drm/i915: By default, enable RC6 on IVB and SNB when reasonable
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
119 .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
133 .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
147 .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
161 .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
177 },
178 .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
192 .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
206 },
207 .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
221 },
222 .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
235 .p2_slow = 10, .p2_fast = 10 },
236 .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
242 /* Pineview's Ncounter is a ring counter */
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
252 .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
266 .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
273 */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
285 .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
299 .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
313 .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
328 .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
339 .p1 = { .min = 2, .max = 6 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 10, .p2_fast = 10 },
356 .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
361 {
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 const intel_limit_t *limit;
365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
370 if (refclk == 100000)
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
375 if (refclk == 100000)
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
383 else
384 limit = &intel_limits_ironlake_dac;
385
386 return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
399 limit = &intel_limits_g4x_dual_channel_lvds;
400 else
401 /* LVDS with dual channel */
402 limit = &intel_limits_g4x_single_channel_lvds;
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 limit = &intel_limits_g4x_hdmi;
406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 limit = &intel_limits_g4x_sdvo;
408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409 limit = &intel_limits_g4x_display_port;
410 } else /* The option is for other outputs */
411 limit = &intel_limits_i9xx_sdvo;
412
413 return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
421 if (HAS_PCH_SPLIT(dev))
422 limit = intel_ironlake_limit(crtc, refclk);
423 else if (IS_G4X(dev)) {
424 limit = intel_g4x_limit(crtc);
425 } else if (IS_PINEVIEW(dev)) {
426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427 limit = &intel_limits_pineview_lvds;
428 else
429 limit = &intel_limits_pineview_sdvo;
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437 limit = &intel_limits_i8xx_lvds;
438 else
439 limit = &intel_limits_i8xx_dvo;
440 }
441 return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
457 return;
458 }
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466 * Returns whether any output on the specified pipe is of the specified type
467 */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
477
478 return false;
479 }
480
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
490 {
491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
492 INTELPllInvalid("p1 out of range\n");
493 if (clock->p < limit->p.min || limit->p.max < clock->p)
494 INTELPllInvalid("p out of range\n");
495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
496 INTELPllInvalid("m2 out of range\n");
497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
498 INTELPllInvalid("m1 out of range\n");
499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500 INTELPllInvalid("m1 <= m2\n");
501 if (clock->m < limit->m.min || limit->m.max < clock->m)
502 INTELPllInvalid("m out of range\n");
503 if (clock->n < limit->n.min || limit->n.max < clock->n)
504 INTELPllInvalid("n out of range\n");
505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511 INTELPllInvalid("dot out of range\n");
512
513 return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
519
520 {
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
524 int err = target;
525
526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 (I915_READ(LVDS)) != 0) {
528 /*
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
544 }
545
546 memset(best_clock, 0, sizeof(*best_clock));
547
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
559 int this_err;
560
561 intel_clock(dev, refclk, &clock);
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
564 continue;
565
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
570 }
571 }
572 }
573 }
574 }
575
576 return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
582 {
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
590 found = false;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 int lvds_reg;
594
595 if (HAS_PCH_SPLIT(dev))
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
609 }
610
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
623
624 intel_clock(dev, refclk, &clock);
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
627 continue;
628
629 this_err = abs(clock.dot - target);
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
635 }
636 }
637 }
638 }
639 }
640 return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
646 {
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
649
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
662 }
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
672 {
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
693 }
694
695 /**
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
702 */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 int pipestat_reg = PIPESTAT(pipe);
707
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
710 *
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
720 */
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
728 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @dev: drm device
734 * @pipe: pipe to wait for
735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
739 *
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
742 *
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
746 *
747 */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750 struct drm_i915_private *dev_priv = dev->dev_private;
751
752 if (INTEL_INFO(dev)->gen >= 4) {
753 int reg = PIPECONF(pipe);
754
755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
761 int reg = PIPEDSL(pipe);
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764 /* Wait for the display line to settle */
765 do {
766 last_line = I915_READ(reg) & DSL_LINEMASK;
767 mdelay(5);
768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777 return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
783 {
784 int reg;
785 u32 val;
786 bool cur_state;
787
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
801 {
802 int reg;
803 u32 val;
804 bool cur_state;
805
806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll;
808
809 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe);
814
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1;
817 }
818
819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state)
831 {
832 int reg;
833 u32 val;
834 bool cur_state;
835
836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state)
848 {
849 int reg;
850 u32 val;
851 bool cur_state;
852
853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
865 {
866 int reg;
867 u32 val;
868
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5)
871 return;
872
873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe)
880 {
881 int reg;
882 u32 val;
883
884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891 {
892 int pp_reg, lvds_reg;
893 u32 val;
894 enum pipe panel_pipe = PIPE_A;
895 bool locked = true;
896
897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS;
900 } else {
901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS;
903 }
904
905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false;
909
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B;
912
913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n",
915 pipe_name(pipe));
916 }
917
918 static void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
920 {
921 int reg;
922 u32 val;
923 bool cur_state;
924
925 reg = PIPECONF(pipe);
926 val = I915_READ(reg);
927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n",
930 pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936 enum plane plane)
937 {
938 int reg;
939 u32 val;
940
941 reg = DSPCNTR(plane);
942 val = I915_READ(reg);
943 WARN(!(val & DISPLAY_PLANE_ENABLE),
944 "plane %c assertion failure, should be active but is disabled\n",
945 plane_name(plane));
946 }
947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949 enum pipe pipe)
950 {
951 int reg, i;
952 u32 val;
953 int cur_pipe;
954
955 /* Planes are fixed to pipes on ILK+ */
956 if (HAS_PCH_SPLIT(dev_priv->dev))
957 return;
958
959 /* Need to check both planes against the pipe */
960 for (i = 0; i < 2; i++) {
961 reg = DSPCNTR(i);
962 val = I915_READ(reg);
963 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964 DISPPLANE_SEL_PIPE_SHIFT;
965 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966 "plane %c assertion failure, should be off on pipe %c but is still active\n",
967 plane_name(i), pipe_name(pipe));
968 }
969 }
970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 {
973 u32 val;
974 bool enabled;
975
976 val = I915_READ(PCH_DREF_CONTROL);
977 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978 DREF_SUPERSPREAD_SOURCE_MASK));
979 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 }
981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983 enum pipe pipe)
984 {
985 int reg;
986 u32 val;
987 bool enabled;
988
989 reg = TRANSCONF(pipe);
990 val = I915_READ(reg);
991 enabled = !!(val & TRANS_ENABLE);
992 WARN(enabled,
993 "transcoder assertion failed, should be off on pipe %c but is still active\n",
994 pipe_name(pipe));
995 }
996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998 enum pipe pipe, u32 port_sel, u32 val)
999 {
1000 if ((val & DP_PORT_EN) == 0)
1001 return false;
1002
1003 if (HAS_PCH_CPT(dev_priv->dev)) {
1004 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007 return false;
1008 } else {
1009 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010 return false;
1011 }
1012 return true;
1013 }
1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016 enum pipe pipe, u32 val)
1017 {
1018 if ((val & PORT_ENABLE) == 0)
1019 return false;
1020
1021 if (HAS_PCH_CPT(dev_priv->dev)) {
1022 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023 return false;
1024 } else {
1025 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026 return false;
1027 }
1028 return true;
1029 }
1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032 enum pipe pipe, u32 val)
1033 {
1034 if ((val & LVDS_PORT_EN) == 0)
1035 return false;
1036
1037 if (HAS_PCH_CPT(dev_priv->dev)) {
1038 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039 return false;
1040 } else {
1041 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042 return false;
1043 }
1044 return true;
1045 }
1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048 enum pipe pipe, u32 val)
1049 {
1050 if ((val & ADPA_DAC_ENABLE) == 0)
1051 return false;
1052 if (HAS_PCH_CPT(dev_priv->dev)) {
1053 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054 return false;
1055 } else {
1056 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057 return false;
1058 }
1059 return true;
1060 }
1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063 enum pipe pipe, int reg, u32 port_sel)
1064 {
1065 u32 val = I915_READ(reg);
1066 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068 reg, pipe_name(pipe));
1069 }
1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe, int reg)
1073 {
1074 u32 val = I915_READ(reg);
1075 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077 reg, pipe_name(pipe));
1078 }
1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081 enum pipe pipe)
1082 {
1083 int reg;
1084 u32 val;
1085
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089
1090 reg = PCH_ADPA;
1091 val = I915_READ(reg);
1092 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1093 "PCH VGA enabled on transcoder %c, should be disabled\n",
1094 pipe_name(pipe));
1095
1096 reg = PCH_LVDS;
1097 val = I915_READ(reg);
1098 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1099 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100 pipe_name(pipe));
1101
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 }
1106
1107 /**
1108 * intel_enable_pll - enable a PLL
1109 * @dev_priv: i915 private structure
1110 * @pipe: pipe PLL to enable
1111 *
1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1113 * make sure the PLL reg is writable first though, since the panel write
1114 * protect mechanism may be enabled.
1115 *
1116 * Note! This is for pre-ILK only.
1117 */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 {
1120 int reg;
1121 u32 val;
1122
1123 /* No really, not for ILK+ */
1124 BUG_ON(dev_priv->info->gen >= 5);
1125
1126 /* PLL is protected by panel, make sure we can write it */
1127 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128 assert_panel_unlocked(dev_priv, pipe);
1129
1130 reg = DPLL(pipe);
1131 val = I915_READ(reg);
1132 val |= DPLL_VCO_ENABLE;
1133
1134 /* We do this three times for luck */
1135 I915_WRITE(reg, val);
1136 POSTING_READ(reg);
1137 udelay(150); /* wait for warmup */
1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg);
1140 udelay(150); /* wait for warmup */
1141 I915_WRITE(reg, val);
1142 POSTING_READ(reg);
1143 udelay(150); /* wait for warmup */
1144 }
1145
1146 /**
1147 * intel_disable_pll - disable a PLL
1148 * @dev_priv: i915 private structure
1149 * @pipe: pipe PLL to disable
1150 *
1151 * Disable the PLL for @pipe, making sure the pipe is off first.
1152 *
1153 * Note! This is for pre-ILK only.
1154 */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 {
1157 int reg;
1158 u32 val;
1159
1160 /* Don't disable pipe A or pipe A PLLs if needed */
1161 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162 return;
1163
1164 /* Make sure the pipe isn't still relying on us */
1165 assert_pipe_disabled(dev_priv, pipe);
1166
1167 reg = DPLL(pipe);
1168 val = I915_READ(reg);
1169 val &= ~DPLL_VCO_ENABLE;
1170 I915_WRITE(reg, val);
1171 POSTING_READ(reg);
1172 }
1173
1174 /**
1175 * intel_enable_pch_pll - enable PCH PLL
1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to enable
1178 *
1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180 * drives the transcoder clock.
1181 */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183 enum pipe pipe)
1184 {
1185 int reg;
1186 u32 val;
1187
1188 if (pipe > 1)
1189 return;
1190
1191 /* PCH only available on ILK+ */
1192 BUG_ON(dev_priv->info->gen < 5);
1193
1194 /* PCH refclock must be enabled first */
1195 assert_pch_refclk_enabled(dev_priv);
1196
1197 reg = PCH_DPLL(pipe);
1198 val = I915_READ(reg);
1199 val |= DPLL_VCO_ENABLE;
1200 I915_WRITE(reg, val);
1201 POSTING_READ(reg);
1202 udelay(200);
1203 }
1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207 {
1208 int reg;
1209 u32 val;
1210
1211 if (pipe > 1)
1212 return;
1213
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* Make sure transcoder isn't still depending on us */
1218 assert_transcoder_disabled(dev_priv, pipe);
1219
1220 reg = PCH_DPLL(pipe);
1221 val = I915_READ(reg);
1222 val &= ~DPLL_VCO_ENABLE;
1223 I915_WRITE(reg, val);
1224 POSTING_READ(reg);
1225 udelay(200);
1226 }
1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
1230 {
1231 int reg;
1232 u32 val;
1233
1234 /* PCH only available on ILK+ */
1235 BUG_ON(dev_priv->info->gen < 5);
1236
1237 /* Make sure PCH DPLL is enabled */
1238 assert_pch_pll_enabled(dev_priv, pipe);
1239
1240 /* FDI must be feeding us bits for PCH ports */
1241 assert_fdi_tx_enabled(dev_priv, pipe);
1242 assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244 reg = TRANSCONF(pipe);
1245 val = I915_READ(reg);
1246
1247 if (HAS_PCH_IBX(dev_priv->dev)) {
1248 /*
1249 * make the BPC in transcoder be consistent with
1250 * that in pipeconf reg.
1251 */
1252 val &= ~PIPE_BPC_MASK;
1253 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254 }
1255 I915_WRITE(reg, val | TRANS_ENABLE);
1256 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 }
1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262 {
1263 int reg;
1264 u32 val;
1265
1266 /* FDI relies on the transcoder */
1267 assert_fdi_tx_disabled(dev_priv, pipe);
1268 assert_fdi_rx_disabled(dev_priv, pipe);
1269
1270 /* Ports must be off as well */
1271 assert_pch_ports_disabled(dev_priv, pipe);
1272
1273 reg = TRANSCONF(pipe);
1274 val = I915_READ(reg);
1275 val &= ~TRANS_ENABLE;
1276 I915_WRITE(reg, val);
1277 /* wait for PCH transcoder off, transcoder state */
1278 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1280 }
1281
1282 /**
1283 * intel_enable_pipe - enable a pipe, asserting requirements
1284 * @dev_priv: i915 private structure
1285 * @pipe: pipe to enable
1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287 *
1288 * Enable @pipe, making sure that various hardware specific requirements
1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290 *
1291 * @pipe should be %PIPE_A or %PIPE_B.
1292 *
1293 * Will wait until the pipe is actually running (i.e. first vblank) before
1294 * returning.
1295 */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297 bool pch_port)
1298 {
1299 int reg;
1300 u32 val;
1301
1302 /*
1303 * A pipe without a PLL won't actually be able to drive bits from
1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1305 * need the check.
1306 */
1307 if (!HAS_PCH_SPLIT(dev_priv->dev))
1308 assert_pll_enabled(dev_priv, pipe);
1309 else {
1310 if (pch_port) {
1311 /* if driving the PCH, we need FDI enabled */
1312 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314 }
1315 /* FIXME: assert CPU port conditions for SNB+ */
1316 }
1317
1318 reg = PIPECONF(pipe);
1319 val = I915_READ(reg);
1320 if (val & PIPECONF_ENABLE)
1321 return;
1322
1323 I915_WRITE(reg, val | PIPECONF_ENABLE);
1324 intel_wait_for_vblank(dev_priv->dev, pipe);
1325 }
1326
1327 /**
1328 * intel_disable_pipe - disable a pipe, asserting requirements
1329 * @dev_priv: i915 private structure
1330 * @pipe: pipe to disable
1331 *
1332 * Disable @pipe, making sure that various hardware specific requirements
1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334 *
1335 * @pipe should be %PIPE_A or %PIPE_B.
1336 *
1337 * Will wait until the pipe has shut down before returning.
1338 */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341 {
1342 int reg;
1343 u32 val;
1344
1345 /*
1346 * Make sure planes won't keep trying to pump pixels to us,
1347 * or we might hang the display.
1348 */
1349 assert_planes_disabled(dev_priv, pipe);
1350
1351 /* Don't disable pipe A or pipe A PLLs if needed */
1352 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353 return;
1354
1355 reg = PIPECONF(pipe);
1356 val = I915_READ(reg);
1357 if ((val & PIPECONF_ENABLE) == 0)
1358 return;
1359
1360 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 }
1363
1364 /*
1365 * Plane regs are double buffered, going from enabled->disabled needs a
1366 * trigger in order to latch. The display address reg provides this.
1367 */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane)
1370 {
1371 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 }
1374
1375 /**
1376 * intel_enable_plane - enable a display plane on a given pipe
1377 * @dev_priv: i915 private structure
1378 * @plane: plane to enable
1379 * @pipe: pipe being fed
1380 *
1381 * Enable @plane on @pipe, making sure that @pipe is running first.
1382 */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384 enum plane plane, enum pipe pipe)
1385 {
1386 int reg;
1387 u32 val;
1388
1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390 assert_pipe_enabled(dev_priv, pipe);
1391
1392 reg = DSPCNTR(plane);
1393 val = I915_READ(reg);
1394 if (val & DISPLAY_PLANE_ENABLE)
1395 return;
1396
1397 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398 intel_flush_display_plane(dev_priv, plane);
1399 intel_wait_for_vblank(dev_priv->dev, pipe);
1400 }
1401
1402 /**
1403 * intel_disable_plane - disable a display plane
1404 * @dev_priv: i915 private structure
1405 * @plane: plane to disable
1406 * @pipe: pipe consuming the data
1407 *
1408 * Disable @plane; should be an independent operation.
1409 */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411 enum plane plane, enum pipe pipe)
1412 {
1413 int reg;
1414 u32 val;
1415
1416 reg = DSPCNTR(plane);
1417 val = I915_READ(reg);
1418 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419 return;
1420
1421 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422 intel_flush_display_plane(dev_priv, plane);
1423 intel_wait_for_vblank(dev_priv->dev, pipe);
1424 }
1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, int reg, u32 port_sel)
1428 {
1429 u32 val = I915_READ(reg);
1430 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432 I915_WRITE(reg, val & ~DP_PORT_EN);
1433 }
1434 }
1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437 enum pipe pipe, int reg)
1438 {
1439 u32 val = I915_READ(reg);
1440 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442 reg, pipe);
1443 I915_WRITE(reg, val & ~PORT_ENABLE);
1444 }
1445 }
1446
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449 enum pipe pipe)
1450 {
1451 u32 reg, val;
1452
1453 val = I915_READ(PCH_PP_CONTROL);
1454 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
1456 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459
1460 reg = PCH_ADPA;
1461 val = I915_READ(reg);
1462 if (adpa_pipe_enabled(dev_priv, val, pipe))
1463 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465 reg = PCH_LVDS;
1466 val = I915_READ(reg);
1467 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470 POSTING_READ(reg);
1471 udelay(100);
1472 }
1473
1474 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476 disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 }
1478
1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 u32 fbc_ctl;
1483
1484 /* Disable compression */
1485 fbc_ctl = I915_READ(FBC_CONTROL);
1486 if ((fbc_ctl & FBC_CTL_EN) == 0)
1487 return;
1488
1489 fbc_ctl &= ~FBC_CTL_EN;
1490 I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492 /* Wait for compressing bit to clear */
1493 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494 DRM_DEBUG_KMS("FBC idle timed out\n");
1495 return;
1496 }
1497
1498 DRM_DEBUG_KMS("disabled FBC\n");
1499 }
1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 {
1503 struct drm_device *dev = crtc->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_framebuffer *fb = crtc->fb;
1506 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507 struct drm_i915_gem_object *obj = intel_fb->obj;
1508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509 int cfb_pitch;
1510 int plane, i;
1511 u32 fbc_ctl, fbc_ctl2;
1512
1513 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514 if (fb->pitch < cfb_pitch)
1515 cfb_pitch = fb->pitch;
1516
1517 /* FBC_CTL wants 64B units */
1518 cfb_pitch = (cfb_pitch / 64) - 1;
1519 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520
1521 /* Clear old tags */
1522 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525 /* Set it up... */
1526 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527 fbc_ctl2 |= plane;
1528 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531 /* enable it... */
1532 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533 if (IS_I945GM(dev))
1534 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537 fbc_ctl |= obj->fence_reg;
1538 I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541 cfb_pitch, crtc->y, intel_crtc->plane);
1542 }
1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 {
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 }
1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557 struct drm_i915_gem_object *obj = intel_fb->obj;
1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560 unsigned long stall_watermark = 200;
1561 u32 dpfc_ctl;
1562
1563 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566
1567 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572 /* enable it... */
1573 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 }
1577
1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 u32 dpfc_ctl;
1582
1583 /* Disable compression */
1584 dpfc_ctl = I915_READ(DPFC_CONTROL);
1585 if (dpfc_ctl & DPFC_CTL_EN) {
1586 dpfc_ctl &= ~DPFC_CTL_EN;
1587 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588
1589 DRM_DEBUG_KMS("disabled FBC\n");
1590 }
1591 }
1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 {
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 }
1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 {
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 u32 blt_ecoskpd;
1604
1605 /* Make sure blitter notifies FBC of writes */
1606 gen6_gt_force_wake_get(dev_priv);
1607 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609 GEN6_BLITTER_LOCK_SHIFT;
1610 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614 GEN6_BLITTER_LOCK_SHIFT);
1615 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617 gen6_gt_force_wake_put(dev_priv);
1618 }
1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 {
1622 struct drm_device *dev = crtc->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 struct drm_framebuffer *fb = crtc->fb;
1625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626 struct drm_i915_gem_object *obj = intel_fb->obj;
1627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629 unsigned long stall_watermark = 200;
1630 u32 dpfc_ctl;
1631
1632 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633 dpfc_ctl &= DPFC_RESERVED;
1634 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635 /* Set persistent mode for front-buffer rendering, ala X. */
1636 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639
1640 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645 /* enable it... */
1646 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647
1648 if (IS_GEN6(dev)) {
1649 I915_WRITE(SNB_DPFC_CTL_SA,
1650 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652 sandybridge_blit_fbc_update(dev);
1653 }
1654
1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 }
1657
1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 {
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 u32 dpfc_ctl;
1662
1663 /* Disable compression */
1664 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665 if (dpfc_ctl & DPFC_CTL_EN) {
1666 dpfc_ctl &= ~DPFC_CTL_EN;
1667 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668
1669 DRM_DEBUG_KMS("disabled FBC\n");
1670 }
1671 }
1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 }
1679
1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 {
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684 if (!dev_priv->display.fbc_enabled)
1685 return false;
1686
1687 return dev_priv->display.fbc_enabled(dev);
1688 }
1689
1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 {
1692 struct intel_fbc_work *work =
1693 container_of(to_delayed_work(__work),
1694 struct intel_fbc_work, work);
1695 struct drm_device *dev = work->crtc->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698 mutex_lock(&dev->struct_mutex);
1699 if (work == dev_priv->fbc_work) {
1700 /* Double check that we haven't switched fb without cancelling
1701 * the prior work.
1702 */
1703 if (work->crtc->fb == work->fb) {
1704 dev_priv->display.enable_fbc(work->crtc,
1705 work->interval);
1706
1707 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708 dev_priv->cfb_fb = work->crtc->fb->base.id;
1709 dev_priv->cfb_y = work->crtc->y;
1710 }
1711
1712 dev_priv->fbc_work = NULL;
1713 }
1714 mutex_unlock(&dev->struct_mutex);
1715
1716 kfree(work);
1717 }
1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 {
1721 if (dev_priv->fbc_work == NULL)
1722 return;
1723
1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726 /* Synchronisation is provided by struct_mutex and checking of
1727 * dev_priv->fbc_work, so we can perform the cancellation
1728 * entirely asynchronously.
1729 */
1730 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731 /* tasklet was killed before being run, clean up */
1732 kfree(dev_priv->fbc_work);
1733
1734 /* Mark the work as no longer wanted so that if it does
1735 * wake-up (because the work was already running and waiting
1736 * for our mutex), it will discover that is no longer
1737 * necessary to run.
1738 */
1739 dev_priv->fbc_work = NULL;
1740 }
1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 {
1744 struct intel_fbc_work *work;
1745 struct drm_device *dev = crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748 if (!dev_priv->display.enable_fbc)
1749 return;
1750
1751 intel_cancel_fbc_work(dev_priv);
1752
1753 work = kzalloc(sizeof *work, GFP_KERNEL);
1754 if (work == NULL) {
1755 dev_priv->display.enable_fbc(crtc, interval);
1756 return;
1757 }
1758
1759 work->crtc = crtc;
1760 work->fb = crtc->fb;
1761 work->interval = interval;
1762 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764 dev_priv->fbc_work = work;
1765
1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768 /* Delay the actual enabling to let pageflipping cease and the
1769 * display to settle before starting the compression. Note that
1770 * this delay also serves a second purpose: it allows for a
1771 * vblank to pass after disabling the FBC before we attempt
1772 * to modify the control registers.
1773 *
1774 * A more complicated solution would involve tracking vblanks
1775 * following the termination of the page-flipping sequence
1776 * and indeed performing the enable as a co-routine and not
1777 * waiting synchronously upon the vblank.
1778 */
1779 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 }
1781
1782 void intel_disable_fbc(struct drm_device *dev)
1783 {
1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785
1786 intel_cancel_fbc_work(dev_priv);
1787
1788 if (!dev_priv->display.disable_fbc)
1789 return;
1790
1791 dev_priv->display.disable_fbc(dev);
1792 dev_priv->cfb_plane = -1;
1793 }
1794
1795 /**
1796 * intel_update_fbc - enable/disable FBC as needed
1797 * @dev: the drm_device
1798 *
1799 * Set up the framebuffer compression hardware at mode set time. We
1800 * enable it if possible:
1801 * - plane A only (on pre-965)
1802 * - no pixel mulitply/line duplication
1803 * - no alpha buffer discard
1804 * - no dual wide
1805 * - framebuffer <= 2048 in width, 1536 in height
1806 *
1807 * We can't assume that any compression will take place (worst case),
1808 * so the compressed buffer has to be the same size as the uncompressed
1809 * one. It also must reside (along with the line length buffer) in
1810 * stolen memory.
1811 *
1812 * We need to enable/disable FBC on a global basis.
1813 */
1814 static void intel_update_fbc(struct drm_device *dev)
1815 {
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 struct drm_crtc *crtc = NULL, *tmp_crtc;
1818 struct intel_crtc *intel_crtc;
1819 struct drm_framebuffer *fb;
1820 struct intel_framebuffer *intel_fb;
1821 struct drm_i915_gem_object *obj;
1822 int enable_fbc;
1823
1824 DRM_DEBUG_KMS("\n");
1825
1826 if (!i915_powersave)
1827 return;
1828
1829 if (!I915_HAS_FBC(dev))
1830 return;
1831
1832 /*
1833 * If FBC is already on, we just have to verify that we can
1834 * keep it that way...
1835 * Need to disable if:
1836 * - more than one pipe is active
1837 * - changing FBC params (stride, fence, mode)
1838 * - new fb is too large to fit in compressed buffer
1839 * - going to an unsupported config (interlace, pixel multiply, etc.)
1840 */
1841 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843 if (crtc) {
1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846 goto out_disable;
1847 }
1848 crtc = tmp_crtc;
1849 }
1850 }
1851
1852 if (!crtc || crtc->fb == NULL) {
1853 DRM_DEBUG_KMS("no output, disabling\n");
1854 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855 goto out_disable;
1856 }
1857
1858 intel_crtc = to_intel_crtc(crtc);
1859 fb = crtc->fb;
1860 intel_fb = to_intel_framebuffer(fb);
1861 obj = intel_fb->obj;
1862
1863 enable_fbc = i915_enable_fbc;
1864 if (enable_fbc < 0) {
1865 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866 enable_fbc = 1;
1867 if (INTEL_INFO(dev)->gen <= 5)
1868 enable_fbc = 0;
1869 }
1870 if (!enable_fbc) {
1871 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873 goto out_disable;
1874 }
1875 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877 "compression\n");
1878 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879 goto out_disable;
1880 }
1881 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883 DRM_DEBUG_KMS("mode incompatible with compression, "
1884 "disabling\n");
1885 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886 goto out_disable;
1887 }
1888 if ((crtc->mode.hdisplay > 2048) ||
1889 (crtc->mode.vdisplay > 1536)) {
1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892 goto out_disable;
1893 }
1894 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897 goto out_disable;
1898 }
1899
1900 /* The use of a CPU fence is mandatory in order to detect writes
1901 * by the CPU to the scanout and trigger updates to the FBC.
1902 */
1903 if (obj->tiling_mode != I915_TILING_X ||
1904 obj->fence_reg == I915_FENCE_REG_NONE) {
1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907 goto out_disable;
1908 }
1909
1910 /* If the kernel debugger is active, always disable compression */
1911 if (in_dbg_master())
1912 goto out_disable;
1913
1914 /* If the scanout has not changed, don't modify the FBC settings.
1915 * Note that we make the fundamental assumption that the fb->obj
1916 * cannot be unpinned (and have its GTT offset and fence revoked)
1917 * without first being decoupled from the scanout and FBC disabled.
1918 */
1919 if (dev_priv->cfb_plane == intel_crtc->plane &&
1920 dev_priv->cfb_fb == fb->base.id &&
1921 dev_priv->cfb_y == crtc->y)
1922 return;
1923
1924 if (intel_fbc_enabled(dev)) {
1925 /* We update FBC along two paths, after changing fb/crtc
1926 * configuration (modeswitching) and after page-flipping
1927 * finishes. For the latter, we know that not only did
1928 * we disable the FBC at the start of the page-flip
1929 * sequence, but also more than one vblank has passed.
1930 *
1931 * For the former case of modeswitching, it is possible
1932 * to switch between two FBC valid configurations
1933 * instantaneously so we do need to disable the FBC
1934 * before we can modify its control registers. We also
1935 * have to wait for the next vblank for that to take
1936 * effect. However, since we delay enabling FBC we can
1937 * assume that a vblank has passed since disabling and
1938 * that we can safely alter the registers in the deferred
1939 * callback.
1940 *
1941 * In the scenario that we go from a valid to invalid
1942 * and then back to valid FBC configuration we have
1943 * no strict enforcement that a vblank occurred since
1944 * disabling the FBC. However, along all current pipe
1945 * disabling paths we do need to wait for a vblank at
1946 * some point. And we wait before enabling FBC anyway.
1947 */
1948 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949 intel_disable_fbc(dev);
1950 }
1951
1952 intel_enable_fbc(crtc, 500);
1953 return;
1954
1955 out_disable:
1956 /* Multiple disables should be harmless */
1957 if (intel_fbc_enabled(dev)) {
1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959 intel_disable_fbc(dev);
1960 }
1961 }
1962
1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965 struct drm_i915_gem_object *obj,
1966 struct intel_ring_buffer *pipelined)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 u32 alignment;
1970 int ret;
1971
1972 switch (obj->tiling_mode) {
1973 case I915_TILING_NONE:
1974 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975 alignment = 128 * 1024;
1976 else if (INTEL_INFO(dev)->gen >= 4)
1977 alignment = 4 * 1024;
1978 else
1979 alignment = 64 * 1024;
1980 break;
1981 case I915_TILING_X:
1982 /* pin() will align the object as required by fence */
1983 alignment = 0;
1984 break;
1985 case I915_TILING_Y:
1986 /* FIXME: Is this true? */
1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988 return -EINVAL;
1989 default:
1990 BUG();
1991 }
1992
1993 dev_priv->mm.interruptible = false;
1994 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995 if (ret)
1996 goto err_interruptible;
1997
1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999 * fence, whereas 965+ only requires a fence if using
2000 * framebuffer compression. For simplicity, we always install
2001 * a fence as the cost is not that onerous.
2002 */
2003 if (obj->tiling_mode != I915_TILING_NONE) {
2004 ret = i915_gem_object_get_fence(obj, pipelined);
2005 if (ret)
2006 goto err_unpin;
2007 }
2008
2009 dev_priv->mm.interruptible = true;
2010 return 0;
2011
2012 err_unpin:
2013 i915_gem_object_unpin(obj);
2014 err_interruptible:
2015 dev_priv->mm.interruptible = true;
2016 return ret;
2017 }
2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020 int x, int y)
2021 {
2022 struct drm_device *dev = crtc->dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025 struct intel_framebuffer *intel_fb;
2026 struct drm_i915_gem_object *obj;
2027 int plane = intel_crtc->plane;
2028 unsigned long Start, Offset;
2029 u32 dspcntr;
2030 u32 reg;
2031
2032 switch (plane) {
2033 case 0:
2034 case 1:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
2043
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->bits_per_pixel) {
2049 case 8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case 16:
2053 if (fb->depth == 15)
2054 dspcntr |= DISPPLANE_15_16BPP;
2055 else
2056 dspcntr |= DISPPLANE_16BPP;
2057 break;
2058 case 24:
2059 case 32:
2060 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061 break;
2062 default:
2063 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064 return -EINVAL;
2065 }
2066 if (INTEL_INFO(dev)->gen >= 4) {
2067 if (obj->tiling_mode != I915_TILING_NONE)
2068 dspcntr |= DISPPLANE_TILED;
2069 else
2070 dspcntr &= ~DISPPLANE_TILED;
2071 }
2072
2073 I915_WRITE(reg, dspcntr);
2074
2075 Start = obj->gtt_offset;
2076 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079 Start, Offset, x, y, fb->pitch);
2080 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081 if (INTEL_INFO(dev)->gen >= 4) {
2082 I915_WRITE(DSPSURF(plane), Start);
2083 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084 I915_WRITE(DSPADDR(plane), Offset);
2085 } else
2086 I915_WRITE(DSPADDR(plane), Start + Offset);
2087 POSTING_READ(reg);
2088
2089 return 0;
2090 }
2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093 struct drm_framebuffer *fb, int x, int y)
2094 {
2095 struct drm_device *dev = crtc->dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098 struct intel_framebuffer *intel_fb;
2099 struct drm_i915_gem_object *obj;
2100 int plane = intel_crtc->plane;
2101 unsigned long Start, Offset;
2102 u32 dspcntr;
2103 u32 reg;
2104
2105 switch (plane) {
2106 case 0:
2107 case 1:
2108 case 2:
2109 break;
2110 default:
2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112 return -EINVAL;
2113 }
2114
2115 intel_fb = to_intel_framebuffer(fb);
2116 obj = intel_fb->obj;
2117
2118 reg = DSPCNTR(plane);
2119 dspcntr = I915_READ(reg);
2120 /* Mask out pixel format bits in case we change it */
2121 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122 switch (fb->bits_per_pixel) {
2123 case 8:
2124 dspcntr |= DISPPLANE_8BPP;
2125 break;
2126 case 16:
2127 if (fb->depth != 16)
2128 return -EINVAL;
2129
2130 dspcntr |= DISPPLANE_16BPP;
2131 break;
2132 case 24:
2133 case 32:
2134 if (fb->depth == 24)
2135 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136 else if (fb->depth == 30)
2137 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138 else
2139 return -EINVAL;
2140 break;
2141 default:
2142 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143 return -EINVAL;
2144 }
2145
2146 if (obj->tiling_mode != I915_TILING_NONE)
2147 dspcntr |= DISPPLANE_TILED;
2148 else
2149 dspcntr &= ~DISPPLANE_TILED;
2150
2151 /* must disable */
2152 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154 I915_WRITE(reg, dspcntr);
2155
2156 Start = obj->gtt_offset;
2157 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160 Start, Offset, x, y, fb->pitch);
2161 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162 I915_WRITE(DSPSURF(plane), Start);
2163 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164 I915_WRITE(DSPADDR(plane), Offset);
2165 POSTING_READ(reg);
2166
2167 return 0;
2168 }
2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173 int x, int y, enum mode_set_atomic state)
2174 {
2175 struct drm_device *dev = crtc->dev;
2176 struct drm_i915_private *dev_priv = dev->dev_private;
2177 int ret;
2178
2179 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180 if (ret)
2181 return ret;
2182
2183 intel_update_fbc(dev);
2184 intel_increase_pllclock(crtc);
2185
2186 return 0;
2187 }
2188
2189 static int
2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191 struct drm_framebuffer *old_fb)
2192 {
2193 struct drm_device *dev = crtc->dev;
2194 struct drm_i915_master_private *master_priv;
2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196 int ret;
2197
2198 /* no fb bound */
2199 if (!crtc->fb) {
2200 DRM_ERROR("No FB bound\n");
2201 return 0;
2202 }
2203
2204 switch (intel_crtc->plane) {
2205 case 0:
2206 case 1:
2207 break;
2208 case 2:
2209 if (IS_IVYBRIDGE(dev))
2210 break;
2211 /* fall through otherwise */
2212 default:
2213 DRM_ERROR("no plane for crtc\n");
2214 return -EINVAL;
2215 }
2216
2217 mutex_lock(&dev->struct_mutex);
2218 ret = intel_pin_and_fence_fb_obj(dev,
2219 to_intel_framebuffer(crtc->fb)->obj,
2220 NULL);
2221 if (ret != 0) {
2222 mutex_unlock(&dev->struct_mutex);
2223 DRM_ERROR("pin & fence failed\n");
2224 return ret;
2225 }
2226
2227 if (old_fb) {
2228 struct drm_i915_private *dev_priv = dev->dev_private;
2229 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230
2231 wait_event(dev_priv->pending_flip_queue,
2232 atomic_read(&dev_priv->mm.wedged) ||
2233 atomic_read(&obj->pending_flip) == 0);
2234
2235 /* Big Hammer, we also need to ensure that any pending
2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237 * current scanout is retired before unpinning the old
2238 * framebuffer.
2239 *
2240 * This should only fail upon a hung GPU, in which case we
2241 * can safely continue.
2242 */
2243 ret = i915_gem_object_finish_gpu(obj);
2244 (void) ret;
2245 }
2246
2247 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248 LEAVE_ATOMIC_MODE_SET);
2249 if (ret) {
2250 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2251 mutex_unlock(&dev->struct_mutex);
2252 DRM_ERROR("failed to update base address\n");
2253 return ret;
2254 }
2255
2256 if (old_fb) {
2257 intel_wait_for_vblank(dev, intel_crtc->pipe);
2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2259 }
2260
2261 mutex_unlock(&dev->struct_mutex);
2262
2263 if (!dev->primary->master)
2264 return 0;
2265
2266 master_priv = dev->primary->master->driver_priv;
2267 if (!master_priv->sarea_priv)
2268 return 0;
2269
2270 if (intel_crtc->pipe) {
2271 master_priv->sarea_priv->pipeB_x = x;
2272 master_priv->sarea_priv->pipeB_y = y;
2273 } else {
2274 master_priv->sarea_priv->pipeA_x = x;
2275 master_priv->sarea_priv->pipeA_y = y;
2276 }
2277
2278 return 0;
2279 }
2280
2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2282 {
2283 struct drm_device *dev = crtc->dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 u32 dpa_ctl;
2286
2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2288 dpa_ctl = I915_READ(DP_A);
2289 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291 if (clock < 200000) {
2292 u32 temp;
2293 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294 /* workaround for 160Mhz:
2295 1) program 0x4600c bits 15:0 = 0x8124
2296 2) program 0x46010 bit 0 = 1
2297 3) program 0x46034 bit 24 = 1
2298 4) program 0x64000 bit 14 = 1
2299 */
2300 temp = I915_READ(0x4600c);
2301 temp &= 0xffff0000;
2302 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304 temp = I915_READ(0x46010);
2305 I915_WRITE(0x46010, temp | 1);
2306
2307 temp = I915_READ(0x46034);
2308 I915_WRITE(0x46034, temp | (1 << 24));
2309 } else {
2310 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311 }
2312 I915_WRITE(DP_A, dpa_ctl);
2313
2314 POSTING_READ(DP_A);
2315 udelay(500);
2316 }
2317
2318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319 {
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
2324 u32 reg, temp;
2325
2326 /* enable normal train */
2327 reg = FDI_TX_CTL(pipe);
2328 temp = I915_READ(reg);
2329 if (IS_IVYBRIDGE(dev)) {
2330 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2332 } else {
2333 temp &= ~FDI_LINK_TRAIN_NONE;
2334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2335 }
2336 I915_WRITE(reg, temp);
2337
2338 reg = FDI_RX_CTL(pipe);
2339 temp = I915_READ(reg);
2340 if (HAS_PCH_CPT(dev)) {
2341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343 } else {
2344 temp &= ~FDI_LINK_TRAIN_NONE;
2345 temp |= FDI_LINK_TRAIN_NONE;
2346 }
2347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349 /* wait one idle pattern time */
2350 POSTING_READ(reg);
2351 udelay(1000);
2352
2353 /* IVB wants error correction enabled */
2354 if (IS_IVYBRIDGE(dev))
2355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356 FDI_FE_ERRC_ENABLE);
2357 }
2358
2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360 {
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364 flags |= FDI_PHASE_SYNC_OVR(pipe);
2365 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366 flags |= FDI_PHASE_SYNC_EN(pipe);
2367 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368 POSTING_READ(SOUTH_CHICKEN1);
2369 }
2370
2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373 {
2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 int pipe = intel_crtc->pipe;
2378 int plane = intel_crtc->plane;
2379 u32 reg, temp, tries;
2380
2381 /* FDI needs bits from pipe & plane first */
2382 assert_pipe_enabled(dev_priv, pipe);
2383 assert_plane_enabled(dev_priv, plane);
2384
2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386 for train result */
2387 reg = FDI_RX_IMR(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~FDI_RX_SYMBOL_LOCK;
2390 temp &= ~FDI_RX_BIT_LOCK;
2391 I915_WRITE(reg, temp);
2392 I915_READ(reg);
2393 udelay(150);
2394
2395 /* enable CPU FDI TX and PCH FDI RX */
2396 reg = FDI_TX_CTL(pipe);
2397 temp = I915_READ(reg);
2398 temp &= ~(7 << 19);
2399 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2400 temp &= ~FDI_LINK_TRAIN_NONE;
2401 temp |= FDI_LINK_TRAIN_PATTERN_1;
2402 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2403
2404 reg = FDI_RX_CTL(pipe);
2405 temp = I915_READ(reg);
2406 temp &= ~FDI_LINK_TRAIN_NONE;
2407 temp |= FDI_LINK_TRAIN_PATTERN_1;
2408 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410 POSTING_READ(reg);
2411 udelay(150);
2412
2413 /* Ironlake workaround, enable clock pointer after FDI enable*/
2414 if (HAS_PCH_IBX(dev)) {
2415 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417 FDI_RX_PHASE_SYNC_POINTER_EN);
2418 }
2419
2420 reg = FDI_RX_IIR(pipe);
2421 for (tries = 0; tries < 5; tries++) {
2422 temp = I915_READ(reg);
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425 if ((temp & FDI_RX_BIT_LOCK)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428 break;
2429 }
2430 }
2431 if (tries == 5)
2432 DRM_ERROR("FDI train 1 fail!\n");
2433
2434 /* Train 2 */
2435 reg = FDI_TX_CTL(pipe);
2436 temp = I915_READ(reg);
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_2;
2439 I915_WRITE(reg, temp);
2440
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_2;
2445 I915_WRITE(reg, temp);
2446
2447 POSTING_READ(reg);
2448 udelay(150);
2449
2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if (temp & FDI_RX_SYMBOL_LOCK) {
2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2458 break;
2459 }
2460 }
2461 if (tries == 5)
2462 DRM_ERROR("FDI train 2 fail!\n");
2463
2464 DRM_DEBUG_KMS("FDI train done\n");
2465
2466 }
2467
2468 static const int snb_b_fdi_train_param[] = {
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473 };
2474
2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477 {
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe;
2482 u32 reg, temp, i;
2483
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485 for train result */
2486 reg = FDI_RX_IMR(pipe);
2487 temp = I915_READ(reg);
2488 temp &= ~FDI_RX_SYMBOL_LOCK;
2489 temp &= ~FDI_RX_BIT_LOCK;
2490 I915_WRITE(reg, temp);
2491
2492 POSTING_READ(reg);
2493 udelay(150);
2494
2495 /* enable CPU FDI TX and PCH FDI RX */
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507 reg = FDI_RX_CTL(pipe);
2508 temp = I915_READ(reg);
2509 if (HAS_PCH_CPT(dev)) {
2510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512 } else {
2513 temp &= ~FDI_LINK_TRAIN_NONE;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515 }
2516 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518 POSTING_READ(reg);
2519 udelay(150);
2520
2521 if (HAS_PCH_CPT(dev))
2522 cpt_phase_pointer_enable(dev, pipe);
2523
2524 for (i = 0; i < 4; i++) {
2525 reg = FDI_TX_CTL(pipe);
2526 temp = I915_READ(reg);
2527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528 temp |= snb_b_fdi_train_param[i];
2529 I915_WRITE(reg, temp);
2530
2531 POSTING_READ(reg);
2532 udelay(500);
2533
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538 if (temp & FDI_RX_BIT_LOCK) {
2539 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2541 break;
2542 }
2543 }
2544 if (i == 4)
2545 DRM_ERROR("FDI train 1 fail!\n");
2546
2547 /* Train 2 */
2548 reg = FDI_TX_CTL(pipe);
2549 temp = I915_READ(reg);
2550 temp &= ~FDI_LINK_TRAIN_NONE;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2;
2552 if (IS_GEN6(dev)) {
2553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554 /* SNB-B */
2555 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556 }
2557 I915_WRITE(reg, temp);
2558
2559 reg = FDI_RX_CTL(pipe);
2560 temp = I915_READ(reg);
2561 if (HAS_PCH_CPT(dev)) {
2562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564 } else {
2565 temp &= ~FDI_LINK_TRAIN_NONE;
2566 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567 }
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 for (i = 0; i < 4; i++) {
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577 temp |= snb_b_fdi_train_param[i];
2578 I915_WRITE(reg, temp);
2579
2580 POSTING_READ(reg);
2581 udelay(500);
2582
2583 reg = FDI_RX_IIR(pipe);
2584 temp = I915_READ(reg);
2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587 if (temp & FDI_RX_SYMBOL_LOCK) {
2588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2589 DRM_DEBUG_KMS("FDI train 2 done.\n");
2590 break;
2591 }
2592 }
2593 if (i == 4)
2594 DRM_ERROR("FDI train 2 fail!\n");
2595
2596 DRM_DEBUG_KMS("FDI train done.\n");
2597 }
2598
2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 {
2602 struct drm_device *dev = crtc->dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605 int pipe = intel_crtc->pipe;
2606 u32 reg, temp, i;
2607
2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609 for train result */
2610 reg = FDI_RX_IMR(pipe);
2611 temp = I915_READ(reg);
2612 temp &= ~FDI_RX_SYMBOL_LOCK;
2613 temp &= ~FDI_RX_BIT_LOCK;
2614 I915_WRITE(reg, temp);
2615
2616 POSTING_READ(reg);
2617 udelay(150);
2618
2619 /* enable CPU FDI TX and PCH FDI RX */
2620 reg = FDI_TX_CTL(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~(7 << 19);
2623 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628 temp |= FDI_COMPOSITE_SYNC;
2629 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631 reg = FDI_RX_CTL(pipe);
2632 temp = I915_READ(reg);
2633 temp &= ~FDI_LINK_TRAIN_AUTO;
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636 temp |= FDI_COMPOSITE_SYNC;
2637 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639 POSTING_READ(reg);
2640 udelay(150);
2641
2642 if (HAS_PCH_CPT(dev))
2643 cpt_phase_pointer_enable(dev, pipe);
2644
2645 for (i = 0; i < 4; i++) {
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 temp |= snb_b_fdi_train_param[i];
2650 I915_WRITE(reg, temp);
2651
2652 POSTING_READ(reg);
2653 udelay(500);
2654
2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659 if (temp & FDI_RX_BIT_LOCK ||
2660 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662 DRM_DEBUG_KMS("FDI train 1 done.\n");
2663 break;
2664 }
2665 }
2666 if (i == 4)
2667 DRM_ERROR("FDI train 1 fail!\n");
2668
2669 /* Train 2 */
2670 reg = FDI_TX_CTL(pipe);
2671 temp = I915_READ(reg);
2672 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676 I915_WRITE(reg, temp);
2677
2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682 I915_WRITE(reg, temp);
2683
2684 POSTING_READ(reg);
2685 udelay(150);
2686
2687 for (i = 0; i < 4; i++) {
2688 reg = FDI_TX_CTL(pipe);
2689 temp = I915_READ(reg);
2690 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691 temp |= snb_b_fdi_train_param[i];
2692 I915_WRITE(reg, temp);
2693
2694 POSTING_READ(reg);
2695 udelay(500);
2696
2697 reg = FDI_RX_IIR(pipe);
2698 temp = I915_READ(reg);
2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701 if (temp & FDI_RX_SYMBOL_LOCK) {
2702 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703 DRM_DEBUG_KMS("FDI train 2 done.\n");
2704 break;
2705 }
2706 }
2707 if (i == 4)
2708 DRM_ERROR("FDI train 2 fail!\n");
2709
2710 DRM_DEBUG_KMS("FDI train done.\n");
2711 }
2712
2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2714 {
2715 struct drm_device *dev = crtc->dev;
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718 int pipe = intel_crtc->pipe;
2719 u32 reg, temp;
2720
2721 /* Write the TU size bits so error detection works */
2722 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2724
2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 temp &= ~((0x7 << 19) | (0x7 << 16));
2729 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2730 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733 POSTING_READ(reg);
2734 udelay(200);
2735
2736 /* Switch from Rawclk to PCDclk */
2737 temp = I915_READ(reg);
2738 I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740 POSTING_READ(reg);
2741 udelay(200);
2742
2743 /* Enable CPU FDI TX PLL, always on for Ironlake */
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749 POSTING_READ(reg);
2750 udelay(100);
2751 }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp;
2772
2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777 POSTING_READ(reg);
2778
2779 reg = FDI_RX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 temp &= ~(0x7 << 16);
2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785 POSTING_READ(reg);
2786 udelay(100);
2787
2788 /* Ironlake workaround, disable clock pointer after downing FDI */
2789 if (HAS_PCH_IBX(dev)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792 I915_READ(FDI_RX_CHICKEN(pipe) &
2793 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794 } else if (HAS_PCH_CPT(dev)) {
2795 cpt_phase_pointer_disable(dev, pipe);
2796 }
2797
2798 /* still set train pattern 1 */
2799 reg = FDI_TX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_NONE;
2802 temp |= FDI_LINK_TRAIN_PATTERN_1;
2803 I915_WRITE(reg, temp);
2804
2805 reg = FDI_RX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 if (HAS_PCH_CPT(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810 } else {
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 }
2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp &= ~(0x07 << 16);
2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817 I915_WRITE(reg, temp);
2818
2819 POSTING_READ(reg);
2820 udelay(100);
2821 }
2822
2823 /*
2824 * When we disable a pipe, we need to clear any pending scanline wait events
2825 * to avoid hanging the ring, which we assume we are waiting on.
2826 */
2827 static void intel_clear_scanline_wait(struct drm_device *dev)
2828 {
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 struct intel_ring_buffer *ring;
2831 u32 tmp;
2832
2833 if (IS_GEN2(dev))
2834 /* Can't break the hang on i8xx */
2835 return;
2836
2837 ring = LP_RING(dev_priv);
2838 tmp = I915_READ_CTL(ring);
2839 if (tmp & RING_WAIT)
2840 I915_WRITE_CTL(ring, tmp);
2841 }
2842
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844 {
2845 struct drm_i915_gem_object *obj;
2846 struct drm_i915_private *dev_priv;
2847
2848 if (crtc->fb == NULL)
2849 return;
2850
2851 obj = to_intel_framebuffer(crtc->fb)->obj;
2852 dev_priv = crtc->dev->dev_private;
2853 wait_event(dev_priv->pending_flip_queue,
2854 atomic_read(&obj->pending_flip) == 0);
2855 }
2856
2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858 {
2859 struct drm_device *dev = crtc->dev;
2860 struct drm_mode_config *mode_config = &dev->mode_config;
2861 struct intel_encoder *encoder;
2862
2863 /*
2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865 * must be driven by its own crtc; no sharing is possible.
2866 */
2867 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868 if (encoder->base.crtc != crtc)
2869 continue;
2870
2871 switch (encoder->type) {
2872 case INTEL_OUTPUT_EDP:
2873 if (!intel_encoder_is_pch_edp(&encoder->base))
2874 return false;
2875 continue;
2876 }
2877 }
2878
2879 return true;
2880 }
2881
2882 /*
2883 * Enable PCH resources required for PCH ports:
2884 * - PCH PLLs
2885 * - FDI training & RX/TX
2886 * - update transcoder timings
2887 * - DP transcoding bits
2888 * - transcoder
2889 */
2890 static void ironlake_pch_enable(struct drm_crtc *crtc)
2891 {
2892 struct drm_device *dev = crtc->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895 int pipe = intel_crtc->pipe;
2896 u32 reg, temp, transc_sel;
2897
2898 /* For PCH output, training FDI link */
2899 dev_priv->display.fdi_link_train(crtc);
2900
2901 intel_enable_pch_pll(dev_priv, pipe);
2902
2903 if (HAS_PCH_CPT(dev)) {
2904 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905 TRANSC_DPLLB_SEL;
2906
2907 /* Be sure PCH DPLL SEL is set */
2908 temp = I915_READ(PCH_DPLL_SEL);
2909 if (pipe == 0) {
2910 temp &= ~(TRANSA_DPLLB_SEL);
2911 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2912 } else if (pipe == 1) {
2913 temp &= ~(TRANSB_DPLLB_SEL);
2914 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2915 } else if (pipe == 2) {
2916 temp &= ~(TRANSC_DPLLB_SEL);
2917 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2918 }
2919 I915_WRITE(PCH_DPLL_SEL, temp);
2920 }
2921
2922 /* set transcoder timing, panel must allow it */
2923 assert_panel_unlocked(dev_priv, pipe);
2924 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2927
2928 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2931
2932 intel_fdi_normal_train(crtc);
2933
2934 /* For PCH DP, enable TRANS_DP_CTL */
2935 if (HAS_PCH_CPT(dev) &&
2936 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2937 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2938 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2939 reg = TRANS_DP_CTL(pipe);
2940 temp = I915_READ(reg);
2941 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2942 TRANS_DP_SYNC_MASK |
2943 TRANS_DP_BPC_MASK);
2944 temp |= (TRANS_DP_OUTPUT_ENABLE |
2945 TRANS_DP_ENH_FRAMING);
2946 temp |= bpc << 9; /* same format but at 11:9 */
2947
2948 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2949 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2950 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2951 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2952
2953 switch (intel_trans_dp_port_sel(crtc)) {
2954 case PCH_DP_B:
2955 temp |= TRANS_DP_PORT_SEL_B;
2956 break;
2957 case PCH_DP_C:
2958 temp |= TRANS_DP_PORT_SEL_C;
2959 break;
2960 case PCH_DP_D:
2961 temp |= TRANS_DP_PORT_SEL_D;
2962 break;
2963 default:
2964 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2965 temp |= TRANS_DP_PORT_SEL_B;
2966 break;
2967 }
2968
2969 I915_WRITE(reg, temp);
2970 }
2971
2972 intel_enable_transcoder(dev_priv, pipe);
2973 }
2974
2975 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2976 {
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2979 u32 temp;
2980
2981 temp = I915_READ(dslreg);
2982 udelay(500);
2983 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2984 /* Without this, mode sets may fail silently on FDI */
2985 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2986 udelay(250);
2987 I915_WRITE(tc2reg, 0);
2988 if (wait_for(I915_READ(dslreg) != temp, 5))
2989 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2990 }
2991 }
2992
2993 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2994 {
2995 struct drm_device *dev = crtc->dev;
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998 int pipe = intel_crtc->pipe;
2999 int plane = intel_crtc->plane;
3000 u32 temp;
3001 bool is_pch_port;
3002
3003 if (intel_crtc->active)
3004 return;
3005
3006 intel_crtc->active = true;
3007 intel_update_watermarks(dev);
3008
3009 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3010 temp = I915_READ(PCH_LVDS);
3011 if ((temp & LVDS_PORT_EN) == 0)
3012 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3013 }
3014
3015 is_pch_port = intel_crtc_driving_pch(crtc);
3016
3017 if (is_pch_port)
3018 ironlake_fdi_pll_enable(crtc);
3019 else
3020 ironlake_fdi_disable(crtc);
3021
3022 /* Enable panel fitting for LVDS */
3023 if (dev_priv->pch_pf_size &&
3024 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3025 /* Force use of hard-coded filter coefficients
3026 * as some pre-programmed values are broken,
3027 * e.g. x201.
3028 */
3029 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3030 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3031 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3032 }
3033
3034 /*
3035 * On ILK+ LUT must be loaded before the pipe is running but with
3036 * clocks enabled
3037 */
3038 intel_crtc_load_lut(crtc);
3039
3040 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3041 intel_enable_plane(dev_priv, plane, pipe);
3042
3043 if (is_pch_port)
3044 ironlake_pch_enable(crtc);
3045
3046 mutex_lock(&dev->struct_mutex);
3047 intel_update_fbc(dev);
3048 mutex_unlock(&dev->struct_mutex);
3049
3050 intel_crtc_update_cursor(crtc, true);
3051 }
3052
3053 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3054 {
3055 struct drm_device *dev = crtc->dev;
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058 int pipe = intel_crtc->pipe;
3059 int plane = intel_crtc->plane;
3060 u32 reg, temp;
3061
3062 if (!intel_crtc->active)
3063 return;
3064
3065 intel_crtc_wait_for_pending_flips(crtc);
3066 drm_vblank_off(dev, pipe);
3067 intel_crtc_update_cursor(crtc, false);
3068
3069 intel_disable_plane(dev_priv, plane, pipe);
3070
3071 if (dev_priv->cfb_plane == plane)
3072 intel_disable_fbc(dev);
3073
3074 intel_disable_pipe(dev_priv, pipe);
3075
3076 /* Disable PF */
3077 I915_WRITE(PF_CTL(pipe), 0);
3078 I915_WRITE(PF_WIN_SZ(pipe), 0);
3079
3080 ironlake_fdi_disable(crtc);
3081
3082 /* This is a horrible layering violation; we should be doing this in
3083 * the connector/encoder ->prepare instead, but we don't always have
3084 * enough information there about the config to know whether it will
3085 * actually be necessary or just cause undesired flicker.
3086 */
3087 intel_disable_pch_ports(dev_priv, pipe);
3088
3089 intel_disable_transcoder(dev_priv, pipe);
3090
3091 if (HAS_PCH_CPT(dev)) {
3092 /* disable TRANS_DP_CTL */
3093 reg = TRANS_DP_CTL(pipe);
3094 temp = I915_READ(reg);
3095 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3096 temp |= TRANS_DP_PORT_SEL_NONE;
3097 I915_WRITE(reg, temp);
3098
3099 /* disable DPLL_SEL */
3100 temp = I915_READ(PCH_DPLL_SEL);
3101 switch (pipe) {
3102 case 0:
3103 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3104 break;
3105 case 1:
3106 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3107 break;
3108 case 2:
3109 /* C shares PLL A or B */
3110 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3111 break;
3112 default:
3113 BUG(); /* wtf */
3114 }
3115 I915_WRITE(PCH_DPLL_SEL, temp);
3116 }
3117
3118 /* disable PCH DPLL */
3119 if (!intel_crtc->no_pll)
3120 intel_disable_pch_pll(dev_priv, pipe);
3121
3122 /* Switch from PCDclk to Rawclk */
3123 reg = FDI_RX_CTL(pipe);
3124 temp = I915_READ(reg);
3125 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3126
3127 /* Disable CPU FDI TX PLL */
3128 reg = FDI_TX_CTL(pipe);
3129 temp = I915_READ(reg);
3130 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3131
3132 POSTING_READ(reg);
3133 udelay(100);
3134
3135 reg = FDI_RX_CTL(pipe);
3136 temp = I915_READ(reg);
3137 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3138
3139 /* Wait for the clocks to turn off. */
3140 POSTING_READ(reg);
3141 udelay(100);
3142
3143 intel_crtc->active = false;
3144 intel_update_watermarks(dev);
3145
3146 mutex_lock(&dev->struct_mutex);
3147 intel_update_fbc(dev);
3148 intel_clear_scanline_wait(dev);
3149 mutex_unlock(&dev->struct_mutex);
3150 }
3151
3152 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3153 {
3154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155 int pipe = intel_crtc->pipe;
3156 int plane = intel_crtc->plane;
3157
3158 /* XXX: When our outputs are all unaware of DPMS modes other than off
3159 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3160 */
3161 switch (mode) {
3162 case DRM_MODE_DPMS_ON:
3163 case DRM_MODE_DPMS_STANDBY:
3164 case DRM_MODE_DPMS_SUSPEND:
3165 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3166 ironlake_crtc_enable(crtc);
3167 break;
3168
3169 case DRM_MODE_DPMS_OFF:
3170 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3171 ironlake_crtc_disable(crtc);
3172 break;
3173 }
3174 }
3175
3176 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3177 {
3178 if (!enable && intel_crtc->overlay) {
3179 struct drm_device *dev = intel_crtc->base.dev;
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181
3182 mutex_lock(&dev->struct_mutex);
3183 dev_priv->mm.interruptible = false;
3184 (void) intel_overlay_switch_off(intel_crtc->overlay);
3185 dev_priv->mm.interruptible = true;
3186 mutex_unlock(&dev->struct_mutex);
3187 }
3188
3189 /* Let userspace switch the overlay on again. In most cases userspace
3190 * has to recompute where to put it anyway.
3191 */
3192 }
3193
3194 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3195 {
3196 struct drm_device *dev = crtc->dev;
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3199 int pipe = intel_crtc->pipe;
3200 int plane = intel_crtc->plane;
3201
3202 if (intel_crtc->active)
3203 return;
3204
3205 intel_crtc->active = true;
3206 intel_update_watermarks(dev);
3207
3208 intel_enable_pll(dev_priv, pipe);
3209 intel_enable_pipe(dev_priv, pipe, false);
3210 intel_enable_plane(dev_priv, plane, pipe);
3211
3212 intel_crtc_load_lut(crtc);
3213 intel_update_fbc(dev);
3214
3215 /* Give the overlay scaler a chance to enable if it's on this pipe */
3216 intel_crtc_dpms_overlay(intel_crtc, true);
3217 intel_crtc_update_cursor(crtc, true);
3218 }
3219
3220 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3221 {
3222 struct drm_device *dev = crtc->dev;
3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3225 int pipe = intel_crtc->pipe;
3226 int plane = intel_crtc->plane;
3227
3228 if (!intel_crtc->active)
3229 return;
3230
3231 /* Give the overlay scaler a chance to disable if it's on this pipe */
3232 intel_crtc_wait_for_pending_flips(crtc);
3233 drm_vblank_off(dev, pipe);
3234 intel_crtc_dpms_overlay(intel_crtc, false);
3235 intel_crtc_update_cursor(crtc, false);
3236
3237 if (dev_priv->cfb_plane == plane)
3238 intel_disable_fbc(dev);
3239
3240 intel_disable_plane(dev_priv, plane, pipe);
3241 intel_disable_pipe(dev_priv, pipe);
3242 intel_disable_pll(dev_priv, pipe);
3243
3244 intel_crtc->active = false;
3245 intel_update_fbc(dev);
3246 intel_update_watermarks(dev);
3247 intel_clear_scanline_wait(dev);
3248 }
3249
3250 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3251 {
3252 /* XXX: When our outputs are all unaware of DPMS modes other than off
3253 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3254 */
3255 switch (mode) {
3256 case DRM_MODE_DPMS_ON:
3257 case DRM_MODE_DPMS_STANDBY:
3258 case DRM_MODE_DPMS_SUSPEND:
3259 i9xx_crtc_enable(crtc);
3260 break;
3261 case DRM_MODE_DPMS_OFF:
3262 i9xx_crtc_disable(crtc);
3263 break;
3264 }
3265 }
3266
3267 /**
3268 * Sets the power management mode of the pipe and plane.
3269 */
3270 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3271 {
3272 struct drm_device *dev = crtc->dev;
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 struct drm_i915_master_private *master_priv;
3275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3276 int pipe = intel_crtc->pipe;
3277 bool enabled;
3278
3279 if (intel_crtc->dpms_mode == mode)
3280 return;
3281
3282 intel_crtc->dpms_mode = mode;
3283
3284 dev_priv->display.dpms(crtc, mode);
3285
3286 if (!dev->primary->master)
3287 return;
3288
3289 master_priv = dev->primary->master->driver_priv;
3290 if (!master_priv->sarea_priv)
3291 return;
3292
3293 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3294
3295 switch (pipe) {
3296 case 0:
3297 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3298 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3299 break;
3300 case 1:
3301 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3302 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3303 break;
3304 default:
3305 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3306 break;
3307 }
3308 }
3309
3310 static void intel_crtc_disable(struct drm_crtc *crtc)
3311 {
3312 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3313 struct drm_device *dev = crtc->dev;
3314
3315 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3316
3317 if (crtc->fb) {
3318 mutex_lock(&dev->struct_mutex);
3319 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3320 mutex_unlock(&dev->struct_mutex);
3321 }
3322 }
3323
3324 /* Prepare for a mode set.
3325 *
3326 * Note we could be a lot smarter here. We need to figure out which outputs
3327 * will be enabled, which disabled (in short, how the config will changes)
3328 * and perform the minimum necessary steps to accomplish that, e.g. updating
3329 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3330 * panel fitting is in the proper state, etc.
3331 */
3332 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3333 {
3334 i9xx_crtc_disable(crtc);
3335 }
3336
3337 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3338 {
3339 i9xx_crtc_enable(crtc);
3340 }
3341
3342 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3343 {
3344 ironlake_crtc_disable(crtc);
3345 }
3346
3347 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3348 {
3349 ironlake_crtc_enable(crtc);
3350 }
3351
3352 void intel_encoder_prepare(struct drm_encoder *encoder)
3353 {
3354 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3355 /* lvds has its own version of prepare see intel_lvds_prepare */
3356 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3357 }
3358
3359 void intel_encoder_commit(struct drm_encoder *encoder)
3360 {
3361 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3362 struct drm_device *dev = encoder->dev;
3363 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3364 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3365
3366 /* lvds has its own version of commit see intel_lvds_commit */
3367 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3368
3369 if (HAS_PCH_CPT(dev))
3370 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3371 }
3372
3373 void intel_encoder_destroy(struct drm_encoder *encoder)
3374 {
3375 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3376
3377 drm_encoder_cleanup(encoder);
3378 kfree(intel_encoder);
3379 }
3380
3381 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3382 struct drm_display_mode *mode,
3383 struct drm_display_mode *adjusted_mode)
3384 {
3385 struct drm_device *dev = crtc->dev;
3386
3387 if (HAS_PCH_SPLIT(dev)) {
3388 /* FDI link clock is fixed at 2.7G */
3389 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3390 return false;
3391 }
3392
3393 /* XXX some encoders set the crtcinfo, others don't.
3394 * Obviously we need some form of conflict resolution here...
3395 */
3396 if (adjusted_mode->crtc_htotal == 0)
3397 drm_mode_set_crtcinfo(adjusted_mode, 0);
3398
3399 return true;
3400 }
3401
3402 static int i945_get_display_clock_speed(struct drm_device *dev)
3403 {
3404 return 400000;
3405 }
3406
3407 static int i915_get_display_clock_speed(struct drm_device *dev)
3408 {
3409 return 333000;
3410 }
3411
3412 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3413 {
3414 return 200000;
3415 }
3416
3417 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3418 {
3419 u16 gcfgc = 0;
3420
3421 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3422
3423 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3424 return 133000;
3425 else {
3426 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3427 case GC_DISPLAY_CLOCK_333_MHZ:
3428 return 333000;
3429 default:
3430 case GC_DISPLAY_CLOCK_190_200_MHZ:
3431 return 190000;
3432 }
3433 }
3434 }
3435
3436 static int i865_get_display_clock_speed(struct drm_device *dev)
3437 {
3438 return 266000;
3439 }
3440
3441 static int i855_get_display_clock_speed(struct drm_device *dev)
3442 {
3443 u16 hpllcc = 0;
3444 /* Assume that the hardware is in the high speed state. This
3445 * should be the default.
3446 */
3447 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3448 case GC_CLOCK_133_200:
3449 case GC_CLOCK_100_200:
3450 return 200000;
3451 case GC_CLOCK_166_250:
3452 return 250000;
3453 case GC_CLOCK_100_133:
3454 return 133000;
3455 }
3456
3457 /* Shouldn't happen */
3458 return 0;
3459 }
3460
3461 static int i830_get_display_clock_speed(struct drm_device *dev)
3462 {
3463 return 133000;
3464 }
3465
3466 struct fdi_m_n {
3467 u32 tu;
3468 u32 gmch_m;
3469 u32 gmch_n;
3470 u32 link_m;
3471 u32 link_n;
3472 };
3473
3474 static void
3475 fdi_reduce_ratio(u32 *num, u32 *den)
3476 {
3477 while (*num > 0xffffff || *den > 0xffffff) {
3478 *num >>= 1;
3479 *den >>= 1;
3480 }
3481 }
3482
3483 static void
3484 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3485 int link_clock, struct fdi_m_n *m_n)
3486 {
3487 m_n->tu = 64; /* default size */
3488
3489 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3490 m_n->gmch_m = bits_per_pixel * pixel_clock;
3491 m_n->gmch_n = link_clock * nlanes * 8;
3492 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3493
3494 m_n->link_m = pixel_clock;
3495 m_n->link_n = link_clock;
3496 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3497 }
3498
3499
3500 struct intel_watermark_params {
3501 unsigned long fifo_size;
3502 unsigned long max_wm;
3503 unsigned long default_wm;
3504 unsigned long guard_size;
3505 unsigned long cacheline_size;
3506 };
3507
3508 /* Pineview has different values for various configs */
3509 static const struct intel_watermark_params pineview_display_wm = {
3510 PINEVIEW_DISPLAY_FIFO,
3511 PINEVIEW_MAX_WM,
3512 PINEVIEW_DFT_WM,
3513 PINEVIEW_GUARD_WM,
3514 PINEVIEW_FIFO_LINE_SIZE
3515 };
3516 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3517 PINEVIEW_DISPLAY_FIFO,
3518 PINEVIEW_MAX_WM,
3519 PINEVIEW_DFT_HPLLOFF_WM,
3520 PINEVIEW_GUARD_WM,
3521 PINEVIEW_FIFO_LINE_SIZE
3522 };
3523 static const struct intel_watermark_params pineview_cursor_wm = {
3524 PINEVIEW_CURSOR_FIFO,
3525 PINEVIEW_CURSOR_MAX_WM,
3526 PINEVIEW_CURSOR_DFT_WM,
3527 PINEVIEW_CURSOR_GUARD_WM,
3528 PINEVIEW_FIFO_LINE_SIZE,
3529 };
3530 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3531 PINEVIEW_CURSOR_FIFO,
3532 PINEVIEW_CURSOR_MAX_WM,
3533 PINEVIEW_CURSOR_DFT_WM,
3534 PINEVIEW_CURSOR_GUARD_WM,
3535 PINEVIEW_FIFO_LINE_SIZE
3536 };
3537 static const struct intel_watermark_params g4x_wm_info = {
3538 G4X_FIFO_SIZE,
3539 G4X_MAX_WM,
3540 G4X_MAX_WM,
3541 2,
3542 G4X_FIFO_LINE_SIZE,
3543 };
3544 static const struct intel_watermark_params g4x_cursor_wm_info = {
3545 I965_CURSOR_FIFO,
3546 I965_CURSOR_MAX_WM,
3547 I965_CURSOR_DFT_WM,
3548 2,
3549 G4X_FIFO_LINE_SIZE,
3550 };
3551 static const struct intel_watermark_params i965_cursor_wm_info = {
3552 I965_CURSOR_FIFO,
3553 I965_CURSOR_MAX_WM,
3554 I965_CURSOR_DFT_WM,
3555 2,
3556 I915_FIFO_LINE_SIZE,
3557 };
3558 static const struct intel_watermark_params i945_wm_info = {
3559 I945_FIFO_SIZE,
3560 I915_MAX_WM,
3561 1,
3562 2,
3563 I915_FIFO_LINE_SIZE
3564 };
3565 static const struct intel_watermark_params i915_wm_info = {
3566 I915_FIFO_SIZE,
3567 I915_MAX_WM,
3568 1,
3569 2,
3570 I915_FIFO_LINE_SIZE
3571 };
3572 static const struct intel_watermark_params i855_wm_info = {
3573 I855GM_FIFO_SIZE,
3574 I915_MAX_WM,
3575 1,
3576 2,
3577 I830_FIFO_LINE_SIZE
3578 };
3579 static const struct intel_watermark_params i830_wm_info = {
3580 I830_FIFO_SIZE,
3581 I915_MAX_WM,
3582 1,
3583 2,
3584 I830_FIFO_LINE_SIZE
3585 };
3586
3587 static const struct intel_watermark_params ironlake_display_wm_info = {
3588 ILK_DISPLAY_FIFO,
3589 ILK_DISPLAY_MAXWM,
3590 ILK_DISPLAY_DFTWM,
3591 2,
3592 ILK_FIFO_LINE_SIZE
3593 };
3594 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3595 ILK_CURSOR_FIFO,
3596 ILK_CURSOR_MAXWM,
3597 ILK_CURSOR_DFTWM,
3598 2,
3599 ILK_FIFO_LINE_SIZE
3600 };
3601 static const struct intel_watermark_params ironlake_display_srwm_info = {
3602 ILK_DISPLAY_SR_FIFO,
3603 ILK_DISPLAY_MAX_SRWM,
3604 ILK_DISPLAY_DFT_SRWM,
3605 2,
3606 ILK_FIFO_LINE_SIZE
3607 };
3608 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3609 ILK_CURSOR_SR_FIFO,
3610 ILK_CURSOR_MAX_SRWM,
3611 ILK_CURSOR_DFT_SRWM,
3612 2,
3613 ILK_FIFO_LINE_SIZE
3614 };
3615
3616 static const struct intel_watermark_params sandybridge_display_wm_info = {
3617 SNB_DISPLAY_FIFO,
3618 SNB_DISPLAY_MAXWM,
3619 SNB_DISPLAY_DFTWM,
3620 2,
3621 SNB_FIFO_LINE_SIZE
3622 };
3623 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3624 SNB_CURSOR_FIFO,
3625 SNB_CURSOR_MAXWM,
3626 SNB_CURSOR_DFTWM,
3627 2,
3628 SNB_FIFO_LINE_SIZE
3629 };
3630 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3631 SNB_DISPLAY_SR_FIFO,
3632 SNB_DISPLAY_MAX_SRWM,
3633 SNB_DISPLAY_DFT_SRWM,
3634 2,
3635 SNB_FIFO_LINE_SIZE
3636 };
3637 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3638 SNB_CURSOR_SR_FIFO,
3639 SNB_CURSOR_MAX_SRWM,
3640 SNB_CURSOR_DFT_SRWM,
3641 2,
3642 SNB_FIFO_LINE_SIZE
3643 };
3644
3645
3646 /**
3647 * intel_calculate_wm - calculate watermark level
3648 * @clock_in_khz: pixel clock
3649 * @wm: chip FIFO params
3650 * @pixel_size: display pixel size
3651 * @latency_ns: memory latency for the platform
3652 *
3653 * Calculate the watermark level (the level at which the display plane will
3654 * start fetching from memory again). Each chip has a different display
3655 * FIFO size and allocation, so the caller needs to figure that out and pass
3656 * in the correct intel_watermark_params structure.
3657 *
3658 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3659 * on the pixel size. When it reaches the watermark level, it'll start
3660 * fetching FIFO line sized based chunks from memory until the FIFO fills
3661 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3662 * will occur, and a display engine hang could result.
3663 */
3664 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3665 const struct intel_watermark_params *wm,
3666 int fifo_size,
3667 int pixel_size,
3668 unsigned long latency_ns)
3669 {
3670 long entries_required, wm_size;
3671
3672 /*
3673 * Note: we need to make sure we don't overflow for various clock &
3674 * latency values.
3675 * clocks go from a few thousand to several hundred thousand.
3676 * latency is usually a few thousand
3677 */
3678 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3679 1000;
3680 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3681
3682 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3683
3684 wm_size = fifo_size - (entries_required + wm->guard_size);
3685
3686 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3687
3688 /* Don't promote wm_size to unsigned... */
3689 if (wm_size > (long)wm->max_wm)
3690 wm_size = wm->max_wm;
3691 if (wm_size <= 0)
3692 wm_size = wm->default_wm;
3693 return wm_size;
3694 }
3695
3696 struct cxsr_latency {
3697 int is_desktop;
3698 int is_ddr3;
3699 unsigned long fsb_freq;
3700 unsigned long mem_freq;
3701 unsigned long display_sr;
3702 unsigned long display_hpll_disable;
3703 unsigned long cursor_sr;
3704 unsigned long cursor_hpll_disable;
3705 };
3706
3707 static const struct cxsr_latency cxsr_latency_table[] = {
3708 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3709 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3710 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3711 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3712 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3713
3714 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3715 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3716 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3717 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3718 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3719
3720 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3721 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3722 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3723 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3724 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3725
3726 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3727 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3728 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3729 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3730 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3731
3732 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3733 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3734 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3735 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3736 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3737
3738 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3739 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3740 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3741 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3742 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3743 };
3744
3745 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3746 int is_ddr3,
3747 int fsb,
3748 int mem)
3749 {
3750 const struct cxsr_latency *latency;
3751 int i;
3752
3753 if (fsb == 0 || mem == 0)
3754 return NULL;
3755
3756 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3757 latency = &cxsr_latency_table[i];
3758 if (is_desktop == latency->is_desktop &&
3759 is_ddr3 == latency->is_ddr3 &&
3760 fsb == latency->fsb_freq && mem == latency->mem_freq)
3761 return latency;
3762 }
3763
3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3765
3766 return NULL;
3767 }
3768
3769 static void pineview_disable_cxsr(struct drm_device *dev)
3770 {
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773 /* deactivate cxsr */
3774 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3775 }
3776
3777 /*
3778 * Latency for FIFO fetches is dependent on several factors:
3779 * - memory configuration (speed, channels)
3780 * - chipset
3781 * - current MCH state
3782 * It can be fairly high in some situations, so here we assume a fairly
3783 * pessimal value. It's a tradeoff between extra memory fetches (if we
3784 * set this value too high, the FIFO will fetch frequently to stay full)
3785 * and power consumption (set it too low to save power and we might see
3786 * FIFO underruns and display "flicker").
3787 *
3788 * A value of 5us seems to be a good balance; safe for very low end
3789 * platforms but not overly aggressive on lower latency configs.
3790 */
3791 static const int latency_ns = 5000;
3792
3793 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3794 {
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796 uint32_t dsparb = I915_READ(DSPARB);
3797 int size;
3798
3799 size = dsparb & 0x7f;
3800 if (plane)
3801 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3802
3803 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3804 plane ? "B" : "A", size);
3805
3806 return size;
3807 }
3808
3809 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3810 {
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 uint32_t dsparb = I915_READ(DSPARB);
3813 int size;
3814
3815 size = dsparb & 0x1ff;
3816 if (plane)
3817 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3818 size >>= 1; /* Convert to cachelines */
3819
3820 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3821 plane ? "B" : "A", size);
3822
3823 return size;
3824 }
3825
3826 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3827 {
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 uint32_t dsparb = I915_READ(DSPARB);
3830 int size;
3831
3832 size = dsparb & 0x7f;
3833 size >>= 2; /* Convert to cachelines */
3834
3835 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3836 plane ? "B" : "A",
3837 size);
3838
3839 return size;
3840 }
3841
3842 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3843 {
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 uint32_t dsparb = I915_READ(DSPARB);
3846 int size;
3847
3848 size = dsparb & 0x7f;
3849 size >>= 1; /* Convert to cachelines */
3850
3851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3852 plane ? "B" : "A", size);
3853
3854 return size;
3855 }
3856
3857 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3858 {
3859 struct drm_crtc *crtc, *enabled = NULL;
3860
3861 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3862 if (crtc->enabled && crtc->fb) {
3863 if (enabled)
3864 return NULL;
3865 enabled = crtc;
3866 }
3867 }
3868
3869 return enabled;
3870 }
3871
3872 static void pineview_update_wm(struct drm_device *dev)
3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875 struct drm_crtc *crtc;
3876 const struct cxsr_latency *latency;
3877 u32 reg;
3878 unsigned long wm;
3879
3880 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3881 dev_priv->fsb_freq, dev_priv->mem_freq);
3882 if (!latency) {
3883 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3884 pineview_disable_cxsr(dev);
3885 return;
3886 }
3887
3888 crtc = single_enabled_crtc(dev);
3889 if (crtc) {
3890 int clock = crtc->mode.clock;
3891 int pixel_size = crtc->fb->bits_per_pixel / 8;
3892
3893 /* Display SR */
3894 wm = intel_calculate_wm(clock, &pineview_display_wm,
3895 pineview_display_wm.fifo_size,
3896 pixel_size, latency->display_sr);
3897 reg = I915_READ(DSPFW1);
3898 reg &= ~DSPFW_SR_MASK;
3899 reg |= wm << DSPFW_SR_SHIFT;
3900 I915_WRITE(DSPFW1, reg);
3901 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3902
3903 /* cursor SR */
3904 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3905 pineview_display_wm.fifo_size,
3906 pixel_size, latency->cursor_sr);
3907 reg = I915_READ(DSPFW3);
3908 reg &= ~DSPFW_CURSOR_SR_MASK;
3909 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3910 I915_WRITE(DSPFW3, reg);
3911
3912 /* Display HPLL off SR */
3913 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3914 pineview_display_hplloff_wm.fifo_size,
3915 pixel_size, latency->display_hpll_disable);
3916 reg = I915_READ(DSPFW3);
3917 reg &= ~DSPFW_HPLL_SR_MASK;
3918 reg |= wm & DSPFW_HPLL_SR_MASK;
3919 I915_WRITE(DSPFW3, reg);
3920
3921 /* cursor HPLL off SR */
3922 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3923 pineview_display_hplloff_wm.fifo_size,
3924 pixel_size, latency->cursor_hpll_disable);
3925 reg = I915_READ(DSPFW3);
3926 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3927 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3928 I915_WRITE(DSPFW3, reg);
3929 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3930
3931 /* activate cxsr */
3932 I915_WRITE(DSPFW3,
3933 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3934 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3935 } else {
3936 pineview_disable_cxsr(dev);
3937 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3938 }
3939 }
3940
3941 static bool g4x_compute_wm0(struct drm_device *dev,
3942 int plane,
3943 const struct intel_watermark_params *display,
3944 int display_latency_ns,
3945 const struct intel_watermark_params *cursor,
3946 int cursor_latency_ns,
3947 int *plane_wm,
3948 int *cursor_wm)
3949 {
3950 struct drm_crtc *crtc;
3951 int htotal, hdisplay, clock, pixel_size;
3952 int line_time_us, line_count;
3953 int entries, tlb_miss;
3954
3955 crtc = intel_get_crtc_for_plane(dev, plane);
3956 if (crtc->fb == NULL || !crtc->enabled) {
3957 *cursor_wm = cursor->guard_size;
3958 *plane_wm = display->guard_size;
3959 return false;
3960 }
3961
3962 htotal = crtc->mode.htotal;
3963 hdisplay = crtc->mode.hdisplay;
3964 clock = crtc->mode.clock;
3965 pixel_size = crtc->fb->bits_per_pixel / 8;
3966
3967 /* Use the small buffer method to calculate plane watermark */
3968 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3969 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3970 if (tlb_miss > 0)
3971 entries += tlb_miss;
3972 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3973 *plane_wm = entries + display->guard_size;
3974 if (*plane_wm > (int)display->max_wm)
3975 *plane_wm = display->max_wm;
3976
3977 /* Use the large buffer method to calculate cursor watermark */
3978 line_time_us = ((htotal * 1000) / clock);
3979 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3980 entries = line_count * 64 * pixel_size;
3981 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3982 if (tlb_miss > 0)
3983 entries += tlb_miss;
3984 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3985 *cursor_wm = entries + cursor->guard_size;
3986 if (*cursor_wm > (int)cursor->max_wm)
3987 *cursor_wm = (int)cursor->max_wm;
3988
3989 return true;
3990 }
3991
3992 /*
3993 * Check the wm result.
3994 *
3995 * If any calculated watermark values is larger than the maximum value that
3996 * can be programmed into the associated watermark register, that watermark
3997 * must be disabled.
3998 */
3999 static bool g4x_check_srwm(struct drm_device *dev,
4000 int display_wm, int cursor_wm,
4001 const struct intel_watermark_params *display,
4002 const struct intel_watermark_params *cursor)
4003 {
4004 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4005 display_wm, cursor_wm);
4006
4007 if (display_wm > display->max_wm) {
4008 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4009 display_wm, display->max_wm);
4010 return false;
4011 }
4012
4013 if (cursor_wm > cursor->max_wm) {
4014 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4015 cursor_wm, cursor->max_wm);
4016 return false;
4017 }
4018
4019 if (!(display_wm || cursor_wm)) {
4020 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4021 return false;
4022 }
4023
4024 return true;
4025 }
4026
4027 static bool g4x_compute_srwm(struct drm_device *dev,
4028 int plane,
4029 int latency_ns,
4030 const struct intel_watermark_params *display,
4031 const struct intel_watermark_params *cursor,
4032 int *display_wm, int *cursor_wm)
4033 {
4034 struct drm_crtc *crtc;
4035 int hdisplay, htotal, pixel_size, clock;
4036 unsigned long line_time_us;
4037 int line_count, line_size;
4038 int small, large;
4039 int entries;
4040
4041 if (!latency_ns) {
4042 *display_wm = *cursor_wm = 0;
4043 return false;
4044 }
4045
4046 crtc = intel_get_crtc_for_plane(dev, plane);
4047 hdisplay = crtc->mode.hdisplay;
4048 htotal = crtc->mode.htotal;
4049 clock = crtc->mode.clock;
4050 pixel_size = crtc->fb->bits_per_pixel / 8;
4051
4052 line_time_us = (htotal * 1000) / clock;
4053 line_count = (latency_ns / line_time_us + 1000) / 1000;
4054 line_size = hdisplay * pixel_size;
4055
4056 /* Use the minimum of the small and large buffer method for primary */
4057 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4058 large = line_count * line_size;
4059
4060 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4061 *display_wm = entries + display->guard_size;
4062
4063 /* calculate the self-refresh watermark for display cursor */
4064 entries = line_count * pixel_size * 64;
4065 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4066 *cursor_wm = entries + cursor->guard_size;
4067
4068 return g4x_check_srwm(dev,
4069 *display_wm, *cursor_wm,
4070 display, cursor);
4071 }
4072
4073 #define single_plane_enabled(mask) is_power_of_2(mask)
4074
4075 static void g4x_update_wm(struct drm_device *dev)
4076 {
4077 static const int sr_latency_ns = 12000;
4078 struct drm_i915_private *dev_priv = dev->dev_private;
4079 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4080 int plane_sr, cursor_sr;
4081 unsigned int enabled = 0;
4082
4083 if (g4x_compute_wm0(dev, 0,
4084 &g4x_wm_info, latency_ns,
4085 &g4x_cursor_wm_info, latency_ns,
4086 &planea_wm, &cursora_wm))
4087 enabled |= 1;
4088
4089 if (g4x_compute_wm0(dev, 1,
4090 &g4x_wm_info, latency_ns,
4091 &g4x_cursor_wm_info, latency_ns,
4092 &planeb_wm, &cursorb_wm))
4093 enabled |= 2;
4094
4095 plane_sr = cursor_sr = 0;
4096 if (single_plane_enabled(enabled) &&
4097 g4x_compute_srwm(dev, ffs(enabled) - 1,
4098 sr_latency_ns,
4099 &g4x_wm_info,
4100 &g4x_cursor_wm_info,
4101 &plane_sr, &cursor_sr))
4102 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4103 else
4104 I915_WRITE(FW_BLC_SELF,
4105 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4106
4107 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4108 planea_wm, cursora_wm,
4109 planeb_wm, cursorb_wm,
4110 plane_sr, cursor_sr);
4111
4112 I915_WRITE(DSPFW1,
4113 (plane_sr << DSPFW_SR_SHIFT) |
4114 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4115 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4116 planea_wm);
4117 I915_WRITE(DSPFW2,
4118 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4119 (cursora_wm << DSPFW_CURSORA_SHIFT));
4120 /* HPLL off in SR has some issues on G4x... disable it */
4121 I915_WRITE(DSPFW3,
4122 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4123 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4124 }
4125
4126 static void i965_update_wm(struct drm_device *dev)
4127 {
4128 struct drm_i915_private *dev_priv = dev->dev_private;
4129 struct drm_crtc *crtc;
4130 int srwm = 1;
4131 int cursor_sr = 16;
4132
4133 /* Calc sr entries for one plane configs */
4134 crtc = single_enabled_crtc(dev);
4135 if (crtc) {
4136 /* self-refresh has much higher latency */
4137 static const int sr_latency_ns = 12000;
4138 int clock = crtc->mode.clock;
4139 int htotal = crtc->mode.htotal;
4140 int hdisplay = crtc->mode.hdisplay;
4141 int pixel_size = crtc->fb->bits_per_pixel / 8;
4142 unsigned long line_time_us;
4143 int entries;
4144
4145 line_time_us = ((htotal * 1000) / clock);
4146
4147 /* Use ns/us then divide to preserve precision */
4148 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4149 pixel_size * hdisplay;
4150 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4151 srwm = I965_FIFO_SIZE - entries;
4152 if (srwm < 0)
4153 srwm = 1;
4154 srwm &= 0x1ff;
4155 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4156 entries, srwm);
4157
4158 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4159 pixel_size * 64;
4160 entries = DIV_ROUND_UP(entries,
4161 i965_cursor_wm_info.cacheline_size);
4162 cursor_sr = i965_cursor_wm_info.fifo_size -
4163 (entries + i965_cursor_wm_info.guard_size);
4164
4165 if (cursor_sr > i965_cursor_wm_info.max_wm)
4166 cursor_sr = i965_cursor_wm_info.max_wm;
4167
4168 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4169 "cursor %d\n", srwm, cursor_sr);
4170
4171 if (IS_CRESTLINE(dev))
4172 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4173 } else {
4174 /* Turn off self refresh if both pipes are enabled */
4175 if (IS_CRESTLINE(dev))
4176 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4177 & ~FW_BLC_SELF_EN);
4178 }
4179
4180 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4181 srwm);
4182
4183 /* 965 has limitations... */
4184 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4185 (8 << 16) | (8 << 8) | (8 << 0));
4186 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4187 /* update cursor SR watermark */
4188 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4189 }
4190
4191 static void i9xx_update_wm(struct drm_device *dev)
4192 {
4193 struct drm_i915_private *dev_priv = dev->dev_private;
4194 const struct intel_watermark_params *wm_info;
4195 uint32_t fwater_lo;
4196 uint32_t fwater_hi;
4197 int cwm, srwm = 1;
4198 int fifo_size;
4199 int planea_wm, planeb_wm;
4200 struct drm_crtc *crtc, *enabled = NULL;
4201
4202 if (IS_I945GM(dev))
4203 wm_info = &i945_wm_info;
4204 else if (!IS_GEN2(dev))
4205 wm_info = &i915_wm_info;
4206 else
4207 wm_info = &i855_wm_info;
4208
4209 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4210 crtc = intel_get_crtc_for_plane(dev, 0);
4211 if (crtc->enabled && crtc->fb) {
4212 planea_wm = intel_calculate_wm(crtc->mode.clock,
4213 wm_info, fifo_size,
4214 crtc->fb->bits_per_pixel / 8,
4215 latency_ns);
4216 enabled = crtc;
4217 } else
4218 planea_wm = fifo_size - wm_info->guard_size;
4219
4220 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4221 crtc = intel_get_crtc_for_plane(dev, 1);
4222 if (crtc->enabled && crtc->fb) {
4223 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4224 wm_info, fifo_size,
4225 crtc->fb->bits_per_pixel / 8,
4226 latency_ns);
4227 if (enabled == NULL)
4228 enabled = crtc;
4229 else
4230 enabled = NULL;
4231 } else
4232 planeb_wm = fifo_size - wm_info->guard_size;
4233
4234 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4235
4236 /*
4237 * Overlay gets an aggressive default since video jitter is bad.
4238 */
4239 cwm = 2;
4240
4241 /* Play safe and disable self-refresh before adjusting watermarks. */
4242 if (IS_I945G(dev) || IS_I945GM(dev))
4243 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4244 else if (IS_I915GM(dev))
4245 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4246
4247 /* Calc sr entries for one plane configs */
4248 if (HAS_FW_BLC(dev) && enabled) {
4249 /* self-refresh has much higher latency */
4250 static const int sr_latency_ns = 6000;
4251 int clock = enabled->mode.clock;
4252 int htotal = enabled->mode.htotal;
4253 int hdisplay = enabled->mode.hdisplay;
4254 int pixel_size = enabled->fb->bits_per_pixel / 8;
4255 unsigned long line_time_us;
4256 int entries;
4257
4258 line_time_us = (htotal * 1000) / clock;
4259
4260 /* Use ns/us then divide to preserve precision */
4261 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4262 pixel_size * hdisplay;
4263 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4264 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4265 srwm = wm_info->fifo_size - entries;
4266 if (srwm < 0)
4267 srwm = 1;
4268
4269 if (IS_I945G(dev) || IS_I945GM(dev))
4270 I915_WRITE(FW_BLC_SELF,
4271 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4272 else if (IS_I915GM(dev))
4273 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4274 }
4275
4276 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4277 planea_wm, planeb_wm, cwm, srwm);
4278
4279 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4280 fwater_hi = (cwm & 0x1f);
4281
4282 /* Set request length to 8 cachelines per fetch */
4283 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4284 fwater_hi = fwater_hi | (1 << 8);
4285
4286 I915_WRITE(FW_BLC, fwater_lo);
4287 I915_WRITE(FW_BLC2, fwater_hi);
4288
4289 if (HAS_FW_BLC(dev)) {
4290 if (enabled) {
4291 if (IS_I945G(dev) || IS_I945GM(dev))
4292 I915_WRITE(FW_BLC_SELF,
4293 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4294 else if (IS_I915GM(dev))
4295 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4296 DRM_DEBUG_KMS("memory self refresh enabled\n");
4297 } else
4298 DRM_DEBUG_KMS("memory self refresh disabled\n");
4299 }
4300 }
4301
4302 static void i830_update_wm(struct drm_device *dev)
4303 {
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 struct drm_crtc *crtc;
4306 uint32_t fwater_lo;
4307 int planea_wm;
4308
4309 crtc = single_enabled_crtc(dev);
4310 if (crtc == NULL)
4311 return;
4312
4313 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4314 dev_priv->display.get_fifo_size(dev, 0),
4315 crtc->fb->bits_per_pixel / 8,
4316 latency_ns);
4317 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4318 fwater_lo |= (3<<8) | planea_wm;
4319
4320 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4321
4322 I915_WRITE(FW_BLC, fwater_lo);
4323 }
4324
4325 #define ILK_LP0_PLANE_LATENCY 700
4326 #define ILK_LP0_CURSOR_LATENCY 1300
4327
4328 /*
4329 * Check the wm result.
4330 *
4331 * If any calculated watermark values is larger than the maximum value that
4332 * can be programmed into the associated watermark register, that watermark
4333 * must be disabled.
4334 */
4335 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4336 int fbc_wm, int display_wm, int cursor_wm,
4337 const struct intel_watermark_params *display,
4338 const struct intel_watermark_params *cursor)
4339 {
4340 struct drm_i915_private *dev_priv = dev->dev_private;
4341
4342 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4343 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4344
4345 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4346 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4347 fbc_wm, SNB_FBC_MAX_SRWM, level);
4348
4349 /* fbc has it's own way to disable FBC WM */
4350 I915_WRITE(DISP_ARB_CTL,
4351 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4352 return false;
4353 }
4354
4355 if (display_wm > display->max_wm) {
4356 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4357 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4358 return false;
4359 }
4360
4361 if (cursor_wm > cursor->max_wm) {
4362 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4363 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4364 return false;
4365 }
4366
4367 if (!(fbc_wm || display_wm || cursor_wm)) {
4368 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4369 return false;
4370 }
4371
4372 return true;
4373 }
4374
4375 /*
4376 * Compute watermark values of WM[1-3],
4377 */
4378 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4379 int latency_ns,
4380 const struct intel_watermark_params *display,
4381 const struct intel_watermark_params *cursor,
4382 int *fbc_wm, int *display_wm, int *cursor_wm)
4383 {
4384 struct drm_crtc *crtc;
4385 unsigned long line_time_us;
4386 int hdisplay, htotal, pixel_size, clock;
4387 int line_count, line_size;
4388 int small, large;
4389 int entries;
4390
4391 if (!latency_ns) {
4392 *fbc_wm = *display_wm = *cursor_wm = 0;
4393 return false;
4394 }
4395
4396 crtc = intel_get_crtc_for_plane(dev, plane);
4397 hdisplay = crtc->mode.hdisplay;
4398 htotal = crtc->mode.htotal;
4399 clock = crtc->mode.clock;
4400 pixel_size = crtc->fb->bits_per_pixel / 8;
4401
4402 line_time_us = (htotal * 1000) / clock;
4403 line_count = (latency_ns / line_time_us + 1000) / 1000;
4404 line_size = hdisplay * pixel_size;
4405
4406 /* Use the minimum of the small and large buffer method for primary */
4407 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4408 large = line_count * line_size;
4409
4410 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4411 *display_wm = entries + display->guard_size;
4412
4413 /*
4414 * Spec says:
4415 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4416 */
4417 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4418
4419 /* calculate the self-refresh watermark for display cursor */
4420 entries = line_count * pixel_size * 64;
4421 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4422 *cursor_wm = entries + cursor->guard_size;
4423
4424 return ironlake_check_srwm(dev, level,
4425 *fbc_wm, *display_wm, *cursor_wm,
4426 display, cursor);
4427 }
4428
4429 static void ironlake_update_wm(struct drm_device *dev)
4430 {
4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 int fbc_wm, plane_wm, cursor_wm;
4433 unsigned int enabled;
4434
4435 enabled = 0;
4436 if (g4x_compute_wm0(dev, 0,
4437 &ironlake_display_wm_info,
4438 ILK_LP0_PLANE_LATENCY,
4439 &ironlake_cursor_wm_info,
4440 ILK_LP0_CURSOR_LATENCY,
4441 &plane_wm, &cursor_wm)) {
4442 I915_WRITE(WM0_PIPEA_ILK,
4443 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4444 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4445 " plane %d, " "cursor: %d\n",
4446 plane_wm, cursor_wm);
4447 enabled |= 1;
4448 }
4449
4450 if (g4x_compute_wm0(dev, 1,
4451 &ironlake_display_wm_info,
4452 ILK_LP0_PLANE_LATENCY,
4453 &ironlake_cursor_wm_info,
4454 ILK_LP0_CURSOR_LATENCY,
4455 &plane_wm, &cursor_wm)) {
4456 I915_WRITE(WM0_PIPEB_ILK,
4457 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4458 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4459 " plane %d, cursor: %d\n",
4460 plane_wm, cursor_wm);
4461 enabled |= 2;
4462 }
4463
4464 /*
4465 * Calculate and update the self-refresh watermark only when one
4466 * display plane is used.
4467 */
4468 I915_WRITE(WM3_LP_ILK, 0);
4469 I915_WRITE(WM2_LP_ILK, 0);
4470 I915_WRITE(WM1_LP_ILK, 0);
4471
4472 if (!single_plane_enabled(enabled))
4473 return;
4474 enabled = ffs(enabled) - 1;
4475
4476 /* WM1 */
4477 if (!ironlake_compute_srwm(dev, 1, enabled,
4478 ILK_READ_WM1_LATENCY() * 500,
4479 &ironlake_display_srwm_info,
4480 &ironlake_cursor_srwm_info,
4481 &fbc_wm, &plane_wm, &cursor_wm))
4482 return;
4483
4484 I915_WRITE(WM1_LP_ILK,
4485 WM1_LP_SR_EN |
4486 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4487 (fbc_wm << WM1_LP_FBC_SHIFT) |
4488 (plane_wm << WM1_LP_SR_SHIFT) |
4489 cursor_wm);
4490
4491 /* WM2 */
4492 if (!ironlake_compute_srwm(dev, 2, enabled,
4493 ILK_READ_WM2_LATENCY() * 500,
4494 &ironlake_display_srwm_info,
4495 &ironlake_cursor_srwm_info,
4496 &fbc_wm, &plane_wm, &cursor_wm))
4497 return;
4498
4499 I915_WRITE(WM2_LP_ILK,
4500 WM2_LP_EN |
4501 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4502 (fbc_wm << WM1_LP_FBC_SHIFT) |
4503 (plane_wm << WM1_LP_SR_SHIFT) |
4504 cursor_wm);
4505
4506 /*
4507 * WM3 is unsupported on ILK, probably because we don't have latency
4508 * data for that power state
4509 */
4510 }
4511
4512 static void sandybridge_update_wm(struct drm_device *dev)
4513 {
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4516 int fbc_wm, plane_wm, cursor_wm;
4517 unsigned int enabled;
4518
4519 enabled = 0;
4520 if (g4x_compute_wm0(dev, 0,
4521 &sandybridge_display_wm_info, latency,
4522 &sandybridge_cursor_wm_info, latency,
4523 &plane_wm, &cursor_wm)) {
4524 I915_WRITE(WM0_PIPEA_ILK,
4525 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4526 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4527 " plane %d, " "cursor: %d\n",
4528 plane_wm, cursor_wm);
4529 enabled |= 1;
4530 }
4531
4532 if (g4x_compute_wm0(dev, 1,
4533 &sandybridge_display_wm_info, latency,
4534 &sandybridge_cursor_wm_info, latency,
4535 &plane_wm, &cursor_wm)) {
4536 I915_WRITE(WM0_PIPEB_ILK,
4537 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4538 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4539 " plane %d, cursor: %d\n",
4540 plane_wm, cursor_wm);
4541 enabled |= 2;
4542 }
4543
4544 /* IVB has 3 pipes */
4545 if (IS_IVYBRIDGE(dev) &&
4546 g4x_compute_wm0(dev, 2,
4547 &sandybridge_display_wm_info, latency,
4548 &sandybridge_cursor_wm_info, latency,
4549 &plane_wm, &cursor_wm)) {
4550 I915_WRITE(WM0_PIPEC_IVB,
4551 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4552 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4553 " plane %d, cursor: %d\n",
4554 plane_wm, cursor_wm);
4555 enabled |= 3;
4556 }
4557
4558 /*
4559 * Calculate and update the self-refresh watermark only when one
4560 * display plane is used.
4561 *
4562 * SNB support 3 levels of watermark.
4563 *
4564 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4565 * and disabled in the descending order
4566 *
4567 */
4568 I915_WRITE(WM3_LP_ILK, 0);
4569 I915_WRITE(WM2_LP_ILK, 0);
4570 I915_WRITE(WM1_LP_ILK, 0);
4571
4572 if (!single_plane_enabled(enabled))
4573 return;
4574 enabled = ffs(enabled) - 1;
4575
4576 /* WM1 */
4577 if (!ironlake_compute_srwm(dev, 1, enabled,
4578 SNB_READ_WM1_LATENCY() * 500,
4579 &sandybridge_display_srwm_info,
4580 &sandybridge_cursor_srwm_info,
4581 &fbc_wm, &plane_wm, &cursor_wm))
4582 return;
4583
4584 I915_WRITE(WM1_LP_ILK,
4585 WM1_LP_SR_EN |
4586 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4587 (fbc_wm << WM1_LP_FBC_SHIFT) |
4588 (plane_wm << WM1_LP_SR_SHIFT) |
4589 cursor_wm);
4590
4591 /* WM2 */
4592 if (!ironlake_compute_srwm(dev, 2, enabled,
4593 SNB_READ_WM2_LATENCY() * 500,
4594 &sandybridge_display_srwm_info,
4595 &sandybridge_cursor_srwm_info,
4596 &fbc_wm, &plane_wm, &cursor_wm))
4597 return;
4598
4599 I915_WRITE(WM2_LP_ILK,
4600 WM2_LP_EN |
4601 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4602 (fbc_wm << WM1_LP_FBC_SHIFT) |
4603 (plane_wm << WM1_LP_SR_SHIFT) |
4604 cursor_wm);
4605
4606 /* WM3 */
4607 if (!ironlake_compute_srwm(dev, 3, enabled,
4608 SNB_READ_WM3_LATENCY() * 500,
4609 &sandybridge_display_srwm_info,
4610 &sandybridge_cursor_srwm_info,
4611 &fbc_wm, &plane_wm, &cursor_wm))
4612 return;
4613
4614 I915_WRITE(WM3_LP_ILK,
4615 WM3_LP_EN |
4616 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4617 (fbc_wm << WM1_LP_FBC_SHIFT) |
4618 (plane_wm << WM1_LP_SR_SHIFT) |
4619 cursor_wm);
4620 }
4621
4622 /**
4623 * intel_update_watermarks - update FIFO watermark values based on current modes
4624 *
4625 * Calculate watermark values for the various WM regs based on current mode
4626 * and plane configuration.
4627 *
4628 * There are several cases to deal with here:
4629 * - normal (i.e. non-self-refresh)
4630 * - self-refresh (SR) mode
4631 * - lines are large relative to FIFO size (buffer can hold up to 2)
4632 * - lines are small relative to FIFO size (buffer can hold more than 2
4633 * lines), so need to account for TLB latency
4634 *
4635 * The normal calculation is:
4636 * watermark = dotclock * bytes per pixel * latency
4637 * where latency is platform & configuration dependent (we assume pessimal
4638 * values here).
4639 *
4640 * The SR calculation is:
4641 * watermark = (trunc(latency/line time)+1) * surface width *
4642 * bytes per pixel
4643 * where
4644 * line time = htotal / dotclock
4645 * surface width = hdisplay for normal plane and 64 for cursor
4646 * and latency is assumed to be high, as above.
4647 *
4648 * The final value programmed to the register should always be rounded up,
4649 * and include an extra 2 entries to account for clock crossings.
4650 *
4651 * We don't use the sprite, so we can ignore that. And on Crestline we have
4652 * to set the non-SR watermarks to 8.
4653 */
4654 static void intel_update_watermarks(struct drm_device *dev)
4655 {
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657
4658 if (dev_priv->display.update_wm)
4659 dev_priv->display.update_wm(dev);
4660 }
4661
4662 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4663 {
4664 if (i915_panel_use_ssc >= 0)
4665 return i915_panel_use_ssc != 0;
4666 return dev_priv->lvds_use_ssc
4667 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4668 }
4669
4670 /**
4671 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4672 * @crtc: CRTC structure
4673 *
4674 * A pipe may be connected to one or more outputs. Based on the depth of the
4675 * attached framebuffer, choose a good color depth to use on the pipe.
4676 *
4677 * If possible, match the pipe depth to the fb depth. In some cases, this
4678 * isn't ideal, because the connected output supports a lesser or restricted
4679 * set of depths. Resolve that here:
4680 * LVDS typically supports only 6bpc, so clamp down in that case
4681 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4682 * Displays may support a restricted set as well, check EDID and clamp as
4683 * appropriate.
4684 *
4685 * RETURNS:
4686 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4687 * true if they don't match).
4688 */
4689 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4690 unsigned int *pipe_bpp)
4691 {
4692 struct drm_device *dev = crtc->dev;
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694 struct drm_encoder *encoder;
4695 struct drm_connector *connector;
4696 unsigned int display_bpc = UINT_MAX, bpc;
4697
4698 /* Walk the encoders & connectors on this crtc, get min bpc */
4699 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4700 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4701
4702 if (encoder->crtc != crtc)
4703 continue;
4704
4705 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4706 unsigned int lvds_bpc;
4707
4708 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4709 LVDS_A3_POWER_UP)
4710 lvds_bpc = 8;
4711 else
4712 lvds_bpc = 6;
4713
4714 if (lvds_bpc < display_bpc) {
4715 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4716 display_bpc = lvds_bpc;
4717 }
4718 continue;
4719 }
4720
4721 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4722 /* Use VBT settings if we have an eDP panel */
4723 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4724
4725 if (edp_bpc < display_bpc) {
4726 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4727 display_bpc = edp_bpc;
4728 }
4729 continue;
4730 }
4731
4732 /* Not one of the known troublemakers, check the EDID */
4733 list_for_each_entry(connector, &dev->mode_config.connector_list,
4734 head) {
4735 if (connector->encoder != encoder)
4736 continue;
4737
4738 /* Don't use an invalid EDID bpc value */
4739 if (connector->display_info.bpc &&
4740 connector->display_info.bpc < display_bpc) {
4741 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4742 display_bpc = connector->display_info.bpc;
4743 }
4744 }
4745
4746 /*
4747 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4748 * through, clamp it down. (Note: >12bpc will be caught below.)
4749 */
4750 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4751 if (display_bpc > 8 && display_bpc < 12) {
4752 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4753 display_bpc = 12;
4754 } else {
4755 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4756 display_bpc = 8;
4757 }
4758 }
4759 }
4760
4761 /*
4762 * We could just drive the pipe at the highest bpc all the time and
4763 * enable dithering as needed, but that costs bandwidth. So choose
4764 * the minimum value that expresses the full color range of the fb but
4765 * also stays within the max display bpc discovered above.
4766 */
4767
4768 switch (crtc->fb->depth) {
4769 case 8:
4770 bpc = 8; /* since we go through a colormap */
4771 break;
4772 case 15:
4773 case 16:
4774 bpc = 6; /* min is 18bpp */
4775 break;
4776 case 24:
4777 bpc = 8;
4778 break;
4779 case 30:
4780 bpc = 10;
4781 break;
4782 case 48:
4783 bpc = 12;
4784 break;
4785 default:
4786 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4787 bpc = min((unsigned int)8, display_bpc);
4788 break;
4789 }
4790
4791 display_bpc = min(display_bpc, bpc);
4792
4793 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4794 bpc, display_bpc);
4795
4796 *pipe_bpp = display_bpc * 3;
4797
4798 return display_bpc != bpc;
4799 }
4800
4801 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4802 struct drm_display_mode *mode,
4803 struct drm_display_mode *adjusted_mode,
4804 int x, int y,
4805 struct drm_framebuffer *old_fb)
4806 {
4807 struct drm_device *dev = crtc->dev;
4808 struct drm_i915_private *dev_priv = dev->dev_private;
4809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4810 int pipe = intel_crtc->pipe;
4811 int plane = intel_crtc->plane;
4812 int refclk, num_connectors = 0;
4813 intel_clock_t clock, reduced_clock;
4814 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4815 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4816 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4817 struct drm_mode_config *mode_config = &dev->mode_config;
4818 struct intel_encoder *encoder;
4819 const intel_limit_t *limit;
4820 int ret;
4821 u32 temp;
4822 u32 lvds_sync = 0;
4823
4824 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4825 if (encoder->base.crtc != crtc)
4826 continue;
4827
4828 switch (encoder->type) {
4829 case INTEL_OUTPUT_LVDS:
4830 is_lvds = true;
4831 break;
4832 case INTEL_OUTPUT_SDVO:
4833 case INTEL_OUTPUT_HDMI:
4834 is_sdvo = true;
4835 if (encoder->needs_tv_clock)
4836 is_tv = true;
4837 break;
4838 case INTEL_OUTPUT_DVO:
4839 is_dvo = true;
4840 break;
4841 case INTEL_OUTPUT_TVOUT:
4842 is_tv = true;
4843 break;
4844 case INTEL_OUTPUT_ANALOG:
4845 is_crt = true;
4846 break;
4847 case INTEL_OUTPUT_DISPLAYPORT:
4848 is_dp = true;
4849 break;
4850 }
4851
4852 num_connectors++;
4853 }
4854
4855 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4856 refclk = dev_priv->lvds_ssc_freq * 1000;
4857 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4858 refclk / 1000);
4859 } else if (!IS_GEN2(dev)) {
4860 refclk = 96000;
4861 } else {
4862 refclk = 48000;
4863 }
4864
4865 /*
4866 * Returns a set of divisors for the desired target clock with the given
4867 * refclk, or FALSE. The returned values represent the clock equation:
4868 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4869 */
4870 limit = intel_limit(crtc, refclk);
4871 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4872 if (!ok) {
4873 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4874 return -EINVAL;
4875 }
4876
4877 /* Ensure that the cursor is valid for the new mode before changing... */
4878 intel_crtc_update_cursor(crtc, true);
4879
4880 if (is_lvds && dev_priv->lvds_downclock_avail) {
4881 has_reduced_clock = limit->find_pll(limit, crtc,
4882 dev_priv->lvds_downclock,
4883 refclk,
4884 &reduced_clock);
4885 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4886 /*
4887 * If the different P is found, it means that we can't
4888 * switch the display clock by using the FP0/FP1.
4889 * In such case we will disable the LVDS downclock
4890 * feature.
4891 */
4892 DRM_DEBUG_KMS("Different P is found for "
4893 "LVDS clock/downclock\n");
4894 has_reduced_clock = 0;
4895 }
4896 }
4897 /* SDVO TV has fixed PLL values depend on its clock range,
4898 this mirrors vbios setting. */
4899 if (is_sdvo && is_tv) {
4900 if (adjusted_mode->clock >= 100000
4901 && adjusted_mode->clock < 140500) {
4902 clock.p1 = 2;
4903 clock.p2 = 10;
4904 clock.n = 3;
4905 clock.m1 = 16;
4906 clock.m2 = 8;
4907 } else if (adjusted_mode->clock >= 140500
4908 && adjusted_mode->clock <= 200000) {
4909 clock.p1 = 1;
4910 clock.p2 = 10;
4911 clock.n = 6;
4912 clock.m1 = 12;
4913 clock.m2 = 8;
4914 }
4915 }
4916
4917 if (IS_PINEVIEW(dev)) {
4918 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4919 if (has_reduced_clock)
4920 fp2 = (1 << reduced_clock.n) << 16 |
4921 reduced_clock.m1 << 8 | reduced_clock.m2;
4922 } else {
4923 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4924 if (has_reduced_clock)
4925 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4926 reduced_clock.m2;
4927 }
4928
4929 dpll = DPLL_VGA_MODE_DIS;
4930
4931 if (!IS_GEN2(dev)) {
4932 if (is_lvds)
4933 dpll |= DPLLB_MODE_LVDS;
4934 else
4935 dpll |= DPLLB_MODE_DAC_SERIAL;
4936 if (is_sdvo) {
4937 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4938 if (pixel_multiplier > 1) {
4939 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4940 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4941 }
4942 dpll |= DPLL_DVO_HIGH_SPEED;
4943 }
4944 if (is_dp)
4945 dpll |= DPLL_DVO_HIGH_SPEED;
4946
4947 /* compute bitmask from p1 value */
4948 if (IS_PINEVIEW(dev))
4949 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4950 else {
4951 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4952 if (IS_G4X(dev) && has_reduced_clock)
4953 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4954 }
4955 switch (clock.p2) {
4956 case 5:
4957 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4958 break;
4959 case 7:
4960 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4961 break;
4962 case 10:
4963 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4964 break;
4965 case 14:
4966 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4967 break;
4968 }
4969 if (INTEL_INFO(dev)->gen >= 4)
4970 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4971 } else {
4972 if (is_lvds) {
4973 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4974 } else {
4975 if (clock.p1 == 2)
4976 dpll |= PLL_P1_DIVIDE_BY_TWO;
4977 else
4978 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4979 if (clock.p2 == 4)
4980 dpll |= PLL_P2_DIVIDE_BY_4;
4981 }
4982 }
4983
4984 if (is_sdvo && is_tv)
4985 dpll |= PLL_REF_INPUT_TVCLKINBC;
4986 else if (is_tv)
4987 /* XXX: just matching BIOS for now */
4988 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4989 dpll |= 3;
4990 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4991 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4992 else
4993 dpll |= PLL_REF_INPUT_DREFCLK;
4994
4995 /* setup pipeconf */
4996 pipeconf = I915_READ(PIPECONF(pipe));
4997
4998 /* Set up the display plane register */
4999 dspcntr = DISPPLANE_GAMMA_ENABLE;
5000
5001 /* Ironlake's plane is forced to pipe, bit 24 is to
5002 enable color space conversion */
5003 if (pipe == 0)
5004 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5005 else
5006 dspcntr |= DISPPLANE_SEL_PIPE_B;
5007
5008 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5009 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5010 * core speed.
5011 *
5012 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5013 * pipe == 0 check?
5014 */
5015 if (mode->clock >
5016 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5017 pipeconf |= PIPECONF_DOUBLE_WIDE;
5018 else
5019 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5020 }
5021
5022 dpll |= DPLL_VCO_ENABLE;
5023
5024 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5025 drm_mode_debug_printmodeline(mode);
5026
5027 I915_WRITE(FP0(pipe), fp);
5028 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5029
5030 POSTING_READ(DPLL(pipe));
5031 udelay(150);
5032
5033 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5034 * This is an exception to the general rule that mode_set doesn't turn
5035 * things on.
5036 */
5037 if (is_lvds) {
5038 temp = I915_READ(LVDS);
5039 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5040 if (pipe == 1) {
5041 temp |= LVDS_PIPEB_SELECT;
5042 } else {
5043 temp &= ~LVDS_PIPEB_SELECT;
5044 }
5045 /* set the corresponsding LVDS_BORDER bit */
5046 temp |= dev_priv->lvds_border_bits;
5047 /* Set the B0-B3 data pairs corresponding to whether we're going to
5048 * set the DPLLs for dual-channel mode or not.
5049 */
5050 if (clock.p2 == 7)
5051 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5052 else
5053 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5054
5055 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5056 * appropriately here, but we need to look more thoroughly into how
5057 * panels behave in the two modes.
5058 */
5059 /* set the dithering flag on LVDS as needed */
5060 if (INTEL_INFO(dev)->gen >= 4) {
5061 if (dev_priv->lvds_dither)
5062 temp |= LVDS_ENABLE_DITHER;
5063 else
5064 temp &= ~LVDS_ENABLE_DITHER;
5065 }
5066 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5067 lvds_sync |= LVDS_HSYNC_POLARITY;
5068 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5069 lvds_sync |= LVDS_VSYNC_POLARITY;
5070 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5071 != lvds_sync) {
5072 char flags[2] = "-+";
5073 DRM_INFO("Changing LVDS panel from "
5074 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5075 flags[!(temp & LVDS_HSYNC_POLARITY)],
5076 flags[!(temp & LVDS_VSYNC_POLARITY)],
5077 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5078 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5079 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5080 temp |= lvds_sync;
5081 }
5082 I915_WRITE(LVDS, temp);
5083 }
5084
5085 if (is_dp) {
5086 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5087 }
5088
5089 I915_WRITE(DPLL(pipe), dpll);
5090
5091 /* Wait for the clocks to stabilize. */
5092 POSTING_READ(DPLL(pipe));
5093 udelay(150);
5094
5095 if (INTEL_INFO(dev)->gen >= 4) {
5096 temp = 0;
5097 if (is_sdvo) {
5098 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5099 if (temp > 1)
5100 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5101 else
5102 temp = 0;
5103 }
5104 I915_WRITE(DPLL_MD(pipe), temp);
5105 } else {
5106 /* The pixel multiplier can only be updated once the
5107 * DPLL is enabled and the clocks are stable.
5108 *
5109 * So write it again.
5110 */
5111 I915_WRITE(DPLL(pipe), dpll);
5112 }
5113
5114 intel_crtc->lowfreq_avail = false;
5115 if (is_lvds && has_reduced_clock && i915_powersave) {
5116 I915_WRITE(FP1(pipe), fp2);
5117 intel_crtc->lowfreq_avail = true;
5118 if (HAS_PIPE_CXSR(dev)) {
5119 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5120 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5121 }
5122 } else {
5123 I915_WRITE(FP1(pipe), fp);
5124 if (HAS_PIPE_CXSR(dev)) {
5125 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5126 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5127 }
5128 }
5129
5130 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5131 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5132 /* the chip adds 2 halflines automatically */
5133 adjusted_mode->crtc_vdisplay -= 1;
5134 adjusted_mode->crtc_vtotal -= 1;
5135 adjusted_mode->crtc_vblank_start -= 1;
5136 adjusted_mode->crtc_vblank_end -= 1;
5137 adjusted_mode->crtc_vsync_end -= 1;
5138 adjusted_mode->crtc_vsync_start -= 1;
5139 } else
5140 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5141
5142 I915_WRITE(HTOTAL(pipe),
5143 (adjusted_mode->crtc_hdisplay - 1) |
5144 ((adjusted_mode->crtc_htotal - 1) << 16));
5145 I915_WRITE(HBLANK(pipe),
5146 (adjusted_mode->crtc_hblank_start - 1) |
5147 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5148 I915_WRITE(HSYNC(pipe),
5149 (adjusted_mode->crtc_hsync_start - 1) |
5150 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5151
5152 I915_WRITE(VTOTAL(pipe),
5153 (adjusted_mode->crtc_vdisplay - 1) |
5154 ((adjusted_mode->crtc_vtotal - 1) << 16));
5155 I915_WRITE(VBLANK(pipe),
5156 (adjusted_mode->crtc_vblank_start - 1) |
5157 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5158 I915_WRITE(VSYNC(pipe),
5159 (adjusted_mode->crtc_vsync_start - 1) |
5160 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5161
5162 /* pipesrc and dspsize control the size that is scaled from,
5163 * which should always be the user's requested size.
5164 */
5165 I915_WRITE(DSPSIZE(plane),
5166 ((mode->vdisplay - 1) << 16) |
5167 (mode->hdisplay - 1));
5168 I915_WRITE(DSPPOS(plane), 0);
5169 I915_WRITE(PIPESRC(pipe),
5170 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5171
5172 I915_WRITE(PIPECONF(pipe), pipeconf);
5173 POSTING_READ(PIPECONF(pipe));
5174 intel_enable_pipe(dev_priv, pipe, false);
5175
5176 intel_wait_for_vblank(dev, pipe);
5177
5178 I915_WRITE(DSPCNTR(plane), dspcntr);
5179 POSTING_READ(DSPCNTR(plane));
5180 intel_enable_plane(dev_priv, plane, pipe);
5181
5182 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5183
5184 intel_update_watermarks(dev);
5185
5186 return ret;
5187 }
5188
5189 /*
5190 * Initialize reference clocks when the driver loads
5191 */
5192 void ironlake_init_pch_refclk(struct drm_device *dev)
5193 {
5194 struct drm_i915_private *dev_priv = dev->dev_private;
5195 struct drm_mode_config *mode_config = &dev->mode_config;
5196 struct intel_encoder *encoder;
5197 u32 temp;
5198 bool has_lvds = false;
5199 bool has_cpu_edp = false;
5200 bool has_pch_edp = false;
5201 bool has_panel = false;
5202 bool has_ck505 = false;
5203 bool can_ssc = false;
5204
5205 /* We need to take the global config into account */
5206 list_for_each_entry(encoder, &mode_config->encoder_list,
5207 base.head) {
5208 switch (encoder->type) {
5209 case INTEL_OUTPUT_LVDS:
5210 has_panel = true;
5211 has_lvds = true;
5212 break;
5213 case INTEL_OUTPUT_EDP:
5214 has_panel = true;
5215 if (intel_encoder_is_pch_edp(&encoder->base))
5216 has_pch_edp = true;
5217 else
5218 has_cpu_edp = true;
5219 break;
5220 }
5221 }
5222
5223 if (HAS_PCH_IBX(dev)) {
5224 has_ck505 = dev_priv->display_clock_mode;
5225 can_ssc = has_ck505;
5226 } else {
5227 has_ck505 = false;
5228 can_ssc = true;
5229 }
5230
5231 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5232 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5233 has_ck505);
5234
5235 /* Ironlake: try to setup display ref clock before DPLL
5236 * enabling. This is only under driver's control after
5237 * PCH B stepping, previous chipset stepping should be
5238 * ignoring this setting.
5239 */
5240 temp = I915_READ(PCH_DREF_CONTROL);
5241 /* Always enable nonspread source */
5242 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5243
5244 if (has_ck505)
5245 temp |= DREF_NONSPREAD_CK505_ENABLE;
5246 else
5247 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5248
5249 if (has_panel) {
5250 temp &= ~DREF_SSC_SOURCE_MASK;
5251 temp |= DREF_SSC_SOURCE_ENABLE;
5252
5253 /* SSC must be turned on before enabling the CPU output */
5254 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5255 DRM_DEBUG_KMS("Using SSC on panel\n");
5256 temp |= DREF_SSC1_ENABLE;
5257 }
5258
5259 /* Get SSC going before enabling the outputs */
5260 I915_WRITE(PCH_DREF_CONTROL, temp);
5261 POSTING_READ(PCH_DREF_CONTROL);
5262 udelay(200);
5263
5264 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5265
5266 /* Enable CPU source on CPU attached eDP */
5267 if (has_cpu_edp) {
5268 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5269 DRM_DEBUG_KMS("Using SSC on eDP\n");
5270 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5271 }
5272 else
5273 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5274 } else
5275 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5276
5277 I915_WRITE(PCH_DREF_CONTROL, temp);
5278 POSTING_READ(PCH_DREF_CONTROL);
5279 udelay(200);
5280 } else {
5281 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5282
5283 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5284
5285 /* Turn off CPU output */
5286 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5287
5288 I915_WRITE(PCH_DREF_CONTROL, temp);
5289 POSTING_READ(PCH_DREF_CONTROL);
5290 udelay(200);
5291
5292 /* Turn off the SSC source */
5293 temp &= ~DREF_SSC_SOURCE_MASK;
5294 temp |= DREF_SSC_SOURCE_DISABLE;
5295
5296 /* Turn off SSC1 */
5297 temp &= ~ DREF_SSC1_ENABLE;
5298
5299 I915_WRITE(PCH_DREF_CONTROL, temp);
5300 POSTING_READ(PCH_DREF_CONTROL);
5301 udelay(200);
5302 }
5303 }
5304
5305 static int ironlake_get_refclk(struct drm_crtc *crtc)
5306 {
5307 struct drm_device *dev = crtc->dev;
5308 struct drm_i915_private *dev_priv = dev->dev_private;
5309 struct intel_encoder *encoder;
5310 struct drm_mode_config *mode_config = &dev->mode_config;
5311 struct intel_encoder *edp_encoder = NULL;
5312 int num_connectors = 0;
5313 bool is_lvds = false;
5314
5315 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5316 if (encoder->base.crtc != crtc)
5317 continue;
5318
5319 switch (encoder->type) {
5320 case INTEL_OUTPUT_LVDS:
5321 is_lvds = true;
5322 break;
5323 case INTEL_OUTPUT_EDP:
5324 edp_encoder = encoder;
5325 break;
5326 }
5327 num_connectors++;
5328 }
5329
5330 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5331 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5332 dev_priv->lvds_ssc_freq);
5333 return dev_priv->lvds_ssc_freq * 1000;
5334 }
5335
5336 return 120000;
5337 }
5338
5339 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5340 struct drm_display_mode *mode,
5341 struct drm_display_mode *adjusted_mode,
5342 int x, int y,
5343 struct drm_framebuffer *old_fb)
5344 {
5345 struct drm_device *dev = crtc->dev;
5346 struct drm_i915_private *dev_priv = dev->dev_private;
5347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348 int pipe = intel_crtc->pipe;
5349 int plane = intel_crtc->plane;
5350 int refclk, num_connectors = 0;
5351 intel_clock_t clock, reduced_clock;
5352 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5353 bool ok, has_reduced_clock = false, is_sdvo = false;
5354 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5355 struct intel_encoder *has_edp_encoder = NULL;
5356 struct drm_mode_config *mode_config = &dev->mode_config;
5357 struct intel_encoder *encoder;
5358 const intel_limit_t *limit;
5359 int ret;
5360 struct fdi_m_n m_n = {0};
5361 u32 temp;
5362 u32 lvds_sync = 0;
5363 int target_clock, pixel_multiplier, lane, link_bw, factor;
5364 unsigned int pipe_bpp;
5365 bool dither;
5366
5367 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5368 if (encoder->base.crtc != crtc)
5369 continue;
5370
5371 switch (encoder->type) {
5372 case INTEL_OUTPUT_LVDS:
5373 is_lvds = true;
5374 break;
5375 case INTEL_OUTPUT_SDVO:
5376 case INTEL_OUTPUT_HDMI:
5377 is_sdvo = true;
5378 if (encoder->needs_tv_clock)
5379 is_tv = true;
5380 break;
5381 case INTEL_OUTPUT_TVOUT:
5382 is_tv = true;
5383 break;
5384 case INTEL_OUTPUT_ANALOG:
5385 is_crt = true;
5386 break;
5387 case INTEL_OUTPUT_DISPLAYPORT:
5388 is_dp = true;
5389 break;
5390 case INTEL_OUTPUT_EDP:
5391 has_edp_encoder = encoder;
5392 break;
5393 }
5394
5395 num_connectors++;
5396 }
5397
5398 refclk = ironlake_get_refclk(crtc);
5399
5400 /*
5401 * Returns a set of divisors for the desired target clock with the given
5402 * refclk, or FALSE. The returned values represent the clock equation:
5403 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5404 */
5405 limit = intel_limit(crtc, refclk);
5406 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5407 if (!ok) {
5408 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5409 return -EINVAL;
5410 }
5411
5412 /* Ensure that the cursor is valid for the new mode before changing... */
5413 intel_crtc_update_cursor(crtc, true);
5414
5415 if (is_lvds && dev_priv->lvds_downclock_avail) {
5416 has_reduced_clock = limit->find_pll(limit, crtc,
5417 dev_priv->lvds_downclock,
5418 refclk,
5419 &reduced_clock);
5420 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5421 /*
5422 * If the different P is found, it means that we can't
5423 * switch the display clock by using the FP0/FP1.
5424 * In such case we will disable the LVDS downclock
5425 * feature.
5426 */
5427 DRM_DEBUG_KMS("Different P is found for "
5428 "LVDS clock/downclock\n");
5429 has_reduced_clock = 0;
5430 }
5431 }
5432 /* SDVO TV has fixed PLL values depend on its clock range,
5433 this mirrors vbios setting. */
5434 if (is_sdvo && is_tv) {
5435 if (adjusted_mode->clock >= 100000
5436 && adjusted_mode->clock < 140500) {
5437 clock.p1 = 2;
5438 clock.p2 = 10;
5439 clock.n = 3;
5440 clock.m1 = 16;
5441 clock.m2 = 8;
5442 } else if (adjusted_mode->clock >= 140500
5443 && adjusted_mode->clock <= 200000) {
5444 clock.p1 = 1;
5445 clock.p2 = 10;
5446 clock.n = 6;
5447 clock.m1 = 12;
5448 clock.m2 = 8;
5449 }
5450 }
5451
5452 /* FDI link */
5453 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5454 lane = 0;
5455 /* CPU eDP doesn't require FDI link, so just set DP M/N
5456 according to current link config */
5457 if (has_edp_encoder &&
5458 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5459 target_clock = mode->clock;
5460 intel_edp_link_config(has_edp_encoder,
5461 &lane, &link_bw);
5462 } else {
5463 /* [e]DP over FDI requires target mode clock
5464 instead of link clock */
5465 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5466 target_clock = mode->clock;
5467 else
5468 target_clock = adjusted_mode->clock;
5469
5470 /* FDI is a binary signal running at ~2.7GHz, encoding
5471 * each output octet as 10 bits. The actual frequency
5472 * is stored as a divider into a 100MHz clock, and the
5473 * mode pixel clock is stored in units of 1KHz.
5474 * Hence the bw of each lane in terms of the mode signal
5475 * is:
5476 */
5477 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5478 }
5479
5480 /* determine panel color depth */
5481 temp = I915_READ(PIPECONF(pipe));
5482 temp &= ~PIPE_BPC_MASK;
5483 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5484 switch (pipe_bpp) {
5485 case 18:
5486 temp |= PIPE_6BPC;
5487 break;
5488 case 24:
5489 temp |= PIPE_8BPC;
5490 break;
5491 case 30:
5492 temp |= PIPE_10BPC;
5493 break;
5494 case 36:
5495 temp |= PIPE_12BPC;
5496 break;
5497 default:
5498 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5499 pipe_bpp);
5500 temp |= PIPE_8BPC;
5501 pipe_bpp = 24;
5502 break;
5503 }
5504
5505 intel_crtc->bpp = pipe_bpp;
5506 I915_WRITE(PIPECONF(pipe), temp);
5507
5508 if (!lane) {
5509 /*
5510 * Account for spread spectrum to avoid
5511 * oversubscribing the link. Max center spread
5512 * is 2.5%; use 5% for safety's sake.
5513 */
5514 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5515 lane = bps / (link_bw * 8) + 1;
5516 }
5517
5518 intel_crtc->fdi_lanes = lane;
5519
5520 if (pixel_multiplier > 1)
5521 link_bw *= pixel_multiplier;
5522 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5523 &m_n);
5524
5525 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5526 if (has_reduced_clock)
5527 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5528 reduced_clock.m2;
5529
5530 /* Enable autotuning of the PLL clock (if permissible) */
5531 factor = 21;
5532 if (is_lvds) {
5533 if ((intel_panel_use_ssc(dev_priv) &&
5534 dev_priv->lvds_ssc_freq == 100) ||
5535 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5536 factor = 25;
5537 } else if (is_sdvo && is_tv)
5538 factor = 20;
5539
5540 if (clock.m < factor * clock.n)
5541 fp |= FP_CB_TUNE;
5542
5543 dpll = 0;
5544
5545 if (is_lvds)
5546 dpll |= DPLLB_MODE_LVDS;
5547 else
5548 dpll |= DPLLB_MODE_DAC_SERIAL;
5549 if (is_sdvo) {
5550 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5551 if (pixel_multiplier > 1) {
5552 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5553 }
5554 dpll |= DPLL_DVO_HIGH_SPEED;
5555 }
5556 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5557 dpll |= DPLL_DVO_HIGH_SPEED;
5558
5559 /* compute bitmask from p1 value */
5560 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5561 /* also FPA1 */
5562 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5563
5564 switch (clock.p2) {
5565 case 5:
5566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5567 break;
5568 case 7:
5569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5570 break;
5571 case 10:
5572 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5573 break;
5574 case 14:
5575 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5576 break;
5577 }
5578
5579 if (is_sdvo && is_tv)
5580 dpll |= PLL_REF_INPUT_TVCLKINBC;
5581 else if (is_tv)
5582 /* XXX: just matching BIOS for now */
5583 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5584 dpll |= 3;
5585 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5586 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5587 else
5588 dpll |= PLL_REF_INPUT_DREFCLK;
5589
5590 /* setup pipeconf */
5591 pipeconf = I915_READ(PIPECONF(pipe));
5592
5593 /* Set up the display plane register */
5594 dspcntr = DISPPLANE_GAMMA_ENABLE;
5595
5596 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5597 drm_mode_debug_printmodeline(mode);
5598
5599 /* PCH eDP needs FDI, but CPU eDP does not */
5600 if (!intel_crtc->no_pll) {
5601 if (!has_edp_encoder ||
5602 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5603 I915_WRITE(PCH_FP0(pipe), fp);
5604 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5605
5606 POSTING_READ(PCH_DPLL(pipe));
5607 udelay(150);
5608 }
5609 } else {
5610 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5611 fp == I915_READ(PCH_FP0(0))) {
5612 intel_crtc->use_pll_a = true;
5613 DRM_DEBUG_KMS("using pipe a dpll\n");
5614 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5615 fp == I915_READ(PCH_FP0(1))) {
5616 intel_crtc->use_pll_a = false;
5617 DRM_DEBUG_KMS("using pipe b dpll\n");
5618 } else {
5619 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5620 return -EINVAL;
5621 }
5622 }
5623
5624 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5625 * This is an exception to the general rule that mode_set doesn't turn
5626 * things on.
5627 */
5628 if (is_lvds) {
5629 temp = I915_READ(PCH_LVDS);
5630 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5631 if (HAS_PCH_CPT(dev))
5632 temp |= PORT_TRANS_SEL_CPT(pipe);
5633 else if (pipe == 1)
5634 temp |= LVDS_PIPEB_SELECT;
5635 else
5636 temp &= ~LVDS_PIPEB_SELECT;
5637
5638 /* set the corresponsding LVDS_BORDER bit */
5639 temp |= dev_priv->lvds_border_bits;
5640 /* Set the B0-B3 data pairs corresponding to whether we're going to
5641 * set the DPLLs for dual-channel mode or not.
5642 */
5643 if (clock.p2 == 7)
5644 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5645 else
5646 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5647
5648 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5649 * appropriately here, but we need to look more thoroughly into how
5650 * panels behave in the two modes.
5651 */
5652 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5653 lvds_sync |= LVDS_HSYNC_POLARITY;
5654 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5655 lvds_sync |= LVDS_VSYNC_POLARITY;
5656 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5657 != lvds_sync) {
5658 char flags[2] = "-+";
5659 DRM_INFO("Changing LVDS panel from "
5660 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5661 flags[!(temp & LVDS_HSYNC_POLARITY)],
5662 flags[!(temp & LVDS_VSYNC_POLARITY)],
5663 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5664 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5665 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5666 temp |= lvds_sync;
5667 }
5668 I915_WRITE(PCH_LVDS, temp);
5669 }
5670
5671 pipeconf &= ~PIPECONF_DITHER_EN;
5672 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5673 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5674 pipeconf |= PIPECONF_DITHER_EN;
5675 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5676 }
5677 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5678 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5679 } else {
5680 /* For non-DP output, clear any trans DP clock recovery setting.*/
5681 I915_WRITE(TRANSDATA_M1(pipe), 0);
5682 I915_WRITE(TRANSDATA_N1(pipe), 0);
5683 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5684 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5685 }
5686
5687 if (!intel_crtc->no_pll &&
5688 (!has_edp_encoder ||
5689 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5690 I915_WRITE(PCH_DPLL(pipe), dpll);
5691
5692 /* Wait for the clocks to stabilize. */
5693 POSTING_READ(PCH_DPLL(pipe));
5694 udelay(150);
5695
5696 /* The pixel multiplier can only be updated once the
5697 * DPLL is enabled and the clocks are stable.
5698 *
5699 * So write it again.
5700 */
5701 I915_WRITE(PCH_DPLL(pipe), dpll);
5702 }
5703
5704 intel_crtc->lowfreq_avail = false;
5705 if (!intel_crtc->no_pll) {
5706 if (is_lvds && has_reduced_clock && i915_powersave) {
5707 I915_WRITE(PCH_FP1(pipe), fp2);
5708 intel_crtc->lowfreq_avail = true;
5709 if (HAS_PIPE_CXSR(dev)) {
5710 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5711 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5712 }
5713 } else {
5714 I915_WRITE(PCH_FP1(pipe), fp);
5715 if (HAS_PIPE_CXSR(dev)) {
5716 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5717 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5718 }
5719 }
5720 }
5721
5722 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5723 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5724 /* the chip adds 2 halflines automatically */
5725 adjusted_mode->crtc_vdisplay -= 1;
5726 adjusted_mode->crtc_vtotal -= 1;
5727 adjusted_mode->crtc_vblank_start -= 1;
5728 adjusted_mode->crtc_vblank_end -= 1;
5729 adjusted_mode->crtc_vsync_end -= 1;
5730 adjusted_mode->crtc_vsync_start -= 1;
5731 } else
5732 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5733
5734 I915_WRITE(HTOTAL(pipe),
5735 (adjusted_mode->crtc_hdisplay - 1) |
5736 ((adjusted_mode->crtc_htotal - 1) << 16));
5737 I915_WRITE(HBLANK(pipe),
5738 (adjusted_mode->crtc_hblank_start - 1) |
5739 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5740 I915_WRITE(HSYNC(pipe),
5741 (adjusted_mode->crtc_hsync_start - 1) |
5742 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5743
5744 I915_WRITE(VTOTAL(pipe),
5745 (adjusted_mode->crtc_vdisplay - 1) |
5746 ((adjusted_mode->crtc_vtotal - 1) << 16));
5747 I915_WRITE(VBLANK(pipe),
5748 (adjusted_mode->crtc_vblank_start - 1) |
5749 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5750 I915_WRITE(VSYNC(pipe),
5751 (adjusted_mode->crtc_vsync_start - 1) |
5752 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5753
5754 /* pipesrc controls the size that is scaled from, which should
5755 * always be the user's requested size.
5756 */
5757 I915_WRITE(PIPESRC(pipe),
5758 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5759
5760 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5761 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5762 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5763 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5764
5765 if (has_edp_encoder &&
5766 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5767 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5768 }
5769
5770 I915_WRITE(PIPECONF(pipe), pipeconf);
5771 POSTING_READ(PIPECONF(pipe));
5772
5773 intel_wait_for_vblank(dev, pipe);
5774
5775 if (IS_GEN5(dev)) {
5776 /* enable address swizzle for tiling buffer */
5777 temp = I915_READ(DISP_ARB_CTL);
5778 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5779 }
5780
5781 I915_WRITE(DSPCNTR(plane), dspcntr);
5782 POSTING_READ(DSPCNTR(plane));
5783
5784 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5785
5786 intel_update_watermarks(dev);
5787
5788 return ret;
5789 }
5790
5791 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5792 struct drm_display_mode *mode,
5793 struct drm_display_mode *adjusted_mode,
5794 int x, int y,
5795 struct drm_framebuffer *old_fb)
5796 {
5797 struct drm_device *dev = crtc->dev;
5798 struct drm_i915_private *dev_priv = dev->dev_private;
5799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5800 int pipe = intel_crtc->pipe;
5801 int ret;
5802
5803 drm_vblank_pre_modeset(dev, pipe);
5804
5805 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5806 x, y, old_fb);
5807
5808 drm_vblank_post_modeset(dev, pipe);
5809
5810 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5811
5812 return ret;
5813 }
5814
5815 static void g4x_write_eld(struct drm_connector *connector,
5816 struct drm_crtc *crtc)
5817 {
5818 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5819 uint8_t *eld = connector->eld;
5820 uint32_t eldv;
5821 uint32_t len;
5822 uint32_t i;
5823
5824 i = I915_READ(G4X_AUD_VID_DID);
5825
5826 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5827 eldv = G4X_ELDV_DEVCL_DEVBLC;
5828 else
5829 eldv = G4X_ELDV_DEVCTG;
5830
5831 i = I915_READ(G4X_AUD_CNTL_ST);
5832 i &= ~(eldv | G4X_ELD_ADDR);
5833 len = (i >> 9) & 0x1f; /* ELD buffer size */
5834 I915_WRITE(G4X_AUD_CNTL_ST, i);
5835
5836 if (!eld[0])
5837 return;
5838
5839 len = min_t(uint8_t, eld[2], len);
5840 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5841 for (i = 0; i < len; i++)
5842 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5843
5844 i = I915_READ(G4X_AUD_CNTL_ST);
5845 i |= eldv;
5846 I915_WRITE(G4X_AUD_CNTL_ST, i);
5847 }
5848
5849 static void ironlake_write_eld(struct drm_connector *connector,
5850 struct drm_crtc *crtc)
5851 {
5852 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5853 uint8_t *eld = connector->eld;
5854 uint32_t eldv;
5855 uint32_t i;
5856 int len;
5857 int hdmiw_hdmiedid;
5858 int aud_cntl_st;
5859 int aud_cntrl_st2;
5860
5861 if (IS_IVYBRIDGE(connector->dev)) {
5862 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5863 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5864 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5865 } else {
5866 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5867 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5868 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5869 }
5870
5871 i = to_intel_crtc(crtc)->pipe;
5872 hdmiw_hdmiedid += i * 0x100;
5873 aud_cntl_st += i * 0x100;
5874
5875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5876
5877 i = I915_READ(aud_cntl_st);
5878 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5879 if (!i) {
5880 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5881 /* operate blindly on all ports */
5882 eldv = GEN5_ELD_VALIDB;
5883 eldv |= GEN5_ELD_VALIDB << 4;
5884 eldv |= GEN5_ELD_VALIDB << 8;
5885 } else {
5886 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5887 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5888 }
5889
5890 i = I915_READ(aud_cntrl_st2);
5891 i &= ~eldv;
5892 I915_WRITE(aud_cntrl_st2, i);
5893
5894 if (!eld[0])
5895 return;
5896
5897 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5898 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5899 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5900 }
5901
5902 i = I915_READ(aud_cntl_st);
5903 i &= ~GEN5_ELD_ADDRESS;
5904 I915_WRITE(aud_cntl_st, i);
5905
5906 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5907 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5908 for (i = 0; i < len; i++)
5909 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5910
5911 i = I915_READ(aud_cntrl_st2);
5912 i |= eldv;
5913 I915_WRITE(aud_cntrl_st2, i);
5914 }
5915
5916 void intel_write_eld(struct drm_encoder *encoder,
5917 struct drm_display_mode *mode)
5918 {
5919 struct drm_crtc *crtc = encoder->crtc;
5920 struct drm_connector *connector;
5921 struct drm_device *dev = encoder->dev;
5922 struct drm_i915_private *dev_priv = dev->dev_private;
5923
5924 connector = drm_select_eld(encoder, mode);
5925 if (!connector)
5926 return;
5927
5928 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5929 connector->base.id,
5930 drm_get_connector_name(connector),
5931 connector->encoder->base.id,
5932 drm_get_encoder_name(connector->encoder));
5933
5934 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5935
5936 if (dev_priv->display.write_eld)
5937 dev_priv->display.write_eld(connector, crtc);
5938 }
5939
5940 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5941 void intel_crtc_load_lut(struct drm_crtc *crtc)
5942 {
5943 struct drm_device *dev = crtc->dev;
5944 struct drm_i915_private *dev_priv = dev->dev_private;
5945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5946 int palreg = PALETTE(intel_crtc->pipe);
5947 int i;
5948
5949 /* The clocks have to be on to load the palette. */
5950 if (!crtc->enabled)
5951 return;
5952
5953 /* use legacy palette for Ironlake */
5954 if (HAS_PCH_SPLIT(dev))
5955 palreg = LGC_PALETTE(intel_crtc->pipe);
5956
5957 for (i = 0; i < 256; i++) {
5958 I915_WRITE(palreg + 4 * i,
5959 (intel_crtc->lut_r[i] << 16) |
5960 (intel_crtc->lut_g[i] << 8) |
5961 intel_crtc->lut_b[i]);
5962 }
5963 }
5964
5965 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5966 {
5967 struct drm_device *dev = crtc->dev;
5968 struct drm_i915_private *dev_priv = dev->dev_private;
5969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5970 bool visible = base != 0;
5971 u32 cntl;
5972
5973 if (intel_crtc->cursor_visible == visible)
5974 return;
5975
5976 cntl = I915_READ(_CURACNTR);
5977 if (visible) {
5978 /* On these chipsets we can only modify the base whilst
5979 * the cursor is disabled.
5980 */
5981 I915_WRITE(_CURABASE, base);
5982
5983 cntl &= ~(CURSOR_FORMAT_MASK);
5984 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5985 cntl |= CURSOR_ENABLE |
5986 CURSOR_GAMMA_ENABLE |
5987 CURSOR_FORMAT_ARGB;
5988 } else
5989 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5990 I915_WRITE(_CURACNTR, cntl);
5991
5992 intel_crtc->cursor_visible = visible;
5993 }
5994
5995 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5996 {
5997 struct drm_device *dev = crtc->dev;
5998 struct drm_i915_private *dev_priv = dev->dev_private;
5999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6000 int pipe = intel_crtc->pipe;
6001 bool visible = base != 0;
6002
6003 if (intel_crtc->cursor_visible != visible) {
6004 uint32_t cntl = I915_READ(CURCNTR(pipe));
6005 if (base) {
6006 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6007 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6008 cntl |= pipe << 28; /* Connect to correct pipe */
6009 } else {
6010 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6011 cntl |= CURSOR_MODE_DISABLE;
6012 }
6013 I915_WRITE(CURCNTR(pipe), cntl);
6014
6015 intel_crtc->cursor_visible = visible;
6016 }
6017 /* and commit changes on next vblank */
6018 I915_WRITE(CURBASE(pipe), base);
6019 }
6020
6021 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6022 {
6023 struct drm_device *dev = crtc->dev;
6024 struct drm_i915_private *dev_priv = dev->dev_private;
6025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6026 int pipe = intel_crtc->pipe;
6027 bool visible = base != 0;
6028
6029 if (intel_crtc->cursor_visible != visible) {
6030 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6031 if (base) {
6032 cntl &= ~CURSOR_MODE;
6033 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6034 } else {
6035 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6036 cntl |= CURSOR_MODE_DISABLE;
6037 }
6038 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6039
6040 intel_crtc->cursor_visible = visible;
6041 }
6042 /* and commit changes on next vblank */
6043 I915_WRITE(CURBASE_IVB(pipe), base);
6044 }
6045
6046 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6047 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6048 bool on)
6049 {
6050 struct drm_device *dev = crtc->dev;
6051 struct drm_i915_private *dev_priv = dev->dev_private;
6052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6053 int pipe = intel_crtc->pipe;
6054 int x = intel_crtc->cursor_x;
6055 int y = intel_crtc->cursor_y;
6056 u32 base, pos;
6057 bool visible;
6058
6059 pos = 0;
6060
6061 if (on && crtc->enabled && crtc->fb) {
6062 base = intel_crtc->cursor_addr;
6063 if (x > (int) crtc->fb->width)
6064 base = 0;
6065
6066 if (y > (int) crtc->fb->height)
6067 base = 0;
6068 } else
6069 base = 0;
6070
6071 if (x < 0) {
6072 if (x + intel_crtc->cursor_width < 0)
6073 base = 0;
6074
6075 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6076 x = -x;
6077 }
6078 pos |= x << CURSOR_X_SHIFT;
6079
6080 if (y < 0) {
6081 if (y + intel_crtc->cursor_height < 0)
6082 base = 0;
6083
6084 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6085 y = -y;
6086 }
6087 pos |= y << CURSOR_Y_SHIFT;
6088
6089 visible = base != 0;
6090 if (!visible && !intel_crtc->cursor_visible)
6091 return;
6092
6093 if (IS_IVYBRIDGE(dev)) {
6094 I915_WRITE(CURPOS_IVB(pipe), pos);
6095 ivb_update_cursor(crtc, base);
6096 } else {
6097 I915_WRITE(CURPOS(pipe), pos);
6098 if (IS_845G(dev) || IS_I865G(dev))
6099 i845_update_cursor(crtc, base);
6100 else
6101 i9xx_update_cursor(crtc, base);
6102 }
6103
6104 if (visible)
6105 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6106 }
6107
6108 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6109 struct drm_file *file,
6110 uint32_t handle,
6111 uint32_t width, uint32_t height)
6112 {
6113 struct drm_device *dev = crtc->dev;
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116 struct drm_i915_gem_object *obj;
6117 uint32_t addr;
6118 int ret;
6119
6120 DRM_DEBUG_KMS("\n");
6121
6122 /* if we want to turn off the cursor ignore width and height */
6123 if (!handle) {
6124 DRM_DEBUG_KMS("cursor off\n");
6125 addr = 0;
6126 obj = NULL;
6127 mutex_lock(&dev->struct_mutex);
6128 goto finish;
6129 }
6130
6131 /* Currently we only support 64x64 cursors */
6132 if (width != 64 || height != 64) {
6133 DRM_ERROR("we currently only support 64x64 cursors\n");
6134 return -EINVAL;
6135 }
6136
6137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6138 if (&obj->base == NULL)
6139 return -ENOENT;
6140
6141 if (obj->base.size < width * height * 4) {
6142 DRM_ERROR("buffer is to small\n");
6143 ret = -ENOMEM;
6144 goto fail;
6145 }
6146
6147 /* we only need to pin inside GTT if cursor is non-phy */
6148 mutex_lock(&dev->struct_mutex);
6149 if (!dev_priv->info->cursor_needs_physical) {
6150 if (obj->tiling_mode) {
6151 DRM_ERROR("cursor cannot be tiled\n");
6152 ret = -EINVAL;
6153 goto fail_locked;
6154 }
6155
6156 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6157 if (ret) {
6158 DRM_ERROR("failed to move cursor bo into the GTT\n");
6159 goto fail_locked;
6160 }
6161
6162 ret = i915_gem_object_put_fence(obj);
6163 if (ret) {
6164 DRM_ERROR("failed to release fence for cursor");
6165 goto fail_unpin;
6166 }
6167
6168 addr = obj->gtt_offset;
6169 } else {
6170 int align = IS_I830(dev) ? 16 * 1024 : 256;
6171 ret = i915_gem_attach_phys_object(dev, obj,
6172 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6173 align);
6174 if (ret) {
6175 DRM_ERROR("failed to attach phys object\n");
6176 goto fail_locked;
6177 }
6178 addr = obj->phys_obj->handle->busaddr;
6179 }
6180
6181 if (IS_GEN2(dev))
6182 I915_WRITE(CURSIZE, (height << 12) | width);
6183
6184 finish:
6185 if (intel_crtc->cursor_bo) {
6186 if (dev_priv->info->cursor_needs_physical) {
6187 if (intel_crtc->cursor_bo != obj)
6188 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6189 } else
6190 i915_gem_object_unpin(intel_crtc->cursor_bo);
6191 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6192 }
6193
6194 mutex_unlock(&dev->struct_mutex);
6195
6196 intel_crtc->cursor_addr = addr;
6197 intel_crtc->cursor_bo = obj;
6198 intel_crtc->cursor_width = width;
6199 intel_crtc->cursor_height = height;
6200
6201 intel_crtc_update_cursor(crtc, true);
6202
6203 return 0;
6204 fail_unpin:
6205 i915_gem_object_unpin(obj);
6206 fail_locked:
6207 mutex_unlock(&dev->struct_mutex);
6208 fail:
6209 drm_gem_object_unreference_unlocked(&obj->base);
6210 return ret;
6211 }
6212
6213 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6214 {
6215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216
6217 intel_crtc->cursor_x = x;
6218 intel_crtc->cursor_y = y;
6219
6220 intel_crtc_update_cursor(crtc, true);
6221
6222 return 0;
6223 }
6224
6225 /** Sets the color ramps on behalf of RandR */
6226 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6227 u16 blue, int regno)
6228 {
6229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6230
6231 intel_crtc->lut_r[regno] = red >> 8;
6232 intel_crtc->lut_g[regno] = green >> 8;
6233 intel_crtc->lut_b[regno] = blue >> 8;
6234 }
6235
6236 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6237 u16 *blue, int regno)
6238 {
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240
6241 *red = intel_crtc->lut_r[regno] << 8;
6242 *green = intel_crtc->lut_g[regno] << 8;
6243 *blue = intel_crtc->lut_b[regno] << 8;
6244 }
6245
6246 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6247 u16 *blue, uint32_t start, uint32_t size)
6248 {
6249 int end = (start + size > 256) ? 256 : start + size, i;
6250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251
6252 for (i = start; i < end; i++) {
6253 intel_crtc->lut_r[i] = red[i] >> 8;
6254 intel_crtc->lut_g[i] = green[i] >> 8;
6255 intel_crtc->lut_b[i] = blue[i] >> 8;
6256 }
6257
6258 intel_crtc_load_lut(crtc);
6259 }
6260
6261 /**
6262 * Get a pipe with a simple mode set on it for doing load-based monitor
6263 * detection.
6264 *
6265 * It will be up to the load-detect code to adjust the pipe as appropriate for
6266 * its requirements. The pipe will be connected to no other encoders.
6267 *
6268 * Currently this code will only succeed if there is a pipe with no encoders
6269 * configured for it. In the future, it could choose to temporarily disable
6270 * some outputs to free up a pipe for its use.
6271 *
6272 * \return crtc, or NULL if no pipes are available.
6273 */
6274
6275 /* VESA 640x480x72Hz mode to set on the pipe */
6276 static struct drm_display_mode load_detect_mode = {
6277 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6278 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6279 };
6280
6281 static struct drm_framebuffer *
6282 intel_framebuffer_create(struct drm_device *dev,
6283 struct drm_mode_fb_cmd *mode_cmd,
6284 struct drm_i915_gem_object *obj)
6285 {
6286 struct intel_framebuffer *intel_fb;
6287 int ret;
6288
6289 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6290 if (!intel_fb) {
6291 drm_gem_object_unreference_unlocked(&obj->base);
6292 return ERR_PTR(-ENOMEM);
6293 }
6294
6295 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6296 if (ret) {
6297 drm_gem_object_unreference_unlocked(&obj->base);
6298 kfree(intel_fb);
6299 return ERR_PTR(ret);
6300 }
6301
6302 return &intel_fb->base;
6303 }
6304
6305 static u32
6306 intel_framebuffer_pitch_for_width(int width, int bpp)
6307 {
6308 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6309 return ALIGN(pitch, 64);
6310 }
6311
6312 static u32
6313 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6314 {
6315 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6316 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6317 }
6318
6319 static struct drm_framebuffer *
6320 intel_framebuffer_create_for_mode(struct drm_device *dev,
6321 struct drm_display_mode *mode,
6322 int depth, int bpp)
6323 {
6324 struct drm_i915_gem_object *obj;
6325 struct drm_mode_fb_cmd mode_cmd;
6326
6327 obj = i915_gem_alloc_object(dev,
6328 intel_framebuffer_size_for_mode(mode, bpp));
6329 if (obj == NULL)
6330 return ERR_PTR(-ENOMEM);
6331
6332 mode_cmd.width = mode->hdisplay;
6333 mode_cmd.height = mode->vdisplay;
6334 mode_cmd.depth = depth;
6335 mode_cmd.bpp = bpp;
6336 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6337
6338 return intel_framebuffer_create(dev, &mode_cmd, obj);
6339 }
6340
6341 static struct drm_framebuffer *
6342 mode_fits_in_fbdev(struct drm_device *dev,
6343 struct drm_display_mode *mode)
6344 {
6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346 struct drm_i915_gem_object *obj;
6347 struct drm_framebuffer *fb;
6348
6349 if (dev_priv->fbdev == NULL)
6350 return NULL;
6351
6352 obj = dev_priv->fbdev->ifb.obj;
6353 if (obj == NULL)
6354 return NULL;
6355
6356 fb = &dev_priv->fbdev->ifb.base;
6357 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6358 fb->bits_per_pixel))
6359 return NULL;
6360
6361 if (obj->base.size < mode->vdisplay * fb->pitch)
6362 return NULL;
6363
6364 return fb;
6365 }
6366
6367 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6368 struct drm_connector *connector,
6369 struct drm_display_mode *mode,
6370 struct intel_load_detect_pipe *old)
6371 {
6372 struct intel_crtc *intel_crtc;
6373 struct drm_crtc *possible_crtc;
6374 struct drm_encoder *encoder = &intel_encoder->base;
6375 struct drm_crtc *crtc = NULL;
6376 struct drm_device *dev = encoder->dev;
6377 struct drm_framebuffer *old_fb;
6378 int i = -1;
6379
6380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6381 connector->base.id, drm_get_connector_name(connector),
6382 encoder->base.id, drm_get_encoder_name(encoder));
6383
6384 /*
6385 * Algorithm gets a little messy:
6386 *
6387 * - if the connector already has an assigned crtc, use it (but make
6388 * sure it's on first)
6389 *
6390 * - try to find the first unused crtc that can drive this connector,
6391 * and use that if we find one
6392 */
6393
6394 /* See if we already have a CRTC for this connector */
6395 if (encoder->crtc) {
6396 crtc = encoder->crtc;
6397
6398 intel_crtc = to_intel_crtc(crtc);
6399 old->dpms_mode = intel_crtc->dpms_mode;
6400 old->load_detect_temp = false;
6401
6402 /* Make sure the crtc and connector are running */
6403 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6404 struct drm_encoder_helper_funcs *encoder_funcs;
6405 struct drm_crtc_helper_funcs *crtc_funcs;
6406
6407 crtc_funcs = crtc->helper_private;
6408 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6409
6410 encoder_funcs = encoder->helper_private;
6411 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6412 }
6413
6414 return true;
6415 }
6416
6417 /* Find an unused one (if possible) */
6418 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6419 i++;
6420 if (!(encoder->possible_crtcs & (1 << i)))
6421 continue;
6422 if (!possible_crtc->enabled) {
6423 crtc = possible_crtc;
6424 break;
6425 }
6426 }
6427
6428 /*
6429 * If we didn't find an unused CRTC, don't use any.
6430 */
6431 if (!crtc) {
6432 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6433 return false;
6434 }
6435
6436 encoder->crtc = crtc;
6437 connector->encoder = encoder;
6438
6439 intel_crtc = to_intel_crtc(crtc);
6440 old->dpms_mode = intel_crtc->dpms_mode;
6441 old->load_detect_temp = true;
6442 old->release_fb = NULL;
6443
6444 if (!mode)
6445 mode = &load_detect_mode;
6446
6447 old_fb = crtc->fb;
6448
6449 /* We need a framebuffer large enough to accommodate all accesses
6450 * that the plane may generate whilst we perform load detection.
6451 * We can not rely on the fbcon either being present (we get called
6452 * during its initialisation to detect all boot displays, or it may
6453 * not even exist) or that it is large enough to satisfy the
6454 * requested mode.
6455 */
6456 crtc->fb = mode_fits_in_fbdev(dev, mode);
6457 if (crtc->fb == NULL) {
6458 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6459 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6460 old->release_fb = crtc->fb;
6461 } else
6462 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6463 if (IS_ERR(crtc->fb)) {
6464 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6465 crtc->fb = old_fb;
6466 return false;
6467 }
6468
6469 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6470 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6471 if (old->release_fb)
6472 old->release_fb->funcs->destroy(old->release_fb);
6473 crtc->fb = old_fb;
6474 return false;
6475 }
6476
6477 /* let the connector get through one full cycle before testing */
6478 intel_wait_for_vblank(dev, intel_crtc->pipe);
6479
6480 return true;
6481 }
6482
6483 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6484 struct drm_connector *connector,
6485 struct intel_load_detect_pipe *old)
6486 {
6487 struct drm_encoder *encoder = &intel_encoder->base;
6488 struct drm_device *dev = encoder->dev;
6489 struct drm_crtc *crtc = encoder->crtc;
6490 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6491 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6492
6493 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6494 connector->base.id, drm_get_connector_name(connector),
6495 encoder->base.id, drm_get_encoder_name(encoder));
6496
6497 if (old->load_detect_temp) {
6498 connector->encoder = NULL;
6499 drm_helper_disable_unused_functions(dev);
6500
6501 if (old->release_fb)
6502 old->release_fb->funcs->destroy(old->release_fb);
6503
6504 return;
6505 }
6506
6507 /* Switch crtc and encoder back off if necessary */
6508 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6509 encoder_funcs->dpms(encoder, old->dpms_mode);
6510 crtc_funcs->dpms(crtc, old->dpms_mode);
6511 }
6512 }
6513
6514 /* Returns the clock of the currently programmed mode of the given pipe. */
6515 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6516 {
6517 struct drm_i915_private *dev_priv = dev->dev_private;
6518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6519 int pipe = intel_crtc->pipe;
6520 u32 dpll = I915_READ(DPLL(pipe));
6521 u32 fp;
6522 intel_clock_t clock;
6523
6524 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6525 fp = I915_READ(FP0(pipe));
6526 else
6527 fp = I915_READ(FP1(pipe));
6528
6529 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6530 if (IS_PINEVIEW(dev)) {
6531 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6532 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6533 } else {
6534 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6535 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6536 }
6537
6538 if (!IS_GEN2(dev)) {
6539 if (IS_PINEVIEW(dev))
6540 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6541 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6542 else
6543 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6544 DPLL_FPA01_P1_POST_DIV_SHIFT);
6545
6546 switch (dpll & DPLL_MODE_MASK) {
6547 case DPLLB_MODE_DAC_SERIAL:
6548 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6549 5 : 10;
6550 break;
6551 case DPLLB_MODE_LVDS:
6552 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6553 7 : 14;
6554 break;
6555 default:
6556 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6557 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6558 return 0;
6559 }
6560
6561 /* XXX: Handle the 100Mhz refclk */
6562 intel_clock(dev, 96000, &clock);
6563 } else {
6564 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6565
6566 if (is_lvds) {
6567 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6568 DPLL_FPA01_P1_POST_DIV_SHIFT);
6569 clock.p2 = 14;
6570
6571 if ((dpll & PLL_REF_INPUT_MASK) ==
6572 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6573 /* XXX: might not be 66MHz */
6574 intel_clock(dev, 66000, &clock);
6575 } else
6576 intel_clock(dev, 48000, &clock);
6577 } else {
6578 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6579 clock.p1 = 2;
6580 else {
6581 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6582 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6583 }
6584 if (dpll & PLL_P2_DIVIDE_BY_4)
6585 clock.p2 = 4;
6586 else
6587 clock.p2 = 2;
6588
6589 intel_clock(dev, 48000, &clock);
6590 }
6591 }
6592
6593 /* XXX: It would be nice to validate the clocks, but we can't reuse
6594 * i830PllIsValid() because it relies on the xf86_config connector
6595 * configuration being accurate, which it isn't necessarily.
6596 */
6597
6598 return clock.dot;
6599 }
6600
6601 /** Returns the currently programmed mode of the given pipe. */
6602 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6603 struct drm_crtc *crtc)
6604 {
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6607 int pipe = intel_crtc->pipe;
6608 struct drm_display_mode *mode;
6609 int htot = I915_READ(HTOTAL(pipe));
6610 int hsync = I915_READ(HSYNC(pipe));
6611 int vtot = I915_READ(VTOTAL(pipe));
6612 int vsync = I915_READ(VSYNC(pipe));
6613
6614 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6615 if (!mode)
6616 return NULL;
6617
6618 mode->clock = intel_crtc_clock_get(dev, crtc);
6619 mode->hdisplay = (htot & 0xffff) + 1;
6620 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6621 mode->hsync_start = (hsync & 0xffff) + 1;
6622 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6623 mode->vdisplay = (vtot & 0xffff) + 1;
6624 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6625 mode->vsync_start = (vsync & 0xffff) + 1;
6626 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6627
6628 drm_mode_set_name(mode);
6629 drm_mode_set_crtcinfo(mode, 0);
6630
6631 return mode;
6632 }
6633
6634 #define GPU_IDLE_TIMEOUT 500 /* ms */
6635
6636 /* When this timer fires, we've been idle for awhile */
6637 static void intel_gpu_idle_timer(unsigned long arg)
6638 {
6639 struct drm_device *dev = (struct drm_device *)arg;
6640 drm_i915_private_t *dev_priv = dev->dev_private;
6641
6642 if (!list_empty(&dev_priv->mm.active_list)) {
6643 /* Still processing requests, so just re-arm the timer. */
6644 mod_timer(&dev_priv->idle_timer, jiffies +
6645 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6646 return;
6647 }
6648
6649 dev_priv->busy = false;
6650 queue_work(dev_priv->wq, &dev_priv->idle_work);
6651 }
6652
6653 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6654
6655 static void intel_crtc_idle_timer(unsigned long arg)
6656 {
6657 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6658 struct drm_crtc *crtc = &intel_crtc->base;
6659 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6660 struct intel_framebuffer *intel_fb;
6661
6662 intel_fb = to_intel_framebuffer(crtc->fb);
6663 if (intel_fb && intel_fb->obj->active) {
6664 /* The framebuffer is still being accessed by the GPU. */
6665 mod_timer(&intel_crtc->idle_timer, jiffies +
6666 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6667 return;
6668 }
6669
6670 intel_crtc->busy = false;
6671 queue_work(dev_priv->wq, &dev_priv->idle_work);
6672 }
6673
6674 static void intel_increase_pllclock(struct drm_crtc *crtc)
6675 {
6676 struct drm_device *dev = crtc->dev;
6677 drm_i915_private_t *dev_priv = dev->dev_private;
6678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6679 int pipe = intel_crtc->pipe;
6680 int dpll_reg = DPLL(pipe);
6681 int dpll;
6682
6683 if (HAS_PCH_SPLIT(dev))
6684 return;
6685
6686 if (!dev_priv->lvds_downclock_avail)
6687 return;
6688
6689 dpll = I915_READ(dpll_reg);
6690 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6691 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6692
6693 /* Unlock panel regs */
6694 I915_WRITE(PP_CONTROL,
6695 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6696
6697 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6698 I915_WRITE(dpll_reg, dpll);
6699 intel_wait_for_vblank(dev, pipe);
6700
6701 dpll = I915_READ(dpll_reg);
6702 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6703 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6704
6705 /* ...and lock them again */
6706 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6707 }
6708
6709 /* Schedule downclock */
6710 mod_timer(&intel_crtc->idle_timer, jiffies +
6711 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6712 }
6713
6714 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6715 {
6716 struct drm_device *dev = crtc->dev;
6717 drm_i915_private_t *dev_priv = dev->dev_private;
6718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6719 int pipe = intel_crtc->pipe;
6720 int dpll_reg = DPLL(pipe);
6721 int dpll = I915_READ(dpll_reg);
6722
6723 if (HAS_PCH_SPLIT(dev))
6724 return;
6725
6726 if (!dev_priv->lvds_downclock_avail)
6727 return;
6728
6729 /*
6730 * Since this is called by a timer, we should never get here in
6731 * the manual case.
6732 */
6733 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6734 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6735
6736 /* Unlock panel regs */
6737 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6738 PANEL_UNLOCK_REGS);
6739
6740 dpll |= DISPLAY_RATE_SELECT_FPA1;
6741 I915_WRITE(dpll_reg, dpll);
6742 intel_wait_for_vblank(dev, pipe);
6743 dpll = I915_READ(dpll_reg);
6744 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6745 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6746
6747 /* ...and lock them again */
6748 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6749 }
6750
6751 }
6752
6753 /**
6754 * intel_idle_update - adjust clocks for idleness
6755 * @work: work struct
6756 *
6757 * Either the GPU or display (or both) went idle. Check the busy status
6758 * here and adjust the CRTC and GPU clocks as necessary.
6759 */
6760 static void intel_idle_update(struct work_struct *work)
6761 {
6762 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6763 idle_work);
6764 struct drm_device *dev = dev_priv->dev;
6765 struct drm_crtc *crtc;
6766 struct intel_crtc *intel_crtc;
6767
6768 if (!i915_powersave)
6769 return;
6770
6771 mutex_lock(&dev->struct_mutex);
6772
6773 i915_update_gfx_val(dev_priv);
6774
6775 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6776 /* Skip inactive CRTCs */
6777 if (!crtc->fb)
6778 continue;
6779
6780 intel_crtc = to_intel_crtc(crtc);
6781 if (!intel_crtc->busy)
6782 intel_decrease_pllclock(crtc);
6783 }
6784
6785
6786 mutex_unlock(&dev->struct_mutex);
6787 }
6788
6789 /**
6790 * intel_mark_busy - mark the GPU and possibly the display busy
6791 * @dev: drm device
6792 * @obj: object we're operating on
6793 *
6794 * Callers can use this function to indicate that the GPU is busy processing
6795 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6796 * buffer), we'll also mark the display as busy, so we know to increase its
6797 * clock frequency.
6798 */
6799 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6800 {
6801 drm_i915_private_t *dev_priv = dev->dev_private;
6802 struct drm_crtc *crtc = NULL;
6803 struct intel_framebuffer *intel_fb;
6804 struct intel_crtc *intel_crtc;
6805
6806 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6807 return;
6808
6809 if (!dev_priv->busy)
6810 dev_priv->busy = true;
6811 else
6812 mod_timer(&dev_priv->idle_timer, jiffies +
6813 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6814
6815 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6816 if (!crtc->fb)
6817 continue;
6818
6819 intel_crtc = to_intel_crtc(crtc);
6820 intel_fb = to_intel_framebuffer(crtc->fb);
6821 if (intel_fb->obj == obj) {
6822 if (!intel_crtc->busy) {
6823 /* Non-busy -> busy, upclock */
6824 intel_increase_pllclock(crtc);
6825 intel_crtc->busy = true;
6826 } else {
6827 /* Busy -> busy, put off timer */
6828 mod_timer(&intel_crtc->idle_timer, jiffies +
6829 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6830 }
6831 }
6832 }
6833 }
6834
6835 static void intel_crtc_destroy(struct drm_crtc *crtc)
6836 {
6837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6838 struct drm_device *dev = crtc->dev;
6839 struct intel_unpin_work *work;
6840 unsigned long flags;
6841
6842 spin_lock_irqsave(&dev->event_lock, flags);
6843 work = intel_crtc->unpin_work;
6844 intel_crtc->unpin_work = NULL;
6845 spin_unlock_irqrestore(&dev->event_lock, flags);
6846
6847 if (work) {
6848 cancel_work_sync(&work->work);
6849 kfree(work);
6850 }
6851
6852 drm_crtc_cleanup(crtc);
6853
6854 kfree(intel_crtc);
6855 }
6856
6857 static void intel_unpin_work_fn(struct work_struct *__work)
6858 {
6859 struct intel_unpin_work *work =
6860 container_of(__work, struct intel_unpin_work, work);
6861
6862 mutex_lock(&work->dev->struct_mutex);
6863 i915_gem_object_unpin(work->old_fb_obj);
6864 drm_gem_object_unreference(&work->pending_flip_obj->base);
6865 drm_gem_object_unreference(&work->old_fb_obj->base);
6866
6867 intel_update_fbc(work->dev);
6868 mutex_unlock(&work->dev->struct_mutex);
6869 kfree(work);
6870 }
6871
6872 static void do_intel_finish_page_flip(struct drm_device *dev,
6873 struct drm_crtc *crtc)
6874 {
6875 drm_i915_private_t *dev_priv = dev->dev_private;
6876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6877 struct intel_unpin_work *work;
6878 struct drm_i915_gem_object *obj;
6879 struct drm_pending_vblank_event *e;
6880 struct timeval tnow, tvbl;
6881 unsigned long flags;
6882
6883 /* Ignore early vblank irqs */
6884 if (intel_crtc == NULL)
6885 return;
6886
6887 do_gettimeofday(&tnow);
6888
6889 spin_lock_irqsave(&dev->event_lock, flags);
6890 work = intel_crtc->unpin_work;
6891 if (work == NULL || !work->pending) {
6892 spin_unlock_irqrestore(&dev->event_lock, flags);
6893 return;
6894 }
6895
6896 intel_crtc->unpin_work = NULL;
6897
6898 if (work->event) {
6899 e = work->event;
6900 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6901
6902 /* Called before vblank count and timestamps have
6903 * been updated for the vblank interval of flip
6904 * completion? Need to increment vblank count and
6905 * add one videorefresh duration to returned timestamp
6906 * to account for this. We assume this happened if we
6907 * get called over 0.9 frame durations after the last
6908 * timestamped vblank.
6909 *
6910 * This calculation can not be used with vrefresh rates
6911 * below 5Hz (10Hz to be on the safe side) without
6912 * promoting to 64 integers.
6913 */
6914 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6915 9 * crtc->framedur_ns) {
6916 e->event.sequence++;
6917 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6918 crtc->framedur_ns);
6919 }
6920
6921 e->event.tv_sec = tvbl.tv_sec;
6922 e->event.tv_usec = tvbl.tv_usec;
6923
6924 list_add_tail(&e->base.link,
6925 &e->base.file_priv->event_list);
6926 wake_up_interruptible(&e->base.file_priv->event_wait);
6927 }
6928
6929 drm_vblank_put(dev, intel_crtc->pipe);
6930
6931 spin_unlock_irqrestore(&dev->event_lock, flags);
6932
6933 obj = work->old_fb_obj;
6934
6935 atomic_clear_mask(1 << intel_crtc->plane,
6936 &obj->pending_flip.counter);
6937 if (atomic_read(&obj->pending_flip) == 0)
6938 wake_up(&dev_priv->pending_flip_queue);
6939
6940 schedule_work(&work->work);
6941
6942 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6943 }
6944
6945 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6946 {
6947 drm_i915_private_t *dev_priv = dev->dev_private;
6948 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6949
6950 do_intel_finish_page_flip(dev, crtc);
6951 }
6952
6953 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6954 {
6955 drm_i915_private_t *dev_priv = dev->dev_private;
6956 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6957
6958 do_intel_finish_page_flip(dev, crtc);
6959 }
6960
6961 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6962 {
6963 drm_i915_private_t *dev_priv = dev->dev_private;
6964 struct intel_crtc *intel_crtc =
6965 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6966 unsigned long flags;
6967
6968 spin_lock_irqsave(&dev->event_lock, flags);
6969 if (intel_crtc->unpin_work) {
6970 if ((++intel_crtc->unpin_work->pending) > 1)
6971 DRM_ERROR("Prepared flip multiple times\n");
6972 } else {
6973 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6974 }
6975 spin_unlock_irqrestore(&dev->event_lock, flags);
6976 }
6977
6978 static int intel_gen2_queue_flip(struct drm_device *dev,
6979 struct drm_crtc *crtc,
6980 struct drm_framebuffer *fb,
6981 struct drm_i915_gem_object *obj)
6982 {
6983 struct drm_i915_private *dev_priv = dev->dev_private;
6984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6985 unsigned long offset;
6986 u32 flip_mask;
6987 int ret;
6988
6989 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6990 if (ret)
6991 goto out;
6992
6993 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6994 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6995
6996 ret = BEGIN_LP_RING(6);
6997 if (ret)
6998 goto out;
6999
7000 /* Can't queue multiple flips, so wait for the previous
7001 * one to finish before executing the next.
7002 */
7003 if (intel_crtc->plane)
7004 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7005 else
7006 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7007 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7008 OUT_RING(MI_NOOP);
7009 OUT_RING(MI_DISPLAY_FLIP |
7010 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7011 OUT_RING(fb->pitch);
7012 OUT_RING(obj->gtt_offset + offset);
7013 OUT_RING(MI_NOOP);
7014 ADVANCE_LP_RING();
7015 out:
7016 return ret;
7017 }
7018
7019 static int intel_gen3_queue_flip(struct drm_device *dev,
7020 struct drm_crtc *crtc,
7021 struct drm_framebuffer *fb,
7022 struct drm_i915_gem_object *obj)
7023 {
7024 struct drm_i915_private *dev_priv = dev->dev_private;
7025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7026 unsigned long offset;
7027 u32 flip_mask;
7028 int ret;
7029
7030 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7031 if (ret)
7032 goto out;
7033
7034 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7035 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7036
7037 ret = BEGIN_LP_RING(6);
7038 if (ret)
7039 goto out;
7040
7041 if (intel_crtc->plane)
7042 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7043 else
7044 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7045 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7046 OUT_RING(MI_NOOP);
7047 OUT_RING(MI_DISPLAY_FLIP_I915 |
7048 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7049 OUT_RING(fb->pitch);
7050 OUT_RING(obj->gtt_offset + offset);
7051 OUT_RING(MI_NOOP);
7052
7053 ADVANCE_LP_RING();
7054 out:
7055 return ret;
7056 }
7057
7058 static int intel_gen4_queue_flip(struct drm_device *dev,
7059 struct drm_crtc *crtc,
7060 struct drm_framebuffer *fb,
7061 struct drm_i915_gem_object *obj)
7062 {
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7065 uint32_t pf, pipesrc;
7066 int ret;
7067
7068 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7069 if (ret)
7070 goto out;
7071
7072 ret = BEGIN_LP_RING(4);
7073 if (ret)
7074 goto out;
7075
7076 /* i965+ uses the linear or tiled offsets from the
7077 * Display Registers (which do not change across a page-flip)
7078 * so we need only reprogram the base address.
7079 */
7080 OUT_RING(MI_DISPLAY_FLIP |
7081 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7082 OUT_RING(fb->pitch);
7083 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7084
7085 /* XXX Enabling the panel-fitter across page-flip is so far
7086 * untested on non-native modes, so ignore it for now.
7087 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7088 */
7089 pf = 0;
7090 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7091 OUT_RING(pf | pipesrc);
7092 ADVANCE_LP_RING();
7093 out:
7094 return ret;
7095 }
7096
7097 static int intel_gen6_queue_flip(struct drm_device *dev,
7098 struct drm_crtc *crtc,
7099 struct drm_framebuffer *fb,
7100 struct drm_i915_gem_object *obj)
7101 {
7102 struct drm_i915_private *dev_priv = dev->dev_private;
7103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7104 uint32_t pf, pipesrc;
7105 int ret;
7106
7107 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7108 if (ret)
7109 goto out;
7110
7111 ret = BEGIN_LP_RING(4);
7112 if (ret)
7113 goto out;
7114
7115 OUT_RING(MI_DISPLAY_FLIP |
7116 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7117 OUT_RING(fb->pitch | obj->tiling_mode);
7118 OUT_RING(obj->gtt_offset);
7119
7120 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7121 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7122 OUT_RING(pf | pipesrc);
7123 ADVANCE_LP_RING();
7124 out:
7125 return ret;
7126 }
7127
7128 /*
7129 * On gen7 we currently use the blit ring because (in early silicon at least)
7130 * the render ring doesn't give us interrpts for page flip completion, which
7131 * means clients will hang after the first flip is queued. Fortunately the
7132 * blit ring generates interrupts properly, so use it instead.
7133 */
7134 static int intel_gen7_queue_flip(struct drm_device *dev,
7135 struct drm_crtc *crtc,
7136 struct drm_framebuffer *fb,
7137 struct drm_i915_gem_object *obj)
7138 {
7139 struct drm_i915_private *dev_priv = dev->dev_private;
7140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7141 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7142 int ret;
7143
7144 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7145 if (ret)
7146 goto out;
7147
7148 ret = intel_ring_begin(ring, 4);
7149 if (ret)
7150 goto out;
7151
7152 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7153 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7154 intel_ring_emit(ring, (obj->gtt_offset));
7155 intel_ring_emit(ring, (MI_NOOP));
7156 intel_ring_advance(ring);
7157 out:
7158 return ret;
7159 }
7160
7161 static int intel_default_queue_flip(struct drm_device *dev,
7162 struct drm_crtc *crtc,
7163 struct drm_framebuffer *fb,
7164 struct drm_i915_gem_object *obj)
7165 {
7166 return -ENODEV;
7167 }
7168
7169 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7170 struct drm_framebuffer *fb,
7171 struct drm_pending_vblank_event *event)
7172 {
7173 struct drm_device *dev = crtc->dev;
7174 struct drm_i915_private *dev_priv = dev->dev_private;
7175 struct intel_framebuffer *intel_fb;
7176 struct drm_i915_gem_object *obj;
7177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7178 struct intel_unpin_work *work;
7179 unsigned long flags;
7180 int ret;
7181
7182 work = kzalloc(sizeof *work, GFP_KERNEL);
7183 if (work == NULL)
7184 return -ENOMEM;
7185
7186 work->event = event;
7187 work->dev = crtc->dev;
7188 intel_fb = to_intel_framebuffer(crtc->fb);
7189 work->old_fb_obj = intel_fb->obj;
7190 INIT_WORK(&work->work, intel_unpin_work_fn);
7191
7192 /* We borrow the event spin lock for protecting unpin_work */
7193 spin_lock_irqsave(&dev->event_lock, flags);
7194 if (intel_crtc->unpin_work) {
7195 spin_unlock_irqrestore(&dev->event_lock, flags);
7196 kfree(work);
7197
7198 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7199 return -EBUSY;
7200 }
7201 intel_crtc->unpin_work = work;
7202 spin_unlock_irqrestore(&dev->event_lock, flags);
7203
7204 intel_fb = to_intel_framebuffer(fb);
7205 obj = intel_fb->obj;
7206
7207 mutex_lock(&dev->struct_mutex);
7208
7209 /* Reference the objects for the scheduled work. */
7210 drm_gem_object_reference(&work->old_fb_obj->base);
7211 drm_gem_object_reference(&obj->base);
7212
7213 crtc->fb = fb;
7214
7215 ret = drm_vblank_get(dev, intel_crtc->pipe);
7216 if (ret)
7217 goto cleanup_objs;
7218
7219 work->pending_flip_obj = obj;
7220
7221 work->enable_stall_check = true;
7222
7223 /* Block clients from rendering to the new back buffer until
7224 * the flip occurs and the object is no longer visible.
7225 */
7226 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7227
7228 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7229 if (ret)
7230 goto cleanup_pending;
7231
7232 intel_disable_fbc(dev);
7233 mutex_unlock(&dev->struct_mutex);
7234
7235 trace_i915_flip_request(intel_crtc->plane, obj);
7236
7237 return 0;
7238
7239 cleanup_pending:
7240 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7241 cleanup_objs:
7242 drm_gem_object_unreference(&work->old_fb_obj->base);
7243 drm_gem_object_unreference(&obj->base);
7244 mutex_unlock(&dev->struct_mutex);
7245
7246 spin_lock_irqsave(&dev->event_lock, flags);
7247 intel_crtc->unpin_work = NULL;
7248 spin_unlock_irqrestore(&dev->event_lock, flags);
7249
7250 kfree(work);
7251
7252 return ret;
7253 }
7254
7255 static void intel_sanitize_modesetting(struct drm_device *dev,
7256 int pipe, int plane)
7257 {
7258 struct drm_i915_private *dev_priv = dev->dev_private;
7259 u32 reg, val;
7260
7261 if (HAS_PCH_SPLIT(dev))
7262 return;
7263
7264 /* Who knows what state these registers were left in by the BIOS or
7265 * grub?
7266 *
7267 * If we leave the registers in a conflicting state (e.g. with the
7268 * display plane reading from the other pipe than the one we intend
7269 * to use) then when we attempt to teardown the active mode, we will
7270 * not disable the pipes and planes in the correct order -- leaving
7271 * a plane reading from a disabled pipe and possibly leading to
7272 * undefined behaviour.
7273 */
7274
7275 reg = DSPCNTR(plane);
7276 val = I915_READ(reg);
7277
7278 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7279 return;
7280 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7281 return;
7282
7283 /* This display plane is active and attached to the other CPU pipe. */
7284 pipe = !pipe;
7285
7286 /* Disable the plane and wait for it to stop reading from the pipe. */
7287 intel_disable_plane(dev_priv, plane, pipe);
7288 intel_disable_pipe(dev_priv, pipe);
7289 }
7290
7291 static void intel_crtc_reset(struct drm_crtc *crtc)
7292 {
7293 struct drm_device *dev = crtc->dev;
7294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7295
7296 /* Reset flags back to the 'unknown' status so that they
7297 * will be correctly set on the initial modeset.
7298 */
7299 intel_crtc->dpms_mode = -1;
7300
7301 /* We need to fix up any BIOS configuration that conflicts with
7302 * our expectations.
7303 */
7304 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7305 }
7306
7307 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7308 .dpms = intel_crtc_dpms,
7309 .mode_fixup = intel_crtc_mode_fixup,
7310 .mode_set = intel_crtc_mode_set,
7311 .mode_set_base = intel_pipe_set_base,
7312 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7313 .load_lut = intel_crtc_load_lut,
7314 .disable = intel_crtc_disable,
7315 };
7316
7317 static const struct drm_crtc_funcs intel_crtc_funcs = {
7318 .reset = intel_crtc_reset,
7319 .cursor_set = intel_crtc_cursor_set,
7320 .cursor_move = intel_crtc_cursor_move,
7321 .gamma_set = intel_crtc_gamma_set,
7322 .set_config = drm_crtc_helper_set_config,
7323 .destroy = intel_crtc_destroy,
7324 .page_flip = intel_crtc_page_flip,
7325 };
7326
7327 static void intel_crtc_init(struct drm_device *dev, int pipe)
7328 {
7329 drm_i915_private_t *dev_priv = dev->dev_private;
7330 struct intel_crtc *intel_crtc;
7331 int i;
7332
7333 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7334 if (intel_crtc == NULL)
7335 return;
7336
7337 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7338
7339 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7340 for (i = 0; i < 256; i++) {
7341 intel_crtc->lut_r[i] = i;
7342 intel_crtc->lut_g[i] = i;
7343 intel_crtc->lut_b[i] = i;
7344 }
7345
7346 /* Swap pipes & planes for FBC on pre-965 */
7347 intel_crtc->pipe = pipe;
7348 intel_crtc->plane = pipe;
7349 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7350 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7351 intel_crtc->plane = !pipe;
7352 }
7353
7354 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7355 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7356 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7357 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7358
7359 intel_crtc_reset(&intel_crtc->base);
7360 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7361 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7362
7363 if (HAS_PCH_SPLIT(dev)) {
7364 if (pipe == 2 && IS_IVYBRIDGE(dev))
7365 intel_crtc->no_pll = true;
7366 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7367 intel_helper_funcs.commit = ironlake_crtc_commit;
7368 } else {
7369 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7370 intel_helper_funcs.commit = i9xx_crtc_commit;
7371 }
7372
7373 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7374
7375 intel_crtc->busy = false;
7376
7377 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7378 (unsigned long)intel_crtc);
7379 }
7380
7381 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7382 struct drm_file *file)
7383 {
7384 drm_i915_private_t *dev_priv = dev->dev_private;
7385 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7386 struct drm_mode_object *drmmode_obj;
7387 struct intel_crtc *crtc;
7388
7389 if (!dev_priv) {
7390 DRM_ERROR("called with no initialization\n");
7391 return -EINVAL;
7392 }
7393
7394 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7395 DRM_MODE_OBJECT_CRTC);
7396
7397 if (!drmmode_obj) {
7398 DRM_ERROR("no such CRTC id\n");
7399 return -EINVAL;
7400 }
7401
7402 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7403 pipe_from_crtc_id->pipe = crtc->pipe;
7404
7405 return 0;
7406 }
7407
7408 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7409 {
7410 struct intel_encoder *encoder;
7411 int index_mask = 0;
7412 int entry = 0;
7413
7414 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7415 if (type_mask & encoder->clone_mask)
7416 index_mask |= (1 << entry);
7417 entry++;
7418 }
7419
7420 return index_mask;
7421 }
7422
7423 static bool has_edp_a(struct drm_device *dev)
7424 {
7425 struct drm_i915_private *dev_priv = dev->dev_private;
7426
7427 if (!IS_MOBILE(dev))
7428 return false;
7429
7430 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7431 return false;
7432
7433 if (IS_GEN5(dev) &&
7434 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7435 return false;
7436
7437 return true;
7438 }
7439
7440 static void intel_setup_outputs(struct drm_device *dev)
7441 {
7442 struct drm_i915_private *dev_priv = dev->dev_private;
7443 struct intel_encoder *encoder;
7444 bool dpd_is_edp = false;
7445 bool has_lvds = false;
7446
7447 if (IS_MOBILE(dev) && !IS_I830(dev))
7448 has_lvds = intel_lvds_init(dev);
7449 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7450 /* disable the panel fitter on everything but LVDS */
7451 I915_WRITE(PFIT_CONTROL, 0);
7452 }
7453
7454 if (HAS_PCH_SPLIT(dev)) {
7455 dpd_is_edp = intel_dpd_is_edp(dev);
7456
7457 if (has_edp_a(dev))
7458 intel_dp_init(dev, DP_A);
7459
7460 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7461 intel_dp_init(dev, PCH_DP_D);
7462 }
7463
7464 intel_crt_init(dev);
7465
7466 if (HAS_PCH_SPLIT(dev)) {
7467 int found;
7468
7469 if (I915_READ(HDMIB) & PORT_DETECTED) {
7470 /* PCH SDVOB multiplex with HDMIB */
7471 found = intel_sdvo_init(dev, PCH_SDVOB);
7472 if (!found)
7473 intel_hdmi_init(dev, HDMIB);
7474 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7475 intel_dp_init(dev, PCH_DP_B);
7476 }
7477
7478 if (I915_READ(HDMIC) & PORT_DETECTED)
7479 intel_hdmi_init(dev, HDMIC);
7480
7481 if (I915_READ(HDMID) & PORT_DETECTED)
7482 intel_hdmi_init(dev, HDMID);
7483
7484 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7485 intel_dp_init(dev, PCH_DP_C);
7486
7487 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7488 intel_dp_init(dev, PCH_DP_D);
7489
7490 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7491 bool found = false;
7492
7493 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7494 DRM_DEBUG_KMS("probing SDVOB\n");
7495 found = intel_sdvo_init(dev, SDVOB);
7496 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7497 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7498 intel_hdmi_init(dev, SDVOB);
7499 }
7500
7501 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7502 DRM_DEBUG_KMS("probing DP_B\n");
7503 intel_dp_init(dev, DP_B);
7504 }
7505 }
7506
7507 /* Before G4X SDVOC doesn't have its own detect register */
7508
7509 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7510 DRM_DEBUG_KMS("probing SDVOC\n");
7511 found = intel_sdvo_init(dev, SDVOC);
7512 }
7513
7514 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7515
7516 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7517 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7518 intel_hdmi_init(dev, SDVOC);
7519 }
7520 if (SUPPORTS_INTEGRATED_DP(dev)) {
7521 DRM_DEBUG_KMS("probing DP_C\n");
7522 intel_dp_init(dev, DP_C);
7523 }
7524 }
7525
7526 if (SUPPORTS_INTEGRATED_DP(dev) &&
7527 (I915_READ(DP_D) & DP_DETECTED)) {
7528 DRM_DEBUG_KMS("probing DP_D\n");
7529 intel_dp_init(dev, DP_D);
7530 }
7531 } else if (IS_GEN2(dev))
7532 intel_dvo_init(dev);
7533
7534 if (SUPPORTS_TV(dev))
7535 intel_tv_init(dev);
7536
7537 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7538 encoder->base.possible_crtcs = encoder->crtc_mask;
7539 encoder->base.possible_clones =
7540 intel_encoder_clones(dev, encoder->clone_mask);
7541 }
7542
7543 /* disable all the possible outputs/crtcs before entering KMS mode */
7544 drm_helper_disable_unused_functions(dev);
7545
7546 if (HAS_PCH_SPLIT(dev))
7547 ironlake_init_pch_refclk(dev);
7548 }
7549
7550 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7551 {
7552 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7553
7554 drm_framebuffer_cleanup(fb);
7555 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7556
7557 kfree(intel_fb);
7558 }
7559
7560 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7561 struct drm_file *file,
7562 unsigned int *handle)
7563 {
7564 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7565 struct drm_i915_gem_object *obj = intel_fb->obj;
7566
7567 return drm_gem_handle_create(file, &obj->base, handle);
7568 }
7569
7570 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7571 .destroy = intel_user_framebuffer_destroy,
7572 .create_handle = intel_user_framebuffer_create_handle,
7573 };
7574
7575 int intel_framebuffer_init(struct drm_device *dev,
7576 struct intel_framebuffer *intel_fb,
7577 struct drm_mode_fb_cmd *mode_cmd,
7578 struct drm_i915_gem_object *obj)
7579 {
7580 int ret;
7581
7582 if (obj->tiling_mode == I915_TILING_Y)
7583 return -EINVAL;
7584
7585 if (mode_cmd->pitch & 63)
7586 return -EINVAL;
7587
7588 switch (mode_cmd->bpp) {
7589 case 8:
7590 case 16:
7591 /* Only pre-ILK can handle 5:5:5 */
7592 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7593 return -EINVAL;
7594 break;
7595
7596 case 24:
7597 case 32:
7598 break;
7599 default:
7600 return -EINVAL;
7601 }
7602
7603 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7604 if (ret) {
7605 DRM_ERROR("framebuffer init failed %d\n", ret);
7606 return ret;
7607 }
7608
7609 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7610 intel_fb->obj = obj;
7611 return 0;
7612 }
7613
7614 static struct drm_framebuffer *
7615 intel_user_framebuffer_create(struct drm_device *dev,
7616 struct drm_file *filp,
7617 struct drm_mode_fb_cmd *mode_cmd)
7618 {
7619 struct drm_i915_gem_object *obj;
7620
7621 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7622 if (&obj->base == NULL)
7623 return ERR_PTR(-ENOENT);
7624
7625 return intel_framebuffer_create(dev, mode_cmd, obj);
7626 }
7627
7628 static const struct drm_mode_config_funcs intel_mode_funcs = {
7629 .fb_create = intel_user_framebuffer_create,
7630 .output_poll_changed = intel_fb_output_poll_changed,
7631 };
7632
7633 static struct drm_i915_gem_object *
7634 intel_alloc_context_page(struct drm_device *dev)
7635 {
7636 struct drm_i915_gem_object *ctx;
7637 int ret;
7638
7639 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7640
7641 ctx = i915_gem_alloc_object(dev, 4096);
7642 if (!ctx) {
7643 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7644 return NULL;
7645 }
7646
7647 ret = i915_gem_object_pin(ctx, 4096, true);
7648 if (ret) {
7649 DRM_ERROR("failed to pin power context: %d\n", ret);
7650 goto err_unref;
7651 }
7652
7653 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7654 if (ret) {
7655 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7656 goto err_unpin;
7657 }
7658
7659 return ctx;
7660
7661 err_unpin:
7662 i915_gem_object_unpin(ctx);
7663 err_unref:
7664 drm_gem_object_unreference(&ctx->base);
7665 mutex_unlock(&dev->struct_mutex);
7666 return NULL;
7667 }
7668
7669 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7670 {
7671 struct drm_i915_private *dev_priv = dev->dev_private;
7672 u16 rgvswctl;
7673
7674 rgvswctl = I915_READ16(MEMSWCTL);
7675 if (rgvswctl & MEMCTL_CMD_STS) {
7676 DRM_DEBUG("gpu busy, RCS change rejected\n");
7677 return false; /* still busy with another command */
7678 }
7679
7680 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7681 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7682 I915_WRITE16(MEMSWCTL, rgvswctl);
7683 POSTING_READ16(MEMSWCTL);
7684
7685 rgvswctl |= MEMCTL_CMD_STS;
7686 I915_WRITE16(MEMSWCTL, rgvswctl);
7687
7688 return true;
7689 }
7690
7691 void ironlake_enable_drps(struct drm_device *dev)
7692 {
7693 struct drm_i915_private *dev_priv = dev->dev_private;
7694 u32 rgvmodectl = I915_READ(MEMMODECTL);
7695 u8 fmax, fmin, fstart, vstart;
7696
7697 /* Enable temp reporting */
7698 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7699 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7700
7701 /* 100ms RC evaluation intervals */
7702 I915_WRITE(RCUPEI, 100000);
7703 I915_WRITE(RCDNEI, 100000);
7704
7705 /* Set max/min thresholds to 90ms and 80ms respectively */
7706 I915_WRITE(RCBMAXAVG, 90000);
7707 I915_WRITE(RCBMINAVG, 80000);
7708
7709 I915_WRITE(MEMIHYST, 1);
7710
7711 /* Set up min, max, and cur for interrupt handling */
7712 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7713 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7714 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7715 MEMMODE_FSTART_SHIFT;
7716
7717 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7718 PXVFREQ_PX_SHIFT;
7719
7720 dev_priv->fmax = fmax; /* IPS callback will increase this */
7721 dev_priv->fstart = fstart;
7722
7723 dev_priv->max_delay = fstart;
7724 dev_priv->min_delay = fmin;
7725 dev_priv->cur_delay = fstart;
7726
7727 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7728 fmax, fmin, fstart);
7729
7730 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7731
7732 /*
7733 * Interrupts will be enabled in ironlake_irq_postinstall
7734 */
7735
7736 I915_WRITE(VIDSTART, vstart);
7737 POSTING_READ(VIDSTART);
7738
7739 rgvmodectl |= MEMMODE_SWMODE_EN;
7740 I915_WRITE(MEMMODECTL, rgvmodectl);
7741
7742 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7743 DRM_ERROR("stuck trying to change perf mode\n");
7744 msleep(1);
7745
7746 ironlake_set_drps(dev, fstart);
7747
7748 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7749 I915_READ(0x112e0);
7750 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7751 dev_priv->last_count2 = I915_READ(0x112f4);
7752 getrawmonotonic(&dev_priv->last_time2);
7753 }
7754
7755 void ironlake_disable_drps(struct drm_device *dev)
7756 {
7757 struct drm_i915_private *dev_priv = dev->dev_private;
7758 u16 rgvswctl = I915_READ16(MEMSWCTL);
7759
7760 /* Ack interrupts, disable EFC interrupt */
7761 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7762 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7763 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7764 I915_WRITE(DEIIR, DE_PCU_EVENT);
7765 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7766
7767 /* Go back to the starting frequency */
7768 ironlake_set_drps(dev, dev_priv->fstart);
7769 msleep(1);
7770 rgvswctl |= MEMCTL_CMD_STS;
7771 I915_WRITE(MEMSWCTL, rgvswctl);
7772 msleep(1);
7773
7774 }
7775
7776 void gen6_set_rps(struct drm_device *dev, u8 val)
7777 {
7778 struct drm_i915_private *dev_priv = dev->dev_private;
7779 u32 swreq;
7780
7781 swreq = (val & 0x3ff) << 25;
7782 I915_WRITE(GEN6_RPNSWREQ, swreq);
7783 }
7784
7785 void gen6_disable_rps(struct drm_device *dev)
7786 {
7787 struct drm_i915_private *dev_priv = dev->dev_private;
7788
7789 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7790 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7791 I915_WRITE(GEN6_PMIER, 0);
7792 /* Complete PM interrupt masking here doesn't race with the rps work
7793 * item again unmasking PM interrupts because that is using a different
7794 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7795 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7796
7797 spin_lock_irq(&dev_priv->rps_lock);
7798 dev_priv->pm_iir = 0;
7799 spin_unlock_irq(&dev_priv->rps_lock);
7800
7801 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7802 }
7803
7804 static unsigned long intel_pxfreq(u32 vidfreq)
7805 {
7806 unsigned long freq;
7807 int div = (vidfreq & 0x3f0000) >> 16;
7808 int post = (vidfreq & 0x3000) >> 12;
7809 int pre = (vidfreq & 0x7);
7810
7811 if (!pre)
7812 return 0;
7813
7814 freq = ((div * 133333) / ((1<<post) * pre));
7815
7816 return freq;
7817 }
7818
7819 void intel_init_emon(struct drm_device *dev)
7820 {
7821 struct drm_i915_private *dev_priv = dev->dev_private;
7822 u32 lcfuse;
7823 u8 pxw[16];
7824 int i;
7825
7826 /* Disable to program */
7827 I915_WRITE(ECR, 0);
7828 POSTING_READ(ECR);
7829
7830 /* Program energy weights for various events */
7831 I915_WRITE(SDEW, 0x15040d00);
7832 I915_WRITE(CSIEW0, 0x007f0000);
7833 I915_WRITE(CSIEW1, 0x1e220004);
7834 I915_WRITE(CSIEW2, 0x04000004);
7835
7836 for (i = 0; i < 5; i++)
7837 I915_WRITE(PEW + (i * 4), 0);
7838 for (i = 0; i < 3; i++)
7839 I915_WRITE(DEW + (i * 4), 0);
7840
7841 /* Program P-state weights to account for frequency power adjustment */
7842 for (i = 0; i < 16; i++) {
7843 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7844 unsigned long freq = intel_pxfreq(pxvidfreq);
7845 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7846 PXVFREQ_PX_SHIFT;
7847 unsigned long val;
7848
7849 val = vid * vid;
7850 val *= (freq / 1000);
7851 val *= 255;
7852 val /= (127*127*900);
7853 if (val > 0xff)
7854 DRM_ERROR("bad pxval: %ld\n", val);
7855 pxw[i] = val;
7856 }
7857 /* Render standby states get 0 weight */
7858 pxw[14] = 0;
7859 pxw[15] = 0;
7860
7861 for (i = 0; i < 4; i++) {
7862 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7863 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7864 I915_WRITE(PXW + (i * 4), val);
7865 }
7866
7867 /* Adjust magic regs to magic values (more experimental results) */
7868 I915_WRITE(OGW0, 0);
7869 I915_WRITE(OGW1, 0);
7870 I915_WRITE(EG0, 0x00007f00);
7871 I915_WRITE(EG1, 0x0000000e);
7872 I915_WRITE(EG2, 0x000e0000);
7873 I915_WRITE(EG3, 0x68000300);
7874 I915_WRITE(EG4, 0x42000000);
7875 I915_WRITE(EG5, 0x00140031);
7876 I915_WRITE(EG6, 0);
7877 I915_WRITE(EG7, 0);
7878
7879 for (i = 0; i < 8; i++)
7880 I915_WRITE(PXWL + (i * 4), 0);
7881
7882 /* Enable PMON + select events */
7883 I915_WRITE(ECR, 0x80000019);
7884
7885 lcfuse = I915_READ(LCFUSE02);
7886
7887 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7888 }
7889
7890 static bool intel_enable_rc6(struct drm_device *dev)
7891 {
7892 /*
7893 * Respect the kernel parameter if it is set
7894 */
7895 if (i915_enable_rc6 >= 0)
7896 return i915_enable_rc6;
7897
7898 /*
7899 * Disable RC6 on Ironlake
7900 */
7901 if (INTEL_INFO(dev)->gen == 5)
7902 return 0;
7903
7904 /*
7905 * Enable rc6 on Sandybridge if DMA remapping is disabled
7906 */
7907 if (INTEL_INFO(dev)->gen == 6) {
7908 DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
7909 intel_iommu_enabled ? "true" : "false",
7910 !intel_iommu_enabled ? "en" : "dis");
7911 return !intel_iommu_enabled;
7912 }
7913 DRM_DEBUG_DRIVER("RC6 enabled\n");
7914 return 1;
7915 }
7916
7917 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7918 {
7919 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7920 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7921 u32 pcu_mbox, rc6_mask = 0;
7922 int cur_freq, min_freq, max_freq;
7923 int i;
7924
7925 /* Here begins a magic sequence of register writes to enable
7926 * auto-downclocking.
7927 *
7928 * Perhaps there might be some value in exposing these to
7929 * userspace...
7930 */
7931 I915_WRITE(GEN6_RC_STATE, 0);
7932 mutex_lock(&dev_priv->dev->struct_mutex);
7933 gen6_gt_force_wake_get(dev_priv);
7934
7935 /* disable the counters and set deterministic thresholds */
7936 I915_WRITE(GEN6_RC_CONTROL, 0);
7937
7938 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7939 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7940 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7941 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7942 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7943
7944 for (i = 0; i < I915_NUM_RINGS; i++)
7945 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7946
7947 I915_WRITE(GEN6_RC_SLEEP, 0);
7948 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7949 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7950 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7951 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7952
7953 if (intel_enable_rc6(dev_priv->dev))
7954 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7955 GEN6_RC_CTL_RC6_ENABLE;
7956
7957 I915_WRITE(GEN6_RC_CONTROL,
7958 rc6_mask |
7959 GEN6_RC_CTL_EI_MODE(1) |
7960 GEN6_RC_CTL_HW_ENABLE);
7961
7962 I915_WRITE(GEN6_RPNSWREQ,
7963 GEN6_FREQUENCY(10) |
7964 GEN6_OFFSET(0) |
7965 GEN6_AGGRESSIVE_TURBO);
7966 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7967 GEN6_FREQUENCY(12));
7968
7969 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7970 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7971 18 << 24 |
7972 6 << 16);
7973 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7974 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7975 I915_WRITE(GEN6_RP_UP_EI, 100000);
7976 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7977 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7978 I915_WRITE(GEN6_RP_CONTROL,
7979 GEN6_RP_MEDIA_TURBO |
7980 GEN6_RP_USE_NORMAL_FREQ |
7981 GEN6_RP_MEDIA_IS_GFX |
7982 GEN6_RP_ENABLE |
7983 GEN6_RP_UP_BUSY_AVG |
7984 GEN6_RP_DOWN_IDLE_CONT);
7985
7986 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7987 500))
7988 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7989
7990 I915_WRITE(GEN6_PCODE_DATA, 0);
7991 I915_WRITE(GEN6_PCODE_MAILBOX,
7992 GEN6_PCODE_READY |
7993 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7994 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7995 500))
7996 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7997
7998 min_freq = (rp_state_cap & 0xff0000) >> 16;
7999 max_freq = rp_state_cap & 0xff;
8000 cur_freq = (gt_perf_status & 0xff00) >> 8;
8001
8002 /* Check for overclock support */
8003 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8004 500))
8005 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8006 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8007 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8008 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8009 500))
8010 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8011 if (pcu_mbox & (1<<31)) { /* OC supported */
8012 max_freq = pcu_mbox & 0xff;
8013 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8014 }
8015
8016 /* In units of 100MHz */
8017 dev_priv->max_delay = max_freq;
8018 dev_priv->min_delay = min_freq;
8019 dev_priv->cur_delay = cur_freq;
8020
8021 /* requires MSI enabled */
8022 I915_WRITE(GEN6_PMIER,
8023 GEN6_PM_MBOX_EVENT |
8024 GEN6_PM_THERMAL_EVENT |
8025 GEN6_PM_RP_DOWN_TIMEOUT |
8026 GEN6_PM_RP_UP_THRESHOLD |
8027 GEN6_PM_RP_DOWN_THRESHOLD |
8028 GEN6_PM_RP_UP_EI_EXPIRED |
8029 GEN6_PM_RP_DOWN_EI_EXPIRED);
8030 spin_lock_irq(&dev_priv->rps_lock);
8031 WARN_ON(dev_priv->pm_iir != 0);
8032 I915_WRITE(GEN6_PMIMR, 0);
8033 spin_unlock_irq(&dev_priv->rps_lock);
8034 /* enable all PM interrupts */
8035 I915_WRITE(GEN6_PMINTRMSK, 0);
8036
8037 gen6_gt_force_wake_put(dev_priv);
8038 mutex_unlock(&dev_priv->dev->struct_mutex);
8039 }
8040
8041 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8042 {
8043 int min_freq = 15;
8044 int gpu_freq, ia_freq, max_ia_freq;
8045 int scaling_factor = 180;
8046
8047 max_ia_freq = cpufreq_quick_get_max(0);
8048 /*
8049 * Default to measured freq if none found, PCU will ensure we don't go
8050 * over
8051 */
8052 if (!max_ia_freq)
8053 max_ia_freq = tsc_khz;
8054
8055 /* Convert from kHz to MHz */
8056 max_ia_freq /= 1000;
8057
8058 mutex_lock(&dev_priv->dev->struct_mutex);
8059
8060 /*
8061 * For each potential GPU frequency, load a ring frequency we'd like
8062 * to use for memory access. We do this by specifying the IA frequency
8063 * the PCU should use as a reference to determine the ring frequency.
8064 */
8065 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8066 gpu_freq--) {
8067 int diff = dev_priv->max_delay - gpu_freq;
8068
8069 /*
8070 * For GPU frequencies less than 750MHz, just use the lowest
8071 * ring freq.
8072 */
8073 if (gpu_freq < min_freq)
8074 ia_freq = 800;
8075 else
8076 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8077 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8078
8079 I915_WRITE(GEN6_PCODE_DATA,
8080 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8081 gpu_freq);
8082 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8083 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8084 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8085 GEN6_PCODE_READY) == 0, 10)) {
8086 DRM_ERROR("pcode write of freq table timed out\n");
8087 continue;
8088 }
8089 }
8090
8091 mutex_unlock(&dev_priv->dev->struct_mutex);
8092 }
8093
8094 static void ironlake_init_clock_gating(struct drm_device *dev)
8095 {
8096 struct drm_i915_private *dev_priv = dev->dev_private;
8097 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8098
8099 /* Required for FBC */
8100 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8101 DPFCRUNIT_CLOCK_GATE_DISABLE |
8102 DPFDUNIT_CLOCK_GATE_DISABLE;
8103 /* Required for CxSR */
8104 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8105
8106 I915_WRITE(PCH_3DCGDIS0,
8107 MARIUNIT_CLOCK_GATE_DISABLE |
8108 SVSMUNIT_CLOCK_GATE_DISABLE);
8109 I915_WRITE(PCH_3DCGDIS1,
8110 VFMUNIT_CLOCK_GATE_DISABLE);
8111
8112 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8113
8114 /*
8115 * According to the spec the following bits should be set in
8116 * order to enable memory self-refresh
8117 * The bit 22/21 of 0x42004
8118 * The bit 5 of 0x42020
8119 * The bit 15 of 0x45000
8120 */
8121 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8122 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8123 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8124 I915_WRITE(ILK_DSPCLK_GATE,
8125 (I915_READ(ILK_DSPCLK_GATE) |
8126 ILK_DPARB_CLK_GATE));
8127 I915_WRITE(DISP_ARB_CTL,
8128 (I915_READ(DISP_ARB_CTL) |
8129 DISP_FBC_WM_DIS));
8130 I915_WRITE(WM3_LP_ILK, 0);
8131 I915_WRITE(WM2_LP_ILK, 0);
8132 I915_WRITE(WM1_LP_ILK, 0);
8133
8134 /*
8135 * Based on the document from hardware guys the following bits
8136 * should be set unconditionally in order to enable FBC.
8137 * The bit 22 of 0x42000
8138 * The bit 22 of 0x42004
8139 * The bit 7,8,9 of 0x42020.
8140 */
8141 if (IS_IRONLAKE_M(dev)) {
8142 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8143 I915_READ(ILK_DISPLAY_CHICKEN1) |
8144 ILK_FBCQ_DIS);
8145 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8146 I915_READ(ILK_DISPLAY_CHICKEN2) |
8147 ILK_DPARB_GATE);
8148 I915_WRITE(ILK_DSPCLK_GATE,
8149 I915_READ(ILK_DSPCLK_GATE) |
8150 ILK_DPFC_DIS1 |
8151 ILK_DPFC_DIS2 |
8152 ILK_CLK_FBC);
8153 }
8154
8155 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8156 I915_READ(ILK_DISPLAY_CHICKEN2) |
8157 ILK_ELPIN_409_SELECT);
8158 I915_WRITE(_3D_CHICKEN2,
8159 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8160 _3D_CHICKEN2_WM_READ_PIPELINED);
8161 }
8162
8163 static void gen6_init_clock_gating(struct drm_device *dev)
8164 {
8165 struct drm_i915_private *dev_priv = dev->dev_private;
8166 int pipe;
8167 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8168
8169 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8170
8171 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8172 I915_READ(ILK_DISPLAY_CHICKEN2) |
8173 ILK_ELPIN_409_SELECT);
8174
8175 I915_WRITE(WM3_LP_ILK, 0);
8176 I915_WRITE(WM2_LP_ILK, 0);
8177 I915_WRITE(WM1_LP_ILK, 0);
8178
8179 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8180 * gating disable must be set. Failure to set it results in
8181 * flickering pixels due to Z write ordering failures after
8182 * some amount of runtime in the Mesa "fire" demo, and Unigine
8183 * Sanctuary and Tropics, and apparently anything else with
8184 * alpha test or pixel discard.
8185 *
8186 * According to the spec, bit 11 (RCCUNIT) must also be set,
8187 * but we didn't debug actual testcases to find it out.
8188 */
8189 I915_WRITE(GEN6_UCGCTL2,
8190 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8191 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8192
8193 /*
8194 * According to the spec the following bits should be
8195 * set in order to enable memory self-refresh and fbc:
8196 * The bit21 and bit22 of 0x42000
8197 * The bit21 and bit22 of 0x42004
8198 * The bit5 and bit7 of 0x42020
8199 * The bit14 of 0x70180
8200 * The bit14 of 0x71180
8201 */
8202 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8203 I915_READ(ILK_DISPLAY_CHICKEN1) |
8204 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8205 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8206 I915_READ(ILK_DISPLAY_CHICKEN2) |
8207 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8208 I915_WRITE(ILK_DSPCLK_GATE,
8209 I915_READ(ILK_DSPCLK_GATE) |
8210 ILK_DPARB_CLK_GATE |
8211 ILK_DPFD_CLK_GATE);
8212
8213 for_each_pipe(pipe) {
8214 I915_WRITE(DSPCNTR(pipe),
8215 I915_READ(DSPCNTR(pipe)) |
8216 DISPPLANE_TRICKLE_FEED_DISABLE);
8217 intel_flush_display_plane(dev_priv, pipe);
8218 }
8219 }
8220
8221 static void ivybridge_init_clock_gating(struct drm_device *dev)
8222 {
8223 struct drm_i915_private *dev_priv = dev->dev_private;
8224 int pipe;
8225 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8226
8227 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8228
8229 I915_WRITE(WM3_LP_ILK, 0);
8230 I915_WRITE(WM2_LP_ILK, 0);
8231 I915_WRITE(WM1_LP_ILK, 0);
8232
8233 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8234
8235 for_each_pipe(pipe) {
8236 I915_WRITE(DSPCNTR(pipe),
8237 I915_READ(DSPCNTR(pipe)) |
8238 DISPPLANE_TRICKLE_FEED_DISABLE);
8239 intel_flush_display_plane(dev_priv, pipe);
8240 }
8241 }
8242
8243 static void g4x_init_clock_gating(struct drm_device *dev)
8244 {
8245 struct drm_i915_private *dev_priv = dev->dev_private;
8246 uint32_t dspclk_gate;
8247
8248 I915_WRITE(RENCLK_GATE_D1, 0);
8249 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8250 GS_UNIT_CLOCK_GATE_DISABLE |
8251 CL_UNIT_CLOCK_GATE_DISABLE);
8252 I915_WRITE(RAMCLK_GATE_D, 0);
8253 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8254 OVRUNIT_CLOCK_GATE_DISABLE |
8255 OVCUNIT_CLOCK_GATE_DISABLE;
8256 if (IS_GM45(dev))
8257 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8258 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8259 }
8260
8261 static void crestline_init_clock_gating(struct drm_device *dev)
8262 {
8263 struct drm_i915_private *dev_priv = dev->dev_private;
8264
8265 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8266 I915_WRITE(RENCLK_GATE_D2, 0);
8267 I915_WRITE(DSPCLK_GATE_D, 0);
8268 I915_WRITE(RAMCLK_GATE_D, 0);
8269 I915_WRITE16(DEUC, 0);
8270 }
8271
8272 static void broadwater_init_clock_gating(struct drm_device *dev)
8273 {
8274 struct drm_i915_private *dev_priv = dev->dev_private;
8275
8276 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8277 I965_RCC_CLOCK_GATE_DISABLE |
8278 I965_RCPB_CLOCK_GATE_DISABLE |
8279 I965_ISC_CLOCK_GATE_DISABLE |
8280 I965_FBC_CLOCK_GATE_DISABLE);
8281 I915_WRITE(RENCLK_GATE_D2, 0);
8282 }
8283
8284 static void gen3_init_clock_gating(struct drm_device *dev)
8285 {
8286 struct drm_i915_private *dev_priv = dev->dev_private;
8287 u32 dstate = I915_READ(D_STATE);
8288
8289 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8290 DSTATE_DOT_CLOCK_GATING;
8291 I915_WRITE(D_STATE, dstate);
8292 }
8293
8294 static void i85x_init_clock_gating(struct drm_device *dev)
8295 {
8296 struct drm_i915_private *dev_priv = dev->dev_private;
8297
8298 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8299 }
8300
8301 static void i830_init_clock_gating(struct drm_device *dev)
8302 {
8303 struct drm_i915_private *dev_priv = dev->dev_private;
8304
8305 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8306 }
8307
8308 static void ibx_init_clock_gating(struct drm_device *dev)
8309 {
8310 struct drm_i915_private *dev_priv = dev->dev_private;
8311
8312 /*
8313 * On Ibex Peak and Cougar Point, we need to disable clock
8314 * gating for the panel power sequencer or it will fail to
8315 * start up when no ports are active.
8316 */
8317 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8318 }
8319
8320 static void cpt_init_clock_gating(struct drm_device *dev)
8321 {
8322 struct drm_i915_private *dev_priv = dev->dev_private;
8323 int pipe;
8324
8325 /*
8326 * On Ibex Peak and Cougar Point, we need to disable clock
8327 * gating for the panel power sequencer or it will fail to
8328 * start up when no ports are active.
8329 */
8330 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8331 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8332 DPLS_EDP_PPS_FIX_DIS);
8333 /* Without this, mode sets may fail silently on FDI */
8334 for_each_pipe(pipe)
8335 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8336 }
8337
8338 static void ironlake_teardown_rc6(struct drm_device *dev)
8339 {
8340 struct drm_i915_private *dev_priv = dev->dev_private;
8341
8342 if (dev_priv->renderctx) {
8343 i915_gem_object_unpin(dev_priv->renderctx);
8344 drm_gem_object_unreference(&dev_priv->renderctx->base);
8345 dev_priv->renderctx = NULL;
8346 }
8347
8348 if (dev_priv->pwrctx) {
8349 i915_gem_object_unpin(dev_priv->pwrctx);
8350 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8351 dev_priv->pwrctx = NULL;
8352 }
8353 }
8354
8355 static void ironlake_disable_rc6(struct drm_device *dev)
8356 {
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358
8359 if (I915_READ(PWRCTXA)) {
8360 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8361 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8362 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8363 50);
8364
8365 I915_WRITE(PWRCTXA, 0);
8366 POSTING_READ(PWRCTXA);
8367
8368 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8369 POSTING_READ(RSTDBYCTL);
8370 }
8371
8372 ironlake_teardown_rc6(dev);
8373 }
8374
8375 static int ironlake_setup_rc6(struct drm_device *dev)
8376 {
8377 struct drm_i915_private *dev_priv = dev->dev_private;
8378
8379 if (dev_priv->renderctx == NULL)
8380 dev_priv->renderctx = intel_alloc_context_page(dev);
8381 if (!dev_priv->renderctx)
8382 return -ENOMEM;
8383
8384 if (dev_priv->pwrctx == NULL)
8385 dev_priv->pwrctx = intel_alloc_context_page(dev);
8386 if (!dev_priv->pwrctx) {
8387 ironlake_teardown_rc6(dev);
8388 return -ENOMEM;
8389 }
8390
8391 return 0;
8392 }
8393
8394 void ironlake_enable_rc6(struct drm_device *dev)
8395 {
8396 struct drm_i915_private *dev_priv = dev->dev_private;
8397 int ret;
8398
8399 /* rc6 disabled by default due to repeated reports of hanging during
8400 * boot and resume.
8401 */
8402 if (!intel_enable_rc6(dev))
8403 return;
8404
8405 mutex_lock(&dev->struct_mutex);
8406 ret = ironlake_setup_rc6(dev);
8407 if (ret) {
8408 mutex_unlock(&dev->struct_mutex);
8409 return;
8410 }
8411
8412 /*
8413 * GPU can automatically power down the render unit if given a page
8414 * to save state.
8415 */
8416 ret = BEGIN_LP_RING(6);
8417 if (ret) {
8418 ironlake_teardown_rc6(dev);
8419 mutex_unlock(&dev->struct_mutex);
8420 return;
8421 }
8422
8423 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8424 OUT_RING(MI_SET_CONTEXT);
8425 OUT_RING(dev_priv->renderctx->gtt_offset |
8426 MI_MM_SPACE_GTT |
8427 MI_SAVE_EXT_STATE_EN |
8428 MI_RESTORE_EXT_STATE_EN |
8429 MI_RESTORE_INHIBIT);
8430 OUT_RING(MI_SUSPEND_FLUSH);
8431 OUT_RING(MI_NOOP);
8432 OUT_RING(MI_FLUSH);
8433 ADVANCE_LP_RING();
8434
8435 /*
8436 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8437 * does an implicit flush, combined with MI_FLUSH above, it should be
8438 * safe to assume that renderctx is valid
8439 */
8440 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8441 if (ret) {
8442 DRM_ERROR("failed to enable ironlake power power savings\n");
8443 ironlake_teardown_rc6(dev);
8444 mutex_unlock(&dev->struct_mutex);
8445 return;
8446 }
8447
8448 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8449 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8450 mutex_unlock(&dev->struct_mutex);
8451 }
8452
8453 void intel_init_clock_gating(struct drm_device *dev)
8454 {
8455 struct drm_i915_private *dev_priv = dev->dev_private;
8456
8457 dev_priv->display.init_clock_gating(dev);
8458
8459 if (dev_priv->display.init_pch_clock_gating)
8460 dev_priv->display.init_pch_clock_gating(dev);
8461 }
8462
8463 /* Set up chip specific display functions */
8464 static void intel_init_display(struct drm_device *dev)
8465 {
8466 struct drm_i915_private *dev_priv = dev->dev_private;
8467
8468 /* We always want a DPMS function */
8469 if (HAS_PCH_SPLIT(dev)) {
8470 dev_priv->display.dpms = ironlake_crtc_dpms;
8471 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8472 dev_priv->display.update_plane = ironlake_update_plane;
8473 } else {
8474 dev_priv->display.dpms = i9xx_crtc_dpms;
8475 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8476 dev_priv->display.update_plane = i9xx_update_plane;
8477 }
8478
8479 if (I915_HAS_FBC(dev)) {
8480 if (HAS_PCH_SPLIT(dev)) {
8481 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8482 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8483 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8484 } else if (IS_GM45(dev)) {
8485 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8486 dev_priv->display.enable_fbc = g4x_enable_fbc;
8487 dev_priv->display.disable_fbc = g4x_disable_fbc;
8488 } else if (IS_CRESTLINE(dev)) {
8489 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8490 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8491 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8492 }
8493 /* 855GM needs testing */
8494 }
8495
8496 /* Returns the core display clock speed */
8497 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8498 dev_priv->display.get_display_clock_speed =
8499 i945_get_display_clock_speed;
8500 else if (IS_I915G(dev))
8501 dev_priv->display.get_display_clock_speed =
8502 i915_get_display_clock_speed;
8503 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8504 dev_priv->display.get_display_clock_speed =
8505 i9xx_misc_get_display_clock_speed;
8506 else if (IS_I915GM(dev))
8507 dev_priv->display.get_display_clock_speed =
8508 i915gm_get_display_clock_speed;
8509 else if (IS_I865G(dev))
8510 dev_priv->display.get_display_clock_speed =
8511 i865_get_display_clock_speed;
8512 else if (IS_I85X(dev))
8513 dev_priv->display.get_display_clock_speed =
8514 i855_get_display_clock_speed;
8515 else /* 852, 830 */
8516 dev_priv->display.get_display_clock_speed =
8517 i830_get_display_clock_speed;
8518
8519 /* For FIFO watermark updates */
8520 if (HAS_PCH_SPLIT(dev)) {
8521 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8522 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8523
8524 /* IVB configs may use multi-threaded forcewake */
8525 if (IS_IVYBRIDGE(dev)) {
8526 u32 ecobus;
8527
8528 mutex_lock(&dev->struct_mutex);
8529 __gen6_gt_force_wake_mt_get(dev_priv);
8530 ecobus = I915_READ(ECOBUS);
8531 __gen6_gt_force_wake_mt_put(dev_priv);
8532 mutex_unlock(&dev->struct_mutex);
8533
8534 if (ecobus & FORCEWAKE_MT_ENABLE) {
8535 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8536 dev_priv->display.force_wake_get =
8537 __gen6_gt_force_wake_mt_get;
8538 dev_priv->display.force_wake_put =
8539 __gen6_gt_force_wake_mt_put;
8540 }
8541 }
8542
8543 if (HAS_PCH_IBX(dev))
8544 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8545 else if (HAS_PCH_CPT(dev))
8546 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8547
8548 if (IS_GEN5(dev)) {
8549 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8550 dev_priv->display.update_wm = ironlake_update_wm;
8551 else {
8552 DRM_DEBUG_KMS("Failed to get proper latency. "
8553 "Disable CxSR\n");
8554 dev_priv->display.update_wm = NULL;
8555 }
8556 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8557 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8558 dev_priv->display.write_eld = ironlake_write_eld;
8559 } else if (IS_GEN6(dev)) {
8560 if (SNB_READ_WM0_LATENCY()) {
8561 dev_priv->display.update_wm = sandybridge_update_wm;
8562 } else {
8563 DRM_DEBUG_KMS("Failed to read display plane latency. "
8564 "Disable CxSR\n");
8565 dev_priv->display.update_wm = NULL;
8566 }
8567 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8568 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8569 dev_priv->display.write_eld = ironlake_write_eld;
8570 } else if (IS_IVYBRIDGE(dev)) {
8571 /* FIXME: detect B0+ stepping and use auto training */
8572 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8573 if (SNB_READ_WM0_LATENCY()) {
8574 dev_priv->display.update_wm = sandybridge_update_wm;
8575 } else {
8576 DRM_DEBUG_KMS("Failed to read display plane latency. "
8577 "Disable CxSR\n");
8578 dev_priv->display.update_wm = NULL;
8579 }
8580 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8581 dev_priv->display.write_eld = ironlake_write_eld;
8582 } else
8583 dev_priv->display.update_wm = NULL;
8584 } else if (IS_PINEVIEW(dev)) {
8585 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8586 dev_priv->is_ddr3,
8587 dev_priv->fsb_freq,
8588 dev_priv->mem_freq)) {
8589 DRM_INFO("failed to find known CxSR latency "
8590 "(found ddr%s fsb freq %d, mem freq %d), "
8591 "disabling CxSR\n",
8592 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8593 dev_priv->fsb_freq, dev_priv->mem_freq);
8594 /* Disable CxSR and never update its watermark again */
8595 pineview_disable_cxsr(dev);
8596 dev_priv->display.update_wm = NULL;
8597 } else
8598 dev_priv->display.update_wm = pineview_update_wm;
8599 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8600 } else if (IS_G4X(dev)) {
8601 dev_priv->display.write_eld = g4x_write_eld;
8602 dev_priv->display.update_wm = g4x_update_wm;
8603 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8604 } else if (IS_GEN4(dev)) {
8605 dev_priv->display.update_wm = i965_update_wm;
8606 if (IS_CRESTLINE(dev))
8607 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8608 else if (IS_BROADWATER(dev))
8609 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8610 } else if (IS_GEN3(dev)) {
8611 dev_priv->display.update_wm = i9xx_update_wm;
8612 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8613 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8614 } else if (IS_I865G(dev)) {
8615 dev_priv->display.update_wm = i830_update_wm;
8616 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8617 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8618 } else if (IS_I85X(dev)) {
8619 dev_priv->display.update_wm = i9xx_update_wm;
8620 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8621 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8622 } else {
8623 dev_priv->display.update_wm = i830_update_wm;
8624 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8625 if (IS_845G(dev))
8626 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8627 else
8628 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8629 }
8630
8631 /* Default just returns -ENODEV to indicate unsupported */
8632 dev_priv->display.queue_flip = intel_default_queue_flip;
8633
8634 switch (INTEL_INFO(dev)->gen) {
8635 case 2:
8636 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8637 break;
8638
8639 case 3:
8640 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8641 break;
8642
8643 case 4:
8644 case 5:
8645 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8646 break;
8647
8648 case 6:
8649 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8650 break;
8651 case 7:
8652 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8653 break;
8654 }
8655 }
8656
8657 /*
8658 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8659 * resume, or other times. This quirk makes sure that's the case for
8660 * affected systems.
8661 */
8662 static void quirk_pipea_force(struct drm_device *dev)
8663 {
8664 struct drm_i915_private *dev_priv = dev->dev_private;
8665
8666 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8667 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8668 }
8669
8670 /*
8671 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8672 */
8673 static void quirk_ssc_force_disable(struct drm_device *dev)
8674 {
8675 struct drm_i915_private *dev_priv = dev->dev_private;
8676 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8677 }
8678
8679 struct intel_quirk {
8680 int device;
8681 int subsystem_vendor;
8682 int subsystem_device;
8683 void (*hook)(struct drm_device *dev);
8684 };
8685
8686 struct intel_quirk intel_quirks[] = {
8687 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8688 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8689 /* HP Mini needs pipe A force quirk (LP: #322104) */
8690 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8691
8692 /* Thinkpad R31 needs pipe A force quirk */
8693 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8694 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8695 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8696
8697 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8698 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8699 /* ThinkPad X40 needs pipe A force quirk */
8700
8701 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8702 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8703
8704 /* 855 & before need to leave pipe A & dpll A up */
8705 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8706 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8707
8708 /* Lenovo U160 cannot use SSC on LVDS */
8709 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8710
8711 /* Sony Vaio Y cannot use SSC on LVDS */
8712 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8713 };
8714
8715 static void intel_init_quirks(struct drm_device *dev)
8716 {
8717 struct pci_dev *d = dev->pdev;
8718 int i;
8719
8720 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8721 struct intel_quirk *q = &intel_quirks[i];
8722
8723 if (d->device == q->device &&
8724 (d->subsystem_vendor == q->subsystem_vendor ||
8725 q->subsystem_vendor == PCI_ANY_ID) &&
8726 (d->subsystem_device == q->subsystem_device ||
8727 q->subsystem_device == PCI_ANY_ID))
8728 q->hook(dev);
8729 }
8730 }
8731
8732 /* Disable the VGA plane that we never use */
8733 static void i915_disable_vga(struct drm_device *dev)
8734 {
8735 struct drm_i915_private *dev_priv = dev->dev_private;
8736 u8 sr1;
8737 u32 vga_reg;
8738
8739 if (HAS_PCH_SPLIT(dev))
8740 vga_reg = CPU_VGACNTRL;
8741 else
8742 vga_reg = VGACNTRL;
8743
8744 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8745 outb(1, VGA_SR_INDEX);
8746 sr1 = inb(VGA_SR_DATA);
8747 outb(sr1 | 1<<5, VGA_SR_DATA);
8748 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8749 udelay(300);
8750
8751 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8752 POSTING_READ(vga_reg);
8753 }
8754
8755 void intel_modeset_init(struct drm_device *dev)
8756 {
8757 struct drm_i915_private *dev_priv = dev->dev_private;
8758 int i;
8759
8760 drm_mode_config_init(dev);
8761
8762 dev->mode_config.min_width = 0;
8763 dev->mode_config.min_height = 0;
8764
8765 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8766
8767 intel_init_quirks(dev);
8768
8769 intel_init_display(dev);
8770
8771 if (IS_GEN2(dev)) {
8772 dev->mode_config.max_width = 2048;
8773 dev->mode_config.max_height = 2048;
8774 } else if (IS_GEN3(dev)) {
8775 dev->mode_config.max_width = 4096;
8776 dev->mode_config.max_height = 4096;
8777 } else {
8778 dev->mode_config.max_width = 8192;
8779 dev->mode_config.max_height = 8192;
8780 }
8781 dev->mode_config.fb_base = dev->agp->base;
8782
8783 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8784 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8785
8786 for (i = 0; i < dev_priv->num_pipe; i++) {
8787 intel_crtc_init(dev, i);
8788 }
8789
8790 /* Just disable it once at startup */
8791 i915_disable_vga(dev);
8792 intel_setup_outputs(dev);
8793
8794 intel_init_clock_gating(dev);
8795
8796 if (IS_IRONLAKE_M(dev)) {
8797 ironlake_enable_drps(dev);
8798 intel_init_emon(dev);
8799 }
8800
8801 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8802 gen6_enable_rps(dev_priv);
8803 gen6_update_ring_freq(dev_priv);
8804 }
8805
8806 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8807 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8808 (unsigned long)dev);
8809 }
8810
8811 void intel_modeset_gem_init(struct drm_device *dev)
8812 {
8813 if (IS_IRONLAKE_M(dev))
8814 ironlake_enable_rc6(dev);
8815
8816 intel_setup_overlay(dev);
8817 }
8818
8819 void intel_modeset_cleanup(struct drm_device *dev)
8820 {
8821 struct drm_i915_private *dev_priv = dev->dev_private;
8822 struct drm_crtc *crtc;
8823 struct intel_crtc *intel_crtc;
8824
8825 drm_kms_helper_poll_fini(dev);
8826 mutex_lock(&dev->struct_mutex);
8827
8828 intel_unregister_dsm_handler();
8829
8830
8831 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8832 /* Skip inactive CRTCs */
8833 if (!crtc->fb)
8834 continue;
8835
8836 intel_crtc = to_intel_crtc(crtc);
8837 intel_increase_pllclock(crtc);
8838 }
8839
8840 intel_disable_fbc(dev);
8841
8842 if (IS_IRONLAKE_M(dev))
8843 ironlake_disable_drps(dev);
8844 if (IS_GEN6(dev) || IS_GEN7(dev))
8845 gen6_disable_rps(dev);
8846
8847 if (IS_IRONLAKE_M(dev))
8848 ironlake_disable_rc6(dev);
8849
8850 mutex_unlock(&dev->struct_mutex);
8851
8852 /* Disable the irq before mode object teardown, for the irq might
8853 * enqueue unpin/hotplug work. */
8854 drm_irq_uninstall(dev);
8855 cancel_work_sync(&dev_priv->hotplug_work);
8856 cancel_work_sync(&dev_priv->rps_work);
8857
8858 /* flush any delayed tasks or pending work */
8859 flush_scheduled_work();
8860
8861 /* Shut off idle work before the crtcs get freed. */
8862 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8863 intel_crtc = to_intel_crtc(crtc);
8864 del_timer_sync(&intel_crtc->idle_timer);
8865 }
8866 del_timer_sync(&dev_priv->idle_timer);
8867 cancel_work_sync(&dev_priv->idle_work);
8868
8869 drm_mode_config_cleanup(dev);
8870 }
8871
8872 /*
8873 * Return which encoder is currently attached for connector.
8874 */
8875 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8876 {
8877 return &intel_attached_encoder(connector)->base;
8878 }
8879
8880 void intel_connector_attach_encoder(struct intel_connector *connector,
8881 struct intel_encoder *encoder)
8882 {
8883 connector->encoder = encoder;
8884 drm_mode_connector_attach_encoder(&connector->base,
8885 &encoder->base);
8886 }
8887
8888 /*
8889 * set vga decode state - true == enable VGA decode
8890 */
8891 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8892 {
8893 struct drm_i915_private *dev_priv = dev->dev_private;
8894 u16 gmch_ctrl;
8895
8896 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8897 if (state)
8898 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8899 else
8900 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8901 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8902 return 0;
8903 }
8904
8905 #ifdef CONFIG_DEBUG_FS
8906 #include <linux/seq_file.h>
8907
8908 struct intel_display_error_state {
8909 struct intel_cursor_error_state {
8910 u32 control;
8911 u32 position;
8912 u32 base;
8913 u32 size;
8914 } cursor[2];
8915
8916 struct intel_pipe_error_state {
8917 u32 conf;
8918 u32 source;
8919
8920 u32 htotal;
8921 u32 hblank;
8922 u32 hsync;
8923 u32 vtotal;
8924 u32 vblank;
8925 u32 vsync;
8926 } pipe[2];
8927
8928 struct intel_plane_error_state {
8929 u32 control;
8930 u32 stride;
8931 u32 size;
8932 u32 pos;
8933 u32 addr;
8934 u32 surface;
8935 u32 tile_offset;
8936 } plane[2];
8937 };
8938
8939 struct intel_display_error_state *
8940 intel_display_capture_error_state(struct drm_device *dev)
8941 {
8942 drm_i915_private_t *dev_priv = dev->dev_private;
8943 struct intel_display_error_state *error;
8944 int i;
8945
8946 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8947 if (error == NULL)
8948 return NULL;
8949
8950 for (i = 0; i < 2; i++) {
8951 error->cursor[i].control = I915_READ(CURCNTR(i));
8952 error->cursor[i].position = I915_READ(CURPOS(i));
8953 error->cursor[i].base = I915_READ(CURBASE(i));
8954
8955 error->plane[i].control = I915_READ(DSPCNTR(i));
8956 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8957 error->plane[i].size = I915_READ(DSPSIZE(i));
8958 error->plane[i].pos = I915_READ(DSPPOS(i));
8959 error->plane[i].addr = I915_READ(DSPADDR(i));
8960 if (INTEL_INFO(dev)->gen >= 4) {
8961 error->plane[i].surface = I915_READ(DSPSURF(i));
8962 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8963 }
8964
8965 error->pipe[i].conf = I915_READ(PIPECONF(i));
8966 error->pipe[i].source = I915_READ(PIPESRC(i));
8967 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8968 error->pipe[i].hblank = I915_READ(HBLANK(i));
8969 error->pipe[i].hsync = I915_READ(HSYNC(i));
8970 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8971 error->pipe[i].vblank = I915_READ(VBLANK(i));
8972 error->pipe[i].vsync = I915_READ(VSYNC(i));
8973 }
8974
8975 return error;
8976 }
8977
8978 void
8979 intel_display_print_error_state(struct seq_file *m,
8980 struct drm_device *dev,
8981 struct intel_display_error_state *error)
8982 {
8983 int i;
8984
8985 for (i = 0; i < 2; i++) {
8986 seq_printf(m, "Pipe [%d]:\n", i);
8987 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8988 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8989 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8990 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8991 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8992 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8993 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8994 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8995
8996 seq_printf(m, "Plane [%d]:\n", i);
8997 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8998 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8999 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9000 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9001 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9002 if (INTEL_INFO(dev)->gen >= 4) {
9003 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9004 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9005 }
9006
9007 seq_printf(m, "Cursor [%d]:\n", i);
9008 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9009 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9010 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9011 }
9012 }
9013 #endif
This page took 0.225639 seconds and 5 git commands to generate.