drm/i915: Remove idle timer debugging messages
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
102
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
242 */
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
350 }
351
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
354 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
355 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
356 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
357 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
358 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
359 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
360 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
361 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
363 .find_pll = intel_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
368 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
369 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
370 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
371 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
372 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
373 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
374 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
375 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
377 .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
382 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
383 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
384 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
385 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
386 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
387 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
388 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
389 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391 .find_pll = intel_find_best_PLL,
392 };
393
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
396 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
397 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
398 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
399 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
400 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
401 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
402 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
403 /* The single-channel range is 25-112Mhz, and dual-channel
404 * is 80-224Mhz. Prefer single channel as much as possible.
405 */
406 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
408 .find_pll = intel_find_best_PLL,
409 };
410
411 /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
414 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
415 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
416 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
417 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
418 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
419 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
420 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
421 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
422 .p2_slow = G4X_P2_SDVO_SLOW,
423 .p2_fast = G4X_P2_SDVO_FAST
424 },
425 .find_pll = intel_g4x_find_best_PLL,
426 };
427
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
430 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
431 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
432 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
433 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
434 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
435 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
436 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
437 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439 .p2_fast = G4X_P2_HDMI_DAC_FAST
440 },
441 .find_pll = intel_g4x_find_best_PLL,
442 };
443
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447 .vco = { .min = G4X_VCO_MIN,
448 .max = G4X_VCO_MAX },
449 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
464 },
465 .find_pll = intel_g4x_find_best_PLL,
466 };
467
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471 .vco = { .min = G4X_VCO_MIN,
472 .max = G4X_VCO_MAX },
473 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
488 },
489 .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_g4x_display_port = {
493 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494 .max = G4X_DOT_DISPLAY_PORT_MAX },
495 .vco = { .min = G4X_VCO_MIN,
496 .max = G4X_VCO_MAX},
497 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
498 .max = G4X_N_DISPLAY_PORT_MAX },
499 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
500 .max = G4X_M_DISPLAY_PORT_MAX },
501 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
502 .max = G4X_M1_DISPLAY_PORT_MAX },
503 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
504 .max = G4X_M2_DISPLAY_PORT_MAX },
505 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
506 .max = G4X_P_DISPLAY_PORT_MAX },
507 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
508 .max = G4X_P1_DISPLAY_PORT_MAX},
509 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512 .find_pll = intel_find_pll_g4x_dp,
513 };
514
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
517 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
518 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
519 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
520 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
521 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
522 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
523 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
524 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526 .find_pll = intel_find_best_PLL,
527 };
528
529 static const intel_limit_t intel_limits_pineview_lvds = {
530 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
531 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
532 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
533 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
534 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
535 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
536 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
537 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
538 /* Pineview only supports single-channel mode. */
539 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
541 .find_pll = intel_find_best_PLL,
542 };
543
544 static const intel_limit_t intel_limits_ironlake_dac = {
545 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
546 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
547 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
548 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
549 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
550 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
551 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
552 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
553 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554 .p2_slow = IRONLAKE_DAC_P2_SLOW,
555 .p2_fast = IRONLAKE_DAC_P2_FAST },
556 .find_pll = intel_g4x_find_best_PLL,
557 };
558
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
561 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
562 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
563 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
564 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
565 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
566 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
567 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
568 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571 .find_pll = intel_g4x_find_best_PLL,
572 };
573
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
576 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
577 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
578 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
579 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
580 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
581 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
582 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
583 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586 .find_pll = intel_g4x_find_best_PLL,
587 };
588
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
591 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
592 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
595 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
596 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601 .find_pll = intel_g4x_find_best_PLL,
602 };
603
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
606 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
607 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
610 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
611 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616 .find_pll = intel_g4x_find_best_PLL,
617 };
618
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620 .dot = { .min = IRONLAKE_DOT_MIN,
621 .max = IRONLAKE_DOT_MAX },
622 .vco = { .min = IRONLAKE_VCO_MIN,
623 .max = IRONLAKE_VCO_MAX},
624 .n = { .min = IRONLAKE_DP_N_MIN,
625 .max = IRONLAKE_DP_N_MAX },
626 .m = { .min = IRONLAKE_DP_M_MIN,
627 .max = IRONLAKE_DP_M_MAX },
628 .m1 = { .min = IRONLAKE_M1_MIN,
629 .max = IRONLAKE_M1_MAX },
630 .m2 = { .min = IRONLAKE_M2_MIN,
631 .max = IRONLAKE_M2_MAX },
632 .p = { .min = IRONLAKE_DP_P_MIN,
633 .max = IRONLAKE_DP_P_MAX },
634 .p1 = { .min = IRONLAKE_DP_P1_MIN,
635 .max = IRONLAKE_DP_P1_MAX},
636 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637 .p2_slow = IRONLAKE_DP_P2_SLOW,
638 .p2_fast = IRONLAKE_DP_P2_FAST },
639 .find_pll = intel_find_pll_ironlake_dp,
640 };
641
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
643 {
644 struct drm_device *dev = crtc->dev;
645 struct drm_i915_private *dev_priv = dev->dev_private;
646 const intel_limit_t *limit;
647 int refclk = 120;
648
649 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651 refclk = 100;
652
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
665 }
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
671
672 return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
698
699 return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
703 {
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
706
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
726 }
727 return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
744 }
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752 * Returns whether any output on the specified pipe is of the specified type
753 */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
759
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
763
764 return false;
765 }
766
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
771 */
772
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
774 {
775 const intel_limit_t *limit = intel_limit (crtc);
776 struct drm_device *dev = crtc->dev;
777
778 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
779 INTELPllInvalid ("p1 out of range\n");
780 if (clock->p < limit->p.min || limit->p.max < clock->p)
781 INTELPllInvalid ("p out of range\n");
782 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
783 INTELPllInvalid ("m2 out of range\n");
784 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
785 INTELPllInvalid ("m1 out of range\n");
786 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787 INTELPllInvalid ("m1 <= m2\n");
788 if (clock->m < limit->m.min || limit->m.max < clock->m)
789 INTELPllInvalid ("m out of range\n");
790 if (clock->n < limit->n.min || limit->n.max < clock->n)
791 INTELPllInvalid ("n out of range\n");
792 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793 INTELPllInvalid ("vco out of range\n");
794 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795 * connector, etc., rather than just a single range.
796 */
797 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798 INTELPllInvalid ("dot out of range\n");
799
800 return true;
801 }
802
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805 int target, int refclk, intel_clock_t *best_clock)
806
807 {
808 struct drm_device *dev = crtc->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 intel_clock_t clock;
811 int err = target;
812
813 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814 (I915_READ(LVDS)) != 0) {
815 /*
816 * For LVDS, if the panel is on, just rely on its current
817 * settings for dual-channel. We haven't figured out how to
818 * reliably set up different single/dual channel state, if we
819 * even can.
820 */
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
831 }
832
833 memset (best_clock, 0, sizeof (*best_clock));
834
835 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836 clock.m1++) {
837 for (clock.m2 = limit->m2.min;
838 clock.m2 <= limit->m2.max; clock.m2++) {
839 /* m1 is always 0 in Pineview */
840 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841 break;
842 for (clock.n = limit->n.min;
843 clock.n <= limit->n.max; clock.n++) {
844 for (clock.p1 = limit->p1.min;
845 clock.p1 <= limit->p1.max; clock.p1++) {
846 int this_err;
847
848 intel_clock(dev, refclk, &clock);
849
850 if (!intel_PLL_is_valid(crtc, &clock))
851 continue;
852
853 this_err = abs(clock.dot - target);
854 if (this_err < err) {
855 *best_clock = clock;
856 err = this_err;
857 }
858 }
859 }
860 }
861 }
862
863 return (err != target);
864 }
865
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868 int target, int refclk, intel_clock_t *best_clock)
869 {
870 struct drm_device *dev = crtc->dev;
871 struct drm_i915_private *dev_priv = dev->dev_private;
872 intel_clock_t clock;
873 int max_n;
874 bool found;
875 /* approximately equals target * 0.00585 */
876 int err_most = (target >> 8) + (target >> 9);
877 found = false;
878
879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880 int lvds_reg;
881
882 if (HAS_PCH_SPLIT(dev))
883 lvds_reg = PCH_LVDS;
884 else
885 lvds_reg = LVDS;
886 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887 LVDS_CLKB_POWER_UP)
888 clock.p2 = limit->p2.p2_fast;
889 else
890 clock.p2 = limit->p2.p2_slow;
891 } else {
892 if (target < limit->p2.dot_limit)
893 clock.p2 = limit->p2.p2_slow;
894 else
895 clock.p2 = limit->p2.p2_fast;
896 }
897
898 memset(best_clock, 0, sizeof(*best_clock));
899 max_n = limit->n.max;
900 /* based on hardware requirement, prefer smaller n to precision */
901 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902 /* based on hardware requirement, prefere larger m1,m2 */
903 for (clock.m1 = limit->m1.max;
904 clock.m1 >= limit->m1.min; clock.m1--) {
905 for (clock.m2 = limit->m2.max;
906 clock.m2 >= limit->m2.min; clock.m2--) {
907 for (clock.p1 = limit->p1.max;
908 clock.p1 >= limit->p1.min; clock.p1--) {
909 int this_err;
910
911 intel_clock(dev, refclk, &clock);
912 if (!intel_PLL_is_valid(crtc, &clock))
913 continue;
914 this_err = abs(clock.dot - target) ;
915 if (this_err < err_most) {
916 *best_clock = clock;
917 err_most = this_err;
918 max_n = clock.n;
919 found = true;
920 }
921 }
922 }
923 }
924 }
925 return found;
926 }
927
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930 int target, int refclk, intel_clock_t *best_clock)
931 {
932 struct drm_device *dev = crtc->dev;
933 intel_clock_t clock;
934
935 /* return directly when it is eDP */
936 if (HAS_eDP)
937 return true;
938
939 if (target < 200000) {
940 clock.n = 1;
941 clock.p1 = 2;
942 clock.p2 = 10;
943 clock.m1 = 12;
944 clock.m2 = 9;
945 } else {
946 clock.n = 2;
947 clock.p1 = 1;
948 clock.p2 = 10;
949 clock.m1 = 14;
950 clock.m2 = 8;
951 }
952 intel_clock(dev, refclk, &clock);
953 memcpy(best_clock, &clock, sizeof(intel_clock_t));
954 return true;
955 }
956
957 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
958 static bool
959 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
960 int target, int refclk, intel_clock_t *best_clock)
961 {
962 intel_clock_t clock;
963 if (target < 200000) {
964 clock.p1 = 2;
965 clock.p2 = 10;
966 clock.n = 2;
967 clock.m1 = 23;
968 clock.m2 = 8;
969 } else {
970 clock.p1 = 1;
971 clock.p2 = 10;
972 clock.n = 1;
973 clock.m1 = 14;
974 clock.m2 = 2;
975 }
976 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
977 clock.p = (clock.p1 * clock.p2);
978 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
979 clock.vco = 0;
980 memcpy(best_clock, &clock, sizeof(intel_clock_t));
981 return true;
982 }
983
984 /**
985 * intel_wait_for_vblank - wait for vblank on a given pipe
986 * @dev: drm device
987 * @pipe: pipe to wait for
988 *
989 * Wait for vblank to occur on a given pipe. Needed for various bits of
990 * mode setting code.
991 */
992 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 {
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996
997 /* Clear existing vblank status. Note this will clear any other
998 * sticky status fields as well.
999 *
1000 * This races with i915_driver_irq_handler() with the result
1001 * that either function could miss a vblank event. Here it is not
1002 * fatal, as we will either wait upon the next vblank interrupt or
1003 * timeout. Generally speaking intel_wait_for_vblank() is only
1004 * called during modeset at which time the GPU should be idle and
1005 * should *not* be performing page flips and thus not waiting on
1006 * vblanks...
1007 * Currently, the result of us stealing a vblank from the irq
1008 * handler is that a single frame will be skipped during swapbuffers.
1009 */
1010 I915_WRITE(pipestat_reg,
1011 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012
1013 /* Wait for vblank interrupt bit to set */
1014 if (wait_for(I915_READ(pipestat_reg) &
1015 PIPE_VBLANK_INTERRUPT_STATUS,
1016 50))
1017 DRM_DEBUG_KMS("vblank wait timed out\n");
1018 }
1019
1020 /**
1021 * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
1022 * @dev: drm device
1023 * @pipe: pipe to wait for
1024 *
1025 * After disabling a pipe, we can't wait for vblank in the usual way,
1026 * spinning on the vblank interrupt status bit, since we won't actually
1027 * see an interrupt when the pipe is disabled.
1028 *
1029 * So this function waits for the display line value to settle (it
1030 * usually ends up stopping at the start of the next frame).
1031 */
1032 void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
1033 {
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
1036 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1037 u32 last_line, line;
1038
1039 /* Wait for the display line to settle */
1040 line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1041 do {
1042 last_line = line;
1043 MSLEEP(5);
1044 line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
1045 } while (line != last_line && time_after(timeout, jiffies));
1046
1047 if (line != last_line)
1048 DRM_DEBUG_KMS("vblank wait timed out\n");
1049 }
1050
1051 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1052 {
1053 struct drm_device *dev = crtc->dev;
1054 struct drm_i915_private *dev_priv = dev->dev_private;
1055 struct drm_framebuffer *fb = crtc->fb;
1056 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1057 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1059 int plane, i;
1060 u32 fbc_ctl, fbc_ctl2;
1061
1062 if (fb->pitch == dev_priv->cfb_pitch &&
1063 obj_priv->fence_reg == dev_priv->cfb_fence &&
1064 intel_crtc->plane == dev_priv->cfb_plane &&
1065 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1066 return;
1067
1068 i8xx_disable_fbc(dev);
1069
1070 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1071
1072 if (fb->pitch < dev_priv->cfb_pitch)
1073 dev_priv->cfb_pitch = fb->pitch;
1074
1075 /* FBC_CTL wants 64B units */
1076 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1077 dev_priv->cfb_fence = obj_priv->fence_reg;
1078 dev_priv->cfb_plane = intel_crtc->plane;
1079 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1080
1081 /* Clear old tags */
1082 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1083 I915_WRITE(FBC_TAG + (i * 4), 0);
1084
1085 /* Set it up... */
1086 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1087 if (obj_priv->tiling_mode != I915_TILING_NONE)
1088 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1089 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1090 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1091
1092 /* enable it... */
1093 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1094 if (IS_I945GM(dev))
1095 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1096 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1097 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1098 if (obj_priv->tiling_mode != I915_TILING_NONE)
1099 fbc_ctl |= dev_priv->cfb_fence;
1100 I915_WRITE(FBC_CONTROL, fbc_ctl);
1101
1102 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1103 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1104 }
1105
1106 void i8xx_disable_fbc(struct drm_device *dev)
1107 {
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109 u32 fbc_ctl;
1110
1111 /* Disable compression */
1112 fbc_ctl = I915_READ(FBC_CONTROL);
1113 if ((fbc_ctl & FBC_CTL_EN) == 0)
1114 return;
1115
1116 fbc_ctl &= ~FBC_CTL_EN;
1117 I915_WRITE(FBC_CONTROL, fbc_ctl);
1118
1119 /* Wait for compressing bit to clear */
1120 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1121 DRM_DEBUG_KMS("FBC idle timed out\n");
1122 return;
1123 }
1124
1125 DRM_DEBUG_KMS("disabled FBC\n");
1126 }
1127
1128 static bool i8xx_fbc_enabled(struct drm_device *dev)
1129 {
1130 struct drm_i915_private *dev_priv = dev->dev_private;
1131
1132 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1133 }
1134
1135 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137 struct drm_device *dev = crtc->dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct drm_framebuffer *fb = crtc->fb;
1140 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1143 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1144 unsigned long stall_watermark = 200;
1145 u32 dpfc_ctl;
1146
1147 dpfc_ctl = I915_READ(DPFC_CONTROL);
1148 if (dpfc_ctl & DPFC_CTL_EN) {
1149 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1150 dev_priv->cfb_fence == obj_priv->fence_reg &&
1151 dev_priv->cfb_plane == intel_crtc->plane &&
1152 dev_priv->cfb_y == crtc->y)
1153 return;
1154
1155 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1156 POSTING_READ(DPFC_CONTROL);
1157 intel_wait_for_vblank(dev, intel_crtc->pipe);
1158 }
1159
1160 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1161 dev_priv->cfb_fence = obj_priv->fence_reg;
1162 dev_priv->cfb_plane = intel_crtc->plane;
1163 dev_priv->cfb_y = crtc->y;
1164
1165 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1166 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1168 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1169 } else {
1170 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1171 }
1172
1173 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1174 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1175 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1176 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1177
1178 /* enable it... */
1179 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1180
1181 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1182 }
1183
1184 void g4x_disable_fbc(struct drm_device *dev)
1185 {
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 u32 dpfc_ctl;
1188
1189 /* Disable compression */
1190 dpfc_ctl = I915_READ(DPFC_CONTROL);
1191 if (dpfc_ctl & DPFC_CTL_EN) {
1192 dpfc_ctl &= ~DPFC_CTL_EN;
1193 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1194
1195 DRM_DEBUG_KMS("disabled FBC\n");
1196 }
1197 }
1198
1199 static bool g4x_fbc_enabled(struct drm_device *dev)
1200 {
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202
1203 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1204 }
1205
1206 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1207 {
1208 struct drm_device *dev = crtc->dev;
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210 struct drm_framebuffer *fb = crtc->fb;
1211 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1212 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1214 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1215 unsigned long stall_watermark = 200;
1216 u32 dpfc_ctl;
1217
1218 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1219 if (dpfc_ctl & DPFC_CTL_EN) {
1220 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1221 dev_priv->cfb_fence == obj_priv->fence_reg &&
1222 dev_priv->cfb_plane == intel_crtc->plane &&
1223 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1224 dev_priv->cfb_y == crtc->y)
1225 return;
1226
1227 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1228 POSTING_READ(ILK_DPFC_CONTROL);
1229 intel_wait_for_vblank(dev, intel_crtc->pipe);
1230 }
1231
1232 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1233 dev_priv->cfb_fence = obj_priv->fence_reg;
1234 dev_priv->cfb_plane = intel_crtc->plane;
1235 dev_priv->cfb_offset = obj_priv->gtt_offset;
1236 dev_priv->cfb_y = crtc->y;
1237
1238 dpfc_ctl &= DPFC_RESERVED;
1239 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1240 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1241 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1242 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1243 } else {
1244 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1245 }
1246
1247 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1248 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1249 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1250 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1251 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1252 /* enable it... */
1253 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1254
1255 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1256 }
1257
1258 void ironlake_disable_fbc(struct drm_device *dev)
1259 {
1260 struct drm_i915_private *dev_priv = dev->dev_private;
1261 u32 dpfc_ctl;
1262
1263 /* Disable compression */
1264 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1265 if (dpfc_ctl & DPFC_CTL_EN) {
1266 dpfc_ctl &= ~DPFC_CTL_EN;
1267 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1268
1269 DRM_DEBUG_KMS("disabled FBC\n");
1270 }
1271 }
1272
1273 static bool ironlake_fbc_enabled(struct drm_device *dev)
1274 {
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276
1277 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1278 }
1279
1280 bool intel_fbc_enabled(struct drm_device *dev)
1281 {
1282 struct drm_i915_private *dev_priv = dev->dev_private;
1283
1284 if (!dev_priv->display.fbc_enabled)
1285 return false;
1286
1287 return dev_priv->display.fbc_enabled(dev);
1288 }
1289
1290 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1291 {
1292 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1293
1294 if (!dev_priv->display.enable_fbc)
1295 return;
1296
1297 dev_priv->display.enable_fbc(crtc, interval);
1298 }
1299
1300 void intel_disable_fbc(struct drm_device *dev)
1301 {
1302 struct drm_i915_private *dev_priv = dev->dev_private;
1303
1304 if (!dev_priv->display.disable_fbc)
1305 return;
1306
1307 dev_priv->display.disable_fbc(dev);
1308 }
1309
1310 /**
1311 * intel_update_fbc - enable/disable FBC as needed
1312 * @dev: the drm_device
1313 *
1314 * Set up the framebuffer compression hardware at mode set time. We
1315 * enable it if possible:
1316 * - plane A only (on pre-965)
1317 * - no pixel mulitply/line duplication
1318 * - no alpha buffer discard
1319 * - no dual wide
1320 * - framebuffer <= 2048 in width, 1536 in height
1321 *
1322 * We can't assume that any compression will take place (worst case),
1323 * so the compressed buffer has to be the same size as the uncompressed
1324 * one. It also must reside (along with the line length buffer) in
1325 * stolen memory.
1326 *
1327 * We need to enable/disable FBC on a global basis.
1328 */
1329 static void intel_update_fbc(struct drm_device *dev)
1330 {
1331 struct drm_i915_private *dev_priv = dev->dev_private;
1332 struct drm_crtc *crtc = NULL, *tmp_crtc;
1333 struct intel_crtc *intel_crtc;
1334 struct drm_framebuffer *fb;
1335 struct intel_framebuffer *intel_fb;
1336 struct drm_i915_gem_object *obj_priv;
1337
1338 DRM_DEBUG_KMS("\n");
1339
1340 if (!i915_powersave)
1341 return;
1342
1343 if (!I915_HAS_FBC(dev))
1344 return;
1345
1346 /*
1347 * If FBC is already on, we just have to verify that we can
1348 * keep it that way...
1349 * Need to disable if:
1350 * - more than one pipe is active
1351 * - changing FBC params (stride, fence, mode)
1352 * - new fb is too large to fit in compressed buffer
1353 * - going to an unsupported config (interlace, pixel multiply, etc.)
1354 */
1355 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1356 if (tmp_crtc->enabled) {
1357 if (crtc) {
1358 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1359 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1360 goto out_disable;
1361 }
1362 crtc = tmp_crtc;
1363 }
1364 }
1365
1366 if (!crtc || crtc->fb == NULL) {
1367 DRM_DEBUG_KMS("no output, disabling\n");
1368 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1369 goto out_disable;
1370 }
1371
1372 intel_crtc = to_intel_crtc(crtc);
1373 fb = crtc->fb;
1374 intel_fb = to_intel_framebuffer(fb);
1375 obj_priv = to_intel_bo(intel_fb->obj);
1376
1377 if (intel_fb->obj->size > dev_priv->cfb_size) {
1378 DRM_DEBUG_KMS("framebuffer too large, disabling "
1379 "compression\n");
1380 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1381 goto out_disable;
1382 }
1383 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1384 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1385 DRM_DEBUG_KMS("mode incompatible with compression, "
1386 "disabling\n");
1387 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1388 goto out_disable;
1389 }
1390 if ((crtc->mode.hdisplay > 2048) ||
1391 (crtc->mode.vdisplay > 1536)) {
1392 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1393 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1394 goto out_disable;
1395 }
1396 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1397 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1398 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1399 goto out_disable;
1400 }
1401 if (obj_priv->tiling_mode != I915_TILING_X) {
1402 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1403 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1404 goto out_disable;
1405 }
1406
1407 /* If the kernel debugger is active, always disable compression */
1408 if (in_dbg_master())
1409 goto out_disable;
1410
1411 intel_enable_fbc(crtc, 500);
1412 return;
1413
1414 out_disable:
1415 /* Multiple disables should be harmless */
1416 if (intel_fbc_enabled(dev)) {
1417 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1418 intel_disable_fbc(dev);
1419 }
1420 }
1421
1422 int
1423 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1424 struct drm_gem_object *obj,
1425 bool pipelined)
1426 {
1427 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1428 u32 alignment;
1429 int ret;
1430
1431 switch (obj_priv->tiling_mode) {
1432 case I915_TILING_NONE:
1433 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1434 alignment = 128 * 1024;
1435 else if (INTEL_INFO(dev)->gen >= 4)
1436 alignment = 4 * 1024;
1437 else
1438 alignment = 64 * 1024;
1439 break;
1440 case I915_TILING_X:
1441 /* pin() will align the object as required by fence */
1442 alignment = 0;
1443 break;
1444 case I915_TILING_Y:
1445 /* FIXME: Is this true? */
1446 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1447 return -EINVAL;
1448 default:
1449 BUG();
1450 }
1451
1452 ret = i915_gem_object_pin(obj, alignment);
1453 if (ret)
1454 return ret;
1455
1456 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1457 if (ret)
1458 goto err_unpin;
1459
1460 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1461 * fence, whereas 965+ only requires a fence if using
1462 * framebuffer compression. For simplicity, we always install
1463 * a fence as the cost is not that onerous.
1464 */
1465 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1466 obj_priv->tiling_mode != I915_TILING_NONE) {
1467 ret = i915_gem_object_get_fence_reg(obj, false);
1468 if (ret)
1469 goto err_unpin;
1470 }
1471
1472 return 0;
1473
1474 err_unpin:
1475 i915_gem_object_unpin(obj);
1476 return ret;
1477 }
1478
1479 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1480 static int
1481 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1482 int x, int y)
1483 {
1484 struct drm_device *dev = crtc->dev;
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1487 struct intel_framebuffer *intel_fb;
1488 struct drm_i915_gem_object *obj_priv;
1489 struct drm_gem_object *obj;
1490 int plane = intel_crtc->plane;
1491 unsigned long Start, Offset;
1492 u32 dspcntr;
1493 u32 reg;
1494
1495 switch (plane) {
1496 case 0:
1497 case 1:
1498 break;
1499 default:
1500 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1501 return -EINVAL;
1502 }
1503
1504 intel_fb = to_intel_framebuffer(fb);
1505 obj = intel_fb->obj;
1506 obj_priv = to_intel_bo(obj);
1507
1508 reg = DSPCNTR(plane);
1509 dspcntr = I915_READ(reg);
1510 /* Mask out pixel format bits in case we change it */
1511 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1512 switch (fb->bits_per_pixel) {
1513 case 8:
1514 dspcntr |= DISPPLANE_8BPP;
1515 break;
1516 case 16:
1517 if (fb->depth == 15)
1518 dspcntr |= DISPPLANE_15_16BPP;
1519 else
1520 dspcntr |= DISPPLANE_16BPP;
1521 break;
1522 case 24:
1523 case 32:
1524 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1525 break;
1526 default:
1527 DRM_ERROR("Unknown color depth\n");
1528 return -EINVAL;
1529 }
1530 if (INTEL_INFO(dev)->gen >= 4) {
1531 if (obj_priv->tiling_mode != I915_TILING_NONE)
1532 dspcntr |= DISPPLANE_TILED;
1533 else
1534 dspcntr &= ~DISPPLANE_TILED;
1535 }
1536
1537 if (HAS_PCH_SPLIT(dev))
1538 /* must disable */
1539 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1540
1541 I915_WRITE(reg, dspcntr);
1542
1543 Start = obj_priv->gtt_offset;
1544 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1545
1546 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1547 Start, Offset, x, y, fb->pitch);
1548 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1549 if (INTEL_INFO(dev)->gen >= 4) {
1550 I915_WRITE(DSPSURF(plane), Start);
1551 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1552 I915_WRITE(DSPADDR(plane), Offset);
1553 } else
1554 I915_WRITE(DSPADDR(plane), Start + Offset);
1555 POSTING_READ(reg);
1556
1557 intel_update_fbc(dev);
1558 intel_increase_pllclock(crtc);
1559
1560 return 0;
1561 }
1562
1563 static int
1564 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1565 struct drm_framebuffer *old_fb)
1566 {
1567 struct drm_device *dev = crtc->dev;
1568 struct drm_i915_master_private *master_priv;
1569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1570 int ret;
1571
1572 /* no fb bound */
1573 if (!crtc->fb) {
1574 DRM_DEBUG_KMS("No FB bound\n");
1575 return 0;
1576 }
1577
1578 switch (intel_crtc->plane) {
1579 case 0:
1580 case 1:
1581 break;
1582 default:
1583 return -EINVAL;
1584 }
1585
1586 mutex_lock(&dev->struct_mutex);
1587 ret = intel_pin_and_fence_fb_obj(dev,
1588 to_intel_framebuffer(crtc->fb)->obj,
1589 false);
1590 if (ret != 0) {
1591 mutex_unlock(&dev->struct_mutex);
1592 return ret;
1593 }
1594
1595 if (old_fb) {
1596 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1597 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1598
1599 if (atomic_read(&obj_priv->pending_flip)) {
1600 ret = i915_gem_wait_for_pending_flip(dev, &obj, 1);
1601 if (ret) {
1602 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1603 mutex_unlock(&dev->struct_mutex);
1604 return ret;
1605 }
1606 }
1607 }
1608
1609 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
1610 if (ret) {
1611 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1612 mutex_unlock(&dev->struct_mutex);
1613 return ret;
1614 }
1615
1616 if (old_fb)
1617 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1618
1619 mutex_unlock(&dev->struct_mutex);
1620
1621 if (!dev->primary->master)
1622 return 0;
1623
1624 master_priv = dev->primary->master->driver_priv;
1625 if (!master_priv->sarea_priv)
1626 return 0;
1627
1628 if (intel_crtc->pipe) {
1629 master_priv->sarea_priv->pipeB_x = x;
1630 master_priv->sarea_priv->pipeB_y = y;
1631 } else {
1632 master_priv->sarea_priv->pipeA_x = x;
1633 master_priv->sarea_priv->pipeA_y = y;
1634 }
1635
1636 return 0;
1637 }
1638
1639 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1640 {
1641 struct drm_device *dev = crtc->dev;
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 u32 dpa_ctl;
1644
1645 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1646 dpa_ctl = I915_READ(DP_A);
1647 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1648
1649 if (clock < 200000) {
1650 u32 temp;
1651 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1652 /* workaround for 160Mhz:
1653 1) program 0x4600c bits 15:0 = 0x8124
1654 2) program 0x46010 bit 0 = 1
1655 3) program 0x46034 bit 24 = 1
1656 4) program 0x64000 bit 14 = 1
1657 */
1658 temp = I915_READ(0x4600c);
1659 temp &= 0xffff0000;
1660 I915_WRITE(0x4600c, temp | 0x8124);
1661
1662 temp = I915_READ(0x46010);
1663 I915_WRITE(0x46010, temp | 1);
1664
1665 temp = I915_READ(0x46034);
1666 I915_WRITE(0x46034, temp | (1 << 24));
1667 } else {
1668 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1669 }
1670 I915_WRITE(DP_A, dpa_ctl);
1671
1672 POSTING_READ(DP_A);
1673 udelay(500);
1674 }
1675
1676 /* The FDI link training functions for ILK/Ibexpeak. */
1677 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1678 {
1679 struct drm_device *dev = crtc->dev;
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1682 int pipe = intel_crtc->pipe;
1683 u32 reg, temp, tries;
1684
1685 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1686 for train result */
1687 reg = FDI_RX_IMR(pipe);
1688 temp = I915_READ(reg);
1689 temp &= ~FDI_RX_SYMBOL_LOCK;
1690 temp &= ~FDI_RX_BIT_LOCK;
1691 I915_WRITE(reg, temp);
1692 I915_READ(reg);
1693 udelay(150);
1694
1695 /* enable CPU FDI TX and PCH FDI RX */
1696 reg = FDI_TX_CTL(pipe);
1697 temp = I915_READ(reg);
1698 temp &= ~(7 << 19);
1699 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1700 temp &= ~FDI_LINK_TRAIN_NONE;
1701 temp |= FDI_LINK_TRAIN_PATTERN_1;
1702 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1703
1704 reg = FDI_RX_CTL(pipe);
1705 temp = I915_READ(reg);
1706 temp &= ~FDI_LINK_TRAIN_NONE;
1707 temp |= FDI_LINK_TRAIN_PATTERN_1;
1708 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1709
1710 POSTING_READ(reg);
1711 udelay(150);
1712
1713 reg = FDI_RX_IIR(pipe);
1714 for (tries = 0; tries < 5; tries++) {
1715 temp = I915_READ(reg);
1716 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1717
1718 if ((temp & FDI_RX_BIT_LOCK)) {
1719 DRM_DEBUG_KMS("FDI train 1 done.\n");
1720 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1721 break;
1722 }
1723 }
1724 if (tries == 5)
1725 DRM_ERROR("FDI train 1 fail!\n");
1726
1727 /* Train 2 */
1728 reg = FDI_TX_CTL(pipe);
1729 temp = I915_READ(reg);
1730 temp &= ~FDI_LINK_TRAIN_NONE;
1731 temp |= FDI_LINK_TRAIN_PATTERN_2;
1732 I915_WRITE(reg, temp);
1733
1734 reg = FDI_RX_CTL(pipe);
1735 temp = I915_READ(reg);
1736 temp &= ~FDI_LINK_TRAIN_NONE;
1737 temp |= FDI_LINK_TRAIN_PATTERN_2;
1738 I915_WRITE(reg, temp);
1739
1740 POSTING_READ(reg);
1741 udelay(150);
1742
1743 reg = FDI_RX_IIR(pipe);
1744 for (tries = 0; tries < 5; tries++) {
1745 temp = I915_READ(reg);
1746 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1747
1748 if (temp & FDI_RX_SYMBOL_LOCK) {
1749 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1750 DRM_DEBUG_KMS("FDI train 2 done.\n");
1751 break;
1752 }
1753 }
1754 if (tries == 5)
1755 DRM_ERROR("FDI train 2 fail!\n");
1756
1757 DRM_DEBUG_KMS("FDI train done\n");
1758 }
1759
1760 static const int const snb_b_fdi_train_param [] = {
1761 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1762 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1763 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1764 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1765 };
1766
1767 /* The FDI link training functions for SNB/Cougarpoint. */
1768 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1769 {
1770 struct drm_device *dev = crtc->dev;
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1773 int pipe = intel_crtc->pipe;
1774 u32 reg, temp, i;
1775
1776 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1777 for train result */
1778 reg = FDI_RX_IMR(pipe);
1779 temp = I915_READ(reg);
1780 temp &= ~FDI_RX_SYMBOL_LOCK;
1781 temp &= ~FDI_RX_BIT_LOCK;
1782 I915_WRITE(reg, temp);
1783
1784 POSTING_READ(reg);
1785 udelay(150);
1786
1787 /* enable CPU FDI TX and PCH FDI RX */
1788 reg = FDI_TX_CTL(pipe);
1789 temp = I915_READ(reg);
1790 temp &= ~(7 << 19);
1791 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1792 temp &= ~FDI_LINK_TRAIN_NONE;
1793 temp |= FDI_LINK_TRAIN_PATTERN_1;
1794 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1795 /* SNB-B */
1796 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1797 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1798
1799 reg = FDI_RX_CTL(pipe);
1800 temp = I915_READ(reg);
1801 if (HAS_PCH_CPT(dev)) {
1802 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1803 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1804 } else {
1805 temp &= ~FDI_LINK_TRAIN_NONE;
1806 temp |= FDI_LINK_TRAIN_PATTERN_1;
1807 }
1808 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1809
1810 POSTING_READ(reg);
1811 udelay(150);
1812
1813 for (i = 0; i < 4; i++ ) {
1814 reg = FDI_TX_CTL(pipe);
1815 temp = I915_READ(reg);
1816 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1817 temp |= snb_b_fdi_train_param[i];
1818 I915_WRITE(reg, temp);
1819
1820 POSTING_READ(reg);
1821 udelay(500);
1822
1823 reg = FDI_RX_IIR(pipe);
1824 temp = I915_READ(reg);
1825 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1826
1827 if (temp & FDI_RX_BIT_LOCK) {
1828 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1829 DRM_DEBUG_KMS("FDI train 1 done.\n");
1830 break;
1831 }
1832 }
1833 if (i == 4)
1834 DRM_ERROR("FDI train 1 fail!\n");
1835
1836 /* Train 2 */
1837 reg = FDI_TX_CTL(pipe);
1838 temp = I915_READ(reg);
1839 temp &= ~FDI_LINK_TRAIN_NONE;
1840 temp |= FDI_LINK_TRAIN_PATTERN_2;
1841 if (IS_GEN6(dev)) {
1842 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1843 /* SNB-B */
1844 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1845 }
1846 I915_WRITE(reg, temp);
1847
1848 reg = FDI_RX_CTL(pipe);
1849 temp = I915_READ(reg);
1850 if (HAS_PCH_CPT(dev)) {
1851 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1852 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1853 } else {
1854 temp &= ~FDI_LINK_TRAIN_NONE;
1855 temp |= FDI_LINK_TRAIN_PATTERN_2;
1856 }
1857 I915_WRITE(reg, temp);
1858
1859 POSTING_READ(reg);
1860 udelay(150);
1861
1862 for (i = 0; i < 4; i++ ) {
1863 reg = FDI_TX_CTL(pipe);
1864 temp = I915_READ(reg);
1865 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1866 temp |= snb_b_fdi_train_param[i];
1867 I915_WRITE(reg, temp);
1868
1869 POSTING_READ(reg);
1870 udelay(500);
1871
1872 reg = FDI_RX_IIR(pipe);
1873 temp = I915_READ(reg);
1874 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1875
1876 if (temp & FDI_RX_SYMBOL_LOCK) {
1877 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1878 DRM_DEBUG_KMS("FDI train 2 done.\n");
1879 break;
1880 }
1881 }
1882 if (i == 4)
1883 DRM_ERROR("FDI train 2 fail!\n");
1884
1885 DRM_DEBUG_KMS("FDI train done.\n");
1886 }
1887
1888 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1889 {
1890 struct drm_device *dev = crtc->dev;
1891 struct drm_i915_private *dev_priv = dev->dev_private;
1892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1893 int pipe = intel_crtc->pipe;
1894 u32 reg, temp;
1895
1896 /* Write the TU size bits so error detection works */
1897 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1898 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1899
1900 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1901 reg = FDI_RX_CTL(pipe);
1902 temp = I915_READ(reg);
1903 temp &= ~((0x7 << 19) | (0x7 << 16));
1904 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1905 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1906 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1907
1908 POSTING_READ(reg);
1909 udelay(200);
1910
1911 /* Switch from Rawclk to PCDclk */
1912 temp = I915_READ(reg);
1913 I915_WRITE(reg, temp | FDI_PCDCLK);
1914
1915 POSTING_READ(reg);
1916 udelay(200);
1917
1918 /* Enable CPU FDI TX PLL, always on for Ironlake */
1919 reg = FDI_TX_CTL(pipe);
1920 temp = I915_READ(reg);
1921 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1922 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1923
1924 POSTING_READ(reg);
1925 udelay(100);
1926 }
1927 }
1928
1929 static void intel_flush_display_plane(struct drm_device *dev,
1930 int plane)
1931 {
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 u32 reg = DSPADDR(plane);
1934 I915_WRITE(reg, I915_READ(reg));
1935 }
1936
1937 /*
1938 * When we disable a pipe, we need to clear any pending scanline wait events
1939 * to avoid hanging the ring, which we assume we are waiting on.
1940 */
1941 static void intel_clear_scanline_wait(struct drm_device *dev)
1942 {
1943 struct drm_i915_private *dev_priv = dev->dev_private;
1944 u32 tmp;
1945
1946 if (IS_GEN2(dev))
1947 /* Can't break the hang on i8xx */
1948 return;
1949
1950 tmp = I915_READ(PRB0_CTL);
1951 if (tmp & RING_WAIT) {
1952 I915_WRITE(PRB0_CTL, tmp);
1953 POSTING_READ(PRB0_CTL);
1954 }
1955 }
1956
1957 static void ironlake_crtc_enable(struct drm_crtc *crtc)
1958 {
1959 struct drm_device *dev = crtc->dev;
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1962 int pipe = intel_crtc->pipe;
1963 int plane = intel_crtc->plane;
1964 u32 reg, temp;
1965
1966 if (intel_crtc->active)
1967 return;
1968
1969 intel_crtc->active = true;
1970 intel_update_watermarks(dev);
1971
1972 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1973 temp = I915_READ(PCH_LVDS);
1974 if ((temp & LVDS_PORT_EN) == 0)
1975 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1976 }
1977
1978 ironlake_fdi_enable(crtc);
1979
1980 /* Enable panel fitting for LVDS */
1981 if (dev_priv->pch_pf_size &&
1982 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
1983 || HAS_eDP || intel_pch_has_edp(crtc))) {
1984 /* Force use of hard-coded filter coefficients
1985 * as some pre-programmed values are broken,
1986 * e.g. x201.
1987 */
1988 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
1989 PF_ENABLE | PF_FILTER_MED_3x3);
1990 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
1991 dev_priv->pch_pf_pos);
1992 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
1993 dev_priv->pch_pf_size);
1994 }
1995
1996 /* Enable CPU pipe */
1997 reg = PIPECONF(pipe);
1998 temp = I915_READ(reg);
1999 if ((temp & PIPECONF_ENABLE) == 0) {
2000 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2001 POSTING_READ(reg);
2002 udelay(100);
2003 }
2004
2005 /* configure and enable CPU plane */
2006 reg = DSPCNTR(plane);
2007 temp = I915_READ(reg);
2008 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2009 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2010 intel_flush_display_plane(dev, plane);
2011 }
2012
2013 /* For PCH output, training FDI link */
2014 if (IS_GEN6(dev))
2015 gen6_fdi_link_train(crtc);
2016 else
2017 ironlake_fdi_link_train(crtc);
2018
2019 /* enable PCH DPLL */
2020 reg = PCH_DPLL(pipe);
2021 temp = I915_READ(reg);
2022 if ((temp & DPLL_VCO_ENABLE) == 0) {
2023 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2024 POSTING_READ(reg);
2025 udelay(200);
2026 }
2027
2028 if (HAS_PCH_CPT(dev)) {
2029 /* Be sure PCH DPLL SEL is set */
2030 temp = I915_READ(PCH_DPLL_SEL);
2031 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2032 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2033 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2034 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2035 I915_WRITE(PCH_DPLL_SEL, temp);
2036 }
2037
2038 /* set transcoder timing */
2039 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2040 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2041 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2042
2043 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2044 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2045 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2046
2047 /* enable normal train */
2048 reg = FDI_TX_CTL(pipe);
2049 temp = I915_READ(reg);
2050 temp &= ~FDI_LINK_TRAIN_NONE;
2051 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2052 I915_WRITE(reg, temp);
2053
2054 reg = FDI_RX_CTL(pipe);
2055 temp = I915_READ(reg);
2056 if (HAS_PCH_CPT(dev)) {
2057 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2058 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2059 } else {
2060 temp &= ~FDI_LINK_TRAIN_NONE;
2061 temp |= FDI_LINK_TRAIN_NONE;
2062 }
2063 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2064
2065 /* wait one idle pattern time */
2066 POSTING_READ(reg);
2067 udelay(100);
2068
2069 /* For PCH DP, enable TRANS_DP_CTL */
2070 if (HAS_PCH_CPT(dev) &&
2071 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2072 reg = TRANS_DP_CTL(pipe);
2073 temp = I915_READ(reg);
2074 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2075 TRANS_DP_SYNC_MASK);
2076 temp |= (TRANS_DP_OUTPUT_ENABLE |
2077 TRANS_DP_ENH_FRAMING);
2078
2079 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2080 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2081 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2082 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2083
2084 switch (intel_trans_dp_port_sel(crtc)) {
2085 case PCH_DP_B:
2086 temp |= TRANS_DP_PORT_SEL_B;
2087 break;
2088 case PCH_DP_C:
2089 temp |= TRANS_DP_PORT_SEL_C;
2090 break;
2091 case PCH_DP_D:
2092 temp |= TRANS_DP_PORT_SEL_D;
2093 break;
2094 default:
2095 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2096 temp |= TRANS_DP_PORT_SEL_B;
2097 break;
2098 }
2099
2100 I915_WRITE(reg, temp);
2101 }
2102
2103 /* enable PCH transcoder */
2104 reg = TRANSCONF(pipe);
2105 temp = I915_READ(reg);
2106 /*
2107 * make the BPC in transcoder be consistent with
2108 * that in pipeconf reg.
2109 */
2110 temp &= ~PIPE_BPC_MASK;
2111 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2112 I915_WRITE(reg, temp | TRANS_ENABLE);
2113 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2114 DRM_ERROR("failed to enable transcoder\n");
2115
2116 intel_crtc_load_lut(crtc);
2117 intel_update_fbc(dev);
2118 intel_crtc_update_cursor(crtc, true);
2119 }
2120
2121 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2122 {
2123 struct drm_device *dev = crtc->dev;
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2126 int pipe = intel_crtc->pipe;
2127 int plane = intel_crtc->plane;
2128 u32 reg, temp;
2129
2130 if (!intel_crtc->active)
2131 return;
2132
2133 drm_vblank_off(dev, pipe);
2134 intel_crtc_update_cursor(crtc, false);
2135
2136 /* Disable display plane */
2137 reg = DSPCNTR(plane);
2138 temp = I915_READ(reg);
2139 if (temp & DISPLAY_PLANE_ENABLE) {
2140 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2141 intel_flush_display_plane(dev, plane);
2142 }
2143
2144 if (dev_priv->cfb_plane == plane &&
2145 dev_priv->display.disable_fbc)
2146 dev_priv->display.disable_fbc(dev);
2147
2148 /* disable cpu pipe, disable after all planes disabled */
2149 reg = PIPECONF(pipe);
2150 temp = I915_READ(reg);
2151 if (temp & PIPECONF_ENABLE) {
2152 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2153 /* wait for cpu pipe off, pipe state */
2154 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2155 DRM_ERROR("failed to turn off cpu pipe\n");
2156 }
2157
2158 /* Disable PF */
2159 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2160 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2161
2162 /* disable CPU FDI tx and PCH FDI rx */
2163 reg = FDI_TX_CTL(pipe);
2164 temp = I915_READ(reg);
2165 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2166 POSTING_READ(reg);
2167
2168 reg = FDI_RX_CTL(pipe);
2169 temp = I915_READ(reg);
2170 temp &= ~(0x7 << 16);
2171 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2172 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2173
2174 POSTING_READ(reg);
2175 udelay(100);
2176
2177 /* still set train pattern 1 */
2178 reg = FDI_TX_CTL(pipe);
2179 temp = I915_READ(reg);
2180 temp &= ~FDI_LINK_TRAIN_NONE;
2181 temp |= FDI_LINK_TRAIN_PATTERN_1;
2182 I915_WRITE(reg, temp);
2183
2184 reg = FDI_RX_CTL(pipe);
2185 temp = I915_READ(reg);
2186 if (HAS_PCH_CPT(dev)) {
2187 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2188 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2189 } else {
2190 temp &= ~FDI_LINK_TRAIN_NONE;
2191 temp |= FDI_LINK_TRAIN_PATTERN_1;
2192 }
2193 /* BPC in FDI rx is consistent with that in PIPECONF */
2194 temp &= ~(0x07 << 16);
2195 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2196 I915_WRITE(reg, temp);
2197
2198 POSTING_READ(reg);
2199 udelay(100);
2200
2201 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2202 temp = I915_READ(PCH_LVDS);
2203 if (temp & LVDS_PORT_EN) {
2204 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2205 POSTING_READ(PCH_LVDS);
2206 udelay(100);
2207 }
2208 }
2209
2210 /* disable PCH transcoder */
2211 reg = TRANSCONF(plane);
2212 temp = I915_READ(reg);
2213 if (temp & TRANS_ENABLE) {
2214 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2215 /* wait for PCH transcoder off, transcoder state */
2216 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2217 DRM_ERROR("failed to disable transcoder\n");
2218 }
2219
2220 if (HAS_PCH_CPT(dev)) {
2221 /* disable TRANS_DP_CTL */
2222 reg = TRANS_DP_CTL(pipe);
2223 temp = I915_READ(reg);
2224 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2225 I915_WRITE(reg, temp);
2226
2227 /* disable DPLL_SEL */
2228 temp = I915_READ(PCH_DPLL_SEL);
2229 if (pipe == 0)
2230 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2231 else
2232 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2233 I915_WRITE(PCH_DPLL_SEL, temp);
2234 }
2235
2236 /* disable PCH DPLL */
2237 reg = PCH_DPLL(pipe);
2238 temp = I915_READ(reg);
2239 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2240
2241 /* Switch from PCDclk to Rawclk */
2242 reg = FDI_RX_CTL(pipe);
2243 temp = I915_READ(reg);
2244 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2245
2246 /* Disable CPU FDI TX PLL */
2247 reg = FDI_TX_CTL(pipe);
2248 temp = I915_READ(reg);
2249 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2250
2251 POSTING_READ(reg);
2252 udelay(100);
2253
2254 reg = FDI_RX_CTL(pipe);
2255 temp = I915_READ(reg);
2256 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2257
2258 /* Wait for the clocks to turn off. */
2259 POSTING_READ(reg);
2260 udelay(100);
2261
2262 intel_crtc->active = false;
2263 intel_update_watermarks(dev);
2264 intel_update_fbc(dev);
2265 intel_clear_scanline_wait(dev);
2266 }
2267
2268 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2269 {
2270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271 int pipe = intel_crtc->pipe;
2272 int plane = intel_crtc->plane;
2273
2274 /* XXX: When our outputs are all unaware of DPMS modes other than off
2275 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2276 */
2277 switch (mode) {
2278 case DRM_MODE_DPMS_ON:
2279 case DRM_MODE_DPMS_STANDBY:
2280 case DRM_MODE_DPMS_SUSPEND:
2281 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2282 ironlake_crtc_enable(crtc);
2283 break;
2284
2285 case DRM_MODE_DPMS_OFF:
2286 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2287 ironlake_crtc_disable(crtc);
2288 break;
2289 }
2290 }
2291
2292 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2293 {
2294 if (!enable && intel_crtc->overlay) {
2295 struct drm_device *dev = intel_crtc->base.dev;
2296
2297 mutex_lock(&dev->struct_mutex);
2298 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2299 mutex_unlock(&dev->struct_mutex);
2300 }
2301
2302 /* Let userspace switch the overlay on again. In most cases userspace
2303 * has to recompute where to put it anyway.
2304 */
2305 }
2306
2307 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2308 {
2309 struct drm_device *dev = crtc->dev;
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312 int pipe = intel_crtc->pipe;
2313 int plane = intel_crtc->plane;
2314 u32 reg, temp;
2315
2316 if (intel_crtc->active)
2317 return;
2318
2319 intel_crtc->active = true;
2320 intel_update_watermarks(dev);
2321
2322 /* Enable the DPLL */
2323 reg = DPLL(pipe);
2324 temp = I915_READ(reg);
2325 if ((temp & DPLL_VCO_ENABLE) == 0) {
2326 I915_WRITE(reg, temp);
2327
2328 /* Wait for the clocks to stabilize. */
2329 POSTING_READ(reg);
2330 udelay(150);
2331
2332 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2333
2334 /* Wait for the clocks to stabilize. */
2335 POSTING_READ(reg);
2336 udelay(150);
2337
2338 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2339
2340 /* Wait for the clocks to stabilize. */
2341 POSTING_READ(reg);
2342 udelay(150);
2343 }
2344
2345 /* Enable the pipe */
2346 reg = PIPECONF(pipe);
2347 temp = I915_READ(reg);
2348 if ((temp & PIPECONF_ENABLE) == 0)
2349 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2350
2351 /* Enable the plane */
2352 reg = DSPCNTR(plane);
2353 temp = I915_READ(reg);
2354 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2355 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2356 intel_flush_display_plane(dev, plane);
2357 }
2358
2359 intel_crtc_load_lut(crtc);
2360 intel_update_fbc(dev);
2361
2362 /* Give the overlay scaler a chance to enable if it's on this pipe */
2363 intel_crtc_dpms_overlay(intel_crtc, true);
2364 intel_crtc_update_cursor(crtc, true);
2365 }
2366
2367 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2368 {
2369 struct drm_device *dev = crtc->dev;
2370 struct drm_i915_private *dev_priv = dev->dev_private;
2371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2372 int pipe = intel_crtc->pipe;
2373 int plane = intel_crtc->plane;
2374 u32 reg, temp;
2375
2376 if (!intel_crtc->active)
2377 return;
2378
2379 /* Give the overlay scaler a chance to disable if it's on this pipe */
2380 intel_crtc_dpms_overlay(intel_crtc, false);
2381 intel_crtc_update_cursor(crtc, false);
2382 drm_vblank_off(dev, pipe);
2383
2384 if (dev_priv->cfb_plane == plane &&
2385 dev_priv->display.disable_fbc)
2386 dev_priv->display.disable_fbc(dev);
2387
2388 /* Disable display plane */
2389 reg = DSPCNTR(plane);
2390 temp = I915_READ(reg);
2391 if (temp & DISPLAY_PLANE_ENABLE) {
2392 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2393 /* Flush the plane changes */
2394 intel_flush_display_plane(dev, plane);
2395
2396 /* Wait for vblank for the disable to take effect */
2397 if (IS_GEN2(dev))
2398 intel_wait_for_vblank_off(dev, pipe);
2399 }
2400
2401 /* Don't disable pipe A or pipe A PLLs if needed */
2402 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2403 goto done;
2404
2405 /* Next, disable display pipes */
2406 reg = PIPECONF(pipe);
2407 temp = I915_READ(reg);
2408 if (temp & PIPECONF_ENABLE) {
2409 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2410
2411 /* Wait for vblank for the disable to take effect. */
2412 POSTING_READ(reg);
2413 intel_wait_for_vblank_off(dev, pipe);
2414 }
2415
2416 reg = DPLL(pipe);
2417 temp = I915_READ(reg);
2418 if (temp & DPLL_VCO_ENABLE) {
2419 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2420
2421 /* Wait for the clocks to turn off. */
2422 POSTING_READ(reg);
2423 udelay(150);
2424 }
2425
2426 done:
2427 intel_crtc->active = false;
2428 intel_update_fbc(dev);
2429 intel_update_watermarks(dev);
2430 intel_clear_scanline_wait(dev);
2431 }
2432
2433 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2434 {
2435 /* XXX: When our outputs are all unaware of DPMS modes other than off
2436 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2437 */
2438 switch (mode) {
2439 case DRM_MODE_DPMS_ON:
2440 case DRM_MODE_DPMS_STANDBY:
2441 case DRM_MODE_DPMS_SUSPEND:
2442 i9xx_crtc_enable(crtc);
2443 break;
2444 case DRM_MODE_DPMS_OFF:
2445 i9xx_crtc_disable(crtc);
2446 break;
2447 }
2448 }
2449
2450 /**
2451 * Sets the power management mode of the pipe and plane.
2452 */
2453 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2454 {
2455 struct drm_device *dev = crtc->dev;
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 struct drm_i915_master_private *master_priv;
2458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459 int pipe = intel_crtc->pipe;
2460 bool enabled;
2461
2462 if (intel_crtc->dpms_mode == mode)
2463 return;
2464
2465 intel_crtc->dpms_mode = mode;
2466
2467 dev_priv->display.dpms(crtc, mode);
2468
2469 if (!dev->primary->master)
2470 return;
2471
2472 master_priv = dev->primary->master->driver_priv;
2473 if (!master_priv->sarea_priv)
2474 return;
2475
2476 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2477
2478 switch (pipe) {
2479 case 0:
2480 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2481 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2482 break;
2483 case 1:
2484 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2485 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2486 break;
2487 default:
2488 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2489 break;
2490 }
2491 }
2492
2493 static void intel_crtc_disable(struct drm_crtc *crtc)
2494 {
2495 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2496 struct drm_device *dev = crtc->dev;
2497
2498 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2499
2500 if (crtc->fb) {
2501 mutex_lock(&dev->struct_mutex);
2502 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2503 mutex_unlock(&dev->struct_mutex);
2504 }
2505 }
2506
2507 /* Prepare for a mode set.
2508 *
2509 * Note we could be a lot smarter here. We need to figure out which outputs
2510 * will be enabled, which disabled (in short, how the config will changes)
2511 * and perform the minimum necessary steps to accomplish that, e.g. updating
2512 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2513 * panel fitting is in the proper state, etc.
2514 */
2515 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2516 {
2517 i9xx_crtc_disable(crtc);
2518 }
2519
2520 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2521 {
2522 i9xx_crtc_enable(crtc);
2523 }
2524
2525 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2526 {
2527 ironlake_crtc_disable(crtc);
2528 }
2529
2530 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2531 {
2532 ironlake_crtc_enable(crtc);
2533 }
2534
2535 void intel_encoder_prepare (struct drm_encoder *encoder)
2536 {
2537 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2538 /* lvds has its own version of prepare see intel_lvds_prepare */
2539 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2540 }
2541
2542 void intel_encoder_commit (struct drm_encoder *encoder)
2543 {
2544 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2545 /* lvds has its own version of commit see intel_lvds_commit */
2546 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2547 }
2548
2549 void intel_encoder_destroy(struct drm_encoder *encoder)
2550 {
2551 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2552
2553 drm_encoder_cleanup(encoder);
2554 kfree(intel_encoder);
2555 }
2556
2557 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2558 struct drm_display_mode *mode,
2559 struct drm_display_mode *adjusted_mode)
2560 {
2561 struct drm_device *dev = crtc->dev;
2562
2563 if (HAS_PCH_SPLIT(dev)) {
2564 /* FDI link clock is fixed at 2.7G */
2565 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2566 return false;
2567 }
2568
2569 /* XXX some encoders set the crtcinfo, others don't.
2570 * Obviously we need some form of conflict resolution here...
2571 */
2572 if (adjusted_mode->crtc_htotal == 0)
2573 drm_mode_set_crtcinfo(adjusted_mode, 0);
2574
2575 return true;
2576 }
2577
2578 static int i945_get_display_clock_speed(struct drm_device *dev)
2579 {
2580 return 400000;
2581 }
2582
2583 static int i915_get_display_clock_speed(struct drm_device *dev)
2584 {
2585 return 333000;
2586 }
2587
2588 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2589 {
2590 return 200000;
2591 }
2592
2593 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2594 {
2595 u16 gcfgc = 0;
2596
2597 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2598
2599 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2600 return 133000;
2601 else {
2602 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2603 case GC_DISPLAY_CLOCK_333_MHZ:
2604 return 333000;
2605 default:
2606 case GC_DISPLAY_CLOCK_190_200_MHZ:
2607 return 190000;
2608 }
2609 }
2610 }
2611
2612 static int i865_get_display_clock_speed(struct drm_device *dev)
2613 {
2614 return 266000;
2615 }
2616
2617 static int i855_get_display_clock_speed(struct drm_device *dev)
2618 {
2619 u16 hpllcc = 0;
2620 /* Assume that the hardware is in the high speed state. This
2621 * should be the default.
2622 */
2623 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2624 case GC_CLOCK_133_200:
2625 case GC_CLOCK_100_200:
2626 return 200000;
2627 case GC_CLOCK_166_250:
2628 return 250000;
2629 case GC_CLOCK_100_133:
2630 return 133000;
2631 }
2632
2633 /* Shouldn't happen */
2634 return 0;
2635 }
2636
2637 static int i830_get_display_clock_speed(struct drm_device *dev)
2638 {
2639 return 133000;
2640 }
2641
2642 struct fdi_m_n {
2643 u32 tu;
2644 u32 gmch_m;
2645 u32 gmch_n;
2646 u32 link_m;
2647 u32 link_n;
2648 };
2649
2650 static void
2651 fdi_reduce_ratio(u32 *num, u32 *den)
2652 {
2653 while (*num > 0xffffff || *den > 0xffffff) {
2654 *num >>= 1;
2655 *den >>= 1;
2656 }
2657 }
2658
2659 #define DATA_N 0x800000
2660 #define LINK_N 0x80000
2661
2662 static void
2663 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2664 int link_clock, struct fdi_m_n *m_n)
2665 {
2666 u64 temp;
2667
2668 m_n->tu = 64; /* default size */
2669
2670 temp = (u64) DATA_N * pixel_clock;
2671 temp = div_u64(temp, link_clock);
2672 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2673 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2674 m_n->gmch_n = DATA_N;
2675 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2676
2677 temp = (u64) LINK_N * pixel_clock;
2678 m_n->link_m = div_u64(temp, link_clock);
2679 m_n->link_n = LINK_N;
2680 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2681 }
2682
2683
2684 struct intel_watermark_params {
2685 unsigned long fifo_size;
2686 unsigned long max_wm;
2687 unsigned long default_wm;
2688 unsigned long guard_size;
2689 unsigned long cacheline_size;
2690 };
2691
2692 /* Pineview has different values for various configs */
2693 static struct intel_watermark_params pineview_display_wm = {
2694 PINEVIEW_DISPLAY_FIFO,
2695 PINEVIEW_MAX_WM,
2696 PINEVIEW_DFT_WM,
2697 PINEVIEW_GUARD_WM,
2698 PINEVIEW_FIFO_LINE_SIZE
2699 };
2700 static struct intel_watermark_params pineview_display_hplloff_wm = {
2701 PINEVIEW_DISPLAY_FIFO,
2702 PINEVIEW_MAX_WM,
2703 PINEVIEW_DFT_HPLLOFF_WM,
2704 PINEVIEW_GUARD_WM,
2705 PINEVIEW_FIFO_LINE_SIZE
2706 };
2707 static struct intel_watermark_params pineview_cursor_wm = {
2708 PINEVIEW_CURSOR_FIFO,
2709 PINEVIEW_CURSOR_MAX_WM,
2710 PINEVIEW_CURSOR_DFT_WM,
2711 PINEVIEW_CURSOR_GUARD_WM,
2712 PINEVIEW_FIFO_LINE_SIZE,
2713 };
2714 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2715 PINEVIEW_CURSOR_FIFO,
2716 PINEVIEW_CURSOR_MAX_WM,
2717 PINEVIEW_CURSOR_DFT_WM,
2718 PINEVIEW_CURSOR_GUARD_WM,
2719 PINEVIEW_FIFO_LINE_SIZE
2720 };
2721 static struct intel_watermark_params g4x_wm_info = {
2722 G4X_FIFO_SIZE,
2723 G4X_MAX_WM,
2724 G4X_MAX_WM,
2725 2,
2726 G4X_FIFO_LINE_SIZE,
2727 };
2728 static struct intel_watermark_params g4x_cursor_wm_info = {
2729 I965_CURSOR_FIFO,
2730 I965_CURSOR_MAX_WM,
2731 I965_CURSOR_DFT_WM,
2732 2,
2733 G4X_FIFO_LINE_SIZE,
2734 };
2735 static struct intel_watermark_params i965_cursor_wm_info = {
2736 I965_CURSOR_FIFO,
2737 I965_CURSOR_MAX_WM,
2738 I965_CURSOR_DFT_WM,
2739 2,
2740 I915_FIFO_LINE_SIZE,
2741 };
2742 static struct intel_watermark_params i945_wm_info = {
2743 I945_FIFO_SIZE,
2744 I915_MAX_WM,
2745 1,
2746 2,
2747 I915_FIFO_LINE_SIZE
2748 };
2749 static struct intel_watermark_params i915_wm_info = {
2750 I915_FIFO_SIZE,
2751 I915_MAX_WM,
2752 1,
2753 2,
2754 I915_FIFO_LINE_SIZE
2755 };
2756 static struct intel_watermark_params i855_wm_info = {
2757 I855GM_FIFO_SIZE,
2758 I915_MAX_WM,
2759 1,
2760 2,
2761 I830_FIFO_LINE_SIZE
2762 };
2763 static struct intel_watermark_params i830_wm_info = {
2764 I830_FIFO_SIZE,
2765 I915_MAX_WM,
2766 1,
2767 2,
2768 I830_FIFO_LINE_SIZE
2769 };
2770
2771 static struct intel_watermark_params ironlake_display_wm_info = {
2772 ILK_DISPLAY_FIFO,
2773 ILK_DISPLAY_MAXWM,
2774 ILK_DISPLAY_DFTWM,
2775 2,
2776 ILK_FIFO_LINE_SIZE
2777 };
2778
2779 static struct intel_watermark_params ironlake_cursor_wm_info = {
2780 ILK_CURSOR_FIFO,
2781 ILK_CURSOR_MAXWM,
2782 ILK_CURSOR_DFTWM,
2783 2,
2784 ILK_FIFO_LINE_SIZE
2785 };
2786
2787 static struct intel_watermark_params ironlake_display_srwm_info = {
2788 ILK_DISPLAY_SR_FIFO,
2789 ILK_DISPLAY_MAX_SRWM,
2790 ILK_DISPLAY_DFT_SRWM,
2791 2,
2792 ILK_FIFO_LINE_SIZE
2793 };
2794
2795 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2796 ILK_CURSOR_SR_FIFO,
2797 ILK_CURSOR_MAX_SRWM,
2798 ILK_CURSOR_DFT_SRWM,
2799 2,
2800 ILK_FIFO_LINE_SIZE
2801 };
2802
2803 /**
2804 * intel_calculate_wm - calculate watermark level
2805 * @clock_in_khz: pixel clock
2806 * @wm: chip FIFO params
2807 * @pixel_size: display pixel size
2808 * @latency_ns: memory latency for the platform
2809 *
2810 * Calculate the watermark level (the level at which the display plane will
2811 * start fetching from memory again). Each chip has a different display
2812 * FIFO size and allocation, so the caller needs to figure that out and pass
2813 * in the correct intel_watermark_params structure.
2814 *
2815 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2816 * on the pixel size. When it reaches the watermark level, it'll start
2817 * fetching FIFO line sized based chunks from memory until the FIFO fills
2818 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2819 * will occur, and a display engine hang could result.
2820 */
2821 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2822 struct intel_watermark_params *wm,
2823 int pixel_size,
2824 unsigned long latency_ns)
2825 {
2826 long entries_required, wm_size;
2827
2828 /*
2829 * Note: we need to make sure we don't overflow for various clock &
2830 * latency values.
2831 * clocks go from a few thousand to several hundred thousand.
2832 * latency is usually a few thousand
2833 */
2834 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2835 1000;
2836 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2837
2838 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2839
2840 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2841
2842 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2843
2844 /* Don't promote wm_size to unsigned... */
2845 if (wm_size > (long)wm->max_wm)
2846 wm_size = wm->max_wm;
2847 if (wm_size <= 0)
2848 wm_size = wm->default_wm;
2849 return wm_size;
2850 }
2851
2852 struct cxsr_latency {
2853 int is_desktop;
2854 int is_ddr3;
2855 unsigned long fsb_freq;
2856 unsigned long mem_freq;
2857 unsigned long display_sr;
2858 unsigned long display_hpll_disable;
2859 unsigned long cursor_sr;
2860 unsigned long cursor_hpll_disable;
2861 };
2862
2863 static const struct cxsr_latency cxsr_latency_table[] = {
2864 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2865 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2866 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2867 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2868 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2869
2870 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2871 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2872 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2873 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2874 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2875
2876 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2877 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2878 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2879 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2880 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2881
2882 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2883 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2884 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2885 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2886 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2887
2888 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2889 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2890 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2891 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2892 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2893
2894 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2895 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2896 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2897 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2898 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2899 };
2900
2901 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2902 int is_ddr3,
2903 int fsb,
2904 int mem)
2905 {
2906 const struct cxsr_latency *latency;
2907 int i;
2908
2909 if (fsb == 0 || mem == 0)
2910 return NULL;
2911
2912 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2913 latency = &cxsr_latency_table[i];
2914 if (is_desktop == latency->is_desktop &&
2915 is_ddr3 == latency->is_ddr3 &&
2916 fsb == latency->fsb_freq && mem == latency->mem_freq)
2917 return latency;
2918 }
2919
2920 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2921
2922 return NULL;
2923 }
2924
2925 static void pineview_disable_cxsr(struct drm_device *dev)
2926 {
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928
2929 /* deactivate cxsr */
2930 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2931 }
2932
2933 /*
2934 * Latency for FIFO fetches is dependent on several factors:
2935 * - memory configuration (speed, channels)
2936 * - chipset
2937 * - current MCH state
2938 * It can be fairly high in some situations, so here we assume a fairly
2939 * pessimal value. It's a tradeoff between extra memory fetches (if we
2940 * set this value too high, the FIFO will fetch frequently to stay full)
2941 * and power consumption (set it too low to save power and we might see
2942 * FIFO underruns and display "flicker").
2943 *
2944 * A value of 5us seems to be a good balance; safe for very low end
2945 * platforms but not overly aggressive on lower latency configs.
2946 */
2947 static const int latency_ns = 5000;
2948
2949 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2950 {
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 uint32_t dsparb = I915_READ(DSPARB);
2953 int size;
2954
2955 size = dsparb & 0x7f;
2956 if (plane)
2957 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2958
2959 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2960 plane ? "B" : "A", size);
2961
2962 return size;
2963 }
2964
2965 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2966 {
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 uint32_t dsparb = I915_READ(DSPARB);
2969 int size;
2970
2971 size = dsparb & 0x1ff;
2972 if (plane)
2973 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2974 size >>= 1; /* Convert to cachelines */
2975
2976 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2977 plane ? "B" : "A", size);
2978
2979 return size;
2980 }
2981
2982 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2983 {
2984 struct drm_i915_private *dev_priv = dev->dev_private;
2985 uint32_t dsparb = I915_READ(DSPARB);
2986 int size;
2987
2988 size = dsparb & 0x7f;
2989 size >>= 2; /* Convert to cachelines */
2990
2991 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2992 plane ? "B" : "A",
2993 size);
2994
2995 return size;
2996 }
2997
2998 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 uint32_t dsparb = I915_READ(DSPARB);
3002 int size;
3003
3004 size = dsparb & 0x7f;
3005 size >>= 1; /* Convert to cachelines */
3006
3007 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3008 plane ? "B" : "A", size);
3009
3010 return size;
3011 }
3012
3013 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3014 int planeb_clock, int sr_hdisplay, int unused,
3015 int pixel_size)
3016 {
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 const struct cxsr_latency *latency;
3019 u32 reg;
3020 unsigned long wm;
3021 int sr_clock;
3022
3023 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3024 dev_priv->fsb_freq, dev_priv->mem_freq);
3025 if (!latency) {
3026 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3027 pineview_disable_cxsr(dev);
3028 return;
3029 }
3030
3031 if (!planea_clock || !planeb_clock) {
3032 sr_clock = planea_clock ? planea_clock : planeb_clock;
3033
3034 /* Display SR */
3035 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3036 pixel_size, latency->display_sr);
3037 reg = I915_READ(DSPFW1);
3038 reg &= ~DSPFW_SR_MASK;
3039 reg |= wm << DSPFW_SR_SHIFT;
3040 I915_WRITE(DSPFW1, reg);
3041 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3042
3043 /* cursor SR */
3044 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3045 pixel_size, latency->cursor_sr);
3046 reg = I915_READ(DSPFW3);
3047 reg &= ~DSPFW_CURSOR_SR_MASK;
3048 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3049 I915_WRITE(DSPFW3, reg);
3050
3051 /* Display HPLL off SR */
3052 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3053 pixel_size, latency->display_hpll_disable);
3054 reg = I915_READ(DSPFW3);
3055 reg &= ~DSPFW_HPLL_SR_MASK;
3056 reg |= wm & DSPFW_HPLL_SR_MASK;
3057 I915_WRITE(DSPFW3, reg);
3058
3059 /* cursor HPLL off SR */
3060 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3061 pixel_size, latency->cursor_hpll_disable);
3062 reg = I915_READ(DSPFW3);
3063 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3064 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3065 I915_WRITE(DSPFW3, reg);
3066 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3067
3068 /* activate cxsr */
3069 I915_WRITE(DSPFW3,
3070 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3071 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3072 } else {
3073 pineview_disable_cxsr(dev);
3074 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3075 }
3076 }
3077
3078 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3079 int planeb_clock, int sr_hdisplay, int sr_htotal,
3080 int pixel_size)
3081 {
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 int total_size, cacheline_size;
3084 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3085 struct intel_watermark_params planea_params, planeb_params;
3086 unsigned long line_time_us;
3087 int sr_clock, sr_entries = 0, entries_required;
3088
3089 /* Create copies of the base settings for each pipe */
3090 planea_params = planeb_params = g4x_wm_info;
3091
3092 /* Grab a couple of global values before we overwrite them */
3093 total_size = planea_params.fifo_size;
3094 cacheline_size = planea_params.cacheline_size;
3095
3096 /*
3097 * Note: we need to make sure we don't overflow for various clock &
3098 * latency values.
3099 * clocks go from a few thousand to several hundred thousand.
3100 * latency is usually a few thousand
3101 */
3102 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3103 1000;
3104 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3105 planea_wm = entries_required + planea_params.guard_size;
3106
3107 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3108 1000;
3109 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3110 planeb_wm = entries_required + planeb_params.guard_size;
3111
3112 cursora_wm = cursorb_wm = 16;
3113 cursor_sr = 32;
3114
3115 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3116
3117 /* Calc sr entries for one plane configs */
3118 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3119 /* self-refresh has much higher latency */
3120 static const int sr_latency_ns = 12000;
3121
3122 sr_clock = planea_clock ? planea_clock : planeb_clock;
3123 line_time_us = ((sr_htotal * 1000) / sr_clock);
3124
3125 /* Use ns/us then divide to preserve precision */
3126 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3127 pixel_size * sr_hdisplay;
3128 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3129
3130 entries_required = (((sr_latency_ns / line_time_us) +
3131 1000) / 1000) * pixel_size * 64;
3132 entries_required = DIV_ROUND_UP(entries_required,
3133 g4x_cursor_wm_info.cacheline_size);
3134 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3135
3136 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3137 cursor_sr = g4x_cursor_wm_info.max_wm;
3138 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3139 "cursor %d\n", sr_entries, cursor_sr);
3140
3141 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3142 } else {
3143 /* Turn off self refresh if both pipes are enabled */
3144 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3145 & ~FW_BLC_SELF_EN);
3146 }
3147
3148 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3149 planea_wm, planeb_wm, sr_entries);
3150
3151 planea_wm &= 0x3f;
3152 planeb_wm &= 0x3f;
3153
3154 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3155 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3156 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3157 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3158 (cursora_wm << DSPFW_CURSORA_SHIFT));
3159 /* HPLL off in SR has some issues on G4x... disable it */
3160 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3161 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3162 }
3163
3164 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3165 int planeb_clock, int sr_hdisplay, int sr_htotal,
3166 int pixel_size)
3167 {
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 unsigned long line_time_us;
3170 int sr_clock, sr_entries, srwm = 1;
3171 int cursor_sr = 16;
3172
3173 /* Calc sr entries for one plane configs */
3174 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3175 /* self-refresh has much higher latency */
3176 static const int sr_latency_ns = 12000;
3177
3178 sr_clock = planea_clock ? planea_clock : planeb_clock;
3179 line_time_us = ((sr_htotal * 1000) / sr_clock);
3180
3181 /* Use ns/us then divide to preserve precision */
3182 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3183 pixel_size * sr_hdisplay;
3184 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3185 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3186 srwm = I965_FIFO_SIZE - sr_entries;
3187 if (srwm < 0)
3188 srwm = 1;
3189 srwm &= 0x1ff;
3190
3191 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3192 pixel_size * 64;
3193 sr_entries = DIV_ROUND_UP(sr_entries,
3194 i965_cursor_wm_info.cacheline_size);
3195 cursor_sr = i965_cursor_wm_info.fifo_size -
3196 (sr_entries + i965_cursor_wm_info.guard_size);
3197
3198 if (cursor_sr > i965_cursor_wm_info.max_wm)
3199 cursor_sr = i965_cursor_wm_info.max_wm;
3200
3201 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3202 "cursor %d\n", srwm, cursor_sr);
3203
3204 if (IS_CRESTLINE(dev))
3205 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3206 } else {
3207 /* Turn off self refresh if both pipes are enabled */
3208 if (IS_CRESTLINE(dev))
3209 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3210 & ~FW_BLC_SELF_EN);
3211 }
3212
3213 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3214 srwm);
3215
3216 /* 965 has limitations... */
3217 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3218 (8 << 0));
3219 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3220 /* update cursor SR watermark */
3221 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3222 }
3223
3224 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3225 int planeb_clock, int sr_hdisplay, int sr_htotal,
3226 int pixel_size)
3227 {
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 uint32_t fwater_lo;
3230 uint32_t fwater_hi;
3231 int total_size, cacheline_size, cwm, srwm = 1;
3232 int planea_wm, planeb_wm;
3233 struct intel_watermark_params planea_params, planeb_params;
3234 unsigned long line_time_us;
3235 int sr_clock, sr_entries = 0;
3236
3237 /* Create copies of the base settings for each pipe */
3238 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3239 planea_params = planeb_params = i945_wm_info;
3240 else if (!IS_GEN2(dev))
3241 planea_params = planeb_params = i915_wm_info;
3242 else
3243 planea_params = planeb_params = i855_wm_info;
3244
3245 /* Grab a couple of global values before we overwrite them */
3246 total_size = planea_params.fifo_size;
3247 cacheline_size = planea_params.cacheline_size;
3248
3249 /* Update per-plane FIFO sizes */
3250 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3251 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3252
3253 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3254 pixel_size, latency_ns);
3255 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3256 pixel_size, latency_ns);
3257 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3258
3259 /*
3260 * Overlay gets an aggressive default since video jitter is bad.
3261 */
3262 cwm = 2;
3263
3264 /* Calc sr entries for one plane configs */
3265 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3266 (!planea_clock || !planeb_clock)) {
3267 /* self-refresh has much higher latency */
3268 static const int sr_latency_ns = 6000;
3269
3270 sr_clock = planea_clock ? planea_clock : planeb_clock;
3271 line_time_us = ((sr_htotal * 1000) / sr_clock);
3272
3273 /* Use ns/us then divide to preserve precision */
3274 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3275 pixel_size * sr_hdisplay;
3276 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3277 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3278 srwm = total_size - sr_entries;
3279 if (srwm < 0)
3280 srwm = 1;
3281
3282 if (IS_I945G(dev) || IS_I945GM(dev))
3283 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3284 else if (IS_I915GM(dev)) {
3285 /* 915M has a smaller SRWM field */
3286 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3287 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3288 }
3289 } else {
3290 /* Turn off self refresh if both pipes are enabled */
3291 if (IS_I945G(dev) || IS_I945GM(dev)) {
3292 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3293 & ~FW_BLC_SELF_EN);
3294 } else if (IS_I915GM(dev)) {
3295 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3296 }
3297 }
3298
3299 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3300 planea_wm, planeb_wm, cwm, srwm);
3301
3302 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3303 fwater_hi = (cwm & 0x1f);
3304
3305 /* Set request length to 8 cachelines per fetch */
3306 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3307 fwater_hi = fwater_hi | (1 << 8);
3308
3309 I915_WRITE(FW_BLC, fwater_lo);
3310 I915_WRITE(FW_BLC2, fwater_hi);
3311 }
3312
3313 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3314 int unused2, int unused3, int pixel_size)
3315 {
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3318 int planea_wm;
3319
3320 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3321
3322 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3323 pixel_size, latency_ns);
3324 fwater_lo |= (3<<8) | planea_wm;
3325
3326 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3327
3328 I915_WRITE(FW_BLC, fwater_lo);
3329 }
3330
3331 #define ILK_LP0_PLANE_LATENCY 700
3332 #define ILK_LP0_CURSOR_LATENCY 1300
3333
3334 static bool ironlake_compute_wm0(struct drm_device *dev,
3335 int pipe,
3336 int *plane_wm,
3337 int *cursor_wm)
3338 {
3339 struct drm_crtc *crtc;
3340 int htotal, hdisplay, clock, pixel_size = 0;
3341 int line_time_us, line_count, entries;
3342
3343 crtc = intel_get_crtc_for_pipe(dev, pipe);
3344 if (crtc->fb == NULL || !crtc->enabled)
3345 return false;
3346
3347 htotal = crtc->mode.htotal;
3348 hdisplay = crtc->mode.hdisplay;
3349 clock = crtc->mode.clock;
3350 pixel_size = crtc->fb->bits_per_pixel / 8;
3351
3352 /* Use the small buffer method to calculate plane watermark */
3353 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3354 entries = DIV_ROUND_UP(entries,
3355 ironlake_display_wm_info.cacheline_size);
3356 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3357 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3358 *plane_wm = ironlake_display_wm_info.max_wm;
3359
3360 /* Use the large buffer method to calculate cursor watermark */
3361 line_time_us = ((htotal * 1000) / clock);
3362 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3363 entries = line_count * 64 * pixel_size;
3364 entries = DIV_ROUND_UP(entries,
3365 ironlake_cursor_wm_info.cacheline_size);
3366 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3367 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3368 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3369
3370 return true;
3371 }
3372
3373 static void ironlake_update_wm(struct drm_device *dev,
3374 int planea_clock, int planeb_clock,
3375 int sr_hdisplay, int sr_htotal,
3376 int pixel_size)
3377 {
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3379 int plane_wm, cursor_wm, enabled;
3380 int tmp;
3381
3382 enabled = 0;
3383 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3384 I915_WRITE(WM0_PIPEA_ILK,
3385 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3386 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3387 " plane %d, " "cursor: %d\n",
3388 plane_wm, cursor_wm);
3389 enabled++;
3390 }
3391
3392 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3393 I915_WRITE(WM0_PIPEB_ILK,
3394 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3395 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3396 " plane %d, cursor: %d\n",
3397 plane_wm, cursor_wm);
3398 enabled++;
3399 }
3400
3401 /*
3402 * Calculate and update the self-refresh watermark only when one
3403 * display plane is used.
3404 */
3405 tmp = 0;
3406 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3407 unsigned long line_time_us;
3408 int small, large, plane_fbc;
3409 int sr_clock, entries;
3410 int line_count, line_size;
3411 /* Read the self-refresh latency. The unit is 0.5us */
3412 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3413
3414 sr_clock = planea_clock ? planea_clock : planeb_clock;
3415 line_time_us = (sr_htotal * 1000) / sr_clock;
3416
3417 /* Use ns/us then divide to preserve precision */
3418 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3419 / 1000;
3420 line_size = sr_hdisplay * pixel_size;
3421
3422 /* Use the minimum of the small and large buffer method for primary */
3423 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3424 large = line_count * line_size;
3425
3426 entries = DIV_ROUND_UP(min(small, large),
3427 ironlake_display_srwm_info.cacheline_size);
3428
3429 plane_fbc = entries * 64;
3430 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3431
3432 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3433 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3434 plane_wm = ironlake_display_srwm_info.max_wm;
3435
3436 /* calculate the self-refresh watermark for display cursor */
3437 entries = line_count * pixel_size * 64;
3438 entries = DIV_ROUND_UP(entries,
3439 ironlake_cursor_srwm_info.cacheline_size);
3440
3441 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3442 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3443 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3444
3445 /* configure watermark and enable self-refresh */
3446 tmp = (WM1_LP_SR_EN |
3447 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3448 (plane_fbc << WM1_LP_FBC_SHIFT) |
3449 (plane_wm << WM1_LP_SR_SHIFT) |
3450 cursor_wm);
3451 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3452 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3453 }
3454 I915_WRITE(WM1_LP_ILK, tmp);
3455 /* XXX setup WM2 and WM3 */
3456 }
3457
3458 /**
3459 * intel_update_watermarks - update FIFO watermark values based on current modes
3460 *
3461 * Calculate watermark values for the various WM regs based on current mode
3462 * and plane configuration.
3463 *
3464 * There are several cases to deal with here:
3465 * - normal (i.e. non-self-refresh)
3466 * - self-refresh (SR) mode
3467 * - lines are large relative to FIFO size (buffer can hold up to 2)
3468 * - lines are small relative to FIFO size (buffer can hold more than 2
3469 * lines), so need to account for TLB latency
3470 *
3471 * The normal calculation is:
3472 * watermark = dotclock * bytes per pixel * latency
3473 * where latency is platform & configuration dependent (we assume pessimal
3474 * values here).
3475 *
3476 * The SR calculation is:
3477 * watermark = (trunc(latency/line time)+1) * surface width *
3478 * bytes per pixel
3479 * where
3480 * line time = htotal / dotclock
3481 * surface width = hdisplay for normal plane and 64 for cursor
3482 * and latency is assumed to be high, as above.
3483 *
3484 * The final value programmed to the register should always be rounded up,
3485 * and include an extra 2 entries to account for clock crossings.
3486 *
3487 * We don't use the sprite, so we can ignore that. And on Crestline we have
3488 * to set the non-SR watermarks to 8.
3489 */
3490 static void intel_update_watermarks(struct drm_device *dev)
3491 {
3492 struct drm_i915_private *dev_priv = dev->dev_private;
3493 struct drm_crtc *crtc;
3494 int sr_hdisplay = 0;
3495 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3496 int enabled = 0, pixel_size = 0;
3497 int sr_htotal = 0;
3498
3499 if (!dev_priv->display.update_wm)
3500 return;
3501
3502 /* Get the clock config from both planes */
3503 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3504 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3505 if (intel_crtc->active) {
3506 enabled++;
3507 if (intel_crtc->plane == 0) {
3508 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3509 intel_crtc->pipe, crtc->mode.clock);
3510 planea_clock = crtc->mode.clock;
3511 } else {
3512 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3513 intel_crtc->pipe, crtc->mode.clock);
3514 planeb_clock = crtc->mode.clock;
3515 }
3516 sr_hdisplay = crtc->mode.hdisplay;
3517 sr_clock = crtc->mode.clock;
3518 sr_htotal = crtc->mode.htotal;
3519 if (crtc->fb)
3520 pixel_size = crtc->fb->bits_per_pixel / 8;
3521 else
3522 pixel_size = 4; /* by default */
3523 }
3524 }
3525
3526 if (enabled <= 0)
3527 return;
3528
3529 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3530 sr_hdisplay, sr_htotal, pixel_size);
3531 }
3532
3533 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3534 struct drm_display_mode *mode,
3535 struct drm_display_mode *adjusted_mode,
3536 int x, int y,
3537 struct drm_framebuffer *old_fb)
3538 {
3539 struct drm_device *dev = crtc->dev;
3540 struct drm_i915_private *dev_priv = dev->dev_private;
3541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3542 int pipe = intel_crtc->pipe;
3543 int plane = intel_crtc->plane;
3544 u32 fp_reg, dpll_reg;
3545 int refclk, num_connectors = 0;
3546 intel_clock_t clock, reduced_clock;
3547 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3548 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3549 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3550 struct intel_encoder *has_edp_encoder = NULL;
3551 struct drm_mode_config *mode_config = &dev->mode_config;
3552 struct intel_encoder *encoder;
3553 const intel_limit_t *limit;
3554 int ret;
3555 struct fdi_m_n m_n = {0};
3556 u32 reg, temp;
3557 int target_clock;
3558
3559 drm_vblank_pre_modeset(dev, pipe);
3560
3561 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3562 if (encoder->base.crtc != crtc)
3563 continue;
3564
3565 switch (encoder->type) {
3566 case INTEL_OUTPUT_LVDS:
3567 is_lvds = true;
3568 break;
3569 case INTEL_OUTPUT_SDVO:
3570 case INTEL_OUTPUT_HDMI:
3571 is_sdvo = true;
3572 if (encoder->needs_tv_clock)
3573 is_tv = true;
3574 break;
3575 case INTEL_OUTPUT_DVO:
3576 is_dvo = true;
3577 break;
3578 case INTEL_OUTPUT_TVOUT:
3579 is_tv = true;
3580 break;
3581 case INTEL_OUTPUT_ANALOG:
3582 is_crt = true;
3583 break;
3584 case INTEL_OUTPUT_DISPLAYPORT:
3585 is_dp = true;
3586 break;
3587 case INTEL_OUTPUT_EDP:
3588 has_edp_encoder = encoder;
3589 break;
3590 }
3591
3592 num_connectors++;
3593 }
3594
3595 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3596 refclk = dev_priv->lvds_ssc_freq * 1000;
3597 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3598 refclk / 1000);
3599 } else if (!IS_GEN2(dev)) {
3600 refclk = 96000;
3601 if (HAS_PCH_SPLIT(dev))
3602 refclk = 120000; /* 120Mhz refclk */
3603 } else {
3604 refclk = 48000;
3605 }
3606
3607 /*
3608 * Returns a set of divisors for the desired target clock with the given
3609 * refclk, or FALSE. The returned values represent the clock equation:
3610 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3611 */
3612 limit = intel_limit(crtc);
3613 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3614 if (!ok) {
3615 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3616 drm_vblank_post_modeset(dev, pipe);
3617 return -EINVAL;
3618 }
3619
3620 /* Ensure that the cursor is valid for the new mode before changing... */
3621 intel_crtc_update_cursor(crtc, true);
3622
3623 if (is_lvds && dev_priv->lvds_downclock_avail) {
3624 has_reduced_clock = limit->find_pll(limit, crtc,
3625 dev_priv->lvds_downclock,
3626 refclk,
3627 &reduced_clock);
3628 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3629 /*
3630 * If the different P is found, it means that we can't
3631 * switch the display clock by using the FP0/FP1.
3632 * In such case we will disable the LVDS downclock
3633 * feature.
3634 */
3635 DRM_DEBUG_KMS("Different P is found for "
3636 "LVDS clock/downclock\n");
3637 has_reduced_clock = 0;
3638 }
3639 }
3640 /* SDVO TV has fixed PLL values depend on its clock range,
3641 this mirrors vbios setting. */
3642 if (is_sdvo && is_tv) {
3643 if (adjusted_mode->clock >= 100000
3644 && adjusted_mode->clock < 140500) {
3645 clock.p1 = 2;
3646 clock.p2 = 10;
3647 clock.n = 3;
3648 clock.m1 = 16;
3649 clock.m2 = 8;
3650 } else if (adjusted_mode->clock >= 140500
3651 && adjusted_mode->clock <= 200000) {
3652 clock.p1 = 1;
3653 clock.p2 = 10;
3654 clock.n = 6;
3655 clock.m1 = 12;
3656 clock.m2 = 8;
3657 }
3658 }
3659
3660 /* FDI link */
3661 if (HAS_PCH_SPLIT(dev)) {
3662 int lane = 0, link_bw, bpp;
3663 /* eDP doesn't require FDI link, so just set DP M/N
3664 according to current link config */
3665 if (has_edp_encoder) {
3666 target_clock = mode->clock;
3667 intel_edp_link_config(has_edp_encoder,
3668 &lane, &link_bw);
3669 } else {
3670 /* DP over FDI requires target mode clock
3671 instead of link clock */
3672 if (is_dp)
3673 target_clock = mode->clock;
3674 else
3675 target_clock = adjusted_mode->clock;
3676
3677 /* FDI is a binary signal running at ~2.7GHz, encoding
3678 * each output octet as 10 bits. The actual frequency
3679 * is stored as a divider into a 100MHz clock, and the
3680 * mode pixel clock is stored in units of 1KHz.
3681 * Hence the bw of each lane in terms of the mode signal
3682 * is:
3683 */
3684 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3685 }
3686
3687 /* determine panel color depth */
3688 temp = I915_READ(PIPECONF(pipe));
3689 temp &= ~PIPE_BPC_MASK;
3690 if (is_lvds) {
3691 /* the BPC will be 6 if it is 18-bit LVDS panel */
3692 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3693 temp |= PIPE_8BPC;
3694 else
3695 temp |= PIPE_6BPC;
3696 } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
3697 switch (dev_priv->edp_bpp/3) {
3698 case 8:
3699 temp |= PIPE_8BPC;
3700 break;
3701 case 10:
3702 temp |= PIPE_10BPC;
3703 break;
3704 case 6:
3705 temp |= PIPE_6BPC;
3706 break;
3707 case 12:
3708 temp |= PIPE_12BPC;
3709 break;
3710 }
3711 } else
3712 temp |= PIPE_8BPC;
3713 I915_WRITE(PIPECONF(pipe), temp);
3714
3715 switch (temp & PIPE_BPC_MASK) {
3716 case PIPE_8BPC:
3717 bpp = 24;
3718 break;
3719 case PIPE_10BPC:
3720 bpp = 30;
3721 break;
3722 case PIPE_6BPC:
3723 bpp = 18;
3724 break;
3725 case PIPE_12BPC:
3726 bpp = 36;
3727 break;
3728 default:
3729 DRM_ERROR("unknown pipe bpc value\n");
3730 bpp = 24;
3731 }
3732
3733 if (!lane) {
3734 /*
3735 * Account for spread spectrum to avoid
3736 * oversubscribing the link. Max center spread
3737 * is 2.5%; use 5% for safety's sake.
3738 */
3739 u32 bps = target_clock * bpp * 21 / 20;
3740 lane = bps / (link_bw * 8) + 1;
3741 }
3742
3743 intel_crtc->fdi_lanes = lane;
3744
3745 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3746 }
3747
3748 /* Ironlake: try to setup display ref clock before DPLL
3749 * enabling. This is only under driver's control after
3750 * PCH B stepping, previous chipset stepping should be
3751 * ignoring this setting.
3752 */
3753 if (HAS_PCH_SPLIT(dev)) {
3754 temp = I915_READ(PCH_DREF_CONTROL);
3755 /* Always enable nonspread source */
3756 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3757 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3758 temp &= ~DREF_SSC_SOURCE_MASK;
3759 temp |= DREF_SSC_SOURCE_ENABLE;
3760 I915_WRITE(PCH_DREF_CONTROL, temp);
3761
3762 POSTING_READ(PCH_DREF_CONTROL);
3763 udelay(200);
3764
3765 if (has_edp_encoder) {
3766 if (dev_priv->lvds_use_ssc) {
3767 temp |= DREF_SSC1_ENABLE;
3768 I915_WRITE(PCH_DREF_CONTROL, temp);
3769
3770 POSTING_READ(PCH_DREF_CONTROL);
3771 udelay(200);
3772
3773 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3774 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3775 } else {
3776 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3777 }
3778 I915_WRITE(PCH_DREF_CONTROL, temp);
3779 }
3780 }
3781
3782 if (IS_PINEVIEW(dev)) {
3783 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3784 if (has_reduced_clock)
3785 fp2 = (1 << reduced_clock.n) << 16 |
3786 reduced_clock.m1 << 8 | reduced_clock.m2;
3787 } else {
3788 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3789 if (has_reduced_clock)
3790 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3791 reduced_clock.m2;
3792 }
3793
3794 dpll = 0;
3795 if (!HAS_PCH_SPLIT(dev))
3796 dpll = DPLL_VGA_MODE_DIS;
3797
3798 if (!IS_GEN2(dev)) {
3799 if (is_lvds)
3800 dpll |= DPLLB_MODE_LVDS;
3801 else
3802 dpll |= DPLLB_MODE_DAC_SERIAL;
3803 if (is_sdvo) {
3804 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3805 if (pixel_multiplier > 1) {
3806 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3807 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3808 else if (HAS_PCH_SPLIT(dev))
3809 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3810 }
3811 dpll |= DPLL_DVO_HIGH_SPEED;
3812 }
3813 if (is_dp)
3814 dpll |= DPLL_DVO_HIGH_SPEED;
3815
3816 /* compute bitmask from p1 value */
3817 if (IS_PINEVIEW(dev))
3818 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3819 else {
3820 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3821 /* also FPA1 */
3822 if (HAS_PCH_SPLIT(dev))
3823 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3824 if (IS_G4X(dev) && has_reduced_clock)
3825 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3826 }
3827 switch (clock.p2) {
3828 case 5:
3829 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3830 break;
3831 case 7:
3832 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3833 break;
3834 case 10:
3835 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3836 break;
3837 case 14:
3838 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3839 break;
3840 }
3841 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3842 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3843 } else {
3844 if (is_lvds) {
3845 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3846 } else {
3847 if (clock.p1 == 2)
3848 dpll |= PLL_P1_DIVIDE_BY_TWO;
3849 else
3850 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3851 if (clock.p2 == 4)
3852 dpll |= PLL_P2_DIVIDE_BY_4;
3853 }
3854 }
3855
3856 if (is_sdvo && is_tv)
3857 dpll |= PLL_REF_INPUT_TVCLKINBC;
3858 else if (is_tv)
3859 /* XXX: just matching BIOS for now */
3860 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3861 dpll |= 3;
3862 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3863 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3864 else
3865 dpll |= PLL_REF_INPUT_DREFCLK;
3866
3867 /* setup pipeconf */
3868 pipeconf = I915_READ(PIPECONF(pipe));
3869
3870 /* Set up the display plane register */
3871 dspcntr = DISPPLANE_GAMMA_ENABLE;
3872
3873 /* Ironlake's plane is forced to pipe, bit 24 is to
3874 enable color space conversion */
3875 if (!HAS_PCH_SPLIT(dev)) {
3876 if (pipe == 0)
3877 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3878 else
3879 dspcntr |= DISPPLANE_SEL_PIPE_B;
3880 }
3881
3882 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3883 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3884 * core speed.
3885 *
3886 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3887 * pipe == 0 check?
3888 */
3889 if (mode->clock >
3890 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3891 pipeconf |= PIPECONF_DOUBLE_WIDE;
3892 else
3893 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3894 }
3895
3896 dspcntr |= DISPLAY_PLANE_ENABLE;
3897 pipeconf |= PIPECONF_ENABLE;
3898 dpll |= DPLL_VCO_ENABLE;
3899
3900 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3901 drm_mode_debug_printmodeline(mode);
3902
3903 /* assign to Ironlake registers */
3904 if (HAS_PCH_SPLIT(dev)) {
3905 fp_reg = PCH_FP0(pipe);
3906 dpll_reg = PCH_DPLL(pipe);
3907 } else {
3908 fp_reg = FP0(pipe);
3909 dpll_reg = DPLL(pipe);
3910 }
3911
3912 if (!has_edp_encoder) {
3913 I915_WRITE(fp_reg, fp);
3914 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3915
3916 POSTING_READ(dpll_reg);
3917 udelay(150);
3918 }
3919
3920 /* enable transcoder DPLL */
3921 if (HAS_PCH_CPT(dev)) {
3922 temp = I915_READ(PCH_DPLL_SEL);
3923 if (pipe == 0)
3924 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3925 else
3926 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3927 I915_WRITE(PCH_DPLL_SEL, temp);
3928
3929 POSTING_READ(PCH_DPLL_SEL);
3930 udelay(150);
3931 }
3932
3933 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3934 * This is an exception to the general rule that mode_set doesn't turn
3935 * things on.
3936 */
3937 if (is_lvds) {
3938 reg = LVDS;
3939 if (HAS_PCH_SPLIT(dev))
3940 reg = PCH_LVDS;
3941
3942 temp = I915_READ(reg);
3943 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3944 if (pipe == 1) {
3945 if (HAS_PCH_CPT(dev))
3946 temp |= PORT_TRANS_B_SEL_CPT;
3947 else
3948 temp |= LVDS_PIPEB_SELECT;
3949 } else {
3950 if (HAS_PCH_CPT(dev))
3951 temp &= ~PORT_TRANS_SEL_MASK;
3952 else
3953 temp &= ~LVDS_PIPEB_SELECT;
3954 }
3955 /* set the corresponsding LVDS_BORDER bit */
3956 temp |= dev_priv->lvds_border_bits;
3957 /* Set the B0-B3 data pairs corresponding to whether we're going to
3958 * set the DPLLs for dual-channel mode or not.
3959 */
3960 if (clock.p2 == 7)
3961 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3962 else
3963 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3964
3965 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3966 * appropriately here, but we need to look more thoroughly into how
3967 * panels behave in the two modes.
3968 */
3969 /* set the dithering flag on non-PCH LVDS as needed */
3970 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3971 if (dev_priv->lvds_dither)
3972 temp |= LVDS_ENABLE_DITHER;
3973 else
3974 temp &= ~LVDS_ENABLE_DITHER;
3975 }
3976 I915_WRITE(reg, temp);
3977 }
3978
3979 /* set the dithering flag and clear for anything other than a panel. */
3980 if (HAS_PCH_SPLIT(dev)) {
3981 pipeconf &= ~PIPECONF_DITHER_EN;
3982 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
3983 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
3984 pipeconf |= PIPECONF_DITHER_EN;
3985 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
3986 }
3987 }
3988
3989 if (is_dp)
3990 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3991 else if (HAS_PCH_SPLIT(dev)) {
3992 /* For non-DP output, clear any trans DP clock recovery setting.*/
3993 if (pipe == 0) {
3994 I915_WRITE(TRANSA_DATA_M1, 0);
3995 I915_WRITE(TRANSA_DATA_N1, 0);
3996 I915_WRITE(TRANSA_DP_LINK_M1, 0);
3997 I915_WRITE(TRANSA_DP_LINK_N1, 0);
3998 } else {
3999 I915_WRITE(TRANSB_DATA_M1, 0);
4000 I915_WRITE(TRANSB_DATA_N1, 0);
4001 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4002 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4003 }
4004 }
4005
4006 if (!has_edp_encoder) {
4007 I915_WRITE(fp_reg, fp);
4008 I915_WRITE(dpll_reg, dpll);
4009
4010 /* Wait for the clocks to stabilize. */
4011 POSTING_READ(dpll_reg);
4012 udelay(150);
4013
4014 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4015 temp = 0;
4016 if (is_sdvo) {
4017 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4018 if (temp > 1)
4019 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4020 else
4021 temp = 0;
4022 }
4023 I915_WRITE(DPLL_MD(pipe), temp);
4024 } else {
4025 /* write it again -- the BIOS does, after all */
4026 I915_WRITE(dpll_reg, dpll);
4027 }
4028
4029 /* Wait for the clocks to stabilize. */
4030 POSTING_READ(dpll_reg);
4031 udelay(150);
4032 }
4033
4034 intel_crtc->lowfreq_avail = false;
4035 if (is_lvds && has_reduced_clock && i915_powersave) {
4036 I915_WRITE(fp_reg + 4, fp2);
4037 intel_crtc->lowfreq_avail = true;
4038 if (HAS_PIPE_CXSR(dev)) {
4039 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4040 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4041 }
4042 } else {
4043 I915_WRITE(fp_reg + 4, fp);
4044 if (HAS_PIPE_CXSR(dev)) {
4045 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4046 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4047 }
4048 }
4049
4050 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4051 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4052 /* the chip adds 2 halflines automatically */
4053 adjusted_mode->crtc_vdisplay -= 1;
4054 adjusted_mode->crtc_vtotal -= 1;
4055 adjusted_mode->crtc_vblank_start -= 1;
4056 adjusted_mode->crtc_vblank_end -= 1;
4057 adjusted_mode->crtc_vsync_end -= 1;
4058 adjusted_mode->crtc_vsync_start -= 1;
4059 } else
4060 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4061
4062 I915_WRITE(HTOTAL(pipe),
4063 (adjusted_mode->crtc_hdisplay - 1) |
4064 ((adjusted_mode->crtc_htotal - 1) << 16));
4065 I915_WRITE(HBLANK(pipe),
4066 (adjusted_mode->crtc_hblank_start - 1) |
4067 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4068 I915_WRITE(HSYNC(pipe),
4069 (adjusted_mode->crtc_hsync_start - 1) |
4070 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4071
4072 I915_WRITE(VTOTAL(pipe),
4073 (adjusted_mode->crtc_vdisplay - 1) |
4074 ((adjusted_mode->crtc_vtotal - 1) << 16));
4075 I915_WRITE(VBLANK(pipe),
4076 (adjusted_mode->crtc_vblank_start - 1) |
4077 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4078 I915_WRITE(VSYNC(pipe),
4079 (adjusted_mode->crtc_vsync_start - 1) |
4080 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4081
4082 /* pipesrc and dspsize control the size that is scaled from,
4083 * which should always be the user's requested size.
4084 */
4085 if (!HAS_PCH_SPLIT(dev)) {
4086 I915_WRITE(DSPSIZE(plane),
4087 ((mode->vdisplay - 1) << 16) |
4088 (mode->hdisplay - 1));
4089 I915_WRITE(DSPPOS(plane), 0);
4090 }
4091 I915_WRITE(PIPESRC(pipe),
4092 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4093
4094 if (HAS_PCH_SPLIT(dev)) {
4095 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4096 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4097 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4098 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4099
4100 if (has_edp_encoder) {
4101 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4102 } else {
4103 /* enable FDI RX PLL too */
4104 reg = FDI_RX_CTL(pipe);
4105 temp = I915_READ(reg);
4106 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4107
4108 POSTING_READ(reg);
4109 udelay(200);
4110
4111 /* enable FDI TX PLL too */
4112 reg = FDI_TX_CTL(pipe);
4113 temp = I915_READ(reg);
4114 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4115
4116 /* enable FDI RX PCDCLK */
4117 reg = FDI_RX_CTL(pipe);
4118 temp = I915_READ(reg);
4119 I915_WRITE(reg, temp | FDI_PCDCLK);
4120
4121 POSTING_READ(reg);
4122 udelay(200);
4123 }
4124 }
4125
4126 I915_WRITE(PIPECONF(pipe), pipeconf);
4127 POSTING_READ(PIPECONF(pipe));
4128
4129 intel_wait_for_vblank(dev, pipe);
4130
4131 if (IS_IRONLAKE(dev)) {
4132 /* enable address swizzle for tiling buffer */
4133 temp = I915_READ(DISP_ARB_CTL);
4134 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4135 }
4136
4137 I915_WRITE(DSPCNTR(plane), dspcntr);
4138
4139 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4140
4141 intel_update_watermarks(dev);
4142
4143 drm_vblank_post_modeset(dev, pipe);
4144
4145 return ret;
4146 }
4147
4148 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4149 void intel_crtc_load_lut(struct drm_crtc *crtc)
4150 {
4151 struct drm_device *dev = crtc->dev;
4152 struct drm_i915_private *dev_priv = dev->dev_private;
4153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4154 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4155 int i;
4156
4157 /* The clocks have to be on to load the palette. */
4158 if (!crtc->enabled)
4159 return;
4160
4161 /* use legacy palette for Ironlake */
4162 if (HAS_PCH_SPLIT(dev))
4163 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4164 LGC_PALETTE_B;
4165
4166 for (i = 0; i < 256; i++) {
4167 I915_WRITE(palreg + 4 * i,
4168 (intel_crtc->lut_r[i] << 16) |
4169 (intel_crtc->lut_g[i] << 8) |
4170 intel_crtc->lut_b[i]);
4171 }
4172 }
4173
4174 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4175 {
4176 struct drm_device *dev = crtc->dev;
4177 struct drm_i915_private *dev_priv = dev->dev_private;
4178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4179 bool visible = base != 0;
4180 u32 cntl;
4181
4182 if (intel_crtc->cursor_visible == visible)
4183 return;
4184
4185 cntl = I915_READ(CURACNTR);
4186 if (visible) {
4187 /* On these chipsets we can only modify the base whilst
4188 * the cursor is disabled.
4189 */
4190 I915_WRITE(CURABASE, base);
4191
4192 cntl &= ~(CURSOR_FORMAT_MASK);
4193 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4194 cntl |= CURSOR_ENABLE |
4195 CURSOR_GAMMA_ENABLE |
4196 CURSOR_FORMAT_ARGB;
4197 } else
4198 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4199 I915_WRITE(CURACNTR, cntl);
4200
4201 intel_crtc->cursor_visible = visible;
4202 }
4203
4204 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4205 {
4206 struct drm_device *dev = crtc->dev;
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209 int pipe = intel_crtc->pipe;
4210 bool visible = base != 0;
4211
4212 if (intel_crtc->cursor_visible != visible) {
4213 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4214 if (base) {
4215 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4216 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4217 cntl |= pipe << 28; /* Connect to correct pipe */
4218 } else {
4219 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4220 cntl |= CURSOR_MODE_DISABLE;
4221 }
4222 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4223
4224 intel_crtc->cursor_visible = visible;
4225 }
4226 /* and commit changes on next vblank */
4227 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4228 }
4229
4230 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4231 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4232 bool on)
4233 {
4234 struct drm_device *dev = crtc->dev;
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4237 int pipe = intel_crtc->pipe;
4238 int x = intel_crtc->cursor_x;
4239 int y = intel_crtc->cursor_y;
4240 u32 base, pos;
4241 bool visible;
4242
4243 pos = 0;
4244
4245 if (on && crtc->enabled && crtc->fb) {
4246 base = intel_crtc->cursor_addr;
4247 if (x > (int) crtc->fb->width)
4248 base = 0;
4249
4250 if (y > (int) crtc->fb->height)
4251 base = 0;
4252 } else
4253 base = 0;
4254
4255 if (x < 0) {
4256 if (x + intel_crtc->cursor_width < 0)
4257 base = 0;
4258
4259 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4260 x = -x;
4261 }
4262 pos |= x << CURSOR_X_SHIFT;
4263
4264 if (y < 0) {
4265 if (y + intel_crtc->cursor_height < 0)
4266 base = 0;
4267
4268 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4269 y = -y;
4270 }
4271 pos |= y << CURSOR_Y_SHIFT;
4272
4273 visible = base != 0;
4274 if (!visible && !intel_crtc->cursor_visible)
4275 return;
4276
4277 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4278 if (IS_845G(dev) || IS_I865G(dev))
4279 i845_update_cursor(crtc, base);
4280 else
4281 i9xx_update_cursor(crtc, base);
4282
4283 if (visible)
4284 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4285 }
4286
4287 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4288 struct drm_file *file_priv,
4289 uint32_t handle,
4290 uint32_t width, uint32_t height)
4291 {
4292 struct drm_device *dev = crtc->dev;
4293 struct drm_i915_private *dev_priv = dev->dev_private;
4294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4295 struct drm_gem_object *bo;
4296 struct drm_i915_gem_object *obj_priv;
4297 uint32_t addr;
4298 int ret;
4299
4300 DRM_DEBUG_KMS("\n");
4301
4302 /* if we want to turn off the cursor ignore width and height */
4303 if (!handle) {
4304 DRM_DEBUG_KMS("cursor off\n");
4305 addr = 0;
4306 bo = NULL;
4307 mutex_lock(&dev->struct_mutex);
4308 goto finish;
4309 }
4310
4311 /* Currently we only support 64x64 cursors */
4312 if (width != 64 || height != 64) {
4313 DRM_ERROR("we currently only support 64x64 cursors\n");
4314 return -EINVAL;
4315 }
4316
4317 bo = drm_gem_object_lookup(dev, file_priv, handle);
4318 if (!bo)
4319 return -ENOENT;
4320
4321 obj_priv = to_intel_bo(bo);
4322
4323 if (bo->size < width * height * 4) {
4324 DRM_ERROR("buffer is to small\n");
4325 ret = -ENOMEM;
4326 goto fail;
4327 }
4328
4329 /* we only need to pin inside GTT if cursor is non-phy */
4330 mutex_lock(&dev->struct_mutex);
4331 if (!dev_priv->info->cursor_needs_physical) {
4332 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4333 if (ret) {
4334 DRM_ERROR("failed to pin cursor bo\n");
4335 goto fail_locked;
4336 }
4337
4338 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4339 if (ret) {
4340 DRM_ERROR("failed to move cursor bo into the GTT\n");
4341 goto fail_unpin;
4342 }
4343
4344 addr = obj_priv->gtt_offset;
4345 } else {
4346 int align = IS_I830(dev) ? 16 * 1024 : 256;
4347 ret = i915_gem_attach_phys_object(dev, bo,
4348 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4349 align);
4350 if (ret) {
4351 DRM_ERROR("failed to attach phys object\n");
4352 goto fail_locked;
4353 }
4354 addr = obj_priv->phys_obj->handle->busaddr;
4355 }
4356
4357 if (IS_GEN2(dev))
4358 I915_WRITE(CURSIZE, (height << 12) | width);
4359
4360 finish:
4361 if (intel_crtc->cursor_bo) {
4362 if (dev_priv->info->cursor_needs_physical) {
4363 if (intel_crtc->cursor_bo != bo)
4364 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4365 } else
4366 i915_gem_object_unpin(intel_crtc->cursor_bo);
4367 drm_gem_object_unreference(intel_crtc->cursor_bo);
4368 }
4369
4370 mutex_unlock(&dev->struct_mutex);
4371
4372 intel_crtc->cursor_addr = addr;
4373 intel_crtc->cursor_bo = bo;
4374 intel_crtc->cursor_width = width;
4375 intel_crtc->cursor_height = height;
4376
4377 intel_crtc_update_cursor(crtc, true);
4378
4379 return 0;
4380 fail_unpin:
4381 i915_gem_object_unpin(bo);
4382 fail_locked:
4383 mutex_unlock(&dev->struct_mutex);
4384 fail:
4385 drm_gem_object_unreference_unlocked(bo);
4386 return ret;
4387 }
4388
4389 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4390 {
4391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4392
4393 intel_crtc->cursor_x = x;
4394 intel_crtc->cursor_y = y;
4395
4396 intel_crtc_update_cursor(crtc, true);
4397
4398 return 0;
4399 }
4400
4401 /** Sets the color ramps on behalf of RandR */
4402 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4403 u16 blue, int regno)
4404 {
4405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406
4407 intel_crtc->lut_r[regno] = red >> 8;
4408 intel_crtc->lut_g[regno] = green >> 8;
4409 intel_crtc->lut_b[regno] = blue >> 8;
4410 }
4411
4412 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4413 u16 *blue, int regno)
4414 {
4415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4416
4417 *red = intel_crtc->lut_r[regno] << 8;
4418 *green = intel_crtc->lut_g[regno] << 8;
4419 *blue = intel_crtc->lut_b[regno] << 8;
4420 }
4421
4422 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4423 u16 *blue, uint32_t start, uint32_t size)
4424 {
4425 int end = (start + size > 256) ? 256 : start + size, i;
4426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4427
4428 for (i = start; i < end; i++) {
4429 intel_crtc->lut_r[i] = red[i] >> 8;
4430 intel_crtc->lut_g[i] = green[i] >> 8;
4431 intel_crtc->lut_b[i] = blue[i] >> 8;
4432 }
4433
4434 intel_crtc_load_lut(crtc);
4435 }
4436
4437 /**
4438 * Get a pipe with a simple mode set on it for doing load-based monitor
4439 * detection.
4440 *
4441 * It will be up to the load-detect code to adjust the pipe as appropriate for
4442 * its requirements. The pipe will be connected to no other encoders.
4443 *
4444 * Currently this code will only succeed if there is a pipe with no encoders
4445 * configured for it. In the future, it could choose to temporarily disable
4446 * some outputs to free up a pipe for its use.
4447 *
4448 * \return crtc, or NULL if no pipes are available.
4449 */
4450
4451 /* VESA 640x480x72Hz mode to set on the pipe */
4452 static struct drm_display_mode load_detect_mode = {
4453 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4454 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4455 };
4456
4457 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4458 struct drm_connector *connector,
4459 struct drm_display_mode *mode,
4460 int *dpms_mode)
4461 {
4462 struct intel_crtc *intel_crtc;
4463 struct drm_crtc *possible_crtc;
4464 struct drm_crtc *supported_crtc =NULL;
4465 struct drm_encoder *encoder = &intel_encoder->base;
4466 struct drm_crtc *crtc = NULL;
4467 struct drm_device *dev = encoder->dev;
4468 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4469 struct drm_crtc_helper_funcs *crtc_funcs;
4470 int i = -1;
4471
4472 /*
4473 * Algorithm gets a little messy:
4474 * - if the connector already has an assigned crtc, use it (but make
4475 * sure it's on first)
4476 * - try to find the first unused crtc that can drive this connector,
4477 * and use that if we find one
4478 * - if there are no unused crtcs available, try to use the first
4479 * one we found that supports the connector
4480 */
4481
4482 /* See if we already have a CRTC for this connector */
4483 if (encoder->crtc) {
4484 crtc = encoder->crtc;
4485 /* Make sure the crtc and connector are running */
4486 intel_crtc = to_intel_crtc(crtc);
4487 *dpms_mode = intel_crtc->dpms_mode;
4488 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4489 crtc_funcs = crtc->helper_private;
4490 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4491 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4492 }
4493 return crtc;
4494 }
4495
4496 /* Find an unused one (if possible) */
4497 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4498 i++;
4499 if (!(encoder->possible_crtcs & (1 << i)))
4500 continue;
4501 if (!possible_crtc->enabled) {
4502 crtc = possible_crtc;
4503 break;
4504 }
4505 if (!supported_crtc)
4506 supported_crtc = possible_crtc;
4507 }
4508
4509 /*
4510 * If we didn't find an unused CRTC, don't use any.
4511 */
4512 if (!crtc) {
4513 return NULL;
4514 }
4515
4516 encoder->crtc = crtc;
4517 connector->encoder = encoder;
4518 intel_encoder->load_detect_temp = true;
4519
4520 intel_crtc = to_intel_crtc(crtc);
4521 *dpms_mode = intel_crtc->dpms_mode;
4522
4523 if (!crtc->enabled) {
4524 if (!mode)
4525 mode = &load_detect_mode;
4526 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4527 } else {
4528 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4529 crtc_funcs = crtc->helper_private;
4530 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4531 }
4532
4533 /* Add this connector to the crtc */
4534 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4535 encoder_funcs->commit(encoder);
4536 }
4537 /* let the connector get through one full cycle before testing */
4538 intel_wait_for_vblank(dev, intel_crtc->pipe);
4539
4540 return crtc;
4541 }
4542
4543 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4544 struct drm_connector *connector, int dpms_mode)
4545 {
4546 struct drm_encoder *encoder = &intel_encoder->base;
4547 struct drm_device *dev = encoder->dev;
4548 struct drm_crtc *crtc = encoder->crtc;
4549 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4550 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4551
4552 if (intel_encoder->load_detect_temp) {
4553 encoder->crtc = NULL;
4554 connector->encoder = NULL;
4555 intel_encoder->load_detect_temp = false;
4556 crtc->enabled = drm_helper_crtc_in_use(crtc);
4557 drm_helper_disable_unused_functions(dev);
4558 }
4559
4560 /* Switch crtc and encoder back off if necessary */
4561 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4562 if (encoder->crtc == crtc)
4563 encoder_funcs->dpms(encoder, dpms_mode);
4564 crtc_funcs->dpms(crtc, dpms_mode);
4565 }
4566 }
4567
4568 /* Returns the clock of the currently programmed mode of the given pipe. */
4569 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4570 {
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4573 int pipe = intel_crtc->pipe;
4574 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4575 u32 fp;
4576 intel_clock_t clock;
4577
4578 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4579 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4580 else
4581 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4582
4583 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4584 if (IS_PINEVIEW(dev)) {
4585 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4586 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4587 } else {
4588 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4589 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4590 }
4591
4592 if (!IS_GEN2(dev)) {
4593 if (IS_PINEVIEW(dev))
4594 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4595 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4596 else
4597 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4598 DPLL_FPA01_P1_POST_DIV_SHIFT);
4599
4600 switch (dpll & DPLL_MODE_MASK) {
4601 case DPLLB_MODE_DAC_SERIAL:
4602 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4603 5 : 10;
4604 break;
4605 case DPLLB_MODE_LVDS:
4606 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4607 7 : 14;
4608 break;
4609 default:
4610 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4611 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4612 return 0;
4613 }
4614
4615 /* XXX: Handle the 100Mhz refclk */
4616 intel_clock(dev, 96000, &clock);
4617 } else {
4618 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4619
4620 if (is_lvds) {
4621 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4622 DPLL_FPA01_P1_POST_DIV_SHIFT);
4623 clock.p2 = 14;
4624
4625 if ((dpll & PLL_REF_INPUT_MASK) ==
4626 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4627 /* XXX: might not be 66MHz */
4628 intel_clock(dev, 66000, &clock);
4629 } else
4630 intel_clock(dev, 48000, &clock);
4631 } else {
4632 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4633 clock.p1 = 2;
4634 else {
4635 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4636 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4637 }
4638 if (dpll & PLL_P2_DIVIDE_BY_4)
4639 clock.p2 = 4;
4640 else
4641 clock.p2 = 2;
4642
4643 intel_clock(dev, 48000, &clock);
4644 }
4645 }
4646
4647 /* XXX: It would be nice to validate the clocks, but we can't reuse
4648 * i830PllIsValid() because it relies on the xf86_config connector
4649 * configuration being accurate, which it isn't necessarily.
4650 */
4651
4652 return clock.dot;
4653 }
4654
4655 /** Returns the currently programmed mode of the given pipe. */
4656 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4657 struct drm_crtc *crtc)
4658 {
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4661 int pipe = intel_crtc->pipe;
4662 struct drm_display_mode *mode;
4663 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4664 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4665 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4666 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4667
4668 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4669 if (!mode)
4670 return NULL;
4671
4672 mode->clock = intel_crtc_clock_get(dev, crtc);
4673 mode->hdisplay = (htot & 0xffff) + 1;
4674 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4675 mode->hsync_start = (hsync & 0xffff) + 1;
4676 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4677 mode->vdisplay = (vtot & 0xffff) + 1;
4678 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4679 mode->vsync_start = (vsync & 0xffff) + 1;
4680 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4681
4682 drm_mode_set_name(mode);
4683 drm_mode_set_crtcinfo(mode, 0);
4684
4685 return mode;
4686 }
4687
4688 #define GPU_IDLE_TIMEOUT 500 /* ms */
4689
4690 /* When this timer fires, we've been idle for awhile */
4691 static void intel_gpu_idle_timer(unsigned long arg)
4692 {
4693 struct drm_device *dev = (struct drm_device *)arg;
4694 drm_i915_private_t *dev_priv = dev->dev_private;
4695
4696 dev_priv->busy = false;
4697
4698 queue_work(dev_priv->wq, &dev_priv->idle_work);
4699 }
4700
4701 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4702
4703 static void intel_crtc_idle_timer(unsigned long arg)
4704 {
4705 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4706 struct drm_crtc *crtc = &intel_crtc->base;
4707 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4708
4709 intel_crtc->busy = false;
4710
4711 queue_work(dev_priv->wq, &dev_priv->idle_work);
4712 }
4713
4714 static void intel_increase_pllclock(struct drm_crtc *crtc)
4715 {
4716 struct drm_device *dev = crtc->dev;
4717 drm_i915_private_t *dev_priv = dev->dev_private;
4718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4719 int pipe = intel_crtc->pipe;
4720 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4721 int dpll = I915_READ(dpll_reg);
4722
4723 if (HAS_PCH_SPLIT(dev))
4724 return;
4725
4726 if (!dev_priv->lvds_downclock_avail)
4727 return;
4728
4729 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4730 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4731
4732 /* Unlock panel regs */
4733 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4734 PANEL_UNLOCK_REGS);
4735
4736 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4737 I915_WRITE(dpll_reg, dpll);
4738 dpll = I915_READ(dpll_reg);
4739 intel_wait_for_vblank(dev, pipe);
4740 dpll = I915_READ(dpll_reg);
4741 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4742 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4743
4744 /* ...and lock them again */
4745 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4746 }
4747
4748 /* Schedule downclock */
4749 mod_timer(&intel_crtc->idle_timer, jiffies +
4750 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4751 }
4752
4753 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4754 {
4755 struct drm_device *dev = crtc->dev;
4756 drm_i915_private_t *dev_priv = dev->dev_private;
4757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4758 int pipe = intel_crtc->pipe;
4759 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4760 int dpll = I915_READ(dpll_reg);
4761
4762 if (HAS_PCH_SPLIT(dev))
4763 return;
4764
4765 if (!dev_priv->lvds_downclock_avail)
4766 return;
4767
4768 /*
4769 * Since this is called by a timer, we should never get here in
4770 * the manual case.
4771 */
4772 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4773 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4774
4775 /* Unlock panel regs */
4776 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4777 PANEL_UNLOCK_REGS);
4778
4779 dpll |= DISPLAY_RATE_SELECT_FPA1;
4780 I915_WRITE(dpll_reg, dpll);
4781 dpll = I915_READ(dpll_reg);
4782 intel_wait_for_vblank(dev, pipe);
4783 dpll = I915_READ(dpll_reg);
4784 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4785 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4786
4787 /* ...and lock them again */
4788 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4789 }
4790
4791 }
4792
4793 /**
4794 * intel_idle_update - adjust clocks for idleness
4795 * @work: work struct
4796 *
4797 * Either the GPU or display (or both) went idle. Check the busy status
4798 * here and adjust the CRTC and GPU clocks as necessary.
4799 */
4800 static void intel_idle_update(struct work_struct *work)
4801 {
4802 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4803 idle_work);
4804 struct drm_device *dev = dev_priv->dev;
4805 struct drm_crtc *crtc;
4806 struct intel_crtc *intel_crtc;
4807 int enabled = 0;
4808
4809 if (!i915_powersave)
4810 return;
4811
4812 mutex_lock(&dev->struct_mutex);
4813
4814 i915_update_gfx_val(dev_priv);
4815
4816 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4817 /* Skip inactive CRTCs */
4818 if (!crtc->fb)
4819 continue;
4820
4821 enabled++;
4822 intel_crtc = to_intel_crtc(crtc);
4823 if (!intel_crtc->busy)
4824 intel_decrease_pllclock(crtc);
4825 }
4826
4827 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4828 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4829 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4830 }
4831
4832 mutex_unlock(&dev->struct_mutex);
4833 }
4834
4835 /**
4836 * intel_mark_busy - mark the GPU and possibly the display busy
4837 * @dev: drm device
4838 * @obj: object we're operating on
4839 *
4840 * Callers can use this function to indicate that the GPU is busy processing
4841 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4842 * buffer), we'll also mark the display as busy, so we know to increase its
4843 * clock frequency.
4844 */
4845 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4846 {
4847 drm_i915_private_t *dev_priv = dev->dev_private;
4848 struct drm_crtc *crtc = NULL;
4849 struct intel_framebuffer *intel_fb;
4850 struct intel_crtc *intel_crtc;
4851
4852 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4853 return;
4854
4855 if (!dev_priv->busy) {
4856 if (IS_I945G(dev) || IS_I945GM(dev)) {
4857 u32 fw_blc_self;
4858
4859 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4860 fw_blc_self = I915_READ(FW_BLC_SELF);
4861 fw_blc_self &= ~FW_BLC_SELF_EN;
4862 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4863 }
4864 dev_priv->busy = true;
4865 } else
4866 mod_timer(&dev_priv->idle_timer, jiffies +
4867 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4868
4869 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4870 if (!crtc->fb)
4871 continue;
4872
4873 intel_crtc = to_intel_crtc(crtc);
4874 intel_fb = to_intel_framebuffer(crtc->fb);
4875 if (intel_fb->obj == obj) {
4876 if (!intel_crtc->busy) {
4877 if (IS_I945G(dev) || IS_I945GM(dev)) {
4878 u32 fw_blc_self;
4879
4880 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4881 fw_blc_self = I915_READ(FW_BLC_SELF);
4882 fw_blc_self &= ~FW_BLC_SELF_EN;
4883 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4884 }
4885 /* Non-busy -> busy, upclock */
4886 intel_increase_pllclock(crtc);
4887 intel_crtc->busy = true;
4888 } else {
4889 /* Busy -> busy, put off timer */
4890 mod_timer(&intel_crtc->idle_timer, jiffies +
4891 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4892 }
4893 }
4894 }
4895 }
4896
4897 static void intel_crtc_destroy(struct drm_crtc *crtc)
4898 {
4899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4900 struct drm_device *dev = crtc->dev;
4901 struct intel_unpin_work *work;
4902 unsigned long flags;
4903
4904 spin_lock_irqsave(&dev->event_lock, flags);
4905 work = intel_crtc->unpin_work;
4906 intel_crtc->unpin_work = NULL;
4907 spin_unlock_irqrestore(&dev->event_lock, flags);
4908
4909 if (work) {
4910 cancel_work_sync(&work->work);
4911 kfree(work);
4912 }
4913
4914 drm_crtc_cleanup(crtc);
4915
4916 kfree(intel_crtc);
4917 }
4918
4919 static void intel_unpin_work_fn(struct work_struct *__work)
4920 {
4921 struct intel_unpin_work *work =
4922 container_of(__work, struct intel_unpin_work, work);
4923
4924 mutex_lock(&work->dev->struct_mutex);
4925 i915_gem_object_unpin(work->old_fb_obj);
4926 drm_gem_object_unreference(work->pending_flip_obj);
4927 drm_gem_object_unreference(work->old_fb_obj);
4928 mutex_unlock(&work->dev->struct_mutex);
4929 kfree(work);
4930 }
4931
4932 static void do_intel_finish_page_flip(struct drm_device *dev,
4933 struct drm_crtc *crtc)
4934 {
4935 drm_i915_private_t *dev_priv = dev->dev_private;
4936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4937 struct intel_unpin_work *work;
4938 struct drm_i915_gem_object *obj_priv;
4939 struct drm_pending_vblank_event *e;
4940 struct timeval now;
4941 unsigned long flags;
4942
4943 /* Ignore early vblank irqs */
4944 if (intel_crtc == NULL)
4945 return;
4946
4947 spin_lock_irqsave(&dev->event_lock, flags);
4948 work = intel_crtc->unpin_work;
4949 if (work == NULL || !work->pending) {
4950 spin_unlock_irqrestore(&dev->event_lock, flags);
4951 return;
4952 }
4953
4954 intel_crtc->unpin_work = NULL;
4955 drm_vblank_put(dev, intel_crtc->pipe);
4956
4957 if (work->event) {
4958 e = work->event;
4959 do_gettimeofday(&now);
4960 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4961 e->event.tv_sec = now.tv_sec;
4962 e->event.tv_usec = now.tv_usec;
4963 list_add_tail(&e->base.link,
4964 &e->base.file_priv->event_list);
4965 wake_up_interruptible(&e->base.file_priv->event_wait);
4966 }
4967
4968 spin_unlock_irqrestore(&dev->event_lock, flags);
4969
4970 obj_priv = to_intel_bo(work->pending_flip_obj);
4971
4972 /* Initial scanout buffer will have a 0 pending flip count */
4973 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4974 atomic_dec_and_test(&obj_priv->pending_flip))
4975 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4976 schedule_work(&work->work);
4977
4978 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4979 }
4980
4981 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4982 {
4983 drm_i915_private_t *dev_priv = dev->dev_private;
4984 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4985
4986 do_intel_finish_page_flip(dev, crtc);
4987 }
4988
4989 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4990 {
4991 drm_i915_private_t *dev_priv = dev->dev_private;
4992 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4993
4994 do_intel_finish_page_flip(dev, crtc);
4995 }
4996
4997 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4998 {
4999 drm_i915_private_t *dev_priv = dev->dev_private;
5000 struct intel_crtc *intel_crtc =
5001 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5002 unsigned long flags;
5003
5004 spin_lock_irqsave(&dev->event_lock, flags);
5005 if (intel_crtc->unpin_work) {
5006 if ((++intel_crtc->unpin_work->pending) > 1)
5007 DRM_ERROR("Prepared flip multiple times\n");
5008 } else {
5009 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5010 }
5011 spin_unlock_irqrestore(&dev->event_lock, flags);
5012 }
5013
5014 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5015 struct drm_framebuffer *fb,
5016 struct drm_pending_vblank_event *event)
5017 {
5018 struct drm_device *dev = crtc->dev;
5019 struct drm_i915_private *dev_priv = dev->dev_private;
5020 struct intel_framebuffer *intel_fb;
5021 struct drm_i915_gem_object *obj_priv;
5022 struct drm_gem_object *obj;
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 struct intel_unpin_work *work;
5025 unsigned long flags, offset;
5026 int pipe = intel_crtc->pipe;
5027 u32 pf, pipesrc;
5028 int ret;
5029
5030 work = kzalloc(sizeof *work, GFP_KERNEL);
5031 if (work == NULL)
5032 return -ENOMEM;
5033
5034 work->event = event;
5035 work->dev = crtc->dev;
5036 intel_fb = to_intel_framebuffer(crtc->fb);
5037 work->old_fb_obj = intel_fb->obj;
5038 INIT_WORK(&work->work, intel_unpin_work_fn);
5039
5040 /* We borrow the event spin lock for protecting unpin_work */
5041 spin_lock_irqsave(&dev->event_lock, flags);
5042 if (intel_crtc->unpin_work) {
5043 spin_unlock_irqrestore(&dev->event_lock, flags);
5044 kfree(work);
5045
5046 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5047 return -EBUSY;
5048 }
5049 intel_crtc->unpin_work = work;
5050 spin_unlock_irqrestore(&dev->event_lock, flags);
5051
5052 intel_fb = to_intel_framebuffer(fb);
5053 obj = intel_fb->obj;
5054
5055 mutex_lock(&dev->struct_mutex);
5056 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5057 if (ret)
5058 goto cleanup_work;
5059
5060 /* Reference the objects for the scheduled work. */
5061 drm_gem_object_reference(work->old_fb_obj);
5062 drm_gem_object_reference(obj);
5063
5064 crtc->fb = fb;
5065
5066 ret = drm_vblank_get(dev, intel_crtc->pipe);
5067 if (ret)
5068 goto cleanup_objs;
5069
5070 obj_priv = to_intel_bo(obj);
5071 atomic_inc(&obj_priv->pending_flip);
5072 work->pending_flip_obj = obj;
5073
5074 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5075 u32 flip_mask;
5076
5077 /* Can't queue multiple flips, so wait for the previous
5078 * one to finish before executing the next.
5079 */
5080 BEGIN_LP_RING(2);
5081 if (intel_crtc->plane)
5082 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5083 else
5084 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5085 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5086 OUT_RING(MI_NOOP);
5087 ADVANCE_LP_RING();
5088 }
5089
5090 work->enable_stall_check = true;
5091
5092 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5093 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5094
5095 BEGIN_LP_RING(4);
5096 switch(INTEL_INFO(dev)->gen) {
5097 case 2:
5098 OUT_RING(MI_DISPLAY_FLIP |
5099 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5100 OUT_RING(fb->pitch);
5101 OUT_RING(obj_priv->gtt_offset + offset);
5102 OUT_RING(MI_NOOP);
5103 break;
5104
5105 case 3:
5106 OUT_RING(MI_DISPLAY_FLIP_I915 |
5107 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5108 OUT_RING(fb->pitch);
5109 OUT_RING(obj_priv->gtt_offset + offset);
5110 OUT_RING(MI_NOOP);
5111 break;
5112
5113 case 4:
5114 case 5:
5115 /* i965+ uses the linear or tiled offsets from the
5116 * Display Registers (which do not change across a page-flip)
5117 * so we need only reprogram the base address.
5118 */
5119 OUT_RING(MI_DISPLAY_FLIP |
5120 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5121 OUT_RING(fb->pitch);
5122 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5123
5124 /* XXX Enabling the panel-fitter across page-flip is so far
5125 * untested on non-native modes, so ignore it for now.
5126 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5127 */
5128 pf = 0;
5129 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5130 OUT_RING(pf | pipesrc);
5131 break;
5132
5133 case 6:
5134 OUT_RING(MI_DISPLAY_FLIP |
5135 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5136 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5137 OUT_RING(obj_priv->gtt_offset);
5138
5139 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5140 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5141 OUT_RING(pf | pipesrc);
5142 break;
5143 }
5144 ADVANCE_LP_RING();
5145
5146 mutex_unlock(&dev->struct_mutex);
5147
5148 trace_i915_flip_request(intel_crtc->plane, obj);
5149
5150 return 0;
5151
5152 cleanup_objs:
5153 drm_gem_object_unreference(work->old_fb_obj);
5154 drm_gem_object_unreference(obj);
5155 cleanup_work:
5156 mutex_unlock(&dev->struct_mutex);
5157
5158 spin_lock_irqsave(&dev->event_lock, flags);
5159 intel_crtc->unpin_work = NULL;
5160 spin_unlock_irqrestore(&dev->event_lock, flags);
5161
5162 kfree(work);
5163
5164 return ret;
5165 }
5166
5167 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5168 .dpms = intel_crtc_dpms,
5169 .mode_fixup = intel_crtc_mode_fixup,
5170 .mode_set = intel_crtc_mode_set,
5171 .mode_set_base = intel_pipe_set_base,
5172 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5173 .load_lut = intel_crtc_load_lut,
5174 .disable = intel_crtc_disable,
5175 };
5176
5177 static const struct drm_crtc_funcs intel_crtc_funcs = {
5178 .cursor_set = intel_crtc_cursor_set,
5179 .cursor_move = intel_crtc_cursor_move,
5180 .gamma_set = intel_crtc_gamma_set,
5181 .set_config = drm_crtc_helper_set_config,
5182 .destroy = intel_crtc_destroy,
5183 .page_flip = intel_crtc_page_flip,
5184 };
5185
5186
5187 static void intel_crtc_init(struct drm_device *dev, int pipe)
5188 {
5189 drm_i915_private_t *dev_priv = dev->dev_private;
5190 struct intel_crtc *intel_crtc;
5191 int i;
5192
5193 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5194 if (intel_crtc == NULL)
5195 return;
5196
5197 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5198
5199 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5200 for (i = 0; i < 256; i++) {
5201 intel_crtc->lut_r[i] = i;
5202 intel_crtc->lut_g[i] = i;
5203 intel_crtc->lut_b[i] = i;
5204 }
5205
5206 /* Swap pipes & planes for FBC on pre-965 */
5207 intel_crtc->pipe = pipe;
5208 intel_crtc->plane = pipe;
5209 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5210 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5211 intel_crtc->plane = !pipe;
5212 }
5213
5214 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5215 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5216 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5217 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5218
5219 intel_crtc->cursor_addr = 0;
5220 intel_crtc->dpms_mode = -1;
5221 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5222
5223 if (HAS_PCH_SPLIT(dev)) {
5224 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5225 intel_helper_funcs.commit = ironlake_crtc_commit;
5226 } else {
5227 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5228 intel_helper_funcs.commit = i9xx_crtc_commit;
5229 }
5230
5231 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5232
5233 intel_crtc->busy = false;
5234
5235 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5236 (unsigned long)intel_crtc);
5237 }
5238
5239 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5240 struct drm_file *file_priv)
5241 {
5242 drm_i915_private_t *dev_priv = dev->dev_private;
5243 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5244 struct drm_mode_object *drmmode_obj;
5245 struct intel_crtc *crtc;
5246
5247 if (!dev_priv) {
5248 DRM_ERROR("called with no initialization\n");
5249 return -EINVAL;
5250 }
5251
5252 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5253 DRM_MODE_OBJECT_CRTC);
5254
5255 if (!drmmode_obj) {
5256 DRM_ERROR("no such CRTC id\n");
5257 return -EINVAL;
5258 }
5259
5260 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5261 pipe_from_crtc_id->pipe = crtc->pipe;
5262
5263 return 0;
5264 }
5265
5266 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5267 {
5268 struct intel_encoder *encoder;
5269 int index_mask = 0;
5270 int entry = 0;
5271
5272 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5273 if (type_mask & encoder->clone_mask)
5274 index_mask |= (1 << entry);
5275 entry++;
5276 }
5277
5278 return index_mask;
5279 }
5280
5281 static void intel_setup_outputs(struct drm_device *dev)
5282 {
5283 struct drm_i915_private *dev_priv = dev->dev_private;
5284 struct intel_encoder *encoder;
5285 bool dpd_is_edp = false;
5286
5287 if (IS_MOBILE(dev) && !IS_I830(dev))
5288 intel_lvds_init(dev);
5289
5290 if (HAS_PCH_SPLIT(dev)) {
5291 dpd_is_edp = intel_dpd_is_edp(dev);
5292
5293 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5294 intel_dp_init(dev, DP_A);
5295
5296 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5297 intel_dp_init(dev, PCH_DP_D);
5298 }
5299
5300 intel_crt_init(dev);
5301
5302 if (HAS_PCH_SPLIT(dev)) {
5303 int found;
5304
5305 if (I915_READ(HDMIB) & PORT_DETECTED) {
5306 /* PCH SDVOB multiplex with HDMIB */
5307 found = intel_sdvo_init(dev, PCH_SDVOB);
5308 if (!found)
5309 intel_hdmi_init(dev, HDMIB);
5310 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5311 intel_dp_init(dev, PCH_DP_B);
5312 }
5313
5314 if (I915_READ(HDMIC) & PORT_DETECTED)
5315 intel_hdmi_init(dev, HDMIC);
5316
5317 if (I915_READ(HDMID) & PORT_DETECTED)
5318 intel_hdmi_init(dev, HDMID);
5319
5320 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5321 intel_dp_init(dev, PCH_DP_C);
5322
5323 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5324 intel_dp_init(dev, PCH_DP_D);
5325
5326 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5327 bool found = false;
5328
5329 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5330 DRM_DEBUG_KMS("probing SDVOB\n");
5331 found = intel_sdvo_init(dev, SDVOB);
5332 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5333 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5334 intel_hdmi_init(dev, SDVOB);
5335 }
5336
5337 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5338 DRM_DEBUG_KMS("probing DP_B\n");
5339 intel_dp_init(dev, DP_B);
5340 }
5341 }
5342
5343 /* Before G4X SDVOC doesn't have its own detect register */
5344
5345 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5346 DRM_DEBUG_KMS("probing SDVOC\n");
5347 found = intel_sdvo_init(dev, SDVOC);
5348 }
5349
5350 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5351
5352 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5353 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5354 intel_hdmi_init(dev, SDVOC);
5355 }
5356 if (SUPPORTS_INTEGRATED_DP(dev)) {
5357 DRM_DEBUG_KMS("probing DP_C\n");
5358 intel_dp_init(dev, DP_C);
5359 }
5360 }
5361
5362 if (SUPPORTS_INTEGRATED_DP(dev) &&
5363 (I915_READ(DP_D) & DP_DETECTED)) {
5364 DRM_DEBUG_KMS("probing DP_D\n");
5365 intel_dp_init(dev, DP_D);
5366 }
5367 } else if (IS_GEN2(dev))
5368 intel_dvo_init(dev);
5369
5370 if (SUPPORTS_TV(dev))
5371 intel_tv_init(dev);
5372
5373 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5374 encoder->base.possible_crtcs = encoder->crtc_mask;
5375 encoder->base.possible_clones =
5376 intel_encoder_clones(dev, encoder->clone_mask);
5377 }
5378 }
5379
5380 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5381 {
5382 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5383
5384 drm_framebuffer_cleanup(fb);
5385 drm_gem_object_unreference_unlocked(intel_fb->obj);
5386
5387 kfree(intel_fb);
5388 }
5389
5390 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5391 struct drm_file *file_priv,
5392 unsigned int *handle)
5393 {
5394 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5395 struct drm_gem_object *object = intel_fb->obj;
5396
5397 return drm_gem_handle_create(file_priv, object, handle);
5398 }
5399
5400 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5401 .destroy = intel_user_framebuffer_destroy,
5402 .create_handle = intel_user_framebuffer_create_handle,
5403 };
5404
5405 int intel_framebuffer_init(struct drm_device *dev,
5406 struct intel_framebuffer *intel_fb,
5407 struct drm_mode_fb_cmd *mode_cmd,
5408 struct drm_gem_object *obj)
5409 {
5410 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5411 int ret;
5412
5413 if (obj_priv->tiling_mode == I915_TILING_Y)
5414 return -EINVAL;
5415
5416 if (mode_cmd->pitch & 63)
5417 return -EINVAL;
5418
5419 switch (mode_cmd->bpp) {
5420 case 8:
5421 case 16:
5422 case 24:
5423 case 32:
5424 break;
5425 default:
5426 return -EINVAL;
5427 }
5428
5429 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5430 if (ret) {
5431 DRM_ERROR("framebuffer init failed %d\n", ret);
5432 return ret;
5433 }
5434
5435 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5436 intel_fb->obj = obj;
5437 return 0;
5438 }
5439
5440 static struct drm_framebuffer *
5441 intel_user_framebuffer_create(struct drm_device *dev,
5442 struct drm_file *filp,
5443 struct drm_mode_fb_cmd *mode_cmd)
5444 {
5445 struct drm_gem_object *obj;
5446 struct intel_framebuffer *intel_fb;
5447 int ret;
5448
5449 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5450 if (!obj)
5451 return ERR_PTR(-ENOENT);
5452
5453 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5454 if (!intel_fb)
5455 return ERR_PTR(-ENOMEM);
5456
5457 ret = intel_framebuffer_init(dev, intel_fb,
5458 mode_cmd, obj);
5459 if (ret) {
5460 drm_gem_object_unreference_unlocked(obj);
5461 kfree(intel_fb);
5462 return ERR_PTR(ret);
5463 }
5464
5465 return &intel_fb->base;
5466 }
5467
5468 static const struct drm_mode_config_funcs intel_mode_funcs = {
5469 .fb_create = intel_user_framebuffer_create,
5470 .output_poll_changed = intel_fb_output_poll_changed,
5471 };
5472
5473 static struct drm_gem_object *
5474 intel_alloc_context_page(struct drm_device *dev)
5475 {
5476 struct drm_gem_object *ctx;
5477 int ret;
5478
5479 ctx = i915_gem_alloc_object(dev, 4096);
5480 if (!ctx) {
5481 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5482 return NULL;
5483 }
5484
5485 mutex_lock(&dev->struct_mutex);
5486 ret = i915_gem_object_pin(ctx, 4096);
5487 if (ret) {
5488 DRM_ERROR("failed to pin power context: %d\n", ret);
5489 goto err_unref;
5490 }
5491
5492 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5493 if (ret) {
5494 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5495 goto err_unpin;
5496 }
5497 mutex_unlock(&dev->struct_mutex);
5498
5499 return ctx;
5500
5501 err_unpin:
5502 i915_gem_object_unpin(ctx);
5503 err_unref:
5504 drm_gem_object_unreference(ctx);
5505 mutex_unlock(&dev->struct_mutex);
5506 return NULL;
5507 }
5508
5509 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5510 {
5511 struct drm_i915_private *dev_priv = dev->dev_private;
5512 u16 rgvswctl;
5513
5514 rgvswctl = I915_READ16(MEMSWCTL);
5515 if (rgvswctl & MEMCTL_CMD_STS) {
5516 DRM_DEBUG("gpu busy, RCS change rejected\n");
5517 return false; /* still busy with another command */
5518 }
5519
5520 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5521 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5522 I915_WRITE16(MEMSWCTL, rgvswctl);
5523 POSTING_READ16(MEMSWCTL);
5524
5525 rgvswctl |= MEMCTL_CMD_STS;
5526 I915_WRITE16(MEMSWCTL, rgvswctl);
5527
5528 return true;
5529 }
5530
5531 void ironlake_enable_drps(struct drm_device *dev)
5532 {
5533 struct drm_i915_private *dev_priv = dev->dev_private;
5534 u32 rgvmodectl = I915_READ(MEMMODECTL);
5535 u8 fmax, fmin, fstart, vstart;
5536
5537 /* Enable temp reporting */
5538 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5539 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5540
5541 /* 100ms RC evaluation intervals */
5542 I915_WRITE(RCUPEI, 100000);
5543 I915_WRITE(RCDNEI, 100000);
5544
5545 /* Set max/min thresholds to 90ms and 80ms respectively */
5546 I915_WRITE(RCBMAXAVG, 90000);
5547 I915_WRITE(RCBMINAVG, 80000);
5548
5549 I915_WRITE(MEMIHYST, 1);
5550
5551 /* Set up min, max, and cur for interrupt handling */
5552 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5553 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5554 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5555 MEMMODE_FSTART_SHIFT;
5556 fstart = fmax;
5557
5558 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5559 PXVFREQ_PX_SHIFT;
5560
5561 dev_priv->fmax = fstart; /* IPS callback will increase this */
5562 dev_priv->fstart = fstart;
5563
5564 dev_priv->max_delay = fmax;
5565 dev_priv->min_delay = fmin;
5566 dev_priv->cur_delay = fstart;
5567
5568 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5569 fstart);
5570
5571 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5572
5573 /*
5574 * Interrupts will be enabled in ironlake_irq_postinstall
5575 */
5576
5577 I915_WRITE(VIDSTART, vstart);
5578 POSTING_READ(VIDSTART);
5579
5580 rgvmodectl |= MEMMODE_SWMODE_EN;
5581 I915_WRITE(MEMMODECTL, rgvmodectl);
5582
5583 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5584 DRM_ERROR("stuck trying to change perf mode\n");
5585 msleep(1);
5586
5587 ironlake_set_drps(dev, fstart);
5588
5589 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5590 I915_READ(0x112e0);
5591 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5592 dev_priv->last_count2 = I915_READ(0x112f4);
5593 getrawmonotonic(&dev_priv->last_time2);
5594 }
5595
5596 void ironlake_disable_drps(struct drm_device *dev)
5597 {
5598 struct drm_i915_private *dev_priv = dev->dev_private;
5599 u16 rgvswctl = I915_READ16(MEMSWCTL);
5600
5601 /* Ack interrupts, disable EFC interrupt */
5602 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5603 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5604 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5605 I915_WRITE(DEIIR, DE_PCU_EVENT);
5606 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5607
5608 /* Go back to the starting frequency */
5609 ironlake_set_drps(dev, dev_priv->fstart);
5610 msleep(1);
5611 rgvswctl |= MEMCTL_CMD_STS;
5612 I915_WRITE(MEMSWCTL, rgvswctl);
5613 msleep(1);
5614
5615 }
5616
5617 static unsigned long intel_pxfreq(u32 vidfreq)
5618 {
5619 unsigned long freq;
5620 int div = (vidfreq & 0x3f0000) >> 16;
5621 int post = (vidfreq & 0x3000) >> 12;
5622 int pre = (vidfreq & 0x7);
5623
5624 if (!pre)
5625 return 0;
5626
5627 freq = ((div * 133333) / ((1<<post) * pre));
5628
5629 return freq;
5630 }
5631
5632 void intel_init_emon(struct drm_device *dev)
5633 {
5634 struct drm_i915_private *dev_priv = dev->dev_private;
5635 u32 lcfuse;
5636 u8 pxw[16];
5637 int i;
5638
5639 /* Disable to program */
5640 I915_WRITE(ECR, 0);
5641 POSTING_READ(ECR);
5642
5643 /* Program energy weights for various events */
5644 I915_WRITE(SDEW, 0x15040d00);
5645 I915_WRITE(CSIEW0, 0x007f0000);
5646 I915_WRITE(CSIEW1, 0x1e220004);
5647 I915_WRITE(CSIEW2, 0x04000004);
5648
5649 for (i = 0; i < 5; i++)
5650 I915_WRITE(PEW + (i * 4), 0);
5651 for (i = 0; i < 3; i++)
5652 I915_WRITE(DEW + (i * 4), 0);
5653
5654 /* Program P-state weights to account for frequency power adjustment */
5655 for (i = 0; i < 16; i++) {
5656 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5657 unsigned long freq = intel_pxfreq(pxvidfreq);
5658 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5659 PXVFREQ_PX_SHIFT;
5660 unsigned long val;
5661
5662 val = vid * vid;
5663 val *= (freq / 1000);
5664 val *= 255;
5665 val /= (127*127*900);
5666 if (val > 0xff)
5667 DRM_ERROR("bad pxval: %ld\n", val);
5668 pxw[i] = val;
5669 }
5670 /* Render standby states get 0 weight */
5671 pxw[14] = 0;
5672 pxw[15] = 0;
5673
5674 for (i = 0; i < 4; i++) {
5675 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5676 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5677 I915_WRITE(PXW + (i * 4), val);
5678 }
5679
5680 /* Adjust magic regs to magic values (more experimental results) */
5681 I915_WRITE(OGW0, 0);
5682 I915_WRITE(OGW1, 0);
5683 I915_WRITE(EG0, 0x00007f00);
5684 I915_WRITE(EG1, 0x0000000e);
5685 I915_WRITE(EG2, 0x000e0000);
5686 I915_WRITE(EG3, 0x68000300);
5687 I915_WRITE(EG4, 0x42000000);
5688 I915_WRITE(EG5, 0x00140031);
5689 I915_WRITE(EG6, 0);
5690 I915_WRITE(EG7, 0);
5691
5692 for (i = 0; i < 8; i++)
5693 I915_WRITE(PXWL + (i * 4), 0);
5694
5695 /* Enable PMON + select events */
5696 I915_WRITE(ECR, 0x80000019);
5697
5698 lcfuse = I915_READ(LCFUSE02);
5699
5700 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5701 }
5702
5703 void intel_init_clock_gating(struct drm_device *dev)
5704 {
5705 struct drm_i915_private *dev_priv = dev->dev_private;
5706
5707 /*
5708 * Disable clock gating reported to work incorrectly according to the
5709 * specs, but enable as much else as we can.
5710 */
5711 if (HAS_PCH_SPLIT(dev)) {
5712 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5713
5714 if (IS_IRONLAKE(dev)) {
5715 /* Required for FBC */
5716 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5717 /* Required for CxSR */
5718 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5719
5720 I915_WRITE(PCH_3DCGDIS0,
5721 MARIUNIT_CLOCK_GATE_DISABLE |
5722 SVSMUNIT_CLOCK_GATE_DISABLE);
5723 }
5724
5725 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5726
5727 /*
5728 * According to the spec the following bits should be set in
5729 * order to enable memory self-refresh
5730 * The bit 22/21 of 0x42004
5731 * The bit 5 of 0x42020
5732 * The bit 15 of 0x45000
5733 */
5734 if (IS_IRONLAKE(dev)) {
5735 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5736 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5737 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5738 I915_WRITE(ILK_DSPCLK_GATE,
5739 (I915_READ(ILK_DSPCLK_GATE) |
5740 ILK_DPARB_CLK_GATE));
5741 I915_WRITE(DISP_ARB_CTL,
5742 (I915_READ(DISP_ARB_CTL) |
5743 DISP_FBC_WM_DIS));
5744 I915_WRITE(WM3_LP_ILK, 0);
5745 I915_WRITE(WM2_LP_ILK, 0);
5746 I915_WRITE(WM1_LP_ILK, 0);
5747 }
5748 /*
5749 * Based on the document from hardware guys the following bits
5750 * should be set unconditionally in order to enable FBC.
5751 * The bit 22 of 0x42000
5752 * The bit 22 of 0x42004
5753 * The bit 7,8,9 of 0x42020.
5754 */
5755 if (IS_IRONLAKE_M(dev)) {
5756 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5757 I915_READ(ILK_DISPLAY_CHICKEN1) |
5758 ILK_FBCQ_DIS);
5759 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5760 I915_READ(ILK_DISPLAY_CHICKEN2) |
5761 ILK_DPARB_GATE);
5762 I915_WRITE(ILK_DSPCLK_GATE,
5763 I915_READ(ILK_DSPCLK_GATE) |
5764 ILK_DPFC_DIS1 |
5765 ILK_DPFC_DIS2 |
5766 ILK_CLK_FBC);
5767 }
5768 return;
5769 } else if (IS_G4X(dev)) {
5770 uint32_t dspclk_gate;
5771 I915_WRITE(RENCLK_GATE_D1, 0);
5772 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5773 GS_UNIT_CLOCK_GATE_DISABLE |
5774 CL_UNIT_CLOCK_GATE_DISABLE);
5775 I915_WRITE(RAMCLK_GATE_D, 0);
5776 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5777 OVRUNIT_CLOCK_GATE_DISABLE |
5778 OVCUNIT_CLOCK_GATE_DISABLE;
5779 if (IS_GM45(dev))
5780 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5781 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5782 } else if (IS_CRESTLINE(dev)) {
5783 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5784 I915_WRITE(RENCLK_GATE_D2, 0);
5785 I915_WRITE(DSPCLK_GATE_D, 0);
5786 I915_WRITE(RAMCLK_GATE_D, 0);
5787 I915_WRITE16(DEUC, 0);
5788 } else if (IS_BROADWATER(dev)) {
5789 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5790 I965_RCC_CLOCK_GATE_DISABLE |
5791 I965_RCPB_CLOCK_GATE_DISABLE |
5792 I965_ISC_CLOCK_GATE_DISABLE |
5793 I965_FBC_CLOCK_GATE_DISABLE);
5794 I915_WRITE(RENCLK_GATE_D2, 0);
5795 } else if (IS_GEN3(dev)) {
5796 u32 dstate = I915_READ(D_STATE);
5797
5798 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5799 DSTATE_DOT_CLOCK_GATING;
5800 I915_WRITE(D_STATE, dstate);
5801 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5802 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5803 } else if (IS_I830(dev)) {
5804 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5805 }
5806
5807 /*
5808 * GPU can automatically power down the render unit if given a page
5809 * to save state.
5810 */
5811 if (IS_IRONLAKE_M(dev)) {
5812 if (dev_priv->renderctx == NULL)
5813 dev_priv->renderctx = intel_alloc_context_page(dev);
5814 if (dev_priv->renderctx) {
5815 struct drm_i915_gem_object *obj_priv;
5816 obj_priv = to_intel_bo(dev_priv->renderctx);
5817 if (obj_priv) {
5818 BEGIN_LP_RING(4);
5819 OUT_RING(MI_SET_CONTEXT);
5820 OUT_RING(obj_priv->gtt_offset |
5821 MI_MM_SPACE_GTT |
5822 MI_SAVE_EXT_STATE_EN |
5823 MI_RESTORE_EXT_STATE_EN |
5824 MI_RESTORE_INHIBIT);
5825 OUT_RING(MI_NOOP);
5826 OUT_RING(MI_FLUSH);
5827 ADVANCE_LP_RING();
5828 }
5829 } else
5830 DRM_DEBUG_KMS("Failed to allocate render context."
5831 "Disable RC6\n");
5832 }
5833
5834 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5835 struct drm_i915_gem_object *obj_priv = NULL;
5836
5837 if (dev_priv->pwrctx) {
5838 obj_priv = to_intel_bo(dev_priv->pwrctx);
5839 } else {
5840 struct drm_gem_object *pwrctx;
5841
5842 pwrctx = intel_alloc_context_page(dev);
5843 if (pwrctx) {
5844 dev_priv->pwrctx = pwrctx;
5845 obj_priv = to_intel_bo(pwrctx);
5846 }
5847 }
5848
5849 if (obj_priv) {
5850 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5851 I915_WRITE(MCHBAR_RENDER_STANDBY,
5852 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5853 }
5854 }
5855 }
5856
5857 /* Set up chip specific display functions */
5858 static void intel_init_display(struct drm_device *dev)
5859 {
5860 struct drm_i915_private *dev_priv = dev->dev_private;
5861
5862 /* We always want a DPMS function */
5863 if (HAS_PCH_SPLIT(dev))
5864 dev_priv->display.dpms = ironlake_crtc_dpms;
5865 else
5866 dev_priv->display.dpms = i9xx_crtc_dpms;
5867
5868 if (I915_HAS_FBC(dev)) {
5869 if (IS_IRONLAKE_M(dev)) {
5870 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5871 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5872 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5873 } else if (IS_GM45(dev)) {
5874 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5875 dev_priv->display.enable_fbc = g4x_enable_fbc;
5876 dev_priv->display.disable_fbc = g4x_disable_fbc;
5877 } else if (IS_CRESTLINE(dev)) {
5878 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5879 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5880 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5881 }
5882 /* 855GM needs testing */
5883 }
5884
5885 /* Returns the core display clock speed */
5886 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5887 dev_priv->display.get_display_clock_speed =
5888 i945_get_display_clock_speed;
5889 else if (IS_I915G(dev))
5890 dev_priv->display.get_display_clock_speed =
5891 i915_get_display_clock_speed;
5892 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5893 dev_priv->display.get_display_clock_speed =
5894 i9xx_misc_get_display_clock_speed;
5895 else if (IS_I915GM(dev))
5896 dev_priv->display.get_display_clock_speed =
5897 i915gm_get_display_clock_speed;
5898 else if (IS_I865G(dev))
5899 dev_priv->display.get_display_clock_speed =
5900 i865_get_display_clock_speed;
5901 else if (IS_I85X(dev))
5902 dev_priv->display.get_display_clock_speed =
5903 i855_get_display_clock_speed;
5904 else /* 852, 830 */
5905 dev_priv->display.get_display_clock_speed =
5906 i830_get_display_clock_speed;
5907
5908 /* For FIFO watermark updates */
5909 if (HAS_PCH_SPLIT(dev)) {
5910 if (IS_IRONLAKE(dev)) {
5911 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5912 dev_priv->display.update_wm = ironlake_update_wm;
5913 else {
5914 DRM_DEBUG_KMS("Failed to get proper latency. "
5915 "Disable CxSR\n");
5916 dev_priv->display.update_wm = NULL;
5917 }
5918 } else
5919 dev_priv->display.update_wm = NULL;
5920 } else if (IS_PINEVIEW(dev)) {
5921 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5922 dev_priv->is_ddr3,
5923 dev_priv->fsb_freq,
5924 dev_priv->mem_freq)) {
5925 DRM_INFO("failed to find known CxSR latency "
5926 "(found ddr%s fsb freq %d, mem freq %d), "
5927 "disabling CxSR\n",
5928 (dev_priv->is_ddr3 == 1) ? "3": "2",
5929 dev_priv->fsb_freq, dev_priv->mem_freq);
5930 /* Disable CxSR and never update its watermark again */
5931 pineview_disable_cxsr(dev);
5932 dev_priv->display.update_wm = NULL;
5933 } else
5934 dev_priv->display.update_wm = pineview_update_wm;
5935 } else if (IS_G4X(dev))
5936 dev_priv->display.update_wm = g4x_update_wm;
5937 else if (IS_GEN4(dev))
5938 dev_priv->display.update_wm = i965_update_wm;
5939 else if (IS_GEN3(dev)) {
5940 dev_priv->display.update_wm = i9xx_update_wm;
5941 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5942 } else if (IS_I85X(dev)) {
5943 dev_priv->display.update_wm = i9xx_update_wm;
5944 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5945 } else {
5946 dev_priv->display.update_wm = i830_update_wm;
5947 if (IS_845G(dev))
5948 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5949 else
5950 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5951 }
5952 }
5953
5954 /*
5955 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5956 * resume, or other times. This quirk makes sure that's the case for
5957 * affected systems.
5958 */
5959 static void quirk_pipea_force (struct drm_device *dev)
5960 {
5961 struct drm_i915_private *dev_priv = dev->dev_private;
5962
5963 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5964 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5965 }
5966
5967 struct intel_quirk {
5968 int device;
5969 int subsystem_vendor;
5970 int subsystem_device;
5971 void (*hook)(struct drm_device *dev);
5972 };
5973
5974 struct intel_quirk intel_quirks[] = {
5975 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5976 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5977 /* HP Mini needs pipe A force quirk (LP: #322104) */
5978 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5979
5980 /* Thinkpad R31 needs pipe A force quirk */
5981 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5982 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5983 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5984
5985 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5986 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5987 /* ThinkPad X40 needs pipe A force quirk */
5988
5989 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5990 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5991
5992 /* 855 & before need to leave pipe A & dpll A up */
5993 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5994 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5995 };
5996
5997 static void intel_init_quirks(struct drm_device *dev)
5998 {
5999 struct pci_dev *d = dev->pdev;
6000 int i;
6001
6002 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6003 struct intel_quirk *q = &intel_quirks[i];
6004
6005 if (d->device == q->device &&
6006 (d->subsystem_vendor == q->subsystem_vendor ||
6007 q->subsystem_vendor == PCI_ANY_ID) &&
6008 (d->subsystem_device == q->subsystem_device ||
6009 q->subsystem_device == PCI_ANY_ID))
6010 q->hook(dev);
6011 }
6012 }
6013
6014 /* Disable the VGA plane that we never use */
6015 static void i915_disable_vga(struct drm_device *dev)
6016 {
6017 struct drm_i915_private *dev_priv = dev->dev_private;
6018 u8 sr1;
6019 u32 vga_reg;
6020
6021 if (HAS_PCH_SPLIT(dev))
6022 vga_reg = CPU_VGACNTRL;
6023 else
6024 vga_reg = VGACNTRL;
6025
6026 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6027 outb(1, VGA_SR_INDEX);
6028 sr1 = inb(VGA_SR_DATA);
6029 outb(sr1 | 1<<5, VGA_SR_DATA);
6030 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6031 udelay(300);
6032
6033 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6034 POSTING_READ(vga_reg);
6035 }
6036
6037 void intel_modeset_init(struct drm_device *dev)
6038 {
6039 struct drm_i915_private *dev_priv = dev->dev_private;
6040 int i;
6041
6042 drm_mode_config_init(dev);
6043
6044 dev->mode_config.min_width = 0;
6045 dev->mode_config.min_height = 0;
6046
6047 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6048
6049 intel_init_quirks(dev);
6050
6051 intel_init_display(dev);
6052
6053 if (IS_GEN2(dev)) {
6054 dev->mode_config.max_width = 2048;
6055 dev->mode_config.max_height = 2048;
6056 } else if (IS_GEN3(dev)) {
6057 dev->mode_config.max_width = 4096;
6058 dev->mode_config.max_height = 4096;
6059 } else {
6060 dev->mode_config.max_width = 8192;
6061 dev->mode_config.max_height = 8192;
6062 }
6063
6064 /* set memory base */
6065 if (IS_GEN2(dev))
6066 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6067 else
6068 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6069
6070 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6071 dev_priv->num_pipe = 2;
6072 else
6073 dev_priv->num_pipe = 1;
6074 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6075 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6076
6077 for (i = 0; i < dev_priv->num_pipe; i++) {
6078 intel_crtc_init(dev, i);
6079 }
6080
6081 intel_setup_outputs(dev);
6082
6083 intel_init_clock_gating(dev);
6084
6085 /* Just disable it once at startup */
6086 i915_disable_vga(dev);
6087
6088 if (IS_IRONLAKE_M(dev)) {
6089 ironlake_enable_drps(dev);
6090 intel_init_emon(dev);
6091 }
6092
6093 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6094 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6095 (unsigned long)dev);
6096
6097 intel_setup_overlay(dev);
6098 }
6099
6100 void intel_modeset_cleanup(struct drm_device *dev)
6101 {
6102 struct drm_i915_private *dev_priv = dev->dev_private;
6103 struct drm_crtc *crtc;
6104 struct intel_crtc *intel_crtc;
6105
6106 mutex_lock(&dev->struct_mutex);
6107
6108 drm_kms_helper_poll_fini(dev);
6109 intel_fbdev_fini(dev);
6110
6111 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6112 /* Skip inactive CRTCs */
6113 if (!crtc->fb)
6114 continue;
6115
6116 intel_crtc = to_intel_crtc(crtc);
6117 intel_increase_pllclock(crtc);
6118 }
6119
6120 if (dev_priv->display.disable_fbc)
6121 dev_priv->display.disable_fbc(dev);
6122
6123 if (dev_priv->renderctx) {
6124 struct drm_i915_gem_object *obj_priv;
6125
6126 obj_priv = to_intel_bo(dev_priv->renderctx);
6127 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6128 I915_READ(CCID);
6129 i915_gem_object_unpin(dev_priv->renderctx);
6130 drm_gem_object_unreference(dev_priv->renderctx);
6131 }
6132
6133 if (dev_priv->pwrctx) {
6134 struct drm_i915_gem_object *obj_priv;
6135
6136 obj_priv = to_intel_bo(dev_priv->pwrctx);
6137 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6138 I915_READ(PWRCTXA);
6139 i915_gem_object_unpin(dev_priv->pwrctx);
6140 drm_gem_object_unreference(dev_priv->pwrctx);
6141 }
6142
6143 if (IS_IRONLAKE_M(dev))
6144 ironlake_disable_drps(dev);
6145
6146 mutex_unlock(&dev->struct_mutex);
6147
6148 /* Disable the irq before mode object teardown, for the irq might
6149 * enqueue unpin/hotplug work. */
6150 drm_irq_uninstall(dev);
6151 cancel_work_sync(&dev_priv->hotplug_work);
6152
6153 /* Shut off idle work before the crtcs get freed. */
6154 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6155 intel_crtc = to_intel_crtc(crtc);
6156 del_timer_sync(&intel_crtc->idle_timer);
6157 }
6158 del_timer_sync(&dev_priv->idle_timer);
6159 cancel_work_sync(&dev_priv->idle_work);
6160
6161 drm_mode_config_cleanup(dev);
6162 }
6163
6164 /*
6165 * Return which encoder is currently attached for connector.
6166 */
6167 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6168 {
6169 return &intel_attached_encoder(connector)->base;
6170 }
6171
6172 void intel_connector_attach_encoder(struct intel_connector *connector,
6173 struct intel_encoder *encoder)
6174 {
6175 connector->encoder = encoder;
6176 drm_mode_connector_attach_encoder(&connector->base,
6177 &encoder->base);
6178 }
6179
6180 /*
6181 * set vga decode state - true == enable VGA decode
6182 */
6183 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6184 {
6185 struct drm_i915_private *dev_priv = dev->dev_private;
6186 u16 gmch_ctrl;
6187
6188 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6189 if (state)
6190 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6191 else
6192 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6193 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6194 return 0;
6195 }
This page took 0.311531 seconds and 5 git commands to generate.