Merge branch 'drm-intel-fixes' into drm-intel-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
118 .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
146 .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
160 .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
176 },
177 .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
191 .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
205 },
206 .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
220 },
221 .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
235 .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
251 .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
265 .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269 *
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
272 */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
312 .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2,.max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2,.max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
341 .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
355 .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
360 {
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 const intel_limit_t *limit;
364
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
378 }
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
382 else
383 limit = &intel_limits_ironlake_dac;
384
385 return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
393
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
398 limit = &intel_limits_g4x_dual_channel_lvds;
399 else
400 /* LVDS with dual channel */
401 limit = &intel_limits_g4x_single_channel_lvds;
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404 limit = &intel_limits_g4x_hdmi;
405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406 limit = &intel_limits_g4x_sdvo;
407 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408 limit = &intel_limits_g4x_display_port;
409 } else /* The option is for other outputs */
410 limit = &intel_limits_i9xx_sdvo;
411
412 return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
419
420 if (HAS_PCH_SPLIT(dev))
421 limit = intel_ironlake_limit(crtc, refclk);
422 else if (IS_G4X(dev)) {
423 limit = intel_g4x_limit(crtc);
424 } else if (IS_PINEVIEW(dev)) {
425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426 limit = &intel_limits_pineview_lvds;
427 else
428 limit = &intel_limits_pineview_sdvo;
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i8xx_lvds;
437 else
438 limit = &intel_limits_i8xx_dvo;
439 }
440 return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
456 return;
457 }
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465 * Returns whether any output on the specified pipe is of the specified type
466 */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
472
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
476
477 return false;
478 }
479
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
484 */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
489 {
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid ("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid ("m1 out of range\n");
498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid ("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid ("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
508 */
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid ("dot out of range\n");
511
512 return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
518
519 {
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
523 int err = target;
524
525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526 (I915_READ(LVDS)) != 0) {
527 /*
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
532 */
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
543 }
544
545 memset (best_clock, 0, sizeof (*best_clock));
546
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
558 int this_err;
559
560 intel_clock(dev, refclk, &clock);
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581 {
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 int lvds_reg;
593
594 if (HAS_PCH_SPLIT(dev))
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
608 }
609
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
622
623 intel_clock(dev, refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627
628 this_err = abs(clock.dot - target);
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
634 }
635 }
636 }
637 }
638 }
639 return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
645 {
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
648
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
661 }
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
671 {
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
685 }
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
692 }
693
694 /**
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
698 *
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
701 */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 int pipestat_reg = PIPESTAT(pipe);
706
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
709 *
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
719 */
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
727 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731 * intel_wait_for_pipe_off - wait for pipe to turn off
732 * @dev: drm device
733 * @pipe: pipe to wait for
734 *
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
738 *
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
741 *
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
745 *
746 */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749 struct drm_i915_private *dev_priv = dev->dev_private;
750
751 if (INTEL_INFO(dev)->gen >= 4) {
752 int reg = PIPECONF(pipe);
753
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
760 int reg = PIPEDSL(pipe);
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763 /* Wait for the display line to settle */
764 do {
765 last_line = I915_READ(reg) & DSL_LINEMASK;
766 mdelay(5);
767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
771 }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776 return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
782 {
783 int reg;
784 u32 val;
785 bool cur_state;
786
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
800 {
801 int reg;
802 u32 val;
803 bool cur_state;
804
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
817 {
818 int reg;
819 u32 val;
820 bool cur_state;
821
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
834 {
835 int reg;
836 u32 val;
837 bool cur_state;
838
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
851 {
852 int reg;
853 u32 val;
854
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
858
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
866 {
867 int reg;
868 u32 val;
869
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
877 {
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = locked;
882
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
889 }
890
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
895
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
898
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
901 pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
906 {
907 int reg;
908 u32 val;
909 bool cur_state;
910
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
923 {
924 int reg;
925 u32 val;
926
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
931 plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
936 {
937 int reg, i;
938 u32 val;
939 int cur_pipe;
940
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
944
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
954 }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959 u32 val;
960 bool enabled;
961
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
970 {
971 int reg;
972 u32 val;
973 bool enabled;
974
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
981 }
982
983 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
984 enum pipe pipe, int reg)
985 {
986 u32 val = I915_READ(reg);
987 WARN(DP_PIPE_ENABLED(val, pipe),
988 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989 reg, pipe_name(pipe));
990 }
991
992 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
993 enum pipe pipe, int reg)
994 {
995 u32 val = I915_READ(reg);
996 WARN(HDMI_PIPE_ENABLED(val, pipe),
997 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998 reg, pipe_name(pipe));
999 }
1000
1001 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1002 enum pipe pipe)
1003 {
1004 int reg;
1005 u32 val;
1006
1007 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1008 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1009 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1010
1011 reg = PCH_ADPA;
1012 val = I915_READ(reg);
1013 WARN(ADPA_PIPE_ENABLED(val, pipe),
1014 "PCH VGA enabled on transcoder %c, should be disabled\n",
1015 pipe_name(pipe));
1016
1017 reg = PCH_LVDS;
1018 val = I915_READ(reg);
1019 WARN(LVDS_PIPE_ENABLED(val, pipe),
1020 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1021 pipe_name(pipe));
1022
1023 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1024 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1025 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1026 }
1027
1028 /**
1029 * intel_enable_pll - enable a PLL
1030 * @dev_priv: i915 private structure
1031 * @pipe: pipe PLL to enable
1032 *
1033 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1034 * make sure the PLL reg is writable first though, since the panel write
1035 * protect mechanism may be enabled.
1036 *
1037 * Note! This is for pre-ILK only.
1038 */
1039 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1040 {
1041 int reg;
1042 u32 val;
1043
1044 /* No really, not for ILK+ */
1045 BUG_ON(dev_priv->info->gen >= 5);
1046
1047 /* PLL is protected by panel, make sure we can write it */
1048 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1049 assert_panel_unlocked(dev_priv, pipe);
1050
1051 reg = DPLL(pipe);
1052 val = I915_READ(reg);
1053 val |= DPLL_VCO_ENABLE;
1054
1055 /* We do this three times for luck */
1056 I915_WRITE(reg, val);
1057 POSTING_READ(reg);
1058 udelay(150); /* wait for warmup */
1059 I915_WRITE(reg, val);
1060 POSTING_READ(reg);
1061 udelay(150); /* wait for warmup */
1062 I915_WRITE(reg, val);
1063 POSTING_READ(reg);
1064 udelay(150); /* wait for warmup */
1065 }
1066
1067 /**
1068 * intel_disable_pll - disable a PLL
1069 * @dev_priv: i915 private structure
1070 * @pipe: pipe PLL to disable
1071 *
1072 * Disable the PLL for @pipe, making sure the pipe is off first.
1073 *
1074 * Note! This is for pre-ILK only.
1075 */
1076 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1077 {
1078 int reg;
1079 u32 val;
1080
1081 /* Don't disable pipe A or pipe A PLLs if needed */
1082 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1083 return;
1084
1085 /* Make sure the pipe isn't still relying on us */
1086 assert_pipe_disabled(dev_priv, pipe);
1087
1088 reg = DPLL(pipe);
1089 val = I915_READ(reg);
1090 val &= ~DPLL_VCO_ENABLE;
1091 I915_WRITE(reg, val);
1092 POSTING_READ(reg);
1093 }
1094
1095 /**
1096 * intel_enable_pch_pll - enable PCH PLL
1097 * @dev_priv: i915 private structure
1098 * @pipe: pipe PLL to enable
1099 *
1100 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101 * drives the transcoder clock.
1102 */
1103 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105 {
1106 int reg;
1107 u32 val;
1108
1109 /* PCH only available on ILK+ */
1110 BUG_ON(dev_priv->info->gen < 5);
1111
1112 /* PCH refclock must be enabled first */
1113 assert_pch_refclk_enabled(dev_priv);
1114
1115 reg = PCH_DPLL(pipe);
1116 val = I915_READ(reg);
1117 val |= DPLL_VCO_ENABLE;
1118 I915_WRITE(reg, val);
1119 POSTING_READ(reg);
1120 udelay(200);
1121 }
1122
1123 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1124 enum pipe pipe)
1125 {
1126 int reg;
1127 u32 val;
1128
1129 /* PCH only available on ILK+ */
1130 BUG_ON(dev_priv->info->gen < 5);
1131
1132 /* Make sure transcoder isn't still depending on us */
1133 assert_transcoder_disabled(dev_priv, pipe);
1134
1135 reg = PCH_DPLL(pipe);
1136 val = I915_READ(reg);
1137 val &= ~DPLL_VCO_ENABLE;
1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg);
1140 udelay(200);
1141 }
1142
1143 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1144 enum pipe pipe)
1145 {
1146 int reg;
1147 u32 val;
1148
1149 /* PCH only available on ILK+ */
1150 BUG_ON(dev_priv->info->gen < 5);
1151
1152 /* Make sure PCH DPLL is enabled */
1153 assert_pch_pll_enabled(dev_priv, pipe);
1154
1155 /* FDI must be feeding us bits for PCH ports */
1156 assert_fdi_tx_enabled(dev_priv, pipe);
1157 assert_fdi_rx_enabled(dev_priv, pipe);
1158
1159 reg = TRANSCONF(pipe);
1160 val = I915_READ(reg);
1161
1162 if (HAS_PCH_IBX(dev_priv->dev)) {
1163 /*
1164 * make the BPC in transcoder be consistent with
1165 * that in pipeconf reg.
1166 */
1167 val &= ~PIPE_BPC_MASK;
1168 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1169 }
1170 I915_WRITE(reg, val | TRANS_ENABLE);
1171 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1172 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1173 }
1174
1175 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1176 enum pipe pipe)
1177 {
1178 int reg;
1179 u32 val;
1180
1181 /* FDI relies on the transcoder */
1182 assert_fdi_tx_disabled(dev_priv, pipe);
1183 assert_fdi_rx_disabled(dev_priv, pipe);
1184
1185 /* Ports must be off as well */
1186 assert_pch_ports_disabled(dev_priv, pipe);
1187
1188 reg = TRANSCONF(pipe);
1189 val = I915_READ(reg);
1190 val &= ~TRANS_ENABLE;
1191 I915_WRITE(reg, val);
1192 /* wait for PCH transcoder off, transcoder state */
1193 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1194 DRM_ERROR("failed to disable transcoder\n");
1195 }
1196
1197 /**
1198 * intel_enable_pipe - enable a pipe, asserting requirements
1199 * @dev_priv: i915 private structure
1200 * @pipe: pipe to enable
1201 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1202 *
1203 * Enable @pipe, making sure that various hardware specific requirements
1204 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1205 *
1206 * @pipe should be %PIPE_A or %PIPE_B.
1207 *
1208 * Will wait until the pipe is actually running (i.e. first vblank) before
1209 * returning.
1210 */
1211 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1212 bool pch_port)
1213 {
1214 int reg;
1215 u32 val;
1216
1217 /*
1218 * A pipe without a PLL won't actually be able to drive bits from
1219 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1220 * need the check.
1221 */
1222 if (!HAS_PCH_SPLIT(dev_priv->dev))
1223 assert_pll_enabled(dev_priv, pipe);
1224 else {
1225 if (pch_port) {
1226 /* if driving the PCH, we need FDI enabled */
1227 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1228 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1229 }
1230 /* FIXME: assert CPU port conditions for SNB+ */
1231 }
1232
1233 reg = PIPECONF(pipe);
1234 val = I915_READ(reg);
1235 if (val & PIPECONF_ENABLE)
1236 return;
1237
1238 I915_WRITE(reg, val | PIPECONF_ENABLE);
1239 intel_wait_for_vblank(dev_priv->dev, pipe);
1240 }
1241
1242 /**
1243 * intel_disable_pipe - disable a pipe, asserting requirements
1244 * @dev_priv: i915 private structure
1245 * @pipe: pipe to disable
1246 *
1247 * Disable @pipe, making sure that various hardware specific requirements
1248 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1249 *
1250 * @pipe should be %PIPE_A or %PIPE_B.
1251 *
1252 * Will wait until the pipe has shut down before returning.
1253 */
1254 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 int reg;
1258 u32 val;
1259
1260 /*
1261 * Make sure planes won't keep trying to pump pixels to us,
1262 * or we might hang the display.
1263 */
1264 assert_planes_disabled(dev_priv, pipe);
1265
1266 /* Don't disable pipe A or pipe A PLLs if needed */
1267 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1268 return;
1269
1270 reg = PIPECONF(pipe);
1271 val = I915_READ(reg);
1272 if ((val & PIPECONF_ENABLE) == 0)
1273 return;
1274
1275 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1276 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1277 }
1278
1279 /**
1280 * intel_enable_plane - enable a display plane on a given pipe
1281 * @dev_priv: i915 private structure
1282 * @plane: plane to enable
1283 * @pipe: pipe being fed
1284 *
1285 * Enable @plane on @pipe, making sure that @pipe is running first.
1286 */
1287 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1288 enum plane plane, enum pipe pipe)
1289 {
1290 int reg;
1291 u32 val;
1292
1293 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294 assert_pipe_enabled(dev_priv, pipe);
1295
1296 reg = DSPCNTR(plane);
1297 val = I915_READ(reg);
1298 if (val & DISPLAY_PLANE_ENABLE)
1299 return;
1300
1301 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1302 intel_wait_for_vblank(dev_priv->dev, pipe);
1303 }
1304
1305 /*
1306 * Plane regs are double buffered, going from enabled->disabled needs a
1307 * trigger in order to latch. The display address reg provides this.
1308 */
1309 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1310 enum plane plane)
1311 {
1312 u32 reg = DSPADDR(plane);
1313 I915_WRITE(reg, I915_READ(reg));
1314 }
1315
1316 /**
1317 * intel_disable_plane - disable a display plane
1318 * @dev_priv: i915 private structure
1319 * @plane: plane to disable
1320 * @pipe: pipe consuming the data
1321 *
1322 * Disable @plane; should be an independent operation.
1323 */
1324 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1325 enum plane plane, enum pipe pipe)
1326 {
1327 int reg;
1328 u32 val;
1329
1330 reg = DSPCNTR(plane);
1331 val = I915_READ(reg);
1332 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1333 return;
1334
1335 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1336 intel_flush_display_plane(dev_priv, plane);
1337 intel_wait_for_vblank(dev_priv->dev, pipe);
1338 }
1339
1340 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, int reg)
1342 {
1343 u32 val = I915_READ(reg);
1344 if (DP_PIPE_ENABLED(val, pipe))
1345 I915_WRITE(reg, val & ~DP_PORT_EN);
1346 }
1347
1348 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1349 enum pipe pipe, int reg)
1350 {
1351 u32 val = I915_READ(reg);
1352 if (HDMI_PIPE_ENABLED(val, pipe))
1353 I915_WRITE(reg, val & ~PORT_ENABLE);
1354 }
1355
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
1359 {
1360 u32 reg, val;
1361
1362 val = I915_READ(PCH_PP_CONTROL);
1363 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1364
1365 disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1366 disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1367 disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1368
1369 reg = PCH_ADPA;
1370 val = I915_READ(reg);
1371 if (ADPA_PIPE_ENABLED(val, pipe))
1372 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1373
1374 reg = PCH_LVDS;
1375 val = I915_READ(reg);
1376 if (LVDS_PIPE_ENABLED(val, pipe)) {
1377 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1378 POSTING_READ(reg);
1379 udelay(100);
1380 }
1381
1382 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1383 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1384 disable_pch_hdmi(dev_priv, pipe, HDMID);
1385 }
1386
1387 static void i8xx_disable_fbc(struct drm_device *dev)
1388 {
1389 struct drm_i915_private *dev_priv = dev->dev_private;
1390 u32 fbc_ctl;
1391
1392 /* Disable compression */
1393 fbc_ctl = I915_READ(FBC_CONTROL);
1394 if ((fbc_ctl & FBC_CTL_EN) == 0)
1395 return;
1396
1397 fbc_ctl &= ~FBC_CTL_EN;
1398 I915_WRITE(FBC_CONTROL, fbc_ctl);
1399
1400 /* Wait for compressing bit to clear */
1401 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1402 DRM_DEBUG_KMS("FBC idle timed out\n");
1403 return;
1404 }
1405
1406 DRM_DEBUG_KMS("disabled FBC\n");
1407 }
1408
1409 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1410 {
1411 struct drm_device *dev = crtc->dev;
1412 struct drm_i915_private *dev_priv = dev->dev_private;
1413 struct drm_framebuffer *fb = crtc->fb;
1414 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1415 struct drm_i915_gem_object *obj = intel_fb->obj;
1416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1417 int cfb_pitch;
1418 int plane, i;
1419 u32 fbc_ctl, fbc_ctl2;
1420
1421 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1422 if (fb->pitch < cfb_pitch)
1423 cfb_pitch = fb->pitch;
1424
1425 /* FBC_CTL wants 64B units */
1426 cfb_pitch = (cfb_pitch / 64) - 1;
1427 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1428
1429 /* Clear old tags */
1430 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1431 I915_WRITE(FBC_TAG + (i * 4), 0);
1432
1433 /* Set it up... */
1434 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1435 fbc_ctl2 |= plane;
1436 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1437 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1438
1439 /* enable it... */
1440 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1441 if (IS_I945GM(dev))
1442 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1443 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1444 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1445 fbc_ctl |= obj->fence_reg;
1446 I915_WRITE(FBC_CONTROL, fbc_ctl);
1447
1448 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1449 cfb_pitch, crtc->y, intel_crtc->plane);
1450 }
1451
1452 static bool i8xx_fbc_enabled(struct drm_device *dev)
1453 {
1454 struct drm_i915_private *dev_priv = dev->dev_private;
1455
1456 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1457 }
1458
1459 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1460 {
1461 struct drm_device *dev = crtc->dev;
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463 struct drm_framebuffer *fb = crtc->fb;
1464 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1465 struct drm_i915_gem_object *obj = intel_fb->obj;
1466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1467 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1468 unsigned long stall_watermark = 200;
1469 u32 dpfc_ctl;
1470
1471 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1472 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1473 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1474
1475 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1476 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1477 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1478 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1479
1480 /* enable it... */
1481 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1482
1483 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1484 }
1485
1486 static void g4x_disable_fbc(struct drm_device *dev)
1487 {
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 u32 dpfc_ctl;
1490
1491 /* Disable compression */
1492 dpfc_ctl = I915_READ(DPFC_CONTROL);
1493 if (dpfc_ctl & DPFC_CTL_EN) {
1494 dpfc_ctl &= ~DPFC_CTL_EN;
1495 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1496
1497 DRM_DEBUG_KMS("disabled FBC\n");
1498 }
1499 }
1500
1501 static bool g4x_fbc_enabled(struct drm_device *dev)
1502 {
1503 struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1506 }
1507
1508 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1509 {
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 u32 blt_ecoskpd;
1512
1513 /* Make sure blitter notifies FBC of writes */
1514 gen6_gt_force_wake_get(dev_priv);
1515 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1516 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1517 GEN6_BLITTER_LOCK_SHIFT;
1518 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1519 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1520 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1521 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1522 GEN6_BLITTER_LOCK_SHIFT);
1523 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1524 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1525 gen6_gt_force_wake_put(dev_priv);
1526 }
1527
1528 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1529 {
1530 struct drm_device *dev = crtc->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct drm_framebuffer *fb = crtc->fb;
1533 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1534 struct drm_i915_gem_object *obj = intel_fb->obj;
1535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1536 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1537 unsigned long stall_watermark = 200;
1538 u32 dpfc_ctl;
1539
1540 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1541 dpfc_ctl &= DPFC_RESERVED;
1542 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1543 /* Set persistent mode for front-buffer rendering, ala X. */
1544 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1545 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1546 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1547
1548 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1549 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1550 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1551 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1552 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1553 /* enable it... */
1554 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1555
1556 if (IS_GEN6(dev)) {
1557 I915_WRITE(SNB_DPFC_CTL_SA,
1558 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1559 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1560 sandybridge_blit_fbc_update(dev);
1561 }
1562
1563 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1564 }
1565
1566 static void ironlake_disable_fbc(struct drm_device *dev)
1567 {
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 u32 dpfc_ctl;
1570
1571 /* Disable compression */
1572 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1573 if (dpfc_ctl & DPFC_CTL_EN) {
1574 dpfc_ctl &= ~DPFC_CTL_EN;
1575 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1576
1577 DRM_DEBUG_KMS("disabled FBC\n");
1578 }
1579 }
1580
1581 static bool ironlake_fbc_enabled(struct drm_device *dev)
1582 {
1583 struct drm_i915_private *dev_priv = dev->dev_private;
1584
1585 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1586 }
1587
1588 bool intel_fbc_enabled(struct drm_device *dev)
1589 {
1590 struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592 if (!dev_priv->display.fbc_enabled)
1593 return false;
1594
1595 return dev_priv->display.fbc_enabled(dev);
1596 }
1597
1598 static void intel_fbc_work_fn(struct work_struct *__work)
1599 {
1600 struct intel_fbc_work *work =
1601 container_of(to_delayed_work(__work),
1602 struct intel_fbc_work, work);
1603 struct drm_device *dev = work->crtc->dev;
1604 struct drm_i915_private *dev_priv = dev->dev_private;
1605
1606 mutex_lock(&dev->struct_mutex);
1607 if (work == dev_priv->fbc_work) {
1608 /* Double check that we haven't switched fb without cancelling
1609 * the prior work.
1610 */
1611 if (work->crtc->fb == work->fb) {
1612 dev_priv->display.enable_fbc(work->crtc,
1613 work->interval);
1614
1615 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1616 dev_priv->cfb_fb = work->crtc->fb->base.id;
1617 dev_priv->cfb_y = work->crtc->y;
1618 }
1619
1620 dev_priv->fbc_work = NULL;
1621 }
1622 mutex_unlock(&dev->struct_mutex);
1623
1624 kfree(work);
1625 }
1626
1627 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1628 {
1629 if (dev_priv->fbc_work == NULL)
1630 return;
1631
1632 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1633
1634 /* Synchronisation is provided by struct_mutex and checking of
1635 * dev_priv->fbc_work, so we can perform the cancellation
1636 * entirely asynchronously.
1637 */
1638 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1639 /* tasklet was killed before being run, clean up */
1640 kfree(dev_priv->fbc_work);
1641
1642 /* Mark the work as no longer wanted so that if it does
1643 * wake-up (because the work was already running and waiting
1644 * for our mutex), it will discover that is no longer
1645 * necessary to run.
1646 */
1647 dev_priv->fbc_work = NULL;
1648 }
1649
1650 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1651 {
1652 struct intel_fbc_work *work;
1653 struct drm_device *dev = crtc->dev;
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655
1656 if (!dev_priv->display.enable_fbc)
1657 return;
1658
1659 intel_cancel_fbc_work(dev_priv);
1660
1661 work = kzalloc(sizeof *work, GFP_KERNEL);
1662 if (work == NULL) {
1663 dev_priv->display.enable_fbc(crtc, interval);
1664 return;
1665 }
1666
1667 work->crtc = crtc;
1668 work->fb = crtc->fb;
1669 work->interval = interval;
1670 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1671
1672 dev_priv->fbc_work = work;
1673
1674 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1675
1676 /* Delay the actual enabling to let pageflipping cease and the
1677 * display to settle before starting the compression. Note that
1678 * this delay also serves a second purpose: it allows for a
1679 * vblank to pass after disabling the FBC before we attempt
1680 * to modify the control registers.
1681 *
1682 * A more complicated solution would involve tracking vblanks
1683 * following the termination of the page-flipping sequence
1684 * and indeed performing the enable as a co-routine and not
1685 * waiting synchronously upon the vblank.
1686 */
1687 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1688 }
1689
1690 void intel_disable_fbc(struct drm_device *dev)
1691 {
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693
1694 intel_cancel_fbc_work(dev_priv);
1695
1696 if (!dev_priv->display.disable_fbc)
1697 return;
1698
1699 dev_priv->display.disable_fbc(dev);
1700 dev_priv->cfb_plane = -1;
1701 }
1702
1703 /**
1704 * intel_update_fbc - enable/disable FBC as needed
1705 * @dev: the drm_device
1706 *
1707 * Set up the framebuffer compression hardware at mode set time. We
1708 * enable it if possible:
1709 * - plane A only (on pre-965)
1710 * - no pixel mulitply/line duplication
1711 * - no alpha buffer discard
1712 * - no dual wide
1713 * - framebuffer <= 2048 in width, 1536 in height
1714 *
1715 * We can't assume that any compression will take place (worst case),
1716 * so the compressed buffer has to be the same size as the uncompressed
1717 * one. It also must reside (along with the line length buffer) in
1718 * stolen memory.
1719 *
1720 * We need to enable/disable FBC on a global basis.
1721 */
1722 static void intel_update_fbc(struct drm_device *dev)
1723 {
1724 struct drm_i915_private *dev_priv = dev->dev_private;
1725 struct drm_crtc *crtc = NULL, *tmp_crtc;
1726 struct intel_crtc *intel_crtc;
1727 struct drm_framebuffer *fb;
1728 struct intel_framebuffer *intel_fb;
1729 struct drm_i915_gem_object *obj;
1730
1731 DRM_DEBUG_KMS("\n");
1732
1733 if (!i915_powersave)
1734 return;
1735
1736 if (!I915_HAS_FBC(dev))
1737 return;
1738
1739 /*
1740 * If FBC is already on, we just have to verify that we can
1741 * keep it that way...
1742 * Need to disable if:
1743 * - more than one pipe is active
1744 * - changing FBC params (stride, fence, mode)
1745 * - new fb is too large to fit in compressed buffer
1746 * - going to an unsupported config (interlace, pixel multiply, etc.)
1747 */
1748 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1749 if (tmp_crtc->enabled && tmp_crtc->fb) {
1750 if (crtc) {
1751 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1752 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1753 goto out_disable;
1754 }
1755 crtc = tmp_crtc;
1756 }
1757 }
1758
1759 if (!crtc || crtc->fb == NULL) {
1760 DRM_DEBUG_KMS("no output, disabling\n");
1761 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1762 goto out_disable;
1763 }
1764
1765 intel_crtc = to_intel_crtc(crtc);
1766 fb = crtc->fb;
1767 intel_fb = to_intel_framebuffer(fb);
1768 obj = intel_fb->obj;
1769
1770 if (!i915_enable_fbc) {
1771 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1772 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1773 goto out_disable;
1774 }
1775 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1776 DRM_DEBUG_KMS("framebuffer too large, disabling "
1777 "compression\n");
1778 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1779 goto out_disable;
1780 }
1781 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1782 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1783 DRM_DEBUG_KMS("mode incompatible with compression, "
1784 "disabling\n");
1785 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1786 goto out_disable;
1787 }
1788 if ((crtc->mode.hdisplay > 2048) ||
1789 (crtc->mode.vdisplay > 1536)) {
1790 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1791 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1792 goto out_disable;
1793 }
1794 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1795 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1796 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1797 goto out_disable;
1798 }
1799
1800 /* The use of a CPU fence is mandatory in order to detect writes
1801 * by the CPU to the scanout and trigger updates to the FBC.
1802 */
1803 if (obj->tiling_mode != I915_TILING_X ||
1804 obj->fence_reg == I915_FENCE_REG_NONE) {
1805 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1806 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1807 goto out_disable;
1808 }
1809
1810 /* If the kernel debugger is active, always disable compression */
1811 if (in_dbg_master())
1812 goto out_disable;
1813
1814 /* If the scanout has not changed, don't modify the FBC settings.
1815 * Note that we make the fundamental assumption that the fb->obj
1816 * cannot be unpinned (and have its GTT offset and fence revoked)
1817 * without first being decoupled from the scanout and FBC disabled.
1818 */
1819 if (dev_priv->cfb_plane == intel_crtc->plane &&
1820 dev_priv->cfb_fb == fb->base.id &&
1821 dev_priv->cfb_y == crtc->y)
1822 return;
1823
1824 if (intel_fbc_enabled(dev)) {
1825 /* We update FBC along two paths, after changing fb/crtc
1826 * configuration (modeswitching) and after page-flipping
1827 * finishes. For the latter, we know that not only did
1828 * we disable the FBC at the start of the page-flip
1829 * sequence, but also more than one vblank has passed.
1830 *
1831 * For the former case of modeswitching, it is possible
1832 * to switch between two FBC valid configurations
1833 * instantaneously so we do need to disable the FBC
1834 * before we can modify its control registers. We also
1835 * have to wait for the next vblank for that to take
1836 * effect. However, since we delay enabling FBC we can
1837 * assume that a vblank has passed since disabling and
1838 * that we can safely alter the registers in the deferred
1839 * callback.
1840 *
1841 * In the scenario that we go from a valid to invalid
1842 * and then back to valid FBC configuration we have
1843 * no strict enforcement that a vblank occurred since
1844 * disabling the FBC. However, along all current pipe
1845 * disabling paths we do need to wait for a vblank at
1846 * some point. And we wait before enabling FBC anyway.
1847 */
1848 DRM_DEBUG_KMS("disabling active FBC for update\n");
1849 intel_disable_fbc(dev);
1850 }
1851
1852 intel_enable_fbc(crtc, 500);
1853 return;
1854
1855 out_disable:
1856 /* Multiple disables should be harmless */
1857 if (intel_fbc_enabled(dev)) {
1858 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1859 intel_disable_fbc(dev);
1860 }
1861 }
1862
1863 int
1864 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1865 struct drm_i915_gem_object *obj,
1866 struct intel_ring_buffer *pipelined)
1867 {
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 u32 alignment;
1870 int ret;
1871
1872 switch (obj->tiling_mode) {
1873 case I915_TILING_NONE:
1874 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1875 alignment = 128 * 1024;
1876 else if (INTEL_INFO(dev)->gen >= 4)
1877 alignment = 4 * 1024;
1878 else
1879 alignment = 64 * 1024;
1880 break;
1881 case I915_TILING_X:
1882 /* pin() will align the object as required by fence */
1883 alignment = 0;
1884 break;
1885 case I915_TILING_Y:
1886 /* FIXME: Is this true? */
1887 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1888 return -EINVAL;
1889 default:
1890 BUG();
1891 }
1892
1893 dev_priv->mm.interruptible = false;
1894 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1895 if (ret)
1896 goto err_interruptible;
1897
1898 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1899 * fence, whereas 965+ only requires a fence if using
1900 * framebuffer compression. For simplicity, we always install
1901 * a fence as the cost is not that onerous.
1902 */
1903 if (obj->tiling_mode != I915_TILING_NONE) {
1904 ret = i915_gem_object_get_fence(obj, pipelined);
1905 if (ret)
1906 goto err_unpin;
1907 }
1908
1909 dev_priv->mm.interruptible = true;
1910 return 0;
1911
1912 err_unpin:
1913 i915_gem_object_unpin(obj);
1914 err_interruptible:
1915 dev_priv->mm.interruptible = true;
1916 return ret;
1917 }
1918
1919 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1920 int x, int y)
1921 {
1922 struct drm_device *dev = crtc->dev;
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1925 struct intel_framebuffer *intel_fb;
1926 struct drm_i915_gem_object *obj;
1927 int plane = intel_crtc->plane;
1928 unsigned long Start, Offset;
1929 u32 dspcntr;
1930 u32 reg;
1931
1932 switch (plane) {
1933 case 0:
1934 case 1:
1935 break;
1936 default:
1937 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1938 return -EINVAL;
1939 }
1940
1941 intel_fb = to_intel_framebuffer(fb);
1942 obj = intel_fb->obj;
1943
1944 reg = DSPCNTR(plane);
1945 dspcntr = I915_READ(reg);
1946 /* Mask out pixel format bits in case we change it */
1947 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1948 switch (fb->bits_per_pixel) {
1949 case 8:
1950 dspcntr |= DISPPLANE_8BPP;
1951 break;
1952 case 16:
1953 if (fb->depth == 15)
1954 dspcntr |= DISPPLANE_15_16BPP;
1955 else
1956 dspcntr |= DISPPLANE_16BPP;
1957 break;
1958 case 24:
1959 case 32:
1960 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1961 break;
1962 default:
1963 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1964 return -EINVAL;
1965 }
1966 if (INTEL_INFO(dev)->gen >= 4) {
1967 if (obj->tiling_mode != I915_TILING_NONE)
1968 dspcntr |= DISPPLANE_TILED;
1969 else
1970 dspcntr &= ~DISPPLANE_TILED;
1971 }
1972
1973 I915_WRITE(reg, dspcntr);
1974
1975 Start = obj->gtt_offset;
1976 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1977
1978 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1979 Start, Offset, x, y, fb->pitch);
1980 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1981 if (INTEL_INFO(dev)->gen >= 4) {
1982 I915_WRITE(DSPSURF(plane), Start);
1983 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1984 I915_WRITE(DSPADDR(plane), Offset);
1985 } else
1986 I915_WRITE(DSPADDR(plane), Start + Offset);
1987 POSTING_READ(reg);
1988
1989 return 0;
1990 }
1991
1992 static int ironlake_update_plane(struct drm_crtc *crtc,
1993 struct drm_framebuffer *fb, int x, int y)
1994 {
1995 struct drm_device *dev = crtc->dev;
1996 struct drm_i915_private *dev_priv = dev->dev_private;
1997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1998 struct intel_framebuffer *intel_fb;
1999 struct drm_i915_gem_object *obj;
2000 int plane = intel_crtc->plane;
2001 unsigned long Start, Offset;
2002 u32 dspcntr;
2003 u32 reg;
2004
2005 switch (plane) {
2006 case 0:
2007 case 1:
2008 break;
2009 default:
2010 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2011 return -EINVAL;
2012 }
2013
2014 intel_fb = to_intel_framebuffer(fb);
2015 obj = intel_fb->obj;
2016
2017 reg = DSPCNTR(plane);
2018 dspcntr = I915_READ(reg);
2019 /* Mask out pixel format bits in case we change it */
2020 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2021 switch (fb->bits_per_pixel) {
2022 case 8:
2023 dspcntr |= DISPPLANE_8BPP;
2024 break;
2025 case 16:
2026 if (fb->depth != 16)
2027 return -EINVAL;
2028
2029 dspcntr |= DISPPLANE_16BPP;
2030 break;
2031 case 24:
2032 case 32:
2033 if (fb->depth == 24)
2034 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2035 else if (fb->depth == 30)
2036 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2037 else
2038 return -EINVAL;
2039 break;
2040 default:
2041 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2042 return -EINVAL;
2043 }
2044
2045 if (obj->tiling_mode != I915_TILING_NONE)
2046 dspcntr |= DISPPLANE_TILED;
2047 else
2048 dspcntr &= ~DISPPLANE_TILED;
2049
2050 /* must disable */
2051 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2052
2053 I915_WRITE(reg, dspcntr);
2054
2055 Start = obj->gtt_offset;
2056 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2057
2058 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2059 Start, Offset, x, y, fb->pitch);
2060 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2061 I915_WRITE(DSPSURF(plane), Start);
2062 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063 I915_WRITE(DSPADDR(plane), Offset);
2064 POSTING_READ(reg);
2065
2066 return 0;
2067 }
2068
2069 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2070 static int
2071 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2072 int x, int y, enum mode_set_atomic state)
2073 {
2074 struct drm_device *dev = crtc->dev;
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 int ret;
2077
2078 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2079 if (ret)
2080 return ret;
2081
2082 intel_update_fbc(dev);
2083 intel_increase_pllclock(crtc);
2084
2085 return 0;
2086 }
2087
2088 static int
2089 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2090 struct drm_framebuffer *old_fb)
2091 {
2092 struct drm_device *dev = crtc->dev;
2093 struct drm_i915_master_private *master_priv;
2094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095 int ret;
2096
2097 /* no fb bound */
2098 if (!crtc->fb) {
2099 DRM_ERROR("No FB bound\n");
2100 return 0;
2101 }
2102
2103 switch (intel_crtc->plane) {
2104 case 0:
2105 case 1:
2106 break;
2107 default:
2108 DRM_ERROR("no plane for crtc\n");
2109 return -EINVAL;
2110 }
2111
2112 mutex_lock(&dev->struct_mutex);
2113 ret = intel_pin_and_fence_fb_obj(dev,
2114 to_intel_framebuffer(crtc->fb)->obj,
2115 NULL);
2116 if (ret != 0) {
2117 mutex_unlock(&dev->struct_mutex);
2118 DRM_ERROR("pin & fence failed\n");
2119 return ret;
2120 }
2121
2122 if (old_fb) {
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2125
2126 wait_event(dev_priv->pending_flip_queue,
2127 atomic_read(&dev_priv->mm.wedged) ||
2128 atomic_read(&obj->pending_flip) == 0);
2129
2130 /* Big Hammer, we also need to ensure that any pending
2131 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2132 * current scanout is retired before unpinning the old
2133 * framebuffer.
2134 *
2135 * This should only fail upon a hung GPU, in which case we
2136 * can safely continue.
2137 */
2138 ret = i915_gem_object_finish_gpu(obj);
2139 (void) ret;
2140 }
2141
2142 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2143 LEAVE_ATOMIC_MODE_SET);
2144 if (ret) {
2145 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2146 mutex_unlock(&dev->struct_mutex);
2147 DRM_ERROR("failed to update base address\n");
2148 return ret;
2149 }
2150
2151 if (old_fb) {
2152 intel_wait_for_vblank(dev, intel_crtc->pipe);
2153 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2154 }
2155
2156 mutex_unlock(&dev->struct_mutex);
2157
2158 if (!dev->primary->master)
2159 return 0;
2160
2161 master_priv = dev->primary->master->driver_priv;
2162 if (!master_priv->sarea_priv)
2163 return 0;
2164
2165 if (intel_crtc->pipe) {
2166 master_priv->sarea_priv->pipeB_x = x;
2167 master_priv->sarea_priv->pipeB_y = y;
2168 } else {
2169 master_priv->sarea_priv->pipeA_x = x;
2170 master_priv->sarea_priv->pipeA_y = y;
2171 }
2172
2173 return 0;
2174 }
2175
2176 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2177 {
2178 struct drm_device *dev = crtc->dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 u32 dpa_ctl;
2181
2182 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2183 dpa_ctl = I915_READ(DP_A);
2184 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2185
2186 if (clock < 200000) {
2187 u32 temp;
2188 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2189 /* workaround for 160Mhz:
2190 1) program 0x4600c bits 15:0 = 0x8124
2191 2) program 0x46010 bit 0 = 1
2192 3) program 0x46034 bit 24 = 1
2193 4) program 0x64000 bit 14 = 1
2194 */
2195 temp = I915_READ(0x4600c);
2196 temp &= 0xffff0000;
2197 I915_WRITE(0x4600c, temp | 0x8124);
2198
2199 temp = I915_READ(0x46010);
2200 I915_WRITE(0x46010, temp | 1);
2201
2202 temp = I915_READ(0x46034);
2203 I915_WRITE(0x46034, temp | (1 << 24));
2204 } else {
2205 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2206 }
2207 I915_WRITE(DP_A, dpa_ctl);
2208
2209 POSTING_READ(DP_A);
2210 udelay(500);
2211 }
2212
2213 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2214 {
2215 struct drm_device *dev = crtc->dev;
2216 struct drm_i915_private *dev_priv = dev->dev_private;
2217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2218 int pipe = intel_crtc->pipe;
2219 u32 reg, temp;
2220
2221 /* enable normal train */
2222 reg = FDI_TX_CTL(pipe);
2223 temp = I915_READ(reg);
2224 if (IS_IVYBRIDGE(dev)) {
2225 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2226 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2227 } else {
2228 temp &= ~FDI_LINK_TRAIN_NONE;
2229 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2230 }
2231 I915_WRITE(reg, temp);
2232
2233 reg = FDI_RX_CTL(pipe);
2234 temp = I915_READ(reg);
2235 if (HAS_PCH_CPT(dev)) {
2236 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2237 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2238 } else {
2239 temp &= ~FDI_LINK_TRAIN_NONE;
2240 temp |= FDI_LINK_TRAIN_NONE;
2241 }
2242 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2243
2244 /* wait one idle pattern time */
2245 POSTING_READ(reg);
2246 udelay(1000);
2247
2248 /* IVB wants error correction enabled */
2249 if (IS_IVYBRIDGE(dev))
2250 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2251 FDI_FE_ERRC_ENABLE);
2252 }
2253
2254 /* The FDI link training functions for ILK/Ibexpeak. */
2255 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2256 {
2257 struct drm_device *dev = crtc->dev;
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2260 int pipe = intel_crtc->pipe;
2261 int plane = intel_crtc->plane;
2262 u32 reg, temp, tries;
2263
2264 /* FDI needs bits from pipe & plane first */
2265 assert_pipe_enabled(dev_priv, pipe);
2266 assert_plane_enabled(dev_priv, plane);
2267
2268 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2269 for train result */
2270 reg = FDI_RX_IMR(pipe);
2271 temp = I915_READ(reg);
2272 temp &= ~FDI_RX_SYMBOL_LOCK;
2273 temp &= ~FDI_RX_BIT_LOCK;
2274 I915_WRITE(reg, temp);
2275 I915_READ(reg);
2276 udelay(150);
2277
2278 /* enable CPU FDI TX and PCH FDI RX */
2279 reg = FDI_TX_CTL(pipe);
2280 temp = I915_READ(reg);
2281 temp &= ~(7 << 19);
2282 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2283 temp &= ~FDI_LINK_TRAIN_NONE;
2284 temp |= FDI_LINK_TRAIN_PATTERN_1;
2285 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2286
2287 reg = FDI_RX_CTL(pipe);
2288 temp = I915_READ(reg);
2289 temp &= ~FDI_LINK_TRAIN_NONE;
2290 temp |= FDI_LINK_TRAIN_PATTERN_1;
2291 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2292
2293 POSTING_READ(reg);
2294 udelay(150);
2295
2296 /* Ironlake workaround, enable clock pointer after FDI enable*/
2297 if (HAS_PCH_IBX(dev)) {
2298 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2299 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2300 FDI_RX_PHASE_SYNC_POINTER_EN);
2301 }
2302
2303 reg = FDI_RX_IIR(pipe);
2304 for (tries = 0; tries < 5; tries++) {
2305 temp = I915_READ(reg);
2306 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2307
2308 if ((temp & FDI_RX_BIT_LOCK)) {
2309 DRM_DEBUG_KMS("FDI train 1 done.\n");
2310 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2311 break;
2312 }
2313 }
2314 if (tries == 5)
2315 DRM_ERROR("FDI train 1 fail!\n");
2316
2317 /* Train 2 */
2318 reg = FDI_TX_CTL(pipe);
2319 temp = I915_READ(reg);
2320 temp &= ~FDI_LINK_TRAIN_NONE;
2321 temp |= FDI_LINK_TRAIN_PATTERN_2;
2322 I915_WRITE(reg, temp);
2323
2324 reg = FDI_RX_CTL(pipe);
2325 temp = I915_READ(reg);
2326 temp &= ~FDI_LINK_TRAIN_NONE;
2327 temp |= FDI_LINK_TRAIN_PATTERN_2;
2328 I915_WRITE(reg, temp);
2329
2330 POSTING_READ(reg);
2331 udelay(150);
2332
2333 reg = FDI_RX_IIR(pipe);
2334 for (tries = 0; tries < 5; tries++) {
2335 temp = I915_READ(reg);
2336 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2337
2338 if (temp & FDI_RX_SYMBOL_LOCK) {
2339 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2340 DRM_DEBUG_KMS("FDI train 2 done.\n");
2341 break;
2342 }
2343 }
2344 if (tries == 5)
2345 DRM_ERROR("FDI train 2 fail!\n");
2346
2347 DRM_DEBUG_KMS("FDI train done\n");
2348
2349 }
2350
2351 static const int snb_b_fdi_train_param [] = {
2352 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2353 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2354 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2355 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2356 };
2357
2358 /* The FDI link training functions for SNB/Cougarpoint. */
2359 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2360 {
2361 struct drm_device *dev = crtc->dev;
2362 struct drm_i915_private *dev_priv = dev->dev_private;
2363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2364 int pipe = intel_crtc->pipe;
2365 u32 reg, temp, i;
2366
2367 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2368 for train result */
2369 reg = FDI_RX_IMR(pipe);
2370 temp = I915_READ(reg);
2371 temp &= ~FDI_RX_SYMBOL_LOCK;
2372 temp &= ~FDI_RX_BIT_LOCK;
2373 I915_WRITE(reg, temp);
2374
2375 POSTING_READ(reg);
2376 udelay(150);
2377
2378 /* enable CPU FDI TX and PCH FDI RX */
2379 reg = FDI_TX_CTL(pipe);
2380 temp = I915_READ(reg);
2381 temp &= ~(7 << 19);
2382 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_1;
2385 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2386 /* SNB-B */
2387 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2388 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2389
2390 reg = FDI_RX_CTL(pipe);
2391 temp = I915_READ(reg);
2392 if (HAS_PCH_CPT(dev)) {
2393 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2394 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2395 } else {
2396 temp &= ~FDI_LINK_TRAIN_NONE;
2397 temp |= FDI_LINK_TRAIN_PATTERN_1;
2398 }
2399 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401 POSTING_READ(reg);
2402 udelay(150);
2403
2404 for (i = 0; i < 4; i++ ) {
2405 reg = FDI_TX_CTL(pipe);
2406 temp = I915_READ(reg);
2407 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2408 temp |= snb_b_fdi_train_param[i];
2409 I915_WRITE(reg, temp);
2410
2411 POSTING_READ(reg);
2412 udelay(500);
2413
2414 reg = FDI_RX_IIR(pipe);
2415 temp = I915_READ(reg);
2416 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2417
2418 if (temp & FDI_RX_BIT_LOCK) {
2419 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2420 DRM_DEBUG_KMS("FDI train 1 done.\n");
2421 break;
2422 }
2423 }
2424 if (i == 4)
2425 DRM_ERROR("FDI train 1 fail!\n");
2426
2427 /* Train 2 */
2428 reg = FDI_TX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_LINK_TRAIN_NONE;
2431 temp |= FDI_LINK_TRAIN_PATTERN_2;
2432 if (IS_GEN6(dev)) {
2433 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2434 /* SNB-B */
2435 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2436 }
2437 I915_WRITE(reg, temp);
2438
2439 reg = FDI_RX_CTL(pipe);
2440 temp = I915_READ(reg);
2441 if (HAS_PCH_CPT(dev)) {
2442 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2443 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2444 } else {
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_2;
2447 }
2448 I915_WRITE(reg, temp);
2449
2450 POSTING_READ(reg);
2451 udelay(150);
2452
2453 for (i = 0; i < 4; i++ ) {
2454 reg = FDI_TX_CTL(pipe);
2455 temp = I915_READ(reg);
2456 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2457 temp |= snb_b_fdi_train_param[i];
2458 I915_WRITE(reg, temp);
2459
2460 POSTING_READ(reg);
2461 udelay(500);
2462
2463 reg = FDI_RX_IIR(pipe);
2464 temp = I915_READ(reg);
2465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2466
2467 if (temp & FDI_RX_SYMBOL_LOCK) {
2468 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2469 DRM_DEBUG_KMS("FDI train 2 done.\n");
2470 break;
2471 }
2472 }
2473 if (i == 4)
2474 DRM_ERROR("FDI train 2 fail!\n");
2475
2476 DRM_DEBUG_KMS("FDI train done.\n");
2477 }
2478
2479 /* Manual link training for Ivy Bridge A0 parts */
2480 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2481 {
2482 struct drm_device *dev = crtc->dev;
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2485 int pipe = intel_crtc->pipe;
2486 u32 reg, temp, i;
2487
2488 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2489 for train result */
2490 reg = FDI_RX_IMR(pipe);
2491 temp = I915_READ(reg);
2492 temp &= ~FDI_RX_SYMBOL_LOCK;
2493 temp &= ~FDI_RX_BIT_LOCK;
2494 I915_WRITE(reg, temp);
2495
2496 POSTING_READ(reg);
2497 udelay(150);
2498
2499 /* enable CPU FDI TX and PCH FDI RX */
2500 reg = FDI_TX_CTL(pipe);
2501 temp = I915_READ(reg);
2502 temp &= ~(7 << 19);
2503 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2504 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2505 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2506 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2507 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2508 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2509
2510 reg = FDI_RX_CTL(pipe);
2511 temp = I915_READ(reg);
2512 temp &= ~FDI_LINK_TRAIN_AUTO;
2513 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2515 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2516
2517 POSTING_READ(reg);
2518 udelay(150);
2519
2520 for (i = 0; i < 4; i++ ) {
2521 reg = FDI_TX_CTL(pipe);
2522 temp = I915_READ(reg);
2523 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2524 temp |= snb_b_fdi_train_param[i];
2525 I915_WRITE(reg, temp);
2526
2527 POSTING_READ(reg);
2528 udelay(500);
2529
2530 reg = FDI_RX_IIR(pipe);
2531 temp = I915_READ(reg);
2532 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2533
2534 if (temp & FDI_RX_BIT_LOCK ||
2535 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2536 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2537 DRM_DEBUG_KMS("FDI train 1 done.\n");
2538 break;
2539 }
2540 }
2541 if (i == 4)
2542 DRM_ERROR("FDI train 1 fail!\n");
2543
2544 /* Train 2 */
2545 reg = FDI_TX_CTL(pipe);
2546 temp = I915_READ(reg);
2547 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2548 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2549 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2550 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2551 I915_WRITE(reg, temp);
2552
2553 reg = FDI_RX_CTL(pipe);
2554 temp = I915_READ(reg);
2555 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2556 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2557 I915_WRITE(reg, temp);
2558
2559 POSTING_READ(reg);
2560 udelay(150);
2561
2562 for (i = 0; i < 4; i++ ) {
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(500);
2571
2572 reg = FDI_RX_IIR(pipe);
2573 temp = I915_READ(reg);
2574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575
2576 if (temp & FDI_RX_SYMBOL_LOCK) {
2577 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2578 DRM_DEBUG_KMS("FDI train 2 done.\n");
2579 break;
2580 }
2581 }
2582 if (i == 4)
2583 DRM_ERROR("FDI train 2 fail!\n");
2584
2585 DRM_DEBUG_KMS("FDI train done.\n");
2586 }
2587
2588 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2589 {
2590 struct drm_device *dev = crtc->dev;
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2593 int pipe = intel_crtc->pipe;
2594 u32 reg, temp;
2595
2596 /* Write the TU size bits so error detection works */
2597 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2598 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2599
2600 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
2603 temp &= ~((0x7 << 19) | (0x7 << 16));
2604 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2605 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2606 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2607
2608 POSTING_READ(reg);
2609 udelay(200);
2610
2611 /* Switch from Rawclk to PCDclk */
2612 temp = I915_READ(reg);
2613 I915_WRITE(reg, temp | FDI_PCDCLK);
2614
2615 POSTING_READ(reg);
2616 udelay(200);
2617
2618 /* Enable CPU FDI TX PLL, always on for Ironlake */
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2622 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2623
2624 POSTING_READ(reg);
2625 udelay(100);
2626 }
2627 }
2628
2629 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2630 {
2631 struct drm_device *dev = crtc->dev;
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634 int pipe = intel_crtc->pipe;
2635 u32 reg, temp;
2636
2637 /* disable CPU FDI tx and PCH FDI rx */
2638 reg = FDI_TX_CTL(pipe);
2639 temp = I915_READ(reg);
2640 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2641 POSTING_READ(reg);
2642
2643 reg = FDI_RX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~(0x7 << 16);
2646 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2647 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2648
2649 POSTING_READ(reg);
2650 udelay(100);
2651
2652 /* Ironlake workaround, disable clock pointer after downing FDI */
2653 if (HAS_PCH_IBX(dev)) {
2654 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2655 I915_WRITE(FDI_RX_CHICKEN(pipe),
2656 I915_READ(FDI_RX_CHICKEN(pipe) &
2657 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2658 }
2659
2660 /* still set train pattern 1 */
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_NONE;
2664 temp |= FDI_LINK_TRAIN_PATTERN_1;
2665 I915_WRITE(reg, temp);
2666
2667 reg = FDI_RX_CTL(pipe);
2668 temp = I915_READ(reg);
2669 if (HAS_PCH_CPT(dev)) {
2670 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2671 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2672 } else {
2673 temp &= ~FDI_LINK_TRAIN_NONE;
2674 temp |= FDI_LINK_TRAIN_PATTERN_1;
2675 }
2676 /* BPC in FDI rx is consistent with that in PIPECONF */
2677 temp &= ~(0x07 << 16);
2678 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2679 I915_WRITE(reg, temp);
2680
2681 POSTING_READ(reg);
2682 udelay(100);
2683 }
2684
2685 /*
2686 * When we disable a pipe, we need to clear any pending scanline wait events
2687 * to avoid hanging the ring, which we assume we are waiting on.
2688 */
2689 static void intel_clear_scanline_wait(struct drm_device *dev)
2690 {
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 struct intel_ring_buffer *ring;
2693 u32 tmp;
2694
2695 if (IS_GEN2(dev))
2696 /* Can't break the hang on i8xx */
2697 return;
2698
2699 ring = LP_RING(dev_priv);
2700 tmp = I915_READ_CTL(ring);
2701 if (tmp & RING_WAIT)
2702 I915_WRITE_CTL(ring, tmp);
2703 }
2704
2705 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2706 {
2707 struct drm_i915_gem_object *obj;
2708 struct drm_i915_private *dev_priv;
2709
2710 if (crtc->fb == NULL)
2711 return;
2712
2713 obj = to_intel_framebuffer(crtc->fb)->obj;
2714 dev_priv = crtc->dev->dev_private;
2715 wait_event(dev_priv->pending_flip_queue,
2716 atomic_read(&obj->pending_flip) == 0);
2717 }
2718
2719 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2720 {
2721 struct drm_device *dev = crtc->dev;
2722 struct drm_mode_config *mode_config = &dev->mode_config;
2723 struct intel_encoder *encoder;
2724
2725 /*
2726 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2727 * must be driven by its own crtc; no sharing is possible.
2728 */
2729 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2730 if (encoder->base.crtc != crtc)
2731 continue;
2732
2733 switch (encoder->type) {
2734 case INTEL_OUTPUT_EDP:
2735 if (!intel_encoder_is_pch_edp(&encoder->base))
2736 return false;
2737 continue;
2738 }
2739 }
2740
2741 return true;
2742 }
2743
2744 /*
2745 * Enable PCH resources required for PCH ports:
2746 * - PCH PLLs
2747 * - FDI training & RX/TX
2748 * - update transcoder timings
2749 * - DP transcoding bits
2750 * - transcoder
2751 */
2752 static void ironlake_pch_enable(struct drm_crtc *crtc)
2753 {
2754 struct drm_device *dev = crtc->dev;
2755 struct drm_i915_private *dev_priv = dev->dev_private;
2756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757 int pipe = intel_crtc->pipe;
2758 u32 reg, temp;
2759
2760 /* For PCH output, training FDI link */
2761 dev_priv->display.fdi_link_train(crtc);
2762
2763 intel_enable_pch_pll(dev_priv, pipe);
2764
2765 if (HAS_PCH_CPT(dev)) {
2766 /* Be sure PCH DPLL SEL is set */
2767 temp = I915_READ(PCH_DPLL_SEL);
2768 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2769 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2770 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2771 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772 I915_WRITE(PCH_DPLL_SEL, temp);
2773 }
2774
2775 /* set transcoder timing, panel must allow it */
2776 assert_panel_unlocked(dev_priv, pipe);
2777 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2778 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2779 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2780
2781 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2782 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2783 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2784
2785 intel_fdi_normal_train(crtc);
2786
2787 /* For PCH DP, enable TRANS_DP_CTL */
2788 if (HAS_PCH_CPT(dev) &&
2789 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2790 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2791 reg = TRANS_DP_CTL(pipe);
2792 temp = I915_READ(reg);
2793 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2794 TRANS_DP_SYNC_MASK |
2795 TRANS_DP_BPC_MASK);
2796 temp |= (TRANS_DP_OUTPUT_ENABLE |
2797 TRANS_DP_ENH_FRAMING);
2798 temp |= bpc << 9; /* same format but at 11:9 */
2799
2800 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2801 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2802 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2803 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2804
2805 switch (intel_trans_dp_port_sel(crtc)) {
2806 case PCH_DP_B:
2807 temp |= TRANS_DP_PORT_SEL_B;
2808 break;
2809 case PCH_DP_C:
2810 temp |= TRANS_DP_PORT_SEL_C;
2811 break;
2812 case PCH_DP_D:
2813 temp |= TRANS_DP_PORT_SEL_D;
2814 break;
2815 default:
2816 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2817 temp |= TRANS_DP_PORT_SEL_B;
2818 break;
2819 }
2820
2821 I915_WRITE(reg, temp);
2822 }
2823
2824 intel_enable_transcoder(dev_priv, pipe);
2825 }
2826
2827 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2828 {
2829 struct drm_device *dev = crtc->dev;
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2832 int pipe = intel_crtc->pipe;
2833 int plane = intel_crtc->plane;
2834 u32 temp;
2835 bool is_pch_port;
2836
2837 if (intel_crtc->active)
2838 return;
2839
2840 intel_crtc->active = true;
2841 intel_update_watermarks(dev);
2842
2843 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2844 temp = I915_READ(PCH_LVDS);
2845 if ((temp & LVDS_PORT_EN) == 0)
2846 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2847 }
2848
2849 is_pch_port = intel_crtc_driving_pch(crtc);
2850
2851 if (is_pch_port)
2852 ironlake_fdi_pll_enable(crtc);
2853 else
2854 ironlake_fdi_disable(crtc);
2855
2856 /* Enable panel fitting for LVDS */
2857 if (dev_priv->pch_pf_size &&
2858 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2859 /* Force use of hard-coded filter coefficients
2860 * as some pre-programmed values are broken,
2861 * e.g. x201.
2862 */
2863 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2864 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2865 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2866 }
2867
2868 /*
2869 * On ILK+ LUT must be loaded before the pipe is running but with
2870 * clocks enabled
2871 */
2872 intel_crtc_load_lut(crtc);
2873
2874 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2875 intel_enable_plane(dev_priv, plane, pipe);
2876
2877 if (is_pch_port)
2878 ironlake_pch_enable(crtc);
2879
2880 mutex_lock(&dev->struct_mutex);
2881 intel_update_fbc(dev);
2882 mutex_unlock(&dev->struct_mutex);
2883
2884 intel_crtc_update_cursor(crtc, true);
2885 }
2886
2887 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2888 {
2889 struct drm_device *dev = crtc->dev;
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2892 int pipe = intel_crtc->pipe;
2893 int plane = intel_crtc->plane;
2894 u32 reg, temp;
2895
2896 if (!intel_crtc->active)
2897 return;
2898
2899 intel_crtc_wait_for_pending_flips(crtc);
2900 drm_vblank_off(dev, pipe);
2901 intel_crtc_update_cursor(crtc, false);
2902
2903 intel_disable_plane(dev_priv, plane, pipe);
2904
2905 if (dev_priv->cfb_plane == plane)
2906 intel_disable_fbc(dev);
2907
2908 intel_disable_pipe(dev_priv, pipe);
2909
2910 /* Disable PF */
2911 I915_WRITE(PF_CTL(pipe), 0);
2912 I915_WRITE(PF_WIN_SZ(pipe), 0);
2913
2914 ironlake_fdi_disable(crtc);
2915
2916 /* This is a horrible layering violation; we should be doing this in
2917 * the connector/encoder ->prepare instead, but we don't always have
2918 * enough information there about the config to know whether it will
2919 * actually be necessary or just cause undesired flicker.
2920 */
2921 intel_disable_pch_ports(dev_priv, pipe);
2922
2923 intel_disable_transcoder(dev_priv, pipe);
2924
2925 if (HAS_PCH_CPT(dev)) {
2926 /* disable TRANS_DP_CTL */
2927 reg = TRANS_DP_CTL(pipe);
2928 temp = I915_READ(reg);
2929 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2930 temp |= TRANS_DP_PORT_SEL_NONE;
2931 I915_WRITE(reg, temp);
2932
2933 /* disable DPLL_SEL */
2934 temp = I915_READ(PCH_DPLL_SEL);
2935 switch (pipe) {
2936 case 0:
2937 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2938 break;
2939 case 1:
2940 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2941 break;
2942 case 2:
2943 /* FIXME: manage transcoder PLLs? */
2944 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2945 break;
2946 default:
2947 BUG(); /* wtf */
2948 }
2949 I915_WRITE(PCH_DPLL_SEL, temp);
2950 }
2951
2952 /* disable PCH DPLL */
2953 intel_disable_pch_pll(dev_priv, pipe);
2954
2955 /* Switch from PCDclk to Rawclk */
2956 reg = FDI_RX_CTL(pipe);
2957 temp = I915_READ(reg);
2958 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2959
2960 /* Disable CPU FDI TX PLL */
2961 reg = FDI_TX_CTL(pipe);
2962 temp = I915_READ(reg);
2963 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2964
2965 POSTING_READ(reg);
2966 udelay(100);
2967
2968 reg = FDI_RX_CTL(pipe);
2969 temp = I915_READ(reg);
2970 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2971
2972 /* Wait for the clocks to turn off. */
2973 POSTING_READ(reg);
2974 udelay(100);
2975
2976 intel_crtc->active = false;
2977 intel_update_watermarks(dev);
2978
2979 mutex_lock(&dev->struct_mutex);
2980 intel_update_fbc(dev);
2981 intel_clear_scanline_wait(dev);
2982 mutex_unlock(&dev->struct_mutex);
2983 }
2984
2985 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2986 {
2987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2988 int pipe = intel_crtc->pipe;
2989 int plane = intel_crtc->plane;
2990
2991 /* XXX: When our outputs are all unaware of DPMS modes other than off
2992 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2993 */
2994 switch (mode) {
2995 case DRM_MODE_DPMS_ON:
2996 case DRM_MODE_DPMS_STANDBY:
2997 case DRM_MODE_DPMS_SUSPEND:
2998 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2999 ironlake_crtc_enable(crtc);
3000 break;
3001
3002 case DRM_MODE_DPMS_OFF:
3003 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3004 ironlake_crtc_disable(crtc);
3005 break;
3006 }
3007 }
3008
3009 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3010 {
3011 if (!enable && intel_crtc->overlay) {
3012 struct drm_device *dev = intel_crtc->base.dev;
3013 struct drm_i915_private *dev_priv = dev->dev_private;
3014
3015 mutex_lock(&dev->struct_mutex);
3016 dev_priv->mm.interruptible = false;
3017 (void) intel_overlay_switch_off(intel_crtc->overlay);
3018 dev_priv->mm.interruptible = true;
3019 mutex_unlock(&dev->struct_mutex);
3020 }
3021
3022 /* Let userspace switch the overlay on again. In most cases userspace
3023 * has to recompute where to put it anyway.
3024 */
3025 }
3026
3027 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3028 {
3029 struct drm_device *dev = crtc->dev;
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3032 int pipe = intel_crtc->pipe;
3033 int plane = intel_crtc->plane;
3034
3035 if (intel_crtc->active)
3036 return;
3037
3038 intel_crtc->active = true;
3039 intel_update_watermarks(dev);
3040
3041 intel_enable_pll(dev_priv, pipe);
3042 intel_enable_pipe(dev_priv, pipe, false);
3043 intel_enable_plane(dev_priv, plane, pipe);
3044
3045 intel_crtc_load_lut(crtc);
3046 intel_update_fbc(dev);
3047
3048 /* Give the overlay scaler a chance to enable if it's on this pipe */
3049 intel_crtc_dpms_overlay(intel_crtc, true);
3050 intel_crtc_update_cursor(crtc, true);
3051 }
3052
3053 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3054 {
3055 struct drm_device *dev = crtc->dev;
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058 int pipe = intel_crtc->pipe;
3059 int plane = intel_crtc->plane;
3060
3061 if (!intel_crtc->active)
3062 return;
3063
3064 /* Give the overlay scaler a chance to disable if it's on this pipe */
3065 intel_crtc_wait_for_pending_flips(crtc);
3066 drm_vblank_off(dev, pipe);
3067 intel_crtc_dpms_overlay(intel_crtc, false);
3068 intel_crtc_update_cursor(crtc, false);
3069
3070 if (dev_priv->cfb_plane == plane)
3071 intel_disable_fbc(dev);
3072
3073 intel_disable_plane(dev_priv, plane, pipe);
3074 intel_disable_pipe(dev_priv, pipe);
3075 intel_disable_pll(dev_priv, pipe);
3076
3077 intel_crtc->active = false;
3078 intel_update_fbc(dev);
3079 intel_update_watermarks(dev);
3080 intel_clear_scanline_wait(dev);
3081 }
3082
3083 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3084 {
3085 /* XXX: When our outputs are all unaware of DPMS modes other than off
3086 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3087 */
3088 switch (mode) {
3089 case DRM_MODE_DPMS_ON:
3090 case DRM_MODE_DPMS_STANDBY:
3091 case DRM_MODE_DPMS_SUSPEND:
3092 i9xx_crtc_enable(crtc);
3093 break;
3094 case DRM_MODE_DPMS_OFF:
3095 i9xx_crtc_disable(crtc);
3096 break;
3097 }
3098 }
3099
3100 /**
3101 * Sets the power management mode of the pipe and plane.
3102 */
3103 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3104 {
3105 struct drm_device *dev = crtc->dev;
3106 struct drm_i915_private *dev_priv = dev->dev_private;
3107 struct drm_i915_master_private *master_priv;
3108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3109 int pipe = intel_crtc->pipe;
3110 bool enabled;
3111
3112 if (intel_crtc->dpms_mode == mode)
3113 return;
3114
3115 intel_crtc->dpms_mode = mode;
3116
3117 dev_priv->display.dpms(crtc, mode);
3118
3119 if (!dev->primary->master)
3120 return;
3121
3122 master_priv = dev->primary->master->driver_priv;
3123 if (!master_priv->sarea_priv)
3124 return;
3125
3126 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3127
3128 switch (pipe) {
3129 case 0:
3130 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3131 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3132 break;
3133 case 1:
3134 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3135 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3136 break;
3137 default:
3138 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3139 break;
3140 }
3141 }
3142
3143 static void intel_crtc_disable(struct drm_crtc *crtc)
3144 {
3145 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3146 struct drm_device *dev = crtc->dev;
3147
3148 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3149
3150 if (crtc->fb) {
3151 mutex_lock(&dev->struct_mutex);
3152 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3153 mutex_unlock(&dev->struct_mutex);
3154 }
3155 }
3156
3157 /* Prepare for a mode set.
3158 *
3159 * Note we could be a lot smarter here. We need to figure out which outputs
3160 * will be enabled, which disabled (in short, how the config will changes)
3161 * and perform the minimum necessary steps to accomplish that, e.g. updating
3162 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3163 * panel fitting is in the proper state, etc.
3164 */
3165 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3166 {
3167 i9xx_crtc_disable(crtc);
3168 }
3169
3170 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3171 {
3172 i9xx_crtc_enable(crtc);
3173 }
3174
3175 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3176 {
3177 ironlake_crtc_disable(crtc);
3178 }
3179
3180 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3181 {
3182 ironlake_crtc_enable(crtc);
3183 }
3184
3185 void intel_encoder_prepare (struct drm_encoder *encoder)
3186 {
3187 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3188 /* lvds has its own version of prepare see intel_lvds_prepare */
3189 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3190 }
3191
3192 void intel_encoder_commit (struct drm_encoder *encoder)
3193 {
3194 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3195 /* lvds has its own version of commit see intel_lvds_commit */
3196 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3197 }
3198
3199 void intel_encoder_destroy(struct drm_encoder *encoder)
3200 {
3201 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3202
3203 drm_encoder_cleanup(encoder);
3204 kfree(intel_encoder);
3205 }
3206
3207 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3208 struct drm_display_mode *mode,
3209 struct drm_display_mode *adjusted_mode)
3210 {
3211 struct drm_device *dev = crtc->dev;
3212
3213 if (HAS_PCH_SPLIT(dev)) {
3214 /* FDI link clock is fixed at 2.7G */
3215 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3216 return false;
3217 }
3218
3219 /* XXX some encoders set the crtcinfo, others don't.
3220 * Obviously we need some form of conflict resolution here...
3221 */
3222 if (adjusted_mode->crtc_htotal == 0)
3223 drm_mode_set_crtcinfo(adjusted_mode, 0);
3224
3225 return true;
3226 }
3227
3228 static int i945_get_display_clock_speed(struct drm_device *dev)
3229 {
3230 return 400000;
3231 }
3232
3233 static int i915_get_display_clock_speed(struct drm_device *dev)
3234 {
3235 return 333000;
3236 }
3237
3238 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3239 {
3240 return 200000;
3241 }
3242
3243 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3244 {
3245 u16 gcfgc = 0;
3246
3247 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3248
3249 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3250 return 133000;
3251 else {
3252 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3253 case GC_DISPLAY_CLOCK_333_MHZ:
3254 return 333000;
3255 default:
3256 case GC_DISPLAY_CLOCK_190_200_MHZ:
3257 return 190000;
3258 }
3259 }
3260 }
3261
3262 static int i865_get_display_clock_speed(struct drm_device *dev)
3263 {
3264 return 266000;
3265 }
3266
3267 static int i855_get_display_clock_speed(struct drm_device *dev)
3268 {
3269 u16 hpllcc = 0;
3270 /* Assume that the hardware is in the high speed state. This
3271 * should be the default.
3272 */
3273 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3274 case GC_CLOCK_133_200:
3275 case GC_CLOCK_100_200:
3276 return 200000;
3277 case GC_CLOCK_166_250:
3278 return 250000;
3279 case GC_CLOCK_100_133:
3280 return 133000;
3281 }
3282
3283 /* Shouldn't happen */
3284 return 0;
3285 }
3286
3287 static int i830_get_display_clock_speed(struct drm_device *dev)
3288 {
3289 return 133000;
3290 }
3291
3292 struct fdi_m_n {
3293 u32 tu;
3294 u32 gmch_m;
3295 u32 gmch_n;
3296 u32 link_m;
3297 u32 link_n;
3298 };
3299
3300 static void
3301 fdi_reduce_ratio(u32 *num, u32 *den)
3302 {
3303 while (*num > 0xffffff || *den > 0xffffff) {
3304 *num >>= 1;
3305 *den >>= 1;
3306 }
3307 }
3308
3309 static void
3310 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3311 int link_clock, struct fdi_m_n *m_n)
3312 {
3313 m_n->tu = 64; /* default size */
3314
3315 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3316 m_n->gmch_m = bits_per_pixel * pixel_clock;
3317 m_n->gmch_n = link_clock * nlanes * 8;
3318 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3319
3320 m_n->link_m = pixel_clock;
3321 m_n->link_n = link_clock;
3322 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3323 }
3324
3325
3326 struct intel_watermark_params {
3327 unsigned long fifo_size;
3328 unsigned long max_wm;
3329 unsigned long default_wm;
3330 unsigned long guard_size;
3331 unsigned long cacheline_size;
3332 };
3333
3334 /* Pineview has different values for various configs */
3335 static const struct intel_watermark_params pineview_display_wm = {
3336 PINEVIEW_DISPLAY_FIFO,
3337 PINEVIEW_MAX_WM,
3338 PINEVIEW_DFT_WM,
3339 PINEVIEW_GUARD_WM,
3340 PINEVIEW_FIFO_LINE_SIZE
3341 };
3342 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3343 PINEVIEW_DISPLAY_FIFO,
3344 PINEVIEW_MAX_WM,
3345 PINEVIEW_DFT_HPLLOFF_WM,
3346 PINEVIEW_GUARD_WM,
3347 PINEVIEW_FIFO_LINE_SIZE
3348 };
3349 static const struct intel_watermark_params pineview_cursor_wm = {
3350 PINEVIEW_CURSOR_FIFO,
3351 PINEVIEW_CURSOR_MAX_WM,
3352 PINEVIEW_CURSOR_DFT_WM,
3353 PINEVIEW_CURSOR_GUARD_WM,
3354 PINEVIEW_FIFO_LINE_SIZE,
3355 };
3356 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3357 PINEVIEW_CURSOR_FIFO,
3358 PINEVIEW_CURSOR_MAX_WM,
3359 PINEVIEW_CURSOR_DFT_WM,
3360 PINEVIEW_CURSOR_GUARD_WM,
3361 PINEVIEW_FIFO_LINE_SIZE
3362 };
3363 static const struct intel_watermark_params g4x_wm_info = {
3364 G4X_FIFO_SIZE,
3365 G4X_MAX_WM,
3366 G4X_MAX_WM,
3367 2,
3368 G4X_FIFO_LINE_SIZE,
3369 };
3370 static const struct intel_watermark_params g4x_cursor_wm_info = {
3371 I965_CURSOR_FIFO,
3372 I965_CURSOR_MAX_WM,
3373 I965_CURSOR_DFT_WM,
3374 2,
3375 G4X_FIFO_LINE_SIZE,
3376 };
3377 static const struct intel_watermark_params i965_cursor_wm_info = {
3378 I965_CURSOR_FIFO,
3379 I965_CURSOR_MAX_WM,
3380 I965_CURSOR_DFT_WM,
3381 2,
3382 I915_FIFO_LINE_SIZE,
3383 };
3384 static const struct intel_watermark_params i945_wm_info = {
3385 I945_FIFO_SIZE,
3386 I915_MAX_WM,
3387 1,
3388 2,
3389 I915_FIFO_LINE_SIZE
3390 };
3391 static const struct intel_watermark_params i915_wm_info = {
3392 I915_FIFO_SIZE,
3393 I915_MAX_WM,
3394 1,
3395 2,
3396 I915_FIFO_LINE_SIZE
3397 };
3398 static const struct intel_watermark_params i855_wm_info = {
3399 I855GM_FIFO_SIZE,
3400 I915_MAX_WM,
3401 1,
3402 2,
3403 I830_FIFO_LINE_SIZE
3404 };
3405 static const struct intel_watermark_params i830_wm_info = {
3406 I830_FIFO_SIZE,
3407 I915_MAX_WM,
3408 1,
3409 2,
3410 I830_FIFO_LINE_SIZE
3411 };
3412
3413 static const struct intel_watermark_params ironlake_display_wm_info = {
3414 ILK_DISPLAY_FIFO,
3415 ILK_DISPLAY_MAXWM,
3416 ILK_DISPLAY_DFTWM,
3417 2,
3418 ILK_FIFO_LINE_SIZE
3419 };
3420 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3421 ILK_CURSOR_FIFO,
3422 ILK_CURSOR_MAXWM,
3423 ILK_CURSOR_DFTWM,
3424 2,
3425 ILK_FIFO_LINE_SIZE
3426 };
3427 static const struct intel_watermark_params ironlake_display_srwm_info = {
3428 ILK_DISPLAY_SR_FIFO,
3429 ILK_DISPLAY_MAX_SRWM,
3430 ILK_DISPLAY_DFT_SRWM,
3431 2,
3432 ILK_FIFO_LINE_SIZE
3433 };
3434 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3435 ILK_CURSOR_SR_FIFO,
3436 ILK_CURSOR_MAX_SRWM,
3437 ILK_CURSOR_DFT_SRWM,
3438 2,
3439 ILK_FIFO_LINE_SIZE
3440 };
3441
3442 static const struct intel_watermark_params sandybridge_display_wm_info = {
3443 SNB_DISPLAY_FIFO,
3444 SNB_DISPLAY_MAXWM,
3445 SNB_DISPLAY_DFTWM,
3446 2,
3447 SNB_FIFO_LINE_SIZE
3448 };
3449 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3450 SNB_CURSOR_FIFO,
3451 SNB_CURSOR_MAXWM,
3452 SNB_CURSOR_DFTWM,
3453 2,
3454 SNB_FIFO_LINE_SIZE
3455 };
3456 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3457 SNB_DISPLAY_SR_FIFO,
3458 SNB_DISPLAY_MAX_SRWM,
3459 SNB_DISPLAY_DFT_SRWM,
3460 2,
3461 SNB_FIFO_LINE_SIZE
3462 };
3463 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3464 SNB_CURSOR_SR_FIFO,
3465 SNB_CURSOR_MAX_SRWM,
3466 SNB_CURSOR_DFT_SRWM,
3467 2,
3468 SNB_FIFO_LINE_SIZE
3469 };
3470
3471
3472 /**
3473 * intel_calculate_wm - calculate watermark level
3474 * @clock_in_khz: pixel clock
3475 * @wm: chip FIFO params
3476 * @pixel_size: display pixel size
3477 * @latency_ns: memory latency for the platform
3478 *
3479 * Calculate the watermark level (the level at which the display plane will
3480 * start fetching from memory again). Each chip has a different display
3481 * FIFO size and allocation, so the caller needs to figure that out and pass
3482 * in the correct intel_watermark_params structure.
3483 *
3484 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3485 * on the pixel size. When it reaches the watermark level, it'll start
3486 * fetching FIFO line sized based chunks from memory until the FIFO fills
3487 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3488 * will occur, and a display engine hang could result.
3489 */
3490 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3491 const struct intel_watermark_params *wm,
3492 int fifo_size,
3493 int pixel_size,
3494 unsigned long latency_ns)
3495 {
3496 long entries_required, wm_size;
3497
3498 /*
3499 * Note: we need to make sure we don't overflow for various clock &
3500 * latency values.
3501 * clocks go from a few thousand to several hundred thousand.
3502 * latency is usually a few thousand
3503 */
3504 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3505 1000;
3506 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3507
3508 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3509
3510 wm_size = fifo_size - (entries_required + wm->guard_size);
3511
3512 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3513
3514 /* Don't promote wm_size to unsigned... */
3515 if (wm_size > (long)wm->max_wm)
3516 wm_size = wm->max_wm;
3517 if (wm_size <= 0)
3518 wm_size = wm->default_wm;
3519 return wm_size;
3520 }
3521
3522 struct cxsr_latency {
3523 int is_desktop;
3524 int is_ddr3;
3525 unsigned long fsb_freq;
3526 unsigned long mem_freq;
3527 unsigned long display_sr;
3528 unsigned long display_hpll_disable;
3529 unsigned long cursor_sr;
3530 unsigned long cursor_hpll_disable;
3531 };
3532
3533 static const struct cxsr_latency cxsr_latency_table[] = {
3534 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3535 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3536 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3537 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3538 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3539
3540 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3541 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3542 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3543 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3544 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3545
3546 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3547 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3548 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3549 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3550 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3551
3552 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3553 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3554 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3555 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3556 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3557
3558 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3559 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3560 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3561 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3562 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3563
3564 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3565 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3566 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3567 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3568 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3569 };
3570
3571 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3572 int is_ddr3,
3573 int fsb,
3574 int mem)
3575 {
3576 const struct cxsr_latency *latency;
3577 int i;
3578
3579 if (fsb == 0 || mem == 0)
3580 return NULL;
3581
3582 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3583 latency = &cxsr_latency_table[i];
3584 if (is_desktop == latency->is_desktop &&
3585 is_ddr3 == latency->is_ddr3 &&
3586 fsb == latency->fsb_freq && mem == latency->mem_freq)
3587 return latency;
3588 }
3589
3590 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3591
3592 return NULL;
3593 }
3594
3595 static void pineview_disable_cxsr(struct drm_device *dev)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598
3599 /* deactivate cxsr */
3600 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3601 }
3602
3603 /*
3604 * Latency for FIFO fetches is dependent on several factors:
3605 * - memory configuration (speed, channels)
3606 * - chipset
3607 * - current MCH state
3608 * It can be fairly high in some situations, so here we assume a fairly
3609 * pessimal value. It's a tradeoff between extra memory fetches (if we
3610 * set this value too high, the FIFO will fetch frequently to stay full)
3611 * and power consumption (set it too low to save power and we might see
3612 * FIFO underruns and display "flicker").
3613 *
3614 * A value of 5us seems to be a good balance; safe for very low end
3615 * platforms but not overly aggressive on lower latency configs.
3616 */
3617 static const int latency_ns = 5000;
3618
3619 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3620 {
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 uint32_t dsparb = I915_READ(DSPARB);
3623 int size;
3624
3625 size = dsparb & 0x7f;
3626 if (plane)
3627 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3628
3629 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3630 plane ? "B" : "A", size);
3631
3632 return size;
3633 }
3634
3635 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3636 {
3637 struct drm_i915_private *dev_priv = dev->dev_private;
3638 uint32_t dsparb = I915_READ(DSPARB);
3639 int size;
3640
3641 size = dsparb & 0x1ff;
3642 if (plane)
3643 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3644 size >>= 1; /* Convert to cachelines */
3645
3646 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3647 plane ? "B" : "A", size);
3648
3649 return size;
3650 }
3651
3652 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3653 {
3654 struct drm_i915_private *dev_priv = dev->dev_private;
3655 uint32_t dsparb = I915_READ(DSPARB);
3656 int size;
3657
3658 size = dsparb & 0x7f;
3659 size >>= 2; /* Convert to cachelines */
3660
3661 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3662 plane ? "B" : "A",
3663 size);
3664
3665 return size;
3666 }
3667
3668 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3669 {
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 uint32_t dsparb = I915_READ(DSPARB);
3672 int size;
3673
3674 size = dsparb & 0x7f;
3675 size >>= 1; /* Convert to cachelines */
3676
3677 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3678 plane ? "B" : "A", size);
3679
3680 return size;
3681 }
3682
3683 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3684 {
3685 struct drm_crtc *crtc, *enabled = NULL;
3686
3687 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3688 if (crtc->enabled && crtc->fb) {
3689 if (enabled)
3690 return NULL;
3691 enabled = crtc;
3692 }
3693 }
3694
3695 return enabled;
3696 }
3697
3698 static void pineview_update_wm(struct drm_device *dev)
3699 {
3700 struct drm_i915_private *dev_priv = dev->dev_private;
3701 struct drm_crtc *crtc;
3702 const struct cxsr_latency *latency;
3703 u32 reg;
3704 unsigned long wm;
3705
3706 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3707 dev_priv->fsb_freq, dev_priv->mem_freq);
3708 if (!latency) {
3709 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3710 pineview_disable_cxsr(dev);
3711 return;
3712 }
3713
3714 crtc = single_enabled_crtc(dev);
3715 if (crtc) {
3716 int clock = crtc->mode.clock;
3717 int pixel_size = crtc->fb->bits_per_pixel / 8;
3718
3719 /* Display SR */
3720 wm = intel_calculate_wm(clock, &pineview_display_wm,
3721 pineview_display_wm.fifo_size,
3722 pixel_size, latency->display_sr);
3723 reg = I915_READ(DSPFW1);
3724 reg &= ~DSPFW_SR_MASK;
3725 reg |= wm << DSPFW_SR_SHIFT;
3726 I915_WRITE(DSPFW1, reg);
3727 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3728
3729 /* cursor SR */
3730 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3731 pineview_display_wm.fifo_size,
3732 pixel_size, latency->cursor_sr);
3733 reg = I915_READ(DSPFW3);
3734 reg &= ~DSPFW_CURSOR_SR_MASK;
3735 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3736 I915_WRITE(DSPFW3, reg);
3737
3738 /* Display HPLL off SR */
3739 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3740 pineview_display_hplloff_wm.fifo_size,
3741 pixel_size, latency->display_hpll_disable);
3742 reg = I915_READ(DSPFW3);
3743 reg &= ~DSPFW_HPLL_SR_MASK;
3744 reg |= wm & DSPFW_HPLL_SR_MASK;
3745 I915_WRITE(DSPFW3, reg);
3746
3747 /* cursor HPLL off SR */
3748 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3749 pineview_display_hplloff_wm.fifo_size,
3750 pixel_size, latency->cursor_hpll_disable);
3751 reg = I915_READ(DSPFW3);
3752 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3753 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3754 I915_WRITE(DSPFW3, reg);
3755 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3756
3757 /* activate cxsr */
3758 I915_WRITE(DSPFW3,
3759 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3760 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3761 } else {
3762 pineview_disable_cxsr(dev);
3763 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3764 }
3765 }
3766
3767 static bool g4x_compute_wm0(struct drm_device *dev,
3768 int plane,
3769 const struct intel_watermark_params *display,
3770 int display_latency_ns,
3771 const struct intel_watermark_params *cursor,
3772 int cursor_latency_ns,
3773 int *plane_wm,
3774 int *cursor_wm)
3775 {
3776 struct drm_crtc *crtc;
3777 int htotal, hdisplay, clock, pixel_size;
3778 int line_time_us, line_count;
3779 int entries, tlb_miss;
3780
3781 crtc = intel_get_crtc_for_plane(dev, plane);
3782 if (crtc->fb == NULL || !crtc->enabled) {
3783 *cursor_wm = cursor->guard_size;
3784 *plane_wm = display->guard_size;
3785 return false;
3786 }
3787
3788 htotal = crtc->mode.htotal;
3789 hdisplay = crtc->mode.hdisplay;
3790 clock = crtc->mode.clock;
3791 pixel_size = crtc->fb->bits_per_pixel / 8;
3792
3793 /* Use the small buffer method to calculate plane watermark */
3794 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3795 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3796 if (tlb_miss > 0)
3797 entries += tlb_miss;
3798 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3799 *plane_wm = entries + display->guard_size;
3800 if (*plane_wm > (int)display->max_wm)
3801 *plane_wm = display->max_wm;
3802
3803 /* Use the large buffer method to calculate cursor watermark */
3804 line_time_us = ((htotal * 1000) / clock);
3805 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3806 entries = line_count * 64 * pixel_size;
3807 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3808 if (tlb_miss > 0)
3809 entries += tlb_miss;
3810 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3811 *cursor_wm = entries + cursor->guard_size;
3812 if (*cursor_wm > (int)cursor->max_wm)
3813 *cursor_wm = (int)cursor->max_wm;
3814
3815 return true;
3816 }
3817
3818 /*
3819 * Check the wm result.
3820 *
3821 * If any calculated watermark values is larger than the maximum value that
3822 * can be programmed into the associated watermark register, that watermark
3823 * must be disabled.
3824 */
3825 static bool g4x_check_srwm(struct drm_device *dev,
3826 int display_wm, int cursor_wm,
3827 const struct intel_watermark_params *display,
3828 const struct intel_watermark_params *cursor)
3829 {
3830 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3831 display_wm, cursor_wm);
3832
3833 if (display_wm > display->max_wm) {
3834 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3835 display_wm, display->max_wm);
3836 return false;
3837 }
3838
3839 if (cursor_wm > cursor->max_wm) {
3840 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3841 cursor_wm, cursor->max_wm);
3842 return false;
3843 }
3844
3845 if (!(display_wm || cursor_wm)) {
3846 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3847 return false;
3848 }
3849
3850 return true;
3851 }
3852
3853 static bool g4x_compute_srwm(struct drm_device *dev,
3854 int plane,
3855 int latency_ns,
3856 const struct intel_watermark_params *display,
3857 const struct intel_watermark_params *cursor,
3858 int *display_wm, int *cursor_wm)
3859 {
3860 struct drm_crtc *crtc;
3861 int hdisplay, htotal, pixel_size, clock;
3862 unsigned long line_time_us;
3863 int line_count, line_size;
3864 int small, large;
3865 int entries;
3866
3867 if (!latency_ns) {
3868 *display_wm = *cursor_wm = 0;
3869 return false;
3870 }
3871
3872 crtc = intel_get_crtc_for_plane(dev, plane);
3873 hdisplay = crtc->mode.hdisplay;
3874 htotal = crtc->mode.htotal;
3875 clock = crtc->mode.clock;
3876 pixel_size = crtc->fb->bits_per_pixel / 8;
3877
3878 line_time_us = (htotal * 1000) / clock;
3879 line_count = (latency_ns / line_time_us + 1000) / 1000;
3880 line_size = hdisplay * pixel_size;
3881
3882 /* Use the minimum of the small and large buffer method for primary */
3883 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3884 large = line_count * line_size;
3885
3886 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3887 *display_wm = entries + display->guard_size;
3888
3889 /* calculate the self-refresh watermark for display cursor */
3890 entries = line_count * pixel_size * 64;
3891 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3892 *cursor_wm = entries + cursor->guard_size;
3893
3894 return g4x_check_srwm(dev,
3895 *display_wm, *cursor_wm,
3896 display, cursor);
3897 }
3898
3899 #define single_plane_enabled(mask) is_power_of_2(mask)
3900
3901 static void g4x_update_wm(struct drm_device *dev)
3902 {
3903 static const int sr_latency_ns = 12000;
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3906 int plane_sr, cursor_sr;
3907 unsigned int enabled = 0;
3908
3909 if (g4x_compute_wm0(dev, 0,
3910 &g4x_wm_info, latency_ns,
3911 &g4x_cursor_wm_info, latency_ns,
3912 &planea_wm, &cursora_wm))
3913 enabled |= 1;
3914
3915 if (g4x_compute_wm0(dev, 1,
3916 &g4x_wm_info, latency_ns,
3917 &g4x_cursor_wm_info, latency_ns,
3918 &planeb_wm, &cursorb_wm))
3919 enabled |= 2;
3920
3921 plane_sr = cursor_sr = 0;
3922 if (single_plane_enabled(enabled) &&
3923 g4x_compute_srwm(dev, ffs(enabled) - 1,
3924 sr_latency_ns,
3925 &g4x_wm_info,
3926 &g4x_cursor_wm_info,
3927 &plane_sr, &cursor_sr))
3928 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3929 else
3930 I915_WRITE(FW_BLC_SELF,
3931 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3932
3933 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3934 planea_wm, cursora_wm,
3935 planeb_wm, cursorb_wm,
3936 plane_sr, cursor_sr);
3937
3938 I915_WRITE(DSPFW1,
3939 (plane_sr << DSPFW_SR_SHIFT) |
3940 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3941 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3942 planea_wm);
3943 I915_WRITE(DSPFW2,
3944 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3945 (cursora_wm << DSPFW_CURSORA_SHIFT));
3946 /* HPLL off in SR has some issues on G4x... disable it */
3947 I915_WRITE(DSPFW3,
3948 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3949 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3950 }
3951
3952 static void i965_update_wm(struct drm_device *dev)
3953 {
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 struct drm_crtc *crtc;
3956 int srwm = 1;
3957 int cursor_sr = 16;
3958
3959 /* Calc sr entries for one plane configs */
3960 crtc = single_enabled_crtc(dev);
3961 if (crtc) {
3962 /* self-refresh has much higher latency */
3963 static const int sr_latency_ns = 12000;
3964 int clock = crtc->mode.clock;
3965 int htotal = crtc->mode.htotal;
3966 int hdisplay = crtc->mode.hdisplay;
3967 int pixel_size = crtc->fb->bits_per_pixel / 8;
3968 unsigned long line_time_us;
3969 int entries;
3970
3971 line_time_us = ((htotal * 1000) / clock);
3972
3973 /* Use ns/us then divide to preserve precision */
3974 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3975 pixel_size * hdisplay;
3976 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3977 srwm = I965_FIFO_SIZE - entries;
3978 if (srwm < 0)
3979 srwm = 1;
3980 srwm &= 0x1ff;
3981 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3982 entries, srwm);
3983
3984 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3985 pixel_size * 64;
3986 entries = DIV_ROUND_UP(entries,
3987 i965_cursor_wm_info.cacheline_size);
3988 cursor_sr = i965_cursor_wm_info.fifo_size -
3989 (entries + i965_cursor_wm_info.guard_size);
3990
3991 if (cursor_sr > i965_cursor_wm_info.max_wm)
3992 cursor_sr = i965_cursor_wm_info.max_wm;
3993
3994 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3995 "cursor %d\n", srwm, cursor_sr);
3996
3997 if (IS_CRESTLINE(dev))
3998 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3999 } else {
4000 /* Turn off self refresh if both pipes are enabled */
4001 if (IS_CRESTLINE(dev))
4002 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4003 & ~FW_BLC_SELF_EN);
4004 }
4005
4006 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4007 srwm);
4008
4009 /* 965 has limitations... */
4010 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4011 (8 << 16) | (8 << 8) | (8 << 0));
4012 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4013 /* update cursor SR watermark */
4014 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4015 }
4016
4017 static void i9xx_update_wm(struct drm_device *dev)
4018 {
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020 const struct intel_watermark_params *wm_info;
4021 uint32_t fwater_lo;
4022 uint32_t fwater_hi;
4023 int cwm, srwm = 1;
4024 int fifo_size;
4025 int planea_wm, planeb_wm;
4026 struct drm_crtc *crtc, *enabled = NULL;
4027
4028 if (IS_I945GM(dev))
4029 wm_info = &i945_wm_info;
4030 else if (!IS_GEN2(dev))
4031 wm_info = &i915_wm_info;
4032 else
4033 wm_info = &i855_wm_info;
4034
4035 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4036 crtc = intel_get_crtc_for_plane(dev, 0);
4037 if (crtc->enabled && crtc->fb) {
4038 planea_wm = intel_calculate_wm(crtc->mode.clock,
4039 wm_info, fifo_size,
4040 crtc->fb->bits_per_pixel / 8,
4041 latency_ns);
4042 enabled = crtc;
4043 } else
4044 planea_wm = fifo_size - wm_info->guard_size;
4045
4046 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4047 crtc = intel_get_crtc_for_plane(dev, 1);
4048 if (crtc->enabled && crtc->fb) {
4049 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4050 wm_info, fifo_size,
4051 crtc->fb->bits_per_pixel / 8,
4052 latency_ns);
4053 if (enabled == NULL)
4054 enabled = crtc;
4055 else
4056 enabled = NULL;
4057 } else
4058 planeb_wm = fifo_size - wm_info->guard_size;
4059
4060 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4061
4062 /*
4063 * Overlay gets an aggressive default since video jitter is bad.
4064 */
4065 cwm = 2;
4066
4067 /* Play safe and disable self-refresh before adjusting watermarks. */
4068 if (IS_I945G(dev) || IS_I945GM(dev))
4069 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4070 else if (IS_I915GM(dev))
4071 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4072
4073 /* Calc sr entries for one plane configs */
4074 if (HAS_FW_BLC(dev) && enabled) {
4075 /* self-refresh has much higher latency */
4076 static const int sr_latency_ns = 6000;
4077 int clock = enabled->mode.clock;
4078 int htotal = enabled->mode.htotal;
4079 int hdisplay = enabled->mode.hdisplay;
4080 int pixel_size = enabled->fb->bits_per_pixel / 8;
4081 unsigned long line_time_us;
4082 int entries;
4083
4084 line_time_us = (htotal * 1000) / clock;
4085
4086 /* Use ns/us then divide to preserve precision */
4087 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4088 pixel_size * hdisplay;
4089 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4090 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4091 srwm = wm_info->fifo_size - entries;
4092 if (srwm < 0)
4093 srwm = 1;
4094
4095 if (IS_I945G(dev) || IS_I945GM(dev))
4096 I915_WRITE(FW_BLC_SELF,
4097 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4098 else if (IS_I915GM(dev))
4099 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4100 }
4101
4102 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4103 planea_wm, planeb_wm, cwm, srwm);
4104
4105 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4106 fwater_hi = (cwm & 0x1f);
4107
4108 /* Set request length to 8 cachelines per fetch */
4109 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4110 fwater_hi = fwater_hi | (1 << 8);
4111
4112 I915_WRITE(FW_BLC, fwater_lo);
4113 I915_WRITE(FW_BLC2, fwater_hi);
4114
4115 if (HAS_FW_BLC(dev)) {
4116 if (enabled) {
4117 if (IS_I945G(dev) || IS_I945GM(dev))
4118 I915_WRITE(FW_BLC_SELF,
4119 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4120 else if (IS_I915GM(dev))
4121 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4122 DRM_DEBUG_KMS("memory self refresh enabled\n");
4123 } else
4124 DRM_DEBUG_KMS("memory self refresh disabled\n");
4125 }
4126 }
4127
4128 static void i830_update_wm(struct drm_device *dev)
4129 {
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct drm_crtc *crtc;
4132 uint32_t fwater_lo;
4133 int planea_wm;
4134
4135 crtc = single_enabled_crtc(dev);
4136 if (crtc == NULL)
4137 return;
4138
4139 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4140 dev_priv->display.get_fifo_size(dev, 0),
4141 crtc->fb->bits_per_pixel / 8,
4142 latency_ns);
4143 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4144 fwater_lo |= (3<<8) | planea_wm;
4145
4146 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4147
4148 I915_WRITE(FW_BLC, fwater_lo);
4149 }
4150
4151 #define ILK_LP0_PLANE_LATENCY 700
4152 #define ILK_LP0_CURSOR_LATENCY 1300
4153
4154 /*
4155 * Check the wm result.
4156 *
4157 * If any calculated watermark values is larger than the maximum value that
4158 * can be programmed into the associated watermark register, that watermark
4159 * must be disabled.
4160 */
4161 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4162 int fbc_wm, int display_wm, int cursor_wm,
4163 const struct intel_watermark_params *display,
4164 const struct intel_watermark_params *cursor)
4165 {
4166 struct drm_i915_private *dev_priv = dev->dev_private;
4167
4168 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4169 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4170
4171 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4172 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4173 fbc_wm, SNB_FBC_MAX_SRWM, level);
4174
4175 /* fbc has it's own way to disable FBC WM */
4176 I915_WRITE(DISP_ARB_CTL,
4177 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4178 return false;
4179 }
4180
4181 if (display_wm > display->max_wm) {
4182 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4183 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4184 return false;
4185 }
4186
4187 if (cursor_wm > cursor->max_wm) {
4188 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4189 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4190 return false;
4191 }
4192
4193 if (!(fbc_wm || display_wm || cursor_wm)) {
4194 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4195 return false;
4196 }
4197
4198 return true;
4199 }
4200
4201 /*
4202 * Compute watermark values of WM[1-3],
4203 */
4204 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4205 int latency_ns,
4206 const struct intel_watermark_params *display,
4207 const struct intel_watermark_params *cursor,
4208 int *fbc_wm, int *display_wm, int *cursor_wm)
4209 {
4210 struct drm_crtc *crtc;
4211 unsigned long line_time_us;
4212 int hdisplay, htotal, pixel_size, clock;
4213 int line_count, line_size;
4214 int small, large;
4215 int entries;
4216
4217 if (!latency_ns) {
4218 *fbc_wm = *display_wm = *cursor_wm = 0;
4219 return false;
4220 }
4221
4222 crtc = intel_get_crtc_for_plane(dev, plane);
4223 hdisplay = crtc->mode.hdisplay;
4224 htotal = crtc->mode.htotal;
4225 clock = crtc->mode.clock;
4226 pixel_size = crtc->fb->bits_per_pixel / 8;
4227
4228 line_time_us = (htotal * 1000) / clock;
4229 line_count = (latency_ns / line_time_us + 1000) / 1000;
4230 line_size = hdisplay * pixel_size;
4231
4232 /* Use the minimum of the small and large buffer method for primary */
4233 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4234 large = line_count * line_size;
4235
4236 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4237 *display_wm = entries + display->guard_size;
4238
4239 /*
4240 * Spec says:
4241 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4242 */
4243 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4244
4245 /* calculate the self-refresh watermark for display cursor */
4246 entries = line_count * pixel_size * 64;
4247 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4248 *cursor_wm = entries + cursor->guard_size;
4249
4250 return ironlake_check_srwm(dev, level,
4251 *fbc_wm, *display_wm, *cursor_wm,
4252 display, cursor);
4253 }
4254
4255 static void ironlake_update_wm(struct drm_device *dev)
4256 {
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258 int fbc_wm, plane_wm, cursor_wm;
4259 unsigned int enabled;
4260
4261 enabled = 0;
4262 if (g4x_compute_wm0(dev, 0,
4263 &ironlake_display_wm_info,
4264 ILK_LP0_PLANE_LATENCY,
4265 &ironlake_cursor_wm_info,
4266 ILK_LP0_CURSOR_LATENCY,
4267 &plane_wm, &cursor_wm)) {
4268 I915_WRITE(WM0_PIPEA_ILK,
4269 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4270 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4271 " plane %d, " "cursor: %d\n",
4272 plane_wm, cursor_wm);
4273 enabled |= 1;
4274 }
4275
4276 if (g4x_compute_wm0(dev, 1,
4277 &ironlake_display_wm_info,
4278 ILK_LP0_PLANE_LATENCY,
4279 &ironlake_cursor_wm_info,
4280 ILK_LP0_CURSOR_LATENCY,
4281 &plane_wm, &cursor_wm)) {
4282 I915_WRITE(WM0_PIPEB_ILK,
4283 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4284 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4285 " plane %d, cursor: %d\n",
4286 plane_wm, cursor_wm);
4287 enabled |= 2;
4288 }
4289
4290 /*
4291 * Calculate and update the self-refresh watermark only when one
4292 * display plane is used.
4293 */
4294 I915_WRITE(WM3_LP_ILK, 0);
4295 I915_WRITE(WM2_LP_ILK, 0);
4296 I915_WRITE(WM1_LP_ILK, 0);
4297
4298 if (!single_plane_enabled(enabled))
4299 return;
4300 enabled = ffs(enabled) - 1;
4301
4302 /* WM1 */
4303 if (!ironlake_compute_srwm(dev, 1, enabled,
4304 ILK_READ_WM1_LATENCY() * 500,
4305 &ironlake_display_srwm_info,
4306 &ironlake_cursor_srwm_info,
4307 &fbc_wm, &plane_wm, &cursor_wm))
4308 return;
4309
4310 I915_WRITE(WM1_LP_ILK,
4311 WM1_LP_SR_EN |
4312 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4313 (fbc_wm << WM1_LP_FBC_SHIFT) |
4314 (plane_wm << WM1_LP_SR_SHIFT) |
4315 cursor_wm);
4316
4317 /* WM2 */
4318 if (!ironlake_compute_srwm(dev, 2, enabled,
4319 ILK_READ_WM2_LATENCY() * 500,
4320 &ironlake_display_srwm_info,
4321 &ironlake_cursor_srwm_info,
4322 &fbc_wm, &plane_wm, &cursor_wm))
4323 return;
4324
4325 I915_WRITE(WM2_LP_ILK,
4326 WM2_LP_EN |
4327 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4328 (fbc_wm << WM1_LP_FBC_SHIFT) |
4329 (plane_wm << WM1_LP_SR_SHIFT) |
4330 cursor_wm);
4331
4332 /*
4333 * WM3 is unsupported on ILK, probably because we don't have latency
4334 * data for that power state
4335 */
4336 }
4337
4338 static void sandybridge_update_wm(struct drm_device *dev)
4339 {
4340 struct drm_i915_private *dev_priv = dev->dev_private;
4341 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4342 int fbc_wm, plane_wm, cursor_wm;
4343 unsigned int enabled;
4344
4345 enabled = 0;
4346 if (g4x_compute_wm0(dev, 0,
4347 &sandybridge_display_wm_info, latency,
4348 &sandybridge_cursor_wm_info, latency,
4349 &plane_wm, &cursor_wm)) {
4350 I915_WRITE(WM0_PIPEA_ILK,
4351 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4352 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4353 " plane %d, " "cursor: %d\n",
4354 plane_wm, cursor_wm);
4355 enabled |= 1;
4356 }
4357
4358 if (g4x_compute_wm0(dev, 1,
4359 &sandybridge_display_wm_info, latency,
4360 &sandybridge_cursor_wm_info, latency,
4361 &plane_wm, &cursor_wm)) {
4362 I915_WRITE(WM0_PIPEB_ILK,
4363 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4364 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4365 " plane %d, cursor: %d\n",
4366 plane_wm, cursor_wm);
4367 enabled |= 2;
4368 }
4369
4370 /*
4371 * Calculate and update the self-refresh watermark only when one
4372 * display plane is used.
4373 *
4374 * SNB support 3 levels of watermark.
4375 *
4376 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4377 * and disabled in the descending order
4378 *
4379 */
4380 I915_WRITE(WM3_LP_ILK, 0);
4381 I915_WRITE(WM2_LP_ILK, 0);
4382 I915_WRITE(WM1_LP_ILK, 0);
4383
4384 if (!single_plane_enabled(enabled))
4385 return;
4386 enabled = ffs(enabled) - 1;
4387
4388 /* WM1 */
4389 if (!ironlake_compute_srwm(dev, 1, enabled,
4390 SNB_READ_WM1_LATENCY() * 500,
4391 &sandybridge_display_srwm_info,
4392 &sandybridge_cursor_srwm_info,
4393 &fbc_wm, &plane_wm, &cursor_wm))
4394 return;
4395
4396 I915_WRITE(WM1_LP_ILK,
4397 WM1_LP_SR_EN |
4398 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4399 (fbc_wm << WM1_LP_FBC_SHIFT) |
4400 (plane_wm << WM1_LP_SR_SHIFT) |
4401 cursor_wm);
4402
4403 /* WM2 */
4404 if (!ironlake_compute_srwm(dev, 2, enabled,
4405 SNB_READ_WM2_LATENCY() * 500,
4406 &sandybridge_display_srwm_info,
4407 &sandybridge_cursor_srwm_info,
4408 &fbc_wm, &plane_wm, &cursor_wm))
4409 return;
4410
4411 I915_WRITE(WM2_LP_ILK,
4412 WM2_LP_EN |
4413 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4414 (fbc_wm << WM1_LP_FBC_SHIFT) |
4415 (plane_wm << WM1_LP_SR_SHIFT) |
4416 cursor_wm);
4417
4418 /* WM3 */
4419 if (!ironlake_compute_srwm(dev, 3, enabled,
4420 SNB_READ_WM3_LATENCY() * 500,
4421 &sandybridge_display_srwm_info,
4422 &sandybridge_cursor_srwm_info,
4423 &fbc_wm, &plane_wm, &cursor_wm))
4424 return;
4425
4426 I915_WRITE(WM3_LP_ILK,
4427 WM3_LP_EN |
4428 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4429 (fbc_wm << WM1_LP_FBC_SHIFT) |
4430 (plane_wm << WM1_LP_SR_SHIFT) |
4431 cursor_wm);
4432 }
4433
4434 /**
4435 * intel_update_watermarks - update FIFO watermark values based on current modes
4436 *
4437 * Calculate watermark values for the various WM regs based on current mode
4438 * and plane configuration.
4439 *
4440 * There are several cases to deal with here:
4441 * - normal (i.e. non-self-refresh)
4442 * - self-refresh (SR) mode
4443 * - lines are large relative to FIFO size (buffer can hold up to 2)
4444 * - lines are small relative to FIFO size (buffer can hold more than 2
4445 * lines), so need to account for TLB latency
4446 *
4447 * The normal calculation is:
4448 * watermark = dotclock * bytes per pixel * latency
4449 * where latency is platform & configuration dependent (we assume pessimal
4450 * values here).
4451 *
4452 * The SR calculation is:
4453 * watermark = (trunc(latency/line time)+1) * surface width *
4454 * bytes per pixel
4455 * where
4456 * line time = htotal / dotclock
4457 * surface width = hdisplay for normal plane and 64 for cursor
4458 * and latency is assumed to be high, as above.
4459 *
4460 * The final value programmed to the register should always be rounded up,
4461 * and include an extra 2 entries to account for clock crossings.
4462 *
4463 * We don't use the sprite, so we can ignore that. And on Crestline we have
4464 * to set the non-SR watermarks to 8.
4465 */
4466 static void intel_update_watermarks(struct drm_device *dev)
4467 {
4468 struct drm_i915_private *dev_priv = dev->dev_private;
4469
4470 if (dev_priv->display.update_wm)
4471 dev_priv->display.update_wm(dev);
4472 }
4473
4474 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4475 {
4476 return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4477 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4478 }
4479
4480 /**
4481 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4482 * @crtc: CRTC structure
4483 *
4484 * A pipe may be connected to one or more outputs. Based on the depth of the
4485 * attached framebuffer, choose a good color depth to use on the pipe.
4486 *
4487 * If possible, match the pipe depth to the fb depth. In some cases, this
4488 * isn't ideal, because the connected output supports a lesser or restricted
4489 * set of depths. Resolve that here:
4490 * LVDS typically supports only 6bpc, so clamp down in that case
4491 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4492 * Displays may support a restricted set as well, check EDID and clamp as
4493 * appropriate.
4494 *
4495 * RETURNS:
4496 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4497 * true if they don't match).
4498 */
4499 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4500 unsigned int *pipe_bpp)
4501 {
4502 struct drm_device *dev = crtc->dev;
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 struct drm_encoder *encoder;
4505 struct drm_connector *connector;
4506 unsigned int display_bpc = UINT_MAX, bpc;
4507
4508 /* Walk the encoders & connectors on this crtc, get min bpc */
4509 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4510 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4511
4512 if (encoder->crtc != crtc)
4513 continue;
4514
4515 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4516 unsigned int lvds_bpc;
4517
4518 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4519 LVDS_A3_POWER_UP)
4520 lvds_bpc = 8;
4521 else
4522 lvds_bpc = 6;
4523
4524 if (lvds_bpc < display_bpc) {
4525 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4526 display_bpc = lvds_bpc;
4527 }
4528 continue;
4529 }
4530
4531 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4532 /* Use VBT settings if we have an eDP panel */
4533 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4534
4535 if (edp_bpc < display_bpc) {
4536 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4537 display_bpc = edp_bpc;
4538 }
4539 continue;
4540 }
4541
4542 /* Not one of the known troublemakers, check the EDID */
4543 list_for_each_entry(connector, &dev->mode_config.connector_list,
4544 head) {
4545 if (connector->encoder != encoder)
4546 continue;
4547
4548 if (connector->display_info.bpc < display_bpc) {
4549 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4550 display_bpc = connector->display_info.bpc;
4551 }
4552 }
4553
4554 /*
4555 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4556 * through, clamp it down. (Note: >12bpc will be caught below.)
4557 */
4558 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4559 if (display_bpc > 8 && display_bpc < 12) {
4560 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4561 display_bpc = 12;
4562 } else {
4563 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4564 display_bpc = 8;
4565 }
4566 }
4567 }
4568
4569 /*
4570 * We could just drive the pipe at the highest bpc all the time and
4571 * enable dithering as needed, but that costs bandwidth. So choose
4572 * the minimum value that expresses the full color range of the fb but
4573 * also stays within the max display bpc discovered above.
4574 */
4575
4576 switch (crtc->fb->depth) {
4577 case 8:
4578 bpc = 8; /* since we go through a colormap */
4579 break;
4580 case 15:
4581 case 16:
4582 bpc = 6; /* min is 18bpp */
4583 break;
4584 case 24:
4585 bpc = min((unsigned int)8, display_bpc);
4586 break;
4587 case 30:
4588 bpc = min((unsigned int)10, display_bpc);
4589 break;
4590 case 48:
4591 bpc = min((unsigned int)12, display_bpc);
4592 break;
4593 default:
4594 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4595 bpc = min((unsigned int)8, display_bpc);
4596 break;
4597 }
4598
4599 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4600 bpc, display_bpc);
4601
4602 *pipe_bpp = bpc * 3;
4603
4604 return display_bpc != bpc;
4605 }
4606
4607 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4608 struct drm_display_mode *mode,
4609 struct drm_display_mode *adjusted_mode,
4610 int x, int y,
4611 struct drm_framebuffer *old_fb)
4612 {
4613 struct drm_device *dev = crtc->dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4616 int pipe = intel_crtc->pipe;
4617 int plane = intel_crtc->plane;
4618 int refclk, num_connectors = 0;
4619 intel_clock_t clock, reduced_clock;
4620 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4621 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4622 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4623 struct drm_mode_config *mode_config = &dev->mode_config;
4624 struct intel_encoder *encoder;
4625 const intel_limit_t *limit;
4626 int ret;
4627 u32 temp;
4628 u32 lvds_sync = 0;
4629
4630 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4631 if (encoder->base.crtc != crtc)
4632 continue;
4633
4634 switch (encoder->type) {
4635 case INTEL_OUTPUT_LVDS:
4636 is_lvds = true;
4637 break;
4638 case INTEL_OUTPUT_SDVO:
4639 case INTEL_OUTPUT_HDMI:
4640 is_sdvo = true;
4641 if (encoder->needs_tv_clock)
4642 is_tv = true;
4643 break;
4644 case INTEL_OUTPUT_DVO:
4645 is_dvo = true;
4646 break;
4647 case INTEL_OUTPUT_TVOUT:
4648 is_tv = true;
4649 break;
4650 case INTEL_OUTPUT_ANALOG:
4651 is_crt = true;
4652 break;
4653 case INTEL_OUTPUT_DISPLAYPORT:
4654 is_dp = true;
4655 break;
4656 }
4657
4658 num_connectors++;
4659 }
4660
4661 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4662 refclk = dev_priv->lvds_ssc_freq * 1000;
4663 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4664 refclk / 1000);
4665 } else if (!IS_GEN2(dev)) {
4666 refclk = 96000;
4667 } else {
4668 refclk = 48000;
4669 }
4670
4671 /*
4672 * Returns a set of divisors for the desired target clock with the given
4673 * refclk, or FALSE. The returned values represent the clock equation:
4674 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4675 */
4676 limit = intel_limit(crtc, refclk);
4677 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4678 if (!ok) {
4679 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4680 return -EINVAL;
4681 }
4682
4683 /* Ensure that the cursor is valid for the new mode before changing... */
4684 intel_crtc_update_cursor(crtc, true);
4685
4686 if (is_lvds && dev_priv->lvds_downclock_avail) {
4687 has_reduced_clock = limit->find_pll(limit, crtc,
4688 dev_priv->lvds_downclock,
4689 refclk,
4690 &reduced_clock);
4691 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4692 /*
4693 * If the different P is found, it means that we can't
4694 * switch the display clock by using the FP0/FP1.
4695 * In such case we will disable the LVDS downclock
4696 * feature.
4697 */
4698 DRM_DEBUG_KMS("Different P is found for "
4699 "LVDS clock/downclock\n");
4700 has_reduced_clock = 0;
4701 }
4702 }
4703 /* SDVO TV has fixed PLL values depend on its clock range,
4704 this mirrors vbios setting. */
4705 if (is_sdvo && is_tv) {
4706 if (adjusted_mode->clock >= 100000
4707 && adjusted_mode->clock < 140500) {
4708 clock.p1 = 2;
4709 clock.p2 = 10;
4710 clock.n = 3;
4711 clock.m1 = 16;
4712 clock.m2 = 8;
4713 } else if (adjusted_mode->clock >= 140500
4714 && adjusted_mode->clock <= 200000) {
4715 clock.p1 = 1;
4716 clock.p2 = 10;
4717 clock.n = 6;
4718 clock.m1 = 12;
4719 clock.m2 = 8;
4720 }
4721 }
4722
4723 if (IS_PINEVIEW(dev)) {
4724 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4725 if (has_reduced_clock)
4726 fp2 = (1 << reduced_clock.n) << 16 |
4727 reduced_clock.m1 << 8 | reduced_clock.m2;
4728 } else {
4729 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4730 if (has_reduced_clock)
4731 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4732 reduced_clock.m2;
4733 }
4734
4735 dpll = DPLL_VGA_MODE_DIS;
4736
4737 if (!IS_GEN2(dev)) {
4738 if (is_lvds)
4739 dpll |= DPLLB_MODE_LVDS;
4740 else
4741 dpll |= DPLLB_MODE_DAC_SERIAL;
4742 if (is_sdvo) {
4743 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4744 if (pixel_multiplier > 1) {
4745 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4746 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4747 }
4748 dpll |= DPLL_DVO_HIGH_SPEED;
4749 }
4750 if (is_dp)
4751 dpll |= DPLL_DVO_HIGH_SPEED;
4752
4753 /* compute bitmask from p1 value */
4754 if (IS_PINEVIEW(dev))
4755 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4756 else {
4757 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4758 if (IS_G4X(dev) && has_reduced_clock)
4759 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4760 }
4761 switch (clock.p2) {
4762 case 5:
4763 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4764 break;
4765 case 7:
4766 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4767 break;
4768 case 10:
4769 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4770 break;
4771 case 14:
4772 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4773 break;
4774 }
4775 if (INTEL_INFO(dev)->gen >= 4)
4776 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4777 } else {
4778 if (is_lvds) {
4779 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4780 } else {
4781 if (clock.p1 == 2)
4782 dpll |= PLL_P1_DIVIDE_BY_TWO;
4783 else
4784 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4785 if (clock.p2 == 4)
4786 dpll |= PLL_P2_DIVIDE_BY_4;
4787 }
4788 }
4789
4790 if (is_sdvo && is_tv)
4791 dpll |= PLL_REF_INPUT_TVCLKINBC;
4792 else if (is_tv)
4793 /* XXX: just matching BIOS for now */
4794 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4795 dpll |= 3;
4796 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4797 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4798 else
4799 dpll |= PLL_REF_INPUT_DREFCLK;
4800
4801 /* setup pipeconf */
4802 pipeconf = I915_READ(PIPECONF(pipe));
4803
4804 /* Set up the display plane register */
4805 dspcntr = DISPPLANE_GAMMA_ENABLE;
4806
4807 /* Ironlake's plane is forced to pipe, bit 24 is to
4808 enable color space conversion */
4809 if (pipe == 0)
4810 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4811 else
4812 dspcntr |= DISPPLANE_SEL_PIPE_B;
4813
4814 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4815 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4816 * core speed.
4817 *
4818 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4819 * pipe == 0 check?
4820 */
4821 if (mode->clock >
4822 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4823 pipeconf |= PIPECONF_DOUBLE_WIDE;
4824 else
4825 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4826 }
4827
4828 dpll |= DPLL_VCO_ENABLE;
4829
4830 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4831 drm_mode_debug_printmodeline(mode);
4832
4833 I915_WRITE(FP0(pipe), fp);
4834 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4835
4836 POSTING_READ(DPLL(pipe));
4837 udelay(150);
4838
4839 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4840 * This is an exception to the general rule that mode_set doesn't turn
4841 * things on.
4842 */
4843 if (is_lvds) {
4844 temp = I915_READ(LVDS);
4845 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4846 if (pipe == 1) {
4847 temp |= LVDS_PIPEB_SELECT;
4848 } else {
4849 temp &= ~LVDS_PIPEB_SELECT;
4850 }
4851 /* set the corresponsding LVDS_BORDER bit */
4852 temp |= dev_priv->lvds_border_bits;
4853 /* Set the B0-B3 data pairs corresponding to whether we're going to
4854 * set the DPLLs for dual-channel mode or not.
4855 */
4856 if (clock.p2 == 7)
4857 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4858 else
4859 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4860
4861 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4862 * appropriately here, but we need to look more thoroughly into how
4863 * panels behave in the two modes.
4864 */
4865 /* set the dithering flag on LVDS as needed */
4866 if (INTEL_INFO(dev)->gen >= 4) {
4867 if (dev_priv->lvds_dither)
4868 temp |= LVDS_ENABLE_DITHER;
4869 else
4870 temp &= ~LVDS_ENABLE_DITHER;
4871 }
4872 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4873 lvds_sync |= LVDS_HSYNC_POLARITY;
4874 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4875 lvds_sync |= LVDS_VSYNC_POLARITY;
4876 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4877 != lvds_sync) {
4878 char flags[2] = "-+";
4879 DRM_INFO("Changing LVDS panel from "
4880 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4881 flags[!(temp & LVDS_HSYNC_POLARITY)],
4882 flags[!(temp & LVDS_VSYNC_POLARITY)],
4883 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4884 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4885 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4886 temp |= lvds_sync;
4887 }
4888 I915_WRITE(LVDS, temp);
4889 }
4890
4891 if (is_dp) {
4892 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4893 }
4894
4895 I915_WRITE(DPLL(pipe), dpll);
4896
4897 /* Wait for the clocks to stabilize. */
4898 POSTING_READ(DPLL(pipe));
4899 udelay(150);
4900
4901 if (INTEL_INFO(dev)->gen >= 4) {
4902 temp = 0;
4903 if (is_sdvo) {
4904 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4905 if (temp > 1)
4906 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4907 else
4908 temp = 0;
4909 }
4910 I915_WRITE(DPLL_MD(pipe), temp);
4911 } else {
4912 /* The pixel multiplier can only be updated once the
4913 * DPLL is enabled and the clocks are stable.
4914 *
4915 * So write it again.
4916 */
4917 I915_WRITE(DPLL(pipe), dpll);
4918 }
4919
4920 intel_crtc->lowfreq_avail = false;
4921 if (is_lvds && has_reduced_clock && i915_powersave) {
4922 I915_WRITE(FP1(pipe), fp2);
4923 intel_crtc->lowfreq_avail = true;
4924 if (HAS_PIPE_CXSR(dev)) {
4925 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4926 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4927 }
4928 } else {
4929 I915_WRITE(FP1(pipe), fp);
4930 if (HAS_PIPE_CXSR(dev)) {
4931 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4932 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4933 }
4934 }
4935
4936 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4937 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4938 /* the chip adds 2 halflines automatically */
4939 adjusted_mode->crtc_vdisplay -= 1;
4940 adjusted_mode->crtc_vtotal -= 1;
4941 adjusted_mode->crtc_vblank_start -= 1;
4942 adjusted_mode->crtc_vblank_end -= 1;
4943 adjusted_mode->crtc_vsync_end -= 1;
4944 adjusted_mode->crtc_vsync_start -= 1;
4945 } else
4946 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4947
4948 I915_WRITE(HTOTAL(pipe),
4949 (adjusted_mode->crtc_hdisplay - 1) |
4950 ((adjusted_mode->crtc_htotal - 1) << 16));
4951 I915_WRITE(HBLANK(pipe),
4952 (adjusted_mode->crtc_hblank_start - 1) |
4953 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4954 I915_WRITE(HSYNC(pipe),
4955 (adjusted_mode->crtc_hsync_start - 1) |
4956 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4957
4958 I915_WRITE(VTOTAL(pipe),
4959 (adjusted_mode->crtc_vdisplay - 1) |
4960 ((adjusted_mode->crtc_vtotal - 1) << 16));
4961 I915_WRITE(VBLANK(pipe),
4962 (adjusted_mode->crtc_vblank_start - 1) |
4963 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4964 I915_WRITE(VSYNC(pipe),
4965 (adjusted_mode->crtc_vsync_start - 1) |
4966 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4967
4968 /* pipesrc and dspsize control the size that is scaled from,
4969 * which should always be the user's requested size.
4970 */
4971 I915_WRITE(DSPSIZE(plane),
4972 ((mode->vdisplay - 1) << 16) |
4973 (mode->hdisplay - 1));
4974 I915_WRITE(DSPPOS(plane), 0);
4975 I915_WRITE(PIPESRC(pipe),
4976 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4977
4978 I915_WRITE(PIPECONF(pipe), pipeconf);
4979 POSTING_READ(PIPECONF(pipe));
4980 intel_enable_pipe(dev_priv, pipe, false);
4981
4982 intel_wait_for_vblank(dev, pipe);
4983
4984 I915_WRITE(DSPCNTR(plane), dspcntr);
4985 POSTING_READ(DSPCNTR(plane));
4986 intel_enable_plane(dev_priv, plane, pipe);
4987
4988 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4989
4990 intel_update_watermarks(dev);
4991
4992 return ret;
4993 }
4994
4995 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4996 struct drm_display_mode *mode,
4997 struct drm_display_mode *adjusted_mode,
4998 int x, int y,
4999 struct drm_framebuffer *old_fb)
5000 {
5001 struct drm_device *dev = crtc->dev;
5002 struct drm_i915_private *dev_priv = dev->dev_private;
5003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5004 int pipe = intel_crtc->pipe;
5005 int plane = intel_crtc->plane;
5006 int refclk, num_connectors = 0;
5007 intel_clock_t clock, reduced_clock;
5008 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5009 bool ok, has_reduced_clock = false, is_sdvo = false;
5010 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5011 struct intel_encoder *has_edp_encoder = NULL;
5012 struct drm_mode_config *mode_config = &dev->mode_config;
5013 struct intel_encoder *encoder;
5014 const intel_limit_t *limit;
5015 int ret;
5016 struct fdi_m_n m_n = {0};
5017 u32 temp;
5018 u32 lvds_sync = 0;
5019 int target_clock, pixel_multiplier, lane, link_bw, factor;
5020 unsigned int pipe_bpp;
5021 bool dither;
5022
5023 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5024 if (encoder->base.crtc != crtc)
5025 continue;
5026
5027 switch (encoder->type) {
5028 case INTEL_OUTPUT_LVDS:
5029 is_lvds = true;
5030 break;
5031 case INTEL_OUTPUT_SDVO:
5032 case INTEL_OUTPUT_HDMI:
5033 is_sdvo = true;
5034 if (encoder->needs_tv_clock)
5035 is_tv = true;
5036 break;
5037 case INTEL_OUTPUT_TVOUT:
5038 is_tv = true;
5039 break;
5040 case INTEL_OUTPUT_ANALOG:
5041 is_crt = true;
5042 break;
5043 case INTEL_OUTPUT_DISPLAYPORT:
5044 is_dp = true;
5045 break;
5046 case INTEL_OUTPUT_EDP:
5047 has_edp_encoder = encoder;
5048 break;
5049 }
5050
5051 num_connectors++;
5052 }
5053
5054 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5055 refclk = dev_priv->lvds_ssc_freq * 1000;
5056 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5057 refclk / 1000);
5058 } else {
5059 refclk = 96000;
5060 if (!has_edp_encoder ||
5061 intel_encoder_is_pch_edp(&has_edp_encoder->base))
5062 refclk = 120000; /* 120Mhz refclk */
5063 }
5064
5065 /*
5066 * Returns a set of divisors for the desired target clock with the given
5067 * refclk, or FALSE. The returned values represent the clock equation:
5068 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5069 */
5070 limit = intel_limit(crtc, refclk);
5071 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5072 if (!ok) {
5073 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5074 return -EINVAL;
5075 }
5076
5077 /* Ensure that the cursor is valid for the new mode before changing... */
5078 intel_crtc_update_cursor(crtc, true);
5079
5080 if (is_lvds && dev_priv->lvds_downclock_avail) {
5081 has_reduced_clock = limit->find_pll(limit, crtc,
5082 dev_priv->lvds_downclock,
5083 refclk,
5084 &reduced_clock);
5085 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5086 /*
5087 * If the different P is found, it means that we can't
5088 * switch the display clock by using the FP0/FP1.
5089 * In such case we will disable the LVDS downclock
5090 * feature.
5091 */
5092 DRM_DEBUG_KMS("Different P is found for "
5093 "LVDS clock/downclock\n");
5094 has_reduced_clock = 0;
5095 }
5096 }
5097 /* SDVO TV has fixed PLL values depend on its clock range,
5098 this mirrors vbios setting. */
5099 if (is_sdvo && is_tv) {
5100 if (adjusted_mode->clock >= 100000
5101 && adjusted_mode->clock < 140500) {
5102 clock.p1 = 2;
5103 clock.p2 = 10;
5104 clock.n = 3;
5105 clock.m1 = 16;
5106 clock.m2 = 8;
5107 } else if (adjusted_mode->clock >= 140500
5108 && adjusted_mode->clock <= 200000) {
5109 clock.p1 = 1;
5110 clock.p2 = 10;
5111 clock.n = 6;
5112 clock.m1 = 12;
5113 clock.m2 = 8;
5114 }
5115 }
5116
5117 /* FDI link */
5118 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5119 lane = 0;
5120 /* CPU eDP doesn't require FDI link, so just set DP M/N
5121 according to current link config */
5122 if (has_edp_encoder &&
5123 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5124 target_clock = mode->clock;
5125 intel_edp_link_config(has_edp_encoder,
5126 &lane, &link_bw);
5127 } else {
5128 /* [e]DP over FDI requires target mode clock
5129 instead of link clock */
5130 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5131 target_clock = mode->clock;
5132 else
5133 target_clock = adjusted_mode->clock;
5134
5135 /* FDI is a binary signal running at ~2.7GHz, encoding
5136 * each output octet as 10 bits. The actual frequency
5137 * is stored as a divider into a 100MHz clock, and the
5138 * mode pixel clock is stored in units of 1KHz.
5139 * Hence the bw of each lane in terms of the mode signal
5140 * is:
5141 */
5142 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5143 }
5144
5145 /* determine panel color depth */
5146 temp = I915_READ(PIPECONF(pipe));
5147 temp &= ~PIPE_BPC_MASK;
5148 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5149 switch (pipe_bpp) {
5150 case 18:
5151 temp |= PIPE_6BPC;
5152 break;
5153 case 24:
5154 temp |= PIPE_8BPC;
5155 break;
5156 case 30:
5157 temp |= PIPE_10BPC;
5158 break;
5159 case 36:
5160 temp |= PIPE_12BPC;
5161 break;
5162 default:
5163 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
5164 temp |= PIPE_8BPC;
5165 pipe_bpp = 24;
5166 break;
5167 }
5168
5169 intel_crtc->bpp = pipe_bpp;
5170 I915_WRITE(PIPECONF(pipe), temp);
5171
5172 if (!lane) {
5173 /*
5174 * Account for spread spectrum to avoid
5175 * oversubscribing the link. Max center spread
5176 * is 2.5%; use 5% for safety's sake.
5177 */
5178 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5179 lane = bps / (link_bw * 8) + 1;
5180 }
5181
5182 intel_crtc->fdi_lanes = lane;
5183
5184 if (pixel_multiplier > 1)
5185 link_bw *= pixel_multiplier;
5186 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5187 &m_n);
5188
5189 /* Ironlake: try to setup display ref clock before DPLL
5190 * enabling. This is only under driver's control after
5191 * PCH B stepping, previous chipset stepping should be
5192 * ignoring this setting.
5193 */
5194 temp = I915_READ(PCH_DREF_CONTROL);
5195 /* Always enable nonspread source */
5196 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5197 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5198 temp &= ~DREF_SSC_SOURCE_MASK;
5199 temp |= DREF_SSC_SOURCE_ENABLE;
5200 I915_WRITE(PCH_DREF_CONTROL, temp);
5201
5202 POSTING_READ(PCH_DREF_CONTROL);
5203 udelay(200);
5204
5205 if (has_edp_encoder) {
5206 if (intel_panel_use_ssc(dev_priv)) {
5207 temp |= DREF_SSC1_ENABLE;
5208 I915_WRITE(PCH_DREF_CONTROL, temp);
5209
5210 POSTING_READ(PCH_DREF_CONTROL);
5211 udelay(200);
5212 }
5213 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5214
5215 /* Enable CPU source on CPU attached eDP */
5216 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5217 if (intel_panel_use_ssc(dev_priv))
5218 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5219 else
5220 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5221 } else {
5222 /* Enable SSC on PCH eDP if needed */
5223 if (intel_panel_use_ssc(dev_priv)) {
5224 DRM_ERROR("enabling SSC on PCH\n");
5225 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5226 }
5227 }
5228 I915_WRITE(PCH_DREF_CONTROL, temp);
5229 POSTING_READ(PCH_DREF_CONTROL);
5230 udelay(200);
5231 }
5232
5233 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5234 if (has_reduced_clock)
5235 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5236 reduced_clock.m2;
5237
5238 /* Enable autotuning of the PLL clock (if permissible) */
5239 factor = 21;
5240 if (is_lvds) {
5241 if ((intel_panel_use_ssc(dev_priv) &&
5242 dev_priv->lvds_ssc_freq == 100) ||
5243 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5244 factor = 25;
5245 } else if (is_sdvo && is_tv)
5246 factor = 20;
5247
5248 if (clock.m1 < factor * clock.n)
5249 fp |= FP_CB_TUNE;
5250
5251 dpll = 0;
5252
5253 if (is_lvds)
5254 dpll |= DPLLB_MODE_LVDS;
5255 else
5256 dpll |= DPLLB_MODE_DAC_SERIAL;
5257 if (is_sdvo) {
5258 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5259 if (pixel_multiplier > 1) {
5260 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5261 }
5262 dpll |= DPLL_DVO_HIGH_SPEED;
5263 }
5264 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5265 dpll |= DPLL_DVO_HIGH_SPEED;
5266
5267 /* compute bitmask from p1 value */
5268 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5269 /* also FPA1 */
5270 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5271
5272 switch (clock.p2) {
5273 case 5:
5274 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5275 break;
5276 case 7:
5277 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5278 break;
5279 case 10:
5280 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5281 break;
5282 case 14:
5283 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5284 break;
5285 }
5286
5287 if (is_sdvo && is_tv)
5288 dpll |= PLL_REF_INPUT_TVCLKINBC;
5289 else if (is_tv)
5290 /* XXX: just matching BIOS for now */
5291 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5292 dpll |= 3;
5293 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5294 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5295 else
5296 dpll |= PLL_REF_INPUT_DREFCLK;
5297
5298 /* setup pipeconf */
5299 pipeconf = I915_READ(PIPECONF(pipe));
5300
5301 /* Set up the display plane register */
5302 dspcntr = DISPPLANE_GAMMA_ENABLE;
5303
5304 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5305 drm_mode_debug_printmodeline(mode);
5306
5307 /* PCH eDP needs FDI, but CPU eDP does not */
5308 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5309 I915_WRITE(PCH_FP0(pipe), fp);
5310 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5311
5312 POSTING_READ(PCH_DPLL(pipe));
5313 udelay(150);
5314 }
5315
5316 /* enable transcoder DPLL */
5317 if (HAS_PCH_CPT(dev)) {
5318 temp = I915_READ(PCH_DPLL_SEL);
5319 switch (pipe) {
5320 case 0:
5321 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5322 break;
5323 case 1:
5324 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5325 break;
5326 case 2:
5327 /* FIXME: manage transcoder PLLs? */
5328 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5329 break;
5330 default:
5331 BUG();
5332 }
5333 I915_WRITE(PCH_DPLL_SEL, temp);
5334
5335 POSTING_READ(PCH_DPLL_SEL);
5336 udelay(150);
5337 }
5338
5339 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5340 * This is an exception to the general rule that mode_set doesn't turn
5341 * things on.
5342 */
5343 if (is_lvds) {
5344 temp = I915_READ(PCH_LVDS);
5345 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5346 if (pipe == 1) {
5347 if (HAS_PCH_CPT(dev))
5348 temp |= PORT_TRANS_B_SEL_CPT;
5349 else
5350 temp |= LVDS_PIPEB_SELECT;
5351 } else {
5352 if (HAS_PCH_CPT(dev))
5353 temp &= ~PORT_TRANS_SEL_MASK;
5354 else
5355 temp &= ~LVDS_PIPEB_SELECT;
5356 }
5357 /* set the corresponsding LVDS_BORDER bit */
5358 temp |= dev_priv->lvds_border_bits;
5359 /* Set the B0-B3 data pairs corresponding to whether we're going to
5360 * set the DPLLs for dual-channel mode or not.
5361 */
5362 if (clock.p2 == 7)
5363 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5364 else
5365 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5366
5367 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5368 * appropriately here, but we need to look more thoroughly into how
5369 * panels behave in the two modes.
5370 */
5371 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5372 lvds_sync |= LVDS_HSYNC_POLARITY;
5373 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5374 lvds_sync |= LVDS_VSYNC_POLARITY;
5375 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5376 != lvds_sync) {
5377 char flags[2] = "-+";
5378 DRM_INFO("Changing LVDS panel from "
5379 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5380 flags[!(temp & LVDS_HSYNC_POLARITY)],
5381 flags[!(temp & LVDS_VSYNC_POLARITY)],
5382 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5383 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5384 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5385 temp |= lvds_sync;
5386 }
5387 I915_WRITE(PCH_LVDS, temp);
5388 }
5389
5390 pipeconf &= ~PIPECONF_DITHER_EN;
5391 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5392 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5393 pipeconf |= PIPECONF_DITHER_EN;
5394 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5395 }
5396 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5397 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5398 } else {
5399 /* For non-DP output, clear any trans DP clock recovery setting.*/
5400 I915_WRITE(TRANSDATA_M1(pipe), 0);
5401 I915_WRITE(TRANSDATA_N1(pipe), 0);
5402 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5403 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5404 }
5405
5406 if (!has_edp_encoder ||
5407 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5408 I915_WRITE(PCH_DPLL(pipe), dpll);
5409
5410 /* Wait for the clocks to stabilize. */
5411 POSTING_READ(PCH_DPLL(pipe));
5412 udelay(150);
5413
5414 /* The pixel multiplier can only be updated once the
5415 * DPLL is enabled and the clocks are stable.
5416 *
5417 * So write it again.
5418 */
5419 I915_WRITE(PCH_DPLL(pipe), dpll);
5420 }
5421
5422 intel_crtc->lowfreq_avail = false;
5423 if (is_lvds && has_reduced_clock && i915_powersave) {
5424 I915_WRITE(PCH_FP1(pipe), fp2);
5425 intel_crtc->lowfreq_avail = true;
5426 if (HAS_PIPE_CXSR(dev)) {
5427 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5428 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5429 }
5430 } else {
5431 I915_WRITE(PCH_FP1(pipe), fp);
5432 if (HAS_PIPE_CXSR(dev)) {
5433 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5434 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5435 }
5436 }
5437
5438 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5439 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5440 /* the chip adds 2 halflines automatically */
5441 adjusted_mode->crtc_vdisplay -= 1;
5442 adjusted_mode->crtc_vtotal -= 1;
5443 adjusted_mode->crtc_vblank_start -= 1;
5444 adjusted_mode->crtc_vblank_end -= 1;
5445 adjusted_mode->crtc_vsync_end -= 1;
5446 adjusted_mode->crtc_vsync_start -= 1;
5447 } else
5448 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5449
5450 I915_WRITE(HTOTAL(pipe),
5451 (adjusted_mode->crtc_hdisplay - 1) |
5452 ((adjusted_mode->crtc_htotal - 1) << 16));
5453 I915_WRITE(HBLANK(pipe),
5454 (adjusted_mode->crtc_hblank_start - 1) |
5455 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5456 I915_WRITE(HSYNC(pipe),
5457 (adjusted_mode->crtc_hsync_start - 1) |
5458 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5459
5460 I915_WRITE(VTOTAL(pipe),
5461 (adjusted_mode->crtc_vdisplay - 1) |
5462 ((adjusted_mode->crtc_vtotal - 1) << 16));
5463 I915_WRITE(VBLANK(pipe),
5464 (adjusted_mode->crtc_vblank_start - 1) |
5465 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5466 I915_WRITE(VSYNC(pipe),
5467 (adjusted_mode->crtc_vsync_start - 1) |
5468 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5469
5470 /* pipesrc controls the size that is scaled from, which should
5471 * always be the user's requested size.
5472 */
5473 I915_WRITE(PIPESRC(pipe),
5474 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5475
5476 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5477 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5478 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5479 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5480
5481 if (has_edp_encoder &&
5482 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5483 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5484 }
5485
5486 I915_WRITE(PIPECONF(pipe), pipeconf);
5487 POSTING_READ(PIPECONF(pipe));
5488
5489 intel_wait_for_vblank(dev, pipe);
5490
5491 if (IS_GEN5(dev)) {
5492 /* enable address swizzle for tiling buffer */
5493 temp = I915_READ(DISP_ARB_CTL);
5494 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5495 }
5496
5497 I915_WRITE(DSPCNTR(plane), dspcntr);
5498 POSTING_READ(DSPCNTR(plane));
5499
5500 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5501
5502 intel_update_watermarks(dev);
5503
5504 return ret;
5505 }
5506
5507 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5508 struct drm_display_mode *mode,
5509 struct drm_display_mode *adjusted_mode,
5510 int x, int y,
5511 struct drm_framebuffer *old_fb)
5512 {
5513 struct drm_device *dev = crtc->dev;
5514 struct drm_i915_private *dev_priv = dev->dev_private;
5515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5516 int pipe = intel_crtc->pipe;
5517 int ret;
5518
5519 drm_vblank_pre_modeset(dev, pipe);
5520
5521 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5522 x, y, old_fb);
5523
5524 drm_vblank_post_modeset(dev, pipe);
5525
5526 return ret;
5527 }
5528
5529 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5530 void intel_crtc_load_lut(struct drm_crtc *crtc)
5531 {
5532 struct drm_device *dev = crtc->dev;
5533 struct drm_i915_private *dev_priv = dev->dev_private;
5534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5535 int palreg = PALETTE(intel_crtc->pipe);
5536 int i;
5537
5538 /* The clocks have to be on to load the palette. */
5539 if (!crtc->enabled)
5540 return;
5541
5542 /* use legacy palette for Ironlake */
5543 if (HAS_PCH_SPLIT(dev))
5544 palreg = LGC_PALETTE(intel_crtc->pipe);
5545
5546 for (i = 0; i < 256; i++) {
5547 I915_WRITE(palreg + 4 * i,
5548 (intel_crtc->lut_r[i] << 16) |
5549 (intel_crtc->lut_g[i] << 8) |
5550 intel_crtc->lut_b[i]);
5551 }
5552 }
5553
5554 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5555 {
5556 struct drm_device *dev = crtc->dev;
5557 struct drm_i915_private *dev_priv = dev->dev_private;
5558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5559 bool visible = base != 0;
5560 u32 cntl;
5561
5562 if (intel_crtc->cursor_visible == visible)
5563 return;
5564
5565 cntl = I915_READ(_CURACNTR);
5566 if (visible) {
5567 /* On these chipsets we can only modify the base whilst
5568 * the cursor is disabled.
5569 */
5570 I915_WRITE(_CURABASE, base);
5571
5572 cntl &= ~(CURSOR_FORMAT_MASK);
5573 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5574 cntl |= CURSOR_ENABLE |
5575 CURSOR_GAMMA_ENABLE |
5576 CURSOR_FORMAT_ARGB;
5577 } else
5578 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5579 I915_WRITE(_CURACNTR, cntl);
5580
5581 intel_crtc->cursor_visible = visible;
5582 }
5583
5584 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5585 {
5586 struct drm_device *dev = crtc->dev;
5587 struct drm_i915_private *dev_priv = dev->dev_private;
5588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5589 int pipe = intel_crtc->pipe;
5590 bool visible = base != 0;
5591
5592 if (intel_crtc->cursor_visible != visible) {
5593 uint32_t cntl = I915_READ(CURCNTR(pipe));
5594 if (base) {
5595 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5596 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5597 cntl |= pipe << 28; /* Connect to correct pipe */
5598 } else {
5599 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5600 cntl |= CURSOR_MODE_DISABLE;
5601 }
5602 I915_WRITE(CURCNTR(pipe), cntl);
5603
5604 intel_crtc->cursor_visible = visible;
5605 }
5606 /* and commit changes on next vblank */
5607 I915_WRITE(CURBASE(pipe), base);
5608 }
5609
5610 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5611 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5612 bool on)
5613 {
5614 struct drm_device *dev = crtc->dev;
5615 struct drm_i915_private *dev_priv = dev->dev_private;
5616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5617 int pipe = intel_crtc->pipe;
5618 int x = intel_crtc->cursor_x;
5619 int y = intel_crtc->cursor_y;
5620 u32 base, pos;
5621 bool visible;
5622
5623 pos = 0;
5624
5625 if (on && crtc->enabled && crtc->fb) {
5626 base = intel_crtc->cursor_addr;
5627 if (x > (int) crtc->fb->width)
5628 base = 0;
5629
5630 if (y > (int) crtc->fb->height)
5631 base = 0;
5632 } else
5633 base = 0;
5634
5635 if (x < 0) {
5636 if (x + intel_crtc->cursor_width < 0)
5637 base = 0;
5638
5639 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5640 x = -x;
5641 }
5642 pos |= x << CURSOR_X_SHIFT;
5643
5644 if (y < 0) {
5645 if (y + intel_crtc->cursor_height < 0)
5646 base = 0;
5647
5648 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5649 y = -y;
5650 }
5651 pos |= y << CURSOR_Y_SHIFT;
5652
5653 visible = base != 0;
5654 if (!visible && !intel_crtc->cursor_visible)
5655 return;
5656
5657 I915_WRITE(CURPOS(pipe), pos);
5658 if (IS_845G(dev) || IS_I865G(dev))
5659 i845_update_cursor(crtc, base);
5660 else
5661 i9xx_update_cursor(crtc, base);
5662
5663 if (visible)
5664 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5665 }
5666
5667 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5668 struct drm_file *file,
5669 uint32_t handle,
5670 uint32_t width, uint32_t height)
5671 {
5672 struct drm_device *dev = crtc->dev;
5673 struct drm_i915_private *dev_priv = dev->dev_private;
5674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5675 struct drm_i915_gem_object *obj;
5676 uint32_t addr;
5677 int ret;
5678
5679 DRM_DEBUG_KMS("\n");
5680
5681 /* if we want to turn off the cursor ignore width and height */
5682 if (!handle) {
5683 DRM_DEBUG_KMS("cursor off\n");
5684 addr = 0;
5685 obj = NULL;
5686 mutex_lock(&dev->struct_mutex);
5687 goto finish;
5688 }
5689
5690 /* Currently we only support 64x64 cursors */
5691 if (width != 64 || height != 64) {
5692 DRM_ERROR("we currently only support 64x64 cursors\n");
5693 return -EINVAL;
5694 }
5695
5696 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5697 if (&obj->base == NULL)
5698 return -ENOENT;
5699
5700 if (obj->base.size < width * height * 4) {
5701 DRM_ERROR("buffer is to small\n");
5702 ret = -ENOMEM;
5703 goto fail;
5704 }
5705
5706 /* we only need to pin inside GTT if cursor is non-phy */
5707 mutex_lock(&dev->struct_mutex);
5708 if (!dev_priv->info->cursor_needs_physical) {
5709 if (obj->tiling_mode) {
5710 DRM_ERROR("cursor cannot be tiled\n");
5711 ret = -EINVAL;
5712 goto fail_locked;
5713 }
5714
5715 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5716 if (ret) {
5717 DRM_ERROR("failed to move cursor bo into the GTT\n");
5718 goto fail_locked;
5719 }
5720
5721 ret = i915_gem_object_put_fence(obj);
5722 if (ret) {
5723 DRM_ERROR("failed to release fence for cursor");
5724 goto fail_unpin;
5725 }
5726
5727 addr = obj->gtt_offset;
5728 } else {
5729 int align = IS_I830(dev) ? 16 * 1024 : 256;
5730 ret = i915_gem_attach_phys_object(dev, obj,
5731 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5732 align);
5733 if (ret) {
5734 DRM_ERROR("failed to attach phys object\n");
5735 goto fail_locked;
5736 }
5737 addr = obj->phys_obj->handle->busaddr;
5738 }
5739
5740 if (IS_GEN2(dev))
5741 I915_WRITE(CURSIZE, (height << 12) | width);
5742
5743 finish:
5744 if (intel_crtc->cursor_bo) {
5745 if (dev_priv->info->cursor_needs_physical) {
5746 if (intel_crtc->cursor_bo != obj)
5747 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5748 } else
5749 i915_gem_object_unpin(intel_crtc->cursor_bo);
5750 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5751 }
5752
5753 mutex_unlock(&dev->struct_mutex);
5754
5755 intel_crtc->cursor_addr = addr;
5756 intel_crtc->cursor_bo = obj;
5757 intel_crtc->cursor_width = width;
5758 intel_crtc->cursor_height = height;
5759
5760 intel_crtc_update_cursor(crtc, true);
5761
5762 return 0;
5763 fail_unpin:
5764 i915_gem_object_unpin(obj);
5765 fail_locked:
5766 mutex_unlock(&dev->struct_mutex);
5767 fail:
5768 drm_gem_object_unreference_unlocked(&obj->base);
5769 return ret;
5770 }
5771
5772 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5773 {
5774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5775
5776 intel_crtc->cursor_x = x;
5777 intel_crtc->cursor_y = y;
5778
5779 intel_crtc_update_cursor(crtc, true);
5780
5781 return 0;
5782 }
5783
5784 /** Sets the color ramps on behalf of RandR */
5785 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5786 u16 blue, int regno)
5787 {
5788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5789
5790 intel_crtc->lut_r[regno] = red >> 8;
5791 intel_crtc->lut_g[regno] = green >> 8;
5792 intel_crtc->lut_b[regno] = blue >> 8;
5793 }
5794
5795 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5796 u16 *blue, int regno)
5797 {
5798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799
5800 *red = intel_crtc->lut_r[regno] << 8;
5801 *green = intel_crtc->lut_g[regno] << 8;
5802 *blue = intel_crtc->lut_b[regno] << 8;
5803 }
5804
5805 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5806 u16 *blue, uint32_t start, uint32_t size)
5807 {
5808 int end = (start + size > 256) ? 256 : start + size, i;
5809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5810
5811 for (i = start; i < end; i++) {
5812 intel_crtc->lut_r[i] = red[i] >> 8;
5813 intel_crtc->lut_g[i] = green[i] >> 8;
5814 intel_crtc->lut_b[i] = blue[i] >> 8;
5815 }
5816
5817 intel_crtc_load_lut(crtc);
5818 }
5819
5820 /**
5821 * Get a pipe with a simple mode set on it for doing load-based monitor
5822 * detection.
5823 *
5824 * It will be up to the load-detect code to adjust the pipe as appropriate for
5825 * its requirements. The pipe will be connected to no other encoders.
5826 *
5827 * Currently this code will only succeed if there is a pipe with no encoders
5828 * configured for it. In the future, it could choose to temporarily disable
5829 * some outputs to free up a pipe for its use.
5830 *
5831 * \return crtc, or NULL if no pipes are available.
5832 */
5833
5834 /* VESA 640x480x72Hz mode to set on the pipe */
5835 static struct drm_display_mode load_detect_mode = {
5836 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5837 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5838 };
5839
5840 static struct drm_framebuffer *
5841 intel_framebuffer_create(struct drm_device *dev,
5842 struct drm_mode_fb_cmd *mode_cmd,
5843 struct drm_i915_gem_object *obj)
5844 {
5845 struct intel_framebuffer *intel_fb;
5846 int ret;
5847
5848 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5849 if (!intel_fb) {
5850 drm_gem_object_unreference_unlocked(&obj->base);
5851 return ERR_PTR(-ENOMEM);
5852 }
5853
5854 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5855 if (ret) {
5856 drm_gem_object_unreference_unlocked(&obj->base);
5857 kfree(intel_fb);
5858 return ERR_PTR(ret);
5859 }
5860
5861 return &intel_fb->base;
5862 }
5863
5864 static u32
5865 intel_framebuffer_pitch_for_width(int width, int bpp)
5866 {
5867 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5868 return ALIGN(pitch, 64);
5869 }
5870
5871 static u32
5872 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5873 {
5874 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5875 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5876 }
5877
5878 static struct drm_framebuffer *
5879 intel_framebuffer_create_for_mode(struct drm_device *dev,
5880 struct drm_display_mode *mode,
5881 int depth, int bpp)
5882 {
5883 struct drm_i915_gem_object *obj;
5884 struct drm_mode_fb_cmd mode_cmd;
5885
5886 obj = i915_gem_alloc_object(dev,
5887 intel_framebuffer_size_for_mode(mode, bpp));
5888 if (obj == NULL)
5889 return ERR_PTR(-ENOMEM);
5890
5891 mode_cmd.width = mode->hdisplay;
5892 mode_cmd.height = mode->vdisplay;
5893 mode_cmd.depth = depth;
5894 mode_cmd.bpp = bpp;
5895 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5896
5897 return intel_framebuffer_create(dev, &mode_cmd, obj);
5898 }
5899
5900 static struct drm_framebuffer *
5901 mode_fits_in_fbdev(struct drm_device *dev,
5902 struct drm_display_mode *mode)
5903 {
5904 struct drm_i915_private *dev_priv = dev->dev_private;
5905 struct drm_i915_gem_object *obj;
5906 struct drm_framebuffer *fb;
5907
5908 if (dev_priv->fbdev == NULL)
5909 return NULL;
5910
5911 obj = dev_priv->fbdev->ifb.obj;
5912 if (obj == NULL)
5913 return NULL;
5914
5915 fb = &dev_priv->fbdev->ifb.base;
5916 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5917 fb->bits_per_pixel))
5918 return NULL;
5919
5920 if (obj->base.size < mode->vdisplay * fb->pitch)
5921 return NULL;
5922
5923 return fb;
5924 }
5925
5926 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5927 struct drm_connector *connector,
5928 struct drm_display_mode *mode,
5929 struct intel_load_detect_pipe *old)
5930 {
5931 struct intel_crtc *intel_crtc;
5932 struct drm_crtc *possible_crtc;
5933 struct drm_encoder *encoder = &intel_encoder->base;
5934 struct drm_crtc *crtc = NULL;
5935 struct drm_device *dev = encoder->dev;
5936 struct drm_framebuffer *old_fb;
5937 int i = -1;
5938
5939 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5940 connector->base.id, drm_get_connector_name(connector),
5941 encoder->base.id, drm_get_encoder_name(encoder));
5942
5943 /*
5944 * Algorithm gets a little messy:
5945 *
5946 * - if the connector already has an assigned crtc, use it (but make
5947 * sure it's on first)
5948 *
5949 * - try to find the first unused crtc that can drive this connector,
5950 * and use that if we find one
5951 */
5952
5953 /* See if we already have a CRTC for this connector */
5954 if (encoder->crtc) {
5955 crtc = encoder->crtc;
5956
5957 intel_crtc = to_intel_crtc(crtc);
5958 old->dpms_mode = intel_crtc->dpms_mode;
5959 old->load_detect_temp = false;
5960
5961 /* Make sure the crtc and connector are running */
5962 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5963 struct drm_encoder_helper_funcs *encoder_funcs;
5964 struct drm_crtc_helper_funcs *crtc_funcs;
5965
5966 crtc_funcs = crtc->helper_private;
5967 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5968
5969 encoder_funcs = encoder->helper_private;
5970 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5971 }
5972
5973 return true;
5974 }
5975
5976 /* Find an unused one (if possible) */
5977 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5978 i++;
5979 if (!(encoder->possible_crtcs & (1 << i)))
5980 continue;
5981 if (!possible_crtc->enabled) {
5982 crtc = possible_crtc;
5983 break;
5984 }
5985 }
5986
5987 /*
5988 * If we didn't find an unused CRTC, don't use any.
5989 */
5990 if (!crtc) {
5991 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5992 return false;
5993 }
5994
5995 encoder->crtc = crtc;
5996 connector->encoder = encoder;
5997
5998 intel_crtc = to_intel_crtc(crtc);
5999 old->dpms_mode = intel_crtc->dpms_mode;
6000 old->load_detect_temp = true;
6001 old->release_fb = NULL;
6002
6003 if (!mode)
6004 mode = &load_detect_mode;
6005
6006 old_fb = crtc->fb;
6007
6008 /* We need a framebuffer large enough to accommodate all accesses
6009 * that the plane may generate whilst we perform load detection.
6010 * We can not rely on the fbcon either being present (we get called
6011 * during its initialisation to detect all boot displays, or it may
6012 * not even exist) or that it is large enough to satisfy the
6013 * requested mode.
6014 */
6015 crtc->fb = mode_fits_in_fbdev(dev, mode);
6016 if (crtc->fb == NULL) {
6017 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6018 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6019 old->release_fb = crtc->fb;
6020 } else
6021 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6022 if (IS_ERR(crtc->fb)) {
6023 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6024 crtc->fb = old_fb;
6025 return false;
6026 }
6027
6028 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6029 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6030 if (old->release_fb)
6031 old->release_fb->funcs->destroy(old->release_fb);
6032 crtc->fb = old_fb;
6033 return false;
6034 }
6035
6036 /* let the connector get through one full cycle before testing */
6037 intel_wait_for_vblank(dev, intel_crtc->pipe);
6038
6039 return true;
6040 }
6041
6042 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6043 struct drm_connector *connector,
6044 struct intel_load_detect_pipe *old)
6045 {
6046 struct drm_encoder *encoder = &intel_encoder->base;
6047 struct drm_device *dev = encoder->dev;
6048 struct drm_crtc *crtc = encoder->crtc;
6049 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6050 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6051
6052 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6053 connector->base.id, drm_get_connector_name(connector),
6054 encoder->base.id, drm_get_encoder_name(encoder));
6055
6056 if (old->load_detect_temp) {
6057 connector->encoder = NULL;
6058 drm_helper_disable_unused_functions(dev);
6059
6060 if (old->release_fb)
6061 old->release_fb->funcs->destroy(old->release_fb);
6062
6063 return;
6064 }
6065
6066 /* Switch crtc and encoder back off if necessary */
6067 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6068 encoder_funcs->dpms(encoder, old->dpms_mode);
6069 crtc_funcs->dpms(crtc, old->dpms_mode);
6070 }
6071 }
6072
6073 /* Returns the clock of the currently programmed mode of the given pipe. */
6074 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6075 {
6076 struct drm_i915_private *dev_priv = dev->dev_private;
6077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6078 int pipe = intel_crtc->pipe;
6079 u32 dpll = I915_READ(DPLL(pipe));
6080 u32 fp;
6081 intel_clock_t clock;
6082
6083 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6084 fp = I915_READ(FP0(pipe));
6085 else
6086 fp = I915_READ(FP1(pipe));
6087
6088 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6089 if (IS_PINEVIEW(dev)) {
6090 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6091 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6092 } else {
6093 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6094 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6095 }
6096
6097 if (!IS_GEN2(dev)) {
6098 if (IS_PINEVIEW(dev))
6099 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6100 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6101 else
6102 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6103 DPLL_FPA01_P1_POST_DIV_SHIFT);
6104
6105 switch (dpll & DPLL_MODE_MASK) {
6106 case DPLLB_MODE_DAC_SERIAL:
6107 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6108 5 : 10;
6109 break;
6110 case DPLLB_MODE_LVDS:
6111 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6112 7 : 14;
6113 break;
6114 default:
6115 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6116 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6117 return 0;
6118 }
6119
6120 /* XXX: Handle the 100Mhz refclk */
6121 intel_clock(dev, 96000, &clock);
6122 } else {
6123 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6124
6125 if (is_lvds) {
6126 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6127 DPLL_FPA01_P1_POST_DIV_SHIFT);
6128 clock.p2 = 14;
6129
6130 if ((dpll & PLL_REF_INPUT_MASK) ==
6131 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6132 /* XXX: might not be 66MHz */
6133 intel_clock(dev, 66000, &clock);
6134 } else
6135 intel_clock(dev, 48000, &clock);
6136 } else {
6137 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6138 clock.p1 = 2;
6139 else {
6140 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6141 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6142 }
6143 if (dpll & PLL_P2_DIVIDE_BY_4)
6144 clock.p2 = 4;
6145 else
6146 clock.p2 = 2;
6147
6148 intel_clock(dev, 48000, &clock);
6149 }
6150 }
6151
6152 /* XXX: It would be nice to validate the clocks, but we can't reuse
6153 * i830PllIsValid() because it relies on the xf86_config connector
6154 * configuration being accurate, which it isn't necessarily.
6155 */
6156
6157 return clock.dot;
6158 }
6159
6160 /** Returns the currently programmed mode of the given pipe. */
6161 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6162 struct drm_crtc *crtc)
6163 {
6164 struct drm_i915_private *dev_priv = dev->dev_private;
6165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6166 int pipe = intel_crtc->pipe;
6167 struct drm_display_mode *mode;
6168 int htot = I915_READ(HTOTAL(pipe));
6169 int hsync = I915_READ(HSYNC(pipe));
6170 int vtot = I915_READ(VTOTAL(pipe));
6171 int vsync = I915_READ(VSYNC(pipe));
6172
6173 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6174 if (!mode)
6175 return NULL;
6176
6177 mode->clock = intel_crtc_clock_get(dev, crtc);
6178 mode->hdisplay = (htot & 0xffff) + 1;
6179 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6180 mode->hsync_start = (hsync & 0xffff) + 1;
6181 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6182 mode->vdisplay = (vtot & 0xffff) + 1;
6183 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6184 mode->vsync_start = (vsync & 0xffff) + 1;
6185 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6186
6187 drm_mode_set_name(mode);
6188 drm_mode_set_crtcinfo(mode, 0);
6189
6190 return mode;
6191 }
6192
6193 #define GPU_IDLE_TIMEOUT 500 /* ms */
6194
6195 /* When this timer fires, we've been idle for awhile */
6196 static void intel_gpu_idle_timer(unsigned long arg)
6197 {
6198 struct drm_device *dev = (struct drm_device *)arg;
6199 drm_i915_private_t *dev_priv = dev->dev_private;
6200
6201 if (!list_empty(&dev_priv->mm.active_list)) {
6202 /* Still processing requests, so just re-arm the timer. */
6203 mod_timer(&dev_priv->idle_timer, jiffies +
6204 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6205 return;
6206 }
6207
6208 dev_priv->busy = false;
6209 queue_work(dev_priv->wq, &dev_priv->idle_work);
6210 }
6211
6212 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6213
6214 static void intel_crtc_idle_timer(unsigned long arg)
6215 {
6216 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6217 struct drm_crtc *crtc = &intel_crtc->base;
6218 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6219 struct intel_framebuffer *intel_fb;
6220
6221 intel_fb = to_intel_framebuffer(crtc->fb);
6222 if (intel_fb && intel_fb->obj->active) {
6223 /* The framebuffer is still being accessed by the GPU. */
6224 mod_timer(&intel_crtc->idle_timer, jiffies +
6225 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6226 return;
6227 }
6228
6229 intel_crtc->busy = false;
6230 queue_work(dev_priv->wq, &dev_priv->idle_work);
6231 }
6232
6233 static void intel_increase_pllclock(struct drm_crtc *crtc)
6234 {
6235 struct drm_device *dev = crtc->dev;
6236 drm_i915_private_t *dev_priv = dev->dev_private;
6237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6238 int pipe = intel_crtc->pipe;
6239 int dpll_reg = DPLL(pipe);
6240 int dpll;
6241
6242 if (HAS_PCH_SPLIT(dev))
6243 return;
6244
6245 if (!dev_priv->lvds_downclock_avail)
6246 return;
6247
6248 dpll = I915_READ(dpll_reg);
6249 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6250 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6251
6252 /* Unlock panel regs */
6253 I915_WRITE(PP_CONTROL,
6254 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6255
6256 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6257 I915_WRITE(dpll_reg, dpll);
6258 intel_wait_for_vblank(dev, pipe);
6259
6260 dpll = I915_READ(dpll_reg);
6261 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6262 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6263
6264 /* ...and lock them again */
6265 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6266 }
6267
6268 /* Schedule downclock */
6269 mod_timer(&intel_crtc->idle_timer, jiffies +
6270 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6271 }
6272
6273 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6274 {
6275 struct drm_device *dev = crtc->dev;
6276 drm_i915_private_t *dev_priv = dev->dev_private;
6277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6278 int pipe = intel_crtc->pipe;
6279 int dpll_reg = DPLL(pipe);
6280 int dpll = I915_READ(dpll_reg);
6281
6282 if (HAS_PCH_SPLIT(dev))
6283 return;
6284
6285 if (!dev_priv->lvds_downclock_avail)
6286 return;
6287
6288 /*
6289 * Since this is called by a timer, we should never get here in
6290 * the manual case.
6291 */
6292 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6293 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6294
6295 /* Unlock panel regs */
6296 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6297 PANEL_UNLOCK_REGS);
6298
6299 dpll |= DISPLAY_RATE_SELECT_FPA1;
6300 I915_WRITE(dpll_reg, dpll);
6301 intel_wait_for_vblank(dev, pipe);
6302 dpll = I915_READ(dpll_reg);
6303 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6304 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6305
6306 /* ...and lock them again */
6307 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6308 }
6309
6310 }
6311
6312 /**
6313 * intel_idle_update - adjust clocks for idleness
6314 * @work: work struct
6315 *
6316 * Either the GPU or display (or both) went idle. Check the busy status
6317 * here and adjust the CRTC and GPU clocks as necessary.
6318 */
6319 static void intel_idle_update(struct work_struct *work)
6320 {
6321 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6322 idle_work);
6323 struct drm_device *dev = dev_priv->dev;
6324 struct drm_crtc *crtc;
6325 struct intel_crtc *intel_crtc;
6326
6327 if (!i915_powersave)
6328 return;
6329
6330 mutex_lock(&dev->struct_mutex);
6331
6332 i915_update_gfx_val(dev_priv);
6333
6334 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6335 /* Skip inactive CRTCs */
6336 if (!crtc->fb)
6337 continue;
6338
6339 intel_crtc = to_intel_crtc(crtc);
6340 if (!intel_crtc->busy)
6341 intel_decrease_pllclock(crtc);
6342 }
6343
6344
6345 mutex_unlock(&dev->struct_mutex);
6346 }
6347
6348 /**
6349 * intel_mark_busy - mark the GPU and possibly the display busy
6350 * @dev: drm device
6351 * @obj: object we're operating on
6352 *
6353 * Callers can use this function to indicate that the GPU is busy processing
6354 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6355 * buffer), we'll also mark the display as busy, so we know to increase its
6356 * clock frequency.
6357 */
6358 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6359 {
6360 drm_i915_private_t *dev_priv = dev->dev_private;
6361 struct drm_crtc *crtc = NULL;
6362 struct intel_framebuffer *intel_fb;
6363 struct intel_crtc *intel_crtc;
6364
6365 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6366 return;
6367
6368 if (!dev_priv->busy)
6369 dev_priv->busy = true;
6370 else
6371 mod_timer(&dev_priv->idle_timer, jiffies +
6372 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6373
6374 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6375 if (!crtc->fb)
6376 continue;
6377
6378 intel_crtc = to_intel_crtc(crtc);
6379 intel_fb = to_intel_framebuffer(crtc->fb);
6380 if (intel_fb->obj == obj) {
6381 if (!intel_crtc->busy) {
6382 /* Non-busy -> busy, upclock */
6383 intel_increase_pllclock(crtc);
6384 intel_crtc->busy = true;
6385 } else {
6386 /* Busy -> busy, put off timer */
6387 mod_timer(&intel_crtc->idle_timer, jiffies +
6388 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6389 }
6390 }
6391 }
6392 }
6393
6394 static void intel_crtc_destroy(struct drm_crtc *crtc)
6395 {
6396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6397 struct drm_device *dev = crtc->dev;
6398 struct intel_unpin_work *work;
6399 unsigned long flags;
6400
6401 spin_lock_irqsave(&dev->event_lock, flags);
6402 work = intel_crtc->unpin_work;
6403 intel_crtc->unpin_work = NULL;
6404 spin_unlock_irqrestore(&dev->event_lock, flags);
6405
6406 if (work) {
6407 cancel_work_sync(&work->work);
6408 kfree(work);
6409 }
6410
6411 drm_crtc_cleanup(crtc);
6412
6413 kfree(intel_crtc);
6414 }
6415
6416 static void intel_unpin_work_fn(struct work_struct *__work)
6417 {
6418 struct intel_unpin_work *work =
6419 container_of(__work, struct intel_unpin_work, work);
6420
6421 mutex_lock(&work->dev->struct_mutex);
6422 i915_gem_object_unpin(work->old_fb_obj);
6423 drm_gem_object_unreference(&work->pending_flip_obj->base);
6424 drm_gem_object_unreference(&work->old_fb_obj->base);
6425
6426 intel_update_fbc(work->dev);
6427 mutex_unlock(&work->dev->struct_mutex);
6428 kfree(work);
6429 }
6430
6431 static void do_intel_finish_page_flip(struct drm_device *dev,
6432 struct drm_crtc *crtc)
6433 {
6434 drm_i915_private_t *dev_priv = dev->dev_private;
6435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6436 struct intel_unpin_work *work;
6437 struct drm_i915_gem_object *obj;
6438 struct drm_pending_vblank_event *e;
6439 struct timeval tnow, tvbl;
6440 unsigned long flags;
6441
6442 /* Ignore early vblank irqs */
6443 if (intel_crtc == NULL)
6444 return;
6445
6446 do_gettimeofday(&tnow);
6447
6448 spin_lock_irqsave(&dev->event_lock, flags);
6449 work = intel_crtc->unpin_work;
6450 if (work == NULL || !work->pending) {
6451 spin_unlock_irqrestore(&dev->event_lock, flags);
6452 return;
6453 }
6454
6455 intel_crtc->unpin_work = NULL;
6456
6457 if (work->event) {
6458 e = work->event;
6459 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6460
6461 /* Called before vblank count and timestamps have
6462 * been updated for the vblank interval of flip
6463 * completion? Need to increment vblank count and
6464 * add one videorefresh duration to returned timestamp
6465 * to account for this. We assume this happened if we
6466 * get called over 0.9 frame durations after the last
6467 * timestamped vblank.
6468 *
6469 * This calculation can not be used with vrefresh rates
6470 * below 5Hz (10Hz to be on the safe side) without
6471 * promoting to 64 integers.
6472 */
6473 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6474 9 * crtc->framedur_ns) {
6475 e->event.sequence++;
6476 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6477 crtc->framedur_ns);
6478 }
6479
6480 e->event.tv_sec = tvbl.tv_sec;
6481 e->event.tv_usec = tvbl.tv_usec;
6482
6483 list_add_tail(&e->base.link,
6484 &e->base.file_priv->event_list);
6485 wake_up_interruptible(&e->base.file_priv->event_wait);
6486 }
6487
6488 drm_vblank_put(dev, intel_crtc->pipe);
6489
6490 spin_unlock_irqrestore(&dev->event_lock, flags);
6491
6492 obj = work->old_fb_obj;
6493
6494 atomic_clear_mask(1 << intel_crtc->plane,
6495 &obj->pending_flip.counter);
6496 if (atomic_read(&obj->pending_flip) == 0)
6497 wake_up(&dev_priv->pending_flip_queue);
6498
6499 schedule_work(&work->work);
6500
6501 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6502 }
6503
6504 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6505 {
6506 drm_i915_private_t *dev_priv = dev->dev_private;
6507 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6508
6509 do_intel_finish_page_flip(dev, crtc);
6510 }
6511
6512 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6513 {
6514 drm_i915_private_t *dev_priv = dev->dev_private;
6515 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6516
6517 do_intel_finish_page_flip(dev, crtc);
6518 }
6519
6520 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6521 {
6522 drm_i915_private_t *dev_priv = dev->dev_private;
6523 struct intel_crtc *intel_crtc =
6524 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6525 unsigned long flags;
6526
6527 spin_lock_irqsave(&dev->event_lock, flags);
6528 if (intel_crtc->unpin_work) {
6529 if ((++intel_crtc->unpin_work->pending) > 1)
6530 DRM_ERROR("Prepared flip multiple times\n");
6531 } else {
6532 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6533 }
6534 spin_unlock_irqrestore(&dev->event_lock, flags);
6535 }
6536
6537 static int intel_gen2_queue_flip(struct drm_device *dev,
6538 struct drm_crtc *crtc,
6539 struct drm_framebuffer *fb,
6540 struct drm_i915_gem_object *obj)
6541 {
6542 struct drm_i915_private *dev_priv = dev->dev_private;
6543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6544 unsigned long offset;
6545 u32 flip_mask;
6546 int ret;
6547
6548 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6549 if (ret)
6550 goto out;
6551
6552 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6553 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6554
6555 ret = BEGIN_LP_RING(6);
6556 if (ret)
6557 goto out;
6558
6559 /* Can't queue multiple flips, so wait for the previous
6560 * one to finish before executing the next.
6561 */
6562 if (intel_crtc->plane)
6563 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6564 else
6565 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6566 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6567 OUT_RING(MI_NOOP);
6568 OUT_RING(MI_DISPLAY_FLIP |
6569 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6570 OUT_RING(fb->pitch);
6571 OUT_RING(obj->gtt_offset + offset);
6572 OUT_RING(MI_NOOP);
6573 ADVANCE_LP_RING();
6574 out:
6575 return ret;
6576 }
6577
6578 static int intel_gen3_queue_flip(struct drm_device *dev,
6579 struct drm_crtc *crtc,
6580 struct drm_framebuffer *fb,
6581 struct drm_i915_gem_object *obj)
6582 {
6583 struct drm_i915_private *dev_priv = dev->dev_private;
6584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6585 unsigned long offset;
6586 u32 flip_mask;
6587 int ret;
6588
6589 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6590 if (ret)
6591 goto out;
6592
6593 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6594 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6595
6596 ret = BEGIN_LP_RING(6);
6597 if (ret)
6598 goto out;
6599
6600 if (intel_crtc->plane)
6601 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6602 else
6603 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6604 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6605 OUT_RING(MI_NOOP);
6606 OUT_RING(MI_DISPLAY_FLIP_I915 |
6607 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6608 OUT_RING(fb->pitch);
6609 OUT_RING(obj->gtt_offset + offset);
6610 OUT_RING(MI_NOOP);
6611
6612 ADVANCE_LP_RING();
6613 out:
6614 return ret;
6615 }
6616
6617 static int intel_gen4_queue_flip(struct drm_device *dev,
6618 struct drm_crtc *crtc,
6619 struct drm_framebuffer *fb,
6620 struct drm_i915_gem_object *obj)
6621 {
6622 struct drm_i915_private *dev_priv = dev->dev_private;
6623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6624 uint32_t pf, pipesrc;
6625 int ret;
6626
6627 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6628 if (ret)
6629 goto out;
6630
6631 ret = BEGIN_LP_RING(4);
6632 if (ret)
6633 goto out;
6634
6635 /* i965+ uses the linear or tiled offsets from the
6636 * Display Registers (which do not change across a page-flip)
6637 * so we need only reprogram the base address.
6638 */
6639 OUT_RING(MI_DISPLAY_FLIP |
6640 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6641 OUT_RING(fb->pitch);
6642 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6643
6644 /* XXX Enabling the panel-fitter across page-flip is so far
6645 * untested on non-native modes, so ignore it for now.
6646 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6647 */
6648 pf = 0;
6649 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6650 OUT_RING(pf | pipesrc);
6651 ADVANCE_LP_RING();
6652 out:
6653 return ret;
6654 }
6655
6656 static int intel_gen6_queue_flip(struct drm_device *dev,
6657 struct drm_crtc *crtc,
6658 struct drm_framebuffer *fb,
6659 struct drm_i915_gem_object *obj)
6660 {
6661 struct drm_i915_private *dev_priv = dev->dev_private;
6662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6663 uint32_t pf, pipesrc;
6664 int ret;
6665
6666 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6667 if (ret)
6668 goto out;
6669
6670 ret = BEGIN_LP_RING(4);
6671 if (ret)
6672 goto out;
6673
6674 OUT_RING(MI_DISPLAY_FLIP |
6675 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6676 OUT_RING(fb->pitch | obj->tiling_mode);
6677 OUT_RING(obj->gtt_offset);
6678
6679 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6680 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6681 OUT_RING(pf | pipesrc);
6682 ADVANCE_LP_RING();
6683 out:
6684 return ret;
6685 }
6686
6687 /*
6688 * On gen7 we currently use the blit ring because (in early silicon at least)
6689 * the render ring doesn't give us interrpts for page flip completion, which
6690 * means clients will hang after the first flip is queued. Fortunately the
6691 * blit ring generates interrupts properly, so use it instead.
6692 */
6693 static int intel_gen7_queue_flip(struct drm_device *dev,
6694 struct drm_crtc *crtc,
6695 struct drm_framebuffer *fb,
6696 struct drm_i915_gem_object *obj)
6697 {
6698 struct drm_i915_private *dev_priv = dev->dev_private;
6699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6700 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6701 int ret;
6702
6703 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6704 if (ret)
6705 goto out;
6706
6707 ret = intel_ring_begin(ring, 4);
6708 if (ret)
6709 goto out;
6710
6711 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6712 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6713 intel_ring_emit(ring, (obj->gtt_offset));
6714 intel_ring_emit(ring, (MI_NOOP));
6715 intel_ring_advance(ring);
6716 out:
6717 return ret;
6718 }
6719
6720 static int intel_default_queue_flip(struct drm_device *dev,
6721 struct drm_crtc *crtc,
6722 struct drm_framebuffer *fb,
6723 struct drm_i915_gem_object *obj)
6724 {
6725 return -ENODEV;
6726 }
6727
6728 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6729 struct drm_framebuffer *fb,
6730 struct drm_pending_vblank_event *event)
6731 {
6732 struct drm_device *dev = crtc->dev;
6733 struct drm_i915_private *dev_priv = dev->dev_private;
6734 struct intel_framebuffer *intel_fb;
6735 struct drm_i915_gem_object *obj;
6736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737 struct intel_unpin_work *work;
6738 unsigned long flags;
6739 int ret;
6740
6741 work = kzalloc(sizeof *work, GFP_KERNEL);
6742 if (work == NULL)
6743 return -ENOMEM;
6744
6745 work->event = event;
6746 work->dev = crtc->dev;
6747 intel_fb = to_intel_framebuffer(crtc->fb);
6748 work->old_fb_obj = intel_fb->obj;
6749 INIT_WORK(&work->work, intel_unpin_work_fn);
6750
6751 /* We borrow the event spin lock for protecting unpin_work */
6752 spin_lock_irqsave(&dev->event_lock, flags);
6753 if (intel_crtc->unpin_work) {
6754 spin_unlock_irqrestore(&dev->event_lock, flags);
6755 kfree(work);
6756
6757 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6758 return -EBUSY;
6759 }
6760 intel_crtc->unpin_work = work;
6761 spin_unlock_irqrestore(&dev->event_lock, flags);
6762
6763 intel_fb = to_intel_framebuffer(fb);
6764 obj = intel_fb->obj;
6765
6766 mutex_lock(&dev->struct_mutex);
6767
6768 /* Reference the objects for the scheduled work. */
6769 drm_gem_object_reference(&work->old_fb_obj->base);
6770 drm_gem_object_reference(&obj->base);
6771
6772 crtc->fb = fb;
6773
6774 ret = drm_vblank_get(dev, intel_crtc->pipe);
6775 if (ret)
6776 goto cleanup_objs;
6777
6778 work->pending_flip_obj = obj;
6779
6780 work->enable_stall_check = true;
6781
6782 /* Block clients from rendering to the new back buffer until
6783 * the flip occurs and the object is no longer visible.
6784 */
6785 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6786
6787 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6788 if (ret)
6789 goto cleanup_pending;
6790
6791 intel_disable_fbc(dev);
6792 mutex_unlock(&dev->struct_mutex);
6793
6794 trace_i915_flip_request(intel_crtc->plane, obj);
6795
6796 return 0;
6797
6798 cleanup_pending:
6799 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6800 cleanup_objs:
6801 drm_gem_object_unreference(&work->old_fb_obj->base);
6802 drm_gem_object_unreference(&obj->base);
6803 mutex_unlock(&dev->struct_mutex);
6804
6805 spin_lock_irqsave(&dev->event_lock, flags);
6806 intel_crtc->unpin_work = NULL;
6807 spin_unlock_irqrestore(&dev->event_lock, flags);
6808
6809 kfree(work);
6810
6811 return ret;
6812 }
6813
6814 static void intel_sanitize_modesetting(struct drm_device *dev,
6815 int pipe, int plane)
6816 {
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 u32 reg, val;
6819
6820 if (HAS_PCH_SPLIT(dev))
6821 return;
6822
6823 /* Who knows what state these registers were left in by the BIOS or
6824 * grub?
6825 *
6826 * If we leave the registers in a conflicting state (e.g. with the
6827 * display plane reading from the other pipe than the one we intend
6828 * to use) then when we attempt to teardown the active mode, we will
6829 * not disable the pipes and planes in the correct order -- leaving
6830 * a plane reading from a disabled pipe and possibly leading to
6831 * undefined behaviour.
6832 */
6833
6834 reg = DSPCNTR(plane);
6835 val = I915_READ(reg);
6836
6837 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6838 return;
6839 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6840 return;
6841
6842 /* This display plane is active and attached to the other CPU pipe. */
6843 pipe = !pipe;
6844
6845 /* Disable the plane and wait for it to stop reading from the pipe. */
6846 intel_disable_plane(dev_priv, plane, pipe);
6847 intel_disable_pipe(dev_priv, pipe);
6848 }
6849
6850 static void intel_crtc_reset(struct drm_crtc *crtc)
6851 {
6852 struct drm_device *dev = crtc->dev;
6853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6854
6855 /* Reset flags back to the 'unknown' status so that they
6856 * will be correctly set on the initial modeset.
6857 */
6858 intel_crtc->dpms_mode = -1;
6859
6860 /* We need to fix up any BIOS configuration that conflicts with
6861 * our expectations.
6862 */
6863 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6864 }
6865
6866 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6867 .dpms = intel_crtc_dpms,
6868 .mode_fixup = intel_crtc_mode_fixup,
6869 .mode_set = intel_crtc_mode_set,
6870 .mode_set_base = intel_pipe_set_base,
6871 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6872 .load_lut = intel_crtc_load_lut,
6873 .disable = intel_crtc_disable,
6874 };
6875
6876 static const struct drm_crtc_funcs intel_crtc_funcs = {
6877 .reset = intel_crtc_reset,
6878 .cursor_set = intel_crtc_cursor_set,
6879 .cursor_move = intel_crtc_cursor_move,
6880 .gamma_set = intel_crtc_gamma_set,
6881 .set_config = drm_crtc_helper_set_config,
6882 .destroy = intel_crtc_destroy,
6883 .page_flip = intel_crtc_page_flip,
6884 };
6885
6886 static void intel_crtc_init(struct drm_device *dev, int pipe)
6887 {
6888 drm_i915_private_t *dev_priv = dev->dev_private;
6889 struct intel_crtc *intel_crtc;
6890 int i;
6891
6892 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6893 if (intel_crtc == NULL)
6894 return;
6895
6896 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6897
6898 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6899 for (i = 0; i < 256; i++) {
6900 intel_crtc->lut_r[i] = i;
6901 intel_crtc->lut_g[i] = i;
6902 intel_crtc->lut_b[i] = i;
6903 }
6904
6905 /* Swap pipes & planes for FBC on pre-965 */
6906 intel_crtc->pipe = pipe;
6907 intel_crtc->plane = pipe;
6908 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6909 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6910 intel_crtc->plane = !pipe;
6911 }
6912
6913 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6914 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6915 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6916 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6917
6918 intel_crtc_reset(&intel_crtc->base);
6919 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6920 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6921
6922 if (HAS_PCH_SPLIT(dev)) {
6923 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6924 intel_helper_funcs.commit = ironlake_crtc_commit;
6925 } else {
6926 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6927 intel_helper_funcs.commit = i9xx_crtc_commit;
6928 }
6929
6930 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6931
6932 intel_crtc->busy = false;
6933
6934 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6935 (unsigned long)intel_crtc);
6936 }
6937
6938 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6939 struct drm_file *file)
6940 {
6941 drm_i915_private_t *dev_priv = dev->dev_private;
6942 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6943 struct drm_mode_object *drmmode_obj;
6944 struct intel_crtc *crtc;
6945
6946 if (!dev_priv) {
6947 DRM_ERROR("called with no initialization\n");
6948 return -EINVAL;
6949 }
6950
6951 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6952 DRM_MODE_OBJECT_CRTC);
6953
6954 if (!drmmode_obj) {
6955 DRM_ERROR("no such CRTC id\n");
6956 return -EINVAL;
6957 }
6958
6959 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6960 pipe_from_crtc_id->pipe = crtc->pipe;
6961
6962 return 0;
6963 }
6964
6965 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6966 {
6967 struct intel_encoder *encoder;
6968 int index_mask = 0;
6969 int entry = 0;
6970
6971 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6972 if (type_mask & encoder->clone_mask)
6973 index_mask |= (1 << entry);
6974 entry++;
6975 }
6976
6977 return index_mask;
6978 }
6979
6980 static bool has_edp_a(struct drm_device *dev)
6981 {
6982 struct drm_i915_private *dev_priv = dev->dev_private;
6983
6984 if (!IS_MOBILE(dev))
6985 return false;
6986
6987 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6988 return false;
6989
6990 if (IS_GEN5(dev) &&
6991 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6992 return false;
6993
6994 return true;
6995 }
6996
6997 static void intel_setup_outputs(struct drm_device *dev)
6998 {
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000 struct intel_encoder *encoder;
7001 bool dpd_is_edp = false;
7002 bool has_lvds = false;
7003
7004 if (IS_MOBILE(dev) && !IS_I830(dev))
7005 has_lvds = intel_lvds_init(dev);
7006 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7007 /* disable the panel fitter on everything but LVDS */
7008 I915_WRITE(PFIT_CONTROL, 0);
7009 }
7010
7011 if (HAS_PCH_SPLIT(dev)) {
7012 dpd_is_edp = intel_dpd_is_edp(dev);
7013
7014 if (has_edp_a(dev))
7015 intel_dp_init(dev, DP_A);
7016
7017 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7018 intel_dp_init(dev, PCH_DP_D);
7019 }
7020
7021 intel_crt_init(dev);
7022
7023 if (HAS_PCH_SPLIT(dev)) {
7024 int found;
7025
7026 if (I915_READ(HDMIB) & PORT_DETECTED) {
7027 /* PCH SDVOB multiplex with HDMIB */
7028 found = intel_sdvo_init(dev, PCH_SDVOB);
7029 if (!found)
7030 intel_hdmi_init(dev, HDMIB);
7031 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7032 intel_dp_init(dev, PCH_DP_B);
7033 }
7034
7035 if (I915_READ(HDMIC) & PORT_DETECTED)
7036 intel_hdmi_init(dev, HDMIC);
7037
7038 if (I915_READ(HDMID) & PORT_DETECTED)
7039 intel_hdmi_init(dev, HDMID);
7040
7041 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7042 intel_dp_init(dev, PCH_DP_C);
7043
7044 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7045 intel_dp_init(dev, PCH_DP_D);
7046
7047 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7048 bool found = false;
7049
7050 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7051 DRM_DEBUG_KMS("probing SDVOB\n");
7052 found = intel_sdvo_init(dev, SDVOB);
7053 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7054 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7055 intel_hdmi_init(dev, SDVOB);
7056 }
7057
7058 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7059 DRM_DEBUG_KMS("probing DP_B\n");
7060 intel_dp_init(dev, DP_B);
7061 }
7062 }
7063
7064 /* Before G4X SDVOC doesn't have its own detect register */
7065
7066 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7067 DRM_DEBUG_KMS("probing SDVOC\n");
7068 found = intel_sdvo_init(dev, SDVOC);
7069 }
7070
7071 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7072
7073 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7074 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7075 intel_hdmi_init(dev, SDVOC);
7076 }
7077 if (SUPPORTS_INTEGRATED_DP(dev)) {
7078 DRM_DEBUG_KMS("probing DP_C\n");
7079 intel_dp_init(dev, DP_C);
7080 }
7081 }
7082
7083 if (SUPPORTS_INTEGRATED_DP(dev) &&
7084 (I915_READ(DP_D) & DP_DETECTED)) {
7085 DRM_DEBUG_KMS("probing DP_D\n");
7086 intel_dp_init(dev, DP_D);
7087 }
7088 } else if (IS_GEN2(dev))
7089 intel_dvo_init(dev);
7090
7091 if (SUPPORTS_TV(dev))
7092 intel_tv_init(dev);
7093
7094 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7095 encoder->base.possible_crtcs = encoder->crtc_mask;
7096 encoder->base.possible_clones =
7097 intel_encoder_clones(dev, encoder->clone_mask);
7098 }
7099
7100 intel_panel_setup_backlight(dev);
7101
7102 /* disable all the possible outputs/crtcs before entering KMS mode */
7103 drm_helper_disable_unused_functions(dev);
7104 }
7105
7106 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7107 {
7108 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7109
7110 drm_framebuffer_cleanup(fb);
7111 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7112
7113 kfree(intel_fb);
7114 }
7115
7116 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7117 struct drm_file *file,
7118 unsigned int *handle)
7119 {
7120 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7121 struct drm_i915_gem_object *obj = intel_fb->obj;
7122
7123 return drm_gem_handle_create(file, &obj->base, handle);
7124 }
7125
7126 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7127 .destroy = intel_user_framebuffer_destroy,
7128 .create_handle = intel_user_framebuffer_create_handle,
7129 };
7130
7131 int intel_framebuffer_init(struct drm_device *dev,
7132 struct intel_framebuffer *intel_fb,
7133 struct drm_mode_fb_cmd *mode_cmd,
7134 struct drm_i915_gem_object *obj)
7135 {
7136 int ret;
7137
7138 if (obj->tiling_mode == I915_TILING_Y)
7139 return -EINVAL;
7140
7141 if (mode_cmd->pitch & 63)
7142 return -EINVAL;
7143
7144 switch (mode_cmd->bpp) {
7145 case 8:
7146 case 16:
7147 /* Only pre-ILK can handle 5:5:5 */
7148 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7149 return -EINVAL;
7150 break;
7151
7152 case 24:
7153 case 32:
7154 break;
7155 default:
7156 return -EINVAL;
7157 }
7158
7159 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7160 if (ret) {
7161 DRM_ERROR("framebuffer init failed %d\n", ret);
7162 return ret;
7163 }
7164
7165 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7166 intel_fb->obj = obj;
7167 return 0;
7168 }
7169
7170 static struct drm_framebuffer *
7171 intel_user_framebuffer_create(struct drm_device *dev,
7172 struct drm_file *filp,
7173 struct drm_mode_fb_cmd *mode_cmd)
7174 {
7175 struct drm_i915_gem_object *obj;
7176
7177 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7178 if (&obj->base == NULL)
7179 return ERR_PTR(-ENOENT);
7180
7181 return intel_framebuffer_create(dev, mode_cmd, obj);
7182 }
7183
7184 static const struct drm_mode_config_funcs intel_mode_funcs = {
7185 .fb_create = intel_user_framebuffer_create,
7186 .output_poll_changed = intel_fb_output_poll_changed,
7187 };
7188
7189 static struct drm_i915_gem_object *
7190 intel_alloc_context_page(struct drm_device *dev)
7191 {
7192 struct drm_i915_gem_object *ctx;
7193 int ret;
7194
7195 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7196
7197 ctx = i915_gem_alloc_object(dev, 4096);
7198 if (!ctx) {
7199 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7200 return NULL;
7201 }
7202
7203 ret = i915_gem_object_pin(ctx, 4096, true);
7204 if (ret) {
7205 DRM_ERROR("failed to pin power context: %d\n", ret);
7206 goto err_unref;
7207 }
7208
7209 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7210 if (ret) {
7211 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7212 goto err_unpin;
7213 }
7214
7215 return ctx;
7216
7217 err_unpin:
7218 i915_gem_object_unpin(ctx);
7219 err_unref:
7220 drm_gem_object_unreference(&ctx->base);
7221 mutex_unlock(&dev->struct_mutex);
7222 return NULL;
7223 }
7224
7225 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7226 {
7227 struct drm_i915_private *dev_priv = dev->dev_private;
7228 u16 rgvswctl;
7229
7230 rgvswctl = I915_READ16(MEMSWCTL);
7231 if (rgvswctl & MEMCTL_CMD_STS) {
7232 DRM_DEBUG("gpu busy, RCS change rejected\n");
7233 return false; /* still busy with another command */
7234 }
7235
7236 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7237 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7238 I915_WRITE16(MEMSWCTL, rgvswctl);
7239 POSTING_READ16(MEMSWCTL);
7240
7241 rgvswctl |= MEMCTL_CMD_STS;
7242 I915_WRITE16(MEMSWCTL, rgvswctl);
7243
7244 return true;
7245 }
7246
7247 void ironlake_enable_drps(struct drm_device *dev)
7248 {
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 u32 rgvmodectl = I915_READ(MEMMODECTL);
7251 u8 fmax, fmin, fstart, vstart;
7252
7253 /* Enable temp reporting */
7254 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7255 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7256
7257 /* 100ms RC evaluation intervals */
7258 I915_WRITE(RCUPEI, 100000);
7259 I915_WRITE(RCDNEI, 100000);
7260
7261 /* Set max/min thresholds to 90ms and 80ms respectively */
7262 I915_WRITE(RCBMAXAVG, 90000);
7263 I915_WRITE(RCBMINAVG, 80000);
7264
7265 I915_WRITE(MEMIHYST, 1);
7266
7267 /* Set up min, max, and cur for interrupt handling */
7268 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7269 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7270 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7271 MEMMODE_FSTART_SHIFT;
7272
7273 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7274 PXVFREQ_PX_SHIFT;
7275
7276 dev_priv->fmax = fmax; /* IPS callback will increase this */
7277 dev_priv->fstart = fstart;
7278
7279 dev_priv->max_delay = fstart;
7280 dev_priv->min_delay = fmin;
7281 dev_priv->cur_delay = fstart;
7282
7283 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7284 fmax, fmin, fstart);
7285
7286 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7287
7288 /*
7289 * Interrupts will be enabled in ironlake_irq_postinstall
7290 */
7291
7292 I915_WRITE(VIDSTART, vstart);
7293 POSTING_READ(VIDSTART);
7294
7295 rgvmodectl |= MEMMODE_SWMODE_EN;
7296 I915_WRITE(MEMMODECTL, rgvmodectl);
7297
7298 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7299 DRM_ERROR("stuck trying to change perf mode\n");
7300 msleep(1);
7301
7302 ironlake_set_drps(dev, fstart);
7303
7304 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7305 I915_READ(0x112e0);
7306 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7307 dev_priv->last_count2 = I915_READ(0x112f4);
7308 getrawmonotonic(&dev_priv->last_time2);
7309 }
7310
7311 void ironlake_disable_drps(struct drm_device *dev)
7312 {
7313 struct drm_i915_private *dev_priv = dev->dev_private;
7314 u16 rgvswctl = I915_READ16(MEMSWCTL);
7315
7316 /* Ack interrupts, disable EFC interrupt */
7317 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7318 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7319 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7320 I915_WRITE(DEIIR, DE_PCU_EVENT);
7321 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7322
7323 /* Go back to the starting frequency */
7324 ironlake_set_drps(dev, dev_priv->fstart);
7325 msleep(1);
7326 rgvswctl |= MEMCTL_CMD_STS;
7327 I915_WRITE(MEMSWCTL, rgvswctl);
7328 msleep(1);
7329
7330 }
7331
7332 void gen6_set_rps(struct drm_device *dev, u8 val)
7333 {
7334 struct drm_i915_private *dev_priv = dev->dev_private;
7335 u32 swreq;
7336
7337 swreq = (val & 0x3ff) << 25;
7338 I915_WRITE(GEN6_RPNSWREQ, swreq);
7339 }
7340
7341 void gen6_disable_rps(struct drm_device *dev)
7342 {
7343 struct drm_i915_private *dev_priv = dev->dev_private;
7344
7345 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7346 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7347 I915_WRITE(GEN6_PMIER, 0);
7348
7349 spin_lock_irq(&dev_priv->rps_lock);
7350 dev_priv->pm_iir = 0;
7351 spin_unlock_irq(&dev_priv->rps_lock);
7352
7353 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7354 }
7355
7356 static unsigned long intel_pxfreq(u32 vidfreq)
7357 {
7358 unsigned long freq;
7359 int div = (vidfreq & 0x3f0000) >> 16;
7360 int post = (vidfreq & 0x3000) >> 12;
7361 int pre = (vidfreq & 0x7);
7362
7363 if (!pre)
7364 return 0;
7365
7366 freq = ((div * 133333) / ((1<<post) * pre));
7367
7368 return freq;
7369 }
7370
7371 void intel_init_emon(struct drm_device *dev)
7372 {
7373 struct drm_i915_private *dev_priv = dev->dev_private;
7374 u32 lcfuse;
7375 u8 pxw[16];
7376 int i;
7377
7378 /* Disable to program */
7379 I915_WRITE(ECR, 0);
7380 POSTING_READ(ECR);
7381
7382 /* Program energy weights for various events */
7383 I915_WRITE(SDEW, 0x15040d00);
7384 I915_WRITE(CSIEW0, 0x007f0000);
7385 I915_WRITE(CSIEW1, 0x1e220004);
7386 I915_WRITE(CSIEW2, 0x04000004);
7387
7388 for (i = 0; i < 5; i++)
7389 I915_WRITE(PEW + (i * 4), 0);
7390 for (i = 0; i < 3; i++)
7391 I915_WRITE(DEW + (i * 4), 0);
7392
7393 /* Program P-state weights to account for frequency power adjustment */
7394 for (i = 0; i < 16; i++) {
7395 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7396 unsigned long freq = intel_pxfreq(pxvidfreq);
7397 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7398 PXVFREQ_PX_SHIFT;
7399 unsigned long val;
7400
7401 val = vid * vid;
7402 val *= (freq / 1000);
7403 val *= 255;
7404 val /= (127*127*900);
7405 if (val > 0xff)
7406 DRM_ERROR("bad pxval: %ld\n", val);
7407 pxw[i] = val;
7408 }
7409 /* Render standby states get 0 weight */
7410 pxw[14] = 0;
7411 pxw[15] = 0;
7412
7413 for (i = 0; i < 4; i++) {
7414 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7415 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7416 I915_WRITE(PXW + (i * 4), val);
7417 }
7418
7419 /* Adjust magic regs to magic values (more experimental results) */
7420 I915_WRITE(OGW0, 0);
7421 I915_WRITE(OGW1, 0);
7422 I915_WRITE(EG0, 0x00007f00);
7423 I915_WRITE(EG1, 0x0000000e);
7424 I915_WRITE(EG2, 0x000e0000);
7425 I915_WRITE(EG3, 0x68000300);
7426 I915_WRITE(EG4, 0x42000000);
7427 I915_WRITE(EG5, 0x00140031);
7428 I915_WRITE(EG6, 0);
7429 I915_WRITE(EG7, 0);
7430
7431 for (i = 0; i < 8; i++)
7432 I915_WRITE(PXWL + (i * 4), 0);
7433
7434 /* Enable PMON + select events */
7435 I915_WRITE(ECR, 0x80000019);
7436
7437 lcfuse = I915_READ(LCFUSE02);
7438
7439 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7440 }
7441
7442 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7443 {
7444 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7445 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7446 u32 pcu_mbox, rc6_mask = 0;
7447 int cur_freq, min_freq, max_freq;
7448 int i;
7449
7450 /* Here begins a magic sequence of register writes to enable
7451 * auto-downclocking.
7452 *
7453 * Perhaps there might be some value in exposing these to
7454 * userspace...
7455 */
7456 I915_WRITE(GEN6_RC_STATE, 0);
7457 mutex_lock(&dev_priv->dev->struct_mutex);
7458 gen6_gt_force_wake_get(dev_priv);
7459
7460 /* disable the counters and set deterministic thresholds */
7461 I915_WRITE(GEN6_RC_CONTROL, 0);
7462
7463 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7464 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7465 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7466 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7467 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7468
7469 for (i = 0; i < I915_NUM_RINGS; i++)
7470 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7471
7472 I915_WRITE(GEN6_RC_SLEEP, 0);
7473 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7474 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7475 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7476 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7477
7478 if (i915_enable_rc6)
7479 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7480 GEN6_RC_CTL_RC6_ENABLE;
7481
7482 I915_WRITE(GEN6_RC_CONTROL,
7483 rc6_mask |
7484 GEN6_RC_CTL_EI_MODE(1) |
7485 GEN6_RC_CTL_HW_ENABLE);
7486
7487 I915_WRITE(GEN6_RPNSWREQ,
7488 GEN6_FREQUENCY(10) |
7489 GEN6_OFFSET(0) |
7490 GEN6_AGGRESSIVE_TURBO);
7491 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7492 GEN6_FREQUENCY(12));
7493
7494 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7495 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7496 18 << 24 |
7497 6 << 16);
7498 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7499 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7500 I915_WRITE(GEN6_RP_UP_EI, 100000);
7501 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7502 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7503 I915_WRITE(GEN6_RP_CONTROL,
7504 GEN6_RP_MEDIA_TURBO |
7505 GEN6_RP_USE_NORMAL_FREQ |
7506 GEN6_RP_MEDIA_IS_GFX |
7507 GEN6_RP_ENABLE |
7508 GEN6_RP_UP_BUSY_AVG |
7509 GEN6_RP_DOWN_IDLE_CONT);
7510
7511 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7512 500))
7513 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7514
7515 I915_WRITE(GEN6_PCODE_DATA, 0);
7516 I915_WRITE(GEN6_PCODE_MAILBOX,
7517 GEN6_PCODE_READY |
7518 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7519 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7520 500))
7521 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7522
7523 min_freq = (rp_state_cap & 0xff0000) >> 16;
7524 max_freq = rp_state_cap & 0xff;
7525 cur_freq = (gt_perf_status & 0xff00) >> 8;
7526
7527 /* Check for overclock support */
7528 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7529 500))
7530 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7531 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7532 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7533 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7534 500))
7535 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7536 if (pcu_mbox & (1<<31)) { /* OC supported */
7537 max_freq = pcu_mbox & 0xff;
7538 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7539 }
7540
7541 /* In units of 100MHz */
7542 dev_priv->max_delay = max_freq;
7543 dev_priv->min_delay = min_freq;
7544 dev_priv->cur_delay = cur_freq;
7545
7546 /* requires MSI enabled */
7547 I915_WRITE(GEN6_PMIER,
7548 GEN6_PM_MBOX_EVENT |
7549 GEN6_PM_THERMAL_EVENT |
7550 GEN6_PM_RP_DOWN_TIMEOUT |
7551 GEN6_PM_RP_UP_THRESHOLD |
7552 GEN6_PM_RP_DOWN_THRESHOLD |
7553 GEN6_PM_RP_UP_EI_EXPIRED |
7554 GEN6_PM_RP_DOWN_EI_EXPIRED);
7555 spin_lock_irq(&dev_priv->rps_lock);
7556 WARN_ON(dev_priv->pm_iir != 0);
7557 I915_WRITE(GEN6_PMIMR, 0);
7558 spin_unlock_irq(&dev_priv->rps_lock);
7559 /* enable all PM interrupts */
7560 I915_WRITE(GEN6_PMINTRMSK, 0);
7561
7562 gen6_gt_force_wake_put(dev_priv);
7563 mutex_unlock(&dev_priv->dev->struct_mutex);
7564 }
7565
7566 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7567 {
7568 int min_freq = 15;
7569 int gpu_freq, ia_freq, max_ia_freq;
7570 int scaling_factor = 180;
7571
7572 max_ia_freq = cpufreq_quick_get_max(0);
7573 /*
7574 * Default to measured freq if none found, PCU will ensure we don't go
7575 * over
7576 */
7577 if (!max_ia_freq)
7578 max_ia_freq = tsc_khz;
7579
7580 /* Convert from kHz to MHz */
7581 max_ia_freq /= 1000;
7582
7583 mutex_lock(&dev_priv->dev->struct_mutex);
7584
7585 /*
7586 * For each potential GPU frequency, load a ring frequency we'd like
7587 * to use for memory access. We do this by specifying the IA frequency
7588 * the PCU should use as a reference to determine the ring frequency.
7589 */
7590 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7591 gpu_freq--) {
7592 int diff = dev_priv->max_delay - gpu_freq;
7593
7594 /*
7595 * For GPU frequencies less than 750MHz, just use the lowest
7596 * ring freq.
7597 */
7598 if (gpu_freq < min_freq)
7599 ia_freq = 800;
7600 else
7601 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7602 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7603
7604 I915_WRITE(GEN6_PCODE_DATA,
7605 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7606 gpu_freq);
7607 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7608 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7609 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7610 GEN6_PCODE_READY) == 0, 10)) {
7611 DRM_ERROR("pcode write of freq table timed out\n");
7612 continue;
7613 }
7614 }
7615
7616 mutex_unlock(&dev_priv->dev->struct_mutex);
7617 }
7618
7619 static void ironlake_init_clock_gating(struct drm_device *dev)
7620 {
7621 struct drm_i915_private *dev_priv = dev->dev_private;
7622 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7623
7624 /* Required for FBC */
7625 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7626 DPFCRUNIT_CLOCK_GATE_DISABLE |
7627 DPFDUNIT_CLOCK_GATE_DISABLE;
7628 /* Required for CxSR */
7629 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7630
7631 I915_WRITE(PCH_3DCGDIS0,
7632 MARIUNIT_CLOCK_GATE_DISABLE |
7633 SVSMUNIT_CLOCK_GATE_DISABLE);
7634 I915_WRITE(PCH_3DCGDIS1,
7635 VFMUNIT_CLOCK_GATE_DISABLE);
7636
7637 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7638
7639 /*
7640 * According to the spec the following bits should be set in
7641 * order to enable memory self-refresh
7642 * The bit 22/21 of 0x42004
7643 * The bit 5 of 0x42020
7644 * The bit 15 of 0x45000
7645 */
7646 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7647 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7648 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7649 I915_WRITE(ILK_DSPCLK_GATE,
7650 (I915_READ(ILK_DSPCLK_GATE) |
7651 ILK_DPARB_CLK_GATE));
7652 I915_WRITE(DISP_ARB_CTL,
7653 (I915_READ(DISP_ARB_CTL) |
7654 DISP_FBC_WM_DIS));
7655 I915_WRITE(WM3_LP_ILK, 0);
7656 I915_WRITE(WM2_LP_ILK, 0);
7657 I915_WRITE(WM1_LP_ILK, 0);
7658
7659 /*
7660 * Based on the document from hardware guys the following bits
7661 * should be set unconditionally in order to enable FBC.
7662 * The bit 22 of 0x42000
7663 * The bit 22 of 0x42004
7664 * The bit 7,8,9 of 0x42020.
7665 */
7666 if (IS_IRONLAKE_M(dev)) {
7667 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7668 I915_READ(ILK_DISPLAY_CHICKEN1) |
7669 ILK_FBCQ_DIS);
7670 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7671 I915_READ(ILK_DISPLAY_CHICKEN2) |
7672 ILK_DPARB_GATE);
7673 I915_WRITE(ILK_DSPCLK_GATE,
7674 I915_READ(ILK_DSPCLK_GATE) |
7675 ILK_DPFC_DIS1 |
7676 ILK_DPFC_DIS2 |
7677 ILK_CLK_FBC);
7678 }
7679
7680 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7681 I915_READ(ILK_DISPLAY_CHICKEN2) |
7682 ILK_ELPIN_409_SELECT);
7683 I915_WRITE(_3D_CHICKEN2,
7684 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7685 _3D_CHICKEN2_WM_READ_PIPELINED);
7686 }
7687
7688 static void gen6_init_clock_gating(struct drm_device *dev)
7689 {
7690 struct drm_i915_private *dev_priv = dev->dev_private;
7691 int pipe;
7692 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7693
7694 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7695
7696 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7697 I915_READ(ILK_DISPLAY_CHICKEN2) |
7698 ILK_ELPIN_409_SELECT);
7699
7700 I915_WRITE(WM3_LP_ILK, 0);
7701 I915_WRITE(WM2_LP_ILK, 0);
7702 I915_WRITE(WM1_LP_ILK, 0);
7703
7704 /*
7705 * According to the spec the following bits should be
7706 * set in order to enable memory self-refresh and fbc:
7707 * The bit21 and bit22 of 0x42000
7708 * The bit21 and bit22 of 0x42004
7709 * The bit5 and bit7 of 0x42020
7710 * The bit14 of 0x70180
7711 * The bit14 of 0x71180
7712 */
7713 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7714 I915_READ(ILK_DISPLAY_CHICKEN1) |
7715 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7716 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7717 I915_READ(ILK_DISPLAY_CHICKEN2) |
7718 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7719 I915_WRITE(ILK_DSPCLK_GATE,
7720 I915_READ(ILK_DSPCLK_GATE) |
7721 ILK_DPARB_CLK_GATE |
7722 ILK_DPFD_CLK_GATE);
7723
7724 for_each_pipe(pipe)
7725 I915_WRITE(DSPCNTR(pipe),
7726 I915_READ(DSPCNTR(pipe)) |
7727 DISPPLANE_TRICKLE_FEED_DISABLE);
7728 }
7729
7730 static void ivybridge_init_clock_gating(struct drm_device *dev)
7731 {
7732 struct drm_i915_private *dev_priv = dev->dev_private;
7733 int pipe;
7734 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7735
7736 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7737
7738 I915_WRITE(WM3_LP_ILK, 0);
7739 I915_WRITE(WM2_LP_ILK, 0);
7740 I915_WRITE(WM1_LP_ILK, 0);
7741
7742 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7743
7744 for_each_pipe(pipe)
7745 I915_WRITE(DSPCNTR(pipe),
7746 I915_READ(DSPCNTR(pipe)) |
7747 DISPPLANE_TRICKLE_FEED_DISABLE);
7748 }
7749
7750 static void g4x_init_clock_gating(struct drm_device *dev)
7751 {
7752 struct drm_i915_private *dev_priv = dev->dev_private;
7753 uint32_t dspclk_gate;
7754
7755 I915_WRITE(RENCLK_GATE_D1, 0);
7756 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7757 GS_UNIT_CLOCK_GATE_DISABLE |
7758 CL_UNIT_CLOCK_GATE_DISABLE);
7759 I915_WRITE(RAMCLK_GATE_D, 0);
7760 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7761 OVRUNIT_CLOCK_GATE_DISABLE |
7762 OVCUNIT_CLOCK_GATE_DISABLE;
7763 if (IS_GM45(dev))
7764 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7765 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7766 }
7767
7768 static void crestline_init_clock_gating(struct drm_device *dev)
7769 {
7770 struct drm_i915_private *dev_priv = dev->dev_private;
7771
7772 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7773 I915_WRITE(RENCLK_GATE_D2, 0);
7774 I915_WRITE(DSPCLK_GATE_D, 0);
7775 I915_WRITE(RAMCLK_GATE_D, 0);
7776 I915_WRITE16(DEUC, 0);
7777 }
7778
7779 static void broadwater_init_clock_gating(struct drm_device *dev)
7780 {
7781 struct drm_i915_private *dev_priv = dev->dev_private;
7782
7783 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7784 I965_RCC_CLOCK_GATE_DISABLE |
7785 I965_RCPB_CLOCK_GATE_DISABLE |
7786 I965_ISC_CLOCK_GATE_DISABLE |
7787 I965_FBC_CLOCK_GATE_DISABLE);
7788 I915_WRITE(RENCLK_GATE_D2, 0);
7789 }
7790
7791 static void gen3_init_clock_gating(struct drm_device *dev)
7792 {
7793 struct drm_i915_private *dev_priv = dev->dev_private;
7794 u32 dstate = I915_READ(D_STATE);
7795
7796 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7797 DSTATE_DOT_CLOCK_GATING;
7798 I915_WRITE(D_STATE, dstate);
7799 }
7800
7801 static void i85x_init_clock_gating(struct drm_device *dev)
7802 {
7803 struct drm_i915_private *dev_priv = dev->dev_private;
7804
7805 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7806 }
7807
7808 static void i830_init_clock_gating(struct drm_device *dev)
7809 {
7810 struct drm_i915_private *dev_priv = dev->dev_private;
7811
7812 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7813 }
7814
7815 static void ibx_init_clock_gating(struct drm_device *dev)
7816 {
7817 struct drm_i915_private *dev_priv = dev->dev_private;
7818
7819 /*
7820 * On Ibex Peak and Cougar Point, we need to disable clock
7821 * gating for the panel power sequencer or it will fail to
7822 * start up when no ports are active.
7823 */
7824 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7825 }
7826
7827 static void cpt_init_clock_gating(struct drm_device *dev)
7828 {
7829 struct drm_i915_private *dev_priv = dev->dev_private;
7830
7831 /*
7832 * On Ibex Peak and Cougar Point, we need to disable clock
7833 * gating for the panel power sequencer or it will fail to
7834 * start up when no ports are active.
7835 */
7836 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7837 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7838 DPLS_EDP_PPS_FIX_DIS);
7839 }
7840
7841 static void ironlake_teardown_rc6(struct drm_device *dev)
7842 {
7843 struct drm_i915_private *dev_priv = dev->dev_private;
7844
7845 if (dev_priv->renderctx) {
7846 i915_gem_object_unpin(dev_priv->renderctx);
7847 drm_gem_object_unreference(&dev_priv->renderctx->base);
7848 dev_priv->renderctx = NULL;
7849 }
7850
7851 if (dev_priv->pwrctx) {
7852 i915_gem_object_unpin(dev_priv->pwrctx);
7853 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7854 dev_priv->pwrctx = NULL;
7855 }
7856 }
7857
7858 static void ironlake_disable_rc6(struct drm_device *dev)
7859 {
7860 struct drm_i915_private *dev_priv = dev->dev_private;
7861
7862 if (I915_READ(PWRCTXA)) {
7863 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7864 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7865 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7866 50);
7867
7868 I915_WRITE(PWRCTXA, 0);
7869 POSTING_READ(PWRCTXA);
7870
7871 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7872 POSTING_READ(RSTDBYCTL);
7873 }
7874
7875 ironlake_teardown_rc6(dev);
7876 }
7877
7878 static int ironlake_setup_rc6(struct drm_device *dev)
7879 {
7880 struct drm_i915_private *dev_priv = dev->dev_private;
7881
7882 if (dev_priv->renderctx == NULL)
7883 dev_priv->renderctx = intel_alloc_context_page(dev);
7884 if (!dev_priv->renderctx)
7885 return -ENOMEM;
7886
7887 if (dev_priv->pwrctx == NULL)
7888 dev_priv->pwrctx = intel_alloc_context_page(dev);
7889 if (!dev_priv->pwrctx) {
7890 ironlake_teardown_rc6(dev);
7891 return -ENOMEM;
7892 }
7893
7894 return 0;
7895 }
7896
7897 void ironlake_enable_rc6(struct drm_device *dev)
7898 {
7899 struct drm_i915_private *dev_priv = dev->dev_private;
7900 int ret;
7901
7902 /* rc6 disabled by default due to repeated reports of hanging during
7903 * boot and resume.
7904 */
7905 if (!i915_enable_rc6)
7906 return;
7907
7908 mutex_lock(&dev->struct_mutex);
7909 ret = ironlake_setup_rc6(dev);
7910 if (ret) {
7911 mutex_unlock(&dev->struct_mutex);
7912 return;
7913 }
7914
7915 /*
7916 * GPU can automatically power down the render unit if given a page
7917 * to save state.
7918 */
7919 ret = BEGIN_LP_RING(6);
7920 if (ret) {
7921 ironlake_teardown_rc6(dev);
7922 mutex_unlock(&dev->struct_mutex);
7923 return;
7924 }
7925
7926 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7927 OUT_RING(MI_SET_CONTEXT);
7928 OUT_RING(dev_priv->renderctx->gtt_offset |
7929 MI_MM_SPACE_GTT |
7930 MI_SAVE_EXT_STATE_EN |
7931 MI_RESTORE_EXT_STATE_EN |
7932 MI_RESTORE_INHIBIT);
7933 OUT_RING(MI_SUSPEND_FLUSH);
7934 OUT_RING(MI_NOOP);
7935 OUT_RING(MI_FLUSH);
7936 ADVANCE_LP_RING();
7937
7938 /*
7939 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7940 * does an implicit flush, combined with MI_FLUSH above, it should be
7941 * safe to assume that renderctx is valid
7942 */
7943 ret = intel_wait_ring_idle(LP_RING(dev_priv));
7944 if (ret) {
7945 DRM_ERROR("failed to enable ironlake power power savings\n");
7946 ironlake_teardown_rc6(dev);
7947 mutex_unlock(&dev->struct_mutex);
7948 return;
7949 }
7950
7951 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7952 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7953 mutex_unlock(&dev->struct_mutex);
7954 }
7955
7956 void intel_init_clock_gating(struct drm_device *dev)
7957 {
7958 struct drm_i915_private *dev_priv = dev->dev_private;
7959
7960 dev_priv->display.init_clock_gating(dev);
7961
7962 if (dev_priv->display.init_pch_clock_gating)
7963 dev_priv->display.init_pch_clock_gating(dev);
7964 }
7965
7966 /* Set up chip specific display functions */
7967 static void intel_init_display(struct drm_device *dev)
7968 {
7969 struct drm_i915_private *dev_priv = dev->dev_private;
7970
7971 /* We always want a DPMS function */
7972 if (HAS_PCH_SPLIT(dev)) {
7973 dev_priv->display.dpms = ironlake_crtc_dpms;
7974 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7975 dev_priv->display.update_plane = ironlake_update_plane;
7976 } else {
7977 dev_priv->display.dpms = i9xx_crtc_dpms;
7978 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7979 dev_priv->display.update_plane = i9xx_update_plane;
7980 }
7981
7982 if (I915_HAS_FBC(dev)) {
7983 if (HAS_PCH_SPLIT(dev)) {
7984 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7985 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7986 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7987 } else if (IS_GM45(dev)) {
7988 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7989 dev_priv->display.enable_fbc = g4x_enable_fbc;
7990 dev_priv->display.disable_fbc = g4x_disable_fbc;
7991 } else if (IS_CRESTLINE(dev)) {
7992 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7993 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7994 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7995 }
7996 /* 855GM needs testing */
7997 }
7998
7999 /* Returns the core display clock speed */
8000 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
8001 dev_priv->display.get_display_clock_speed =
8002 i945_get_display_clock_speed;
8003 else if (IS_I915G(dev))
8004 dev_priv->display.get_display_clock_speed =
8005 i915_get_display_clock_speed;
8006 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8007 dev_priv->display.get_display_clock_speed =
8008 i9xx_misc_get_display_clock_speed;
8009 else if (IS_I915GM(dev))
8010 dev_priv->display.get_display_clock_speed =
8011 i915gm_get_display_clock_speed;
8012 else if (IS_I865G(dev))
8013 dev_priv->display.get_display_clock_speed =
8014 i865_get_display_clock_speed;
8015 else if (IS_I85X(dev))
8016 dev_priv->display.get_display_clock_speed =
8017 i855_get_display_clock_speed;
8018 else /* 852, 830 */
8019 dev_priv->display.get_display_clock_speed =
8020 i830_get_display_clock_speed;
8021
8022 /* For FIFO watermark updates */
8023 if (HAS_PCH_SPLIT(dev)) {
8024 if (HAS_PCH_IBX(dev))
8025 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8026 else if (HAS_PCH_CPT(dev))
8027 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8028
8029 if (IS_GEN5(dev)) {
8030 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8031 dev_priv->display.update_wm = ironlake_update_wm;
8032 else {
8033 DRM_DEBUG_KMS("Failed to get proper latency. "
8034 "Disable CxSR\n");
8035 dev_priv->display.update_wm = NULL;
8036 }
8037 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8038 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8039 } else if (IS_GEN6(dev)) {
8040 if (SNB_READ_WM0_LATENCY()) {
8041 dev_priv->display.update_wm = sandybridge_update_wm;
8042 } else {
8043 DRM_DEBUG_KMS("Failed to read display plane latency. "
8044 "Disable CxSR\n");
8045 dev_priv->display.update_wm = NULL;
8046 }
8047 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8048 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8049 } else if (IS_IVYBRIDGE(dev)) {
8050 /* FIXME: detect B0+ stepping and use auto training */
8051 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8052 if (SNB_READ_WM0_LATENCY()) {
8053 dev_priv->display.update_wm = sandybridge_update_wm;
8054 } else {
8055 DRM_DEBUG_KMS("Failed to read display plane latency. "
8056 "Disable CxSR\n");
8057 dev_priv->display.update_wm = NULL;
8058 }
8059 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8060
8061 } else
8062 dev_priv->display.update_wm = NULL;
8063 } else if (IS_PINEVIEW(dev)) {
8064 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8065 dev_priv->is_ddr3,
8066 dev_priv->fsb_freq,
8067 dev_priv->mem_freq)) {
8068 DRM_INFO("failed to find known CxSR latency "
8069 "(found ddr%s fsb freq %d, mem freq %d), "
8070 "disabling CxSR\n",
8071 (dev_priv->is_ddr3 == 1) ? "3": "2",
8072 dev_priv->fsb_freq, dev_priv->mem_freq);
8073 /* Disable CxSR and never update its watermark again */
8074 pineview_disable_cxsr(dev);
8075 dev_priv->display.update_wm = NULL;
8076 } else
8077 dev_priv->display.update_wm = pineview_update_wm;
8078 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8079 } else if (IS_G4X(dev)) {
8080 dev_priv->display.update_wm = g4x_update_wm;
8081 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8082 } else if (IS_GEN4(dev)) {
8083 dev_priv->display.update_wm = i965_update_wm;
8084 if (IS_CRESTLINE(dev))
8085 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8086 else if (IS_BROADWATER(dev))
8087 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8088 } else if (IS_GEN3(dev)) {
8089 dev_priv->display.update_wm = i9xx_update_wm;
8090 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8091 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8092 } else if (IS_I865G(dev)) {
8093 dev_priv->display.update_wm = i830_update_wm;
8094 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8095 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8096 } else if (IS_I85X(dev)) {
8097 dev_priv->display.update_wm = i9xx_update_wm;
8098 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8099 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8100 } else {
8101 dev_priv->display.update_wm = i830_update_wm;
8102 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8103 if (IS_845G(dev))
8104 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8105 else
8106 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8107 }
8108
8109 /* Default just returns -ENODEV to indicate unsupported */
8110 dev_priv->display.queue_flip = intel_default_queue_flip;
8111
8112 switch (INTEL_INFO(dev)->gen) {
8113 case 2:
8114 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8115 break;
8116
8117 case 3:
8118 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8119 break;
8120
8121 case 4:
8122 case 5:
8123 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8124 break;
8125
8126 case 6:
8127 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8128 break;
8129 case 7:
8130 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8131 break;
8132 }
8133 }
8134
8135 /*
8136 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8137 * resume, or other times. This quirk makes sure that's the case for
8138 * affected systems.
8139 */
8140 static void quirk_pipea_force (struct drm_device *dev)
8141 {
8142 struct drm_i915_private *dev_priv = dev->dev_private;
8143
8144 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8145 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8146 }
8147
8148 /*
8149 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8150 */
8151 static void quirk_ssc_force_disable(struct drm_device *dev)
8152 {
8153 struct drm_i915_private *dev_priv = dev->dev_private;
8154 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8155 }
8156
8157 struct intel_quirk {
8158 int device;
8159 int subsystem_vendor;
8160 int subsystem_device;
8161 void (*hook)(struct drm_device *dev);
8162 };
8163
8164 struct intel_quirk intel_quirks[] = {
8165 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8166 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8167 /* HP Mini needs pipe A force quirk (LP: #322104) */
8168 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8169
8170 /* Thinkpad R31 needs pipe A force quirk */
8171 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8172 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8173 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8174
8175 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8176 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8177 /* ThinkPad X40 needs pipe A force quirk */
8178
8179 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8180 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8181
8182 /* 855 & before need to leave pipe A & dpll A up */
8183 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8184 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8185
8186 /* Lenovo U160 cannot use SSC on LVDS */
8187 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8188 };
8189
8190 static void intel_init_quirks(struct drm_device *dev)
8191 {
8192 struct pci_dev *d = dev->pdev;
8193 int i;
8194
8195 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8196 struct intel_quirk *q = &intel_quirks[i];
8197
8198 if (d->device == q->device &&
8199 (d->subsystem_vendor == q->subsystem_vendor ||
8200 q->subsystem_vendor == PCI_ANY_ID) &&
8201 (d->subsystem_device == q->subsystem_device ||
8202 q->subsystem_device == PCI_ANY_ID))
8203 q->hook(dev);
8204 }
8205 }
8206
8207 /* Disable the VGA plane that we never use */
8208 static void i915_disable_vga(struct drm_device *dev)
8209 {
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211 u8 sr1;
8212 u32 vga_reg;
8213
8214 if (HAS_PCH_SPLIT(dev))
8215 vga_reg = CPU_VGACNTRL;
8216 else
8217 vga_reg = VGACNTRL;
8218
8219 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8220 outb(1, VGA_SR_INDEX);
8221 sr1 = inb(VGA_SR_DATA);
8222 outb(sr1 | 1<<5, VGA_SR_DATA);
8223 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8224 udelay(300);
8225
8226 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8227 POSTING_READ(vga_reg);
8228 }
8229
8230 void intel_modeset_init(struct drm_device *dev)
8231 {
8232 struct drm_i915_private *dev_priv = dev->dev_private;
8233 int i;
8234
8235 drm_mode_config_init(dev);
8236
8237 dev->mode_config.min_width = 0;
8238 dev->mode_config.min_height = 0;
8239
8240 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8241
8242 intel_init_quirks(dev);
8243
8244 intel_init_display(dev);
8245
8246 if (IS_GEN2(dev)) {
8247 dev->mode_config.max_width = 2048;
8248 dev->mode_config.max_height = 2048;
8249 } else if (IS_GEN3(dev)) {
8250 dev->mode_config.max_width = 4096;
8251 dev->mode_config.max_height = 4096;
8252 } else {
8253 dev->mode_config.max_width = 8192;
8254 dev->mode_config.max_height = 8192;
8255 }
8256 dev->mode_config.fb_base = dev->agp->base;
8257
8258 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8259 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8260
8261 for (i = 0; i < dev_priv->num_pipe; i++) {
8262 intel_crtc_init(dev, i);
8263 }
8264
8265 /* Just disable it once at startup */
8266 i915_disable_vga(dev);
8267 intel_setup_outputs(dev);
8268
8269 intel_init_clock_gating(dev);
8270
8271 if (IS_IRONLAKE_M(dev)) {
8272 ironlake_enable_drps(dev);
8273 intel_init_emon(dev);
8274 }
8275
8276 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8277 gen6_enable_rps(dev_priv);
8278 gen6_update_ring_freq(dev_priv);
8279 }
8280
8281 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8282 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8283 (unsigned long)dev);
8284 }
8285
8286 void intel_modeset_gem_init(struct drm_device *dev)
8287 {
8288 if (IS_IRONLAKE_M(dev))
8289 ironlake_enable_rc6(dev);
8290
8291 intel_setup_overlay(dev);
8292 }
8293
8294 void intel_modeset_cleanup(struct drm_device *dev)
8295 {
8296 struct drm_i915_private *dev_priv = dev->dev_private;
8297 struct drm_crtc *crtc;
8298 struct intel_crtc *intel_crtc;
8299
8300 drm_kms_helper_poll_fini(dev);
8301 mutex_lock(&dev->struct_mutex);
8302
8303 intel_unregister_dsm_handler();
8304
8305
8306 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8307 /* Skip inactive CRTCs */
8308 if (!crtc->fb)
8309 continue;
8310
8311 intel_crtc = to_intel_crtc(crtc);
8312 intel_increase_pllclock(crtc);
8313 }
8314
8315 intel_disable_fbc(dev);
8316
8317 if (IS_IRONLAKE_M(dev))
8318 ironlake_disable_drps(dev);
8319 if (IS_GEN6(dev) || IS_GEN7(dev))
8320 gen6_disable_rps(dev);
8321
8322 if (IS_IRONLAKE_M(dev))
8323 ironlake_disable_rc6(dev);
8324
8325 mutex_unlock(&dev->struct_mutex);
8326
8327 /* Disable the irq before mode object teardown, for the irq might
8328 * enqueue unpin/hotplug work. */
8329 drm_irq_uninstall(dev);
8330 cancel_work_sync(&dev_priv->hotplug_work);
8331
8332 /* flush any delayed tasks or pending work */
8333 flush_scheduled_work();
8334
8335 /* Shut off idle work before the crtcs get freed. */
8336 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8337 intel_crtc = to_intel_crtc(crtc);
8338 del_timer_sync(&intel_crtc->idle_timer);
8339 }
8340 del_timer_sync(&dev_priv->idle_timer);
8341 cancel_work_sync(&dev_priv->idle_work);
8342
8343 drm_mode_config_cleanup(dev);
8344 }
8345
8346 /*
8347 * Return which encoder is currently attached for connector.
8348 */
8349 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8350 {
8351 return &intel_attached_encoder(connector)->base;
8352 }
8353
8354 void intel_connector_attach_encoder(struct intel_connector *connector,
8355 struct intel_encoder *encoder)
8356 {
8357 connector->encoder = encoder;
8358 drm_mode_connector_attach_encoder(&connector->base,
8359 &encoder->base);
8360 }
8361
8362 /*
8363 * set vga decode state - true == enable VGA decode
8364 */
8365 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8366 {
8367 struct drm_i915_private *dev_priv = dev->dev_private;
8368 u16 gmch_ctrl;
8369
8370 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8371 if (state)
8372 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8373 else
8374 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8375 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8376 return 0;
8377 }
8378
8379 #ifdef CONFIG_DEBUG_FS
8380 #include <linux/seq_file.h>
8381
8382 struct intel_display_error_state {
8383 struct intel_cursor_error_state {
8384 u32 control;
8385 u32 position;
8386 u32 base;
8387 u32 size;
8388 } cursor[2];
8389
8390 struct intel_pipe_error_state {
8391 u32 conf;
8392 u32 source;
8393
8394 u32 htotal;
8395 u32 hblank;
8396 u32 hsync;
8397 u32 vtotal;
8398 u32 vblank;
8399 u32 vsync;
8400 } pipe[2];
8401
8402 struct intel_plane_error_state {
8403 u32 control;
8404 u32 stride;
8405 u32 size;
8406 u32 pos;
8407 u32 addr;
8408 u32 surface;
8409 u32 tile_offset;
8410 } plane[2];
8411 };
8412
8413 struct intel_display_error_state *
8414 intel_display_capture_error_state(struct drm_device *dev)
8415 {
8416 drm_i915_private_t *dev_priv = dev->dev_private;
8417 struct intel_display_error_state *error;
8418 int i;
8419
8420 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8421 if (error == NULL)
8422 return NULL;
8423
8424 for (i = 0; i < 2; i++) {
8425 error->cursor[i].control = I915_READ(CURCNTR(i));
8426 error->cursor[i].position = I915_READ(CURPOS(i));
8427 error->cursor[i].base = I915_READ(CURBASE(i));
8428
8429 error->plane[i].control = I915_READ(DSPCNTR(i));
8430 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8431 error->plane[i].size = I915_READ(DSPSIZE(i));
8432 error->plane[i].pos= I915_READ(DSPPOS(i));
8433 error->plane[i].addr = I915_READ(DSPADDR(i));
8434 if (INTEL_INFO(dev)->gen >= 4) {
8435 error->plane[i].surface = I915_READ(DSPSURF(i));
8436 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8437 }
8438
8439 error->pipe[i].conf = I915_READ(PIPECONF(i));
8440 error->pipe[i].source = I915_READ(PIPESRC(i));
8441 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8442 error->pipe[i].hblank = I915_READ(HBLANK(i));
8443 error->pipe[i].hsync = I915_READ(HSYNC(i));
8444 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8445 error->pipe[i].vblank = I915_READ(VBLANK(i));
8446 error->pipe[i].vsync = I915_READ(VSYNC(i));
8447 }
8448
8449 return error;
8450 }
8451
8452 void
8453 intel_display_print_error_state(struct seq_file *m,
8454 struct drm_device *dev,
8455 struct intel_display_error_state *error)
8456 {
8457 int i;
8458
8459 for (i = 0; i < 2; i++) {
8460 seq_printf(m, "Pipe [%d]:\n", i);
8461 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8462 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8463 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8464 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8465 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8466 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8467 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8468 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8469
8470 seq_printf(m, "Plane [%d]:\n", i);
8471 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8472 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8473 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8474 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8475 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8476 if (INTEL_INFO(dev)->gen >= 4) {
8477 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8478 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8479 }
8480
8481 seq_printf(m, "Cursor [%d]:\n", i);
8482 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8483 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8484 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8485 }
8486 }
8487 #endif
This page took 0.209755 seconds and 5 git commands to generate.