Merge tag 'drm-intel-fixes-2013-09-26' of git://people.freedesktop.org/~danvet/drm...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79
80 WARN_ON(!HAS_PCH_SPLIT(dev));
81
82 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88 if (IS_GEN5(dev)) {
89 struct drm_i915_private *dev_priv = dev->dev_private;
90 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91 } else
92 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96 .dot = { .min = 25000, .max = 350000 },
97 .vco = { .min = 930000, .max = 1400000 },
98 .n = { .min = 3, .max = 16 },
99 .m = { .min = 96, .max = 140 },
100 .m1 = { .min = 18, .max = 26 },
101 .m2 = { .min = 6, .max = 16 },
102 .p = { .min = 4, .max = 128 },
103 .p1 = { .min = 2, .max = 33 },
104 .p2 = { .dot_limit = 165000,
105 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135 .dot = { .min = 20000, .max = 400000 },
136 .vco = { .min = 1400000, .max = 2800000 },
137 .n = { .min = 1, .max = 6 },
138 .m = { .min = 70, .max = 120 },
139 .m1 = { .min = 8, .max = 18 },
140 .m2 = { .min = 3, .max = 7 },
141 .p = { .min = 5, .max = 80 },
142 .p1 = { .min = 1, .max = 8 },
143 .p2 = { .dot_limit = 200000,
144 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148 .dot = { .min = 20000, .max = 400000 },
149 .vco = { .min = 1400000, .max = 2800000 },
150 .n = { .min = 1, .max = 6 },
151 .m = { .min = 70, .max = 120 },
152 .m1 = { .min = 8, .max = 18 },
153 .m2 = { .min = 3, .max = 7 },
154 .p = { .min = 7, .max = 98 },
155 .p1 = { .min = 1, .max = 8 },
156 .p2 = { .dot_limit = 112000,
157 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162 .dot = { .min = 25000, .max = 270000 },
163 .vco = { .min = 1750000, .max = 3500000},
164 .n = { .min = 1, .max = 4 },
165 .m = { .min = 104, .max = 138 },
166 .m1 = { .min = 17, .max = 23 },
167 .m2 = { .min = 5, .max = 11 },
168 .p = { .min = 10, .max = 30 },
169 .p1 = { .min = 1, .max = 3},
170 .p2 = { .dot_limit = 270000,
171 .p2_slow = 10,
172 .p2_fast = 10
173 },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177 .dot = { .min = 22000, .max = 400000 },
178 .vco = { .min = 1750000, .max = 3500000},
179 .n = { .min = 1, .max = 4 },
180 .m = { .min = 104, .max = 138 },
181 .m1 = { .min = 16, .max = 23 },
182 .m2 = { .min = 5, .max = 11 },
183 .p = { .min = 5, .max = 80 },
184 .p1 = { .min = 1, .max = 8},
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190 .dot = { .min = 20000, .max = 115000 },
191 .vco = { .min = 1750000, .max = 3500000 },
192 .n = { .min = 1, .max = 3 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 17, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 28, .max = 112 },
197 .p1 = { .min = 2, .max = 8 },
198 .p2 = { .dot_limit = 0,
199 .p2_slow = 14, .p2_fast = 14
200 },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204 .dot = { .min = 80000, .max = 224000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 14, .max = 42 },
211 .p1 = { .min = 2, .max = 6 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 7, .p2_fast = 7
214 },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218 .dot = { .min = 20000, .max = 400000},
219 .vco = { .min = 1700000, .max = 3500000 },
220 /* Pineview's Ncounter is a ring counter */
221 .n = { .min = 3, .max = 6 },
222 .m = { .min = 2, .max = 256 },
223 /* Pineview only has one combined m divider, which we treat as m2. */
224 .m1 = { .min = 0, .max = 0 },
225 .m2 = { .min = 0, .max = 254 },
226 .p = { .min = 5, .max = 80 },
227 .p1 = { .min = 1, .max = 8 },
228 .p2 = { .dot_limit = 200000,
229 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233 .dot = { .min = 20000, .max = 400000 },
234 .vco = { .min = 1700000, .max = 3500000 },
235 .n = { .min = 3, .max = 6 },
236 .m = { .min = 2, .max = 256 },
237 .m1 = { .min = 0, .max = 0 },
238 .m2 = { .min = 0, .max = 254 },
239 .p = { .min = 7, .max = 112 },
240 .p1 = { .min = 1, .max = 8 },
241 .p2 = { .dot_limit = 112000,
242 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246 *
247 * We calculate clock using (register_value + 2) for N/M1/M2, so here
248 * the range value for them is (actual_value - 2).
249 */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251 .dot = { .min = 25000, .max = 350000 },
252 .vco = { .min = 1760000, .max = 3510000 },
253 .n = { .min = 1, .max = 5 },
254 .m = { .min = 79, .max = 127 },
255 .m1 = { .min = 12, .max = 22 },
256 .m2 = { .min = 5, .max = 9 },
257 .p = { .min = 5, .max = 80 },
258 .p1 = { .min = 1, .max = 8 },
259 .p2 = { .dot_limit = 225000,
260 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 1760000, .max = 3510000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 79, .max = 118 },
268 .m1 = { .min = 12, .max = 22 },
269 .m2 = { .min = 5, .max = 9 },
270 .p = { .min = 28, .max = 112 },
271 .p1 = { .min = 2, .max = 8 },
272 .p2 = { .dot_limit = 225000,
273 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 1760000, .max = 3510000 },
279 .n = { .min = 1, .max = 3 },
280 .m = { .min = 79, .max = 127 },
281 .m1 = { .min = 12, .max = 22 },
282 .m2 = { .min = 5, .max = 9 },
283 .p = { .min = 14, .max = 56 },
284 .p1 = { .min = 2, .max = 8 },
285 .p2 = { .dot_limit = 225000,
286 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 2 },
294 .m = { .min = 79, .max = 126 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 28, .max = 112 },
298 .p1 = { .min = 2, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 3 },
307 .m = { .min = 79, .max = 126 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 14, .max = 42 },
311 .p1 = { .min = 2, .max = 6 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317 .dot = { .min = 25000, .max = 270000 },
318 .vco = { .min = 4000000, .max = 6000000 },
319 .n = { .min = 1, .max = 7 },
320 .m = { .min = 22, .max = 450 }, /* guess */
321 .m1 = { .min = 2, .max = 3 },
322 .m2 = { .min = 11, .max = 156 },
323 .p = { .min = 10, .max = 30 },
324 .p1 = { .min = 1, .max = 3 },
325 .p2 = { .dot_limit = 270000,
326 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 4000000, .max = 6000000 },
332 .n = { .min = 1, .max = 7 },
333 .m = { .min = 60, .max = 300 }, /* guess */
334 .m1 = { .min = 2, .max = 3 },
335 .m2 = { .min = 11, .max = 156 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 2, .max = 3 },
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343 .dot = { .min = 25000, .max = 270000 },
344 .vco = { .min = 4000000, .max = 6000000 },
345 .n = { .min = 1, .max = 7 },
346 .m = { .min = 22, .max = 450 },
347 .m1 = { .min = 2, .max = 3 },
348 .m2 = { .min = 11, .max = 156 },
349 .p = { .min = 10, .max = 30 },
350 .p1 = { .min = 1, .max = 3 },
351 .p2 = { .dot_limit = 270000,
352 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356 int refclk)
357 {
358 struct drm_device *dev = crtc->dev;
359 const intel_limit_t *limit;
360
361 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362 if (intel_is_dual_link_lvds(dev)) {
363 if (refclk == 100000)
364 limit = &intel_limits_ironlake_dual_lvds_100m;
365 else
366 limit = &intel_limits_ironlake_dual_lvds;
367 } else {
368 if (refclk == 100000)
369 limit = &intel_limits_ironlake_single_lvds_100m;
370 else
371 limit = &intel_limits_ironlake_single_lvds;
372 }
373 } else
374 limit = &intel_limits_ironlake_dac;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385 if (intel_is_dual_link_lvds(dev))
386 limit = &intel_limits_g4x_dual_channel_lvds;
387 else
388 limit = &intel_limits_g4x_single_channel_lvds;
389 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391 limit = &intel_limits_g4x_hdmi;
392 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393 limit = &intel_limits_g4x_sdvo;
394 } else /* The option is for other outputs */
395 limit = &intel_limits_i9xx_sdvo;
396
397 return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402 struct drm_device *dev = crtc->dev;
403 const intel_limit_t *limit;
404
405 if (HAS_PCH_SPLIT(dev))
406 limit = intel_ironlake_limit(crtc, refclk);
407 else if (IS_G4X(dev)) {
408 limit = intel_g4x_limit(crtc);
409 } else if (IS_PINEVIEW(dev)) {
410 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411 limit = &intel_limits_pineview_lvds;
412 else
413 limit = &intel_limits_pineview_sdvo;
414 } else if (IS_VALLEYVIEW(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416 limit = &intel_limits_vlv_dac;
417 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418 limit = &intel_limits_vlv_hdmi;
419 else
420 limit = &intel_limits_vlv_dp;
421 } else if (!IS_GEN2(dev)) {
422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423 limit = &intel_limits_i9xx_lvds;
424 else
425 limit = &intel_limits_i9xx_sdvo;
426 } else {
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428 limit = &intel_limits_i8xx_lvds;
429 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430 limit = &intel_limits_i8xx_dvo;
431 else
432 limit = &intel_limits_i8xx_dac;
433 }
434 return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440 clock->m = clock->m2 + 2;
441 clock->p = clock->p1 * clock->p2;
442 clock->vco = refclk * clock->m / clock->n;
443 clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453 clock->m = i9xx_dpll_compute_m(clock);
454 clock->p = clock->p1 * clock->p2;
455 clock->vco = refclk * clock->m / (clock->n + 2);
456 clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460 * Returns whether any output on the specified pipe is of the specified type
461 */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464 struct drm_device *dev = crtc->dev;
465 struct intel_encoder *encoder;
466
467 for_each_encoder_on_crtc(dev, crtc, encoder)
468 if (encoder->type == type)
469 return true;
470
471 return false;
472 }
473
474 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476 * Returns whether the given set of divisors are valid for a given refclk with
477 * the given connectors.
478 */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481 const intel_limit_t *limit,
482 const intel_clock_t *clock)
483 {
484 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
485 INTELPllInvalid("p1 out of range\n");
486 if (clock->p < limit->p.min || limit->p.max < clock->p)
487 INTELPllInvalid("p out of range\n");
488 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
489 INTELPllInvalid("m2 out of range\n");
490 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
491 INTELPllInvalid("m1 out of range\n");
492 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493 INTELPllInvalid("m1 <= m2\n");
494 if (clock->m < limit->m.min || limit->m.max < clock->m)
495 INTELPllInvalid("m out of range\n");
496 if (clock->n < limit->n.min || limit->n.max < clock->n)
497 INTELPllInvalid("n out of range\n");
498 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499 INTELPllInvalid("vco out of range\n");
500 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501 * connector, etc., rather than just a single range.
502 */
503 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504 INTELPllInvalid("dot out of range\n");
505
506 return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511 int target, int refclk, intel_clock_t *match_clock,
512 intel_clock_t *best_clock)
513 {
514 struct drm_device *dev = crtc->dev;
515 intel_clock_t clock;
516 int err = target;
517
518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519 /*
520 * For LVDS just rely on its current settings for dual-channel.
521 * We haven't figured out how to reliably set up different
522 * single/dual channel state, if we even can.
523 */
524 if (intel_is_dual_link_lvds(dev))
525 clock.p2 = limit->p2.p2_fast;
526 else
527 clock.p2 = limit->p2.p2_slow;
528 } else {
529 if (target < limit->p2.dot_limit)
530 clock.p2 = limit->p2.p2_slow;
531 else
532 clock.p2 = limit->p2.p2_fast;
533 }
534
535 memset(best_clock, 0, sizeof(*best_clock));
536
537 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538 clock.m1++) {
539 for (clock.m2 = limit->m2.min;
540 clock.m2 <= limit->m2.max; clock.m2++) {
541 if (clock.m2 >= clock.m1)
542 break;
543 for (clock.n = limit->n.min;
544 clock.n <= limit->n.max; clock.n++) {
545 for (clock.p1 = limit->p1.min;
546 clock.p1 <= limit->p1.max; clock.p1++) {
547 int this_err;
548
549 i9xx_clock(refclk, &clock);
550 if (!intel_PLL_is_valid(dev, limit,
551 &clock))
552 continue;
553 if (match_clock &&
554 clock.p != match_clock->p)
555 continue;
556
557 this_err = abs(clock.dot - target);
558 if (this_err < err) {
559 *best_clock = clock;
560 err = this_err;
561 }
562 }
563 }
564 }
565 }
566
567 return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572 int target, int refclk, intel_clock_t *match_clock,
573 intel_clock_t *best_clock)
574 {
575 struct drm_device *dev = crtc->dev;
576 intel_clock_t clock;
577 int err = target;
578
579 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580 /*
581 * For LVDS just rely on its current settings for dual-channel.
582 * We haven't figured out how to reliably set up different
583 * single/dual channel state, if we even can.
584 */
585 if (intel_is_dual_link_lvds(dev))
586 clock.p2 = limit->p2.p2_fast;
587 else
588 clock.p2 = limit->p2.p2_slow;
589 } else {
590 if (target < limit->p2.dot_limit)
591 clock.p2 = limit->p2.p2_slow;
592 else
593 clock.p2 = limit->p2.p2_fast;
594 }
595
596 memset(best_clock, 0, sizeof(*best_clock));
597
598 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599 clock.m1++) {
600 for (clock.m2 = limit->m2.min;
601 clock.m2 <= limit->m2.max; clock.m2++) {
602 for (clock.n = limit->n.min;
603 clock.n <= limit->n.max; clock.n++) {
604 for (clock.p1 = limit->p1.min;
605 clock.p1 <= limit->p1.max; clock.p1++) {
606 int this_err;
607
608 pineview_clock(refclk, &clock);
609 if (!intel_PLL_is_valid(dev, limit,
610 &clock))
611 continue;
612 if (match_clock &&
613 clock.p != match_clock->p)
614 continue;
615
616 this_err = abs(clock.dot - target);
617 if (this_err < err) {
618 *best_clock = clock;
619 err = this_err;
620 }
621 }
622 }
623 }
624 }
625
626 return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631 int target, int refclk, intel_clock_t *match_clock,
632 intel_clock_t *best_clock)
633 {
634 struct drm_device *dev = crtc->dev;
635 intel_clock_t clock;
636 int max_n;
637 bool found;
638 /* approximately equals target * 0.00585 */
639 int err_most = (target >> 8) + (target >> 9);
640 found = false;
641
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (intel_is_dual_link_lvds(dev))
644 clock.p2 = limit->p2.p2_fast;
645 else
646 clock.p2 = limit->p2.p2_slow;
647 } else {
648 if (target < limit->p2.dot_limit)
649 clock.p2 = limit->p2.p2_slow;
650 else
651 clock.p2 = limit->p2.p2_fast;
652 }
653
654 memset(best_clock, 0, sizeof(*best_clock));
655 max_n = limit->n.max;
656 /* based on hardware requirement, prefer smaller n to precision */
657 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658 /* based on hardware requirement, prefere larger m1,m2 */
659 for (clock.m1 = limit->m1.max;
660 clock.m1 >= limit->m1.min; clock.m1--) {
661 for (clock.m2 = limit->m2.max;
662 clock.m2 >= limit->m2.min; clock.m2--) {
663 for (clock.p1 = limit->p1.max;
664 clock.p1 >= limit->p1.min; clock.p1--) {
665 int this_err;
666
667 i9xx_clock(refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671
672 this_err = abs(clock.dot - target);
673 if (this_err < err_most) {
674 *best_clock = clock;
675 err_most = this_err;
676 max_n = clock.n;
677 found = true;
678 }
679 }
680 }
681 }
682 }
683 return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688 int target, int refclk, intel_clock_t *match_clock,
689 intel_clock_t *best_clock)
690 {
691 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692 u32 m, n, fastclk;
693 u32 updrate, minupdate, p;
694 unsigned long bestppm, ppm, absppm;
695 int dotclk, flag;
696
697 flag = 0;
698 dotclk = target * 1000;
699 bestppm = 1000000;
700 ppm = absppm = 0;
701 fastclk = dotclk / (2*100);
702 updrate = 0;
703 minupdate = 19200;
704 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705 bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707 /* based on hardware requirement, prefer smaller n to precision */
708 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709 updrate = refclk / n;
710 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712 if (p2 > 10)
713 p2 = p2 - 1;
714 p = p1 * p2;
715 /* based on hardware requirement, prefer bigger m1,m2 values */
716 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717 m2 = (((2*(fastclk * p * n / m1 )) +
718 refclk) / (2*refclk));
719 m = m1 * m2;
720 vco = updrate * m;
721 if (vco >= limit->vco.min && vco < limit->vco.max) {
722 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723 absppm = (ppm > 0) ? ppm : (-ppm);
724 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725 bestppm = 0;
726 flag = 1;
727 }
728 if (absppm < bestppm - 10) {
729 bestppm = absppm;
730 flag = 1;
731 }
732 if (flag) {
733 bestn = n;
734 bestm1 = m1;
735 bestm2 = m2;
736 bestp1 = p1;
737 bestp2 = p2;
738 flag = 0;
739 }
740 }
741 }
742 }
743 }
744 }
745 best_clock->n = bestn;
746 best_clock->m1 = bestm1;
747 best_clock->m2 = bestm2;
748 best_clock->p1 = bestp1;
749 best_clock->p2 = bestp2;
750
751 return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755 enum pipe pipe)
756 {
757 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760 return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765 struct drm_i915_private *dev_priv = dev->dev_private;
766 u32 frame, frame_reg = PIPEFRAME(pipe);
767
768 frame = I915_READ(frame_reg);
769
770 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775 * intel_wait_for_vblank - wait for vblank on a given pipe
776 * @dev: drm device
777 * @pipe: pipe to wait for
778 *
779 * Wait for vblank to occur on a given pipe. Needed for various bits of
780 * mode setting code.
781 */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 int pipestat_reg = PIPESTAT(pipe);
786
787 if (INTEL_INFO(dev)->gen >= 5) {
788 ironlake_wait_for_vblank(dev, pipe);
789 return;
790 }
791
792 /* Clear existing vblank status. Note this will clear any other
793 * sticky status fields as well.
794 *
795 * This races with i915_driver_irq_handler() with the result
796 * that either function could miss a vblank event. Here it is not
797 * fatal, as we will either wait upon the next vblank interrupt or
798 * timeout. Generally speaking intel_wait_for_vblank() is only
799 * called during modeset at which time the GPU should be idle and
800 * should *not* be performing page flips and thus not waiting on
801 * vblanks...
802 * Currently, the result of us stealing a vblank from the irq
803 * handler is that a single frame will be skipped during swapbuffers.
804 */
805 I915_WRITE(pipestat_reg,
806 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808 /* Wait for vblank interrupt bit to set */
809 if (wait_for(I915_READ(pipestat_reg) &
810 PIPE_VBLANK_INTERRUPT_STATUS,
811 50))
812 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816 * intel_wait_for_pipe_off - wait for pipe to turn off
817 * @dev: drm device
818 * @pipe: pipe to wait for
819 *
820 * After disabling a pipe, we can't wait for vblank in the usual way,
821 * spinning on the vblank interrupt status bit, since we won't actually
822 * see an interrupt when the pipe is disabled.
823 *
824 * On Gen4 and above:
825 * wait for the pipe register state bit to turn off
826 *
827 * Otherwise:
828 * wait for the display line value to settle (it usually
829 * ends up stopping at the start of the next frame).
830 *
831 */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836 pipe);
837
838 if (INTEL_INFO(dev)->gen >= 4) {
839 int reg = PIPECONF(cpu_transcoder);
840
841 /* Wait for the Pipe State to go off */
842 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843 100))
844 WARN(1, "pipe_off wait timed out\n");
845 } else {
846 u32 last_line, line_mask;
847 int reg = PIPEDSL(pipe);
848 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850 if (IS_GEN2(dev))
851 line_mask = DSL_LINEMASK_GEN2;
852 else
853 line_mask = DSL_LINEMASK_GEN3;
854
855 /* Wait for the display line to settle */
856 do {
857 last_line = I915_READ(reg) & line_mask;
858 mdelay(5);
859 } while (((I915_READ(reg) & line_mask) != last_line) &&
860 time_after(timeout, jiffies));
861 if (time_after(jiffies, timeout))
862 WARN(1, "pipe_off wait timed out\n");
863 }
864 }
865
866 /*
867 * ibx_digital_port_connected - is the specified port connected?
868 * @dev_priv: i915 private structure
869 * @port: the port to test
870 *
871 * Returns true if @port is connected, false otherwise.
872 */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874 struct intel_digital_port *port)
875 {
876 u32 bit;
877
878 if (HAS_PCH_IBX(dev_priv->dev)) {
879 switch(port->port) {
880 case PORT_B:
881 bit = SDE_PORTB_HOTPLUG;
882 break;
883 case PORT_C:
884 bit = SDE_PORTC_HOTPLUG;
885 break;
886 case PORT_D:
887 bit = SDE_PORTD_HOTPLUG;
888 break;
889 default:
890 return true;
891 }
892 } else {
893 switch(port->port) {
894 case PORT_B:
895 bit = SDE_PORTB_HOTPLUG_CPT;
896 break;
897 case PORT_C:
898 bit = SDE_PORTC_HOTPLUG_CPT;
899 break;
900 case PORT_D:
901 bit = SDE_PORTD_HOTPLUG_CPT;
902 break;
903 default:
904 return true;
905 }
906 }
907
908 return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913 return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918 enum pipe pipe, bool state)
919 {
920 int reg;
921 u32 val;
922 bool cur_state;
923
924 reg = DPLL(pipe);
925 val = I915_READ(reg);
926 cur_state = !!(val & DPLL_VCO_ENABLE);
927 WARN(cur_state != state,
928 "PLL state assertion failure (expected %s, current %s)\n",
929 state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937 if (crtc->config.shared_dpll < 0)
938 return NULL;
939
940 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945 struct intel_shared_dpll *pll,
946 bool state)
947 {
948 bool cur_state;
949 struct intel_dpll_hw_state hw_state;
950
951 if (HAS_PCH_LPT(dev_priv->dev)) {
952 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953 return;
954 }
955
956 if (WARN (!pll,
957 "asserting DPLL %s with no DPLL\n", state_string(state)))
958 return;
959
960 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961 WARN(cur_state != state,
962 "%s assertion failure (expected %s, current %s)\n",
963 pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967 enum pipe pipe, bool state)
968 {
969 int reg;
970 u32 val;
971 bool cur_state;
972 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973 pipe);
974
975 if (HAS_DDI(dev_priv->dev)) {
976 /* DDI does not have a specific FDI_TX register */
977 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978 val = I915_READ(reg);
979 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980 } else {
981 reg = FDI_TX_CTL(pipe);
982 val = I915_READ(reg);
983 cur_state = !!(val & FDI_TX_ENABLE);
984 }
985 WARN(cur_state != state,
986 "FDI TX state assertion failure (expected %s, current %s)\n",
987 state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993 enum pipe pipe, bool state)
994 {
995 int reg;
996 u32 val;
997 bool cur_state;
998
999 reg = FDI_RX_CTL(pipe);
1000 val = I915_READ(reg);
1001 cur_state = !!(val & FDI_RX_ENABLE);
1002 WARN(cur_state != state,
1003 "FDI RX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014
1015 /* ILK FDI PLL is always enabled */
1016 if (dev_priv->info->gen == 5)
1017 return;
1018
1019 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020 if (HAS_DDI(dev_priv->dev))
1021 return;
1022
1023 reg = FDI_TX_CTL(pipe);
1024 val = I915_READ(reg);
1025 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029 enum pipe pipe, bool state)
1030 {
1031 int reg;
1032 u32 val;
1033 bool cur_state;
1034
1035 reg = FDI_RX_CTL(pipe);
1036 val = I915_READ(reg);
1037 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038 WARN(cur_state != state,
1039 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040 state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044 enum pipe pipe)
1045 {
1046 int pp_reg, lvds_reg;
1047 u32 val;
1048 enum pipe panel_pipe = PIPE_A;
1049 bool locked = true;
1050
1051 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052 pp_reg = PCH_PP_CONTROL;
1053 lvds_reg = PCH_LVDS;
1054 } else {
1055 pp_reg = PP_CONTROL;
1056 lvds_reg = LVDS;
1057 }
1058
1059 val = I915_READ(pp_reg);
1060 if (!(val & PANEL_POWER_ON) ||
1061 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062 locked = false;
1063
1064 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065 panel_pipe = PIPE_B;
1066
1067 WARN(panel_pipe == pipe && locked,
1068 "panel assertion failure, pipe %c regs locked\n",
1069 pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073 enum pipe pipe, bool state)
1074 {
1075 int reg;
1076 u32 val;
1077 bool cur_state;
1078 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079 pipe);
1080
1081 /* if we need the pipe A quirk it must be always on */
1082 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083 state = true;
1084
1085 if (!intel_display_power_enabled(dev_priv->dev,
1086 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087 cur_state = false;
1088 } else {
1089 reg = PIPECONF(cpu_transcoder);
1090 val = I915_READ(reg);
1091 cur_state = !!(val & PIPECONF_ENABLE);
1092 }
1093
1094 WARN(cur_state != state,
1095 "pipe %c assertion failure (expected %s, current %s)\n",
1096 pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100 enum plane plane, bool state)
1101 {
1102 int reg;
1103 u32 val;
1104 bool cur_state;
1105
1106 reg = DSPCNTR(plane);
1107 val = I915_READ(reg);
1108 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109 WARN(cur_state != state,
1110 "plane %c assertion failure (expected %s, current %s)\n",
1111 plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118 enum pipe pipe)
1119 {
1120 struct drm_device *dev = dev_priv->dev;
1121 int reg, i;
1122 u32 val;
1123 int cur_pipe;
1124
1125 /* Primary planes are fixed to pipes on gen4+ */
1126 if (INTEL_INFO(dev)->gen >= 4) {
1127 reg = DSPCNTR(pipe);
1128 val = I915_READ(reg);
1129 WARN((val & DISPLAY_PLANE_ENABLE),
1130 "plane %c assertion failure, should be disabled but not\n",
1131 plane_name(pipe));
1132 return;
1133 }
1134
1135 /* Need to check both planes against the pipe */
1136 for_each_pipe(i) {
1137 reg = DSPCNTR(i);
1138 val = I915_READ(reg);
1139 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140 DISPPLANE_SEL_PIPE_SHIFT;
1141 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143 plane_name(i), pipe_name(pipe));
1144 }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148 enum pipe pipe)
1149 {
1150 struct drm_device *dev = dev_priv->dev;
1151 int reg, i;
1152 u32 val;
1153
1154 if (IS_VALLEYVIEW(dev)) {
1155 for (i = 0; i < dev_priv->num_plane; i++) {
1156 reg = SPCNTR(pipe, i);
1157 val = I915_READ(reg);
1158 WARN((val & SP_ENABLE),
1159 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160 sprite_name(pipe, i), pipe_name(pipe));
1161 }
1162 } else if (INTEL_INFO(dev)->gen >= 7) {
1163 reg = SPRCTL(pipe);
1164 val = I915_READ(reg);
1165 WARN((val & SPRITE_ENABLE),
1166 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167 plane_name(pipe), pipe_name(pipe));
1168 } else if (INTEL_INFO(dev)->gen >= 5) {
1169 reg = DVSCNTR(pipe);
1170 val = I915_READ(reg);
1171 WARN((val & DVS_ENABLE),
1172 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173 plane_name(pipe), pipe_name(pipe));
1174 }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179 u32 val;
1180 bool enabled;
1181
1182 if (HAS_PCH_LPT(dev_priv->dev)) {
1183 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184 return;
1185 }
1186
1187 val = I915_READ(PCH_DREF_CONTROL);
1188 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189 DREF_SUPERSPREAD_SOURCE_MASK));
1190 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195 {
1196 int reg;
1197 u32 val;
1198 bool enabled;
1199
1200 reg = PCH_TRANSCONF(pipe);
1201 val = I915_READ(reg);
1202 enabled = !!(val & TRANS_ENABLE);
1203 WARN(enabled,
1204 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205 pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209 enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211 if ((val & DP_PORT_EN) == 0)
1212 return false;
1213
1214 if (HAS_PCH_CPT(dev_priv->dev)) {
1215 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218 return false;
1219 } else {
1220 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221 return false;
1222 }
1223 return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227 enum pipe pipe, u32 val)
1228 {
1229 if ((val & SDVO_ENABLE) == 0)
1230 return false;
1231
1232 if (HAS_PCH_CPT(dev_priv->dev)) {
1233 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234 return false;
1235 } else {
1236 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237 return false;
1238 }
1239 return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, u32 val)
1244 {
1245 if ((val & LVDS_PORT_EN) == 0)
1246 return false;
1247
1248 if (HAS_PCH_CPT(dev_priv->dev)) {
1249 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250 return false;
1251 } else {
1252 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253 return false;
1254 }
1255 return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259 enum pipe pipe, u32 val)
1260 {
1261 if ((val & ADPA_DAC_ENABLE) == 0)
1262 return false;
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, int reg, u32 port_sel)
1275 {
1276 u32 val = I915_READ(reg);
1277 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279 reg, pipe_name(pipe));
1280
1281 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282 && (val & DP_PIPEB_SELECT),
1283 "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287 enum pipe pipe, int reg)
1288 {
1289 u32 val = I915_READ(reg);
1290 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292 reg, pipe_name(pipe));
1293
1294 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295 && (val & SDVO_PIPE_B_SELECT),
1296 "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300 enum pipe pipe)
1301 {
1302 int reg;
1303 u32 val;
1304
1305 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309 reg = PCH_ADPA;
1310 val = I915_READ(reg);
1311 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312 "PCH VGA enabled on transcoder %c, should be disabled\n",
1313 pipe_name(pipe));
1314
1315 reg = PCH_LVDS;
1316 val = I915_READ(reg);
1317 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319 pipe_name(pipe));
1320
1321 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328 struct drm_device *dev = crtc->base.dev;
1329 struct drm_i915_private *dev_priv = dev->dev_private;
1330 int reg = DPLL(crtc->pipe);
1331 u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333 assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335 /* No really, not for ILK+ */
1336 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338 /* PLL is protected by panel, make sure we can write it */
1339 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342 I915_WRITE(reg, dpll);
1343 POSTING_READ(reg);
1344 udelay(150);
1345
1346 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350 POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352 /* We do this three times for luck */
1353 I915_WRITE(reg, dpll);
1354 POSTING_READ(reg);
1355 udelay(150); /* wait for warmup */
1356 I915_WRITE(reg, dpll);
1357 POSTING_READ(reg);
1358 udelay(150); /* wait for warmup */
1359 I915_WRITE(reg, dpll);
1360 POSTING_READ(reg);
1361 udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->base.dev;
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 int reg = DPLL(crtc->pipe);
1369 u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371 assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373 /* No really, not for ILK+ */
1374 BUG_ON(dev_priv->info->gen >= 5);
1375
1376 /* PLL is protected by panel, make sure we can write it */
1377 if (IS_MOBILE(dev) && !IS_I830(dev))
1378 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380 I915_WRITE(reg, dpll);
1381
1382 /* Wait for the clocks to stabilize. */
1383 POSTING_READ(reg);
1384 udelay(150);
1385
1386 if (INTEL_INFO(dev)->gen >= 4) {
1387 I915_WRITE(DPLL_MD(crtc->pipe),
1388 crtc->config.dpll_hw_state.dpll_md);
1389 } else {
1390 /* The pixel multiplier can only be updated once the
1391 * DPLL is enabled and the clocks are stable.
1392 *
1393 * So write it again.
1394 */
1395 I915_WRITE(reg, dpll);
1396 }
1397
1398 /* We do this three times for luck */
1399 I915_WRITE(reg, dpll);
1400 POSTING_READ(reg);
1401 udelay(150); /* wait for warmup */
1402 I915_WRITE(reg, dpll);
1403 POSTING_READ(reg);
1404 udelay(150); /* wait for warmup */
1405 I915_WRITE(reg, dpll);
1406 POSTING_READ(reg);
1407 udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411 * i9xx_disable_pll - disable a PLL
1412 * @dev_priv: i915 private structure
1413 * @pipe: pipe PLL to disable
1414 *
1415 * Disable the PLL for @pipe, making sure the pipe is off first.
1416 *
1417 * Note! This is for pre-ILK only.
1418 */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421 /* Don't disable pipe A or pipe A PLLs if needed */
1422 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423 return;
1424
1425 /* Make sure the pipe isn't still relying on us */
1426 assert_pipe_disabled(dev_priv, pipe);
1427
1428 I915_WRITE(DPLL(pipe), 0);
1429 POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434 u32 port_mask;
1435
1436 if (!port)
1437 port_mask = DPLL_PORTB_READY_MASK;
1438 else
1439 port_mask = DPLL_PORTC_READY_MASK;
1440
1441 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443 'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447 * ironlake_enable_shared_dpll - enable PCH PLL
1448 * @dev_priv: i915 private structure
1449 * @pipe: pipe PLL to enable
1450 *
1451 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452 * drives the transcoder clock.
1453 */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459 /* PCH PLLs only available on ILK, SNB and IVB */
1460 BUG_ON(dev_priv->info->gen < 5);
1461 if (WARN_ON(pll == NULL))
1462 return;
1463
1464 if (WARN_ON(pll->refcount == 0))
1465 return;
1466
1467 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468 pll->name, pll->active, pll->on,
1469 crtc->base.base.id);
1470
1471 if (pll->active++) {
1472 WARN_ON(!pll->on);
1473 assert_shared_dpll_enabled(dev_priv, pll);
1474 return;
1475 }
1476 WARN_ON(pll->on);
1477
1478 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479 pll->enable(dev_priv, pll);
1480 pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488 /* PCH only available on ILK+ */
1489 BUG_ON(dev_priv->info->gen < 5);
1490 if (WARN_ON(pll == NULL))
1491 return;
1492
1493 if (WARN_ON(pll->refcount == 0))
1494 return;
1495
1496 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497 pll->name, pll->active, pll->on,
1498 crtc->base.base.id);
1499
1500 if (WARN_ON(pll->active == 0)) {
1501 assert_shared_dpll_disabled(dev_priv, pll);
1502 return;
1503 }
1504
1505 assert_shared_dpll_enabled(dev_priv, pll);
1506 WARN_ON(!pll->on);
1507 if (--pll->active)
1508 return;
1509
1510 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511 pll->disable(dev_priv, pll);
1512 pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516 enum pipe pipe)
1517 {
1518 struct drm_device *dev = dev_priv->dev;
1519 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521 uint32_t reg, val, pipeconf_val;
1522
1523 /* PCH only available on ILK+ */
1524 BUG_ON(dev_priv->info->gen < 5);
1525
1526 /* Make sure PCH DPLL is enabled */
1527 assert_shared_dpll_enabled(dev_priv,
1528 intel_crtc_to_shared_dpll(intel_crtc));
1529
1530 /* FDI must be feeding us bits for PCH ports */
1531 assert_fdi_tx_enabled(dev_priv, pipe);
1532 assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534 if (HAS_PCH_CPT(dev)) {
1535 /* Workaround: Set the timing override bit before enabling the
1536 * pch transcoder. */
1537 reg = TRANS_CHICKEN2(pipe);
1538 val = I915_READ(reg);
1539 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540 I915_WRITE(reg, val);
1541 }
1542
1543 reg = PCH_TRANSCONF(pipe);
1544 val = I915_READ(reg);
1545 pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547 if (HAS_PCH_IBX(dev_priv->dev)) {
1548 /*
1549 * make the BPC in transcoder be consistent with
1550 * that in pipeconf reg.
1551 */
1552 val &= ~PIPECONF_BPC_MASK;
1553 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554 }
1555
1556 val &= ~TRANS_INTERLACE_MASK;
1557 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558 if (HAS_PCH_IBX(dev_priv->dev) &&
1559 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560 val |= TRANS_LEGACY_INTERLACED_ILK;
1561 else
1562 val |= TRANS_INTERLACED;
1563 else
1564 val |= TRANS_PROGRESSIVE;
1565
1566 I915_WRITE(reg, val | TRANS_ENABLE);
1567 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572 enum transcoder cpu_transcoder)
1573 {
1574 u32 val, pipeconf_val;
1575
1576 /* PCH only available on ILK+ */
1577 BUG_ON(dev_priv->info->gen < 5);
1578
1579 /* FDI must be feeding us bits for PCH ports */
1580 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583 /* Workaround: set timing override bit. */
1584 val = I915_READ(_TRANSA_CHICKEN2);
1585 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586 I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588 val = TRANS_ENABLE;
1589 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592 PIPECONF_INTERLACED_ILK)
1593 val |= TRANS_INTERLACED;
1594 else
1595 val |= TRANS_PROGRESSIVE;
1596
1597 I915_WRITE(LPT_TRANSCONF, val);
1598 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603 enum pipe pipe)
1604 {
1605 struct drm_device *dev = dev_priv->dev;
1606 uint32_t reg, val;
1607
1608 /* FDI relies on the transcoder */
1609 assert_fdi_tx_disabled(dev_priv, pipe);
1610 assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612 /* Ports must be off as well */
1613 assert_pch_ports_disabled(dev_priv, pipe);
1614
1615 reg = PCH_TRANSCONF(pipe);
1616 val = I915_READ(reg);
1617 val &= ~TRANS_ENABLE;
1618 I915_WRITE(reg, val);
1619 /* wait for PCH transcoder off, transcoder state */
1620 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623 if (!HAS_PCH_IBX(dev)) {
1624 /* Workaround: Clear the timing override chicken bit again. */
1625 reg = TRANS_CHICKEN2(pipe);
1626 val = I915_READ(reg);
1627 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628 I915_WRITE(reg, val);
1629 }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634 u32 val;
1635
1636 val = I915_READ(LPT_TRANSCONF);
1637 val &= ~TRANS_ENABLE;
1638 I915_WRITE(LPT_TRANSCONF, val);
1639 /* wait for PCH transcoder off, transcoder state */
1640 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643 /* Workaround: clear timing override bit. */
1644 val = I915_READ(_TRANSA_CHICKEN2);
1645 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646 I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650 * intel_enable_pipe - enable a pipe, asserting requirements
1651 * @dev_priv: i915 private structure
1652 * @pipe: pipe to enable
1653 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654 *
1655 * Enable @pipe, making sure that various hardware specific requirements
1656 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657 *
1658 * @pipe should be %PIPE_A or %PIPE_B.
1659 *
1660 * Will wait until the pipe is actually running (i.e. first vblank) before
1661 * returning.
1662 */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664 bool pch_port)
1665 {
1666 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667 pipe);
1668 enum pipe pch_transcoder;
1669 int reg;
1670 u32 val;
1671
1672 assert_planes_disabled(dev_priv, pipe);
1673 assert_sprites_disabled(dev_priv, pipe);
1674
1675 if (HAS_PCH_LPT(dev_priv->dev))
1676 pch_transcoder = TRANSCODER_A;
1677 else
1678 pch_transcoder = pipe;
1679
1680 /*
1681 * A pipe without a PLL won't actually be able to drive bits from
1682 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1683 * need the check.
1684 */
1685 if (!HAS_PCH_SPLIT(dev_priv->dev))
1686 assert_pll_enabled(dev_priv, pipe);
1687 else {
1688 if (pch_port) {
1689 /* if driving the PCH, we need FDI enabled */
1690 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691 assert_fdi_tx_pll_enabled(dev_priv,
1692 (enum pipe) cpu_transcoder);
1693 }
1694 /* FIXME: assert CPU port conditions for SNB+ */
1695 }
1696
1697 reg = PIPECONF(cpu_transcoder);
1698 val = I915_READ(reg);
1699 if (val & PIPECONF_ENABLE)
1700 return;
1701
1702 I915_WRITE(reg, val | PIPECONF_ENABLE);
1703 intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707 * intel_disable_pipe - disable a pipe, asserting requirements
1708 * @dev_priv: i915 private structure
1709 * @pipe: pipe to disable
1710 *
1711 * Disable @pipe, making sure that various hardware specific requirements
1712 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713 *
1714 * @pipe should be %PIPE_A or %PIPE_B.
1715 *
1716 * Will wait until the pipe has shut down before returning.
1717 */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719 enum pipe pipe)
1720 {
1721 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722 pipe);
1723 int reg;
1724 u32 val;
1725
1726 /*
1727 * Make sure planes won't keep trying to pump pixels to us,
1728 * or we might hang the display.
1729 */
1730 assert_planes_disabled(dev_priv, pipe);
1731 assert_sprites_disabled(dev_priv, pipe);
1732
1733 /* Don't disable pipe A or pipe A PLLs if needed */
1734 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735 return;
1736
1737 reg = PIPECONF(cpu_transcoder);
1738 val = I915_READ(reg);
1739 if ((val & PIPECONF_ENABLE) == 0)
1740 return;
1741
1742 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747 * Plane regs are double buffered, going from enabled->disabled needs a
1748 * trigger in order to latch. The display address reg provides this.
1749 */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751 enum plane plane)
1752 {
1753 if (dev_priv->info->gen >= 4)
1754 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755 else
1756 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760 * intel_enable_plane - enable a display plane on a given pipe
1761 * @dev_priv: i915 private structure
1762 * @plane: plane to enable
1763 * @pipe: pipe being fed
1764 *
1765 * Enable @plane on @pipe, making sure that @pipe is running first.
1766 */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768 enum plane plane, enum pipe pipe)
1769 {
1770 int reg;
1771 u32 val;
1772
1773 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774 assert_pipe_enabled(dev_priv, pipe);
1775
1776 reg = DSPCNTR(plane);
1777 val = I915_READ(reg);
1778 if (val & DISPLAY_PLANE_ENABLE)
1779 return;
1780
1781 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782 intel_flush_display_plane(dev_priv, plane);
1783 intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787 * intel_disable_plane - disable a display plane
1788 * @dev_priv: i915 private structure
1789 * @plane: plane to disable
1790 * @pipe: pipe consuming the data
1791 *
1792 * Disable @plane; should be an independent operation.
1793 */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795 enum plane plane, enum pipe pipe)
1796 {
1797 int reg;
1798 u32 val;
1799
1800 reg = DSPCNTR(plane);
1801 val = I915_READ(reg);
1802 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803 return;
1804
1805 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806 intel_flush_display_plane(dev_priv, plane);
1807 intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814 return true;
1815 #endif
1816 return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821 struct drm_i915_gem_object *obj,
1822 struct intel_ring_buffer *pipelined)
1823 {
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 u32 alignment;
1826 int ret;
1827
1828 switch (obj->tiling_mode) {
1829 case I915_TILING_NONE:
1830 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831 alignment = 128 * 1024;
1832 else if (INTEL_INFO(dev)->gen >= 4)
1833 alignment = 4 * 1024;
1834 else
1835 alignment = 64 * 1024;
1836 break;
1837 case I915_TILING_X:
1838 /* pin() will align the object as required by fence */
1839 alignment = 0;
1840 break;
1841 case I915_TILING_Y:
1842 /* Despite that we check this in framebuffer_init userspace can
1843 * screw us over and change the tiling after the fact. Only
1844 * pinned buffers can't change their tiling. */
1845 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846 return -EINVAL;
1847 default:
1848 BUG();
1849 }
1850
1851 /* Note that the w/a also requires 64 PTE of padding following the
1852 * bo. We currently fill all unused PTE with the shadow page and so
1853 * we should always have valid PTE following the scanout preventing
1854 * the VT-d warning.
1855 */
1856 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857 alignment = 256 * 1024;
1858
1859 dev_priv->mm.interruptible = false;
1860 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861 if (ret)
1862 goto err_interruptible;
1863
1864 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865 * fence, whereas 965+ only requires a fence if using
1866 * framebuffer compression. For simplicity, we always install
1867 * a fence as the cost is not that onerous.
1868 */
1869 ret = i915_gem_object_get_fence(obj);
1870 if (ret)
1871 goto err_unpin;
1872
1873 i915_gem_object_pin_fence(obj);
1874
1875 dev_priv->mm.interruptible = true;
1876 return 0;
1877
1878 err_unpin:
1879 i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881 dev_priv->mm.interruptible = true;
1882 return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887 i915_gem_object_unpin_fence(obj);
1888 i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892 * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894 unsigned int tiling_mode,
1895 unsigned int cpp,
1896 unsigned int pitch)
1897 {
1898 if (tiling_mode != I915_TILING_NONE) {
1899 unsigned int tile_rows, tiles;
1900
1901 tile_rows = *y / 8;
1902 *y %= 8;
1903
1904 tiles = *x / (512/cpp);
1905 *x %= 512/cpp;
1906
1907 return tile_rows * pitch * 8 + tiles * 4096;
1908 } else {
1909 unsigned int offset;
1910
1911 offset = *y * pitch + *x * cpp;
1912 *y = 0;
1913 *x = (offset & 4095) / cpp;
1914 return offset & -4096;
1915 }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919 int x, int y)
1920 {
1921 struct drm_device *dev = crtc->dev;
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924 struct intel_framebuffer *intel_fb;
1925 struct drm_i915_gem_object *obj;
1926 int plane = intel_crtc->plane;
1927 unsigned long linear_offset;
1928 u32 dspcntr;
1929 u32 reg;
1930
1931 switch (plane) {
1932 case 0:
1933 case 1:
1934 break;
1935 default:
1936 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937 return -EINVAL;
1938 }
1939
1940 intel_fb = to_intel_framebuffer(fb);
1941 obj = intel_fb->obj;
1942
1943 reg = DSPCNTR(plane);
1944 dspcntr = I915_READ(reg);
1945 /* Mask out pixel format bits in case we change it */
1946 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947 switch (fb->pixel_format) {
1948 case DRM_FORMAT_C8:
1949 dspcntr |= DISPPLANE_8BPP;
1950 break;
1951 case DRM_FORMAT_XRGB1555:
1952 case DRM_FORMAT_ARGB1555:
1953 dspcntr |= DISPPLANE_BGRX555;
1954 break;
1955 case DRM_FORMAT_RGB565:
1956 dspcntr |= DISPPLANE_BGRX565;
1957 break;
1958 case DRM_FORMAT_XRGB8888:
1959 case DRM_FORMAT_ARGB8888:
1960 dspcntr |= DISPPLANE_BGRX888;
1961 break;
1962 case DRM_FORMAT_XBGR8888:
1963 case DRM_FORMAT_ABGR8888:
1964 dspcntr |= DISPPLANE_RGBX888;
1965 break;
1966 case DRM_FORMAT_XRGB2101010:
1967 case DRM_FORMAT_ARGB2101010:
1968 dspcntr |= DISPPLANE_BGRX101010;
1969 break;
1970 case DRM_FORMAT_XBGR2101010:
1971 case DRM_FORMAT_ABGR2101010:
1972 dspcntr |= DISPPLANE_RGBX101010;
1973 break;
1974 default:
1975 BUG();
1976 }
1977
1978 if (INTEL_INFO(dev)->gen >= 4) {
1979 if (obj->tiling_mode != I915_TILING_NONE)
1980 dspcntr |= DISPPLANE_TILED;
1981 else
1982 dspcntr &= ~DISPPLANE_TILED;
1983 }
1984
1985 if (IS_G4X(dev))
1986 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988 I915_WRITE(reg, dspcntr);
1989
1990 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992 if (INTEL_INFO(dev)->gen >= 4) {
1993 intel_crtc->dspaddr_offset =
1994 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995 fb->bits_per_pixel / 8,
1996 fb->pitches[0]);
1997 linear_offset -= intel_crtc->dspaddr_offset;
1998 } else {
1999 intel_crtc->dspaddr_offset = linear_offset;
2000 }
2001
2002 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004 fb->pitches[0]);
2005 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006 if (INTEL_INFO(dev)->gen >= 4) {
2007 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011 } else
2012 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013 POSTING_READ(reg);
2014
2015 return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019 struct drm_framebuffer *fb, int x, int y)
2020 {
2021 struct drm_device *dev = crtc->dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024 struct intel_framebuffer *intel_fb;
2025 struct drm_i915_gem_object *obj;
2026 int plane = intel_crtc->plane;
2027 unsigned long linear_offset;
2028 u32 dspcntr;
2029 u32 reg;
2030
2031 switch (plane) {
2032 case 0:
2033 case 1:
2034 case 2:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
2043
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->pixel_format) {
2049 case DRM_FORMAT_C8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case DRM_FORMAT_RGB565:
2053 dspcntr |= DISPPLANE_BGRX565;
2054 break;
2055 case DRM_FORMAT_XRGB8888:
2056 case DRM_FORMAT_ARGB8888:
2057 dspcntr |= DISPPLANE_BGRX888;
2058 break;
2059 case DRM_FORMAT_XBGR8888:
2060 case DRM_FORMAT_ABGR8888:
2061 dspcntr |= DISPPLANE_RGBX888;
2062 break;
2063 case DRM_FORMAT_XRGB2101010:
2064 case DRM_FORMAT_ARGB2101010:
2065 dspcntr |= DISPPLANE_BGRX101010;
2066 break;
2067 case DRM_FORMAT_XBGR2101010:
2068 case DRM_FORMAT_ABGR2101010:
2069 dspcntr |= DISPPLANE_RGBX101010;
2070 break;
2071 default:
2072 BUG();
2073 }
2074
2075 if (obj->tiling_mode != I915_TILING_NONE)
2076 dspcntr |= DISPPLANE_TILED;
2077 else
2078 dspcntr &= ~DISPPLANE_TILED;
2079
2080 if (IS_HASWELL(dev))
2081 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2082 else
2083 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085 I915_WRITE(reg, dspcntr);
2086
2087 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088 intel_crtc->dspaddr_offset =
2089 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2090 fb->bits_per_pixel / 8,
2091 fb->pitches[0]);
2092 linear_offset -= intel_crtc->dspaddr_offset;
2093
2094 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2095 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2096 fb->pitches[0]);
2097 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098 I915_MODIFY_DISPBASE(DSPSURF(plane),
2099 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2100 if (IS_HASWELL(dev)) {
2101 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2102 } else {
2103 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2104 I915_WRITE(DSPLINOFF(plane), linear_offset);
2105 }
2106 POSTING_READ(reg);
2107
2108 return 0;
2109 }
2110
2111 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2112 static int
2113 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2114 int x, int y, enum mode_set_atomic state)
2115 {
2116 struct drm_device *dev = crtc->dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 if (dev_priv->display.disable_fbc)
2120 dev_priv->display.disable_fbc(dev);
2121 intel_increase_pllclock(crtc);
2122
2123 return dev_priv->display.update_plane(crtc, fb, x, y);
2124 }
2125
2126 void intel_display_handle_reset(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129 struct drm_crtc *crtc;
2130
2131 /*
2132 * Flips in the rings have been nuked by the reset,
2133 * so complete all pending flips so that user space
2134 * will get its events and not get stuck.
2135 *
2136 * Also update the base address of all primary
2137 * planes to the the last fb to make sure we're
2138 * showing the correct fb after a reset.
2139 *
2140 * Need to make two loops over the crtcs so that we
2141 * don't try to grab a crtc mutex before the
2142 * pending_flip_queue really got woken up.
2143 */
2144
2145 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2147 enum plane plane = intel_crtc->plane;
2148
2149 intel_prepare_page_flip(dev, plane);
2150 intel_finish_page_flip_plane(dev, plane);
2151 }
2152
2153 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2155
2156 mutex_lock(&crtc->mutex);
2157 if (intel_crtc->active)
2158 dev_priv->display.update_plane(crtc, crtc->fb,
2159 crtc->x, crtc->y);
2160 mutex_unlock(&crtc->mutex);
2161 }
2162 }
2163
2164 static int
2165 intel_finish_fb(struct drm_framebuffer *old_fb)
2166 {
2167 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2168 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2169 bool was_interruptible = dev_priv->mm.interruptible;
2170 int ret;
2171
2172 /* Big Hammer, we also need to ensure that any pending
2173 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2174 * current scanout is retired before unpinning the old
2175 * framebuffer.
2176 *
2177 * This should only fail upon a hung GPU, in which case we
2178 * can safely continue.
2179 */
2180 dev_priv->mm.interruptible = false;
2181 ret = i915_gem_object_finish_gpu(obj);
2182 dev_priv->mm.interruptible = was_interruptible;
2183
2184 return ret;
2185 }
2186
2187 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2188 {
2189 struct drm_device *dev = crtc->dev;
2190 struct drm_i915_master_private *master_priv;
2191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192
2193 if (!dev->primary->master)
2194 return;
2195
2196 master_priv = dev->primary->master->driver_priv;
2197 if (!master_priv->sarea_priv)
2198 return;
2199
2200 switch (intel_crtc->pipe) {
2201 case 0:
2202 master_priv->sarea_priv->pipeA_x = x;
2203 master_priv->sarea_priv->pipeA_y = y;
2204 break;
2205 case 1:
2206 master_priv->sarea_priv->pipeB_x = x;
2207 master_priv->sarea_priv->pipeB_y = y;
2208 break;
2209 default:
2210 break;
2211 }
2212 }
2213
2214 static int
2215 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2216 struct drm_framebuffer *fb)
2217 {
2218 struct drm_device *dev = crtc->dev;
2219 struct drm_i915_private *dev_priv = dev->dev_private;
2220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221 struct drm_framebuffer *old_fb;
2222 int ret;
2223
2224 /* no fb bound */
2225 if (!fb) {
2226 DRM_ERROR("No FB bound\n");
2227 return 0;
2228 }
2229
2230 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2231 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2232 plane_name(intel_crtc->plane),
2233 INTEL_INFO(dev)->num_pipes);
2234 return -EINVAL;
2235 }
2236
2237 mutex_lock(&dev->struct_mutex);
2238 ret = intel_pin_and_fence_fb_obj(dev,
2239 to_intel_framebuffer(fb)->obj,
2240 NULL);
2241 if (ret != 0) {
2242 mutex_unlock(&dev->struct_mutex);
2243 DRM_ERROR("pin & fence failed\n");
2244 return ret;
2245 }
2246
2247 /* Update pipe size and adjust fitter if needed */
2248 if (i915_fastboot) {
2249 I915_WRITE(PIPESRC(intel_crtc->pipe),
2250 ((crtc->mode.hdisplay - 1) << 16) |
2251 (crtc->mode.vdisplay - 1));
2252 if (!intel_crtc->config.pch_pfit.enabled &&
2253 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2254 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2255 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2256 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2257 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2258 }
2259 }
2260
2261 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2262 if (ret) {
2263 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2264 mutex_unlock(&dev->struct_mutex);
2265 DRM_ERROR("failed to update base address\n");
2266 return ret;
2267 }
2268
2269 old_fb = crtc->fb;
2270 crtc->fb = fb;
2271 crtc->x = x;
2272 crtc->y = y;
2273
2274 if (old_fb) {
2275 if (intel_crtc->active && old_fb != fb)
2276 intel_wait_for_vblank(dev, intel_crtc->pipe);
2277 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2278 }
2279
2280 intel_update_fbc(dev);
2281 intel_edp_psr_update(dev);
2282 mutex_unlock(&dev->struct_mutex);
2283
2284 intel_crtc_update_sarea_pos(crtc, x, y);
2285
2286 return 0;
2287 }
2288
2289 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2290 {
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294 int pipe = intel_crtc->pipe;
2295 u32 reg, temp;
2296
2297 /* enable normal train */
2298 reg = FDI_TX_CTL(pipe);
2299 temp = I915_READ(reg);
2300 if (IS_IVYBRIDGE(dev)) {
2301 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2302 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2303 } else {
2304 temp &= ~FDI_LINK_TRAIN_NONE;
2305 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2306 }
2307 I915_WRITE(reg, temp);
2308
2309 reg = FDI_RX_CTL(pipe);
2310 temp = I915_READ(reg);
2311 if (HAS_PCH_CPT(dev)) {
2312 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2313 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2314 } else {
2315 temp &= ~FDI_LINK_TRAIN_NONE;
2316 temp |= FDI_LINK_TRAIN_NONE;
2317 }
2318 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2319
2320 /* wait one idle pattern time */
2321 POSTING_READ(reg);
2322 udelay(1000);
2323
2324 /* IVB wants error correction enabled */
2325 if (IS_IVYBRIDGE(dev))
2326 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2327 FDI_FE_ERRC_ENABLE);
2328 }
2329
2330 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2331 {
2332 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2333 }
2334
2335 static void ivb_modeset_global_resources(struct drm_device *dev)
2336 {
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 struct intel_crtc *pipe_B_crtc =
2339 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2340 struct intel_crtc *pipe_C_crtc =
2341 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2342 uint32_t temp;
2343
2344 /*
2345 * When everything is off disable fdi C so that we could enable fdi B
2346 * with all lanes. Note that we don't care about enabled pipes without
2347 * an enabled pch encoder.
2348 */
2349 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2350 !pipe_has_enabled_pch(pipe_C_crtc)) {
2351 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2352 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2353
2354 temp = I915_READ(SOUTH_CHICKEN1);
2355 temp &= ~FDI_BC_BIFURCATION_SELECT;
2356 DRM_DEBUG_KMS("disabling fdi C rx\n");
2357 I915_WRITE(SOUTH_CHICKEN1, temp);
2358 }
2359 }
2360
2361 /* The FDI link training functions for ILK/Ibexpeak. */
2362 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2363 {
2364 struct drm_device *dev = crtc->dev;
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367 int pipe = intel_crtc->pipe;
2368 int plane = intel_crtc->plane;
2369 u32 reg, temp, tries;
2370
2371 /* FDI needs bits from pipe & plane first */
2372 assert_pipe_enabled(dev_priv, pipe);
2373 assert_plane_enabled(dev_priv, plane);
2374
2375 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2376 for train result */
2377 reg = FDI_RX_IMR(pipe);
2378 temp = I915_READ(reg);
2379 temp &= ~FDI_RX_SYMBOL_LOCK;
2380 temp &= ~FDI_RX_BIT_LOCK;
2381 I915_WRITE(reg, temp);
2382 I915_READ(reg);
2383 udelay(150);
2384
2385 /* enable CPU FDI TX and PCH FDI RX */
2386 reg = FDI_TX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2389 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2390 temp &= ~FDI_LINK_TRAIN_NONE;
2391 temp |= FDI_LINK_TRAIN_PATTERN_1;
2392 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2393
2394 reg = FDI_RX_CTL(pipe);
2395 temp = I915_READ(reg);
2396 temp &= ~FDI_LINK_TRAIN_NONE;
2397 temp |= FDI_LINK_TRAIN_PATTERN_1;
2398 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2399
2400 POSTING_READ(reg);
2401 udelay(150);
2402
2403 /* Ironlake workaround, enable clock pointer after FDI enable*/
2404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406 FDI_RX_PHASE_SYNC_POINTER_EN);
2407
2408 reg = FDI_RX_IIR(pipe);
2409 for (tries = 0; tries < 5; tries++) {
2410 temp = I915_READ(reg);
2411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413 if ((temp & FDI_RX_BIT_LOCK)) {
2414 DRM_DEBUG_KMS("FDI train 1 done.\n");
2415 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416 break;
2417 }
2418 }
2419 if (tries == 5)
2420 DRM_ERROR("FDI train 1 fail!\n");
2421
2422 /* Train 2 */
2423 reg = FDI_TX_CTL(pipe);
2424 temp = I915_READ(reg);
2425 temp &= ~FDI_LINK_TRAIN_NONE;
2426 temp |= FDI_LINK_TRAIN_PATTERN_2;
2427 I915_WRITE(reg, temp);
2428
2429 reg = FDI_RX_CTL(pipe);
2430 temp = I915_READ(reg);
2431 temp &= ~FDI_LINK_TRAIN_NONE;
2432 temp |= FDI_LINK_TRAIN_PATTERN_2;
2433 I915_WRITE(reg, temp);
2434
2435 POSTING_READ(reg);
2436 udelay(150);
2437
2438 reg = FDI_RX_IIR(pipe);
2439 for (tries = 0; tries < 5; tries++) {
2440 temp = I915_READ(reg);
2441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443 if (temp & FDI_RX_SYMBOL_LOCK) {
2444 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445 DRM_DEBUG_KMS("FDI train 2 done.\n");
2446 break;
2447 }
2448 }
2449 if (tries == 5)
2450 DRM_ERROR("FDI train 2 fail!\n");
2451
2452 DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466 struct drm_device *dev = crtc->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469 int pipe = intel_crtc->pipe;
2470 u32 reg, temp, i, retry;
2471
2472 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473 for train result */
2474 reg = FDI_RX_IMR(pipe);
2475 temp = I915_READ(reg);
2476 temp &= ~FDI_RX_SYMBOL_LOCK;
2477 temp &= ~FDI_RX_BIT_LOCK;
2478 I915_WRITE(reg, temp);
2479
2480 POSTING_READ(reg);
2481 udelay(150);
2482
2483 /* enable CPU FDI TX and PCH FDI RX */
2484 reg = FDI_TX_CTL(pipe);
2485 temp = I915_READ(reg);
2486 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2487 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491 /* SNB-B */
2492 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495 I915_WRITE(FDI_RX_MISC(pipe),
2496 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 for (i = 0; i < 4; i++) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 for (retry = 0; retry < 5; retry++) {
2523 reg = FDI_RX_IIR(pipe);
2524 temp = I915_READ(reg);
2525 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 udelay(50);
2532 }
2533 if (retry < 5)
2534 break;
2535 }
2536 if (i == 4)
2537 DRM_ERROR("FDI train 1 fail!\n");
2538
2539 /* Train 2 */
2540 reg = FDI_TX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 temp &= ~FDI_LINK_TRAIN_NONE;
2543 temp |= FDI_LINK_TRAIN_PATTERN_2;
2544 if (IS_GEN6(dev)) {
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 /* SNB-B */
2547 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548 }
2549 I915_WRITE(reg, temp);
2550
2551 reg = FDI_RX_CTL(pipe);
2552 temp = I915_READ(reg);
2553 if (HAS_PCH_CPT(dev)) {
2554 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556 } else {
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 }
2560 I915_WRITE(reg, temp);
2561
2562 POSTING_READ(reg);
2563 udelay(150);
2564
2565 for (i = 0; i < 4; i++) {
2566 reg = FDI_TX_CTL(pipe);
2567 temp = I915_READ(reg);
2568 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569 temp |= snb_b_fdi_train_param[i];
2570 I915_WRITE(reg, temp);
2571
2572 POSTING_READ(reg);
2573 udelay(500);
2574
2575 for (retry = 0; retry < 5; retry++) {
2576 reg = FDI_RX_IIR(pipe);
2577 temp = I915_READ(reg);
2578 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579 if (temp & FDI_RX_SYMBOL_LOCK) {
2580 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582 break;
2583 }
2584 udelay(50);
2585 }
2586 if (retry < 5)
2587 break;
2588 }
2589 if (i == 4)
2590 DRM_ERROR("FDI train 2 fail!\n");
2591
2592 DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i, j;
2603
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2616 I915_READ(FDI_RX_IIR(pipe)));
2617
2618 /* Try each vswing and preemphasis setting twice before moving on */
2619 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2620 /* disable first in case we need to retry */
2621 reg = FDI_TX_CTL(pipe);
2622 temp = I915_READ(reg);
2623 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624 temp &= ~FDI_TX_ENABLE;
2625 I915_WRITE(reg, temp);
2626
2627 reg = FDI_RX_CTL(pipe);
2628 temp = I915_READ(reg);
2629 temp &= ~FDI_LINK_TRAIN_AUTO;
2630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631 temp &= ~FDI_RX_ENABLE;
2632 I915_WRITE(reg, temp);
2633
2634 /* enable CPU FDI TX and PCH FDI RX */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2638 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2639 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 temp |= snb_b_fdi_train_param[j/2];
2642 temp |= FDI_COMPOSITE_SYNC;
2643 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2644
2645 I915_WRITE(FDI_RX_MISC(pipe),
2646 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2647
2648 reg = FDI_RX_CTL(pipe);
2649 temp = I915_READ(reg);
2650 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2651 temp |= FDI_COMPOSITE_SYNC;
2652 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2653
2654 POSTING_READ(reg);
2655 udelay(1); /* should be 0.5us */
2656
2657 for (i = 0; i < 4; i++) {
2658 reg = FDI_RX_IIR(pipe);
2659 temp = I915_READ(reg);
2660 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2661
2662 if (temp & FDI_RX_BIT_LOCK ||
2663 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2664 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2665 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2666 i);
2667 break;
2668 }
2669 udelay(1); /* should be 0.5us */
2670 }
2671 if (i == 4) {
2672 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2673 continue;
2674 }
2675
2676 /* Train 2 */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2680 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2681 I915_WRITE(reg, temp);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2686 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(2); /* should be 1.5us */
2691
2692 for (i = 0; i < 4; i++) {
2693 reg = FDI_RX_IIR(pipe);
2694 temp = I915_READ(reg);
2695 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697 if (temp & FDI_RX_SYMBOL_LOCK ||
2698 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2699 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2701 i);
2702 goto train_done;
2703 }
2704 udelay(2); /* should be 1.5us */
2705 }
2706 if (i == 4)
2707 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2708 }
2709
2710 train_done:
2711 DRM_DEBUG_KMS("FDI train done.\n");
2712 }
2713
2714 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2715 {
2716 struct drm_device *dev = intel_crtc->base.dev;
2717 struct drm_i915_private *dev_priv = dev->dev_private;
2718 int pipe = intel_crtc->pipe;
2719 u32 reg, temp;
2720
2721
2722 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2723 reg = FDI_RX_CTL(pipe);
2724 temp = I915_READ(reg);
2725 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2726 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2727 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2728 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2729
2730 POSTING_READ(reg);
2731 udelay(200);
2732
2733 /* Switch from Rawclk to PCDclk */
2734 temp = I915_READ(reg);
2735 I915_WRITE(reg, temp | FDI_PCDCLK);
2736
2737 POSTING_READ(reg);
2738 udelay(200);
2739
2740 /* Enable CPU FDI TX PLL, always on for Ironlake */
2741 reg = FDI_TX_CTL(pipe);
2742 temp = I915_READ(reg);
2743 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2744 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2745
2746 POSTING_READ(reg);
2747 udelay(100);
2748 }
2749 }
2750
2751 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2752 {
2753 struct drm_device *dev = intel_crtc->base.dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 int pipe = intel_crtc->pipe;
2756 u32 reg, temp;
2757
2758 /* Switch from PCDclk to Rawclk */
2759 reg = FDI_RX_CTL(pipe);
2760 temp = I915_READ(reg);
2761 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2762
2763 /* Disable CPU FDI TX PLL */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2767
2768 POSTING_READ(reg);
2769 udelay(100);
2770
2771 reg = FDI_RX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2774
2775 /* Wait for the clocks to turn off. */
2776 POSTING_READ(reg);
2777 udelay(100);
2778 }
2779
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782 struct drm_device *dev = crtc->dev;
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785 int pipe = intel_crtc->pipe;
2786 u32 reg, temp;
2787
2788 /* disable CPU FDI tx and PCH FDI rx */
2789 reg = FDI_TX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792 POSTING_READ(reg);
2793
2794 reg = FDI_RX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 temp &= ~(0x7 << 16);
2797 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2798 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800 POSTING_READ(reg);
2801 udelay(100);
2802
2803 /* Ironlake workaround, disable clock pointer after downing FDI */
2804 if (HAS_PCH_IBX(dev)) {
2805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806 }
2807
2808 /* still set train pattern 1 */
2809 reg = FDI_TX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 I915_WRITE(reg, temp);
2814
2815 reg = FDI_RX_CTL(pipe);
2816 temp = I915_READ(reg);
2817 if (HAS_PCH_CPT(dev)) {
2818 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2820 } else {
2821 temp &= ~FDI_LINK_TRAIN_NONE;
2822 temp |= FDI_LINK_TRAIN_PATTERN_1;
2823 }
2824 /* BPC in FDI rx is consistent with that in PIPECONF */
2825 temp &= ~(0x07 << 16);
2826 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2827 I915_WRITE(reg, temp);
2828
2829 POSTING_READ(reg);
2830 udelay(100);
2831 }
2832
2833 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2834 {
2835 struct drm_device *dev = crtc->dev;
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 unsigned long flags;
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
2845 spin_lock_irqsave(&dev->event_lock, flags);
2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847 spin_unlock_irqrestore(&dev->event_lock, flags);
2848
2849 return pending;
2850 }
2851
2852 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 {
2854 struct drm_device *dev = crtc->dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856
2857 if (crtc->fb == NULL)
2858 return;
2859
2860 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2861
2862 wait_event(dev_priv->pending_flip_queue,
2863 !intel_crtc_has_pending_flip(crtc));
2864
2865 mutex_lock(&dev->struct_mutex);
2866 intel_finish_fb(crtc->fb);
2867 mutex_unlock(&dev->struct_mutex);
2868 }
2869
2870 /* Program iCLKIP clock to the desired frequency */
2871 static void lpt_program_iclkip(struct drm_crtc *crtc)
2872 {
2873 struct drm_device *dev = crtc->dev;
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2876 u32 temp;
2877
2878 mutex_lock(&dev_priv->dpio_lock);
2879
2880 /* It is necessary to ungate the pixclk gate prior to programming
2881 * the divisors, and gate it back when it is done.
2882 */
2883 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2884
2885 /* Disable SSCCTL */
2886 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2887 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2888 SBI_SSCCTL_DISABLE,
2889 SBI_ICLK);
2890
2891 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892 if (crtc->mode.clock == 20000) {
2893 auxdiv = 1;
2894 divsel = 0x41;
2895 phaseinc = 0x20;
2896 } else {
2897 /* The iCLK virtual clock root frequency is in MHz,
2898 * but the crtc->mode.clock in in KHz. To get the divisors,
2899 * it is necessary to divide one by another, so we
2900 * convert the virtual clock precision to KHz here for higher
2901 * precision.
2902 */
2903 u32 iclk_virtual_root_freq = 172800 * 1000;
2904 u32 iclk_pi_range = 64;
2905 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908 msb_divisor_value = desired_divisor / iclk_pi_range;
2909 pi_value = desired_divisor % iclk_pi_range;
2910
2911 auxdiv = 0;
2912 divsel = msb_divisor_value - 2;
2913 phaseinc = pi_value;
2914 }
2915
2916 /* This should not happen with any sane values */
2917 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923 crtc->mode.clock,
2924 auxdiv,
2925 divsel,
2926 phasedir,
2927 phaseinc);
2928
2929 /* Program SSCDIVINTPHASE6 */
2930 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2931 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2938
2939 /* Program SSCAUXDIV */
2940 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2941 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2942 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2943 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2944
2945 /* Enable modulator and associated divider */
2946 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2947 temp &= ~SBI_SSCCTL_DISABLE;
2948 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2949
2950 /* Wait for initialization time */
2951 udelay(24);
2952
2953 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2954
2955 mutex_unlock(&dev_priv->dpio_lock);
2956 }
2957
2958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2959 enum pipe pch_transcoder)
2960 {
2961 struct drm_device *dev = crtc->base.dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2964
2965 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2966 I915_READ(HTOTAL(cpu_transcoder)));
2967 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2968 I915_READ(HBLANK(cpu_transcoder)));
2969 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2970 I915_READ(HSYNC(cpu_transcoder)));
2971
2972 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2973 I915_READ(VTOTAL(cpu_transcoder)));
2974 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2975 I915_READ(VBLANK(cpu_transcoder)));
2976 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2977 I915_READ(VSYNC(cpu_transcoder)));
2978 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2979 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2980 }
2981
2982 /*
2983 * Enable PCH resources required for PCH ports:
2984 * - PCH PLLs
2985 * - FDI training & RX/TX
2986 * - update transcoder timings
2987 * - DP transcoding bits
2988 * - transcoder
2989 */
2990 static void ironlake_pch_enable(struct drm_crtc *crtc)
2991 {
2992 struct drm_device *dev = crtc->dev;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995 int pipe = intel_crtc->pipe;
2996 u32 reg, temp;
2997
2998 assert_pch_transcoder_disabled(dev_priv, pipe);
2999
3000 /* Write the TU size bits before fdi link training, so that error
3001 * detection works. */
3002 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3003 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3004
3005 /* For PCH output, training FDI link */
3006 dev_priv->display.fdi_link_train(crtc);
3007
3008 /* We need to program the right clock selection before writing the pixel
3009 * mutliplier into the DPLL. */
3010 if (HAS_PCH_CPT(dev)) {
3011 u32 sel;
3012
3013 temp = I915_READ(PCH_DPLL_SEL);
3014 temp |= TRANS_DPLL_ENABLE(pipe);
3015 sel = TRANS_DPLLB_SEL(pipe);
3016 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3017 temp |= sel;
3018 else
3019 temp &= ~sel;
3020 I915_WRITE(PCH_DPLL_SEL, temp);
3021 }
3022
3023 /* XXX: pch pll's can be enabled any time before we enable the PCH
3024 * transcoder, and we actually should do this to not upset any PCH
3025 * transcoder that already use the clock when we share it.
3026 *
3027 * Note that enable_shared_dpll tries to do the right thing, but
3028 * get_shared_dpll unconditionally resets the pll - we need that to have
3029 * the right LVDS enable sequence. */
3030 ironlake_enable_shared_dpll(intel_crtc);
3031
3032 /* set transcoder timing, panel must allow it */
3033 assert_panel_unlocked(dev_priv, pipe);
3034 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3035
3036 intel_fdi_normal_train(crtc);
3037
3038 /* For PCH DP, enable TRANS_DP_CTL */
3039 if (HAS_PCH_CPT(dev) &&
3040 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3041 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3042 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3043 reg = TRANS_DP_CTL(pipe);
3044 temp = I915_READ(reg);
3045 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3046 TRANS_DP_SYNC_MASK |
3047 TRANS_DP_BPC_MASK);
3048 temp |= (TRANS_DP_OUTPUT_ENABLE |
3049 TRANS_DP_ENH_FRAMING);
3050 temp |= bpc << 9; /* same format but at 11:9 */
3051
3052 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3053 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3054 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3055 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3056
3057 switch (intel_trans_dp_port_sel(crtc)) {
3058 case PCH_DP_B:
3059 temp |= TRANS_DP_PORT_SEL_B;
3060 break;
3061 case PCH_DP_C:
3062 temp |= TRANS_DP_PORT_SEL_C;
3063 break;
3064 case PCH_DP_D:
3065 temp |= TRANS_DP_PORT_SEL_D;
3066 break;
3067 default:
3068 BUG();
3069 }
3070
3071 I915_WRITE(reg, temp);
3072 }
3073
3074 ironlake_enable_pch_transcoder(dev_priv, pipe);
3075 }
3076
3077 static void lpt_pch_enable(struct drm_crtc *crtc)
3078 {
3079 struct drm_device *dev = crtc->dev;
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3082 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3083
3084 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3085
3086 lpt_program_iclkip(crtc);
3087
3088 /* Set transcoder timing. */
3089 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3090
3091 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3092 }
3093
3094 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3095 {
3096 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3097
3098 if (pll == NULL)
3099 return;
3100
3101 if (pll->refcount == 0) {
3102 WARN(1, "bad %s refcount\n", pll->name);
3103 return;
3104 }
3105
3106 if (--pll->refcount == 0) {
3107 WARN_ON(pll->on);
3108 WARN_ON(pll->active);
3109 }
3110
3111 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3112 }
3113
3114 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3115 {
3116 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3117 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3118 enum intel_dpll_id i;
3119
3120 if (pll) {
3121 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3122 crtc->base.base.id, pll->name);
3123 intel_put_shared_dpll(crtc);
3124 }
3125
3126 if (HAS_PCH_IBX(dev_priv->dev)) {
3127 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3128 i = (enum intel_dpll_id) crtc->pipe;
3129 pll = &dev_priv->shared_dplls[i];
3130
3131 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3132 crtc->base.base.id, pll->name);
3133
3134 goto found;
3135 }
3136
3137 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3138 pll = &dev_priv->shared_dplls[i];
3139
3140 /* Only want to check enabled timings first */
3141 if (pll->refcount == 0)
3142 continue;
3143
3144 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3145 sizeof(pll->hw_state)) == 0) {
3146 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3147 crtc->base.base.id,
3148 pll->name, pll->refcount, pll->active);
3149
3150 goto found;
3151 }
3152 }
3153
3154 /* Ok no matching timings, maybe there's a free one? */
3155 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3156 pll = &dev_priv->shared_dplls[i];
3157 if (pll->refcount == 0) {
3158 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3159 crtc->base.base.id, pll->name);
3160 goto found;
3161 }
3162 }
3163
3164 return NULL;
3165
3166 found:
3167 crtc->config.shared_dpll = i;
3168 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3169 pipe_name(crtc->pipe));
3170
3171 if (pll->active == 0) {
3172 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3173 sizeof(pll->hw_state));
3174
3175 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3176 WARN_ON(pll->on);
3177 assert_shared_dpll_disabled(dev_priv, pll);
3178
3179 pll->mode_set(dev_priv, pll);
3180 }
3181 pll->refcount++;
3182
3183 return pll;
3184 }
3185
3186 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3187 {
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189 int dslreg = PIPEDSL(pipe);
3190 u32 temp;
3191
3192 temp = I915_READ(dslreg);
3193 udelay(500);
3194 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3195 if (wait_for(I915_READ(dslreg) != temp, 5))
3196 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3197 }
3198 }
3199
3200 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3201 {
3202 struct drm_device *dev = crtc->base.dev;
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 int pipe = crtc->pipe;
3205
3206 if (crtc->config.pch_pfit.enabled) {
3207 /* Force use of hard-coded filter coefficients
3208 * as some pre-programmed values are broken,
3209 * e.g. x201.
3210 */
3211 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3212 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3213 PF_PIPE_SEL_IVB(pipe));
3214 else
3215 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3216 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3217 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3218 }
3219 }
3220
3221 static void intel_enable_planes(struct drm_crtc *crtc)
3222 {
3223 struct drm_device *dev = crtc->dev;
3224 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3225 struct intel_plane *intel_plane;
3226
3227 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3228 if (intel_plane->pipe == pipe)
3229 intel_plane_restore(&intel_plane->base);
3230 }
3231
3232 static void intel_disable_planes(struct drm_crtc *crtc)
3233 {
3234 struct drm_device *dev = crtc->dev;
3235 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3236 struct intel_plane *intel_plane;
3237
3238 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3239 if (intel_plane->pipe == pipe)
3240 intel_plane_disable(&intel_plane->base);
3241 }
3242
3243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248 struct intel_encoder *encoder;
3249 int pipe = intel_crtc->pipe;
3250 int plane = intel_crtc->plane;
3251
3252 WARN_ON(!crtc->enabled);
3253
3254 if (intel_crtc->active)
3255 return;
3256
3257 intel_crtc->active = true;
3258
3259 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3260 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3261
3262 intel_update_watermarks(dev);
3263
3264 for_each_encoder_on_crtc(dev, crtc, encoder)
3265 if (encoder->pre_enable)
3266 encoder->pre_enable(encoder);
3267
3268 if (intel_crtc->config.has_pch_encoder) {
3269 /* Note: FDI PLL enabling _must_ be done before we enable the
3270 * cpu pipes, hence this is separate from all the other fdi/pch
3271 * enabling. */
3272 ironlake_fdi_pll_enable(intel_crtc);
3273 } else {
3274 assert_fdi_tx_disabled(dev_priv, pipe);
3275 assert_fdi_rx_disabled(dev_priv, pipe);
3276 }
3277
3278 ironlake_pfit_enable(intel_crtc);
3279
3280 /*
3281 * On ILK+ LUT must be loaded before the pipe is running but with
3282 * clocks enabled
3283 */
3284 intel_crtc_load_lut(crtc);
3285
3286 intel_enable_pipe(dev_priv, pipe,
3287 intel_crtc->config.has_pch_encoder);
3288 intel_enable_plane(dev_priv, plane, pipe);
3289 intel_enable_planes(crtc);
3290 intel_crtc_update_cursor(crtc, true);
3291
3292 if (intel_crtc->config.has_pch_encoder)
3293 ironlake_pch_enable(crtc);
3294
3295 mutex_lock(&dev->struct_mutex);
3296 intel_update_fbc(dev);
3297 mutex_unlock(&dev->struct_mutex);
3298
3299 for_each_encoder_on_crtc(dev, crtc, encoder)
3300 encoder->enable(encoder);
3301
3302 if (HAS_PCH_CPT(dev))
3303 cpt_verify_modeset(dev, intel_crtc->pipe);
3304
3305 /*
3306 * There seems to be a race in PCH platform hw (at least on some
3307 * outputs) where an enabled pipe still completes any pageflip right
3308 * away (as if the pipe is off) instead of waiting for vblank. As soon
3309 * as the first vblank happend, everything works as expected. Hence just
3310 * wait for one vblank before returning to avoid strange things
3311 * happening.
3312 */
3313 intel_wait_for_vblank(dev, intel_crtc->pipe);
3314 }
3315
3316 /* IPS only exists on ULT machines and is tied to pipe A. */
3317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3318 {
3319 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3320 }
3321
3322 static void hsw_enable_ips(struct intel_crtc *crtc)
3323 {
3324 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3325
3326 if (!crtc->config.ips_enabled)
3327 return;
3328
3329 /* We can only enable IPS after we enable a plane and wait for a vblank.
3330 * We guarantee that the plane is enabled by calling intel_enable_ips
3331 * only after intel_enable_plane. And intel_enable_plane already waits
3332 * for a vblank, so all we need to do here is to enable the IPS bit. */
3333 assert_plane_enabled(dev_priv, crtc->plane);
3334 I915_WRITE(IPS_CTL, IPS_ENABLE);
3335 }
3336
3337 static void hsw_disable_ips(struct intel_crtc *crtc)
3338 {
3339 struct drm_device *dev = crtc->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341
3342 if (!crtc->config.ips_enabled)
3343 return;
3344
3345 assert_plane_enabled(dev_priv, crtc->plane);
3346 I915_WRITE(IPS_CTL, 0);
3347
3348 /* We need to wait for a vblank before we can disable the plane. */
3349 intel_wait_for_vblank(dev, crtc->pipe);
3350 }
3351
3352 static void haswell_crtc_enable(struct drm_crtc *crtc)
3353 {
3354 struct drm_device *dev = crtc->dev;
3355 struct drm_i915_private *dev_priv = dev->dev_private;
3356 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357 struct intel_encoder *encoder;
3358 int pipe = intel_crtc->pipe;
3359 int plane = intel_crtc->plane;
3360
3361 WARN_ON(!crtc->enabled);
3362
3363 if (intel_crtc->active)
3364 return;
3365
3366 intel_crtc->active = true;
3367
3368 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3369 if (intel_crtc->config.has_pch_encoder)
3370 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3371
3372 intel_update_watermarks(dev);
3373
3374 if (intel_crtc->config.has_pch_encoder)
3375 dev_priv->display.fdi_link_train(crtc);
3376
3377 for_each_encoder_on_crtc(dev, crtc, encoder)
3378 if (encoder->pre_enable)
3379 encoder->pre_enable(encoder);
3380
3381 intel_ddi_enable_pipe_clock(intel_crtc);
3382
3383 ironlake_pfit_enable(intel_crtc);
3384
3385 /*
3386 * On ILK+ LUT must be loaded before the pipe is running but with
3387 * clocks enabled
3388 */
3389 intel_crtc_load_lut(crtc);
3390
3391 intel_ddi_set_pipe_settings(crtc);
3392 intel_ddi_enable_transcoder_func(crtc);
3393
3394 intel_enable_pipe(dev_priv, pipe,
3395 intel_crtc->config.has_pch_encoder);
3396 intel_enable_plane(dev_priv, plane, pipe);
3397 intel_enable_planes(crtc);
3398 intel_crtc_update_cursor(crtc, true);
3399
3400 hsw_enable_ips(intel_crtc);
3401
3402 if (intel_crtc->config.has_pch_encoder)
3403 lpt_pch_enable(crtc);
3404
3405 mutex_lock(&dev->struct_mutex);
3406 intel_update_fbc(dev);
3407 mutex_unlock(&dev->struct_mutex);
3408
3409 for_each_encoder_on_crtc(dev, crtc, encoder)
3410 encoder->enable(encoder);
3411
3412 /*
3413 * There seems to be a race in PCH platform hw (at least on some
3414 * outputs) where an enabled pipe still completes any pageflip right
3415 * away (as if the pipe is off) instead of waiting for vblank. As soon
3416 * as the first vblank happend, everything works as expected. Hence just
3417 * wait for one vblank before returning to avoid strange things
3418 * happening.
3419 */
3420 intel_wait_for_vblank(dev, intel_crtc->pipe);
3421 }
3422
3423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3424 {
3425 struct drm_device *dev = crtc->base.dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 int pipe = crtc->pipe;
3428
3429 /* To avoid upsetting the power well on haswell only disable the pfit if
3430 * it's in use. The hw state code will make sure we get this right. */
3431 if (crtc->config.pch_pfit.enabled) {
3432 I915_WRITE(PF_CTL(pipe), 0);
3433 I915_WRITE(PF_WIN_POS(pipe), 0);
3434 I915_WRITE(PF_WIN_SZ(pipe), 0);
3435 }
3436 }
3437
3438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3439 {
3440 struct drm_device *dev = crtc->dev;
3441 struct drm_i915_private *dev_priv = dev->dev_private;
3442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3443 struct intel_encoder *encoder;
3444 int pipe = intel_crtc->pipe;
3445 int plane = intel_crtc->plane;
3446 u32 reg, temp;
3447
3448
3449 if (!intel_crtc->active)
3450 return;
3451
3452 for_each_encoder_on_crtc(dev, crtc, encoder)
3453 encoder->disable(encoder);
3454
3455 intel_crtc_wait_for_pending_flips(crtc);
3456 drm_vblank_off(dev, pipe);
3457
3458 if (dev_priv->fbc.plane == plane)
3459 intel_disable_fbc(dev);
3460
3461 intel_crtc_update_cursor(crtc, false);
3462 intel_disable_planes(crtc);
3463 intel_disable_plane(dev_priv, plane, pipe);
3464
3465 if (intel_crtc->config.has_pch_encoder)
3466 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3467
3468 intel_disable_pipe(dev_priv, pipe);
3469
3470 ironlake_pfit_disable(intel_crtc);
3471
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 if (encoder->post_disable)
3474 encoder->post_disable(encoder);
3475
3476 if (intel_crtc->config.has_pch_encoder) {
3477 ironlake_fdi_disable(crtc);
3478
3479 ironlake_disable_pch_transcoder(dev_priv, pipe);
3480 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3481
3482 if (HAS_PCH_CPT(dev)) {
3483 /* disable TRANS_DP_CTL */
3484 reg = TRANS_DP_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3487 TRANS_DP_PORT_SEL_MASK);
3488 temp |= TRANS_DP_PORT_SEL_NONE;
3489 I915_WRITE(reg, temp);
3490
3491 /* disable DPLL_SEL */
3492 temp = I915_READ(PCH_DPLL_SEL);
3493 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3494 I915_WRITE(PCH_DPLL_SEL, temp);
3495 }
3496
3497 /* disable PCH DPLL */
3498 intel_disable_shared_dpll(intel_crtc);
3499
3500 ironlake_fdi_pll_disable(intel_crtc);
3501 }
3502
3503 intel_crtc->active = false;
3504 intel_update_watermarks(dev);
3505
3506 mutex_lock(&dev->struct_mutex);
3507 intel_update_fbc(dev);
3508 mutex_unlock(&dev->struct_mutex);
3509 }
3510
3511 static void haswell_crtc_disable(struct drm_crtc *crtc)
3512 {
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 struct intel_encoder *encoder;
3517 int pipe = intel_crtc->pipe;
3518 int plane = intel_crtc->plane;
3519 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3520
3521 if (!intel_crtc->active)
3522 return;
3523
3524 for_each_encoder_on_crtc(dev, crtc, encoder)
3525 encoder->disable(encoder);
3526
3527 intel_crtc_wait_for_pending_flips(crtc);
3528 drm_vblank_off(dev, pipe);
3529
3530 /* FBC must be disabled before disabling the plane on HSW. */
3531 if (dev_priv->fbc.plane == plane)
3532 intel_disable_fbc(dev);
3533
3534 hsw_disable_ips(intel_crtc);
3535
3536 intel_crtc_update_cursor(crtc, false);
3537 intel_disable_planes(crtc);
3538 intel_disable_plane(dev_priv, plane, pipe);
3539
3540 if (intel_crtc->config.has_pch_encoder)
3541 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3542 intel_disable_pipe(dev_priv, pipe);
3543
3544 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3545
3546 ironlake_pfit_disable(intel_crtc);
3547
3548 intel_ddi_disable_pipe_clock(intel_crtc);
3549
3550 for_each_encoder_on_crtc(dev, crtc, encoder)
3551 if (encoder->post_disable)
3552 encoder->post_disable(encoder);
3553
3554 if (intel_crtc->config.has_pch_encoder) {
3555 lpt_disable_pch_transcoder(dev_priv);
3556 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3557 intel_ddi_fdi_disable(crtc);
3558 }
3559
3560 intel_crtc->active = false;
3561 intel_update_watermarks(dev);
3562
3563 mutex_lock(&dev->struct_mutex);
3564 intel_update_fbc(dev);
3565 mutex_unlock(&dev->struct_mutex);
3566 }
3567
3568 static void ironlake_crtc_off(struct drm_crtc *crtc)
3569 {
3570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571 intel_put_shared_dpll(intel_crtc);
3572 }
3573
3574 static void haswell_crtc_off(struct drm_crtc *crtc)
3575 {
3576 intel_ddi_put_crtc_pll(crtc);
3577 }
3578
3579 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3580 {
3581 if (!enable && intel_crtc->overlay) {
3582 struct drm_device *dev = intel_crtc->base.dev;
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585 mutex_lock(&dev->struct_mutex);
3586 dev_priv->mm.interruptible = false;
3587 (void) intel_overlay_switch_off(intel_crtc->overlay);
3588 dev_priv->mm.interruptible = true;
3589 mutex_unlock(&dev->struct_mutex);
3590 }
3591
3592 /* Let userspace switch the overlay on again. In most cases userspace
3593 * has to recompute where to put it anyway.
3594 */
3595 }
3596
3597 /**
3598 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3599 * cursor plane briefly if not already running after enabling the display
3600 * plane.
3601 * This workaround avoids occasional blank screens when self refresh is
3602 * enabled.
3603 */
3604 static void
3605 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3606 {
3607 u32 cntl = I915_READ(CURCNTR(pipe));
3608
3609 if ((cntl & CURSOR_MODE) == 0) {
3610 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3611
3612 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3613 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3614 intel_wait_for_vblank(dev_priv->dev, pipe);
3615 I915_WRITE(CURCNTR(pipe), cntl);
3616 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3617 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3618 }
3619 }
3620
3621 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3622 {
3623 struct drm_device *dev = crtc->base.dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc_config *pipe_config = &crtc->config;
3626
3627 if (!crtc->config.gmch_pfit.control)
3628 return;
3629
3630 /*
3631 * The panel fitter should only be adjusted whilst the pipe is disabled,
3632 * according to register description and PRM.
3633 */
3634 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3635 assert_pipe_disabled(dev_priv, crtc->pipe);
3636
3637 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3638 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3639
3640 /* Border color in case we don't scale up to the full screen. Black by
3641 * default, change to something else for debugging. */
3642 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3643 }
3644
3645 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 struct intel_encoder *encoder;
3651 int pipe = intel_crtc->pipe;
3652 int plane = intel_crtc->plane;
3653
3654 WARN_ON(!crtc->enabled);
3655
3656 if (intel_crtc->active)
3657 return;
3658
3659 intel_crtc->active = true;
3660 intel_update_watermarks(dev);
3661
3662 for_each_encoder_on_crtc(dev, crtc, encoder)
3663 if (encoder->pre_pll_enable)
3664 encoder->pre_pll_enable(encoder);
3665
3666 vlv_enable_pll(intel_crtc);
3667
3668 for_each_encoder_on_crtc(dev, crtc, encoder)
3669 if (encoder->pre_enable)
3670 encoder->pre_enable(encoder);
3671
3672 i9xx_pfit_enable(intel_crtc);
3673
3674 intel_crtc_load_lut(crtc);
3675
3676 intel_enable_pipe(dev_priv, pipe, false);
3677 intel_enable_plane(dev_priv, plane, pipe);
3678 intel_enable_planes(crtc);
3679 intel_crtc_update_cursor(crtc, true);
3680
3681 intel_update_fbc(dev);
3682
3683 for_each_encoder_on_crtc(dev, crtc, encoder)
3684 encoder->enable(encoder);
3685 }
3686
3687 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3688 {
3689 struct drm_device *dev = crtc->dev;
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692 struct intel_encoder *encoder;
3693 int pipe = intel_crtc->pipe;
3694 int plane = intel_crtc->plane;
3695
3696 WARN_ON(!crtc->enabled);
3697
3698 if (intel_crtc->active)
3699 return;
3700
3701 intel_crtc->active = true;
3702 intel_update_watermarks(dev);
3703
3704 for_each_encoder_on_crtc(dev, crtc, encoder)
3705 if (encoder->pre_enable)
3706 encoder->pre_enable(encoder);
3707
3708 i9xx_enable_pll(intel_crtc);
3709
3710 i9xx_pfit_enable(intel_crtc);
3711
3712 intel_crtc_load_lut(crtc);
3713
3714 intel_enable_pipe(dev_priv, pipe, false);
3715 intel_enable_plane(dev_priv, plane, pipe);
3716 intel_enable_planes(crtc);
3717 /* The fixup needs to happen before cursor is enabled */
3718 if (IS_G4X(dev))
3719 g4x_fixup_plane(dev_priv, pipe);
3720 intel_crtc_update_cursor(crtc, true);
3721
3722 /* Give the overlay scaler a chance to enable if it's on this pipe */
3723 intel_crtc_dpms_overlay(intel_crtc, true);
3724
3725 intel_update_fbc(dev);
3726
3727 for_each_encoder_on_crtc(dev, crtc, encoder)
3728 encoder->enable(encoder);
3729 }
3730
3731 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3732 {
3733 struct drm_device *dev = crtc->base.dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736 if (!crtc->config.gmch_pfit.control)
3737 return;
3738
3739 assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3742 I915_READ(PFIT_CONTROL));
3743 I915_WRITE(PFIT_CONTROL, 0);
3744 }
3745
3746 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 struct intel_encoder *encoder;
3752 int pipe = intel_crtc->pipe;
3753 int plane = intel_crtc->plane;
3754
3755 if (!intel_crtc->active)
3756 return;
3757
3758 for_each_encoder_on_crtc(dev, crtc, encoder)
3759 encoder->disable(encoder);
3760
3761 /* Give the overlay scaler a chance to disable if it's on this pipe */
3762 intel_crtc_wait_for_pending_flips(crtc);
3763 drm_vblank_off(dev, pipe);
3764
3765 if (dev_priv->fbc.plane == plane)
3766 intel_disable_fbc(dev);
3767
3768 intel_crtc_dpms_overlay(intel_crtc, false);
3769 intel_crtc_update_cursor(crtc, false);
3770 intel_disable_planes(crtc);
3771 intel_disable_plane(dev_priv, plane, pipe);
3772
3773 intel_disable_pipe(dev_priv, pipe);
3774
3775 i9xx_pfit_disable(intel_crtc);
3776
3777 for_each_encoder_on_crtc(dev, crtc, encoder)
3778 if (encoder->post_disable)
3779 encoder->post_disable(encoder);
3780
3781 i9xx_disable_pll(dev_priv, pipe);
3782
3783 intel_crtc->active = false;
3784 intel_update_fbc(dev);
3785 intel_update_watermarks(dev);
3786 }
3787
3788 static void i9xx_crtc_off(struct drm_crtc *crtc)
3789 {
3790 }
3791
3792 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3793 bool enabled)
3794 {
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_master_private *master_priv;
3797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3798 int pipe = intel_crtc->pipe;
3799
3800 if (!dev->primary->master)
3801 return;
3802
3803 master_priv = dev->primary->master->driver_priv;
3804 if (!master_priv->sarea_priv)
3805 return;
3806
3807 switch (pipe) {
3808 case 0:
3809 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3810 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3811 break;
3812 case 1:
3813 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3814 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3815 break;
3816 default:
3817 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3818 break;
3819 }
3820 }
3821
3822 /**
3823 * Sets the power management mode of the pipe and plane.
3824 */
3825 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3826 {
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_encoder *intel_encoder;
3830 bool enable = false;
3831
3832 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3833 enable |= intel_encoder->connectors_active;
3834
3835 if (enable)
3836 dev_priv->display.crtc_enable(crtc);
3837 else
3838 dev_priv->display.crtc_disable(crtc);
3839
3840 intel_crtc_update_sarea(crtc, enable);
3841 }
3842
3843 static void intel_crtc_disable(struct drm_crtc *crtc)
3844 {
3845 struct drm_device *dev = crtc->dev;
3846 struct drm_connector *connector;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850 /* crtc should still be enabled when we disable it. */
3851 WARN_ON(!crtc->enabled);
3852
3853 dev_priv->display.crtc_disable(crtc);
3854 intel_crtc->eld_vld = false;
3855 intel_crtc_update_sarea(crtc, false);
3856 dev_priv->display.off(crtc);
3857
3858 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861 if (crtc->fb) {
3862 mutex_lock(&dev->struct_mutex);
3863 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864 mutex_unlock(&dev->struct_mutex);
3865 crtc->fb = NULL;
3866 }
3867
3868 /* Update computed state. */
3869 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870 if (!connector->encoder || !connector->encoder->crtc)
3871 continue;
3872
3873 if (connector->encoder->crtc != crtc)
3874 continue;
3875
3876 connector->dpms = DRM_MODE_DPMS_OFF;
3877 to_intel_encoder(connector->encoder)->connectors_active = false;
3878 }
3879 }
3880
3881 void intel_encoder_destroy(struct drm_encoder *encoder)
3882 {
3883 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3884
3885 drm_encoder_cleanup(encoder);
3886 kfree(intel_encoder);
3887 }
3888
3889 /* Simple dpms helper for encoders with just one connector, no cloning and only
3890 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3891 * state of the entire output pipe. */
3892 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3893 {
3894 if (mode == DRM_MODE_DPMS_ON) {
3895 encoder->connectors_active = true;
3896
3897 intel_crtc_update_dpms(encoder->base.crtc);
3898 } else {
3899 encoder->connectors_active = false;
3900
3901 intel_crtc_update_dpms(encoder->base.crtc);
3902 }
3903 }
3904
3905 /* Cross check the actual hw state with our own modeset state tracking (and it's
3906 * internal consistency). */
3907 static void intel_connector_check_state(struct intel_connector *connector)
3908 {
3909 if (connector->get_hw_state(connector)) {
3910 struct intel_encoder *encoder = connector->encoder;
3911 struct drm_crtc *crtc;
3912 bool encoder_enabled;
3913 enum pipe pipe;
3914
3915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3916 connector->base.base.id,
3917 drm_get_connector_name(&connector->base));
3918
3919 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3920 "wrong connector dpms state\n");
3921 WARN(connector->base.encoder != &encoder->base,
3922 "active connector not linked to encoder\n");
3923 WARN(!encoder->connectors_active,
3924 "encoder->connectors_active not set\n");
3925
3926 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3927 WARN(!encoder_enabled, "encoder not enabled\n");
3928 if (WARN_ON(!encoder->base.crtc))
3929 return;
3930
3931 crtc = encoder->base.crtc;
3932
3933 WARN(!crtc->enabled, "crtc not enabled\n");
3934 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3935 WARN(pipe != to_intel_crtc(crtc)->pipe,
3936 "encoder active on the wrong pipe\n");
3937 }
3938 }
3939
3940 /* Even simpler default implementation, if there's really no special case to
3941 * consider. */
3942 void intel_connector_dpms(struct drm_connector *connector, int mode)
3943 {
3944 struct intel_encoder *encoder = intel_attached_encoder(connector);
3945
3946 /* All the simple cases only support two dpms states. */
3947 if (mode != DRM_MODE_DPMS_ON)
3948 mode = DRM_MODE_DPMS_OFF;
3949
3950 if (mode == connector->dpms)
3951 return;
3952
3953 connector->dpms = mode;
3954
3955 /* Only need to change hw state when actually enabled */
3956 if (encoder->base.crtc)
3957 intel_encoder_dpms(encoder, mode);
3958 else
3959 WARN_ON(encoder->connectors_active != false);
3960
3961 intel_modeset_check_state(connector->dev);
3962 }
3963
3964 /* Simple connector->get_hw_state implementation for encoders that support only
3965 * one connector and no cloning and hence the encoder state determines the state
3966 * of the connector. */
3967 bool intel_connector_get_hw_state(struct intel_connector *connector)
3968 {
3969 enum pipe pipe = 0;
3970 struct intel_encoder *encoder = connector->encoder;
3971
3972 return encoder->get_hw_state(encoder, &pipe);
3973 }
3974
3975 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3976 struct intel_crtc_config *pipe_config)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 struct intel_crtc *pipe_B_crtc =
3980 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3981
3982 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3983 pipe_name(pipe), pipe_config->fdi_lanes);
3984 if (pipe_config->fdi_lanes > 4) {
3985 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3986 pipe_name(pipe), pipe_config->fdi_lanes);
3987 return false;
3988 }
3989
3990 if (IS_HASWELL(dev)) {
3991 if (pipe_config->fdi_lanes > 2) {
3992 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3993 pipe_config->fdi_lanes);
3994 return false;
3995 } else {
3996 return true;
3997 }
3998 }
3999
4000 if (INTEL_INFO(dev)->num_pipes == 2)
4001 return true;
4002
4003 /* Ivybridge 3 pipe is really complicated */
4004 switch (pipe) {
4005 case PIPE_A:
4006 return true;
4007 case PIPE_B:
4008 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4009 pipe_config->fdi_lanes > 2) {
4010 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4011 pipe_name(pipe), pipe_config->fdi_lanes);
4012 return false;
4013 }
4014 return true;
4015 case PIPE_C:
4016 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4017 pipe_B_crtc->config.fdi_lanes <= 2) {
4018 if (pipe_config->fdi_lanes > 2) {
4019 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020 pipe_name(pipe), pipe_config->fdi_lanes);
4021 return false;
4022 }
4023 } else {
4024 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4025 return false;
4026 }
4027 return true;
4028 default:
4029 BUG();
4030 }
4031 }
4032
4033 #define RETRY 1
4034 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4035 struct intel_crtc_config *pipe_config)
4036 {
4037 struct drm_device *dev = intel_crtc->base.dev;
4038 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4039 int lane, link_bw, fdi_dotclock;
4040 bool setup_ok, needs_recompute = false;
4041
4042 retry:
4043 /* FDI is a binary signal running at ~2.7GHz, encoding
4044 * each output octet as 10 bits. The actual frequency
4045 * is stored as a divider into a 100MHz clock, and the
4046 * mode pixel clock is stored in units of 1KHz.
4047 * Hence the bw of each lane in terms of the mode signal
4048 * is:
4049 */
4050 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4051
4052 fdi_dotclock = adjusted_mode->clock;
4053 fdi_dotclock /= pipe_config->pixel_multiplier;
4054
4055 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4056 pipe_config->pipe_bpp);
4057
4058 pipe_config->fdi_lanes = lane;
4059
4060 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4061 link_bw, &pipe_config->fdi_m_n);
4062
4063 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4064 intel_crtc->pipe, pipe_config);
4065 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4066 pipe_config->pipe_bpp -= 2*3;
4067 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4068 pipe_config->pipe_bpp);
4069 needs_recompute = true;
4070 pipe_config->bw_constrained = true;
4071
4072 goto retry;
4073 }
4074
4075 if (needs_recompute)
4076 return RETRY;
4077
4078 return setup_ok ? 0 : -EINVAL;
4079 }
4080
4081 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4082 struct intel_crtc_config *pipe_config)
4083 {
4084 pipe_config->ips_enabled = i915_enable_ips &&
4085 hsw_crtc_supports_ips(crtc) &&
4086 pipe_config->pipe_bpp <= 24;
4087 }
4088
4089 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4090 struct intel_crtc_config *pipe_config)
4091 {
4092 struct drm_device *dev = crtc->base.dev;
4093 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4094
4095 if (HAS_PCH_SPLIT(dev)) {
4096 /* FDI link clock is fixed at 2.7G */
4097 if (pipe_config->requested_mode.clock * 3
4098 > IRONLAKE_FDI_FREQ * 4)
4099 return -EINVAL;
4100 }
4101
4102 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4103 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4104 */
4105 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4106 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4107 return -EINVAL;
4108
4109 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4110 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4111 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4112 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4113 * for lvds. */
4114 pipe_config->pipe_bpp = 8*3;
4115 }
4116
4117 if (HAS_IPS(dev))
4118 hsw_compute_ips_config(crtc, pipe_config);
4119
4120 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4121 * clock survives for now. */
4122 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4123 pipe_config->shared_dpll = crtc->config.shared_dpll;
4124
4125 if (pipe_config->has_pch_encoder)
4126 return ironlake_fdi_compute_config(crtc, pipe_config);
4127
4128 return 0;
4129 }
4130
4131 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4132 {
4133 return 400000; /* FIXME */
4134 }
4135
4136 static int i945_get_display_clock_speed(struct drm_device *dev)
4137 {
4138 return 400000;
4139 }
4140
4141 static int i915_get_display_clock_speed(struct drm_device *dev)
4142 {
4143 return 333000;
4144 }
4145
4146 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4147 {
4148 return 200000;
4149 }
4150
4151 static int pnv_get_display_clock_speed(struct drm_device *dev)
4152 {
4153 u16 gcfgc = 0;
4154
4155 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4156
4157 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4158 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4159 return 267000;
4160 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4161 return 333000;
4162 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4163 return 444000;
4164 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4165 return 200000;
4166 default:
4167 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4168 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4169 return 133000;
4170 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4171 return 167000;
4172 }
4173 }
4174
4175 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4176 {
4177 u16 gcfgc = 0;
4178
4179 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4180
4181 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4182 return 133000;
4183 else {
4184 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4185 case GC_DISPLAY_CLOCK_333_MHZ:
4186 return 333000;
4187 default:
4188 case GC_DISPLAY_CLOCK_190_200_MHZ:
4189 return 190000;
4190 }
4191 }
4192 }
4193
4194 static int i865_get_display_clock_speed(struct drm_device *dev)
4195 {
4196 return 266000;
4197 }
4198
4199 static int i855_get_display_clock_speed(struct drm_device *dev)
4200 {
4201 u16 hpllcc = 0;
4202 /* Assume that the hardware is in the high speed state. This
4203 * should be the default.
4204 */
4205 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4206 case GC_CLOCK_133_200:
4207 case GC_CLOCK_100_200:
4208 return 200000;
4209 case GC_CLOCK_166_250:
4210 return 250000;
4211 case GC_CLOCK_100_133:
4212 return 133000;
4213 }
4214
4215 /* Shouldn't happen */
4216 return 0;
4217 }
4218
4219 static int i830_get_display_clock_speed(struct drm_device *dev)
4220 {
4221 return 133000;
4222 }
4223
4224 static void
4225 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4226 {
4227 while (*num > DATA_LINK_M_N_MASK ||
4228 *den > DATA_LINK_M_N_MASK) {
4229 *num >>= 1;
4230 *den >>= 1;
4231 }
4232 }
4233
4234 static void compute_m_n(unsigned int m, unsigned int n,
4235 uint32_t *ret_m, uint32_t *ret_n)
4236 {
4237 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4238 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4239 intel_reduce_m_n_ratio(ret_m, ret_n);
4240 }
4241
4242 void
4243 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4244 int pixel_clock, int link_clock,
4245 struct intel_link_m_n *m_n)
4246 {
4247 m_n->tu = 64;
4248
4249 compute_m_n(bits_per_pixel * pixel_clock,
4250 link_clock * nlanes * 8,
4251 &m_n->gmch_m, &m_n->gmch_n);
4252
4253 compute_m_n(pixel_clock, link_clock,
4254 &m_n->link_m, &m_n->link_n);
4255 }
4256
4257 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4258 {
4259 if (i915_panel_use_ssc >= 0)
4260 return i915_panel_use_ssc != 0;
4261 return dev_priv->vbt.lvds_use_ssc
4262 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4263 }
4264
4265 static int vlv_get_refclk(struct drm_crtc *crtc)
4266 {
4267 struct drm_device *dev = crtc->dev;
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 int refclk = 27000; /* for DP & HDMI */
4270
4271 return 100000; /* only one validated so far */
4272
4273 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4274 refclk = 96000;
4275 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4276 if (intel_panel_use_ssc(dev_priv))
4277 refclk = 100000;
4278 else
4279 refclk = 96000;
4280 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4281 refclk = 100000;
4282 }
4283
4284 return refclk;
4285 }
4286
4287 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4288 {
4289 struct drm_device *dev = crtc->dev;
4290 struct drm_i915_private *dev_priv = dev->dev_private;
4291 int refclk;
4292
4293 if (IS_VALLEYVIEW(dev)) {
4294 refclk = vlv_get_refclk(crtc);
4295 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4296 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4297 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4298 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4299 refclk / 1000);
4300 } else if (!IS_GEN2(dev)) {
4301 refclk = 96000;
4302 } else {
4303 refclk = 48000;
4304 }
4305
4306 return refclk;
4307 }
4308
4309 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4310 {
4311 return (1 << dpll->n) << 16 | dpll->m2;
4312 }
4313
4314 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4315 {
4316 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4317 }
4318
4319 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4320 intel_clock_t *reduced_clock)
4321 {
4322 struct drm_device *dev = crtc->base.dev;
4323 struct drm_i915_private *dev_priv = dev->dev_private;
4324 int pipe = crtc->pipe;
4325 u32 fp, fp2 = 0;
4326
4327 if (IS_PINEVIEW(dev)) {
4328 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4329 if (reduced_clock)
4330 fp2 = pnv_dpll_compute_fp(reduced_clock);
4331 } else {
4332 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4333 if (reduced_clock)
4334 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4335 }
4336
4337 I915_WRITE(FP0(pipe), fp);
4338 crtc->config.dpll_hw_state.fp0 = fp;
4339
4340 crtc->lowfreq_avail = false;
4341 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4342 reduced_clock && i915_powersave) {
4343 I915_WRITE(FP1(pipe), fp2);
4344 crtc->config.dpll_hw_state.fp1 = fp2;
4345 crtc->lowfreq_avail = true;
4346 } else {
4347 I915_WRITE(FP1(pipe), fp);
4348 crtc->config.dpll_hw_state.fp1 = fp;
4349 }
4350 }
4351
4352 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4353 {
4354 u32 reg_val;
4355
4356 /*
4357 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4358 * and set it to a reasonable value instead.
4359 */
4360 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4361 reg_val &= 0xffffff00;
4362 reg_val |= 0x00000030;
4363 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4364
4365 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4366 reg_val &= 0x8cffffff;
4367 reg_val = 0x8c000000;
4368 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4369
4370 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4371 reg_val &= 0xffffff00;
4372 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4373
4374 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4375 reg_val &= 0x00ffffff;
4376 reg_val |= 0xb0000000;
4377 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4378 }
4379
4380 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4381 struct intel_link_m_n *m_n)
4382 {
4383 struct drm_device *dev = crtc->base.dev;
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 int pipe = crtc->pipe;
4386
4387 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4388 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4389 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4390 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4391 }
4392
4393 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4394 struct intel_link_m_n *m_n)
4395 {
4396 struct drm_device *dev = crtc->base.dev;
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 int pipe = crtc->pipe;
4399 enum transcoder transcoder = crtc->config.cpu_transcoder;
4400
4401 if (INTEL_INFO(dev)->gen >= 5) {
4402 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4403 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4404 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4405 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4406 } else {
4407 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4408 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4409 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4410 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4411 }
4412 }
4413
4414 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4415 {
4416 if (crtc->config.has_pch_encoder)
4417 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4418 else
4419 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4420 }
4421
4422 static void vlv_update_pll(struct intel_crtc *crtc)
4423 {
4424 struct drm_device *dev = crtc->base.dev;
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426 int pipe = crtc->pipe;
4427 u32 dpll, mdiv;
4428 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4429 u32 coreclk, reg_val, dpll_md;
4430
4431 mutex_lock(&dev_priv->dpio_lock);
4432
4433 bestn = crtc->config.dpll.n;
4434 bestm1 = crtc->config.dpll.m1;
4435 bestm2 = crtc->config.dpll.m2;
4436 bestp1 = crtc->config.dpll.p1;
4437 bestp2 = crtc->config.dpll.p2;
4438
4439 /* See eDP HDMI DPIO driver vbios notes doc */
4440
4441 /* PLL B needs special handling */
4442 if (pipe)
4443 vlv_pllb_recal_opamp(dev_priv);
4444
4445 /* Set up Tx target for periodic Rcomp update */
4446 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4447
4448 /* Disable target IRef on PLL */
4449 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4450 reg_val &= 0x00ffffff;
4451 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4452
4453 /* Disable fast lock */
4454 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4455
4456 /* Set idtafcrecal before PLL is enabled */
4457 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4458 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4459 mdiv |= ((bestn << DPIO_N_SHIFT));
4460 mdiv |= (1 << DPIO_K_SHIFT);
4461
4462 /*
4463 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4464 * but we don't support that).
4465 * Note: don't use the DAC post divider as it seems unstable.
4466 */
4467 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4468 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4469
4470 mdiv |= DPIO_ENABLE_CALIBRATION;
4471 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4472
4473 /* Set HBR and RBR LPF coefficients */
4474 if (crtc->config.port_clock == 162000 ||
4475 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4476 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4477 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4478 0x009f0003);
4479 else
4480 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4481 0x00d0000f);
4482
4483 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4484 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4485 /* Use SSC source */
4486 if (!pipe)
4487 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4488 0x0df40000);
4489 else
4490 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4491 0x0df70000);
4492 } else { /* HDMI or VGA */
4493 /* Use bend source */
4494 if (!pipe)
4495 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4496 0x0df70000);
4497 else
4498 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4499 0x0df40000);
4500 }
4501
4502 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4503 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4504 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4505 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4506 coreclk |= 0x01000000;
4507 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4508
4509 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4510
4511 /* Enable DPIO clock input */
4512 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4513 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4514 if (pipe)
4515 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4516
4517 dpll |= DPLL_VCO_ENABLE;
4518 crtc->config.dpll_hw_state.dpll = dpll;
4519
4520 dpll_md = (crtc->config.pixel_multiplier - 1)
4521 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4522 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4523
4524 if (crtc->config.has_dp_encoder)
4525 intel_dp_set_m_n(crtc);
4526
4527 mutex_unlock(&dev_priv->dpio_lock);
4528 }
4529
4530 static void i9xx_update_pll(struct intel_crtc *crtc,
4531 intel_clock_t *reduced_clock,
4532 int num_connectors)
4533 {
4534 struct drm_device *dev = crtc->base.dev;
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 u32 dpll;
4537 bool is_sdvo;
4538 struct dpll *clock = &crtc->config.dpll;
4539
4540 i9xx_update_pll_dividers(crtc, reduced_clock);
4541
4542 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4543 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4544
4545 dpll = DPLL_VGA_MODE_DIS;
4546
4547 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4548 dpll |= DPLLB_MODE_LVDS;
4549 else
4550 dpll |= DPLLB_MODE_DAC_SERIAL;
4551
4552 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4553 dpll |= (crtc->config.pixel_multiplier - 1)
4554 << SDVO_MULTIPLIER_SHIFT_HIRES;
4555 }
4556
4557 if (is_sdvo)
4558 dpll |= DPLL_SDVO_HIGH_SPEED;
4559
4560 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4561 dpll |= DPLL_SDVO_HIGH_SPEED;
4562
4563 /* compute bitmask from p1 value */
4564 if (IS_PINEVIEW(dev))
4565 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4566 else {
4567 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4568 if (IS_G4X(dev) && reduced_clock)
4569 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4570 }
4571 switch (clock->p2) {
4572 case 5:
4573 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4574 break;
4575 case 7:
4576 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4577 break;
4578 case 10:
4579 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4580 break;
4581 case 14:
4582 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4583 break;
4584 }
4585 if (INTEL_INFO(dev)->gen >= 4)
4586 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4587
4588 if (crtc->config.sdvo_tv_clock)
4589 dpll |= PLL_REF_INPUT_TVCLKINBC;
4590 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4591 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4593 else
4594 dpll |= PLL_REF_INPUT_DREFCLK;
4595
4596 dpll |= DPLL_VCO_ENABLE;
4597 crtc->config.dpll_hw_state.dpll = dpll;
4598
4599 if (INTEL_INFO(dev)->gen >= 4) {
4600 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4601 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4602 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4603 }
4604
4605 if (crtc->config.has_dp_encoder)
4606 intel_dp_set_m_n(crtc);
4607 }
4608
4609 static void i8xx_update_pll(struct intel_crtc *crtc,
4610 intel_clock_t *reduced_clock,
4611 int num_connectors)
4612 {
4613 struct drm_device *dev = crtc->base.dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 u32 dpll;
4616 struct dpll *clock = &crtc->config.dpll;
4617
4618 i9xx_update_pll_dividers(crtc, reduced_clock);
4619
4620 dpll = DPLL_VGA_MODE_DIS;
4621
4622 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4623 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4624 } else {
4625 if (clock->p1 == 2)
4626 dpll |= PLL_P1_DIVIDE_BY_TWO;
4627 else
4628 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4629 if (clock->p2 == 4)
4630 dpll |= PLL_P2_DIVIDE_BY_4;
4631 }
4632
4633 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4634 dpll |= DPLL_DVO_2X_MODE;
4635
4636 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4637 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639 else
4640 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642 dpll |= DPLL_VCO_ENABLE;
4643 crtc->config.dpll_hw_state.dpll = dpll;
4644 }
4645
4646 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4647 {
4648 struct drm_device *dev = intel_crtc->base.dev;
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650 enum pipe pipe = intel_crtc->pipe;
4651 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4652 struct drm_display_mode *adjusted_mode =
4653 &intel_crtc->config.adjusted_mode;
4654 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4655 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4656
4657 /* We need to be careful not to changed the adjusted mode, for otherwise
4658 * the hw state checker will get angry at the mismatch. */
4659 crtc_vtotal = adjusted_mode->crtc_vtotal;
4660 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4661
4662 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4663 /* the chip adds 2 halflines automatically */
4664 crtc_vtotal -= 1;
4665 crtc_vblank_end -= 1;
4666 vsyncshift = adjusted_mode->crtc_hsync_start
4667 - adjusted_mode->crtc_htotal / 2;
4668 } else {
4669 vsyncshift = 0;
4670 }
4671
4672 if (INTEL_INFO(dev)->gen > 3)
4673 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4674
4675 I915_WRITE(HTOTAL(cpu_transcoder),
4676 (adjusted_mode->crtc_hdisplay - 1) |
4677 ((adjusted_mode->crtc_htotal - 1) << 16));
4678 I915_WRITE(HBLANK(cpu_transcoder),
4679 (adjusted_mode->crtc_hblank_start - 1) |
4680 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4681 I915_WRITE(HSYNC(cpu_transcoder),
4682 (adjusted_mode->crtc_hsync_start - 1) |
4683 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4684
4685 I915_WRITE(VTOTAL(cpu_transcoder),
4686 (adjusted_mode->crtc_vdisplay - 1) |
4687 ((crtc_vtotal - 1) << 16));
4688 I915_WRITE(VBLANK(cpu_transcoder),
4689 (adjusted_mode->crtc_vblank_start - 1) |
4690 ((crtc_vblank_end - 1) << 16));
4691 I915_WRITE(VSYNC(cpu_transcoder),
4692 (adjusted_mode->crtc_vsync_start - 1) |
4693 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4694
4695 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4696 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4697 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4698 * bits. */
4699 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4700 (pipe == PIPE_B || pipe == PIPE_C))
4701 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4702
4703 /* pipesrc controls the size that is scaled from, which should
4704 * always be the user's requested size.
4705 */
4706 I915_WRITE(PIPESRC(pipe),
4707 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4708 }
4709
4710 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4711 struct intel_crtc_config *pipe_config)
4712 {
4713 struct drm_device *dev = crtc->base.dev;
4714 struct drm_i915_private *dev_priv = dev->dev_private;
4715 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4716 uint32_t tmp;
4717
4718 tmp = I915_READ(HTOTAL(cpu_transcoder));
4719 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4720 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4721 tmp = I915_READ(HBLANK(cpu_transcoder));
4722 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4723 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4724 tmp = I915_READ(HSYNC(cpu_transcoder));
4725 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4726 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4727
4728 tmp = I915_READ(VTOTAL(cpu_transcoder));
4729 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4730 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4731 tmp = I915_READ(VBLANK(cpu_transcoder));
4732 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4733 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4734 tmp = I915_READ(VSYNC(cpu_transcoder));
4735 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4736 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4737
4738 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4739 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4740 pipe_config->adjusted_mode.crtc_vtotal += 1;
4741 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4742 }
4743
4744 tmp = I915_READ(PIPESRC(crtc->pipe));
4745 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4746 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4747 }
4748
4749 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4750 struct intel_crtc_config *pipe_config)
4751 {
4752 struct drm_crtc *crtc = &intel_crtc->base;
4753
4754 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4755 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4756 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4757 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4758
4759 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4760 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4761 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4762 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4763
4764 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4765
4766 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4767 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4768 }
4769
4770 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4771 {
4772 struct drm_device *dev = intel_crtc->base.dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 uint32_t pipeconf;
4775
4776 pipeconf = 0;
4777
4778 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4779 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4780 pipeconf |= PIPECONF_ENABLE;
4781
4782 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4783 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4784 * core speed.
4785 *
4786 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4787 * pipe == 0 check?
4788 */
4789 if (intel_crtc->config.requested_mode.clock >
4790 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4791 pipeconf |= PIPECONF_DOUBLE_WIDE;
4792 }
4793
4794 /* only g4x and later have fancy bpc/dither controls */
4795 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4796 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4797 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4798 pipeconf |= PIPECONF_DITHER_EN |
4799 PIPECONF_DITHER_TYPE_SP;
4800
4801 switch (intel_crtc->config.pipe_bpp) {
4802 case 18:
4803 pipeconf |= PIPECONF_6BPC;
4804 break;
4805 case 24:
4806 pipeconf |= PIPECONF_8BPC;
4807 break;
4808 case 30:
4809 pipeconf |= PIPECONF_10BPC;
4810 break;
4811 default:
4812 /* Case prevented by intel_choose_pipe_bpp_dither. */
4813 BUG();
4814 }
4815 }
4816
4817 if (HAS_PIPE_CXSR(dev)) {
4818 if (intel_crtc->lowfreq_avail) {
4819 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4820 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4821 } else {
4822 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4823 }
4824 }
4825
4826 if (!IS_GEN2(dev) &&
4827 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4828 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4829 else
4830 pipeconf |= PIPECONF_PROGRESSIVE;
4831
4832 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4833 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4834
4835 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4836 POSTING_READ(PIPECONF(intel_crtc->pipe));
4837 }
4838
4839 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4840 int x, int y,
4841 struct drm_framebuffer *fb)
4842 {
4843 struct drm_device *dev = crtc->dev;
4844 struct drm_i915_private *dev_priv = dev->dev_private;
4845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4846 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4847 int pipe = intel_crtc->pipe;
4848 int plane = intel_crtc->plane;
4849 int refclk, num_connectors = 0;
4850 intel_clock_t clock, reduced_clock;
4851 u32 dspcntr;
4852 bool ok, has_reduced_clock = false;
4853 bool is_lvds = false;
4854 struct intel_encoder *encoder;
4855 const intel_limit_t *limit;
4856 int ret;
4857
4858 for_each_encoder_on_crtc(dev, crtc, encoder) {
4859 switch (encoder->type) {
4860 case INTEL_OUTPUT_LVDS:
4861 is_lvds = true;
4862 break;
4863 }
4864
4865 num_connectors++;
4866 }
4867
4868 refclk = i9xx_get_refclk(crtc, num_connectors);
4869
4870 /*
4871 * Returns a set of divisors for the desired target clock with the given
4872 * refclk, or FALSE. The returned values represent the clock equation:
4873 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4874 */
4875 limit = intel_limit(crtc, refclk);
4876 ok = dev_priv->display.find_dpll(limit, crtc,
4877 intel_crtc->config.port_clock,
4878 refclk, NULL, &clock);
4879 if (!ok && !intel_crtc->config.clock_set) {
4880 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4881 return -EINVAL;
4882 }
4883
4884 if (is_lvds && dev_priv->lvds_downclock_avail) {
4885 /*
4886 * Ensure we match the reduced clock's P to the target clock.
4887 * If the clocks don't match, we can't switch the display clock
4888 * by using the FP0/FP1. In such case we will disable the LVDS
4889 * downclock feature.
4890 */
4891 has_reduced_clock =
4892 dev_priv->display.find_dpll(limit, crtc,
4893 dev_priv->lvds_downclock,
4894 refclk, &clock,
4895 &reduced_clock);
4896 }
4897 /* Compat-code for transition, will disappear. */
4898 if (!intel_crtc->config.clock_set) {
4899 intel_crtc->config.dpll.n = clock.n;
4900 intel_crtc->config.dpll.m1 = clock.m1;
4901 intel_crtc->config.dpll.m2 = clock.m2;
4902 intel_crtc->config.dpll.p1 = clock.p1;
4903 intel_crtc->config.dpll.p2 = clock.p2;
4904 }
4905
4906 if (IS_GEN2(dev))
4907 i8xx_update_pll(intel_crtc,
4908 has_reduced_clock ? &reduced_clock : NULL,
4909 num_connectors);
4910 else if (IS_VALLEYVIEW(dev))
4911 vlv_update_pll(intel_crtc);
4912 else
4913 i9xx_update_pll(intel_crtc,
4914 has_reduced_clock ? &reduced_clock : NULL,
4915 num_connectors);
4916
4917 /* Set up the display plane register */
4918 dspcntr = DISPPLANE_GAMMA_ENABLE;
4919
4920 if (!IS_VALLEYVIEW(dev)) {
4921 if (pipe == 0)
4922 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4923 else
4924 dspcntr |= DISPPLANE_SEL_PIPE_B;
4925 }
4926
4927 intel_set_pipe_timings(intel_crtc);
4928
4929 /* pipesrc and dspsize control the size that is scaled from,
4930 * which should always be the user's requested size.
4931 */
4932 I915_WRITE(DSPSIZE(plane),
4933 ((mode->vdisplay - 1) << 16) |
4934 (mode->hdisplay - 1));
4935 I915_WRITE(DSPPOS(plane), 0);
4936
4937 i9xx_set_pipeconf(intel_crtc);
4938
4939 I915_WRITE(DSPCNTR(plane), dspcntr);
4940 POSTING_READ(DSPCNTR(plane));
4941
4942 ret = intel_pipe_set_base(crtc, x, y, fb);
4943
4944 intel_update_watermarks(dev);
4945
4946 return ret;
4947 }
4948
4949 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4950 struct intel_crtc_config *pipe_config)
4951 {
4952 struct drm_device *dev = crtc->base.dev;
4953 struct drm_i915_private *dev_priv = dev->dev_private;
4954 uint32_t tmp;
4955
4956 tmp = I915_READ(PFIT_CONTROL);
4957 if (!(tmp & PFIT_ENABLE))
4958 return;
4959
4960 /* Check whether the pfit is attached to our pipe. */
4961 if (INTEL_INFO(dev)->gen < 4) {
4962 if (crtc->pipe != PIPE_B)
4963 return;
4964 } else {
4965 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4966 return;
4967 }
4968
4969 pipe_config->gmch_pfit.control = tmp;
4970 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4971 if (INTEL_INFO(dev)->gen < 5)
4972 pipe_config->gmch_pfit.lvds_border_bits =
4973 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4974 }
4975
4976 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4977 struct intel_crtc_config *pipe_config)
4978 {
4979 struct drm_device *dev = crtc->base.dev;
4980 struct drm_i915_private *dev_priv = dev->dev_private;
4981 uint32_t tmp;
4982
4983 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4984 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4985
4986 tmp = I915_READ(PIPECONF(crtc->pipe));
4987 if (!(tmp & PIPECONF_ENABLE))
4988 return false;
4989
4990 intel_get_pipe_timings(crtc, pipe_config);
4991
4992 i9xx_get_pfit_config(crtc, pipe_config);
4993
4994 if (INTEL_INFO(dev)->gen >= 4) {
4995 tmp = I915_READ(DPLL_MD(crtc->pipe));
4996 pipe_config->pixel_multiplier =
4997 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4998 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4999 pipe_config->dpll_hw_state.dpll_md = tmp;
5000 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5001 tmp = I915_READ(DPLL(crtc->pipe));
5002 pipe_config->pixel_multiplier =
5003 ((tmp & SDVO_MULTIPLIER_MASK)
5004 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5005 } else {
5006 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5007 * port and will be fixed up in the encoder->get_config
5008 * function. */
5009 pipe_config->pixel_multiplier = 1;
5010 }
5011 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5012 if (!IS_VALLEYVIEW(dev)) {
5013 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5014 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5015 } else {
5016 /* Mask out read-only status bits. */
5017 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5018 DPLL_PORTC_READY_MASK |
5019 DPLL_PORTB_READY_MASK);
5020 }
5021
5022 return true;
5023 }
5024
5025 static void ironlake_init_pch_refclk(struct drm_device *dev)
5026 {
5027 struct drm_i915_private *dev_priv = dev->dev_private;
5028 struct drm_mode_config *mode_config = &dev->mode_config;
5029 struct intel_encoder *encoder;
5030 u32 val, final;
5031 bool has_lvds = false;
5032 bool has_cpu_edp = false;
5033 bool has_panel = false;
5034 bool has_ck505 = false;
5035 bool can_ssc = false;
5036
5037 /* We need to take the global config into account */
5038 list_for_each_entry(encoder, &mode_config->encoder_list,
5039 base.head) {
5040 switch (encoder->type) {
5041 case INTEL_OUTPUT_LVDS:
5042 has_panel = true;
5043 has_lvds = true;
5044 break;
5045 case INTEL_OUTPUT_EDP:
5046 has_panel = true;
5047 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5048 has_cpu_edp = true;
5049 break;
5050 }
5051 }
5052
5053 if (HAS_PCH_IBX(dev)) {
5054 has_ck505 = dev_priv->vbt.display_clock_mode;
5055 can_ssc = has_ck505;
5056 } else {
5057 has_ck505 = false;
5058 can_ssc = true;
5059 }
5060
5061 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5062 has_panel, has_lvds, has_ck505);
5063
5064 /* Ironlake: try to setup display ref clock before DPLL
5065 * enabling. This is only under driver's control after
5066 * PCH B stepping, previous chipset stepping should be
5067 * ignoring this setting.
5068 */
5069 val = I915_READ(PCH_DREF_CONTROL);
5070
5071 /* As we must carefully and slowly disable/enable each source in turn,
5072 * compute the final state we want first and check if we need to
5073 * make any changes at all.
5074 */
5075 final = val;
5076 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5077 if (has_ck505)
5078 final |= DREF_NONSPREAD_CK505_ENABLE;
5079 else
5080 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5081
5082 final &= ~DREF_SSC_SOURCE_MASK;
5083 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5084 final &= ~DREF_SSC1_ENABLE;
5085
5086 if (has_panel) {
5087 final |= DREF_SSC_SOURCE_ENABLE;
5088
5089 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5090 final |= DREF_SSC1_ENABLE;
5091
5092 if (has_cpu_edp) {
5093 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5094 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5095 else
5096 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5097 } else
5098 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5099 } else {
5100 final |= DREF_SSC_SOURCE_DISABLE;
5101 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5102 }
5103
5104 if (final == val)
5105 return;
5106
5107 /* Always enable nonspread source */
5108 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5109
5110 if (has_ck505)
5111 val |= DREF_NONSPREAD_CK505_ENABLE;
5112 else
5113 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5114
5115 if (has_panel) {
5116 val &= ~DREF_SSC_SOURCE_MASK;
5117 val |= DREF_SSC_SOURCE_ENABLE;
5118
5119 /* SSC must be turned on before enabling the CPU output */
5120 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5121 DRM_DEBUG_KMS("Using SSC on panel\n");
5122 val |= DREF_SSC1_ENABLE;
5123 } else
5124 val &= ~DREF_SSC1_ENABLE;
5125
5126 /* Get SSC going before enabling the outputs */
5127 I915_WRITE(PCH_DREF_CONTROL, val);
5128 POSTING_READ(PCH_DREF_CONTROL);
5129 udelay(200);
5130
5131 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5132
5133 /* Enable CPU source on CPU attached eDP */
5134 if (has_cpu_edp) {
5135 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5136 DRM_DEBUG_KMS("Using SSC on eDP\n");
5137 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5138 }
5139 else
5140 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5141 } else
5142 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5143
5144 I915_WRITE(PCH_DREF_CONTROL, val);
5145 POSTING_READ(PCH_DREF_CONTROL);
5146 udelay(200);
5147 } else {
5148 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5149
5150 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5151
5152 /* Turn off CPU output */
5153 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5154
5155 I915_WRITE(PCH_DREF_CONTROL, val);
5156 POSTING_READ(PCH_DREF_CONTROL);
5157 udelay(200);
5158
5159 /* Turn off the SSC source */
5160 val &= ~DREF_SSC_SOURCE_MASK;
5161 val |= DREF_SSC_SOURCE_DISABLE;
5162
5163 /* Turn off SSC1 */
5164 val &= ~DREF_SSC1_ENABLE;
5165
5166 I915_WRITE(PCH_DREF_CONTROL, val);
5167 POSTING_READ(PCH_DREF_CONTROL);
5168 udelay(200);
5169 }
5170
5171 BUG_ON(val != final);
5172 }
5173
5174 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5175 {
5176 uint32_t tmp;
5177
5178 tmp = I915_READ(SOUTH_CHICKEN2);
5179 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5180 I915_WRITE(SOUTH_CHICKEN2, tmp);
5181
5182 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5183 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5184 DRM_ERROR("FDI mPHY reset assert timeout\n");
5185
5186 tmp = I915_READ(SOUTH_CHICKEN2);
5187 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5188 I915_WRITE(SOUTH_CHICKEN2, tmp);
5189
5190 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5191 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5192 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5193 }
5194
5195 /* WaMPhyProgramming:hsw */
5196 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5197 {
5198 uint32_t tmp;
5199
5200 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5201 tmp &= ~(0xFF << 24);
5202 tmp |= (0x12 << 24);
5203 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5204
5205 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5206 tmp |= (1 << 11);
5207 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5208
5209 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5210 tmp |= (1 << 11);
5211 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5212
5213 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5214 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5215 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5216
5217 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5218 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5219 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5220
5221 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5222 tmp &= ~(7 << 13);
5223 tmp |= (5 << 13);
5224 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5225
5226 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5227 tmp &= ~(7 << 13);
5228 tmp |= (5 << 13);
5229 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5230
5231 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5232 tmp &= ~0xFF;
5233 tmp |= 0x1C;
5234 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5235
5236 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5237 tmp &= ~0xFF;
5238 tmp |= 0x1C;
5239 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5240
5241 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5242 tmp &= ~(0xFF << 16);
5243 tmp |= (0x1C << 16);
5244 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5245
5246 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5247 tmp &= ~(0xFF << 16);
5248 tmp |= (0x1C << 16);
5249 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5250
5251 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5252 tmp |= (1 << 27);
5253 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5254
5255 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5256 tmp |= (1 << 27);
5257 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5258
5259 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5260 tmp &= ~(0xF << 28);
5261 tmp |= (4 << 28);
5262 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5263
5264 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5265 tmp &= ~(0xF << 28);
5266 tmp |= (4 << 28);
5267 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5268 }
5269
5270 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5271 * Programming" based on the parameters passed:
5272 * - Sequence to enable CLKOUT_DP
5273 * - Sequence to enable CLKOUT_DP without spread
5274 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5275 */
5276 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5277 bool with_fdi)
5278 {
5279 struct drm_i915_private *dev_priv = dev->dev_private;
5280 uint32_t reg, tmp;
5281
5282 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5283 with_spread = true;
5284 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5285 with_fdi, "LP PCH doesn't have FDI\n"))
5286 with_fdi = false;
5287
5288 mutex_lock(&dev_priv->dpio_lock);
5289
5290 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5291 tmp &= ~SBI_SSCCTL_DISABLE;
5292 tmp |= SBI_SSCCTL_PATHALT;
5293 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5294
5295 udelay(24);
5296
5297 if (with_spread) {
5298 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5299 tmp &= ~SBI_SSCCTL_PATHALT;
5300 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5301
5302 if (with_fdi) {
5303 lpt_reset_fdi_mphy(dev_priv);
5304 lpt_program_fdi_mphy(dev_priv);
5305 }
5306 }
5307
5308 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5309 SBI_GEN0 : SBI_DBUFF0;
5310 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5311 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5312 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5313
5314 mutex_unlock(&dev_priv->dpio_lock);
5315 }
5316
5317 /* Sequence to disable CLKOUT_DP */
5318 static void lpt_disable_clkout_dp(struct drm_device *dev)
5319 {
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 uint32_t reg, tmp;
5322
5323 mutex_lock(&dev_priv->dpio_lock);
5324
5325 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5326 SBI_GEN0 : SBI_DBUFF0;
5327 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5328 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5329 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5330
5331 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5332 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5333 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5334 tmp |= SBI_SSCCTL_PATHALT;
5335 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5336 udelay(32);
5337 }
5338 tmp |= SBI_SSCCTL_DISABLE;
5339 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5340 }
5341
5342 mutex_unlock(&dev_priv->dpio_lock);
5343 }
5344
5345 static void lpt_init_pch_refclk(struct drm_device *dev)
5346 {
5347 struct drm_mode_config *mode_config = &dev->mode_config;
5348 struct intel_encoder *encoder;
5349 bool has_vga = false;
5350
5351 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5352 switch (encoder->type) {
5353 case INTEL_OUTPUT_ANALOG:
5354 has_vga = true;
5355 break;
5356 }
5357 }
5358
5359 if (has_vga)
5360 lpt_enable_clkout_dp(dev, true, true);
5361 else
5362 lpt_disable_clkout_dp(dev);
5363 }
5364
5365 /*
5366 * Initialize reference clocks when the driver loads
5367 */
5368 void intel_init_pch_refclk(struct drm_device *dev)
5369 {
5370 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5371 ironlake_init_pch_refclk(dev);
5372 else if (HAS_PCH_LPT(dev))
5373 lpt_init_pch_refclk(dev);
5374 }
5375
5376 static int ironlake_get_refclk(struct drm_crtc *crtc)
5377 {
5378 struct drm_device *dev = crtc->dev;
5379 struct drm_i915_private *dev_priv = dev->dev_private;
5380 struct intel_encoder *encoder;
5381 int num_connectors = 0;
5382 bool is_lvds = false;
5383
5384 for_each_encoder_on_crtc(dev, crtc, encoder) {
5385 switch (encoder->type) {
5386 case INTEL_OUTPUT_LVDS:
5387 is_lvds = true;
5388 break;
5389 }
5390 num_connectors++;
5391 }
5392
5393 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5394 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5395 dev_priv->vbt.lvds_ssc_freq);
5396 return dev_priv->vbt.lvds_ssc_freq * 1000;
5397 }
5398
5399 return 120000;
5400 }
5401
5402 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5403 {
5404 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5406 int pipe = intel_crtc->pipe;
5407 uint32_t val;
5408
5409 val = 0;
5410
5411 switch (intel_crtc->config.pipe_bpp) {
5412 case 18:
5413 val |= PIPECONF_6BPC;
5414 break;
5415 case 24:
5416 val |= PIPECONF_8BPC;
5417 break;
5418 case 30:
5419 val |= PIPECONF_10BPC;
5420 break;
5421 case 36:
5422 val |= PIPECONF_12BPC;
5423 break;
5424 default:
5425 /* Case prevented by intel_choose_pipe_bpp_dither. */
5426 BUG();
5427 }
5428
5429 if (intel_crtc->config.dither)
5430 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5431
5432 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5433 val |= PIPECONF_INTERLACED_ILK;
5434 else
5435 val |= PIPECONF_PROGRESSIVE;
5436
5437 if (intel_crtc->config.limited_color_range)
5438 val |= PIPECONF_COLOR_RANGE_SELECT;
5439
5440 I915_WRITE(PIPECONF(pipe), val);
5441 POSTING_READ(PIPECONF(pipe));
5442 }
5443
5444 /*
5445 * Set up the pipe CSC unit.
5446 *
5447 * Currently only full range RGB to limited range RGB conversion
5448 * is supported, but eventually this should handle various
5449 * RGB<->YCbCr scenarios as well.
5450 */
5451 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5452 {
5453 struct drm_device *dev = crtc->dev;
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5456 int pipe = intel_crtc->pipe;
5457 uint16_t coeff = 0x7800; /* 1.0 */
5458
5459 /*
5460 * TODO: Check what kind of values actually come out of the pipe
5461 * with these coeff/postoff values and adjust to get the best
5462 * accuracy. Perhaps we even need to take the bpc value into
5463 * consideration.
5464 */
5465
5466 if (intel_crtc->config.limited_color_range)
5467 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5468
5469 /*
5470 * GY/GU and RY/RU should be the other way around according
5471 * to BSpec, but reality doesn't agree. Just set them up in
5472 * a way that results in the correct picture.
5473 */
5474 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5475 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5476
5477 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5478 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5479
5480 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5481 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5482
5483 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5484 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5485 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5486
5487 if (INTEL_INFO(dev)->gen > 6) {
5488 uint16_t postoff = 0;
5489
5490 if (intel_crtc->config.limited_color_range)
5491 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5492
5493 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5494 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5495 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5496
5497 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5498 } else {
5499 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5500
5501 if (intel_crtc->config.limited_color_range)
5502 mode |= CSC_BLACK_SCREEN_OFFSET;
5503
5504 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5505 }
5506 }
5507
5508 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5509 {
5510 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5512 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5513 uint32_t val;
5514
5515 val = 0;
5516
5517 if (intel_crtc->config.dither)
5518 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5519
5520 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5521 val |= PIPECONF_INTERLACED_ILK;
5522 else
5523 val |= PIPECONF_PROGRESSIVE;
5524
5525 I915_WRITE(PIPECONF(cpu_transcoder), val);
5526 POSTING_READ(PIPECONF(cpu_transcoder));
5527
5528 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5529 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5530 }
5531
5532 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5533 intel_clock_t *clock,
5534 bool *has_reduced_clock,
5535 intel_clock_t *reduced_clock)
5536 {
5537 struct drm_device *dev = crtc->dev;
5538 struct drm_i915_private *dev_priv = dev->dev_private;
5539 struct intel_encoder *intel_encoder;
5540 int refclk;
5541 const intel_limit_t *limit;
5542 bool ret, is_lvds = false;
5543
5544 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5545 switch (intel_encoder->type) {
5546 case INTEL_OUTPUT_LVDS:
5547 is_lvds = true;
5548 break;
5549 }
5550 }
5551
5552 refclk = ironlake_get_refclk(crtc);
5553
5554 /*
5555 * Returns a set of divisors for the desired target clock with the given
5556 * refclk, or FALSE. The returned values represent the clock equation:
5557 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5558 */
5559 limit = intel_limit(crtc, refclk);
5560 ret = dev_priv->display.find_dpll(limit, crtc,
5561 to_intel_crtc(crtc)->config.port_clock,
5562 refclk, NULL, clock);
5563 if (!ret)
5564 return false;
5565
5566 if (is_lvds && dev_priv->lvds_downclock_avail) {
5567 /*
5568 * Ensure we match the reduced clock's P to the target clock.
5569 * If the clocks don't match, we can't switch the display clock
5570 * by using the FP0/FP1. In such case we will disable the LVDS
5571 * downclock feature.
5572 */
5573 *has_reduced_clock =
5574 dev_priv->display.find_dpll(limit, crtc,
5575 dev_priv->lvds_downclock,
5576 refclk, clock,
5577 reduced_clock);
5578 }
5579
5580 return true;
5581 }
5582
5583 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5584 {
5585 struct drm_i915_private *dev_priv = dev->dev_private;
5586 uint32_t temp;
5587
5588 temp = I915_READ(SOUTH_CHICKEN1);
5589 if (temp & FDI_BC_BIFURCATION_SELECT)
5590 return;
5591
5592 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5593 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5594
5595 temp |= FDI_BC_BIFURCATION_SELECT;
5596 DRM_DEBUG_KMS("enabling fdi C rx\n");
5597 I915_WRITE(SOUTH_CHICKEN1, temp);
5598 POSTING_READ(SOUTH_CHICKEN1);
5599 }
5600
5601 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5602 {
5603 struct drm_device *dev = intel_crtc->base.dev;
5604 struct drm_i915_private *dev_priv = dev->dev_private;
5605
5606 switch (intel_crtc->pipe) {
5607 case PIPE_A:
5608 break;
5609 case PIPE_B:
5610 if (intel_crtc->config.fdi_lanes > 2)
5611 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5612 else
5613 cpt_enable_fdi_bc_bifurcation(dev);
5614
5615 break;
5616 case PIPE_C:
5617 cpt_enable_fdi_bc_bifurcation(dev);
5618
5619 break;
5620 default:
5621 BUG();
5622 }
5623 }
5624
5625 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5626 {
5627 /*
5628 * Account for spread spectrum to avoid
5629 * oversubscribing the link. Max center spread
5630 * is 2.5%; use 5% for safety's sake.
5631 */
5632 u32 bps = target_clock * bpp * 21 / 20;
5633 return bps / (link_bw * 8) + 1;
5634 }
5635
5636 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5637 {
5638 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5639 }
5640
5641 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5642 u32 *fp,
5643 intel_clock_t *reduced_clock, u32 *fp2)
5644 {
5645 struct drm_crtc *crtc = &intel_crtc->base;
5646 struct drm_device *dev = crtc->dev;
5647 struct drm_i915_private *dev_priv = dev->dev_private;
5648 struct intel_encoder *intel_encoder;
5649 uint32_t dpll;
5650 int factor, num_connectors = 0;
5651 bool is_lvds = false, is_sdvo = false;
5652
5653 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5654 switch (intel_encoder->type) {
5655 case INTEL_OUTPUT_LVDS:
5656 is_lvds = true;
5657 break;
5658 case INTEL_OUTPUT_SDVO:
5659 case INTEL_OUTPUT_HDMI:
5660 is_sdvo = true;
5661 break;
5662 }
5663
5664 num_connectors++;
5665 }
5666
5667 /* Enable autotuning of the PLL clock (if permissible) */
5668 factor = 21;
5669 if (is_lvds) {
5670 if ((intel_panel_use_ssc(dev_priv) &&
5671 dev_priv->vbt.lvds_ssc_freq == 100) ||
5672 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5673 factor = 25;
5674 } else if (intel_crtc->config.sdvo_tv_clock)
5675 factor = 20;
5676
5677 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5678 *fp |= FP_CB_TUNE;
5679
5680 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5681 *fp2 |= FP_CB_TUNE;
5682
5683 dpll = 0;
5684
5685 if (is_lvds)
5686 dpll |= DPLLB_MODE_LVDS;
5687 else
5688 dpll |= DPLLB_MODE_DAC_SERIAL;
5689
5690 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5691 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5692
5693 if (is_sdvo)
5694 dpll |= DPLL_SDVO_HIGH_SPEED;
5695 if (intel_crtc->config.has_dp_encoder)
5696 dpll |= DPLL_SDVO_HIGH_SPEED;
5697
5698 /* compute bitmask from p1 value */
5699 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5700 /* also FPA1 */
5701 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5702
5703 switch (intel_crtc->config.dpll.p2) {
5704 case 5:
5705 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5706 break;
5707 case 7:
5708 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5709 break;
5710 case 10:
5711 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5712 break;
5713 case 14:
5714 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5715 break;
5716 }
5717
5718 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5719 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5720 else
5721 dpll |= PLL_REF_INPUT_DREFCLK;
5722
5723 return dpll | DPLL_VCO_ENABLE;
5724 }
5725
5726 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5727 int x, int y,
5728 struct drm_framebuffer *fb)
5729 {
5730 struct drm_device *dev = crtc->dev;
5731 struct drm_i915_private *dev_priv = dev->dev_private;
5732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5733 int pipe = intel_crtc->pipe;
5734 int plane = intel_crtc->plane;
5735 int num_connectors = 0;
5736 intel_clock_t clock, reduced_clock;
5737 u32 dpll = 0, fp = 0, fp2 = 0;
5738 bool ok, has_reduced_clock = false;
5739 bool is_lvds = false;
5740 struct intel_encoder *encoder;
5741 struct intel_shared_dpll *pll;
5742 int ret;
5743
5744 for_each_encoder_on_crtc(dev, crtc, encoder) {
5745 switch (encoder->type) {
5746 case INTEL_OUTPUT_LVDS:
5747 is_lvds = true;
5748 break;
5749 }
5750
5751 num_connectors++;
5752 }
5753
5754 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5755 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5756
5757 ok = ironlake_compute_clocks(crtc, &clock,
5758 &has_reduced_clock, &reduced_clock);
5759 if (!ok && !intel_crtc->config.clock_set) {
5760 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5761 return -EINVAL;
5762 }
5763 /* Compat-code for transition, will disappear. */
5764 if (!intel_crtc->config.clock_set) {
5765 intel_crtc->config.dpll.n = clock.n;
5766 intel_crtc->config.dpll.m1 = clock.m1;
5767 intel_crtc->config.dpll.m2 = clock.m2;
5768 intel_crtc->config.dpll.p1 = clock.p1;
5769 intel_crtc->config.dpll.p2 = clock.p2;
5770 }
5771
5772 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5773 if (intel_crtc->config.has_pch_encoder) {
5774 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5775 if (has_reduced_clock)
5776 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5777
5778 dpll = ironlake_compute_dpll(intel_crtc,
5779 &fp, &reduced_clock,
5780 has_reduced_clock ? &fp2 : NULL);
5781
5782 intel_crtc->config.dpll_hw_state.dpll = dpll;
5783 intel_crtc->config.dpll_hw_state.fp0 = fp;
5784 if (has_reduced_clock)
5785 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5786 else
5787 intel_crtc->config.dpll_hw_state.fp1 = fp;
5788
5789 pll = intel_get_shared_dpll(intel_crtc);
5790 if (pll == NULL) {
5791 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5792 pipe_name(pipe));
5793 return -EINVAL;
5794 }
5795 } else
5796 intel_put_shared_dpll(intel_crtc);
5797
5798 if (intel_crtc->config.has_dp_encoder)
5799 intel_dp_set_m_n(intel_crtc);
5800
5801 if (is_lvds && has_reduced_clock && i915_powersave)
5802 intel_crtc->lowfreq_avail = true;
5803 else
5804 intel_crtc->lowfreq_avail = false;
5805
5806 if (intel_crtc->config.has_pch_encoder) {
5807 pll = intel_crtc_to_shared_dpll(intel_crtc);
5808
5809 }
5810
5811 intel_set_pipe_timings(intel_crtc);
5812
5813 if (intel_crtc->config.has_pch_encoder) {
5814 intel_cpu_transcoder_set_m_n(intel_crtc,
5815 &intel_crtc->config.fdi_m_n);
5816 }
5817
5818 if (IS_IVYBRIDGE(dev))
5819 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5820
5821 ironlake_set_pipeconf(crtc);
5822
5823 /* Set up the display plane register */
5824 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5825 POSTING_READ(DSPCNTR(plane));
5826
5827 ret = intel_pipe_set_base(crtc, x, y, fb);
5828
5829 intel_update_watermarks(dev);
5830
5831 return ret;
5832 }
5833
5834 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5835 struct intel_crtc_config *pipe_config)
5836 {
5837 struct drm_device *dev = crtc->base.dev;
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 enum transcoder transcoder = pipe_config->cpu_transcoder;
5840
5841 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5842 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5843 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5844 & ~TU_SIZE_MASK;
5845 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5846 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5847 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5848 }
5849
5850 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5851 struct intel_crtc_config *pipe_config)
5852 {
5853 struct drm_device *dev = crtc->base.dev;
5854 struct drm_i915_private *dev_priv = dev->dev_private;
5855 uint32_t tmp;
5856
5857 tmp = I915_READ(PF_CTL(crtc->pipe));
5858
5859 if (tmp & PF_ENABLE) {
5860 pipe_config->pch_pfit.enabled = true;
5861 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5862 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5863
5864 /* We currently do not free assignements of panel fitters on
5865 * ivb/hsw (since we don't use the higher upscaling modes which
5866 * differentiates them) so just WARN about this case for now. */
5867 if (IS_GEN7(dev)) {
5868 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5869 PF_PIPE_SEL_IVB(crtc->pipe));
5870 }
5871 }
5872 }
5873
5874 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5875 struct intel_crtc_config *pipe_config)
5876 {
5877 struct drm_device *dev = crtc->base.dev;
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 uint32_t tmp;
5880
5881 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5882 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5883
5884 tmp = I915_READ(PIPECONF(crtc->pipe));
5885 if (!(tmp & PIPECONF_ENABLE))
5886 return false;
5887
5888 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5889 struct intel_shared_dpll *pll;
5890
5891 pipe_config->has_pch_encoder = true;
5892
5893 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5894 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5895 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5896
5897 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5898
5899 if (HAS_PCH_IBX(dev_priv->dev)) {
5900 pipe_config->shared_dpll =
5901 (enum intel_dpll_id) crtc->pipe;
5902 } else {
5903 tmp = I915_READ(PCH_DPLL_SEL);
5904 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5905 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5906 else
5907 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5908 }
5909
5910 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5911
5912 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5913 &pipe_config->dpll_hw_state));
5914
5915 tmp = pipe_config->dpll_hw_state.dpll;
5916 pipe_config->pixel_multiplier =
5917 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5918 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5919 } else {
5920 pipe_config->pixel_multiplier = 1;
5921 }
5922
5923 intel_get_pipe_timings(crtc, pipe_config);
5924
5925 ironlake_get_pfit_config(crtc, pipe_config);
5926
5927 return true;
5928 }
5929
5930 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5931 {
5932 struct drm_device *dev = dev_priv->dev;
5933 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5934 struct intel_crtc *crtc;
5935 unsigned long irqflags;
5936 uint32_t val;
5937
5938 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5939 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5940 pipe_name(crtc->pipe));
5941
5942 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5943 WARN(plls->spll_refcount, "SPLL enabled\n");
5944 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5945 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5946 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5947 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5948 "CPU PWM1 enabled\n");
5949 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5950 "CPU PWM2 enabled\n");
5951 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5952 "PCH PWM1 enabled\n");
5953 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5954 "Utility pin enabled\n");
5955 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5956
5957 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5958 val = I915_READ(DEIMR);
5959 WARN((val & ~DE_PCH_EVENT_IVB) != val,
5960 "Unexpected DEIMR bits enabled: 0x%x\n", val);
5961 val = I915_READ(SDEIMR);
5962 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5963 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5964 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5965 }
5966
5967 /*
5968 * This function implements pieces of two sequences from BSpec:
5969 * - Sequence for display software to disable LCPLL
5970 * - Sequence for display software to allow package C8+
5971 * The steps implemented here are just the steps that actually touch the LCPLL
5972 * register. Callers should take care of disabling all the display engine
5973 * functions, doing the mode unset, fixing interrupts, etc.
5974 */
5975 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5976 bool switch_to_fclk, bool allow_power_down)
5977 {
5978 uint32_t val;
5979
5980 assert_can_disable_lcpll(dev_priv);
5981
5982 val = I915_READ(LCPLL_CTL);
5983
5984 if (switch_to_fclk) {
5985 val |= LCPLL_CD_SOURCE_FCLK;
5986 I915_WRITE(LCPLL_CTL, val);
5987
5988 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5989 LCPLL_CD_SOURCE_FCLK_DONE, 1))
5990 DRM_ERROR("Switching to FCLK failed\n");
5991
5992 val = I915_READ(LCPLL_CTL);
5993 }
5994
5995 val |= LCPLL_PLL_DISABLE;
5996 I915_WRITE(LCPLL_CTL, val);
5997 POSTING_READ(LCPLL_CTL);
5998
5999 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6000 DRM_ERROR("LCPLL still locked\n");
6001
6002 val = I915_READ(D_COMP);
6003 val |= D_COMP_COMP_DISABLE;
6004 I915_WRITE(D_COMP, val);
6005 POSTING_READ(D_COMP);
6006 ndelay(100);
6007
6008 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6009 DRM_ERROR("D_COMP RCOMP still in progress\n");
6010
6011 if (allow_power_down) {
6012 val = I915_READ(LCPLL_CTL);
6013 val |= LCPLL_POWER_DOWN_ALLOW;
6014 I915_WRITE(LCPLL_CTL, val);
6015 POSTING_READ(LCPLL_CTL);
6016 }
6017 }
6018
6019 /*
6020 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6021 * source.
6022 */
6023 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6024 {
6025 uint32_t val;
6026
6027 val = I915_READ(LCPLL_CTL);
6028
6029 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6030 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6031 return;
6032
6033 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6034 * we'll hang the machine! */
6035 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6036
6037 if (val & LCPLL_POWER_DOWN_ALLOW) {
6038 val &= ~LCPLL_POWER_DOWN_ALLOW;
6039 I915_WRITE(LCPLL_CTL, val);
6040 POSTING_READ(LCPLL_CTL);
6041 }
6042
6043 val = I915_READ(D_COMP);
6044 val |= D_COMP_COMP_FORCE;
6045 val &= ~D_COMP_COMP_DISABLE;
6046 I915_WRITE(D_COMP, val);
6047 POSTING_READ(D_COMP);
6048
6049 val = I915_READ(LCPLL_CTL);
6050 val &= ~LCPLL_PLL_DISABLE;
6051 I915_WRITE(LCPLL_CTL, val);
6052
6053 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6054 DRM_ERROR("LCPLL not locked yet\n");
6055
6056 if (val & LCPLL_CD_SOURCE_FCLK) {
6057 val = I915_READ(LCPLL_CTL);
6058 val &= ~LCPLL_CD_SOURCE_FCLK;
6059 I915_WRITE(LCPLL_CTL, val);
6060
6061 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6062 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6063 DRM_ERROR("Switching back to LCPLL failed\n");
6064 }
6065
6066 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6067 }
6068
6069 void hsw_enable_pc8_work(struct work_struct *__work)
6070 {
6071 struct drm_i915_private *dev_priv =
6072 container_of(to_delayed_work(__work), struct drm_i915_private,
6073 pc8.enable_work);
6074 struct drm_device *dev = dev_priv->dev;
6075 uint32_t val;
6076
6077 if (dev_priv->pc8.enabled)
6078 return;
6079
6080 DRM_DEBUG_KMS("Enabling package C8+\n");
6081
6082 dev_priv->pc8.enabled = true;
6083
6084 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6085 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6086 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6087 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6088 }
6089
6090 lpt_disable_clkout_dp(dev);
6091 hsw_pc8_disable_interrupts(dev);
6092 hsw_disable_lcpll(dev_priv, true, true);
6093 }
6094
6095 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6096 {
6097 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6098 WARN(dev_priv->pc8.disable_count < 1,
6099 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6100
6101 dev_priv->pc8.disable_count--;
6102 if (dev_priv->pc8.disable_count != 0)
6103 return;
6104
6105 schedule_delayed_work(&dev_priv->pc8.enable_work,
6106 msecs_to_jiffies(i915_pc8_timeout));
6107 }
6108
6109 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6110 {
6111 struct drm_device *dev = dev_priv->dev;
6112 uint32_t val;
6113
6114 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6115 WARN(dev_priv->pc8.disable_count < 0,
6116 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6117
6118 dev_priv->pc8.disable_count++;
6119 if (dev_priv->pc8.disable_count != 1)
6120 return;
6121
6122 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6123 if (!dev_priv->pc8.enabled)
6124 return;
6125
6126 DRM_DEBUG_KMS("Disabling package C8+\n");
6127
6128 hsw_restore_lcpll(dev_priv);
6129 hsw_pc8_restore_interrupts(dev);
6130 lpt_init_pch_refclk(dev);
6131
6132 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6133 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6134 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6135 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6136 }
6137
6138 intel_prepare_ddi(dev);
6139 i915_gem_init_swizzling(dev);
6140 mutex_lock(&dev_priv->rps.hw_lock);
6141 gen6_update_ring_freq(dev);
6142 mutex_unlock(&dev_priv->rps.hw_lock);
6143 dev_priv->pc8.enabled = false;
6144 }
6145
6146 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6147 {
6148 mutex_lock(&dev_priv->pc8.lock);
6149 __hsw_enable_package_c8(dev_priv);
6150 mutex_unlock(&dev_priv->pc8.lock);
6151 }
6152
6153 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6154 {
6155 mutex_lock(&dev_priv->pc8.lock);
6156 __hsw_disable_package_c8(dev_priv);
6157 mutex_unlock(&dev_priv->pc8.lock);
6158 }
6159
6160 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6161 {
6162 struct drm_device *dev = dev_priv->dev;
6163 struct intel_crtc *crtc;
6164 uint32_t val;
6165
6166 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6167 if (crtc->base.enabled)
6168 return false;
6169
6170 /* This case is still possible since we have the i915.disable_power_well
6171 * parameter and also the KVMr or something else might be requesting the
6172 * power well. */
6173 val = I915_READ(HSW_PWR_WELL_DRIVER);
6174 if (val != 0) {
6175 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6176 return false;
6177 }
6178
6179 return true;
6180 }
6181
6182 /* Since we're called from modeset_global_resources there's no way to
6183 * symmetrically increase and decrease the refcount, so we use
6184 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6185 * or not.
6186 */
6187 static void hsw_update_package_c8(struct drm_device *dev)
6188 {
6189 struct drm_i915_private *dev_priv = dev->dev_private;
6190 bool allow;
6191
6192 if (!i915_enable_pc8)
6193 return;
6194
6195 mutex_lock(&dev_priv->pc8.lock);
6196
6197 allow = hsw_can_enable_package_c8(dev_priv);
6198
6199 if (allow == dev_priv->pc8.requirements_met)
6200 goto done;
6201
6202 dev_priv->pc8.requirements_met = allow;
6203
6204 if (allow)
6205 __hsw_enable_package_c8(dev_priv);
6206 else
6207 __hsw_disable_package_c8(dev_priv);
6208
6209 done:
6210 mutex_unlock(&dev_priv->pc8.lock);
6211 }
6212
6213 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6214 {
6215 if (!dev_priv->pc8.gpu_idle) {
6216 dev_priv->pc8.gpu_idle = true;
6217 hsw_enable_package_c8(dev_priv);
6218 }
6219 }
6220
6221 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6222 {
6223 if (dev_priv->pc8.gpu_idle) {
6224 dev_priv->pc8.gpu_idle = false;
6225 hsw_disable_package_c8(dev_priv);
6226 }
6227 }
6228
6229 static void haswell_modeset_global_resources(struct drm_device *dev)
6230 {
6231 bool enable = false;
6232 struct intel_crtc *crtc;
6233
6234 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6235 if (!crtc->base.enabled)
6236 continue;
6237
6238 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6239 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6240 enable = true;
6241 }
6242
6243 intel_set_power_well(dev, enable);
6244
6245 hsw_update_package_c8(dev);
6246 }
6247
6248 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6249 int x, int y,
6250 struct drm_framebuffer *fb)
6251 {
6252 struct drm_device *dev = crtc->dev;
6253 struct drm_i915_private *dev_priv = dev->dev_private;
6254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255 int plane = intel_crtc->plane;
6256 int ret;
6257
6258 if (!intel_ddi_pll_mode_set(crtc))
6259 return -EINVAL;
6260
6261 if (intel_crtc->config.has_dp_encoder)
6262 intel_dp_set_m_n(intel_crtc);
6263
6264 intel_crtc->lowfreq_avail = false;
6265
6266 intel_set_pipe_timings(intel_crtc);
6267
6268 if (intel_crtc->config.has_pch_encoder) {
6269 intel_cpu_transcoder_set_m_n(intel_crtc,
6270 &intel_crtc->config.fdi_m_n);
6271 }
6272
6273 haswell_set_pipeconf(crtc);
6274
6275 intel_set_pipe_csc(crtc);
6276
6277 /* Set up the display plane register */
6278 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6279 POSTING_READ(DSPCNTR(plane));
6280
6281 ret = intel_pipe_set_base(crtc, x, y, fb);
6282
6283 intel_update_watermarks(dev);
6284
6285 return ret;
6286 }
6287
6288 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6289 struct intel_crtc_config *pipe_config)
6290 {
6291 struct drm_device *dev = crtc->base.dev;
6292 struct drm_i915_private *dev_priv = dev->dev_private;
6293 enum intel_display_power_domain pfit_domain;
6294 uint32_t tmp;
6295
6296 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6297 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6298
6299 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6300 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6301 enum pipe trans_edp_pipe;
6302 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6303 default:
6304 WARN(1, "unknown pipe linked to edp transcoder\n");
6305 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6306 case TRANS_DDI_EDP_INPUT_A_ON:
6307 trans_edp_pipe = PIPE_A;
6308 break;
6309 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6310 trans_edp_pipe = PIPE_B;
6311 break;
6312 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6313 trans_edp_pipe = PIPE_C;
6314 break;
6315 }
6316
6317 if (trans_edp_pipe == crtc->pipe)
6318 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6319 }
6320
6321 if (!intel_display_power_enabled(dev,
6322 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6323 return false;
6324
6325 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6326 if (!(tmp & PIPECONF_ENABLE))
6327 return false;
6328
6329 /*
6330 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6331 * DDI E. So just check whether this pipe is wired to DDI E and whether
6332 * the PCH transcoder is on.
6333 */
6334 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6335 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6336 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6337 pipe_config->has_pch_encoder = true;
6338
6339 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6340 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6341 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6342
6343 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6344 }
6345
6346 intel_get_pipe_timings(crtc, pipe_config);
6347
6348 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6349 if (intel_display_power_enabled(dev, pfit_domain))
6350 ironlake_get_pfit_config(crtc, pipe_config);
6351
6352 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6353 (I915_READ(IPS_CTL) & IPS_ENABLE);
6354
6355 pipe_config->pixel_multiplier = 1;
6356
6357 return true;
6358 }
6359
6360 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6361 int x, int y,
6362 struct drm_framebuffer *fb)
6363 {
6364 struct drm_device *dev = crtc->dev;
6365 struct drm_i915_private *dev_priv = dev->dev_private;
6366 struct intel_encoder *encoder;
6367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6368 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6369 int pipe = intel_crtc->pipe;
6370 int ret;
6371
6372 drm_vblank_pre_modeset(dev, pipe);
6373
6374 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6375
6376 drm_vblank_post_modeset(dev, pipe);
6377
6378 if (ret != 0)
6379 return ret;
6380
6381 for_each_encoder_on_crtc(dev, crtc, encoder) {
6382 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6383 encoder->base.base.id,
6384 drm_get_encoder_name(&encoder->base),
6385 mode->base.id, mode->name);
6386 encoder->mode_set(encoder);
6387 }
6388
6389 return 0;
6390 }
6391
6392 static bool intel_eld_uptodate(struct drm_connector *connector,
6393 int reg_eldv, uint32_t bits_eldv,
6394 int reg_elda, uint32_t bits_elda,
6395 int reg_edid)
6396 {
6397 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6398 uint8_t *eld = connector->eld;
6399 uint32_t i;
6400
6401 i = I915_READ(reg_eldv);
6402 i &= bits_eldv;
6403
6404 if (!eld[0])
6405 return !i;
6406
6407 if (!i)
6408 return false;
6409
6410 i = I915_READ(reg_elda);
6411 i &= ~bits_elda;
6412 I915_WRITE(reg_elda, i);
6413
6414 for (i = 0; i < eld[2]; i++)
6415 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6416 return false;
6417
6418 return true;
6419 }
6420
6421 static void g4x_write_eld(struct drm_connector *connector,
6422 struct drm_crtc *crtc)
6423 {
6424 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6425 uint8_t *eld = connector->eld;
6426 uint32_t eldv;
6427 uint32_t len;
6428 uint32_t i;
6429
6430 i = I915_READ(G4X_AUD_VID_DID);
6431
6432 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6433 eldv = G4X_ELDV_DEVCL_DEVBLC;
6434 else
6435 eldv = G4X_ELDV_DEVCTG;
6436
6437 if (intel_eld_uptodate(connector,
6438 G4X_AUD_CNTL_ST, eldv,
6439 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6440 G4X_HDMIW_HDMIEDID))
6441 return;
6442
6443 i = I915_READ(G4X_AUD_CNTL_ST);
6444 i &= ~(eldv | G4X_ELD_ADDR);
6445 len = (i >> 9) & 0x1f; /* ELD buffer size */
6446 I915_WRITE(G4X_AUD_CNTL_ST, i);
6447
6448 if (!eld[0])
6449 return;
6450
6451 len = min_t(uint8_t, eld[2], len);
6452 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6453 for (i = 0; i < len; i++)
6454 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6455
6456 i = I915_READ(G4X_AUD_CNTL_ST);
6457 i |= eldv;
6458 I915_WRITE(G4X_AUD_CNTL_ST, i);
6459 }
6460
6461 static void haswell_write_eld(struct drm_connector *connector,
6462 struct drm_crtc *crtc)
6463 {
6464 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6465 uint8_t *eld = connector->eld;
6466 struct drm_device *dev = crtc->dev;
6467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6468 uint32_t eldv;
6469 uint32_t i;
6470 int len;
6471 int pipe = to_intel_crtc(crtc)->pipe;
6472 int tmp;
6473
6474 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6475 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6476 int aud_config = HSW_AUD_CFG(pipe);
6477 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6478
6479
6480 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6481
6482 /* Audio output enable */
6483 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6484 tmp = I915_READ(aud_cntrl_st2);
6485 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6486 I915_WRITE(aud_cntrl_st2, tmp);
6487
6488 /* Wait for 1 vertical blank */
6489 intel_wait_for_vblank(dev, pipe);
6490
6491 /* Set ELD valid state */
6492 tmp = I915_READ(aud_cntrl_st2);
6493 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6494 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6495 I915_WRITE(aud_cntrl_st2, tmp);
6496 tmp = I915_READ(aud_cntrl_st2);
6497 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6498
6499 /* Enable HDMI mode */
6500 tmp = I915_READ(aud_config);
6501 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6502 /* clear N_programing_enable and N_value_index */
6503 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6504 I915_WRITE(aud_config, tmp);
6505
6506 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6507
6508 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6509 intel_crtc->eld_vld = true;
6510
6511 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6512 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6513 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6514 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6515 } else
6516 I915_WRITE(aud_config, 0);
6517
6518 if (intel_eld_uptodate(connector,
6519 aud_cntrl_st2, eldv,
6520 aud_cntl_st, IBX_ELD_ADDRESS,
6521 hdmiw_hdmiedid))
6522 return;
6523
6524 i = I915_READ(aud_cntrl_st2);
6525 i &= ~eldv;
6526 I915_WRITE(aud_cntrl_st2, i);
6527
6528 if (!eld[0])
6529 return;
6530
6531 i = I915_READ(aud_cntl_st);
6532 i &= ~IBX_ELD_ADDRESS;
6533 I915_WRITE(aud_cntl_st, i);
6534 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6535 DRM_DEBUG_DRIVER("port num:%d\n", i);
6536
6537 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6538 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6539 for (i = 0; i < len; i++)
6540 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6541
6542 i = I915_READ(aud_cntrl_st2);
6543 i |= eldv;
6544 I915_WRITE(aud_cntrl_st2, i);
6545
6546 }
6547
6548 static void ironlake_write_eld(struct drm_connector *connector,
6549 struct drm_crtc *crtc)
6550 {
6551 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6552 uint8_t *eld = connector->eld;
6553 uint32_t eldv;
6554 uint32_t i;
6555 int len;
6556 int hdmiw_hdmiedid;
6557 int aud_config;
6558 int aud_cntl_st;
6559 int aud_cntrl_st2;
6560 int pipe = to_intel_crtc(crtc)->pipe;
6561
6562 if (HAS_PCH_IBX(connector->dev)) {
6563 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6564 aud_config = IBX_AUD_CFG(pipe);
6565 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6566 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6567 } else {
6568 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6569 aud_config = CPT_AUD_CFG(pipe);
6570 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6571 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6572 }
6573
6574 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6575
6576 i = I915_READ(aud_cntl_st);
6577 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6578 if (!i) {
6579 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6580 /* operate blindly on all ports */
6581 eldv = IBX_ELD_VALIDB;
6582 eldv |= IBX_ELD_VALIDB << 4;
6583 eldv |= IBX_ELD_VALIDB << 8;
6584 } else {
6585 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6586 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6587 }
6588
6589 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6590 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6591 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6592 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6593 } else
6594 I915_WRITE(aud_config, 0);
6595
6596 if (intel_eld_uptodate(connector,
6597 aud_cntrl_st2, eldv,
6598 aud_cntl_st, IBX_ELD_ADDRESS,
6599 hdmiw_hdmiedid))
6600 return;
6601
6602 i = I915_READ(aud_cntrl_st2);
6603 i &= ~eldv;
6604 I915_WRITE(aud_cntrl_st2, i);
6605
6606 if (!eld[0])
6607 return;
6608
6609 i = I915_READ(aud_cntl_st);
6610 i &= ~IBX_ELD_ADDRESS;
6611 I915_WRITE(aud_cntl_st, i);
6612
6613 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6614 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6615 for (i = 0; i < len; i++)
6616 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6617
6618 i = I915_READ(aud_cntrl_st2);
6619 i |= eldv;
6620 I915_WRITE(aud_cntrl_st2, i);
6621 }
6622
6623 void intel_write_eld(struct drm_encoder *encoder,
6624 struct drm_display_mode *mode)
6625 {
6626 struct drm_crtc *crtc = encoder->crtc;
6627 struct drm_connector *connector;
6628 struct drm_device *dev = encoder->dev;
6629 struct drm_i915_private *dev_priv = dev->dev_private;
6630
6631 connector = drm_select_eld(encoder, mode);
6632 if (!connector)
6633 return;
6634
6635 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6636 connector->base.id,
6637 drm_get_connector_name(connector),
6638 connector->encoder->base.id,
6639 drm_get_encoder_name(connector->encoder));
6640
6641 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6642
6643 if (dev_priv->display.write_eld)
6644 dev_priv->display.write_eld(connector, crtc);
6645 }
6646
6647 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6648 void intel_crtc_load_lut(struct drm_crtc *crtc)
6649 {
6650 struct drm_device *dev = crtc->dev;
6651 struct drm_i915_private *dev_priv = dev->dev_private;
6652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6653 enum pipe pipe = intel_crtc->pipe;
6654 int palreg = PALETTE(pipe);
6655 int i;
6656 bool reenable_ips = false;
6657
6658 /* The clocks have to be on to load the palette. */
6659 if (!crtc->enabled || !intel_crtc->active)
6660 return;
6661
6662 if (!HAS_PCH_SPLIT(dev_priv->dev))
6663 assert_pll_enabled(dev_priv, pipe);
6664
6665 /* use legacy palette for Ironlake */
6666 if (HAS_PCH_SPLIT(dev))
6667 palreg = LGC_PALETTE(pipe);
6668
6669 /* Workaround : Do not read or write the pipe palette/gamma data while
6670 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6671 */
6672 if (intel_crtc->config.ips_enabled &&
6673 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6674 GAMMA_MODE_MODE_SPLIT)) {
6675 hsw_disable_ips(intel_crtc);
6676 reenable_ips = true;
6677 }
6678
6679 for (i = 0; i < 256; i++) {
6680 I915_WRITE(palreg + 4 * i,
6681 (intel_crtc->lut_r[i] << 16) |
6682 (intel_crtc->lut_g[i] << 8) |
6683 intel_crtc->lut_b[i]);
6684 }
6685
6686 if (reenable_ips)
6687 hsw_enable_ips(intel_crtc);
6688 }
6689
6690 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6691 {
6692 struct drm_device *dev = crtc->dev;
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6695 bool visible = base != 0;
6696 u32 cntl;
6697
6698 if (intel_crtc->cursor_visible == visible)
6699 return;
6700
6701 cntl = I915_READ(_CURACNTR);
6702 if (visible) {
6703 /* On these chipsets we can only modify the base whilst
6704 * the cursor is disabled.
6705 */
6706 I915_WRITE(_CURABASE, base);
6707
6708 cntl &= ~(CURSOR_FORMAT_MASK);
6709 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6710 cntl |= CURSOR_ENABLE |
6711 CURSOR_GAMMA_ENABLE |
6712 CURSOR_FORMAT_ARGB;
6713 } else
6714 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6715 I915_WRITE(_CURACNTR, cntl);
6716
6717 intel_crtc->cursor_visible = visible;
6718 }
6719
6720 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6721 {
6722 struct drm_device *dev = crtc->dev;
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6725 int pipe = intel_crtc->pipe;
6726 bool visible = base != 0;
6727
6728 if (intel_crtc->cursor_visible != visible) {
6729 uint32_t cntl = I915_READ(CURCNTR(pipe));
6730 if (base) {
6731 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6732 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6733 cntl |= pipe << 28; /* Connect to correct pipe */
6734 } else {
6735 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6736 cntl |= CURSOR_MODE_DISABLE;
6737 }
6738 I915_WRITE(CURCNTR(pipe), cntl);
6739
6740 intel_crtc->cursor_visible = visible;
6741 }
6742 /* and commit changes on next vblank */
6743 I915_WRITE(CURBASE(pipe), base);
6744 }
6745
6746 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6747 {
6748 struct drm_device *dev = crtc->dev;
6749 struct drm_i915_private *dev_priv = dev->dev_private;
6750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6751 int pipe = intel_crtc->pipe;
6752 bool visible = base != 0;
6753
6754 if (intel_crtc->cursor_visible != visible) {
6755 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6756 if (base) {
6757 cntl &= ~CURSOR_MODE;
6758 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6759 } else {
6760 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6761 cntl |= CURSOR_MODE_DISABLE;
6762 }
6763 if (IS_HASWELL(dev)) {
6764 cntl |= CURSOR_PIPE_CSC_ENABLE;
6765 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6766 }
6767 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6768
6769 intel_crtc->cursor_visible = visible;
6770 }
6771 /* and commit changes on next vblank */
6772 I915_WRITE(CURBASE_IVB(pipe), base);
6773 }
6774
6775 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6776 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6777 bool on)
6778 {
6779 struct drm_device *dev = crtc->dev;
6780 struct drm_i915_private *dev_priv = dev->dev_private;
6781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6782 int pipe = intel_crtc->pipe;
6783 int x = intel_crtc->cursor_x;
6784 int y = intel_crtc->cursor_y;
6785 u32 base, pos;
6786 bool visible;
6787
6788 pos = 0;
6789
6790 if (on && crtc->enabled && crtc->fb) {
6791 base = intel_crtc->cursor_addr;
6792 if (x > (int) crtc->fb->width)
6793 base = 0;
6794
6795 if (y > (int) crtc->fb->height)
6796 base = 0;
6797 } else
6798 base = 0;
6799
6800 if (x < 0) {
6801 if (x + intel_crtc->cursor_width < 0)
6802 base = 0;
6803
6804 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6805 x = -x;
6806 }
6807 pos |= x << CURSOR_X_SHIFT;
6808
6809 if (y < 0) {
6810 if (y + intel_crtc->cursor_height < 0)
6811 base = 0;
6812
6813 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6814 y = -y;
6815 }
6816 pos |= y << CURSOR_Y_SHIFT;
6817
6818 visible = base != 0;
6819 if (!visible && !intel_crtc->cursor_visible)
6820 return;
6821
6822 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6823 I915_WRITE(CURPOS_IVB(pipe), pos);
6824 ivb_update_cursor(crtc, base);
6825 } else {
6826 I915_WRITE(CURPOS(pipe), pos);
6827 if (IS_845G(dev) || IS_I865G(dev))
6828 i845_update_cursor(crtc, base);
6829 else
6830 i9xx_update_cursor(crtc, base);
6831 }
6832 }
6833
6834 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6835 struct drm_file *file,
6836 uint32_t handle,
6837 uint32_t width, uint32_t height)
6838 {
6839 struct drm_device *dev = crtc->dev;
6840 struct drm_i915_private *dev_priv = dev->dev_private;
6841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842 struct drm_i915_gem_object *obj;
6843 uint32_t addr;
6844 int ret;
6845
6846 /* if we want to turn off the cursor ignore width and height */
6847 if (!handle) {
6848 DRM_DEBUG_KMS("cursor off\n");
6849 addr = 0;
6850 obj = NULL;
6851 mutex_lock(&dev->struct_mutex);
6852 goto finish;
6853 }
6854
6855 /* Currently we only support 64x64 cursors */
6856 if (width != 64 || height != 64) {
6857 DRM_ERROR("we currently only support 64x64 cursors\n");
6858 return -EINVAL;
6859 }
6860
6861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6862 if (&obj->base == NULL)
6863 return -ENOENT;
6864
6865 if (obj->base.size < width * height * 4) {
6866 DRM_ERROR("buffer is to small\n");
6867 ret = -ENOMEM;
6868 goto fail;
6869 }
6870
6871 /* we only need to pin inside GTT if cursor is non-phy */
6872 mutex_lock(&dev->struct_mutex);
6873 if (!dev_priv->info->cursor_needs_physical) {
6874 unsigned alignment;
6875
6876 if (obj->tiling_mode) {
6877 DRM_ERROR("cursor cannot be tiled\n");
6878 ret = -EINVAL;
6879 goto fail_locked;
6880 }
6881
6882 /* Note that the w/a also requires 2 PTE of padding following
6883 * the bo. We currently fill all unused PTE with the shadow
6884 * page and so we should always have valid PTE following the
6885 * cursor preventing the VT-d warning.
6886 */
6887 alignment = 0;
6888 if (need_vtd_wa(dev))
6889 alignment = 64*1024;
6890
6891 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6892 if (ret) {
6893 DRM_ERROR("failed to move cursor bo into the GTT\n");
6894 goto fail_locked;
6895 }
6896
6897 ret = i915_gem_object_put_fence(obj);
6898 if (ret) {
6899 DRM_ERROR("failed to release fence for cursor");
6900 goto fail_unpin;
6901 }
6902
6903 addr = i915_gem_obj_ggtt_offset(obj);
6904 } else {
6905 int align = IS_I830(dev) ? 16 * 1024 : 256;
6906 ret = i915_gem_attach_phys_object(dev, obj,
6907 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6908 align);
6909 if (ret) {
6910 DRM_ERROR("failed to attach phys object\n");
6911 goto fail_locked;
6912 }
6913 addr = obj->phys_obj->handle->busaddr;
6914 }
6915
6916 if (IS_GEN2(dev))
6917 I915_WRITE(CURSIZE, (height << 12) | width);
6918
6919 finish:
6920 if (intel_crtc->cursor_bo) {
6921 if (dev_priv->info->cursor_needs_physical) {
6922 if (intel_crtc->cursor_bo != obj)
6923 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6924 } else
6925 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6926 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6927 }
6928
6929 mutex_unlock(&dev->struct_mutex);
6930
6931 intel_crtc->cursor_addr = addr;
6932 intel_crtc->cursor_bo = obj;
6933 intel_crtc->cursor_width = width;
6934 intel_crtc->cursor_height = height;
6935
6936 if (intel_crtc->active)
6937 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6938
6939 return 0;
6940 fail_unpin:
6941 i915_gem_object_unpin_from_display_plane(obj);
6942 fail_locked:
6943 mutex_unlock(&dev->struct_mutex);
6944 fail:
6945 drm_gem_object_unreference_unlocked(&obj->base);
6946 return ret;
6947 }
6948
6949 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6950 {
6951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6952
6953 intel_crtc->cursor_x = x;
6954 intel_crtc->cursor_y = y;
6955
6956 if (intel_crtc->active)
6957 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6958
6959 return 0;
6960 }
6961
6962 /** Sets the color ramps on behalf of RandR */
6963 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6964 u16 blue, int regno)
6965 {
6966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6967
6968 intel_crtc->lut_r[regno] = red >> 8;
6969 intel_crtc->lut_g[regno] = green >> 8;
6970 intel_crtc->lut_b[regno] = blue >> 8;
6971 }
6972
6973 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6974 u16 *blue, int regno)
6975 {
6976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6977
6978 *red = intel_crtc->lut_r[regno] << 8;
6979 *green = intel_crtc->lut_g[regno] << 8;
6980 *blue = intel_crtc->lut_b[regno] << 8;
6981 }
6982
6983 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6984 u16 *blue, uint32_t start, uint32_t size)
6985 {
6986 int end = (start + size > 256) ? 256 : start + size, i;
6987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6988
6989 for (i = start; i < end; i++) {
6990 intel_crtc->lut_r[i] = red[i] >> 8;
6991 intel_crtc->lut_g[i] = green[i] >> 8;
6992 intel_crtc->lut_b[i] = blue[i] >> 8;
6993 }
6994
6995 intel_crtc_load_lut(crtc);
6996 }
6997
6998 /* VESA 640x480x72Hz mode to set on the pipe */
6999 static struct drm_display_mode load_detect_mode = {
7000 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7001 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7002 };
7003
7004 static struct drm_framebuffer *
7005 intel_framebuffer_create(struct drm_device *dev,
7006 struct drm_mode_fb_cmd2 *mode_cmd,
7007 struct drm_i915_gem_object *obj)
7008 {
7009 struct intel_framebuffer *intel_fb;
7010 int ret;
7011
7012 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7013 if (!intel_fb) {
7014 drm_gem_object_unreference_unlocked(&obj->base);
7015 return ERR_PTR(-ENOMEM);
7016 }
7017
7018 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7019 if (ret) {
7020 drm_gem_object_unreference_unlocked(&obj->base);
7021 kfree(intel_fb);
7022 return ERR_PTR(ret);
7023 }
7024
7025 return &intel_fb->base;
7026 }
7027
7028 static u32
7029 intel_framebuffer_pitch_for_width(int width, int bpp)
7030 {
7031 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7032 return ALIGN(pitch, 64);
7033 }
7034
7035 static u32
7036 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7037 {
7038 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7039 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7040 }
7041
7042 static struct drm_framebuffer *
7043 intel_framebuffer_create_for_mode(struct drm_device *dev,
7044 struct drm_display_mode *mode,
7045 int depth, int bpp)
7046 {
7047 struct drm_i915_gem_object *obj;
7048 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7049
7050 obj = i915_gem_alloc_object(dev,
7051 intel_framebuffer_size_for_mode(mode, bpp));
7052 if (obj == NULL)
7053 return ERR_PTR(-ENOMEM);
7054
7055 mode_cmd.width = mode->hdisplay;
7056 mode_cmd.height = mode->vdisplay;
7057 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7058 bpp);
7059 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7060
7061 return intel_framebuffer_create(dev, &mode_cmd, obj);
7062 }
7063
7064 static struct drm_framebuffer *
7065 mode_fits_in_fbdev(struct drm_device *dev,
7066 struct drm_display_mode *mode)
7067 {
7068 struct drm_i915_private *dev_priv = dev->dev_private;
7069 struct drm_i915_gem_object *obj;
7070 struct drm_framebuffer *fb;
7071
7072 if (dev_priv->fbdev == NULL)
7073 return NULL;
7074
7075 obj = dev_priv->fbdev->ifb.obj;
7076 if (obj == NULL)
7077 return NULL;
7078
7079 fb = &dev_priv->fbdev->ifb.base;
7080 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7081 fb->bits_per_pixel))
7082 return NULL;
7083
7084 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7085 return NULL;
7086
7087 return fb;
7088 }
7089
7090 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7091 struct drm_display_mode *mode,
7092 struct intel_load_detect_pipe *old)
7093 {
7094 struct intel_crtc *intel_crtc;
7095 struct intel_encoder *intel_encoder =
7096 intel_attached_encoder(connector);
7097 struct drm_crtc *possible_crtc;
7098 struct drm_encoder *encoder = &intel_encoder->base;
7099 struct drm_crtc *crtc = NULL;
7100 struct drm_device *dev = encoder->dev;
7101 struct drm_framebuffer *fb;
7102 int i = -1;
7103
7104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7105 connector->base.id, drm_get_connector_name(connector),
7106 encoder->base.id, drm_get_encoder_name(encoder));
7107
7108 /*
7109 * Algorithm gets a little messy:
7110 *
7111 * - if the connector already has an assigned crtc, use it (but make
7112 * sure it's on first)
7113 *
7114 * - try to find the first unused crtc that can drive this connector,
7115 * and use that if we find one
7116 */
7117
7118 /* See if we already have a CRTC for this connector */
7119 if (encoder->crtc) {
7120 crtc = encoder->crtc;
7121
7122 mutex_lock(&crtc->mutex);
7123
7124 old->dpms_mode = connector->dpms;
7125 old->load_detect_temp = false;
7126
7127 /* Make sure the crtc and connector are running */
7128 if (connector->dpms != DRM_MODE_DPMS_ON)
7129 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7130
7131 return true;
7132 }
7133
7134 /* Find an unused one (if possible) */
7135 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7136 i++;
7137 if (!(encoder->possible_crtcs & (1 << i)))
7138 continue;
7139 if (!possible_crtc->enabled) {
7140 crtc = possible_crtc;
7141 break;
7142 }
7143 }
7144
7145 /*
7146 * If we didn't find an unused CRTC, don't use any.
7147 */
7148 if (!crtc) {
7149 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7150 return false;
7151 }
7152
7153 mutex_lock(&crtc->mutex);
7154 intel_encoder->new_crtc = to_intel_crtc(crtc);
7155 to_intel_connector(connector)->new_encoder = intel_encoder;
7156
7157 intel_crtc = to_intel_crtc(crtc);
7158 old->dpms_mode = connector->dpms;
7159 old->load_detect_temp = true;
7160 old->release_fb = NULL;
7161
7162 if (!mode)
7163 mode = &load_detect_mode;
7164
7165 /* We need a framebuffer large enough to accommodate all accesses
7166 * that the plane may generate whilst we perform load detection.
7167 * We can not rely on the fbcon either being present (we get called
7168 * during its initialisation to detect all boot displays, or it may
7169 * not even exist) or that it is large enough to satisfy the
7170 * requested mode.
7171 */
7172 fb = mode_fits_in_fbdev(dev, mode);
7173 if (fb == NULL) {
7174 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7175 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7176 old->release_fb = fb;
7177 } else
7178 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7179 if (IS_ERR(fb)) {
7180 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7181 mutex_unlock(&crtc->mutex);
7182 return false;
7183 }
7184
7185 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7186 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7187 if (old->release_fb)
7188 old->release_fb->funcs->destroy(old->release_fb);
7189 mutex_unlock(&crtc->mutex);
7190 return false;
7191 }
7192
7193 /* let the connector get through one full cycle before testing */
7194 intel_wait_for_vblank(dev, intel_crtc->pipe);
7195 return true;
7196 }
7197
7198 void intel_release_load_detect_pipe(struct drm_connector *connector,
7199 struct intel_load_detect_pipe *old)
7200 {
7201 struct intel_encoder *intel_encoder =
7202 intel_attached_encoder(connector);
7203 struct drm_encoder *encoder = &intel_encoder->base;
7204 struct drm_crtc *crtc = encoder->crtc;
7205
7206 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7207 connector->base.id, drm_get_connector_name(connector),
7208 encoder->base.id, drm_get_encoder_name(encoder));
7209
7210 if (old->load_detect_temp) {
7211 to_intel_connector(connector)->new_encoder = NULL;
7212 intel_encoder->new_crtc = NULL;
7213 intel_set_mode(crtc, NULL, 0, 0, NULL);
7214
7215 if (old->release_fb) {
7216 drm_framebuffer_unregister_private(old->release_fb);
7217 drm_framebuffer_unreference(old->release_fb);
7218 }
7219
7220 mutex_unlock(&crtc->mutex);
7221 return;
7222 }
7223
7224 /* Switch crtc and encoder back off if necessary */
7225 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7226 connector->funcs->dpms(connector, old->dpms_mode);
7227
7228 mutex_unlock(&crtc->mutex);
7229 }
7230
7231 /* Returns the clock of the currently programmed mode of the given pipe. */
7232 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7233 struct intel_crtc_config *pipe_config)
7234 {
7235 struct drm_device *dev = crtc->base.dev;
7236 struct drm_i915_private *dev_priv = dev->dev_private;
7237 int pipe = pipe_config->cpu_transcoder;
7238 u32 dpll = I915_READ(DPLL(pipe));
7239 u32 fp;
7240 intel_clock_t clock;
7241
7242 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7243 fp = I915_READ(FP0(pipe));
7244 else
7245 fp = I915_READ(FP1(pipe));
7246
7247 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7248 if (IS_PINEVIEW(dev)) {
7249 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7250 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7251 } else {
7252 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7253 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7254 }
7255
7256 if (!IS_GEN2(dev)) {
7257 if (IS_PINEVIEW(dev))
7258 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7259 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7260 else
7261 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7262 DPLL_FPA01_P1_POST_DIV_SHIFT);
7263
7264 switch (dpll & DPLL_MODE_MASK) {
7265 case DPLLB_MODE_DAC_SERIAL:
7266 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7267 5 : 10;
7268 break;
7269 case DPLLB_MODE_LVDS:
7270 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7271 7 : 14;
7272 break;
7273 default:
7274 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7275 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7276 pipe_config->adjusted_mode.clock = 0;
7277 return;
7278 }
7279
7280 if (IS_PINEVIEW(dev))
7281 pineview_clock(96000, &clock);
7282 else
7283 i9xx_clock(96000, &clock);
7284 } else {
7285 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7286
7287 if (is_lvds) {
7288 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7289 DPLL_FPA01_P1_POST_DIV_SHIFT);
7290 clock.p2 = 14;
7291
7292 if ((dpll & PLL_REF_INPUT_MASK) ==
7293 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7294 /* XXX: might not be 66MHz */
7295 i9xx_clock(66000, &clock);
7296 } else
7297 i9xx_clock(48000, &clock);
7298 } else {
7299 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7300 clock.p1 = 2;
7301 else {
7302 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7303 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7304 }
7305 if (dpll & PLL_P2_DIVIDE_BY_4)
7306 clock.p2 = 4;
7307 else
7308 clock.p2 = 2;
7309
7310 i9xx_clock(48000, &clock);
7311 }
7312 }
7313
7314 pipe_config->adjusted_mode.clock = clock.dot;
7315 }
7316
7317 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7318 struct intel_crtc_config *pipe_config)
7319 {
7320 struct drm_device *dev = crtc->base.dev;
7321 struct drm_i915_private *dev_priv = dev->dev_private;
7322 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7323 int link_freq, repeat;
7324 u64 clock;
7325 u32 link_m, link_n;
7326
7327 repeat = pipe_config->pixel_multiplier;
7328
7329 /*
7330 * The calculation for the data clock is:
7331 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7332 * But we want to avoid losing precison if possible, so:
7333 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7334 *
7335 * and the link clock is simpler:
7336 * link_clock = (m * link_clock * repeat) / n
7337 */
7338
7339 /*
7340 * We need to get the FDI or DP link clock here to derive
7341 * the M/N dividers.
7342 *
7343 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7344 * For DP, it's either 1.62GHz or 2.7GHz.
7345 * We do our calculations in 10*MHz since we don't need much precison.
7346 */
7347 if (pipe_config->has_pch_encoder)
7348 link_freq = intel_fdi_link_freq(dev) * 10000;
7349 else
7350 link_freq = pipe_config->port_clock;
7351
7352 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7353 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7354
7355 if (!link_m || !link_n)
7356 return;
7357
7358 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7359 do_div(clock, link_n);
7360
7361 pipe_config->adjusted_mode.clock = clock;
7362 }
7363
7364 /** Returns the currently programmed mode of the given pipe. */
7365 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7366 struct drm_crtc *crtc)
7367 {
7368 struct drm_i915_private *dev_priv = dev->dev_private;
7369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7370 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7371 struct drm_display_mode *mode;
7372 struct intel_crtc_config pipe_config;
7373 int htot = I915_READ(HTOTAL(cpu_transcoder));
7374 int hsync = I915_READ(HSYNC(cpu_transcoder));
7375 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7376 int vsync = I915_READ(VSYNC(cpu_transcoder));
7377
7378 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7379 if (!mode)
7380 return NULL;
7381
7382 /*
7383 * Construct a pipe_config sufficient for getting the clock info
7384 * back out of crtc_clock_get.
7385 *
7386 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7387 * to use a real value here instead.
7388 */
7389 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7390 pipe_config.pixel_multiplier = 1;
7391 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7392
7393 mode->clock = pipe_config.adjusted_mode.clock;
7394 mode->hdisplay = (htot & 0xffff) + 1;
7395 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7396 mode->hsync_start = (hsync & 0xffff) + 1;
7397 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7398 mode->vdisplay = (vtot & 0xffff) + 1;
7399 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7400 mode->vsync_start = (vsync & 0xffff) + 1;
7401 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7402
7403 drm_mode_set_name(mode);
7404
7405 return mode;
7406 }
7407
7408 static void intel_increase_pllclock(struct drm_crtc *crtc)
7409 {
7410 struct drm_device *dev = crtc->dev;
7411 drm_i915_private_t *dev_priv = dev->dev_private;
7412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7413 int pipe = intel_crtc->pipe;
7414 int dpll_reg = DPLL(pipe);
7415 int dpll;
7416
7417 if (HAS_PCH_SPLIT(dev))
7418 return;
7419
7420 if (!dev_priv->lvds_downclock_avail)
7421 return;
7422
7423 dpll = I915_READ(dpll_reg);
7424 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7425 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7426
7427 assert_panel_unlocked(dev_priv, pipe);
7428
7429 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7430 I915_WRITE(dpll_reg, dpll);
7431 intel_wait_for_vblank(dev, pipe);
7432
7433 dpll = I915_READ(dpll_reg);
7434 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7435 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7436 }
7437 }
7438
7439 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7440 {
7441 struct drm_device *dev = crtc->dev;
7442 drm_i915_private_t *dev_priv = dev->dev_private;
7443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7444
7445 if (HAS_PCH_SPLIT(dev))
7446 return;
7447
7448 if (!dev_priv->lvds_downclock_avail)
7449 return;
7450
7451 /*
7452 * Since this is called by a timer, we should never get here in
7453 * the manual case.
7454 */
7455 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7456 int pipe = intel_crtc->pipe;
7457 int dpll_reg = DPLL(pipe);
7458 int dpll;
7459
7460 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7461
7462 assert_panel_unlocked(dev_priv, pipe);
7463
7464 dpll = I915_READ(dpll_reg);
7465 dpll |= DISPLAY_RATE_SELECT_FPA1;
7466 I915_WRITE(dpll_reg, dpll);
7467 intel_wait_for_vblank(dev, pipe);
7468 dpll = I915_READ(dpll_reg);
7469 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7470 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7471 }
7472
7473 }
7474
7475 void intel_mark_busy(struct drm_device *dev)
7476 {
7477 struct drm_i915_private *dev_priv = dev->dev_private;
7478
7479 hsw_package_c8_gpu_busy(dev_priv);
7480 i915_update_gfx_val(dev_priv);
7481 }
7482
7483 void intel_mark_idle(struct drm_device *dev)
7484 {
7485 struct drm_i915_private *dev_priv = dev->dev_private;
7486 struct drm_crtc *crtc;
7487
7488 hsw_package_c8_gpu_idle(dev_priv);
7489
7490 if (!i915_powersave)
7491 return;
7492
7493 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7494 if (!crtc->fb)
7495 continue;
7496
7497 intel_decrease_pllclock(crtc);
7498 }
7499 }
7500
7501 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7502 struct intel_ring_buffer *ring)
7503 {
7504 struct drm_device *dev = obj->base.dev;
7505 struct drm_crtc *crtc;
7506
7507 if (!i915_powersave)
7508 return;
7509
7510 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7511 if (!crtc->fb)
7512 continue;
7513
7514 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7515 continue;
7516
7517 intel_increase_pllclock(crtc);
7518 if (ring && intel_fbc_enabled(dev))
7519 ring->fbc_dirty = true;
7520 }
7521 }
7522
7523 static void intel_crtc_destroy(struct drm_crtc *crtc)
7524 {
7525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7526 struct drm_device *dev = crtc->dev;
7527 struct intel_unpin_work *work;
7528 unsigned long flags;
7529
7530 spin_lock_irqsave(&dev->event_lock, flags);
7531 work = intel_crtc->unpin_work;
7532 intel_crtc->unpin_work = NULL;
7533 spin_unlock_irqrestore(&dev->event_lock, flags);
7534
7535 if (work) {
7536 cancel_work_sync(&work->work);
7537 kfree(work);
7538 }
7539
7540 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7541
7542 drm_crtc_cleanup(crtc);
7543
7544 kfree(intel_crtc);
7545 }
7546
7547 static void intel_unpin_work_fn(struct work_struct *__work)
7548 {
7549 struct intel_unpin_work *work =
7550 container_of(__work, struct intel_unpin_work, work);
7551 struct drm_device *dev = work->crtc->dev;
7552
7553 mutex_lock(&dev->struct_mutex);
7554 intel_unpin_fb_obj(work->old_fb_obj);
7555 drm_gem_object_unreference(&work->pending_flip_obj->base);
7556 drm_gem_object_unreference(&work->old_fb_obj->base);
7557
7558 intel_update_fbc(dev);
7559 mutex_unlock(&dev->struct_mutex);
7560
7561 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7562 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7563
7564 kfree(work);
7565 }
7566
7567 static void do_intel_finish_page_flip(struct drm_device *dev,
7568 struct drm_crtc *crtc)
7569 {
7570 drm_i915_private_t *dev_priv = dev->dev_private;
7571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7572 struct intel_unpin_work *work;
7573 unsigned long flags;
7574
7575 /* Ignore early vblank irqs */
7576 if (intel_crtc == NULL)
7577 return;
7578
7579 spin_lock_irqsave(&dev->event_lock, flags);
7580 work = intel_crtc->unpin_work;
7581
7582 /* Ensure we don't miss a work->pending update ... */
7583 smp_rmb();
7584
7585 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7586 spin_unlock_irqrestore(&dev->event_lock, flags);
7587 return;
7588 }
7589
7590 /* and that the unpin work is consistent wrt ->pending. */
7591 smp_rmb();
7592
7593 intel_crtc->unpin_work = NULL;
7594
7595 if (work->event)
7596 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7597
7598 drm_vblank_put(dev, intel_crtc->pipe);
7599
7600 spin_unlock_irqrestore(&dev->event_lock, flags);
7601
7602 wake_up_all(&dev_priv->pending_flip_queue);
7603
7604 queue_work(dev_priv->wq, &work->work);
7605
7606 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7607 }
7608
7609 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7610 {
7611 drm_i915_private_t *dev_priv = dev->dev_private;
7612 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7613
7614 do_intel_finish_page_flip(dev, crtc);
7615 }
7616
7617 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7618 {
7619 drm_i915_private_t *dev_priv = dev->dev_private;
7620 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7621
7622 do_intel_finish_page_flip(dev, crtc);
7623 }
7624
7625 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7626 {
7627 drm_i915_private_t *dev_priv = dev->dev_private;
7628 struct intel_crtc *intel_crtc =
7629 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7630 unsigned long flags;
7631
7632 /* NB: An MMIO update of the plane base pointer will also
7633 * generate a page-flip completion irq, i.e. every modeset
7634 * is also accompanied by a spurious intel_prepare_page_flip().
7635 */
7636 spin_lock_irqsave(&dev->event_lock, flags);
7637 if (intel_crtc->unpin_work)
7638 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7639 spin_unlock_irqrestore(&dev->event_lock, flags);
7640 }
7641
7642 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7643 {
7644 /* Ensure that the work item is consistent when activating it ... */
7645 smp_wmb();
7646 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7647 /* and that it is marked active as soon as the irq could fire. */
7648 smp_wmb();
7649 }
7650
7651 static int intel_gen2_queue_flip(struct drm_device *dev,
7652 struct drm_crtc *crtc,
7653 struct drm_framebuffer *fb,
7654 struct drm_i915_gem_object *obj,
7655 uint32_t flags)
7656 {
7657 struct drm_i915_private *dev_priv = dev->dev_private;
7658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7659 u32 flip_mask;
7660 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7661 int ret;
7662
7663 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7664 if (ret)
7665 goto err;
7666
7667 ret = intel_ring_begin(ring, 6);
7668 if (ret)
7669 goto err_unpin;
7670
7671 /* Can't queue multiple flips, so wait for the previous
7672 * one to finish before executing the next.
7673 */
7674 if (intel_crtc->plane)
7675 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7676 else
7677 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7678 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7679 intel_ring_emit(ring, MI_NOOP);
7680 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7681 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7682 intel_ring_emit(ring, fb->pitches[0]);
7683 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7684 intel_ring_emit(ring, 0); /* aux display base address, unused */
7685
7686 intel_mark_page_flip_active(intel_crtc);
7687 intel_ring_advance(ring);
7688 return 0;
7689
7690 err_unpin:
7691 intel_unpin_fb_obj(obj);
7692 err:
7693 return ret;
7694 }
7695
7696 static int intel_gen3_queue_flip(struct drm_device *dev,
7697 struct drm_crtc *crtc,
7698 struct drm_framebuffer *fb,
7699 struct drm_i915_gem_object *obj,
7700 uint32_t flags)
7701 {
7702 struct drm_i915_private *dev_priv = dev->dev_private;
7703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7704 u32 flip_mask;
7705 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7706 int ret;
7707
7708 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7709 if (ret)
7710 goto err;
7711
7712 ret = intel_ring_begin(ring, 6);
7713 if (ret)
7714 goto err_unpin;
7715
7716 if (intel_crtc->plane)
7717 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7718 else
7719 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7720 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7721 intel_ring_emit(ring, MI_NOOP);
7722 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7723 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7724 intel_ring_emit(ring, fb->pitches[0]);
7725 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7726 intel_ring_emit(ring, MI_NOOP);
7727
7728 intel_mark_page_flip_active(intel_crtc);
7729 intel_ring_advance(ring);
7730 return 0;
7731
7732 err_unpin:
7733 intel_unpin_fb_obj(obj);
7734 err:
7735 return ret;
7736 }
7737
7738 static int intel_gen4_queue_flip(struct drm_device *dev,
7739 struct drm_crtc *crtc,
7740 struct drm_framebuffer *fb,
7741 struct drm_i915_gem_object *obj,
7742 uint32_t flags)
7743 {
7744 struct drm_i915_private *dev_priv = dev->dev_private;
7745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7746 uint32_t pf, pipesrc;
7747 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7748 int ret;
7749
7750 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7751 if (ret)
7752 goto err;
7753
7754 ret = intel_ring_begin(ring, 4);
7755 if (ret)
7756 goto err_unpin;
7757
7758 /* i965+ uses the linear or tiled offsets from the
7759 * Display Registers (which do not change across a page-flip)
7760 * so we need only reprogram the base address.
7761 */
7762 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7763 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7764 intel_ring_emit(ring, fb->pitches[0]);
7765 intel_ring_emit(ring,
7766 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7767 obj->tiling_mode);
7768
7769 /* XXX Enabling the panel-fitter across page-flip is so far
7770 * untested on non-native modes, so ignore it for now.
7771 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7772 */
7773 pf = 0;
7774 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7775 intel_ring_emit(ring, pf | pipesrc);
7776
7777 intel_mark_page_flip_active(intel_crtc);
7778 intel_ring_advance(ring);
7779 return 0;
7780
7781 err_unpin:
7782 intel_unpin_fb_obj(obj);
7783 err:
7784 return ret;
7785 }
7786
7787 static int intel_gen6_queue_flip(struct drm_device *dev,
7788 struct drm_crtc *crtc,
7789 struct drm_framebuffer *fb,
7790 struct drm_i915_gem_object *obj,
7791 uint32_t flags)
7792 {
7793 struct drm_i915_private *dev_priv = dev->dev_private;
7794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7795 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7796 uint32_t pf, pipesrc;
7797 int ret;
7798
7799 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7800 if (ret)
7801 goto err;
7802
7803 ret = intel_ring_begin(ring, 4);
7804 if (ret)
7805 goto err_unpin;
7806
7807 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7808 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7809 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7810 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7811
7812 /* Contrary to the suggestions in the documentation,
7813 * "Enable Panel Fitter" does not seem to be required when page
7814 * flipping with a non-native mode, and worse causes a normal
7815 * modeset to fail.
7816 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7817 */
7818 pf = 0;
7819 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7820 intel_ring_emit(ring, pf | pipesrc);
7821
7822 intel_mark_page_flip_active(intel_crtc);
7823 intel_ring_advance(ring);
7824 return 0;
7825
7826 err_unpin:
7827 intel_unpin_fb_obj(obj);
7828 err:
7829 return ret;
7830 }
7831
7832 static int intel_gen7_queue_flip(struct drm_device *dev,
7833 struct drm_crtc *crtc,
7834 struct drm_framebuffer *fb,
7835 struct drm_i915_gem_object *obj,
7836 uint32_t flags)
7837 {
7838 struct drm_i915_private *dev_priv = dev->dev_private;
7839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7840 struct intel_ring_buffer *ring;
7841 uint32_t plane_bit = 0;
7842 int len, ret;
7843
7844 ring = obj->ring;
7845 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7846 ring = &dev_priv->ring[BCS];
7847
7848 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7849 if (ret)
7850 goto err;
7851
7852 switch(intel_crtc->plane) {
7853 case PLANE_A:
7854 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7855 break;
7856 case PLANE_B:
7857 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7858 break;
7859 case PLANE_C:
7860 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7861 break;
7862 default:
7863 WARN_ONCE(1, "unknown plane in flip command\n");
7864 ret = -ENODEV;
7865 goto err_unpin;
7866 }
7867
7868 len = 4;
7869 if (ring->id == RCS)
7870 len += 6;
7871
7872 ret = intel_ring_begin(ring, len);
7873 if (ret)
7874 goto err_unpin;
7875
7876 /* Unmask the flip-done completion message. Note that the bspec says that
7877 * we should do this for both the BCS and RCS, and that we must not unmask
7878 * more than one flip event at any time (or ensure that one flip message
7879 * can be sent by waiting for flip-done prior to queueing new flips).
7880 * Experimentation says that BCS works despite DERRMR masking all
7881 * flip-done completion events and that unmasking all planes at once
7882 * for the RCS also doesn't appear to drop events. Setting the DERRMR
7883 * to zero does lead to lockups within MI_DISPLAY_FLIP.
7884 */
7885 if (ring->id == RCS) {
7886 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7887 intel_ring_emit(ring, DERRMR);
7888 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7889 DERRMR_PIPEB_PRI_FLIP_DONE |
7890 DERRMR_PIPEC_PRI_FLIP_DONE));
7891 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7892 intel_ring_emit(ring, DERRMR);
7893 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7894 }
7895
7896 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7897 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7898 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7899 intel_ring_emit(ring, (MI_NOOP));
7900
7901 intel_mark_page_flip_active(intel_crtc);
7902 intel_ring_advance(ring);
7903 return 0;
7904
7905 err_unpin:
7906 intel_unpin_fb_obj(obj);
7907 err:
7908 return ret;
7909 }
7910
7911 static int intel_default_queue_flip(struct drm_device *dev,
7912 struct drm_crtc *crtc,
7913 struct drm_framebuffer *fb,
7914 struct drm_i915_gem_object *obj,
7915 uint32_t flags)
7916 {
7917 return -ENODEV;
7918 }
7919
7920 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7921 struct drm_framebuffer *fb,
7922 struct drm_pending_vblank_event *event,
7923 uint32_t page_flip_flags)
7924 {
7925 struct drm_device *dev = crtc->dev;
7926 struct drm_i915_private *dev_priv = dev->dev_private;
7927 struct drm_framebuffer *old_fb = crtc->fb;
7928 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7930 struct intel_unpin_work *work;
7931 unsigned long flags;
7932 int ret;
7933
7934 /* Can't change pixel format via MI display flips. */
7935 if (fb->pixel_format != crtc->fb->pixel_format)
7936 return -EINVAL;
7937
7938 /*
7939 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7940 * Note that pitch changes could also affect these register.
7941 */
7942 if (INTEL_INFO(dev)->gen > 3 &&
7943 (fb->offsets[0] != crtc->fb->offsets[0] ||
7944 fb->pitches[0] != crtc->fb->pitches[0]))
7945 return -EINVAL;
7946
7947 work = kzalloc(sizeof *work, GFP_KERNEL);
7948 if (work == NULL)
7949 return -ENOMEM;
7950
7951 work->event = event;
7952 work->crtc = crtc;
7953 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7954 INIT_WORK(&work->work, intel_unpin_work_fn);
7955
7956 ret = drm_vblank_get(dev, intel_crtc->pipe);
7957 if (ret)
7958 goto free_work;
7959
7960 /* We borrow the event spin lock for protecting unpin_work */
7961 spin_lock_irqsave(&dev->event_lock, flags);
7962 if (intel_crtc->unpin_work) {
7963 spin_unlock_irqrestore(&dev->event_lock, flags);
7964 kfree(work);
7965 drm_vblank_put(dev, intel_crtc->pipe);
7966
7967 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7968 return -EBUSY;
7969 }
7970 intel_crtc->unpin_work = work;
7971 spin_unlock_irqrestore(&dev->event_lock, flags);
7972
7973 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7974 flush_workqueue(dev_priv->wq);
7975
7976 ret = i915_mutex_lock_interruptible(dev);
7977 if (ret)
7978 goto cleanup;
7979
7980 /* Reference the objects for the scheduled work. */
7981 drm_gem_object_reference(&work->old_fb_obj->base);
7982 drm_gem_object_reference(&obj->base);
7983
7984 crtc->fb = fb;
7985
7986 work->pending_flip_obj = obj;
7987
7988 work->enable_stall_check = true;
7989
7990 atomic_inc(&intel_crtc->unpin_work_count);
7991 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7992
7993 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
7994 if (ret)
7995 goto cleanup_pending;
7996
7997 intel_disable_fbc(dev);
7998 intel_mark_fb_busy(obj, NULL);
7999 mutex_unlock(&dev->struct_mutex);
8000
8001 trace_i915_flip_request(intel_crtc->plane, obj);
8002
8003 return 0;
8004
8005 cleanup_pending:
8006 atomic_dec(&intel_crtc->unpin_work_count);
8007 crtc->fb = old_fb;
8008 drm_gem_object_unreference(&work->old_fb_obj->base);
8009 drm_gem_object_unreference(&obj->base);
8010 mutex_unlock(&dev->struct_mutex);
8011
8012 cleanup:
8013 spin_lock_irqsave(&dev->event_lock, flags);
8014 intel_crtc->unpin_work = NULL;
8015 spin_unlock_irqrestore(&dev->event_lock, flags);
8016
8017 drm_vblank_put(dev, intel_crtc->pipe);
8018 free_work:
8019 kfree(work);
8020
8021 return ret;
8022 }
8023
8024 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8025 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8026 .load_lut = intel_crtc_load_lut,
8027 };
8028
8029 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8030 struct drm_crtc *crtc)
8031 {
8032 struct drm_device *dev;
8033 struct drm_crtc *tmp;
8034 int crtc_mask = 1;
8035
8036 WARN(!crtc, "checking null crtc?\n");
8037
8038 dev = crtc->dev;
8039
8040 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8041 if (tmp == crtc)
8042 break;
8043 crtc_mask <<= 1;
8044 }
8045
8046 if (encoder->possible_crtcs & crtc_mask)
8047 return true;
8048 return false;
8049 }
8050
8051 /**
8052 * intel_modeset_update_staged_output_state
8053 *
8054 * Updates the staged output configuration state, e.g. after we've read out the
8055 * current hw state.
8056 */
8057 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8058 {
8059 struct intel_encoder *encoder;
8060 struct intel_connector *connector;
8061
8062 list_for_each_entry(connector, &dev->mode_config.connector_list,
8063 base.head) {
8064 connector->new_encoder =
8065 to_intel_encoder(connector->base.encoder);
8066 }
8067
8068 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8069 base.head) {
8070 encoder->new_crtc =
8071 to_intel_crtc(encoder->base.crtc);
8072 }
8073 }
8074
8075 /**
8076 * intel_modeset_commit_output_state
8077 *
8078 * This function copies the stage display pipe configuration to the real one.
8079 */
8080 static void intel_modeset_commit_output_state(struct drm_device *dev)
8081 {
8082 struct intel_encoder *encoder;
8083 struct intel_connector *connector;
8084
8085 list_for_each_entry(connector, &dev->mode_config.connector_list,
8086 base.head) {
8087 connector->base.encoder = &connector->new_encoder->base;
8088 }
8089
8090 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8091 base.head) {
8092 encoder->base.crtc = &encoder->new_crtc->base;
8093 }
8094 }
8095
8096 static void
8097 connected_sink_compute_bpp(struct intel_connector * connector,
8098 struct intel_crtc_config *pipe_config)
8099 {
8100 int bpp = pipe_config->pipe_bpp;
8101
8102 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8103 connector->base.base.id,
8104 drm_get_connector_name(&connector->base));
8105
8106 /* Don't use an invalid EDID bpc value */
8107 if (connector->base.display_info.bpc &&
8108 connector->base.display_info.bpc * 3 < bpp) {
8109 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8110 bpp, connector->base.display_info.bpc*3);
8111 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8112 }
8113
8114 /* Clamp bpp to 8 on screens without EDID 1.4 */
8115 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8116 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8117 bpp);
8118 pipe_config->pipe_bpp = 24;
8119 }
8120 }
8121
8122 static int
8123 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8124 struct drm_framebuffer *fb,
8125 struct intel_crtc_config *pipe_config)
8126 {
8127 struct drm_device *dev = crtc->base.dev;
8128 struct intel_connector *connector;
8129 int bpp;
8130
8131 switch (fb->pixel_format) {
8132 case DRM_FORMAT_C8:
8133 bpp = 8*3; /* since we go through a colormap */
8134 break;
8135 case DRM_FORMAT_XRGB1555:
8136 case DRM_FORMAT_ARGB1555:
8137 /* checked in intel_framebuffer_init already */
8138 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8139 return -EINVAL;
8140 case DRM_FORMAT_RGB565:
8141 bpp = 6*3; /* min is 18bpp */
8142 break;
8143 case DRM_FORMAT_XBGR8888:
8144 case DRM_FORMAT_ABGR8888:
8145 /* checked in intel_framebuffer_init already */
8146 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8147 return -EINVAL;
8148 case DRM_FORMAT_XRGB8888:
8149 case DRM_FORMAT_ARGB8888:
8150 bpp = 8*3;
8151 break;
8152 case DRM_FORMAT_XRGB2101010:
8153 case DRM_FORMAT_ARGB2101010:
8154 case DRM_FORMAT_XBGR2101010:
8155 case DRM_FORMAT_ABGR2101010:
8156 /* checked in intel_framebuffer_init already */
8157 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8158 return -EINVAL;
8159 bpp = 10*3;
8160 break;
8161 /* TODO: gen4+ supports 16 bpc floating point, too. */
8162 default:
8163 DRM_DEBUG_KMS("unsupported depth\n");
8164 return -EINVAL;
8165 }
8166
8167 pipe_config->pipe_bpp = bpp;
8168
8169 /* Clamp display bpp to EDID value */
8170 list_for_each_entry(connector, &dev->mode_config.connector_list,
8171 base.head) {
8172 if (!connector->new_encoder ||
8173 connector->new_encoder->new_crtc != crtc)
8174 continue;
8175
8176 connected_sink_compute_bpp(connector, pipe_config);
8177 }
8178
8179 return bpp;
8180 }
8181
8182 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8183 struct intel_crtc_config *pipe_config,
8184 const char *context)
8185 {
8186 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8187 context, pipe_name(crtc->pipe));
8188
8189 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8190 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8191 pipe_config->pipe_bpp, pipe_config->dither);
8192 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8193 pipe_config->has_pch_encoder,
8194 pipe_config->fdi_lanes,
8195 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8196 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8197 pipe_config->fdi_m_n.tu);
8198 DRM_DEBUG_KMS("requested mode:\n");
8199 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8200 DRM_DEBUG_KMS("adjusted mode:\n");
8201 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8202 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8203 pipe_config->gmch_pfit.control,
8204 pipe_config->gmch_pfit.pgm_ratios,
8205 pipe_config->gmch_pfit.lvds_border_bits);
8206 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8207 pipe_config->pch_pfit.pos,
8208 pipe_config->pch_pfit.size,
8209 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8210 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8211 }
8212
8213 static bool check_encoder_cloning(struct drm_crtc *crtc)
8214 {
8215 int num_encoders = 0;
8216 bool uncloneable_encoders = false;
8217 struct intel_encoder *encoder;
8218
8219 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8220 base.head) {
8221 if (&encoder->new_crtc->base != crtc)
8222 continue;
8223
8224 num_encoders++;
8225 if (!encoder->cloneable)
8226 uncloneable_encoders = true;
8227 }
8228
8229 return !(num_encoders > 1 && uncloneable_encoders);
8230 }
8231
8232 static struct intel_crtc_config *
8233 intel_modeset_pipe_config(struct drm_crtc *crtc,
8234 struct drm_framebuffer *fb,
8235 struct drm_display_mode *mode)
8236 {
8237 struct drm_device *dev = crtc->dev;
8238 struct intel_encoder *encoder;
8239 struct intel_crtc_config *pipe_config;
8240 int plane_bpp, ret = -EINVAL;
8241 bool retry = true;
8242
8243 if (!check_encoder_cloning(crtc)) {
8244 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8245 return ERR_PTR(-EINVAL);
8246 }
8247
8248 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8249 if (!pipe_config)
8250 return ERR_PTR(-ENOMEM);
8251
8252 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8253 drm_mode_copy(&pipe_config->requested_mode, mode);
8254 pipe_config->cpu_transcoder =
8255 (enum transcoder) to_intel_crtc(crtc)->pipe;
8256 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8257
8258 /*
8259 * Sanitize sync polarity flags based on requested ones. If neither
8260 * positive or negative polarity is requested, treat this as meaning
8261 * negative polarity.
8262 */
8263 if (!(pipe_config->adjusted_mode.flags &
8264 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8265 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8266
8267 if (!(pipe_config->adjusted_mode.flags &
8268 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8269 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8270
8271 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8272 * plane pixel format and any sink constraints into account. Returns the
8273 * source plane bpp so that dithering can be selected on mismatches
8274 * after encoders and crtc also have had their say. */
8275 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8276 fb, pipe_config);
8277 if (plane_bpp < 0)
8278 goto fail;
8279
8280 encoder_retry:
8281 /* Ensure the port clock defaults are reset when retrying. */
8282 pipe_config->port_clock = 0;
8283 pipe_config->pixel_multiplier = 1;
8284
8285 /* Fill in default crtc timings, allow encoders to overwrite them. */
8286 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8287
8288 /* Pass our mode to the connectors and the CRTC to give them a chance to
8289 * adjust it according to limitations or connector properties, and also
8290 * a chance to reject the mode entirely.
8291 */
8292 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8293 base.head) {
8294
8295 if (&encoder->new_crtc->base != crtc)
8296 continue;
8297
8298 if (!(encoder->compute_config(encoder, pipe_config))) {
8299 DRM_DEBUG_KMS("Encoder config failure\n");
8300 goto fail;
8301 }
8302 }
8303
8304 /* Set default port clock if not overwritten by the encoder. Needs to be
8305 * done afterwards in case the encoder adjusts the mode. */
8306 if (!pipe_config->port_clock)
8307 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8308
8309 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8310 if (ret < 0) {
8311 DRM_DEBUG_KMS("CRTC fixup failed\n");
8312 goto fail;
8313 }
8314
8315 if (ret == RETRY) {
8316 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8317 ret = -EINVAL;
8318 goto fail;
8319 }
8320
8321 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8322 retry = false;
8323 goto encoder_retry;
8324 }
8325
8326 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8327 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8328 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8329
8330 return pipe_config;
8331 fail:
8332 kfree(pipe_config);
8333 return ERR_PTR(ret);
8334 }
8335
8336 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8337 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8338 static void
8339 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8340 unsigned *prepare_pipes, unsigned *disable_pipes)
8341 {
8342 struct intel_crtc *intel_crtc;
8343 struct drm_device *dev = crtc->dev;
8344 struct intel_encoder *encoder;
8345 struct intel_connector *connector;
8346 struct drm_crtc *tmp_crtc;
8347
8348 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8349
8350 /* Check which crtcs have changed outputs connected to them, these need
8351 * to be part of the prepare_pipes mask. We don't (yet) support global
8352 * modeset across multiple crtcs, so modeset_pipes will only have one
8353 * bit set at most. */
8354 list_for_each_entry(connector, &dev->mode_config.connector_list,
8355 base.head) {
8356 if (connector->base.encoder == &connector->new_encoder->base)
8357 continue;
8358
8359 if (connector->base.encoder) {
8360 tmp_crtc = connector->base.encoder->crtc;
8361
8362 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8363 }
8364
8365 if (connector->new_encoder)
8366 *prepare_pipes |=
8367 1 << connector->new_encoder->new_crtc->pipe;
8368 }
8369
8370 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8371 base.head) {
8372 if (encoder->base.crtc == &encoder->new_crtc->base)
8373 continue;
8374
8375 if (encoder->base.crtc) {
8376 tmp_crtc = encoder->base.crtc;
8377
8378 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8379 }
8380
8381 if (encoder->new_crtc)
8382 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8383 }
8384
8385 /* Check for any pipes that will be fully disabled ... */
8386 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8387 base.head) {
8388 bool used = false;
8389
8390 /* Don't try to disable disabled crtcs. */
8391 if (!intel_crtc->base.enabled)
8392 continue;
8393
8394 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8395 base.head) {
8396 if (encoder->new_crtc == intel_crtc)
8397 used = true;
8398 }
8399
8400 if (!used)
8401 *disable_pipes |= 1 << intel_crtc->pipe;
8402 }
8403
8404
8405 /* set_mode is also used to update properties on life display pipes. */
8406 intel_crtc = to_intel_crtc(crtc);
8407 if (crtc->enabled)
8408 *prepare_pipes |= 1 << intel_crtc->pipe;
8409
8410 /*
8411 * For simplicity do a full modeset on any pipe where the output routing
8412 * changed. We could be more clever, but that would require us to be
8413 * more careful with calling the relevant encoder->mode_set functions.
8414 */
8415 if (*prepare_pipes)
8416 *modeset_pipes = *prepare_pipes;
8417
8418 /* ... and mask these out. */
8419 *modeset_pipes &= ~(*disable_pipes);
8420 *prepare_pipes &= ~(*disable_pipes);
8421
8422 /*
8423 * HACK: We don't (yet) fully support global modesets. intel_set_config
8424 * obies this rule, but the modeset restore mode of
8425 * intel_modeset_setup_hw_state does not.
8426 */
8427 *modeset_pipes &= 1 << intel_crtc->pipe;
8428 *prepare_pipes &= 1 << intel_crtc->pipe;
8429
8430 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8431 *modeset_pipes, *prepare_pipes, *disable_pipes);
8432 }
8433
8434 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8435 {
8436 struct drm_encoder *encoder;
8437 struct drm_device *dev = crtc->dev;
8438
8439 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8440 if (encoder->crtc == crtc)
8441 return true;
8442
8443 return false;
8444 }
8445
8446 static void
8447 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8448 {
8449 struct intel_encoder *intel_encoder;
8450 struct intel_crtc *intel_crtc;
8451 struct drm_connector *connector;
8452
8453 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8454 base.head) {
8455 if (!intel_encoder->base.crtc)
8456 continue;
8457
8458 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8459
8460 if (prepare_pipes & (1 << intel_crtc->pipe))
8461 intel_encoder->connectors_active = false;
8462 }
8463
8464 intel_modeset_commit_output_state(dev);
8465
8466 /* Update computed state. */
8467 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8468 base.head) {
8469 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8470 }
8471
8472 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8473 if (!connector->encoder || !connector->encoder->crtc)
8474 continue;
8475
8476 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8477
8478 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8479 struct drm_property *dpms_property =
8480 dev->mode_config.dpms_property;
8481
8482 connector->dpms = DRM_MODE_DPMS_ON;
8483 drm_object_property_set_value(&connector->base,
8484 dpms_property,
8485 DRM_MODE_DPMS_ON);
8486
8487 intel_encoder = to_intel_encoder(connector->encoder);
8488 intel_encoder->connectors_active = true;
8489 }
8490 }
8491
8492 }
8493
8494 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8495 struct intel_crtc_config *new)
8496 {
8497 int clock1, clock2, diff;
8498
8499 clock1 = cur->adjusted_mode.clock;
8500 clock2 = new->adjusted_mode.clock;
8501
8502 if (clock1 == clock2)
8503 return true;
8504
8505 if (!clock1 || !clock2)
8506 return false;
8507
8508 diff = abs(clock1 - clock2);
8509
8510 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8511 return true;
8512
8513 return false;
8514 }
8515
8516 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8517 list_for_each_entry((intel_crtc), \
8518 &(dev)->mode_config.crtc_list, \
8519 base.head) \
8520 if (mask & (1 <<(intel_crtc)->pipe))
8521
8522 static bool
8523 intel_pipe_config_compare(struct drm_device *dev,
8524 struct intel_crtc_config *current_config,
8525 struct intel_crtc_config *pipe_config)
8526 {
8527 #define PIPE_CONF_CHECK_X(name) \
8528 if (current_config->name != pipe_config->name) { \
8529 DRM_ERROR("mismatch in " #name " " \
8530 "(expected 0x%08x, found 0x%08x)\n", \
8531 current_config->name, \
8532 pipe_config->name); \
8533 return false; \
8534 }
8535
8536 #define PIPE_CONF_CHECK_I(name) \
8537 if (current_config->name != pipe_config->name) { \
8538 DRM_ERROR("mismatch in " #name " " \
8539 "(expected %i, found %i)\n", \
8540 current_config->name, \
8541 pipe_config->name); \
8542 return false; \
8543 }
8544
8545 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8546 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8547 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8548 "(expected %i, found %i)\n", \
8549 current_config->name & (mask), \
8550 pipe_config->name & (mask)); \
8551 return false; \
8552 }
8553
8554 #define PIPE_CONF_QUIRK(quirk) \
8555 ((current_config->quirks | pipe_config->quirks) & (quirk))
8556
8557 PIPE_CONF_CHECK_I(cpu_transcoder);
8558
8559 PIPE_CONF_CHECK_I(has_pch_encoder);
8560 PIPE_CONF_CHECK_I(fdi_lanes);
8561 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8562 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8563 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8564 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8565 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8566
8567 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8568 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8569 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8570 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8571 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8572 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8573
8574 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8575 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8576 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8577 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8578 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8579 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8580
8581 PIPE_CONF_CHECK_I(pixel_multiplier);
8582
8583 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8584 DRM_MODE_FLAG_INTERLACE);
8585
8586 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8587 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8588 DRM_MODE_FLAG_PHSYNC);
8589 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8590 DRM_MODE_FLAG_NHSYNC);
8591 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8592 DRM_MODE_FLAG_PVSYNC);
8593 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8594 DRM_MODE_FLAG_NVSYNC);
8595 }
8596
8597 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8598 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8599
8600 PIPE_CONF_CHECK_I(gmch_pfit.control);
8601 /* pfit ratios are autocomputed by the hw on gen4+ */
8602 if (INTEL_INFO(dev)->gen < 4)
8603 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8604 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8605 PIPE_CONF_CHECK_I(pch_pfit.enabled);
8606 if (current_config->pch_pfit.enabled) {
8607 PIPE_CONF_CHECK_I(pch_pfit.pos);
8608 PIPE_CONF_CHECK_I(pch_pfit.size);
8609 }
8610
8611 PIPE_CONF_CHECK_I(ips_enabled);
8612
8613 PIPE_CONF_CHECK_I(shared_dpll);
8614 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8615 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8616 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8617 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8618
8619 #undef PIPE_CONF_CHECK_X
8620 #undef PIPE_CONF_CHECK_I
8621 #undef PIPE_CONF_CHECK_FLAGS
8622 #undef PIPE_CONF_QUIRK
8623
8624 if (!IS_HASWELL(dev)) {
8625 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8626 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8627 current_config->adjusted_mode.clock,
8628 pipe_config->adjusted_mode.clock);
8629 return false;
8630 }
8631 }
8632
8633 return true;
8634 }
8635
8636 static void
8637 check_connector_state(struct drm_device *dev)
8638 {
8639 struct intel_connector *connector;
8640
8641 list_for_each_entry(connector, &dev->mode_config.connector_list,
8642 base.head) {
8643 /* This also checks the encoder/connector hw state with the
8644 * ->get_hw_state callbacks. */
8645 intel_connector_check_state(connector);
8646
8647 WARN(&connector->new_encoder->base != connector->base.encoder,
8648 "connector's staged encoder doesn't match current encoder\n");
8649 }
8650 }
8651
8652 static void
8653 check_encoder_state(struct drm_device *dev)
8654 {
8655 struct intel_encoder *encoder;
8656 struct intel_connector *connector;
8657
8658 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8659 base.head) {
8660 bool enabled = false;
8661 bool active = false;
8662 enum pipe pipe, tracked_pipe;
8663
8664 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8665 encoder->base.base.id,
8666 drm_get_encoder_name(&encoder->base));
8667
8668 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8669 "encoder's stage crtc doesn't match current crtc\n");
8670 WARN(encoder->connectors_active && !encoder->base.crtc,
8671 "encoder's active_connectors set, but no crtc\n");
8672
8673 list_for_each_entry(connector, &dev->mode_config.connector_list,
8674 base.head) {
8675 if (connector->base.encoder != &encoder->base)
8676 continue;
8677 enabled = true;
8678 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8679 active = true;
8680 }
8681 WARN(!!encoder->base.crtc != enabled,
8682 "encoder's enabled state mismatch "
8683 "(expected %i, found %i)\n",
8684 !!encoder->base.crtc, enabled);
8685 WARN(active && !encoder->base.crtc,
8686 "active encoder with no crtc\n");
8687
8688 WARN(encoder->connectors_active != active,
8689 "encoder's computed active state doesn't match tracked active state "
8690 "(expected %i, found %i)\n", active, encoder->connectors_active);
8691
8692 active = encoder->get_hw_state(encoder, &pipe);
8693 WARN(active != encoder->connectors_active,
8694 "encoder's hw state doesn't match sw tracking "
8695 "(expected %i, found %i)\n",
8696 encoder->connectors_active, active);
8697
8698 if (!encoder->base.crtc)
8699 continue;
8700
8701 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8702 WARN(active && pipe != tracked_pipe,
8703 "active encoder's pipe doesn't match"
8704 "(expected %i, found %i)\n",
8705 tracked_pipe, pipe);
8706
8707 }
8708 }
8709
8710 static void
8711 check_crtc_state(struct drm_device *dev)
8712 {
8713 drm_i915_private_t *dev_priv = dev->dev_private;
8714 struct intel_crtc *crtc;
8715 struct intel_encoder *encoder;
8716 struct intel_crtc_config pipe_config;
8717
8718 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8719 base.head) {
8720 bool enabled = false;
8721 bool active = false;
8722
8723 memset(&pipe_config, 0, sizeof(pipe_config));
8724
8725 DRM_DEBUG_KMS("[CRTC:%d]\n",
8726 crtc->base.base.id);
8727
8728 WARN(crtc->active && !crtc->base.enabled,
8729 "active crtc, but not enabled in sw tracking\n");
8730
8731 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8732 base.head) {
8733 if (encoder->base.crtc != &crtc->base)
8734 continue;
8735 enabled = true;
8736 if (encoder->connectors_active)
8737 active = true;
8738 }
8739
8740 WARN(active != crtc->active,
8741 "crtc's computed active state doesn't match tracked active state "
8742 "(expected %i, found %i)\n", active, crtc->active);
8743 WARN(enabled != crtc->base.enabled,
8744 "crtc's computed enabled state doesn't match tracked enabled state "
8745 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8746
8747 active = dev_priv->display.get_pipe_config(crtc,
8748 &pipe_config);
8749
8750 /* hw state is inconsistent with the pipe A quirk */
8751 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8752 active = crtc->active;
8753
8754 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8755 base.head) {
8756 enum pipe pipe;
8757 if (encoder->base.crtc != &crtc->base)
8758 continue;
8759 if (encoder->get_config &&
8760 encoder->get_hw_state(encoder, &pipe))
8761 encoder->get_config(encoder, &pipe_config);
8762 }
8763
8764 if (dev_priv->display.get_clock)
8765 dev_priv->display.get_clock(crtc, &pipe_config);
8766
8767 WARN(crtc->active != active,
8768 "crtc active state doesn't match with hw state "
8769 "(expected %i, found %i)\n", crtc->active, active);
8770
8771 if (active &&
8772 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8773 WARN(1, "pipe state doesn't match!\n");
8774 intel_dump_pipe_config(crtc, &pipe_config,
8775 "[hw state]");
8776 intel_dump_pipe_config(crtc, &crtc->config,
8777 "[sw state]");
8778 }
8779 }
8780 }
8781
8782 static void
8783 check_shared_dpll_state(struct drm_device *dev)
8784 {
8785 drm_i915_private_t *dev_priv = dev->dev_private;
8786 struct intel_crtc *crtc;
8787 struct intel_dpll_hw_state dpll_hw_state;
8788 int i;
8789
8790 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8791 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8792 int enabled_crtcs = 0, active_crtcs = 0;
8793 bool active;
8794
8795 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8796
8797 DRM_DEBUG_KMS("%s\n", pll->name);
8798
8799 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8800
8801 WARN(pll->active > pll->refcount,
8802 "more active pll users than references: %i vs %i\n",
8803 pll->active, pll->refcount);
8804 WARN(pll->active && !pll->on,
8805 "pll in active use but not on in sw tracking\n");
8806 WARN(pll->on && !pll->active,
8807 "pll in on but not on in use in sw tracking\n");
8808 WARN(pll->on != active,
8809 "pll on state mismatch (expected %i, found %i)\n",
8810 pll->on, active);
8811
8812 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8813 base.head) {
8814 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8815 enabled_crtcs++;
8816 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8817 active_crtcs++;
8818 }
8819 WARN(pll->active != active_crtcs,
8820 "pll active crtcs mismatch (expected %i, found %i)\n",
8821 pll->active, active_crtcs);
8822 WARN(pll->refcount != enabled_crtcs,
8823 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8824 pll->refcount, enabled_crtcs);
8825
8826 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8827 sizeof(dpll_hw_state)),
8828 "pll hw state mismatch\n");
8829 }
8830 }
8831
8832 void
8833 intel_modeset_check_state(struct drm_device *dev)
8834 {
8835 check_connector_state(dev);
8836 check_encoder_state(dev);
8837 check_crtc_state(dev);
8838 check_shared_dpll_state(dev);
8839 }
8840
8841 static int __intel_set_mode(struct drm_crtc *crtc,
8842 struct drm_display_mode *mode,
8843 int x, int y, struct drm_framebuffer *fb)
8844 {
8845 struct drm_device *dev = crtc->dev;
8846 drm_i915_private_t *dev_priv = dev->dev_private;
8847 struct drm_display_mode *saved_mode, *saved_hwmode;
8848 struct intel_crtc_config *pipe_config = NULL;
8849 struct intel_crtc *intel_crtc;
8850 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8851 int ret = 0;
8852
8853 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8854 if (!saved_mode)
8855 return -ENOMEM;
8856 saved_hwmode = saved_mode + 1;
8857
8858 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8859 &prepare_pipes, &disable_pipes);
8860
8861 *saved_hwmode = crtc->hwmode;
8862 *saved_mode = crtc->mode;
8863
8864 /* Hack: Because we don't (yet) support global modeset on multiple
8865 * crtcs, we don't keep track of the new mode for more than one crtc.
8866 * Hence simply check whether any bit is set in modeset_pipes in all the
8867 * pieces of code that are not yet converted to deal with mutliple crtcs
8868 * changing their mode at the same time. */
8869 if (modeset_pipes) {
8870 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8871 if (IS_ERR(pipe_config)) {
8872 ret = PTR_ERR(pipe_config);
8873 pipe_config = NULL;
8874
8875 goto out;
8876 }
8877 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8878 "[modeset]");
8879 }
8880
8881 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8882 intel_crtc_disable(&intel_crtc->base);
8883
8884 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8885 if (intel_crtc->base.enabled)
8886 dev_priv->display.crtc_disable(&intel_crtc->base);
8887 }
8888
8889 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8890 * to set it here already despite that we pass it down the callchain.
8891 */
8892 if (modeset_pipes) {
8893 crtc->mode = *mode;
8894 /* mode_set/enable/disable functions rely on a correct pipe
8895 * config. */
8896 to_intel_crtc(crtc)->config = *pipe_config;
8897 }
8898
8899 /* Only after disabling all output pipelines that will be changed can we
8900 * update the the output configuration. */
8901 intel_modeset_update_state(dev, prepare_pipes);
8902
8903 if (dev_priv->display.modeset_global_resources)
8904 dev_priv->display.modeset_global_resources(dev);
8905
8906 /* Set up the DPLL and any encoders state that needs to adjust or depend
8907 * on the DPLL.
8908 */
8909 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8910 ret = intel_crtc_mode_set(&intel_crtc->base,
8911 x, y, fb);
8912 if (ret)
8913 goto done;
8914 }
8915
8916 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8917 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8918 dev_priv->display.crtc_enable(&intel_crtc->base);
8919
8920 if (modeset_pipes) {
8921 /* Store real post-adjustment hardware mode. */
8922 crtc->hwmode = pipe_config->adjusted_mode;
8923
8924 /* Calculate and store various constants which
8925 * are later needed by vblank and swap-completion
8926 * timestamping. They are derived from true hwmode.
8927 */
8928 drm_calc_timestamping_constants(crtc);
8929 }
8930
8931 /* FIXME: add subpixel order */
8932 done:
8933 if (ret && crtc->enabled) {
8934 crtc->hwmode = *saved_hwmode;
8935 crtc->mode = *saved_mode;
8936 }
8937
8938 out:
8939 kfree(pipe_config);
8940 kfree(saved_mode);
8941 return ret;
8942 }
8943
8944 static int intel_set_mode(struct drm_crtc *crtc,
8945 struct drm_display_mode *mode,
8946 int x, int y, struct drm_framebuffer *fb)
8947 {
8948 int ret;
8949
8950 ret = __intel_set_mode(crtc, mode, x, y, fb);
8951
8952 if (ret == 0)
8953 intel_modeset_check_state(crtc->dev);
8954
8955 return ret;
8956 }
8957
8958 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8959 {
8960 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8961 }
8962
8963 #undef for_each_intel_crtc_masked
8964
8965 static void intel_set_config_free(struct intel_set_config *config)
8966 {
8967 if (!config)
8968 return;
8969
8970 kfree(config->save_connector_encoders);
8971 kfree(config->save_encoder_crtcs);
8972 kfree(config);
8973 }
8974
8975 static int intel_set_config_save_state(struct drm_device *dev,
8976 struct intel_set_config *config)
8977 {
8978 struct drm_encoder *encoder;
8979 struct drm_connector *connector;
8980 int count;
8981
8982 config->save_encoder_crtcs =
8983 kcalloc(dev->mode_config.num_encoder,
8984 sizeof(struct drm_crtc *), GFP_KERNEL);
8985 if (!config->save_encoder_crtcs)
8986 return -ENOMEM;
8987
8988 config->save_connector_encoders =
8989 kcalloc(dev->mode_config.num_connector,
8990 sizeof(struct drm_encoder *), GFP_KERNEL);
8991 if (!config->save_connector_encoders)
8992 return -ENOMEM;
8993
8994 /* Copy data. Note that driver private data is not affected.
8995 * Should anything bad happen only the expected state is
8996 * restored, not the drivers personal bookkeeping.
8997 */
8998 count = 0;
8999 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9000 config->save_encoder_crtcs[count++] = encoder->crtc;
9001 }
9002
9003 count = 0;
9004 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9005 config->save_connector_encoders[count++] = connector->encoder;
9006 }
9007
9008 return 0;
9009 }
9010
9011 static void intel_set_config_restore_state(struct drm_device *dev,
9012 struct intel_set_config *config)
9013 {
9014 struct intel_encoder *encoder;
9015 struct intel_connector *connector;
9016 int count;
9017
9018 count = 0;
9019 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9020 encoder->new_crtc =
9021 to_intel_crtc(config->save_encoder_crtcs[count++]);
9022 }
9023
9024 count = 0;
9025 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9026 connector->new_encoder =
9027 to_intel_encoder(config->save_connector_encoders[count++]);
9028 }
9029 }
9030
9031 static bool
9032 is_crtc_connector_off(struct drm_mode_set *set)
9033 {
9034 int i;
9035
9036 if (set->num_connectors == 0)
9037 return false;
9038
9039 if (WARN_ON(set->connectors == NULL))
9040 return false;
9041
9042 for (i = 0; i < set->num_connectors; i++)
9043 if (set->connectors[i]->encoder &&
9044 set->connectors[i]->encoder->crtc == set->crtc &&
9045 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9046 return true;
9047
9048 return false;
9049 }
9050
9051 static void
9052 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9053 struct intel_set_config *config)
9054 {
9055
9056 /* We should be able to check here if the fb has the same properties
9057 * and then just flip_or_move it */
9058 if (is_crtc_connector_off(set)) {
9059 config->mode_changed = true;
9060 } else if (set->crtc->fb != set->fb) {
9061 /* If we have no fb then treat it as a full mode set */
9062 if (set->crtc->fb == NULL) {
9063 struct intel_crtc *intel_crtc =
9064 to_intel_crtc(set->crtc);
9065
9066 if (intel_crtc->active && i915_fastboot) {
9067 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9068 config->fb_changed = true;
9069 } else {
9070 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9071 config->mode_changed = true;
9072 }
9073 } else if (set->fb == NULL) {
9074 config->mode_changed = true;
9075 } else if (set->fb->pixel_format !=
9076 set->crtc->fb->pixel_format) {
9077 config->mode_changed = true;
9078 } else {
9079 config->fb_changed = true;
9080 }
9081 }
9082
9083 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9084 config->fb_changed = true;
9085
9086 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9087 DRM_DEBUG_KMS("modes are different, full mode set\n");
9088 drm_mode_debug_printmodeline(&set->crtc->mode);
9089 drm_mode_debug_printmodeline(set->mode);
9090 config->mode_changed = true;
9091 }
9092
9093 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9094 set->crtc->base.id, config->mode_changed, config->fb_changed);
9095 }
9096
9097 static int
9098 intel_modeset_stage_output_state(struct drm_device *dev,
9099 struct drm_mode_set *set,
9100 struct intel_set_config *config)
9101 {
9102 struct drm_crtc *new_crtc;
9103 struct intel_connector *connector;
9104 struct intel_encoder *encoder;
9105 int ro;
9106
9107 /* The upper layers ensure that we either disable a crtc or have a list
9108 * of connectors. For paranoia, double-check this. */
9109 WARN_ON(!set->fb && (set->num_connectors != 0));
9110 WARN_ON(set->fb && (set->num_connectors == 0));
9111
9112 list_for_each_entry(connector, &dev->mode_config.connector_list,
9113 base.head) {
9114 /* Otherwise traverse passed in connector list and get encoders
9115 * for them. */
9116 for (ro = 0; ro < set->num_connectors; ro++) {
9117 if (set->connectors[ro] == &connector->base) {
9118 connector->new_encoder = connector->encoder;
9119 break;
9120 }
9121 }
9122
9123 /* If we disable the crtc, disable all its connectors. Also, if
9124 * the connector is on the changing crtc but not on the new
9125 * connector list, disable it. */
9126 if ((!set->fb || ro == set->num_connectors) &&
9127 connector->base.encoder &&
9128 connector->base.encoder->crtc == set->crtc) {
9129 connector->new_encoder = NULL;
9130
9131 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9132 connector->base.base.id,
9133 drm_get_connector_name(&connector->base));
9134 }
9135
9136
9137 if (&connector->new_encoder->base != connector->base.encoder) {
9138 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9139 config->mode_changed = true;
9140 }
9141 }
9142 /* connector->new_encoder is now updated for all connectors. */
9143
9144 /* Update crtc of enabled connectors. */
9145 list_for_each_entry(connector, &dev->mode_config.connector_list,
9146 base.head) {
9147 if (!connector->new_encoder)
9148 continue;
9149
9150 new_crtc = connector->new_encoder->base.crtc;
9151
9152 for (ro = 0; ro < set->num_connectors; ro++) {
9153 if (set->connectors[ro] == &connector->base)
9154 new_crtc = set->crtc;
9155 }
9156
9157 /* Make sure the new CRTC will work with the encoder */
9158 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9159 new_crtc)) {
9160 return -EINVAL;
9161 }
9162 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9163
9164 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9165 connector->base.base.id,
9166 drm_get_connector_name(&connector->base),
9167 new_crtc->base.id);
9168 }
9169
9170 /* Check for any encoders that needs to be disabled. */
9171 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9172 base.head) {
9173 list_for_each_entry(connector,
9174 &dev->mode_config.connector_list,
9175 base.head) {
9176 if (connector->new_encoder == encoder) {
9177 WARN_ON(!connector->new_encoder->new_crtc);
9178
9179 goto next_encoder;
9180 }
9181 }
9182 encoder->new_crtc = NULL;
9183 next_encoder:
9184 /* Only now check for crtc changes so we don't miss encoders
9185 * that will be disabled. */
9186 if (&encoder->new_crtc->base != encoder->base.crtc) {
9187 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9188 config->mode_changed = true;
9189 }
9190 }
9191 /* Now we've also updated encoder->new_crtc for all encoders. */
9192
9193 return 0;
9194 }
9195
9196 static int intel_crtc_set_config(struct drm_mode_set *set)
9197 {
9198 struct drm_device *dev;
9199 struct drm_mode_set save_set;
9200 struct intel_set_config *config;
9201 int ret;
9202
9203 BUG_ON(!set);
9204 BUG_ON(!set->crtc);
9205 BUG_ON(!set->crtc->helper_private);
9206
9207 /* Enforce sane interface api - has been abused by the fb helper. */
9208 BUG_ON(!set->mode && set->fb);
9209 BUG_ON(set->fb && set->num_connectors == 0);
9210
9211 if (set->fb) {
9212 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9213 set->crtc->base.id, set->fb->base.id,
9214 (int)set->num_connectors, set->x, set->y);
9215 } else {
9216 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9217 }
9218
9219 dev = set->crtc->dev;
9220
9221 ret = -ENOMEM;
9222 config = kzalloc(sizeof(*config), GFP_KERNEL);
9223 if (!config)
9224 goto out_config;
9225
9226 ret = intel_set_config_save_state(dev, config);
9227 if (ret)
9228 goto out_config;
9229
9230 save_set.crtc = set->crtc;
9231 save_set.mode = &set->crtc->mode;
9232 save_set.x = set->crtc->x;
9233 save_set.y = set->crtc->y;
9234 save_set.fb = set->crtc->fb;
9235
9236 /* Compute whether we need a full modeset, only an fb base update or no
9237 * change at all. In the future we might also check whether only the
9238 * mode changed, e.g. for LVDS where we only change the panel fitter in
9239 * such cases. */
9240 intel_set_config_compute_mode_changes(set, config);
9241
9242 ret = intel_modeset_stage_output_state(dev, set, config);
9243 if (ret)
9244 goto fail;
9245
9246 if (config->mode_changed) {
9247 ret = intel_set_mode(set->crtc, set->mode,
9248 set->x, set->y, set->fb);
9249 } else if (config->fb_changed) {
9250 intel_crtc_wait_for_pending_flips(set->crtc);
9251
9252 ret = intel_pipe_set_base(set->crtc,
9253 set->x, set->y, set->fb);
9254 }
9255
9256 if (ret) {
9257 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9258 set->crtc->base.id, ret);
9259 fail:
9260 intel_set_config_restore_state(dev, config);
9261
9262 /* Try to restore the config */
9263 if (config->mode_changed &&
9264 intel_set_mode(save_set.crtc, save_set.mode,
9265 save_set.x, save_set.y, save_set.fb))
9266 DRM_ERROR("failed to restore config after modeset failure\n");
9267 }
9268
9269 out_config:
9270 intel_set_config_free(config);
9271 return ret;
9272 }
9273
9274 static const struct drm_crtc_funcs intel_crtc_funcs = {
9275 .cursor_set = intel_crtc_cursor_set,
9276 .cursor_move = intel_crtc_cursor_move,
9277 .gamma_set = intel_crtc_gamma_set,
9278 .set_config = intel_crtc_set_config,
9279 .destroy = intel_crtc_destroy,
9280 .page_flip = intel_crtc_page_flip,
9281 };
9282
9283 static void intel_cpu_pll_init(struct drm_device *dev)
9284 {
9285 if (HAS_DDI(dev))
9286 intel_ddi_pll_init(dev);
9287 }
9288
9289 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9290 struct intel_shared_dpll *pll,
9291 struct intel_dpll_hw_state *hw_state)
9292 {
9293 uint32_t val;
9294
9295 val = I915_READ(PCH_DPLL(pll->id));
9296 hw_state->dpll = val;
9297 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9298 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9299
9300 return val & DPLL_VCO_ENABLE;
9301 }
9302
9303 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9304 struct intel_shared_dpll *pll)
9305 {
9306 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9307 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9308 }
9309
9310 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9311 struct intel_shared_dpll *pll)
9312 {
9313 /* PCH refclock must be enabled first */
9314 assert_pch_refclk_enabled(dev_priv);
9315
9316 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9317
9318 /* Wait for the clocks to stabilize. */
9319 POSTING_READ(PCH_DPLL(pll->id));
9320 udelay(150);
9321
9322 /* The pixel multiplier can only be updated once the
9323 * DPLL is enabled and the clocks are stable.
9324 *
9325 * So write it again.
9326 */
9327 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9328 POSTING_READ(PCH_DPLL(pll->id));
9329 udelay(200);
9330 }
9331
9332 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9333 struct intel_shared_dpll *pll)
9334 {
9335 struct drm_device *dev = dev_priv->dev;
9336 struct intel_crtc *crtc;
9337
9338 /* Make sure no transcoder isn't still depending on us. */
9339 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9340 if (intel_crtc_to_shared_dpll(crtc) == pll)
9341 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9342 }
9343
9344 I915_WRITE(PCH_DPLL(pll->id), 0);
9345 POSTING_READ(PCH_DPLL(pll->id));
9346 udelay(200);
9347 }
9348
9349 static char *ibx_pch_dpll_names[] = {
9350 "PCH DPLL A",
9351 "PCH DPLL B",
9352 };
9353
9354 static void ibx_pch_dpll_init(struct drm_device *dev)
9355 {
9356 struct drm_i915_private *dev_priv = dev->dev_private;
9357 int i;
9358
9359 dev_priv->num_shared_dpll = 2;
9360
9361 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9362 dev_priv->shared_dplls[i].id = i;
9363 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9364 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9365 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9366 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9367 dev_priv->shared_dplls[i].get_hw_state =
9368 ibx_pch_dpll_get_hw_state;
9369 }
9370 }
9371
9372 static void intel_shared_dpll_init(struct drm_device *dev)
9373 {
9374 struct drm_i915_private *dev_priv = dev->dev_private;
9375
9376 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9377 ibx_pch_dpll_init(dev);
9378 else
9379 dev_priv->num_shared_dpll = 0;
9380
9381 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9382 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9383 dev_priv->num_shared_dpll);
9384 }
9385
9386 static void intel_crtc_init(struct drm_device *dev, int pipe)
9387 {
9388 drm_i915_private_t *dev_priv = dev->dev_private;
9389 struct intel_crtc *intel_crtc;
9390 int i;
9391
9392 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9393 if (intel_crtc == NULL)
9394 return;
9395
9396 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9397
9398 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9399 for (i = 0; i < 256; i++) {
9400 intel_crtc->lut_r[i] = i;
9401 intel_crtc->lut_g[i] = i;
9402 intel_crtc->lut_b[i] = i;
9403 }
9404
9405 /* Swap pipes & planes for FBC on pre-965 */
9406 intel_crtc->pipe = pipe;
9407 intel_crtc->plane = pipe;
9408 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9409 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9410 intel_crtc->plane = !pipe;
9411 }
9412
9413 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9414 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9415 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9416 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9417
9418 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9419 }
9420
9421 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9422 struct drm_file *file)
9423 {
9424 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9425 struct drm_mode_object *drmmode_obj;
9426 struct intel_crtc *crtc;
9427
9428 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9429 return -ENODEV;
9430
9431 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9432 DRM_MODE_OBJECT_CRTC);
9433
9434 if (!drmmode_obj) {
9435 DRM_ERROR("no such CRTC id\n");
9436 return -EINVAL;
9437 }
9438
9439 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9440 pipe_from_crtc_id->pipe = crtc->pipe;
9441
9442 return 0;
9443 }
9444
9445 static int intel_encoder_clones(struct intel_encoder *encoder)
9446 {
9447 struct drm_device *dev = encoder->base.dev;
9448 struct intel_encoder *source_encoder;
9449 int index_mask = 0;
9450 int entry = 0;
9451
9452 list_for_each_entry(source_encoder,
9453 &dev->mode_config.encoder_list, base.head) {
9454
9455 if (encoder == source_encoder)
9456 index_mask |= (1 << entry);
9457
9458 /* Intel hw has only one MUX where enocoders could be cloned. */
9459 if (encoder->cloneable && source_encoder->cloneable)
9460 index_mask |= (1 << entry);
9461
9462 entry++;
9463 }
9464
9465 return index_mask;
9466 }
9467
9468 static bool has_edp_a(struct drm_device *dev)
9469 {
9470 struct drm_i915_private *dev_priv = dev->dev_private;
9471
9472 if (!IS_MOBILE(dev))
9473 return false;
9474
9475 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9476 return false;
9477
9478 if (IS_GEN5(dev) &&
9479 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9480 return false;
9481
9482 return true;
9483 }
9484
9485 static void intel_setup_outputs(struct drm_device *dev)
9486 {
9487 struct drm_i915_private *dev_priv = dev->dev_private;
9488 struct intel_encoder *encoder;
9489 bool dpd_is_edp = false;
9490
9491 intel_lvds_init(dev);
9492
9493 if (!IS_ULT(dev))
9494 intel_crt_init(dev);
9495
9496 if (HAS_DDI(dev)) {
9497 int found;
9498
9499 /* Haswell uses DDI functions to detect digital outputs */
9500 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9501 /* DDI A only supports eDP */
9502 if (found)
9503 intel_ddi_init(dev, PORT_A);
9504
9505 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9506 * register */
9507 found = I915_READ(SFUSE_STRAP);
9508
9509 if (found & SFUSE_STRAP_DDIB_DETECTED)
9510 intel_ddi_init(dev, PORT_B);
9511 if (found & SFUSE_STRAP_DDIC_DETECTED)
9512 intel_ddi_init(dev, PORT_C);
9513 if (found & SFUSE_STRAP_DDID_DETECTED)
9514 intel_ddi_init(dev, PORT_D);
9515 } else if (HAS_PCH_SPLIT(dev)) {
9516 int found;
9517 dpd_is_edp = intel_dpd_is_edp(dev);
9518
9519 if (has_edp_a(dev))
9520 intel_dp_init(dev, DP_A, PORT_A);
9521
9522 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9523 /* PCH SDVOB multiplex with HDMIB */
9524 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9525 if (!found)
9526 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9527 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9528 intel_dp_init(dev, PCH_DP_B, PORT_B);
9529 }
9530
9531 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9532 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9533
9534 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9535 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9536
9537 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9538 intel_dp_init(dev, PCH_DP_C, PORT_C);
9539
9540 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9541 intel_dp_init(dev, PCH_DP_D, PORT_D);
9542 } else if (IS_VALLEYVIEW(dev)) {
9543 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9544 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9545 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9546 PORT_C);
9547 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9548 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9549 PORT_C);
9550 }
9551
9552 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9553 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9554 PORT_B);
9555 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9556 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9557 }
9558 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9559 bool found = false;
9560
9561 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9562 DRM_DEBUG_KMS("probing SDVOB\n");
9563 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9564 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9565 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9566 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9567 }
9568
9569 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9570 intel_dp_init(dev, DP_B, PORT_B);
9571 }
9572
9573 /* Before G4X SDVOC doesn't have its own detect register */
9574
9575 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9576 DRM_DEBUG_KMS("probing SDVOC\n");
9577 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9578 }
9579
9580 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9581
9582 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9583 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9584 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9585 }
9586 if (SUPPORTS_INTEGRATED_DP(dev))
9587 intel_dp_init(dev, DP_C, PORT_C);
9588 }
9589
9590 if (SUPPORTS_INTEGRATED_DP(dev) &&
9591 (I915_READ(DP_D) & DP_DETECTED))
9592 intel_dp_init(dev, DP_D, PORT_D);
9593 } else if (IS_GEN2(dev))
9594 intel_dvo_init(dev);
9595
9596 if (SUPPORTS_TV(dev))
9597 intel_tv_init(dev);
9598
9599 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9600 encoder->base.possible_crtcs = encoder->crtc_mask;
9601 encoder->base.possible_clones =
9602 intel_encoder_clones(encoder);
9603 }
9604
9605 intel_init_pch_refclk(dev);
9606
9607 drm_helper_move_panel_connectors_to_head(dev);
9608 }
9609
9610 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9611 {
9612 drm_framebuffer_cleanup(&fb->base);
9613 drm_gem_object_unreference_unlocked(&fb->obj->base);
9614 }
9615
9616 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9617 {
9618 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9619
9620 intel_framebuffer_fini(intel_fb);
9621 kfree(intel_fb);
9622 }
9623
9624 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9625 struct drm_file *file,
9626 unsigned int *handle)
9627 {
9628 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9629 struct drm_i915_gem_object *obj = intel_fb->obj;
9630
9631 return drm_gem_handle_create(file, &obj->base, handle);
9632 }
9633
9634 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9635 .destroy = intel_user_framebuffer_destroy,
9636 .create_handle = intel_user_framebuffer_create_handle,
9637 };
9638
9639 int intel_framebuffer_init(struct drm_device *dev,
9640 struct intel_framebuffer *intel_fb,
9641 struct drm_mode_fb_cmd2 *mode_cmd,
9642 struct drm_i915_gem_object *obj)
9643 {
9644 int pitch_limit;
9645 int ret;
9646
9647 if (obj->tiling_mode == I915_TILING_Y) {
9648 DRM_DEBUG("hardware does not support tiling Y\n");
9649 return -EINVAL;
9650 }
9651
9652 if (mode_cmd->pitches[0] & 63) {
9653 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9654 mode_cmd->pitches[0]);
9655 return -EINVAL;
9656 }
9657
9658 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9659 pitch_limit = 32*1024;
9660 } else if (INTEL_INFO(dev)->gen >= 4) {
9661 if (obj->tiling_mode)
9662 pitch_limit = 16*1024;
9663 else
9664 pitch_limit = 32*1024;
9665 } else if (INTEL_INFO(dev)->gen >= 3) {
9666 if (obj->tiling_mode)
9667 pitch_limit = 8*1024;
9668 else
9669 pitch_limit = 16*1024;
9670 } else
9671 /* XXX DSPC is limited to 4k tiled */
9672 pitch_limit = 8*1024;
9673
9674 if (mode_cmd->pitches[0] > pitch_limit) {
9675 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9676 obj->tiling_mode ? "tiled" : "linear",
9677 mode_cmd->pitches[0], pitch_limit);
9678 return -EINVAL;
9679 }
9680
9681 if (obj->tiling_mode != I915_TILING_NONE &&
9682 mode_cmd->pitches[0] != obj->stride) {
9683 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9684 mode_cmd->pitches[0], obj->stride);
9685 return -EINVAL;
9686 }
9687
9688 /* Reject formats not supported by any plane early. */
9689 switch (mode_cmd->pixel_format) {
9690 case DRM_FORMAT_C8:
9691 case DRM_FORMAT_RGB565:
9692 case DRM_FORMAT_XRGB8888:
9693 case DRM_FORMAT_ARGB8888:
9694 break;
9695 case DRM_FORMAT_XRGB1555:
9696 case DRM_FORMAT_ARGB1555:
9697 if (INTEL_INFO(dev)->gen > 3) {
9698 DRM_DEBUG("unsupported pixel format: %s\n",
9699 drm_get_format_name(mode_cmd->pixel_format));
9700 return -EINVAL;
9701 }
9702 break;
9703 case DRM_FORMAT_XBGR8888:
9704 case DRM_FORMAT_ABGR8888:
9705 case DRM_FORMAT_XRGB2101010:
9706 case DRM_FORMAT_ARGB2101010:
9707 case DRM_FORMAT_XBGR2101010:
9708 case DRM_FORMAT_ABGR2101010:
9709 if (INTEL_INFO(dev)->gen < 4) {
9710 DRM_DEBUG("unsupported pixel format: %s\n",
9711 drm_get_format_name(mode_cmd->pixel_format));
9712 return -EINVAL;
9713 }
9714 break;
9715 case DRM_FORMAT_YUYV:
9716 case DRM_FORMAT_UYVY:
9717 case DRM_FORMAT_YVYU:
9718 case DRM_FORMAT_VYUY:
9719 if (INTEL_INFO(dev)->gen < 5) {
9720 DRM_DEBUG("unsupported pixel format: %s\n",
9721 drm_get_format_name(mode_cmd->pixel_format));
9722 return -EINVAL;
9723 }
9724 break;
9725 default:
9726 DRM_DEBUG("unsupported pixel format: %s\n",
9727 drm_get_format_name(mode_cmd->pixel_format));
9728 return -EINVAL;
9729 }
9730
9731 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9732 if (mode_cmd->offsets[0] != 0)
9733 return -EINVAL;
9734
9735 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9736 intel_fb->obj = obj;
9737
9738 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9739 if (ret) {
9740 DRM_ERROR("framebuffer init failed %d\n", ret);
9741 return ret;
9742 }
9743
9744 return 0;
9745 }
9746
9747 static struct drm_framebuffer *
9748 intel_user_framebuffer_create(struct drm_device *dev,
9749 struct drm_file *filp,
9750 struct drm_mode_fb_cmd2 *mode_cmd)
9751 {
9752 struct drm_i915_gem_object *obj;
9753
9754 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9755 mode_cmd->handles[0]));
9756 if (&obj->base == NULL)
9757 return ERR_PTR(-ENOENT);
9758
9759 return intel_framebuffer_create(dev, mode_cmd, obj);
9760 }
9761
9762 static const struct drm_mode_config_funcs intel_mode_funcs = {
9763 .fb_create = intel_user_framebuffer_create,
9764 .output_poll_changed = intel_fb_output_poll_changed,
9765 };
9766
9767 /* Set up chip specific display functions */
9768 static void intel_init_display(struct drm_device *dev)
9769 {
9770 struct drm_i915_private *dev_priv = dev->dev_private;
9771
9772 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9773 dev_priv->display.find_dpll = g4x_find_best_dpll;
9774 else if (IS_VALLEYVIEW(dev))
9775 dev_priv->display.find_dpll = vlv_find_best_dpll;
9776 else if (IS_PINEVIEW(dev))
9777 dev_priv->display.find_dpll = pnv_find_best_dpll;
9778 else
9779 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9780
9781 if (HAS_DDI(dev)) {
9782 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9783 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9784 dev_priv->display.crtc_enable = haswell_crtc_enable;
9785 dev_priv->display.crtc_disable = haswell_crtc_disable;
9786 dev_priv->display.off = haswell_crtc_off;
9787 dev_priv->display.update_plane = ironlake_update_plane;
9788 } else if (HAS_PCH_SPLIT(dev)) {
9789 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9790 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9791 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9792 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9793 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9794 dev_priv->display.off = ironlake_crtc_off;
9795 dev_priv->display.update_plane = ironlake_update_plane;
9796 } else if (IS_VALLEYVIEW(dev)) {
9797 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9798 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9799 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9800 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9801 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9802 dev_priv->display.off = i9xx_crtc_off;
9803 dev_priv->display.update_plane = i9xx_update_plane;
9804 } else {
9805 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9806 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9807 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9808 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9809 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9810 dev_priv->display.off = i9xx_crtc_off;
9811 dev_priv->display.update_plane = i9xx_update_plane;
9812 }
9813
9814 /* Returns the core display clock speed */
9815 if (IS_VALLEYVIEW(dev))
9816 dev_priv->display.get_display_clock_speed =
9817 valleyview_get_display_clock_speed;
9818 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9819 dev_priv->display.get_display_clock_speed =
9820 i945_get_display_clock_speed;
9821 else if (IS_I915G(dev))
9822 dev_priv->display.get_display_clock_speed =
9823 i915_get_display_clock_speed;
9824 else if (IS_I945GM(dev) || IS_845G(dev))
9825 dev_priv->display.get_display_clock_speed =
9826 i9xx_misc_get_display_clock_speed;
9827 else if (IS_PINEVIEW(dev))
9828 dev_priv->display.get_display_clock_speed =
9829 pnv_get_display_clock_speed;
9830 else if (IS_I915GM(dev))
9831 dev_priv->display.get_display_clock_speed =
9832 i915gm_get_display_clock_speed;
9833 else if (IS_I865G(dev))
9834 dev_priv->display.get_display_clock_speed =
9835 i865_get_display_clock_speed;
9836 else if (IS_I85X(dev))
9837 dev_priv->display.get_display_clock_speed =
9838 i855_get_display_clock_speed;
9839 else /* 852, 830 */
9840 dev_priv->display.get_display_clock_speed =
9841 i830_get_display_clock_speed;
9842
9843 if (HAS_PCH_SPLIT(dev)) {
9844 if (IS_GEN5(dev)) {
9845 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9846 dev_priv->display.write_eld = ironlake_write_eld;
9847 } else if (IS_GEN6(dev)) {
9848 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9849 dev_priv->display.write_eld = ironlake_write_eld;
9850 } else if (IS_IVYBRIDGE(dev)) {
9851 /* FIXME: detect B0+ stepping and use auto training */
9852 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9853 dev_priv->display.write_eld = ironlake_write_eld;
9854 dev_priv->display.modeset_global_resources =
9855 ivb_modeset_global_resources;
9856 } else if (IS_HASWELL(dev)) {
9857 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9858 dev_priv->display.write_eld = haswell_write_eld;
9859 dev_priv->display.modeset_global_resources =
9860 haswell_modeset_global_resources;
9861 }
9862 } else if (IS_G4X(dev)) {
9863 dev_priv->display.write_eld = g4x_write_eld;
9864 }
9865
9866 /* Default just returns -ENODEV to indicate unsupported */
9867 dev_priv->display.queue_flip = intel_default_queue_flip;
9868
9869 switch (INTEL_INFO(dev)->gen) {
9870 case 2:
9871 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9872 break;
9873
9874 case 3:
9875 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9876 break;
9877
9878 case 4:
9879 case 5:
9880 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9881 break;
9882
9883 case 6:
9884 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9885 break;
9886 case 7:
9887 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9888 break;
9889 }
9890 }
9891
9892 /*
9893 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9894 * resume, or other times. This quirk makes sure that's the case for
9895 * affected systems.
9896 */
9897 static void quirk_pipea_force(struct drm_device *dev)
9898 {
9899 struct drm_i915_private *dev_priv = dev->dev_private;
9900
9901 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9902 DRM_INFO("applying pipe a force quirk\n");
9903 }
9904
9905 /*
9906 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9907 */
9908 static void quirk_ssc_force_disable(struct drm_device *dev)
9909 {
9910 struct drm_i915_private *dev_priv = dev->dev_private;
9911 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9912 DRM_INFO("applying lvds SSC disable quirk\n");
9913 }
9914
9915 /*
9916 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9917 * brightness value
9918 */
9919 static void quirk_invert_brightness(struct drm_device *dev)
9920 {
9921 struct drm_i915_private *dev_priv = dev->dev_private;
9922 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9923 DRM_INFO("applying inverted panel brightness quirk\n");
9924 }
9925
9926 /*
9927 * Some machines (Dell XPS13) suffer broken backlight controls if
9928 * BLM_PCH_PWM_ENABLE is set.
9929 */
9930 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9931 {
9932 struct drm_i915_private *dev_priv = dev->dev_private;
9933 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9934 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9935 }
9936
9937 struct intel_quirk {
9938 int device;
9939 int subsystem_vendor;
9940 int subsystem_device;
9941 void (*hook)(struct drm_device *dev);
9942 };
9943
9944 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9945 struct intel_dmi_quirk {
9946 void (*hook)(struct drm_device *dev);
9947 const struct dmi_system_id (*dmi_id_list)[];
9948 };
9949
9950 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9951 {
9952 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9953 return 1;
9954 }
9955
9956 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9957 {
9958 .dmi_id_list = &(const struct dmi_system_id[]) {
9959 {
9960 .callback = intel_dmi_reverse_brightness,
9961 .ident = "NCR Corporation",
9962 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9963 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9964 },
9965 },
9966 { } /* terminating entry */
9967 },
9968 .hook = quirk_invert_brightness,
9969 },
9970 };
9971
9972 static struct intel_quirk intel_quirks[] = {
9973 /* HP Mini needs pipe A force quirk (LP: #322104) */
9974 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9975
9976 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9977 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9978
9979 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9980 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9981
9982 /* 830/845 need to leave pipe A & dpll A up */
9983 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9984 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9985
9986 /* Lenovo U160 cannot use SSC on LVDS */
9987 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9988
9989 /* Sony Vaio Y cannot use SSC on LVDS */
9990 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9991
9992 /* Acer Aspire 5734Z must invert backlight brightness */
9993 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9994
9995 /* Acer/eMachines G725 */
9996 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9997
9998 /* Acer/eMachines e725 */
9999 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10000
10001 /* Acer/Packard Bell NCL20 */
10002 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10003
10004 /* Acer Aspire 4736Z */
10005 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10006
10007 /* Dell XPS13 HD Sandy Bridge */
10008 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10009 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10010 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10011 };
10012
10013 static void intel_init_quirks(struct drm_device *dev)
10014 {
10015 struct pci_dev *d = dev->pdev;
10016 int i;
10017
10018 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10019 struct intel_quirk *q = &intel_quirks[i];
10020
10021 if (d->device == q->device &&
10022 (d->subsystem_vendor == q->subsystem_vendor ||
10023 q->subsystem_vendor == PCI_ANY_ID) &&
10024 (d->subsystem_device == q->subsystem_device ||
10025 q->subsystem_device == PCI_ANY_ID))
10026 q->hook(dev);
10027 }
10028 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10029 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10030 intel_dmi_quirks[i].hook(dev);
10031 }
10032 }
10033
10034 /* Disable the VGA plane that we never use */
10035 static void i915_disable_vga(struct drm_device *dev)
10036 {
10037 struct drm_i915_private *dev_priv = dev->dev_private;
10038 u8 sr1;
10039 u32 vga_reg = i915_vgacntrl_reg(dev);
10040
10041 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10042 outb(SR01, VGA_SR_INDEX);
10043 sr1 = inb(VGA_SR_DATA);
10044 outb(sr1 | 1<<5, VGA_SR_DATA);
10045 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10046 udelay(300);
10047
10048 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10049 POSTING_READ(vga_reg);
10050 }
10051
10052 static void i915_enable_vga_mem(struct drm_device *dev)
10053 {
10054 /* Enable VGA memory on Intel HD */
10055 if (HAS_PCH_SPLIT(dev)) {
10056 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10057 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10058 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10059 VGA_RSRC_LEGACY_MEM |
10060 VGA_RSRC_NORMAL_IO |
10061 VGA_RSRC_NORMAL_MEM);
10062 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10063 }
10064 }
10065
10066 void i915_disable_vga_mem(struct drm_device *dev)
10067 {
10068 /* Disable VGA memory on Intel HD */
10069 if (HAS_PCH_SPLIT(dev)) {
10070 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10071 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10072 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10073 VGA_RSRC_NORMAL_IO |
10074 VGA_RSRC_NORMAL_MEM);
10075 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10076 }
10077 }
10078
10079 void intel_modeset_init_hw(struct drm_device *dev)
10080 {
10081 intel_init_power_well(dev);
10082
10083 intel_prepare_ddi(dev);
10084
10085 intel_init_clock_gating(dev);
10086
10087 mutex_lock(&dev->struct_mutex);
10088 intel_enable_gt_powersave(dev);
10089 mutex_unlock(&dev->struct_mutex);
10090 }
10091
10092 void intel_modeset_suspend_hw(struct drm_device *dev)
10093 {
10094 intel_suspend_hw(dev);
10095 }
10096
10097 void intel_modeset_init(struct drm_device *dev)
10098 {
10099 struct drm_i915_private *dev_priv = dev->dev_private;
10100 int i, j, ret;
10101
10102 drm_mode_config_init(dev);
10103
10104 dev->mode_config.min_width = 0;
10105 dev->mode_config.min_height = 0;
10106
10107 dev->mode_config.preferred_depth = 24;
10108 dev->mode_config.prefer_shadow = 1;
10109
10110 dev->mode_config.funcs = &intel_mode_funcs;
10111
10112 intel_init_quirks(dev);
10113
10114 intel_init_pm(dev);
10115
10116 if (INTEL_INFO(dev)->num_pipes == 0)
10117 return;
10118
10119 intel_init_display(dev);
10120
10121 if (IS_GEN2(dev)) {
10122 dev->mode_config.max_width = 2048;
10123 dev->mode_config.max_height = 2048;
10124 } else if (IS_GEN3(dev)) {
10125 dev->mode_config.max_width = 4096;
10126 dev->mode_config.max_height = 4096;
10127 } else {
10128 dev->mode_config.max_width = 8192;
10129 dev->mode_config.max_height = 8192;
10130 }
10131 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10132
10133 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10134 INTEL_INFO(dev)->num_pipes,
10135 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10136
10137 for_each_pipe(i) {
10138 intel_crtc_init(dev, i);
10139 for (j = 0; j < dev_priv->num_plane; j++) {
10140 ret = intel_plane_init(dev, i, j);
10141 if (ret)
10142 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10143 pipe_name(i), sprite_name(i, j), ret);
10144 }
10145 }
10146
10147 intel_cpu_pll_init(dev);
10148 intel_shared_dpll_init(dev);
10149
10150 /* Just disable it once at startup */
10151 i915_disable_vga(dev);
10152 intel_setup_outputs(dev);
10153
10154 /* Just in case the BIOS is doing something questionable. */
10155 intel_disable_fbc(dev);
10156 }
10157
10158 static void
10159 intel_connector_break_all_links(struct intel_connector *connector)
10160 {
10161 connector->base.dpms = DRM_MODE_DPMS_OFF;
10162 connector->base.encoder = NULL;
10163 connector->encoder->connectors_active = false;
10164 connector->encoder->base.crtc = NULL;
10165 }
10166
10167 static void intel_enable_pipe_a(struct drm_device *dev)
10168 {
10169 struct intel_connector *connector;
10170 struct drm_connector *crt = NULL;
10171 struct intel_load_detect_pipe load_detect_temp;
10172
10173 /* We can't just switch on the pipe A, we need to set things up with a
10174 * proper mode and output configuration. As a gross hack, enable pipe A
10175 * by enabling the load detect pipe once. */
10176 list_for_each_entry(connector,
10177 &dev->mode_config.connector_list,
10178 base.head) {
10179 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10180 crt = &connector->base;
10181 break;
10182 }
10183 }
10184
10185 if (!crt)
10186 return;
10187
10188 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10189 intel_release_load_detect_pipe(crt, &load_detect_temp);
10190
10191
10192 }
10193
10194 static bool
10195 intel_check_plane_mapping(struct intel_crtc *crtc)
10196 {
10197 struct drm_device *dev = crtc->base.dev;
10198 struct drm_i915_private *dev_priv = dev->dev_private;
10199 u32 reg, val;
10200
10201 if (INTEL_INFO(dev)->num_pipes == 1)
10202 return true;
10203
10204 reg = DSPCNTR(!crtc->plane);
10205 val = I915_READ(reg);
10206
10207 if ((val & DISPLAY_PLANE_ENABLE) &&
10208 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10209 return false;
10210
10211 return true;
10212 }
10213
10214 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10215 {
10216 struct drm_device *dev = crtc->base.dev;
10217 struct drm_i915_private *dev_priv = dev->dev_private;
10218 u32 reg;
10219
10220 /* Clear any frame start delays used for debugging left by the BIOS */
10221 reg = PIPECONF(crtc->config.cpu_transcoder);
10222 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10223
10224 /* We need to sanitize the plane -> pipe mapping first because this will
10225 * disable the crtc (and hence change the state) if it is wrong. Note
10226 * that gen4+ has a fixed plane -> pipe mapping. */
10227 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10228 struct intel_connector *connector;
10229 bool plane;
10230
10231 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10232 crtc->base.base.id);
10233
10234 /* Pipe has the wrong plane attached and the plane is active.
10235 * Temporarily change the plane mapping and disable everything
10236 * ... */
10237 plane = crtc->plane;
10238 crtc->plane = !plane;
10239 dev_priv->display.crtc_disable(&crtc->base);
10240 crtc->plane = plane;
10241
10242 /* ... and break all links. */
10243 list_for_each_entry(connector, &dev->mode_config.connector_list,
10244 base.head) {
10245 if (connector->encoder->base.crtc != &crtc->base)
10246 continue;
10247
10248 intel_connector_break_all_links(connector);
10249 }
10250
10251 WARN_ON(crtc->active);
10252 crtc->base.enabled = false;
10253 }
10254
10255 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10256 crtc->pipe == PIPE_A && !crtc->active) {
10257 /* BIOS forgot to enable pipe A, this mostly happens after
10258 * resume. Force-enable the pipe to fix this, the update_dpms
10259 * call below we restore the pipe to the right state, but leave
10260 * the required bits on. */
10261 intel_enable_pipe_a(dev);
10262 }
10263
10264 /* Adjust the state of the output pipe according to whether we
10265 * have active connectors/encoders. */
10266 intel_crtc_update_dpms(&crtc->base);
10267
10268 if (crtc->active != crtc->base.enabled) {
10269 struct intel_encoder *encoder;
10270
10271 /* This can happen either due to bugs in the get_hw_state
10272 * functions or because the pipe is force-enabled due to the
10273 * pipe A quirk. */
10274 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10275 crtc->base.base.id,
10276 crtc->base.enabled ? "enabled" : "disabled",
10277 crtc->active ? "enabled" : "disabled");
10278
10279 crtc->base.enabled = crtc->active;
10280
10281 /* Because we only establish the connector -> encoder ->
10282 * crtc links if something is active, this means the
10283 * crtc is now deactivated. Break the links. connector
10284 * -> encoder links are only establish when things are
10285 * actually up, hence no need to break them. */
10286 WARN_ON(crtc->active);
10287
10288 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10289 WARN_ON(encoder->connectors_active);
10290 encoder->base.crtc = NULL;
10291 }
10292 }
10293 }
10294
10295 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10296 {
10297 struct intel_connector *connector;
10298 struct drm_device *dev = encoder->base.dev;
10299
10300 /* We need to check both for a crtc link (meaning that the
10301 * encoder is active and trying to read from a pipe) and the
10302 * pipe itself being active. */
10303 bool has_active_crtc = encoder->base.crtc &&
10304 to_intel_crtc(encoder->base.crtc)->active;
10305
10306 if (encoder->connectors_active && !has_active_crtc) {
10307 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10308 encoder->base.base.id,
10309 drm_get_encoder_name(&encoder->base));
10310
10311 /* Connector is active, but has no active pipe. This is
10312 * fallout from our resume register restoring. Disable
10313 * the encoder manually again. */
10314 if (encoder->base.crtc) {
10315 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10316 encoder->base.base.id,
10317 drm_get_encoder_name(&encoder->base));
10318 encoder->disable(encoder);
10319 }
10320
10321 /* Inconsistent output/port/pipe state happens presumably due to
10322 * a bug in one of the get_hw_state functions. Or someplace else
10323 * in our code, like the register restore mess on resume. Clamp
10324 * things to off as a safer default. */
10325 list_for_each_entry(connector,
10326 &dev->mode_config.connector_list,
10327 base.head) {
10328 if (connector->encoder != encoder)
10329 continue;
10330
10331 intel_connector_break_all_links(connector);
10332 }
10333 }
10334 /* Enabled encoders without active connectors will be fixed in
10335 * the crtc fixup. */
10336 }
10337
10338 void i915_redisable_vga(struct drm_device *dev)
10339 {
10340 struct drm_i915_private *dev_priv = dev->dev_private;
10341 u32 vga_reg = i915_vgacntrl_reg(dev);
10342
10343 /* This function can be called both from intel_modeset_setup_hw_state or
10344 * at a very early point in our resume sequence, where the power well
10345 * structures are not yet restored. Since this function is at a very
10346 * paranoid "someone might have enabled VGA while we were not looking"
10347 * level, just check if the power well is enabled instead of trying to
10348 * follow the "don't touch the power well if we don't need it" policy
10349 * the rest of the driver uses. */
10350 if (HAS_POWER_WELL(dev) &&
10351 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10352 return;
10353
10354 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10355 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10356 i915_disable_vga(dev);
10357 i915_disable_vga_mem(dev);
10358 }
10359 }
10360
10361 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10362 {
10363 struct drm_i915_private *dev_priv = dev->dev_private;
10364 enum pipe pipe;
10365 struct intel_crtc *crtc;
10366 struct intel_encoder *encoder;
10367 struct intel_connector *connector;
10368 int i;
10369
10370 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10371 base.head) {
10372 memset(&crtc->config, 0, sizeof(crtc->config));
10373
10374 crtc->active = dev_priv->display.get_pipe_config(crtc,
10375 &crtc->config);
10376
10377 crtc->base.enabled = crtc->active;
10378
10379 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10380 crtc->base.base.id,
10381 crtc->active ? "enabled" : "disabled");
10382 }
10383
10384 /* FIXME: Smash this into the new shared dpll infrastructure. */
10385 if (HAS_DDI(dev))
10386 intel_ddi_setup_hw_pll_state(dev);
10387
10388 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10389 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10390
10391 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10392 pll->active = 0;
10393 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10394 base.head) {
10395 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10396 pll->active++;
10397 }
10398 pll->refcount = pll->active;
10399
10400 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10401 pll->name, pll->refcount, pll->on);
10402 }
10403
10404 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10405 base.head) {
10406 pipe = 0;
10407
10408 if (encoder->get_hw_state(encoder, &pipe)) {
10409 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10410 encoder->base.crtc = &crtc->base;
10411 if (encoder->get_config)
10412 encoder->get_config(encoder, &crtc->config);
10413 } else {
10414 encoder->base.crtc = NULL;
10415 }
10416
10417 encoder->connectors_active = false;
10418 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10419 encoder->base.base.id,
10420 drm_get_encoder_name(&encoder->base),
10421 encoder->base.crtc ? "enabled" : "disabled",
10422 pipe);
10423 }
10424
10425 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10426 base.head) {
10427 if (!crtc->active)
10428 continue;
10429 if (dev_priv->display.get_clock)
10430 dev_priv->display.get_clock(crtc,
10431 &crtc->config);
10432 }
10433
10434 list_for_each_entry(connector, &dev->mode_config.connector_list,
10435 base.head) {
10436 if (connector->get_hw_state(connector)) {
10437 connector->base.dpms = DRM_MODE_DPMS_ON;
10438 connector->encoder->connectors_active = true;
10439 connector->base.encoder = &connector->encoder->base;
10440 } else {
10441 connector->base.dpms = DRM_MODE_DPMS_OFF;
10442 connector->base.encoder = NULL;
10443 }
10444 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10445 connector->base.base.id,
10446 drm_get_connector_name(&connector->base),
10447 connector->base.encoder ? "enabled" : "disabled");
10448 }
10449 }
10450
10451 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10452 * and i915 state tracking structures. */
10453 void intel_modeset_setup_hw_state(struct drm_device *dev,
10454 bool force_restore)
10455 {
10456 struct drm_i915_private *dev_priv = dev->dev_private;
10457 enum pipe pipe;
10458 struct drm_plane *plane;
10459 struct intel_crtc *crtc;
10460 struct intel_encoder *encoder;
10461 int i;
10462
10463 intel_modeset_readout_hw_state(dev);
10464
10465 /*
10466 * Now that we have the config, copy it to each CRTC struct
10467 * Note that this could go away if we move to using crtc_config
10468 * checking everywhere.
10469 */
10470 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10471 base.head) {
10472 if (crtc->active && i915_fastboot) {
10473 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10474
10475 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10476 crtc->base.base.id);
10477 drm_mode_debug_printmodeline(&crtc->base.mode);
10478 }
10479 }
10480
10481 /* HW state is read out, now we need to sanitize this mess. */
10482 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10483 base.head) {
10484 intel_sanitize_encoder(encoder);
10485 }
10486
10487 for_each_pipe(pipe) {
10488 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10489 intel_sanitize_crtc(crtc);
10490 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10491 }
10492
10493 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10494 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10495
10496 if (!pll->on || pll->active)
10497 continue;
10498
10499 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10500
10501 pll->disable(dev_priv, pll);
10502 pll->on = false;
10503 }
10504
10505 if (force_restore) {
10506 /*
10507 * We need to use raw interfaces for restoring state to avoid
10508 * checking (bogus) intermediate states.
10509 */
10510 for_each_pipe(pipe) {
10511 struct drm_crtc *crtc =
10512 dev_priv->pipe_to_crtc_mapping[pipe];
10513
10514 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10515 crtc->fb);
10516 }
10517 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10518 intel_plane_restore(plane);
10519
10520 i915_redisable_vga(dev);
10521 } else {
10522 intel_modeset_update_staged_output_state(dev);
10523 }
10524
10525 intel_modeset_check_state(dev);
10526
10527 drm_mode_config_reset(dev);
10528 }
10529
10530 void intel_modeset_gem_init(struct drm_device *dev)
10531 {
10532 intel_modeset_init_hw(dev);
10533
10534 intel_setup_overlay(dev);
10535
10536 intel_modeset_setup_hw_state(dev, false);
10537 }
10538
10539 void intel_modeset_cleanup(struct drm_device *dev)
10540 {
10541 struct drm_i915_private *dev_priv = dev->dev_private;
10542 struct drm_crtc *crtc;
10543
10544 /*
10545 * Interrupts and polling as the first thing to avoid creating havoc.
10546 * Too much stuff here (turning of rps, connectors, ...) would
10547 * experience fancy races otherwise.
10548 */
10549 drm_irq_uninstall(dev);
10550 cancel_work_sync(&dev_priv->hotplug_work);
10551 /*
10552 * Due to the hpd irq storm handling the hotplug work can re-arm the
10553 * poll handlers. Hence disable polling after hpd handling is shut down.
10554 */
10555 drm_kms_helper_poll_fini(dev);
10556
10557 mutex_lock(&dev->struct_mutex);
10558
10559 intel_unregister_dsm_handler();
10560
10561 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10562 /* Skip inactive CRTCs */
10563 if (!crtc->fb)
10564 continue;
10565
10566 intel_increase_pllclock(crtc);
10567 }
10568
10569 intel_disable_fbc(dev);
10570
10571 i915_enable_vga_mem(dev);
10572
10573 intel_disable_gt_powersave(dev);
10574
10575 ironlake_teardown_rc6(dev);
10576
10577 mutex_unlock(&dev->struct_mutex);
10578
10579 /* flush any delayed tasks or pending work */
10580 flush_scheduled_work();
10581
10582 /* destroy backlight, if any, before the connectors */
10583 intel_panel_destroy_backlight(dev);
10584
10585 drm_mode_config_cleanup(dev);
10586
10587 intel_cleanup_overlay(dev);
10588 }
10589
10590 /*
10591 * Return which encoder is currently attached for connector.
10592 */
10593 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10594 {
10595 return &intel_attached_encoder(connector)->base;
10596 }
10597
10598 void intel_connector_attach_encoder(struct intel_connector *connector,
10599 struct intel_encoder *encoder)
10600 {
10601 connector->encoder = encoder;
10602 drm_mode_connector_attach_encoder(&connector->base,
10603 &encoder->base);
10604 }
10605
10606 /*
10607 * set vga decode state - true == enable VGA decode
10608 */
10609 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10610 {
10611 struct drm_i915_private *dev_priv = dev->dev_private;
10612 u16 gmch_ctrl;
10613
10614 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10615 if (state)
10616 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10617 else
10618 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10619 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10620 return 0;
10621 }
10622
10623 struct intel_display_error_state {
10624
10625 u32 power_well_driver;
10626
10627 int num_transcoders;
10628
10629 struct intel_cursor_error_state {
10630 u32 control;
10631 u32 position;
10632 u32 base;
10633 u32 size;
10634 } cursor[I915_MAX_PIPES];
10635
10636 struct intel_pipe_error_state {
10637 u32 source;
10638 } pipe[I915_MAX_PIPES];
10639
10640 struct intel_plane_error_state {
10641 u32 control;
10642 u32 stride;
10643 u32 size;
10644 u32 pos;
10645 u32 addr;
10646 u32 surface;
10647 u32 tile_offset;
10648 } plane[I915_MAX_PIPES];
10649
10650 struct intel_transcoder_error_state {
10651 enum transcoder cpu_transcoder;
10652
10653 u32 conf;
10654
10655 u32 htotal;
10656 u32 hblank;
10657 u32 hsync;
10658 u32 vtotal;
10659 u32 vblank;
10660 u32 vsync;
10661 } transcoder[4];
10662 };
10663
10664 struct intel_display_error_state *
10665 intel_display_capture_error_state(struct drm_device *dev)
10666 {
10667 drm_i915_private_t *dev_priv = dev->dev_private;
10668 struct intel_display_error_state *error;
10669 int transcoders[] = {
10670 TRANSCODER_A,
10671 TRANSCODER_B,
10672 TRANSCODER_C,
10673 TRANSCODER_EDP,
10674 };
10675 int i;
10676
10677 if (INTEL_INFO(dev)->num_pipes == 0)
10678 return NULL;
10679
10680 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10681 if (error == NULL)
10682 return NULL;
10683
10684 if (HAS_POWER_WELL(dev))
10685 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10686
10687 for_each_pipe(i) {
10688 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10689 error->cursor[i].control = I915_READ(CURCNTR(i));
10690 error->cursor[i].position = I915_READ(CURPOS(i));
10691 error->cursor[i].base = I915_READ(CURBASE(i));
10692 } else {
10693 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10694 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10695 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10696 }
10697
10698 error->plane[i].control = I915_READ(DSPCNTR(i));
10699 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10700 if (INTEL_INFO(dev)->gen <= 3) {
10701 error->plane[i].size = I915_READ(DSPSIZE(i));
10702 error->plane[i].pos = I915_READ(DSPPOS(i));
10703 }
10704 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10705 error->plane[i].addr = I915_READ(DSPADDR(i));
10706 if (INTEL_INFO(dev)->gen >= 4) {
10707 error->plane[i].surface = I915_READ(DSPSURF(i));
10708 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10709 }
10710
10711 error->pipe[i].source = I915_READ(PIPESRC(i));
10712 }
10713
10714 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10715 if (HAS_DDI(dev_priv->dev))
10716 error->num_transcoders++; /* Account for eDP. */
10717
10718 for (i = 0; i < error->num_transcoders; i++) {
10719 enum transcoder cpu_transcoder = transcoders[i];
10720
10721 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10722
10723 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10724 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10725 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10726 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10727 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10728 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10729 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10730 }
10731
10732 /* In the code above we read the registers without checking if the power
10733 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10734 * prevent the next I915_WRITE from detecting it and printing an error
10735 * message. */
10736 intel_uncore_clear_errors(dev);
10737
10738 return error;
10739 }
10740
10741 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10742
10743 void
10744 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10745 struct drm_device *dev,
10746 struct intel_display_error_state *error)
10747 {
10748 int i;
10749
10750 if (!error)
10751 return;
10752
10753 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10754 if (HAS_POWER_WELL(dev))
10755 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10756 error->power_well_driver);
10757 for_each_pipe(i) {
10758 err_printf(m, "Pipe [%d]:\n", i);
10759 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10760
10761 err_printf(m, "Plane [%d]:\n", i);
10762 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10763 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10764 if (INTEL_INFO(dev)->gen <= 3) {
10765 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10766 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10767 }
10768 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10769 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10770 if (INTEL_INFO(dev)->gen >= 4) {
10771 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10772 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10773 }
10774
10775 err_printf(m, "Cursor [%d]:\n", i);
10776 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10777 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10778 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10779 }
10780
10781 for (i = 0; i < error->num_transcoders; i++) {
10782 err_printf(m, " CPU transcoder: %c\n",
10783 transcoder_name(error->transcoder[i].cpu_transcoder));
10784 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10785 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10786 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10787 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10788 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10789 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10790 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10791 }
10792 }
This page took 0.593228 seconds and 6 git commands to generate.