drm/i915: Enable DisplayPort in Valleyview
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
185 },
186 .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
214 },
215 .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
229 },
230 .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 25000, .max = 270000 },
397 .vco = { .min = 4000000, .max = 6000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 22, .max = 450 },
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487 {
488 unsigned int val;
489
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
538
539 return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
564
565 return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
599 }
600 return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
617 }
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
631
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
635
636 return false;
637 }
638
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
648 {
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
670
671 return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678
679 {
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
684
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
704 memset(best_clock, 0, sizeof(*best_clock));
705
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
718
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
756
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
793
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
805 return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
872 flag = 0;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
953
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
997 *
998 */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1005
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 WARN(1, "pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 WARN(1, "pipe_off wait timed out\n");
1028 }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033 return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039 {
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1059 {
1060 u32 val;
1061 bool cur_state;
1062
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1071
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
1095 }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102 {
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126 {
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148 {
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 int reg;
1169 u32 val;
1170
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182 {
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1211 {
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1215
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1230 {
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248 {
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1261 }
1262
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1272 }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277 u32 val;
1278 bool enabled;
1279
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326 {
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342 {
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358 {
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1373 {
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1378
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
1381 "IBX PCH dp port still using transcoder B\n");
1382 }
1383
1384 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386 {
1387 u32 val = I915_READ(reg);
1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1390 reg, pipe_name(pipe));
1391
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
1394 "IBX PCH hdmi port still using transcoder B\n");
1395 }
1396
1397 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399 {
1400 int reg;
1401 u32 val;
1402
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
1411 pipe_name(pipe));
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1417 pipe_name(pipe));
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422 }
1423
1424 /**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1436 */
1437 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1438 {
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463 }
1464
1465 /**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475 {
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491 }
1492
1493 /* SBI access */
1494 static void
1495 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496 {
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520 out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522 }
1523
1524 static u32
1525 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526 {
1527 unsigned long flags;
1528 u32 value = 0;
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551 out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554 }
1555
1556 /**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
1564 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1565 {
1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1567 struct intel_pch_pll *pll;
1568 int reg;
1569 u32 val;
1570
1571 /* PCH PLLs only available on ILK, SNB and IVB */
1572 BUG_ON(dev_priv->info->gen < 5);
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
1587 if (pll->active++ && pll->on) {
1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
1600
1601 pll->on = true;
1602 }
1603
1604 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1605 {
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1608 int reg;
1609 u32 val;
1610
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
1613 if (pll == NULL)
1614 return;
1615
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
1618
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
1622
1623 if (WARN_ON(pll->active == 0)) {
1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
1625 return;
1626 }
1627
1628 if (--pll->active) {
1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
1630 return;
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1637
1638 reg = pll->pll_reg;
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
1644
1645 pll->on = false;
1646 }
1647
1648 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650 {
1651 int reg;
1652 u32 val, pipeconf_val;
1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
1673 pipeconf_val = I915_READ(PIPECONF(pipe));
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
1681 val |= pipeconf_val & PIPE_BPC_MASK;
1682 }
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697 }
1698
1699 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701 {
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1719 }
1720
1721 /**
1722 * intel_enable_pipe - enable a pipe, asserting requirements
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
1735 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
1737 {
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764 }
1765
1766 /**
1767 * intel_disable_pipe - disable a pipe, asserting requirements
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780 {
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801 }
1802
1803 /*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
1807 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1808 enum plane plane)
1809 {
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812 }
1813
1814 /**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824 {
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1837 intel_flush_display_plane(dev_priv, plane);
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839 }
1840
1841 /**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851 {
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863 }
1864
1865 int
1866 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1867 struct drm_i915_gem_object *obj,
1868 struct intel_ring_buffer *pipelined)
1869 {
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 u32 alignment;
1872 int ret;
1873
1874 switch (obj->tiling_mode) {
1875 case I915_TILING_NONE:
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
1878 else if (INTEL_INFO(dev)->gen >= 4)
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
1895 dev_priv->mm.interruptible = false;
1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1897 if (ret)
1898 goto err_interruptible;
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
1905 ret = i915_gem_object_get_fence(obj);
1906 if (ret)
1907 goto err_unpin;
1908
1909 i915_gem_object_pin_fence(obj);
1910
1911 dev_priv->mm.interruptible = true;
1912 return 0;
1913
1914 err_unpin:
1915 i915_gem_object_unpin(obj);
1916 err_interruptible:
1917 dev_priv->mm.interruptible = true;
1918 return ret;
1919 }
1920
1921 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922 {
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925 }
1926
1927 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932 {
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941 }
1942
1943 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
1945 {
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
1950 struct drm_i915_gem_object *obj;
1951 int plane = intel_crtc->plane;
1952 unsigned long linear_offset;
1953 u32 dspcntr;
1954 u32 reg;
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
1967
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1988 return -EINVAL;
1989 }
1990 if (INTEL_INFO(dev)->gen >= 4) {
1991 if (obj->tiling_mode != I915_TILING_NONE)
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
1997 I915_WRITE(reg, dspcntr);
1998
1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2000
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
2008 intel_crtc->dspaddr_offset = linear_offset;
2009 }
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2014 if (INTEL_INFO(dev)->gen >= 4) {
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
2019 } else
2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2021 POSTING_READ(reg);
2022
2023 return 0;
2024 }
2025
2026 static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028 {
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
2035 unsigned long linear_offset;
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
2042 case 2:
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
2096
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
2104 POSTING_READ(reg);
2105
2106 return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113 {
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
2119 intel_increase_pllclock(crtc);
2120
2121 return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 static int
2125 intel_finish_fb(struct drm_framebuffer *old_fb)
2126 {
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149 }
2150
2151 static int
2152 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2153 struct drm_framebuffer *fb)
2154 {
2155 struct drm_device *dev = crtc->dev;
2156 struct drm_i915_private *dev_priv = dev->dev_private;
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159 struct drm_framebuffer *old_fb;
2160 int ret;
2161
2162 /* no fb bound */
2163 if (!fb) {
2164 DRM_ERROR("No FB bound\n");
2165 return 0;
2166 }
2167
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
2172 return -EINVAL;
2173 }
2174
2175 mutex_lock(&dev->struct_mutex);
2176 ret = intel_pin_and_fence_fb_obj(dev,
2177 to_intel_framebuffer(fb)->obj,
2178 NULL);
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
2181 DRM_ERROR("pin & fence failed\n");
2182 return ret;
2183 }
2184
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
2187
2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2189 if (ret) {
2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2191 mutex_unlock(&dev->struct_mutex);
2192 DRM_ERROR("failed to update base address\n");
2193 return ret;
2194 }
2195
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
2198 crtc->x = x;
2199 crtc->y = y;
2200
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2204 }
2205
2206 intel_update_fbc(dev);
2207 mutex_unlock(&dev->struct_mutex);
2208
2209 if (!dev->primary->master)
2210 return 0;
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
2214 return 0;
2215
2216 if (intel_crtc->pipe) {
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
2222 }
2223
2224 return 0;
2225 }
2226
2227 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2228 {
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
2260 POSTING_READ(DP_A);
2261 udelay(500);
2262 }
2263
2264 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265 {
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
2275 if (IS_IVYBRIDGE(dev)) {
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2281 }
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
2303 }
2304
2305 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306 {
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315 }
2316
2317 /* The FDI link training functions for ILK/Ibexpeak. */
2318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319 {
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
2324 int plane = intel_crtc->plane;
2325 u32 reg, temp, tries;
2326
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
2339 udelay(150);
2340
2341 /* enable CPU FDI TX and PCH FDI RX */
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2349
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
2357 udelay(150);
2358
2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
2365
2366 reg = FDI_RX_IIR(pipe);
2367 for (tries = 0; tries < 5; tries++) {
2368 temp = I915_READ(reg);
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2374 break;
2375 }
2376 }
2377 if (tries == 5)
2378 DRM_ERROR("FDI train 1 fail!\n");
2379
2380 /* Train 2 */
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
2385 I915_WRITE(reg, temp);
2386
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
2391 I915_WRITE(reg, temp);
2392
2393 POSTING_READ(reg);
2394 udelay(150);
2395
2396 reg = FDI_RX_IIR(pipe);
2397 for (tries = 0; tries < 5; tries++) {
2398 temp = I915_READ(reg);
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
2406 }
2407 if (tries == 5)
2408 DRM_ERROR("FDI train 2 fail!\n");
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
2411
2412 }
2413
2414 static const int snb_b_fdi_train_param[] = {
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419 };
2420
2421 /* The FDI link training functions for SNB/Cougarpoint. */
2422 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423 {
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
2428 u32 reg, temp, i, retry;
2429
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
2439 udelay(150);
2440
2441 /* enable CPU FDI TX and PCH FDI RX */
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2452
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
2465 udelay(150);
2466
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
2470 for (i = 0; i < 4; i++) {
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
2478 udelay(500);
2479
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
2490 }
2491 if (retry < 5)
2492 break;
2493 }
2494 if (i == 4)
2495 DRM_ERROR("FDI train 1 fail!\n");
2496
2497 /* Train 2 */
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
2507 I915_WRITE(reg, temp);
2508
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
2521 udelay(150);
2522
2523 for (i = 0; i < 4; i++) {
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
2531 udelay(500);
2532
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
2543 }
2544 if (retry < 5)
2545 break;
2546 }
2547 if (i == 4)
2548 DRM_ERROR("FDI train 2 fail!\n");
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551 }
2552
2553 /* Manual link training for Ivy Bridge A0 parts */
2554 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555 {
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582 temp |= FDI_COMPOSITE_SYNC;
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2590 temp |= FDI_COMPOSITE_SYNC;
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
2599 for (i = 0; i < 4; i++) {
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
2641 for (i = 0; i < 4; i++) {
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665 }
2666
2667 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2668 {
2669 struct drm_device *dev = intel_crtc->base.dev;
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 int pipe = intel_crtc->pipe;
2672 u32 reg, temp;
2673
2674 /* Write the TU size bits so error detection works */
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2677
2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
2694 udelay(200);
2695
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2704
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
2708 }
2709 }
2710
2711 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712 {
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738 }
2739
2740 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741 {
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750 }
2751 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752 {
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
2782 }
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807 }
2808
2809 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2810 {
2811 struct drm_device *dev = crtc->dev;
2812
2813 if (crtc->fb == NULL)
2814 return;
2815
2816 mutex_lock(&dev->struct_mutex);
2817 intel_finish_fb(crtc->fb);
2818 mutex_unlock(&dev->struct_mutex);
2819 }
2820
2821 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2822 {
2823 struct drm_device *dev = crtc->dev;
2824 struct intel_encoder *intel_encoder;
2825
2826 /*
2827 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2828 * must be driven by its own crtc; no sharing is possible.
2829 */
2830 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2831
2832 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2833 * CPU handles all others */
2834 if (IS_HASWELL(dev)) {
2835 /* It is still unclear how this will work on PPT, so throw up a warning */
2836 WARN_ON(!HAS_PCH_LPT(dev));
2837
2838 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2839 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2840 return true;
2841 } else {
2842 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2843 intel_encoder->type);
2844 return false;
2845 }
2846 }
2847
2848 switch (intel_encoder->type) {
2849 case INTEL_OUTPUT_EDP:
2850 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2851 return false;
2852 continue;
2853 }
2854 }
2855
2856 return true;
2857 }
2858
2859 /* Program iCLKIP clock to the desired frequency */
2860 static void lpt_program_iclkip(struct drm_crtc *crtc)
2861 {
2862 struct drm_device *dev = crtc->dev;
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2865 u32 temp;
2866
2867 /* It is necessary to ungate the pixclk gate prior to programming
2868 * the divisors, and gate it back when it is done.
2869 */
2870 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2871
2872 /* Disable SSCCTL */
2873 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2874 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2875 SBI_SSCCTL_DISABLE);
2876
2877 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2878 if (crtc->mode.clock == 20000) {
2879 auxdiv = 1;
2880 divsel = 0x41;
2881 phaseinc = 0x20;
2882 } else {
2883 /* The iCLK virtual clock root frequency is in MHz,
2884 * but the crtc->mode.clock in in KHz. To get the divisors,
2885 * it is necessary to divide one by another, so we
2886 * convert the virtual clock precision to KHz here for higher
2887 * precision.
2888 */
2889 u32 iclk_virtual_root_freq = 172800 * 1000;
2890 u32 iclk_pi_range = 64;
2891 u32 desired_divisor, msb_divisor_value, pi_value;
2892
2893 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2894 msb_divisor_value = desired_divisor / iclk_pi_range;
2895 pi_value = desired_divisor % iclk_pi_range;
2896
2897 auxdiv = 0;
2898 divsel = msb_divisor_value - 2;
2899 phaseinc = pi_value;
2900 }
2901
2902 /* This should not happen with any sane values */
2903 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2904 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2905 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2906 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2907
2908 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2909 crtc->mode.clock,
2910 auxdiv,
2911 divsel,
2912 phasedir,
2913 phaseinc);
2914
2915 /* Program SSCDIVINTPHASE6 */
2916 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2917 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2918 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2919 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2920 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2921 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2922 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2923
2924 intel_sbi_write(dev_priv,
2925 SBI_SSCDIVINTPHASE6,
2926 temp);
2927
2928 /* Program SSCAUXDIV */
2929 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2930 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2931 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2932 intel_sbi_write(dev_priv,
2933 SBI_SSCAUXDIV6,
2934 temp);
2935
2936
2937 /* Enable modulator and associated divider */
2938 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2939 temp &= ~SBI_SSCCTL_DISABLE;
2940 intel_sbi_write(dev_priv,
2941 SBI_SSCCTL6,
2942 temp);
2943
2944 /* Wait for initialization time */
2945 udelay(24);
2946
2947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948 }
2949
2950 /*
2951 * Enable PCH resources required for PCH ports:
2952 * - PCH PLLs
2953 * - FDI training & RX/TX
2954 * - update transcoder timings
2955 * - DP transcoding bits
2956 * - transcoder
2957 */
2958 static void ironlake_pch_enable(struct drm_crtc *crtc)
2959 {
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
2964 u32 reg, temp;
2965
2966 assert_transcoder_disabled(dev_priv, pipe);
2967
2968 /* For PCH output, training FDI link */
2969 dev_priv->display.fdi_link_train(crtc);
2970
2971 intel_enable_pch_pll(intel_crtc);
2972
2973 if (HAS_PCH_LPT(dev)) {
2974 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2975 lpt_program_iclkip(crtc);
2976 } else if (HAS_PCH_CPT(dev)) {
2977 u32 sel;
2978
2979 temp = I915_READ(PCH_DPLL_SEL);
2980 switch (pipe) {
2981 default:
2982 case 0:
2983 temp |= TRANSA_DPLL_ENABLE;
2984 sel = TRANSA_DPLLB_SEL;
2985 break;
2986 case 1:
2987 temp |= TRANSB_DPLL_ENABLE;
2988 sel = TRANSB_DPLLB_SEL;
2989 break;
2990 case 2:
2991 temp |= TRANSC_DPLL_ENABLE;
2992 sel = TRANSC_DPLLB_SEL;
2993 break;
2994 }
2995 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2996 temp |= sel;
2997 else
2998 temp &= ~sel;
2999 I915_WRITE(PCH_DPLL_SEL, temp);
3000 }
3001
3002 /* set transcoder timing, panel must allow it */
3003 assert_panel_unlocked(dev_priv, pipe);
3004 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3005 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3006 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3007
3008 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3009 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3010 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3011 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3012
3013 if (!IS_HASWELL(dev))
3014 intel_fdi_normal_train(crtc);
3015
3016 /* For PCH DP, enable TRANS_DP_CTL */
3017 if (HAS_PCH_CPT(dev) &&
3018 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3019 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3020 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3021 reg = TRANS_DP_CTL(pipe);
3022 temp = I915_READ(reg);
3023 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3024 TRANS_DP_SYNC_MASK |
3025 TRANS_DP_BPC_MASK);
3026 temp |= (TRANS_DP_OUTPUT_ENABLE |
3027 TRANS_DP_ENH_FRAMING);
3028 temp |= bpc << 9; /* same format but at 11:9 */
3029
3030 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3031 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3032 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3033 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3034
3035 switch (intel_trans_dp_port_sel(crtc)) {
3036 case PCH_DP_B:
3037 temp |= TRANS_DP_PORT_SEL_B;
3038 break;
3039 case PCH_DP_C:
3040 temp |= TRANS_DP_PORT_SEL_C;
3041 break;
3042 case PCH_DP_D:
3043 temp |= TRANS_DP_PORT_SEL_D;
3044 break;
3045 default:
3046 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3047 temp |= TRANS_DP_PORT_SEL_B;
3048 break;
3049 }
3050
3051 I915_WRITE(reg, temp);
3052 }
3053
3054 intel_enable_transcoder(dev_priv, pipe);
3055 }
3056
3057 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3058 {
3059 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3060
3061 if (pll == NULL)
3062 return;
3063
3064 if (pll->refcount == 0) {
3065 WARN(1, "bad PCH PLL refcount\n");
3066 return;
3067 }
3068
3069 --pll->refcount;
3070 intel_crtc->pch_pll = NULL;
3071 }
3072
3073 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3074 {
3075 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3076 struct intel_pch_pll *pll;
3077 int i;
3078
3079 pll = intel_crtc->pch_pll;
3080 if (pll) {
3081 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3082 intel_crtc->base.base.id, pll->pll_reg);
3083 goto prepare;
3084 }
3085
3086 if (HAS_PCH_IBX(dev_priv->dev)) {
3087 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3088 i = intel_crtc->pipe;
3089 pll = &dev_priv->pch_plls[i];
3090
3091 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3092 intel_crtc->base.base.id, pll->pll_reg);
3093
3094 goto found;
3095 }
3096
3097 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3098 pll = &dev_priv->pch_plls[i];
3099
3100 /* Only want to check enabled timings first */
3101 if (pll->refcount == 0)
3102 continue;
3103
3104 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3105 fp == I915_READ(pll->fp0_reg)) {
3106 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3107 intel_crtc->base.base.id,
3108 pll->pll_reg, pll->refcount, pll->active);
3109
3110 goto found;
3111 }
3112 }
3113
3114 /* Ok no matching timings, maybe there's a free one? */
3115 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3116 pll = &dev_priv->pch_plls[i];
3117 if (pll->refcount == 0) {
3118 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3119 intel_crtc->base.base.id, pll->pll_reg);
3120 goto found;
3121 }
3122 }
3123
3124 return NULL;
3125
3126 found:
3127 intel_crtc->pch_pll = pll;
3128 pll->refcount++;
3129 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3130 prepare: /* separate function? */
3131 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3132
3133 /* Wait for the clocks to stabilize before rewriting the regs */
3134 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3135 POSTING_READ(pll->pll_reg);
3136 udelay(150);
3137
3138 I915_WRITE(pll->fp0_reg, fp);
3139 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3140 pll->on = false;
3141 return pll;
3142 }
3143
3144 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3148 u32 temp;
3149
3150 temp = I915_READ(dslreg);
3151 udelay(500);
3152 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3153 /* Without this, mode sets may fail silently on FDI */
3154 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3155 udelay(250);
3156 I915_WRITE(tc2reg, 0);
3157 if (wait_for(I915_READ(dslreg) != temp, 5))
3158 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3159 }
3160 }
3161
3162 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3163 {
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167 struct intel_encoder *encoder;
3168 int pipe = intel_crtc->pipe;
3169 int plane = intel_crtc->plane;
3170 u32 temp;
3171 bool is_pch_port;
3172
3173 WARN_ON(!crtc->enabled);
3174
3175 if (intel_crtc->active)
3176 return;
3177
3178 intel_crtc->active = true;
3179 intel_update_watermarks(dev);
3180
3181 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3182 temp = I915_READ(PCH_LVDS);
3183 if ((temp & LVDS_PORT_EN) == 0)
3184 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3185 }
3186
3187 is_pch_port = intel_crtc_driving_pch(crtc);
3188
3189 if (is_pch_port) {
3190 ironlake_fdi_pll_enable(intel_crtc);
3191 } else {
3192 assert_fdi_tx_disabled(dev_priv, pipe);
3193 assert_fdi_rx_disabled(dev_priv, pipe);
3194 }
3195
3196 for_each_encoder_on_crtc(dev, crtc, encoder)
3197 if (encoder->pre_enable)
3198 encoder->pre_enable(encoder);
3199
3200 /* Enable panel fitting for LVDS */
3201 if (dev_priv->pch_pf_size &&
3202 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3203 /* Force use of hard-coded filter coefficients
3204 * as some pre-programmed values are broken,
3205 * e.g. x201.
3206 */
3207 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3208 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3209 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3210 }
3211
3212 /*
3213 * On ILK+ LUT must be loaded before the pipe is running but with
3214 * clocks enabled
3215 */
3216 intel_crtc_load_lut(crtc);
3217
3218 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3219 intel_enable_plane(dev_priv, plane, pipe);
3220
3221 if (is_pch_port)
3222 ironlake_pch_enable(crtc);
3223
3224 mutex_lock(&dev->struct_mutex);
3225 intel_update_fbc(dev);
3226 mutex_unlock(&dev->struct_mutex);
3227
3228 intel_crtc_update_cursor(crtc, true);
3229
3230 for_each_encoder_on_crtc(dev, crtc, encoder)
3231 encoder->enable(encoder);
3232
3233 if (HAS_PCH_CPT(dev))
3234 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3235 }
3236
3237 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3238 {
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 struct intel_encoder *encoder;
3243 int pipe = intel_crtc->pipe;
3244 int plane = intel_crtc->plane;
3245 u32 reg, temp;
3246
3247
3248 if (!intel_crtc->active)
3249 return;
3250
3251 for_each_encoder_on_crtc(dev, crtc, encoder)
3252 encoder->disable(encoder);
3253
3254 intel_crtc_wait_for_pending_flips(crtc);
3255 drm_vblank_off(dev, pipe);
3256 intel_crtc_update_cursor(crtc, false);
3257
3258 intel_disable_plane(dev_priv, plane, pipe);
3259
3260 if (dev_priv->cfb_plane == plane)
3261 intel_disable_fbc(dev);
3262
3263 intel_disable_pipe(dev_priv, pipe);
3264
3265 /* Disable PF */
3266 I915_WRITE(PF_CTL(pipe), 0);
3267 I915_WRITE(PF_WIN_SZ(pipe), 0);
3268
3269 for_each_encoder_on_crtc(dev, crtc, encoder)
3270 if (encoder->post_disable)
3271 encoder->post_disable(encoder);
3272
3273 ironlake_fdi_disable(crtc);
3274
3275 intel_disable_transcoder(dev_priv, pipe);
3276
3277 if (HAS_PCH_CPT(dev)) {
3278 /* disable TRANS_DP_CTL */
3279 reg = TRANS_DP_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3282 temp |= TRANS_DP_PORT_SEL_NONE;
3283 I915_WRITE(reg, temp);
3284
3285 /* disable DPLL_SEL */
3286 temp = I915_READ(PCH_DPLL_SEL);
3287 switch (pipe) {
3288 case 0:
3289 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3290 break;
3291 case 1:
3292 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3293 break;
3294 case 2:
3295 /* C shares PLL A or B */
3296 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3297 break;
3298 default:
3299 BUG(); /* wtf */
3300 }
3301 I915_WRITE(PCH_DPLL_SEL, temp);
3302 }
3303
3304 /* disable PCH DPLL */
3305 intel_disable_pch_pll(intel_crtc);
3306
3307 ironlake_fdi_pll_disable(intel_crtc);
3308
3309 intel_crtc->active = false;
3310 intel_update_watermarks(dev);
3311
3312 mutex_lock(&dev->struct_mutex);
3313 intel_update_fbc(dev);
3314 mutex_unlock(&dev->struct_mutex);
3315 }
3316
3317 static void ironlake_crtc_off(struct drm_crtc *crtc)
3318 {
3319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320 intel_put_pch_pll(intel_crtc);
3321 }
3322
3323 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3324 {
3325 if (!enable && intel_crtc->overlay) {
3326 struct drm_device *dev = intel_crtc->base.dev;
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329 mutex_lock(&dev->struct_mutex);
3330 dev_priv->mm.interruptible = false;
3331 (void) intel_overlay_switch_off(intel_crtc->overlay);
3332 dev_priv->mm.interruptible = true;
3333 mutex_unlock(&dev->struct_mutex);
3334 }
3335
3336 /* Let userspace switch the overlay on again. In most cases userspace
3337 * has to recompute where to put it anyway.
3338 */
3339 }
3340
3341 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3342 {
3343 struct drm_device *dev = crtc->dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3346 struct intel_encoder *encoder;
3347 int pipe = intel_crtc->pipe;
3348 int plane = intel_crtc->plane;
3349
3350 WARN_ON(!crtc->enabled);
3351
3352 if (intel_crtc->active)
3353 return;
3354
3355 intel_crtc->active = true;
3356 intel_update_watermarks(dev);
3357
3358 intel_enable_pll(dev_priv, pipe);
3359 intel_enable_pipe(dev_priv, pipe, false);
3360 intel_enable_plane(dev_priv, plane, pipe);
3361
3362 intel_crtc_load_lut(crtc);
3363 intel_update_fbc(dev);
3364
3365 /* Give the overlay scaler a chance to enable if it's on this pipe */
3366 intel_crtc_dpms_overlay(intel_crtc, true);
3367 intel_crtc_update_cursor(crtc, true);
3368
3369 for_each_encoder_on_crtc(dev, crtc, encoder)
3370 encoder->enable(encoder);
3371 }
3372
3373 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3374 {
3375 struct drm_device *dev = crtc->dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3378 struct intel_encoder *encoder;
3379 int pipe = intel_crtc->pipe;
3380 int plane = intel_crtc->plane;
3381
3382
3383 if (!intel_crtc->active)
3384 return;
3385
3386 for_each_encoder_on_crtc(dev, crtc, encoder)
3387 encoder->disable(encoder);
3388
3389 /* Give the overlay scaler a chance to disable if it's on this pipe */
3390 intel_crtc_wait_for_pending_flips(crtc);
3391 drm_vblank_off(dev, pipe);
3392 intel_crtc_dpms_overlay(intel_crtc, false);
3393 intel_crtc_update_cursor(crtc, false);
3394
3395 if (dev_priv->cfb_plane == plane)
3396 intel_disable_fbc(dev);
3397
3398 intel_disable_plane(dev_priv, plane, pipe);
3399 intel_disable_pipe(dev_priv, pipe);
3400 intel_disable_pll(dev_priv, pipe);
3401
3402 intel_crtc->active = false;
3403 intel_update_fbc(dev);
3404 intel_update_watermarks(dev);
3405 }
3406
3407 static void i9xx_crtc_off(struct drm_crtc *crtc)
3408 {
3409 }
3410
3411 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3412 bool enabled)
3413 {
3414 struct drm_device *dev = crtc->dev;
3415 struct drm_i915_master_private *master_priv;
3416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3417 int pipe = intel_crtc->pipe;
3418
3419 if (!dev->primary->master)
3420 return;
3421
3422 master_priv = dev->primary->master->driver_priv;
3423 if (!master_priv->sarea_priv)
3424 return;
3425
3426 switch (pipe) {
3427 case 0:
3428 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3429 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3430 break;
3431 case 1:
3432 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3433 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3434 break;
3435 default:
3436 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3437 break;
3438 }
3439 }
3440
3441 /**
3442 * Sets the power management mode of the pipe and plane.
3443 */
3444 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3445 {
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_encoder *intel_encoder;
3449 bool enable = false;
3450
3451 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3452 enable |= intel_encoder->connectors_active;
3453
3454 if (enable)
3455 dev_priv->display.crtc_enable(crtc);
3456 else
3457 dev_priv->display.crtc_disable(crtc);
3458
3459 intel_crtc_update_sarea(crtc, enable);
3460 }
3461
3462 static void intel_crtc_noop(struct drm_crtc *crtc)
3463 {
3464 }
3465
3466 static void intel_crtc_disable(struct drm_crtc *crtc)
3467 {
3468 struct drm_device *dev = crtc->dev;
3469 struct drm_connector *connector;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471
3472 /* crtc should still be enabled when we disable it. */
3473 WARN_ON(!crtc->enabled);
3474
3475 dev_priv->display.crtc_disable(crtc);
3476 intel_crtc_update_sarea(crtc, false);
3477 dev_priv->display.off(crtc);
3478
3479 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3480 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3481
3482 if (crtc->fb) {
3483 mutex_lock(&dev->struct_mutex);
3484 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3485 mutex_unlock(&dev->struct_mutex);
3486 crtc->fb = NULL;
3487 }
3488
3489 /* Update computed state. */
3490 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3491 if (!connector->encoder || !connector->encoder->crtc)
3492 continue;
3493
3494 if (connector->encoder->crtc != crtc)
3495 continue;
3496
3497 connector->dpms = DRM_MODE_DPMS_OFF;
3498 to_intel_encoder(connector->encoder)->connectors_active = false;
3499 }
3500 }
3501
3502 void intel_modeset_disable(struct drm_device *dev)
3503 {
3504 struct drm_crtc *crtc;
3505
3506 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3507 if (crtc->enabled)
3508 intel_crtc_disable(crtc);
3509 }
3510 }
3511
3512 void intel_encoder_noop(struct drm_encoder *encoder)
3513 {
3514 }
3515
3516 void intel_encoder_destroy(struct drm_encoder *encoder)
3517 {
3518 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3519
3520 drm_encoder_cleanup(encoder);
3521 kfree(intel_encoder);
3522 }
3523
3524 /* Simple dpms helper for encodres with just one connector, no cloning and only
3525 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3526 * state of the entire output pipe. */
3527 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3528 {
3529 if (mode == DRM_MODE_DPMS_ON) {
3530 encoder->connectors_active = true;
3531
3532 intel_crtc_update_dpms(encoder->base.crtc);
3533 } else {
3534 encoder->connectors_active = false;
3535
3536 intel_crtc_update_dpms(encoder->base.crtc);
3537 }
3538 }
3539
3540 /* Cross check the actual hw state with our own modeset state tracking (and it's
3541 * internal consistency). */
3542 static void intel_connector_check_state(struct intel_connector *connector)
3543 {
3544 if (connector->get_hw_state(connector)) {
3545 struct intel_encoder *encoder = connector->encoder;
3546 struct drm_crtc *crtc;
3547 bool encoder_enabled;
3548 enum pipe pipe;
3549
3550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3551 connector->base.base.id,
3552 drm_get_connector_name(&connector->base));
3553
3554 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3555 "wrong connector dpms state\n");
3556 WARN(connector->base.encoder != &encoder->base,
3557 "active connector not linked to encoder\n");
3558 WARN(!encoder->connectors_active,
3559 "encoder->connectors_active not set\n");
3560
3561 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3562 WARN(!encoder_enabled, "encoder not enabled\n");
3563 if (WARN_ON(!encoder->base.crtc))
3564 return;
3565
3566 crtc = encoder->base.crtc;
3567
3568 WARN(!crtc->enabled, "crtc not enabled\n");
3569 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3570 WARN(pipe != to_intel_crtc(crtc)->pipe,
3571 "encoder active on the wrong pipe\n");
3572 }
3573 }
3574
3575 /* Even simpler default implementation, if there's really no special case to
3576 * consider. */
3577 void intel_connector_dpms(struct drm_connector *connector, int mode)
3578 {
3579 struct intel_encoder *encoder = intel_attached_encoder(connector);
3580
3581 /* All the simple cases only support two dpms states. */
3582 if (mode != DRM_MODE_DPMS_ON)
3583 mode = DRM_MODE_DPMS_OFF;
3584
3585 if (mode == connector->dpms)
3586 return;
3587
3588 connector->dpms = mode;
3589
3590 /* Only need to change hw state when actually enabled */
3591 if (encoder->base.crtc)
3592 intel_encoder_dpms(encoder, mode);
3593 else
3594 WARN_ON(encoder->connectors_active != false);
3595
3596 intel_modeset_check_state(connector->dev);
3597 }
3598
3599 /* Simple connector->get_hw_state implementation for encoders that support only
3600 * one connector and no cloning and hence the encoder state determines the state
3601 * of the connector. */
3602 bool intel_connector_get_hw_state(struct intel_connector *connector)
3603 {
3604 enum pipe pipe = 0;
3605 struct intel_encoder *encoder = connector->encoder;
3606
3607 return encoder->get_hw_state(encoder, &pipe);
3608 }
3609
3610 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3611 const struct drm_display_mode *mode,
3612 struct drm_display_mode *adjusted_mode)
3613 {
3614 struct drm_device *dev = crtc->dev;
3615
3616 if (HAS_PCH_SPLIT(dev)) {
3617 /* FDI link clock is fixed at 2.7G */
3618 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3619 return false;
3620 }
3621
3622 /* All interlaced capable intel hw wants timings in frames. Note though
3623 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3624 * timings, so we need to be careful not to clobber these.*/
3625 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3626 drm_mode_set_crtcinfo(adjusted_mode, 0);
3627
3628 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3629 * with a hsync front porch of 0.
3630 */
3631 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3632 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3633 return false;
3634
3635 return true;
3636 }
3637
3638 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3639 {
3640 return 400000; /* FIXME */
3641 }
3642
3643 static int i945_get_display_clock_speed(struct drm_device *dev)
3644 {
3645 return 400000;
3646 }
3647
3648 static int i915_get_display_clock_speed(struct drm_device *dev)
3649 {
3650 return 333000;
3651 }
3652
3653 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3654 {
3655 return 200000;
3656 }
3657
3658 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3659 {
3660 u16 gcfgc = 0;
3661
3662 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3663
3664 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3665 return 133000;
3666 else {
3667 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3668 case GC_DISPLAY_CLOCK_333_MHZ:
3669 return 333000;
3670 default:
3671 case GC_DISPLAY_CLOCK_190_200_MHZ:
3672 return 190000;
3673 }
3674 }
3675 }
3676
3677 static int i865_get_display_clock_speed(struct drm_device *dev)
3678 {
3679 return 266000;
3680 }
3681
3682 static int i855_get_display_clock_speed(struct drm_device *dev)
3683 {
3684 u16 hpllcc = 0;
3685 /* Assume that the hardware is in the high speed state. This
3686 * should be the default.
3687 */
3688 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3689 case GC_CLOCK_133_200:
3690 case GC_CLOCK_100_200:
3691 return 200000;
3692 case GC_CLOCK_166_250:
3693 return 250000;
3694 case GC_CLOCK_100_133:
3695 return 133000;
3696 }
3697
3698 /* Shouldn't happen */
3699 return 0;
3700 }
3701
3702 static int i830_get_display_clock_speed(struct drm_device *dev)
3703 {
3704 return 133000;
3705 }
3706
3707 struct fdi_m_n {
3708 u32 tu;
3709 u32 gmch_m;
3710 u32 gmch_n;
3711 u32 link_m;
3712 u32 link_n;
3713 };
3714
3715 static void
3716 fdi_reduce_ratio(u32 *num, u32 *den)
3717 {
3718 while (*num > 0xffffff || *den > 0xffffff) {
3719 *num >>= 1;
3720 *den >>= 1;
3721 }
3722 }
3723
3724 static void
3725 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3726 int link_clock, struct fdi_m_n *m_n)
3727 {
3728 m_n->tu = 64; /* default size */
3729
3730 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3731 m_n->gmch_m = bits_per_pixel * pixel_clock;
3732 m_n->gmch_n = link_clock * nlanes * 8;
3733 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3734
3735 m_n->link_m = pixel_clock;
3736 m_n->link_n = link_clock;
3737 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3738 }
3739
3740 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3741 {
3742 if (i915_panel_use_ssc >= 0)
3743 return i915_panel_use_ssc != 0;
3744 return dev_priv->lvds_use_ssc
3745 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3746 }
3747
3748 /**
3749 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3750 * @crtc: CRTC structure
3751 * @mode: requested mode
3752 *
3753 * A pipe may be connected to one or more outputs. Based on the depth of the
3754 * attached framebuffer, choose a good color depth to use on the pipe.
3755 *
3756 * If possible, match the pipe depth to the fb depth. In some cases, this
3757 * isn't ideal, because the connected output supports a lesser or restricted
3758 * set of depths. Resolve that here:
3759 * LVDS typically supports only 6bpc, so clamp down in that case
3760 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3761 * Displays may support a restricted set as well, check EDID and clamp as
3762 * appropriate.
3763 * DP may want to dither down to 6bpc to fit larger modes
3764 *
3765 * RETURNS:
3766 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3767 * true if they don't match).
3768 */
3769 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3770 struct drm_framebuffer *fb,
3771 unsigned int *pipe_bpp,
3772 struct drm_display_mode *mode)
3773 {
3774 struct drm_device *dev = crtc->dev;
3775 struct drm_i915_private *dev_priv = dev->dev_private;
3776 struct drm_connector *connector;
3777 struct intel_encoder *intel_encoder;
3778 unsigned int display_bpc = UINT_MAX, bpc;
3779
3780 /* Walk the encoders & connectors on this crtc, get min bpc */
3781 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3782
3783 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3784 unsigned int lvds_bpc;
3785
3786 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3787 LVDS_A3_POWER_UP)
3788 lvds_bpc = 8;
3789 else
3790 lvds_bpc = 6;
3791
3792 if (lvds_bpc < display_bpc) {
3793 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3794 display_bpc = lvds_bpc;
3795 }
3796 continue;
3797 }
3798
3799 /* Not one of the known troublemakers, check the EDID */
3800 list_for_each_entry(connector, &dev->mode_config.connector_list,
3801 head) {
3802 if (connector->encoder != &intel_encoder->base)
3803 continue;
3804
3805 /* Don't use an invalid EDID bpc value */
3806 if (connector->display_info.bpc &&
3807 connector->display_info.bpc < display_bpc) {
3808 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3809 display_bpc = connector->display_info.bpc;
3810 }
3811 }
3812
3813 /*
3814 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3815 * through, clamp it down. (Note: >12bpc will be caught below.)
3816 */
3817 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3818 if (display_bpc > 8 && display_bpc < 12) {
3819 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3820 display_bpc = 12;
3821 } else {
3822 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3823 display_bpc = 8;
3824 }
3825 }
3826 }
3827
3828 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3829 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3830 display_bpc = 6;
3831 }
3832
3833 /*
3834 * We could just drive the pipe at the highest bpc all the time and
3835 * enable dithering as needed, but that costs bandwidth. So choose
3836 * the minimum value that expresses the full color range of the fb but
3837 * also stays within the max display bpc discovered above.
3838 */
3839
3840 switch (fb->depth) {
3841 case 8:
3842 bpc = 8; /* since we go through a colormap */
3843 break;
3844 case 15:
3845 case 16:
3846 bpc = 6; /* min is 18bpp */
3847 break;
3848 case 24:
3849 bpc = 8;
3850 break;
3851 case 30:
3852 bpc = 10;
3853 break;
3854 case 48:
3855 bpc = 12;
3856 break;
3857 default:
3858 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3859 bpc = min((unsigned int)8, display_bpc);
3860 break;
3861 }
3862
3863 display_bpc = min(display_bpc, bpc);
3864
3865 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3866 bpc, display_bpc);
3867
3868 *pipe_bpp = display_bpc * 3;
3869
3870 return display_bpc != bpc;
3871 }
3872
3873 static int vlv_get_refclk(struct drm_crtc *crtc)
3874 {
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 int refclk = 27000; /* for DP & HDMI */
3878
3879 return 100000; /* only one validated so far */
3880
3881 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3882 refclk = 96000;
3883 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3884 if (intel_panel_use_ssc(dev_priv))
3885 refclk = 100000;
3886 else
3887 refclk = 96000;
3888 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3889 refclk = 100000;
3890 }
3891
3892 return refclk;
3893 }
3894
3895 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3896 {
3897 struct drm_device *dev = crtc->dev;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 int refclk;
3900
3901 if (IS_VALLEYVIEW(dev)) {
3902 refclk = vlv_get_refclk(crtc);
3903 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3904 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3905 refclk = dev_priv->lvds_ssc_freq * 1000;
3906 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3907 refclk / 1000);
3908 } else if (!IS_GEN2(dev)) {
3909 refclk = 96000;
3910 } else {
3911 refclk = 48000;
3912 }
3913
3914 return refclk;
3915 }
3916
3917 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3918 intel_clock_t *clock)
3919 {
3920 /* SDVO TV has fixed PLL values depend on its clock range,
3921 this mirrors vbios setting. */
3922 if (adjusted_mode->clock >= 100000
3923 && adjusted_mode->clock < 140500) {
3924 clock->p1 = 2;
3925 clock->p2 = 10;
3926 clock->n = 3;
3927 clock->m1 = 16;
3928 clock->m2 = 8;
3929 } else if (adjusted_mode->clock >= 140500
3930 && adjusted_mode->clock <= 200000) {
3931 clock->p1 = 1;
3932 clock->p2 = 10;
3933 clock->n = 6;
3934 clock->m1 = 12;
3935 clock->m2 = 8;
3936 }
3937 }
3938
3939 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3940 intel_clock_t *clock,
3941 intel_clock_t *reduced_clock)
3942 {
3943 struct drm_device *dev = crtc->dev;
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946 int pipe = intel_crtc->pipe;
3947 u32 fp, fp2 = 0;
3948
3949 if (IS_PINEVIEW(dev)) {
3950 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3951 if (reduced_clock)
3952 fp2 = (1 << reduced_clock->n) << 16 |
3953 reduced_clock->m1 << 8 | reduced_clock->m2;
3954 } else {
3955 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3956 if (reduced_clock)
3957 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3958 reduced_clock->m2;
3959 }
3960
3961 I915_WRITE(FP0(pipe), fp);
3962
3963 intel_crtc->lowfreq_avail = false;
3964 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3965 reduced_clock && i915_powersave) {
3966 I915_WRITE(FP1(pipe), fp2);
3967 intel_crtc->lowfreq_avail = true;
3968 } else {
3969 I915_WRITE(FP1(pipe), fp);
3970 }
3971 }
3972
3973 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3974 struct drm_display_mode *adjusted_mode)
3975 {
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 int pipe = intel_crtc->pipe;
3980 u32 temp;
3981
3982 temp = I915_READ(LVDS);
3983 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3984 if (pipe == 1) {
3985 temp |= LVDS_PIPEB_SELECT;
3986 } else {
3987 temp &= ~LVDS_PIPEB_SELECT;
3988 }
3989 /* set the corresponsding LVDS_BORDER bit */
3990 temp |= dev_priv->lvds_border_bits;
3991 /* Set the B0-B3 data pairs corresponding to whether we're going to
3992 * set the DPLLs for dual-channel mode or not.
3993 */
3994 if (clock->p2 == 7)
3995 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3996 else
3997 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3998
3999 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4000 * appropriately here, but we need to look more thoroughly into how
4001 * panels behave in the two modes.
4002 */
4003 /* set the dithering flag on LVDS as needed */
4004 if (INTEL_INFO(dev)->gen >= 4) {
4005 if (dev_priv->lvds_dither)
4006 temp |= LVDS_ENABLE_DITHER;
4007 else
4008 temp &= ~LVDS_ENABLE_DITHER;
4009 }
4010 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4011 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4012 temp |= LVDS_HSYNC_POLARITY;
4013 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4014 temp |= LVDS_VSYNC_POLARITY;
4015 I915_WRITE(LVDS, temp);
4016 }
4017
4018 static void vlv_update_pll(struct drm_crtc *crtc,
4019 struct drm_display_mode *mode,
4020 struct drm_display_mode *adjusted_mode,
4021 intel_clock_t *clock, intel_clock_t *reduced_clock,
4022 int num_connectors)
4023 {
4024 struct drm_device *dev = crtc->dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4027 int pipe = intel_crtc->pipe;
4028 u32 dpll, mdiv, pdiv;
4029 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4030 bool is_sdvo;
4031 u32 temp;
4032
4033 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4034 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4035
4036 dpll = DPLL_VGA_MODE_DIS;
4037 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4038 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4039 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4040
4041 I915_WRITE(DPLL(pipe), dpll);
4042 POSTING_READ(DPLL(pipe));
4043
4044 bestn = clock->n;
4045 bestm1 = clock->m1;
4046 bestm2 = clock->m2;
4047 bestp1 = clock->p1;
4048 bestp2 = clock->p2;
4049
4050 /*
4051 * In Valleyview PLL and program lane counter registers are exposed
4052 * through DPIO interface
4053 */
4054 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4055 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4056 mdiv |= ((bestn << DPIO_N_SHIFT));
4057 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4058 mdiv |= (1 << DPIO_K_SHIFT);
4059 mdiv |= DPIO_ENABLE_CALIBRATION;
4060 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4061
4062 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4063
4064 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4065 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4066 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4067 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4068 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4069
4070 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4071
4072 dpll |= DPLL_VCO_ENABLE;
4073 I915_WRITE(DPLL(pipe), dpll);
4074 POSTING_READ(DPLL(pipe));
4075 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4076 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4077
4078 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4079
4080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4081 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4082
4083 I915_WRITE(DPLL(pipe), dpll);
4084
4085 /* Wait for the clocks to stabilize. */
4086 POSTING_READ(DPLL(pipe));
4087 udelay(150);
4088
4089 temp = 0;
4090 if (is_sdvo) {
4091 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4092 if (temp > 1)
4093 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4094 else
4095 temp = 0;
4096 }
4097 I915_WRITE(DPLL_MD(pipe), temp);
4098 POSTING_READ(DPLL_MD(pipe));
4099
4100 /* Now program lane control registers */
4101 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4102 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4103 {
4104 temp = 0x1000C4;
4105 if(pipe == 1)
4106 temp |= (1 << 21);
4107 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4108 }
4109 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4110 {
4111 temp = 0x1000C4;
4112 if(pipe == 1)
4113 temp |= (1 << 21);
4114 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4115 }
4116 }
4117
4118 static void i9xx_update_pll(struct drm_crtc *crtc,
4119 struct drm_display_mode *mode,
4120 struct drm_display_mode *adjusted_mode,
4121 intel_clock_t *clock, intel_clock_t *reduced_clock,
4122 int num_connectors)
4123 {
4124 struct drm_device *dev = crtc->dev;
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127 int pipe = intel_crtc->pipe;
4128 u32 dpll;
4129 bool is_sdvo;
4130
4131 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4132
4133 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4134 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4135
4136 dpll = DPLL_VGA_MODE_DIS;
4137
4138 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4139 dpll |= DPLLB_MODE_LVDS;
4140 else
4141 dpll |= DPLLB_MODE_DAC_SERIAL;
4142 if (is_sdvo) {
4143 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4144 if (pixel_multiplier > 1) {
4145 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4146 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4147 }
4148 dpll |= DPLL_DVO_HIGH_SPEED;
4149 }
4150 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4151 dpll |= DPLL_DVO_HIGH_SPEED;
4152
4153 /* compute bitmask from p1 value */
4154 if (IS_PINEVIEW(dev))
4155 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4156 else {
4157 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4158 if (IS_G4X(dev) && reduced_clock)
4159 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4160 }
4161 switch (clock->p2) {
4162 case 5:
4163 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4164 break;
4165 case 7:
4166 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4167 break;
4168 case 10:
4169 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4170 break;
4171 case 14:
4172 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4173 break;
4174 }
4175 if (INTEL_INFO(dev)->gen >= 4)
4176 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4177
4178 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4179 dpll |= PLL_REF_INPUT_TVCLKINBC;
4180 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4181 /* XXX: just matching BIOS for now */
4182 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4183 dpll |= 3;
4184 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4185 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4186 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4187 else
4188 dpll |= PLL_REF_INPUT_DREFCLK;
4189
4190 dpll |= DPLL_VCO_ENABLE;
4191 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4192 POSTING_READ(DPLL(pipe));
4193 udelay(150);
4194
4195 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4196 * This is an exception to the general rule that mode_set doesn't turn
4197 * things on.
4198 */
4199 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4200 intel_update_lvds(crtc, clock, adjusted_mode);
4201
4202 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4203 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4204
4205 I915_WRITE(DPLL(pipe), dpll);
4206
4207 /* Wait for the clocks to stabilize. */
4208 POSTING_READ(DPLL(pipe));
4209 udelay(150);
4210
4211 if (INTEL_INFO(dev)->gen >= 4) {
4212 u32 temp = 0;
4213 if (is_sdvo) {
4214 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4215 if (temp > 1)
4216 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4217 else
4218 temp = 0;
4219 }
4220 I915_WRITE(DPLL_MD(pipe), temp);
4221 } else {
4222 /* The pixel multiplier can only be updated once the
4223 * DPLL is enabled and the clocks are stable.
4224 *
4225 * So write it again.
4226 */
4227 I915_WRITE(DPLL(pipe), dpll);
4228 }
4229 }
4230
4231 static void i8xx_update_pll(struct drm_crtc *crtc,
4232 struct drm_display_mode *adjusted_mode,
4233 intel_clock_t *clock, intel_clock_t *reduced_clock,
4234 int num_connectors)
4235 {
4236 struct drm_device *dev = crtc->dev;
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4239 int pipe = intel_crtc->pipe;
4240 u32 dpll;
4241
4242 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4243
4244 dpll = DPLL_VGA_MODE_DIS;
4245
4246 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4247 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4248 } else {
4249 if (clock->p1 == 2)
4250 dpll |= PLL_P1_DIVIDE_BY_TWO;
4251 else
4252 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4253 if (clock->p2 == 4)
4254 dpll |= PLL_P2_DIVIDE_BY_4;
4255 }
4256
4257 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4258 /* XXX: just matching BIOS for now */
4259 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4260 dpll |= 3;
4261 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4262 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4263 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4264 else
4265 dpll |= PLL_REF_INPUT_DREFCLK;
4266
4267 dpll |= DPLL_VCO_ENABLE;
4268 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4269 POSTING_READ(DPLL(pipe));
4270 udelay(150);
4271
4272 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4273 * This is an exception to the general rule that mode_set doesn't turn
4274 * things on.
4275 */
4276 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4277 intel_update_lvds(crtc, clock, adjusted_mode);
4278
4279 I915_WRITE(DPLL(pipe), dpll);
4280
4281 /* Wait for the clocks to stabilize. */
4282 POSTING_READ(DPLL(pipe));
4283 udelay(150);
4284
4285 /* The pixel multiplier can only be updated once the
4286 * DPLL is enabled and the clocks are stable.
4287 *
4288 * So write it again.
4289 */
4290 I915_WRITE(DPLL(pipe), dpll);
4291 }
4292
4293 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4294 struct drm_display_mode *mode,
4295 struct drm_display_mode *adjusted_mode,
4296 int x, int y,
4297 struct drm_framebuffer *fb)
4298 {
4299 struct drm_device *dev = crtc->dev;
4300 struct drm_i915_private *dev_priv = dev->dev_private;
4301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4302 int pipe = intel_crtc->pipe;
4303 int plane = intel_crtc->plane;
4304 int refclk, num_connectors = 0;
4305 intel_clock_t clock, reduced_clock;
4306 u32 dspcntr, pipeconf, vsyncshift;
4307 bool ok, has_reduced_clock = false, is_sdvo = false;
4308 bool is_lvds = false, is_tv = false, is_dp = false;
4309 struct intel_encoder *encoder;
4310 const intel_limit_t *limit;
4311 int ret;
4312
4313 for_each_encoder_on_crtc(dev, crtc, encoder) {
4314 switch (encoder->type) {
4315 case INTEL_OUTPUT_LVDS:
4316 is_lvds = true;
4317 break;
4318 case INTEL_OUTPUT_SDVO:
4319 case INTEL_OUTPUT_HDMI:
4320 is_sdvo = true;
4321 if (encoder->needs_tv_clock)
4322 is_tv = true;
4323 break;
4324 case INTEL_OUTPUT_TVOUT:
4325 is_tv = true;
4326 break;
4327 case INTEL_OUTPUT_DISPLAYPORT:
4328 is_dp = true;
4329 break;
4330 }
4331
4332 num_connectors++;
4333 }
4334
4335 refclk = i9xx_get_refclk(crtc, num_connectors);
4336
4337 /*
4338 * Returns a set of divisors for the desired target clock with the given
4339 * refclk, or FALSE. The returned values represent the clock equation:
4340 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4341 */
4342 limit = intel_limit(crtc, refclk);
4343 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4344 &clock);
4345 if (!ok) {
4346 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4347 return -EINVAL;
4348 }
4349
4350 /* Ensure that the cursor is valid for the new mode before changing... */
4351 intel_crtc_update_cursor(crtc, true);
4352
4353 if (is_lvds && dev_priv->lvds_downclock_avail) {
4354 /*
4355 * Ensure we match the reduced clock's P to the target clock.
4356 * If the clocks don't match, we can't switch the display clock
4357 * by using the FP0/FP1. In such case we will disable the LVDS
4358 * downclock feature.
4359 */
4360 has_reduced_clock = limit->find_pll(limit, crtc,
4361 dev_priv->lvds_downclock,
4362 refclk,
4363 &clock,
4364 &reduced_clock);
4365 }
4366
4367 if (is_sdvo && is_tv)
4368 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4369
4370 if (IS_GEN2(dev))
4371 i8xx_update_pll(crtc, adjusted_mode, &clock,
4372 has_reduced_clock ? &reduced_clock : NULL,
4373 num_connectors);
4374 else if (IS_VALLEYVIEW(dev))
4375 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4376 has_reduced_clock ? &reduced_clock : NULL,
4377 num_connectors);
4378 else
4379 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4380 has_reduced_clock ? &reduced_clock : NULL,
4381 num_connectors);
4382
4383 /* setup pipeconf */
4384 pipeconf = I915_READ(PIPECONF(pipe));
4385
4386 /* Set up the display plane register */
4387 dspcntr = DISPPLANE_GAMMA_ENABLE;
4388
4389 if (pipe == 0)
4390 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4391 else
4392 dspcntr |= DISPPLANE_SEL_PIPE_B;
4393
4394 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4395 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4396 * core speed.
4397 *
4398 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4399 * pipe == 0 check?
4400 */
4401 if (mode->clock >
4402 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4403 pipeconf |= PIPECONF_DOUBLE_WIDE;
4404 else
4405 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4406 }
4407
4408 /* default to 8bpc */
4409 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4410 if (is_dp) {
4411 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4412 pipeconf |= PIPECONF_BPP_6 |
4413 PIPECONF_DITHER_EN |
4414 PIPECONF_DITHER_TYPE_SP;
4415 }
4416 }
4417
4418 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4419 drm_mode_debug_printmodeline(mode);
4420
4421 if (HAS_PIPE_CXSR(dev)) {
4422 if (intel_crtc->lowfreq_avail) {
4423 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4424 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4425 } else {
4426 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4427 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4428 }
4429 }
4430
4431 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4432 if (!IS_GEN2(dev) &&
4433 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4434 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4435 /* the chip adds 2 halflines automatically */
4436 adjusted_mode->crtc_vtotal -= 1;
4437 adjusted_mode->crtc_vblank_end -= 1;
4438 vsyncshift = adjusted_mode->crtc_hsync_start
4439 - adjusted_mode->crtc_htotal/2;
4440 } else {
4441 pipeconf |= PIPECONF_PROGRESSIVE;
4442 vsyncshift = 0;
4443 }
4444
4445 if (!IS_GEN3(dev))
4446 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4447
4448 I915_WRITE(HTOTAL(pipe),
4449 (adjusted_mode->crtc_hdisplay - 1) |
4450 ((adjusted_mode->crtc_htotal - 1) << 16));
4451 I915_WRITE(HBLANK(pipe),
4452 (adjusted_mode->crtc_hblank_start - 1) |
4453 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4454 I915_WRITE(HSYNC(pipe),
4455 (adjusted_mode->crtc_hsync_start - 1) |
4456 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4457
4458 I915_WRITE(VTOTAL(pipe),
4459 (adjusted_mode->crtc_vdisplay - 1) |
4460 ((adjusted_mode->crtc_vtotal - 1) << 16));
4461 I915_WRITE(VBLANK(pipe),
4462 (adjusted_mode->crtc_vblank_start - 1) |
4463 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4464 I915_WRITE(VSYNC(pipe),
4465 (adjusted_mode->crtc_vsync_start - 1) |
4466 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4467
4468 /* pipesrc and dspsize control the size that is scaled from,
4469 * which should always be the user's requested size.
4470 */
4471 I915_WRITE(DSPSIZE(plane),
4472 ((mode->vdisplay - 1) << 16) |
4473 (mode->hdisplay - 1));
4474 I915_WRITE(DSPPOS(plane), 0);
4475 I915_WRITE(PIPESRC(pipe),
4476 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4477
4478 I915_WRITE(PIPECONF(pipe), pipeconf);
4479 POSTING_READ(PIPECONF(pipe));
4480 intel_enable_pipe(dev_priv, pipe, false);
4481
4482 intel_wait_for_vblank(dev, pipe);
4483
4484 I915_WRITE(DSPCNTR(plane), dspcntr);
4485 POSTING_READ(DSPCNTR(plane));
4486
4487 ret = intel_pipe_set_base(crtc, x, y, fb);
4488
4489 intel_update_watermarks(dev);
4490
4491 return ret;
4492 }
4493
4494 /*
4495 * Initialize reference clocks when the driver loads
4496 */
4497 void ironlake_init_pch_refclk(struct drm_device *dev)
4498 {
4499 struct drm_i915_private *dev_priv = dev->dev_private;
4500 struct drm_mode_config *mode_config = &dev->mode_config;
4501 struct intel_encoder *encoder;
4502 u32 temp;
4503 bool has_lvds = false;
4504 bool has_cpu_edp = false;
4505 bool has_pch_edp = false;
4506 bool has_panel = false;
4507 bool has_ck505 = false;
4508 bool can_ssc = false;
4509
4510 /* We need to take the global config into account */
4511 list_for_each_entry(encoder, &mode_config->encoder_list,
4512 base.head) {
4513 switch (encoder->type) {
4514 case INTEL_OUTPUT_LVDS:
4515 has_panel = true;
4516 has_lvds = true;
4517 break;
4518 case INTEL_OUTPUT_EDP:
4519 has_panel = true;
4520 if (intel_encoder_is_pch_edp(&encoder->base))
4521 has_pch_edp = true;
4522 else
4523 has_cpu_edp = true;
4524 break;
4525 }
4526 }
4527
4528 if (HAS_PCH_IBX(dev)) {
4529 has_ck505 = dev_priv->display_clock_mode;
4530 can_ssc = has_ck505;
4531 } else {
4532 has_ck505 = false;
4533 can_ssc = true;
4534 }
4535
4536 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4537 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4538 has_ck505);
4539
4540 /* Ironlake: try to setup display ref clock before DPLL
4541 * enabling. This is only under driver's control after
4542 * PCH B stepping, previous chipset stepping should be
4543 * ignoring this setting.
4544 */
4545 temp = I915_READ(PCH_DREF_CONTROL);
4546 /* Always enable nonspread source */
4547 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4548
4549 if (has_ck505)
4550 temp |= DREF_NONSPREAD_CK505_ENABLE;
4551 else
4552 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4553
4554 if (has_panel) {
4555 temp &= ~DREF_SSC_SOURCE_MASK;
4556 temp |= DREF_SSC_SOURCE_ENABLE;
4557
4558 /* SSC must be turned on before enabling the CPU output */
4559 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4560 DRM_DEBUG_KMS("Using SSC on panel\n");
4561 temp |= DREF_SSC1_ENABLE;
4562 } else
4563 temp &= ~DREF_SSC1_ENABLE;
4564
4565 /* Get SSC going before enabling the outputs */
4566 I915_WRITE(PCH_DREF_CONTROL, temp);
4567 POSTING_READ(PCH_DREF_CONTROL);
4568 udelay(200);
4569
4570 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4571
4572 /* Enable CPU source on CPU attached eDP */
4573 if (has_cpu_edp) {
4574 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4575 DRM_DEBUG_KMS("Using SSC on eDP\n");
4576 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4577 }
4578 else
4579 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4580 } else
4581 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4582
4583 I915_WRITE(PCH_DREF_CONTROL, temp);
4584 POSTING_READ(PCH_DREF_CONTROL);
4585 udelay(200);
4586 } else {
4587 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4588
4589 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4590
4591 /* Turn off CPU output */
4592 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4593
4594 I915_WRITE(PCH_DREF_CONTROL, temp);
4595 POSTING_READ(PCH_DREF_CONTROL);
4596 udelay(200);
4597
4598 /* Turn off the SSC source */
4599 temp &= ~DREF_SSC_SOURCE_MASK;
4600 temp |= DREF_SSC_SOURCE_DISABLE;
4601
4602 /* Turn off SSC1 */
4603 temp &= ~ DREF_SSC1_ENABLE;
4604
4605 I915_WRITE(PCH_DREF_CONTROL, temp);
4606 POSTING_READ(PCH_DREF_CONTROL);
4607 udelay(200);
4608 }
4609 }
4610
4611 static int ironlake_get_refclk(struct drm_crtc *crtc)
4612 {
4613 struct drm_device *dev = crtc->dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 struct intel_encoder *encoder;
4616 struct intel_encoder *edp_encoder = NULL;
4617 int num_connectors = 0;
4618 bool is_lvds = false;
4619
4620 for_each_encoder_on_crtc(dev, crtc, encoder) {
4621 switch (encoder->type) {
4622 case INTEL_OUTPUT_LVDS:
4623 is_lvds = true;
4624 break;
4625 case INTEL_OUTPUT_EDP:
4626 edp_encoder = encoder;
4627 break;
4628 }
4629 num_connectors++;
4630 }
4631
4632 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4633 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4634 dev_priv->lvds_ssc_freq);
4635 return dev_priv->lvds_ssc_freq * 1000;
4636 }
4637
4638 return 120000;
4639 }
4640
4641 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4642 struct drm_display_mode *adjusted_mode,
4643 bool dither)
4644 {
4645 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4647 int pipe = intel_crtc->pipe;
4648 uint32_t val;
4649
4650 val = I915_READ(PIPECONF(pipe));
4651
4652 val &= ~PIPE_BPC_MASK;
4653 switch (intel_crtc->bpp) {
4654 case 18:
4655 val |= PIPE_6BPC;
4656 break;
4657 case 24:
4658 val |= PIPE_8BPC;
4659 break;
4660 case 30:
4661 val |= PIPE_10BPC;
4662 break;
4663 case 36:
4664 val |= PIPE_12BPC;
4665 break;
4666 default:
4667 /* Case prevented by intel_choose_pipe_bpp_dither. */
4668 BUG();
4669 }
4670
4671 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4672 if (dither)
4673 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4674
4675 val &= ~PIPECONF_INTERLACE_MASK;
4676 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4677 val |= PIPECONF_INTERLACED_ILK;
4678 else
4679 val |= PIPECONF_PROGRESSIVE;
4680
4681 I915_WRITE(PIPECONF(pipe), val);
4682 POSTING_READ(PIPECONF(pipe));
4683 }
4684
4685 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4686 struct drm_display_mode *adjusted_mode,
4687 intel_clock_t *clock,
4688 bool *has_reduced_clock,
4689 intel_clock_t *reduced_clock)
4690 {
4691 struct drm_device *dev = crtc->dev;
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693 struct intel_encoder *intel_encoder;
4694 int refclk;
4695 const intel_limit_t *limit;
4696 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4697
4698 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4699 switch (intel_encoder->type) {
4700 case INTEL_OUTPUT_LVDS:
4701 is_lvds = true;
4702 break;
4703 case INTEL_OUTPUT_SDVO:
4704 case INTEL_OUTPUT_HDMI:
4705 is_sdvo = true;
4706 if (intel_encoder->needs_tv_clock)
4707 is_tv = true;
4708 break;
4709 case INTEL_OUTPUT_TVOUT:
4710 is_tv = true;
4711 break;
4712 }
4713 }
4714
4715 refclk = ironlake_get_refclk(crtc);
4716
4717 /*
4718 * Returns a set of divisors for the desired target clock with the given
4719 * refclk, or FALSE. The returned values represent the clock equation:
4720 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4721 */
4722 limit = intel_limit(crtc, refclk);
4723 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4724 clock);
4725 if (!ret)
4726 return false;
4727
4728 if (is_lvds && dev_priv->lvds_downclock_avail) {
4729 /*
4730 * Ensure we match the reduced clock's P to the target clock.
4731 * If the clocks don't match, we can't switch the display clock
4732 * by using the FP0/FP1. In such case we will disable the LVDS
4733 * downclock feature.
4734 */
4735 *has_reduced_clock = limit->find_pll(limit, crtc,
4736 dev_priv->lvds_downclock,
4737 refclk,
4738 clock,
4739 reduced_clock);
4740 }
4741
4742 if (is_sdvo && is_tv)
4743 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4744
4745 return true;
4746 }
4747
4748 static void ironlake_set_m_n(struct drm_crtc *crtc,
4749 struct drm_display_mode *mode,
4750 struct drm_display_mode *adjusted_mode)
4751 {
4752 struct drm_device *dev = crtc->dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755 enum pipe pipe = intel_crtc->pipe;
4756 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4757 struct fdi_m_n m_n = {0};
4758 int target_clock, pixel_multiplier, lane, link_bw;
4759 bool is_dp = false, is_cpu_edp = false;
4760
4761 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4762 switch (intel_encoder->type) {
4763 case INTEL_OUTPUT_DISPLAYPORT:
4764 is_dp = true;
4765 break;
4766 case INTEL_OUTPUT_EDP:
4767 is_dp = true;
4768 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4769 is_cpu_edp = true;
4770 edp_encoder = intel_encoder;
4771 break;
4772 }
4773 }
4774
4775 /* FDI link */
4776 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4777 lane = 0;
4778 /* CPU eDP doesn't require FDI link, so just set DP M/N
4779 according to current link config */
4780 if (is_cpu_edp) {
4781 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4782 } else {
4783 /* FDI is a binary signal running at ~2.7GHz, encoding
4784 * each output octet as 10 bits. The actual frequency
4785 * is stored as a divider into a 100MHz clock, and the
4786 * mode pixel clock is stored in units of 1KHz.
4787 * Hence the bw of each lane in terms of the mode signal
4788 * is:
4789 */
4790 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4791 }
4792
4793 /* [e]DP over FDI requires target mode clock instead of link clock. */
4794 if (edp_encoder)
4795 target_clock = intel_edp_target_clock(edp_encoder, mode);
4796 else if (is_dp)
4797 target_clock = mode->clock;
4798 else
4799 target_clock = adjusted_mode->clock;
4800
4801 if (!lane) {
4802 /*
4803 * Account for spread spectrum to avoid
4804 * oversubscribing the link. Max center spread
4805 * is 2.5%; use 5% for safety's sake.
4806 */
4807 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4808 lane = bps / (link_bw * 8) + 1;
4809 }
4810
4811 intel_crtc->fdi_lanes = lane;
4812
4813 if (pixel_multiplier > 1)
4814 link_bw *= pixel_multiplier;
4815 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4816 &m_n);
4817
4818 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4819 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4820 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4821 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4822 }
4823
4824 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4825 struct drm_display_mode *adjusted_mode,
4826 intel_clock_t *clock, u32 fp)
4827 {
4828 struct drm_crtc *crtc = &intel_crtc->base;
4829 struct drm_device *dev = crtc->dev;
4830 struct drm_i915_private *dev_priv = dev->dev_private;
4831 struct intel_encoder *intel_encoder;
4832 uint32_t dpll;
4833 int factor, pixel_multiplier, num_connectors = 0;
4834 bool is_lvds = false, is_sdvo = false, is_tv = false;
4835 bool is_dp = false, is_cpu_edp = false;
4836
4837 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4838 switch (intel_encoder->type) {
4839 case INTEL_OUTPUT_LVDS:
4840 is_lvds = true;
4841 break;
4842 case INTEL_OUTPUT_SDVO:
4843 case INTEL_OUTPUT_HDMI:
4844 is_sdvo = true;
4845 if (intel_encoder->needs_tv_clock)
4846 is_tv = true;
4847 break;
4848 case INTEL_OUTPUT_TVOUT:
4849 is_tv = true;
4850 break;
4851 case INTEL_OUTPUT_DISPLAYPORT:
4852 is_dp = true;
4853 break;
4854 case INTEL_OUTPUT_EDP:
4855 is_dp = true;
4856 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4857 is_cpu_edp = true;
4858 break;
4859 }
4860
4861 num_connectors++;
4862 }
4863
4864 /* Enable autotuning of the PLL clock (if permissible) */
4865 factor = 21;
4866 if (is_lvds) {
4867 if ((intel_panel_use_ssc(dev_priv) &&
4868 dev_priv->lvds_ssc_freq == 100) ||
4869 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4870 factor = 25;
4871 } else if (is_sdvo && is_tv)
4872 factor = 20;
4873
4874 if (clock->m < factor * clock->n)
4875 fp |= FP_CB_TUNE;
4876
4877 dpll = 0;
4878
4879 if (is_lvds)
4880 dpll |= DPLLB_MODE_LVDS;
4881 else
4882 dpll |= DPLLB_MODE_DAC_SERIAL;
4883 if (is_sdvo) {
4884 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4885 if (pixel_multiplier > 1) {
4886 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4887 }
4888 dpll |= DPLL_DVO_HIGH_SPEED;
4889 }
4890 if (is_dp && !is_cpu_edp)
4891 dpll |= DPLL_DVO_HIGH_SPEED;
4892
4893 /* compute bitmask from p1 value */
4894 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4895 /* also FPA1 */
4896 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4897
4898 switch (clock->p2) {
4899 case 5:
4900 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4901 break;
4902 case 7:
4903 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4904 break;
4905 case 10:
4906 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4907 break;
4908 case 14:
4909 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4910 break;
4911 }
4912
4913 if (is_sdvo && is_tv)
4914 dpll |= PLL_REF_INPUT_TVCLKINBC;
4915 else if (is_tv)
4916 /* XXX: just matching BIOS for now */
4917 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4918 dpll |= 3;
4919 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4920 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4921 else
4922 dpll |= PLL_REF_INPUT_DREFCLK;
4923
4924 return dpll;
4925 }
4926
4927 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4928 struct drm_display_mode *mode,
4929 struct drm_display_mode *adjusted_mode,
4930 int x, int y,
4931 struct drm_framebuffer *fb)
4932 {
4933 struct drm_device *dev = crtc->dev;
4934 struct drm_i915_private *dev_priv = dev->dev_private;
4935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4936 int pipe = intel_crtc->pipe;
4937 int plane = intel_crtc->plane;
4938 int num_connectors = 0;
4939 intel_clock_t clock, reduced_clock;
4940 u32 dpll, fp = 0, fp2 = 0;
4941 bool ok, has_reduced_clock = false;
4942 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
4943 struct intel_encoder *encoder;
4944 u32 temp;
4945 int ret;
4946 bool dither;
4947
4948 for_each_encoder_on_crtc(dev, crtc, encoder) {
4949 switch (encoder->type) {
4950 case INTEL_OUTPUT_LVDS:
4951 is_lvds = true;
4952 break;
4953 case INTEL_OUTPUT_DISPLAYPORT:
4954 is_dp = true;
4955 break;
4956 case INTEL_OUTPUT_EDP:
4957 is_dp = true;
4958 if (!intel_encoder_is_pch_edp(&encoder->base))
4959 is_cpu_edp = true;
4960 break;
4961 }
4962
4963 num_connectors++;
4964 }
4965
4966 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4967 &has_reduced_clock, &reduced_clock);
4968 if (!ok) {
4969 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4970 return -EINVAL;
4971 }
4972
4973 /* Ensure that the cursor is valid for the new mode before changing... */
4974 intel_crtc_update_cursor(crtc, true);
4975
4976 /* determine panel color depth */
4977 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
4978 if (is_lvds && dev_priv->lvds_dither)
4979 dither = true;
4980
4981 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4982 if (has_reduced_clock)
4983 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4984 reduced_clock.m2;
4985
4986 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
4987
4988 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4989 drm_mode_debug_printmodeline(mode);
4990
4991 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4992 * pre-Haswell/LPT generation */
4993 if (HAS_PCH_LPT(dev)) {
4994 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4995 pipe);
4996 } else if (!is_cpu_edp) {
4997 struct intel_pch_pll *pll;
4998
4999 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5000 if (pll == NULL) {
5001 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5002 pipe);
5003 return -EINVAL;
5004 }
5005 } else
5006 intel_put_pch_pll(intel_crtc);
5007
5008 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5009 * This is an exception to the general rule that mode_set doesn't turn
5010 * things on.
5011 */
5012 if (is_lvds) {
5013 temp = I915_READ(PCH_LVDS);
5014 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5015 if (HAS_PCH_CPT(dev)) {
5016 temp &= ~PORT_TRANS_SEL_MASK;
5017 temp |= PORT_TRANS_SEL_CPT(pipe);
5018 } else {
5019 if (pipe == 1)
5020 temp |= LVDS_PIPEB_SELECT;
5021 else
5022 temp &= ~LVDS_PIPEB_SELECT;
5023 }
5024
5025 /* set the corresponsding LVDS_BORDER bit */
5026 temp |= dev_priv->lvds_border_bits;
5027 /* Set the B0-B3 data pairs corresponding to whether we're going to
5028 * set the DPLLs for dual-channel mode or not.
5029 */
5030 if (clock.p2 == 7)
5031 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5032 else
5033 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5034
5035 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5036 * appropriately here, but we need to look more thoroughly into how
5037 * panels behave in the two modes.
5038 */
5039 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5040 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5041 temp |= LVDS_HSYNC_POLARITY;
5042 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5043 temp |= LVDS_VSYNC_POLARITY;
5044 I915_WRITE(PCH_LVDS, temp);
5045 }
5046
5047 if (is_dp && !is_cpu_edp) {
5048 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5049 } else {
5050 /* For non-DP output, clear any trans DP clock recovery setting.*/
5051 I915_WRITE(TRANSDATA_M1(pipe), 0);
5052 I915_WRITE(TRANSDATA_N1(pipe), 0);
5053 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5054 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5055 }
5056
5057 if (intel_crtc->pch_pll) {
5058 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5059
5060 /* Wait for the clocks to stabilize. */
5061 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5062 udelay(150);
5063
5064 /* The pixel multiplier can only be updated once the
5065 * DPLL is enabled and the clocks are stable.
5066 *
5067 * So write it again.
5068 */
5069 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5070 }
5071
5072 intel_crtc->lowfreq_avail = false;
5073 if (intel_crtc->pch_pll) {
5074 if (is_lvds && has_reduced_clock && i915_powersave) {
5075 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5076 intel_crtc->lowfreq_avail = true;
5077 } else {
5078 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5079 }
5080 }
5081
5082 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5083 /* the chip adds 2 halflines automatically */
5084 adjusted_mode->crtc_vtotal -= 1;
5085 adjusted_mode->crtc_vblank_end -= 1;
5086 I915_WRITE(VSYNCSHIFT(pipe),
5087 adjusted_mode->crtc_hsync_start
5088 - adjusted_mode->crtc_htotal/2);
5089 } else {
5090 I915_WRITE(VSYNCSHIFT(pipe), 0);
5091 }
5092
5093 I915_WRITE(HTOTAL(pipe),
5094 (adjusted_mode->crtc_hdisplay - 1) |
5095 ((adjusted_mode->crtc_htotal - 1) << 16));
5096 I915_WRITE(HBLANK(pipe),
5097 (adjusted_mode->crtc_hblank_start - 1) |
5098 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5099 I915_WRITE(HSYNC(pipe),
5100 (adjusted_mode->crtc_hsync_start - 1) |
5101 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5102
5103 I915_WRITE(VTOTAL(pipe),
5104 (adjusted_mode->crtc_vdisplay - 1) |
5105 ((adjusted_mode->crtc_vtotal - 1) << 16));
5106 I915_WRITE(VBLANK(pipe),
5107 (adjusted_mode->crtc_vblank_start - 1) |
5108 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5109 I915_WRITE(VSYNC(pipe),
5110 (adjusted_mode->crtc_vsync_start - 1) |
5111 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5112
5113 /* pipesrc controls the size that is scaled from, which should
5114 * always be the user's requested size.
5115 */
5116 I915_WRITE(PIPESRC(pipe),
5117 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5118
5119 ironlake_set_m_n(crtc, mode, adjusted_mode);
5120
5121 if (is_cpu_edp)
5122 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5123
5124 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5125
5126 intel_wait_for_vblank(dev, pipe);
5127
5128 /* Set up the display plane register */
5129 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5130 POSTING_READ(DSPCNTR(plane));
5131
5132 ret = intel_pipe_set_base(crtc, x, y, fb);
5133
5134 intel_update_watermarks(dev);
5135
5136 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5137
5138 return ret;
5139 }
5140
5141 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5142 struct drm_display_mode *mode,
5143 struct drm_display_mode *adjusted_mode,
5144 int x, int y,
5145 struct drm_framebuffer *fb)
5146 {
5147 struct drm_device *dev = crtc->dev;
5148 struct drm_i915_private *dev_priv = dev->dev_private;
5149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5150 int pipe = intel_crtc->pipe;
5151 int ret;
5152
5153 drm_vblank_pre_modeset(dev, pipe);
5154
5155 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5156 x, y, fb);
5157 drm_vblank_post_modeset(dev, pipe);
5158
5159 return ret;
5160 }
5161
5162 static bool intel_eld_uptodate(struct drm_connector *connector,
5163 int reg_eldv, uint32_t bits_eldv,
5164 int reg_elda, uint32_t bits_elda,
5165 int reg_edid)
5166 {
5167 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5168 uint8_t *eld = connector->eld;
5169 uint32_t i;
5170
5171 i = I915_READ(reg_eldv);
5172 i &= bits_eldv;
5173
5174 if (!eld[0])
5175 return !i;
5176
5177 if (!i)
5178 return false;
5179
5180 i = I915_READ(reg_elda);
5181 i &= ~bits_elda;
5182 I915_WRITE(reg_elda, i);
5183
5184 for (i = 0; i < eld[2]; i++)
5185 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5186 return false;
5187
5188 return true;
5189 }
5190
5191 static void g4x_write_eld(struct drm_connector *connector,
5192 struct drm_crtc *crtc)
5193 {
5194 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5195 uint8_t *eld = connector->eld;
5196 uint32_t eldv;
5197 uint32_t len;
5198 uint32_t i;
5199
5200 i = I915_READ(G4X_AUD_VID_DID);
5201
5202 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5203 eldv = G4X_ELDV_DEVCL_DEVBLC;
5204 else
5205 eldv = G4X_ELDV_DEVCTG;
5206
5207 if (intel_eld_uptodate(connector,
5208 G4X_AUD_CNTL_ST, eldv,
5209 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5210 G4X_HDMIW_HDMIEDID))
5211 return;
5212
5213 i = I915_READ(G4X_AUD_CNTL_ST);
5214 i &= ~(eldv | G4X_ELD_ADDR);
5215 len = (i >> 9) & 0x1f; /* ELD buffer size */
5216 I915_WRITE(G4X_AUD_CNTL_ST, i);
5217
5218 if (!eld[0])
5219 return;
5220
5221 len = min_t(uint8_t, eld[2], len);
5222 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5223 for (i = 0; i < len; i++)
5224 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5225
5226 i = I915_READ(G4X_AUD_CNTL_ST);
5227 i |= eldv;
5228 I915_WRITE(G4X_AUD_CNTL_ST, i);
5229 }
5230
5231 static void haswell_write_eld(struct drm_connector *connector,
5232 struct drm_crtc *crtc)
5233 {
5234 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5235 uint8_t *eld = connector->eld;
5236 struct drm_device *dev = crtc->dev;
5237 uint32_t eldv;
5238 uint32_t i;
5239 int len;
5240 int pipe = to_intel_crtc(crtc)->pipe;
5241 int tmp;
5242
5243 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5244 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5245 int aud_config = HSW_AUD_CFG(pipe);
5246 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5247
5248
5249 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5250
5251 /* Audio output enable */
5252 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5253 tmp = I915_READ(aud_cntrl_st2);
5254 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5255 I915_WRITE(aud_cntrl_st2, tmp);
5256
5257 /* Wait for 1 vertical blank */
5258 intel_wait_for_vblank(dev, pipe);
5259
5260 /* Set ELD valid state */
5261 tmp = I915_READ(aud_cntrl_st2);
5262 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5263 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5264 I915_WRITE(aud_cntrl_st2, tmp);
5265 tmp = I915_READ(aud_cntrl_st2);
5266 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5267
5268 /* Enable HDMI mode */
5269 tmp = I915_READ(aud_config);
5270 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5271 /* clear N_programing_enable and N_value_index */
5272 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5273 I915_WRITE(aud_config, tmp);
5274
5275 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5276
5277 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5278
5279 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5280 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5281 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5282 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5283 } else
5284 I915_WRITE(aud_config, 0);
5285
5286 if (intel_eld_uptodate(connector,
5287 aud_cntrl_st2, eldv,
5288 aud_cntl_st, IBX_ELD_ADDRESS,
5289 hdmiw_hdmiedid))
5290 return;
5291
5292 i = I915_READ(aud_cntrl_st2);
5293 i &= ~eldv;
5294 I915_WRITE(aud_cntrl_st2, i);
5295
5296 if (!eld[0])
5297 return;
5298
5299 i = I915_READ(aud_cntl_st);
5300 i &= ~IBX_ELD_ADDRESS;
5301 I915_WRITE(aud_cntl_st, i);
5302 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5303 DRM_DEBUG_DRIVER("port num:%d\n", i);
5304
5305 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5306 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5307 for (i = 0; i < len; i++)
5308 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5309
5310 i = I915_READ(aud_cntrl_st2);
5311 i |= eldv;
5312 I915_WRITE(aud_cntrl_st2, i);
5313
5314 }
5315
5316 static void ironlake_write_eld(struct drm_connector *connector,
5317 struct drm_crtc *crtc)
5318 {
5319 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5320 uint8_t *eld = connector->eld;
5321 uint32_t eldv;
5322 uint32_t i;
5323 int len;
5324 int hdmiw_hdmiedid;
5325 int aud_config;
5326 int aud_cntl_st;
5327 int aud_cntrl_st2;
5328 int pipe = to_intel_crtc(crtc)->pipe;
5329
5330 if (HAS_PCH_IBX(connector->dev)) {
5331 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5332 aud_config = IBX_AUD_CFG(pipe);
5333 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5334 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5335 } else {
5336 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5337 aud_config = CPT_AUD_CFG(pipe);
5338 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5339 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5340 }
5341
5342 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5343
5344 i = I915_READ(aud_cntl_st);
5345 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5346 if (!i) {
5347 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5348 /* operate blindly on all ports */
5349 eldv = IBX_ELD_VALIDB;
5350 eldv |= IBX_ELD_VALIDB << 4;
5351 eldv |= IBX_ELD_VALIDB << 8;
5352 } else {
5353 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5354 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5355 }
5356
5357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5358 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5359 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5360 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5361 } else
5362 I915_WRITE(aud_config, 0);
5363
5364 if (intel_eld_uptodate(connector,
5365 aud_cntrl_st2, eldv,
5366 aud_cntl_st, IBX_ELD_ADDRESS,
5367 hdmiw_hdmiedid))
5368 return;
5369
5370 i = I915_READ(aud_cntrl_st2);
5371 i &= ~eldv;
5372 I915_WRITE(aud_cntrl_st2, i);
5373
5374 if (!eld[0])
5375 return;
5376
5377 i = I915_READ(aud_cntl_st);
5378 i &= ~IBX_ELD_ADDRESS;
5379 I915_WRITE(aud_cntl_st, i);
5380
5381 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5382 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5383 for (i = 0; i < len; i++)
5384 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5385
5386 i = I915_READ(aud_cntrl_st2);
5387 i |= eldv;
5388 I915_WRITE(aud_cntrl_st2, i);
5389 }
5390
5391 void intel_write_eld(struct drm_encoder *encoder,
5392 struct drm_display_mode *mode)
5393 {
5394 struct drm_crtc *crtc = encoder->crtc;
5395 struct drm_connector *connector;
5396 struct drm_device *dev = encoder->dev;
5397 struct drm_i915_private *dev_priv = dev->dev_private;
5398
5399 connector = drm_select_eld(encoder, mode);
5400 if (!connector)
5401 return;
5402
5403 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5404 connector->base.id,
5405 drm_get_connector_name(connector),
5406 connector->encoder->base.id,
5407 drm_get_encoder_name(connector->encoder));
5408
5409 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5410
5411 if (dev_priv->display.write_eld)
5412 dev_priv->display.write_eld(connector, crtc);
5413 }
5414
5415 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5416 void intel_crtc_load_lut(struct drm_crtc *crtc)
5417 {
5418 struct drm_device *dev = crtc->dev;
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421 int palreg = PALETTE(intel_crtc->pipe);
5422 int i;
5423
5424 /* The clocks have to be on to load the palette. */
5425 if (!crtc->enabled || !intel_crtc->active)
5426 return;
5427
5428 /* use legacy palette for Ironlake */
5429 if (HAS_PCH_SPLIT(dev))
5430 palreg = LGC_PALETTE(intel_crtc->pipe);
5431
5432 for (i = 0; i < 256; i++) {
5433 I915_WRITE(palreg + 4 * i,
5434 (intel_crtc->lut_r[i] << 16) |
5435 (intel_crtc->lut_g[i] << 8) |
5436 intel_crtc->lut_b[i]);
5437 }
5438 }
5439
5440 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5441 {
5442 struct drm_device *dev = crtc->dev;
5443 struct drm_i915_private *dev_priv = dev->dev_private;
5444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5445 bool visible = base != 0;
5446 u32 cntl;
5447
5448 if (intel_crtc->cursor_visible == visible)
5449 return;
5450
5451 cntl = I915_READ(_CURACNTR);
5452 if (visible) {
5453 /* On these chipsets we can only modify the base whilst
5454 * the cursor is disabled.
5455 */
5456 I915_WRITE(_CURABASE, base);
5457
5458 cntl &= ~(CURSOR_FORMAT_MASK);
5459 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5460 cntl |= CURSOR_ENABLE |
5461 CURSOR_GAMMA_ENABLE |
5462 CURSOR_FORMAT_ARGB;
5463 } else
5464 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5465 I915_WRITE(_CURACNTR, cntl);
5466
5467 intel_crtc->cursor_visible = visible;
5468 }
5469
5470 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5471 {
5472 struct drm_device *dev = crtc->dev;
5473 struct drm_i915_private *dev_priv = dev->dev_private;
5474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5475 int pipe = intel_crtc->pipe;
5476 bool visible = base != 0;
5477
5478 if (intel_crtc->cursor_visible != visible) {
5479 uint32_t cntl = I915_READ(CURCNTR(pipe));
5480 if (base) {
5481 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5482 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5483 cntl |= pipe << 28; /* Connect to correct pipe */
5484 } else {
5485 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5486 cntl |= CURSOR_MODE_DISABLE;
5487 }
5488 I915_WRITE(CURCNTR(pipe), cntl);
5489
5490 intel_crtc->cursor_visible = visible;
5491 }
5492 /* and commit changes on next vblank */
5493 I915_WRITE(CURBASE(pipe), base);
5494 }
5495
5496 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5497 {
5498 struct drm_device *dev = crtc->dev;
5499 struct drm_i915_private *dev_priv = dev->dev_private;
5500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5501 int pipe = intel_crtc->pipe;
5502 bool visible = base != 0;
5503
5504 if (intel_crtc->cursor_visible != visible) {
5505 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5506 if (base) {
5507 cntl &= ~CURSOR_MODE;
5508 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5509 } else {
5510 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5511 cntl |= CURSOR_MODE_DISABLE;
5512 }
5513 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5514
5515 intel_crtc->cursor_visible = visible;
5516 }
5517 /* and commit changes on next vblank */
5518 I915_WRITE(CURBASE_IVB(pipe), base);
5519 }
5520
5521 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5522 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5523 bool on)
5524 {
5525 struct drm_device *dev = crtc->dev;
5526 struct drm_i915_private *dev_priv = dev->dev_private;
5527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5528 int pipe = intel_crtc->pipe;
5529 int x = intel_crtc->cursor_x;
5530 int y = intel_crtc->cursor_y;
5531 u32 base, pos;
5532 bool visible;
5533
5534 pos = 0;
5535
5536 if (on && crtc->enabled && crtc->fb) {
5537 base = intel_crtc->cursor_addr;
5538 if (x > (int) crtc->fb->width)
5539 base = 0;
5540
5541 if (y > (int) crtc->fb->height)
5542 base = 0;
5543 } else
5544 base = 0;
5545
5546 if (x < 0) {
5547 if (x + intel_crtc->cursor_width < 0)
5548 base = 0;
5549
5550 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5551 x = -x;
5552 }
5553 pos |= x << CURSOR_X_SHIFT;
5554
5555 if (y < 0) {
5556 if (y + intel_crtc->cursor_height < 0)
5557 base = 0;
5558
5559 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5560 y = -y;
5561 }
5562 pos |= y << CURSOR_Y_SHIFT;
5563
5564 visible = base != 0;
5565 if (!visible && !intel_crtc->cursor_visible)
5566 return;
5567
5568 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5569 I915_WRITE(CURPOS_IVB(pipe), pos);
5570 ivb_update_cursor(crtc, base);
5571 } else {
5572 I915_WRITE(CURPOS(pipe), pos);
5573 if (IS_845G(dev) || IS_I865G(dev))
5574 i845_update_cursor(crtc, base);
5575 else
5576 i9xx_update_cursor(crtc, base);
5577 }
5578 }
5579
5580 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5581 struct drm_file *file,
5582 uint32_t handle,
5583 uint32_t width, uint32_t height)
5584 {
5585 struct drm_device *dev = crtc->dev;
5586 struct drm_i915_private *dev_priv = dev->dev_private;
5587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5588 struct drm_i915_gem_object *obj;
5589 uint32_t addr;
5590 int ret;
5591
5592 /* if we want to turn off the cursor ignore width and height */
5593 if (!handle) {
5594 DRM_DEBUG_KMS("cursor off\n");
5595 addr = 0;
5596 obj = NULL;
5597 mutex_lock(&dev->struct_mutex);
5598 goto finish;
5599 }
5600
5601 /* Currently we only support 64x64 cursors */
5602 if (width != 64 || height != 64) {
5603 DRM_ERROR("we currently only support 64x64 cursors\n");
5604 return -EINVAL;
5605 }
5606
5607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5608 if (&obj->base == NULL)
5609 return -ENOENT;
5610
5611 if (obj->base.size < width * height * 4) {
5612 DRM_ERROR("buffer is to small\n");
5613 ret = -ENOMEM;
5614 goto fail;
5615 }
5616
5617 /* we only need to pin inside GTT if cursor is non-phy */
5618 mutex_lock(&dev->struct_mutex);
5619 if (!dev_priv->info->cursor_needs_physical) {
5620 if (obj->tiling_mode) {
5621 DRM_ERROR("cursor cannot be tiled\n");
5622 ret = -EINVAL;
5623 goto fail_locked;
5624 }
5625
5626 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5627 if (ret) {
5628 DRM_ERROR("failed to move cursor bo into the GTT\n");
5629 goto fail_locked;
5630 }
5631
5632 ret = i915_gem_object_put_fence(obj);
5633 if (ret) {
5634 DRM_ERROR("failed to release fence for cursor");
5635 goto fail_unpin;
5636 }
5637
5638 addr = obj->gtt_offset;
5639 } else {
5640 int align = IS_I830(dev) ? 16 * 1024 : 256;
5641 ret = i915_gem_attach_phys_object(dev, obj,
5642 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5643 align);
5644 if (ret) {
5645 DRM_ERROR("failed to attach phys object\n");
5646 goto fail_locked;
5647 }
5648 addr = obj->phys_obj->handle->busaddr;
5649 }
5650
5651 if (IS_GEN2(dev))
5652 I915_WRITE(CURSIZE, (height << 12) | width);
5653
5654 finish:
5655 if (intel_crtc->cursor_bo) {
5656 if (dev_priv->info->cursor_needs_physical) {
5657 if (intel_crtc->cursor_bo != obj)
5658 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5659 } else
5660 i915_gem_object_unpin(intel_crtc->cursor_bo);
5661 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5662 }
5663
5664 mutex_unlock(&dev->struct_mutex);
5665
5666 intel_crtc->cursor_addr = addr;
5667 intel_crtc->cursor_bo = obj;
5668 intel_crtc->cursor_width = width;
5669 intel_crtc->cursor_height = height;
5670
5671 intel_crtc_update_cursor(crtc, true);
5672
5673 return 0;
5674 fail_unpin:
5675 i915_gem_object_unpin(obj);
5676 fail_locked:
5677 mutex_unlock(&dev->struct_mutex);
5678 fail:
5679 drm_gem_object_unreference_unlocked(&obj->base);
5680 return ret;
5681 }
5682
5683 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5684 {
5685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5686
5687 intel_crtc->cursor_x = x;
5688 intel_crtc->cursor_y = y;
5689
5690 intel_crtc_update_cursor(crtc, true);
5691
5692 return 0;
5693 }
5694
5695 /** Sets the color ramps on behalf of RandR */
5696 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5697 u16 blue, int regno)
5698 {
5699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5700
5701 intel_crtc->lut_r[regno] = red >> 8;
5702 intel_crtc->lut_g[regno] = green >> 8;
5703 intel_crtc->lut_b[regno] = blue >> 8;
5704 }
5705
5706 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5707 u16 *blue, int regno)
5708 {
5709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710
5711 *red = intel_crtc->lut_r[regno] << 8;
5712 *green = intel_crtc->lut_g[regno] << 8;
5713 *blue = intel_crtc->lut_b[regno] << 8;
5714 }
5715
5716 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5717 u16 *blue, uint32_t start, uint32_t size)
5718 {
5719 int end = (start + size > 256) ? 256 : start + size, i;
5720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5721
5722 for (i = start; i < end; i++) {
5723 intel_crtc->lut_r[i] = red[i] >> 8;
5724 intel_crtc->lut_g[i] = green[i] >> 8;
5725 intel_crtc->lut_b[i] = blue[i] >> 8;
5726 }
5727
5728 intel_crtc_load_lut(crtc);
5729 }
5730
5731 /**
5732 * Get a pipe with a simple mode set on it for doing load-based monitor
5733 * detection.
5734 *
5735 * It will be up to the load-detect code to adjust the pipe as appropriate for
5736 * its requirements. The pipe will be connected to no other encoders.
5737 *
5738 * Currently this code will only succeed if there is a pipe with no encoders
5739 * configured for it. In the future, it could choose to temporarily disable
5740 * some outputs to free up a pipe for its use.
5741 *
5742 * \return crtc, or NULL if no pipes are available.
5743 */
5744
5745 /* VESA 640x480x72Hz mode to set on the pipe */
5746 static struct drm_display_mode load_detect_mode = {
5747 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5748 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5749 };
5750
5751 static struct drm_framebuffer *
5752 intel_framebuffer_create(struct drm_device *dev,
5753 struct drm_mode_fb_cmd2 *mode_cmd,
5754 struct drm_i915_gem_object *obj)
5755 {
5756 struct intel_framebuffer *intel_fb;
5757 int ret;
5758
5759 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5760 if (!intel_fb) {
5761 drm_gem_object_unreference_unlocked(&obj->base);
5762 return ERR_PTR(-ENOMEM);
5763 }
5764
5765 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5766 if (ret) {
5767 drm_gem_object_unreference_unlocked(&obj->base);
5768 kfree(intel_fb);
5769 return ERR_PTR(ret);
5770 }
5771
5772 return &intel_fb->base;
5773 }
5774
5775 static u32
5776 intel_framebuffer_pitch_for_width(int width, int bpp)
5777 {
5778 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5779 return ALIGN(pitch, 64);
5780 }
5781
5782 static u32
5783 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5784 {
5785 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5786 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5787 }
5788
5789 static struct drm_framebuffer *
5790 intel_framebuffer_create_for_mode(struct drm_device *dev,
5791 struct drm_display_mode *mode,
5792 int depth, int bpp)
5793 {
5794 struct drm_i915_gem_object *obj;
5795 struct drm_mode_fb_cmd2 mode_cmd;
5796
5797 obj = i915_gem_alloc_object(dev,
5798 intel_framebuffer_size_for_mode(mode, bpp));
5799 if (obj == NULL)
5800 return ERR_PTR(-ENOMEM);
5801
5802 mode_cmd.width = mode->hdisplay;
5803 mode_cmd.height = mode->vdisplay;
5804 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5805 bpp);
5806 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5807
5808 return intel_framebuffer_create(dev, &mode_cmd, obj);
5809 }
5810
5811 static struct drm_framebuffer *
5812 mode_fits_in_fbdev(struct drm_device *dev,
5813 struct drm_display_mode *mode)
5814 {
5815 struct drm_i915_private *dev_priv = dev->dev_private;
5816 struct drm_i915_gem_object *obj;
5817 struct drm_framebuffer *fb;
5818
5819 if (dev_priv->fbdev == NULL)
5820 return NULL;
5821
5822 obj = dev_priv->fbdev->ifb.obj;
5823 if (obj == NULL)
5824 return NULL;
5825
5826 fb = &dev_priv->fbdev->ifb.base;
5827 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5828 fb->bits_per_pixel))
5829 return NULL;
5830
5831 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5832 return NULL;
5833
5834 return fb;
5835 }
5836
5837 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5838 struct drm_display_mode *mode,
5839 struct intel_load_detect_pipe *old)
5840 {
5841 struct intel_crtc *intel_crtc;
5842 struct intel_encoder *intel_encoder =
5843 intel_attached_encoder(connector);
5844 struct drm_crtc *possible_crtc;
5845 struct drm_encoder *encoder = &intel_encoder->base;
5846 struct drm_crtc *crtc = NULL;
5847 struct drm_device *dev = encoder->dev;
5848 struct drm_framebuffer *fb;
5849 int i = -1;
5850
5851 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5852 connector->base.id, drm_get_connector_name(connector),
5853 encoder->base.id, drm_get_encoder_name(encoder));
5854
5855 /*
5856 * Algorithm gets a little messy:
5857 *
5858 * - if the connector already has an assigned crtc, use it (but make
5859 * sure it's on first)
5860 *
5861 * - try to find the first unused crtc that can drive this connector,
5862 * and use that if we find one
5863 */
5864
5865 /* See if we already have a CRTC for this connector */
5866 if (encoder->crtc) {
5867 crtc = encoder->crtc;
5868
5869 old->dpms_mode = connector->dpms;
5870 old->load_detect_temp = false;
5871
5872 /* Make sure the crtc and connector are running */
5873 if (connector->dpms != DRM_MODE_DPMS_ON)
5874 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5875
5876 return true;
5877 }
5878
5879 /* Find an unused one (if possible) */
5880 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5881 i++;
5882 if (!(encoder->possible_crtcs & (1 << i)))
5883 continue;
5884 if (!possible_crtc->enabled) {
5885 crtc = possible_crtc;
5886 break;
5887 }
5888 }
5889
5890 /*
5891 * If we didn't find an unused CRTC, don't use any.
5892 */
5893 if (!crtc) {
5894 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5895 return false;
5896 }
5897
5898 intel_encoder->new_crtc = to_intel_crtc(crtc);
5899 to_intel_connector(connector)->new_encoder = intel_encoder;
5900
5901 intel_crtc = to_intel_crtc(crtc);
5902 old->dpms_mode = connector->dpms;
5903 old->load_detect_temp = true;
5904 old->release_fb = NULL;
5905
5906 if (!mode)
5907 mode = &load_detect_mode;
5908
5909 /* We need a framebuffer large enough to accommodate all accesses
5910 * that the plane may generate whilst we perform load detection.
5911 * We can not rely on the fbcon either being present (we get called
5912 * during its initialisation to detect all boot displays, or it may
5913 * not even exist) or that it is large enough to satisfy the
5914 * requested mode.
5915 */
5916 fb = mode_fits_in_fbdev(dev, mode);
5917 if (fb == NULL) {
5918 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5919 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5920 old->release_fb = fb;
5921 } else
5922 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5923 if (IS_ERR(fb)) {
5924 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5925 goto fail;
5926 }
5927
5928 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5929 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5930 if (old->release_fb)
5931 old->release_fb->funcs->destroy(old->release_fb);
5932 goto fail;
5933 }
5934
5935 /* let the connector get through one full cycle before testing */
5936 intel_wait_for_vblank(dev, intel_crtc->pipe);
5937
5938 return true;
5939 fail:
5940 connector->encoder = NULL;
5941 encoder->crtc = NULL;
5942 return false;
5943 }
5944
5945 void intel_release_load_detect_pipe(struct drm_connector *connector,
5946 struct intel_load_detect_pipe *old)
5947 {
5948 struct intel_encoder *intel_encoder =
5949 intel_attached_encoder(connector);
5950 struct drm_encoder *encoder = &intel_encoder->base;
5951
5952 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5953 connector->base.id, drm_get_connector_name(connector),
5954 encoder->base.id, drm_get_encoder_name(encoder));
5955
5956 if (old->load_detect_temp) {
5957 struct drm_crtc *crtc = encoder->crtc;
5958
5959 to_intel_connector(connector)->new_encoder = NULL;
5960 intel_encoder->new_crtc = NULL;
5961 intel_set_mode(crtc, NULL, 0, 0, NULL);
5962
5963 if (old->release_fb)
5964 old->release_fb->funcs->destroy(old->release_fb);
5965
5966 return;
5967 }
5968
5969 /* Switch crtc and encoder back off if necessary */
5970 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5971 connector->funcs->dpms(connector, old->dpms_mode);
5972 }
5973
5974 /* Returns the clock of the currently programmed mode of the given pipe. */
5975 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5976 {
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5979 int pipe = intel_crtc->pipe;
5980 u32 dpll = I915_READ(DPLL(pipe));
5981 u32 fp;
5982 intel_clock_t clock;
5983
5984 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5985 fp = I915_READ(FP0(pipe));
5986 else
5987 fp = I915_READ(FP1(pipe));
5988
5989 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5990 if (IS_PINEVIEW(dev)) {
5991 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5992 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5993 } else {
5994 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5995 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5996 }
5997
5998 if (!IS_GEN2(dev)) {
5999 if (IS_PINEVIEW(dev))
6000 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6001 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6002 else
6003 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6004 DPLL_FPA01_P1_POST_DIV_SHIFT);
6005
6006 switch (dpll & DPLL_MODE_MASK) {
6007 case DPLLB_MODE_DAC_SERIAL:
6008 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6009 5 : 10;
6010 break;
6011 case DPLLB_MODE_LVDS:
6012 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6013 7 : 14;
6014 break;
6015 default:
6016 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6017 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6018 return 0;
6019 }
6020
6021 /* XXX: Handle the 100Mhz refclk */
6022 intel_clock(dev, 96000, &clock);
6023 } else {
6024 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6025
6026 if (is_lvds) {
6027 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6028 DPLL_FPA01_P1_POST_DIV_SHIFT);
6029 clock.p2 = 14;
6030
6031 if ((dpll & PLL_REF_INPUT_MASK) ==
6032 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6033 /* XXX: might not be 66MHz */
6034 intel_clock(dev, 66000, &clock);
6035 } else
6036 intel_clock(dev, 48000, &clock);
6037 } else {
6038 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6039 clock.p1 = 2;
6040 else {
6041 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6042 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6043 }
6044 if (dpll & PLL_P2_DIVIDE_BY_4)
6045 clock.p2 = 4;
6046 else
6047 clock.p2 = 2;
6048
6049 intel_clock(dev, 48000, &clock);
6050 }
6051 }
6052
6053 /* XXX: It would be nice to validate the clocks, but we can't reuse
6054 * i830PllIsValid() because it relies on the xf86_config connector
6055 * configuration being accurate, which it isn't necessarily.
6056 */
6057
6058 return clock.dot;
6059 }
6060
6061 /** Returns the currently programmed mode of the given pipe. */
6062 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6063 struct drm_crtc *crtc)
6064 {
6065 struct drm_i915_private *dev_priv = dev->dev_private;
6066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6067 int pipe = intel_crtc->pipe;
6068 struct drm_display_mode *mode;
6069 int htot = I915_READ(HTOTAL(pipe));
6070 int hsync = I915_READ(HSYNC(pipe));
6071 int vtot = I915_READ(VTOTAL(pipe));
6072 int vsync = I915_READ(VSYNC(pipe));
6073
6074 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6075 if (!mode)
6076 return NULL;
6077
6078 mode->clock = intel_crtc_clock_get(dev, crtc);
6079 mode->hdisplay = (htot & 0xffff) + 1;
6080 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6081 mode->hsync_start = (hsync & 0xffff) + 1;
6082 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6083 mode->vdisplay = (vtot & 0xffff) + 1;
6084 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6085 mode->vsync_start = (vsync & 0xffff) + 1;
6086 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6087
6088 drm_mode_set_name(mode);
6089
6090 return mode;
6091 }
6092
6093 static void intel_increase_pllclock(struct drm_crtc *crtc)
6094 {
6095 struct drm_device *dev = crtc->dev;
6096 drm_i915_private_t *dev_priv = dev->dev_private;
6097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6098 int pipe = intel_crtc->pipe;
6099 int dpll_reg = DPLL(pipe);
6100 int dpll;
6101
6102 if (HAS_PCH_SPLIT(dev))
6103 return;
6104
6105 if (!dev_priv->lvds_downclock_avail)
6106 return;
6107
6108 dpll = I915_READ(dpll_reg);
6109 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6110 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6111
6112 assert_panel_unlocked(dev_priv, pipe);
6113
6114 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6115 I915_WRITE(dpll_reg, dpll);
6116 intel_wait_for_vblank(dev, pipe);
6117
6118 dpll = I915_READ(dpll_reg);
6119 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6120 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6121 }
6122 }
6123
6124 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6125 {
6126 struct drm_device *dev = crtc->dev;
6127 drm_i915_private_t *dev_priv = dev->dev_private;
6128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6129
6130 if (HAS_PCH_SPLIT(dev))
6131 return;
6132
6133 if (!dev_priv->lvds_downclock_avail)
6134 return;
6135
6136 /*
6137 * Since this is called by a timer, we should never get here in
6138 * the manual case.
6139 */
6140 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6141 int pipe = intel_crtc->pipe;
6142 int dpll_reg = DPLL(pipe);
6143 int dpll;
6144
6145 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6146
6147 assert_panel_unlocked(dev_priv, pipe);
6148
6149 dpll = I915_READ(dpll_reg);
6150 dpll |= DISPLAY_RATE_SELECT_FPA1;
6151 I915_WRITE(dpll_reg, dpll);
6152 intel_wait_for_vblank(dev, pipe);
6153 dpll = I915_READ(dpll_reg);
6154 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6155 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6156 }
6157
6158 }
6159
6160 void intel_mark_busy(struct drm_device *dev)
6161 {
6162 i915_update_gfx_val(dev->dev_private);
6163 }
6164
6165 void intel_mark_idle(struct drm_device *dev)
6166 {
6167 }
6168
6169 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6170 {
6171 struct drm_device *dev = obj->base.dev;
6172 struct drm_crtc *crtc;
6173
6174 if (!i915_powersave)
6175 return;
6176
6177 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6178 if (!crtc->fb)
6179 continue;
6180
6181 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6182 intel_increase_pllclock(crtc);
6183 }
6184 }
6185
6186 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6187 {
6188 struct drm_device *dev = obj->base.dev;
6189 struct drm_crtc *crtc;
6190
6191 if (!i915_powersave)
6192 return;
6193
6194 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6195 if (!crtc->fb)
6196 continue;
6197
6198 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6199 intel_decrease_pllclock(crtc);
6200 }
6201 }
6202
6203 static void intel_crtc_destroy(struct drm_crtc *crtc)
6204 {
6205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6206 struct drm_device *dev = crtc->dev;
6207 struct intel_unpin_work *work;
6208 unsigned long flags;
6209
6210 spin_lock_irqsave(&dev->event_lock, flags);
6211 work = intel_crtc->unpin_work;
6212 intel_crtc->unpin_work = NULL;
6213 spin_unlock_irqrestore(&dev->event_lock, flags);
6214
6215 if (work) {
6216 cancel_work_sync(&work->work);
6217 kfree(work);
6218 }
6219
6220 drm_crtc_cleanup(crtc);
6221
6222 kfree(intel_crtc);
6223 }
6224
6225 static void intel_unpin_work_fn(struct work_struct *__work)
6226 {
6227 struct intel_unpin_work *work =
6228 container_of(__work, struct intel_unpin_work, work);
6229
6230 mutex_lock(&work->dev->struct_mutex);
6231 intel_unpin_fb_obj(work->old_fb_obj);
6232 drm_gem_object_unreference(&work->pending_flip_obj->base);
6233 drm_gem_object_unreference(&work->old_fb_obj->base);
6234
6235 intel_update_fbc(work->dev);
6236 mutex_unlock(&work->dev->struct_mutex);
6237 kfree(work);
6238 }
6239
6240 static void do_intel_finish_page_flip(struct drm_device *dev,
6241 struct drm_crtc *crtc)
6242 {
6243 drm_i915_private_t *dev_priv = dev->dev_private;
6244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245 struct intel_unpin_work *work;
6246 struct drm_i915_gem_object *obj;
6247 struct drm_pending_vblank_event *e;
6248 struct timeval tnow, tvbl;
6249 unsigned long flags;
6250
6251 /* Ignore early vblank irqs */
6252 if (intel_crtc == NULL)
6253 return;
6254
6255 do_gettimeofday(&tnow);
6256
6257 spin_lock_irqsave(&dev->event_lock, flags);
6258 work = intel_crtc->unpin_work;
6259 if (work == NULL || !work->pending) {
6260 spin_unlock_irqrestore(&dev->event_lock, flags);
6261 return;
6262 }
6263
6264 intel_crtc->unpin_work = NULL;
6265
6266 if (work->event) {
6267 e = work->event;
6268 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6269
6270 /* Called before vblank count and timestamps have
6271 * been updated for the vblank interval of flip
6272 * completion? Need to increment vblank count and
6273 * add one videorefresh duration to returned timestamp
6274 * to account for this. We assume this happened if we
6275 * get called over 0.9 frame durations after the last
6276 * timestamped vblank.
6277 *
6278 * This calculation can not be used with vrefresh rates
6279 * below 5Hz (10Hz to be on the safe side) without
6280 * promoting to 64 integers.
6281 */
6282 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6283 9 * crtc->framedur_ns) {
6284 e->event.sequence++;
6285 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6286 crtc->framedur_ns);
6287 }
6288
6289 e->event.tv_sec = tvbl.tv_sec;
6290 e->event.tv_usec = tvbl.tv_usec;
6291
6292 list_add_tail(&e->base.link,
6293 &e->base.file_priv->event_list);
6294 wake_up_interruptible(&e->base.file_priv->event_wait);
6295 }
6296
6297 drm_vblank_put(dev, intel_crtc->pipe);
6298
6299 spin_unlock_irqrestore(&dev->event_lock, flags);
6300
6301 obj = work->old_fb_obj;
6302
6303 atomic_clear_mask(1 << intel_crtc->plane,
6304 &obj->pending_flip.counter);
6305 if (atomic_read(&obj->pending_flip) == 0)
6306 wake_up(&dev_priv->pending_flip_queue);
6307
6308 schedule_work(&work->work);
6309
6310 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6311 }
6312
6313 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6314 {
6315 drm_i915_private_t *dev_priv = dev->dev_private;
6316 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6317
6318 do_intel_finish_page_flip(dev, crtc);
6319 }
6320
6321 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6322 {
6323 drm_i915_private_t *dev_priv = dev->dev_private;
6324 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6325
6326 do_intel_finish_page_flip(dev, crtc);
6327 }
6328
6329 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6330 {
6331 drm_i915_private_t *dev_priv = dev->dev_private;
6332 struct intel_crtc *intel_crtc =
6333 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6334 unsigned long flags;
6335
6336 spin_lock_irqsave(&dev->event_lock, flags);
6337 if (intel_crtc->unpin_work) {
6338 if ((++intel_crtc->unpin_work->pending) > 1)
6339 DRM_ERROR("Prepared flip multiple times\n");
6340 } else {
6341 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6342 }
6343 spin_unlock_irqrestore(&dev->event_lock, flags);
6344 }
6345
6346 static int intel_gen2_queue_flip(struct drm_device *dev,
6347 struct drm_crtc *crtc,
6348 struct drm_framebuffer *fb,
6349 struct drm_i915_gem_object *obj)
6350 {
6351 struct drm_i915_private *dev_priv = dev->dev_private;
6352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353 u32 flip_mask;
6354 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6355 int ret;
6356
6357 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6358 if (ret)
6359 goto err;
6360
6361 ret = intel_ring_begin(ring, 6);
6362 if (ret)
6363 goto err_unpin;
6364
6365 /* Can't queue multiple flips, so wait for the previous
6366 * one to finish before executing the next.
6367 */
6368 if (intel_crtc->plane)
6369 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6370 else
6371 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6372 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6373 intel_ring_emit(ring, MI_NOOP);
6374 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6375 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6376 intel_ring_emit(ring, fb->pitches[0]);
6377 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6378 intel_ring_emit(ring, 0); /* aux display base address, unused */
6379 intel_ring_advance(ring);
6380 return 0;
6381
6382 err_unpin:
6383 intel_unpin_fb_obj(obj);
6384 err:
6385 return ret;
6386 }
6387
6388 static int intel_gen3_queue_flip(struct drm_device *dev,
6389 struct drm_crtc *crtc,
6390 struct drm_framebuffer *fb,
6391 struct drm_i915_gem_object *obj)
6392 {
6393 struct drm_i915_private *dev_priv = dev->dev_private;
6394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6395 u32 flip_mask;
6396 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6397 int ret;
6398
6399 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6400 if (ret)
6401 goto err;
6402
6403 ret = intel_ring_begin(ring, 6);
6404 if (ret)
6405 goto err_unpin;
6406
6407 if (intel_crtc->plane)
6408 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6409 else
6410 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6411 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6412 intel_ring_emit(ring, MI_NOOP);
6413 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6414 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6415 intel_ring_emit(ring, fb->pitches[0]);
6416 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6417 intel_ring_emit(ring, MI_NOOP);
6418
6419 intel_ring_advance(ring);
6420 return 0;
6421
6422 err_unpin:
6423 intel_unpin_fb_obj(obj);
6424 err:
6425 return ret;
6426 }
6427
6428 static int intel_gen4_queue_flip(struct drm_device *dev,
6429 struct drm_crtc *crtc,
6430 struct drm_framebuffer *fb,
6431 struct drm_i915_gem_object *obj)
6432 {
6433 struct drm_i915_private *dev_priv = dev->dev_private;
6434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6435 uint32_t pf, pipesrc;
6436 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6437 int ret;
6438
6439 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6440 if (ret)
6441 goto err;
6442
6443 ret = intel_ring_begin(ring, 4);
6444 if (ret)
6445 goto err_unpin;
6446
6447 /* i965+ uses the linear or tiled offsets from the
6448 * Display Registers (which do not change across a page-flip)
6449 * so we need only reprogram the base address.
6450 */
6451 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6452 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6453 intel_ring_emit(ring, fb->pitches[0]);
6454 intel_ring_emit(ring,
6455 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6456 obj->tiling_mode);
6457
6458 /* XXX Enabling the panel-fitter across page-flip is so far
6459 * untested on non-native modes, so ignore it for now.
6460 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6461 */
6462 pf = 0;
6463 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6464 intel_ring_emit(ring, pf | pipesrc);
6465 intel_ring_advance(ring);
6466 return 0;
6467
6468 err_unpin:
6469 intel_unpin_fb_obj(obj);
6470 err:
6471 return ret;
6472 }
6473
6474 static int intel_gen6_queue_flip(struct drm_device *dev,
6475 struct drm_crtc *crtc,
6476 struct drm_framebuffer *fb,
6477 struct drm_i915_gem_object *obj)
6478 {
6479 struct drm_i915_private *dev_priv = dev->dev_private;
6480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6481 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6482 uint32_t pf, pipesrc;
6483 int ret;
6484
6485 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6486 if (ret)
6487 goto err;
6488
6489 ret = intel_ring_begin(ring, 4);
6490 if (ret)
6491 goto err_unpin;
6492
6493 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6494 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6495 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6496 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6497
6498 /* Contrary to the suggestions in the documentation,
6499 * "Enable Panel Fitter" does not seem to be required when page
6500 * flipping with a non-native mode, and worse causes a normal
6501 * modeset to fail.
6502 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6503 */
6504 pf = 0;
6505 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6506 intel_ring_emit(ring, pf | pipesrc);
6507 intel_ring_advance(ring);
6508 return 0;
6509
6510 err_unpin:
6511 intel_unpin_fb_obj(obj);
6512 err:
6513 return ret;
6514 }
6515
6516 /*
6517 * On gen7 we currently use the blit ring because (in early silicon at least)
6518 * the render ring doesn't give us interrpts for page flip completion, which
6519 * means clients will hang after the first flip is queued. Fortunately the
6520 * blit ring generates interrupts properly, so use it instead.
6521 */
6522 static int intel_gen7_queue_flip(struct drm_device *dev,
6523 struct drm_crtc *crtc,
6524 struct drm_framebuffer *fb,
6525 struct drm_i915_gem_object *obj)
6526 {
6527 struct drm_i915_private *dev_priv = dev->dev_private;
6528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6529 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6530 uint32_t plane_bit = 0;
6531 int ret;
6532
6533 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6534 if (ret)
6535 goto err;
6536
6537 switch(intel_crtc->plane) {
6538 case PLANE_A:
6539 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6540 break;
6541 case PLANE_B:
6542 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6543 break;
6544 case PLANE_C:
6545 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6546 break;
6547 default:
6548 WARN_ONCE(1, "unknown plane in flip command\n");
6549 ret = -ENODEV;
6550 goto err_unpin;
6551 }
6552
6553 ret = intel_ring_begin(ring, 4);
6554 if (ret)
6555 goto err_unpin;
6556
6557 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6558 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6559 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6560 intel_ring_emit(ring, (MI_NOOP));
6561 intel_ring_advance(ring);
6562 return 0;
6563
6564 err_unpin:
6565 intel_unpin_fb_obj(obj);
6566 err:
6567 return ret;
6568 }
6569
6570 static int intel_default_queue_flip(struct drm_device *dev,
6571 struct drm_crtc *crtc,
6572 struct drm_framebuffer *fb,
6573 struct drm_i915_gem_object *obj)
6574 {
6575 return -ENODEV;
6576 }
6577
6578 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6579 struct drm_framebuffer *fb,
6580 struct drm_pending_vblank_event *event)
6581 {
6582 struct drm_device *dev = crtc->dev;
6583 struct drm_i915_private *dev_priv = dev->dev_private;
6584 struct intel_framebuffer *intel_fb;
6585 struct drm_i915_gem_object *obj;
6586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6587 struct intel_unpin_work *work;
6588 unsigned long flags;
6589 int ret;
6590
6591 /* Can't change pixel format via MI display flips. */
6592 if (fb->pixel_format != crtc->fb->pixel_format)
6593 return -EINVAL;
6594
6595 /*
6596 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6597 * Note that pitch changes could also affect these register.
6598 */
6599 if (INTEL_INFO(dev)->gen > 3 &&
6600 (fb->offsets[0] != crtc->fb->offsets[0] ||
6601 fb->pitches[0] != crtc->fb->pitches[0]))
6602 return -EINVAL;
6603
6604 work = kzalloc(sizeof *work, GFP_KERNEL);
6605 if (work == NULL)
6606 return -ENOMEM;
6607
6608 work->event = event;
6609 work->dev = crtc->dev;
6610 intel_fb = to_intel_framebuffer(crtc->fb);
6611 work->old_fb_obj = intel_fb->obj;
6612 INIT_WORK(&work->work, intel_unpin_work_fn);
6613
6614 ret = drm_vblank_get(dev, intel_crtc->pipe);
6615 if (ret)
6616 goto free_work;
6617
6618 /* We borrow the event spin lock for protecting unpin_work */
6619 spin_lock_irqsave(&dev->event_lock, flags);
6620 if (intel_crtc->unpin_work) {
6621 spin_unlock_irqrestore(&dev->event_lock, flags);
6622 kfree(work);
6623 drm_vblank_put(dev, intel_crtc->pipe);
6624
6625 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6626 return -EBUSY;
6627 }
6628 intel_crtc->unpin_work = work;
6629 spin_unlock_irqrestore(&dev->event_lock, flags);
6630
6631 intel_fb = to_intel_framebuffer(fb);
6632 obj = intel_fb->obj;
6633
6634 ret = i915_mutex_lock_interruptible(dev);
6635 if (ret)
6636 goto cleanup;
6637
6638 /* Reference the objects for the scheduled work. */
6639 drm_gem_object_reference(&work->old_fb_obj->base);
6640 drm_gem_object_reference(&obj->base);
6641
6642 crtc->fb = fb;
6643
6644 work->pending_flip_obj = obj;
6645
6646 work->enable_stall_check = true;
6647
6648 /* Block clients from rendering to the new back buffer until
6649 * the flip occurs and the object is no longer visible.
6650 */
6651 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6652
6653 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6654 if (ret)
6655 goto cleanup_pending;
6656
6657 intel_disable_fbc(dev);
6658 intel_mark_fb_busy(obj);
6659 mutex_unlock(&dev->struct_mutex);
6660
6661 trace_i915_flip_request(intel_crtc->plane, obj);
6662
6663 return 0;
6664
6665 cleanup_pending:
6666 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6667 drm_gem_object_unreference(&work->old_fb_obj->base);
6668 drm_gem_object_unreference(&obj->base);
6669 mutex_unlock(&dev->struct_mutex);
6670
6671 cleanup:
6672 spin_lock_irqsave(&dev->event_lock, flags);
6673 intel_crtc->unpin_work = NULL;
6674 spin_unlock_irqrestore(&dev->event_lock, flags);
6675
6676 drm_vblank_put(dev, intel_crtc->pipe);
6677 free_work:
6678 kfree(work);
6679
6680 return ret;
6681 }
6682
6683 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6684 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6685 .load_lut = intel_crtc_load_lut,
6686 .disable = intel_crtc_noop,
6687 };
6688
6689 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6690 {
6691 struct intel_encoder *other_encoder;
6692 struct drm_crtc *crtc = &encoder->new_crtc->base;
6693
6694 if (WARN_ON(!crtc))
6695 return false;
6696
6697 list_for_each_entry(other_encoder,
6698 &crtc->dev->mode_config.encoder_list,
6699 base.head) {
6700
6701 if (&other_encoder->new_crtc->base != crtc ||
6702 encoder == other_encoder)
6703 continue;
6704 else
6705 return true;
6706 }
6707
6708 return false;
6709 }
6710
6711 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6712 struct drm_crtc *crtc)
6713 {
6714 struct drm_device *dev;
6715 struct drm_crtc *tmp;
6716 int crtc_mask = 1;
6717
6718 WARN(!crtc, "checking null crtc?\n");
6719
6720 dev = crtc->dev;
6721
6722 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6723 if (tmp == crtc)
6724 break;
6725 crtc_mask <<= 1;
6726 }
6727
6728 if (encoder->possible_crtcs & crtc_mask)
6729 return true;
6730 return false;
6731 }
6732
6733 /**
6734 * intel_modeset_update_staged_output_state
6735 *
6736 * Updates the staged output configuration state, e.g. after we've read out the
6737 * current hw state.
6738 */
6739 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6740 {
6741 struct intel_encoder *encoder;
6742 struct intel_connector *connector;
6743
6744 list_for_each_entry(connector, &dev->mode_config.connector_list,
6745 base.head) {
6746 connector->new_encoder =
6747 to_intel_encoder(connector->base.encoder);
6748 }
6749
6750 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6751 base.head) {
6752 encoder->new_crtc =
6753 to_intel_crtc(encoder->base.crtc);
6754 }
6755 }
6756
6757 /**
6758 * intel_modeset_commit_output_state
6759 *
6760 * This function copies the stage display pipe configuration to the real one.
6761 */
6762 static void intel_modeset_commit_output_state(struct drm_device *dev)
6763 {
6764 struct intel_encoder *encoder;
6765 struct intel_connector *connector;
6766
6767 list_for_each_entry(connector, &dev->mode_config.connector_list,
6768 base.head) {
6769 connector->base.encoder = &connector->new_encoder->base;
6770 }
6771
6772 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6773 base.head) {
6774 encoder->base.crtc = &encoder->new_crtc->base;
6775 }
6776 }
6777
6778 static struct drm_display_mode *
6779 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6780 struct drm_display_mode *mode)
6781 {
6782 struct drm_device *dev = crtc->dev;
6783 struct drm_display_mode *adjusted_mode;
6784 struct drm_encoder_helper_funcs *encoder_funcs;
6785 struct intel_encoder *encoder;
6786
6787 adjusted_mode = drm_mode_duplicate(dev, mode);
6788 if (!adjusted_mode)
6789 return ERR_PTR(-ENOMEM);
6790
6791 /* Pass our mode to the connectors and the CRTC to give them a chance to
6792 * adjust it according to limitations or connector properties, and also
6793 * a chance to reject the mode entirely.
6794 */
6795 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6796 base.head) {
6797
6798 if (&encoder->new_crtc->base != crtc)
6799 continue;
6800 encoder_funcs = encoder->base.helper_private;
6801 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6802 adjusted_mode))) {
6803 DRM_DEBUG_KMS("Encoder fixup failed\n");
6804 goto fail;
6805 }
6806 }
6807
6808 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6809 DRM_DEBUG_KMS("CRTC fixup failed\n");
6810 goto fail;
6811 }
6812 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6813
6814 return adjusted_mode;
6815 fail:
6816 drm_mode_destroy(dev, adjusted_mode);
6817 return ERR_PTR(-EINVAL);
6818 }
6819
6820 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6821 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6822 static void
6823 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6824 unsigned *prepare_pipes, unsigned *disable_pipes)
6825 {
6826 struct intel_crtc *intel_crtc;
6827 struct drm_device *dev = crtc->dev;
6828 struct intel_encoder *encoder;
6829 struct intel_connector *connector;
6830 struct drm_crtc *tmp_crtc;
6831
6832 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6833
6834 /* Check which crtcs have changed outputs connected to them, these need
6835 * to be part of the prepare_pipes mask. We don't (yet) support global
6836 * modeset across multiple crtcs, so modeset_pipes will only have one
6837 * bit set at most. */
6838 list_for_each_entry(connector, &dev->mode_config.connector_list,
6839 base.head) {
6840 if (connector->base.encoder == &connector->new_encoder->base)
6841 continue;
6842
6843 if (connector->base.encoder) {
6844 tmp_crtc = connector->base.encoder->crtc;
6845
6846 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6847 }
6848
6849 if (connector->new_encoder)
6850 *prepare_pipes |=
6851 1 << connector->new_encoder->new_crtc->pipe;
6852 }
6853
6854 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6855 base.head) {
6856 if (encoder->base.crtc == &encoder->new_crtc->base)
6857 continue;
6858
6859 if (encoder->base.crtc) {
6860 tmp_crtc = encoder->base.crtc;
6861
6862 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6863 }
6864
6865 if (encoder->new_crtc)
6866 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6867 }
6868
6869 /* Check for any pipes that will be fully disabled ... */
6870 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6871 base.head) {
6872 bool used = false;
6873
6874 /* Don't try to disable disabled crtcs. */
6875 if (!intel_crtc->base.enabled)
6876 continue;
6877
6878 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6879 base.head) {
6880 if (encoder->new_crtc == intel_crtc)
6881 used = true;
6882 }
6883
6884 if (!used)
6885 *disable_pipes |= 1 << intel_crtc->pipe;
6886 }
6887
6888
6889 /* set_mode is also used to update properties on life display pipes. */
6890 intel_crtc = to_intel_crtc(crtc);
6891 if (crtc->enabled)
6892 *prepare_pipes |= 1 << intel_crtc->pipe;
6893
6894 /* We only support modeset on one single crtc, hence we need to do that
6895 * only for the passed in crtc iff we change anything else than just
6896 * disable crtcs.
6897 *
6898 * This is actually not true, to be fully compatible with the old crtc
6899 * helper we automatically disable _any_ output (i.e. doesn't need to be
6900 * connected to the crtc we're modesetting on) if it's disconnected.
6901 * Which is a rather nutty api (since changed the output configuration
6902 * without userspace's explicit request can lead to confusion), but
6903 * alas. Hence we currently need to modeset on all pipes we prepare. */
6904 if (*prepare_pipes)
6905 *modeset_pipes = *prepare_pipes;
6906
6907 /* ... and mask these out. */
6908 *modeset_pipes &= ~(*disable_pipes);
6909 *prepare_pipes &= ~(*disable_pipes);
6910 }
6911
6912 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6913 {
6914 struct drm_encoder *encoder;
6915 struct drm_device *dev = crtc->dev;
6916
6917 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6918 if (encoder->crtc == crtc)
6919 return true;
6920
6921 return false;
6922 }
6923
6924 static void
6925 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6926 {
6927 struct intel_encoder *intel_encoder;
6928 struct intel_crtc *intel_crtc;
6929 struct drm_connector *connector;
6930
6931 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6932 base.head) {
6933 if (!intel_encoder->base.crtc)
6934 continue;
6935
6936 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6937
6938 if (prepare_pipes & (1 << intel_crtc->pipe))
6939 intel_encoder->connectors_active = false;
6940 }
6941
6942 intel_modeset_commit_output_state(dev);
6943
6944 /* Update computed state. */
6945 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6946 base.head) {
6947 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6948 }
6949
6950 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6951 if (!connector->encoder || !connector->encoder->crtc)
6952 continue;
6953
6954 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6955
6956 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6957 struct drm_property *dpms_property =
6958 dev->mode_config.dpms_property;
6959
6960 connector->dpms = DRM_MODE_DPMS_ON;
6961 drm_connector_property_set_value(connector,
6962 dpms_property,
6963 DRM_MODE_DPMS_ON);
6964
6965 intel_encoder = to_intel_encoder(connector->encoder);
6966 intel_encoder->connectors_active = true;
6967 }
6968 }
6969
6970 }
6971
6972 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6973 list_for_each_entry((intel_crtc), \
6974 &(dev)->mode_config.crtc_list, \
6975 base.head) \
6976 if (mask & (1 <<(intel_crtc)->pipe)) \
6977
6978 void
6979 intel_modeset_check_state(struct drm_device *dev)
6980 {
6981 struct intel_crtc *crtc;
6982 struct intel_encoder *encoder;
6983 struct intel_connector *connector;
6984
6985 list_for_each_entry(connector, &dev->mode_config.connector_list,
6986 base.head) {
6987 /* This also checks the encoder/connector hw state with the
6988 * ->get_hw_state callbacks. */
6989 intel_connector_check_state(connector);
6990
6991 WARN(&connector->new_encoder->base != connector->base.encoder,
6992 "connector's staged encoder doesn't match current encoder\n");
6993 }
6994
6995 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6996 base.head) {
6997 bool enabled = false;
6998 bool active = false;
6999 enum pipe pipe, tracked_pipe;
7000
7001 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7002 encoder->base.base.id,
7003 drm_get_encoder_name(&encoder->base));
7004
7005 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7006 "encoder's stage crtc doesn't match current crtc\n");
7007 WARN(encoder->connectors_active && !encoder->base.crtc,
7008 "encoder's active_connectors set, but no crtc\n");
7009
7010 list_for_each_entry(connector, &dev->mode_config.connector_list,
7011 base.head) {
7012 if (connector->base.encoder != &encoder->base)
7013 continue;
7014 enabled = true;
7015 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7016 active = true;
7017 }
7018 WARN(!!encoder->base.crtc != enabled,
7019 "encoder's enabled state mismatch "
7020 "(expected %i, found %i)\n",
7021 !!encoder->base.crtc, enabled);
7022 WARN(active && !encoder->base.crtc,
7023 "active encoder with no crtc\n");
7024
7025 WARN(encoder->connectors_active != active,
7026 "encoder's computed active state doesn't match tracked active state "
7027 "(expected %i, found %i)\n", active, encoder->connectors_active);
7028
7029 active = encoder->get_hw_state(encoder, &pipe);
7030 WARN(active != encoder->connectors_active,
7031 "encoder's hw state doesn't match sw tracking "
7032 "(expected %i, found %i)\n",
7033 encoder->connectors_active, active);
7034
7035 if (!encoder->base.crtc)
7036 continue;
7037
7038 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7039 WARN(active && pipe != tracked_pipe,
7040 "active encoder's pipe doesn't match"
7041 "(expected %i, found %i)\n",
7042 tracked_pipe, pipe);
7043
7044 }
7045
7046 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7047 base.head) {
7048 bool enabled = false;
7049 bool active = false;
7050
7051 DRM_DEBUG_KMS("[CRTC:%d]\n",
7052 crtc->base.base.id);
7053
7054 WARN(crtc->active && !crtc->base.enabled,
7055 "active crtc, but not enabled in sw tracking\n");
7056
7057 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7058 base.head) {
7059 if (encoder->base.crtc != &crtc->base)
7060 continue;
7061 enabled = true;
7062 if (encoder->connectors_active)
7063 active = true;
7064 }
7065 WARN(active != crtc->active,
7066 "crtc's computed active state doesn't match tracked active state "
7067 "(expected %i, found %i)\n", active, crtc->active);
7068 WARN(enabled != crtc->base.enabled,
7069 "crtc's computed enabled state doesn't match tracked enabled state "
7070 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7071
7072 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7073 }
7074 }
7075
7076 bool intel_set_mode(struct drm_crtc *crtc,
7077 struct drm_display_mode *mode,
7078 int x, int y, struct drm_framebuffer *fb)
7079 {
7080 struct drm_device *dev = crtc->dev;
7081 drm_i915_private_t *dev_priv = dev->dev_private;
7082 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7083 struct drm_encoder_helper_funcs *encoder_funcs;
7084 struct drm_encoder *encoder;
7085 struct intel_crtc *intel_crtc;
7086 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7087 bool ret = true;
7088
7089 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7090 &prepare_pipes, &disable_pipes);
7091
7092 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7093 modeset_pipes, prepare_pipes, disable_pipes);
7094
7095 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7096 intel_crtc_disable(&intel_crtc->base);
7097
7098 saved_hwmode = crtc->hwmode;
7099 saved_mode = crtc->mode;
7100
7101 /* Hack: Because we don't (yet) support global modeset on multiple
7102 * crtcs, we don't keep track of the new mode for more than one crtc.
7103 * Hence simply check whether any bit is set in modeset_pipes in all the
7104 * pieces of code that are not yet converted to deal with mutliple crtcs
7105 * changing their mode at the same time. */
7106 adjusted_mode = NULL;
7107 if (modeset_pipes) {
7108 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7109 if (IS_ERR(adjusted_mode)) {
7110 return false;
7111 }
7112 }
7113
7114 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7115 if (intel_crtc->base.enabled)
7116 dev_priv->display.crtc_disable(&intel_crtc->base);
7117 }
7118
7119 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7120 * to set it here already despite that we pass it down the callchain.
7121 */
7122 if (modeset_pipes)
7123 crtc->mode = *mode;
7124
7125 /* Only after disabling all output pipelines that will be changed can we
7126 * update the the output configuration. */
7127 intel_modeset_update_state(dev, prepare_pipes);
7128
7129 /* Set up the DPLL and any encoders state that needs to adjust or depend
7130 * on the DPLL.
7131 */
7132 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7133 ret = !intel_crtc_mode_set(&intel_crtc->base,
7134 mode, adjusted_mode,
7135 x, y, fb);
7136 if (!ret)
7137 goto done;
7138
7139 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7140
7141 if (encoder->crtc != &intel_crtc->base)
7142 continue;
7143
7144 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7145 encoder->base.id, drm_get_encoder_name(encoder),
7146 mode->base.id, mode->name);
7147 encoder_funcs = encoder->helper_private;
7148 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7149 }
7150 }
7151
7152 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7153 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7154 dev_priv->display.crtc_enable(&intel_crtc->base);
7155
7156 if (modeset_pipes) {
7157 /* Store real post-adjustment hardware mode. */
7158 crtc->hwmode = *adjusted_mode;
7159
7160 /* Calculate and store various constants which
7161 * are later needed by vblank and swap-completion
7162 * timestamping. They are derived from true hwmode.
7163 */
7164 drm_calc_timestamping_constants(crtc);
7165 }
7166
7167 /* FIXME: add subpixel order */
7168 done:
7169 drm_mode_destroy(dev, adjusted_mode);
7170 if (!ret && crtc->enabled) {
7171 crtc->hwmode = saved_hwmode;
7172 crtc->mode = saved_mode;
7173 } else {
7174 intel_modeset_check_state(dev);
7175 }
7176
7177 return ret;
7178 }
7179
7180 #undef for_each_intel_crtc_masked
7181
7182 static void intel_set_config_free(struct intel_set_config *config)
7183 {
7184 if (!config)
7185 return;
7186
7187 kfree(config->save_connector_encoders);
7188 kfree(config->save_encoder_crtcs);
7189 kfree(config);
7190 }
7191
7192 static int intel_set_config_save_state(struct drm_device *dev,
7193 struct intel_set_config *config)
7194 {
7195 struct drm_encoder *encoder;
7196 struct drm_connector *connector;
7197 int count;
7198
7199 config->save_encoder_crtcs =
7200 kcalloc(dev->mode_config.num_encoder,
7201 sizeof(struct drm_crtc *), GFP_KERNEL);
7202 if (!config->save_encoder_crtcs)
7203 return -ENOMEM;
7204
7205 config->save_connector_encoders =
7206 kcalloc(dev->mode_config.num_connector,
7207 sizeof(struct drm_encoder *), GFP_KERNEL);
7208 if (!config->save_connector_encoders)
7209 return -ENOMEM;
7210
7211 /* Copy data. Note that driver private data is not affected.
7212 * Should anything bad happen only the expected state is
7213 * restored, not the drivers personal bookkeeping.
7214 */
7215 count = 0;
7216 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7217 config->save_encoder_crtcs[count++] = encoder->crtc;
7218 }
7219
7220 count = 0;
7221 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7222 config->save_connector_encoders[count++] = connector->encoder;
7223 }
7224
7225 return 0;
7226 }
7227
7228 static void intel_set_config_restore_state(struct drm_device *dev,
7229 struct intel_set_config *config)
7230 {
7231 struct intel_encoder *encoder;
7232 struct intel_connector *connector;
7233 int count;
7234
7235 count = 0;
7236 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7237 encoder->new_crtc =
7238 to_intel_crtc(config->save_encoder_crtcs[count++]);
7239 }
7240
7241 count = 0;
7242 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7243 connector->new_encoder =
7244 to_intel_encoder(config->save_connector_encoders[count++]);
7245 }
7246 }
7247
7248 static void
7249 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7250 struct intel_set_config *config)
7251 {
7252
7253 /* We should be able to check here if the fb has the same properties
7254 * and then just flip_or_move it */
7255 if (set->crtc->fb != set->fb) {
7256 /* If we have no fb then treat it as a full mode set */
7257 if (set->crtc->fb == NULL) {
7258 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7259 config->mode_changed = true;
7260 } else if (set->fb == NULL) {
7261 config->mode_changed = true;
7262 } else if (set->fb->depth != set->crtc->fb->depth) {
7263 config->mode_changed = true;
7264 } else if (set->fb->bits_per_pixel !=
7265 set->crtc->fb->bits_per_pixel) {
7266 config->mode_changed = true;
7267 } else
7268 config->fb_changed = true;
7269 }
7270
7271 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7272 config->fb_changed = true;
7273
7274 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7275 DRM_DEBUG_KMS("modes are different, full mode set\n");
7276 drm_mode_debug_printmodeline(&set->crtc->mode);
7277 drm_mode_debug_printmodeline(set->mode);
7278 config->mode_changed = true;
7279 }
7280 }
7281
7282 static int
7283 intel_modeset_stage_output_state(struct drm_device *dev,
7284 struct drm_mode_set *set,
7285 struct intel_set_config *config)
7286 {
7287 struct drm_crtc *new_crtc;
7288 struct intel_connector *connector;
7289 struct intel_encoder *encoder;
7290 int count, ro;
7291
7292 /* The upper layers ensure that we either disabl a crtc or have a list
7293 * of connectors. For paranoia, double-check this. */
7294 WARN_ON(!set->fb && (set->num_connectors != 0));
7295 WARN_ON(set->fb && (set->num_connectors == 0));
7296
7297 count = 0;
7298 list_for_each_entry(connector, &dev->mode_config.connector_list,
7299 base.head) {
7300 /* Otherwise traverse passed in connector list and get encoders
7301 * for them. */
7302 for (ro = 0; ro < set->num_connectors; ro++) {
7303 if (set->connectors[ro] == &connector->base) {
7304 connector->new_encoder = connector->encoder;
7305 break;
7306 }
7307 }
7308
7309 /* If we disable the crtc, disable all its connectors. Also, if
7310 * the connector is on the changing crtc but not on the new
7311 * connector list, disable it. */
7312 if ((!set->fb || ro == set->num_connectors) &&
7313 connector->base.encoder &&
7314 connector->base.encoder->crtc == set->crtc) {
7315 connector->new_encoder = NULL;
7316
7317 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7318 connector->base.base.id,
7319 drm_get_connector_name(&connector->base));
7320 }
7321
7322
7323 if (&connector->new_encoder->base != connector->base.encoder) {
7324 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7325 config->mode_changed = true;
7326 }
7327
7328 /* Disable all disconnected encoders. */
7329 if (connector->base.status == connector_status_disconnected)
7330 connector->new_encoder = NULL;
7331 }
7332 /* connector->new_encoder is now updated for all connectors. */
7333
7334 /* Update crtc of enabled connectors. */
7335 count = 0;
7336 list_for_each_entry(connector, &dev->mode_config.connector_list,
7337 base.head) {
7338 if (!connector->new_encoder)
7339 continue;
7340
7341 new_crtc = connector->new_encoder->base.crtc;
7342
7343 for (ro = 0; ro < set->num_connectors; ro++) {
7344 if (set->connectors[ro] == &connector->base)
7345 new_crtc = set->crtc;
7346 }
7347
7348 /* Make sure the new CRTC will work with the encoder */
7349 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7350 new_crtc)) {
7351 return -EINVAL;
7352 }
7353 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7354
7355 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7356 connector->base.base.id,
7357 drm_get_connector_name(&connector->base),
7358 new_crtc->base.id);
7359 }
7360
7361 /* Check for any encoders that needs to be disabled. */
7362 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7363 base.head) {
7364 list_for_each_entry(connector,
7365 &dev->mode_config.connector_list,
7366 base.head) {
7367 if (connector->new_encoder == encoder) {
7368 WARN_ON(!connector->new_encoder->new_crtc);
7369
7370 goto next_encoder;
7371 }
7372 }
7373 encoder->new_crtc = NULL;
7374 next_encoder:
7375 /* Only now check for crtc changes so we don't miss encoders
7376 * that will be disabled. */
7377 if (&encoder->new_crtc->base != encoder->base.crtc) {
7378 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7379 config->mode_changed = true;
7380 }
7381 }
7382 /* Now we've also updated encoder->new_crtc for all encoders. */
7383
7384 return 0;
7385 }
7386
7387 static int intel_crtc_set_config(struct drm_mode_set *set)
7388 {
7389 struct drm_device *dev;
7390 struct drm_mode_set save_set;
7391 struct intel_set_config *config;
7392 int ret;
7393
7394 BUG_ON(!set);
7395 BUG_ON(!set->crtc);
7396 BUG_ON(!set->crtc->helper_private);
7397
7398 if (!set->mode)
7399 set->fb = NULL;
7400
7401 /* The fb helper likes to play gross jokes with ->mode_set_config.
7402 * Unfortunately the crtc helper doesn't do much at all for this case,
7403 * so we have to cope with this madness until the fb helper is fixed up. */
7404 if (set->fb && set->num_connectors == 0)
7405 return 0;
7406
7407 if (set->fb) {
7408 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7409 set->crtc->base.id, set->fb->base.id,
7410 (int)set->num_connectors, set->x, set->y);
7411 } else {
7412 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7413 }
7414
7415 dev = set->crtc->dev;
7416
7417 ret = -ENOMEM;
7418 config = kzalloc(sizeof(*config), GFP_KERNEL);
7419 if (!config)
7420 goto out_config;
7421
7422 ret = intel_set_config_save_state(dev, config);
7423 if (ret)
7424 goto out_config;
7425
7426 save_set.crtc = set->crtc;
7427 save_set.mode = &set->crtc->mode;
7428 save_set.x = set->crtc->x;
7429 save_set.y = set->crtc->y;
7430 save_set.fb = set->crtc->fb;
7431
7432 /* Compute whether we need a full modeset, only an fb base update or no
7433 * change at all. In the future we might also check whether only the
7434 * mode changed, e.g. for LVDS where we only change the panel fitter in
7435 * such cases. */
7436 intel_set_config_compute_mode_changes(set, config);
7437
7438 ret = intel_modeset_stage_output_state(dev, set, config);
7439 if (ret)
7440 goto fail;
7441
7442 if (config->mode_changed) {
7443 if (set->mode) {
7444 DRM_DEBUG_KMS("attempting to set mode from"
7445 " userspace\n");
7446 drm_mode_debug_printmodeline(set->mode);
7447 }
7448
7449 if (!intel_set_mode(set->crtc, set->mode,
7450 set->x, set->y, set->fb)) {
7451 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7452 set->crtc->base.id);
7453 ret = -EINVAL;
7454 goto fail;
7455 }
7456 } else if (config->fb_changed) {
7457 ret = intel_pipe_set_base(set->crtc,
7458 set->x, set->y, set->fb);
7459 }
7460
7461 intel_set_config_free(config);
7462
7463 return 0;
7464
7465 fail:
7466 intel_set_config_restore_state(dev, config);
7467
7468 /* Try to restore the config */
7469 if (config->mode_changed &&
7470 !intel_set_mode(save_set.crtc, save_set.mode,
7471 save_set.x, save_set.y, save_set.fb))
7472 DRM_ERROR("failed to restore config after modeset failure\n");
7473
7474 out_config:
7475 intel_set_config_free(config);
7476 return ret;
7477 }
7478
7479 static const struct drm_crtc_funcs intel_crtc_funcs = {
7480 .cursor_set = intel_crtc_cursor_set,
7481 .cursor_move = intel_crtc_cursor_move,
7482 .gamma_set = intel_crtc_gamma_set,
7483 .set_config = intel_crtc_set_config,
7484 .destroy = intel_crtc_destroy,
7485 .page_flip = intel_crtc_page_flip,
7486 };
7487
7488 static void intel_pch_pll_init(struct drm_device *dev)
7489 {
7490 drm_i915_private_t *dev_priv = dev->dev_private;
7491 int i;
7492
7493 if (dev_priv->num_pch_pll == 0) {
7494 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7495 return;
7496 }
7497
7498 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7499 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7500 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7501 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7502 }
7503 }
7504
7505 static void intel_crtc_init(struct drm_device *dev, int pipe)
7506 {
7507 drm_i915_private_t *dev_priv = dev->dev_private;
7508 struct intel_crtc *intel_crtc;
7509 int i;
7510
7511 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7512 if (intel_crtc == NULL)
7513 return;
7514
7515 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7516
7517 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7518 for (i = 0; i < 256; i++) {
7519 intel_crtc->lut_r[i] = i;
7520 intel_crtc->lut_g[i] = i;
7521 intel_crtc->lut_b[i] = i;
7522 }
7523
7524 /* Swap pipes & planes for FBC on pre-965 */
7525 intel_crtc->pipe = pipe;
7526 intel_crtc->plane = pipe;
7527 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7528 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7529 intel_crtc->plane = !pipe;
7530 }
7531
7532 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7533 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7534 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7535 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7536
7537 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7538
7539 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7540 }
7541
7542 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7543 struct drm_file *file)
7544 {
7545 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7546 struct drm_mode_object *drmmode_obj;
7547 struct intel_crtc *crtc;
7548
7549 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7550 return -ENODEV;
7551
7552 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7553 DRM_MODE_OBJECT_CRTC);
7554
7555 if (!drmmode_obj) {
7556 DRM_ERROR("no such CRTC id\n");
7557 return -EINVAL;
7558 }
7559
7560 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7561 pipe_from_crtc_id->pipe = crtc->pipe;
7562
7563 return 0;
7564 }
7565
7566 static int intel_encoder_clones(struct intel_encoder *encoder)
7567 {
7568 struct drm_device *dev = encoder->base.dev;
7569 struct intel_encoder *source_encoder;
7570 int index_mask = 0;
7571 int entry = 0;
7572
7573 list_for_each_entry(source_encoder,
7574 &dev->mode_config.encoder_list, base.head) {
7575
7576 if (encoder == source_encoder)
7577 index_mask |= (1 << entry);
7578
7579 /* Intel hw has only one MUX where enocoders could be cloned. */
7580 if (encoder->cloneable && source_encoder->cloneable)
7581 index_mask |= (1 << entry);
7582
7583 entry++;
7584 }
7585
7586 return index_mask;
7587 }
7588
7589 static bool has_edp_a(struct drm_device *dev)
7590 {
7591 struct drm_i915_private *dev_priv = dev->dev_private;
7592
7593 if (!IS_MOBILE(dev))
7594 return false;
7595
7596 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7597 return false;
7598
7599 if (IS_GEN5(dev) &&
7600 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7601 return false;
7602
7603 return true;
7604 }
7605
7606 static void intel_setup_outputs(struct drm_device *dev)
7607 {
7608 struct drm_i915_private *dev_priv = dev->dev_private;
7609 struct intel_encoder *encoder;
7610 bool dpd_is_edp = false;
7611 bool has_lvds;
7612
7613 has_lvds = intel_lvds_init(dev);
7614 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7615 /* disable the panel fitter on everything but LVDS */
7616 I915_WRITE(PFIT_CONTROL, 0);
7617 }
7618
7619 if (HAS_PCH_SPLIT(dev)) {
7620 dpd_is_edp = intel_dpd_is_edp(dev);
7621
7622 if (has_edp_a(dev))
7623 intel_dp_init(dev, DP_A, PORT_A);
7624
7625 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7626 intel_dp_init(dev, PCH_DP_D, PORT_D);
7627 }
7628
7629 intel_crt_init(dev);
7630
7631 if (IS_HASWELL(dev)) {
7632 int found;
7633
7634 /* Haswell uses DDI functions to detect digital outputs */
7635 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7636 /* DDI A only supports eDP */
7637 if (found)
7638 intel_ddi_init(dev, PORT_A);
7639
7640 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7641 * register */
7642 found = I915_READ(SFUSE_STRAP);
7643
7644 if (found & SFUSE_STRAP_DDIB_DETECTED)
7645 intel_ddi_init(dev, PORT_B);
7646 if (found & SFUSE_STRAP_DDIC_DETECTED)
7647 intel_ddi_init(dev, PORT_C);
7648 if (found & SFUSE_STRAP_DDID_DETECTED)
7649 intel_ddi_init(dev, PORT_D);
7650 } else if (HAS_PCH_SPLIT(dev)) {
7651 int found;
7652
7653 if (I915_READ(HDMIB) & PORT_DETECTED) {
7654 /* PCH SDVOB multiplex with HDMIB */
7655 found = intel_sdvo_init(dev, PCH_SDVOB, true);
7656 if (!found)
7657 intel_hdmi_init(dev, HDMIB, PORT_B);
7658 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7659 intel_dp_init(dev, PCH_DP_B, PORT_B);
7660 }
7661
7662 if (I915_READ(HDMIC) & PORT_DETECTED)
7663 intel_hdmi_init(dev, HDMIC, PORT_C);
7664
7665 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7666 intel_hdmi_init(dev, HDMID, PORT_D);
7667
7668 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7669 intel_dp_init(dev, PCH_DP_C, PORT_C);
7670
7671 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7672 intel_dp_init(dev, PCH_DP_D, PORT_D);
7673 } else if (IS_VALLEYVIEW(dev)) {
7674 int found;
7675
7676 if (I915_READ(SDVOB) & PORT_DETECTED) {
7677 /* SDVOB multiplex with HDMIB */
7678 found = intel_sdvo_init(dev, SDVOB, true);
7679 if (!found)
7680 intel_hdmi_init(dev, SDVOB, PORT_B);
7681 if (!found && (I915_READ(DP_B) & DP_DETECTED))
7682 intel_dp_init(dev, DP_B, PORT_B);
7683 }
7684
7685 if (I915_READ(SDVOC) & PORT_DETECTED)
7686 intel_hdmi_init(dev, SDVOC, PORT_C);
7687
7688 /* Shares lanes with HDMI on SDVOC */
7689 if (I915_READ(DP_C) & DP_DETECTED)
7690 intel_dp_init(dev, DP_C, PORT_C);
7691 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7692 bool found = false;
7693
7694 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7695 DRM_DEBUG_KMS("probing SDVOB\n");
7696 found = intel_sdvo_init(dev, SDVOB, true);
7697 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7698 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7699 intel_hdmi_init(dev, SDVOB, PORT_B);
7700 }
7701
7702 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7703 DRM_DEBUG_KMS("probing DP_B\n");
7704 intel_dp_init(dev, DP_B, PORT_B);
7705 }
7706 }
7707
7708 /* Before G4X SDVOC doesn't have its own detect register */
7709
7710 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7711 DRM_DEBUG_KMS("probing SDVOC\n");
7712 found = intel_sdvo_init(dev, SDVOC, false);
7713 }
7714
7715 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7716
7717 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7718 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7719 intel_hdmi_init(dev, SDVOC, PORT_C);
7720 }
7721 if (SUPPORTS_INTEGRATED_DP(dev)) {
7722 DRM_DEBUG_KMS("probing DP_C\n");
7723 intel_dp_init(dev, DP_C, PORT_C);
7724 }
7725 }
7726
7727 if (SUPPORTS_INTEGRATED_DP(dev) &&
7728 (I915_READ(DP_D) & DP_DETECTED)) {
7729 DRM_DEBUG_KMS("probing DP_D\n");
7730 intel_dp_init(dev, DP_D, PORT_D);
7731 }
7732 } else if (IS_GEN2(dev))
7733 intel_dvo_init(dev);
7734
7735 if (SUPPORTS_TV(dev))
7736 intel_tv_init(dev);
7737
7738 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7739 encoder->base.possible_crtcs = encoder->crtc_mask;
7740 encoder->base.possible_clones =
7741 intel_encoder_clones(encoder);
7742 }
7743
7744 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7745 ironlake_init_pch_refclk(dev);
7746 }
7747
7748 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7749 {
7750 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7751
7752 drm_framebuffer_cleanup(fb);
7753 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7754
7755 kfree(intel_fb);
7756 }
7757
7758 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7759 struct drm_file *file,
7760 unsigned int *handle)
7761 {
7762 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7763 struct drm_i915_gem_object *obj = intel_fb->obj;
7764
7765 return drm_gem_handle_create(file, &obj->base, handle);
7766 }
7767
7768 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7769 .destroy = intel_user_framebuffer_destroy,
7770 .create_handle = intel_user_framebuffer_create_handle,
7771 };
7772
7773 int intel_framebuffer_init(struct drm_device *dev,
7774 struct intel_framebuffer *intel_fb,
7775 struct drm_mode_fb_cmd2 *mode_cmd,
7776 struct drm_i915_gem_object *obj)
7777 {
7778 int ret;
7779
7780 if (obj->tiling_mode == I915_TILING_Y)
7781 return -EINVAL;
7782
7783 if (mode_cmd->pitches[0] & 63)
7784 return -EINVAL;
7785
7786 switch (mode_cmd->pixel_format) {
7787 case DRM_FORMAT_RGB332:
7788 case DRM_FORMAT_RGB565:
7789 case DRM_FORMAT_XRGB8888:
7790 case DRM_FORMAT_XBGR8888:
7791 case DRM_FORMAT_ARGB8888:
7792 case DRM_FORMAT_XRGB2101010:
7793 case DRM_FORMAT_ARGB2101010:
7794 /* RGB formats are common across chipsets */
7795 break;
7796 case DRM_FORMAT_YUYV:
7797 case DRM_FORMAT_UYVY:
7798 case DRM_FORMAT_YVYU:
7799 case DRM_FORMAT_VYUY:
7800 break;
7801 default:
7802 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7803 mode_cmd->pixel_format);
7804 return -EINVAL;
7805 }
7806
7807 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7808 if (ret) {
7809 DRM_ERROR("framebuffer init failed %d\n", ret);
7810 return ret;
7811 }
7812
7813 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7814 intel_fb->obj = obj;
7815 return 0;
7816 }
7817
7818 static struct drm_framebuffer *
7819 intel_user_framebuffer_create(struct drm_device *dev,
7820 struct drm_file *filp,
7821 struct drm_mode_fb_cmd2 *mode_cmd)
7822 {
7823 struct drm_i915_gem_object *obj;
7824
7825 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7826 mode_cmd->handles[0]));
7827 if (&obj->base == NULL)
7828 return ERR_PTR(-ENOENT);
7829
7830 return intel_framebuffer_create(dev, mode_cmd, obj);
7831 }
7832
7833 static const struct drm_mode_config_funcs intel_mode_funcs = {
7834 .fb_create = intel_user_framebuffer_create,
7835 .output_poll_changed = intel_fb_output_poll_changed,
7836 };
7837
7838 /* Set up chip specific display functions */
7839 static void intel_init_display(struct drm_device *dev)
7840 {
7841 struct drm_i915_private *dev_priv = dev->dev_private;
7842
7843 /* We always want a DPMS function */
7844 if (HAS_PCH_SPLIT(dev)) {
7845 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7846 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7847 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7848 dev_priv->display.off = ironlake_crtc_off;
7849 dev_priv->display.update_plane = ironlake_update_plane;
7850 } else {
7851 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7852 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7853 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7854 dev_priv->display.off = i9xx_crtc_off;
7855 dev_priv->display.update_plane = i9xx_update_plane;
7856 }
7857
7858 /* Returns the core display clock speed */
7859 if (IS_VALLEYVIEW(dev))
7860 dev_priv->display.get_display_clock_speed =
7861 valleyview_get_display_clock_speed;
7862 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7863 dev_priv->display.get_display_clock_speed =
7864 i945_get_display_clock_speed;
7865 else if (IS_I915G(dev))
7866 dev_priv->display.get_display_clock_speed =
7867 i915_get_display_clock_speed;
7868 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7869 dev_priv->display.get_display_clock_speed =
7870 i9xx_misc_get_display_clock_speed;
7871 else if (IS_I915GM(dev))
7872 dev_priv->display.get_display_clock_speed =
7873 i915gm_get_display_clock_speed;
7874 else if (IS_I865G(dev))
7875 dev_priv->display.get_display_clock_speed =
7876 i865_get_display_clock_speed;
7877 else if (IS_I85X(dev))
7878 dev_priv->display.get_display_clock_speed =
7879 i855_get_display_clock_speed;
7880 else /* 852, 830 */
7881 dev_priv->display.get_display_clock_speed =
7882 i830_get_display_clock_speed;
7883
7884 if (HAS_PCH_SPLIT(dev)) {
7885 if (IS_GEN5(dev)) {
7886 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7887 dev_priv->display.write_eld = ironlake_write_eld;
7888 } else if (IS_GEN6(dev)) {
7889 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7890 dev_priv->display.write_eld = ironlake_write_eld;
7891 } else if (IS_IVYBRIDGE(dev)) {
7892 /* FIXME: detect B0+ stepping and use auto training */
7893 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7894 dev_priv->display.write_eld = ironlake_write_eld;
7895 } else if (IS_HASWELL(dev)) {
7896 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7897 dev_priv->display.write_eld = haswell_write_eld;
7898 } else
7899 dev_priv->display.update_wm = NULL;
7900 } else if (IS_G4X(dev)) {
7901 dev_priv->display.write_eld = g4x_write_eld;
7902 }
7903
7904 /* Default just returns -ENODEV to indicate unsupported */
7905 dev_priv->display.queue_flip = intel_default_queue_flip;
7906
7907 switch (INTEL_INFO(dev)->gen) {
7908 case 2:
7909 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7910 break;
7911
7912 case 3:
7913 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7914 break;
7915
7916 case 4:
7917 case 5:
7918 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7919 break;
7920
7921 case 6:
7922 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7923 break;
7924 case 7:
7925 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7926 break;
7927 }
7928 }
7929
7930 /*
7931 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7932 * resume, or other times. This quirk makes sure that's the case for
7933 * affected systems.
7934 */
7935 static void quirk_pipea_force(struct drm_device *dev)
7936 {
7937 struct drm_i915_private *dev_priv = dev->dev_private;
7938
7939 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7940 DRM_INFO("applying pipe a force quirk\n");
7941 }
7942
7943 /*
7944 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7945 */
7946 static void quirk_ssc_force_disable(struct drm_device *dev)
7947 {
7948 struct drm_i915_private *dev_priv = dev->dev_private;
7949 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7950 DRM_INFO("applying lvds SSC disable quirk\n");
7951 }
7952
7953 /*
7954 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7955 * brightness value
7956 */
7957 static void quirk_invert_brightness(struct drm_device *dev)
7958 {
7959 struct drm_i915_private *dev_priv = dev->dev_private;
7960 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7961 DRM_INFO("applying inverted panel brightness quirk\n");
7962 }
7963
7964 struct intel_quirk {
7965 int device;
7966 int subsystem_vendor;
7967 int subsystem_device;
7968 void (*hook)(struct drm_device *dev);
7969 };
7970
7971 static struct intel_quirk intel_quirks[] = {
7972 /* HP Mini needs pipe A force quirk (LP: #322104) */
7973 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7974
7975 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7976 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7977
7978 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7979 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7980
7981 /* 855 & before need to leave pipe A & dpll A up */
7982 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7983 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7984 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7985
7986 /* Lenovo U160 cannot use SSC on LVDS */
7987 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7988
7989 /* Sony Vaio Y cannot use SSC on LVDS */
7990 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7991
7992 /* Acer Aspire 5734Z must invert backlight brightness */
7993 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7994 };
7995
7996 static void intel_init_quirks(struct drm_device *dev)
7997 {
7998 struct pci_dev *d = dev->pdev;
7999 int i;
8000
8001 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8002 struct intel_quirk *q = &intel_quirks[i];
8003
8004 if (d->device == q->device &&
8005 (d->subsystem_vendor == q->subsystem_vendor ||
8006 q->subsystem_vendor == PCI_ANY_ID) &&
8007 (d->subsystem_device == q->subsystem_device ||
8008 q->subsystem_device == PCI_ANY_ID))
8009 q->hook(dev);
8010 }
8011 }
8012
8013 /* Disable the VGA plane that we never use */
8014 static void i915_disable_vga(struct drm_device *dev)
8015 {
8016 struct drm_i915_private *dev_priv = dev->dev_private;
8017 u8 sr1;
8018 u32 vga_reg;
8019
8020 if (HAS_PCH_SPLIT(dev))
8021 vga_reg = CPU_VGACNTRL;
8022 else
8023 vga_reg = VGACNTRL;
8024
8025 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8026 outb(SR01, VGA_SR_INDEX);
8027 sr1 = inb(VGA_SR_DATA);
8028 outb(sr1 | 1<<5, VGA_SR_DATA);
8029 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8030 udelay(300);
8031
8032 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8033 POSTING_READ(vga_reg);
8034 }
8035
8036 void intel_modeset_init_hw(struct drm_device *dev)
8037 {
8038 /* We attempt to init the necessary power wells early in the initialization
8039 * time, so the subsystems that expect power to be enabled can work.
8040 */
8041 intel_init_power_wells(dev);
8042
8043 intel_prepare_ddi(dev);
8044
8045 intel_init_clock_gating(dev);
8046
8047 mutex_lock(&dev->struct_mutex);
8048 intel_enable_gt_powersave(dev);
8049 mutex_unlock(&dev->struct_mutex);
8050 }
8051
8052 void intel_modeset_init(struct drm_device *dev)
8053 {
8054 struct drm_i915_private *dev_priv = dev->dev_private;
8055 int i, ret;
8056
8057 drm_mode_config_init(dev);
8058
8059 dev->mode_config.min_width = 0;
8060 dev->mode_config.min_height = 0;
8061
8062 dev->mode_config.preferred_depth = 24;
8063 dev->mode_config.prefer_shadow = 1;
8064
8065 dev->mode_config.funcs = &intel_mode_funcs;
8066
8067 intel_init_quirks(dev);
8068
8069 intel_init_pm(dev);
8070
8071 intel_init_display(dev);
8072
8073 if (IS_GEN2(dev)) {
8074 dev->mode_config.max_width = 2048;
8075 dev->mode_config.max_height = 2048;
8076 } else if (IS_GEN3(dev)) {
8077 dev->mode_config.max_width = 4096;
8078 dev->mode_config.max_height = 4096;
8079 } else {
8080 dev->mode_config.max_width = 8192;
8081 dev->mode_config.max_height = 8192;
8082 }
8083 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8084
8085 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8086 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8087
8088 for (i = 0; i < dev_priv->num_pipe; i++) {
8089 intel_crtc_init(dev, i);
8090 ret = intel_plane_init(dev, i);
8091 if (ret)
8092 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8093 }
8094
8095 intel_pch_pll_init(dev);
8096
8097 /* Just disable it once at startup */
8098 i915_disable_vga(dev);
8099 intel_setup_outputs(dev);
8100 }
8101
8102 static void
8103 intel_connector_break_all_links(struct intel_connector *connector)
8104 {
8105 connector->base.dpms = DRM_MODE_DPMS_OFF;
8106 connector->base.encoder = NULL;
8107 connector->encoder->connectors_active = false;
8108 connector->encoder->base.crtc = NULL;
8109 }
8110
8111 static void intel_enable_pipe_a(struct drm_device *dev)
8112 {
8113 struct intel_connector *connector;
8114 struct drm_connector *crt = NULL;
8115 struct intel_load_detect_pipe load_detect_temp;
8116
8117 /* We can't just switch on the pipe A, we need to set things up with a
8118 * proper mode and output configuration. As a gross hack, enable pipe A
8119 * by enabling the load detect pipe once. */
8120 list_for_each_entry(connector,
8121 &dev->mode_config.connector_list,
8122 base.head) {
8123 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8124 crt = &connector->base;
8125 break;
8126 }
8127 }
8128
8129 if (!crt)
8130 return;
8131
8132 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8133 intel_release_load_detect_pipe(crt, &load_detect_temp);
8134
8135
8136 }
8137
8138 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8139 {
8140 struct drm_device *dev = crtc->base.dev;
8141 struct drm_i915_private *dev_priv = dev->dev_private;
8142 u32 reg, val;
8143
8144 /* Clear any frame start delays used for debugging left by the BIOS */
8145 reg = PIPECONF(crtc->pipe);
8146 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8147
8148 /* We need to sanitize the plane -> pipe mapping first because this will
8149 * disable the crtc (and hence change the state) if it is wrong. */
8150 if (!HAS_PCH_SPLIT(dev)) {
8151 struct intel_connector *connector;
8152 bool plane;
8153
8154 reg = DSPCNTR(crtc->plane);
8155 val = I915_READ(reg);
8156
8157 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8158 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8159 goto ok;
8160
8161 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8162 crtc->base.base.id);
8163
8164 /* Pipe has the wrong plane attached and the plane is active.
8165 * Temporarily change the plane mapping and disable everything
8166 * ... */
8167 plane = crtc->plane;
8168 crtc->plane = !plane;
8169 dev_priv->display.crtc_disable(&crtc->base);
8170 crtc->plane = plane;
8171
8172 /* ... and break all links. */
8173 list_for_each_entry(connector, &dev->mode_config.connector_list,
8174 base.head) {
8175 if (connector->encoder->base.crtc != &crtc->base)
8176 continue;
8177
8178 intel_connector_break_all_links(connector);
8179 }
8180
8181 WARN_ON(crtc->active);
8182 crtc->base.enabled = false;
8183 }
8184 ok:
8185
8186 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8187 crtc->pipe == PIPE_A && !crtc->active) {
8188 /* BIOS forgot to enable pipe A, this mostly happens after
8189 * resume. Force-enable the pipe to fix this, the update_dpms
8190 * call below we restore the pipe to the right state, but leave
8191 * the required bits on. */
8192 intel_enable_pipe_a(dev);
8193 }
8194
8195 /* Adjust the state of the output pipe according to whether we
8196 * have active connectors/encoders. */
8197 intel_crtc_update_dpms(&crtc->base);
8198
8199 if (crtc->active != crtc->base.enabled) {
8200 struct intel_encoder *encoder;
8201
8202 /* This can happen either due to bugs in the get_hw_state
8203 * functions or because the pipe is force-enabled due to the
8204 * pipe A quirk. */
8205 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8206 crtc->base.base.id,
8207 crtc->base.enabled ? "enabled" : "disabled",
8208 crtc->active ? "enabled" : "disabled");
8209
8210 crtc->base.enabled = crtc->active;
8211
8212 /* Because we only establish the connector -> encoder ->
8213 * crtc links if something is active, this means the
8214 * crtc is now deactivated. Break the links. connector
8215 * -> encoder links are only establish when things are
8216 * actually up, hence no need to break them. */
8217 WARN_ON(crtc->active);
8218
8219 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8220 WARN_ON(encoder->connectors_active);
8221 encoder->base.crtc = NULL;
8222 }
8223 }
8224 }
8225
8226 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8227 {
8228 struct intel_connector *connector;
8229 struct drm_device *dev = encoder->base.dev;
8230
8231 /* We need to check both for a crtc link (meaning that the
8232 * encoder is active and trying to read from a pipe) and the
8233 * pipe itself being active. */
8234 bool has_active_crtc = encoder->base.crtc &&
8235 to_intel_crtc(encoder->base.crtc)->active;
8236
8237 if (encoder->connectors_active && !has_active_crtc) {
8238 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8239 encoder->base.base.id,
8240 drm_get_encoder_name(&encoder->base));
8241
8242 /* Connector is active, but has no active pipe. This is
8243 * fallout from our resume register restoring. Disable
8244 * the encoder manually again. */
8245 if (encoder->base.crtc) {
8246 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8247 encoder->base.base.id,
8248 drm_get_encoder_name(&encoder->base));
8249 encoder->disable(encoder);
8250 }
8251
8252 /* Inconsistent output/port/pipe state happens presumably due to
8253 * a bug in one of the get_hw_state functions. Or someplace else
8254 * in our code, like the register restore mess on resume. Clamp
8255 * things to off as a safer default. */
8256 list_for_each_entry(connector,
8257 &dev->mode_config.connector_list,
8258 base.head) {
8259 if (connector->encoder != encoder)
8260 continue;
8261
8262 intel_connector_break_all_links(connector);
8263 }
8264 }
8265 /* Enabled encoders without active connectors will be fixed in
8266 * the crtc fixup. */
8267 }
8268
8269 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8270 * and i915 state tracking structures. */
8271 void intel_modeset_setup_hw_state(struct drm_device *dev)
8272 {
8273 struct drm_i915_private *dev_priv = dev->dev_private;
8274 enum pipe pipe;
8275 u32 tmp;
8276 struct intel_crtc *crtc;
8277 struct intel_encoder *encoder;
8278 struct intel_connector *connector;
8279
8280 for_each_pipe(pipe) {
8281 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8282
8283 tmp = I915_READ(PIPECONF(pipe));
8284 if (tmp & PIPECONF_ENABLE)
8285 crtc->active = true;
8286 else
8287 crtc->active = false;
8288
8289 crtc->base.enabled = crtc->active;
8290
8291 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8292 crtc->base.base.id,
8293 crtc->active ? "enabled" : "disabled");
8294 }
8295
8296 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8297 base.head) {
8298 pipe = 0;
8299
8300 if (encoder->get_hw_state(encoder, &pipe)) {
8301 encoder->base.crtc =
8302 dev_priv->pipe_to_crtc_mapping[pipe];
8303 } else {
8304 encoder->base.crtc = NULL;
8305 }
8306
8307 encoder->connectors_active = false;
8308 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8309 encoder->base.base.id,
8310 drm_get_encoder_name(&encoder->base),
8311 encoder->base.crtc ? "enabled" : "disabled",
8312 pipe);
8313 }
8314
8315 list_for_each_entry(connector, &dev->mode_config.connector_list,
8316 base.head) {
8317 if (connector->get_hw_state(connector)) {
8318 connector->base.dpms = DRM_MODE_DPMS_ON;
8319 connector->encoder->connectors_active = true;
8320 connector->base.encoder = &connector->encoder->base;
8321 } else {
8322 connector->base.dpms = DRM_MODE_DPMS_OFF;
8323 connector->base.encoder = NULL;
8324 }
8325 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8326 connector->base.base.id,
8327 drm_get_connector_name(&connector->base),
8328 connector->base.encoder ? "enabled" : "disabled");
8329 }
8330
8331 /* HW state is read out, now we need to sanitize this mess. */
8332 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8333 base.head) {
8334 intel_sanitize_encoder(encoder);
8335 }
8336
8337 for_each_pipe(pipe) {
8338 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8339 intel_sanitize_crtc(crtc);
8340 }
8341
8342 intel_modeset_update_staged_output_state(dev);
8343
8344 intel_modeset_check_state(dev);
8345 }
8346
8347 void intel_modeset_gem_init(struct drm_device *dev)
8348 {
8349 intel_modeset_init_hw(dev);
8350
8351 intel_setup_overlay(dev);
8352
8353 intel_modeset_setup_hw_state(dev);
8354 }
8355
8356 void intel_modeset_cleanup(struct drm_device *dev)
8357 {
8358 struct drm_i915_private *dev_priv = dev->dev_private;
8359 struct drm_crtc *crtc;
8360 struct intel_crtc *intel_crtc;
8361
8362 drm_kms_helper_poll_fini(dev);
8363 mutex_lock(&dev->struct_mutex);
8364
8365 intel_unregister_dsm_handler();
8366
8367
8368 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8369 /* Skip inactive CRTCs */
8370 if (!crtc->fb)
8371 continue;
8372
8373 intel_crtc = to_intel_crtc(crtc);
8374 intel_increase_pllclock(crtc);
8375 }
8376
8377 intel_disable_fbc(dev);
8378
8379 intel_disable_gt_powersave(dev);
8380
8381 ironlake_teardown_rc6(dev);
8382
8383 if (IS_VALLEYVIEW(dev))
8384 vlv_init_dpio(dev);
8385
8386 mutex_unlock(&dev->struct_mutex);
8387
8388 /* Disable the irq before mode object teardown, for the irq might
8389 * enqueue unpin/hotplug work. */
8390 drm_irq_uninstall(dev);
8391 cancel_work_sync(&dev_priv->hotplug_work);
8392 cancel_work_sync(&dev_priv->rps.work);
8393
8394 /* flush any delayed tasks or pending work */
8395 flush_scheduled_work();
8396
8397 drm_mode_config_cleanup(dev);
8398 }
8399
8400 /*
8401 * Return which encoder is currently attached for connector.
8402 */
8403 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8404 {
8405 return &intel_attached_encoder(connector)->base;
8406 }
8407
8408 void intel_connector_attach_encoder(struct intel_connector *connector,
8409 struct intel_encoder *encoder)
8410 {
8411 connector->encoder = encoder;
8412 drm_mode_connector_attach_encoder(&connector->base,
8413 &encoder->base);
8414 }
8415
8416 /*
8417 * set vga decode state - true == enable VGA decode
8418 */
8419 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8420 {
8421 struct drm_i915_private *dev_priv = dev->dev_private;
8422 u16 gmch_ctrl;
8423
8424 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8425 if (state)
8426 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8427 else
8428 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8429 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8430 return 0;
8431 }
8432
8433 #ifdef CONFIG_DEBUG_FS
8434 #include <linux/seq_file.h>
8435
8436 struct intel_display_error_state {
8437 struct intel_cursor_error_state {
8438 u32 control;
8439 u32 position;
8440 u32 base;
8441 u32 size;
8442 } cursor[I915_MAX_PIPES];
8443
8444 struct intel_pipe_error_state {
8445 u32 conf;
8446 u32 source;
8447
8448 u32 htotal;
8449 u32 hblank;
8450 u32 hsync;
8451 u32 vtotal;
8452 u32 vblank;
8453 u32 vsync;
8454 } pipe[I915_MAX_PIPES];
8455
8456 struct intel_plane_error_state {
8457 u32 control;
8458 u32 stride;
8459 u32 size;
8460 u32 pos;
8461 u32 addr;
8462 u32 surface;
8463 u32 tile_offset;
8464 } plane[I915_MAX_PIPES];
8465 };
8466
8467 struct intel_display_error_state *
8468 intel_display_capture_error_state(struct drm_device *dev)
8469 {
8470 drm_i915_private_t *dev_priv = dev->dev_private;
8471 struct intel_display_error_state *error;
8472 int i;
8473
8474 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8475 if (error == NULL)
8476 return NULL;
8477
8478 for_each_pipe(i) {
8479 error->cursor[i].control = I915_READ(CURCNTR(i));
8480 error->cursor[i].position = I915_READ(CURPOS(i));
8481 error->cursor[i].base = I915_READ(CURBASE(i));
8482
8483 error->plane[i].control = I915_READ(DSPCNTR(i));
8484 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8485 error->plane[i].size = I915_READ(DSPSIZE(i));
8486 error->plane[i].pos = I915_READ(DSPPOS(i));
8487 error->plane[i].addr = I915_READ(DSPADDR(i));
8488 if (INTEL_INFO(dev)->gen >= 4) {
8489 error->plane[i].surface = I915_READ(DSPSURF(i));
8490 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8491 }
8492
8493 error->pipe[i].conf = I915_READ(PIPECONF(i));
8494 error->pipe[i].source = I915_READ(PIPESRC(i));
8495 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8496 error->pipe[i].hblank = I915_READ(HBLANK(i));
8497 error->pipe[i].hsync = I915_READ(HSYNC(i));
8498 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8499 error->pipe[i].vblank = I915_READ(VBLANK(i));
8500 error->pipe[i].vsync = I915_READ(VSYNC(i));
8501 }
8502
8503 return error;
8504 }
8505
8506 void
8507 intel_display_print_error_state(struct seq_file *m,
8508 struct drm_device *dev,
8509 struct intel_display_error_state *error)
8510 {
8511 drm_i915_private_t *dev_priv = dev->dev_private;
8512 int i;
8513
8514 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8515 for_each_pipe(i) {
8516 seq_printf(m, "Pipe [%d]:\n", i);
8517 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8518 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8519 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8520 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8521 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8522 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8523 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8524 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8525
8526 seq_printf(m, "Plane [%d]:\n", i);
8527 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8528 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8529 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8530 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8531 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8532 if (INTEL_INFO(dev)->gen >= 4) {
8533 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8534 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8535 }
8536
8537 seq_printf(m, "Cursor [%d]:\n", i);
8538 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8539 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8540 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8541 }
8542 }
8543 #endif
This page took 0.420762 seconds and 6 git commands to generate.