c3f0400963deee3a741b765d78643cb43c0d2ab4
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
102
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
242 */
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
350 }
351
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
354 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
355 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
356 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
357 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
358 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
359 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
360 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
361 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
363 .find_pll = intel_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
368 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
369 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
370 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
371 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
372 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
373 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
374 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
375 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
377 .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
382 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
383 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
384 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
385 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
386 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
387 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
388 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
389 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391 .find_pll = intel_find_best_PLL,
392 };
393
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
396 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
397 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
398 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
399 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
400 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
401 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
402 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
403 /* The single-channel range is 25-112Mhz, and dual-channel
404 * is 80-224Mhz. Prefer single channel as much as possible.
405 */
406 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
408 .find_pll = intel_find_best_PLL,
409 };
410
411 /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
414 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
415 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
416 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
417 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
418 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
419 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
420 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
421 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
422 .p2_slow = G4X_P2_SDVO_SLOW,
423 .p2_fast = G4X_P2_SDVO_FAST
424 },
425 .find_pll = intel_g4x_find_best_PLL,
426 };
427
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
430 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
431 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
432 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
433 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
434 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
435 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
436 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
437 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439 .p2_fast = G4X_P2_HDMI_DAC_FAST
440 },
441 .find_pll = intel_g4x_find_best_PLL,
442 };
443
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447 .vco = { .min = G4X_VCO_MIN,
448 .max = G4X_VCO_MAX },
449 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
464 },
465 .find_pll = intel_g4x_find_best_PLL,
466 };
467
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471 .vco = { .min = G4X_VCO_MIN,
472 .max = G4X_VCO_MAX },
473 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
488 },
489 .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_g4x_display_port = {
493 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494 .max = G4X_DOT_DISPLAY_PORT_MAX },
495 .vco = { .min = G4X_VCO_MIN,
496 .max = G4X_VCO_MAX},
497 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
498 .max = G4X_N_DISPLAY_PORT_MAX },
499 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
500 .max = G4X_M_DISPLAY_PORT_MAX },
501 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
502 .max = G4X_M1_DISPLAY_PORT_MAX },
503 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
504 .max = G4X_M2_DISPLAY_PORT_MAX },
505 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
506 .max = G4X_P_DISPLAY_PORT_MAX },
507 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
508 .max = G4X_P1_DISPLAY_PORT_MAX},
509 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512 .find_pll = intel_find_pll_g4x_dp,
513 };
514
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
517 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
518 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
519 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
520 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
521 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
522 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
523 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
524 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526 .find_pll = intel_find_best_PLL,
527 };
528
529 static const intel_limit_t intel_limits_pineview_lvds = {
530 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
531 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
532 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
533 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
534 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
535 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
536 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
537 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
538 /* Pineview only supports single-channel mode. */
539 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
541 .find_pll = intel_find_best_PLL,
542 };
543
544 static const intel_limit_t intel_limits_ironlake_dac = {
545 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
546 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
547 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
548 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
549 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
550 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
551 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
552 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
553 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554 .p2_slow = IRONLAKE_DAC_P2_SLOW,
555 .p2_fast = IRONLAKE_DAC_P2_FAST },
556 .find_pll = intel_g4x_find_best_PLL,
557 };
558
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
561 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
562 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
563 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
564 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
565 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
566 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
567 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
568 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571 .find_pll = intel_g4x_find_best_PLL,
572 };
573
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
576 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
577 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
578 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
579 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
580 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
581 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
582 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
583 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586 .find_pll = intel_g4x_find_best_PLL,
587 };
588
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
591 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
592 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
595 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
596 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601 .find_pll = intel_g4x_find_best_PLL,
602 };
603
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
606 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
607 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
610 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
611 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616 .find_pll = intel_g4x_find_best_PLL,
617 };
618
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620 .dot = { .min = IRONLAKE_DOT_MIN,
621 .max = IRONLAKE_DOT_MAX },
622 .vco = { .min = IRONLAKE_VCO_MIN,
623 .max = IRONLAKE_VCO_MAX},
624 .n = { .min = IRONLAKE_DP_N_MIN,
625 .max = IRONLAKE_DP_N_MAX },
626 .m = { .min = IRONLAKE_DP_M_MIN,
627 .max = IRONLAKE_DP_M_MAX },
628 .m1 = { .min = IRONLAKE_M1_MIN,
629 .max = IRONLAKE_M1_MAX },
630 .m2 = { .min = IRONLAKE_M2_MIN,
631 .max = IRONLAKE_M2_MAX },
632 .p = { .min = IRONLAKE_DP_P_MIN,
633 .max = IRONLAKE_DP_P_MAX },
634 .p1 = { .min = IRONLAKE_DP_P1_MIN,
635 .max = IRONLAKE_DP_P1_MAX},
636 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637 .p2_slow = IRONLAKE_DP_P2_SLOW,
638 .p2_fast = IRONLAKE_DP_P2_FAST },
639 .find_pll = intel_find_pll_ironlake_dp,
640 };
641
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
643 {
644 struct drm_device *dev = crtc->dev;
645 struct drm_i915_private *dev_priv = dev->dev_private;
646 const intel_limit_t *limit;
647 int refclk = 120;
648
649 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651 refclk = 100;
652
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
665 }
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
671
672 return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
698
699 return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
703 {
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
706
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
726 }
727 return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
744 }
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752 * Returns whether any output on the specified pipe is of the specified type
753 */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
759
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
763
764 return false;
765 }
766
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
771 */
772
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
774 {
775 const intel_limit_t *limit = intel_limit (crtc);
776 struct drm_device *dev = crtc->dev;
777
778 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
779 INTELPllInvalid ("p1 out of range\n");
780 if (clock->p < limit->p.min || limit->p.max < clock->p)
781 INTELPllInvalid ("p out of range\n");
782 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
783 INTELPllInvalid ("m2 out of range\n");
784 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
785 INTELPllInvalid ("m1 out of range\n");
786 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787 INTELPllInvalid ("m1 <= m2\n");
788 if (clock->m < limit->m.min || limit->m.max < clock->m)
789 INTELPllInvalid ("m out of range\n");
790 if (clock->n < limit->n.min || limit->n.max < clock->n)
791 INTELPllInvalid ("n out of range\n");
792 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793 INTELPllInvalid ("vco out of range\n");
794 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795 * connector, etc., rather than just a single range.
796 */
797 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798 INTELPllInvalid ("dot out of range\n");
799
800 return true;
801 }
802
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805 int target, int refclk, intel_clock_t *best_clock)
806
807 {
808 struct drm_device *dev = crtc->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 intel_clock_t clock;
811 int err = target;
812
813 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814 (I915_READ(LVDS)) != 0) {
815 /*
816 * For LVDS, if the panel is on, just rely on its current
817 * settings for dual-channel. We haven't figured out how to
818 * reliably set up different single/dual channel state, if we
819 * even can.
820 */
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
831 }
832
833 memset (best_clock, 0, sizeof (*best_clock));
834
835 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836 clock.m1++) {
837 for (clock.m2 = limit->m2.min;
838 clock.m2 <= limit->m2.max; clock.m2++) {
839 /* m1 is always 0 in Pineview */
840 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841 break;
842 for (clock.n = limit->n.min;
843 clock.n <= limit->n.max; clock.n++) {
844 for (clock.p1 = limit->p1.min;
845 clock.p1 <= limit->p1.max; clock.p1++) {
846 int this_err;
847
848 intel_clock(dev, refclk, &clock);
849
850 if (!intel_PLL_is_valid(crtc, &clock))
851 continue;
852
853 this_err = abs(clock.dot - target);
854 if (this_err < err) {
855 *best_clock = clock;
856 err = this_err;
857 }
858 }
859 }
860 }
861 }
862
863 return (err != target);
864 }
865
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868 int target, int refclk, intel_clock_t *best_clock)
869 {
870 struct drm_device *dev = crtc->dev;
871 struct drm_i915_private *dev_priv = dev->dev_private;
872 intel_clock_t clock;
873 int max_n;
874 bool found;
875 /* approximately equals target * 0.00585 */
876 int err_most = (target >> 8) + (target >> 9);
877 found = false;
878
879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880 int lvds_reg;
881
882 if (HAS_PCH_SPLIT(dev))
883 lvds_reg = PCH_LVDS;
884 else
885 lvds_reg = LVDS;
886 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887 LVDS_CLKB_POWER_UP)
888 clock.p2 = limit->p2.p2_fast;
889 else
890 clock.p2 = limit->p2.p2_slow;
891 } else {
892 if (target < limit->p2.dot_limit)
893 clock.p2 = limit->p2.p2_slow;
894 else
895 clock.p2 = limit->p2.p2_fast;
896 }
897
898 memset(best_clock, 0, sizeof(*best_clock));
899 max_n = limit->n.max;
900 /* based on hardware requirement, prefer smaller n to precision */
901 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902 /* based on hardware requirement, prefere larger m1,m2 */
903 for (clock.m1 = limit->m1.max;
904 clock.m1 >= limit->m1.min; clock.m1--) {
905 for (clock.m2 = limit->m2.max;
906 clock.m2 >= limit->m2.min; clock.m2--) {
907 for (clock.p1 = limit->p1.max;
908 clock.p1 >= limit->p1.min; clock.p1--) {
909 int this_err;
910
911 intel_clock(dev, refclk, &clock);
912 if (!intel_PLL_is_valid(crtc, &clock))
913 continue;
914 this_err = abs(clock.dot - target) ;
915 if (this_err < err_most) {
916 *best_clock = clock;
917 err_most = this_err;
918 max_n = clock.n;
919 found = true;
920 }
921 }
922 }
923 }
924 }
925 return found;
926 }
927
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930 int target, int refclk, intel_clock_t *best_clock)
931 {
932 struct drm_device *dev = crtc->dev;
933 intel_clock_t clock;
934
935 /* return directly when it is eDP */
936 if (HAS_eDP)
937 return true;
938
939 if (target < 200000) {
940 clock.n = 1;
941 clock.p1 = 2;
942 clock.p2 = 10;
943 clock.m1 = 12;
944 clock.m2 = 9;
945 } else {
946 clock.n = 2;
947 clock.p1 = 1;
948 clock.p2 = 10;
949 clock.m1 = 14;
950 clock.m2 = 8;
951 }
952 intel_clock(dev, refclk, &clock);
953 memcpy(best_clock, &clock, sizeof(intel_clock_t));
954 return true;
955 }
956
957 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
958 static bool
959 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
960 int target, int refclk, intel_clock_t *best_clock)
961 {
962 intel_clock_t clock;
963 if (target < 200000) {
964 clock.p1 = 2;
965 clock.p2 = 10;
966 clock.n = 2;
967 clock.m1 = 23;
968 clock.m2 = 8;
969 } else {
970 clock.p1 = 1;
971 clock.p2 = 10;
972 clock.n = 1;
973 clock.m1 = 14;
974 clock.m2 = 2;
975 }
976 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
977 clock.p = (clock.p1 * clock.p2);
978 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
979 clock.vco = 0;
980 memcpy(best_clock, &clock, sizeof(intel_clock_t));
981 return true;
982 }
983
984 /**
985 * intel_wait_for_vblank - wait for vblank on a given pipe
986 * @dev: drm device
987 * @pipe: pipe to wait for
988 *
989 * Wait for vblank to occur on a given pipe. Needed for various bits of
990 * mode setting code.
991 */
992 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 {
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996
997 /* Clear existing vblank status. Note this will clear any other
998 * sticky status fields as well.
999 *
1000 * This races with i915_driver_irq_handler() with the result
1001 * that either function could miss a vblank event. Here it is not
1002 * fatal, as we will either wait upon the next vblank interrupt or
1003 * timeout. Generally speaking intel_wait_for_vblank() is only
1004 * called during modeset at which time the GPU should be idle and
1005 * should *not* be performing page flips and thus not waiting on
1006 * vblanks...
1007 * Currently, the result of us stealing a vblank from the irq
1008 * handler is that a single frame will be skipped during swapbuffers.
1009 */
1010 I915_WRITE(pipestat_reg,
1011 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012
1013 /* Wait for vblank interrupt bit to set */
1014 if (wait_for(I915_READ(pipestat_reg) &
1015 PIPE_VBLANK_INTERRUPT_STATUS,
1016 50))
1017 DRM_DEBUG_KMS("vblank wait timed out\n");
1018 }
1019
1020 /**
1021 * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
1022 * @dev: drm device
1023 * @pipe: pipe to wait for
1024 *
1025 * After disabling a pipe, we can't wait for vblank in the usual way,
1026 * spinning on the vblank interrupt status bit, since we won't actually
1027 * see an interrupt when the pipe is disabled.
1028 *
1029 * So this function waits for the display line value to settle (it
1030 * usually ends up stopping at the start of the next frame).
1031 */
1032 void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
1033 {
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
1036 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1037 u32 last_line, line;
1038
1039 /* Wait for the display line to settle */
1040 line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1041 do {
1042 last_line = line;
1043 MSLEEP(5);
1044 line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1045 } while (line != last_line && time_after(timeout, jiffies));
1046
1047 if (line != last_line)
1048 DRM_DEBUG_KMS("vblank wait timed out\n");
1049 }
1050
1051 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1052 {
1053 struct drm_device *dev = crtc->dev;
1054 struct drm_i915_private *dev_priv = dev->dev_private;
1055 struct drm_framebuffer *fb = crtc->fb;
1056 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1057 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1059 int plane, i;
1060 u32 fbc_ctl, fbc_ctl2;
1061
1062 if (fb->pitch == dev_priv->cfb_pitch &&
1063 obj_priv->fence_reg == dev_priv->cfb_fence &&
1064 intel_crtc->plane == dev_priv->cfb_plane &&
1065 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1066 return;
1067
1068 i8xx_disable_fbc(dev);
1069
1070 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1071
1072 if (fb->pitch < dev_priv->cfb_pitch)
1073 dev_priv->cfb_pitch = fb->pitch;
1074
1075 /* FBC_CTL wants 64B units */
1076 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1077 dev_priv->cfb_fence = obj_priv->fence_reg;
1078 dev_priv->cfb_plane = intel_crtc->plane;
1079 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1080
1081 /* Clear old tags */
1082 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1083 I915_WRITE(FBC_TAG + (i * 4), 0);
1084
1085 /* Set it up... */
1086 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1087 if (obj_priv->tiling_mode != I915_TILING_NONE)
1088 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1089 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1090 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1091
1092 /* enable it... */
1093 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1094 if (IS_I945GM(dev))
1095 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1096 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1097 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1098 if (obj_priv->tiling_mode != I915_TILING_NONE)
1099 fbc_ctl |= dev_priv->cfb_fence;
1100 I915_WRITE(FBC_CONTROL, fbc_ctl);
1101
1102 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1103 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1104 }
1105
1106 void i8xx_disable_fbc(struct drm_device *dev)
1107 {
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109 u32 fbc_ctl;
1110
1111 /* Disable compression */
1112 fbc_ctl = I915_READ(FBC_CONTROL);
1113 fbc_ctl &= ~FBC_CTL_EN;
1114 I915_WRITE(FBC_CONTROL, fbc_ctl);
1115
1116 /* Wait for compressing bit to clear */
1117 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1118 DRM_DEBUG_KMS("FBC idle timed out\n");
1119 return;
1120 }
1121
1122 DRM_DEBUG_KMS("disabled FBC\n");
1123 }
1124
1125 static bool i8xx_fbc_enabled(struct drm_device *dev)
1126 {
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1130 }
1131
1132 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1133 {
1134 struct drm_device *dev = crtc->dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct drm_framebuffer *fb = crtc->fb;
1137 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1138 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1140 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1141 unsigned long stall_watermark = 200;
1142 u32 dpfc_ctl;
1143
1144 dpfc_ctl = I915_READ(DPFC_CONTROL);
1145 if (dpfc_ctl & DPFC_CTL_EN) {
1146 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1147 dev_priv->cfb_fence == obj_priv->fence_reg &&
1148 dev_priv->cfb_plane == intel_crtc->plane &&
1149 dev_priv->cfb_y == crtc->y)
1150 return;
1151
1152 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1153 POSTING_READ(DPFC_CONTROL);
1154 intel_wait_for_vblank(dev, intel_crtc->pipe);
1155 }
1156
1157 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1158 dev_priv->cfb_fence = obj_priv->fence_reg;
1159 dev_priv->cfb_plane = intel_crtc->plane;
1160 dev_priv->cfb_y = crtc->y;
1161
1162 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1163 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1164 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1165 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1166 } else {
1167 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1168 }
1169
1170 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1171 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1172 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1173 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1174
1175 /* enable it... */
1176 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1177
1178 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1179 }
1180
1181 void g4x_disable_fbc(struct drm_device *dev)
1182 {
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 u32 dpfc_ctl;
1185
1186 /* Disable compression */
1187 dpfc_ctl = I915_READ(DPFC_CONTROL);
1188 if (dpfc_ctl & DPFC_CTL_EN) {
1189 dpfc_ctl &= ~DPFC_CTL_EN;
1190 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1191
1192 DRM_DEBUG_KMS("disabled FBC\n");
1193 }
1194 }
1195
1196 static bool g4x_fbc_enabled(struct drm_device *dev)
1197 {
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199
1200 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1201 }
1202
1203 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1204 {
1205 struct drm_device *dev = crtc->dev;
1206 struct drm_i915_private *dev_priv = dev->dev_private;
1207 struct drm_framebuffer *fb = crtc->fb;
1208 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1209 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1211 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1212 unsigned long stall_watermark = 200;
1213 u32 dpfc_ctl;
1214
1215 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1216 if (dpfc_ctl & DPFC_CTL_EN) {
1217 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1218 dev_priv->cfb_fence == obj_priv->fence_reg &&
1219 dev_priv->cfb_plane == intel_crtc->plane &&
1220 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1221 dev_priv->cfb_y == crtc->y)
1222 return;
1223
1224 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1225 POSTING_READ(ILK_DPFC_CONTROL);
1226 intel_wait_for_vblank(dev, intel_crtc->pipe);
1227 }
1228
1229 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1230 dev_priv->cfb_fence = obj_priv->fence_reg;
1231 dev_priv->cfb_plane = intel_crtc->plane;
1232 dev_priv->cfb_offset = obj_priv->gtt_offset;
1233 dev_priv->cfb_y = crtc->y;
1234
1235 dpfc_ctl &= DPFC_RESERVED;
1236 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1237 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1238 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1239 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1240 } else {
1241 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1242 }
1243
1244 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1245 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1246 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1247 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1248 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1249 /* enable it... */
1250 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1251
1252 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1253 }
1254
1255 void ironlake_disable_fbc(struct drm_device *dev)
1256 {
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258 u32 dpfc_ctl;
1259
1260 /* Disable compression */
1261 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1262 if (dpfc_ctl & DPFC_CTL_EN) {
1263 dpfc_ctl &= ~DPFC_CTL_EN;
1264 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1265
1266 DRM_DEBUG_KMS("disabled FBC\n");
1267 }
1268 }
1269
1270 static bool ironlake_fbc_enabled(struct drm_device *dev)
1271 {
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273
1274 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1275 }
1276
1277 bool intel_fbc_enabled(struct drm_device *dev)
1278 {
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280
1281 if (!dev_priv->display.fbc_enabled)
1282 return false;
1283
1284 return dev_priv->display.fbc_enabled(dev);
1285 }
1286
1287 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1288 {
1289 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1290
1291 if (!dev_priv->display.enable_fbc)
1292 return;
1293
1294 dev_priv->display.enable_fbc(crtc, interval);
1295 }
1296
1297 void intel_disable_fbc(struct drm_device *dev)
1298 {
1299 struct drm_i915_private *dev_priv = dev->dev_private;
1300
1301 if (!dev_priv->display.disable_fbc)
1302 return;
1303
1304 dev_priv->display.disable_fbc(dev);
1305 }
1306
1307 /**
1308 * intel_update_fbc - enable/disable FBC as needed
1309 * @dev: the drm_device
1310 *
1311 * Set up the framebuffer compression hardware at mode set time. We
1312 * enable it if possible:
1313 * - plane A only (on pre-965)
1314 * - no pixel mulitply/line duplication
1315 * - no alpha buffer discard
1316 * - no dual wide
1317 * - framebuffer <= 2048 in width, 1536 in height
1318 *
1319 * We can't assume that any compression will take place (worst case),
1320 * so the compressed buffer has to be the same size as the uncompressed
1321 * one. It also must reside (along with the line length buffer) in
1322 * stolen memory.
1323 *
1324 * We need to enable/disable FBC on a global basis.
1325 */
1326 static void intel_update_fbc(struct drm_device *dev)
1327 {
1328 struct drm_i915_private *dev_priv = dev->dev_private;
1329 struct drm_crtc *crtc = NULL, *tmp_crtc;
1330 struct intel_crtc *intel_crtc;
1331 struct drm_framebuffer *fb;
1332 struct intel_framebuffer *intel_fb;
1333 struct drm_i915_gem_object *obj_priv;
1334
1335 DRM_DEBUG_KMS("\n");
1336
1337 if (!i915_powersave)
1338 return;
1339
1340 if (!I915_HAS_FBC(dev))
1341 return;
1342
1343 /*
1344 * If FBC is already on, we just have to verify that we can
1345 * keep it that way...
1346 * Need to disable if:
1347 * - more than one pipe is active
1348 * - changing FBC params (stride, fence, mode)
1349 * - new fb is too large to fit in compressed buffer
1350 * - going to an unsupported config (interlace, pixel multiply, etc.)
1351 */
1352 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1353 if (tmp_crtc->enabled) {
1354 if (crtc) {
1355 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1356 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1357 goto out_disable;
1358 }
1359 crtc = tmp_crtc;
1360 }
1361 }
1362
1363 if (!crtc || crtc->fb == NULL) {
1364 DRM_DEBUG_KMS("no output, disabling\n");
1365 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1366 goto out_disable;
1367 }
1368
1369 intel_crtc = to_intel_crtc(crtc);
1370 fb = crtc->fb;
1371 intel_fb = to_intel_framebuffer(fb);
1372 obj_priv = to_intel_bo(intel_fb->obj);
1373
1374 if (intel_fb->obj->size > dev_priv->cfb_size) {
1375 DRM_DEBUG_KMS("framebuffer too large, disabling "
1376 "compression\n");
1377 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1378 goto out_disable;
1379 }
1380 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1381 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1382 DRM_DEBUG_KMS("mode incompatible with compression, "
1383 "disabling\n");
1384 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1385 goto out_disable;
1386 }
1387 if ((crtc->mode.hdisplay > 2048) ||
1388 (crtc->mode.vdisplay > 1536)) {
1389 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1390 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1391 goto out_disable;
1392 }
1393 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1394 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1395 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1396 goto out_disable;
1397 }
1398 if (obj_priv->tiling_mode != I915_TILING_X) {
1399 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1400 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1401 goto out_disable;
1402 }
1403
1404 /* If the kernel debugger is active, always disable compression */
1405 if (in_dbg_master())
1406 goto out_disable;
1407
1408 intel_enable_fbc(crtc, 500);
1409 return;
1410
1411 out_disable:
1412 /* Multiple disables should be harmless */
1413 if (intel_fbc_enabled(dev)) {
1414 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1415 intel_disable_fbc(dev);
1416 }
1417 }
1418
1419 int
1420 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1421 struct drm_gem_object *obj,
1422 bool pipelined)
1423 {
1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 u32 alignment;
1426 int ret;
1427
1428 switch (obj_priv->tiling_mode) {
1429 case I915_TILING_NONE:
1430 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1431 alignment = 128 * 1024;
1432 else if (INTEL_INFO(dev)->gen >= 4)
1433 alignment = 4 * 1024;
1434 else
1435 alignment = 64 * 1024;
1436 break;
1437 case I915_TILING_X:
1438 /* pin() will align the object as required by fence */
1439 alignment = 0;
1440 break;
1441 case I915_TILING_Y:
1442 /* FIXME: Is this true? */
1443 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1444 return -EINVAL;
1445 default:
1446 BUG();
1447 }
1448
1449 ret = i915_gem_object_pin(obj, alignment);
1450 if (ret)
1451 return ret;
1452
1453 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1454 if (ret)
1455 goto err_unpin;
1456
1457 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1458 * fence, whereas 965+ only requires a fence if using
1459 * framebuffer compression. For simplicity, we always install
1460 * a fence as the cost is not that onerous.
1461 */
1462 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1463 obj_priv->tiling_mode != I915_TILING_NONE) {
1464 ret = i915_gem_object_get_fence_reg(obj, false);
1465 if (ret)
1466 goto err_unpin;
1467 }
1468
1469 return 0;
1470
1471 err_unpin:
1472 i915_gem_object_unpin(obj);
1473 return ret;
1474 }
1475
1476 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1477 static int
1478 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1479 int x, int y)
1480 {
1481 struct drm_device *dev = crtc->dev;
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1484 struct intel_framebuffer *intel_fb;
1485 struct drm_i915_gem_object *obj_priv;
1486 struct drm_gem_object *obj;
1487 int plane = intel_crtc->plane;
1488 unsigned long Start, Offset;
1489 u32 dspcntr;
1490 u32 reg;
1491
1492 switch (plane) {
1493 case 0:
1494 case 1:
1495 break;
1496 default:
1497 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1498 return -EINVAL;
1499 }
1500
1501 intel_fb = to_intel_framebuffer(fb);
1502 obj = intel_fb->obj;
1503 obj_priv = to_intel_bo(obj);
1504
1505 reg = DSPCNTR(plane);
1506 dspcntr = I915_READ(reg);
1507 /* Mask out pixel format bits in case we change it */
1508 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1509 switch (fb->bits_per_pixel) {
1510 case 8:
1511 dspcntr |= DISPPLANE_8BPP;
1512 break;
1513 case 16:
1514 if (fb->depth == 15)
1515 dspcntr |= DISPPLANE_15_16BPP;
1516 else
1517 dspcntr |= DISPPLANE_16BPP;
1518 break;
1519 case 24:
1520 case 32:
1521 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1522 break;
1523 default:
1524 DRM_ERROR("Unknown color depth\n");
1525 return -EINVAL;
1526 }
1527 if (INTEL_INFO(dev)->gen >= 4) {
1528 if (obj_priv->tiling_mode != I915_TILING_NONE)
1529 dspcntr |= DISPPLANE_TILED;
1530 else
1531 dspcntr &= ~DISPPLANE_TILED;
1532 }
1533
1534 if (HAS_PCH_SPLIT(dev))
1535 /* must disable */
1536 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1537
1538 I915_WRITE(reg, dspcntr);
1539
1540 Start = obj_priv->gtt_offset;
1541 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1542
1543 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1544 Start, Offset, x, y, fb->pitch);
1545 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1546 if (INTEL_INFO(dev)->gen >= 4) {
1547 I915_WRITE(DSPSURF(plane), Start);
1548 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1549 I915_WRITE(DSPADDR(plane), Offset);
1550 } else
1551 I915_WRITE(DSPADDR(plane), Start + Offset);
1552 POSTING_READ(reg);
1553
1554 intel_update_fbc(dev);
1555 intel_increase_pllclock(crtc);
1556
1557 return 0;
1558 }
1559
1560 static int
1561 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1562 struct drm_framebuffer *old_fb)
1563 {
1564 struct drm_device *dev = crtc->dev;
1565 struct drm_i915_master_private *master_priv;
1566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1567 struct intel_framebuffer *intel_fb;
1568 struct drm_i915_gem_object *obj_priv;
1569 struct drm_gem_object *obj;
1570 int pipe = intel_crtc->pipe;
1571 int plane = intel_crtc->plane;
1572 int ret;
1573
1574 /* no fb bound */
1575 if (!crtc->fb) {
1576 DRM_DEBUG_KMS("No FB bound\n");
1577 return 0;
1578 }
1579
1580 switch (plane) {
1581 case 0:
1582 case 1:
1583 break;
1584 default:
1585 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1586 return -EINVAL;
1587 }
1588
1589 intel_fb = to_intel_framebuffer(crtc->fb);
1590 obj = intel_fb->obj;
1591 obj_priv = to_intel_bo(obj);
1592
1593 mutex_lock(&dev->struct_mutex);
1594 ret = intel_pin_and_fence_fb_obj(dev, obj, false);
1595 if (ret != 0) {
1596 mutex_unlock(&dev->struct_mutex);
1597 return ret;
1598 }
1599
1600 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
1601 if (ret) {
1602 i915_gem_object_unpin(obj);
1603 mutex_unlock(&dev->struct_mutex);
1604 return ret;
1605 }
1606
1607 if (old_fb) {
1608 intel_fb = to_intel_framebuffer(old_fb);
1609 obj_priv = to_intel_bo(intel_fb->obj);
1610 i915_gem_object_unpin(intel_fb->obj);
1611 }
1612
1613 mutex_unlock(&dev->struct_mutex);
1614
1615 if (!dev->primary->master)
1616 return 0;
1617
1618 master_priv = dev->primary->master->driver_priv;
1619 if (!master_priv->sarea_priv)
1620 return 0;
1621
1622 if (pipe) {
1623 master_priv->sarea_priv->pipeB_x = x;
1624 master_priv->sarea_priv->pipeB_y = y;
1625 } else {
1626 master_priv->sarea_priv->pipeA_x = x;
1627 master_priv->sarea_priv->pipeA_y = y;
1628 }
1629
1630 return 0;
1631 }
1632
1633 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1634 {
1635 struct drm_device *dev = crtc->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 u32 dpa_ctl;
1638
1639 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1640 dpa_ctl = I915_READ(DP_A);
1641 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1642
1643 if (clock < 200000) {
1644 u32 temp;
1645 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1646 /* workaround for 160Mhz:
1647 1) program 0x4600c bits 15:0 = 0x8124
1648 2) program 0x46010 bit 0 = 1
1649 3) program 0x46034 bit 24 = 1
1650 4) program 0x64000 bit 14 = 1
1651 */
1652 temp = I915_READ(0x4600c);
1653 temp &= 0xffff0000;
1654 I915_WRITE(0x4600c, temp | 0x8124);
1655
1656 temp = I915_READ(0x46010);
1657 I915_WRITE(0x46010, temp | 1);
1658
1659 temp = I915_READ(0x46034);
1660 I915_WRITE(0x46034, temp | (1 << 24));
1661 } else {
1662 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1663 }
1664 I915_WRITE(DP_A, dpa_ctl);
1665
1666 POSTING_READ(DP_A);
1667 udelay(500);
1668 }
1669
1670 /* The FDI link training functions for ILK/Ibexpeak. */
1671 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1672 {
1673 struct drm_device *dev = crtc->dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1676 int pipe = intel_crtc->pipe;
1677 u32 reg, temp, tries;
1678
1679 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1680 for train result */
1681 reg = FDI_RX_IMR(pipe);
1682 temp = I915_READ(reg);
1683 temp &= ~FDI_RX_SYMBOL_LOCK;
1684 temp &= ~FDI_RX_BIT_LOCK;
1685 I915_WRITE(reg, temp);
1686 I915_READ(reg);
1687 udelay(150);
1688
1689 /* enable CPU FDI TX and PCH FDI RX */
1690 reg = FDI_TX_CTL(pipe);
1691 temp = I915_READ(reg);
1692 temp &= ~(7 << 19);
1693 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1694 temp &= ~FDI_LINK_TRAIN_NONE;
1695 temp |= FDI_LINK_TRAIN_PATTERN_1;
1696 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1697
1698 reg = FDI_RX_CTL(pipe);
1699 temp = I915_READ(reg);
1700 temp &= ~FDI_LINK_TRAIN_NONE;
1701 temp |= FDI_LINK_TRAIN_PATTERN_1;
1702 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1703
1704 POSTING_READ(reg);
1705 udelay(150);
1706
1707 reg = FDI_RX_IIR(pipe);
1708 for (tries = 0; tries < 5; tries++) {
1709 temp = I915_READ(reg);
1710 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1711
1712 if ((temp & FDI_RX_BIT_LOCK)) {
1713 DRM_DEBUG_KMS("FDI train 1 done.\n");
1714 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1715 break;
1716 }
1717 }
1718 if (tries == 5)
1719 DRM_ERROR("FDI train 1 fail!\n");
1720
1721 /* Train 2 */
1722 reg = FDI_TX_CTL(pipe);
1723 temp = I915_READ(reg);
1724 temp &= ~FDI_LINK_TRAIN_NONE;
1725 temp |= FDI_LINK_TRAIN_PATTERN_2;
1726 I915_WRITE(reg, temp);
1727
1728 reg = FDI_RX_CTL(pipe);
1729 temp = I915_READ(reg);
1730 temp &= ~FDI_LINK_TRAIN_NONE;
1731 temp |= FDI_LINK_TRAIN_PATTERN_2;
1732 I915_WRITE(reg, temp);
1733
1734 POSTING_READ(reg);
1735 udelay(150);
1736
1737 reg = FDI_RX_IIR(pipe);
1738 for (tries = 0; tries < 5; tries++) {
1739 temp = I915_READ(reg);
1740 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1741
1742 if (temp & FDI_RX_SYMBOL_LOCK) {
1743 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1744 DRM_DEBUG_KMS("FDI train 2 done.\n");
1745 break;
1746 }
1747 }
1748 if (tries == 5)
1749 DRM_ERROR("FDI train 2 fail!\n");
1750
1751 DRM_DEBUG_KMS("FDI train done\n");
1752 }
1753
1754 static const int const snb_b_fdi_train_param [] = {
1755 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1756 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1757 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1758 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1759 };
1760
1761 /* The FDI link training functions for SNB/Cougarpoint. */
1762 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1763 {
1764 struct drm_device *dev = crtc->dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1767 int pipe = intel_crtc->pipe;
1768 u32 reg, temp, i;
1769
1770 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1771 for train result */
1772 reg = FDI_RX_IMR(pipe);
1773 temp = I915_READ(reg);
1774 temp &= ~FDI_RX_SYMBOL_LOCK;
1775 temp &= ~FDI_RX_BIT_LOCK;
1776 I915_WRITE(reg, temp);
1777
1778 POSTING_READ(reg);
1779 udelay(150);
1780
1781 /* enable CPU FDI TX and PCH FDI RX */
1782 reg = FDI_TX_CTL(pipe);
1783 temp = I915_READ(reg);
1784 temp &= ~(7 << 19);
1785 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1786 temp &= ~FDI_LINK_TRAIN_NONE;
1787 temp |= FDI_LINK_TRAIN_PATTERN_1;
1788 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1789 /* SNB-B */
1790 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1791 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1792
1793 reg = FDI_RX_CTL(pipe);
1794 temp = I915_READ(reg);
1795 if (HAS_PCH_CPT(dev)) {
1796 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1797 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1798 } else {
1799 temp &= ~FDI_LINK_TRAIN_NONE;
1800 temp |= FDI_LINK_TRAIN_PATTERN_1;
1801 }
1802 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1803
1804 POSTING_READ(reg);
1805 udelay(150);
1806
1807 for (i = 0; i < 4; i++ ) {
1808 reg = FDI_TX_CTL(pipe);
1809 temp = I915_READ(reg);
1810 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1811 temp |= snb_b_fdi_train_param[i];
1812 I915_WRITE(reg, temp);
1813
1814 POSTING_READ(reg);
1815 udelay(500);
1816
1817 reg = FDI_RX_IIR(pipe);
1818 temp = I915_READ(reg);
1819 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1820
1821 if (temp & FDI_RX_BIT_LOCK) {
1822 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1823 DRM_DEBUG_KMS("FDI train 1 done.\n");
1824 break;
1825 }
1826 }
1827 if (i == 4)
1828 DRM_ERROR("FDI train 1 fail!\n");
1829
1830 /* Train 2 */
1831 reg = FDI_TX_CTL(pipe);
1832 temp = I915_READ(reg);
1833 temp &= ~FDI_LINK_TRAIN_NONE;
1834 temp |= FDI_LINK_TRAIN_PATTERN_2;
1835 if (IS_GEN6(dev)) {
1836 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1837 /* SNB-B */
1838 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1839 }
1840 I915_WRITE(reg, temp);
1841
1842 reg = FDI_RX_CTL(pipe);
1843 temp = I915_READ(reg);
1844 if (HAS_PCH_CPT(dev)) {
1845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1846 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1847 } else {
1848 temp &= ~FDI_LINK_TRAIN_NONE;
1849 temp |= FDI_LINK_TRAIN_PATTERN_2;
1850 }
1851 I915_WRITE(reg, temp);
1852
1853 POSTING_READ(reg);
1854 udelay(150);
1855
1856 for (i = 0; i < 4; i++ ) {
1857 reg = FDI_TX_CTL(pipe);
1858 temp = I915_READ(reg);
1859 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1860 temp |= snb_b_fdi_train_param[i];
1861 I915_WRITE(reg, temp);
1862
1863 POSTING_READ(reg);
1864 udelay(500);
1865
1866 reg = FDI_RX_IIR(pipe);
1867 temp = I915_READ(reg);
1868 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1869
1870 if (temp & FDI_RX_SYMBOL_LOCK) {
1871 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1872 DRM_DEBUG_KMS("FDI train 2 done.\n");
1873 break;
1874 }
1875 }
1876 if (i == 4)
1877 DRM_ERROR("FDI train 2 fail!\n");
1878
1879 DRM_DEBUG_KMS("FDI train done.\n");
1880 }
1881
1882 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1883 {
1884 struct drm_device *dev = crtc->dev;
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1887 int pipe = intel_crtc->pipe;
1888 u32 reg, temp;
1889
1890 /* Write the TU size bits so error detection works */
1891 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1892 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1893
1894 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1895 reg = FDI_RX_CTL(pipe);
1896 temp = I915_READ(reg);
1897 temp &= ~((0x7 << 19) | (0x7 << 16));
1898 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1899 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1900 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1901
1902 POSTING_READ(reg);
1903 udelay(200);
1904
1905 /* Switch from Rawclk to PCDclk */
1906 temp = I915_READ(reg);
1907 I915_WRITE(reg, temp | FDI_PCDCLK);
1908
1909 POSTING_READ(reg);
1910 udelay(200);
1911
1912 /* Enable CPU FDI TX PLL, always on for Ironlake */
1913 reg = FDI_TX_CTL(pipe);
1914 temp = I915_READ(reg);
1915 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1916 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1917
1918 POSTING_READ(reg);
1919 udelay(100);
1920 }
1921 }
1922
1923 static void intel_flush_display_plane(struct drm_device *dev,
1924 int plane)
1925 {
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 u32 reg = DSPADDR(plane);
1928 I915_WRITE(reg, I915_READ(reg));
1929 }
1930
1931 /*
1932 * When we disable a pipe, we need to clear any pending scanline wait events
1933 * to avoid hanging the ring, which we assume we are waiting on.
1934 */
1935 static void intel_clear_scanline_wait(struct drm_device *dev)
1936 {
1937 struct drm_i915_private *dev_priv = dev->dev_private;
1938 u32 tmp;
1939
1940 if (IS_GEN2(dev))
1941 /* Can't break the hang on i8xx */
1942 return;
1943
1944 tmp = I915_READ(PRB0_CTL);
1945 if (tmp & RING_WAIT) {
1946 I915_WRITE(PRB0_CTL, tmp);
1947 POSTING_READ(PRB0_CTL);
1948 }
1949 }
1950
1951 static void ironlake_crtc_enable(struct drm_crtc *crtc)
1952 {
1953 struct drm_device *dev = crtc->dev;
1954 struct drm_i915_private *dev_priv = dev->dev_private;
1955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1956 int pipe = intel_crtc->pipe;
1957 int plane = intel_crtc->plane;
1958 u32 reg, temp;
1959
1960 if (intel_crtc->active)
1961 return;
1962
1963 intel_crtc->active = true;
1964 intel_update_watermarks(dev);
1965
1966 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1967 temp = I915_READ(PCH_LVDS);
1968 if ((temp & LVDS_PORT_EN) == 0)
1969 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1970 }
1971
1972 ironlake_fdi_enable(crtc);
1973
1974 /* Enable panel fitting for LVDS */
1975 if (dev_priv->pch_pf_size &&
1976 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
1977 || HAS_eDP || intel_pch_has_edp(crtc))) {
1978 /* Force use of hard-coded filter coefficients
1979 * as some pre-programmed values are broken,
1980 * e.g. x201.
1981 */
1982 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
1983 PF_ENABLE | PF_FILTER_MED_3x3);
1984 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
1985 dev_priv->pch_pf_pos);
1986 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
1987 dev_priv->pch_pf_size);
1988 }
1989
1990 /* Enable CPU pipe */
1991 reg = PIPECONF(pipe);
1992 temp = I915_READ(reg);
1993 if ((temp & PIPECONF_ENABLE) == 0) {
1994 I915_WRITE(reg, temp | PIPECONF_ENABLE);
1995 POSTING_READ(reg);
1996 udelay(100);
1997 }
1998
1999 /* configure and enable CPU plane */
2000 reg = DSPCNTR(plane);
2001 temp = I915_READ(reg);
2002 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2003 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2004 intel_flush_display_plane(dev, plane);
2005 }
2006
2007 /* For PCH output, training FDI link */
2008 if (IS_GEN6(dev))
2009 gen6_fdi_link_train(crtc);
2010 else
2011 ironlake_fdi_link_train(crtc);
2012
2013 /* enable PCH DPLL */
2014 reg = PCH_DPLL(pipe);
2015 temp = I915_READ(reg);
2016 if ((temp & DPLL_VCO_ENABLE) == 0) {
2017 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2018 POSTING_READ(reg);
2019 udelay(200);
2020 }
2021
2022 if (HAS_PCH_CPT(dev)) {
2023 /* Be sure PCH DPLL SEL is set */
2024 temp = I915_READ(PCH_DPLL_SEL);
2025 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2026 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2027 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2028 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2029 I915_WRITE(PCH_DPLL_SEL, temp);
2030 }
2031
2032 /* set transcoder timing */
2033 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2034 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2035 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2036
2037 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2038 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2039 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2040
2041 /* enable normal train */
2042 reg = FDI_TX_CTL(pipe);
2043 temp = I915_READ(reg);
2044 temp &= ~FDI_LINK_TRAIN_NONE;
2045 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2046 I915_WRITE(reg, temp);
2047
2048 reg = FDI_RX_CTL(pipe);
2049 temp = I915_READ(reg);
2050 if (HAS_PCH_CPT(dev)) {
2051 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2052 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2053 } else {
2054 temp &= ~FDI_LINK_TRAIN_NONE;
2055 temp |= FDI_LINK_TRAIN_NONE;
2056 }
2057 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2058
2059 /* wait one idle pattern time */
2060 POSTING_READ(reg);
2061 udelay(100);
2062
2063 /* For PCH DP, enable TRANS_DP_CTL */
2064 if (HAS_PCH_CPT(dev) &&
2065 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2066 reg = TRANS_DP_CTL(pipe);
2067 temp = I915_READ(reg);
2068 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2069 TRANS_DP_SYNC_MASK);
2070 temp |= (TRANS_DP_OUTPUT_ENABLE |
2071 TRANS_DP_ENH_FRAMING);
2072
2073 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2074 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2075 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2076 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2077
2078 switch (intel_trans_dp_port_sel(crtc)) {
2079 case PCH_DP_B:
2080 temp |= TRANS_DP_PORT_SEL_B;
2081 break;
2082 case PCH_DP_C:
2083 temp |= TRANS_DP_PORT_SEL_C;
2084 break;
2085 case PCH_DP_D:
2086 temp |= TRANS_DP_PORT_SEL_D;
2087 break;
2088 default:
2089 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2090 temp |= TRANS_DP_PORT_SEL_B;
2091 break;
2092 }
2093
2094 I915_WRITE(reg, temp);
2095 }
2096
2097 /* enable PCH transcoder */
2098 reg = TRANSCONF(pipe);
2099 temp = I915_READ(reg);
2100 /*
2101 * make the BPC in transcoder be consistent with
2102 * that in pipeconf reg.
2103 */
2104 temp &= ~PIPE_BPC_MASK;
2105 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2106 I915_WRITE(reg, temp | TRANS_ENABLE);
2107 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2108 DRM_ERROR("failed to enable transcoder\n");
2109
2110 intel_crtc_load_lut(crtc);
2111 intel_update_fbc(dev);
2112 intel_crtc_update_cursor(crtc, true);
2113 }
2114
2115 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2116 {
2117 struct drm_device *dev = crtc->dev;
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2120 int pipe = intel_crtc->pipe;
2121 int plane = intel_crtc->plane;
2122 u32 reg, temp;
2123
2124 if (!intel_crtc->active)
2125 return;
2126
2127 drm_vblank_off(dev, pipe);
2128 intel_crtc_update_cursor(crtc, false);
2129
2130 /* Disable display plane */
2131 reg = DSPCNTR(plane);
2132 temp = I915_READ(reg);
2133 if (temp & DISPLAY_PLANE_ENABLE) {
2134 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2135 intel_flush_display_plane(dev, plane);
2136 }
2137
2138 if (dev_priv->cfb_plane == plane &&
2139 dev_priv->display.disable_fbc)
2140 dev_priv->display.disable_fbc(dev);
2141
2142 /* disable cpu pipe, disable after all planes disabled */
2143 reg = PIPECONF(pipe);
2144 temp = I915_READ(reg);
2145 if (temp & PIPECONF_ENABLE) {
2146 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2147 /* wait for cpu pipe off, pipe state */
2148 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2149 DRM_ERROR("failed to turn off cpu pipe\n");
2150 }
2151
2152 /* Disable PF */
2153 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2154 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2155
2156 /* disable CPU FDI tx and PCH FDI rx */
2157 reg = FDI_TX_CTL(pipe);
2158 temp = I915_READ(reg);
2159 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2160 POSTING_READ(reg);
2161
2162 reg = FDI_RX_CTL(pipe);
2163 temp = I915_READ(reg);
2164 temp &= ~(0x7 << 16);
2165 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2166 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2167
2168 POSTING_READ(reg);
2169 udelay(100);
2170
2171 /* still set train pattern 1 */
2172 reg = FDI_TX_CTL(pipe);
2173 temp = I915_READ(reg);
2174 temp &= ~FDI_LINK_TRAIN_NONE;
2175 temp |= FDI_LINK_TRAIN_PATTERN_1;
2176 I915_WRITE(reg, temp);
2177
2178 reg = FDI_RX_CTL(pipe);
2179 temp = I915_READ(reg);
2180 if (HAS_PCH_CPT(dev)) {
2181 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2182 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2183 } else {
2184 temp &= ~FDI_LINK_TRAIN_NONE;
2185 temp |= FDI_LINK_TRAIN_PATTERN_1;
2186 }
2187 /* BPC in FDI rx is consistent with that in PIPECONF */
2188 temp &= ~(0x07 << 16);
2189 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2190 I915_WRITE(reg, temp);
2191
2192 POSTING_READ(reg);
2193 udelay(100);
2194
2195 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2196 temp = I915_READ(PCH_LVDS);
2197 if (temp & LVDS_PORT_EN) {
2198 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2199 POSTING_READ(PCH_LVDS);
2200 udelay(100);
2201 }
2202 }
2203
2204 /* disable PCH transcoder */
2205 reg = TRANSCONF(plane);
2206 temp = I915_READ(reg);
2207 if (temp & TRANS_ENABLE) {
2208 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2209 /* wait for PCH transcoder off, transcoder state */
2210 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2211 DRM_ERROR("failed to disable transcoder\n");
2212 }
2213
2214 if (HAS_PCH_CPT(dev)) {
2215 /* disable TRANS_DP_CTL */
2216 reg = TRANS_DP_CTL(pipe);
2217 temp = I915_READ(reg);
2218 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2219 I915_WRITE(reg, temp);
2220
2221 /* disable DPLL_SEL */
2222 temp = I915_READ(PCH_DPLL_SEL);
2223 if (pipe == 0)
2224 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2225 else
2226 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2227 I915_WRITE(PCH_DPLL_SEL, temp);
2228 }
2229
2230 /* disable PCH DPLL */
2231 reg = PCH_DPLL(pipe);
2232 temp = I915_READ(reg);
2233 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2234
2235 /* Switch from PCDclk to Rawclk */
2236 reg = FDI_RX_CTL(pipe);
2237 temp = I915_READ(reg);
2238 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2239
2240 /* Disable CPU FDI TX PLL */
2241 reg = FDI_TX_CTL(pipe);
2242 temp = I915_READ(reg);
2243 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2244
2245 POSTING_READ(reg);
2246 udelay(100);
2247
2248 reg = FDI_RX_CTL(pipe);
2249 temp = I915_READ(reg);
2250 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2251
2252 /* Wait for the clocks to turn off. */
2253 POSTING_READ(reg);
2254 udelay(100);
2255
2256 intel_crtc->active = false;
2257 intel_update_watermarks(dev);
2258 intel_update_fbc(dev);
2259 intel_clear_scanline_wait(dev);
2260 }
2261
2262 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2263 {
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265 int pipe = intel_crtc->pipe;
2266 int plane = intel_crtc->plane;
2267
2268 /* XXX: When our outputs are all unaware of DPMS modes other than off
2269 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2270 */
2271 switch (mode) {
2272 case DRM_MODE_DPMS_ON:
2273 case DRM_MODE_DPMS_STANDBY:
2274 case DRM_MODE_DPMS_SUSPEND:
2275 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2276 ironlake_crtc_enable(crtc);
2277 break;
2278
2279 case DRM_MODE_DPMS_OFF:
2280 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2281 ironlake_crtc_disable(crtc);
2282 break;
2283 }
2284 }
2285
2286 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2287 {
2288 if (!enable && intel_crtc->overlay) {
2289 struct drm_device *dev = intel_crtc->base.dev;
2290
2291 mutex_lock(&dev->struct_mutex);
2292 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2293 mutex_unlock(&dev->struct_mutex);
2294 }
2295
2296 /* Let userspace switch the overlay on again. In most cases userspace
2297 * has to recompute where to put it anyway.
2298 */
2299 }
2300
2301 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2302 {
2303 struct drm_device *dev = crtc->dev;
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2306 int pipe = intel_crtc->pipe;
2307 int plane = intel_crtc->plane;
2308 u32 reg, temp;
2309
2310 if (intel_crtc->active)
2311 return;
2312
2313 intel_crtc->active = true;
2314 intel_update_watermarks(dev);
2315
2316 /* Enable the DPLL */
2317 reg = DPLL(pipe);
2318 temp = I915_READ(reg);
2319 if ((temp & DPLL_VCO_ENABLE) == 0) {
2320 I915_WRITE(reg, temp);
2321
2322 /* Wait for the clocks to stabilize. */
2323 POSTING_READ(reg);
2324 udelay(150);
2325
2326 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2327
2328 /* Wait for the clocks to stabilize. */
2329 POSTING_READ(reg);
2330 udelay(150);
2331
2332 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2333
2334 /* Wait for the clocks to stabilize. */
2335 POSTING_READ(reg);
2336 udelay(150);
2337 }
2338
2339 /* Enable the pipe */
2340 reg = PIPECONF(pipe);
2341 temp = I915_READ(reg);
2342 if ((temp & PIPECONF_ENABLE) == 0)
2343 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2344
2345 /* Enable the plane */
2346 reg = DSPCNTR(plane);
2347 temp = I915_READ(reg);
2348 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2349 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2350 intel_flush_display_plane(dev, plane);
2351 }
2352
2353 intel_crtc_load_lut(crtc);
2354 intel_update_fbc(dev);
2355
2356 /* Give the overlay scaler a chance to enable if it's on this pipe */
2357 intel_crtc_dpms_overlay(intel_crtc, true);
2358 intel_crtc_update_cursor(crtc, true);
2359 }
2360
2361 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2362 {
2363 struct drm_device *dev = crtc->dev;
2364 struct drm_i915_private *dev_priv = dev->dev_private;
2365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366 int pipe = intel_crtc->pipe;
2367 int plane = intel_crtc->plane;
2368 u32 reg, temp;
2369
2370 if (!intel_crtc->active)
2371 return;
2372
2373 /* Give the overlay scaler a chance to disable if it's on this pipe */
2374 intel_crtc_dpms_overlay(intel_crtc, false);
2375 intel_crtc_update_cursor(crtc, false);
2376 drm_vblank_off(dev, pipe);
2377
2378 if (dev_priv->cfb_plane == plane &&
2379 dev_priv->display.disable_fbc)
2380 dev_priv->display.disable_fbc(dev);
2381
2382 /* Disable display plane */
2383 reg = DSPCNTR(plane);
2384 temp = I915_READ(reg);
2385 if (temp & DISPLAY_PLANE_ENABLE) {
2386 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2387 /* Flush the plane changes */
2388 intel_flush_display_plane(dev, plane);
2389
2390 /* Wait for vblank for the disable to take effect */
2391 if (IS_GEN2(dev))
2392 intel_wait_for_vblank_off(dev, pipe);
2393 }
2394
2395 /* Don't disable pipe A or pipe A PLLs if needed */
2396 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2397 goto done;
2398
2399 /* Next, disable display pipes */
2400 reg = PIPECONF(pipe);
2401 temp = I915_READ(reg);
2402 if (temp & PIPECONF_ENABLE) {
2403 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2404
2405 /* Wait for vblank for the disable to take effect. */
2406 POSTING_READ(reg);
2407 intel_wait_for_vblank_off(dev, pipe);
2408 }
2409
2410 reg = DPLL(pipe);
2411 temp = I915_READ(reg);
2412 if (temp & DPLL_VCO_ENABLE) {
2413 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2414
2415 /* Wait for the clocks to turn off. */
2416 POSTING_READ(reg);
2417 udelay(150);
2418 }
2419
2420 done:
2421 intel_crtc->active = false;
2422 intel_update_fbc(dev);
2423 intel_update_watermarks(dev);
2424 intel_clear_scanline_wait(dev);
2425 }
2426
2427 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2428 {
2429 /* XXX: When our outputs are all unaware of DPMS modes other than off
2430 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2431 */
2432 switch (mode) {
2433 case DRM_MODE_DPMS_ON:
2434 case DRM_MODE_DPMS_STANDBY:
2435 case DRM_MODE_DPMS_SUSPEND:
2436 i9xx_crtc_enable(crtc);
2437 break;
2438 case DRM_MODE_DPMS_OFF:
2439 i9xx_crtc_disable(crtc);
2440 break;
2441 }
2442 }
2443
2444 /**
2445 * Sets the power management mode of the pipe and plane.
2446 */
2447 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2448 {
2449 struct drm_device *dev = crtc->dev;
2450 struct drm_i915_private *dev_priv = dev->dev_private;
2451 struct drm_i915_master_private *master_priv;
2452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2453 int pipe = intel_crtc->pipe;
2454 bool enabled;
2455
2456 if (intel_crtc->dpms_mode == mode)
2457 return;
2458
2459 intel_crtc->dpms_mode = mode;
2460
2461 dev_priv->display.dpms(crtc, mode);
2462
2463 if (!dev->primary->master)
2464 return;
2465
2466 master_priv = dev->primary->master->driver_priv;
2467 if (!master_priv->sarea_priv)
2468 return;
2469
2470 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2471
2472 switch (pipe) {
2473 case 0:
2474 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2475 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2476 break;
2477 case 1:
2478 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2479 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2480 break;
2481 default:
2482 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2483 break;
2484 }
2485 }
2486
2487 /* Prepare for a mode set.
2488 *
2489 * Note we could be a lot smarter here. We need to figure out which outputs
2490 * will be enabled, which disabled (in short, how the config will changes)
2491 * and perform the minimum necessary steps to accomplish that, e.g. updating
2492 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2493 * panel fitting is in the proper state, etc.
2494 */
2495 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2496 {
2497 i9xx_crtc_disable(crtc);
2498 }
2499
2500 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2501 {
2502 i9xx_crtc_enable(crtc);
2503 }
2504
2505 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2506 {
2507 ironlake_crtc_disable(crtc);
2508 }
2509
2510 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2511 {
2512 ironlake_crtc_enable(crtc);
2513 }
2514
2515 void intel_encoder_prepare (struct drm_encoder *encoder)
2516 {
2517 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2518 /* lvds has its own version of prepare see intel_lvds_prepare */
2519 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2520 }
2521
2522 void intel_encoder_commit (struct drm_encoder *encoder)
2523 {
2524 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2525 /* lvds has its own version of commit see intel_lvds_commit */
2526 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2527 }
2528
2529 void intel_encoder_destroy(struct drm_encoder *encoder)
2530 {
2531 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2532
2533 drm_encoder_cleanup(encoder);
2534 kfree(intel_encoder);
2535 }
2536
2537 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2538 struct drm_display_mode *mode,
2539 struct drm_display_mode *adjusted_mode)
2540 {
2541 struct drm_device *dev = crtc->dev;
2542
2543 if (HAS_PCH_SPLIT(dev)) {
2544 /* FDI link clock is fixed at 2.7G */
2545 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2546 return false;
2547 }
2548
2549 /* XXX some encoders set the crtcinfo, others don't.
2550 * Obviously we need some form of conflict resolution here...
2551 */
2552 if (adjusted_mode->crtc_htotal == 0)
2553 drm_mode_set_crtcinfo(adjusted_mode, 0);
2554
2555 return true;
2556 }
2557
2558 static int i945_get_display_clock_speed(struct drm_device *dev)
2559 {
2560 return 400000;
2561 }
2562
2563 static int i915_get_display_clock_speed(struct drm_device *dev)
2564 {
2565 return 333000;
2566 }
2567
2568 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2569 {
2570 return 200000;
2571 }
2572
2573 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2574 {
2575 u16 gcfgc = 0;
2576
2577 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2578
2579 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2580 return 133000;
2581 else {
2582 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2583 case GC_DISPLAY_CLOCK_333_MHZ:
2584 return 333000;
2585 default:
2586 case GC_DISPLAY_CLOCK_190_200_MHZ:
2587 return 190000;
2588 }
2589 }
2590 }
2591
2592 static int i865_get_display_clock_speed(struct drm_device *dev)
2593 {
2594 return 266000;
2595 }
2596
2597 static int i855_get_display_clock_speed(struct drm_device *dev)
2598 {
2599 u16 hpllcc = 0;
2600 /* Assume that the hardware is in the high speed state. This
2601 * should be the default.
2602 */
2603 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2604 case GC_CLOCK_133_200:
2605 case GC_CLOCK_100_200:
2606 return 200000;
2607 case GC_CLOCK_166_250:
2608 return 250000;
2609 case GC_CLOCK_100_133:
2610 return 133000;
2611 }
2612
2613 /* Shouldn't happen */
2614 return 0;
2615 }
2616
2617 static int i830_get_display_clock_speed(struct drm_device *dev)
2618 {
2619 return 133000;
2620 }
2621
2622 struct fdi_m_n {
2623 u32 tu;
2624 u32 gmch_m;
2625 u32 gmch_n;
2626 u32 link_m;
2627 u32 link_n;
2628 };
2629
2630 static void
2631 fdi_reduce_ratio(u32 *num, u32 *den)
2632 {
2633 while (*num > 0xffffff || *den > 0xffffff) {
2634 *num >>= 1;
2635 *den >>= 1;
2636 }
2637 }
2638
2639 #define DATA_N 0x800000
2640 #define LINK_N 0x80000
2641
2642 static void
2643 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2644 int link_clock, struct fdi_m_n *m_n)
2645 {
2646 u64 temp;
2647
2648 m_n->tu = 64; /* default size */
2649
2650 temp = (u64) DATA_N * pixel_clock;
2651 temp = div_u64(temp, link_clock);
2652 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2653 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2654 m_n->gmch_n = DATA_N;
2655 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2656
2657 temp = (u64) LINK_N * pixel_clock;
2658 m_n->link_m = div_u64(temp, link_clock);
2659 m_n->link_n = LINK_N;
2660 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2661 }
2662
2663
2664 struct intel_watermark_params {
2665 unsigned long fifo_size;
2666 unsigned long max_wm;
2667 unsigned long default_wm;
2668 unsigned long guard_size;
2669 unsigned long cacheline_size;
2670 };
2671
2672 /* Pineview has different values for various configs */
2673 static struct intel_watermark_params pineview_display_wm = {
2674 PINEVIEW_DISPLAY_FIFO,
2675 PINEVIEW_MAX_WM,
2676 PINEVIEW_DFT_WM,
2677 PINEVIEW_GUARD_WM,
2678 PINEVIEW_FIFO_LINE_SIZE
2679 };
2680 static struct intel_watermark_params pineview_display_hplloff_wm = {
2681 PINEVIEW_DISPLAY_FIFO,
2682 PINEVIEW_MAX_WM,
2683 PINEVIEW_DFT_HPLLOFF_WM,
2684 PINEVIEW_GUARD_WM,
2685 PINEVIEW_FIFO_LINE_SIZE
2686 };
2687 static struct intel_watermark_params pineview_cursor_wm = {
2688 PINEVIEW_CURSOR_FIFO,
2689 PINEVIEW_CURSOR_MAX_WM,
2690 PINEVIEW_CURSOR_DFT_WM,
2691 PINEVIEW_CURSOR_GUARD_WM,
2692 PINEVIEW_FIFO_LINE_SIZE,
2693 };
2694 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2695 PINEVIEW_CURSOR_FIFO,
2696 PINEVIEW_CURSOR_MAX_WM,
2697 PINEVIEW_CURSOR_DFT_WM,
2698 PINEVIEW_CURSOR_GUARD_WM,
2699 PINEVIEW_FIFO_LINE_SIZE
2700 };
2701 static struct intel_watermark_params g4x_wm_info = {
2702 G4X_FIFO_SIZE,
2703 G4X_MAX_WM,
2704 G4X_MAX_WM,
2705 2,
2706 G4X_FIFO_LINE_SIZE,
2707 };
2708 static struct intel_watermark_params g4x_cursor_wm_info = {
2709 I965_CURSOR_FIFO,
2710 I965_CURSOR_MAX_WM,
2711 I965_CURSOR_DFT_WM,
2712 2,
2713 G4X_FIFO_LINE_SIZE,
2714 };
2715 static struct intel_watermark_params i965_cursor_wm_info = {
2716 I965_CURSOR_FIFO,
2717 I965_CURSOR_MAX_WM,
2718 I965_CURSOR_DFT_WM,
2719 2,
2720 I915_FIFO_LINE_SIZE,
2721 };
2722 static struct intel_watermark_params i945_wm_info = {
2723 I945_FIFO_SIZE,
2724 I915_MAX_WM,
2725 1,
2726 2,
2727 I915_FIFO_LINE_SIZE
2728 };
2729 static struct intel_watermark_params i915_wm_info = {
2730 I915_FIFO_SIZE,
2731 I915_MAX_WM,
2732 1,
2733 2,
2734 I915_FIFO_LINE_SIZE
2735 };
2736 static struct intel_watermark_params i855_wm_info = {
2737 I855GM_FIFO_SIZE,
2738 I915_MAX_WM,
2739 1,
2740 2,
2741 I830_FIFO_LINE_SIZE
2742 };
2743 static struct intel_watermark_params i830_wm_info = {
2744 I830_FIFO_SIZE,
2745 I915_MAX_WM,
2746 1,
2747 2,
2748 I830_FIFO_LINE_SIZE
2749 };
2750
2751 static struct intel_watermark_params ironlake_display_wm_info = {
2752 ILK_DISPLAY_FIFO,
2753 ILK_DISPLAY_MAXWM,
2754 ILK_DISPLAY_DFTWM,
2755 2,
2756 ILK_FIFO_LINE_SIZE
2757 };
2758
2759 static struct intel_watermark_params ironlake_cursor_wm_info = {
2760 ILK_CURSOR_FIFO,
2761 ILK_CURSOR_MAXWM,
2762 ILK_CURSOR_DFTWM,
2763 2,
2764 ILK_FIFO_LINE_SIZE
2765 };
2766
2767 static struct intel_watermark_params ironlake_display_srwm_info = {
2768 ILK_DISPLAY_SR_FIFO,
2769 ILK_DISPLAY_MAX_SRWM,
2770 ILK_DISPLAY_DFT_SRWM,
2771 2,
2772 ILK_FIFO_LINE_SIZE
2773 };
2774
2775 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2776 ILK_CURSOR_SR_FIFO,
2777 ILK_CURSOR_MAX_SRWM,
2778 ILK_CURSOR_DFT_SRWM,
2779 2,
2780 ILK_FIFO_LINE_SIZE
2781 };
2782
2783 /**
2784 * intel_calculate_wm - calculate watermark level
2785 * @clock_in_khz: pixel clock
2786 * @wm: chip FIFO params
2787 * @pixel_size: display pixel size
2788 * @latency_ns: memory latency for the platform
2789 *
2790 * Calculate the watermark level (the level at which the display plane will
2791 * start fetching from memory again). Each chip has a different display
2792 * FIFO size and allocation, so the caller needs to figure that out and pass
2793 * in the correct intel_watermark_params structure.
2794 *
2795 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2796 * on the pixel size. When it reaches the watermark level, it'll start
2797 * fetching FIFO line sized based chunks from memory until the FIFO fills
2798 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2799 * will occur, and a display engine hang could result.
2800 */
2801 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2802 struct intel_watermark_params *wm,
2803 int pixel_size,
2804 unsigned long latency_ns)
2805 {
2806 long entries_required, wm_size;
2807
2808 /*
2809 * Note: we need to make sure we don't overflow for various clock &
2810 * latency values.
2811 * clocks go from a few thousand to several hundred thousand.
2812 * latency is usually a few thousand
2813 */
2814 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2815 1000;
2816 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2817
2818 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2819
2820 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2821
2822 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2823
2824 /* Don't promote wm_size to unsigned... */
2825 if (wm_size > (long)wm->max_wm)
2826 wm_size = wm->max_wm;
2827 if (wm_size <= 0)
2828 wm_size = wm->default_wm;
2829 return wm_size;
2830 }
2831
2832 struct cxsr_latency {
2833 int is_desktop;
2834 int is_ddr3;
2835 unsigned long fsb_freq;
2836 unsigned long mem_freq;
2837 unsigned long display_sr;
2838 unsigned long display_hpll_disable;
2839 unsigned long cursor_sr;
2840 unsigned long cursor_hpll_disable;
2841 };
2842
2843 static const struct cxsr_latency cxsr_latency_table[] = {
2844 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2845 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2846 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2847 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2848 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2849
2850 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2851 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2852 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2853 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2854 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2855
2856 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2857 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2858 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2859 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2860 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2861
2862 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2863 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2864 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2865 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2866 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2867
2868 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2869 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2870 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2871 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2872 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2873
2874 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2875 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2876 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2877 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2878 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2879 };
2880
2881 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2882 int is_ddr3,
2883 int fsb,
2884 int mem)
2885 {
2886 const struct cxsr_latency *latency;
2887 int i;
2888
2889 if (fsb == 0 || mem == 0)
2890 return NULL;
2891
2892 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2893 latency = &cxsr_latency_table[i];
2894 if (is_desktop == latency->is_desktop &&
2895 is_ddr3 == latency->is_ddr3 &&
2896 fsb == latency->fsb_freq && mem == latency->mem_freq)
2897 return latency;
2898 }
2899
2900 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2901
2902 return NULL;
2903 }
2904
2905 static void pineview_disable_cxsr(struct drm_device *dev)
2906 {
2907 struct drm_i915_private *dev_priv = dev->dev_private;
2908
2909 /* deactivate cxsr */
2910 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2911 }
2912
2913 /*
2914 * Latency for FIFO fetches is dependent on several factors:
2915 * - memory configuration (speed, channels)
2916 * - chipset
2917 * - current MCH state
2918 * It can be fairly high in some situations, so here we assume a fairly
2919 * pessimal value. It's a tradeoff between extra memory fetches (if we
2920 * set this value too high, the FIFO will fetch frequently to stay full)
2921 * and power consumption (set it too low to save power and we might see
2922 * FIFO underruns and display "flicker").
2923 *
2924 * A value of 5us seems to be a good balance; safe for very low end
2925 * platforms but not overly aggressive on lower latency configs.
2926 */
2927 static const int latency_ns = 5000;
2928
2929 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2930 {
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 uint32_t dsparb = I915_READ(DSPARB);
2933 int size;
2934
2935 size = dsparb & 0x7f;
2936 if (plane)
2937 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2938
2939 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2940 plane ? "B" : "A", size);
2941
2942 return size;
2943 }
2944
2945 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2946 {
2947 struct drm_i915_private *dev_priv = dev->dev_private;
2948 uint32_t dsparb = I915_READ(DSPARB);
2949 int size;
2950
2951 size = dsparb & 0x1ff;
2952 if (plane)
2953 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2954 size >>= 1; /* Convert to cachelines */
2955
2956 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2957 plane ? "B" : "A", size);
2958
2959 return size;
2960 }
2961
2962 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2963 {
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 uint32_t dsparb = I915_READ(DSPARB);
2966 int size;
2967
2968 size = dsparb & 0x7f;
2969 size >>= 2; /* Convert to cachelines */
2970
2971 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2972 plane ? "B" : "A",
2973 size);
2974
2975 return size;
2976 }
2977
2978 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2979 {
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 uint32_t dsparb = I915_READ(DSPARB);
2982 int size;
2983
2984 size = dsparb & 0x7f;
2985 size >>= 1; /* Convert to cachelines */
2986
2987 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2988 plane ? "B" : "A", size);
2989
2990 return size;
2991 }
2992
2993 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
2994 int planeb_clock, int sr_hdisplay, int unused,
2995 int pixel_size)
2996 {
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2998 const struct cxsr_latency *latency;
2999 u32 reg;
3000 unsigned long wm;
3001 int sr_clock;
3002
3003 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3004 dev_priv->fsb_freq, dev_priv->mem_freq);
3005 if (!latency) {
3006 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3007 pineview_disable_cxsr(dev);
3008 return;
3009 }
3010
3011 if (!planea_clock || !planeb_clock) {
3012 sr_clock = planea_clock ? planea_clock : planeb_clock;
3013
3014 /* Display SR */
3015 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3016 pixel_size, latency->display_sr);
3017 reg = I915_READ(DSPFW1);
3018 reg &= ~DSPFW_SR_MASK;
3019 reg |= wm << DSPFW_SR_SHIFT;
3020 I915_WRITE(DSPFW1, reg);
3021 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3022
3023 /* cursor SR */
3024 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3025 pixel_size, latency->cursor_sr);
3026 reg = I915_READ(DSPFW3);
3027 reg &= ~DSPFW_CURSOR_SR_MASK;
3028 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3029 I915_WRITE(DSPFW3, reg);
3030
3031 /* Display HPLL off SR */
3032 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3033 pixel_size, latency->display_hpll_disable);
3034 reg = I915_READ(DSPFW3);
3035 reg &= ~DSPFW_HPLL_SR_MASK;
3036 reg |= wm & DSPFW_HPLL_SR_MASK;
3037 I915_WRITE(DSPFW3, reg);
3038
3039 /* cursor HPLL off SR */
3040 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3041 pixel_size, latency->cursor_hpll_disable);
3042 reg = I915_READ(DSPFW3);
3043 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3044 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3045 I915_WRITE(DSPFW3, reg);
3046 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3047
3048 /* activate cxsr */
3049 I915_WRITE(DSPFW3,
3050 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3051 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3052 } else {
3053 pineview_disable_cxsr(dev);
3054 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3055 }
3056 }
3057
3058 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3059 int planeb_clock, int sr_hdisplay, int sr_htotal,
3060 int pixel_size)
3061 {
3062 struct drm_i915_private *dev_priv = dev->dev_private;
3063 int total_size, cacheline_size;
3064 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3065 struct intel_watermark_params planea_params, planeb_params;
3066 unsigned long line_time_us;
3067 int sr_clock, sr_entries = 0, entries_required;
3068
3069 /* Create copies of the base settings for each pipe */
3070 planea_params = planeb_params = g4x_wm_info;
3071
3072 /* Grab a couple of global values before we overwrite them */
3073 total_size = planea_params.fifo_size;
3074 cacheline_size = planea_params.cacheline_size;
3075
3076 /*
3077 * Note: we need to make sure we don't overflow for various clock &
3078 * latency values.
3079 * clocks go from a few thousand to several hundred thousand.
3080 * latency is usually a few thousand
3081 */
3082 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3083 1000;
3084 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3085 planea_wm = entries_required + planea_params.guard_size;
3086
3087 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3088 1000;
3089 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3090 planeb_wm = entries_required + planeb_params.guard_size;
3091
3092 cursora_wm = cursorb_wm = 16;
3093 cursor_sr = 32;
3094
3095 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3096
3097 /* Calc sr entries for one plane configs */
3098 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3099 /* self-refresh has much higher latency */
3100 static const int sr_latency_ns = 12000;
3101
3102 sr_clock = planea_clock ? planea_clock : planeb_clock;
3103 line_time_us = ((sr_htotal * 1000) / sr_clock);
3104
3105 /* Use ns/us then divide to preserve precision */
3106 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3107 pixel_size * sr_hdisplay;
3108 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3109
3110 entries_required = (((sr_latency_ns / line_time_us) +
3111 1000) / 1000) * pixel_size * 64;
3112 entries_required = DIV_ROUND_UP(entries_required,
3113 g4x_cursor_wm_info.cacheline_size);
3114 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3115
3116 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3117 cursor_sr = g4x_cursor_wm_info.max_wm;
3118 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3119 "cursor %d\n", sr_entries, cursor_sr);
3120
3121 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3122 } else {
3123 /* Turn off self refresh if both pipes are enabled */
3124 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3125 & ~FW_BLC_SELF_EN);
3126 }
3127
3128 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3129 planea_wm, planeb_wm, sr_entries);
3130
3131 planea_wm &= 0x3f;
3132 planeb_wm &= 0x3f;
3133
3134 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3135 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3136 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3137 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3138 (cursora_wm << DSPFW_CURSORA_SHIFT));
3139 /* HPLL off in SR has some issues on G4x... disable it */
3140 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3141 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3142 }
3143
3144 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3145 int planeb_clock, int sr_hdisplay, int sr_htotal,
3146 int pixel_size)
3147 {
3148 struct drm_i915_private *dev_priv = dev->dev_private;
3149 unsigned long line_time_us;
3150 int sr_clock, sr_entries, srwm = 1;
3151 int cursor_sr = 16;
3152
3153 /* Calc sr entries for one plane configs */
3154 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3155 /* self-refresh has much higher latency */
3156 static const int sr_latency_ns = 12000;
3157
3158 sr_clock = planea_clock ? planea_clock : planeb_clock;
3159 line_time_us = ((sr_htotal * 1000) / sr_clock);
3160
3161 /* Use ns/us then divide to preserve precision */
3162 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3163 pixel_size * sr_hdisplay;
3164 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3165 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3166 srwm = I965_FIFO_SIZE - sr_entries;
3167 if (srwm < 0)
3168 srwm = 1;
3169 srwm &= 0x1ff;
3170
3171 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3172 pixel_size * 64;
3173 sr_entries = DIV_ROUND_UP(sr_entries,
3174 i965_cursor_wm_info.cacheline_size);
3175 cursor_sr = i965_cursor_wm_info.fifo_size -
3176 (sr_entries + i965_cursor_wm_info.guard_size);
3177
3178 if (cursor_sr > i965_cursor_wm_info.max_wm)
3179 cursor_sr = i965_cursor_wm_info.max_wm;
3180
3181 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3182 "cursor %d\n", srwm, cursor_sr);
3183
3184 if (IS_CRESTLINE(dev))
3185 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3186 } else {
3187 /* Turn off self refresh if both pipes are enabled */
3188 if (IS_CRESTLINE(dev))
3189 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3190 & ~FW_BLC_SELF_EN);
3191 }
3192
3193 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3194 srwm);
3195
3196 /* 965 has limitations... */
3197 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3198 (8 << 0));
3199 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3200 /* update cursor SR watermark */
3201 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3202 }
3203
3204 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3205 int planeb_clock, int sr_hdisplay, int sr_htotal,
3206 int pixel_size)
3207 {
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 uint32_t fwater_lo;
3210 uint32_t fwater_hi;
3211 int total_size, cacheline_size, cwm, srwm = 1;
3212 int planea_wm, planeb_wm;
3213 struct intel_watermark_params planea_params, planeb_params;
3214 unsigned long line_time_us;
3215 int sr_clock, sr_entries = 0;
3216
3217 /* Create copies of the base settings for each pipe */
3218 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3219 planea_params = planeb_params = i945_wm_info;
3220 else if (!IS_GEN2(dev))
3221 planea_params = planeb_params = i915_wm_info;
3222 else
3223 planea_params = planeb_params = i855_wm_info;
3224
3225 /* Grab a couple of global values before we overwrite them */
3226 total_size = planea_params.fifo_size;
3227 cacheline_size = planea_params.cacheline_size;
3228
3229 /* Update per-plane FIFO sizes */
3230 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3231 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3232
3233 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3234 pixel_size, latency_ns);
3235 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3236 pixel_size, latency_ns);
3237 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3238
3239 /*
3240 * Overlay gets an aggressive default since video jitter is bad.
3241 */
3242 cwm = 2;
3243
3244 /* Calc sr entries for one plane configs */
3245 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3246 (!planea_clock || !planeb_clock)) {
3247 /* self-refresh has much higher latency */
3248 static const int sr_latency_ns = 6000;
3249
3250 sr_clock = planea_clock ? planea_clock : planeb_clock;
3251 line_time_us = ((sr_htotal * 1000) / sr_clock);
3252
3253 /* Use ns/us then divide to preserve precision */
3254 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3255 pixel_size * sr_hdisplay;
3256 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3257 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3258 srwm = total_size - sr_entries;
3259 if (srwm < 0)
3260 srwm = 1;
3261
3262 if (IS_I945G(dev) || IS_I945GM(dev))
3263 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3264 else if (IS_I915GM(dev)) {
3265 /* 915M has a smaller SRWM field */
3266 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3267 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3268 }
3269 } else {
3270 /* Turn off self refresh if both pipes are enabled */
3271 if (IS_I945G(dev) || IS_I945GM(dev)) {
3272 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3273 & ~FW_BLC_SELF_EN);
3274 } else if (IS_I915GM(dev)) {
3275 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3276 }
3277 }
3278
3279 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3280 planea_wm, planeb_wm, cwm, srwm);
3281
3282 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3283 fwater_hi = (cwm & 0x1f);
3284
3285 /* Set request length to 8 cachelines per fetch */
3286 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3287 fwater_hi = fwater_hi | (1 << 8);
3288
3289 I915_WRITE(FW_BLC, fwater_lo);
3290 I915_WRITE(FW_BLC2, fwater_hi);
3291 }
3292
3293 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3294 int unused2, int unused3, int pixel_size)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3298 int planea_wm;
3299
3300 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3301
3302 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3303 pixel_size, latency_ns);
3304 fwater_lo |= (3<<8) | planea_wm;
3305
3306 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3307
3308 I915_WRITE(FW_BLC, fwater_lo);
3309 }
3310
3311 #define ILK_LP0_PLANE_LATENCY 700
3312 #define ILK_LP0_CURSOR_LATENCY 1300
3313
3314 static bool ironlake_compute_wm0(struct drm_device *dev,
3315 int pipe,
3316 int *plane_wm,
3317 int *cursor_wm)
3318 {
3319 struct drm_crtc *crtc;
3320 int htotal, hdisplay, clock, pixel_size = 0;
3321 int line_time_us, line_count, entries;
3322
3323 crtc = intel_get_crtc_for_pipe(dev, pipe);
3324 if (crtc->fb == NULL || !crtc->enabled)
3325 return false;
3326
3327 htotal = crtc->mode.htotal;
3328 hdisplay = crtc->mode.hdisplay;
3329 clock = crtc->mode.clock;
3330 pixel_size = crtc->fb->bits_per_pixel / 8;
3331
3332 /* Use the small buffer method to calculate plane watermark */
3333 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3334 entries = DIV_ROUND_UP(entries,
3335 ironlake_display_wm_info.cacheline_size);
3336 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3337 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3338 *plane_wm = ironlake_display_wm_info.max_wm;
3339
3340 /* Use the large buffer method to calculate cursor watermark */
3341 line_time_us = ((htotal * 1000) / clock);
3342 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3343 entries = line_count * 64 * pixel_size;
3344 entries = DIV_ROUND_UP(entries,
3345 ironlake_cursor_wm_info.cacheline_size);
3346 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3347 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3348 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3349
3350 return true;
3351 }
3352
3353 static void ironlake_update_wm(struct drm_device *dev,
3354 int planea_clock, int planeb_clock,
3355 int sr_hdisplay, int sr_htotal,
3356 int pixel_size)
3357 {
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 int plane_wm, cursor_wm, enabled;
3360 int tmp;
3361
3362 enabled = 0;
3363 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3364 I915_WRITE(WM0_PIPEA_ILK,
3365 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3366 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3367 " plane %d, " "cursor: %d\n",
3368 plane_wm, cursor_wm);
3369 enabled++;
3370 }
3371
3372 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3373 I915_WRITE(WM0_PIPEB_ILK,
3374 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3375 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3376 " plane %d, cursor: %d\n",
3377 plane_wm, cursor_wm);
3378 enabled++;
3379 }
3380
3381 /*
3382 * Calculate and update the self-refresh watermark only when one
3383 * display plane is used.
3384 */
3385 tmp = 0;
3386 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3387 unsigned long line_time_us;
3388 int small, large, plane_fbc;
3389 int sr_clock, entries;
3390 int line_count, line_size;
3391 /* Read the self-refresh latency. The unit is 0.5us */
3392 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3393
3394 sr_clock = planea_clock ? planea_clock : planeb_clock;
3395 line_time_us = (sr_htotal * 1000) / sr_clock;
3396
3397 /* Use ns/us then divide to preserve precision */
3398 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3399 / 1000;
3400 line_size = sr_hdisplay * pixel_size;
3401
3402 /* Use the minimum of the small and large buffer method for primary */
3403 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3404 large = line_count * line_size;
3405
3406 entries = DIV_ROUND_UP(min(small, large),
3407 ironlake_display_srwm_info.cacheline_size);
3408
3409 plane_fbc = entries * 64;
3410 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3411
3412 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3413 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3414 plane_wm = ironlake_display_srwm_info.max_wm;
3415
3416 /* calculate the self-refresh watermark for display cursor */
3417 entries = line_count * pixel_size * 64;
3418 entries = DIV_ROUND_UP(entries,
3419 ironlake_cursor_srwm_info.cacheline_size);
3420
3421 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3422 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3423 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3424
3425 /* configure watermark and enable self-refresh */
3426 tmp = (WM1_LP_SR_EN |
3427 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3428 (plane_fbc << WM1_LP_FBC_SHIFT) |
3429 (plane_wm << WM1_LP_SR_SHIFT) |
3430 cursor_wm);
3431 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3432 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3433 }
3434 I915_WRITE(WM1_LP_ILK, tmp);
3435 /* XXX setup WM2 and WM3 */
3436 }
3437
3438 /**
3439 * intel_update_watermarks - update FIFO watermark values based on current modes
3440 *
3441 * Calculate watermark values for the various WM regs based on current mode
3442 * and plane configuration.
3443 *
3444 * There are several cases to deal with here:
3445 * - normal (i.e. non-self-refresh)
3446 * - self-refresh (SR) mode
3447 * - lines are large relative to FIFO size (buffer can hold up to 2)
3448 * - lines are small relative to FIFO size (buffer can hold more than 2
3449 * lines), so need to account for TLB latency
3450 *
3451 * The normal calculation is:
3452 * watermark = dotclock * bytes per pixel * latency
3453 * where latency is platform & configuration dependent (we assume pessimal
3454 * values here).
3455 *
3456 * The SR calculation is:
3457 * watermark = (trunc(latency/line time)+1) * surface width *
3458 * bytes per pixel
3459 * where
3460 * line time = htotal / dotclock
3461 * surface width = hdisplay for normal plane and 64 for cursor
3462 * and latency is assumed to be high, as above.
3463 *
3464 * The final value programmed to the register should always be rounded up,
3465 * and include an extra 2 entries to account for clock crossings.
3466 *
3467 * We don't use the sprite, so we can ignore that. And on Crestline we have
3468 * to set the non-SR watermarks to 8.
3469 */
3470 static void intel_update_watermarks(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 struct drm_crtc *crtc;
3474 int sr_hdisplay = 0;
3475 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3476 int enabled = 0, pixel_size = 0;
3477 int sr_htotal = 0;
3478
3479 if (!dev_priv->display.update_wm)
3480 return;
3481
3482 /* Get the clock config from both planes */
3483 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3484 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3485 if (intel_crtc->active) {
3486 enabled++;
3487 if (intel_crtc->plane == 0) {
3488 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3489 intel_crtc->pipe, crtc->mode.clock);
3490 planea_clock = crtc->mode.clock;
3491 } else {
3492 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3493 intel_crtc->pipe, crtc->mode.clock);
3494 planeb_clock = crtc->mode.clock;
3495 }
3496 sr_hdisplay = crtc->mode.hdisplay;
3497 sr_clock = crtc->mode.clock;
3498 sr_htotal = crtc->mode.htotal;
3499 if (crtc->fb)
3500 pixel_size = crtc->fb->bits_per_pixel / 8;
3501 else
3502 pixel_size = 4; /* by default */
3503 }
3504 }
3505
3506 if (enabled <= 0)
3507 return;
3508
3509 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3510 sr_hdisplay, sr_htotal, pixel_size);
3511 }
3512
3513 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3514 struct drm_display_mode *mode,
3515 struct drm_display_mode *adjusted_mode,
3516 int x, int y,
3517 struct drm_framebuffer *old_fb)
3518 {
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 int pipe = intel_crtc->pipe;
3523 int plane = intel_crtc->plane;
3524 u32 fp_reg, dpll_reg;
3525 int refclk, num_connectors = 0;
3526 intel_clock_t clock, reduced_clock;
3527 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3528 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3529 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3530 struct intel_encoder *has_edp_encoder = NULL;
3531 struct drm_mode_config *mode_config = &dev->mode_config;
3532 struct intel_encoder *encoder;
3533 const intel_limit_t *limit;
3534 int ret;
3535 struct fdi_m_n m_n = {0};
3536 u32 reg, temp;
3537 int target_clock;
3538
3539 drm_vblank_pre_modeset(dev, pipe);
3540
3541 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3542 if (encoder->base.crtc != crtc)
3543 continue;
3544
3545 switch (encoder->type) {
3546 case INTEL_OUTPUT_LVDS:
3547 is_lvds = true;
3548 break;
3549 case INTEL_OUTPUT_SDVO:
3550 case INTEL_OUTPUT_HDMI:
3551 is_sdvo = true;
3552 if (encoder->needs_tv_clock)
3553 is_tv = true;
3554 break;
3555 case INTEL_OUTPUT_DVO:
3556 is_dvo = true;
3557 break;
3558 case INTEL_OUTPUT_TVOUT:
3559 is_tv = true;
3560 break;
3561 case INTEL_OUTPUT_ANALOG:
3562 is_crt = true;
3563 break;
3564 case INTEL_OUTPUT_DISPLAYPORT:
3565 is_dp = true;
3566 break;
3567 case INTEL_OUTPUT_EDP:
3568 has_edp_encoder = encoder;
3569 break;
3570 }
3571
3572 num_connectors++;
3573 }
3574
3575 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3576 refclk = dev_priv->lvds_ssc_freq * 1000;
3577 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3578 refclk / 1000);
3579 } else if (!IS_GEN2(dev)) {
3580 refclk = 96000;
3581 if (HAS_PCH_SPLIT(dev))
3582 refclk = 120000; /* 120Mhz refclk */
3583 } else {
3584 refclk = 48000;
3585 }
3586
3587 /*
3588 * Returns a set of divisors for the desired target clock with the given
3589 * refclk, or FALSE. The returned values represent the clock equation:
3590 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3591 */
3592 limit = intel_limit(crtc);
3593 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3594 if (!ok) {
3595 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3596 drm_vblank_post_modeset(dev, pipe);
3597 return -EINVAL;
3598 }
3599
3600 /* Ensure that the cursor is valid for the new mode before changing... */
3601 intel_crtc_update_cursor(crtc, true);
3602
3603 if (is_lvds && dev_priv->lvds_downclock_avail) {
3604 has_reduced_clock = limit->find_pll(limit, crtc,
3605 dev_priv->lvds_downclock,
3606 refclk,
3607 &reduced_clock);
3608 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3609 /*
3610 * If the different P is found, it means that we can't
3611 * switch the display clock by using the FP0/FP1.
3612 * In such case we will disable the LVDS downclock
3613 * feature.
3614 */
3615 DRM_DEBUG_KMS("Different P is found for "
3616 "LVDS clock/downclock\n");
3617 has_reduced_clock = 0;
3618 }
3619 }
3620 /* SDVO TV has fixed PLL values depend on its clock range,
3621 this mirrors vbios setting. */
3622 if (is_sdvo && is_tv) {
3623 if (adjusted_mode->clock >= 100000
3624 && adjusted_mode->clock < 140500) {
3625 clock.p1 = 2;
3626 clock.p2 = 10;
3627 clock.n = 3;
3628 clock.m1 = 16;
3629 clock.m2 = 8;
3630 } else if (adjusted_mode->clock >= 140500
3631 && adjusted_mode->clock <= 200000) {
3632 clock.p1 = 1;
3633 clock.p2 = 10;
3634 clock.n = 6;
3635 clock.m1 = 12;
3636 clock.m2 = 8;
3637 }
3638 }
3639
3640 /* FDI link */
3641 if (HAS_PCH_SPLIT(dev)) {
3642 int lane = 0, link_bw, bpp;
3643 /* eDP doesn't require FDI link, so just set DP M/N
3644 according to current link config */
3645 if (has_edp_encoder) {
3646 target_clock = mode->clock;
3647 intel_edp_link_config(has_edp_encoder,
3648 &lane, &link_bw);
3649 } else {
3650 /* DP over FDI requires target mode clock
3651 instead of link clock */
3652 if (is_dp)
3653 target_clock = mode->clock;
3654 else
3655 target_clock = adjusted_mode->clock;
3656
3657 /* FDI is a binary signal running at ~2.7GHz, encoding
3658 * each output octet as 10 bits. The actual frequency
3659 * is stored as a divider into a 100MHz clock, and the
3660 * mode pixel clock is stored in units of 1KHz.
3661 * Hence the bw of each lane in terms of the mode signal
3662 * is:
3663 */
3664 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3665 }
3666
3667 /* determine panel color depth */
3668 temp = I915_READ(PIPECONF(pipe));
3669 temp &= ~PIPE_BPC_MASK;
3670 if (is_lvds) {
3671 /* the BPC will be 6 if it is 18-bit LVDS panel */
3672 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3673 temp |= PIPE_8BPC;
3674 else
3675 temp |= PIPE_6BPC;
3676 } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
3677 switch (dev_priv->edp_bpp/3) {
3678 case 8:
3679 temp |= PIPE_8BPC;
3680 break;
3681 case 10:
3682 temp |= PIPE_10BPC;
3683 break;
3684 case 6:
3685 temp |= PIPE_6BPC;
3686 break;
3687 case 12:
3688 temp |= PIPE_12BPC;
3689 break;
3690 }
3691 } else
3692 temp |= PIPE_8BPC;
3693 I915_WRITE(PIPECONF(pipe), temp);
3694
3695 switch (temp & PIPE_BPC_MASK) {
3696 case PIPE_8BPC:
3697 bpp = 24;
3698 break;
3699 case PIPE_10BPC:
3700 bpp = 30;
3701 break;
3702 case PIPE_6BPC:
3703 bpp = 18;
3704 break;
3705 case PIPE_12BPC:
3706 bpp = 36;
3707 break;
3708 default:
3709 DRM_ERROR("unknown pipe bpc value\n");
3710 bpp = 24;
3711 }
3712
3713 if (!lane) {
3714 /*
3715 * Account for spread spectrum to avoid
3716 * oversubscribing the link. Max center spread
3717 * is 2.5%; use 5% for safety's sake.
3718 */
3719 u32 bps = target_clock * bpp * 21 / 20;
3720 lane = bps / (link_bw * 8) + 1;
3721 }
3722
3723 intel_crtc->fdi_lanes = lane;
3724
3725 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3726 }
3727
3728 /* Ironlake: try to setup display ref clock before DPLL
3729 * enabling. This is only under driver's control after
3730 * PCH B stepping, previous chipset stepping should be
3731 * ignoring this setting.
3732 */
3733 if (HAS_PCH_SPLIT(dev)) {
3734 temp = I915_READ(PCH_DREF_CONTROL);
3735 /* Always enable nonspread source */
3736 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3737 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3738 temp &= ~DREF_SSC_SOURCE_MASK;
3739 temp |= DREF_SSC_SOURCE_ENABLE;
3740 I915_WRITE(PCH_DREF_CONTROL, temp);
3741
3742 POSTING_READ(PCH_DREF_CONTROL);
3743 udelay(200);
3744
3745 if (has_edp_encoder) {
3746 if (dev_priv->lvds_use_ssc) {
3747 temp |= DREF_SSC1_ENABLE;
3748 I915_WRITE(PCH_DREF_CONTROL, temp);
3749
3750 POSTING_READ(PCH_DREF_CONTROL);
3751 udelay(200);
3752
3753 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3754 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3755 } else {
3756 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3757 }
3758 I915_WRITE(PCH_DREF_CONTROL, temp);
3759 }
3760 }
3761
3762 if (IS_PINEVIEW(dev)) {
3763 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3764 if (has_reduced_clock)
3765 fp2 = (1 << reduced_clock.n) << 16 |
3766 reduced_clock.m1 << 8 | reduced_clock.m2;
3767 } else {
3768 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3769 if (has_reduced_clock)
3770 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3771 reduced_clock.m2;
3772 }
3773
3774 dpll = 0;
3775 if (!HAS_PCH_SPLIT(dev))
3776 dpll = DPLL_VGA_MODE_DIS;
3777
3778 if (!IS_GEN2(dev)) {
3779 if (is_lvds)
3780 dpll |= DPLLB_MODE_LVDS;
3781 else
3782 dpll |= DPLLB_MODE_DAC_SERIAL;
3783 if (is_sdvo) {
3784 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3785 if (pixel_multiplier > 1) {
3786 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3787 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3788 else if (HAS_PCH_SPLIT(dev))
3789 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3790 }
3791 dpll |= DPLL_DVO_HIGH_SPEED;
3792 }
3793 if (is_dp)
3794 dpll |= DPLL_DVO_HIGH_SPEED;
3795
3796 /* compute bitmask from p1 value */
3797 if (IS_PINEVIEW(dev))
3798 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3799 else {
3800 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3801 /* also FPA1 */
3802 if (HAS_PCH_SPLIT(dev))
3803 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3804 if (IS_G4X(dev) && has_reduced_clock)
3805 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3806 }
3807 switch (clock.p2) {
3808 case 5:
3809 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3810 break;
3811 case 7:
3812 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3813 break;
3814 case 10:
3815 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3816 break;
3817 case 14:
3818 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3819 break;
3820 }
3821 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3822 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3823 } else {
3824 if (is_lvds) {
3825 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3826 } else {
3827 if (clock.p1 == 2)
3828 dpll |= PLL_P1_DIVIDE_BY_TWO;
3829 else
3830 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3831 if (clock.p2 == 4)
3832 dpll |= PLL_P2_DIVIDE_BY_4;
3833 }
3834 }
3835
3836 if (is_sdvo && is_tv)
3837 dpll |= PLL_REF_INPUT_TVCLKINBC;
3838 else if (is_tv)
3839 /* XXX: just matching BIOS for now */
3840 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3841 dpll |= 3;
3842 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3843 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3844 else
3845 dpll |= PLL_REF_INPUT_DREFCLK;
3846
3847 /* setup pipeconf */
3848 pipeconf = I915_READ(PIPECONF(pipe));
3849
3850 /* Set up the display plane register */
3851 dspcntr = DISPPLANE_GAMMA_ENABLE;
3852
3853 /* Ironlake's plane is forced to pipe, bit 24 is to
3854 enable color space conversion */
3855 if (!HAS_PCH_SPLIT(dev)) {
3856 if (pipe == 0)
3857 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3858 else
3859 dspcntr |= DISPPLANE_SEL_PIPE_B;
3860 }
3861
3862 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3863 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3864 * core speed.
3865 *
3866 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3867 * pipe == 0 check?
3868 */
3869 if (mode->clock >
3870 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3871 pipeconf |= PIPECONF_DOUBLE_WIDE;
3872 else
3873 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3874 }
3875
3876 dspcntr |= DISPLAY_PLANE_ENABLE;
3877 pipeconf |= PIPECONF_ENABLE;
3878 dpll |= DPLL_VCO_ENABLE;
3879
3880 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3881 drm_mode_debug_printmodeline(mode);
3882
3883 /* assign to Ironlake registers */
3884 if (HAS_PCH_SPLIT(dev)) {
3885 fp_reg = PCH_FP0(pipe);
3886 dpll_reg = PCH_DPLL(pipe);
3887 } else {
3888 fp_reg = FP0(pipe);
3889 dpll_reg = DPLL(pipe);
3890 }
3891
3892 if (!has_edp_encoder) {
3893 I915_WRITE(fp_reg, fp);
3894 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3895
3896 POSTING_READ(dpll_reg);
3897 udelay(150);
3898 }
3899
3900 /* enable transcoder DPLL */
3901 if (HAS_PCH_CPT(dev)) {
3902 temp = I915_READ(PCH_DPLL_SEL);
3903 if (pipe == 0)
3904 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3905 else
3906 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3907 I915_WRITE(PCH_DPLL_SEL, temp);
3908
3909 POSTING_READ(PCH_DPLL_SEL);
3910 udelay(150);
3911 }
3912
3913 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3914 * This is an exception to the general rule that mode_set doesn't turn
3915 * things on.
3916 */
3917 if (is_lvds) {
3918 reg = LVDS;
3919 if (HAS_PCH_SPLIT(dev))
3920 reg = PCH_LVDS;
3921
3922 temp = I915_READ(reg);
3923 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3924 if (pipe == 1) {
3925 if (HAS_PCH_CPT(dev))
3926 temp |= PORT_TRANS_B_SEL_CPT;
3927 else
3928 temp |= LVDS_PIPEB_SELECT;
3929 } else {
3930 if (HAS_PCH_CPT(dev))
3931 temp &= ~PORT_TRANS_SEL_MASK;
3932 else
3933 temp &= ~LVDS_PIPEB_SELECT;
3934 }
3935 /* set the corresponsding LVDS_BORDER bit */
3936 temp |= dev_priv->lvds_border_bits;
3937 /* Set the B0-B3 data pairs corresponding to whether we're going to
3938 * set the DPLLs for dual-channel mode or not.
3939 */
3940 if (clock.p2 == 7)
3941 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3942 else
3943 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3944
3945 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3946 * appropriately here, but we need to look more thoroughly into how
3947 * panels behave in the two modes.
3948 */
3949 /* set the dithering flag on non-PCH LVDS as needed */
3950 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3951 if (dev_priv->lvds_dither)
3952 temp |= LVDS_ENABLE_DITHER;
3953 else
3954 temp &= ~LVDS_ENABLE_DITHER;
3955 }
3956 I915_WRITE(reg, temp);
3957 }
3958
3959 /* set the dithering flag and clear for anything other than a panel. */
3960 if (HAS_PCH_SPLIT(dev)) {
3961 pipeconf &= ~PIPECONF_DITHER_EN;
3962 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
3963 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
3964 pipeconf |= PIPECONF_DITHER_EN;
3965 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
3966 }
3967 }
3968
3969 if (is_dp)
3970 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3971 else if (HAS_PCH_SPLIT(dev)) {
3972 /* For non-DP output, clear any trans DP clock recovery setting.*/
3973 if (pipe == 0) {
3974 I915_WRITE(TRANSA_DATA_M1, 0);
3975 I915_WRITE(TRANSA_DATA_N1, 0);
3976 I915_WRITE(TRANSA_DP_LINK_M1, 0);
3977 I915_WRITE(TRANSA_DP_LINK_N1, 0);
3978 } else {
3979 I915_WRITE(TRANSB_DATA_M1, 0);
3980 I915_WRITE(TRANSB_DATA_N1, 0);
3981 I915_WRITE(TRANSB_DP_LINK_M1, 0);
3982 I915_WRITE(TRANSB_DP_LINK_N1, 0);
3983 }
3984 }
3985
3986 if (!has_edp_encoder) {
3987 I915_WRITE(fp_reg, fp);
3988 I915_WRITE(dpll_reg, dpll);
3989
3990 /* Wait for the clocks to stabilize. */
3991 POSTING_READ(dpll_reg);
3992 udelay(150);
3993
3994 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3995 temp = 0;
3996 if (is_sdvo) {
3997 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3998 if (temp > 1)
3999 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4000 else
4001 temp = 0;
4002 }
4003 I915_WRITE(DPLL_MD(pipe), temp);
4004 } else {
4005 /* write it again -- the BIOS does, after all */
4006 I915_WRITE(dpll_reg, dpll);
4007 }
4008
4009 /* Wait for the clocks to stabilize. */
4010 POSTING_READ(dpll_reg);
4011 udelay(150);
4012 }
4013
4014 intel_crtc->lowfreq_avail = false;
4015 if (is_lvds && has_reduced_clock && i915_powersave) {
4016 I915_WRITE(fp_reg + 4, fp2);
4017 intel_crtc->lowfreq_avail = true;
4018 if (HAS_PIPE_CXSR(dev)) {
4019 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4020 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4021 }
4022 } else {
4023 I915_WRITE(fp_reg + 4, fp);
4024 if (HAS_PIPE_CXSR(dev)) {
4025 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4026 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4027 }
4028 }
4029
4030 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4031 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4032 /* the chip adds 2 halflines automatically */
4033 adjusted_mode->crtc_vdisplay -= 1;
4034 adjusted_mode->crtc_vtotal -= 1;
4035 adjusted_mode->crtc_vblank_start -= 1;
4036 adjusted_mode->crtc_vblank_end -= 1;
4037 adjusted_mode->crtc_vsync_end -= 1;
4038 adjusted_mode->crtc_vsync_start -= 1;
4039 } else
4040 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4041
4042 I915_WRITE(HTOTAL(pipe),
4043 (adjusted_mode->crtc_hdisplay - 1) |
4044 ((adjusted_mode->crtc_htotal - 1) << 16));
4045 I915_WRITE(HBLANK(pipe),
4046 (adjusted_mode->crtc_hblank_start - 1) |
4047 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4048 I915_WRITE(HSYNC(pipe),
4049 (adjusted_mode->crtc_hsync_start - 1) |
4050 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4051
4052 I915_WRITE(VTOTAL(pipe),
4053 (adjusted_mode->crtc_vdisplay - 1) |
4054 ((adjusted_mode->crtc_vtotal - 1) << 16));
4055 I915_WRITE(VBLANK(pipe),
4056 (adjusted_mode->crtc_vblank_start - 1) |
4057 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4058 I915_WRITE(VSYNC(pipe),
4059 (adjusted_mode->crtc_vsync_start - 1) |
4060 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4061
4062 /* pipesrc and dspsize control the size that is scaled from,
4063 * which should always be the user's requested size.
4064 */
4065 if (!HAS_PCH_SPLIT(dev)) {
4066 I915_WRITE(DSPSIZE(plane),
4067 ((mode->vdisplay - 1) << 16) |
4068 (mode->hdisplay - 1));
4069 I915_WRITE(DSPPOS(plane), 0);
4070 }
4071 I915_WRITE(PIPESRC(pipe),
4072 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4073
4074 if (HAS_PCH_SPLIT(dev)) {
4075 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4076 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4077 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4078 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4079
4080 if (has_edp_encoder) {
4081 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4082 } else {
4083 /* enable FDI RX PLL too */
4084 reg = FDI_RX_CTL(pipe);
4085 temp = I915_READ(reg);
4086 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4087
4088 POSTING_READ(reg);
4089 udelay(200);
4090
4091 /* enable FDI TX PLL too */
4092 reg = FDI_TX_CTL(pipe);
4093 temp = I915_READ(reg);
4094 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4095
4096 /* enable FDI RX PCDCLK */
4097 reg = FDI_RX_CTL(pipe);
4098 temp = I915_READ(reg);
4099 I915_WRITE(reg, temp | FDI_PCDCLK);
4100
4101 POSTING_READ(reg);
4102 udelay(200);
4103 }
4104 }
4105
4106 I915_WRITE(PIPECONF(pipe), pipeconf);
4107 POSTING_READ(PIPECONF(pipe));
4108
4109 intel_wait_for_vblank(dev, pipe);
4110
4111 if (IS_IRONLAKE(dev)) {
4112 /* enable address swizzle for tiling buffer */
4113 temp = I915_READ(DISP_ARB_CTL);
4114 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4115 }
4116
4117 I915_WRITE(DSPCNTR(plane), dspcntr);
4118
4119 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4120
4121 intel_update_watermarks(dev);
4122
4123 drm_vblank_post_modeset(dev, pipe);
4124
4125 return ret;
4126 }
4127
4128 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4129 void intel_crtc_load_lut(struct drm_crtc *crtc)
4130 {
4131 struct drm_device *dev = crtc->dev;
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4135 int i;
4136
4137 /* The clocks have to be on to load the palette. */
4138 if (!crtc->enabled)
4139 return;
4140
4141 /* use legacy palette for Ironlake */
4142 if (HAS_PCH_SPLIT(dev))
4143 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4144 LGC_PALETTE_B;
4145
4146 for (i = 0; i < 256; i++) {
4147 I915_WRITE(palreg + 4 * i,
4148 (intel_crtc->lut_r[i] << 16) |
4149 (intel_crtc->lut_g[i] << 8) |
4150 intel_crtc->lut_b[i]);
4151 }
4152 }
4153
4154 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4155 {
4156 struct drm_device *dev = crtc->dev;
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159 bool visible = base != 0;
4160 u32 cntl;
4161
4162 if (intel_crtc->cursor_visible == visible)
4163 return;
4164
4165 cntl = I915_READ(CURACNTR);
4166 if (visible) {
4167 /* On these chipsets we can only modify the base whilst
4168 * the cursor is disabled.
4169 */
4170 I915_WRITE(CURABASE, base);
4171
4172 cntl &= ~(CURSOR_FORMAT_MASK);
4173 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4174 cntl |= CURSOR_ENABLE |
4175 CURSOR_GAMMA_ENABLE |
4176 CURSOR_FORMAT_ARGB;
4177 } else
4178 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4179 I915_WRITE(CURACNTR, cntl);
4180
4181 intel_crtc->cursor_visible = visible;
4182 }
4183
4184 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4185 {
4186 struct drm_device *dev = crtc->dev;
4187 struct drm_i915_private *dev_priv = dev->dev_private;
4188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4189 int pipe = intel_crtc->pipe;
4190 bool visible = base != 0;
4191
4192 if (intel_crtc->cursor_visible != visible) {
4193 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4194 if (base) {
4195 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4196 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4197 cntl |= pipe << 28; /* Connect to correct pipe */
4198 } else {
4199 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4200 cntl |= CURSOR_MODE_DISABLE;
4201 }
4202 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4203
4204 intel_crtc->cursor_visible = visible;
4205 }
4206 /* and commit changes on next vblank */
4207 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4208 }
4209
4210 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4211 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4212 bool on)
4213 {
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4217 int pipe = intel_crtc->pipe;
4218 int x = intel_crtc->cursor_x;
4219 int y = intel_crtc->cursor_y;
4220 u32 base, pos;
4221 bool visible;
4222
4223 pos = 0;
4224
4225 if (on && crtc->enabled && crtc->fb) {
4226 base = intel_crtc->cursor_addr;
4227 if (x > (int) crtc->fb->width)
4228 base = 0;
4229
4230 if (y > (int) crtc->fb->height)
4231 base = 0;
4232 } else
4233 base = 0;
4234
4235 if (x < 0) {
4236 if (x + intel_crtc->cursor_width < 0)
4237 base = 0;
4238
4239 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4240 x = -x;
4241 }
4242 pos |= x << CURSOR_X_SHIFT;
4243
4244 if (y < 0) {
4245 if (y + intel_crtc->cursor_height < 0)
4246 base = 0;
4247
4248 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4249 y = -y;
4250 }
4251 pos |= y << CURSOR_Y_SHIFT;
4252
4253 visible = base != 0;
4254 if (!visible && !intel_crtc->cursor_visible)
4255 return;
4256
4257 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4258 if (IS_845G(dev) || IS_I865G(dev))
4259 i845_update_cursor(crtc, base);
4260 else
4261 i9xx_update_cursor(crtc, base);
4262
4263 if (visible)
4264 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4265 }
4266
4267 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4268 struct drm_file *file_priv,
4269 uint32_t handle,
4270 uint32_t width, uint32_t height)
4271 {
4272 struct drm_device *dev = crtc->dev;
4273 struct drm_i915_private *dev_priv = dev->dev_private;
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4275 struct drm_gem_object *bo;
4276 struct drm_i915_gem_object *obj_priv;
4277 uint32_t addr;
4278 int ret;
4279
4280 DRM_DEBUG_KMS("\n");
4281
4282 /* if we want to turn off the cursor ignore width and height */
4283 if (!handle) {
4284 DRM_DEBUG_KMS("cursor off\n");
4285 addr = 0;
4286 bo = NULL;
4287 mutex_lock(&dev->struct_mutex);
4288 goto finish;
4289 }
4290
4291 /* Currently we only support 64x64 cursors */
4292 if (width != 64 || height != 64) {
4293 DRM_ERROR("we currently only support 64x64 cursors\n");
4294 return -EINVAL;
4295 }
4296
4297 bo = drm_gem_object_lookup(dev, file_priv, handle);
4298 if (!bo)
4299 return -ENOENT;
4300
4301 obj_priv = to_intel_bo(bo);
4302
4303 if (bo->size < width * height * 4) {
4304 DRM_ERROR("buffer is to small\n");
4305 ret = -ENOMEM;
4306 goto fail;
4307 }
4308
4309 /* we only need to pin inside GTT if cursor is non-phy */
4310 mutex_lock(&dev->struct_mutex);
4311 if (!dev_priv->info->cursor_needs_physical) {
4312 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4313 if (ret) {
4314 DRM_ERROR("failed to pin cursor bo\n");
4315 goto fail_locked;
4316 }
4317
4318 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4319 if (ret) {
4320 DRM_ERROR("failed to move cursor bo into the GTT\n");
4321 goto fail_unpin;
4322 }
4323
4324 addr = obj_priv->gtt_offset;
4325 } else {
4326 int align = IS_I830(dev) ? 16 * 1024 : 256;
4327 ret = i915_gem_attach_phys_object(dev, bo,
4328 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4329 align);
4330 if (ret) {
4331 DRM_ERROR("failed to attach phys object\n");
4332 goto fail_locked;
4333 }
4334 addr = obj_priv->phys_obj->handle->busaddr;
4335 }
4336
4337 if (IS_GEN2(dev))
4338 I915_WRITE(CURSIZE, (height << 12) | width);
4339
4340 finish:
4341 if (intel_crtc->cursor_bo) {
4342 if (dev_priv->info->cursor_needs_physical) {
4343 if (intel_crtc->cursor_bo != bo)
4344 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4345 } else
4346 i915_gem_object_unpin(intel_crtc->cursor_bo);
4347 drm_gem_object_unreference(intel_crtc->cursor_bo);
4348 }
4349
4350 mutex_unlock(&dev->struct_mutex);
4351
4352 intel_crtc->cursor_addr = addr;
4353 intel_crtc->cursor_bo = bo;
4354 intel_crtc->cursor_width = width;
4355 intel_crtc->cursor_height = height;
4356
4357 intel_crtc_update_cursor(crtc, true);
4358
4359 return 0;
4360 fail_unpin:
4361 i915_gem_object_unpin(bo);
4362 fail_locked:
4363 mutex_unlock(&dev->struct_mutex);
4364 fail:
4365 drm_gem_object_unreference_unlocked(bo);
4366 return ret;
4367 }
4368
4369 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4370 {
4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372
4373 intel_crtc->cursor_x = x;
4374 intel_crtc->cursor_y = y;
4375
4376 intel_crtc_update_cursor(crtc, true);
4377
4378 return 0;
4379 }
4380
4381 /** Sets the color ramps on behalf of RandR */
4382 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4383 u16 blue, int regno)
4384 {
4385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386
4387 intel_crtc->lut_r[regno] = red >> 8;
4388 intel_crtc->lut_g[regno] = green >> 8;
4389 intel_crtc->lut_b[regno] = blue >> 8;
4390 }
4391
4392 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4393 u16 *blue, int regno)
4394 {
4395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4396
4397 *red = intel_crtc->lut_r[regno] << 8;
4398 *green = intel_crtc->lut_g[regno] << 8;
4399 *blue = intel_crtc->lut_b[regno] << 8;
4400 }
4401
4402 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4403 u16 *blue, uint32_t start, uint32_t size)
4404 {
4405 int end = (start + size > 256) ? 256 : start + size, i;
4406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4407
4408 for (i = start; i < end; i++) {
4409 intel_crtc->lut_r[i] = red[i] >> 8;
4410 intel_crtc->lut_g[i] = green[i] >> 8;
4411 intel_crtc->lut_b[i] = blue[i] >> 8;
4412 }
4413
4414 intel_crtc_load_lut(crtc);
4415 }
4416
4417 /**
4418 * Get a pipe with a simple mode set on it for doing load-based monitor
4419 * detection.
4420 *
4421 * It will be up to the load-detect code to adjust the pipe as appropriate for
4422 * its requirements. The pipe will be connected to no other encoders.
4423 *
4424 * Currently this code will only succeed if there is a pipe with no encoders
4425 * configured for it. In the future, it could choose to temporarily disable
4426 * some outputs to free up a pipe for its use.
4427 *
4428 * \return crtc, or NULL if no pipes are available.
4429 */
4430
4431 /* VESA 640x480x72Hz mode to set on the pipe */
4432 static struct drm_display_mode load_detect_mode = {
4433 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4434 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4435 };
4436
4437 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4438 struct drm_connector *connector,
4439 struct drm_display_mode *mode,
4440 int *dpms_mode)
4441 {
4442 struct intel_crtc *intel_crtc;
4443 struct drm_crtc *possible_crtc;
4444 struct drm_crtc *supported_crtc =NULL;
4445 struct drm_encoder *encoder = &intel_encoder->base;
4446 struct drm_crtc *crtc = NULL;
4447 struct drm_device *dev = encoder->dev;
4448 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4449 struct drm_crtc_helper_funcs *crtc_funcs;
4450 int i = -1;
4451
4452 /*
4453 * Algorithm gets a little messy:
4454 * - if the connector already has an assigned crtc, use it (but make
4455 * sure it's on first)
4456 * - try to find the first unused crtc that can drive this connector,
4457 * and use that if we find one
4458 * - if there are no unused crtcs available, try to use the first
4459 * one we found that supports the connector
4460 */
4461
4462 /* See if we already have a CRTC for this connector */
4463 if (encoder->crtc) {
4464 crtc = encoder->crtc;
4465 /* Make sure the crtc and connector are running */
4466 intel_crtc = to_intel_crtc(crtc);
4467 *dpms_mode = intel_crtc->dpms_mode;
4468 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4469 crtc_funcs = crtc->helper_private;
4470 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4471 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4472 }
4473 return crtc;
4474 }
4475
4476 /* Find an unused one (if possible) */
4477 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4478 i++;
4479 if (!(encoder->possible_crtcs & (1 << i)))
4480 continue;
4481 if (!possible_crtc->enabled) {
4482 crtc = possible_crtc;
4483 break;
4484 }
4485 if (!supported_crtc)
4486 supported_crtc = possible_crtc;
4487 }
4488
4489 /*
4490 * If we didn't find an unused CRTC, don't use any.
4491 */
4492 if (!crtc) {
4493 return NULL;
4494 }
4495
4496 encoder->crtc = crtc;
4497 connector->encoder = encoder;
4498 intel_encoder->load_detect_temp = true;
4499
4500 intel_crtc = to_intel_crtc(crtc);
4501 *dpms_mode = intel_crtc->dpms_mode;
4502
4503 if (!crtc->enabled) {
4504 if (!mode)
4505 mode = &load_detect_mode;
4506 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4507 } else {
4508 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4509 crtc_funcs = crtc->helper_private;
4510 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4511 }
4512
4513 /* Add this connector to the crtc */
4514 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4515 encoder_funcs->commit(encoder);
4516 }
4517 /* let the connector get through one full cycle before testing */
4518 intel_wait_for_vblank(dev, intel_crtc->pipe);
4519
4520 return crtc;
4521 }
4522
4523 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4524 struct drm_connector *connector, int dpms_mode)
4525 {
4526 struct drm_encoder *encoder = &intel_encoder->base;
4527 struct drm_device *dev = encoder->dev;
4528 struct drm_crtc *crtc = encoder->crtc;
4529 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4530 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4531
4532 if (intel_encoder->load_detect_temp) {
4533 encoder->crtc = NULL;
4534 connector->encoder = NULL;
4535 intel_encoder->load_detect_temp = false;
4536 crtc->enabled = drm_helper_crtc_in_use(crtc);
4537 drm_helper_disable_unused_functions(dev);
4538 }
4539
4540 /* Switch crtc and encoder back off if necessary */
4541 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4542 if (encoder->crtc == crtc)
4543 encoder_funcs->dpms(encoder, dpms_mode);
4544 crtc_funcs->dpms(crtc, dpms_mode);
4545 }
4546 }
4547
4548 /* Returns the clock of the currently programmed mode of the given pipe. */
4549 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4550 {
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4553 int pipe = intel_crtc->pipe;
4554 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4555 u32 fp;
4556 intel_clock_t clock;
4557
4558 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4559 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4560 else
4561 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4562
4563 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4564 if (IS_PINEVIEW(dev)) {
4565 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4566 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4567 } else {
4568 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4569 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4570 }
4571
4572 if (!IS_GEN2(dev)) {
4573 if (IS_PINEVIEW(dev))
4574 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4575 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4576 else
4577 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4578 DPLL_FPA01_P1_POST_DIV_SHIFT);
4579
4580 switch (dpll & DPLL_MODE_MASK) {
4581 case DPLLB_MODE_DAC_SERIAL:
4582 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4583 5 : 10;
4584 break;
4585 case DPLLB_MODE_LVDS:
4586 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4587 7 : 14;
4588 break;
4589 default:
4590 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4591 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4592 return 0;
4593 }
4594
4595 /* XXX: Handle the 100Mhz refclk */
4596 intel_clock(dev, 96000, &clock);
4597 } else {
4598 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4599
4600 if (is_lvds) {
4601 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4602 DPLL_FPA01_P1_POST_DIV_SHIFT);
4603 clock.p2 = 14;
4604
4605 if ((dpll & PLL_REF_INPUT_MASK) ==
4606 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4607 /* XXX: might not be 66MHz */
4608 intel_clock(dev, 66000, &clock);
4609 } else
4610 intel_clock(dev, 48000, &clock);
4611 } else {
4612 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4613 clock.p1 = 2;
4614 else {
4615 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4616 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4617 }
4618 if (dpll & PLL_P2_DIVIDE_BY_4)
4619 clock.p2 = 4;
4620 else
4621 clock.p2 = 2;
4622
4623 intel_clock(dev, 48000, &clock);
4624 }
4625 }
4626
4627 /* XXX: It would be nice to validate the clocks, but we can't reuse
4628 * i830PllIsValid() because it relies on the xf86_config connector
4629 * configuration being accurate, which it isn't necessarily.
4630 */
4631
4632 return clock.dot;
4633 }
4634
4635 /** Returns the currently programmed mode of the given pipe. */
4636 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4637 struct drm_crtc *crtc)
4638 {
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4641 int pipe = intel_crtc->pipe;
4642 struct drm_display_mode *mode;
4643 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4644 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4645 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4646 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4647
4648 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4649 if (!mode)
4650 return NULL;
4651
4652 mode->clock = intel_crtc_clock_get(dev, crtc);
4653 mode->hdisplay = (htot & 0xffff) + 1;
4654 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4655 mode->hsync_start = (hsync & 0xffff) + 1;
4656 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4657 mode->vdisplay = (vtot & 0xffff) + 1;
4658 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4659 mode->vsync_start = (vsync & 0xffff) + 1;
4660 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4661
4662 drm_mode_set_name(mode);
4663 drm_mode_set_crtcinfo(mode, 0);
4664
4665 return mode;
4666 }
4667
4668 #define GPU_IDLE_TIMEOUT 500 /* ms */
4669
4670 /* When this timer fires, we've been idle for awhile */
4671 static void intel_gpu_idle_timer(unsigned long arg)
4672 {
4673 struct drm_device *dev = (struct drm_device *)arg;
4674 drm_i915_private_t *dev_priv = dev->dev_private;
4675
4676 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4677
4678 dev_priv->busy = false;
4679
4680 queue_work(dev_priv->wq, &dev_priv->idle_work);
4681 }
4682
4683 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4684
4685 static void intel_crtc_idle_timer(unsigned long arg)
4686 {
4687 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4688 struct drm_crtc *crtc = &intel_crtc->base;
4689 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4690
4691 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4692
4693 intel_crtc->busy = false;
4694
4695 queue_work(dev_priv->wq, &dev_priv->idle_work);
4696 }
4697
4698 static void intel_increase_pllclock(struct drm_crtc *crtc)
4699 {
4700 struct drm_device *dev = crtc->dev;
4701 drm_i915_private_t *dev_priv = dev->dev_private;
4702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4703 int pipe = intel_crtc->pipe;
4704 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4705 int dpll = I915_READ(dpll_reg);
4706
4707 if (HAS_PCH_SPLIT(dev))
4708 return;
4709
4710 if (!dev_priv->lvds_downclock_avail)
4711 return;
4712
4713 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4714 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4715
4716 /* Unlock panel regs */
4717 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4718 PANEL_UNLOCK_REGS);
4719
4720 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4721 I915_WRITE(dpll_reg, dpll);
4722 dpll = I915_READ(dpll_reg);
4723 intel_wait_for_vblank(dev, pipe);
4724 dpll = I915_READ(dpll_reg);
4725 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4726 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4727
4728 /* ...and lock them again */
4729 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4730 }
4731
4732 /* Schedule downclock */
4733 mod_timer(&intel_crtc->idle_timer, jiffies +
4734 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4735 }
4736
4737 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4738 {
4739 struct drm_device *dev = crtc->dev;
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4742 int pipe = intel_crtc->pipe;
4743 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4744 int dpll = I915_READ(dpll_reg);
4745
4746 if (HAS_PCH_SPLIT(dev))
4747 return;
4748
4749 if (!dev_priv->lvds_downclock_avail)
4750 return;
4751
4752 /*
4753 * Since this is called by a timer, we should never get here in
4754 * the manual case.
4755 */
4756 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4757 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4758
4759 /* Unlock panel regs */
4760 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4761 PANEL_UNLOCK_REGS);
4762
4763 dpll |= DISPLAY_RATE_SELECT_FPA1;
4764 I915_WRITE(dpll_reg, dpll);
4765 dpll = I915_READ(dpll_reg);
4766 intel_wait_for_vblank(dev, pipe);
4767 dpll = I915_READ(dpll_reg);
4768 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4769 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4770
4771 /* ...and lock them again */
4772 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4773 }
4774
4775 }
4776
4777 /**
4778 * intel_idle_update - adjust clocks for idleness
4779 * @work: work struct
4780 *
4781 * Either the GPU or display (or both) went idle. Check the busy status
4782 * here and adjust the CRTC and GPU clocks as necessary.
4783 */
4784 static void intel_idle_update(struct work_struct *work)
4785 {
4786 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4787 idle_work);
4788 struct drm_device *dev = dev_priv->dev;
4789 struct drm_crtc *crtc;
4790 struct intel_crtc *intel_crtc;
4791 int enabled = 0;
4792
4793 if (!i915_powersave)
4794 return;
4795
4796 mutex_lock(&dev->struct_mutex);
4797
4798 i915_update_gfx_val(dev_priv);
4799
4800 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4801 /* Skip inactive CRTCs */
4802 if (!crtc->fb)
4803 continue;
4804
4805 enabled++;
4806 intel_crtc = to_intel_crtc(crtc);
4807 if (!intel_crtc->busy)
4808 intel_decrease_pllclock(crtc);
4809 }
4810
4811 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4812 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4813 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4814 }
4815
4816 mutex_unlock(&dev->struct_mutex);
4817 }
4818
4819 /**
4820 * intel_mark_busy - mark the GPU and possibly the display busy
4821 * @dev: drm device
4822 * @obj: object we're operating on
4823 *
4824 * Callers can use this function to indicate that the GPU is busy processing
4825 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4826 * buffer), we'll also mark the display as busy, so we know to increase its
4827 * clock frequency.
4828 */
4829 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4830 {
4831 drm_i915_private_t *dev_priv = dev->dev_private;
4832 struct drm_crtc *crtc = NULL;
4833 struct intel_framebuffer *intel_fb;
4834 struct intel_crtc *intel_crtc;
4835
4836 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4837 return;
4838
4839 if (!dev_priv->busy) {
4840 if (IS_I945G(dev) || IS_I945GM(dev)) {
4841 u32 fw_blc_self;
4842
4843 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4844 fw_blc_self = I915_READ(FW_BLC_SELF);
4845 fw_blc_self &= ~FW_BLC_SELF_EN;
4846 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4847 }
4848 dev_priv->busy = true;
4849 } else
4850 mod_timer(&dev_priv->idle_timer, jiffies +
4851 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4852
4853 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4854 if (!crtc->fb)
4855 continue;
4856
4857 intel_crtc = to_intel_crtc(crtc);
4858 intel_fb = to_intel_framebuffer(crtc->fb);
4859 if (intel_fb->obj == obj) {
4860 if (!intel_crtc->busy) {
4861 if (IS_I945G(dev) || IS_I945GM(dev)) {
4862 u32 fw_blc_self;
4863
4864 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4865 fw_blc_self = I915_READ(FW_BLC_SELF);
4866 fw_blc_self &= ~FW_BLC_SELF_EN;
4867 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4868 }
4869 /* Non-busy -> busy, upclock */
4870 intel_increase_pllclock(crtc);
4871 intel_crtc->busy = true;
4872 } else {
4873 /* Busy -> busy, put off timer */
4874 mod_timer(&intel_crtc->idle_timer, jiffies +
4875 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4876 }
4877 }
4878 }
4879 }
4880
4881 static void intel_crtc_destroy(struct drm_crtc *crtc)
4882 {
4883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884 struct drm_device *dev = crtc->dev;
4885 struct intel_unpin_work *work;
4886 unsigned long flags;
4887
4888 spin_lock_irqsave(&dev->event_lock, flags);
4889 work = intel_crtc->unpin_work;
4890 intel_crtc->unpin_work = NULL;
4891 spin_unlock_irqrestore(&dev->event_lock, flags);
4892
4893 if (work) {
4894 cancel_work_sync(&work->work);
4895 kfree(work);
4896 }
4897
4898 drm_crtc_cleanup(crtc);
4899
4900 kfree(intel_crtc);
4901 }
4902
4903 static void intel_unpin_work_fn(struct work_struct *__work)
4904 {
4905 struct intel_unpin_work *work =
4906 container_of(__work, struct intel_unpin_work, work);
4907
4908 mutex_lock(&work->dev->struct_mutex);
4909 i915_gem_object_unpin(work->old_fb_obj);
4910 drm_gem_object_unreference(work->pending_flip_obj);
4911 drm_gem_object_unreference(work->old_fb_obj);
4912 mutex_unlock(&work->dev->struct_mutex);
4913 kfree(work);
4914 }
4915
4916 static void do_intel_finish_page_flip(struct drm_device *dev,
4917 struct drm_crtc *crtc)
4918 {
4919 drm_i915_private_t *dev_priv = dev->dev_private;
4920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921 struct intel_unpin_work *work;
4922 struct drm_i915_gem_object *obj_priv;
4923 struct drm_pending_vblank_event *e;
4924 struct timeval now;
4925 unsigned long flags;
4926
4927 /* Ignore early vblank irqs */
4928 if (intel_crtc == NULL)
4929 return;
4930
4931 spin_lock_irqsave(&dev->event_lock, flags);
4932 work = intel_crtc->unpin_work;
4933 if (work == NULL || !work->pending) {
4934 spin_unlock_irqrestore(&dev->event_lock, flags);
4935 return;
4936 }
4937
4938 intel_crtc->unpin_work = NULL;
4939 drm_vblank_put(dev, intel_crtc->pipe);
4940
4941 if (work->event) {
4942 e = work->event;
4943 do_gettimeofday(&now);
4944 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4945 e->event.tv_sec = now.tv_sec;
4946 e->event.tv_usec = now.tv_usec;
4947 list_add_tail(&e->base.link,
4948 &e->base.file_priv->event_list);
4949 wake_up_interruptible(&e->base.file_priv->event_wait);
4950 }
4951
4952 spin_unlock_irqrestore(&dev->event_lock, flags);
4953
4954 obj_priv = to_intel_bo(work->pending_flip_obj);
4955
4956 /* Initial scanout buffer will have a 0 pending flip count */
4957 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4958 atomic_dec_and_test(&obj_priv->pending_flip))
4959 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4960 schedule_work(&work->work);
4961
4962 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4963 }
4964
4965 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4966 {
4967 drm_i915_private_t *dev_priv = dev->dev_private;
4968 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4969
4970 do_intel_finish_page_flip(dev, crtc);
4971 }
4972
4973 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4974 {
4975 drm_i915_private_t *dev_priv = dev->dev_private;
4976 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4977
4978 do_intel_finish_page_flip(dev, crtc);
4979 }
4980
4981 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4982 {
4983 drm_i915_private_t *dev_priv = dev->dev_private;
4984 struct intel_crtc *intel_crtc =
4985 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4986 unsigned long flags;
4987
4988 spin_lock_irqsave(&dev->event_lock, flags);
4989 if (intel_crtc->unpin_work) {
4990 if ((++intel_crtc->unpin_work->pending) > 1)
4991 DRM_ERROR("Prepared flip multiple times\n");
4992 } else {
4993 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4994 }
4995 spin_unlock_irqrestore(&dev->event_lock, flags);
4996 }
4997
4998 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4999 struct drm_framebuffer *fb,
5000 struct drm_pending_vblank_event *event)
5001 {
5002 struct drm_device *dev = crtc->dev;
5003 struct drm_i915_private *dev_priv = dev->dev_private;
5004 struct intel_framebuffer *intel_fb;
5005 struct drm_i915_gem_object *obj_priv;
5006 struct drm_gem_object *obj;
5007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5008 struct intel_unpin_work *work;
5009 unsigned long flags, offset;
5010 int pipe = intel_crtc->pipe;
5011 u32 was_dirty, pf, pipesrc;
5012 int ret;
5013
5014 work = kzalloc(sizeof *work, GFP_KERNEL);
5015 if (work == NULL)
5016 return -ENOMEM;
5017
5018 work->event = event;
5019 work->dev = crtc->dev;
5020 intel_fb = to_intel_framebuffer(crtc->fb);
5021 work->old_fb_obj = intel_fb->obj;
5022 INIT_WORK(&work->work, intel_unpin_work_fn);
5023
5024 /* We borrow the event spin lock for protecting unpin_work */
5025 spin_lock_irqsave(&dev->event_lock, flags);
5026 if (intel_crtc->unpin_work) {
5027 spin_unlock_irqrestore(&dev->event_lock, flags);
5028 kfree(work);
5029
5030 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5031 return -EBUSY;
5032 }
5033 intel_crtc->unpin_work = work;
5034 spin_unlock_irqrestore(&dev->event_lock, flags);
5035
5036 intel_fb = to_intel_framebuffer(fb);
5037 obj = intel_fb->obj;
5038
5039 mutex_lock(&dev->struct_mutex);
5040 was_dirty = obj->write_domain & I915_GEM_GPU_DOMAINS;
5041 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5042 if (ret)
5043 goto cleanup_work;
5044
5045 /* Reference the objects for the scheduled work. */
5046 drm_gem_object_reference(work->old_fb_obj);
5047 drm_gem_object_reference(obj);
5048
5049 crtc->fb = fb;
5050
5051 ret = drm_vblank_get(dev, intel_crtc->pipe);
5052 if (ret)
5053 goto cleanup_objs;
5054
5055 obj_priv = to_intel_bo(obj);
5056 atomic_inc(&obj_priv->pending_flip);
5057 work->pending_flip_obj = obj;
5058
5059 if (was_dirty || IS_GEN3(dev) || IS_GEN2(dev)) {
5060 BEGIN_LP_RING(2);
5061 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5062 u32 flip_mask;
5063
5064 /* Can't queue multiple flips, so wait for the previous
5065 * one to finish before executing the next.
5066 */
5067
5068 if (intel_crtc->plane)
5069 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5070 else
5071 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5072
5073 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5074 } else
5075 OUT_RING(MI_NOOP);
5076 OUT_RING(MI_FLUSH);
5077 ADVANCE_LP_RING();
5078 }
5079
5080 work->enable_stall_check = true;
5081
5082 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5083 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5084
5085 BEGIN_LP_RING(4);
5086 switch(INTEL_INFO(dev)->gen) {
5087 case 2:
5088 OUT_RING(MI_DISPLAY_FLIP |
5089 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5090 OUT_RING(fb->pitch);
5091 OUT_RING(obj_priv->gtt_offset + offset);
5092 OUT_RING(MI_NOOP);
5093 break;
5094
5095 case 3:
5096 OUT_RING(MI_DISPLAY_FLIP_I915 |
5097 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5098 OUT_RING(fb->pitch);
5099 OUT_RING(obj_priv->gtt_offset + offset);
5100 OUT_RING(MI_NOOP);
5101 break;
5102
5103 case 4:
5104 case 5:
5105 /* i965+ uses the linear or tiled offsets from the
5106 * Display Registers (which do not change across a page-flip)
5107 * so we need only reprogram the base address.
5108 */
5109 OUT_RING(MI_DISPLAY_FLIP |
5110 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5111 OUT_RING(fb->pitch);
5112 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5113
5114 /* XXX Enabling the panel-fitter across page-flip is so far
5115 * untested on non-native modes, so ignore it for now.
5116 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5117 */
5118 pf = 0;
5119 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5120 OUT_RING(pf | pipesrc);
5121 break;
5122
5123 case 6:
5124 OUT_RING(MI_DISPLAY_FLIP |
5125 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5126 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5127 OUT_RING(obj_priv->gtt_offset);
5128
5129 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5130 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5131 OUT_RING(pf | pipesrc);
5132 break;
5133 }
5134 ADVANCE_LP_RING();
5135
5136 mutex_unlock(&dev->struct_mutex);
5137
5138 trace_i915_flip_request(intel_crtc->plane, obj);
5139
5140 return 0;
5141
5142 cleanup_objs:
5143 drm_gem_object_unreference(work->old_fb_obj);
5144 drm_gem_object_unreference(obj);
5145 cleanup_work:
5146 mutex_unlock(&dev->struct_mutex);
5147
5148 spin_lock_irqsave(&dev->event_lock, flags);
5149 intel_crtc->unpin_work = NULL;
5150 spin_unlock_irqrestore(&dev->event_lock, flags);
5151
5152 kfree(work);
5153
5154 return ret;
5155 }
5156
5157 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5158 .dpms = intel_crtc_dpms,
5159 .mode_fixup = intel_crtc_mode_fixup,
5160 .mode_set = intel_crtc_mode_set,
5161 .mode_set_base = intel_pipe_set_base,
5162 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5163 .load_lut = intel_crtc_load_lut,
5164 };
5165
5166 static const struct drm_crtc_funcs intel_crtc_funcs = {
5167 .cursor_set = intel_crtc_cursor_set,
5168 .cursor_move = intel_crtc_cursor_move,
5169 .gamma_set = intel_crtc_gamma_set,
5170 .set_config = drm_crtc_helper_set_config,
5171 .destroy = intel_crtc_destroy,
5172 .page_flip = intel_crtc_page_flip,
5173 };
5174
5175
5176 static void intel_crtc_init(struct drm_device *dev, int pipe)
5177 {
5178 drm_i915_private_t *dev_priv = dev->dev_private;
5179 struct intel_crtc *intel_crtc;
5180 int i;
5181
5182 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5183 if (intel_crtc == NULL)
5184 return;
5185
5186 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5187
5188 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5189 for (i = 0; i < 256; i++) {
5190 intel_crtc->lut_r[i] = i;
5191 intel_crtc->lut_g[i] = i;
5192 intel_crtc->lut_b[i] = i;
5193 }
5194
5195 /* Swap pipes & planes for FBC on pre-965 */
5196 intel_crtc->pipe = pipe;
5197 intel_crtc->plane = pipe;
5198 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5199 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5200 intel_crtc->plane = !pipe;
5201 }
5202
5203 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5204 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5205 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5206 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5207
5208 intel_crtc->cursor_addr = 0;
5209 intel_crtc->dpms_mode = -1;
5210 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5211
5212 if (HAS_PCH_SPLIT(dev)) {
5213 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5214 intel_helper_funcs.commit = ironlake_crtc_commit;
5215 } else {
5216 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5217 intel_helper_funcs.commit = i9xx_crtc_commit;
5218 }
5219
5220 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5221
5222 intel_crtc->busy = false;
5223
5224 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5225 (unsigned long)intel_crtc);
5226 }
5227
5228 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5229 struct drm_file *file_priv)
5230 {
5231 drm_i915_private_t *dev_priv = dev->dev_private;
5232 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5233 struct drm_mode_object *drmmode_obj;
5234 struct intel_crtc *crtc;
5235
5236 if (!dev_priv) {
5237 DRM_ERROR("called with no initialization\n");
5238 return -EINVAL;
5239 }
5240
5241 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5242 DRM_MODE_OBJECT_CRTC);
5243
5244 if (!drmmode_obj) {
5245 DRM_ERROR("no such CRTC id\n");
5246 return -EINVAL;
5247 }
5248
5249 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5250 pipe_from_crtc_id->pipe = crtc->pipe;
5251
5252 return 0;
5253 }
5254
5255 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5256 {
5257 struct intel_encoder *encoder;
5258 int index_mask = 0;
5259 int entry = 0;
5260
5261 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5262 if (type_mask & encoder->clone_mask)
5263 index_mask |= (1 << entry);
5264 entry++;
5265 }
5266
5267 return index_mask;
5268 }
5269
5270 static void intel_setup_outputs(struct drm_device *dev)
5271 {
5272 struct drm_i915_private *dev_priv = dev->dev_private;
5273 struct intel_encoder *encoder;
5274 bool dpd_is_edp = false;
5275
5276 if (IS_MOBILE(dev) && !IS_I830(dev))
5277 intel_lvds_init(dev);
5278
5279 if (HAS_PCH_SPLIT(dev)) {
5280 dpd_is_edp = intel_dpd_is_edp(dev);
5281
5282 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5283 intel_dp_init(dev, DP_A);
5284
5285 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5286 intel_dp_init(dev, PCH_DP_D);
5287 }
5288
5289 intel_crt_init(dev);
5290
5291 if (HAS_PCH_SPLIT(dev)) {
5292 int found;
5293
5294 if (I915_READ(HDMIB) & PORT_DETECTED) {
5295 /* PCH SDVOB multiplex with HDMIB */
5296 found = intel_sdvo_init(dev, PCH_SDVOB);
5297 if (!found)
5298 intel_hdmi_init(dev, HDMIB);
5299 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5300 intel_dp_init(dev, PCH_DP_B);
5301 }
5302
5303 if (I915_READ(HDMIC) & PORT_DETECTED)
5304 intel_hdmi_init(dev, HDMIC);
5305
5306 if (I915_READ(HDMID) & PORT_DETECTED)
5307 intel_hdmi_init(dev, HDMID);
5308
5309 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5310 intel_dp_init(dev, PCH_DP_C);
5311
5312 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5313 intel_dp_init(dev, PCH_DP_D);
5314
5315 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5316 bool found = false;
5317
5318 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5319 DRM_DEBUG_KMS("probing SDVOB\n");
5320 found = intel_sdvo_init(dev, SDVOB);
5321 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5322 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5323 intel_hdmi_init(dev, SDVOB);
5324 }
5325
5326 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5327 DRM_DEBUG_KMS("probing DP_B\n");
5328 intel_dp_init(dev, DP_B);
5329 }
5330 }
5331
5332 /* Before G4X SDVOC doesn't have its own detect register */
5333
5334 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5335 DRM_DEBUG_KMS("probing SDVOC\n");
5336 found = intel_sdvo_init(dev, SDVOC);
5337 }
5338
5339 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5340
5341 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5342 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5343 intel_hdmi_init(dev, SDVOC);
5344 }
5345 if (SUPPORTS_INTEGRATED_DP(dev)) {
5346 DRM_DEBUG_KMS("probing DP_C\n");
5347 intel_dp_init(dev, DP_C);
5348 }
5349 }
5350
5351 if (SUPPORTS_INTEGRATED_DP(dev) &&
5352 (I915_READ(DP_D) & DP_DETECTED)) {
5353 DRM_DEBUG_KMS("probing DP_D\n");
5354 intel_dp_init(dev, DP_D);
5355 }
5356 } else if (IS_GEN2(dev))
5357 intel_dvo_init(dev);
5358
5359 if (SUPPORTS_TV(dev))
5360 intel_tv_init(dev);
5361
5362 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5363 encoder->base.possible_crtcs = encoder->crtc_mask;
5364 encoder->base.possible_clones =
5365 intel_encoder_clones(dev, encoder->clone_mask);
5366 }
5367 }
5368
5369 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5370 {
5371 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5372
5373 drm_framebuffer_cleanup(fb);
5374 drm_gem_object_unreference_unlocked(intel_fb->obj);
5375
5376 kfree(intel_fb);
5377 }
5378
5379 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5380 struct drm_file *file_priv,
5381 unsigned int *handle)
5382 {
5383 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5384 struct drm_gem_object *object = intel_fb->obj;
5385
5386 return drm_gem_handle_create(file_priv, object, handle);
5387 }
5388
5389 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5390 .destroy = intel_user_framebuffer_destroy,
5391 .create_handle = intel_user_framebuffer_create_handle,
5392 };
5393
5394 int intel_framebuffer_init(struct drm_device *dev,
5395 struct intel_framebuffer *intel_fb,
5396 struct drm_mode_fb_cmd *mode_cmd,
5397 struct drm_gem_object *obj)
5398 {
5399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5400 int ret;
5401
5402 if (obj_priv->tiling_mode == I915_TILING_Y)
5403 return -EINVAL;
5404
5405 if (mode_cmd->pitch & 63)
5406 return -EINVAL;
5407
5408 switch (mode_cmd->bpp) {
5409 case 8:
5410 case 16:
5411 case 24:
5412 case 32:
5413 break;
5414 default:
5415 return -EINVAL;
5416 }
5417
5418 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5419 if (ret) {
5420 DRM_ERROR("framebuffer init failed %d\n", ret);
5421 return ret;
5422 }
5423
5424 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5425 intel_fb->obj = obj;
5426 return 0;
5427 }
5428
5429 static struct drm_framebuffer *
5430 intel_user_framebuffer_create(struct drm_device *dev,
5431 struct drm_file *filp,
5432 struct drm_mode_fb_cmd *mode_cmd)
5433 {
5434 struct drm_gem_object *obj;
5435 struct intel_framebuffer *intel_fb;
5436 int ret;
5437
5438 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5439 if (!obj)
5440 return ERR_PTR(-ENOENT);
5441
5442 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5443 if (!intel_fb)
5444 return ERR_PTR(-ENOMEM);
5445
5446 ret = intel_framebuffer_init(dev, intel_fb,
5447 mode_cmd, obj);
5448 if (ret) {
5449 drm_gem_object_unreference_unlocked(obj);
5450 kfree(intel_fb);
5451 return ERR_PTR(ret);
5452 }
5453
5454 return &intel_fb->base;
5455 }
5456
5457 static const struct drm_mode_config_funcs intel_mode_funcs = {
5458 .fb_create = intel_user_framebuffer_create,
5459 .output_poll_changed = intel_fb_output_poll_changed,
5460 };
5461
5462 static struct drm_gem_object *
5463 intel_alloc_context_page(struct drm_device *dev)
5464 {
5465 struct drm_gem_object *ctx;
5466 int ret;
5467
5468 ctx = i915_gem_alloc_object(dev, 4096);
5469 if (!ctx) {
5470 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5471 return NULL;
5472 }
5473
5474 mutex_lock(&dev->struct_mutex);
5475 ret = i915_gem_object_pin(ctx, 4096);
5476 if (ret) {
5477 DRM_ERROR("failed to pin power context: %d\n", ret);
5478 goto err_unref;
5479 }
5480
5481 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5482 if (ret) {
5483 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5484 goto err_unpin;
5485 }
5486 mutex_unlock(&dev->struct_mutex);
5487
5488 return ctx;
5489
5490 err_unpin:
5491 i915_gem_object_unpin(ctx);
5492 err_unref:
5493 drm_gem_object_unreference(ctx);
5494 mutex_unlock(&dev->struct_mutex);
5495 return NULL;
5496 }
5497
5498 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5499 {
5500 struct drm_i915_private *dev_priv = dev->dev_private;
5501 u16 rgvswctl;
5502
5503 rgvswctl = I915_READ16(MEMSWCTL);
5504 if (rgvswctl & MEMCTL_CMD_STS) {
5505 DRM_DEBUG("gpu busy, RCS change rejected\n");
5506 return false; /* still busy with another command */
5507 }
5508
5509 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5510 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5511 I915_WRITE16(MEMSWCTL, rgvswctl);
5512 POSTING_READ16(MEMSWCTL);
5513
5514 rgvswctl |= MEMCTL_CMD_STS;
5515 I915_WRITE16(MEMSWCTL, rgvswctl);
5516
5517 return true;
5518 }
5519
5520 void ironlake_enable_drps(struct drm_device *dev)
5521 {
5522 struct drm_i915_private *dev_priv = dev->dev_private;
5523 u32 rgvmodectl = I915_READ(MEMMODECTL);
5524 u8 fmax, fmin, fstart, vstart;
5525
5526 /* Enable temp reporting */
5527 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5528 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5529
5530 /* 100ms RC evaluation intervals */
5531 I915_WRITE(RCUPEI, 100000);
5532 I915_WRITE(RCDNEI, 100000);
5533
5534 /* Set max/min thresholds to 90ms and 80ms respectively */
5535 I915_WRITE(RCBMAXAVG, 90000);
5536 I915_WRITE(RCBMINAVG, 80000);
5537
5538 I915_WRITE(MEMIHYST, 1);
5539
5540 /* Set up min, max, and cur for interrupt handling */
5541 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5542 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5543 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5544 MEMMODE_FSTART_SHIFT;
5545 fstart = fmax;
5546
5547 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5548 PXVFREQ_PX_SHIFT;
5549
5550 dev_priv->fmax = fstart; /* IPS callback will increase this */
5551 dev_priv->fstart = fstart;
5552
5553 dev_priv->max_delay = fmax;
5554 dev_priv->min_delay = fmin;
5555 dev_priv->cur_delay = fstart;
5556
5557 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5558 fstart);
5559
5560 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5561
5562 /*
5563 * Interrupts will be enabled in ironlake_irq_postinstall
5564 */
5565
5566 I915_WRITE(VIDSTART, vstart);
5567 POSTING_READ(VIDSTART);
5568
5569 rgvmodectl |= MEMMODE_SWMODE_EN;
5570 I915_WRITE(MEMMODECTL, rgvmodectl);
5571
5572 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5573 DRM_ERROR("stuck trying to change perf mode\n");
5574 msleep(1);
5575
5576 ironlake_set_drps(dev, fstart);
5577
5578 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5579 I915_READ(0x112e0);
5580 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5581 dev_priv->last_count2 = I915_READ(0x112f4);
5582 getrawmonotonic(&dev_priv->last_time2);
5583 }
5584
5585 void ironlake_disable_drps(struct drm_device *dev)
5586 {
5587 struct drm_i915_private *dev_priv = dev->dev_private;
5588 u16 rgvswctl = I915_READ16(MEMSWCTL);
5589
5590 /* Ack interrupts, disable EFC interrupt */
5591 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5592 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5593 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5594 I915_WRITE(DEIIR, DE_PCU_EVENT);
5595 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5596
5597 /* Go back to the starting frequency */
5598 ironlake_set_drps(dev, dev_priv->fstart);
5599 msleep(1);
5600 rgvswctl |= MEMCTL_CMD_STS;
5601 I915_WRITE(MEMSWCTL, rgvswctl);
5602 msleep(1);
5603
5604 }
5605
5606 static unsigned long intel_pxfreq(u32 vidfreq)
5607 {
5608 unsigned long freq;
5609 int div = (vidfreq & 0x3f0000) >> 16;
5610 int post = (vidfreq & 0x3000) >> 12;
5611 int pre = (vidfreq & 0x7);
5612
5613 if (!pre)
5614 return 0;
5615
5616 freq = ((div * 133333) / ((1<<post) * pre));
5617
5618 return freq;
5619 }
5620
5621 void intel_init_emon(struct drm_device *dev)
5622 {
5623 struct drm_i915_private *dev_priv = dev->dev_private;
5624 u32 lcfuse;
5625 u8 pxw[16];
5626 int i;
5627
5628 /* Disable to program */
5629 I915_WRITE(ECR, 0);
5630 POSTING_READ(ECR);
5631
5632 /* Program energy weights for various events */
5633 I915_WRITE(SDEW, 0x15040d00);
5634 I915_WRITE(CSIEW0, 0x007f0000);
5635 I915_WRITE(CSIEW1, 0x1e220004);
5636 I915_WRITE(CSIEW2, 0x04000004);
5637
5638 for (i = 0; i < 5; i++)
5639 I915_WRITE(PEW + (i * 4), 0);
5640 for (i = 0; i < 3; i++)
5641 I915_WRITE(DEW + (i * 4), 0);
5642
5643 /* Program P-state weights to account for frequency power adjustment */
5644 for (i = 0; i < 16; i++) {
5645 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5646 unsigned long freq = intel_pxfreq(pxvidfreq);
5647 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5648 PXVFREQ_PX_SHIFT;
5649 unsigned long val;
5650
5651 val = vid * vid;
5652 val *= (freq / 1000);
5653 val *= 255;
5654 val /= (127*127*900);
5655 if (val > 0xff)
5656 DRM_ERROR("bad pxval: %ld\n", val);
5657 pxw[i] = val;
5658 }
5659 /* Render standby states get 0 weight */
5660 pxw[14] = 0;
5661 pxw[15] = 0;
5662
5663 for (i = 0; i < 4; i++) {
5664 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5665 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5666 I915_WRITE(PXW + (i * 4), val);
5667 }
5668
5669 /* Adjust magic regs to magic values (more experimental results) */
5670 I915_WRITE(OGW0, 0);
5671 I915_WRITE(OGW1, 0);
5672 I915_WRITE(EG0, 0x00007f00);
5673 I915_WRITE(EG1, 0x0000000e);
5674 I915_WRITE(EG2, 0x000e0000);
5675 I915_WRITE(EG3, 0x68000300);
5676 I915_WRITE(EG4, 0x42000000);
5677 I915_WRITE(EG5, 0x00140031);
5678 I915_WRITE(EG6, 0);
5679 I915_WRITE(EG7, 0);
5680
5681 for (i = 0; i < 8; i++)
5682 I915_WRITE(PXWL + (i * 4), 0);
5683
5684 /* Enable PMON + select events */
5685 I915_WRITE(ECR, 0x80000019);
5686
5687 lcfuse = I915_READ(LCFUSE02);
5688
5689 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5690 }
5691
5692 void intel_init_clock_gating(struct drm_device *dev)
5693 {
5694 struct drm_i915_private *dev_priv = dev->dev_private;
5695
5696 /*
5697 * Disable clock gating reported to work incorrectly according to the
5698 * specs, but enable as much else as we can.
5699 */
5700 if (HAS_PCH_SPLIT(dev)) {
5701 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5702
5703 if (IS_IRONLAKE(dev)) {
5704 /* Required for FBC */
5705 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5706 /* Required for CxSR */
5707 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5708
5709 I915_WRITE(PCH_3DCGDIS0,
5710 MARIUNIT_CLOCK_GATE_DISABLE |
5711 SVSMUNIT_CLOCK_GATE_DISABLE);
5712 }
5713
5714 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5715
5716 /*
5717 * According to the spec the following bits should be set in
5718 * order to enable memory self-refresh
5719 * The bit 22/21 of 0x42004
5720 * The bit 5 of 0x42020
5721 * The bit 15 of 0x45000
5722 */
5723 if (IS_IRONLAKE(dev)) {
5724 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5725 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5726 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5727 I915_WRITE(ILK_DSPCLK_GATE,
5728 (I915_READ(ILK_DSPCLK_GATE) |
5729 ILK_DPARB_CLK_GATE));
5730 I915_WRITE(DISP_ARB_CTL,
5731 (I915_READ(DISP_ARB_CTL) |
5732 DISP_FBC_WM_DIS));
5733 I915_WRITE(WM3_LP_ILK, 0);
5734 I915_WRITE(WM2_LP_ILK, 0);
5735 I915_WRITE(WM1_LP_ILK, 0);
5736 }
5737 /*
5738 * Based on the document from hardware guys the following bits
5739 * should be set unconditionally in order to enable FBC.
5740 * The bit 22 of 0x42000
5741 * The bit 22 of 0x42004
5742 * The bit 7,8,9 of 0x42020.
5743 */
5744 if (IS_IRONLAKE_M(dev)) {
5745 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5746 I915_READ(ILK_DISPLAY_CHICKEN1) |
5747 ILK_FBCQ_DIS);
5748 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5749 I915_READ(ILK_DISPLAY_CHICKEN2) |
5750 ILK_DPARB_GATE);
5751 I915_WRITE(ILK_DSPCLK_GATE,
5752 I915_READ(ILK_DSPCLK_GATE) |
5753 ILK_DPFC_DIS1 |
5754 ILK_DPFC_DIS2 |
5755 ILK_CLK_FBC);
5756 }
5757 return;
5758 } else if (IS_G4X(dev)) {
5759 uint32_t dspclk_gate;
5760 I915_WRITE(RENCLK_GATE_D1, 0);
5761 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5762 GS_UNIT_CLOCK_GATE_DISABLE |
5763 CL_UNIT_CLOCK_GATE_DISABLE);
5764 I915_WRITE(RAMCLK_GATE_D, 0);
5765 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5766 OVRUNIT_CLOCK_GATE_DISABLE |
5767 OVCUNIT_CLOCK_GATE_DISABLE;
5768 if (IS_GM45(dev))
5769 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5770 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5771 } else if (IS_CRESTLINE(dev)) {
5772 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5773 I915_WRITE(RENCLK_GATE_D2, 0);
5774 I915_WRITE(DSPCLK_GATE_D, 0);
5775 I915_WRITE(RAMCLK_GATE_D, 0);
5776 I915_WRITE16(DEUC, 0);
5777 } else if (IS_BROADWATER(dev)) {
5778 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5779 I965_RCC_CLOCK_GATE_DISABLE |
5780 I965_RCPB_CLOCK_GATE_DISABLE |
5781 I965_ISC_CLOCK_GATE_DISABLE |
5782 I965_FBC_CLOCK_GATE_DISABLE);
5783 I915_WRITE(RENCLK_GATE_D2, 0);
5784 } else if (IS_GEN3(dev)) {
5785 u32 dstate = I915_READ(D_STATE);
5786
5787 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5788 DSTATE_DOT_CLOCK_GATING;
5789 I915_WRITE(D_STATE, dstate);
5790 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5791 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5792 } else if (IS_I830(dev)) {
5793 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5794 }
5795
5796 /*
5797 * GPU can automatically power down the render unit if given a page
5798 * to save state.
5799 */
5800 if (IS_IRONLAKE_M(dev)) {
5801 if (dev_priv->renderctx == NULL)
5802 dev_priv->renderctx = intel_alloc_context_page(dev);
5803 if (dev_priv->renderctx) {
5804 struct drm_i915_gem_object *obj_priv;
5805 obj_priv = to_intel_bo(dev_priv->renderctx);
5806 if (obj_priv) {
5807 BEGIN_LP_RING(4);
5808 OUT_RING(MI_SET_CONTEXT);
5809 OUT_RING(obj_priv->gtt_offset |
5810 MI_MM_SPACE_GTT |
5811 MI_SAVE_EXT_STATE_EN |
5812 MI_RESTORE_EXT_STATE_EN |
5813 MI_RESTORE_INHIBIT);
5814 OUT_RING(MI_NOOP);
5815 OUT_RING(MI_FLUSH);
5816 ADVANCE_LP_RING();
5817 }
5818 } else
5819 DRM_DEBUG_KMS("Failed to allocate render context."
5820 "Disable RC6\n");
5821 }
5822
5823 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5824 struct drm_i915_gem_object *obj_priv = NULL;
5825
5826 if (dev_priv->pwrctx) {
5827 obj_priv = to_intel_bo(dev_priv->pwrctx);
5828 } else {
5829 struct drm_gem_object *pwrctx;
5830
5831 pwrctx = intel_alloc_context_page(dev);
5832 if (pwrctx) {
5833 dev_priv->pwrctx = pwrctx;
5834 obj_priv = to_intel_bo(pwrctx);
5835 }
5836 }
5837
5838 if (obj_priv) {
5839 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5840 I915_WRITE(MCHBAR_RENDER_STANDBY,
5841 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5842 }
5843 }
5844 }
5845
5846 /* Set up chip specific display functions */
5847 static void intel_init_display(struct drm_device *dev)
5848 {
5849 struct drm_i915_private *dev_priv = dev->dev_private;
5850
5851 /* We always want a DPMS function */
5852 if (HAS_PCH_SPLIT(dev))
5853 dev_priv->display.dpms = ironlake_crtc_dpms;
5854 else
5855 dev_priv->display.dpms = i9xx_crtc_dpms;
5856
5857 if (I915_HAS_FBC(dev)) {
5858 if (IS_IRONLAKE_M(dev)) {
5859 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5860 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5861 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5862 } else if (IS_GM45(dev)) {
5863 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5864 dev_priv->display.enable_fbc = g4x_enable_fbc;
5865 dev_priv->display.disable_fbc = g4x_disable_fbc;
5866 } else if (IS_CRESTLINE(dev)) {
5867 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5868 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5869 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5870 }
5871 /* 855GM needs testing */
5872 }
5873
5874 /* Returns the core display clock speed */
5875 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5876 dev_priv->display.get_display_clock_speed =
5877 i945_get_display_clock_speed;
5878 else if (IS_I915G(dev))
5879 dev_priv->display.get_display_clock_speed =
5880 i915_get_display_clock_speed;
5881 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5882 dev_priv->display.get_display_clock_speed =
5883 i9xx_misc_get_display_clock_speed;
5884 else if (IS_I915GM(dev))
5885 dev_priv->display.get_display_clock_speed =
5886 i915gm_get_display_clock_speed;
5887 else if (IS_I865G(dev))
5888 dev_priv->display.get_display_clock_speed =
5889 i865_get_display_clock_speed;
5890 else if (IS_I85X(dev))
5891 dev_priv->display.get_display_clock_speed =
5892 i855_get_display_clock_speed;
5893 else /* 852, 830 */
5894 dev_priv->display.get_display_clock_speed =
5895 i830_get_display_clock_speed;
5896
5897 /* For FIFO watermark updates */
5898 if (HAS_PCH_SPLIT(dev)) {
5899 if (IS_IRONLAKE(dev)) {
5900 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5901 dev_priv->display.update_wm = ironlake_update_wm;
5902 else {
5903 DRM_DEBUG_KMS("Failed to get proper latency. "
5904 "Disable CxSR\n");
5905 dev_priv->display.update_wm = NULL;
5906 }
5907 } else
5908 dev_priv->display.update_wm = NULL;
5909 } else if (IS_PINEVIEW(dev)) {
5910 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5911 dev_priv->is_ddr3,
5912 dev_priv->fsb_freq,
5913 dev_priv->mem_freq)) {
5914 DRM_INFO("failed to find known CxSR latency "
5915 "(found ddr%s fsb freq %d, mem freq %d), "
5916 "disabling CxSR\n",
5917 (dev_priv->is_ddr3 == 1) ? "3": "2",
5918 dev_priv->fsb_freq, dev_priv->mem_freq);
5919 /* Disable CxSR and never update its watermark again */
5920 pineview_disable_cxsr(dev);
5921 dev_priv->display.update_wm = NULL;
5922 } else
5923 dev_priv->display.update_wm = pineview_update_wm;
5924 } else if (IS_G4X(dev))
5925 dev_priv->display.update_wm = g4x_update_wm;
5926 else if (IS_GEN4(dev))
5927 dev_priv->display.update_wm = i965_update_wm;
5928 else if (IS_GEN3(dev)) {
5929 dev_priv->display.update_wm = i9xx_update_wm;
5930 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5931 } else if (IS_I85X(dev)) {
5932 dev_priv->display.update_wm = i9xx_update_wm;
5933 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5934 } else {
5935 dev_priv->display.update_wm = i830_update_wm;
5936 if (IS_845G(dev))
5937 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5938 else
5939 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5940 }
5941 }
5942
5943 /*
5944 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5945 * resume, or other times. This quirk makes sure that's the case for
5946 * affected systems.
5947 */
5948 static void quirk_pipea_force (struct drm_device *dev)
5949 {
5950 struct drm_i915_private *dev_priv = dev->dev_private;
5951
5952 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5953 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5954 }
5955
5956 struct intel_quirk {
5957 int device;
5958 int subsystem_vendor;
5959 int subsystem_device;
5960 void (*hook)(struct drm_device *dev);
5961 };
5962
5963 struct intel_quirk intel_quirks[] = {
5964 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5965 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5966 /* HP Mini needs pipe A force quirk (LP: #322104) */
5967 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5968
5969 /* Thinkpad R31 needs pipe A force quirk */
5970 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5971 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5972 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5973
5974 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5975 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5976 /* ThinkPad X40 needs pipe A force quirk */
5977
5978 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5979 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5980
5981 /* 855 & before need to leave pipe A & dpll A up */
5982 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5983 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5984 };
5985
5986 static void intel_init_quirks(struct drm_device *dev)
5987 {
5988 struct pci_dev *d = dev->pdev;
5989 int i;
5990
5991 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5992 struct intel_quirk *q = &intel_quirks[i];
5993
5994 if (d->device == q->device &&
5995 (d->subsystem_vendor == q->subsystem_vendor ||
5996 q->subsystem_vendor == PCI_ANY_ID) &&
5997 (d->subsystem_device == q->subsystem_device ||
5998 q->subsystem_device == PCI_ANY_ID))
5999 q->hook(dev);
6000 }
6001 }
6002
6003 /* Disable the VGA plane that we never use */
6004 static void i915_disable_vga(struct drm_device *dev)
6005 {
6006 struct drm_i915_private *dev_priv = dev->dev_private;
6007 u8 sr1;
6008 u32 vga_reg;
6009
6010 if (HAS_PCH_SPLIT(dev))
6011 vga_reg = CPU_VGACNTRL;
6012 else
6013 vga_reg = VGACNTRL;
6014
6015 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6016 outb(1, VGA_SR_INDEX);
6017 sr1 = inb(VGA_SR_DATA);
6018 outb(sr1 | 1<<5, VGA_SR_DATA);
6019 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6020 udelay(300);
6021
6022 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6023 POSTING_READ(vga_reg);
6024 }
6025
6026 void intel_modeset_init(struct drm_device *dev)
6027 {
6028 struct drm_i915_private *dev_priv = dev->dev_private;
6029 int i;
6030
6031 drm_mode_config_init(dev);
6032
6033 dev->mode_config.min_width = 0;
6034 dev->mode_config.min_height = 0;
6035
6036 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6037
6038 intel_init_quirks(dev);
6039
6040 intel_init_display(dev);
6041
6042 if (IS_GEN2(dev)) {
6043 dev->mode_config.max_width = 2048;
6044 dev->mode_config.max_height = 2048;
6045 } else if (IS_GEN3(dev)) {
6046 dev->mode_config.max_width = 4096;
6047 dev->mode_config.max_height = 4096;
6048 } else {
6049 dev->mode_config.max_width = 8192;
6050 dev->mode_config.max_height = 8192;
6051 }
6052
6053 /* set memory base */
6054 if (IS_GEN2(dev))
6055 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6056 else
6057 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6058
6059 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6060 dev_priv->num_pipe = 2;
6061 else
6062 dev_priv->num_pipe = 1;
6063 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6064 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6065
6066 for (i = 0; i < dev_priv->num_pipe; i++) {
6067 intel_crtc_init(dev, i);
6068 }
6069
6070 intel_setup_outputs(dev);
6071
6072 intel_init_clock_gating(dev);
6073
6074 /* Just disable it once at startup */
6075 i915_disable_vga(dev);
6076
6077 if (IS_IRONLAKE_M(dev)) {
6078 ironlake_enable_drps(dev);
6079 intel_init_emon(dev);
6080 }
6081
6082 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6083 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6084 (unsigned long)dev);
6085
6086 intel_setup_overlay(dev);
6087 }
6088
6089 void intel_modeset_cleanup(struct drm_device *dev)
6090 {
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092 struct drm_crtc *crtc;
6093 struct intel_crtc *intel_crtc;
6094
6095 mutex_lock(&dev->struct_mutex);
6096
6097 drm_kms_helper_poll_fini(dev);
6098 intel_fbdev_fini(dev);
6099
6100 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6101 /* Skip inactive CRTCs */
6102 if (!crtc->fb)
6103 continue;
6104
6105 intel_crtc = to_intel_crtc(crtc);
6106 intel_increase_pllclock(crtc);
6107 }
6108
6109 if (dev_priv->display.disable_fbc)
6110 dev_priv->display.disable_fbc(dev);
6111
6112 if (dev_priv->renderctx) {
6113 struct drm_i915_gem_object *obj_priv;
6114
6115 obj_priv = to_intel_bo(dev_priv->renderctx);
6116 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6117 I915_READ(CCID);
6118 i915_gem_object_unpin(dev_priv->renderctx);
6119 drm_gem_object_unreference(dev_priv->renderctx);
6120 }
6121
6122 if (dev_priv->pwrctx) {
6123 struct drm_i915_gem_object *obj_priv;
6124
6125 obj_priv = to_intel_bo(dev_priv->pwrctx);
6126 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6127 I915_READ(PWRCTXA);
6128 i915_gem_object_unpin(dev_priv->pwrctx);
6129 drm_gem_object_unreference(dev_priv->pwrctx);
6130 }
6131
6132 if (IS_IRONLAKE_M(dev))
6133 ironlake_disable_drps(dev);
6134
6135 mutex_unlock(&dev->struct_mutex);
6136
6137 /* Disable the irq before mode object teardown, for the irq might
6138 * enqueue unpin/hotplug work. */
6139 drm_irq_uninstall(dev);
6140 cancel_work_sync(&dev_priv->hotplug_work);
6141
6142 /* Shut off idle work before the crtcs get freed. */
6143 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6144 intel_crtc = to_intel_crtc(crtc);
6145 del_timer_sync(&intel_crtc->idle_timer);
6146 }
6147 del_timer_sync(&dev_priv->idle_timer);
6148 cancel_work_sync(&dev_priv->idle_work);
6149
6150 drm_mode_config_cleanup(dev);
6151 }
6152
6153 /*
6154 * Return which encoder is currently attached for connector.
6155 */
6156 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6157 {
6158 return &intel_attached_encoder(connector)->base;
6159 }
6160
6161 void intel_connector_attach_encoder(struct intel_connector *connector,
6162 struct intel_encoder *encoder)
6163 {
6164 connector->encoder = encoder;
6165 drm_mode_connector_attach_encoder(&connector->base,
6166 &encoder->base);
6167 }
6168
6169 /*
6170 * set vga decode state - true == enable VGA decode
6171 */
6172 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6173 {
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 u16 gmch_ctrl;
6176
6177 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6178 if (state)
6179 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6180 else
6181 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6182 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6183 return 0;
6184 }
This page took 0.155683 seconds and 4 git commands to generate.