored in the crtc timings. We use the requested mode to do this
8774 * computation to clearly distinguish it from the adjusted mode, which
8775 * can be changed by the connectors in the below retry loop.
8776 */
8777 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8778 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8779 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8780
8781 encoder_retry:
8782 /* Ensure the port clock defaults are reset when retrying. */
8783 pipe_config->port_clock = 0;
8784 pipe_config->pixel_multiplier = 1;
8785
8786 /* Fill in default crtc timings, allow encoders to overwrite them. */
8787 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8788
8789 /* Pass our mode to the connectors and the CRTC to give them a chance to
8790 * adjust it according to limitations or connector properties, and also
8791 * a chance to reject the mode entirely.
8792 */
8793 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8794 base.head) {
8795
8796 if (&encoder->new_crtc->base != crtc)
8797 continue;
8798
8799 if (!(encoder->compute_config(encoder, pipe_config))) {
8800 DRM_DEBUG_KMS("Encoder config failure\n");
8801 goto fail;
8802 }
8803 }
8804
8805 /* Set default port clock if not overwritten by the encoder. Needs to be
8806 * done afterwards in case the encoder adjusts the mode. */
8807 if (!pipe_config->port_clock)
8808 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8809 * pipe_config->pixel_multiplier;
8810
8811 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8812 if (ret < 0) {
8813 DRM_DEBUG_KMS("CRTC fixup failed\n");
8814 goto fail;
8815 }
8816
8817 if (ret == RETRY) {
8818 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8819 ret = -EINVAL;
8820 goto fail;
8821 }
8822
8823 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8824 retry = false;
8825 goto encoder_retry;
8826 }
8827
8828 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8829 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8830 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8831
8832 return pipe_config;
8833 fail:
8834 kfree(pipe_config);
8835 return ERR_PTR(ret);
8836 }
8837
8838 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8839 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8840 static void
8841 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8842 unsigned *prepare_pipes, unsigned *disable_pipes)
8843 {
8844 struct intel_crtc *intel_crtc;
8845 struct drm_device *dev = crtc->dev;
8846 struct intel_encoder *encoder;
8847 struct intel_connector *connector;
8848 struct drm_crtc *tmp_crtc;
8849
8850 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8851
8852 /* Check which crtcs have changed outputs connected to them, these need
8853 * to be part of the prepare_pipes mask. We don't (yet) support global
8854 * modeset across multiple crtcs, so modeset_pipes will only have one
8855 * bit set at most. */
8856 list_for_each_entry(connector, &dev->mode_config.connector_list,
8857 base.head) {
8858 if (connector->base.encoder == &connector->new_encoder->base)
8859 continue;
8860
8861 if (connector->base.encoder) {
8862 tmp_crtc = connector->base.encoder->crtc;
8863
8864 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8865 }
8866
8867 if (connector->new_encoder)
8868 *prepare_pipes |=
8869 1 << connector->new_encoder->new_crtc->pipe;
8870 }
8871
8872 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8873 base.head) {
8874 if (encoder->base.crtc == &encoder->new_crtc->base)
8875 continue;
8876
8877 if (encoder->base.crtc) {
8878 tmp_crtc = encoder->base.crtc;
8879
8880 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8881 }
8882
8883 if (encoder->new_crtc)
8884 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8885 }
8886
8887 /* Check for any pipes that will be fully disabled ... */
8888 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8889 base.head) {
8890 bool used = false;
8891
8892 /* Don't try to disable disabled crtcs. */
8893 if (!intel_crtc->base.enabled)
8894 continue;
8895
8896 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8897 base.head) {
8898 if (encoder->new_crtc == intel_crtc)
8899 used = true;
8900 }
8901
8902 if (!used)
8903 *disable_pipes |= 1 << intel_crtc->pipe;
8904 }
8905
8906
8907 /* set_mode is also used to update properties on life display pipes. */
8908 intel_crtc = to_intel_crtc(crtc);
8909 if (crtc->enabled)
8910 *prepare_pipes |= 1 << intel_crtc->pipe;
8911
8912 /*
8913 * For simplicity do a full modeset on any pipe where the output routing
8914 * changed. We could be more clever, but that would require us to be
8915 * more careful with calling the relevant encoder->mode_set functions.
8916 */
8917 if (*prepare_pipes)
8918 *modeset_pipes = *prepare_pipes;
8919
8920 /* ... and mask these out. */
8921 *modeset_pipes &= ~(*disable_pipes);
8922 *prepare_pipes &= ~(*disable_pipes);
8923
8924 /*
8925 * HACK: We don't (yet) fully support global modesets. intel_set_config
8926 * obies this rule, but the modeset restore mode of
8927 * intel_modeset_setup_hw_state does not.
8928 */
8929 *modeset_pipes &= 1 << intel_crtc->pipe;
8930 *prepare_pipes &= 1 << intel_crtc->pipe;
8931
8932 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8933 *modeset_pipes, *prepare_pipes, *disable_pipes);
8934 }
8935
8936 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8937 {
8938 struct drm_encoder *encoder;
8939 struct drm_device *dev = crtc->dev;
8940
8941 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8942 if (encoder->crtc == crtc)
8943 return true;
8944
8945 return false;
8946 }
8947
8948 static void
8949 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8950 {
8951 struct intel_encoder *intel_encoder;
8952 struct intel_crtc *intel_crtc;
8953 struct drm_connector *connector;
8954
8955 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8956 base.head) {
8957 if (!intel_encoder->base.crtc)
8958 continue;
8959
8960 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8961
8962 if (prepare_pipes & (1 << intel_crtc->pipe))
8963 intel_encoder->connectors_active = false;
8964 }
8965
8966 intel_modeset_commit_output_state(dev);
8967
8968 /* Update computed state. */
8969 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8970 base.head) {
8971 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8972 }
8973
8974 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8975 if (!connector->encoder || !connector->encoder->crtc)
8976 continue;
8977
8978 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8979
8980 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8981 struct drm_property *dpms_property =
8982 dev->mode_config.dpms_property;
8983
8984 connector->dpms = DRM_MODE_DPMS_ON;
8985 drm_object_property_set_value(&connector->base,
8986 dpms_property,
8987 DRM_MODE_DPMS_ON);
8988
8989 intel_encoder = to_intel_encoder(connector->encoder);
8990 intel_encoder->connectors_active = true;
8991 }
8992 }
8993
8994 }
8995
8996 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8997 {
8998 int diff;
8999
9000 if (clock1 == clock2)
9001 return true;
9002
9003 if (!clock1 || !clock2)
9004 return false;
9005
9006 diff = abs(clock1 - clock2);
9007
9008 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9009 return true;
9010
9011 return false;
9012 }
9013
9014 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9015 list_for_each_entry((intel_crtc), \
9016 &(dev)->mode_config.crtc_list, \
9017 base.head) \
9018 if (mask & (1 <<(intel_crtc)->pipe))
9019
9020 static bool
9021 intel_pipe_config_compare(struct drm_device *dev,
9022 struct intel_crtc_config *current_config,
9023 struct intel_crtc_config *pipe_config)
9024 {
9025 #define PIPE_CONF_CHECK_X(name) \
9026 if (current_config->name != pipe_config->name) { \
9027 DRM_ERROR("mismatch in " #name " " \
9028 "(expected 0x%08x, found 0x%08x)\n", \
9029 current_config->name, \
9030 pipe_config->name); \
9031 return false; \
9032 }
9033
9034 #define PIPE_CONF_CHECK_I(name) \
9035 if (current_config->name != pipe_config->name) { \
9036 DRM_ERROR("mismatch in " #name " " \
9037 "(expected %i, found %i)\n", \
9038 current_config->name, \
9039 pipe_config->name); \
9040 return false; \
9041 }
9042
9043 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
9044 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9045 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9046 "(expected %i, found %i)\n", \
9047 current_config->name & (mask), \
9048 pipe_config->name & (mask)); \
9049 return false; \
9050 }
9051
9052 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9053 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9054 DRM_ERROR("mismatch in " #name " " \
9055 "(expected %i, found %i)\n", \
9056 current_config->name, \
9057 pipe_config->name); \
9058 return false; \
9059 }
9060
9061 #define PIPE_CONF_QUIRK(quirk) \
9062 ((current_config->quirks | pipe_config->quirks) & (quirk))
9063
9064 PIPE_CONF_CHECK_I(cpu_transcoder);
9065
9066 PIPE_CONF_CHECK_I(has_pch_encoder);
9067 PIPE_CONF_CHECK_I(fdi_lanes);
9068 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9069 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9070 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9071 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9072 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9073
9074 PIPE_CONF_CHECK_I(has_dp_encoder);
9075 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9076 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9077 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9078 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9079 PIPE_CONF_CHECK_I(dp_m_n.tu);
9080
9081 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9082 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9083 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9084 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9085 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9086 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9087
9088 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9089 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9090 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9091 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9092 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9093 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9094
9095 PIPE_CONF_CHECK_I(pixel_multiplier);
9096
9097 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9098 DRM_MODE_FLAG_INTERLACE);
9099
9100 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9101 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9102 DRM_MODE_FLAG_PHSYNC);
9103 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9104 DRM_MODE_FLAG_NHSYNC);
9105 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9106 DRM_MODE_FLAG_PVSYNC);
9107 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9108 DRM_MODE_FLAG_NVSYNC);
9109 }
9110
9111 PIPE_CONF_CHECK_I(pipe_src_w);
9112 PIPE_CONF_CHECK_I(pipe_src_h);
9113
9114 PIPE_CONF_CHECK_I(gmch_pfit.control);
9115 /* pfit ratios are autocomputed by the hw on gen4+ */
9116 if (INTEL_INFO(dev)->gen < 4)
9117 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9118 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9119 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9120 if (current_config->pch_pfit.enabled) {
9121 PIPE_CONF_CHECK_I(pch_pfit.pos);
9122 PIPE_CONF_CHECK_I(pch_pfit.size);
9123 }
9124
9125 PIPE_CONF_CHECK_I(ips_enabled);
9126
9127 PIPE_CONF_CHECK_I(double_wide);
9128
9129 PIPE_CONF_CHECK_I(shared_dpll);
9130 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9131 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9132 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9133 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9134
9135 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9136 PIPE_CONF_CHECK_I(pipe_bpp);
9137
9138 if (!HAS_DDI(dev)) {
9139 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9140 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9141 }
9142
9143 #undef PIPE_CONF_CHECK_X
9144 #undef PIPE_CONF_CHECK_I
9145 #undef PIPE_CONF_CHECK_FLAGS
9146 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9147 #undef PIPE_CONF_QUIRK
9148
9149 return true;
9150 }
9151
9152 static void
9153 check_connector_state(struct drm_device *dev)
9154 {
9155 struct intel_connector *connector;
9156
9157 list_for_each_entry(connector, &dev->mode_config.connector_list,
9158 base.head) {
9159 /* This also checks the encoder/connector hw state with the
9160 * ->get_hw_state callbacks. */
9161 intel_connector_check_state(connector);
9162
9163 WARN(&connector->new_encoder->base != connector->base.encoder,
9164 "connector's staged encoder doesn't match current encoder\n");
9165 }
9166 }
9167
9168 static void
9169 check_encoder_state(struct drm_device *dev)
9170 {
9171 struct intel_encoder *encoder;
9172 struct intel_connector *connector;
9173
9174 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9175 base.head) {
9176 bool enabled = false;
9177 bool active = false;
9178 enum pipe pipe, tracked_pipe;
9179
9180 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9181 encoder->base.base.id,
9182 drm_get_encoder_name(&encoder->base));
9183
9184 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9185 "encoder's stage crtc doesn't match current crtc\n");
9186 WARN(encoder->connectors_active && !encoder->base.crtc,
9187 "encoder's active_connectors set, but no crtc\n");
9188
9189 list_for_each_entry(connector, &dev->mode_config.connector_list,
9190 base.head) {
9191 if (connector->base.encoder != &encoder->base)
9192 continue;
9193 enabled = true;
9194 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9195 active = true;
9196 }
9197 WARN(!!encoder->base.crtc != enabled,
9198 "encoder's enabled state mismatch "
9199 "(expected %i, found %i)\n",
9200 !!encoder->base.crtc, enabled);
9201 WARN(active && !encoder->base.crtc,
9202 "active encoder with no crtc\n");
9203
9204 WARN(encoder->connectors_active != active,
9205 "encoder's computed active state doesn't match tracked active state "
9206 "(expected %i, found %i)\n", active, encoder->connectors_active);
9207
9208 active = encoder->get_hw_state(encoder, &pipe);
9209 WARN(active != encoder->connectors_active,
9210 "encoder's hw state doesn't match sw tracking "
9211 "(expected %i, found %i)\n",
9212 encoder->connectors_active, active);
9213
9214 if (!encoder->base.crtc)
9215 continue;
9216
9217 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9218 WARN(active && pipe != tracked_pipe,
9219 "active encoder's pipe doesn't match"
9220 "(expected %i, found %i)\n",
9221 tracked_pipe, pipe);
9222
9223 }
9224 }
9225
9226 static void
9227 check_crtc_state(struct drm_device *dev)
9228 {
9229 drm_i915_private_t *dev_priv = dev->dev_private;
9230 struct intel_crtc *crtc;
9231 struct intel_encoder *encoder;
9232 struct intel_crtc_config pipe_config;
9233
9234 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9235 base.head) {
9236 bool enabled = false;
9237 bool active = false;
9238
9239 memset(&pipe_config, 0, sizeof(pipe_config));
9240
9241 DRM_DEBUG_KMS("[CRTC:%d]\n",
9242 crtc->base.base.id);
9243
9244 WARN(crtc->active && !crtc->base.enabled,
9245 "active crtc, but not enabled in sw tracking\n");
9246
9247 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9248 base.head) {
9249 if (encoder->base.crtc != &crtc->base)
9250 continue;
9251 enabled = true;
9252 if (encoder->connectors_active)
9253 active = true;
9254 }
9255
9256 WARN(active != crtc->active,
9257 "crtc's computed active state doesn't match tracked active state "
9258 "(expected %i, found %i)\n", active, crtc->active);
9259 WARN(enabled != crtc->base.enabled,
9260 "crtc's computed enabled state doesn't match tracked enabled state "
9261 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9262
9263 active = dev_priv->display.get_pipe_config(crtc,
9264 &pipe_config);
9265
9266 /* hw state is inconsistent with the pipe A quirk */
9267 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9268 active = crtc->active;
9269
9270 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9271 base.head) {
9272 enum pipe pipe;
9273 if (encoder->base.crtc != &crtc->base)
9274 continue;
9275 if (encoder->get_hw_state(encoder, &pipe))
9276 encoder->get_config(encoder, &pipe_config);
9277 }
9278
9279 WARN(crtc->active != active,
9280 "crtc active state doesn't match with hw state "
9281 "(expected %i, found %i)\n", crtc->active, active);
9282
9283 if (active &&
9284 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9285 WARN(1, "pipe state doesn't match!\n");
9286 intel_dump_pipe_config(crtc, &pipe_config,
9287 "[hw state]");
9288 intel_dump_pipe_config(crtc, &crtc->config,
9289 "[sw state]");
9290 }
9291 }
9292 }
9293
9294 static void
9295 check_shared_dpll_state(struct drm_device *dev)
9296 {
9297 drm_i915_private_t *dev_priv = dev->dev_private;
9298 struct intel_crtc *crtc;
9299 struct intel_dpll_hw_state dpll_hw_state;
9300 int i;
9301
9302 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9303 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9304 int enabled_crtcs = 0, active_crtcs = 0;
9305 bool active;
9306
9307 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9308
9309 DRM_DEBUG_KMS("%s\n", pll->name);
9310
9311 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9312
9313 WARN(pll->active > pll->refcount,
9314 "more active pll users than references: %i vs %i\n",
9315 pll->active, pll->refcount);
9316 WARN(pll->active && !pll->on,
9317 "pll in active use but not on in sw tracking\n");
9318 WARN(pll->on && !pll->active,
9319 "pll in on but not on in use in sw tracking\n");
9320 WARN(pll->on != active,
9321 "pll on state mismatch (expected %i, found %i)\n",
9322 pll->on, active);
9323
9324 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9325 base.head) {
9326 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9327 enabled_crtcs++;
9328 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9329 active_crtcs++;
9330 }
9331 WARN(pll->active != active_crtcs,
9332 "pll active crtcs mismatch (expected %i, found %i)\n",
9333 pll->active, active_crtcs);
9334 WARN(pll->refcount != enabled_crtcs,
9335 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9336 pll->refcount, enabled_crtcs);
9337
9338 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9339 sizeof(dpll_hw_state)),
9340 "pll hw state mismatch\n");
9341 }
9342 }
9343
9344 void
9345 intel_modeset_check_state(struct drm_device *dev)
9346 {
9347 check_connector_state(dev);
9348 check_encoder_state(dev);
9349 check_crtc_state(dev);
9350 check_shared_dpll_state(dev);
9351 }
9352
9353 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9354 int dotclock)
9355 {
9356 /*
9357 * FDI already provided one idea for the dotclock.
9358 * Yell if the encoder disagrees.
9359 */
9360 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9361 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9362 pipe_config->adjusted_mode.crtc_clock, dotclock);
9363 }
9364
9365 static int __intel_set_mode(struct drm_crtc *crtc,
9366 struct drm_display_mode *mode,
9367 int x, int y, struct drm_framebuffer *fb)
9368 {
9369 struct drm_device *dev = crtc->dev;
9370 drm_i915_private_t *dev_priv = dev->dev_private;
9371 struct drm_display_mode *saved_mode, *saved_hwmode;
9372 struct intel_crtc_config *pipe_config = NULL;
9373 struct intel_crtc *intel_crtc;
9374 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9375 int ret = 0;
9376
9377 saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9378 if (!saved_mode)
9379 return -ENOMEM;
9380 saved_hwmode = saved_mode + 1;
9381
9382 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9383 &prepare_pipes, &disable_pipes);
9384
9385 *saved_hwmode = crtc->hwmode;
9386 *saved_mode = crtc->mode;
9387
9388 /* Hack: Because we don't (yet) support global modeset on multiple
9389 * crtcs, we don't keep track of the new mode for more than one crtc.
9390 * Hence simply check whether any bit is set in modeset_pipes in all the
9391 * pieces of code that are not yet converted to deal with mutliple crtcs
9392 * changing their mode at the same time. */
9393 if (modeset_pipes) {
9394 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9395 if (IS_ERR(pipe_config)) {
9396 ret = PTR_ERR(pipe_config);
9397 pipe_config = NULL;
9398
9399 goto out;
9400 }
9401 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9402 "[modeset]");
9403 }
9404
9405 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9406 intel_crtc_disable(&intel_crtc->base);
9407
9408 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9409 if (intel_crtc->base.enabled)
9410 dev_priv->display.crtc_disable(&intel_crtc->base);
9411 }
9412
9413 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9414 * to set it here already despite that we pass it down the callchain.
9415 */
9416 if (modeset_pipes) {
9417 crtc->mode = *mode;
9418 /* mode_set/enable/disable functions rely on a correct pipe
9419 * config. */
9420 to_intel_crtc(crtc)->config = *pipe_config;
9421 }
9422
9423 /* Only after disabling all output pipelines that will be changed can we
9424 * update the the output configuration. */
9425 intel_modeset_update_state(dev, prepare_pipes);
9426
9427 if (dev_priv->display.modeset_global_resources)
9428 dev_priv->display.modeset_global_resources(dev);
9429
9430 /* Set up the DPLL and any encoders state that needs to adjust or depend
9431 * on the DPLL.
9432 */
9433 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9434 ret = intel_crtc_mode_set(&intel_crtc->base,
9435 x, y, fb);
9436 if (ret)
9437 goto done;
9438 }
9439
9440 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9441 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9442 dev_priv->display.crtc_enable(&intel_crtc->base);
9443
9444 if (modeset_pipes) {
9445 /* Store real post-adjustment hardware mode. */
9446 crtc->hwmode = pipe_config->adjusted_mode;
9447
9448 /* Calculate and store various constants which
9449 * are later needed by vblank and swap-completion
9450 * timestamping. They are derived from true hwmode.
9451 */
9452 drm_calc_timestamping_constants(crtc);
9453 }
9454
9455 /* FIXME: add subpixel order */
9456 done:
9457 if (ret && crtc->enabled) {
9458 crtc->hwmode = *saved_hwmode;
9459 crtc->mode = *saved_mode;
9460 }
9461
9462 out:
9463 kfree(pipe_config);
9464 kfree(saved_mode);
9465 return ret;
9466 }
9467
9468 static int intel_set_mode(struct drm_crtc *crtc,
9469 struct drm_display_mode *mode,
9470 int x, int y, struct drm_framebuffer *fb)
9471 {
9472 int ret;
9473
9474 ret = __intel_set_mode(crtc, mode, x, y, fb);
9475
9476 if (ret == 0)
9477 intel_modeset_check_state(crtc->dev);
9478
9479 return ret;
9480 }
9481
9482 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9483 {
9484 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9485 }
9486
9487 #undef for_each_intel_crtc_masked
9488
9489 static void intel_set_config_free(struct intel_set_config *config)
9490 {
9491 if (!config)
9492 return;
9493
9494 kfree(config->save_connector_encoders);
9495 kfree(config->save_encoder_crtcs);
9496 kfree(config);
9497 }
9498
9499 static int intel_set_config_save_state(struct drm_device *dev,
9500 struct intel_set_config *config)
9501 {
9502 struct drm_encoder *encoder;
9503 struct drm_connector *connector;
9504 int count;
9505
9506 config->save_encoder_crtcs =
9507 kcalloc(dev->mode_config.num_encoder,
9508 sizeof(struct drm_crtc *), GFP_KERNEL);
9509 if (!config->save_encoder_crtcs)
9510 return -ENOMEM;
9511
9512 config->save_connector_encoders =
9513 kcalloc(dev->mode_config.num_connector,
9514 sizeof(struct drm_encoder *), GFP_KERNEL);
9515 if (!config->save_connector_encoders)
9516 return -ENOMEM;
9517
9518 /* Copy data. Note that driver private data is not affected.
9519 * Should anything bad happen only the expected state is
9520 * restored, not the drivers personal bookkeeping.
9521 */
9522 count = 0;
9523 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9524 config->save_encoder_crtcs[count++] = encoder->crtc;
9525 }
9526
9527 count = 0;
9528 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9529 config->save_connector_encoders[count++] = connector->encoder;
9530 }
9531
9532 return 0;
9533 }
9534
9535 static void intel_set_config_restore_state(struct drm_device *dev,
9536 struct intel_set_config *config)
9537 {
9538 struct intel_encoder *encoder;
9539 struct intel_connector *connector;
9540 int count;
9541
9542 count = 0;
9543 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9544 encoder->new_crtc =
9545 to_intel_crtc(config->save_encoder_crtcs[count++]);
9546 }
9547
9548 count = 0;
9549 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9550 connector->new_encoder =
9551 to_intel_encoder(config->save_connector_encoders[count++]);
9552 }
9553 }
9554
9555 static bool
9556 is_crtc_connector_off(struct drm_mode_set *set)
9557 {
9558 int i;
9559
9560 if (set->num_connectors == 0)
9561 return false;
9562
9563 if (WARN_ON(set->connectors == NULL))
9564 return false;
9565
9566 for (i = 0; i < set->num_connectors; i++)
9567 if (set->connectors[i]->encoder &&
9568 set->connectors[i]->encoder->crtc == set->crtc &&
9569 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9570 return true;
9571
9572 return false;
9573 }
9574
9575 static void
9576 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9577 struct intel_set_config *config)
9578 {
9579
9580 /* We should be able to check here if the fb has the same properties
9581 * and then just flip_or_move it */
9582 if (is_crtc_connector_off(set)) {
9583 config->mode_changed = true;
9584 } else if (set->crtc->fb != set->fb) {
9585 /* If we have no fb then treat it as a full mode set */
9586 if (set->crtc->fb == NULL) {
9587 struct intel_crtc *intel_crtc =
9588 to_intel_crtc(set->crtc);
9589
9590 if (intel_crtc->active && i915_fastboot) {
9591 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9592 config->fb_changed = true;
9593 } else {
9594 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9595 config->mode_changed = true;
9596 }
9597 } else if (set->fb == NULL) {
9598 config->mode_changed = true;
9599 } else if (set->fb->pixel_format !=
9600 set->crtc->fb->pixel_format) {
9601 config->mode_changed = true;
9602 } else {
9603 config->fb_changed = true;
9604 }
9605 }
9606
9607 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9608 config->fb_changed = true;
9609
9610 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9611 DRM_DEBUG_KMS("modes are different, full mode set\n");
9612 drm_mode_debug_printmodeline(&set->crtc->mode);
9613 drm_mode_debug_printmodeline(set->mode);
9614 config->mode_changed = true;
9615 }
9616
9617 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9618 set->crtc->base.id, config->mode_changed, config->fb_changed);
9619 }
9620
9621 static int
9622 intel_modeset_stage_output_state(struct drm_device *dev,
9623 struct drm_mode_set *set,
9624 struct intel_set_config *config)
9625 {
9626 struct drm_crtc *new_crtc;
9627 struct intel_connector *connector;
9628 struct intel_encoder *encoder;
9629 int ro;
9630
9631 /* The upper layers ensure that we either disable a crtc or have a list
9632 * of connectors. For paranoia, double-check this. */
9633 WARN_ON(!set->fb && (set->num_connectors != 0));
9634 WARN_ON(set->fb && (set->num_connectors == 0));
9635
9636 list_for_each_entry(connector, &dev->mode_config.connector_list,
9637 base.head) {
9638 /* Otherwise traverse passed in connector list and get encoders
9639 * for them. */
9640 for (ro = 0; ro < set->num_connectors; ro++) {
9641 if (set->connectors[ro] == &connector->base) {
9642 connector->new_encoder = connector->encoder;
9643 break;
9644 }
9645 }
9646
9647 /* If we disable the crtc, disable all its connectors. Also, if
9648 * the connector is on the changing crtc but not on the new
9649 * connector list, disable it. */
9650 if ((!set->fb || ro == set->num_connectors) &&
9651 connector->base.encoder &&
9652 connector->base.encoder->crtc == set->crtc) {
9653 connector->new_encoder = NULL;
9654
9655 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9656 connector->base.base.id,
9657 drm_get_connector_name(&connector->base));
9658 }
9659
9660
9661 if (&connector->new_encoder->base != connector->base.encoder) {
9662 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9663 config->mode_changed = true;
9664 }
9665 }
9666 /* connector->new_encoder is now updated for all connectors. */
9667
9668 /* Update crtc of enabled connectors. */
9669 list_for_each_entry(connector, &dev->mode_config.connector_list,
9670 base.head) {
9671 if (!connector->new_encoder)
9672 continue;
9673
9674 new_crtc = connector->new_encoder->base.crtc;
9675
9676 for (ro = 0; ro < set->num_connectors; ro++) {
9677 if (set->connectors[ro] == &connector->base)
9678 new_crtc = set->crtc;
9679 }
9680
9681 /* Make sure the new CRTC will work with the encoder */
9682 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9683 new_crtc)) {
9684 return -EINVAL;
9685 }
9686 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9687
9688 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9689 connector->base.base.id,
9690 drm_get_connector_name(&connector->base),
9691 new_crtc->base.id);
9692 }
9693
9694 /* Check for any encoders that needs to be disabled. */
9695 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9696 base.head) {
9697 list_for_each_entry(connector,
9698 &dev->mode_config.connector_list,
9699 base.head) {
9700 if (connector->new_encoder == encoder) {
9701 WARN_ON(!connector->new_encoder->new_crtc);
9702
9703 goto next_encoder;
9704 }
9705 }
9706 encoder->new_crtc = NULL;
9707 next_encoder:
9708 /* Only now check for crtc changes so we don't miss encoders
9709 * that will be disabled. */
9710 if (&encoder->new_crtc->base != encoder->base.crtc) {
9711 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9712 config->mode_changed = true;
9713 }
9714 }
9715 /* Now we've also updated encoder->new_crtc for all encoders. */
9716
9717 return 0;
9718 }
9719
9720 static int intel_crtc_set_config(struct drm_mode_set *set)
9721 {
9722 struct drm_device *dev;
9723 struct drm_mode_set save_set;
9724 struct intel_set_config *config;
9725 int ret;
9726
9727 BUG_ON(!set);
9728 BUG_ON(!set->crtc);
9729 BUG_ON(!set->crtc->helper_private);
9730
9731 /* Enforce sane interface api - has been abused by the fb helper. */
9732 BUG_ON(!set->mode && set->fb);
9733 BUG_ON(set->fb && set->num_connectors == 0);
9734
9735 if (set->fb) {
9736 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9737 set->crtc->base.id, set->fb->base.id,
9738 (int)set->num_connectors, set->x, set->y);
9739 } else {
9740 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9741 }
9742
9743 dev = set->crtc->dev;
9744
9745 ret = -ENOMEM;
9746 config = kzalloc(sizeof(*config), GFP_KERNEL);
9747 if (!config)
9748 goto out_config;
9749
9750 ret = intel_set_config_save_state(dev, config);
9751 if (ret)
9752 goto out_config;
9753
9754 save_set.crtc = set->crtc;
9755 save_set.mode = &set->crtc->mode;
9756 save_set.x = set->crtc->x;
9757 save_set.y = set->crtc->y;
9758 save_set.fb = set->crtc->fb;
9759
9760 /* Compute whether we need a full modeset, only an fb base update or no
9761 * change at all. In the future we might also check whether only the
9762 * mode changed, e.g. for LVDS where we only change the panel fitter in
9763 * such cases. */
9764 intel_set_config_compute_mode_changes(set, config);
9765
9766 ret = intel_modeset_stage_output_state(dev, set, config);
9767 if (ret)
9768 goto fail;
9769
9770 if (config->mode_changed) {
9771 ret = intel_set_mode(set->crtc, set->mode,
9772 set->x, set->y, set->fb);
9773 } else if (config->fb_changed) {
9774 intel_crtc_wait_for_pending_flips(set->crtc);
9775
9776 ret = intel_pipe_set_base(set->crtc,
9777 set->x, set->y, set->fb);
9778 }
9779
9780 if (ret) {
9781 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9782 set->crtc->base.id, ret);
9783 fail:
9784 intel_set_config_restore_state(dev, config);
9785
9786 /* Try to restore the config */
9787 if (config->mode_changed &&
9788 intel_set_mode(save_set.crtc, save_set.mode,
9789 save_set.x, save_set.y, save_set.fb))
9790 DRM_ERROR("failed to restore config after modeset failure\n");
9791 }
9792
9793 out_config:
9794 intel_set_config_free(config);
9795 return ret;
9796 }
9797
9798 static const struct drm_crtc_funcs intel_crtc_funcs = {
9799 .cursor_set = intel_crtc_cursor_set,
9800 .cursor_move = intel_crtc_cursor_move,
9801 .gamma_set = intel_crtc_gamma_set,
9802 .set_config = intel_crtc_set_config,
9803 .destroy = intel_crtc_destroy,
9804 .page_flip = intel_crtc_page_flip,
9805 };
9806
9807 static void intel_cpu_pll_init(struct drm_device *dev)
9808 {
9809 if (HAS_DDI(dev))
9810 intel_ddi_pll_init(dev);
9811 }
9812
9813 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9814 struct intel_shared_dpll *pll,
9815 struct intel_dpll_hw_state *hw_state)
9816 {
9817 uint32_t val;
9818
9819 val = I915_READ(PCH_DPLL(pll->id));
9820 hw_state->dpll = val;
9821 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9822 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9823
9824 return val & DPLL_VCO_ENABLE;
9825 }
9826
9827 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9828 struct intel_shared_dpll *pll)
9829 {
9830 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9831 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9832 }
9833
9834 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9835 struct intel_shared_dpll *pll)
9836 {
9837 /* PCH refclock must be enabled first */
9838 assert_pch_refclk_enabled(dev_priv);
9839
9840 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9841
9842 /* Wait for the clocks to stabilize. */
9843 POSTING_READ(PCH_DPLL(pll->id));
9844 udelay(150);
9845
9846 /* The pixel multiplier can only be updated once the
9847 * DPLL is enabled and the clocks are stable.
9848 *
9849 * So write it again.
9850 */
9851 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9852 POSTING_READ(PCH_DPLL(pll->id));
9853 udelay(200);
9854 }
9855
9856 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9857 struct intel_shared_dpll *pll)
9858 {
9859 struct drm_device *dev = dev_priv->dev;
9860 struct intel_crtc *crtc;
9861
9862 /* Make sure no transcoder isn't still depending on us. */
9863 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9864 if (intel_crtc_to_shared_dpll(crtc) == pll)
9865 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9866 }
9867
9868 I915_WRITE(PCH_DPLL(pll->id), 0);
9869 POSTING_READ(PCH_DPLL(pll->id));
9870 udelay(200);
9871 }
9872
9873 static char *ibx_pch_dpll_names[] = {
9874 "PCH DPLL A",
9875 "PCH DPLL B",
9876 };
9877
9878 static void ibx_pch_dpll_init(struct drm_device *dev)
9879 {
9880 struct drm_i915_private *dev_priv = dev->dev_private;
9881 int i;
9882
9883 dev_priv->num_shared_dpll = 2;
9884
9885 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9886 dev_priv->shared_dplls[i].id = i;
9887 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9888 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9889 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9890 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9891 dev_priv->shared_dplls[i].get_hw_state =
9892 ibx_pch_dpll_get_hw_state;
9893 }
9894 }
9895
9896 static void intel_shared_dpll_init(struct drm_device *dev)
9897 {
9898 struct drm_i915_private *dev_priv = dev->dev_private;
9899
9900 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9901 ibx_pch_dpll_init(dev);
9902 else
9903 dev_priv->num_shared_dpll = 0;
9904
9905 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9906 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9907 dev_priv->num_shared_dpll);
9908 }
9909
9910 static void intel_crtc_init(struct drm_device *dev, int pipe)
9911 {
9912 drm_i915_private_t *dev_priv = dev->dev_private;
9913 struct intel_crtc *intel_crtc;
9914 int i;
9915
9916 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9917 if (intel_crtc == NULL)
9918 return;
9919
9920 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9921
9922 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9923 for (i = 0; i < 256; i++) {
9924 intel_crtc->lut_r[i] = i;
9925 intel_crtc->lut_g[i] = i;
9926 intel_crtc->lut_b[i] = i;
9927 }
9928
9929 /* Swap pipes & planes for FBC on pre-965 */
9930 intel_crtc->pipe = pipe;
9931 intel_crtc->plane = pipe;
9932 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9933 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9934 intel_crtc->plane = !pipe;
9935 }
9936
9937 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9938 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9939 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9940 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9941
9942 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9943 }
9944
9945 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
9946 {
9947 struct drm_encoder *encoder = connector->base.encoder;
9948
9949 WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
9950
9951 if (!encoder)
9952 return INVALID_PIPE;
9953
9954 return to_intel_crtc(encoder->crtc)->pipe;
9955 }
9956
9957 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9958 struct drm_file *file)
9959 {
9960 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9961 struct drm_mode_object *drmmode_obj;
9962 struct intel_crtc *crtc;
9963
9964 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9965 return -ENODEV;
9966
9967 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9968 DRM_MODE_OBJECT_CRTC);
9969
9970 if (!drmmode_obj) {
9971 DRM_ERROR("no such CRTC id\n");
9972 return -ENOENT;
9973 }
9974
9975 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9976 pipe_from_crtc_id->pipe = crtc->pipe;
9977
9978 return 0;
9979 }
9980
9981 static int intel_encoder_clones(struct intel_encoder *encoder)
9982 {
9983 struct drm_device *dev = encoder->base.dev;
9984 struct intel_encoder *source_encoder;
9985 int index_mask = 0;
9986 int entry = 0;
9987
9988 list_for_each_entry(source_encoder,
9989 &dev->mode_config.encoder_list, base.head) {
9990
9991 if (encoder == source_encoder)
9992 index_mask |= (1 << entry);
9993
9994 /* Intel hw has only one MUX where enocoders could be cloned. */
9995 if (encoder->cloneable && source_encoder->cloneable)
9996 index_mask |= (1 << entry);
9997
9998 entry++;
9999 }
10000
10001 return index_mask;
10002 }
10003
10004 static bool has_edp_a(struct drm_device *dev)
10005 {
10006 struct drm_i915_private *dev_priv = dev->dev_private;
10007
10008 if (!IS_MOBILE(dev))
10009 return false;
10010
10011 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10012 return false;
10013
10014 if (IS_GEN5(dev) &&
10015 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10016 return false;
10017
10018 return true;
10019 }
10020
10021 static void intel_setup_outputs(struct drm_device *dev)
10022 {
10023 struct drm_i915_private *dev_priv = dev->dev_private;
10024 struct intel_encoder *encoder;
10025 bool dpd_is_edp = false;
10026
10027 intel_lvds_init(dev);
10028
10029 if (!IS_ULT(dev))
10030 intel_crt_init(dev);
10031
10032 if (HAS_DDI(dev)) {
10033 int found;
10034
10035 /* Haswell uses DDI functions to detect digital outputs */
10036 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10037 /* DDI A only supports eDP */
10038 if (found)
10039 intel_ddi_init(dev, PORT_A);
10040
10041 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10042 * register */
10043 found = I915_READ(SFUSE_STRAP);
10044
10045 if (found & SFUSE_STRAP_DDIB_DETECTED)
10046 intel_ddi_init(dev, PORT_B);
10047 if (found & SFUSE_STRAP_DDIC_DETECTED)
10048 intel_ddi_init(dev, PORT_C);
10049 if (found & SFUSE_STRAP_DDID_DETECTED)
10050 intel_ddi_init(dev, PORT_D);
10051 } else if (HAS_PCH_SPLIT(dev)) {
10052 int found;
10053 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10054
10055 if (has_edp_a(dev))
10056 intel_dp_init(dev, DP_A, PORT_A);
10057
10058 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10059 /* PCH SDVOB multiplex with HDMIB */
10060 found = intel_sdvo_init(dev, PCH_SDVOB, true);
10061 if (!found)
10062 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10063 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10064 intel_dp_init(dev, PCH_DP_B, PORT_B);
10065 }
10066
10067 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10068 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10069
10070 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10071 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10072
10073 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10074 intel_dp_init(dev, PCH_DP_C, PORT_C);
10075
10076 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10077 intel_dp_init(dev, PCH_DP_D, PORT_D);
10078 } else if (IS_VALLEYVIEW(dev)) {
10079 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10080 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10081 PORT_B);
10082 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10083 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10084 }
10085
10086 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10087 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10088 PORT_C);
10089 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10090 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10091 }
10092
10093 intel_dsi_init(dev);
10094 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10095 bool found = false;
10096
10097 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10098 DRM_DEBUG_KMS("probing SDVOB\n");
10099 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10100 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10101 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10102 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10103 }
10104
10105 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10106 intel_dp_init(dev, DP_B, PORT_B);
10107 }
10108
10109 /* Before G4X SDVOC doesn't have its own detect register */
10110
10111 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10112 DRM_DEBUG_KMS("probing SDVOC\n");
10113 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10114 }
10115
10116 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10117
10118 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10119 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10120 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10121 }
10122 if (SUPPORTS_INTEGRATED_DP(dev))
10123 intel_dp_init(dev, DP_C, PORT_C);
10124 }
10125
10126 if (SUPPORTS_INTEGRATED_DP(dev) &&
10127 (I915_READ(DP_D) & DP_DETECTED))
10128 intel_dp_init(dev, DP_D, PORT_D);
10129 } else if (IS_GEN2(dev))
10130 intel_dvo_init(dev);
10131
10132 if (SUPPORTS_TV(dev))
10133 intel_tv_init(dev);
10134
10135 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10136 encoder->base.possible_crtcs = encoder->crtc_mask;
10137 encoder->base.possible_clones =
10138 intel_encoder_clones(encoder);
10139 }
10140
10141 intel_init_pch_refclk(dev);
10142
10143 drm_helper_move_panel_connectors_to_head(dev);
10144 }
10145
10146 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10147 {
10148 drm_framebuffer_cleanup(&fb->base);
10149 WARN_ON(!fb->obj->framebuffer_references--);
10150 drm_gem_object_unreference_unlocked(&fb->obj->base);
10151 }
10152
10153 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10154 {
10155 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10156
10157 intel_framebuffer_fini(intel_fb);
10158 kfree(intel_fb);
10159 }
10160
10161 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10162 struct drm_file *file,
10163 unsigned int *handle)
10164 {
10165 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10166 struct drm_i915_gem_object *obj = intel_fb->obj;
10167
10168 return drm_gem_handle_create(file, &obj->base, handle);
10169 }
10170
10171 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10172 .destroy = intel_user_framebuffer_destroy,
10173 .create_handle = intel_user_framebuffer_create_handle,
10174 };
10175
10176 int intel_framebuffer_init(struct drm_device *dev,
10177 struct intel_framebuffer *intel_fb,
10178 struct drm_mode_fb_cmd2 *mode_cmd,
10179 struct drm_i915_gem_object *obj)
10180 {
10181 int aligned_height, tile_height;
10182 int pitch_limit;
10183 int ret;
10184
10185 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10186
10187 if (obj->tiling_mode == I915_TILING_Y) {
10188 DRM_DEBUG("hardware does not support tiling Y\n");
10189 return -EINVAL;
10190 }
10191
10192 if (mode_cmd->pitches[0] & 63) {
10193 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10194 mode_cmd->pitches[0]);
10195 return -EINVAL;
10196 }
10197
10198 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10199 pitch_limit = 32*1024;
10200 } else if (INTEL_INFO(dev)->gen >= 4) {
10201 if (obj->tiling_mode)
10202 pitch_limit = 16*1024;
10203 else
10204 pitch_limit = 32*1024;
10205 } else if (INTEL_INFO(dev)->gen >= 3) {
10206 if (obj->tiling_mode)
10207 pitch_limit = 8*1024;
10208 else
10209 pitch_limit = 16*1024;
10210 } else
10211 /* XXX DSPC is limited to 4k tiled */
10212 pitch_limit = 8*1024;
10213
10214 if (mode_cmd->pitches[0] > pitch_limit) {
10215 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10216 obj->tiling_mode ? "tiled" : "linear",
10217 mode_cmd->pitches[0], pitch_limit);
10218 return -EINVAL;
10219 }
10220
10221 if (obj->tiling_mode != I915_TILING_NONE &&
10222 mode_cmd->pitches[0] != obj->stride) {
10223 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10224 mode_cmd->pitches[0], obj->stride);
10225 return -EINVAL;
10226 }
10227
10228 /* Reject formats not supported by any plane early. */
10229 switch (mode_cmd->pixel_format) {
10230 case DRM_FORMAT_C8:
10231 case DRM_FORMAT_RGB565:
10232 case DRM_FORMAT_XRGB8888:
10233 case DRM_FORMAT_ARGB8888:
10234 break;
10235 case DRM_FORMAT_XRGB1555:
10236 case DRM_FORMAT_ARGB1555:
10237 if (INTEL_INFO(dev)->gen > 3) {
10238 DRM_DEBUG("unsupported pixel format: %s\n",
10239 drm_get_format_name(mode_cmd->pixel_format));
10240 return -EINVAL;
10241 }
10242 break;
10243 case DRM_FORMAT_XBGR8888:
10244 case DRM_FORMAT_ABGR8888:
10245 case DRM_FORMAT_XRGB2101010:
10246 case DRM_FORMAT_ARGB2101010:
10247 case DRM_FORMAT_XBGR2101010:
10248 case DRM_FORMAT_ABGR2101010:
10249 if (INTEL_INFO(dev)->gen < 4) {
10250 DRM_DEBUG("unsupported pixel format: %s\n",
10251 drm_get_format_name(mode_cmd->pixel_format));
10252 return -EINVAL;
10253 }
10254 break;
10255 case DRM_FORMAT_YUYV:
10256 case DRM_FORMAT_UYVY:
10257 case DRM_FORMAT_YVYU:
10258 case DRM_FORMAT_VYUY:
10259 if (INTEL_INFO(dev)->gen < 5) {
10260 DRM_DEBUG("unsupported pixel format: %s\n",
10261 drm_get_format_name(mode_cmd->pixel_format));
10262 return -EINVAL;
10263 }
10264 break;
10265 default:
10266 DRM_DEBUG("unsupported pixel format: %s\n",
10267 drm_get_format_name(mode_cmd->pixel_format));
10268 return -EINVAL;
10269 }
10270
10271 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10272 if (mode_cmd->offsets[0] != 0)
10273 return -EINVAL;
10274
10275 tile_height = IS_GEN2(dev) ? 16 : 8;
10276 aligned_height = ALIGN(mode_cmd->height,
10277 obj->tiling_mode ? tile_height : 1);
10278 /* FIXME drm helper for size checks (especially planar formats)? */
10279 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10280 return -EINVAL;
10281
10282 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10283 intel_fb->obj = obj;
10284 intel_fb->obj->framebuffer_references++;
10285
10286 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10287 if (ret) {
10288 DRM_ERROR("framebuffer init failed %d\n", ret);
10289 return ret;
10290 }
10291
10292 return 0;
10293 }
10294
10295 static struct drm_framebuffer *
10296 intel_user_framebuffer_create(struct drm_device *dev,
10297 struct drm_file *filp,
10298 struct drm_mode_fb_cmd2 *mode_cmd)
10299 {
10300 struct drm_i915_gem_object *obj;
10301
10302 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10303 mode_cmd->handles[0]));
10304 if (&obj->base == NULL)
10305 return ERR_PTR(-ENOENT);
10306
10307 return intel_framebuffer_create(dev, mode_cmd, obj);
10308 }
10309
10310 #ifndef CONFIG_DRM_I915_FBDEV
10311 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10312 {
10313 }
10314 #endif
10315
10316 static const struct drm_mode_config_funcs intel_mode_funcs = {
10317 .fb_create = intel_user_framebuffer_create,
10318 .output_poll_changed = intel_fbdev_output_poll_changed,
10319 };
10320
10321 /* Set up chip specific display functions */
10322 static void intel_init_display(struct drm_device *dev)
10323 {
10324 struct drm_i915_private *dev_priv = dev->dev_private;
10325
10326 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10327 dev_priv->display.find_dpll = g4x_find_best_dpll;
10328 else if (IS_VALLEYVIEW(dev))
10329 dev_priv->display.find_dpll = vlv_find_best_dpll;
10330 else if (IS_PINEVIEW(dev))
10331 dev_priv->display.find_dpll = pnv_find_best_dpll;
10332 else
10333 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10334
10335 if (HAS_DDI(dev)) {
10336 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10337 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10338 dev_priv->display.crtc_enable = haswell_crtc_enable;
10339 dev_priv->display.crtc_disable = haswell_crtc_disable;
10340 dev_priv->display.off = haswell_crtc_off;
10341 dev_priv->display.update_plane = ironlake_update_plane;
10342 } else if (HAS_PCH_SPLIT(dev)) {
10343 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10344 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10345 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10346 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10347 dev_priv->display.off = ironlake_crtc_off;
10348 dev_priv->display.update_plane = ironlake_update_plane;
10349 } else if (IS_VALLEYVIEW(dev)) {
10350 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10351 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10352 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10353 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10354 dev_priv->display.off = i9xx_crtc_off;
10355 dev_priv->display.update_plane = i9xx_update_plane;
10356 } else {
10357 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10358 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10359 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10360 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10361 dev_priv->display.off = i9xx_crtc_off;
10362 dev_priv->display.update_plane = i9xx_update_plane;
10363 }
10364
10365 /* Returns the core display clock speed */
10366 if (IS_VALLEYVIEW(dev))
10367 dev_priv->display.get_display_clock_speed =
10368 valleyview_get_display_clock_speed;
10369 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10370 dev_priv->display.get_display_clock_speed =
10371 i945_get_display_clock_speed;
10372 else if (IS_I915G(dev))
10373 dev_priv->display.get_display_clock_speed =
10374 i915_get_display_clock_speed;
10375 else if (IS_I945GM(dev) || IS_845G(dev))
10376 dev_priv->display.get_display_clock_speed =
10377 i9xx_misc_get_display_clock_speed;
10378 else if (IS_PINEVIEW(dev))
10379 dev_priv->display.get_display_clock_speed =
10380 pnv_get_display_clock_speed;
10381 else if (IS_I915GM(dev))
10382 dev_priv->display.get_display_clock_speed =
10383 i915gm_get_display_clock_speed;
10384 else if (IS_I865G(dev))
10385 dev_priv->display.get_display_clock_speed =
10386 i865_get_display_clock_speed;
10387 else if (IS_I85X(dev))
10388 dev_priv->display.get_display_clock_speed =
10389 i855_get_display_clock_speed;
10390 else /* 852, 830 */
10391 dev_priv->display.get_display_clock_speed =
10392 i830_get_display_clock_speed;
10393
10394 if (HAS_PCH_SPLIT(dev)) {
10395 if (IS_GEN5(dev)) {
10396 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10397 dev_priv->display.write_eld = ironlake_write_eld;
10398 } else if (IS_GEN6(dev)) {
10399 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10400 dev_priv->display.write_eld = ironlake_write_eld;
10401 } else if (IS_IVYBRIDGE(dev)) {
10402 /* FIXME: detect B0+ stepping and use auto training */
10403 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10404 dev_priv->display.write_eld = ironlake_write_eld;
10405 dev_priv->display.modeset_global_resources =
10406 ivb_modeset_global_resources;
10407 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10408 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10409 dev_priv->display.write_eld = haswell_write_eld;
10410 dev_priv->display.modeset_global_resources =
10411 haswell_modeset_global_resources;
10412 }
10413 } else if (IS_G4X(dev)) {
10414 dev_priv->display.write_eld = g4x_write_eld;
10415 } else if (IS_VALLEYVIEW(dev))
10416 dev_priv->display.write_eld = ironlake_write_eld;
10417
10418 /* Default just returns -ENODEV to indicate unsupported */
10419 dev_priv->display.queue_flip = intel_default_queue_flip;
10420
10421 switch (INTEL_INFO(dev)->gen) {
10422 case 2:
10423 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10424 break;
10425
10426 case 3:
10427 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10428 break;
10429
10430 case 4:
10431 case 5:
10432 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10433 break;
10434
10435 case 6:
10436 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10437 break;
10438 case 7:
10439 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10440 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10441 break;
10442 }
10443 }
10444
10445 /*
10446 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10447 * resume, or other times. This quirk makes sure that's the case for
10448 * affected systems.
10449 */
10450 static void quirk_pipea_force(struct drm_device *dev)
10451 {
10452 struct drm_i915_private *dev_priv = dev->dev_private;
10453
10454 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10455 DRM_INFO("applying pipe a force quirk\n");
10456 }
10457
10458 /*
10459 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10460 */
10461 static void quirk_ssc_force_disable(struct drm_device *dev)
10462 {
10463 struct drm_i915_private *dev_priv = dev->dev_private;
10464 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10465 DRM_INFO("applying lvds SSC disable quirk\n");
10466 }
10467
10468 /*
10469 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10470 * brightness value
10471 */
10472 static void quirk_invert_brightness(struct drm_device *dev)
10473 {
10474 struct drm_i915_private *dev_priv = dev->dev_private;
10475 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10476 DRM_INFO("applying inverted panel brightness quirk\n");
10477 }
10478
10479 /*
10480 * Some machines (Dell XPS13) suffer broken backlight controls if
10481 * BLM_PCH_PWM_ENABLE is set.
10482 */
10483 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10484 {
10485 struct drm_i915_private *dev_priv = dev->dev_private;
10486 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10487 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10488 }
10489
10490 struct intel_quirk {
10491 int device;
10492 int subsystem_vendor;
10493 int subsystem_device;
10494 void (*hook)(struct drm_device *dev);
10495 };
10496
10497 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10498 struct intel_dmi_quirk {
10499 void (*hook)(struct drm_device *dev);
10500 const struct dmi_system_id (*dmi_id_list)[];
10501 };
10502
10503 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10504 {
10505 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10506 return 1;
10507 }
10508
10509 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10510 {
10511 .dmi_id_list = &(const struct dmi_system_id[]) {
10512 {
10513 .callback = intel_dmi_reverse_brightness,
10514 .ident = "NCR Corporation",
10515 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10516 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10517 },
10518 },
10519 { } /* terminating entry */
10520 },
10521 .hook = quirk_invert_brightness,
10522 },
10523 };
10524
10525 static struct intel_quirk intel_quirks[] = {
10526 /* HP Mini needs pipe A force quirk (LP: #322104) */
10527 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10528
10529 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10530 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10531
10532 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10533 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10534
10535 /* 830 needs to leave pipe A & dpll A up */
10536 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10537
10538 /* Lenovo U160 cannot use SSC on LVDS */
10539 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10540
10541 /* Sony Vaio Y cannot use SSC on LVDS */
10542 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10543
10544 /* Acer Aspire 5734Z must invert backlight brightness */
10545 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10546
10547 /* Acer/eMachines G725 */
10548 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10549
10550 /* Acer/eMachines e725 */
10551 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10552
10553 /* Acer/Packard Bell NCL20 */
10554 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10555
10556 /* Acer Aspire 4736Z */
10557 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10558
10559 /* Dell XPS13 HD Sandy Bridge */
10560 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10561 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10562 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10563 };
10564
10565 static void intel_init_quirks(struct drm_device *dev)
10566 {
10567 struct pci_dev *d = dev->pdev;
10568 int i;
10569
10570 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10571 struct intel_quirk *q = &intel_quirks[i];
10572
10573 if (d->device == q->device &&
10574 (d->subsystem_vendor == q->subsystem_vendor ||
10575 q->subsystem_vendor == PCI_ANY_ID) &&
10576 (d->subsystem_device == q->subsystem_device ||
10577 q->subsystem_device == PCI_ANY_ID))
10578 q->hook(dev);
10579 }
10580 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10581 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10582 intel_dmi_quirks[i].hook(dev);
10583 }
10584 }
10585
10586 /* Disable the VGA plane that we never use */
10587 static void i915_disable_vga(struct drm_device *dev)
10588 {
10589 struct drm_i915_private *dev_priv = dev->dev_private;
10590 u8 sr1;
10591 u32 vga_reg = i915_vgacntrl_reg(dev);
10592
10593 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10594 outb(SR01, VGA_SR_INDEX);
10595 sr1 = inb(VGA_SR_DATA);
10596 outb(sr1 | 1<<5, VGA_SR_DATA);
10597 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10598 udelay(300);
10599
10600 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10601 POSTING_READ(vga_reg);
10602 }
10603
10604 void intel_modeset_init_hw(struct drm_device *dev)
10605 {
10606 struct drm_i915_private *dev_priv = dev->dev_private;
10607
10608 intel_prepare_ddi(dev);
10609
10610 intel_init_clock_gating(dev);
10611
10612 /* Enable the CRI clock source so we can get at the display */
10613 if (IS_VALLEYVIEW(dev))
10614 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10615 DPLL_INTEGRATED_CRI_CLK_VLV);
10616
10617 intel_init_dpio(dev);
10618
10619 mutex_lock(&dev->struct_mutex);
10620 intel_enable_gt_powersave(dev);
10621 mutex_unlock(&dev->struct_mutex);
10622 }
10623
10624 void intel_modeset_suspend_hw(struct drm_device *dev)
10625 {
10626 intel_suspend_hw(dev);
10627 }
10628
10629 void intel_modeset_init(struct drm_device *dev)
10630 {
10631 struct drm_i915_private *dev_priv = dev->dev_private;
10632 int i, j, ret;
10633
10634 drm_mode_config_init(dev);
10635
10636 dev->mode_config.min_width = 0;
10637 dev->mode_config.min_height = 0;
10638
10639 dev->mode_config.preferred_depth = 24;
10640 dev->mode_config.prefer_shadow = 1;
10641
10642 dev->mode_config.funcs = &intel_mode_funcs;
10643
10644 intel_init_quirks(dev);
10645
10646 intel_init_pm(dev);
10647
10648 if (INTEL_INFO(dev)->num_pipes == 0)
10649 return;
10650
10651 intel_init_display(dev);
10652
10653 if (IS_GEN2(dev)) {
10654 dev->mode_config.max_width = 2048;
10655 dev->mode_config.max_height = 2048;
10656 } else if (IS_GEN3(dev)) {
10657 dev->mode_config.max_width = 4096;
10658 dev->mode_config.max_height = 4096;
10659 } else {
10660 dev->mode_config.max_width = 8192;
10661 dev->mode_config.max_height = 8192;
10662 }
10663 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10664
10665 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10666 INTEL_INFO(dev)->num_pipes,
10667 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10668
10669 for_each_pipe(i) {
10670 intel_crtc_init(dev, i);
10671 for (j = 0; j < dev_priv->num_plane; j++) {
10672 ret = intel_plane_init(dev, i, j);
10673 if (ret)
10674 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10675 pipe_name(i), sprite_name(i, j), ret);
10676 }
10677 }
10678
10679 intel_cpu_pll_init(dev);
10680 intel_shared_dpll_init(dev);
10681
10682 /* Just disable it once at startup */
10683 i915_disable_vga(dev);
10684 intel_setup_outputs(dev);
10685
10686 /* Just in case the BIOS is doing something questionable. */
10687 intel_disable_fbc(dev);
10688 }
10689
10690 static void
10691 intel_connector_break_all_links(struct intel_connector *connector)
10692 {
10693 connector->base.dpms = DRM_MODE_DPMS_OFF;
10694 connector->base.encoder = NULL;
10695 connector->encoder->connectors_active = false;
10696 connector->encoder->base.crtc = NULL;
10697 }
10698
10699 static void intel_enable_pipe_a(struct drm_device *dev)
10700 {
10701 struct intel_connector *connector;
10702 struct drm_connector *crt = NULL;
10703 struct intel_load_detect_pipe load_detect_temp;
10704
10705 /* We can't just switch on the pipe A, we need to set things up with a
10706 * proper mode and output configuration. As a gross hack, enable pipe A
10707 * by enabling the load detect pipe once. */
10708 list_for_each_entry(connector,
10709 &dev->mode_config.connector_list,
10710 base.head) {
10711 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10712 crt = &connector->base;
10713 break;
10714 }
10715 }
10716
10717 if (!crt)
10718 return;
10719
10720 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10721 intel_release_load_detect_pipe(crt, &load_detect_temp);
10722
10723
10724 }
10725
10726 static bool
10727 intel_check_plane_mapping(struct intel_crtc *crtc)
10728 {
10729 struct drm_device *dev = crtc->base.dev;
10730 struct drm_i915_private *dev_priv = dev->dev_private;
10731 u32 reg, val;
10732
10733 if (INTEL_INFO(dev)->num_pipes == 1)
10734 return true;
10735
10736 reg = DSPCNTR(!crtc->plane);
10737 val = I915_READ(reg);
10738
10739 if ((val & DISPLAY_PLANE_ENABLE) &&
10740 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10741 return false;
10742
10743 return true;
10744 }
10745
10746 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10747 {
10748 struct drm_device *dev = crtc->base.dev;
10749 struct drm_i915_private *dev_priv = dev->dev_private;
10750 u32 reg;
10751
10752 /* Clear any frame start delays used for debugging left by the BIOS */
10753 reg = PIPECONF(crtc->config.cpu_transcoder);
10754 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10755
10756 /* We need to sanitize the plane -> pipe mapping first because this will
10757 * disable the crtc (and hence change the state) if it is wrong. Note
10758 * that gen4+ has a fixed plane -> pipe mapping. */
10759 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10760 struct intel_connector *connector;
10761 bool plane;
10762
10763 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10764 crtc->base.base.id);
10765
10766 /* Pipe has the wrong plane attached and the plane is active.
10767 * Temporarily change the plane mapping and disable everything
10768 * ... */
10769 plane = crtc->plane;
10770 crtc->plane = !plane;
10771 dev_priv->display.crtc_disable(&crtc->base);
10772 crtc->plane = plane;
10773
10774 /* ... and break all links. */
10775 list_for_each_entry(connector, &dev->mode_config.connector_list,
10776 base.head) {
10777 if (connector->encoder->base.crtc != &crtc->base)
10778 continue;
10779
10780 intel_connector_break_all_links(connector);
10781 }
10782
10783 WARN_ON(crtc->active);
10784 crtc->base.enabled = false;
10785 }
10786
10787 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10788 crtc->pipe == PIPE_A && !crtc->active) {
10789 /* BIOS forgot to enable pipe A, this mostly happens after
10790 * resume. Force-enable the pipe to fix this, the update_dpms
10791 * call below we restore the pipe to the right state, but leave
10792 * the required bits on. */
10793 intel_enable_pipe_a(dev);
10794 }
10795
10796 /* Adjust the state of the output pipe according to whether we
10797 * have active connectors/encoders. */
10798 intel_crtc_update_dpms(&crtc->base);
10799
10800 if (crtc->active != crtc->base.enabled) {
10801 struct intel_encoder *encoder;
10802
10803 /* This can happen either due to bugs in the get_hw_state
10804 * functions or because the pipe is force-enabled due to the
10805 * pipe A quirk. */
10806 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10807 crtc->base.base.id,
10808 crtc->base.enabled ? "enabled" : "disabled",
10809 crtc->active ? "enabled" : "disabled");
10810
10811 crtc->base.enabled = crtc->active;
10812
10813 /* Because we only establish the connector -> encoder ->
10814 * crtc links if something is active, this means the
10815 * crtc is now deactivated. Break the links. connector
10816 * -> encoder links are only establish when things are
10817 * actually up, hence no need to break them. */
10818 WARN_ON(crtc->active);
10819
10820 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10821 WARN_ON(encoder->connectors_active);
10822 encoder->base.crtc = NULL;
10823 }
10824 }
10825 }
10826
10827 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10828 {
10829 struct intel_connector *connector;
10830 struct drm_device *dev = encoder->base.dev;
10831
10832 /* We need to check both for a crtc link (meaning that the
10833 * encoder is active and trying to read from a pipe) and the
10834 * pipe itself being active. */
10835 bool has_active_crtc = encoder->base.crtc &&
10836 to_intel_crtc(encoder->base.crtc)->active;
10837
10838 if (encoder->connectors_active && !has_active_crtc) {
10839 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10840 encoder->base.base.id,
10841 drm_get_encoder_name(&encoder->base));
10842
10843 /* Connector is active, but has no active pipe. This is
10844 * fallout from our resume register restoring. Disable
10845 * the encoder manually again. */
10846 if (encoder->base.crtc) {
10847 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10848 encoder->base.base.id,
10849 drm_get_encoder_name(&encoder->base));
10850 encoder->disable(encoder);
10851 }
10852
10853 /* Inconsistent output/port/pipe state happens presumably due to
10854 * a bug in one of the get_hw_state functions. Or someplace else
10855 * in our code, like the register restore mess on resume. Clamp
10856 * things to off as a safer default. */
10857 list_for_each_entry(connector,
10858 &dev->mode_config.connector_list,
10859 base.head) {
10860 if (connector->encoder != encoder)
10861 continue;
10862
10863 intel_connector_break_all_links(connector);
10864 }
10865 }
10866 /* Enabled encoders without active connectors will be fixed in
10867 * the crtc fixup. */
10868 }
10869
10870 void i915_redisable_vga(struct drm_device *dev)
10871 {
10872 struct drm_i915_private *dev_priv = dev->dev_private;
10873 u32 vga_reg = i915_vgacntrl_reg(dev);
10874
10875 /* This function can be called both from intel_modeset_setup_hw_state or
10876 * at a very early point in our resume sequence, where the power well
10877 * structures are not yet restored. Since this function is at a very
10878 * paranoid "someone might have enabled VGA while we were not looking"
10879 * level, just check if the power well is enabled instead of trying to
10880 * follow the "don't touch the power well if we don't need it" policy
10881 * the rest of the driver uses. */
10882 if (HAS_POWER_WELL(dev) &&
10883 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10884 return;
10885
10886 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10887 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10888 i915_disable_vga(dev);
10889 }
10890 }
10891
10892 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10893 {
10894 struct drm_i915_private *dev_priv = dev->dev_private;
10895 enum pipe pipe;
10896 struct intel_crtc *crtc;
10897 struct intel_encoder *encoder;
10898 struct intel_connector *connector;
10899 int i;
10900
10901 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10902 base.head) {
10903 memset(&crtc->config, 0, sizeof(crtc->config));
10904
10905 crtc->active = dev_priv->display.get_pipe_config(crtc,
10906 &crtc->config);
10907
10908 crtc->base.enabled = crtc->active;
10909 crtc->primary_enabled = crtc->active;
10910
10911 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10912 crtc->base.base.id,
10913 crtc->active ? "enabled" : "disabled");
10914 }
10915
10916 /* FIXME: Smash this into the new shared dpll infrastructure. */
10917 if (HAS_DDI(dev))
10918 intel_ddi_setup_hw_pll_state(dev);
10919
10920 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10921 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10922
10923 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10924 pll->active = 0;
10925 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10926 base.head) {
10927 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10928 pll->active++;
10929 }
10930 pll->refcount = pll->active;
10931
10932 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10933 pll->name, pll->refcount, pll->on);
10934 }
10935
10936 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10937 base.head) {
10938 pipe = 0;
10939
10940 if (encoder->get_hw_state(encoder, &pipe)) {
10941 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10942 encoder->base.crtc = &crtc->base;
10943 encoder->get_config(encoder, &crtc->config);
10944 } else {
10945 encoder->base.crtc = NULL;
10946 }
10947
10948 encoder->connectors_active = false;
10949 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
10950 encoder->base.base.id,
10951 drm_get_encoder_name(&encoder->base),
10952 encoder->base.crtc ? "enabled" : "disabled",
10953 pipe_name(pipe));
10954 }
10955
10956 list_for_each_entry(connector, &dev->mode_config.connector_list,
10957 base.head) {
10958 if (connector->get_hw_state(connector)) {
10959 connector->base.dpms = DRM_MODE_DPMS_ON;
10960 connector->encoder->connectors_active = true;
10961 connector->base.encoder = &connector->encoder->base;
10962 } else {
10963 connector->base.dpms = DRM_MODE_DPMS_OFF;
10964 connector->base.encoder = NULL;
10965 }
10966 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10967 connector->base.base.id,
10968 drm_get_connector_name(&connector->base),
10969 connector->base.encoder ? "enabled" : "disabled");
10970 }
10971 }
10972
10973 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10974 * and i915 state tracking structures. */
10975 void intel_modeset_setup_hw_state(struct drm_device *dev,
10976 bool force_restore)
10977 {
10978 struct drm_i915_private *dev_priv = dev->dev_private;
10979 enum pipe pipe;
10980 struct intel_crtc *crtc;
10981 struct intel_encoder *encoder;
10982 int i;
10983
10984 intel_modeset_readout_hw_state(dev);
10985
10986 /*
10987 * Now that we have the config, copy it to each CRTC struct
10988 * Note that this could go away if we move to using crtc_config
10989 * checking everywhere.
10990 */
10991 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10992 base.head) {
10993 if (crtc->active && i915_fastboot) {
10994 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10995
10996 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10997 crtc->base.base.id);
10998 drm_mode_debug_printmodeline(&crtc->base.mode);
10999 }
11000 }
11001
11002 /* HW state is read out, now we need to sanitize this mess. */
11003 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11004 base.head) {
11005 intel_sanitize_encoder(encoder);
11006 }
11007
11008 for_each_pipe(pipe) {
11009 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11010 intel_sanitize_crtc(crtc);
11011 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11012 }
11013
11014 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11015 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11016
11017 if (!pll->on || pll->active)
11018 continue;
11019
11020 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11021
11022 pll->disable(dev_priv, pll);
11023 pll->on = false;
11024 }
11025
11026 if (IS_HASWELL(dev))
11027 ilk_wm_get_hw_state(dev);
11028
11029 if (force_restore) {
11030 i915_redisable_vga(dev);
11031
11032 /*
11033 * We need to use raw interfaces for restoring state to avoid
11034 * checking (bogus) intermediate states.
11035 */
11036 for_each_pipe(pipe) {
11037 struct drm_crtc *crtc =
11038 dev_priv->pipe_to_crtc_mapping[pipe];
11039
11040 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11041 crtc->fb);
11042 }
11043 } else {
11044 intel_modeset_update_staged_output_state(dev);
11045 }
11046
11047 intel_modeset_check_state(dev);
11048 }
11049
11050 void intel_modeset_gem_init(struct drm_device *dev)
11051 {
11052 intel_modeset_init_hw(dev);
11053
11054 intel_setup_overlay(dev);
11055
11056 drm_modeset_lock_all(dev);
11057 drm_mode_config_reset(dev);
11058 intel_modeset_setup_hw_state(dev, false);
11059 drm_modeset_unlock_all(dev);
11060 }
11061
11062 void intel_modeset_cleanup(struct drm_device *dev)
11063 {
11064 struct drm_i915_private *dev_priv = dev->dev_private;
11065 struct drm_crtc *crtc;
11066 struct drm_connector *connector;
11067
11068 /*
11069 * Interrupts and polling as the first thing to avoid creating havoc.
11070 * Too much stuff here (turning of rps, connectors, ...) would
11071 * experience fancy races otherwise.
11072 */
11073 drm_irq_uninstall(dev);
11074 cancel_work_sync(&dev_priv->hotplug_work);
11075 /*
11076 * Due to the hpd irq storm handling the hotplug work can re-arm the
11077 * poll handlers. Hence disable polling after hpd handling is shut down.
11078 */
11079 drm_kms_helper_poll_fini(dev);
11080
11081 mutex_lock(&dev->struct_mutex);
11082
11083 intel_unregister_dsm_handler();
11084
11085 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11086 /* Skip inactive CRTCs */
11087 if (!crtc->fb)
11088 continue;
11089
11090 intel_increase_pllclock(crtc);
11091 }
11092
11093 intel_disable_fbc(dev);
11094
11095 intel_disable_gt_powersave(dev);
11096
11097 ironlake_teardown_rc6(dev);
11098
11099 mutex_unlock(&dev->struct_mutex);
11100
11101 /* flush any delayed tasks or pending work */
11102 flush_scheduled_work();
11103
11104 /* destroy backlight, if any, before the connectors */
11105 intel_panel_destroy_backlight(dev);
11106
11107 /* destroy the sysfs files before encoders/connectors */
11108 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
11109 drm_sysfs_connector_remove(connector);
11110
11111 drm_mode_config_cleanup(dev);
11112
11113 intel_cleanup_overlay(dev);
11114 }
11115
11116 /*
11117 * Return which encoder is currently attached for connector.
11118 */
11119 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11120 {
11121 return &intel_attached_encoder(connector)->base;
11122 }
11123
11124 void intel_connector_attach_encoder(struct intel_connector *connector,
11125 struct intel_encoder *encoder)
11126 {
11127 connector->encoder = encoder;
11128 drm_mode_connector_attach_encoder(&connector->base,
11129 &encoder->base);
11130 }
11131
11132 /*
11133 * set vga decode state - true == enable VGA decode
11134 */
11135 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11136 {
11137 struct drm_i915_private *dev_priv = dev->dev_private;
11138 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11139 u16 gmch_ctrl;
11140
11141 pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl);
11142 if (state)
11143 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11144 else
11145 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11146 pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl);
11147 return 0;
11148 }
11149
11150 struct intel_display_error_state {
11151
11152 u32 power_well_driver;
11153
11154 int num_transcoders;
11155
11156 struct intel_cursor_error_state {
11157 u32 control;
11158 u32 position;
11159 u32 base;
11160 u32 size;
11161 } cursor[I915_MAX_PIPES];
11162
11163 struct intel_pipe_error_state {
11164 u32 source;
11165 } pipe[I915_MAX_PIPES];
11166
11167 struct intel_plane_error_state {
11168 u32 control;
11169 u32 stride;
11170 u32 size;
11171 u32 pos;
11172 u32 addr;
11173 u32 surface;
11174 u32 tile_offset;
11175 } plane[I915_MAX_PIPES];
11176
11177 struct intel_transcoder_error_state {
11178 enum transcoder cpu_transcoder;
11179
11180 u32 conf;
11181
11182 u32 htotal;
11183 u32 hblank;
11184 u32 hsync;
11185 u32 vtotal;
11186 u32 vblank;
11187 u32 vsync;
11188 } transcoder[4];
11189 };
11190
11191 struct intel_display_error_state *
11192 intel_display_capture_error_state(struct drm_device *dev)
11193 {
11194 drm_i915_private_t *dev_priv = dev->dev_private;
11195 struct intel_display_error_state *error;
11196 int transcoders[] = {
11197 TRANSCODER_A,
11198 TRANSCODER_B,
11199 TRANSCODER_C,
11200 TRANSCODER_EDP,
11201 };
11202 int i;
11203
11204 if (INTEL_INFO(dev)->num_pipes == 0)
11205 return NULL;
11206
11207 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11208 if (error == NULL)
11209 return NULL;
11210
11211 if (HAS_POWER_WELL(dev))
11212 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11213
11214 for_each_pipe(i) {
11215 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11216 continue;
11217
11218 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11219 error->cursor[i].control = I915_READ(CURCNTR(i));
11220 error->cursor[i].position = I915_READ(CURPOS(i));
11221 error->cursor[i].base = I915_READ(CURBASE(i));
11222 } else {
11223 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11224 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11225 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11226 }
11227
11228 error->plane[i].control = I915_READ(DSPCNTR(i));
11229 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11230 if (INTEL_INFO(dev)->gen <= 3) {
11231 error->plane[i].size = I915_READ(DSPSIZE(i));
11232 error->plane[i].pos = I915_READ(DSPPOS(i));
11233 }
11234 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11235 error->plane[i].addr = I915_READ(DSPADDR(i));
11236 if (INTEL_INFO(dev)->gen >= 4) {
11237 error->plane[i].surface = I915_READ(DSPSURF(i));
11238 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11239 }
11240
11241 error->pipe[i].source = I915_READ(PIPESRC(i));
11242 }
11243
11244 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11245 if (HAS_DDI(dev_priv->dev))
11246 error->num_transcoders++; /* Account for eDP. */
11247
11248 for (i = 0; i < error->num_transcoders; i++) {
11249 enum transcoder cpu_transcoder = transcoders[i];
11250
11251 if (!intel_display_power_enabled(dev,
11252 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11253 continue;
11254
11255 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11256
11257 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11258 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11259 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11260 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11261 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11262 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11263 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11264 }
11265
11266 return error;
11267 }
11268
11269 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11270
11271 void
11272 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11273 struct drm_device *dev,
11274 struct intel_display_error_state *error)
11275 {
11276 int i;
11277
11278 if (!error)
11279 return;
11280
11281 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11282 if (HAS_POWER_WELL(dev))
11283 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11284 error->power_well_driver);
11285 for_each_pipe(i) {
11286 err_printf(m, "Pipe [%d]:\n", i);
11287 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
11288
11289 err_printf(m, "Plane [%d]:\n", i);
11290 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
11291 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
11292 if (INTEL_INFO(dev)->gen <= 3) {
11293 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
11294 err_printf(m, " POS: %08x\n", error->plane[i].pos);
11295 }
11296 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11297 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
11298 if (INTEL_INFO(dev)->gen >= 4) {
11299 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
11300 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
11301 }
11302
11303 err_printf(m, "Cursor [%d]:\n", i);
11304 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
11305 err_printf(m, " POS: %08x\n", error->cursor[i].position);
11306 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
11307 }
11308
11309 for (i = 0; i < error->num_transcoders; i++) {
11310 err_printf(m, "CPU transcoder: %c\n",
11311 transcoder_name(error->transcoder[i].cpu_transcoder));
11312 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
11313 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
11314 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
11315 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
11316 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
11317 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
11318 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
11319 }
11320 }
This page took 0.269698 seconds and 4 git commands to generate.