Drivers: i915: Fix all space related issues.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
118 .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
146 .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
160 .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
176 },
177 .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
191 .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
205 },
206 .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
220 },
221 .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
235 .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
251 .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
265 .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269 *
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
272 */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
312 .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2, .max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
341 .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
355 .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
360 {
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 const intel_limit_t *limit;
364
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
378 }
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
382 else
383 limit = &intel_limits_ironlake_dac;
384
385 return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
393
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
398 limit = &intel_limits_g4x_dual_channel_lvds;
399 else
400 /* LVDS with dual channel */
401 limit = &intel_limits_g4x_single_channel_lvds;
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404 limit = &intel_limits_g4x_hdmi;
405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406 limit = &intel_limits_g4x_sdvo;
407 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408 limit = &intel_limits_g4x_display_port;
409 } else /* The option is for other outputs */
410 limit = &intel_limits_i9xx_sdvo;
411
412 return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
419
420 if (HAS_PCH_SPLIT(dev))
421 limit = intel_ironlake_limit(crtc, refclk);
422 else if (IS_G4X(dev)) {
423 limit = intel_g4x_limit(crtc);
424 } else if (IS_PINEVIEW(dev)) {
425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426 limit = &intel_limits_pineview_lvds;
427 else
428 limit = &intel_limits_pineview_sdvo;
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i8xx_lvds;
437 else
438 limit = &intel_limits_i8xx_dvo;
439 }
440 return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
456 return;
457 }
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465 * Returns whether any output on the specified pipe is of the specified type
466 */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
472
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
476
477 return false;
478 }
479
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
484 */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
489 {
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid("m1 out of range\n");
498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499 INTELPllInvalid("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
508 */
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid("dot out of range\n");
511
512 return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
518
519 {
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
523 int err = target;
524
525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526 (I915_READ(LVDS)) != 0) {
527 /*
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
532 */
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
543 }
544
545 memset(best_clock, 0, sizeof(*best_clock));
546
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
558 int this_err;
559
560 intel_clock(dev, refclk, &clock);
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581 {
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 int lvds_reg;
593
594 if (HAS_PCH_SPLIT(dev))
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
608 }
609
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
622
623 intel_clock(dev, refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627
628 this_err = abs(clock.dot - target);
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
634 }
635 }
636 }
637 }
638 }
639 return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
645 {
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
648
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
661 }
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
671 {
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
685 }
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
692 }
693
694 /**
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
698 *
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
701 */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 int pipestat_reg = PIPESTAT(pipe);
706
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
709 *
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
719 */
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
727 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731 * intel_wait_for_pipe_off - wait for pipe to turn off
732 * @dev: drm device
733 * @pipe: pipe to wait for
734 *
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
738 *
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
741 *
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
745 *
746 */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749 struct drm_i915_private *dev_priv = dev->dev_private;
750
751 if (INTEL_INFO(dev)->gen >= 4) {
752 int reg = PIPECONF(pipe);
753
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
760 int reg = PIPEDSL(pipe);
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763 /* Wait for the display line to settle */
764 do {
765 last_line = I915_READ(reg) & DSL_LINEMASK;
766 mdelay(5);
767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
771 }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776 return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
782 {
783 int reg;
784 u32 val;
785 bool cur_state;
786
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
800 {
801 int reg;
802 u32 val;
803 bool cur_state;
804
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
817 {
818 int reg;
819 u32 val;
820 bool cur_state;
821
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
834 {
835 int reg;
836 u32 val;
837 bool cur_state;
838
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
851 {
852 int reg;
853 u32 val;
854
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
858
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
866 {
867 int reg;
868 u32 val;
869
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
877 {
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = true;
882
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
889 }
890
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
895
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
898
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
901 pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
906 {
907 int reg;
908 u32 val;
909 bool cur_state;
910
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
923 {
924 int reg;
925 u32 val;
926
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
931 plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
936 {
937 int reg, i;
938 u32 val;
939 int cur_pipe;
940
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
944
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
954 }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959 u32 val;
960 bool enabled;
961
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
970 {
971 int reg;
972 u32 val;
973 bool enabled;
974
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
981 }
982
983 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
984 enum pipe pipe, u32 port_sel, u32 val)
985 {
986 if ((val & DP_PORT_EN) == 0)
987 return false;
988
989 if (HAS_PCH_CPT(dev_priv->dev)) {
990 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
991 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
992 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
993 return false;
994 } else {
995 if ((val & DP_PIPE_MASK) != (pipe << 30))
996 return false;
997 }
998 return true;
999 }
1000
1001 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1002 enum pipe pipe, u32 val)
1003 {
1004 if ((val & PORT_ENABLE) == 0)
1005 return false;
1006
1007 if (HAS_PCH_CPT(dev_priv->dev)) {
1008 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1009 return false;
1010 } else {
1011 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1012 return false;
1013 }
1014 return true;
1015 }
1016
1017 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, u32 val)
1019 {
1020 if ((val & LVDS_PORT_EN) == 0)
1021 return false;
1022
1023 if (HAS_PCH_CPT(dev_priv->dev)) {
1024 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1025 return false;
1026 } else {
1027 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1028 return false;
1029 }
1030 return true;
1031 }
1032
1033 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1034 enum pipe pipe, u32 val)
1035 {
1036 if ((val & ADPA_DAC_ENABLE) == 0)
1037 return false;
1038 if (HAS_PCH_CPT(dev_priv->dev)) {
1039 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1040 return false;
1041 } else {
1042 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1043 return false;
1044 }
1045 return true;
1046 }
1047
1048 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1049 enum pipe pipe, int reg, u32 port_sel)
1050 {
1051 u32 val = I915_READ(reg);
1052 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1053 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1054 reg, pipe_name(pipe));
1055 }
1056
1057 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1058 enum pipe pipe, int reg)
1059 {
1060 u32 val = I915_READ(reg);
1061 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1062 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1063 reg, pipe_name(pipe));
1064 }
1065
1066 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1067 enum pipe pipe)
1068 {
1069 int reg;
1070 u32 val;
1071
1072 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1073 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1074 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1075
1076 reg = PCH_ADPA;
1077 val = I915_READ(reg);
1078 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1079 "PCH VGA enabled on transcoder %c, should be disabled\n",
1080 pipe_name(pipe));
1081
1082 reg = PCH_LVDS;
1083 val = I915_READ(reg);
1084 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1085 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1086 pipe_name(pipe));
1087
1088 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1089 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1090 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1091 }
1092
1093 /**
1094 * intel_enable_pll - enable a PLL
1095 * @dev_priv: i915 private structure
1096 * @pipe: pipe PLL to enable
1097 *
1098 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1099 * make sure the PLL reg is writable first though, since the panel write
1100 * protect mechanism may be enabled.
1101 *
1102 * Note! This is for pre-ILK only.
1103 */
1104 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1105 {
1106 int reg;
1107 u32 val;
1108
1109 /* No really, not for ILK+ */
1110 BUG_ON(dev_priv->info->gen >= 5);
1111
1112 /* PLL is protected by panel, make sure we can write it */
1113 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1114 assert_panel_unlocked(dev_priv, pipe);
1115
1116 reg = DPLL(pipe);
1117 val = I915_READ(reg);
1118 val |= DPLL_VCO_ENABLE;
1119
1120 /* We do this three times for luck */
1121 I915_WRITE(reg, val);
1122 POSTING_READ(reg);
1123 udelay(150); /* wait for warmup */
1124 I915_WRITE(reg, val);
1125 POSTING_READ(reg);
1126 udelay(150); /* wait for warmup */
1127 I915_WRITE(reg, val);
1128 POSTING_READ(reg);
1129 udelay(150); /* wait for warmup */
1130 }
1131
1132 /**
1133 * intel_disable_pll - disable a PLL
1134 * @dev_priv: i915 private structure
1135 * @pipe: pipe PLL to disable
1136 *
1137 * Disable the PLL for @pipe, making sure the pipe is off first.
1138 *
1139 * Note! This is for pre-ILK only.
1140 */
1141 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1142 {
1143 int reg;
1144 u32 val;
1145
1146 /* Don't disable pipe A or pipe A PLLs if needed */
1147 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1148 return;
1149
1150 /* Make sure the pipe isn't still relying on us */
1151 assert_pipe_disabled(dev_priv, pipe);
1152
1153 reg = DPLL(pipe);
1154 val = I915_READ(reg);
1155 val &= ~DPLL_VCO_ENABLE;
1156 I915_WRITE(reg, val);
1157 POSTING_READ(reg);
1158 }
1159
1160 /**
1161 * intel_enable_pch_pll - enable PCH PLL
1162 * @dev_priv: i915 private structure
1163 * @pipe: pipe PLL to enable
1164 *
1165 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1166 * drives the transcoder clock.
1167 */
1168 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1169 enum pipe pipe)
1170 {
1171 int reg;
1172 u32 val;
1173
1174 /* PCH only available on ILK+ */
1175 BUG_ON(dev_priv->info->gen < 5);
1176
1177 /* PCH refclock must be enabled first */
1178 assert_pch_refclk_enabled(dev_priv);
1179
1180 reg = PCH_DPLL(pipe);
1181 val = I915_READ(reg);
1182 val |= DPLL_VCO_ENABLE;
1183 I915_WRITE(reg, val);
1184 POSTING_READ(reg);
1185 udelay(200);
1186 }
1187
1188 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int reg;
1192 u32 val;
1193
1194 /* PCH only available on ILK+ */
1195 BUG_ON(dev_priv->info->gen < 5);
1196
1197 /* Make sure transcoder isn't still depending on us */
1198 assert_transcoder_disabled(dev_priv, pipe);
1199
1200 reg = PCH_DPLL(pipe);
1201 val = I915_READ(reg);
1202 val &= ~DPLL_VCO_ENABLE;
1203 I915_WRITE(reg, val);
1204 POSTING_READ(reg);
1205 udelay(200);
1206 }
1207
1208 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1209 enum pipe pipe)
1210 {
1211 int reg;
1212 u32 val;
1213
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* Make sure PCH DPLL is enabled */
1218 assert_pch_pll_enabled(dev_priv, pipe);
1219
1220 /* FDI must be feeding us bits for PCH ports */
1221 assert_fdi_tx_enabled(dev_priv, pipe);
1222 assert_fdi_rx_enabled(dev_priv, pipe);
1223
1224 reg = TRANSCONF(pipe);
1225 val = I915_READ(reg);
1226
1227 if (HAS_PCH_IBX(dev_priv->dev)) {
1228 /*
1229 * make the BPC in transcoder be consistent with
1230 * that in pipeconf reg.
1231 */
1232 val &= ~PIPE_BPC_MASK;
1233 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1234 }
1235 I915_WRITE(reg, val | TRANS_ENABLE);
1236 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1237 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1238 }
1239
1240 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1241 enum pipe pipe)
1242 {
1243 int reg;
1244 u32 val;
1245
1246 /* FDI relies on the transcoder */
1247 assert_fdi_tx_disabled(dev_priv, pipe);
1248 assert_fdi_rx_disabled(dev_priv, pipe);
1249
1250 /* Ports must be off as well */
1251 assert_pch_ports_disabled(dev_priv, pipe);
1252
1253 reg = TRANSCONF(pipe);
1254 val = I915_READ(reg);
1255 val &= ~TRANS_ENABLE;
1256 I915_WRITE(reg, val);
1257 /* wait for PCH transcoder off, transcoder state */
1258 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1259 DRM_ERROR("failed to disable transcoder\n");
1260 }
1261
1262 /**
1263 * intel_enable_pipe - enable a pipe, asserting requirements
1264 * @dev_priv: i915 private structure
1265 * @pipe: pipe to enable
1266 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1267 *
1268 * Enable @pipe, making sure that various hardware specific requirements
1269 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1270 *
1271 * @pipe should be %PIPE_A or %PIPE_B.
1272 *
1273 * Will wait until the pipe is actually running (i.e. first vblank) before
1274 * returning.
1275 */
1276 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1277 bool pch_port)
1278 {
1279 int reg;
1280 u32 val;
1281
1282 /*
1283 * A pipe without a PLL won't actually be able to drive bits from
1284 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1285 * need the check.
1286 */
1287 if (!HAS_PCH_SPLIT(dev_priv->dev))
1288 assert_pll_enabled(dev_priv, pipe);
1289 else {
1290 if (pch_port) {
1291 /* if driving the PCH, we need FDI enabled */
1292 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1293 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1294 }
1295 /* FIXME: assert CPU port conditions for SNB+ */
1296 }
1297
1298 reg = PIPECONF(pipe);
1299 val = I915_READ(reg);
1300 if (val & PIPECONF_ENABLE)
1301 return;
1302
1303 I915_WRITE(reg, val | PIPECONF_ENABLE);
1304 intel_wait_for_vblank(dev_priv->dev, pipe);
1305 }
1306
1307 /**
1308 * intel_disable_pipe - disable a pipe, asserting requirements
1309 * @dev_priv: i915 private structure
1310 * @pipe: pipe to disable
1311 *
1312 * Disable @pipe, making sure that various hardware specific requirements
1313 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1314 *
1315 * @pipe should be %PIPE_A or %PIPE_B.
1316 *
1317 * Will wait until the pipe has shut down before returning.
1318 */
1319 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1320 enum pipe pipe)
1321 {
1322 int reg;
1323 u32 val;
1324
1325 /*
1326 * Make sure planes won't keep trying to pump pixels to us,
1327 * or we might hang the display.
1328 */
1329 assert_planes_disabled(dev_priv, pipe);
1330
1331 /* Don't disable pipe A or pipe A PLLs if needed */
1332 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1333 return;
1334
1335 reg = PIPECONF(pipe);
1336 val = I915_READ(reg);
1337 if ((val & PIPECONF_ENABLE) == 0)
1338 return;
1339
1340 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1341 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1342 }
1343
1344 /*
1345 * Plane regs are double buffered, going from enabled->disabled needs a
1346 * trigger in order to latch. The display address reg provides this.
1347 */
1348 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1349 enum plane plane)
1350 {
1351 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1352 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1353 }
1354
1355 /**
1356 * intel_enable_plane - enable a display plane on a given pipe
1357 * @dev_priv: i915 private structure
1358 * @plane: plane to enable
1359 * @pipe: pipe being fed
1360 *
1361 * Enable @plane on @pipe, making sure that @pipe is running first.
1362 */
1363 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1364 enum plane plane, enum pipe pipe)
1365 {
1366 int reg;
1367 u32 val;
1368
1369 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1370 assert_pipe_enabled(dev_priv, pipe);
1371
1372 reg = DSPCNTR(plane);
1373 val = I915_READ(reg);
1374 if (val & DISPLAY_PLANE_ENABLE)
1375 return;
1376
1377 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1378 intel_flush_display_plane(dev_priv, plane);
1379 intel_wait_for_vblank(dev_priv->dev, pipe);
1380 }
1381
1382 /**
1383 * intel_disable_plane - disable a display plane
1384 * @dev_priv: i915 private structure
1385 * @plane: plane to disable
1386 * @pipe: pipe consuming the data
1387 *
1388 * Disable @plane; should be an independent operation.
1389 */
1390 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1391 enum plane plane, enum pipe pipe)
1392 {
1393 int reg;
1394 u32 val;
1395
1396 reg = DSPCNTR(plane);
1397 val = I915_READ(reg);
1398 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1399 return;
1400
1401 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1402 intel_flush_display_plane(dev_priv, plane);
1403 intel_wait_for_vblank(dev_priv->dev, pipe);
1404 }
1405
1406 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, int reg, u32 port_sel)
1408 {
1409 u32 val = I915_READ(reg);
1410 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1411 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1412 I915_WRITE(reg, val & ~DP_PORT_EN);
1413 }
1414 }
1415
1416 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, int reg)
1418 {
1419 u32 val = I915_READ(reg);
1420 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1421 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1422 reg, pipe);
1423 I915_WRITE(reg, val & ~PORT_ENABLE);
1424 }
1425 }
1426
1427 /* Disable any ports connected to this transcoder */
1428 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1429 enum pipe pipe)
1430 {
1431 u32 reg, val;
1432
1433 val = I915_READ(PCH_PP_CONTROL);
1434 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1435
1436 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1437 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1438 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1439
1440 reg = PCH_ADPA;
1441 val = I915_READ(reg);
1442 if (adpa_pipe_enabled(dev_priv, val, pipe))
1443 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1444
1445 reg = PCH_LVDS;
1446 val = I915_READ(reg);
1447 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1448 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1449 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1450 POSTING_READ(reg);
1451 udelay(100);
1452 }
1453
1454 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1455 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1456 disable_pch_hdmi(dev_priv, pipe, HDMID);
1457 }
1458
1459 static void i8xx_disable_fbc(struct drm_device *dev)
1460 {
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 u32 fbc_ctl;
1463
1464 /* Disable compression */
1465 fbc_ctl = I915_READ(FBC_CONTROL);
1466 if ((fbc_ctl & FBC_CTL_EN) == 0)
1467 return;
1468
1469 fbc_ctl &= ~FBC_CTL_EN;
1470 I915_WRITE(FBC_CONTROL, fbc_ctl);
1471
1472 /* Wait for compressing bit to clear */
1473 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1474 DRM_DEBUG_KMS("FBC idle timed out\n");
1475 return;
1476 }
1477
1478 DRM_DEBUG_KMS("disabled FBC\n");
1479 }
1480
1481 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1482 {
1483 struct drm_device *dev = crtc->dev;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485 struct drm_framebuffer *fb = crtc->fb;
1486 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1487 struct drm_i915_gem_object *obj = intel_fb->obj;
1488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1489 int cfb_pitch;
1490 int plane, i;
1491 u32 fbc_ctl, fbc_ctl2;
1492
1493 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1494 if (fb->pitch < cfb_pitch)
1495 cfb_pitch = fb->pitch;
1496
1497 /* FBC_CTL wants 64B units */
1498 cfb_pitch = (cfb_pitch / 64) - 1;
1499 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1500
1501 /* Clear old tags */
1502 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1503 I915_WRITE(FBC_TAG + (i * 4), 0);
1504
1505 /* Set it up... */
1506 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1507 fbc_ctl2 |= plane;
1508 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1509 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1510
1511 /* enable it... */
1512 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1513 if (IS_I945GM(dev))
1514 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1515 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1516 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1517 fbc_ctl |= obj->fence_reg;
1518 I915_WRITE(FBC_CONTROL, fbc_ctl);
1519
1520 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1521 cfb_pitch, crtc->y, intel_crtc->plane);
1522 }
1523
1524 static bool i8xx_fbc_enabled(struct drm_device *dev)
1525 {
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527
1528 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1529 }
1530
1531 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1532 {
1533 struct drm_device *dev = crtc->dev;
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 struct drm_framebuffer *fb = crtc->fb;
1536 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1537 struct drm_i915_gem_object *obj = intel_fb->obj;
1538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1539 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1540 unsigned long stall_watermark = 200;
1541 u32 dpfc_ctl;
1542
1543 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1544 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1545 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1546
1547 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1548 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1549 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1550 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1551
1552 /* enable it... */
1553 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1554
1555 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1556 }
1557
1558 static void g4x_disable_fbc(struct drm_device *dev)
1559 {
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 u32 dpfc_ctl;
1562
1563 /* Disable compression */
1564 dpfc_ctl = I915_READ(DPFC_CONTROL);
1565 if (dpfc_ctl & DPFC_CTL_EN) {
1566 dpfc_ctl &= ~DPFC_CTL_EN;
1567 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1568
1569 DRM_DEBUG_KMS("disabled FBC\n");
1570 }
1571 }
1572
1573 static bool g4x_fbc_enabled(struct drm_device *dev)
1574 {
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576
1577 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1578 }
1579
1580 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1581 {
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 u32 blt_ecoskpd;
1584
1585 /* Make sure blitter notifies FBC of writes */
1586 gen6_gt_force_wake_get(dev_priv);
1587 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1588 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1589 GEN6_BLITTER_LOCK_SHIFT;
1590 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1591 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1592 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1593 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1594 GEN6_BLITTER_LOCK_SHIFT);
1595 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1596 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1597 gen6_gt_force_wake_put(dev_priv);
1598 }
1599
1600 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1601 {
1602 struct drm_device *dev = crtc->dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 struct drm_framebuffer *fb = crtc->fb;
1605 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1606 struct drm_i915_gem_object *obj = intel_fb->obj;
1607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1608 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1609 unsigned long stall_watermark = 200;
1610 u32 dpfc_ctl;
1611
1612 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1613 dpfc_ctl &= DPFC_RESERVED;
1614 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1615 /* Set persistent mode for front-buffer rendering, ala X. */
1616 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1617 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1618 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1619
1620 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1621 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1622 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1623 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1624 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1625 /* enable it... */
1626 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1627
1628 if (IS_GEN6(dev)) {
1629 I915_WRITE(SNB_DPFC_CTL_SA,
1630 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1631 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1632 sandybridge_blit_fbc_update(dev);
1633 }
1634
1635 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1636 }
1637
1638 static void ironlake_disable_fbc(struct drm_device *dev)
1639 {
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 u32 dpfc_ctl;
1642
1643 /* Disable compression */
1644 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1645 if (dpfc_ctl & DPFC_CTL_EN) {
1646 dpfc_ctl &= ~DPFC_CTL_EN;
1647 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1648
1649 DRM_DEBUG_KMS("disabled FBC\n");
1650 }
1651 }
1652
1653 static bool ironlake_fbc_enabled(struct drm_device *dev)
1654 {
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656
1657 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1658 }
1659
1660 bool intel_fbc_enabled(struct drm_device *dev)
1661 {
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663
1664 if (!dev_priv->display.fbc_enabled)
1665 return false;
1666
1667 return dev_priv->display.fbc_enabled(dev);
1668 }
1669
1670 static void intel_fbc_work_fn(struct work_struct *__work)
1671 {
1672 struct intel_fbc_work *work =
1673 container_of(to_delayed_work(__work),
1674 struct intel_fbc_work, work);
1675 struct drm_device *dev = work->crtc->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677
1678 mutex_lock(&dev->struct_mutex);
1679 if (work == dev_priv->fbc_work) {
1680 /* Double check that we haven't switched fb without cancelling
1681 * the prior work.
1682 */
1683 if (work->crtc->fb == work->fb) {
1684 dev_priv->display.enable_fbc(work->crtc,
1685 work->interval);
1686
1687 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1688 dev_priv->cfb_fb = work->crtc->fb->base.id;
1689 dev_priv->cfb_y = work->crtc->y;
1690 }
1691
1692 dev_priv->fbc_work = NULL;
1693 }
1694 mutex_unlock(&dev->struct_mutex);
1695
1696 kfree(work);
1697 }
1698
1699 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1700 {
1701 if (dev_priv->fbc_work == NULL)
1702 return;
1703
1704 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1705
1706 /* Synchronisation is provided by struct_mutex and checking of
1707 * dev_priv->fbc_work, so we can perform the cancellation
1708 * entirely asynchronously.
1709 */
1710 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1711 /* tasklet was killed before being run, clean up */
1712 kfree(dev_priv->fbc_work);
1713
1714 /* Mark the work as no longer wanted so that if it does
1715 * wake-up (because the work was already running and waiting
1716 * for our mutex), it will discover that is no longer
1717 * necessary to run.
1718 */
1719 dev_priv->fbc_work = NULL;
1720 }
1721
1722 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1723 {
1724 struct intel_fbc_work *work;
1725 struct drm_device *dev = crtc->dev;
1726 struct drm_i915_private *dev_priv = dev->dev_private;
1727
1728 if (!dev_priv->display.enable_fbc)
1729 return;
1730
1731 intel_cancel_fbc_work(dev_priv);
1732
1733 work = kzalloc(sizeof *work, GFP_KERNEL);
1734 if (work == NULL) {
1735 dev_priv->display.enable_fbc(crtc, interval);
1736 return;
1737 }
1738
1739 work->crtc = crtc;
1740 work->fb = crtc->fb;
1741 work->interval = interval;
1742 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1743
1744 dev_priv->fbc_work = work;
1745
1746 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1747
1748 /* Delay the actual enabling to let pageflipping cease and the
1749 * display to settle before starting the compression. Note that
1750 * this delay also serves a second purpose: it allows for a
1751 * vblank to pass after disabling the FBC before we attempt
1752 * to modify the control registers.
1753 *
1754 * A more complicated solution would involve tracking vblanks
1755 * following the termination of the page-flipping sequence
1756 * and indeed performing the enable as a co-routine and not
1757 * waiting synchronously upon the vblank.
1758 */
1759 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1760 }
1761
1762 void intel_disable_fbc(struct drm_device *dev)
1763 {
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765
1766 intel_cancel_fbc_work(dev_priv);
1767
1768 if (!dev_priv->display.disable_fbc)
1769 return;
1770
1771 dev_priv->display.disable_fbc(dev);
1772 dev_priv->cfb_plane = -1;
1773 }
1774
1775 /**
1776 * intel_update_fbc - enable/disable FBC as needed
1777 * @dev: the drm_device
1778 *
1779 * Set up the framebuffer compression hardware at mode set time. We
1780 * enable it if possible:
1781 * - plane A only (on pre-965)
1782 * - no pixel mulitply/line duplication
1783 * - no alpha buffer discard
1784 * - no dual wide
1785 * - framebuffer <= 2048 in width, 1536 in height
1786 *
1787 * We can't assume that any compression will take place (worst case),
1788 * so the compressed buffer has to be the same size as the uncompressed
1789 * one. It also must reside (along with the line length buffer) in
1790 * stolen memory.
1791 *
1792 * We need to enable/disable FBC on a global basis.
1793 */
1794 static void intel_update_fbc(struct drm_device *dev)
1795 {
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct drm_crtc *crtc = NULL, *tmp_crtc;
1798 struct intel_crtc *intel_crtc;
1799 struct drm_framebuffer *fb;
1800 struct intel_framebuffer *intel_fb;
1801 struct drm_i915_gem_object *obj;
1802
1803 DRM_DEBUG_KMS("\n");
1804
1805 if (!i915_powersave)
1806 return;
1807
1808 if (!I915_HAS_FBC(dev))
1809 return;
1810
1811 /*
1812 * If FBC is already on, we just have to verify that we can
1813 * keep it that way...
1814 * Need to disable if:
1815 * - more than one pipe is active
1816 * - changing FBC params (stride, fence, mode)
1817 * - new fb is too large to fit in compressed buffer
1818 * - going to an unsupported config (interlace, pixel multiply, etc.)
1819 */
1820 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1821 if (tmp_crtc->enabled && tmp_crtc->fb) {
1822 if (crtc) {
1823 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1824 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1825 goto out_disable;
1826 }
1827 crtc = tmp_crtc;
1828 }
1829 }
1830
1831 if (!crtc || crtc->fb == NULL) {
1832 DRM_DEBUG_KMS("no output, disabling\n");
1833 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1834 goto out_disable;
1835 }
1836
1837 intel_crtc = to_intel_crtc(crtc);
1838 fb = crtc->fb;
1839 intel_fb = to_intel_framebuffer(fb);
1840 obj = intel_fb->obj;
1841
1842 if (!i915_enable_fbc) {
1843 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1844 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1845 goto out_disable;
1846 }
1847 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1848 DRM_DEBUG_KMS("framebuffer too large, disabling "
1849 "compression\n");
1850 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1851 goto out_disable;
1852 }
1853 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1854 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1855 DRM_DEBUG_KMS("mode incompatible with compression, "
1856 "disabling\n");
1857 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1858 goto out_disable;
1859 }
1860 if ((crtc->mode.hdisplay > 2048) ||
1861 (crtc->mode.vdisplay > 1536)) {
1862 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1863 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1864 goto out_disable;
1865 }
1866 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1867 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1868 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1869 goto out_disable;
1870 }
1871
1872 /* The use of a CPU fence is mandatory in order to detect writes
1873 * by the CPU to the scanout and trigger updates to the FBC.
1874 */
1875 if (obj->tiling_mode != I915_TILING_X ||
1876 obj->fence_reg == I915_FENCE_REG_NONE) {
1877 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1878 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1879 goto out_disable;
1880 }
1881
1882 /* If the kernel debugger is active, always disable compression */
1883 if (in_dbg_master())
1884 goto out_disable;
1885
1886 /* If the scanout has not changed, don't modify the FBC settings.
1887 * Note that we make the fundamental assumption that the fb->obj
1888 * cannot be unpinned (and have its GTT offset and fence revoked)
1889 * without first being decoupled from the scanout and FBC disabled.
1890 */
1891 if (dev_priv->cfb_plane == intel_crtc->plane &&
1892 dev_priv->cfb_fb == fb->base.id &&
1893 dev_priv->cfb_y == crtc->y)
1894 return;
1895
1896 if (intel_fbc_enabled(dev)) {
1897 /* We update FBC along two paths, after changing fb/crtc
1898 * configuration (modeswitching) and after page-flipping
1899 * finishes. For the latter, we know that not only did
1900 * we disable the FBC at the start of the page-flip
1901 * sequence, but also more than one vblank has passed.
1902 *
1903 * For the former case of modeswitching, it is possible
1904 * to switch between two FBC valid configurations
1905 * instantaneously so we do need to disable the FBC
1906 * before we can modify its control registers. We also
1907 * have to wait for the next vblank for that to take
1908 * effect. However, since we delay enabling FBC we can
1909 * assume that a vblank has passed since disabling and
1910 * that we can safely alter the registers in the deferred
1911 * callback.
1912 *
1913 * In the scenario that we go from a valid to invalid
1914 * and then back to valid FBC configuration we have
1915 * no strict enforcement that a vblank occurred since
1916 * disabling the FBC. However, along all current pipe
1917 * disabling paths we do need to wait for a vblank at
1918 * some point. And we wait before enabling FBC anyway.
1919 */
1920 DRM_DEBUG_KMS("disabling active FBC for update\n");
1921 intel_disable_fbc(dev);
1922 }
1923
1924 intel_enable_fbc(crtc, 500);
1925 return;
1926
1927 out_disable:
1928 /* Multiple disables should be harmless */
1929 if (intel_fbc_enabled(dev)) {
1930 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1931 intel_disable_fbc(dev);
1932 }
1933 }
1934
1935 int
1936 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1937 struct drm_i915_gem_object *obj,
1938 struct intel_ring_buffer *pipelined)
1939 {
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 u32 alignment;
1942 int ret;
1943
1944 switch (obj->tiling_mode) {
1945 case I915_TILING_NONE:
1946 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1947 alignment = 128 * 1024;
1948 else if (INTEL_INFO(dev)->gen >= 4)
1949 alignment = 4 * 1024;
1950 else
1951 alignment = 64 * 1024;
1952 break;
1953 case I915_TILING_X:
1954 /* pin() will align the object as required by fence */
1955 alignment = 0;
1956 break;
1957 case I915_TILING_Y:
1958 /* FIXME: Is this true? */
1959 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1960 return -EINVAL;
1961 default:
1962 BUG();
1963 }
1964
1965 dev_priv->mm.interruptible = false;
1966 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1967 if (ret)
1968 goto err_interruptible;
1969
1970 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1971 * fence, whereas 965+ only requires a fence if using
1972 * framebuffer compression. For simplicity, we always install
1973 * a fence as the cost is not that onerous.
1974 */
1975 if (obj->tiling_mode != I915_TILING_NONE) {
1976 ret = i915_gem_object_get_fence(obj, pipelined);
1977 if (ret)
1978 goto err_unpin;
1979 }
1980
1981 dev_priv->mm.interruptible = true;
1982 return 0;
1983
1984 err_unpin:
1985 i915_gem_object_unpin(obj);
1986 err_interruptible:
1987 dev_priv->mm.interruptible = true;
1988 return ret;
1989 }
1990
1991 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1992 int x, int y)
1993 {
1994 struct drm_device *dev = crtc->dev;
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1997 struct intel_framebuffer *intel_fb;
1998 struct drm_i915_gem_object *obj;
1999 int plane = intel_crtc->plane;
2000 unsigned long Start, Offset;
2001 u32 dspcntr;
2002 u32 reg;
2003
2004 switch (plane) {
2005 case 0:
2006 case 1:
2007 break;
2008 default:
2009 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2010 return -EINVAL;
2011 }
2012
2013 intel_fb = to_intel_framebuffer(fb);
2014 obj = intel_fb->obj;
2015
2016 reg = DSPCNTR(plane);
2017 dspcntr = I915_READ(reg);
2018 /* Mask out pixel format bits in case we change it */
2019 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2020 switch (fb->bits_per_pixel) {
2021 case 8:
2022 dspcntr |= DISPPLANE_8BPP;
2023 break;
2024 case 16:
2025 if (fb->depth == 15)
2026 dspcntr |= DISPPLANE_15_16BPP;
2027 else
2028 dspcntr |= DISPPLANE_16BPP;
2029 break;
2030 case 24:
2031 case 32:
2032 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2033 break;
2034 default:
2035 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2036 return -EINVAL;
2037 }
2038 if (INTEL_INFO(dev)->gen >= 4) {
2039 if (obj->tiling_mode != I915_TILING_NONE)
2040 dspcntr |= DISPPLANE_TILED;
2041 else
2042 dspcntr &= ~DISPPLANE_TILED;
2043 }
2044
2045 I915_WRITE(reg, dspcntr);
2046
2047 Start = obj->gtt_offset;
2048 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2049
2050 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2051 Start, Offset, x, y, fb->pitch);
2052 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2053 if (INTEL_INFO(dev)->gen >= 4) {
2054 I915_WRITE(DSPSURF(plane), Start);
2055 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2056 I915_WRITE(DSPADDR(plane), Offset);
2057 } else
2058 I915_WRITE(DSPADDR(plane), Start + Offset);
2059 POSTING_READ(reg);
2060
2061 return 0;
2062 }
2063
2064 static int ironlake_update_plane(struct drm_crtc *crtc,
2065 struct drm_framebuffer *fb, int x, int y)
2066 {
2067 struct drm_device *dev = crtc->dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2070 struct intel_framebuffer *intel_fb;
2071 struct drm_i915_gem_object *obj;
2072 int plane = intel_crtc->plane;
2073 unsigned long Start, Offset;
2074 u32 dspcntr;
2075 u32 reg;
2076
2077 switch (plane) {
2078 case 0:
2079 case 1:
2080 break;
2081 default:
2082 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2083 return -EINVAL;
2084 }
2085
2086 intel_fb = to_intel_framebuffer(fb);
2087 obj = intel_fb->obj;
2088
2089 reg = DSPCNTR(plane);
2090 dspcntr = I915_READ(reg);
2091 /* Mask out pixel format bits in case we change it */
2092 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2093 switch (fb->bits_per_pixel) {
2094 case 8:
2095 dspcntr |= DISPPLANE_8BPP;
2096 break;
2097 case 16:
2098 if (fb->depth != 16)
2099 return -EINVAL;
2100
2101 dspcntr |= DISPPLANE_16BPP;
2102 break;
2103 case 24:
2104 case 32:
2105 if (fb->depth == 24)
2106 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2107 else if (fb->depth == 30)
2108 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2109 else
2110 return -EINVAL;
2111 break;
2112 default:
2113 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2114 return -EINVAL;
2115 }
2116
2117 if (obj->tiling_mode != I915_TILING_NONE)
2118 dspcntr |= DISPPLANE_TILED;
2119 else
2120 dspcntr &= ~DISPPLANE_TILED;
2121
2122 /* must disable */
2123 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2124
2125 I915_WRITE(reg, dspcntr);
2126
2127 Start = obj->gtt_offset;
2128 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2129
2130 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2131 Start, Offset, x, y, fb->pitch);
2132 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2133 I915_WRITE(DSPSURF(plane), Start);
2134 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2135 I915_WRITE(DSPADDR(plane), Offset);
2136 POSTING_READ(reg);
2137
2138 return 0;
2139 }
2140
2141 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2142 static int
2143 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2144 int x, int y, enum mode_set_atomic state)
2145 {
2146 struct drm_device *dev = crtc->dev;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 int ret;
2149
2150 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2151 if (ret)
2152 return ret;
2153
2154 intel_update_fbc(dev);
2155 intel_increase_pllclock(crtc);
2156
2157 return 0;
2158 }
2159
2160 static int
2161 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2162 struct drm_framebuffer *old_fb)
2163 {
2164 struct drm_device *dev = crtc->dev;
2165 struct drm_i915_master_private *master_priv;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167 int ret;
2168
2169 /* no fb bound */
2170 if (!crtc->fb) {
2171 DRM_ERROR("No FB bound\n");
2172 return 0;
2173 }
2174
2175 switch (intel_crtc->plane) {
2176 case 0:
2177 case 1:
2178 break;
2179 default:
2180 DRM_ERROR("no plane for crtc\n");
2181 return -EINVAL;
2182 }
2183
2184 mutex_lock(&dev->struct_mutex);
2185 ret = intel_pin_and_fence_fb_obj(dev,
2186 to_intel_framebuffer(crtc->fb)->obj,
2187 NULL);
2188 if (ret != 0) {
2189 mutex_unlock(&dev->struct_mutex);
2190 DRM_ERROR("pin & fence failed\n");
2191 return ret;
2192 }
2193
2194 if (old_fb) {
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2197
2198 wait_event(dev_priv->pending_flip_queue,
2199 atomic_read(&dev_priv->mm.wedged) ||
2200 atomic_read(&obj->pending_flip) == 0);
2201
2202 /* Big Hammer, we also need to ensure that any pending
2203 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2204 * current scanout is retired before unpinning the old
2205 * framebuffer.
2206 *
2207 * This should only fail upon a hung GPU, in which case we
2208 * can safely continue.
2209 */
2210 ret = i915_gem_object_finish_gpu(obj);
2211 (void) ret;
2212 }
2213
2214 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2215 LEAVE_ATOMIC_MODE_SET);
2216 if (ret) {
2217 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2218 mutex_unlock(&dev->struct_mutex);
2219 DRM_ERROR("failed to update base address\n");
2220 return ret;
2221 }
2222
2223 if (old_fb) {
2224 intel_wait_for_vblank(dev, intel_crtc->pipe);
2225 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2226 }
2227
2228 mutex_unlock(&dev->struct_mutex);
2229
2230 if (!dev->primary->master)
2231 return 0;
2232
2233 master_priv = dev->primary->master->driver_priv;
2234 if (!master_priv->sarea_priv)
2235 return 0;
2236
2237 if (intel_crtc->pipe) {
2238 master_priv->sarea_priv->pipeB_x = x;
2239 master_priv->sarea_priv->pipeB_y = y;
2240 } else {
2241 master_priv->sarea_priv->pipeA_x = x;
2242 master_priv->sarea_priv->pipeA_y = y;
2243 }
2244
2245 return 0;
2246 }
2247
2248 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2249 {
2250 struct drm_device *dev = crtc->dev;
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 u32 dpa_ctl;
2253
2254 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2255 dpa_ctl = I915_READ(DP_A);
2256 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2257
2258 if (clock < 200000) {
2259 u32 temp;
2260 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2261 /* workaround for 160Mhz:
2262 1) program 0x4600c bits 15:0 = 0x8124
2263 2) program 0x46010 bit 0 = 1
2264 3) program 0x46034 bit 24 = 1
2265 4) program 0x64000 bit 14 = 1
2266 */
2267 temp = I915_READ(0x4600c);
2268 temp &= 0xffff0000;
2269 I915_WRITE(0x4600c, temp | 0x8124);
2270
2271 temp = I915_READ(0x46010);
2272 I915_WRITE(0x46010, temp | 1);
2273
2274 temp = I915_READ(0x46034);
2275 I915_WRITE(0x46034, temp | (1 << 24));
2276 } else {
2277 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2278 }
2279 I915_WRITE(DP_A, dpa_ctl);
2280
2281 POSTING_READ(DP_A);
2282 udelay(500);
2283 }
2284
2285 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2286 {
2287 struct drm_device *dev = crtc->dev;
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290 int pipe = intel_crtc->pipe;
2291 u32 reg, temp;
2292
2293 /* enable normal train */
2294 reg = FDI_TX_CTL(pipe);
2295 temp = I915_READ(reg);
2296 if (IS_IVYBRIDGE(dev)) {
2297 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2298 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2299 } else {
2300 temp &= ~FDI_LINK_TRAIN_NONE;
2301 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2302 }
2303 I915_WRITE(reg, temp);
2304
2305 reg = FDI_RX_CTL(pipe);
2306 temp = I915_READ(reg);
2307 if (HAS_PCH_CPT(dev)) {
2308 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2310 } else {
2311 temp &= ~FDI_LINK_TRAIN_NONE;
2312 temp |= FDI_LINK_TRAIN_NONE;
2313 }
2314 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2315
2316 /* wait one idle pattern time */
2317 POSTING_READ(reg);
2318 udelay(1000);
2319
2320 /* IVB wants error correction enabled */
2321 if (IS_IVYBRIDGE(dev))
2322 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2323 FDI_FE_ERRC_ENABLE);
2324 }
2325
2326 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2327 {
2328 struct drm_i915_private *dev_priv = dev->dev_private;
2329 u32 flags = I915_READ(SOUTH_CHICKEN1);
2330
2331 flags |= FDI_PHASE_SYNC_OVR(pipe);
2332 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2333 flags |= FDI_PHASE_SYNC_EN(pipe);
2334 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2335 POSTING_READ(SOUTH_CHICKEN1);
2336 }
2337
2338 /* The FDI link training functions for ILK/Ibexpeak. */
2339 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2340 {
2341 struct drm_device *dev = crtc->dev;
2342 struct drm_i915_private *dev_priv = dev->dev_private;
2343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2344 int pipe = intel_crtc->pipe;
2345 int plane = intel_crtc->plane;
2346 u32 reg, temp, tries;
2347
2348 /* FDI needs bits from pipe & plane first */
2349 assert_pipe_enabled(dev_priv, pipe);
2350 assert_plane_enabled(dev_priv, plane);
2351
2352 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2353 for train result */
2354 reg = FDI_RX_IMR(pipe);
2355 temp = I915_READ(reg);
2356 temp &= ~FDI_RX_SYMBOL_LOCK;
2357 temp &= ~FDI_RX_BIT_LOCK;
2358 I915_WRITE(reg, temp);
2359 I915_READ(reg);
2360 udelay(150);
2361
2362 /* enable CPU FDI TX and PCH FDI RX */
2363 reg = FDI_TX_CTL(pipe);
2364 temp = I915_READ(reg);
2365 temp &= ~(7 << 19);
2366 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2367 temp &= ~FDI_LINK_TRAIN_NONE;
2368 temp |= FDI_LINK_TRAIN_PATTERN_1;
2369 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2370
2371 reg = FDI_RX_CTL(pipe);
2372 temp = I915_READ(reg);
2373 temp &= ~FDI_LINK_TRAIN_NONE;
2374 temp |= FDI_LINK_TRAIN_PATTERN_1;
2375 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2376
2377 POSTING_READ(reg);
2378 udelay(150);
2379
2380 /* Ironlake workaround, enable clock pointer after FDI enable*/
2381 if (HAS_PCH_IBX(dev)) {
2382 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2383 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2384 FDI_RX_PHASE_SYNC_POINTER_EN);
2385 }
2386
2387 reg = FDI_RX_IIR(pipe);
2388 for (tries = 0; tries < 5; tries++) {
2389 temp = I915_READ(reg);
2390 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2391
2392 if ((temp & FDI_RX_BIT_LOCK)) {
2393 DRM_DEBUG_KMS("FDI train 1 done.\n");
2394 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2395 break;
2396 }
2397 }
2398 if (tries == 5)
2399 DRM_ERROR("FDI train 1 fail!\n");
2400
2401 /* Train 2 */
2402 reg = FDI_TX_CTL(pipe);
2403 temp = I915_READ(reg);
2404 temp &= ~FDI_LINK_TRAIN_NONE;
2405 temp |= FDI_LINK_TRAIN_PATTERN_2;
2406 I915_WRITE(reg, temp);
2407
2408 reg = FDI_RX_CTL(pipe);
2409 temp = I915_READ(reg);
2410 temp &= ~FDI_LINK_TRAIN_NONE;
2411 temp |= FDI_LINK_TRAIN_PATTERN_2;
2412 I915_WRITE(reg, temp);
2413
2414 POSTING_READ(reg);
2415 udelay(150);
2416
2417 reg = FDI_RX_IIR(pipe);
2418 for (tries = 0; tries < 5; tries++) {
2419 temp = I915_READ(reg);
2420 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2421
2422 if (temp & FDI_RX_SYMBOL_LOCK) {
2423 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2424 DRM_DEBUG_KMS("FDI train 2 done.\n");
2425 break;
2426 }
2427 }
2428 if (tries == 5)
2429 DRM_ERROR("FDI train 2 fail!\n");
2430
2431 DRM_DEBUG_KMS("FDI train done\n");
2432
2433 }
2434
2435 static const int snb_b_fdi_train_param[] = {
2436 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2437 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2438 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2439 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2440 };
2441
2442 /* The FDI link training functions for SNB/Cougarpoint. */
2443 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2444 {
2445 struct drm_device *dev = crtc->dev;
2446 struct drm_i915_private *dev_priv = dev->dev_private;
2447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2448 int pipe = intel_crtc->pipe;
2449 u32 reg, temp, i;
2450
2451 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2452 for train result */
2453 reg = FDI_RX_IMR(pipe);
2454 temp = I915_READ(reg);
2455 temp &= ~FDI_RX_SYMBOL_LOCK;
2456 temp &= ~FDI_RX_BIT_LOCK;
2457 I915_WRITE(reg, temp);
2458
2459 POSTING_READ(reg);
2460 udelay(150);
2461
2462 /* enable CPU FDI TX and PCH FDI RX */
2463 reg = FDI_TX_CTL(pipe);
2464 temp = I915_READ(reg);
2465 temp &= ~(7 << 19);
2466 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2467 temp &= ~FDI_LINK_TRAIN_NONE;
2468 temp |= FDI_LINK_TRAIN_PATTERN_1;
2469 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2470 /* SNB-B */
2471 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2472 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2473
2474 reg = FDI_RX_CTL(pipe);
2475 temp = I915_READ(reg);
2476 if (HAS_PCH_CPT(dev)) {
2477 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2478 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2479 } else {
2480 temp &= ~FDI_LINK_TRAIN_NONE;
2481 temp |= FDI_LINK_TRAIN_PATTERN_1;
2482 }
2483 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2484
2485 POSTING_READ(reg);
2486 udelay(150);
2487
2488 if (HAS_PCH_CPT(dev))
2489 cpt_phase_pointer_enable(dev, pipe);
2490
2491 for (i = 0; i < 4; i++) {
2492 reg = FDI_TX_CTL(pipe);
2493 temp = I915_READ(reg);
2494 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2495 temp |= snb_b_fdi_train_param[i];
2496 I915_WRITE(reg, temp);
2497
2498 POSTING_READ(reg);
2499 udelay(500);
2500
2501 reg = FDI_RX_IIR(pipe);
2502 temp = I915_READ(reg);
2503 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2504
2505 if (temp & FDI_RX_BIT_LOCK) {
2506 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2507 DRM_DEBUG_KMS("FDI train 1 done.\n");
2508 break;
2509 }
2510 }
2511 if (i == 4)
2512 DRM_ERROR("FDI train 1 fail!\n");
2513
2514 /* Train 2 */
2515 reg = FDI_TX_CTL(pipe);
2516 temp = I915_READ(reg);
2517 temp &= ~FDI_LINK_TRAIN_NONE;
2518 temp |= FDI_LINK_TRAIN_PATTERN_2;
2519 if (IS_GEN6(dev)) {
2520 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2521 /* SNB-B */
2522 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2523 }
2524 I915_WRITE(reg, temp);
2525
2526 reg = FDI_RX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 if (HAS_PCH_CPT(dev)) {
2529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2530 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2531 } else {
2532 temp &= ~FDI_LINK_TRAIN_NONE;
2533 temp |= FDI_LINK_TRAIN_PATTERN_2;
2534 }
2535 I915_WRITE(reg, temp);
2536
2537 POSTING_READ(reg);
2538 udelay(150);
2539
2540 for (i = 0; i < 4; i++) {
2541 reg = FDI_TX_CTL(pipe);
2542 temp = I915_READ(reg);
2543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2544 temp |= snb_b_fdi_train_param[i];
2545 I915_WRITE(reg, temp);
2546
2547 POSTING_READ(reg);
2548 udelay(500);
2549
2550 reg = FDI_RX_IIR(pipe);
2551 temp = I915_READ(reg);
2552 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2553
2554 if (temp & FDI_RX_SYMBOL_LOCK) {
2555 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2556 DRM_DEBUG_KMS("FDI train 2 done.\n");
2557 break;
2558 }
2559 }
2560 if (i == 4)
2561 DRM_ERROR("FDI train 2 fail!\n");
2562
2563 DRM_DEBUG_KMS("FDI train done.\n");
2564 }
2565
2566 /* Manual link training for Ivy Bridge A0 parts */
2567 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2568 {
2569 struct drm_device *dev = crtc->dev;
2570 struct drm_i915_private *dev_priv = dev->dev_private;
2571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572 int pipe = intel_crtc->pipe;
2573 u32 reg, temp, i;
2574
2575 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2576 for train result */
2577 reg = FDI_RX_IMR(pipe);
2578 temp = I915_READ(reg);
2579 temp &= ~FDI_RX_SYMBOL_LOCK;
2580 temp &= ~FDI_RX_BIT_LOCK;
2581 I915_WRITE(reg, temp);
2582
2583 POSTING_READ(reg);
2584 udelay(150);
2585
2586 /* enable CPU FDI TX and PCH FDI RX */
2587 reg = FDI_TX_CTL(pipe);
2588 temp = I915_READ(reg);
2589 temp &= ~(7 << 19);
2590 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2591 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2592 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2593 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2594 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2595 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2596
2597 reg = FDI_RX_CTL(pipe);
2598 temp = I915_READ(reg);
2599 temp &= ~FDI_LINK_TRAIN_AUTO;
2600 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2601 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2602 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 if (HAS_PCH_CPT(dev))
2608 cpt_phase_pointer_enable(dev, pipe);
2609
2610 for (i = 0; i < 4; i++) {
2611 reg = FDI_TX_CTL(pipe);
2612 temp = I915_READ(reg);
2613 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2614 temp |= snb_b_fdi_train_param[i];
2615 I915_WRITE(reg, temp);
2616
2617 POSTING_READ(reg);
2618 udelay(500);
2619
2620 reg = FDI_RX_IIR(pipe);
2621 temp = I915_READ(reg);
2622 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2623
2624 if (temp & FDI_RX_BIT_LOCK ||
2625 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2626 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2627 DRM_DEBUG_KMS("FDI train 1 done.\n");
2628 break;
2629 }
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 1 fail!\n");
2633
2634 /* Train 2 */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2638 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2639 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2640 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2641 I915_WRITE(reg, temp);
2642
2643 reg = FDI_RX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2647 I915_WRITE(reg, temp);
2648
2649 POSTING_READ(reg);
2650 udelay(150);
2651
2652 for (i = 0; i < 4; i++) {
2653 reg = FDI_TX_CTL(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2656 temp |= snb_b_fdi_train_param[i];
2657 I915_WRITE(reg, temp);
2658
2659 POSTING_READ(reg);
2660 udelay(500);
2661
2662 reg = FDI_RX_IIR(pipe);
2663 temp = I915_READ(reg);
2664 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2665
2666 if (temp & FDI_RX_SYMBOL_LOCK) {
2667 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2668 DRM_DEBUG_KMS("FDI train 2 done.\n");
2669 break;
2670 }
2671 }
2672 if (i == 4)
2673 DRM_ERROR("FDI train 2 fail!\n");
2674
2675 DRM_DEBUG_KMS("FDI train done.\n");
2676 }
2677
2678 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2679 {
2680 struct drm_device *dev = crtc->dev;
2681 struct drm_i915_private *dev_priv = dev->dev_private;
2682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2683 int pipe = intel_crtc->pipe;
2684 u32 reg, temp;
2685
2686 /* Write the TU size bits so error detection works */
2687 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2688 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2689
2690 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2691 reg = FDI_RX_CTL(pipe);
2692 temp = I915_READ(reg);
2693 temp &= ~((0x7 << 19) | (0x7 << 16));
2694 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2695 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2696 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2697
2698 POSTING_READ(reg);
2699 udelay(200);
2700
2701 /* Switch from Rawclk to PCDclk */
2702 temp = I915_READ(reg);
2703 I915_WRITE(reg, temp | FDI_PCDCLK);
2704
2705 POSTING_READ(reg);
2706 udelay(200);
2707
2708 /* Enable CPU FDI TX PLL, always on for Ironlake */
2709 reg = FDI_TX_CTL(pipe);
2710 temp = I915_READ(reg);
2711 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2712 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2713
2714 POSTING_READ(reg);
2715 udelay(100);
2716 }
2717 }
2718
2719 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2720 {
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 u32 flags = I915_READ(SOUTH_CHICKEN1);
2723
2724 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2725 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2726 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2727 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2728 POSTING_READ(SOUTH_CHICKEN1);
2729 }
2730 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2731 {
2732 struct drm_device *dev = crtc->dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2735 int pipe = intel_crtc->pipe;
2736 u32 reg, temp;
2737
2738 /* disable CPU FDI tx and PCH FDI rx */
2739 reg = FDI_TX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2742 POSTING_READ(reg);
2743
2744 reg = FDI_RX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 temp &= ~(0x7 << 16);
2747 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2748 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2749
2750 POSTING_READ(reg);
2751 udelay(100);
2752
2753 /* Ironlake workaround, disable clock pointer after downing FDI */
2754 if (HAS_PCH_IBX(dev)) {
2755 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2756 I915_WRITE(FDI_RX_CHICKEN(pipe),
2757 I915_READ(FDI_RX_CHICKEN(pipe) &
2758 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2759 } else if (HAS_PCH_CPT(dev)) {
2760 cpt_phase_pointer_disable(dev, pipe);
2761 }
2762
2763 /* still set train pattern 1 */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 temp &= ~FDI_LINK_TRAIN_NONE;
2767 temp |= FDI_LINK_TRAIN_PATTERN_1;
2768 I915_WRITE(reg, temp);
2769
2770 reg = FDI_RX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 if (HAS_PCH_CPT(dev)) {
2773 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2775 } else {
2776 temp &= ~FDI_LINK_TRAIN_NONE;
2777 temp |= FDI_LINK_TRAIN_PATTERN_1;
2778 }
2779 /* BPC in FDI rx is consistent with that in PIPECONF */
2780 temp &= ~(0x07 << 16);
2781 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2782 I915_WRITE(reg, temp);
2783
2784 POSTING_READ(reg);
2785 udelay(100);
2786 }
2787
2788 /*
2789 * When we disable a pipe, we need to clear any pending scanline wait events
2790 * to avoid hanging the ring, which we assume we are waiting on.
2791 */
2792 static void intel_clear_scanline_wait(struct drm_device *dev)
2793 {
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 struct intel_ring_buffer *ring;
2796 u32 tmp;
2797
2798 if (IS_GEN2(dev))
2799 /* Can't break the hang on i8xx */
2800 return;
2801
2802 ring = LP_RING(dev_priv);
2803 tmp = I915_READ_CTL(ring);
2804 if (tmp & RING_WAIT)
2805 I915_WRITE_CTL(ring, tmp);
2806 }
2807
2808 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2809 {
2810 struct drm_i915_gem_object *obj;
2811 struct drm_i915_private *dev_priv;
2812
2813 if (crtc->fb == NULL)
2814 return;
2815
2816 obj = to_intel_framebuffer(crtc->fb)->obj;
2817 dev_priv = crtc->dev->dev_private;
2818 wait_event(dev_priv->pending_flip_queue,
2819 atomic_read(&obj->pending_flip) == 0);
2820 }
2821
2822 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2823 {
2824 struct drm_device *dev = crtc->dev;
2825 struct drm_mode_config *mode_config = &dev->mode_config;
2826 struct intel_encoder *encoder;
2827
2828 /*
2829 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2830 * must be driven by its own crtc; no sharing is possible.
2831 */
2832 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2833 if (encoder->base.crtc != crtc)
2834 continue;
2835
2836 switch (encoder->type) {
2837 case INTEL_OUTPUT_EDP:
2838 if (!intel_encoder_is_pch_edp(&encoder->base))
2839 return false;
2840 continue;
2841 }
2842 }
2843
2844 return true;
2845 }
2846
2847 /*
2848 * Enable PCH resources required for PCH ports:
2849 * - PCH PLLs
2850 * - FDI training & RX/TX
2851 * - update transcoder timings
2852 * - DP transcoding bits
2853 * - transcoder
2854 */
2855 static void ironlake_pch_enable(struct drm_crtc *crtc)
2856 {
2857 struct drm_device *dev = crtc->dev;
2858 struct drm_i915_private *dev_priv = dev->dev_private;
2859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2860 int pipe = intel_crtc->pipe;
2861 u32 reg, temp;
2862
2863 /* For PCH output, training FDI link */
2864 dev_priv->display.fdi_link_train(crtc);
2865
2866 intel_enable_pch_pll(dev_priv, pipe);
2867
2868 if (HAS_PCH_CPT(dev)) {
2869 /* Be sure PCH DPLL SEL is set */
2870 temp = I915_READ(PCH_DPLL_SEL);
2871 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2872 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2873 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2874 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2875 I915_WRITE(PCH_DPLL_SEL, temp);
2876 }
2877
2878 /* set transcoder timing, panel must allow it */
2879 assert_panel_unlocked(dev_priv, pipe);
2880 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2881 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2882 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2883
2884 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2885 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2886 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2887
2888 intel_fdi_normal_train(crtc);
2889
2890 /* For PCH DP, enable TRANS_DP_CTL */
2891 if (HAS_PCH_CPT(dev) &&
2892 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2893 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2894 reg = TRANS_DP_CTL(pipe);
2895 temp = I915_READ(reg);
2896 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2897 TRANS_DP_SYNC_MASK |
2898 TRANS_DP_BPC_MASK);
2899 temp |= (TRANS_DP_OUTPUT_ENABLE |
2900 TRANS_DP_ENH_FRAMING);
2901 temp |= bpc << 9; /* same format but at 11:9 */
2902
2903 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2904 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2905 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2906 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2907
2908 switch (intel_trans_dp_port_sel(crtc)) {
2909 case PCH_DP_B:
2910 temp |= TRANS_DP_PORT_SEL_B;
2911 break;
2912 case PCH_DP_C:
2913 temp |= TRANS_DP_PORT_SEL_C;
2914 break;
2915 case PCH_DP_D:
2916 temp |= TRANS_DP_PORT_SEL_D;
2917 break;
2918 default:
2919 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2920 temp |= TRANS_DP_PORT_SEL_B;
2921 break;
2922 }
2923
2924 I915_WRITE(reg, temp);
2925 }
2926
2927 intel_enable_transcoder(dev_priv, pipe);
2928 }
2929
2930 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2931 {
2932 struct drm_device *dev = crtc->dev;
2933 struct drm_i915_private *dev_priv = dev->dev_private;
2934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2935 int pipe = intel_crtc->pipe;
2936 int plane = intel_crtc->plane;
2937 u32 temp;
2938 bool is_pch_port;
2939
2940 if (intel_crtc->active)
2941 return;
2942
2943 intel_crtc->active = true;
2944 intel_update_watermarks(dev);
2945
2946 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2947 temp = I915_READ(PCH_LVDS);
2948 if ((temp & LVDS_PORT_EN) == 0)
2949 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2950 }
2951
2952 is_pch_port = intel_crtc_driving_pch(crtc);
2953
2954 if (is_pch_port)
2955 ironlake_fdi_pll_enable(crtc);
2956 else
2957 ironlake_fdi_disable(crtc);
2958
2959 /* Enable panel fitting for LVDS */
2960 if (dev_priv->pch_pf_size &&
2961 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2962 /* Force use of hard-coded filter coefficients
2963 * as some pre-programmed values are broken,
2964 * e.g. x201.
2965 */
2966 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2967 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2968 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2969 }
2970
2971 /*
2972 * On ILK+ LUT must be loaded before the pipe is running but with
2973 * clocks enabled
2974 */
2975 intel_crtc_load_lut(crtc);
2976
2977 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2978 intel_enable_plane(dev_priv, plane, pipe);
2979
2980 if (is_pch_port)
2981 ironlake_pch_enable(crtc);
2982
2983 mutex_lock(&dev->struct_mutex);
2984 intel_update_fbc(dev);
2985 mutex_unlock(&dev->struct_mutex);
2986
2987 intel_crtc_update_cursor(crtc, true);
2988 }
2989
2990 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2991 {
2992 struct drm_device *dev = crtc->dev;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995 int pipe = intel_crtc->pipe;
2996 int plane = intel_crtc->plane;
2997 u32 reg, temp;
2998
2999 if (!intel_crtc->active)
3000 return;
3001
3002 intel_crtc_wait_for_pending_flips(crtc);
3003 drm_vblank_off(dev, pipe);
3004 intel_crtc_update_cursor(crtc, false);
3005
3006 intel_disable_plane(dev_priv, plane, pipe);
3007
3008 if (dev_priv->cfb_plane == plane)
3009 intel_disable_fbc(dev);
3010
3011 intel_disable_pipe(dev_priv, pipe);
3012
3013 /* Disable PF */
3014 I915_WRITE(PF_CTL(pipe), 0);
3015 I915_WRITE(PF_WIN_SZ(pipe), 0);
3016
3017 ironlake_fdi_disable(crtc);
3018
3019 /* This is a horrible layering violation; we should be doing this in
3020 * the connector/encoder ->prepare instead, but we don't always have
3021 * enough information there about the config to know whether it will
3022 * actually be necessary or just cause undesired flicker.
3023 */
3024 intel_disable_pch_ports(dev_priv, pipe);
3025
3026 intel_disable_transcoder(dev_priv, pipe);
3027
3028 if (HAS_PCH_CPT(dev)) {
3029 /* disable TRANS_DP_CTL */
3030 reg = TRANS_DP_CTL(pipe);
3031 temp = I915_READ(reg);
3032 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3033 temp |= TRANS_DP_PORT_SEL_NONE;
3034 I915_WRITE(reg, temp);
3035
3036 /* disable DPLL_SEL */
3037 temp = I915_READ(PCH_DPLL_SEL);
3038 switch (pipe) {
3039 case 0:
3040 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3041 break;
3042 case 1:
3043 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3044 break;
3045 case 2:
3046 /* FIXME: manage transcoder PLLs? */
3047 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3048 break;
3049 default:
3050 BUG(); /* wtf */
3051 }
3052 I915_WRITE(PCH_DPLL_SEL, temp);
3053 }
3054
3055 /* disable PCH DPLL */
3056 intel_disable_pch_pll(dev_priv, pipe);
3057
3058 /* Switch from PCDclk to Rawclk */
3059 reg = FDI_RX_CTL(pipe);
3060 temp = I915_READ(reg);
3061 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3062
3063 /* Disable CPU FDI TX PLL */
3064 reg = FDI_TX_CTL(pipe);
3065 temp = I915_READ(reg);
3066 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3067
3068 POSTING_READ(reg);
3069 udelay(100);
3070
3071 reg = FDI_RX_CTL(pipe);
3072 temp = I915_READ(reg);
3073 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3074
3075 /* Wait for the clocks to turn off. */
3076 POSTING_READ(reg);
3077 udelay(100);
3078
3079 intel_crtc->active = false;
3080 intel_update_watermarks(dev);
3081
3082 mutex_lock(&dev->struct_mutex);
3083 intel_update_fbc(dev);
3084 intel_clear_scanline_wait(dev);
3085 mutex_unlock(&dev->struct_mutex);
3086 }
3087
3088 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3089 {
3090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091 int pipe = intel_crtc->pipe;
3092 int plane = intel_crtc->plane;
3093
3094 /* XXX: When our outputs are all unaware of DPMS modes other than off
3095 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3096 */
3097 switch (mode) {
3098 case DRM_MODE_DPMS_ON:
3099 case DRM_MODE_DPMS_STANDBY:
3100 case DRM_MODE_DPMS_SUSPEND:
3101 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3102 ironlake_crtc_enable(crtc);
3103 break;
3104
3105 case DRM_MODE_DPMS_OFF:
3106 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3107 ironlake_crtc_disable(crtc);
3108 break;
3109 }
3110 }
3111
3112 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3113 {
3114 if (!enable && intel_crtc->overlay) {
3115 struct drm_device *dev = intel_crtc->base.dev;
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117
3118 mutex_lock(&dev->struct_mutex);
3119 dev_priv->mm.interruptible = false;
3120 (void) intel_overlay_switch_off(intel_crtc->overlay);
3121 dev_priv->mm.interruptible = true;
3122 mutex_unlock(&dev->struct_mutex);
3123 }
3124
3125 /* Let userspace switch the overlay on again. In most cases userspace
3126 * has to recompute where to put it anyway.
3127 */
3128 }
3129
3130 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3131 {
3132 struct drm_device *dev = crtc->dev;
3133 struct drm_i915_private *dev_priv = dev->dev_private;
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3135 int pipe = intel_crtc->pipe;
3136 int plane = intel_crtc->plane;
3137
3138 if (intel_crtc->active)
3139 return;
3140
3141 intel_crtc->active = true;
3142 intel_update_watermarks(dev);
3143
3144 intel_enable_pll(dev_priv, pipe);
3145 intel_enable_pipe(dev_priv, pipe, false);
3146 intel_enable_plane(dev_priv, plane, pipe);
3147
3148 intel_crtc_load_lut(crtc);
3149 intel_update_fbc(dev);
3150
3151 /* Give the overlay scaler a chance to enable if it's on this pipe */
3152 intel_crtc_dpms_overlay(intel_crtc, true);
3153 intel_crtc_update_cursor(crtc, true);
3154 }
3155
3156 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3157 {
3158 struct drm_device *dev = crtc->dev;
3159 struct drm_i915_private *dev_priv = dev->dev_private;
3160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3161 int pipe = intel_crtc->pipe;
3162 int plane = intel_crtc->plane;
3163
3164 if (!intel_crtc->active)
3165 return;
3166
3167 /* Give the overlay scaler a chance to disable if it's on this pipe */
3168 intel_crtc_wait_for_pending_flips(crtc);
3169 drm_vblank_off(dev, pipe);
3170 intel_crtc_dpms_overlay(intel_crtc, false);
3171 intel_crtc_update_cursor(crtc, false);
3172
3173 if (dev_priv->cfb_plane == plane)
3174 intel_disable_fbc(dev);
3175
3176 intel_disable_plane(dev_priv, plane, pipe);
3177 intel_disable_pipe(dev_priv, pipe);
3178 intel_disable_pll(dev_priv, pipe);
3179
3180 intel_crtc->active = false;
3181 intel_update_fbc(dev);
3182 intel_update_watermarks(dev);
3183 intel_clear_scanline_wait(dev);
3184 }
3185
3186 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3187 {
3188 /* XXX: When our outputs are all unaware of DPMS modes other than off
3189 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3190 */
3191 switch (mode) {
3192 case DRM_MODE_DPMS_ON:
3193 case DRM_MODE_DPMS_STANDBY:
3194 case DRM_MODE_DPMS_SUSPEND:
3195 i9xx_crtc_enable(crtc);
3196 break;
3197 case DRM_MODE_DPMS_OFF:
3198 i9xx_crtc_disable(crtc);
3199 break;
3200 }
3201 }
3202
3203 /**
3204 * Sets the power management mode of the pipe and plane.
3205 */
3206 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3207 {
3208 struct drm_device *dev = crtc->dev;
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210 struct drm_i915_master_private *master_priv;
3211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3212 int pipe = intel_crtc->pipe;
3213 bool enabled;
3214
3215 if (intel_crtc->dpms_mode == mode)
3216 return;
3217
3218 intel_crtc->dpms_mode = mode;
3219
3220 dev_priv->display.dpms(crtc, mode);
3221
3222 if (!dev->primary->master)
3223 return;
3224
3225 master_priv = dev->primary->master->driver_priv;
3226 if (!master_priv->sarea_priv)
3227 return;
3228
3229 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3230
3231 switch (pipe) {
3232 case 0:
3233 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3234 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3235 break;
3236 case 1:
3237 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3238 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3239 break;
3240 default:
3241 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3242 break;
3243 }
3244 }
3245
3246 static void intel_crtc_disable(struct drm_crtc *crtc)
3247 {
3248 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3249 struct drm_device *dev = crtc->dev;
3250
3251 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3252
3253 if (crtc->fb) {
3254 mutex_lock(&dev->struct_mutex);
3255 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3256 mutex_unlock(&dev->struct_mutex);
3257 }
3258 }
3259
3260 /* Prepare for a mode set.
3261 *
3262 * Note we could be a lot smarter here. We need to figure out which outputs
3263 * will be enabled, which disabled (in short, how the config will changes)
3264 * and perform the minimum necessary steps to accomplish that, e.g. updating
3265 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3266 * panel fitting is in the proper state, etc.
3267 */
3268 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3269 {
3270 i9xx_crtc_disable(crtc);
3271 }
3272
3273 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3274 {
3275 i9xx_crtc_enable(crtc);
3276 }
3277
3278 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3279 {
3280 ironlake_crtc_disable(crtc);
3281 }
3282
3283 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3284 {
3285 ironlake_crtc_enable(crtc);
3286 }
3287
3288 void intel_encoder_prepare(struct drm_encoder *encoder)
3289 {
3290 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3291 /* lvds has its own version of prepare see intel_lvds_prepare */
3292 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3293 }
3294
3295 void intel_encoder_commit(struct drm_encoder *encoder)
3296 {
3297 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3298 /* lvds has its own version of commit see intel_lvds_commit */
3299 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3300 }
3301
3302 void intel_encoder_destroy(struct drm_encoder *encoder)
3303 {
3304 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3305
3306 drm_encoder_cleanup(encoder);
3307 kfree(intel_encoder);
3308 }
3309
3310 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3311 struct drm_display_mode *mode,
3312 struct drm_display_mode *adjusted_mode)
3313 {
3314 struct drm_device *dev = crtc->dev;
3315
3316 if (HAS_PCH_SPLIT(dev)) {
3317 /* FDI link clock is fixed at 2.7G */
3318 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3319 return false;
3320 }
3321
3322 /* XXX some encoders set the crtcinfo, others don't.
3323 * Obviously we need some form of conflict resolution here...
3324 */
3325 if (adjusted_mode->crtc_htotal == 0)
3326 drm_mode_set_crtcinfo(adjusted_mode, 0);
3327
3328 return true;
3329 }
3330
3331 static int i945_get_display_clock_speed(struct drm_device *dev)
3332 {
3333 return 400000;
3334 }
3335
3336 static int i915_get_display_clock_speed(struct drm_device *dev)
3337 {
3338 return 333000;
3339 }
3340
3341 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3342 {
3343 return 200000;
3344 }
3345
3346 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3347 {
3348 u16 gcfgc = 0;
3349
3350 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3351
3352 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3353 return 133000;
3354 else {
3355 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3356 case GC_DISPLAY_CLOCK_333_MHZ:
3357 return 333000;
3358 default:
3359 case GC_DISPLAY_CLOCK_190_200_MHZ:
3360 return 190000;
3361 }
3362 }
3363 }
3364
3365 static int i865_get_display_clock_speed(struct drm_device *dev)
3366 {
3367 return 266000;
3368 }
3369
3370 static int i855_get_display_clock_speed(struct drm_device *dev)
3371 {
3372 u16 hpllcc = 0;
3373 /* Assume that the hardware is in the high speed state. This
3374 * should be the default.
3375 */
3376 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3377 case GC_CLOCK_133_200:
3378 case GC_CLOCK_100_200:
3379 return 200000;
3380 case GC_CLOCK_166_250:
3381 return 250000;
3382 case GC_CLOCK_100_133:
3383 return 133000;
3384 }
3385
3386 /* Shouldn't happen */
3387 return 0;
3388 }
3389
3390 static int i830_get_display_clock_speed(struct drm_device *dev)
3391 {
3392 return 133000;
3393 }
3394
3395 struct fdi_m_n {
3396 u32 tu;
3397 u32 gmch_m;
3398 u32 gmch_n;
3399 u32 link_m;
3400 u32 link_n;
3401 };
3402
3403 static void
3404 fdi_reduce_ratio(u32 *num, u32 *den)
3405 {
3406 while (*num > 0xffffff || *den > 0xffffff) {
3407 *num >>= 1;
3408 *den >>= 1;
3409 }
3410 }
3411
3412 static void
3413 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3414 int link_clock, struct fdi_m_n *m_n)
3415 {
3416 m_n->tu = 64; /* default size */
3417
3418 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3419 m_n->gmch_m = bits_per_pixel * pixel_clock;
3420 m_n->gmch_n = link_clock * nlanes * 8;
3421 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3422
3423 m_n->link_m = pixel_clock;
3424 m_n->link_n = link_clock;
3425 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3426 }
3427
3428
3429 struct intel_watermark_params {
3430 unsigned long fifo_size;
3431 unsigned long max_wm;
3432 unsigned long default_wm;
3433 unsigned long guard_size;
3434 unsigned long cacheline_size;
3435 };
3436
3437 /* Pineview has different values for various configs */
3438 static const struct intel_watermark_params pineview_display_wm = {
3439 PINEVIEW_DISPLAY_FIFO,
3440 PINEVIEW_MAX_WM,
3441 PINEVIEW_DFT_WM,
3442 PINEVIEW_GUARD_WM,
3443 PINEVIEW_FIFO_LINE_SIZE
3444 };
3445 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3446 PINEVIEW_DISPLAY_FIFO,
3447 PINEVIEW_MAX_WM,
3448 PINEVIEW_DFT_HPLLOFF_WM,
3449 PINEVIEW_GUARD_WM,
3450 PINEVIEW_FIFO_LINE_SIZE
3451 };
3452 static const struct intel_watermark_params pineview_cursor_wm = {
3453 PINEVIEW_CURSOR_FIFO,
3454 PINEVIEW_CURSOR_MAX_WM,
3455 PINEVIEW_CURSOR_DFT_WM,
3456 PINEVIEW_CURSOR_GUARD_WM,
3457 PINEVIEW_FIFO_LINE_SIZE,
3458 };
3459 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3460 PINEVIEW_CURSOR_FIFO,
3461 PINEVIEW_CURSOR_MAX_WM,
3462 PINEVIEW_CURSOR_DFT_WM,
3463 PINEVIEW_CURSOR_GUARD_WM,
3464 PINEVIEW_FIFO_LINE_SIZE
3465 };
3466 static const struct intel_watermark_params g4x_wm_info = {
3467 G4X_FIFO_SIZE,
3468 G4X_MAX_WM,
3469 G4X_MAX_WM,
3470 2,
3471 G4X_FIFO_LINE_SIZE,
3472 };
3473 static const struct intel_watermark_params g4x_cursor_wm_info = {
3474 I965_CURSOR_FIFO,
3475 I965_CURSOR_MAX_WM,
3476 I965_CURSOR_DFT_WM,
3477 2,
3478 G4X_FIFO_LINE_SIZE,
3479 };
3480 static const struct intel_watermark_params i965_cursor_wm_info = {
3481 I965_CURSOR_FIFO,
3482 I965_CURSOR_MAX_WM,
3483 I965_CURSOR_DFT_WM,
3484 2,
3485 I915_FIFO_LINE_SIZE,
3486 };
3487 static const struct intel_watermark_params i945_wm_info = {
3488 I945_FIFO_SIZE,
3489 I915_MAX_WM,
3490 1,
3491 2,
3492 I915_FIFO_LINE_SIZE
3493 };
3494 static const struct intel_watermark_params i915_wm_info = {
3495 I915_FIFO_SIZE,
3496 I915_MAX_WM,
3497 1,
3498 2,
3499 I915_FIFO_LINE_SIZE
3500 };
3501 static const struct intel_watermark_params i855_wm_info = {
3502 I855GM_FIFO_SIZE,
3503 I915_MAX_WM,
3504 1,
3505 2,
3506 I830_FIFO_LINE_SIZE
3507 };
3508 static const struct intel_watermark_params i830_wm_info = {
3509 I830_FIFO_SIZE,
3510 I915_MAX_WM,
3511 1,
3512 2,
3513 I830_FIFO_LINE_SIZE
3514 };
3515
3516 static const struct intel_watermark_params ironlake_display_wm_info = {
3517 ILK_DISPLAY_FIFO,
3518 ILK_DISPLAY_MAXWM,
3519 ILK_DISPLAY_DFTWM,
3520 2,
3521 ILK_FIFO_LINE_SIZE
3522 };
3523 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3524 ILK_CURSOR_FIFO,
3525 ILK_CURSOR_MAXWM,
3526 ILK_CURSOR_DFTWM,
3527 2,
3528 ILK_FIFO_LINE_SIZE
3529 };
3530 static const struct intel_watermark_params ironlake_display_srwm_info = {
3531 ILK_DISPLAY_SR_FIFO,
3532 ILK_DISPLAY_MAX_SRWM,
3533 ILK_DISPLAY_DFT_SRWM,
3534 2,
3535 ILK_FIFO_LINE_SIZE
3536 };
3537 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3538 ILK_CURSOR_SR_FIFO,
3539 ILK_CURSOR_MAX_SRWM,
3540 ILK_CURSOR_DFT_SRWM,
3541 2,
3542 ILK_FIFO_LINE_SIZE
3543 };
3544
3545 static const struct intel_watermark_params sandybridge_display_wm_info = {
3546 SNB_DISPLAY_FIFO,
3547 SNB_DISPLAY_MAXWM,
3548 SNB_DISPLAY_DFTWM,
3549 2,
3550 SNB_FIFO_LINE_SIZE
3551 };
3552 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3553 SNB_CURSOR_FIFO,
3554 SNB_CURSOR_MAXWM,
3555 SNB_CURSOR_DFTWM,
3556 2,
3557 SNB_FIFO_LINE_SIZE
3558 };
3559 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3560 SNB_DISPLAY_SR_FIFO,
3561 SNB_DISPLAY_MAX_SRWM,
3562 SNB_DISPLAY_DFT_SRWM,
3563 2,
3564 SNB_FIFO_LINE_SIZE
3565 };
3566 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3567 SNB_CURSOR_SR_FIFO,
3568 SNB_CURSOR_MAX_SRWM,
3569 SNB_CURSOR_DFT_SRWM,
3570 2,
3571 SNB_FIFO_LINE_SIZE
3572 };
3573
3574
3575 /**
3576 * intel_calculate_wm - calculate watermark level
3577 * @clock_in_khz: pixel clock
3578 * @wm: chip FIFO params
3579 * @pixel_size: display pixel size
3580 * @latency_ns: memory latency for the platform
3581 *
3582 * Calculate the watermark level (the level at which the display plane will
3583 * start fetching from memory again). Each chip has a different display
3584 * FIFO size and allocation, so the caller needs to figure that out and pass
3585 * in the correct intel_watermark_params structure.
3586 *
3587 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3588 * on the pixel size. When it reaches the watermark level, it'll start
3589 * fetching FIFO line sized based chunks from memory until the FIFO fills
3590 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3591 * will occur, and a display engine hang could result.
3592 */
3593 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3594 const struct intel_watermark_params *wm,
3595 int fifo_size,
3596 int pixel_size,
3597 unsigned long latency_ns)
3598 {
3599 long entries_required, wm_size;
3600
3601 /*
3602 * Note: we need to make sure we don't overflow for various clock &
3603 * latency values.
3604 * clocks go from a few thousand to several hundred thousand.
3605 * latency is usually a few thousand
3606 */
3607 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3608 1000;
3609 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3610
3611 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3612
3613 wm_size = fifo_size - (entries_required + wm->guard_size);
3614
3615 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3616
3617 /* Don't promote wm_size to unsigned... */
3618 if (wm_size > (long)wm->max_wm)
3619 wm_size = wm->max_wm;
3620 if (wm_size <= 0)
3621 wm_size = wm->default_wm;
3622 return wm_size;
3623 }
3624
3625 struct cxsr_latency {
3626 int is_desktop;
3627 int is_ddr3;
3628 unsigned long fsb_freq;
3629 unsigned long mem_freq;
3630 unsigned long display_sr;
3631 unsigned long display_hpll_disable;
3632 unsigned long cursor_sr;
3633 unsigned long cursor_hpll_disable;
3634 };
3635
3636 static const struct cxsr_latency cxsr_latency_table[] = {
3637 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3638 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3639 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3640 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3641 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3642
3643 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3644 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3645 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3646 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3647 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3648
3649 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3650 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3651 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3652 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3653 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3654
3655 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3656 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3657 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3658 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3659 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3660
3661 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3662 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3663 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3664 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3665 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3666
3667 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3668 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3669 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3670 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3671 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3672 };
3673
3674 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3675 int is_ddr3,
3676 int fsb,
3677 int mem)
3678 {
3679 const struct cxsr_latency *latency;
3680 int i;
3681
3682 if (fsb == 0 || mem == 0)
3683 return NULL;
3684
3685 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3686 latency = &cxsr_latency_table[i];
3687 if (is_desktop == latency->is_desktop &&
3688 is_ddr3 == latency->is_ddr3 &&
3689 fsb == latency->fsb_freq && mem == latency->mem_freq)
3690 return latency;
3691 }
3692
3693 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3694
3695 return NULL;
3696 }
3697
3698 static void pineview_disable_cxsr(struct drm_device *dev)
3699 {
3700 struct drm_i915_private *dev_priv = dev->dev_private;
3701
3702 /* deactivate cxsr */
3703 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3704 }
3705
3706 /*
3707 * Latency for FIFO fetches is dependent on several factors:
3708 * - memory configuration (speed, channels)
3709 * - chipset
3710 * - current MCH state
3711 * It can be fairly high in some situations, so here we assume a fairly
3712 * pessimal value. It's a tradeoff between extra memory fetches (if we
3713 * set this value too high, the FIFO will fetch frequently to stay full)
3714 * and power consumption (set it too low to save power and we might see
3715 * FIFO underruns and display "flicker").
3716 *
3717 * A value of 5us seems to be a good balance; safe for very low end
3718 * platforms but not overly aggressive on lower latency configs.
3719 */
3720 static const int latency_ns = 5000;
3721
3722 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3723 {
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 uint32_t dsparb = I915_READ(DSPARB);
3726 int size;
3727
3728 size = dsparb & 0x7f;
3729 if (plane)
3730 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3731
3732 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3733 plane ? "B" : "A", size);
3734
3735 return size;
3736 }
3737
3738 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3739 {
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 uint32_t dsparb = I915_READ(DSPARB);
3742 int size;
3743
3744 size = dsparb & 0x1ff;
3745 if (plane)
3746 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3747 size >>= 1; /* Convert to cachelines */
3748
3749 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3750 plane ? "B" : "A", size);
3751
3752 return size;
3753 }
3754
3755 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3756 {
3757 struct drm_i915_private *dev_priv = dev->dev_private;
3758 uint32_t dsparb = I915_READ(DSPARB);
3759 int size;
3760
3761 size = dsparb & 0x7f;
3762 size >>= 2; /* Convert to cachelines */
3763
3764 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3765 plane ? "B" : "A",
3766 size);
3767
3768 return size;
3769 }
3770
3771 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3772 {
3773 struct drm_i915_private *dev_priv = dev->dev_private;
3774 uint32_t dsparb = I915_READ(DSPARB);
3775 int size;
3776
3777 size = dsparb & 0x7f;
3778 size >>= 1; /* Convert to cachelines */
3779
3780 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3781 plane ? "B" : "A", size);
3782
3783 return size;
3784 }
3785
3786 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3787 {
3788 struct drm_crtc *crtc, *enabled = NULL;
3789
3790 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3791 if (crtc->enabled && crtc->fb) {
3792 if (enabled)
3793 return NULL;
3794 enabled = crtc;
3795 }
3796 }
3797
3798 return enabled;
3799 }
3800
3801 static void pineview_update_wm(struct drm_device *dev)
3802 {
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 struct drm_crtc *crtc;
3805 const struct cxsr_latency *latency;
3806 u32 reg;
3807 unsigned long wm;
3808
3809 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3810 dev_priv->fsb_freq, dev_priv->mem_freq);
3811 if (!latency) {
3812 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3813 pineview_disable_cxsr(dev);
3814 return;
3815 }
3816
3817 crtc = single_enabled_crtc(dev);
3818 if (crtc) {
3819 int clock = crtc->mode.clock;
3820 int pixel_size = crtc->fb->bits_per_pixel / 8;
3821
3822 /* Display SR */
3823 wm = intel_calculate_wm(clock, &pineview_display_wm,
3824 pineview_display_wm.fifo_size,
3825 pixel_size, latency->display_sr);
3826 reg = I915_READ(DSPFW1);
3827 reg &= ~DSPFW_SR_MASK;
3828 reg |= wm << DSPFW_SR_SHIFT;
3829 I915_WRITE(DSPFW1, reg);
3830 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3831
3832 /* cursor SR */
3833 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3834 pineview_display_wm.fifo_size,
3835 pixel_size, latency->cursor_sr);
3836 reg = I915_READ(DSPFW3);
3837 reg &= ~DSPFW_CURSOR_SR_MASK;
3838 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3839 I915_WRITE(DSPFW3, reg);
3840
3841 /* Display HPLL off SR */
3842 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3843 pineview_display_hplloff_wm.fifo_size,
3844 pixel_size, latency->display_hpll_disable);
3845 reg = I915_READ(DSPFW3);
3846 reg &= ~DSPFW_HPLL_SR_MASK;
3847 reg |= wm & DSPFW_HPLL_SR_MASK;
3848 I915_WRITE(DSPFW3, reg);
3849
3850 /* cursor HPLL off SR */
3851 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3852 pineview_display_hplloff_wm.fifo_size,
3853 pixel_size, latency->cursor_hpll_disable);
3854 reg = I915_READ(DSPFW3);
3855 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3856 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3857 I915_WRITE(DSPFW3, reg);
3858 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3859
3860 /* activate cxsr */
3861 I915_WRITE(DSPFW3,
3862 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3863 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3864 } else {
3865 pineview_disable_cxsr(dev);
3866 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3867 }
3868 }
3869
3870 static bool g4x_compute_wm0(struct drm_device *dev,
3871 int plane,
3872 const struct intel_watermark_params *display,
3873 int display_latency_ns,
3874 const struct intel_watermark_params *cursor,
3875 int cursor_latency_ns,
3876 int *plane_wm,
3877 int *cursor_wm)
3878 {
3879 struct drm_crtc *crtc;
3880 int htotal, hdisplay, clock, pixel_size;
3881 int line_time_us, line_count;
3882 int entries, tlb_miss;
3883
3884 crtc = intel_get_crtc_for_plane(dev, plane);
3885 if (crtc->fb == NULL || !crtc->enabled) {
3886 *cursor_wm = cursor->guard_size;
3887 *plane_wm = display->guard_size;
3888 return false;
3889 }
3890
3891 htotal = crtc->mode.htotal;
3892 hdisplay = crtc->mode.hdisplay;
3893 clock = crtc->mode.clock;
3894 pixel_size = crtc->fb->bits_per_pixel / 8;
3895
3896 /* Use the small buffer method to calculate plane watermark */
3897 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3898 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3899 if (tlb_miss > 0)
3900 entries += tlb_miss;
3901 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3902 *plane_wm = entries + display->guard_size;
3903 if (*plane_wm > (int)display->max_wm)
3904 *plane_wm = display->max_wm;
3905
3906 /* Use the large buffer method to calculate cursor watermark */
3907 line_time_us = ((htotal * 1000) / clock);
3908 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3909 entries = line_count * 64 * pixel_size;
3910 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3911 if (tlb_miss > 0)
3912 entries += tlb_miss;
3913 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3914 *cursor_wm = entries + cursor->guard_size;
3915 if (*cursor_wm > (int)cursor->max_wm)
3916 *cursor_wm = (int)cursor->max_wm;
3917
3918 return true;
3919 }
3920
3921 /*
3922 * Check the wm result.
3923 *
3924 * If any calculated watermark values is larger than the maximum value that
3925 * can be programmed into the associated watermark register, that watermark
3926 * must be disabled.
3927 */
3928 static bool g4x_check_srwm(struct drm_device *dev,
3929 int display_wm, int cursor_wm,
3930 const struct intel_watermark_params *display,
3931 const struct intel_watermark_params *cursor)
3932 {
3933 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3934 display_wm, cursor_wm);
3935
3936 if (display_wm > display->max_wm) {
3937 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3938 display_wm, display->max_wm);
3939 return false;
3940 }
3941
3942 if (cursor_wm > cursor->max_wm) {
3943 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3944 cursor_wm, cursor->max_wm);
3945 return false;
3946 }
3947
3948 if (!(display_wm || cursor_wm)) {
3949 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3950 return false;
3951 }
3952
3953 return true;
3954 }
3955
3956 static bool g4x_compute_srwm(struct drm_device *dev,
3957 int plane,
3958 int latency_ns,
3959 const struct intel_watermark_params *display,
3960 const struct intel_watermark_params *cursor,
3961 int *display_wm, int *cursor_wm)
3962 {
3963 struct drm_crtc *crtc;
3964 int hdisplay, htotal, pixel_size, clock;
3965 unsigned long line_time_us;
3966 int line_count, line_size;
3967 int small, large;
3968 int entries;
3969
3970 if (!latency_ns) {
3971 *display_wm = *cursor_wm = 0;
3972 return false;
3973 }
3974
3975 crtc = intel_get_crtc_for_plane(dev, plane);
3976 hdisplay = crtc->mode.hdisplay;
3977 htotal = crtc->mode.htotal;
3978 clock = crtc->mode.clock;
3979 pixel_size = crtc->fb->bits_per_pixel / 8;
3980
3981 line_time_us = (htotal * 1000) / clock;
3982 line_count = (latency_ns / line_time_us + 1000) / 1000;
3983 line_size = hdisplay * pixel_size;
3984
3985 /* Use the minimum of the small and large buffer method for primary */
3986 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3987 large = line_count * line_size;
3988
3989 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3990 *display_wm = entries + display->guard_size;
3991
3992 /* calculate the self-refresh watermark for display cursor */
3993 entries = line_count * pixel_size * 64;
3994 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3995 *cursor_wm = entries + cursor->guard_size;
3996
3997 return g4x_check_srwm(dev,
3998 *display_wm, *cursor_wm,
3999 display, cursor);
4000 }
4001
4002 #define single_plane_enabled(mask) is_power_of_2(mask)
4003
4004 static void g4x_update_wm(struct drm_device *dev)
4005 {
4006 static const int sr_latency_ns = 12000;
4007 struct drm_i915_private *dev_priv = dev->dev_private;
4008 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4009 int plane_sr, cursor_sr;
4010 unsigned int enabled = 0;
4011
4012 if (g4x_compute_wm0(dev, 0,
4013 &g4x_wm_info, latency_ns,
4014 &g4x_cursor_wm_info, latency_ns,
4015 &planea_wm, &cursora_wm))
4016 enabled |= 1;
4017
4018 if (g4x_compute_wm0(dev, 1,
4019 &g4x_wm_info, latency_ns,
4020 &g4x_cursor_wm_info, latency_ns,
4021 &planeb_wm, &cursorb_wm))
4022 enabled |= 2;
4023
4024 plane_sr = cursor_sr = 0;
4025 if (single_plane_enabled(enabled) &&
4026 g4x_compute_srwm(dev, ffs(enabled) - 1,
4027 sr_latency_ns,
4028 &g4x_wm_info,
4029 &g4x_cursor_wm_info,
4030 &plane_sr, &cursor_sr))
4031 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4032 else
4033 I915_WRITE(FW_BLC_SELF,
4034 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4035
4036 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4037 planea_wm, cursora_wm,
4038 planeb_wm, cursorb_wm,
4039 plane_sr, cursor_sr);
4040
4041 I915_WRITE(DSPFW1,
4042 (plane_sr << DSPFW_SR_SHIFT) |
4043 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4044 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4045 planea_wm);
4046 I915_WRITE(DSPFW2,
4047 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4048 (cursora_wm << DSPFW_CURSORA_SHIFT));
4049 /* HPLL off in SR has some issues on G4x... disable it */
4050 I915_WRITE(DSPFW3,
4051 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4052 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4053 }
4054
4055 static void i965_update_wm(struct drm_device *dev)
4056 {
4057 struct drm_i915_private *dev_priv = dev->dev_private;
4058 struct drm_crtc *crtc;
4059 int srwm = 1;
4060 int cursor_sr = 16;
4061
4062 /* Calc sr entries for one plane configs */
4063 crtc = single_enabled_crtc(dev);
4064 if (crtc) {
4065 /* self-refresh has much higher latency */
4066 static const int sr_latency_ns = 12000;
4067 int clock = crtc->mode.clock;
4068 int htotal = crtc->mode.htotal;
4069 int hdisplay = crtc->mode.hdisplay;
4070 int pixel_size = crtc->fb->bits_per_pixel / 8;
4071 unsigned long line_time_us;
4072 int entries;
4073
4074 line_time_us = ((htotal * 1000) / clock);
4075
4076 /* Use ns/us then divide to preserve precision */
4077 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4078 pixel_size * hdisplay;
4079 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4080 srwm = I965_FIFO_SIZE - entries;
4081 if (srwm < 0)
4082 srwm = 1;
4083 srwm &= 0x1ff;
4084 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4085 entries, srwm);
4086
4087 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4088 pixel_size * 64;
4089 entries = DIV_ROUND_UP(entries,
4090 i965_cursor_wm_info.cacheline_size);
4091 cursor_sr = i965_cursor_wm_info.fifo_size -
4092 (entries + i965_cursor_wm_info.guard_size);
4093
4094 if (cursor_sr > i965_cursor_wm_info.max_wm)
4095 cursor_sr = i965_cursor_wm_info.max_wm;
4096
4097 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4098 "cursor %d\n", srwm, cursor_sr);
4099
4100 if (IS_CRESTLINE(dev))
4101 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4102 } else {
4103 /* Turn off self refresh if both pipes are enabled */
4104 if (IS_CRESTLINE(dev))
4105 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4106 & ~FW_BLC_SELF_EN);
4107 }
4108
4109 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4110 srwm);
4111
4112 /* 965 has limitations... */
4113 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4114 (8 << 16) | (8 << 8) | (8 << 0));
4115 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4116 /* update cursor SR watermark */
4117 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4118 }
4119
4120 static void i9xx_update_wm(struct drm_device *dev)
4121 {
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 const struct intel_watermark_params *wm_info;
4124 uint32_t fwater_lo;
4125 uint32_t fwater_hi;
4126 int cwm, srwm = 1;
4127 int fifo_size;
4128 int planea_wm, planeb_wm;
4129 struct drm_crtc *crtc, *enabled = NULL;
4130
4131 if (IS_I945GM(dev))
4132 wm_info = &i945_wm_info;
4133 else if (!IS_GEN2(dev))
4134 wm_info = &i915_wm_info;
4135 else
4136 wm_info = &i855_wm_info;
4137
4138 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4139 crtc = intel_get_crtc_for_plane(dev, 0);
4140 if (crtc->enabled && crtc->fb) {
4141 planea_wm = intel_calculate_wm(crtc->mode.clock,
4142 wm_info, fifo_size,
4143 crtc->fb->bits_per_pixel / 8,
4144 latency_ns);
4145 enabled = crtc;
4146 } else
4147 planea_wm = fifo_size - wm_info->guard_size;
4148
4149 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4150 crtc = intel_get_crtc_for_plane(dev, 1);
4151 if (crtc->enabled && crtc->fb) {
4152 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4153 wm_info, fifo_size,
4154 crtc->fb->bits_per_pixel / 8,
4155 latency_ns);
4156 if (enabled == NULL)
4157 enabled = crtc;
4158 else
4159 enabled = NULL;
4160 } else
4161 planeb_wm = fifo_size - wm_info->guard_size;
4162
4163 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4164
4165 /*
4166 * Overlay gets an aggressive default since video jitter is bad.
4167 */
4168 cwm = 2;
4169
4170 /* Play safe and disable self-refresh before adjusting watermarks. */
4171 if (IS_I945G(dev) || IS_I945GM(dev))
4172 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4173 else if (IS_I915GM(dev))
4174 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4175
4176 /* Calc sr entries for one plane configs */
4177 if (HAS_FW_BLC(dev) && enabled) {
4178 /* self-refresh has much higher latency */
4179 static const int sr_latency_ns = 6000;
4180 int clock = enabled->mode.clock;
4181 int htotal = enabled->mode.htotal;
4182 int hdisplay = enabled->mode.hdisplay;
4183 int pixel_size = enabled->fb->bits_per_pixel / 8;
4184 unsigned long line_time_us;
4185 int entries;
4186
4187 line_time_us = (htotal * 1000) / clock;
4188
4189 /* Use ns/us then divide to preserve precision */
4190 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4191 pixel_size * hdisplay;
4192 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4193 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4194 srwm = wm_info->fifo_size - entries;
4195 if (srwm < 0)
4196 srwm = 1;
4197
4198 if (IS_I945G(dev) || IS_I945GM(dev))
4199 I915_WRITE(FW_BLC_SELF,
4200 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4201 else if (IS_I915GM(dev))
4202 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4203 }
4204
4205 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4206 planea_wm, planeb_wm, cwm, srwm);
4207
4208 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4209 fwater_hi = (cwm & 0x1f);
4210
4211 /* Set request length to 8 cachelines per fetch */
4212 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4213 fwater_hi = fwater_hi | (1 << 8);
4214
4215 I915_WRITE(FW_BLC, fwater_lo);
4216 I915_WRITE(FW_BLC2, fwater_hi);
4217
4218 if (HAS_FW_BLC(dev)) {
4219 if (enabled) {
4220 if (IS_I945G(dev) || IS_I945GM(dev))
4221 I915_WRITE(FW_BLC_SELF,
4222 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4223 else if (IS_I915GM(dev))
4224 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4225 DRM_DEBUG_KMS("memory self refresh enabled\n");
4226 } else
4227 DRM_DEBUG_KMS("memory self refresh disabled\n");
4228 }
4229 }
4230
4231 static void i830_update_wm(struct drm_device *dev)
4232 {
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 struct drm_crtc *crtc;
4235 uint32_t fwater_lo;
4236 int planea_wm;
4237
4238 crtc = single_enabled_crtc(dev);
4239 if (crtc == NULL)
4240 return;
4241
4242 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4243 dev_priv->display.get_fifo_size(dev, 0),
4244 crtc->fb->bits_per_pixel / 8,
4245 latency_ns);
4246 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4247 fwater_lo |= (3<<8) | planea_wm;
4248
4249 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4250
4251 I915_WRITE(FW_BLC, fwater_lo);
4252 }
4253
4254 #define ILK_LP0_PLANE_LATENCY 700
4255 #define ILK_LP0_CURSOR_LATENCY 1300
4256
4257 /*
4258 * Check the wm result.
4259 *
4260 * If any calculated watermark values is larger than the maximum value that
4261 * can be programmed into the associated watermark register, that watermark
4262 * must be disabled.
4263 */
4264 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4265 int fbc_wm, int display_wm, int cursor_wm,
4266 const struct intel_watermark_params *display,
4267 const struct intel_watermark_params *cursor)
4268 {
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270
4271 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4272 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4273
4274 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4275 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4276 fbc_wm, SNB_FBC_MAX_SRWM, level);
4277
4278 /* fbc has it's own way to disable FBC WM */
4279 I915_WRITE(DISP_ARB_CTL,
4280 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4281 return false;
4282 }
4283
4284 if (display_wm > display->max_wm) {
4285 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4286 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4287 return false;
4288 }
4289
4290 if (cursor_wm > cursor->max_wm) {
4291 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4292 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4293 return false;
4294 }
4295
4296 if (!(fbc_wm || display_wm || cursor_wm)) {
4297 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4298 return false;
4299 }
4300
4301 return true;
4302 }
4303
4304 /*
4305 * Compute watermark values of WM[1-3],
4306 */
4307 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4308 int latency_ns,
4309 const struct intel_watermark_params *display,
4310 const struct intel_watermark_params *cursor,
4311 int *fbc_wm, int *display_wm, int *cursor_wm)
4312 {
4313 struct drm_crtc *crtc;
4314 unsigned long line_time_us;
4315 int hdisplay, htotal, pixel_size, clock;
4316 int line_count, line_size;
4317 int small, large;
4318 int entries;
4319
4320 if (!latency_ns) {
4321 *fbc_wm = *display_wm = *cursor_wm = 0;
4322 return false;
4323 }
4324
4325 crtc = intel_get_crtc_for_plane(dev, plane);
4326 hdisplay = crtc->mode.hdisplay;
4327 htotal = crtc->mode.htotal;
4328 clock = crtc->mode.clock;
4329 pixel_size = crtc->fb->bits_per_pixel / 8;
4330
4331 line_time_us = (htotal * 1000) / clock;
4332 line_count = (latency_ns / line_time_us + 1000) / 1000;
4333 line_size = hdisplay * pixel_size;
4334
4335 /* Use the minimum of the small and large buffer method for primary */
4336 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4337 large = line_count * line_size;
4338
4339 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4340 *display_wm = entries + display->guard_size;
4341
4342 /*
4343 * Spec says:
4344 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4345 */
4346 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4347
4348 /* calculate the self-refresh watermark for display cursor */
4349 entries = line_count * pixel_size * 64;
4350 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4351 *cursor_wm = entries + cursor->guard_size;
4352
4353 return ironlake_check_srwm(dev, level,
4354 *fbc_wm, *display_wm, *cursor_wm,
4355 display, cursor);
4356 }
4357
4358 static void ironlake_update_wm(struct drm_device *dev)
4359 {
4360 struct drm_i915_private *dev_priv = dev->dev_private;
4361 int fbc_wm, plane_wm, cursor_wm;
4362 unsigned int enabled;
4363
4364 enabled = 0;
4365 if (g4x_compute_wm0(dev, 0,
4366 &ironlake_display_wm_info,
4367 ILK_LP0_PLANE_LATENCY,
4368 &ironlake_cursor_wm_info,
4369 ILK_LP0_CURSOR_LATENCY,
4370 &plane_wm, &cursor_wm)) {
4371 I915_WRITE(WM0_PIPEA_ILK,
4372 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4373 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4374 " plane %d, " "cursor: %d\n",
4375 plane_wm, cursor_wm);
4376 enabled |= 1;
4377 }
4378
4379 if (g4x_compute_wm0(dev, 1,
4380 &ironlake_display_wm_info,
4381 ILK_LP0_PLANE_LATENCY,
4382 &ironlake_cursor_wm_info,
4383 ILK_LP0_CURSOR_LATENCY,
4384 &plane_wm, &cursor_wm)) {
4385 I915_WRITE(WM0_PIPEB_ILK,
4386 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4387 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4388 " plane %d, cursor: %d\n",
4389 plane_wm, cursor_wm);
4390 enabled |= 2;
4391 }
4392
4393 /*
4394 * Calculate and update the self-refresh watermark only when one
4395 * display plane is used.
4396 */
4397 I915_WRITE(WM3_LP_ILK, 0);
4398 I915_WRITE(WM2_LP_ILK, 0);
4399 I915_WRITE(WM1_LP_ILK, 0);
4400
4401 if (!single_plane_enabled(enabled))
4402 return;
4403 enabled = ffs(enabled) - 1;
4404
4405 /* WM1 */
4406 if (!ironlake_compute_srwm(dev, 1, enabled,
4407 ILK_READ_WM1_LATENCY() * 500,
4408 &ironlake_display_srwm_info,
4409 &ironlake_cursor_srwm_info,
4410 &fbc_wm, &plane_wm, &cursor_wm))
4411 return;
4412
4413 I915_WRITE(WM1_LP_ILK,
4414 WM1_LP_SR_EN |
4415 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4416 (fbc_wm << WM1_LP_FBC_SHIFT) |
4417 (plane_wm << WM1_LP_SR_SHIFT) |
4418 cursor_wm);
4419
4420 /* WM2 */
4421 if (!ironlake_compute_srwm(dev, 2, enabled,
4422 ILK_READ_WM2_LATENCY() * 500,
4423 &ironlake_display_srwm_info,
4424 &ironlake_cursor_srwm_info,
4425 &fbc_wm, &plane_wm, &cursor_wm))
4426 return;
4427
4428 I915_WRITE(WM2_LP_ILK,
4429 WM2_LP_EN |
4430 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4431 (fbc_wm << WM1_LP_FBC_SHIFT) |
4432 (plane_wm << WM1_LP_SR_SHIFT) |
4433 cursor_wm);
4434
4435 /*
4436 * WM3 is unsupported on ILK, probably because we don't have latency
4437 * data for that power state
4438 */
4439 }
4440
4441 static void sandybridge_update_wm(struct drm_device *dev)
4442 {
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4445 int fbc_wm, plane_wm, cursor_wm;
4446 unsigned int enabled;
4447
4448 enabled = 0;
4449 if (g4x_compute_wm0(dev, 0,
4450 &sandybridge_display_wm_info, latency,
4451 &sandybridge_cursor_wm_info, latency,
4452 &plane_wm, &cursor_wm)) {
4453 I915_WRITE(WM0_PIPEA_ILK,
4454 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4455 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4456 " plane %d, " "cursor: %d\n",
4457 plane_wm, cursor_wm);
4458 enabled |= 1;
4459 }
4460
4461 if (g4x_compute_wm0(dev, 1,
4462 &sandybridge_display_wm_info, latency,
4463 &sandybridge_cursor_wm_info, latency,
4464 &plane_wm, &cursor_wm)) {
4465 I915_WRITE(WM0_PIPEB_ILK,
4466 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4467 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4468 " plane %d, cursor: %d\n",
4469 plane_wm, cursor_wm);
4470 enabled |= 2;
4471 }
4472
4473 /*
4474 * Calculate and update the self-refresh watermark only when one
4475 * display plane is used.
4476 *
4477 * SNB support 3 levels of watermark.
4478 *
4479 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4480 * and disabled in the descending order
4481 *
4482 */
4483 I915_WRITE(WM3_LP_ILK, 0);
4484 I915_WRITE(WM2_LP_ILK, 0);
4485 I915_WRITE(WM1_LP_ILK, 0);
4486
4487 if (!single_plane_enabled(enabled))
4488 return;
4489 enabled = ffs(enabled) - 1;
4490
4491 /* WM1 */
4492 if (!ironlake_compute_srwm(dev, 1, enabled,
4493 SNB_READ_WM1_LATENCY() * 500,
4494 &sandybridge_display_srwm_info,
4495 &sandybridge_cursor_srwm_info,
4496 &fbc_wm, &plane_wm, &cursor_wm))
4497 return;
4498
4499 I915_WRITE(WM1_LP_ILK,
4500 WM1_LP_SR_EN |
4501 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4502 (fbc_wm << WM1_LP_FBC_SHIFT) |
4503 (plane_wm << WM1_LP_SR_SHIFT) |
4504 cursor_wm);
4505
4506 /* WM2 */
4507 if (!ironlake_compute_srwm(dev, 2, enabled,
4508 SNB_READ_WM2_LATENCY() * 500,
4509 &sandybridge_display_srwm_info,
4510 &sandybridge_cursor_srwm_info,
4511 &fbc_wm, &plane_wm, &cursor_wm))
4512 return;
4513
4514 I915_WRITE(WM2_LP_ILK,
4515 WM2_LP_EN |
4516 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4517 (fbc_wm << WM1_LP_FBC_SHIFT) |
4518 (plane_wm << WM1_LP_SR_SHIFT) |
4519 cursor_wm);
4520
4521 /* WM3 */
4522 if (!ironlake_compute_srwm(dev, 3, enabled,
4523 SNB_READ_WM3_LATENCY() * 500,
4524 &sandybridge_display_srwm_info,
4525 &sandybridge_cursor_srwm_info,
4526 &fbc_wm, &plane_wm, &cursor_wm))
4527 return;
4528
4529 I915_WRITE(WM3_LP_ILK,
4530 WM3_LP_EN |
4531 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4532 (fbc_wm << WM1_LP_FBC_SHIFT) |
4533 (plane_wm << WM1_LP_SR_SHIFT) |
4534 cursor_wm);
4535 }
4536
4537 /**
4538 * intel_update_watermarks - update FIFO watermark values based on current modes
4539 *
4540 * Calculate watermark values for the various WM regs based on current mode
4541 * and plane configuration.
4542 *
4543 * There are several cases to deal with here:
4544 * - normal (i.e. non-self-refresh)
4545 * - self-refresh (SR) mode
4546 * - lines are large relative to FIFO size (buffer can hold up to 2)
4547 * - lines are small relative to FIFO size (buffer can hold more than 2
4548 * lines), so need to account for TLB latency
4549 *
4550 * The normal calculation is:
4551 * watermark = dotclock * bytes per pixel * latency
4552 * where latency is platform & configuration dependent (we assume pessimal
4553 * values here).
4554 *
4555 * The SR calculation is:
4556 * watermark = (trunc(latency/line time)+1) * surface width *
4557 * bytes per pixel
4558 * where
4559 * line time = htotal / dotclock
4560 * surface width = hdisplay for normal plane and 64 for cursor
4561 * and latency is assumed to be high, as above.
4562 *
4563 * The final value programmed to the register should always be rounded up,
4564 * and include an extra 2 entries to account for clock crossings.
4565 *
4566 * We don't use the sprite, so we can ignore that. And on Crestline we have
4567 * to set the non-SR watermarks to 8.
4568 */
4569 static void intel_update_watermarks(struct drm_device *dev)
4570 {
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572
4573 if (dev_priv->display.update_wm)
4574 dev_priv->display.update_wm(dev);
4575 }
4576
4577 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4578 {
4579 return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4580 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4581 }
4582
4583 /**
4584 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4585 * @crtc: CRTC structure
4586 *
4587 * A pipe may be connected to one or more outputs. Based on the depth of the
4588 * attached framebuffer, choose a good color depth to use on the pipe.
4589 *
4590 * If possible, match the pipe depth to the fb depth. In some cases, this
4591 * isn't ideal, because the connected output supports a lesser or restricted
4592 * set of depths. Resolve that here:
4593 * LVDS typically supports only 6bpc, so clamp down in that case
4594 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4595 * Displays may support a restricted set as well, check EDID and clamp as
4596 * appropriate.
4597 *
4598 * RETURNS:
4599 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4600 * true if they don't match).
4601 */
4602 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4603 unsigned int *pipe_bpp)
4604 {
4605 struct drm_device *dev = crtc->dev;
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 struct drm_encoder *encoder;
4608 struct drm_connector *connector;
4609 unsigned int display_bpc = UINT_MAX, bpc;
4610
4611 /* Walk the encoders & connectors on this crtc, get min bpc */
4612 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4613 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4614
4615 if (encoder->crtc != crtc)
4616 continue;
4617
4618 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4619 unsigned int lvds_bpc;
4620
4621 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4622 LVDS_A3_POWER_UP)
4623 lvds_bpc = 8;
4624 else
4625 lvds_bpc = 6;
4626
4627 if (lvds_bpc < display_bpc) {
4628 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4629 display_bpc = lvds_bpc;
4630 }
4631 continue;
4632 }
4633
4634 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4635 /* Use VBT settings if we have an eDP panel */
4636 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4637
4638 if (edp_bpc < display_bpc) {
4639 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4640 display_bpc = edp_bpc;
4641 }
4642 continue;
4643 }
4644
4645 /* Not one of the known troublemakers, check the EDID */
4646 list_for_each_entry(connector, &dev->mode_config.connector_list,
4647 head) {
4648 if (connector->encoder != encoder)
4649 continue;
4650
4651 /* Don't use an invalid EDID bpc value */
4652 if (connector->display_info.bpc &&
4653 connector->display_info.bpc < display_bpc) {
4654 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4655 display_bpc = connector->display_info.bpc;
4656 }
4657 }
4658
4659 /*
4660 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4661 * through, clamp it down. (Note: >12bpc will be caught below.)
4662 */
4663 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4664 if (display_bpc > 8 && display_bpc < 12) {
4665 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4666 display_bpc = 12;
4667 } else {
4668 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4669 display_bpc = 8;
4670 }
4671 }
4672 }
4673
4674 /*
4675 * We could just drive the pipe at the highest bpc all the time and
4676 * enable dithering as needed, but that costs bandwidth. So choose
4677 * the minimum value that expresses the full color range of the fb but
4678 * also stays within the max display bpc discovered above.
4679 */
4680
4681 switch (crtc->fb->depth) {
4682 case 8:
4683 bpc = 8; /* since we go through a colormap */
4684 break;
4685 case 15:
4686 case 16:
4687 bpc = 6; /* min is 18bpp */
4688 break;
4689 case 24:
4690 bpc = min((unsigned int)8, display_bpc);
4691 break;
4692 case 30:
4693 bpc = min((unsigned int)10, display_bpc);
4694 break;
4695 case 48:
4696 bpc = min((unsigned int)12, display_bpc);
4697 break;
4698 default:
4699 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4700 bpc = min((unsigned int)8, display_bpc);
4701 break;
4702 }
4703
4704 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4705 bpc, display_bpc);
4706
4707 *pipe_bpp = bpc * 3;
4708
4709 return display_bpc != bpc;
4710 }
4711
4712 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4713 struct drm_display_mode *mode,
4714 struct drm_display_mode *adjusted_mode,
4715 int x, int y,
4716 struct drm_framebuffer *old_fb)
4717 {
4718 struct drm_device *dev = crtc->dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721 int pipe = intel_crtc->pipe;
4722 int plane = intel_crtc->plane;
4723 int refclk, num_connectors = 0;
4724 intel_clock_t clock, reduced_clock;
4725 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4726 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4727 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4728 struct drm_mode_config *mode_config = &dev->mode_config;
4729 struct intel_encoder *encoder;
4730 const intel_limit_t *limit;
4731 int ret;
4732 u32 temp;
4733 u32 lvds_sync = 0;
4734
4735 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4736 if (encoder->base.crtc != crtc)
4737 continue;
4738
4739 switch (encoder->type) {
4740 case INTEL_OUTPUT_LVDS:
4741 is_lvds = true;
4742 break;
4743 case INTEL_OUTPUT_SDVO:
4744 case INTEL_OUTPUT_HDMI:
4745 is_sdvo = true;
4746 if (encoder->needs_tv_clock)
4747 is_tv = true;
4748 break;
4749 case INTEL_OUTPUT_DVO:
4750 is_dvo = true;
4751 break;
4752 case INTEL_OUTPUT_TVOUT:
4753 is_tv = true;
4754 break;
4755 case INTEL_OUTPUT_ANALOG:
4756 is_crt = true;
4757 break;
4758 case INTEL_OUTPUT_DISPLAYPORT:
4759 is_dp = true;
4760 break;
4761 }
4762
4763 num_connectors++;
4764 }
4765
4766 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4767 refclk = dev_priv->lvds_ssc_freq * 1000;
4768 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4769 refclk / 1000);
4770 } else if (!IS_GEN2(dev)) {
4771 refclk = 96000;
4772 } else {
4773 refclk = 48000;
4774 }
4775
4776 /*
4777 * Returns a set of divisors for the desired target clock with the given
4778 * refclk, or FALSE. The returned values represent the clock equation:
4779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4780 */
4781 limit = intel_limit(crtc, refclk);
4782 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4783 if (!ok) {
4784 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4785 return -EINVAL;
4786 }
4787
4788 /* Ensure that the cursor is valid for the new mode before changing... */
4789 intel_crtc_update_cursor(crtc, true);
4790
4791 if (is_lvds && dev_priv->lvds_downclock_avail) {
4792 has_reduced_clock = limit->find_pll(limit, crtc,
4793 dev_priv->lvds_downclock,
4794 refclk,
4795 &reduced_clock);
4796 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4797 /*
4798 * If the different P is found, it means that we can't
4799 * switch the display clock by using the FP0/FP1.
4800 * In such case we will disable the LVDS downclock
4801 * feature.
4802 */
4803 DRM_DEBUG_KMS("Different P is found for "
4804 "LVDS clock/downclock\n");
4805 has_reduced_clock = 0;
4806 }
4807 }
4808 /* SDVO TV has fixed PLL values depend on its clock range,
4809 this mirrors vbios setting. */
4810 if (is_sdvo && is_tv) {
4811 if (adjusted_mode->clock >= 100000
4812 && adjusted_mode->clock < 140500) {
4813 clock.p1 = 2;
4814 clock.p2 = 10;
4815 clock.n = 3;
4816 clock.m1 = 16;
4817 clock.m2 = 8;
4818 } else if (adjusted_mode->clock >= 140500
4819 && adjusted_mode->clock <= 200000) {
4820 clock.p1 = 1;
4821 clock.p2 = 10;
4822 clock.n = 6;
4823 clock.m1 = 12;
4824 clock.m2 = 8;
4825 }
4826 }
4827
4828 if (IS_PINEVIEW(dev)) {
4829 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4830 if (has_reduced_clock)
4831 fp2 = (1 << reduced_clock.n) << 16 |
4832 reduced_clock.m1 << 8 | reduced_clock.m2;
4833 } else {
4834 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4835 if (has_reduced_clock)
4836 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4837 reduced_clock.m2;
4838 }
4839
4840 dpll = DPLL_VGA_MODE_DIS;
4841
4842 if (!IS_GEN2(dev)) {
4843 if (is_lvds)
4844 dpll |= DPLLB_MODE_LVDS;
4845 else
4846 dpll |= DPLLB_MODE_DAC_SERIAL;
4847 if (is_sdvo) {
4848 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4849 if (pixel_multiplier > 1) {
4850 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4851 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4852 }
4853 dpll |= DPLL_DVO_HIGH_SPEED;
4854 }
4855 if (is_dp)
4856 dpll |= DPLL_DVO_HIGH_SPEED;
4857
4858 /* compute bitmask from p1 value */
4859 if (IS_PINEVIEW(dev))
4860 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4861 else {
4862 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4863 if (IS_G4X(dev) && has_reduced_clock)
4864 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4865 }
4866 switch (clock.p2) {
4867 case 5:
4868 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4869 break;
4870 case 7:
4871 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4872 break;
4873 case 10:
4874 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4875 break;
4876 case 14:
4877 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4878 break;
4879 }
4880 if (INTEL_INFO(dev)->gen >= 4)
4881 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4882 } else {
4883 if (is_lvds) {
4884 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4885 } else {
4886 if (clock.p1 == 2)
4887 dpll |= PLL_P1_DIVIDE_BY_TWO;
4888 else
4889 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4890 if (clock.p2 == 4)
4891 dpll |= PLL_P2_DIVIDE_BY_4;
4892 }
4893 }
4894
4895 if (is_sdvo && is_tv)
4896 dpll |= PLL_REF_INPUT_TVCLKINBC;
4897 else if (is_tv)
4898 /* XXX: just matching BIOS for now */
4899 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4900 dpll |= 3;
4901 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4902 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4903 else
4904 dpll |= PLL_REF_INPUT_DREFCLK;
4905
4906 /* setup pipeconf */
4907 pipeconf = I915_READ(PIPECONF(pipe));
4908
4909 /* Set up the display plane register */
4910 dspcntr = DISPPLANE_GAMMA_ENABLE;
4911
4912 /* Ironlake's plane is forced to pipe, bit 24 is to
4913 enable color space conversion */
4914 if (pipe == 0)
4915 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4916 else
4917 dspcntr |= DISPPLANE_SEL_PIPE_B;
4918
4919 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4920 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4921 * core speed.
4922 *
4923 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4924 * pipe == 0 check?
4925 */
4926 if (mode->clock >
4927 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4928 pipeconf |= PIPECONF_DOUBLE_WIDE;
4929 else
4930 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4931 }
4932
4933 dpll |= DPLL_VCO_ENABLE;
4934
4935 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4936 drm_mode_debug_printmodeline(mode);
4937
4938 I915_WRITE(FP0(pipe), fp);
4939 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4940
4941 POSTING_READ(DPLL(pipe));
4942 udelay(150);
4943
4944 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4945 * This is an exception to the general rule that mode_set doesn't turn
4946 * things on.
4947 */
4948 if (is_lvds) {
4949 temp = I915_READ(LVDS);
4950 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4951 if (pipe == 1) {
4952 temp |= LVDS_PIPEB_SELECT;
4953 } else {
4954 temp &= ~LVDS_PIPEB_SELECT;
4955 }
4956 /* set the corresponsding LVDS_BORDER bit */
4957 temp |= dev_priv->lvds_border_bits;
4958 /* Set the B0-B3 data pairs corresponding to whether we're going to
4959 * set the DPLLs for dual-channel mode or not.
4960 */
4961 if (clock.p2 == 7)
4962 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4963 else
4964 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4965
4966 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4967 * appropriately here, but we need to look more thoroughly into how
4968 * panels behave in the two modes.
4969 */
4970 /* set the dithering flag on LVDS as needed */
4971 if (INTEL_INFO(dev)->gen >= 4) {
4972 if (dev_priv->lvds_dither)
4973 temp |= LVDS_ENABLE_DITHER;
4974 else
4975 temp &= ~LVDS_ENABLE_DITHER;
4976 }
4977 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4978 lvds_sync |= LVDS_HSYNC_POLARITY;
4979 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4980 lvds_sync |= LVDS_VSYNC_POLARITY;
4981 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4982 != lvds_sync) {
4983 char flags[2] = "-+";
4984 DRM_INFO("Changing LVDS panel from "
4985 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4986 flags[!(temp & LVDS_HSYNC_POLARITY)],
4987 flags[!(temp & LVDS_VSYNC_POLARITY)],
4988 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4989 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4990 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4991 temp |= lvds_sync;
4992 }
4993 I915_WRITE(LVDS, temp);
4994 }
4995
4996 if (is_dp) {
4997 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4998 }
4999
5000 I915_WRITE(DPLL(pipe), dpll);
5001
5002 /* Wait for the clocks to stabilize. */
5003 POSTING_READ(DPLL(pipe));
5004 udelay(150);
5005
5006 if (INTEL_INFO(dev)->gen >= 4) {
5007 temp = 0;
5008 if (is_sdvo) {
5009 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5010 if (temp > 1)
5011 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5012 else
5013 temp = 0;
5014 }
5015 I915_WRITE(DPLL_MD(pipe), temp);
5016 } else {
5017 /* The pixel multiplier can only be updated once the
5018 * DPLL is enabled and the clocks are stable.
5019 *
5020 * So write it again.
5021 */
5022 I915_WRITE(DPLL(pipe), dpll);
5023 }
5024
5025 intel_crtc->lowfreq_avail = false;
5026 if (is_lvds && has_reduced_clock && i915_powersave) {
5027 I915_WRITE(FP1(pipe), fp2);
5028 intel_crtc->lowfreq_avail = true;
5029 if (HAS_PIPE_CXSR(dev)) {
5030 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5031 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5032 }
5033 } else {
5034 I915_WRITE(FP1(pipe), fp);
5035 if (HAS_PIPE_CXSR(dev)) {
5036 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5037 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5038 }
5039 }
5040
5041 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5042 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5043 /* the chip adds 2 halflines automatically */
5044 adjusted_mode->crtc_vdisplay -= 1;
5045 adjusted_mode->crtc_vtotal -= 1;
5046 adjusted_mode->crtc_vblank_start -= 1;
5047 adjusted_mode->crtc_vblank_end -= 1;
5048 adjusted_mode->crtc_vsync_end -= 1;
5049 adjusted_mode->crtc_vsync_start -= 1;
5050 } else
5051 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5052
5053 I915_WRITE(HTOTAL(pipe),
5054 (adjusted_mode->crtc_hdisplay - 1) |
5055 ((adjusted_mode->crtc_htotal - 1) << 16));
5056 I915_WRITE(HBLANK(pipe),
5057 (adjusted_mode->crtc_hblank_start - 1) |
5058 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5059 I915_WRITE(HSYNC(pipe),
5060 (adjusted_mode->crtc_hsync_start - 1) |
5061 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5062
5063 I915_WRITE(VTOTAL(pipe),
5064 (adjusted_mode->crtc_vdisplay - 1) |
5065 ((adjusted_mode->crtc_vtotal - 1) << 16));
5066 I915_WRITE(VBLANK(pipe),
5067 (adjusted_mode->crtc_vblank_start - 1) |
5068 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5069 I915_WRITE(VSYNC(pipe),
5070 (adjusted_mode->crtc_vsync_start - 1) |
5071 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5072
5073 /* pipesrc and dspsize control the size that is scaled from,
5074 * which should always be the user's requested size.
5075 */
5076 I915_WRITE(DSPSIZE(plane),
5077 ((mode->vdisplay - 1) << 16) |
5078 (mode->hdisplay - 1));
5079 I915_WRITE(DSPPOS(plane), 0);
5080 I915_WRITE(PIPESRC(pipe),
5081 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5082
5083 I915_WRITE(PIPECONF(pipe), pipeconf);
5084 POSTING_READ(PIPECONF(pipe));
5085 intel_enable_pipe(dev_priv, pipe, false);
5086
5087 intel_wait_for_vblank(dev, pipe);
5088
5089 I915_WRITE(DSPCNTR(plane), dspcntr);
5090 POSTING_READ(DSPCNTR(plane));
5091 intel_enable_plane(dev_priv, plane, pipe);
5092
5093 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5094
5095 intel_update_watermarks(dev);
5096
5097 return ret;
5098 }
5099
5100 static void ironlake_update_pch_refclk(struct drm_device *dev)
5101 {
5102 struct drm_i915_private *dev_priv = dev->dev_private;
5103 struct drm_mode_config *mode_config = &dev->mode_config;
5104 struct drm_crtc *crtc;
5105 struct intel_encoder *encoder;
5106 struct intel_encoder *has_edp_encoder = NULL;
5107 u32 temp;
5108 bool has_lvds = false;
5109
5110 /* We need to take the global config into account */
5111 list_for_each_entry(crtc, &mode_config->crtc_list, head) {
5112 if (!crtc->enabled)
5113 continue;
5114
5115 list_for_each_entry(encoder, &mode_config->encoder_list,
5116 base.head) {
5117 if (encoder->base.crtc != crtc)
5118 continue;
5119
5120 switch (encoder->type) {
5121 case INTEL_OUTPUT_LVDS:
5122 has_lvds = true;
5123 case INTEL_OUTPUT_EDP:
5124 has_edp_encoder = encoder;
5125 break;
5126 }
5127 }
5128 }
5129
5130 /* Ironlake: try to setup display ref clock before DPLL
5131 * enabling. This is only under driver's control after
5132 * PCH B stepping, previous chipset stepping should be
5133 * ignoring this setting.
5134 */
5135 temp = I915_READ(PCH_DREF_CONTROL);
5136 /* Always enable nonspread source */
5137 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5138 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5139 temp &= ~DREF_SSC_SOURCE_MASK;
5140 temp |= DREF_SSC_SOURCE_ENABLE;
5141 I915_WRITE(PCH_DREF_CONTROL, temp);
5142
5143 POSTING_READ(PCH_DREF_CONTROL);
5144 udelay(200);
5145
5146 if (has_edp_encoder) {
5147 if (intel_panel_use_ssc(dev_priv)) {
5148 temp |= DREF_SSC1_ENABLE;
5149 I915_WRITE(PCH_DREF_CONTROL, temp);
5150
5151 POSTING_READ(PCH_DREF_CONTROL);
5152 udelay(200);
5153 }
5154 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5155
5156 /* Enable CPU source on CPU attached eDP */
5157 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5158 if (intel_panel_use_ssc(dev_priv))
5159 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5160 else
5161 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5162 } else {
5163 /* Enable SSC on PCH eDP if needed */
5164 if (intel_panel_use_ssc(dev_priv)) {
5165 DRM_ERROR("enabling SSC on PCH\n");
5166 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5167 }
5168 }
5169 I915_WRITE(PCH_DREF_CONTROL, temp);
5170 POSTING_READ(PCH_DREF_CONTROL);
5171 udelay(200);
5172 }
5173 }
5174
5175 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5176 struct drm_display_mode *mode,
5177 struct drm_display_mode *adjusted_mode,
5178 int x, int y,
5179 struct drm_framebuffer *old_fb)
5180 {
5181 struct drm_device *dev = crtc->dev;
5182 struct drm_i915_private *dev_priv = dev->dev_private;
5183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5184 int pipe = intel_crtc->pipe;
5185 int plane = intel_crtc->plane;
5186 int refclk, num_connectors = 0;
5187 intel_clock_t clock, reduced_clock;
5188 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5189 bool ok, has_reduced_clock = false, is_sdvo = false;
5190 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5191 struct intel_encoder *has_edp_encoder = NULL;
5192 struct drm_mode_config *mode_config = &dev->mode_config;
5193 struct intel_encoder *encoder;
5194 const intel_limit_t *limit;
5195 int ret;
5196 struct fdi_m_n m_n = {0};
5197 u32 temp;
5198 u32 lvds_sync = 0;
5199 int target_clock, pixel_multiplier, lane, link_bw, factor;
5200 unsigned int pipe_bpp;
5201 bool dither;
5202
5203 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5204 if (encoder->base.crtc != crtc)
5205 continue;
5206
5207 switch (encoder->type) {
5208 case INTEL_OUTPUT_LVDS:
5209 is_lvds = true;
5210 break;
5211 case INTEL_OUTPUT_SDVO:
5212 case INTEL_OUTPUT_HDMI:
5213 is_sdvo = true;
5214 if (encoder->needs_tv_clock)
5215 is_tv = true;
5216 break;
5217 case INTEL_OUTPUT_TVOUT:
5218 is_tv = true;
5219 break;
5220 case INTEL_OUTPUT_ANALOG:
5221 is_crt = true;
5222 break;
5223 case INTEL_OUTPUT_DISPLAYPORT:
5224 is_dp = true;
5225 break;
5226 case INTEL_OUTPUT_EDP:
5227 has_edp_encoder = encoder;
5228 break;
5229 }
5230
5231 num_connectors++;
5232 }
5233
5234 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5235 refclk = dev_priv->lvds_ssc_freq * 1000;
5236 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5237 refclk / 1000);
5238 } else {
5239 refclk = 96000;
5240 if (!has_edp_encoder ||
5241 intel_encoder_is_pch_edp(&has_edp_encoder->base))
5242 refclk = 120000; /* 120Mhz refclk */
5243 }
5244
5245 /*
5246 * Returns a set of divisors for the desired target clock with the given
5247 * refclk, or FALSE. The returned values represent the clock equation:
5248 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5249 */
5250 limit = intel_limit(crtc, refclk);
5251 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5252 if (!ok) {
5253 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5254 return -EINVAL;
5255 }
5256
5257 /* Ensure that the cursor is valid for the new mode before changing... */
5258 intel_crtc_update_cursor(crtc, true);
5259
5260 if (is_lvds && dev_priv->lvds_downclock_avail) {
5261 has_reduced_clock = limit->find_pll(limit, crtc,
5262 dev_priv->lvds_downclock,
5263 refclk,
5264 &reduced_clock);
5265 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5266 /*
5267 * If the different P is found, it means that we can't
5268 * switch the display clock by using the FP0/FP1.
5269 * In such case we will disable the LVDS downclock
5270 * feature.
5271 */
5272 DRM_DEBUG_KMS("Different P is found for "
5273 "LVDS clock/downclock\n");
5274 has_reduced_clock = 0;
5275 }
5276 }
5277 /* SDVO TV has fixed PLL values depend on its clock range,
5278 this mirrors vbios setting. */
5279 if (is_sdvo && is_tv) {
5280 if (adjusted_mode->clock >= 100000
5281 && adjusted_mode->clock < 140500) {
5282 clock.p1 = 2;
5283 clock.p2 = 10;
5284 clock.n = 3;
5285 clock.m1 = 16;
5286 clock.m2 = 8;
5287 } else if (adjusted_mode->clock >= 140500
5288 && adjusted_mode->clock <= 200000) {
5289 clock.p1 = 1;
5290 clock.p2 = 10;
5291 clock.n = 6;
5292 clock.m1 = 12;
5293 clock.m2 = 8;
5294 }
5295 }
5296
5297 /* FDI link */
5298 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5299 lane = 0;
5300 /* CPU eDP doesn't require FDI link, so just set DP M/N
5301 according to current link config */
5302 if (has_edp_encoder &&
5303 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5304 target_clock = mode->clock;
5305 intel_edp_link_config(has_edp_encoder,
5306 &lane, &link_bw);
5307 } else {
5308 /* [e]DP over FDI requires target mode clock
5309 instead of link clock */
5310 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5311 target_clock = mode->clock;
5312 else
5313 target_clock = adjusted_mode->clock;
5314
5315 /* FDI is a binary signal running at ~2.7GHz, encoding
5316 * each output octet as 10 bits. The actual frequency
5317 * is stored as a divider into a 100MHz clock, and the
5318 * mode pixel clock is stored in units of 1KHz.
5319 * Hence the bw of each lane in terms of the mode signal
5320 * is:
5321 */
5322 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5323 }
5324
5325 /* determine panel color depth */
5326 temp = I915_READ(PIPECONF(pipe));
5327 temp &= ~PIPE_BPC_MASK;
5328 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5329 switch (pipe_bpp) {
5330 case 18:
5331 temp |= PIPE_6BPC;
5332 break;
5333 case 24:
5334 temp |= PIPE_8BPC;
5335 break;
5336 case 30:
5337 temp |= PIPE_10BPC;
5338 break;
5339 case 36:
5340 temp |= PIPE_12BPC;
5341 break;
5342 default:
5343 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5344 pipe_bpp);
5345 temp |= PIPE_8BPC;
5346 pipe_bpp = 24;
5347 break;
5348 }
5349
5350 intel_crtc->bpp = pipe_bpp;
5351 I915_WRITE(PIPECONF(pipe), temp);
5352
5353 if (!lane) {
5354 /*
5355 * Account for spread spectrum to avoid
5356 * oversubscribing the link. Max center spread
5357 * is 2.5%; use 5% for safety's sake.
5358 */
5359 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5360 lane = bps / (link_bw * 8) + 1;
5361 }
5362
5363 intel_crtc->fdi_lanes = lane;
5364
5365 if (pixel_multiplier > 1)
5366 link_bw *= pixel_multiplier;
5367 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5368 &m_n);
5369
5370 ironlake_update_pch_refclk(dev);
5371
5372 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5373 if (has_reduced_clock)
5374 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5375 reduced_clock.m2;
5376
5377 /* Enable autotuning of the PLL clock (if permissible) */
5378 factor = 21;
5379 if (is_lvds) {
5380 if ((intel_panel_use_ssc(dev_priv) &&
5381 dev_priv->lvds_ssc_freq == 100) ||
5382 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5383 factor = 25;
5384 } else if (is_sdvo && is_tv)
5385 factor = 20;
5386
5387 if (clock.m < factor * clock.n)
5388 fp |= FP_CB_TUNE;
5389
5390 dpll = 0;
5391
5392 if (is_lvds)
5393 dpll |= DPLLB_MODE_LVDS;
5394 else
5395 dpll |= DPLLB_MODE_DAC_SERIAL;
5396 if (is_sdvo) {
5397 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5398 if (pixel_multiplier > 1) {
5399 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5400 }
5401 dpll |= DPLL_DVO_HIGH_SPEED;
5402 }
5403 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5404 dpll |= DPLL_DVO_HIGH_SPEED;
5405
5406 /* compute bitmask from p1 value */
5407 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5408 /* also FPA1 */
5409 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5410
5411 switch (clock.p2) {
5412 case 5:
5413 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5414 break;
5415 case 7:
5416 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5417 break;
5418 case 10:
5419 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5420 break;
5421 case 14:
5422 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5423 break;
5424 }
5425
5426 if (is_sdvo && is_tv)
5427 dpll |= PLL_REF_INPUT_TVCLKINBC;
5428 else if (is_tv)
5429 /* XXX: just matching BIOS for now */
5430 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5431 dpll |= 3;
5432 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5433 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5434 else
5435 dpll |= PLL_REF_INPUT_DREFCLK;
5436
5437 /* setup pipeconf */
5438 pipeconf = I915_READ(PIPECONF(pipe));
5439
5440 /* Set up the display plane register */
5441 dspcntr = DISPPLANE_GAMMA_ENABLE;
5442
5443 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5444 drm_mode_debug_printmodeline(mode);
5445
5446 /* PCH eDP needs FDI, but CPU eDP does not */
5447 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5448 I915_WRITE(PCH_FP0(pipe), fp);
5449 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5450
5451 POSTING_READ(PCH_DPLL(pipe));
5452 udelay(150);
5453 }
5454
5455 /* enable transcoder DPLL */
5456 if (HAS_PCH_CPT(dev)) {
5457 temp = I915_READ(PCH_DPLL_SEL);
5458 switch (pipe) {
5459 case 0:
5460 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5461 break;
5462 case 1:
5463 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5464 break;
5465 case 2:
5466 /* FIXME: manage transcoder PLLs? */
5467 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5468 break;
5469 default:
5470 BUG();
5471 }
5472 I915_WRITE(PCH_DPLL_SEL, temp);
5473
5474 POSTING_READ(PCH_DPLL_SEL);
5475 udelay(150);
5476 }
5477
5478 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5479 * This is an exception to the general rule that mode_set doesn't turn
5480 * things on.
5481 */
5482 if (is_lvds) {
5483 temp = I915_READ(PCH_LVDS);
5484 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5485 if (pipe == 1) {
5486 if (HAS_PCH_CPT(dev))
5487 temp |= PORT_TRANS_B_SEL_CPT;
5488 else
5489 temp |= LVDS_PIPEB_SELECT;
5490 } else {
5491 if (HAS_PCH_CPT(dev))
5492 temp &= ~PORT_TRANS_SEL_MASK;
5493 else
5494 temp &= ~LVDS_PIPEB_SELECT;
5495 }
5496 /* set the corresponsding LVDS_BORDER bit */
5497 temp |= dev_priv->lvds_border_bits;
5498 /* Set the B0-B3 data pairs corresponding to whether we're going to
5499 * set the DPLLs for dual-channel mode or not.
5500 */
5501 if (clock.p2 == 7)
5502 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5503 else
5504 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5505
5506 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5507 * appropriately here, but we need to look more thoroughly into how
5508 * panels behave in the two modes.
5509 */
5510 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5511 lvds_sync |= LVDS_HSYNC_POLARITY;
5512 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5513 lvds_sync |= LVDS_VSYNC_POLARITY;
5514 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5515 != lvds_sync) {
5516 char flags[2] = "-+";
5517 DRM_INFO("Changing LVDS panel from "
5518 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5519 flags[!(temp & LVDS_HSYNC_POLARITY)],
5520 flags[!(temp & LVDS_VSYNC_POLARITY)],
5521 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5522 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5523 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5524 temp |= lvds_sync;
5525 }
5526 I915_WRITE(PCH_LVDS, temp);
5527 }
5528
5529 pipeconf &= ~PIPECONF_DITHER_EN;
5530 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5531 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5532 pipeconf |= PIPECONF_DITHER_EN;
5533 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5534 }
5535 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5536 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5537 } else {
5538 /* For non-DP output, clear any trans DP clock recovery setting.*/
5539 I915_WRITE(TRANSDATA_M1(pipe), 0);
5540 I915_WRITE(TRANSDATA_N1(pipe), 0);
5541 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5542 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5543 }
5544
5545 if (!has_edp_encoder ||
5546 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5547 I915_WRITE(PCH_DPLL(pipe), dpll);
5548
5549 /* Wait for the clocks to stabilize. */
5550 POSTING_READ(PCH_DPLL(pipe));
5551 udelay(150);
5552
5553 /* The pixel multiplier can only be updated once the
5554 * DPLL is enabled and the clocks are stable.
5555 *
5556 * So write it again.
5557 */
5558 I915_WRITE(PCH_DPLL(pipe), dpll);
5559 }
5560
5561 intel_crtc->lowfreq_avail = false;
5562 if (is_lvds && has_reduced_clock && i915_powersave) {
5563 I915_WRITE(PCH_FP1(pipe), fp2);
5564 intel_crtc->lowfreq_avail = true;
5565 if (HAS_PIPE_CXSR(dev)) {
5566 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5567 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5568 }
5569 } else {
5570 I915_WRITE(PCH_FP1(pipe), fp);
5571 if (HAS_PIPE_CXSR(dev)) {
5572 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5573 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5574 }
5575 }
5576
5577 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5578 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5579 /* the chip adds 2 halflines automatically */
5580 adjusted_mode->crtc_vdisplay -= 1;
5581 adjusted_mode->crtc_vtotal -= 1;
5582 adjusted_mode->crtc_vblank_start -= 1;
5583 adjusted_mode->crtc_vblank_end -= 1;
5584 adjusted_mode->crtc_vsync_end -= 1;
5585 adjusted_mode->crtc_vsync_start -= 1;
5586 } else
5587 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5588
5589 I915_WRITE(HTOTAL(pipe),
5590 (adjusted_mode->crtc_hdisplay - 1) |
5591 ((adjusted_mode->crtc_htotal - 1) << 16));
5592 I915_WRITE(HBLANK(pipe),
5593 (adjusted_mode->crtc_hblank_start - 1) |
5594 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5595 I915_WRITE(HSYNC(pipe),
5596 (adjusted_mode->crtc_hsync_start - 1) |
5597 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5598
5599 I915_WRITE(VTOTAL(pipe),
5600 (adjusted_mode->crtc_vdisplay - 1) |
5601 ((adjusted_mode->crtc_vtotal - 1) << 16));
5602 I915_WRITE(VBLANK(pipe),
5603 (adjusted_mode->crtc_vblank_start - 1) |
5604 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5605 I915_WRITE(VSYNC(pipe),
5606 (adjusted_mode->crtc_vsync_start - 1) |
5607 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5608
5609 /* pipesrc controls the size that is scaled from, which should
5610 * always be the user's requested size.
5611 */
5612 I915_WRITE(PIPESRC(pipe),
5613 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5614
5615 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5616 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5617 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5618 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5619
5620 if (has_edp_encoder &&
5621 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5622 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5623 }
5624
5625 I915_WRITE(PIPECONF(pipe), pipeconf);
5626 POSTING_READ(PIPECONF(pipe));
5627
5628 intel_wait_for_vblank(dev, pipe);
5629
5630 if (IS_GEN5(dev)) {
5631 /* enable address swizzle for tiling buffer */
5632 temp = I915_READ(DISP_ARB_CTL);
5633 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5634 }
5635
5636 I915_WRITE(DSPCNTR(plane), dspcntr);
5637 POSTING_READ(DSPCNTR(plane));
5638
5639 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5640
5641 intel_update_watermarks(dev);
5642
5643 return ret;
5644 }
5645
5646 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5647 struct drm_display_mode *mode,
5648 struct drm_display_mode *adjusted_mode,
5649 int x, int y,
5650 struct drm_framebuffer *old_fb)
5651 {
5652 struct drm_device *dev = crtc->dev;
5653 struct drm_i915_private *dev_priv = dev->dev_private;
5654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5655 int pipe = intel_crtc->pipe;
5656 int ret;
5657
5658 drm_vblank_pre_modeset(dev, pipe);
5659
5660 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5661 x, y, old_fb);
5662
5663 drm_vblank_post_modeset(dev, pipe);
5664
5665 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5666
5667 return ret;
5668 }
5669
5670 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5671 void intel_crtc_load_lut(struct drm_crtc *crtc)
5672 {
5673 struct drm_device *dev = crtc->dev;
5674 struct drm_i915_private *dev_priv = dev->dev_private;
5675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5676 int palreg = PALETTE(intel_crtc->pipe);
5677 int i;
5678
5679 /* The clocks have to be on to load the palette. */
5680 if (!crtc->enabled)
5681 return;
5682
5683 /* use legacy palette for Ironlake */
5684 if (HAS_PCH_SPLIT(dev))
5685 palreg = LGC_PALETTE(intel_crtc->pipe);
5686
5687 for (i = 0; i < 256; i++) {
5688 I915_WRITE(palreg + 4 * i,
5689 (intel_crtc->lut_r[i] << 16) |
5690 (intel_crtc->lut_g[i] << 8) |
5691 intel_crtc->lut_b[i]);
5692 }
5693 }
5694
5695 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5696 {
5697 struct drm_device *dev = crtc->dev;
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5700 bool visible = base != 0;
5701 u32 cntl;
5702
5703 if (intel_crtc->cursor_visible == visible)
5704 return;
5705
5706 cntl = I915_READ(_CURACNTR);
5707 if (visible) {
5708 /* On these chipsets we can only modify the base whilst
5709 * the cursor is disabled.
5710 */
5711 I915_WRITE(_CURABASE, base);
5712
5713 cntl &= ~(CURSOR_FORMAT_MASK);
5714 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5715 cntl |= CURSOR_ENABLE |
5716 CURSOR_GAMMA_ENABLE |
5717 CURSOR_FORMAT_ARGB;
5718 } else
5719 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5720 I915_WRITE(_CURACNTR, cntl);
5721
5722 intel_crtc->cursor_visible = visible;
5723 }
5724
5725 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5726 {
5727 struct drm_device *dev = crtc->dev;
5728 struct drm_i915_private *dev_priv = dev->dev_private;
5729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5730 int pipe = intel_crtc->pipe;
5731 bool visible = base != 0;
5732
5733 if (intel_crtc->cursor_visible != visible) {
5734 uint32_t cntl = I915_READ(CURCNTR(pipe));
5735 if (base) {
5736 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5737 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5738 cntl |= pipe << 28; /* Connect to correct pipe */
5739 } else {
5740 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5741 cntl |= CURSOR_MODE_DISABLE;
5742 }
5743 I915_WRITE(CURCNTR(pipe), cntl);
5744
5745 intel_crtc->cursor_visible = visible;
5746 }
5747 /* and commit changes on next vblank */
5748 I915_WRITE(CURBASE(pipe), base);
5749 }
5750
5751 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5752 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5753 bool on)
5754 {
5755 struct drm_device *dev = crtc->dev;
5756 struct drm_i915_private *dev_priv = dev->dev_private;
5757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5758 int pipe = intel_crtc->pipe;
5759 int x = intel_crtc->cursor_x;
5760 int y = intel_crtc->cursor_y;
5761 u32 base, pos;
5762 bool visible;
5763
5764 pos = 0;
5765
5766 if (on && crtc->enabled && crtc->fb) {
5767 base = intel_crtc->cursor_addr;
5768 if (x > (int) crtc->fb->width)
5769 base = 0;
5770
5771 if (y > (int) crtc->fb->height)
5772 base = 0;
5773 } else
5774 base = 0;
5775
5776 if (x < 0) {
5777 if (x + intel_crtc->cursor_width < 0)
5778 base = 0;
5779
5780 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5781 x = -x;
5782 }
5783 pos |= x << CURSOR_X_SHIFT;
5784
5785 if (y < 0) {
5786 if (y + intel_crtc->cursor_height < 0)
5787 base = 0;
5788
5789 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5790 y = -y;
5791 }
5792 pos |= y << CURSOR_Y_SHIFT;
5793
5794 visible = base != 0;
5795 if (!visible && !intel_crtc->cursor_visible)
5796 return;
5797
5798 I915_WRITE(CURPOS(pipe), pos);
5799 if (IS_845G(dev) || IS_I865G(dev))
5800 i845_update_cursor(crtc, base);
5801 else
5802 i9xx_update_cursor(crtc, base);
5803
5804 if (visible)
5805 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5806 }
5807
5808 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5809 struct drm_file *file,
5810 uint32_t handle,
5811 uint32_t width, uint32_t height)
5812 {
5813 struct drm_device *dev = crtc->dev;
5814 struct drm_i915_private *dev_priv = dev->dev_private;
5815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5816 struct drm_i915_gem_object *obj;
5817 uint32_t addr;
5818 int ret;
5819
5820 DRM_DEBUG_KMS("\n");
5821
5822 /* if we want to turn off the cursor ignore width and height */
5823 if (!handle) {
5824 DRM_DEBUG_KMS("cursor off\n");
5825 addr = 0;
5826 obj = NULL;
5827 mutex_lock(&dev->struct_mutex);
5828 goto finish;
5829 }
5830
5831 /* Currently we only support 64x64 cursors */
5832 if (width != 64 || height != 64) {
5833 DRM_ERROR("we currently only support 64x64 cursors\n");
5834 return -EINVAL;
5835 }
5836
5837 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5838 if (&obj->base == NULL)
5839 return -ENOENT;
5840
5841 if (obj->base.size < width * height * 4) {
5842 DRM_ERROR("buffer is to small\n");
5843 ret = -ENOMEM;
5844 goto fail;
5845 }
5846
5847 /* we only need to pin inside GTT if cursor is non-phy */
5848 mutex_lock(&dev->struct_mutex);
5849 if (!dev_priv->info->cursor_needs_physical) {
5850 if (obj->tiling_mode) {
5851 DRM_ERROR("cursor cannot be tiled\n");
5852 ret = -EINVAL;
5853 goto fail_locked;
5854 }
5855
5856 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5857 if (ret) {
5858 DRM_ERROR("failed to move cursor bo into the GTT\n");
5859 goto fail_locked;
5860 }
5861
5862 ret = i915_gem_object_put_fence(obj);
5863 if (ret) {
5864 DRM_ERROR("failed to release fence for cursor");
5865 goto fail_unpin;
5866 }
5867
5868 addr = obj->gtt_offset;
5869 } else {
5870 int align = IS_I830(dev) ? 16 * 1024 : 256;
5871 ret = i915_gem_attach_phys_object(dev, obj,
5872 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5873 align);
5874 if (ret) {
5875 DRM_ERROR("failed to attach phys object\n");
5876 goto fail_locked;
5877 }
5878 addr = obj->phys_obj->handle->busaddr;
5879 }
5880
5881 if (IS_GEN2(dev))
5882 I915_WRITE(CURSIZE, (height << 12) | width);
5883
5884 finish:
5885 if (intel_crtc->cursor_bo) {
5886 if (dev_priv->info->cursor_needs_physical) {
5887 if (intel_crtc->cursor_bo != obj)
5888 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5889 } else
5890 i915_gem_object_unpin(intel_crtc->cursor_bo);
5891 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5892 }
5893
5894 mutex_unlock(&dev->struct_mutex);
5895
5896 intel_crtc->cursor_addr = addr;
5897 intel_crtc->cursor_bo = obj;
5898 intel_crtc->cursor_width = width;
5899 intel_crtc->cursor_height = height;
5900
5901 intel_crtc_update_cursor(crtc, true);
5902
5903 return 0;
5904 fail_unpin:
5905 i915_gem_object_unpin(obj);
5906 fail_locked:
5907 mutex_unlock(&dev->struct_mutex);
5908 fail:
5909 drm_gem_object_unreference_unlocked(&obj->base);
5910 return ret;
5911 }
5912
5913 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5914 {
5915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5916
5917 intel_crtc->cursor_x = x;
5918 intel_crtc->cursor_y = y;
5919
5920 intel_crtc_update_cursor(crtc, true);
5921
5922 return 0;
5923 }
5924
5925 /** Sets the color ramps on behalf of RandR */
5926 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5927 u16 blue, int regno)
5928 {
5929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5930
5931 intel_crtc->lut_r[regno] = red >> 8;
5932 intel_crtc->lut_g[regno] = green >> 8;
5933 intel_crtc->lut_b[regno] = blue >> 8;
5934 }
5935
5936 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5937 u16 *blue, int regno)
5938 {
5939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5940
5941 *red = intel_crtc->lut_r[regno] << 8;
5942 *green = intel_crtc->lut_g[regno] << 8;
5943 *blue = intel_crtc->lut_b[regno] << 8;
5944 }
5945
5946 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5947 u16 *blue, uint32_t start, uint32_t size)
5948 {
5949 int end = (start + size > 256) ? 256 : start + size, i;
5950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5951
5952 for (i = start; i < end; i++) {
5953 intel_crtc->lut_r[i] = red[i] >> 8;
5954 intel_crtc->lut_g[i] = green[i] >> 8;
5955 intel_crtc->lut_b[i] = blue[i] >> 8;
5956 }
5957
5958 intel_crtc_load_lut(crtc);
5959 }
5960
5961 /**
5962 * Get a pipe with a simple mode set on it for doing load-based monitor
5963 * detection.
5964 *
5965 * It will be up to the load-detect code to adjust the pipe as appropriate for
5966 * its requirements. The pipe will be connected to no other encoders.
5967 *
5968 * Currently this code will only succeed if there is a pipe with no encoders
5969 * configured for it. In the future, it could choose to temporarily disable
5970 * some outputs to free up a pipe for its use.
5971 *
5972 * \return crtc, or NULL if no pipes are available.
5973 */
5974
5975 /* VESA 640x480x72Hz mode to set on the pipe */
5976 static struct drm_display_mode load_detect_mode = {
5977 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5978 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5979 };
5980
5981 static struct drm_framebuffer *
5982 intel_framebuffer_create(struct drm_device *dev,
5983 struct drm_mode_fb_cmd *mode_cmd,
5984 struct drm_i915_gem_object *obj)
5985 {
5986 struct intel_framebuffer *intel_fb;
5987 int ret;
5988
5989 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5990 if (!intel_fb) {
5991 drm_gem_object_unreference_unlocked(&obj->base);
5992 return ERR_PTR(-ENOMEM);
5993 }
5994
5995 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5996 if (ret) {
5997 drm_gem_object_unreference_unlocked(&obj->base);
5998 kfree(intel_fb);
5999 return ERR_PTR(ret);
6000 }
6001
6002 return &intel_fb->base;
6003 }
6004
6005 static u32
6006 intel_framebuffer_pitch_for_width(int width, int bpp)
6007 {
6008 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6009 return ALIGN(pitch, 64);
6010 }
6011
6012 static u32
6013 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6014 {
6015 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6016 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6017 }
6018
6019 static struct drm_framebuffer *
6020 intel_framebuffer_create_for_mode(struct drm_device *dev,
6021 struct drm_display_mode *mode,
6022 int depth, int bpp)
6023 {
6024 struct drm_i915_gem_object *obj;
6025 struct drm_mode_fb_cmd mode_cmd;
6026
6027 obj = i915_gem_alloc_object(dev,
6028 intel_framebuffer_size_for_mode(mode, bpp));
6029 if (obj == NULL)
6030 return ERR_PTR(-ENOMEM);
6031
6032 mode_cmd.width = mode->hdisplay;
6033 mode_cmd.height = mode->vdisplay;
6034 mode_cmd.depth = depth;
6035 mode_cmd.bpp = bpp;
6036 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6037
6038 return intel_framebuffer_create(dev, &mode_cmd, obj);
6039 }
6040
6041 static struct drm_framebuffer *
6042 mode_fits_in_fbdev(struct drm_device *dev,
6043 struct drm_display_mode *mode)
6044 {
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046 struct drm_i915_gem_object *obj;
6047 struct drm_framebuffer *fb;
6048
6049 if (dev_priv->fbdev == NULL)
6050 return NULL;
6051
6052 obj = dev_priv->fbdev->ifb.obj;
6053 if (obj == NULL)
6054 return NULL;
6055
6056 fb = &dev_priv->fbdev->ifb.base;
6057 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6058 fb->bits_per_pixel))
6059 return NULL;
6060
6061 if (obj->base.size < mode->vdisplay * fb->pitch)
6062 return NULL;
6063
6064 return fb;
6065 }
6066
6067 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6068 struct drm_connector *connector,
6069 struct drm_display_mode *mode,
6070 struct intel_load_detect_pipe *old)
6071 {
6072 struct intel_crtc *intel_crtc;
6073 struct drm_crtc *possible_crtc;
6074 struct drm_encoder *encoder = &intel_encoder->base;
6075 struct drm_crtc *crtc = NULL;
6076 struct drm_device *dev = encoder->dev;
6077 struct drm_framebuffer *old_fb;
6078 int i = -1;
6079
6080 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6081 connector->base.id, drm_get_connector_name(connector),
6082 encoder->base.id, drm_get_encoder_name(encoder));
6083
6084 /*
6085 * Algorithm gets a little messy:
6086 *
6087 * - if the connector already has an assigned crtc, use it (but make
6088 * sure it's on first)
6089 *
6090 * - try to find the first unused crtc that can drive this connector,
6091 * and use that if we find one
6092 */
6093
6094 /* See if we already have a CRTC for this connector */
6095 if (encoder->crtc) {
6096 crtc = encoder->crtc;
6097
6098 intel_crtc = to_intel_crtc(crtc);
6099 old->dpms_mode = intel_crtc->dpms_mode;
6100 old->load_detect_temp = false;
6101
6102 /* Make sure the crtc and connector are running */
6103 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6104 struct drm_encoder_helper_funcs *encoder_funcs;
6105 struct drm_crtc_helper_funcs *crtc_funcs;
6106
6107 crtc_funcs = crtc->helper_private;
6108 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6109
6110 encoder_funcs = encoder->helper_private;
6111 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6112 }
6113
6114 return true;
6115 }
6116
6117 /* Find an unused one (if possible) */
6118 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6119 i++;
6120 if (!(encoder->possible_crtcs & (1 << i)))
6121 continue;
6122 if (!possible_crtc->enabled) {
6123 crtc = possible_crtc;
6124 break;
6125 }
6126 }
6127
6128 /*
6129 * If we didn't find an unused CRTC, don't use any.
6130 */
6131 if (!crtc) {
6132 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6133 return false;
6134 }
6135
6136 encoder->crtc = crtc;
6137 connector->encoder = encoder;
6138
6139 intel_crtc = to_intel_crtc(crtc);
6140 old->dpms_mode = intel_crtc->dpms_mode;
6141 old->load_detect_temp = true;
6142 old->release_fb = NULL;
6143
6144 if (!mode)
6145 mode = &load_detect_mode;
6146
6147 old_fb = crtc->fb;
6148
6149 /* We need a framebuffer large enough to accommodate all accesses
6150 * that the plane may generate whilst we perform load detection.
6151 * We can not rely on the fbcon either being present (we get called
6152 * during its initialisation to detect all boot displays, or it may
6153 * not even exist) or that it is large enough to satisfy the
6154 * requested mode.
6155 */
6156 crtc->fb = mode_fits_in_fbdev(dev, mode);
6157 if (crtc->fb == NULL) {
6158 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6159 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6160 old->release_fb = crtc->fb;
6161 } else
6162 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6163 if (IS_ERR(crtc->fb)) {
6164 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6165 crtc->fb = old_fb;
6166 return false;
6167 }
6168
6169 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6170 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6171 if (old->release_fb)
6172 old->release_fb->funcs->destroy(old->release_fb);
6173 crtc->fb = old_fb;
6174 return false;
6175 }
6176
6177 /* let the connector get through one full cycle before testing */
6178 intel_wait_for_vblank(dev, intel_crtc->pipe);
6179
6180 return true;
6181 }
6182
6183 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6184 struct drm_connector *connector,
6185 struct intel_load_detect_pipe *old)
6186 {
6187 struct drm_encoder *encoder = &intel_encoder->base;
6188 struct drm_device *dev = encoder->dev;
6189 struct drm_crtc *crtc = encoder->crtc;
6190 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6191 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6192
6193 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6194 connector->base.id, drm_get_connector_name(connector),
6195 encoder->base.id, drm_get_encoder_name(encoder));
6196
6197 if (old->load_detect_temp) {
6198 connector->encoder = NULL;
6199 drm_helper_disable_unused_functions(dev);
6200
6201 if (old->release_fb)
6202 old->release_fb->funcs->destroy(old->release_fb);
6203
6204 return;
6205 }
6206
6207 /* Switch crtc and encoder back off if necessary */
6208 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6209 encoder_funcs->dpms(encoder, old->dpms_mode);
6210 crtc_funcs->dpms(crtc, old->dpms_mode);
6211 }
6212 }
6213
6214 /* Returns the clock of the currently programmed mode of the given pipe. */
6215 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6216 {
6217 struct drm_i915_private *dev_priv = dev->dev_private;
6218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6219 int pipe = intel_crtc->pipe;
6220 u32 dpll = I915_READ(DPLL(pipe));
6221 u32 fp;
6222 intel_clock_t clock;
6223
6224 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6225 fp = I915_READ(FP0(pipe));
6226 else
6227 fp = I915_READ(FP1(pipe));
6228
6229 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6230 if (IS_PINEVIEW(dev)) {
6231 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6232 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6233 } else {
6234 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6235 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6236 }
6237
6238 if (!IS_GEN2(dev)) {
6239 if (IS_PINEVIEW(dev))
6240 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6241 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6242 else
6243 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6244 DPLL_FPA01_P1_POST_DIV_SHIFT);
6245
6246 switch (dpll & DPLL_MODE_MASK) {
6247 case DPLLB_MODE_DAC_SERIAL:
6248 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6249 5 : 10;
6250 break;
6251 case DPLLB_MODE_LVDS:
6252 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6253 7 : 14;
6254 break;
6255 default:
6256 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6257 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6258 return 0;
6259 }
6260
6261 /* XXX: Handle the 100Mhz refclk */
6262 intel_clock(dev, 96000, &clock);
6263 } else {
6264 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6265
6266 if (is_lvds) {
6267 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6268 DPLL_FPA01_P1_POST_DIV_SHIFT);
6269 clock.p2 = 14;
6270
6271 if ((dpll & PLL_REF_INPUT_MASK) ==
6272 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6273 /* XXX: might not be 66MHz */
6274 intel_clock(dev, 66000, &clock);
6275 } else
6276 intel_clock(dev, 48000, &clock);
6277 } else {
6278 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6279 clock.p1 = 2;
6280 else {
6281 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6282 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6283 }
6284 if (dpll & PLL_P2_DIVIDE_BY_4)
6285 clock.p2 = 4;
6286 else
6287 clock.p2 = 2;
6288
6289 intel_clock(dev, 48000, &clock);
6290 }
6291 }
6292
6293 /* XXX: It would be nice to validate the clocks, but we can't reuse
6294 * i830PllIsValid() because it relies on the xf86_config connector
6295 * configuration being accurate, which it isn't necessarily.
6296 */
6297
6298 return clock.dot;
6299 }
6300
6301 /** Returns the currently programmed mode of the given pipe. */
6302 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6303 struct drm_crtc *crtc)
6304 {
6305 struct drm_i915_private *dev_priv = dev->dev_private;
6306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307 int pipe = intel_crtc->pipe;
6308 struct drm_display_mode *mode;
6309 int htot = I915_READ(HTOTAL(pipe));
6310 int hsync = I915_READ(HSYNC(pipe));
6311 int vtot = I915_READ(VTOTAL(pipe));
6312 int vsync = I915_READ(VSYNC(pipe));
6313
6314 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6315 if (!mode)
6316 return NULL;
6317
6318 mode->clock = intel_crtc_clock_get(dev, crtc);
6319 mode->hdisplay = (htot & 0xffff) + 1;
6320 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6321 mode->hsync_start = (hsync & 0xffff) + 1;
6322 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6323 mode->vdisplay = (vtot & 0xffff) + 1;
6324 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6325 mode->vsync_start = (vsync & 0xffff) + 1;
6326 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6327
6328 drm_mode_set_name(mode);
6329 drm_mode_set_crtcinfo(mode, 0);
6330
6331 return mode;
6332 }
6333
6334 #define GPU_IDLE_TIMEOUT 500 /* ms */
6335
6336 /* When this timer fires, we've been idle for awhile */
6337 static void intel_gpu_idle_timer(unsigned long arg)
6338 {
6339 struct drm_device *dev = (struct drm_device *)arg;
6340 drm_i915_private_t *dev_priv = dev->dev_private;
6341
6342 if (!list_empty(&dev_priv->mm.active_list)) {
6343 /* Still processing requests, so just re-arm the timer. */
6344 mod_timer(&dev_priv->idle_timer, jiffies +
6345 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6346 return;
6347 }
6348
6349 dev_priv->busy = false;
6350 queue_work(dev_priv->wq, &dev_priv->idle_work);
6351 }
6352
6353 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6354
6355 static void intel_crtc_idle_timer(unsigned long arg)
6356 {
6357 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6358 struct drm_crtc *crtc = &intel_crtc->base;
6359 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6360 struct intel_framebuffer *intel_fb;
6361
6362 intel_fb = to_intel_framebuffer(crtc->fb);
6363 if (intel_fb && intel_fb->obj->active) {
6364 /* The framebuffer is still being accessed by the GPU. */
6365 mod_timer(&intel_crtc->idle_timer, jiffies +
6366 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6367 return;
6368 }
6369
6370 intel_crtc->busy = false;
6371 queue_work(dev_priv->wq, &dev_priv->idle_work);
6372 }
6373
6374 static void intel_increase_pllclock(struct drm_crtc *crtc)
6375 {
6376 struct drm_device *dev = crtc->dev;
6377 drm_i915_private_t *dev_priv = dev->dev_private;
6378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379 int pipe = intel_crtc->pipe;
6380 int dpll_reg = DPLL(pipe);
6381 int dpll;
6382
6383 if (HAS_PCH_SPLIT(dev))
6384 return;
6385
6386 if (!dev_priv->lvds_downclock_avail)
6387 return;
6388
6389 dpll = I915_READ(dpll_reg);
6390 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6391 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6392
6393 /* Unlock panel regs */
6394 I915_WRITE(PP_CONTROL,
6395 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6396
6397 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6398 I915_WRITE(dpll_reg, dpll);
6399 intel_wait_for_vblank(dev, pipe);
6400
6401 dpll = I915_READ(dpll_reg);
6402 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6403 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6404
6405 /* ...and lock them again */
6406 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6407 }
6408
6409 /* Schedule downclock */
6410 mod_timer(&intel_crtc->idle_timer, jiffies +
6411 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6412 }
6413
6414 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6415 {
6416 struct drm_device *dev = crtc->dev;
6417 drm_i915_private_t *dev_priv = dev->dev_private;
6418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6419 int pipe = intel_crtc->pipe;
6420 int dpll_reg = DPLL(pipe);
6421 int dpll = I915_READ(dpll_reg);
6422
6423 if (HAS_PCH_SPLIT(dev))
6424 return;
6425
6426 if (!dev_priv->lvds_downclock_avail)
6427 return;
6428
6429 /*
6430 * Since this is called by a timer, we should never get here in
6431 * the manual case.
6432 */
6433 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6434 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6435
6436 /* Unlock panel regs */
6437 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6438 PANEL_UNLOCK_REGS);
6439
6440 dpll |= DISPLAY_RATE_SELECT_FPA1;
6441 I915_WRITE(dpll_reg, dpll);
6442 intel_wait_for_vblank(dev, pipe);
6443 dpll = I915_READ(dpll_reg);
6444 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6445 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6446
6447 /* ...and lock them again */
6448 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6449 }
6450
6451 }
6452
6453 /**
6454 * intel_idle_update - adjust clocks for idleness
6455 * @work: work struct
6456 *
6457 * Either the GPU or display (or both) went idle. Check the busy status
6458 * here and adjust the CRTC and GPU clocks as necessary.
6459 */
6460 static void intel_idle_update(struct work_struct *work)
6461 {
6462 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6463 idle_work);
6464 struct drm_device *dev = dev_priv->dev;
6465 struct drm_crtc *crtc;
6466 struct intel_crtc *intel_crtc;
6467
6468 if (!i915_powersave)
6469 return;
6470
6471 mutex_lock(&dev->struct_mutex);
6472
6473 i915_update_gfx_val(dev_priv);
6474
6475 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6476 /* Skip inactive CRTCs */
6477 if (!crtc->fb)
6478 continue;
6479
6480 intel_crtc = to_intel_crtc(crtc);
6481 if (!intel_crtc->busy)
6482 intel_decrease_pllclock(crtc);
6483 }
6484
6485
6486 mutex_unlock(&dev->struct_mutex);
6487 }
6488
6489 /**
6490 * intel_mark_busy - mark the GPU and possibly the display busy
6491 * @dev: drm device
6492 * @obj: object we're operating on
6493 *
6494 * Callers can use this function to indicate that the GPU is busy processing
6495 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6496 * buffer), we'll also mark the display as busy, so we know to increase its
6497 * clock frequency.
6498 */
6499 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6500 {
6501 drm_i915_private_t *dev_priv = dev->dev_private;
6502 struct drm_crtc *crtc = NULL;
6503 struct intel_framebuffer *intel_fb;
6504 struct intel_crtc *intel_crtc;
6505
6506 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6507 return;
6508
6509 if (!dev_priv->busy)
6510 dev_priv->busy = true;
6511 else
6512 mod_timer(&dev_priv->idle_timer, jiffies +
6513 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6514
6515 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6516 if (!crtc->fb)
6517 continue;
6518
6519 intel_crtc = to_intel_crtc(crtc);
6520 intel_fb = to_intel_framebuffer(crtc->fb);
6521 if (intel_fb->obj == obj) {
6522 if (!intel_crtc->busy) {
6523 /* Non-busy -> busy, upclock */
6524 intel_increase_pllclock(crtc);
6525 intel_crtc->busy = true;
6526 } else {
6527 /* Busy -> busy, put off timer */
6528 mod_timer(&intel_crtc->idle_timer, jiffies +
6529 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6530 }
6531 }
6532 }
6533 }
6534
6535 static void intel_crtc_destroy(struct drm_crtc *crtc)
6536 {
6537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6538 struct drm_device *dev = crtc->dev;
6539 struct intel_unpin_work *work;
6540 unsigned long flags;
6541
6542 spin_lock_irqsave(&dev->event_lock, flags);
6543 work = intel_crtc->unpin_work;
6544 intel_crtc->unpin_work = NULL;
6545 spin_unlock_irqrestore(&dev->event_lock, flags);
6546
6547 if (work) {
6548 cancel_work_sync(&work->work);
6549 kfree(work);
6550 }
6551
6552 drm_crtc_cleanup(crtc);
6553
6554 kfree(intel_crtc);
6555 }
6556
6557 static void intel_unpin_work_fn(struct work_struct *__work)
6558 {
6559 struct intel_unpin_work *work =
6560 container_of(__work, struct intel_unpin_work, work);
6561
6562 mutex_lock(&work->dev->struct_mutex);
6563 i915_gem_object_unpin(work->old_fb_obj);
6564 drm_gem_object_unreference(&work->pending_flip_obj->base);
6565 drm_gem_object_unreference(&work->old_fb_obj->base);
6566
6567 intel_update_fbc(work->dev);
6568 mutex_unlock(&work->dev->struct_mutex);
6569 kfree(work);
6570 }
6571
6572 static void do_intel_finish_page_flip(struct drm_device *dev,
6573 struct drm_crtc *crtc)
6574 {
6575 drm_i915_private_t *dev_priv = dev->dev_private;
6576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6577 struct intel_unpin_work *work;
6578 struct drm_i915_gem_object *obj;
6579 struct drm_pending_vblank_event *e;
6580 struct timeval tnow, tvbl;
6581 unsigned long flags;
6582
6583 /* Ignore early vblank irqs */
6584 if (intel_crtc == NULL)
6585 return;
6586
6587 do_gettimeofday(&tnow);
6588
6589 spin_lock_irqsave(&dev->event_lock, flags);
6590 work = intel_crtc->unpin_work;
6591 if (work == NULL || !work->pending) {
6592 spin_unlock_irqrestore(&dev->event_lock, flags);
6593 return;
6594 }
6595
6596 intel_crtc->unpin_work = NULL;
6597
6598 if (work->event) {
6599 e = work->event;
6600 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6601
6602 /* Called before vblank count and timestamps have
6603 * been updated for the vblank interval of flip
6604 * completion? Need to increment vblank count and
6605 * add one videorefresh duration to returned timestamp
6606 * to account for this. We assume this happened if we
6607 * get called over 0.9 frame durations after the last
6608 * timestamped vblank.
6609 *
6610 * This calculation can not be used with vrefresh rates
6611 * below 5Hz (10Hz to be on the safe side) without
6612 * promoting to 64 integers.
6613 */
6614 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6615 9 * crtc->framedur_ns) {
6616 e->event.sequence++;
6617 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6618 crtc->framedur_ns);
6619 }
6620
6621 e->event.tv_sec = tvbl.tv_sec;
6622 e->event.tv_usec = tvbl.tv_usec;
6623
6624 list_add_tail(&e->base.link,
6625 &e->base.file_priv->event_list);
6626 wake_up_interruptible(&e->base.file_priv->event_wait);
6627 }
6628
6629 drm_vblank_put(dev, intel_crtc->pipe);
6630
6631 spin_unlock_irqrestore(&dev->event_lock, flags);
6632
6633 obj = work->old_fb_obj;
6634
6635 atomic_clear_mask(1 << intel_crtc->plane,
6636 &obj->pending_flip.counter);
6637 if (atomic_read(&obj->pending_flip) == 0)
6638 wake_up(&dev_priv->pending_flip_queue);
6639
6640 schedule_work(&work->work);
6641
6642 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6643 }
6644
6645 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6646 {
6647 drm_i915_private_t *dev_priv = dev->dev_private;
6648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6649
6650 do_intel_finish_page_flip(dev, crtc);
6651 }
6652
6653 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6654 {
6655 drm_i915_private_t *dev_priv = dev->dev_private;
6656 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6657
6658 do_intel_finish_page_flip(dev, crtc);
6659 }
6660
6661 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6662 {
6663 drm_i915_private_t *dev_priv = dev->dev_private;
6664 struct intel_crtc *intel_crtc =
6665 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6666 unsigned long flags;
6667
6668 spin_lock_irqsave(&dev->event_lock, flags);
6669 if (intel_crtc->unpin_work) {
6670 if ((++intel_crtc->unpin_work->pending) > 1)
6671 DRM_ERROR("Prepared flip multiple times\n");
6672 } else {
6673 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6674 }
6675 spin_unlock_irqrestore(&dev->event_lock, flags);
6676 }
6677
6678 static int intel_gen2_queue_flip(struct drm_device *dev,
6679 struct drm_crtc *crtc,
6680 struct drm_framebuffer *fb,
6681 struct drm_i915_gem_object *obj)
6682 {
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6685 unsigned long offset;
6686 u32 flip_mask;
6687 int ret;
6688
6689 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6690 if (ret)
6691 goto out;
6692
6693 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6694 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6695
6696 ret = BEGIN_LP_RING(6);
6697 if (ret)
6698 goto out;
6699
6700 /* Can't queue multiple flips, so wait for the previous
6701 * one to finish before executing the next.
6702 */
6703 if (intel_crtc->plane)
6704 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6705 else
6706 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6707 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6708 OUT_RING(MI_NOOP);
6709 OUT_RING(MI_DISPLAY_FLIP |
6710 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6711 OUT_RING(fb->pitch);
6712 OUT_RING(obj->gtt_offset + offset);
6713 OUT_RING(MI_NOOP);
6714 ADVANCE_LP_RING();
6715 out:
6716 return ret;
6717 }
6718
6719 static int intel_gen3_queue_flip(struct drm_device *dev,
6720 struct drm_crtc *crtc,
6721 struct drm_framebuffer *fb,
6722 struct drm_i915_gem_object *obj)
6723 {
6724 struct drm_i915_private *dev_priv = dev->dev_private;
6725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6726 unsigned long offset;
6727 u32 flip_mask;
6728 int ret;
6729
6730 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6731 if (ret)
6732 goto out;
6733
6734 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6735 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6736
6737 ret = BEGIN_LP_RING(6);
6738 if (ret)
6739 goto out;
6740
6741 if (intel_crtc->plane)
6742 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6743 else
6744 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6745 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6746 OUT_RING(MI_NOOP);
6747 OUT_RING(MI_DISPLAY_FLIP_I915 |
6748 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6749 OUT_RING(fb->pitch);
6750 OUT_RING(obj->gtt_offset + offset);
6751 OUT_RING(MI_NOOP);
6752
6753 ADVANCE_LP_RING();
6754 out:
6755 return ret;
6756 }
6757
6758 static int intel_gen4_queue_flip(struct drm_device *dev,
6759 struct drm_crtc *crtc,
6760 struct drm_framebuffer *fb,
6761 struct drm_i915_gem_object *obj)
6762 {
6763 struct drm_i915_private *dev_priv = dev->dev_private;
6764 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6765 uint32_t pf, pipesrc;
6766 int ret;
6767
6768 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6769 if (ret)
6770 goto out;
6771
6772 ret = BEGIN_LP_RING(4);
6773 if (ret)
6774 goto out;
6775
6776 /* i965+ uses the linear or tiled offsets from the
6777 * Display Registers (which do not change across a page-flip)
6778 * so we need only reprogram the base address.
6779 */
6780 OUT_RING(MI_DISPLAY_FLIP |
6781 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6782 OUT_RING(fb->pitch);
6783 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6784
6785 /* XXX Enabling the panel-fitter across page-flip is so far
6786 * untested on non-native modes, so ignore it for now.
6787 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6788 */
6789 pf = 0;
6790 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6791 OUT_RING(pf | pipesrc);
6792 ADVANCE_LP_RING();
6793 out:
6794 return ret;
6795 }
6796
6797 static int intel_gen6_queue_flip(struct drm_device *dev,
6798 struct drm_crtc *crtc,
6799 struct drm_framebuffer *fb,
6800 struct drm_i915_gem_object *obj)
6801 {
6802 struct drm_i915_private *dev_priv = dev->dev_private;
6803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6804 uint32_t pf, pipesrc;
6805 int ret;
6806
6807 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6808 if (ret)
6809 goto out;
6810
6811 ret = BEGIN_LP_RING(4);
6812 if (ret)
6813 goto out;
6814
6815 OUT_RING(MI_DISPLAY_FLIP |
6816 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6817 OUT_RING(fb->pitch | obj->tiling_mode);
6818 OUT_RING(obj->gtt_offset);
6819
6820 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6821 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6822 OUT_RING(pf | pipesrc);
6823 ADVANCE_LP_RING();
6824 out:
6825 return ret;
6826 }
6827
6828 /*
6829 * On gen7 we currently use the blit ring because (in early silicon at least)
6830 * the render ring doesn't give us interrpts for page flip completion, which
6831 * means clients will hang after the first flip is queued. Fortunately the
6832 * blit ring generates interrupts properly, so use it instead.
6833 */
6834 static int intel_gen7_queue_flip(struct drm_device *dev,
6835 struct drm_crtc *crtc,
6836 struct drm_framebuffer *fb,
6837 struct drm_i915_gem_object *obj)
6838 {
6839 struct drm_i915_private *dev_priv = dev->dev_private;
6840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6841 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6842 int ret;
6843
6844 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6845 if (ret)
6846 goto out;
6847
6848 ret = intel_ring_begin(ring, 4);
6849 if (ret)
6850 goto out;
6851
6852 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6853 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6854 intel_ring_emit(ring, (obj->gtt_offset));
6855 intel_ring_emit(ring, (MI_NOOP));
6856 intel_ring_advance(ring);
6857 out:
6858 return ret;
6859 }
6860
6861 static int intel_default_queue_flip(struct drm_device *dev,
6862 struct drm_crtc *crtc,
6863 struct drm_framebuffer *fb,
6864 struct drm_i915_gem_object *obj)
6865 {
6866 return -ENODEV;
6867 }
6868
6869 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6870 struct drm_framebuffer *fb,
6871 struct drm_pending_vblank_event *event)
6872 {
6873 struct drm_device *dev = crtc->dev;
6874 struct drm_i915_private *dev_priv = dev->dev_private;
6875 struct intel_framebuffer *intel_fb;
6876 struct drm_i915_gem_object *obj;
6877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6878 struct intel_unpin_work *work;
6879 unsigned long flags;
6880 int ret;
6881
6882 work = kzalloc(sizeof *work, GFP_KERNEL);
6883 if (work == NULL)
6884 return -ENOMEM;
6885
6886 work->event = event;
6887 work->dev = crtc->dev;
6888 intel_fb = to_intel_framebuffer(crtc->fb);
6889 work->old_fb_obj = intel_fb->obj;
6890 INIT_WORK(&work->work, intel_unpin_work_fn);
6891
6892 /* We borrow the event spin lock for protecting unpin_work */
6893 spin_lock_irqsave(&dev->event_lock, flags);
6894 if (intel_crtc->unpin_work) {
6895 spin_unlock_irqrestore(&dev->event_lock, flags);
6896 kfree(work);
6897
6898 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6899 return -EBUSY;
6900 }
6901 intel_crtc->unpin_work = work;
6902 spin_unlock_irqrestore(&dev->event_lock, flags);
6903
6904 intel_fb = to_intel_framebuffer(fb);
6905 obj = intel_fb->obj;
6906
6907 mutex_lock(&dev->struct_mutex);
6908
6909 /* Reference the objects for the scheduled work. */
6910 drm_gem_object_reference(&work->old_fb_obj->base);
6911 drm_gem_object_reference(&obj->base);
6912
6913 crtc->fb = fb;
6914
6915 ret = drm_vblank_get(dev, intel_crtc->pipe);
6916 if (ret)
6917 goto cleanup_objs;
6918
6919 work->pending_flip_obj = obj;
6920
6921 work->enable_stall_check = true;
6922
6923 /* Block clients from rendering to the new back buffer until
6924 * the flip occurs and the object is no longer visible.
6925 */
6926 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6927
6928 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6929 if (ret)
6930 goto cleanup_pending;
6931
6932 intel_disable_fbc(dev);
6933 mutex_unlock(&dev->struct_mutex);
6934
6935 trace_i915_flip_request(intel_crtc->plane, obj);
6936
6937 return 0;
6938
6939 cleanup_pending:
6940 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6941 cleanup_objs:
6942 drm_gem_object_unreference(&work->old_fb_obj->base);
6943 drm_gem_object_unreference(&obj->base);
6944 mutex_unlock(&dev->struct_mutex);
6945
6946 spin_lock_irqsave(&dev->event_lock, flags);
6947 intel_crtc->unpin_work = NULL;
6948 spin_unlock_irqrestore(&dev->event_lock, flags);
6949
6950 kfree(work);
6951
6952 return ret;
6953 }
6954
6955 static void intel_sanitize_modesetting(struct drm_device *dev,
6956 int pipe, int plane)
6957 {
6958 struct drm_i915_private *dev_priv = dev->dev_private;
6959 u32 reg, val;
6960
6961 if (HAS_PCH_SPLIT(dev))
6962 return;
6963
6964 /* Who knows what state these registers were left in by the BIOS or
6965 * grub?
6966 *
6967 * If we leave the registers in a conflicting state (e.g. with the
6968 * display plane reading from the other pipe than the one we intend
6969 * to use) then when we attempt to teardown the active mode, we will
6970 * not disable the pipes and planes in the correct order -- leaving
6971 * a plane reading from a disabled pipe and possibly leading to
6972 * undefined behaviour.
6973 */
6974
6975 reg = DSPCNTR(plane);
6976 val = I915_READ(reg);
6977
6978 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6979 return;
6980 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6981 return;
6982
6983 /* This display plane is active and attached to the other CPU pipe. */
6984 pipe = !pipe;
6985
6986 /* Disable the plane and wait for it to stop reading from the pipe. */
6987 intel_disable_plane(dev_priv, plane, pipe);
6988 intel_disable_pipe(dev_priv, pipe);
6989 }
6990
6991 static void intel_crtc_reset(struct drm_crtc *crtc)
6992 {
6993 struct drm_device *dev = crtc->dev;
6994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6995
6996 /* Reset flags back to the 'unknown' status so that they
6997 * will be correctly set on the initial modeset.
6998 */
6999 intel_crtc->dpms_mode = -1;
7000
7001 /* We need to fix up any BIOS configuration that conflicts with
7002 * our expectations.
7003 */
7004 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7005 }
7006
7007 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7008 .dpms = intel_crtc_dpms,
7009 .mode_fixup = intel_crtc_mode_fixup,
7010 .mode_set = intel_crtc_mode_set,
7011 .mode_set_base = intel_pipe_set_base,
7012 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7013 .load_lut = intel_crtc_load_lut,
7014 .disable = intel_crtc_disable,
7015 };
7016
7017 static const struct drm_crtc_funcs intel_crtc_funcs = {
7018 .reset = intel_crtc_reset,
7019 .cursor_set = intel_crtc_cursor_set,
7020 .cursor_move = intel_crtc_cursor_move,
7021 .gamma_set = intel_crtc_gamma_set,
7022 .set_config = drm_crtc_helper_set_config,
7023 .destroy = intel_crtc_destroy,
7024 .page_flip = intel_crtc_page_flip,
7025 };
7026
7027 static void intel_crtc_init(struct drm_device *dev, int pipe)
7028 {
7029 drm_i915_private_t *dev_priv = dev->dev_private;
7030 struct intel_crtc *intel_crtc;
7031 int i;
7032
7033 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7034 if (intel_crtc == NULL)
7035 return;
7036
7037 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7038
7039 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7040 for (i = 0; i < 256; i++) {
7041 intel_crtc->lut_r[i] = i;
7042 intel_crtc->lut_g[i] = i;
7043 intel_crtc->lut_b[i] = i;
7044 }
7045
7046 /* Swap pipes & planes for FBC on pre-965 */
7047 intel_crtc->pipe = pipe;
7048 intel_crtc->plane = pipe;
7049 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7050 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7051 intel_crtc->plane = !pipe;
7052 }
7053
7054 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7055 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7056 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7057 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7058
7059 intel_crtc_reset(&intel_crtc->base);
7060 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7061 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7062
7063 if (HAS_PCH_SPLIT(dev)) {
7064 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7065 intel_helper_funcs.commit = ironlake_crtc_commit;
7066 } else {
7067 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7068 intel_helper_funcs.commit = i9xx_crtc_commit;
7069 }
7070
7071 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7072
7073 intel_crtc->busy = false;
7074
7075 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7076 (unsigned long)intel_crtc);
7077 }
7078
7079 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7080 struct drm_file *file)
7081 {
7082 drm_i915_private_t *dev_priv = dev->dev_private;
7083 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7084 struct drm_mode_object *drmmode_obj;
7085 struct intel_crtc *crtc;
7086
7087 if (!dev_priv) {
7088 DRM_ERROR("called with no initialization\n");
7089 return -EINVAL;
7090 }
7091
7092 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7093 DRM_MODE_OBJECT_CRTC);
7094
7095 if (!drmmode_obj) {
7096 DRM_ERROR("no such CRTC id\n");
7097 return -EINVAL;
7098 }
7099
7100 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7101 pipe_from_crtc_id->pipe = crtc->pipe;
7102
7103 return 0;
7104 }
7105
7106 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7107 {
7108 struct intel_encoder *encoder;
7109 int index_mask = 0;
7110 int entry = 0;
7111
7112 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7113 if (type_mask & encoder->clone_mask)
7114 index_mask |= (1 << entry);
7115 entry++;
7116 }
7117
7118 return index_mask;
7119 }
7120
7121 static bool has_edp_a(struct drm_device *dev)
7122 {
7123 struct drm_i915_private *dev_priv = dev->dev_private;
7124
7125 if (!IS_MOBILE(dev))
7126 return false;
7127
7128 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7129 return false;
7130
7131 if (IS_GEN5(dev) &&
7132 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7133 return false;
7134
7135 return true;
7136 }
7137
7138 static void intel_setup_outputs(struct drm_device *dev)
7139 {
7140 struct drm_i915_private *dev_priv = dev->dev_private;
7141 struct intel_encoder *encoder;
7142 bool dpd_is_edp = false;
7143 bool has_lvds = false;
7144
7145 if (IS_MOBILE(dev) && !IS_I830(dev))
7146 has_lvds = intel_lvds_init(dev);
7147 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7148 /* disable the panel fitter on everything but LVDS */
7149 I915_WRITE(PFIT_CONTROL, 0);
7150 }
7151
7152 if (HAS_PCH_SPLIT(dev)) {
7153 dpd_is_edp = intel_dpd_is_edp(dev);
7154
7155 if (has_edp_a(dev))
7156 intel_dp_init(dev, DP_A);
7157
7158 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7159 intel_dp_init(dev, PCH_DP_D);
7160 }
7161
7162 intel_crt_init(dev);
7163
7164 if (HAS_PCH_SPLIT(dev)) {
7165 int found;
7166
7167 if (I915_READ(HDMIB) & PORT_DETECTED) {
7168 /* PCH SDVOB multiplex with HDMIB */
7169 found = intel_sdvo_init(dev, PCH_SDVOB);
7170 if (!found)
7171 intel_hdmi_init(dev, HDMIB);
7172 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7173 intel_dp_init(dev, PCH_DP_B);
7174 }
7175
7176 if (I915_READ(HDMIC) & PORT_DETECTED)
7177 intel_hdmi_init(dev, HDMIC);
7178
7179 if (I915_READ(HDMID) & PORT_DETECTED)
7180 intel_hdmi_init(dev, HDMID);
7181
7182 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7183 intel_dp_init(dev, PCH_DP_C);
7184
7185 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7186 intel_dp_init(dev, PCH_DP_D);
7187
7188 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7189 bool found = false;
7190
7191 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7192 DRM_DEBUG_KMS("probing SDVOB\n");
7193 found = intel_sdvo_init(dev, SDVOB);
7194 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7195 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7196 intel_hdmi_init(dev, SDVOB);
7197 }
7198
7199 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7200 DRM_DEBUG_KMS("probing DP_B\n");
7201 intel_dp_init(dev, DP_B);
7202 }
7203 }
7204
7205 /* Before G4X SDVOC doesn't have its own detect register */
7206
7207 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7208 DRM_DEBUG_KMS("probing SDVOC\n");
7209 found = intel_sdvo_init(dev, SDVOC);
7210 }
7211
7212 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7213
7214 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7215 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7216 intel_hdmi_init(dev, SDVOC);
7217 }
7218 if (SUPPORTS_INTEGRATED_DP(dev)) {
7219 DRM_DEBUG_KMS("probing DP_C\n");
7220 intel_dp_init(dev, DP_C);
7221 }
7222 }
7223
7224 if (SUPPORTS_INTEGRATED_DP(dev) &&
7225 (I915_READ(DP_D) & DP_DETECTED)) {
7226 DRM_DEBUG_KMS("probing DP_D\n");
7227 intel_dp_init(dev, DP_D);
7228 }
7229 } else if (IS_GEN2(dev))
7230 intel_dvo_init(dev);
7231
7232 if (SUPPORTS_TV(dev))
7233 intel_tv_init(dev);
7234
7235 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7236 encoder->base.possible_crtcs = encoder->crtc_mask;
7237 encoder->base.possible_clones =
7238 intel_encoder_clones(dev, encoder->clone_mask);
7239 }
7240
7241 /* disable all the possible outputs/crtcs before entering KMS mode */
7242 drm_helper_disable_unused_functions(dev);
7243 }
7244
7245 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7246 {
7247 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7248
7249 drm_framebuffer_cleanup(fb);
7250 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7251
7252 kfree(intel_fb);
7253 }
7254
7255 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7256 struct drm_file *file,
7257 unsigned int *handle)
7258 {
7259 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7260 struct drm_i915_gem_object *obj = intel_fb->obj;
7261
7262 return drm_gem_handle_create(file, &obj->base, handle);
7263 }
7264
7265 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7266 .destroy = intel_user_framebuffer_destroy,
7267 .create_handle = intel_user_framebuffer_create_handle,
7268 };
7269
7270 int intel_framebuffer_init(struct drm_device *dev,
7271 struct intel_framebuffer *intel_fb,
7272 struct drm_mode_fb_cmd *mode_cmd,
7273 struct drm_i915_gem_object *obj)
7274 {
7275 int ret;
7276
7277 if (obj->tiling_mode == I915_TILING_Y)
7278 return -EINVAL;
7279
7280 if (mode_cmd->pitch & 63)
7281 return -EINVAL;
7282
7283 switch (mode_cmd->bpp) {
7284 case 8:
7285 case 16:
7286 /* Only pre-ILK can handle 5:5:5 */
7287 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7288 return -EINVAL;
7289 break;
7290
7291 case 24:
7292 case 32:
7293 break;
7294 default:
7295 return -EINVAL;
7296 }
7297
7298 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7299 if (ret) {
7300 DRM_ERROR("framebuffer init failed %d\n", ret);
7301 return ret;
7302 }
7303
7304 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7305 intel_fb->obj = obj;
7306 return 0;
7307 }
7308
7309 static struct drm_framebuffer *
7310 intel_user_framebuffer_create(struct drm_device *dev,
7311 struct drm_file *filp,
7312 struct drm_mode_fb_cmd *mode_cmd)
7313 {
7314 struct drm_i915_gem_object *obj;
7315
7316 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7317 if (&obj->base == NULL)
7318 return ERR_PTR(-ENOENT);
7319
7320 return intel_framebuffer_create(dev, mode_cmd, obj);
7321 }
7322
7323 static const struct drm_mode_config_funcs intel_mode_funcs = {
7324 .fb_create = intel_user_framebuffer_create,
7325 .output_poll_changed = intel_fb_output_poll_changed,
7326 };
7327
7328 static struct drm_i915_gem_object *
7329 intel_alloc_context_page(struct drm_device *dev)
7330 {
7331 struct drm_i915_gem_object *ctx;
7332 int ret;
7333
7334 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7335
7336 ctx = i915_gem_alloc_object(dev, 4096);
7337 if (!ctx) {
7338 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7339 return NULL;
7340 }
7341
7342 ret = i915_gem_object_pin(ctx, 4096, true);
7343 if (ret) {
7344 DRM_ERROR("failed to pin power context: %d\n", ret);
7345 goto err_unref;
7346 }
7347
7348 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7349 if (ret) {
7350 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7351 goto err_unpin;
7352 }
7353
7354 return ctx;
7355
7356 err_unpin:
7357 i915_gem_object_unpin(ctx);
7358 err_unref:
7359 drm_gem_object_unreference(&ctx->base);
7360 mutex_unlock(&dev->struct_mutex);
7361 return NULL;
7362 }
7363
7364 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7365 {
7366 struct drm_i915_private *dev_priv = dev->dev_private;
7367 u16 rgvswctl;
7368
7369 rgvswctl = I915_READ16(MEMSWCTL);
7370 if (rgvswctl & MEMCTL_CMD_STS) {
7371 DRM_DEBUG("gpu busy, RCS change rejected\n");
7372 return false; /* still busy with another command */
7373 }
7374
7375 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7376 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7377 I915_WRITE16(MEMSWCTL, rgvswctl);
7378 POSTING_READ16(MEMSWCTL);
7379
7380 rgvswctl |= MEMCTL_CMD_STS;
7381 I915_WRITE16(MEMSWCTL, rgvswctl);
7382
7383 return true;
7384 }
7385
7386 void ironlake_enable_drps(struct drm_device *dev)
7387 {
7388 struct drm_i915_private *dev_priv = dev->dev_private;
7389 u32 rgvmodectl = I915_READ(MEMMODECTL);
7390 u8 fmax, fmin, fstart, vstart;
7391
7392 /* Enable temp reporting */
7393 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7394 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7395
7396 /* 100ms RC evaluation intervals */
7397 I915_WRITE(RCUPEI, 100000);
7398 I915_WRITE(RCDNEI, 100000);
7399
7400 /* Set max/min thresholds to 90ms and 80ms respectively */
7401 I915_WRITE(RCBMAXAVG, 90000);
7402 I915_WRITE(RCBMINAVG, 80000);
7403
7404 I915_WRITE(MEMIHYST, 1);
7405
7406 /* Set up min, max, and cur for interrupt handling */
7407 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7408 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7409 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7410 MEMMODE_FSTART_SHIFT;
7411
7412 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7413 PXVFREQ_PX_SHIFT;
7414
7415 dev_priv->fmax = fmax; /* IPS callback will increase this */
7416 dev_priv->fstart = fstart;
7417
7418 dev_priv->max_delay = fstart;
7419 dev_priv->min_delay = fmin;
7420 dev_priv->cur_delay = fstart;
7421
7422 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7423 fmax, fmin, fstart);
7424
7425 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7426
7427 /*
7428 * Interrupts will be enabled in ironlake_irq_postinstall
7429 */
7430
7431 I915_WRITE(VIDSTART, vstart);
7432 POSTING_READ(VIDSTART);
7433
7434 rgvmodectl |= MEMMODE_SWMODE_EN;
7435 I915_WRITE(MEMMODECTL, rgvmodectl);
7436
7437 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7438 DRM_ERROR("stuck trying to change perf mode\n");
7439 msleep(1);
7440
7441 ironlake_set_drps(dev, fstart);
7442
7443 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7444 I915_READ(0x112e0);
7445 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7446 dev_priv->last_count2 = I915_READ(0x112f4);
7447 getrawmonotonic(&dev_priv->last_time2);
7448 }
7449
7450 void ironlake_disable_drps(struct drm_device *dev)
7451 {
7452 struct drm_i915_private *dev_priv = dev->dev_private;
7453 u16 rgvswctl = I915_READ16(MEMSWCTL);
7454
7455 /* Ack interrupts, disable EFC interrupt */
7456 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7457 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7458 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7459 I915_WRITE(DEIIR, DE_PCU_EVENT);
7460 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7461
7462 /* Go back to the starting frequency */
7463 ironlake_set_drps(dev, dev_priv->fstart);
7464 msleep(1);
7465 rgvswctl |= MEMCTL_CMD_STS;
7466 I915_WRITE(MEMSWCTL, rgvswctl);
7467 msleep(1);
7468
7469 }
7470
7471 void gen6_set_rps(struct drm_device *dev, u8 val)
7472 {
7473 struct drm_i915_private *dev_priv = dev->dev_private;
7474 u32 swreq;
7475
7476 swreq = (val & 0x3ff) << 25;
7477 I915_WRITE(GEN6_RPNSWREQ, swreq);
7478 }
7479
7480 void gen6_disable_rps(struct drm_device *dev)
7481 {
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483
7484 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7485 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7486 I915_WRITE(GEN6_PMIER, 0);
7487
7488 spin_lock_irq(&dev_priv->rps_lock);
7489 dev_priv->pm_iir = 0;
7490 spin_unlock_irq(&dev_priv->rps_lock);
7491
7492 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7493 }
7494
7495 static unsigned long intel_pxfreq(u32 vidfreq)
7496 {
7497 unsigned long freq;
7498 int div = (vidfreq & 0x3f0000) >> 16;
7499 int post = (vidfreq & 0x3000) >> 12;
7500 int pre = (vidfreq & 0x7);
7501
7502 if (!pre)
7503 return 0;
7504
7505 freq = ((div * 133333) / ((1<<post) * pre));
7506
7507 return freq;
7508 }
7509
7510 void intel_init_emon(struct drm_device *dev)
7511 {
7512 struct drm_i915_private *dev_priv = dev->dev_private;
7513 u32 lcfuse;
7514 u8 pxw[16];
7515 int i;
7516
7517 /* Disable to program */
7518 I915_WRITE(ECR, 0);
7519 POSTING_READ(ECR);
7520
7521 /* Program energy weights for various events */
7522 I915_WRITE(SDEW, 0x15040d00);
7523 I915_WRITE(CSIEW0, 0x007f0000);
7524 I915_WRITE(CSIEW1, 0x1e220004);
7525 I915_WRITE(CSIEW2, 0x04000004);
7526
7527 for (i = 0; i < 5; i++)
7528 I915_WRITE(PEW + (i * 4), 0);
7529 for (i = 0; i < 3; i++)
7530 I915_WRITE(DEW + (i * 4), 0);
7531
7532 /* Program P-state weights to account for frequency power adjustment */
7533 for (i = 0; i < 16; i++) {
7534 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7535 unsigned long freq = intel_pxfreq(pxvidfreq);
7536 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7537 PXVFREQ_PX_SHIFT;
7538 unsigned long val;
7539
7540 val = vid * vid;
7541 val *= (freq / 1000);
7542 val *= 255;
7543 val /= (127*127*900);
7544 if (val > 0xff)
7545 DRM_ERROR("bad pxval: %ld\n", val);
7546 pxw[i] = val;
7547 }
7548 /* Render standby states get 0 weight */
7549 pxw[14] = 0;
7550 pxw[15] = 0;
7551
7552 for (i = 0; i < 4; i++) {
7553 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7554 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7555 I915_WRITE(PXW + (i * 4), val);
7556 }
7557
7558 /* Adjust magic regs to magic values (more experimental results) */
7559 I915_WRITE(OGW0, 0);
7560 I915_WRITE(OGW1, 0);
7561 I915_WRITE(EG0, 0x00007f00);
7562 I915_WRITE(EG1, 0x0000000e);
7563 I915_WRITE(EG2, 0x000e0000);
7564 I915_WRITE(EG3, 0x68000300);
7565 I915_WRITE(EG4, 0x42000000);
7566 I915_WRITE(EG5, 0x00140031);
7567 I915_WRITE(EG6, 0);
7568 I915_WRITE(EG7, 0);
7569
7570 for (i = 0; i < 8; i++)
7571 I915_WRITE(PXWL + (i * 4), 0);
7572
7573 /* Enable PMON + select events */
7574 I915_WRITE(ECR, 0x80000019);
7575
7576 lcfuse = I915_READ(LCFUSE02);
7577
7578 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7579 }
7580
7581 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7582 {
7583 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7584 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7585 u32 pcu_mbox, rc6_mask = 0;
7586 int cur_freq, min_freq, max_freq;
7587 int i;
7588
7589 /* Here begins a magic sequence of register writes to enable
7590 * auto-downclocking.
7591 *
7592 * Perhaps there might be some value in exposing these to
7593 * userspace...
7594 */
7595 I915_WRITE(GEN6_RC_STATE, 0);
7596 mutex_lock(&dev_priv->dev->struct_mutex);
7597 gen6_gt_force_wake_get(dev_priv);
7598
7599 /* disable the counters and set deterministic thresholds */
7600 I915_WRITE(GEN6_RC_CONTROL, 0);
7601
7602 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7603 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7604 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7605 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7606 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7607
7608 for (i = 0; i < I915_NUM_RINGS; i++)
7609 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7610
7611 I915_WRITE(GEN6_RC_SLEEP, 0);
7612 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7613 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7614 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7615 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7616
7617 if (i915_enable_rc6)
7618 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7619 GEN6_RC_CTL_RC6_ENABLE;
7620
7621 I915_WRITE(GEN6_RC_CONTROL,
7622 rc6_mask |
7623 GEN6_RC_CTL_EI_MODE(1) |
7624 GEN6_RC_CTL_HW_ENABLE);
7625
7626 I915_WRITE(GEN6_RPNSWREQ,
7627 GEN6_FREQUENCY(10) |
7628 GEN6_OFFSET(0) |
7629 GEN6_AGGRESSIVE_TURBO);
7630 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7631 GEN6_FREQUENCY(12));
7632
7633 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7634 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7635 18 << 24 |
7636 6 << 16);
7637 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7638 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7639 I915_WRITE(GEN6_RP_UP_EI, 100000);
7640 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7641 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7642 I915_WRITE(GEN6_RP_CONTROL,
7643 GEN6_RP_MEDIA_TURBO |
7644 GEN6_RP_USE_NORMAL_FREQ |
7645 GEN6_RP_MEDIA_IS_GFX |
7646 GEN6_RP_ENABLE |
7647 GEN6_RP_UP_BUSY_AVG |
7648 GEN6_RP_DOWN_IDLE_CONT);
7649
7650 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7651 500))
7652 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7653
7654 I915_WRITE(GEN6_PCODE_DATA, 0);
7655 I915_WRITE(GEN6_PCODE_MAILBOX,
7656 GEN6_PCODE_READY |
7657 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7658 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7659 500))
7660 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7661
7662 min_freq = (rp_state_cap & 0xff0000) >> 16;
7663 max_freq = rp_state_cap & 0xff;
7664 cur_freq = (gt_perf_status & 0xff00) >> 8;
7665
7666 /* Check for overclock support */
7667 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7668 500))
7669 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7670 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7671 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7672 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7673 500))
7674 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7675 if (pcu_mbox & (1<<31)) { /* OC supported */
7676 max_freq = pcu_mbox & 0xff;
7677 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7678 }
7679
7680 /* In units of 100MHz */
7681 dev_priv->max_delay = max_freq;
7682 dev_priv->min_delay = min_freq;
7683 dev_priv->cur_delay = cur_freq;
7684
7685 /* requires MSI enabled */
7686 I915_WRITE(GEN6_PMIER,
7687 GEN6_PM_MBOX_EVENT |
7688 GEN6_PM_THERMAL_EVENT |
7689 GEN6_PM_RP_DOWN_TIMEOUT |
7690 GEN6_PM_RP_UP_THRESHOLD |
7691 GEN6_PM_RP_DOWN_THRESHOLD |
7692 GEN6_PM_RP_UP_EI_EXPIRED |
7693 GEN6_PM_RP_DOWN_EI_EXPIRED);
7694 spin_lock_irq(&dev_priv->rps_lock);
7695 WARN_ON(dev_priv->pm_iir != 0);
7696 I915_WRITE(GEN6_PMIMR, 0);
7697 spin_unlock_irq(&dev_priv->rps_lock);
7698 /* enable all PM interrupts */
7699 I915_WRITE(GEN6_PMINTRMSK, 0);
7700
7701 gen6_gt_force_wake_put(dev_priv);
7702 mutex_unlock(&dev_priv->dev->struct_mutex);
7703 }
7704
7705 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7706 {
7707 int min_freq = 15;
7708 int gpu_freq, ia_freq, max_ia_freq;
7709 int scaling_factor = 180;
7710
7711 max_ia_freq = cpufreq_quick_get_max(0);
7712 /*
7713 * Default to measured freq if none found, PCU will ensure we don't go
7714 * over
7715 */
7716 if (!max_ia_freq)
7717 max_ia_freq = tsc_khz;
7718
7719 /* Convert from kHz to MHz */
7720 max_ia_freq /= 1000;
7721
7722 mutex_lock(&dev_priv->dev->struct_mutex);
7723
7724 /*
7725 * For each potential GPU frequency, load a ring frequency we'd like
7726 * to use for memory access. We do this by specifying the IA frequency
7727 * the PCU should use as a reference to determine the ring frequency.
7728 */
7729 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7730 gpu_freq--) {
7731 int diff = dev_priv->max_delay - gpu_freq;
7732
7733 /*
7734 * For GPU frequencies less than 750MHz, just use the lowest
7735 * ring freq.
7736 */
7737 if (gpu_freq < min_freq)
7738 ia_freq = 800;
7739 else
7740 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7741 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7742
7743 I915_WRITE(GEN6_PCODE_DATA,
7744 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7745 gpu_freq);
7746 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7747 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7748 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7749 GEN6_PCODE_READY) == 0, 10)) {
7750 DRM_ERROR("pcode write of freq table timed out\n");
7751 continue;
7752 }
7753 }
7754
7755 mutex_unlock(&dev_priv->dev->struct_mutex);
7756 }
7757
7758 static void ironlake_init_clock_gating(struct drm_device *dev)
7759 {
7760 struct drm_i915_private *dev_priv = dev->dev_private;
7761 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7762
7763 /* Required for FBC */
7764 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7765 DPFCRUNIT_CLOCK_GATE_DISABLE |
7766 DPFDUNIT_CLOCK_GATE_DISABLE;
7767 /* Required for CxSR */
7768 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7769
7770 I915_WRITE(PCH_3DCGDIS0,
7771 MARIUNIT_CLOCK_GATE_DISABLE |
7772 SVSMUNIT_CLOCK_GATE_DISABLE);
7773 I915_WRITE(PCH_3DCGDIS1,
7774 VFMUNIT_CLOCK_GATE_DISABLE);
7775
7776 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7777
7778 /*
7779 * According to the spec the following bits should be set in
7780 * order to enable memory self-refresh
7781 * The bit 22/21 of 0x42004
7782 * The bit 5 of 0x42020
7783 * The bit 15 of 0x45000
7784 */
7785 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7786 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7787 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7788 I915_WRITE(ILK_DSPCLK_GATE,
7789 (I915_READ(ILK_DSPCLK_GATE) |
7790 ILK_DPARB_CLK_GATE));
7791 I915_WRITE(DISP_ARB_CTL,
7792 (I915_READ(DISP_ARB_CTL) |
7793 DISP_FBC_WM_DIS));
7794 I915_WRITE(WM3_LP_ILK, 0);
7795 I915_WRITE(WM2_LP_ILK, 0);
7796 I915_WRITE(WM1_LP_ILK, 0);
7797
7798 /*
7799 * Based on the document from hardware guys the following bits
7800 * should be set unconditionally in order to enable FBC.
7801 * The bit 22 of 0x42000
7802 * The bit 22 of 0x42004
7803 * The bit 7,8,9 of 0x42020.
7804 */
7805 if (IS_IRONLAKE_M(dev)) {
7806 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7807 I915_READ(ILK_DISPLAY_CHICKEN1) |
7808 ILK_FBCQ_DIS);
7809 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7810 I915_READ(ILK_DISPLAY_CHICKEN2) |
7811 ILK_DPARB_GATE);
7812 I915_WRITE(ILK_DSPCLK_GATE,
7813 I915_READ(ILK_DSPCLK_GATE) |
7814 ILK_DPFC_DIS1 |
7815 ILK_DPFC_DIS2 |
7816 ILK_CLK_FBC);
7817 }
7818
7819 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7820 I915_READ(ILK_DISPLAY_CHICKEN2) |
7821 ILK_ELPIN_409_SELECT);
7822 I915_WRITE(_3D_CHICKEN2,
7823 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7824 _3D_CHICKEN2_WM_READ_PIPELINED);
7825 }
7826
7827 static void gen6_init_clock_gating(struct drm_device *dev)
7828 {
7829 struct drm_i915_private *dev_priv = dev->dev_private;
7830 int pipe;
7831 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7832
7833 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7834
7835 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7836 I915_READ(ILK_DISPLAY_CHICKEN2) |
7837 ILK_ELPIN_409_SELECT);
7838
7839 I915_WRITE(WM3_LP_ILK, 0);
7840 I915_WRITE(WM2_LP_ILK, 0);
7841 I915_WRITE(WM1_LP_ILK, 0);
7842
7843 /*
7844 * According to the spec the following bits should be
7845 * set in order to enable memory self-refresh and fbc:
7846 * The bit21 and bit22 of 0x42000
7847 * The bit21 and bit22 of 0x42004
7848 * The bit5 and bit7 of 0x42020
7849 * The bit14 of 0x70180
7850 * The bit14 of 0x71180
7851 */
7852 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7853 I915_READ(ILK_DISPLAY_CHICKEN1) |
7854 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7855 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7856 I915_READ(ILK_DISPLAY_CHICKEN2) |
7857 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7858 I915_WRITE(ILK_DSPCLK_GATE,
7859 I915_READ(ILK_DSPCLK_GATE) |
7860 ILK_DPARB_CLK_GATE |
7861 ILK_DPFD_CLK_GATE);
7862
7863 for_each_pipe(pipe) {
7864 I915_WRITE(DSPCNTR(pipe),
7865 I915_READ(DSPCNTR(pipe)) |
7866 DISPPLANE_TRICKLE_FEED_DISABLE);
7867 intel_flush_display_plane(dev_priv, pipe);
7868 }
7869 }
7870
7871 static void ivybridge_init_clock_gating(struct drm_device *dev)
7872 {
7873 struct drm_i915_private *dev_priv = dev->dev_private;
7874 int pipe;
7875 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7876
7877 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7878
7879 I915_WRITE(WM3_LP_ILK, 0);
7880 I915_WRITE(WM2_LP_ILK, 0);
7881 I915_WRITE(WM1_LP_ILK, 0);
7882
7883 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7884
7885 for_each_pipe(pipe) {
7886 I915_WRITE(DSPCNTR(pipe),
7887 I915_READ(DSPCNTR(pipe)) |
7888 DISPPLANE_TRICKLE_FEED_DISABLE);
7889 intel_flush_display_plane(dev_priv, pipe);
7890 }
7891 }
7892
7893 static void g4x_init_clock_gating(struct drm_device *dev)
7894 {
7895 struct drm_i915_private *dev_priv = dev->dev_private;
7896 uint32_t dspclk_gate;
7897
7898 I915_WRITE(RENCLK_GATE_D1, 0);
7899 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7900 GS_UNIT_CLOCK_GATE_DISABLE |
7901 CL_UNIT_CLOCK_GATE_DISABLE);
7902 I915_WRITE(RAMCLK_GATE_D, 0);
7903 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7904 OVRUNIT_CLOCK_GATE_DISABLE |
7905 OVCUNIT_CLOCK_GATE_DISABLE;
7906 if (IS_GM45(dev))
7907 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7908 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7909 }
7910
7911 static void crestline_init_clock_gating(struct drm_device *dev)
7912 {
7913 struct drm_i915_private *dev_priv = dev->dev_private;
7914
7915 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7916 I915_WRITE(RENCLK_GATE_D2, 0);
7917 I915_WRITE(DSPCLK_GATE_D, 0);
7918 I915_WRITE(RAMCLK_GATE_D, 0);
7919 I915_WRITE16(DEUC, 0);
7920 }
7921
7922 static void broadwater_init_clock_gating(struct drm_device *dev)
7923 {
7924 struct drm_i915_private *dev_priv = dev->dev_private;
7925
7926 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7927 I965_RCC_CLOCK_GATE_DISABLE |
7928 I965_RCPB_CLOCK_GATE_DISABLE |
7929 I965_ISC_CLOCK_GATE_DISABLE |
7930 I965_FBC_CLOCK_GATE_DISABLE);
7931 I915_WRITE(RENCLK_GATE_D2, 0);
7932 }
7933
7934 static void gen3_init_clock_gating(struct drm_device *dev)
7935 {
7936 struct drm_i915_private *dev_priv = dev->dev_private;
7937 u32 dstate = I915_READ(D_STATE);
7938
7939 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7940 DSTATE_DOT_CLOCK_GATING;
7941 I915_WRITE(D_STATE, dstate);
7942 }
7943
7944 static void i85x_init_clock_gating(struct drm_device *dev)
7945 {
7946 struct drm_i915_private *dev_priv = dev->dev_private;
7947
7948 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7949 }
7950
7951 static void i830_init_clock_gating(struct drm_device *dev)
7952 {
7953 struct drm_i915_private *dev_priv = dev->dev_private;
7954
7955 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7956 }
7957
7958 static void ibx_init_clock_gating(struct drm_device *dev)
7959 {
7960 struct drm_i915_private *dev_priv = dev->dev_private;
7961
7962 /*
7963 * On Ibex Peak and Cougar Point, we need to disable clock
7964 * gating for the panel power sequencer or it will fail to
7965 * start up when no ports are active.
7966 */
7967 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7968 }
7969
7970 static void cpt_init_clock_gating(struct drm_device *dev)
7971 {
7972 struct drm_i915_private *dev_priv = dev->dev_private;
7973 int pipe;
7974
7975 /*
7976 * On Ibex Peak and Cougar Point, we need to disable clock
7977 * gating for the panel power sequencer or it will fail to
7978 * start up when no ports are active.
7979 */
7980 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7981 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7982 DPLS_EDP_PPS_FIX_DIS);
7983 /* Without this, mode sets may fail silently on FDI */
7984 for_each_pipe(pipe)
7985 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
7986 }
7987
7988 static void ironlake_teardown_rc6(struct drm_device *dev)
7989 {
7990 struct drm_i915_private *dev_priv = dev->dev_private;
7991
7992 if (dev_priv->renderctx) {
7993 i915_gem_object_unpin(dev_priv->renderctx);
7994 drm_gem_object_unreference(&dev_priv->renderctx->base);
7995 dev_priv->renderctx = NULL;
7996 }
7997
7998 if (dev_priv->pwrctx) {
7999 i915_gem_object_unpin(dev_priv->pwrctx);
8000 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8001 dev_priv->pwrctx = NULL;
8002 }
8003 }
8004
8005 static void ironlake_disable_rc6(struct drm_device *dev)
8006 {
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008
8009 if (I915_READ(PWRCTXA)) {
8010 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8011 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8012 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8013 50);
8014
8015 I915_WRITE(PWRCTXA, 0);
8016 POSTING_READ(PWRCTXA);
8017
8018 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8019 POSTING_READ(RSTDBYCTL);
8020 }
8021
8022 ironlake_teardown_rc6(dev);
8023 }
8024
8025 static int ironlake_setup_rc6(struct drm_device *dev)
8026 {
8027 struct drm_i915_private *dev_priv = dev->dev_private;
8028
8029 if (dev_priv->renderctx == NULL)
8030 dev_priv->renderctx = intel_alloc_context_page(dev);
8031 if (!dev_priv->renderctx)
8032 return -ENOMEM;
8033
8034 if (dev_priv->pwrctx == NULL)
8035 dev_priv->pwrctx = intel_alloc_context_page(dev);
8036 if (!dev_priv->pwrctx) {
8037 ironlake_teardown_rc6(dev);
8038 return -ENOMEM;
8039 }
8040
8041 return 0;
8042 }
8043
8044 void ironlake_enable_rc6(struct drm_device *dev)
8045 {
8046 struct drm_i915_private *dev_priv = dev->dev_private;
8047 int ret;
8048
8049 /* rc6 disabled by default due to repeated reports of hanging during
8050 * boot and resume.
8051 */
8052 if (!i915_enable_rc6)
8053 return;
8054
8055 mutex_lock(&dev->struct_mutex);
8056 ret = ironlake_setup_rc6(dev);
8057 if (ret) {
8058 mutex_unlock(&dev->struct_mutex);
8059 return;
8060 }
8061
8062 /*
8063 * GPU can automatically power down the render unit if given a page
8064 * to save state.
8065 */
8066 ret = BEGIN_LP_RING(6);
8067 if (ret) {
8068 ironlake_teardown_rc6(dev);
8069 mutex_unlock(&dev->struct_mutex);
8070 return;
8071 }
8072
8073 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8074 OUT_RING(MI_SET_CONTEXT);
8075 OUT_RING(dev_priv->renderctx->gtt_offset |
8076 MI_MM_SPACE_GTT |
8077 MI_SAVE_EXT_STATE_EN |
8078 MI_RESTORE_EXT_STATE_EN |
8079 MI_RESTORE_INHIBIT);
8080 OUT_RING(MI_SUSPEND_FLUSH);
8081 OUT_RING(MI_NOOP);
8082 OUT_RING(MI_FLUSH);
8083 ADVANCE_LP_RING();
8084
8085 /*
8086 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8087 * does an implicit flush, combined with MI_FLUSH above, it should be
8088 * safe to assume that renderctx is valid
8089 */
8090 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8091 if (ret) {
8092 DRM_ERROR("failed to enable ironlake power power savings\n");
8093 ironlake_teardown_rc6(dev);
8094 mutex_unlock(&dev->struct_mutex);
8095 return;
8096 }
8097
8098 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8099 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8100 mutex_unlock(&dev->struct_mutex);
8101 }
8102
8103 void intel_init_clock_gating(struct drm_device *dev)
8104 {
8105 struct drm_i915_private *dev_priv = dev->dev_private;
8106
8107 dev_priv->display.init_clock_gating(dev);
8108
8109 if (dev_priv->display.init_pch_clock_gating)
8110 dev_priv->display.init_pch_clock_gating(dev);
8111 }
8112
8113 /* Set up chip specific display functions */
8114 static void intel_init_display(struct drm_device *dev)
8115 {
8116 struct drm_i915_private *dev_priv = dev->dev_private;
8117
8118 /* We always want a DPMS function */
8119 if (HAS_PCH_SPLIT(dev)) {
8120 dev_priv->display.dpms = ironlake_crtc_dpms;
8121 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8122 dev_priv->display.update_plane = ironlake_update_plane;
8123 } else {
8124 dev_priv->display.dpms = i9xx_crtc_dpms;
8125 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8126 dev_priv->display.update_plane = i9xx_update_plane;
8127 }
8128
8129 if (I915_HAS_FBC(dev)) {
8130 if (HAS_PCH_SPLIT(dev)) {
8131 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8132 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8133 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8134 } else if (IS_GM45(dev)) {
8135 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8136 dev_priv->display.enable_fbc = g4x_enable_fbc;
8137 dev_priv->display.disable_fbc = g4x_disable_fbc;
8138 } else if (IS_CRESTLINE(dev)) {
8139 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8140 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8141 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8142 }
8143 /* 855GM needs testing */
8144 }
8145
8146 /* Returns the core display clock speed */
8147 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8148 dev_priv->display.get_display_clock_speed =
8149 i945_get_display_clock_speed;
8150 else if (IS_I915G(dev))
8151 dev_priv->display.get_display_clock_speed =
8152 i915_get_display_clock_speed;
8153 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8154 dev_priv->display.get_display_clock_speed =
8155 i9xx_misc_get_display_clock_speed;
8156 else if (IS_I915GM(dev))
8157 dev_priv->display.get_display_clock_speed =
8158 i915gm_get_display_clock_speed;
8159 else if (IS_I865G(dev))
8160 dev_priv->display.get_display_clock_speed =
8161 i865_get_display_clock_speed;
8162 else if (IS_I85X(dev))
8163 dev_priv->display.get_display_clock_speed =
8164 i855_get_display_clock_speed;
8165 else /* 852, 830 */
8166 dev_priv->display.get_display_clock_speed =
8167 i830_get_display_clock_speed;
8168
8169 /* For FIFO watermark updates */
8170 if (HAS_PCH_SPLIT(dev)) {
8171 if (HAS_PCH_IBX(dev))
8172 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8173 else if (HAS_PCH_CPT(dev))
8174 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8175
8176 if (IS_GEN5(dev)) {
8177 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8178 dev_priv->display.update_wm = ironlake_update_wm;
8179 else {
8180 DRM_DEBUG_KMS("Failed to get proper latency. "
8181 "Disable CxSR\n");
8182 dev_priv->display.update_wm = NULL;
8183 }
8184 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8185 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8186 } else if (IS_GEN6(dev)) {
8187 if (SNB_READ_WM0_LATENCY()) {
8188 dev_priv->display.update_wm = sandybridge_update_wm;
8189 } else {
8190 DRM_DEBUG_KMS("Failed to read display plane latency. "
8191 "Disable CxSR\n");
8192 dev_priv->display.update_wm = NULL;
8193 }
8194 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8195 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8196 } else if (IS_IVYBRIDGE(dev)) {
8197 /* FIXME: detect B0+ stepping and use auto training */
8198 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8199 if (SNB_READ_WM0_LATENCY()) {
8200 dev_priv->display.update_wm = sandybridge_update_wm;
8201 } else {
8202 DRM_DEBUG_KMS("Failed to read display plane latency. "
8203 "Disable CxSR\n");
8204 dev_priv->display.update_wm = NULL;
8205 }
8206 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8207
8208 } else
8209 dev_priv->display.update_wm = NULL;
8210 } else if (IS_PINEVIEW(dev)) {
8211 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8212 dev_priv->is_ddr3,
8213 dev_priv->fsb_freq,
8214 dev_priv->mem_freq)) {
8215 DRM_INFO("failed to find known CxSR latency "
8216 "(found ddr%s fsb freq %d, mem freq %d), "
8217 "disabling CxSR\n",
8218 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8219 dev_priv->fsb_freq, dev_priv->mem_freq);
8220 /* Disable CxSR and never update its watermark again */
8221 pineview_disable_cxsr(dev);
8222 dev_priv->display.update_wm = NULL;
8223 } else
8224 dev_priv->display.update_wm = pineview_update_wm;
8225 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8226 } else if (IS_G4X(dev)) {
8227 dev_priv->display.update_wm = g4x_update_wm;
8228 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8229 } else if (IS_GEN4(dev)) {
8230 dev_priv->display.update_wm = i965_update_wm;
8231 if (IS_CRESTLINE(dev))
8232 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8233 else if (IS_BROADWATER(dev))
8234 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8235 } else if (IS_GEN3(dev)) {
8236 dev_priv->display.update_wm = i9xx_update_wm;
8237 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8238 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8239 } else if (IS_I865G(dev)) {
8240 dev_priv->display.update_wm = i830_update_wm;
8241 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8242 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8243 } else if (IS_I85X(dev)) {
8244 dev_priv->display.update_wm = i9xx_update_wm;
8245 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8246 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8247 } else {
8248 dev_priv->display.update_wm = i830_update_wm;
8249 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8250 if (IS_845G(dev))
8251 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8252 else
8253 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8254 }
8255
8256 /* Default just returns -ENODEV to indicate unsupported */
8257 dev_priv->display.queue_flip = intel_default_queue_flip;
8258
8259 switch (INTEL_INFO(dev)->gen) {
8260 case 2:
8261 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8262 break;
8263
8264 case 3:
8265 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8266 break;
8267
8268 case 4:
8269 case 5:
8270 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8271 break;
8272
8273 case 6:
8274 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8275 break;
8276 case 7:
8277 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8278 break;
8279 }
8280 }
8281
8282 /*
8283 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8284 * resume, or other times. This quirk makes sure that's the case for
8285 * affected systems.
8286 */
8287 static void quirk_pipea_force(struct drm_device *dev)
8288 {
8289 struct drm_i915_private *dev_priv = dev->dev_private;
8290
8291 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8292 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8293 }
8294
8295 /*
8296 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8297 */
8298 static void quirk_ssc_force_disable(struct drm_device *dev)
8299 {
8300 struct drm_i915_private *dev_priv = dev->dev_private;
8301 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8302 }
8303
8304 struct intel_quirk {
8305 int device;
8306 int subsystem_vendor;
8307 int subsystem_device;
8308 void (*hook)(struct drm_device *dev);
8309 };
8310
8311 struct intel_quirk intel_quirks[] = {
8312 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8313 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8314 /* HP Mini needs pipe A force quirk (LP: #322104) */
8315 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8316
8317 /* Thinkpad R31 needs pipe A force quirk */
8318 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8319 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8320 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8321
8322 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8323 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8324 /* ThinkPad X40 needs pipe A force quirk */
8325
8326 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8327 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8328
8329 /* 855 & before need to leave pipe A & dpll A up */
8330 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8331 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8332
8333 /* Lenovo U160 cannot use SSC on LVDS */
8334 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8335
8336 /* Sony Vaio Y cannot use SSC on LVDS */
8337 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8338 };
8339
8340 static void intel_init_quirks(struct drm_device *dev)
8341 {
8342 struct pci_dev *d = dev->pdev;
8343 int i;
8344
8345 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8346 struct intel_quirk *q = &intel_quirks[i];
8347
8348 if (d->device == q->device &&
8349 (d->subsystem_vendor == q->subsystem_vendor ||
8350 q->subsystem_vendor == PCI_ANY_ID) &&
8351 (d->subsystem_device == q->subsystem_device ||
8352 q->subsystem_device == PCI_ANY_ID))
8353 q->hook(dev);
8354 }
8355 }
8356
8357 /* Disable the VGA plane that we never use */
8358 static void i915_disable_vga(struct drm_device *dev)
8359 {
8360 struct drm_i915_private *dev_priv = dev->dev_private;
8361 u8 sr1;
8362 u32 vga_reg;
8363
8364 if (HAS_PCH_SPLIT(dev))
8365 vga_reg = CPU_VGACNTRL;
8366 else
8367 vga_reg = VGACNTRL;
8368
8369 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8370 outb(1, VGA_SR_INDEX);
8371 sr1 = inb(VGA_SR_DATA);
8372 outb(sr1 | 1<<5, VGA_SR_DATA);
8373 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8374 udelay(300);
8375
8376 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8377 POSTING_READ(vga_reg);
8378 }
8379
8380 void intel_modeset_init(struct drm_device *dev)
8381 {
8382 struct drm_i915_private *dev_priv = dev->dev_private;
8383 int i;
8384
8385 drm_mode_config_init(dev);
8386
8387 dev->mode_config.min_width = 0;
8388 dev->mode_config.min_height = 0;
8389
8390 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8391
8392 intel_init_quirks(dev);
8393
8394 intel_init_display(dev);
8395
8396 if (IS_GEN2(dev)) {
8397 dev->mode_config.max_width = 2048;
8398 dev->mode_config.max_height = 2048;
8399 } else if (IS_GEN3(dev)) {
8400 dev->mode_config.max_width = 4096;
8401 dev->mode_config.max_height = 4096;
8402 } else {
8403 dev->mode_config.max_width = 8192;
8404 dev->mode_config.max_height = 8192;
8405 }
8406 dev->mode_config.fb_base = dev->agp->base;
8407
8408 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8409 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8410
8411 for (i = 0; i < dev_priv->num_pipe; i++) {
8412 intel_crtc_init(dev, i);
8413 }
8414
8415 /* Just disable it once at startup */
8416 i915_disable_vga(dev);
8417 intel_setup_outputs(dev);
8418
8419 intel_init_clock_gating(dev);
8420
8421 if (IS_IRONLAKE_M(dev)) {
8422 ironlake_enable_drps(dev);
8423 intel_init_emon(dev);
8424 }
8425
8426 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8427 gen6_enable_rps(dev_priv);
8428 gen6_update_ring_freq(dev_priv);
8429 }
8430
8431 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8432 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8433 (unsigned long)dev);
8434 }
8435
8436 void intel_modeset_gem_init(struct drm_device *dev)
8437 {
8438 if (IS_IRONLAKE_M(dev))
8439 ironlake_enable_rc6(dev);
8440
8441 intel_setup_overlay(dev);
8442 }
8443
8444 void intel_modeset_cleanup(struct drm_device *dev)
8445 {
8446 struct drm_i915_private *dev_priv = dev->dev_private;
8447 struct drm_crtc *crtc;
8448 struct intel_crtc *intel_crtc;
8449
8450 drm_kms_helper_poll_fini(dev);
8451 mutex_lock(&dev->struct_mutex);
8452
8453 intel_unregister_dsm_handler();
8454
8455
8456 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8457 /* Skip inactive CRTCs */
8458 if (!crtc->fb)
8459 continue;
8460
8461 intel_crtc = to_intel_crtc(crtc);
8462 intel_increase_pllclock(crtc);
8463 }
8464
8465 intel_disable_fbc(dev);
8466
8467 if (IS_IRONLAKE_M(dev))
8468 ironlake_disable_drps(dev);
8469 if (IS_GEN6(dev) || IS_GEN7(dev))
8470 gen6_disable_rps(dev);
8471
8472 if (IS_IRONLAKE_M(dev))
8473 ironlake_disable_rc6(dev);
8474
8475 mutex_unlock(&dev->struct_mutex);
8476
8477 /* Disable the irq before mode object teardown, for the irq might
8478 * enqueue unpin/hotplug work. */
8479 drm_irq_uninstall(dev);
8480 cancel_work_sync(&dev_priv->hotplug_work);
8481
8482 /* flush any delayed tasks or pending work */
8483 flush_scheduled_work();
8484
8485 /* Shut off idle work before the crtcs get freed. */
8486 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8487 intel_crtc = to_intel_crtc(crtc);
8488 del_timer_sync(&intel_crtc->idle_timer);
8489 }
8490 del_timer_sync(&dev_priv->idle_timer);
8491 cancel_work_sync(&dev_priv->idle_work);
8492
8493 drm_mode_config_cleanup(dev);
8494 }
8495
8496 /*
8497 * Return which encoder is currently attached for connector.
8498 */
8499 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8500 {
8501 return &intel_attached_encoder(connector)->base;
8502 }
8503
8504 void intel_connector_attach_encoder(struct intel_connector *connector,
8505 struct intel_encoder *encoder)
8506 {
8507 connector->encoder = encoder;
8508 drm_mode_connector_attach_encoder(&connector->base,
8509 &encoder->base);
8510 }
8511
8512 /*
8513 * set vga decode state - true == enable VGA decode
8514 */
8515 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8516 {
8517 struct drm_i915_private *dev_priv = dev->dev_private;
8518 u16 gmch_ctrl;
8519
8520 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8521 if (state)
8522 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8523 else
8524 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8525 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8526 return 0;
8527 }
8528
8529 #ifdef CONFIG_DEBUG_FS
8530 #include <linux/seq_file.h>
8531
8532 struct intel_display_error_state {
8533 struct intel_cursor_error_state {
8534 u32 control;
8535 u32 position;
8536 u32 base;
8537 u32 size;
8538 } cursor[2];
8539
8540 struct intel_pipe_error_state {
8541 u32 conf;
8542 u32 source;
8543
8544 u32 htotal;
8545 u32 hblank;
8546 u32 hsync;
8547 u32 vtotal;
8548 u32 vblank;
8549 u32 vsync;
8550 } pipe[2];
8551
8552 struct intel_plane_error_state {
8553 u32 control;
8554 u32 stride;
8555 u32 size;
8556 u32 pos;
8557 u32 addr;
8558 u32 surface;
8559 u32 tile_offset;
8560 } plane[2];
8561 };
8562
8563 struct intel_display_error_state *
8564 intel_display_capture_error_state(struct drm_device *dev)
8565 {
8566 drm_i915_private_t *dev_priv = dev->dev_private;
8567 struct intel_display_error_state *error;
8568 int i;
8569
8570 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8571 if (error == NULL)
8572 return NULL;
8573
8574 for (i = 0; i < 2; i++) {
8575 error->cursor[i].control = I915_READ(CURCNTR(i));
8576 error->cursor[i].position = I915_READ(CURPOS(i));
8577 error->cursor[i].base = I915_READ(CURBASE(i));
8578
8579 error->plane[i].control = I915_READ(DSPCNTR(i));
8580 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8581 error->plane[i].size = I915_READ(DSPSIZE(i));
8582 error->plane[i].pos = I915_READ(DSPPOS(i));
8583 error->plane[i].addr = I915_READ(DSPADDR(i));
8584 if (INTEL_INFO(dev)->gen >= 4) {
8585 error->plane[i].surface = I915_READ(DSPSURF(i));
8586 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8587 }
8588
8589 error->pipe[i].conf = I915_READ(PIPECONF(i));
8590 error->pipe[i].source = I915_READ(PIPESRC(i));
8591 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8592 error->pipe[i].hblank = I915_READ(HBLANK(i));
8593 error->pipe[i].hsync = I915_READ(HSYNC(i));
8594 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8595 error->pipe[i].vblank = I915_READ(VBLANK(i));
8596 error->pipe[i].vsync = I915_READ(VSYNC(i));
8597 }
8598
8599 return error;
8600 }
8601
8602 void
8603 intel_display_print_error_state(struct seq_file *m,
8604 struct drm_device *dev,
8605 struct intel_display_error_state *error)
8606 {
8607 int i;
8608
8609 for (i = 0; i < 2; i++) {
8610 seq_printf(m, "Pipe [%d]:\n", i);
8611 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8612 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8613 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8614 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8615 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8616 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8617 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8618 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8619
8620 seq_printf(m, "Plane [%d]:\n", i);
8621 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8622 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8623 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8624 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8625 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8626 if (INTEL_INFO(dev)->gen >= 4) {
8627 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8628 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8629 }
8630
8631 seq_printf(m, "Cursor [%d]:\n", i);
8632 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8633 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8634 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8635 }
8636 }
8637 #endif
This page took 0.391321 seconds and 6 git commands to generate.