Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
123 .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
181 },
182 .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
210 },
211 .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
239 .p2_slow = 10, .p2_fast = 10 },
240 .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
246 /* Pineview's Ncounter is a ring counter */
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
249 /* Pineview only has one combined m divider, which we treat as m2. */
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
256 .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
289 .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
329 .p1 = { .min = 2, .max = 8 },
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
332 .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
343 .p1 = { .min = 2, .max = 6 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 10, .p2_fast = 10 },
360 .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364 int refclk)
365 {
366 struct drm_device *dev = crtc->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
368 const intel_limit_t *limit;
369
370 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
371 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372 LVDS_CLKB_POWER_UP) {
373 /* LVDS dual channel */
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_dual_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_dual_lvds;
378 } else {
379 if (refclk == 100000)
380 limit = &intel_limits_ironlake_single_lvds_100m;
381 else
382 limit = &intel_limits_ironlake_single_lvds;
383 }
384 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
385 HAS_eDP)
386 limit = &intel_limits_ironlake_display_port;
387 else
388 limit = &intel_limits_ironlake_dac;
389
390 return limit;
391 }
392
393 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394 {
395 struct drm_device *dev = crtc->dev;
396 struct drm_i915_private *dev_priv = dev->dev_private;
397 const intel_limit_t *limit;
398
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401 LVDS_CLKB_POWER_UP)
402 /* LVDS with dual channel */
403 limit = &intel_limits_g4x_dual_channel_lvds;
404 else
405 /* LVDS with dual channel */
406 limit = &intel_limits_g4x_single_channel_lvds;
407 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
409 limit = &intel_limits_g4x_hdmi;
410 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
411 limit = &intel_limits_g4x_sdvo;
412 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
413 limit = &intel_limits_g4x_display_port;
414 } else /* The option is for other outputs */
415 limit = &intel_limits_i9xx_sdvo;
416
417 return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422 struct drm_device *dev = crtc->dev;
423 const intel_limit_t *limit;
424
425 if (HAS_PCH_SPLIT(dev))
426 limit = intel_ironlake_limit(crtc, refclk);
427 else if (IS_G4X(dev)) {
428 limit = intel_g4x_limit(crtc);
429 } else if (IS_PINEVIEW(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_pineview_lvds;
432 else
433 limit = &intel_limits_pineview_sdvo;
434 } else if (!IS_GEN2(dev)) {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i9xx_lvds;
437 else
438 limit = &intel_limits_i9xx_sdvo;
439 } else {
440 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
441 limit = &intel_limits_i8xx_lvds;
442 else
443 limit = &intel_limits_i8xx_dvo;
444 }
445 return limit;
446 }
447
448 /* m1 is reserved as 0 in Pineview, n is a ring counter */
449 static void pineview_clock(int refclk, intel_clock_t *clock)
450 {
451 clock->m = clock->m2 + 2;
452 clock->p = clock->p1 * clock->p2;
453 clock->vco = refclk * clock->m / clock->n;
454 clock->dot = clock->vco / clock->p;
455 }
456
457 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458 {
459 if (IS_PINEVIEW(dev)) {
460 pineview_clock(refclk, clock);
461 return;
462 }
463 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464 clock->p = clock->p1 * clock->p2;
465 clock->vco = refclk * clock->m / (clock->n + 2);
466 clock->dot = clock->vco / clock->p;
467 }
468
469 /**
470 * Returns whether any output on the specified pipe is of the specified type
471 */
472 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
473 {
474 struct drm_device *dev = crtc->dev;
475 struct drm_mode_config *mode_config = &dev->mode_config;
476 struct intel_encoder *encoder;
477
478 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479 if (encoder->base.crtc == crtc && encoder->type == type)
480 return true;
481
482 return false;
483 }
484
485 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
486 /**
487 * Returns whether the given set of divisors are valid for a given refclk with
488 * the given connectors.
489 */
490
491 static bool intel_PLL_is_valid(struct drm_device *dev,
492 const intel_limit_t *limit,
493 const intel_clock_t *clock)
494 {
495 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
496 INTELPllInvalid("p1 out of range\n");
497 if (clock->p < limit->p.min || limit->p.max < clock->p)
498 INTELPllInvalid("p out of range\n");
499 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
500 INTELPllInvalid("m2 out of range\n");
501 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
502 INTELPllInvalid("m1 out of range\n");
503 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
504 INTELPllInvalid("m1 <= m2\n");
505 if (clock->m < limit->m.min || limit->m.max < clock->m)
506 INTELPllInvalid("m out of range\n");
507 if (clock->n < limit->n.min || limit->n.max < clock->n)
508 INTELPllInvalid("n out of range\n");
509 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
510 INTELPllInvalid("vco out of range\n");
511 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512 * connector, etc., rather than just a single range.
513 */
514 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
515 INTELPllInvalid("dot out of range\n");
516
517 return true;
518 }
519
520 static bool
521 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
522 int target, int refclk, intel_clock_t *match_clock,
523 intel_clock_t *best_clock)
524
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 intel_clock_t clock;
529 int err = target;
530
531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
532 (I915_READ(LVDS)) != 0) {
533 /*
534 * For LVDS, if the panel is on, just rely on its current
535 * settings for dual-channel. We haven't figured out how to
536 * reliably set up different single/dual channel state, if we
537 * even can.
538 */
539 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540 LVDS_CLKB_POWER_UP)
541 clock.p2 = limit->p2.p2_fast;
542 else
543 clock.p2 = limit->p2.p2_slow;
544 } else {
545 if (target < limit->p2.dot_limit)
546 clock.p2 = limit->p2.p2_slow;
547 else
548 clock.p2 = limit->p2.p2_fast;
549 }
550
551 memset(best_clock, 0, sizeof(*best_clock));
552
553 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554 clock.m1++) {
555 for (clock.m2 = limit->m2.min;
556 clock.m2 <= limit->m2.max; clock.m2++) {
557 /* m1 is always 0 in Pineview */
558 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
559 break;
560 for (clock.n = limit->n.min;
561 clock.n <= limit->n.max; clock.n++) {
562 for (clock.p1 = limit->p1.min;
563 clock.p1 <= limit->p1.max; clock.p1++) {
564 int this_err;
565
566 intel_clock(dev, refclk, &clock);
567 if (!intel_PLL_is_valid(dev, limit,
568 &clock))
569 continue;
570 if (match_clock &&
571 clock.p != match_clock->p)
572 continue;
573
574 this_err = abs(clock.dot - target);
575 if (this_err < err) {
576 *best_clock = clock;
577 err = this_err;
578 }
579 }
580 }
581 }
582 }
583
584 return (err != target);
585 }
586
587 static bool
588 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
589 int target, int refclk, intel_clock_t *match_clock,
590 intel_clock_t *best_clock)
591 {
592 struct drm_device *dev = crtc->dev;
593 struct drm_i915_private *dev_priv = dev->dev_private;
594 intel_clock_t clock;
595 int max_n;
596 bool found;
597 /* approximately equals target * 0.00585 */
598 int err_most = (target >> 8) + (target >> 9);
599 found = false;
600
601 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
602 int lvds_reg;
603
604 if (HAS_PCH_SPLIT(dev))
605 lvds_reg = PCH_LVDS;
606 else
607 lvds_reg = LVDS;
608 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
609 LVDS_CLKB_POWER_UP)
610 clock.p2 = limit->p2.p2_fast;
611 else
612 clock.p2 = limit->p2.p2_slow;
613 } else {
614 if (target < limit->p2.dot_limit)
615 clock.p2 = limit->p2.p2_slow;
616 else
617 clock.p2 = limit->p2.p2_fast;
618 }
619
620 memset(best_clock, 0, sizeof(*best_clock));
621 max_n = limit->n.max;
622 /* based on hardware requirement, prefer smaller n to precision */
623 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
624 /* based on hardware requirement, prefere larger m1,m2 */
625 for (clock.m1 = limit->m1.max;
626 clock.m1 >= limit->m1.min; clock.m1--) {
627 for (clock.m2 = limit->m2.max;
628 clock.m2 >= limit->m2.min; clock.m2--) {
629 for (clock.p1 = limit->p1.max;
630 clock.p1 >= limit->p1.min; clock.p1--) {
631 int this_err;
632
633 intel_clock(dev, refclk, &clock);
634 if (!intel_PLL_is_valid(dev, limit,
635 &clock))
636 continue;
637 if (match_clock &&
638 clock.p != match_clock->p)
639 continue;
640
641 this_err = abs(clock.dot - target);
642 if (this_err < err_most) {
643 *best_clock = clock;
644 err_most = this_err;
645 max_n = clock.n;
646 found = true;
647 }
648 }
649 }
650 }
651 }
652 return found;
653 }
654
655 static bool
656 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
657 int target, int refclk, intel_clock_t *match_clock,
658 intel_clock_t *best_clock)
659 {
660 struct drm_device *dev = crtc->dev;
661 intel_clock_t clock;
662
663 if (target < 200000) {
664 clock.n = 1;
665 clock.p1 = 2;
666 clock.p2 = 10;
667 clock.m1 = 12;
668 clock.m2 = 9;
669 } else {
670 clock.n = 2;
671 clock.p1 = 1;
672 clock.p2 = 10;
673 clock.m1 = 14;
674 clock.m2 = 8;
675 }
676 intel_clock(dev, refclk, &clock);
677 memcpy(best_clock, &clock, sizeof(intel_clock_t));
678 return true;
679 }
680
681 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
682 static bool
683 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
686 {
687 intel_clock_t clock;
688 if (target < 200000) {
689 clock.p1 = 2;
690 clock.p2 = 10;
691 clock.n = 2;
692 clock.m1 = 23;
693 clock.m2 = 8;
694 } else {
695 clock.p1 = 1;
696 clock.p2 = 10;
697 clock.n = 1;
698 clock.m1 = 14;
699 clock.m2 = 2;
700 }
701 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702 clock.p = (clock.p1 * clock.p2);
703 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704 clock.vco = 0;
705 memcpy(best_clock, &clock, sizeof(intel_clock_t));
706 return true;
707 }
708
709 /**
710 * intel_wait_for_vblank - wait for vblank on a given pipe
711 * @dev: drm device
712 * @pipe: pipe to wait for
713 *
714 * Wait for vblank to occur on a given pipe. Needed for various bits of
715 * mode setting code.
716 */
717 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
718 {
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 int pipestat_reg = PIPESTAT(pipe);
721
722 /* Clear existing vblank status. Note this will clear any other
723 * sticky status fields as well.
724 *
725 * This races with i915_driver_irq_handler() with the result
726 * that either function could miss a vblank event. Here it is not
727 * fatal, as we will either wait upon the next vblank interrupt or
728 * timeout. Generally speaking intel_wait_for_vblank() is only
729 * called during modeset at which time the GPU should be idle and
730 * should *not* be performing page flips and thus not waiting on
731 * vblanks...
732 * Currently, the result of us stealing a vblank from the irq
733 * handler is that a single frame will be skipped during swapbuffers.
734 */
735 I915_WRITE(pipestat_reg,
736 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
738 /* Wait for vblank interrupt bit to set */
739 if (wait_for(I915_READ(pipestat_reg) &
740 PIPE_VBLANK_INTERRUPT_STATUS,
741 50))
742 DRM_DEBUG_KMS("vblank wait timed out\n");
743 }
744
745 /*
746 * intel_wait_for_pipe_off - wait for pipe to turn off
747 * @dev: drm device
748 * @pipe: pipe to wait for
749 *
750 * After disabling a pipe, we can't wait for vblank in the usual way,
751 * spinning on the vblank interrupt status bit, since we won't actually
752 * see an interrupt when the pipe is disabled.
753 *
754 * On Gen4 and above:
755 * wait for the pipe register state bit to turn off
756 *
757 * Otherwise:
758 * wait for the display line value to settle (it usually
759 * ends up stopping at the start of the next frame).
760 *
761 */
762 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765
766 if (INTEL_INFO(dev)->gen >= 4) {
767 int reg = PIPECONF(pipe);
768
769 /* Wait for the Pipe State to go off */
770 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771 100))
772 DRM_DEBUG_KMS("pipe_off wait timed out\n");
773 } else {
774 u32 last_line;
775 int reg = PIPEDSL(pipe);
776 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778 /* Wait for the display line to settle */
779 do {
780 last_line = I915_READ(reg) & DSL_LINEMASK;
781 mdelay(5);
782 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
783 time_after(timeout, jiffies));
784 if (time_after(jiffies, timeout))
785 DRM_DEBUG_KMS("pipe_off wait timed out\n");
786 }
787 }
788
789 static const char *state_string(bool enabled)
790 {
791 return enabled ? "on" : "off";
792 }
793
794 /* Only for pre-ILK configs */
795 static void assert_pll(struct drm_i915_private *dev_priv,
796 enum pipe pipe, bool state)
797 {
798 int reg;
799 u32 val;
800 bool cur_state;
801
802 reg = DPLL(pipe);
803 val = I915_READ(reg);
804 cur_state = !!(val & DPLL_VCO_ENABLE);
805 WARN(cur_state != state,
806 "PLL state assertion failure (expected %s, current %s)\n",
807 state_string(state), state_string(cur_state));
808 }
809 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
810 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
812 /* For ILK+ */
813 static void assert_pch_pll(struct drm_i915_private *dev_priv,
814 enum pipe pipe, bool state)
815 {
816 int reg;
817 u32 val;
818 bool cur_state;
819
820 if (HAS_PCH_CPT(dev_priv->dev)) {
821 u32 pch_dpll;
822
823 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825 /* Make sure the selected PLL is enabled to the transcoder */
826 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827 "transcoder %d PLL not enabled\n", pipe);
828
829 /* Convert the transcoder pipe number to a pll pipe number */
830 pipe = (pch_dpll >> (4 * pipe)) & 1;
831 }
832
833 reg = PCH_DPLL(pipe);
834 val = I915_READ(reg);
835 cur_state = !!(val & DPLL_VCO_ENABLE);
836 WARN(cur_state != state,
837 "PCH PLL state assertion failure (expected %s, current %s)\n",
838 state_string(state), state_string(cur_state));
839 }
840 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844 enum pipe pipe, bool state)
845 {
846 int reg;
847 u32 val;
848 bool cur_state;
849
850 reg = FDI_TX_CTL(pipe);
851 val = I915_READ(reg);
852 cur_state = !!(val & FDI_TX_ENABLE);
853 WARN(cur_state != state,
854 "FDI TX state assertion failure (expected %s, current %s)\n",
855 state_string(state), state_string(cur_state));
856 }
857 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861 enum pipe pipe, bool state)
862 {
863 int reg;
864 u32 val;
865 bool cur_state;
866
867 reg = FDI_RX_CTL(pipe);
868 val = I915_READ(reg);
869 cur_state = !!(val & FDI_RX_ENABLE);
870 WARN(cur_state != state,
871 "FDI RX state assertion failure (expected %s, current %s)\n",
872 state_string(state), state_string(cur_state));
873 }
874 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879 {
880 int reg;
881 u32 val;
882
883 /* ILK FDI PLL is always enabled */
884 if (dev_priv->info->gen == 5)
885 return;
886
887 reg = FDI_TX_CTL(pipe);
888 val = I915_READ(reg);
889 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890 }
891
892 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893 enum pipe pipe)
894 {
895 int reg;
896 u32 val;
897
898 reg = FDI_RX_CTL(pipe);
899 val = I915_READ(reg);
900 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905 {
906 int pp_reg, lvds_reg;
907 u32 val;
908 enum pipe panel_pipe = PIPE_A;
909 bool locked = true;
910
911 if (HAS_PCH_SPLIT(dev_priv->dev)) {
912 pp_reg = PCH_PP_CONTROL;
913 lvds_reg = PCH_LVDS;
914 } else {
915 pp_reg = PP_CONTROL;
916 lvds_reg = LVDS;
917 }
918
919 val = I915_READ(pp_reg);
920 if (!(val & PANEL_POWER_ON) ||
921 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922 locked = false;
923
924 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925 panel_pipe = PIPE_B;
926
927 WARN(panel_pipe == pipe && locked,
928 "panel assertion failure, pipe %c regs locked\n",
929 pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933 enum pipe pipe, bool state)
934 {
935 int reg;
936 u32 val;
937 bool cur_state;
938
939 /* if we need the pipe A quirk it must be always on */
940 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941 state = true;
942
943 reg = PIPECONF(pipe);
944 val = I915_READ(reg);
945 cur_state = !!(val & PIPECONF_ENABLE);
946 WARN(cur_state != state,
947 "pipe %c assertion failure (expected %s, current %s)\n",
948 pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952 enum plane plane, bool state)
953 {
954 int reg;
955 u32 val;
956 bool cur_state;
957
958 reg = DSPCNTR(plane);
959 val = I915_READ(reg);
960 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961 WARN(cur_state != state,
962 "plane %c assertion failure (expected %s, current %s)\n",
963 plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970 enum pipe pipe)
971 {
972 int reg, i;
973 u32 val;
974 int cur_pipe;
975
976 /* Planes are fixed to pipes on ILK+ */
977 if (HAS_PCH_SPLIT(dev_priv->dev)) {
978 reg = DSPCNTR(pipe);
979 val = I915_READ(reg);
980 WARN((val & DISPLAY_PLANE_ENABLE),
981 "plane %c assertion failure, should be disabled but not\n",
982 plane_name(pipe));
983 return;
984 }
985
986 /* Need to check both planes against the pipe */
987 for (i = 0; i < 2; i++) {
988 reg = DSPCNTR(i);
989 val = I915_READ(reg);
990 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991 DISPPLANE_SEL_PIPE_SHIFT;
992 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
993 "plane %c assertion failure, should be off on pipe %c but is still active\n",
994 plane_name(i), pipe_name(pipe));
995 }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000 u32 val;
1001 bool enabled;
1002
1003 val = I915_READ(PCH_DREF_CONTROL);
1004 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005 DREF_SUPERSPREAD_SOURCE_MASK));
1006 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1007 }
1008
1009 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014 bool enabled;
1015
1016 reg = TRANSCONF(pipe);
1017 val = I915_READ(reg);
1018 enabled = !!(val & TRANS_ENABLE);
1019 WARN(enabled,
1020 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1021 pipe_name(pipe));
1022 }
1023
1024 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1025 enum pipe pipe, u32 port_sel, u32 val)
1026 {
1027 if ((val & DP_PORT_EN) == 0)
1028 return false;
1029
1030 if (HAS_PCH_CPT(dev_priv->dev)) {
1031 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1032 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1033 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1034 return false;
1035 } else {
1036 if ((val & DP_PIPE_MASK) != (pipe << 30))
1037 return false;
1038 }
1039 return true;
1040 }
1041
1042 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1043 enum pipe pipe, u32 val)
1044 {
1045 if ((val & PORT_ENABLE) == 0)
1046 return false;
1047
1048 if (HAS_PCH_CPT(dev_priv->dev)) {
1049 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1050 return false;
1051 } else {
1052 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1053 return false;
1054 }
1055 return true;
1056 }
1057
1058 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, u32 val)
1060 {
1061 if ((val & LVDS_PORT_EN) == 0)
1062 return false;
1063
1064 if (HAS_PCH_CPT(dev_priv->dev)) {
1065 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1066 return false;
1067 } else {
1068 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1069 return false;
1070 }
1071 return true;
1072 }
1073
1074 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1075 enum pipe pipe, u32 val)
1076 {
1077 if ((val & ADPA_DAC_ENABLE) == 0)
1078 return false;
1079 if (HAS_PCH_CPT(dev_priv->dev)) {
1080 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1081 return false;
1082 } else {
1083 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1084 return false;
1085 }
1086 return true;
1087 }
1088
1089 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, int reg, u32 port_sel)
1091 {
1092 u32 val = I915_READ(reg);
1093 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1094 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1095 reg, pipe_name(pipe));
1096 }
1097
1098 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1099 enum pipe pipe, int reg)
1100 {
1101 u32 val = I915_READ(reg);
1102 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1103 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1104 reg, pipe_name(pipe));
1105 }
1106
1107 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1108 enum pipe pipe)
1109 {
1110 int reg;
1111 u32 val;
1112
1113 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1114 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1115 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1116
1117 reg = PCH_ADPA;
1118 val = I915_READ(reg);
1119 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1120 "PCH VGA enabled on transcoder %c, should be disabled\n",
1121 pipe_name(pipe));
1122
1123 reg = PCH_LVDS;
1124 val = I915_READ(reg);
1125 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1126 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1127 pipe_name(pipe));
1128
1129 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1130 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1131 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1132 }
1133
1134 /**
1135 * intel_enable_pll - enable a PLL
1136 * @dev_priv: i915 private structure
1137 * @pipe: pipe PLL to enable
1138 *
1139 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1140 * make sure the PLL reg is writable first though, since the panel write
1141 * protect mechanism may be enabled.
1142 *
1143 * Note! This is for pre-ILK only.
1144 */
1145 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1146 {
1147 int reg;
1148 u32 val;
1149
1150 /* No really, not for ILK+ */
1151 BUG_ON(dev_priv->info->gen >= 5);
1152
1153 /* PLL is protected by panel, make sure we can write it */
1154 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1155 assert_panel_unlocked(dev_priv, pipe);
1156
1157 reg = DPLL(pipe);
1158 val = I915_READ(reg);
1159 val |= DPLL_VCO_ENABLE;
1160
1161 /* We do this three times for luck */
1162 I915_WRITE(reg, val);
1163 POSTING_READ(reg);
1164 udelay(150); /* wait for warmup */
1165 I915_WRITE(reg, val);
1166 POSTING_READ(reg);
1167 udelay(150); /* wait for warmup */
1168 I915_WRITE(reg, val);
1169 POSTING_READ(reg);
1170 udelay(150); /* wait for warmup */
1171 }
1172
1173 /**
1174 * intel_disable_pll - disable a PLL
1175 * @dev_priv: i915 private structure
1176 * @pipe: pipe PLL to disable
1177 *
1178 * Disable the PLL for @pipe, making sure the pipe is off first.
1179 *
1180 * Note! This is for pre-ILK only.
1181 */
1182 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1183 {
1184 int reg;
1185 u32 val;
1186
1187 /* Don't disable pipe A or pipe A PLLs if needed */
1188 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1189 return;
1190
1191 /* Make sure the pipe isn't still relying on us */
1192 assert_pipe_disabled(dev_priv, pipe);
1193
1194 reg = DPLL(pipe);
1195 val = I915_READ(reg);
1196 val &= ~DPLL_VCO_ENABLE;
1197 I915_WRITE(reg, val);
1198 POSTING_READ(reg);
1199 }
1200
1201 /**
1202 * intel_enable_pch_pll - enable PCH PLL
1203 * @dev_priv: i915 private structure
1204 * @pipe: pipe PLL to enable
1205 *
1206 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1207 * drives the transcoder clock.
1208 */
1209 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1210 enum pipe pipe)
1211 {
1212 int reg;
1213 u32 val;
1214
1215 if (pipe > 1)
1216 return;
1217
1218 /* PCH only available on ILK+ */
1219 BUG_ON(dev_priv->info->gen < 5);
1220
1221 /* PCH refclock must be enabled first */
1222 assert_pch_refclk_enabled(dev_priv);
1223
1224 reg = PCH_DPLL(pipe);
1225 val = I915_READ(reg);
1226 val |= DPLL_VCO_ENABLE;
1227 I915_WRITE(reg, val);
1228 POSTING_READ(reg);
1229 udelay(200);
1230 }
1231
1232 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 int reg;
1236 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1237 pll_sel = TRANSC_DPLL_ENABLE;
1238
1239 if (pipe > 1)
1240 return;
1241
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv->info->gen < 5);
1244
1245 /* Make sure transcoder isn't still depending on us */
1246 assert_transcoder_disabled(dev_priv, pipe);
1247
1248 if (pipe == 0)
1249 pll_sel |= TRANSC_DPLLA_SEL;
1250 else if (pipe == 1)
1251 pll_sel |= TRANSC_DPLLB_SEL;
1252
1253
1254 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1255 return;
1256
1257 reg = PCH_DPLL(pipe);
1258 val = I915_READ(reg);
1259 val &= ~DPLL_VCO_ENABLE;
1260 I915_WRITE(reg, val);
1261 POSTING_READ(reg);
1262 udelay(200);
1263 }
1264
1265 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 int reg;
1269 u32 val, pipeconf_val;
1270 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1271
1272 /* PCH only available on ILK+ */
1273 BUG_ON(dev_priv->info->gen < 5);
1274
1275 /* Make sure PCH DPLL is enabled */
1276 assert_pch_pll_enabled(dev_priv, pipe);
1277
1278 /* FDI must be feeding us bits for PCH ports */
1279 assert_fdi_tx_enabled(dev_priv, pipe);
1280 assert_fdi_rx_enabled(dev_priv, pipe);
1281
1282 reg = TRANSCONF(pipe);
1283 val = I915_READ(reg);
1284 pipeconf_val = I915_READ(PIPECONF(pipe));
1285
1286 if (HAS_PCH_IBX(dev_priv->dev)) {
1287 /*
1288 * make the BPC in transcoder be consistent with
1289 * that in pipeconf reg.
1290 */
1291 val &= ~PIPE_BPC_MASK;
1292 val |= pipeconf_val & PIPE_BPC_MASK;
1293 }
1294
1295 val &= ~TRANS_INTERLACE_MASK;
1296 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1297 if (HAS_PCH_IBX(dev_priv->dev) &&
1298 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1299 val |= TRANS_LEGACY_INTERLACED_ILK;
1300 else
1301 val |= TRANS_INTERLACED;
1302 else
1303 val |= TRANS_PROGRESSIVE;
1304
1305 I915_WRITE(reg, val | TRANS_ENABLE);
1306 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1307 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1308 }
1309
1310 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312 {
1313 int reg;
1314 u32 val;
1315
1316 /* FDI relies on the transcoder */
1317 assert_fdi_tx_disabled(dev_priv, pipe);
1318 assert_fdi_rx_disabled(dev_priv, pipe);
1319
1320 /* Ports must be off as well */
1321 assert_pch_ports_disabled(dev_priv, pipe);
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 val &= ~TRANS_ENABLE;
1326 I915_WRITE(reg, val);
1327 /* wait for PCH transcoder off, transcoder state */
1328 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1329 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1330 }
1331
1332 /**
1333 * intel_enable_pipe - enable a pipe, asserting requirements
1334 * @dev_priv: i915 private structure
1335 * @pipe: pipe to enable
1336 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1337 *
1338 * Enable @pipe, making sure that various hardware specific requirements
1339 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1340 *
1341 * @pipe should be %PIPE_A or %PIPE_B.
1342 *
1343 * Will wait until the pipe is actually running (i.e. first vblank) before
1344 * returning.
1345 */
1346 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1347 bool pch_port)
1348 {
1349 int reg;
1350 u32 val;
1351
1352 /*
1353 * A pipe without a PLL won't actually be able to drive bits from
1354 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1355 * need the check.
1356 */
1357 if (!HAS_PCH_SPLIT(dev_priv->dev))
1358 assert_pll_enabled(dev_priv, pipe);
1359 else {
1360 if (pch_port) {
1361 /* if driving the PCH, we need FDI enabled */
1362 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1363 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1364 }
1365 /* FIXME: assert CPU port conditions for SNB+ */
1366 }
1367
1368 reg = PIPECONF(pipe);
1369 val = I915_READ(reg);
1370 if (val & PIPECONF_ENABLE)
1371 return;
1372
1373 I915_WRITE(reg, val | PIPECONF_ENABLE);
1374 intel_wait_for_vblank(dev_priv->dev, pipe);
1375 }
1376
1377 /**
1378 * intel_disable_pipe - disable a pipe, asserting requirements
1379 * @dev_priv: i915 private structure
1380 * @pipe: pipe to disable
1381 *
1382 * Disable @pipe, making sure that various hardware specific requirements
1383 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1384 *
1385 * @pipe should be %PIPE_A or %PIPE_B.
1386 *
1387 * Will wait until the pipe has shut down before returning.
1388 */
1389 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1390 enum pipe pipe)
1391 {
1392 int reg;
1393 u32 val;
1394
1395 /*
1396 * Make sure planes won't keep trying to pump pixels to us,
1397 * or we might hang the display.
1398 */
1399 assert_planes_disabled(dev_priv, pipe);
1400
1401 /* Don't disable pipe A or pipe A PLLs if needed */
1402 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1403 return;
1404
1405 reg = PIPECONF(pipe);
1406 val = I915_READ(reg);
1407 if ((val & PIPECONF_ENABLE) == 0)
1408 return;
1409
1410 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1411 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1412 }
1413
1414 /*
1415 * Plane regs are double buffered, going from enabled->disabled needs a
1416 * trigger in order to latch. The display address reg provides this.
1417 */
1418 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1419 enum plane plane)
1420 {
1421 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1422 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1423 }
1424
1425 /**
1426 * intel_enable_plane - enable a display plane on a given pipe
1427 * @dev_priv: i915 private structure
1428 * @plane: plane to enable
1429 * @pipe: pipe being fed
1430 *
1431 * Enable @plane on @pipe, making sure that @pipe is running first.
1432 */
1433 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1434 enum plane plane, enum pipe pipe)
1435 {
1436 int reg;
1437 u32 val;
1438
1439 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1440 assert_pipe_enabled(dev_priv, pipe);
1441
1442 reg = DSPCNTR(plane);
1443 val = I915_READ(reg);
1444 if (val & DISPLAY_PLANE_ENABLE)
1445 return;
1446
1447 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1448 intel_flush_display_plane(dev_priv, plane);
1449 intel_wait_for_vblank(dev_priv->dev, pipe);
1450 }
1451
1452 /**
1453 * intel_disable_plane - disable a display plane
1454 * @dev_priv: i915 private structure
1455 * @plane: plane to disable
1456 * @pipe: pipe consuming the data
1457 *
1458 * Disable @plane; should be an independent operation.
1459 */
1460 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1461 enum plane plane, enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 reg = DSPCNTR(plane);
1467 val = I915_READ(reg);
1468 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1469 return;
1470
1471 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1472 intel_flush_display_plane(dev_priv, plane);
1473 intel_wait_for_vblank(dev_priv->dev, pipe);
1474 }
1475
1476 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, int reg, u32 port_sel)
1478 {
1479 u32 val = I915_READ(reg);
1480 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1481 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1482 I915_WRITE(reg, val & ~DP_PORT_EN);
1483 }
1484 }
1485
1486 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1487 enum pipe pipe, int reg)
1488 {
1489 u32 val = I915_READ(reg);
1490 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1491 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1492 reg, pipe);
1493 I915_WRITE(reg, val & ~PORT_ENABLE);
1494 }
1495 }
1496
1497 /* Disable any ports connected to this transcoder */
1498 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1499 enum pipe pipe)
1500 {
1501 u32 reg, val;
1502
1503 val = I915_READ(PCH_PP_CONTROL);
1504 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1505
1506 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1507 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1508 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1509
1510 reg = PCH_ADPA;
1511 val = I915_READ(reg);
1512 if (adpa_pipe_enabled(dev_priv, val, pipe))
1513 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1514
1515 reg = PCH_LVDS;
1516 val = I915_READ(reg);
1517 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1518 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1519 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1520 POSTING_READ(reg);
1521 udelay(100);
1522 }
1523
1524 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1525 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1526 disable_pch_hdmi(dev_priv, pipe, HDMID);
1527 }
1528
1529 static void i8xx_disable_fbc(struct drm_device *dev)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 u32 fbc_ctl;
1533
1534 /* Disable compression */
1535 fbc_ctl = I915_READ(FBC_CONTROL);
1536 if ((fbc_ctl & FBC_CTL_EN) == 0)
1537 return;
1538
1539 fbc_ctl &= ~FBC_CTL_EN;
1540 I915_WRITE(FBC_CONTROL, fbc_ctl);
1541
1542 /* Wait for compressing bit to clear */
1543 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1544 DRM_DEBUG_KMS("FBC idle timed out\n");
1545 return;
1546 }
1547
1548 DRM_DEBUG_KMS("disabled FBC\n");
1549 }
1550
1551 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557 struct drm_i915_gem_object *obj = intel_fb->obj;
1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559 int cfb_pitch;
1560 int plane, i;
1561 u32 fbc_ctl, fbc_ctl2;
1562
1563 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1564 if (fb->pitches[0] < cfb_pitch)
1565 cfb_pitch = fb->pitches[0];
1566
1567 /* FBC_CTL wants 64B units */
1568 cfb_pitch = (cfb_pitch / 64) - 1;
1569 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1570
1571 /* Clear old tags */
1572 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1573 I915_WRITE(FBC_TAG + (i * 4), 0);
1574
1575 /* Set it up... */
1576 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1577 fbc_ctl2 |= plane;
1578 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1579 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1580
1581 /* enable it... */
1582 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1583 if (IS_I945GM(dev))
1584 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1585 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1586 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1587 fbc_ctl |= obj->fence_reg;
1588 I915_WRITE(FBC_CONTROL, fbc_ctl);
1589
1590 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1591 cfb_pitch, crtc->y, intel_crtc->plane);
1592 }
1593
1594 static bool i8xx_fbc_enabled(struct drm_device *dev)
1595 {
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1599 }
1600
1601 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1602 {
1603 struct drm_device *dev = crtc->dev;
1604 struct drm_i915_private *dev_priv = dev->dev_private;
1605 struct drm_framebuffer *fb = crtc->fb;
1606 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1607 struct drm_i915_gem_object *obj = intel_fb->obj;
1608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1609 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1610 unsigned long stall_watermark = 200;
1611 u32 dpfc_ctl;
1612
1613 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1614 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1615 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1616
1617 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1618 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1619 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1620 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1621
1622 /* enable it... */
1623 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1624
1625 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1626 }
1627
1628 static void g4x_disable_fbc(struct drm_device *dev)
1629 {
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 u32 dpfc_ctl;
1632
1633 /* Disable compression */
1634 dpfc_ctl = I915_READ(DPFC_CONTROL);
1635 if (dpfc_ctl & DPFC_CTL_EN) {
1636 dpfc_ctl &= ~DPFC_CTL_EN;
1637 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1638
1639 DRM_DEBUG_KMS("disabled FBC\n");
1640 }
1641 }
1642
1643 static bool g4x_fbc_enabled(struct drm_device *dev)
1644 {
1645 struct drm_i915_private *dev_priv = dev->dev_private;
1646
1647 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1648 }
1649
1650 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1651 {
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 u32 blt_ecoskpd;
1654
1655 /* Make sure blitter notifies FBC of writes */
1656 gen6_gt_force_wake_get(dev_priv);
1657 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1658 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1659 GEN6_BLITTER_LOCK_SHIFT;
1660 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1661 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1662 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1663 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1664 GEN6_BLITTER_LOCK_SHIFT);
1665 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1666 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1667 gen6_gt_force_wake_put(dev_priv);
1668 }
1669
1670 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1671 {
1672 struct drm_device *dev = crtc->dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 struct drm_framebuffer *fb = crtc->fb;
1675 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1676 struct drm_i915_gem_object *obj = intel_fb->obj;
1677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1678 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1679 unsigned long stall_watermark = 200;
1680 u32 dpfc_ctl;
1681
1682 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1683 dpfc_ctl &= DPFC_RESERVED;
1684 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1685 /* Set persistent mode for front-buffer rendering, ala X. */
1686 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1687 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1688 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1689
1690 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1691 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1692 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1693 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1694 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1695 /* enable it... */
1696 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1697
1698 if (IS_GEN6(dev)) {
1699 I915_WRITE(SNB_DPFC_CTL_SA,
1700 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1701 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1702 sandybridge_blit_fbc_update(dev);
1703 }
1704
1705 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1706 }
1707
1708 static void ironlake_disable_fbc(struct drm_device *dev)
1709 {
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 u32 dpfc_ctl;
1712
1713 /* Disable compression */
1714 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1715 if (dpfc_ctl & DPFC_CTL_EN) {
1716 dpfc_ctl &= ~DPFC_CTL_EN;
1717 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1718
1719 DRM_DEBUG_KMS("disabled FBC\n");
1720 }
1721 }
1722
1723 static bool ironlake_fbc_enabled(struct drm_device *dev)
1724 {
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1728 }
1729
1730 bool intel_fbc_enabled(struct drm_device *dev)
1731 {
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733
1734 if (!dev_priv->display.fbc_enabled)
1735 return false;
1736
1737 return dev_priv->display.fbc_enabled(dev);
1738 }
1739
1740 static void intel_fbc_work_fn(struct work_struct *__work)
1741 {
1742 struct intel_fbc_work *work =
1743 container_of(to_delayed_work(__work),
1744 struct intel_fbc_work, work);
1745 struct drm_device *dev = work->crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748 mutex_lock(&dev->struct_mutex);
1749 if (work == dev_priv->fbc_work) {
1750 /* Double check that we haven't switched fb without cancelling
1751 * the prior work.
1752 */
1753 if (work->crtc->fb == work->fb) {
1754 dev_priv->display.enable_fbc(work->crtc,
1755 work->interval);
1756
1757 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1758 dev_priv->cfb_fb = work->crtc->fb->base.id;
1759 dev_priv->cfb_y = work->crtc->y;
1760 }
1761
1762 dev_priv->fbc_work = NULL;
1763 }
1764 mutex_unlock(&dev->struct_mutex);
1765
1766 kfree(work);
1767 }
1768
1769 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1770 {
1771 if (dev_priv->fbc_work == NULL)
1772 return;
1773
1774 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1775
1776 /* Synchronisation is provided by struct_mutex and checking of
1777 * dev_priv->fbc_work, so we can perform the cancellation
1778 * entirely asynchronously.
1779 */
1780 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1781 /* tasklet was killed before being run, clean up */
1782 kfree(dev_priv->fbc_work);
1783
1784 /* Mark the work as no longer wanted so that if it does
1785 * wake-up (because the work was already running and waiting
1786 * for our mutex), it will discover that is no longer
1787 * necessary to run.
1788 */
1789 dev_priv->fbc_work = NULL;
1790 }
1791
1792 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1793 {
1794 struct intel_fbc_work *work;
1795 struct drm_device *dev = crtc->dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797
1798 if (!dev_priv->display.enable_fbc)
1799 return;
1800
1801 intel_cancel_fbc_work(dev_priv);
1802
1803 work = kzalloc(sizeof *work, GFP_KERNEL);
1804 if (work == NULL) {
1805 dev_priv->display.enable_fbc(crtc, interval);
1806 return;
1807 }
1808
1809 work->crtc = crtc;
1810 work->fb = crtc->fb;
1811 work->interval = interval;
1812 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1813
1814 dev_priv->fbc_work = work;
1815
1816 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1817
1818 /* Delay the actual enabling to let pageflipping cease and the
1819 * display to settle before starting the compression. Note that
1820 * this delay also serves a second purpose: it allows for a
1821 * vblank to pass after disabling the FBC before we attempt
1822 * to modify the control registers.
1823 *
1824 * A more complicated solution would involve tracking vblanks
1825 * following the termination of the page-flipping sequence
1826 * and indeed performing the enable as a co-routine and not
1827 * waiting synchronously upon the vblank.
1828 */
1829 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1830 }
1831
1832 void intel_disable_fbc(struct drm_device *dev)
1833 {
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835
1836 intel_cancel_fbc_work(dev_priv);
1837
1838 if (!dev_priv->display.disable_fbc)
1839 return;
1840
1841 dev_priv->display.disable_fbc(dev);
1842 dev_priv->cfb_plane = -1;
1843 }
1844
1845 /**
1846 * intel_update_fbc - enable/disable FBC as needed
1847 * @dev: the drm_device
1848 *
1849 * Set up the framebuffer compression hardware at mode set time. We
1850 * enable it if possible:
1851 * - plane A only (on pre-965)
1852 * - no pixel mulitply/line duplication
1853 * - no alpha buffer discard
1854 * - no dual wide
1855 * - framebuffer <= 2048 in width, 1536 in height
1856 *
1857 * We can't assume that any compression will take place (worst case),
1858 * so the compressed buffer has to be the same size as the uncompressed
1859 * one. It also must reside (along with the line length buffer) in
1860 * stolen memory.
1861 *
1862 * We need to enable/disable FBC on a global basis.
1863 */
1864 static void intel_update_fbc(struct drm_device *dev)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 struct drm_crtc *crtc = NULL, *tmp_crtc;
1868 struct intel_crtc *intel_crtc;
1869 struct drm_framebuffer *fb;
1870 struct intel_framebuffer *intel_fb;
1871 struct drm_i915_gem_object *obj;
1872 int enable_fbc;
1873
1874 DRM_DEBUG_KMS("\n");
1875
1876 if (!i915_powersave)
1877 return;
1878
1879 if (!I915_HAS_FBC(dev))
1880 return;
1881
1882 /*
1883 * If FBC is already on, we just have to verify that we can
1884 * keep it that way...
1885 * Need to disable if:
1886 * - more than one pipe is active
1887 * - changing FBC params (stride, fence, mode)
1888 * - new fb is too large to fit in compressed buffer
1889 * - going to an unsupported config (interlace, pixel multiply, etc.)
1890 */
1891 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1892 if (tmp_crtc->enabled && tmp_crtc->fb) {
1893 if (crtc) {
1894 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1895 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1896 goto out_disable;
1897 }
1898 crtc = tmp_crtc;
1899 }
1900 }
1901
1902 if (!crtc || crtc->fb == NULL) {
1903 DRM_DEBUG_KMS("no output, disabling\n");
1904 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1905 goto out_disable;
1906 }
1907
1908 intel_crtc = to_intel_crtc(crtc);
1909 fb = crtc->fb;
1910 intel_fb = to_intel_framebuffer(fb);
1911 obj = intel_fb->obj;
1912
1913 enable_fbc = i915_enable_fbc;
1914 if (enable_fbc < 0) {
1915 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1916 enable_fbc = 1;
1917 if (INTEL_INFO(dev)->gen <= 6)
1918 enable_fbc = 0;
1919 }
1920 if (!enable_fbc) {
1921 DRM_DEBUG_KMS("fbc disabled per module param\n");
1922 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1923 goto out_disable;
1924 }
1925 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1926 DRM_DEBUG_KMS("framebuffer too large, disabling "
1927 "compression\n");
1928 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1929 goto out_disable;
1930 }
1931 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1932 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1933 DRM_DEBUG_KMS("mode incompatible with compression, "
1934 "disabling\n");
1935 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1936 goto out_disable;
1937 }
1938 if ((crtc->mode.hdisplay > 2048) ||
1939 (crtc->mode.vdisplay > 1536)) {
1940 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1941 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1942 goto out_disable;
1943 }
1944 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1945 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1946 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1947 goto out_disable;
1948 }
1949
1950 /* The use of a CPU fence is mandatory in order to detect writes
1951 * by the CPU to the scanout and trigger updates to the FBC.
1952 */
1953 if (obj->tiling_mode != I915_TILING_X ||
1954 obj->fence_reg == I915_FENCE_REG_NONE) {
1955 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1956 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1957 goto out_disable;
1958 }
1959
1960 /* If the kernel debugger is active, always disable compression */
1961 if (in_dbg_master())
1962 goto out_disable;
1963
1964 /* If the scanout has not changed, don't modify the FBC settings.
1965 * Note that we make the fundamental assumption that the fb->obj
1966 * cannot be unpinned (and have its GTT offset and fence revoked)
1967 * without first being decoupled from the scanout and FBC disabled.
1968 */
1969 if (dev_priv->cfb_plane == intel_crtc->plane &&
1970 dev_priv->cfb_fb == fb->base.id &&
1971 dev_priv->cfb_y == crtc->y)
1972 return;
1973
1974 if (intel_fbc_enabled(dev)) {
1975 /* We update FBC along two paths, after changing fb/crtc
1976 * configuration (modeswitching) and after page-flipping
1977 * finishes. For the latter, we know that not only did
1978 * we disable the FBC at the start of the page-flip
1979 * sequence, but also more than one vblank has passed.
1980 *
1981 * For the former case of modeswitching, it is possible
1982 * to switch between two FBC valid configurations
1983 * instantaneously so we do need to disable the FBC
1984 * before we can modify its control registers. We also
1985 * have to wait for the next vblank for that to take
1986 * effect. However, since we delay enabling FBC we can
1987 * assume that a vblank has passed since disabling and
1988 * that we can safely alter the registers in the deferred
1989 * callback.
1990 *
1991 * In the scenario that we go from a valid to invalid
1992 * and then back to valid FBC configuration we have
1993 * no strict enforcement that a vblank occurred since
1994 * disabling the FBC. However, along all current pipe
1995 * disabling paths we do need to wait for a vblank at
1996 * some point. And we wait before enabling FBC anyway.
1997 */
1998 DRM_DEBUG_KMS("disabling active FBC for update\n");
1999 intel_disable_fbc(dev);
2000 }
2001
2002 intel_enable_fbc(crtc, 500);
2003 return;
2004
2005 out_disable:
2006 /* Multiple disables should be harmless */
2007 if (intel_fbc_enabled(dev)) {
2008 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2009 intel_disable_fbc(dev);
2010 }
2011 }
2012
2013 int
2014 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2015 struct drm_i915_gem_object *obj,
2016 struct intel_ring_buffer *pipelined)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 u32 alignment;
2020 int ret;
2021
2022 switch (obj->tiling_mode) {
2023 case I915_TILING_NONE:
2024 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2025 alignment = 128 * 1024;
2026 else if (INTEL_INFO(dev)->gen >= 4)
2027 alignment = 4 * 1024;
2028 else
2029 alignment = 64 * 1024;
2030 break;
2031 case I915_TILING_X:
2032 /* pin() will align the object as required by fence */
2033 alignment = 0;
2034 break;
2035 case I915_TILING_Y:
2036 /* FIXME: Is this true? */
2037 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2038 return -EINVAL;
2039 default:
2040 BUG();
2041 }
2042
2043 dev_priv->mm.interruptible = false;
2044 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2045 if (ret)
2046 goto err_interruptible;
2047
2048 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2049 * fence, whereas 965+ only requires a fence if using
2050 * framebuffer compression. For simplicity, we always install
2051 * a fence as the cost is not that onerous.
2052 */
2053 if (obj->tiling_mode != I915_TILING_NONE) {
2054 ret = i915_gem_object_get_fence(obj, pipelined);
2055 if (ret)
2056 goto err_unpin;
2057
2058 i915_gem_object_pin_fence(obj);
2059 }
2060
2061 dev_priv->mm.interruptible = true;
2062 return 0;
2063
2064 err_unpin:
2065 i915_gem_object_unpin(obj);
2066 err_interruptible:
2067 dev_priv->mm.interruptible = true;
2068 return ret;
2069 }
2070
2071 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2072 {
2073 i915_gem_object_unpin_fence(obj);
2074 i915_gem_object_unpin(obj);
2075 }
2076
2077 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2078 int x, int y)
2079 {
2080 struct drm_device *dev = crtc->dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083 struct intel_framebuffer *intel_fb;
2084 struct drm_i915_gem_object *obj;
2085 int plane = intel_crtc->plane;
2086 unsigned long Start, Offset;
2087 u32 dspcntr;
2088 u32 reg;
2089
2090 switch (plane) {
2091 case 0:
2092 case 1:
2093 break;
2094 default:
2095 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2096 return -EINVAL;
2097 }
2098
2099 intel_fb = to_intel_framebuffer(fb);
2100 obj = intel_fb->obj;
2101
2102 reg = DSPCNTR(plane);
2103 dspcntr = I915_READ(reg);
2104 /* Mask out pixel format bits in case we change it */
2105 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2106 switch (fb->bits_per_pixel) {
2107 case 8:
2108 dspcntr |= DISPPLANE_8BPP;
2109 break;
2110 case 16:
2111 if (fb->depth == 15)
2112 dspcntr |= DISPPLANE_15_16BPP;
2113 else
2114 dspcntr |= DISPPLANE_16BPP;
2115 break;
2116 case 24:
2117 case 32:
2118 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2119 break;
2120 default:
2121 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2122 return -EINVAL;
2123 }
2124 if (INTEL_INFO(dev)->gen >= 4) {
2125 if (obj->tiling_mode != I915_TILING_NONE)
2126 dspcntr |= DISPPLANE_TILED;
2127 else
2128 dspcntr &= ~DISPPLANE_TILED;
2129 }
2130
2131 I915_WRITE(reg, dspcntr);
2132
2133 Start = obj->gtt_offset;
2134 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2135
2136 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137 Start, Offset, x, y, fb->pitches[0]);
2138 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2139 if (INTEL_INFO(dev)->gen >= 4) {
2140 I915_WRITE(DSPSURF(plane), Start);
2141 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2142 I915_WRITE(DSPADDR(plane), Offset);
2143 } else
2144 I915_WRITE(DSPADDR(plane), Start + Offset);
2145 POSTING_READ(reg);
2146
2147 return 0;
2148 }
2149
2150 static int ironlake_update_plane(struct drm_crtc *crtc,
2151 struct drm_framebuffer *fb, int x, int y)
2152 {
2153 struct drm_device *dev = crtc->dev;
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2156 struct intel_framebuffer *intel_fb;
2157 struct drm_i915_gem_object *obj;
2158 int plane = intel_crtc->plane;
2159 unsigned long Start, Offset;
2160 u32 dspcntr;
2161 u32 reg;
2162
2163 switch (plane) {
2164 case 0:
2165 case 1:
2166 case 2:
2167 break;
2168 default:
2169 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2170 return -EINVAL;
2171 }
2172
2173 intel_fb = to_intel_framebuffer(fb);
2174 obj = intel_fb->obj;
2175
2176 reg = DSPCNTR(plane);
2177 dspcntr = I915_READ(reg);
2178 /* Mask out pixel format bits in case we change it */
2179 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2180 switch (fb->bits_per_pixel) {
2181 case 8:
2182 dspcntr |= DISPPLANE_8BPP;
2183 break;
2184 case 16:
2185 if (fb->depth != 16)
2186 return -EINVAL;
2187
2188 dspcntr |= DISPPLANE_16BPP;
2189 break;
2190 case 24:
2191 case 32:
2192 if (fb->depth == 24)
2193 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2194 else if (fb->depth == 30)
2195 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2196 else
2197 return -EINVAL;
2198 break;
2199 default:
2200 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2201 return -EINVAL;
2202 }
2203
2204 if (obj->tiling_mode != I915_TILING_NONE)
2205 dspcntr |= DISPPLANE_TILED;
2206 else
2207 dspcntr &= ~DISPPLANE_TILED;
2208
2209 /* must disable */
2210 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2211
2212 I915_WRITE(reg, dspcntr);
2213
2214 Start = obj->gtt_offset;
2215 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2216
2217 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2218 Start, Offset, x, y, fb->pitches[0]);
2219 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2220 I915_WRITE(DSPSURF(plane), Start);
2221 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2222 I915_WRITE(DSPADDR(plane), Offset);
2223 POSTING_READ(reg);
2224
2225 return 0;
2226 }
2227
2228 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2229 static int
2230 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2231 int x, int y, enum mode_set_atomic state)
2232 {
2233 struct drm_device *dev = crtc->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 int ret;
2236
2237 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2238 if (ret)
2239 return ret;
2240
2241 intel_update_fbc(dev);
2242 intel_increase_pllclock(crtc);
2243
2244 return 0;
2245 }
2246
2247 static int
2248 intel_finish_fb(struct drm_framebuffer *old_fb)
2249 {
2250 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2251 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2252 bool was_interruptible = dev_priv->mm.interruptible;
2253 int ret;
2254
2255 wait_event(dev_priv->pending_flip_queue,
2256 atomic_read(&dev_priv->mm.wedged) ||
2257 atomic_read(&obj->pending_flip) == 0);
2258
2259 /* Big Hammer, we also need to ensure that any pending
2260 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2261 * current scanout is retired before unpinning the old
2262 * framebuffer.
2263 *
2264 * This should only fail upon a hung GPU, in which case we
2265 * can safely continue.
2266 */
2267 dev_priv->mm.interruptible = false;
2268 ret = i915_gem_object_finish_gpu(obj);
2269 dev_priv->mm.interruptible = was_interruptible;
2270
2271 return ret;
2272 }
2273
2274 static int
2275 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2276 struct drm_framebuffer *old_fb)
2277 {
2278 struct drm_device *dev = crtc->dev;
2279 struct drm_i915_master_private *master_priv;
2280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2281 int ret;
2282
2283 /* no fb bound */
2284 if (!crtc->fb) {
2285 DRM_ERROR("No FB bound\n");
2286 return 0;
2287 }
2288
2289 switch (intel_crtc->plane) {
2290 case 0:
2291 case 1:
2292 break;
2293 case 2:
2294 if (IS_IVYBRIDGE(dev))
2295 break;
2296 /* fall through otherwise */
2297 default:
2298 DRM_ERROR("no plane for crtc\n");
2299 return -EINVAL;
2300 }
2301
2302 mutex_lock(&dev->struct_mutex);
2303 ret = intel_pin_and_fence_fb_obj(dev,
2304 to_intel_framebuffer(crtc->fb)->obj,
2305 NULL);
2306 if (ret != 0) {
2307 mutex_unlock(&dev->struct_mutex);
2308 DRM_ERROR("pin & fence failed\n");
2309 return ret;
2310 }
2311
2312 if (old_fb)
2313 intel_finish_fb(old_fb);
2314
2315 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2316 LEAVE_ATOMIC_MODE_SET);
2317 if (ret) {
2318 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2319 mutex_unlock(&dev->struct_mutex);
2320 DRM_ERROR("failed to update base address\n");
2321 return ret;
2322 }
2323
2324 if (old_fb) {
2325 intel_wait_for_vblank(dev, intel_crtc->pipe);
2326 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2327 }
2328
2329 mutex_unlock(&dev->struct_mutex);
2330
2331 if (!dev->primary->master)
2332 return 0;
2333
2334 master_priv = dev->primary->master->driver_priv;
2335 if (!master_priv->sarea_priv)
2336 return 0;
2337
2338 if (intel_crtc->pipe) {
2339 master_priv->sarea_priv->pipeB_x = x;
2340 master_priv->sarea_priv->pipeB_y = y;
2341 } else {
2342 master_priv->sarea_priv->pipeA_x = x;
2343 master_priv->sarea_priv->pipeA_y = y;
2344 }
2345
2346 return 0;
2347 }
2348
2349 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2350 {
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 dpa_ctl;
2354
2355 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2356 dpa_ctl = I915_READ(DP_A);
2357 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2358
2359 if (clock < 200000) {
2360 u32 temp;
2361 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2362 /* workaround for 160Mhz:
2363 1) program 0x4600c bits 15:0 = 0x8124
2364 2) program 0x46010 bit 0 = 1
2365 3) program 0x46034 bit 24 = 1
2366 4) program 0x64000 bit 14 = 1
2367 */
2368 temp = I915_READ(0x4600c);
2369 temp &= 0xffff0000;
2370 I915_WRITE(0x4600c, temp | 0x8124);
2371
2372 temp = I915_READ(0x46010);
2373 I915_WRITE(0x46010, temp | 1);
2374
2375 temp = I915_READ(0x46034);
2376 I915_WRITE(0x46034, temp | (1 << 24));
2377 } else {
2378 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2379 }
2380 I915_WRITE(DP_A, dpa_ctl);
2381
2382 POSTING_READ(DP_A);
2383 udelay(500);
2384 }
2385
2386 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2387 {
2388 struct drm_device *dev = crtc->dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2391 int pipe = intel_crtc->pipe;
2392 u32 reg, temp;
2393
2394 /* enable normal train */
2395 reg = FDI_TX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 if (IS_IVYBRIDGE(dev)) {
2398 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2399 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2400 } else {
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2403 }
2404 I915_WRITE(reg, temp);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 if (HAS_PCH_CPT(dev)) {
2409 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2410 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2411 } else {
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_NONE;
2414 }
2415 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2416
2417 /* wait one idle pattern time */
2418 POSTING_READ(reg);
2419 udelay(1000);
2420
2421 /* IVB wants error correction enabled */
2422 if (IS_IVYBRIDGE(dev))
2423 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2424 FDI_FE_ERRC_ENABLE);
2425 }
2426
2427 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2428 {
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 u32 flags = I915_READ(SOUTH_CHICKEN1);
2431
2432 flags |= FDI_PHASE_SYNC_OVR(pipe);
2433 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2434 flags |= FDI_PHASE_SYNC_EN(pipe);
2435 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2436 POSTING_READ(SOUTH_CHICKEN1);
2437 }
2438
2439 /* The FDI link training functions for ILK/Ibexpeak. */
2440 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2441 {
2442 struct drm_device *dev = crtc->dev;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2445 int pipe = intel_crtc->pipe;
2446 int plane = intel_crtc->plane;
2447 u32 reg, temp, tries;
2448
2449 /* FDI needs bits from pipe & plane first */
2450 assert_pipe_enabled(dev_priv, pipe);
2451 assert_plane_enabled(dev_priv, plane);
2452
2453 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2454 for train result */
2455 reg = FDI_RX_IMR(pipe);
2456 temp = I915_READ(reg);
2457 temp &= ~FDI_RX_SYMBOL_LOCK;
2458 temp &= ~FDI_RX_BIT_LOCK;
2459 I915_WRITE(reg, temp);
2460 I915_READ(reg);
2461 udelay(150);
2462
2463 /* enable CPU FDI TX and PCH FDI RX */
2464 reg = FDI_TX_CTL(pipe);
2465 temp = I915_READ(reg);
2466 temp &= ~(7 << 19);
2467 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2468 temp &= ~FDI_LINK_TRAIN_NONE;
2469 temp |= FDI_LINK_TRAIN_PATTERN_1;
2470 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2471
2472 reg = FDI_RX_CTL(pipe);
2473 temp = I915_READ(reg);
2474 temp &= ~FDI_LINK_TRAIN_NONE;
2475 temp |= FDI_LINK_TRAIN_PATTERN_1;
2476 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2477
2478 POSTING_READ(reg);
2479 udelay(150);
2480
2481 /* Ironlake workaround, enable clock pointer after FDI enable*/
2482 if (HAS_PCH_IBX(dev)) {
2483 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2484 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2485 FDI_RX_PHASE_SYNC_POINTER_EN);
2486 }
2487
2488 reg = FDI_RX_IIR(pipe);
2489 for (tries = 0; tries < 5; tries++) {
2490 temp = I915_READ(reg);
2491 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2492
2493 if ((temp & FDI_RX_BIT_LOCK)) {
2494 DRM_DEBUG_KMS("FDI train 1 done.\n");
2495 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2496 break;
2497 }
2498 }
2499 if (tries == 5)
2500 DRM_ERROR("FDI train 1 fail!\n");
2501
2502 /* Train 2 */
2503 reg = FDI_TX_CTL(pipe);
2504 temp = I915_READ(reg);
2505 temp &= ~FDI_LINK_TRAIN_NONE;
2506 temp |= FDI_LINK_TRAIN_PATTERN_2;
2507 I915_WRITE(reg, temp);
2508
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
2511 temp &= ~FDI_LINK_TRAIN_NONE;
2512 temp |= FDI_LINK_TRAIN_PATTERN_2;
2513 I915_WRITE(reg, temp);
2514
2515 POSTING_READ(reg);
2516 udelay(150);
2517
2518 reg = FDI_RX_IIR(pipe);
2519 for (tries = 0; tries < 5; tries++) {
2520 temp = I915_READ(reg);
2521 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522
2523 if (temp & FDI_RX_SYMBOL_LOCK) {
2524 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2525 DRM_DEBUG_KMS("FDI train 2 done.\n");
2526 break;
2527 }
2528 }
2529 if (tries == 5)
2530 DRM_ERROR("FDI train 2 fail!\n");
2531
2532 DRM_DEBUG_KMS("FDI train done\n");
2533
2534 }
2535
2536 static const int snb_b_fdi_train_param[] = {
2537 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2538 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2539 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2540 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2541 };
2542
2543 /* The FDI link training functions for SNB/Cougarpoint. */
2544 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2545 {
2546 struct drm_device *dev = crtc->dev;
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2549 int pipe = intel_crtc->pipe;
2550 u32 reg, temp, i;
2551
2552 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2553 for train result */
2554 reg = FDI_RX_IMR(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~FDI_RX_SYMBOL_LOCK;
2557 temp &= ~FDI_RX_BIT_LOCK;
2558 I915_WRITE(reg, temp);
2559
2560 POSTING_READ(reg);
2561 udelay(150);
2562
2563 /* enable CPU FDI TX and PCH FDI RX */
2564 reg = FDI_TX_CTL(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~(7 << 19);
2567 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2568 temp &= ~FDI_LINK_TRAIN_NONE;
2569 temp |= FDI_LINK_TRAIN_PATTERN_1;
2570 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2571 /* SNB-B */
2572 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2573 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2574
2575 reg = FDI_RX_CTL(pipe);
2576 temp = I915_READ(reg);
2577 if (HAS_PCH_CPT(dev)) {
2578 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2580 } else {
2581 temp &= ~FDI_LINK_TRAIN_NONE;
2582 temp |= FDI_LINK_TRAIN_PATTERN_1;
2583 }
2584 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2585
2586 POSTING_READ(reg);
2587 udelay(150);
2588
2589 if (HAS_PCH_CPT(dev))
2590 cpt_phase_pointer_enable(dev, pipe);
2591
2592 for (i = 0; i < 4; i++) {
2593 reg = FDI_TX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596 temp |= snb_b_fdi_train_param[i];
2597 I915_WRITE(reg, temp);
2598
2599 POSTING_READ(reg);
2600 udelay(500);
2601
2602 reg = FDI_RX_IIR(pipe);
2603 temp = I915_READ(reg);
2604 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2605
2606 if (temp & FDI_RX_BIT_LOCK) {
2607 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2608 DRM_DEBUG_KMS("FDI train 1 done.\n");
2609 break;
2610 }
2611 }
2612 if (i == 4)
2613 DRM_ERROR("FDI train 1 fail!\n");
2614
2615 /* Train 2 */
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
2618 temp &= ~FDI_LINK_TRAIN_NONE;
2619 temp |= FDI_LINK_TRAIN_PATTERN_2;
2620 if (IS_GEN6(dev)) {
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 /* SNB-B */
2623 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2624 }
2625 I915_WRITE(reg, temp);
2626
2627 reg = FDI_RX_CTL(pipe);
2628 temp = I915_READ(reg);
2629 if (HAS_PCH_CPT(dev)) {
2630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2632 } else {
2633 temp &= ~FDI_LINK_TRAIN_NONE;
2634 temp |= FDI_LINK_TRAIN_PATTERN_2;
2635 }
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
2641 for (i = 0; i < 4; i++) {
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665 }
2666
2667 /* Manual link training for Ivy Bridge A0 parts */
2668 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2669 {
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 int pipe = intel_crtc->pipe;
2674 u32 reg, temp, i;
2675
2676 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2677 for train result */
2678 reg = FDI_RX_IMR(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_RX_SYMBOL_LOCK;
2681 temp &= ~FDI_RX_BIT_LOCK;
2682 I915_WRITE(reg, temp);
2683
2684 POSTING_READ(reg);
2685 udelay(150);
2686
2687 /* enable CPU FDI TX and PCH FDI RX */
2688 reg = FDI_TX_CTL(pipe);
2689 temp = I915_READ(reg);
2690 temp &= ~(7 << 19);
2691 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2692 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2693 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2694 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2695 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2696 temp |= FDI_COMPOSITE_SYNC;
2697 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2698
2699 reg = FDI_RX_CTL(pipe);
2700 temp = I915_READ(reg);
2701 temp &= ~FDI_LINK_TRAIN_AUTO;
2702 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2703 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2704 temp |= FDI_COMPOSITE_SYNC;
2705 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2706
2707 POSTING_READ(reg);
2708 udelay(150);
2709
2710 if (HAS_PCH_CPT(dev))
2711 cpt_phase_pointer_enable(dev, pipe);
2712
2713 for (i = 0; i < 4; i++) {
2714 reg = FDI_TX_CTL(pipe);
2715 temp = I915_READ(reg);
2716 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2717 temp |= snb_b_fdi_train_param[i];
2718 I915_WRITE(reg, temp);
2719
2720 POSTING_READ(reg);
2721 udelay(500);
2722
2723 reg = FDI_RX_IIR(pipe);
2724 temp = I915_READ(reg);
2725 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2726
2727 if (temp & FDI_RX_BIT_LOCK ||
2728 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2729 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2730 DRM_DEBUG_KMS("FDI train 1 done.\n");
2731 break;
2732 }
2733 }
2734 if (i == 4)
2735 DRM_ERROR("FDI train 1 fail!\n");
2736
2737 /* Train 2 */
2738 reg = FDI_TX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2741 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2742 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2744 I915_WRITE(reg, temp);
2745
2746 reg = FDI_RX_CTL(pipe);
2747 temp = I915_READ(reg);
2748 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2749 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2750 I915_WRITE(reg, temp);
2751
2752 POSTING_READ(reg);
2753 udelay(150);
2754
2755 for (i = 0; i < 4; i++) {
2756 reg = FDI_TX_CTL(pipe);
2757 temp = I915_READ(reg);
2758 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2759 temp |= snb_b_fdi_train_param[i];
2760 I915_WRITE(reg, temp);
2761
2762 POSTING_READ(reg);
2763 udelay(500);
2764
2765 reg = FDI_RX_IIR(pipe);
2766 temp = I915_READ(reg);
2767 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2768
2769 if (temp & FDI_RX_SYMBOL_LOCK) {
2770 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2771 DRM_DEBUG_KMS("FDI train 2 done.\n");
2772 break;
2773 }
2774 }
2775 if (i == 4)
2776 DRM_ERROR("FDI train 2 fail!\n");
2777
2778 DRM_DEBUG_KMS("FDI train done.\n");
2779 }
2780
2781 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2782 {
2783 struct drm_device *dev = crtc->dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786 int pipe = intel_crtc->pipe;
2787 u32 reg, temp;
2788
2789 /* Write the TU size bits so error detection works */
2790 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2791 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2792
2793 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2794 reg = FDI_RX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 temp &= ~((0x7 << 19) | (0x7 << 16));
2797 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2798 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2799 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2800
2801 POSTING_READ(reg);
2802 udelay(200);
2803
2804 /* Switch from Rawclk to PCDclk */
2805 temp = I915_READ(reg);
2806 I915_WRITE(reg, temp | FDI_PCDCLK);
2807
2808 POSTING_READ(reg);
2809 udelay(200);
2810
2811 /* Enable CPU FDI TX PLL, always on for Ironlake */
2812 reg = FDI_TX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2815 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2816
2817 POSTING_READ(reg);
2818 udelay(100);
2819 }
2820 }
2821
2822 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 u32 flags = I915_READ(SOUTH_CHICKEN1);
2826
2827 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2828 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2829 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2830 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2831 POSTING_READ(SOUTH_CHICKEN1);
2832 }
2833 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2834 {
2835 struct drm_device *dev = crtc->dev;
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 int pipe = intel_crtc->pipe;
2839 u32 reg, temp;
2840
2841 /* disable CPU FDI tx and PCH FDI rx */
2842 reg = FDI_TX_CTL(pipe);
2843 temp = I915_READ(reg);
2844 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2845 POSTING_READ(reg);
2846
2847 reg = FDI_RX_CTL(pipe);
2848 temp = I915_READ(reg);
2849 temp &= ~(0x7 << 16);
2850 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2851 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2852
2853 POSTING_READ(reg);
2854 udelay(100);
2855
2856 /* Ironlake workaround, disable clock pointer after downing FDI */
2857 if (HAS_PCH_IBX(dev)) {
2858 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2859 I915_WRITE(FDI_RX_CHICKEN(pipe),
2860 I915_READ(FDI_RX_CHICKEN(pipe) &
2861 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2862 } else if (HAS_PCH_CPT(dev)) {
2863 cpt_phase_pointer_disable(dev, pipe);
2864 }
2865
2866 /* still set train pattern 1 */
2867 reg = FDI_TX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
2871 I915_WRITE(reg, temp);
2872
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
2875 if (HAS_PCH_CPT(dev)) {
2876 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2877 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2878 } else {
2879 temp &= ~FDI_LINK_TRAIN_NONE;
2880 temp |= FDI_LINK_TRAIN_PATTERN_1;
2881 }
2882 /* BPC in FDI rx is consistent with that in PIPECONF */
2883 temp &= ~(0x07 << 16);
2884 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2885 I915_WRITE(reg, temp);
2886
2887 POSTING_READ(reg);
2888 udelay(100);
2889 }
2890
2891 /*
2892 * When we disable a pipe, we need to clear any pending scanline wait events
2893 * to avoid hanging the ring, which we assume we are waiting on.
2894 */
2895 static void intel_clear_scanline_wait(struct drm_device *dev)
2896 {
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2898 struct intel_ring_buffer *ring;
2899 u32 tmp;
2900
2901 if (IS_GEN2(dev))
2902 /* Can't break the hang on i8xx */
2903 return;
2904
2905 ring = LP_RING(dev_priv);
2906 tmp = I915_READ_CTL(ring);
2907 if (tmp & RING_WAIT)
2908 I915_WRITE_CTL(ring, tmp);
2909 }
2910
2911 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2912 {
2913 struct drm_i915_gem_object *obj;
2914 struct drm_i915_private *dev_priv;
2915
2916 if (crtc->fb == NULL)
2917 return;
2918
2919 obj = to_intel_framebuffer(crtc->fb)->obj;
2920 dev_priv = crtc->dev->dev_private;
2921 wait_event(dev_priv->pending_flip_queue,
2922 atomic_read(&obj->pending_flip) == 0);
2923 }
2924
2925 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2926 {
2927 struct drm_device *dev = crtc->dev;
2928 struct drm_mode_config *mode_config = &dev->mode_config;
2929 struct intel_encoder *encoder;
2930
2931 /*
2932 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2933 * must be driven by its own crtc; no sharing is possible.
2934 */
2935 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2936 if (encoder->base.crtc != crtc)
2937 continue;
2938
2939 switch (encoder->type) {
2940 case INTEL_OUTPUT_EDP:
2941 if (!intel_encoder_is_pch_edp(&encoder->base))
2942 return false;
2943 continue;
2944 }
2945 }
2946
2947 return true;
2948 }
2949
2950 /*
2951 * Enable PCH resources required for PCH ports:
2952 * - PCH PLLs
2953 * - FDI training & RX/TX
2954 * - update transcoder timings
2955 * - DP transcoding bits
2956 * - transcoder
2957 */
2958 static void ironlake_pch_enable(struct drm_crtc *crtc)
2959 {
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
2964 u32 reg, temp, transc_sel;
2965
2966 /* For PCH output, training FDI link */
2967 dev_priv->display.fdi_link_train(crtc);
2968
2969 intel_enable_pch_pll(dev_priv, pipe);
2970
2971 if (HAS_PCH_CPT(dev)) {
2972 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2973 TRANSC_DPLLB_SEL;
2974
2975 /* Be sure PCH DPLL SEL is set */
2976 temp = I915_READ(PCH_DPLL_SEL);
2977 if (pipe == 0) {
2978 temp &= ~(TRANSA_DPLLB_SEL);
2979 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2980 } else if (pipe == 1) {
2981 temp &= ~(TRANSB_DPLLB_SEL);
2982 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2983 } else if (pipe == 2) {
2984 temp &= ~(TRANSC_DPLLB_SEL);
2985 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2986 }
2987 I915_WRITE(PCH_DPLL_SEL, temp);
2988 }
2989
2990 /* set transcoder timing, panel must allow it */
2991 assert_panel_unlocked(dev_priv, pipe);
2992 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2993 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2994 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2995
2996 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2997 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2998 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2999 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3000
3001 intel_fdi_normal_train(crtc);
3002
3003 /* For PCH DP, enable TRANS_DP_CTL */
3004 if (HAS_PCH_CPT(dev) &&
3005 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3006 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3007 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3008 reg = TRANS_DP_CTL(pipe);
3009 temp = I915_READ(reg);
3010 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3011 TRANS_DP_SYNC_MASK |
3012 TRANS_DP_BPC_MASK);
3013 temp |= (TRANS_DP_OUTPUT_ENABLE |
3014 TRANS_DP_ENH_FRAMING);
3015 temp |= bpc << 9; /* same format but at 11:9 */
3016
3017 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3018 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3019 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3020 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3021
3022 switch (intel_trans_dp_port_sel(crtc)) {
3023 case PCH_DP_B:
3024 temp |= TRANS_DP_PORT_SEL_B;
3025 break;
3026 case PCH_DP_C:
3027 temp |= TRANS_DP_PORT_SEL_C;
3028 break;
3029 case PCH_DP_D:
3030 temp |= TRANS_DP_PORT_SEL_D;
3031 break;
3032 default:
3033 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3034 temp |= TRANS_DP_PORT_SEL_B;
3035 break;
3036 }
3037
3038 I915_WRITE(reg, temp);
3039 }
3040
3041 intel_enable_transcoder(dev_priv, pipe);
3042 }
3043
3044 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3045 {
3046 struct drm_i915_private *dev_priv = dev->dev_private;
3047 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3048 u32 temp;
3049
3050 temp = I915_READ(dslreg);
3051 udelay(500);
3052 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3053 /* Without this, mode sets may fail silently on FDI */
3054 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3055 udelay(250);
3056 I915_WRITE(tc2reg, 0);
3057 if (wait_for(I915_READ(dslreg) != temp, 5))
3058 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3059 }
3060 }
3061
3062 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3063 {
3064 struct drm_device *dev = crtc->dev;
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067 int pipe = intel_crtc->pipe;
3068 int plane = intel_crtc->plane;
3069 u32 temp;
3070 bool is_pch_port;
3071
3072 if (intel_crtc->active)
3073 return;
3074
3075 intel_crtc->active = true;
3076 intel_update_watermarks(dev);
3077
3078 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3079 temp = I915_READ(PCH_LVDS);
3080 if ((temp & LVDS_PORT_EN) == 0)
3081 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3082 }
3083
3084 is_pch_port = intel_crtc_driving_pch(crtc);
3085
3086 if (is_pch_port)
3087 ironlake_fdi_pll_enable(crtc);
3088 else
3089 ironlake_fdi_disable(crtc);
3090
3091 /* Enable panel fitting for LVDS */
3092 if (dev_priv->pch_pf_size &&
3093 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3094 /* Force use of hard-coded filter coefficients
3095 * as some pre-programmed values are broken,
3096 * e.g. x201.
3097 */
3098 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3099 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3100 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3101 }
3102
3103 /*
3104 * On ILK+ LUT must be loaded before the pipe is running but with
3105 * clocks enabled
3106 */
3107 intel_crtc_load_lut(crtc);
3108
3109 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3110 intel_enable_plane(dev_priv, plane, pipe);
3111
3112 if (is_pch_port)
3113 ironlake_pch_enable(crtc);
3114
3115 mutex_lock(&dev->struct_mutex);
3116 intel_update_fbc(dev);
3117 mutex_unlock(&dev->struct_mutex);
3118
3119 intel_crtc_update_cursor(crtc, true);
3120 }
3121
3122 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3123 {
3124 struct drm_device *dev = crtc->dev;
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3127 int pipe = intel_crtc->pipe;
3128 int plane = intel_crtc->plane;
3129 u32 reg, temp;
3130
3131 if (!intel_crtc->active)
3132 return;
3133
3134 intel_crtc_wait_for_pending_flips(crtc);
3135 drm_vblank_off(dev, pipe);
3136 intel_crtc_update_cursor(crtc, false);
3137
3138 intel_disable_plane(dev_priv, plane, pipe);
3139
3140 if (dev_priv->cfb_plane == plane)
3141 intel_disable_fbc(dev);
3142
3143 intel_disable_pipe(dev_priv, pipe);
3144
3145 /* Disable PF */
3146 I915_WRITE(PF_CTL(pipe), 0);
3147 I915_WRITE(PF_WIN_SZ(pipe), 0);
3148
3149 ironlake_fdi_disable(crtc);
3150
3151 /* This is a horrible layering violation; we should be doing this in
3152 * the connector/encoder ->prepare instead, but we don't always have
3153 * enough information there about the config to know whether it will
3154 * actually be necessary or just cause undesired flicker.
3155 */
3156 intel_disable_pch_ports(dev_priv, pipe);
3157
3158 intel_disable_transcoder(dev_priv, pipe);
3159
3160 if (HAS_PCH_CPT(dev)) {
3161 /* disable TRANS_DP_CTL */
3162 reg = TRANS_DP_CTL(pipe);
3163 temp = I915_READ(reg);
3164 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3165 temp |= TRANS_DP_PORT_SEL_NONE;
3166 I915_WRITE(reg, temp);
3167
3168 /* disable DPLL_SEL */
3169 temp = I915_READ(PCH_DPLL_SEL);
3170 switch (pipe) {
3171 case 0:
3172 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3173 break;
3174 case 1:
3175 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3176 break;
3177 case 2:
3178 /* C shares PLL A or B */
3179 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3180 break;
3181 default:
3182 BUG(); /* wtf */
3183 }
3184 I915_WRITE(PCH_DPLL_SEL, temp);
3185 }
3186
3187 /* disable PCH DPLL */
3188 if (!intel_crtc->no_pll)
3189 intel_disable_pch_pll(dev_priv, pipe);
3190
3191 /* Switch from PCDclk to Rawclk */
3192 reg = FDI_RX_CTL(pipe);
3193 temp = I915_READ(reg);
3194 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3195
3196 /* Disable CPU FDI TX PLL */
3197 reg = FDI_TX_CTL(pipe);
3198 temp = I915_READ(reg);
3199 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3200
3201 POSTING_READ(reg);
3202 udelay(100);
3203
3204 reg = FDI_RX_CTL(pipe);
3205 temp = I915_READ(reg);
3206 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3207
3208 /* Wait for the clocks to turn off. */
3209 POSTING_READ(reg);
3210 udelay(100);
3211
3212 intel_crtc->active = false;
3213 intel_update_watermarks(dev);
3214
3215 mutex_lock(&dev->struct_mutex);
3216 intel_update_fbc(dev);
3217 intel_clear_scanline_wait(dev);
3218 mutex_unlock(&dev->struct_mutex);
3219 }
3220
3221 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3222 {
3223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3224 int pipe = intel_crtc->pipe;
3225 int plane = intel_crtc->plane;
3226
3227 /* XXX: When our outputs are all unaware of DPMS modes other than off
3228 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3229 */
3230 switch (mode) {
3231 case DRM_MODE_DPMS_ON:
3232 case DRM_MODE_DPMS_STANDBY:
3233 case DRM_MODE_DPMS_SUSPEND:
3234 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3235 ironlake_crtc_enable(crtc);
3236 break;
3237
3238 case DRM_MODE_DPMS_OFF:
3239 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3240 ironlake_crtc_disable(crtc);
3241 break;
3242 }
3243 }
3244
3245 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3246 {
3247 if (!enable && intel_crtc->overlay) {
3248 struct drm_device *dev = intel_crtc->base.dev;
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250
3251 mutex_lock(&dev->struct_mutex);
3252 dev_priv->mm.interruptible = false;
3253 (void) intel_overlay_switch_off(intel_crtc->overlay);
3254 dev_priv->mm.interruptible = true;
3255 mutex_unlock(&dev->struct_mutex);
3256 }
3257
3258 /* Let userspace switch the overlay on again. In most cases userspace
3259 * has to recompute where to put it anyway.
3260 */
3261 }
3262
3263 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 int pipe = intel_crtc->pipe;
3269 int plane = intel_crtc->plane;
3270
3271 if (intel_crtc->active)
3272 return;
3273
3274 intel_crtc->active = true;
3275 intel_update_watermarks(dev);
3276
3277 intel_enable_pll(dev_priv, pipe);
3278 intel_enable_pipe(dev_priv, pipe, false);
3279 intel_enable_plane(dev_priv, plane, pipe);
3280
3281 intel_crtc_load_lut(crtc);
3282 intel_update_fbc(dev);
3283
3284 /* Give the overlay scaler a chance to enable if it's on this pipe */
3285 intel_crtc_dpms_overlay(intel_crtc, true);
3286 intel_crtc_update_cursor(crtc, true);
3287 }
3288
3289 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3290 {
3291 struct drm_device *dev = crtc->dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294 int pipe = intel_crtc->pipe;
3295 int plane = intel_crtc->plane;
3296
3297 if (!intel_crtc->active)
3298 return;
3299
3300 /* Give the overlay scaler a chance to disable if it's on this pipe */
3301 intel_crtc_wait_for_pending_flips(crtc);
3302 drm_vblank_off(dev, pipe);
3303 intel_crtc_dpms_overlay(intel_crtc, false);
3304 intel_crtc_update_cursor(crtc, false);
3305
3306 if (dev_priv->cfb_plane == plane)
3307 intel_disable_fbc(dev);
3308
3309 intel_disable_plane(dev_priv, plane, pipe);
3310 intel_disable_pipe(dev_priv, pipe);
3311 intel_disable_pll(dev_priv, pipe);
3312
3313 intel_crtc->active = false;
3314 intel_update_fbc(dev);
3315 intel_update_watermarks(dev);
3316 intel_clear_scanline_wait(dev);
3317 }
3318
3319 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3320 {
3321 /* XXX: When our outputs are all unaware of DPMS modes other than off
3322 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3323 */
3324 switch (mode) {
3325 case DRM_MODE_DPMS_ON:
3326 case DRM_MODE_DPMS_STANDBY:
3327 case DRM_MODE_DPMS_SUSPEND:
3328 i9xx_crtc_enable(crtc);
3329 break;
3330 case DRM_MODE_DPMS_OFF:
3331 i9xx_crtc_disable(crtc);
3332 break;
3333 }
3334 }
3335
3336 /**
3337 * Sets the power management mode of the pipe and plane.
3338 */
3339 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3340 {
3341 struct drm_device *dev = crtc->dev;
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343 struct drm_i915_master_private *master_priv;
3344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3345 int pipe = intel_crtc->pipe;
3346 bool enabled;
3347
3348 if (intel_crtc->dpms_mode == mode)
3349 return;
3350
3351 intel_crtc->dpms_mode = mode;
3352
3353 dev_priv->display.dpms(crtc, mode);
3354
3355 if (!dev->primary->master)
3356 return;
3357
3358 master_priv = dev->primary->master->driver_priv;
3359 if (!master_priv->sarea_priv)
3360 return;
3361
3362 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3363
3364 switch (pipe) {
3365 case 0:
3366 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3367 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3368 break;
3369 case 1:
3370 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3371 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3372 break;
3373 default:
3374 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3375 break;
3376 }
3377 }
3378
3379 static void intel_crtc_disable(struct drm_crtc *crtc)
3380 {
3381 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3382 struct drm_device *dev = crtc->dev;
3383
3384 /* Flush any pending WAITs before we disable the pipe. Note that
3385 * we need to drop the struct_mutex in order to acquire it again
3386 * during the lowlevel dpms routines around a couple of the
3387 * operations. It does not look trivial nor desirable to move
3388 * that locking higher. So instead we leave a window for the
3389 * submission of further commands on the fb before we can actually
3390 * disable it. This race with userspace exists anyway, and we can
3391 * only rely on the pipe being disabled by userspace after it
3392 * receives the hotplug notification and has flushed any pending
3393 * batches.
3394 */
3395 if (crtc->fb) {
3396 mutex_lock(&dev->struct_mutex);
3397 intel_finish_fb(crtc->fb);
3398 mutex_unlock(&dev->struct_mutex);
3399 }
3400
3401 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3402 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3403 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3404
3405 if (crtc->fb) {
3406 mutex_lock(&dev->struct_mutex);
3407 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3408 mutex_unlock(&dev->struct_mutex);
3409 }
3410 }
3411
3412 /* Prepare for a mode set.
3413 *
3414 * Note we could be a lot smarter here. We need to figure out which outputs
3415 * will be enabled, which disabled (in short, how the config will changes)
3416 * and perform the minimum necessary steps to accomplish that, e.g. updating
3417 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3418 * panel fitting is in the proper state, etc.
3419 */
3420 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3421 {
3422 i9xx_crtc_disable(crtc);
3423 }
3424
3425 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3426 {
3427 i9xx_crtc_enable(crtc);
3428 }
3429
3430 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3431 {
3432 ironlake_crtc_disable(crtc);
3433 }
3434
3435 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3436 {
3437 ironlake_crtc_enable(crtc);
3438 }
3439
3440 void intel_encoder_prepare(struct drm_encoder *encoder)
3441 {
3442 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3443 /* lvds has its own version of prepare see intel_lvds_prepare */
3444 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3445 }
3446
3447 void intel_encoder_commit(struct drm_encoder *encoder)
3448 {
3449 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3450 struct drm_device *dev = encoder->dev;
3451 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3452 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3453
3454 /* lvds has its own version of commit see intel_lvds_commit */
3455 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3456
3457 if (HAS_PCH_CPT(dev))
3458 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3459 }
3460
3461 void intel_encoder_destroy(struct drm_encoder *encoder)
3462 {
3463 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3464
3465 drm_encoder_cleanup(encoder);
3466 kfree(intel_encoder);
3467 }
3468
3469 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3470 struct drm_display_mode *mode,
3471 struct drm_display_mode *adjusted_mode)
3472 {
3473 struct drm_device *dev = crtc->dev;
3474
3475 if (HAS_PCH_SPLIT(dev)) {
3476 /* FDI link clock is fixed at 2.7G */
3477 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3478 return false;
3479 }
3480
3481 /* All interlaced capable intel hw wants timings in frames. Note though
3482 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3483 * timings, so we need to be careful not to clobber these.*/
3484 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3485 drm_mode_set_crtcinfo(adjusted_mode, 0);
3486
3487 return true;
3488 }
3489
3490 static int i945_get_display_clock_speed(struct drm_device *dev)
3491 {
3492 return 400000;
3493 }
3494
3495 static int i915_get_display_clock_speed(struct drm_device *dev)
3496 {
3497 return 333000;
3498 }
3499
3500 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3501 {
3502 return 200000;
3503 }
3504
3505 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3506 {
3507 u16 gcfgc = 0;
3508
3509 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3510
3511 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3512 return 133000;
3513 else {
3514 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3515 case GC_DISPLAY_CLOCK_333_MHZ:
3516 return 333000;
3517 default:
3518 case GC_DISPLAY_CLOCK_190_200_MHZ:
3519 return 190000;
3520 }
3521 }
3522 }
3523
3524 static int i865_get_display_clock_speed(struct drm_device *dev)
3525 {
3526 return 266000;
3527 }
3528
3529 static int i855_get_display_clock_speed(struct drm_device *dev)
3530 {
3531 u16 hpllcc = 0;
3532 /* Assume that the hardware is in the high speed state. This
3533 * should be the default.
3534 */
3535 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3536 case GC_CLOCK_133_200:
3537 case GC_CLOCK_100_200:
3538 return 200000;
3539 case GC_CLOCK_166_250:
3540 return 250000;
3541 case GC_CLOCK_100_133:
3542 return 133000;
3543 }
3544
3545 /* Shouldn't happen */
3546 return 0;
3547 }
3548
3549 static int i830_get_display_clock_speed(struct drm_device *dev)
3550 {
3551 return 133000;
3552 }
3553
3554 struct fdi_m_n {
3555 u32 tu;
3556 u32 gmch_m;
3557 u32 gmch_n;
3558 u32 link_m;
3559 u32 link_n;
3560 };
3561
3562 static void
3563 fdi_reduce_ratio(u32 *num, u32 *den)
3564 {
3565 while (*num > 0xffffff || *den > 0xffffff) {
3566 *num >>= 1;
3567 *den >>= 1;
3568 }
3569 }
3570
3571 static void
3572 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3573 int link_clock, struct fdi_m_n *m_n)
3574 {
3575 m_n->tu = 64; /* default size */
3576
3577 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3578 m_n->gmch_m = bits_per_pixel * pixel_clock;
3579 m_n->gmch_n = link_clock * nlanes * 8;
3580 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3581
3582 m_n->link_m = pixel_clock;
3583 m_n->link_n = link_clock;
3584 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3585 }
3586
3587
3588 struct intel_watermark_params {
3589 unsigned long fifo_size;
3590 unsigned long max_wm;
3591 unsigned long default_wm;
3592 unsigned long guard_size;
3593 unsigned long cacheline_size;
3594 };
3595
3596 /* Pineview has different values for various configs */
3597 static const struct intel_watermark_params pineview_display_wm = {
3598 PINEVIEW_DISPLAY_FIFO,
3599 PINEVIEW_MAX_WM,
3600 PINEVIEW_DFT_WM,
3601 PINEVIEW_GUARD_WM,
3602 PINEVIEW_FIFO_LINE_SIZE
3603 };
3604 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3605 PINEVIEW_DISPLAY_FIFO,
3606 PINEVIEW_MAX_WM,
3607 PINEVIEW_DFT_HPLLOFF_WM,
3608 PINEVIEW_GUARD_WM,
3609 PINEVIEW_FIFO_LINE_SIZE
3610 };
3611 static const struct intel_watermark_params pineview_cursor_wm = {
3612 PINEVIEW_CURSOR_FIFO,
3613 PINEVIEW_CURSOR_MAX_WM,
3614 PINEVIEW_CURSOR_DFT_WM,
3615 PINEVIEW_CURSOR_GUARD_WM,
3616 PINEVIEW_FIFO_LINE_SIZE,
3617 };
3618 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3619 PINEVIEW_CURSOR_FIFO,
3620 PINEVIEW_CURSOR_MAX_WM,
3621 PINEVIEW_CURSOR_DFT_WM,
3622 PINEVIEW_CURSOR_GUARD_WM,
3623 PINEVIEW_FIFO_LINE_SIZE
3624 };
3625 static const struct intel_watermark_params g4x_wm_info = {
3626 G4X_FIFO_SIZE,
3627 G4X_MAX_WM,
3628 G4X_MAX_WM,
3629 2,
3630 G4X_FIFO_LINE_SIZE,
3631 };
3632 static const struct intel_watermark_params g4x_cursor_wm_info = {
3633 I965_CURSOR_FIFO,
3634 I965_CURSOR_MAX_WM,
3635 I965_CURSOR_DFT_WM,
3636 2,
3637 G4X_FIFO_LINE_SIZE,
3638 };
3639 static const struct intel_watermark_params i965_cursor_wm_info = {
3640 I965_CURSOR_FIFO,
3641 I965_CURSOR_MAX_WM,
3642 I965_CURSOR_DFT_WM,
3643 2,
3644 I915_FIFO_LINE_SIZE,
3645 };
3646 static const struct intel_watermark_params i945_wm_info = {
3647 I945_FIFO_SIZE,
3648 I915_MAX_WM,
3649 1,
3650 2,
3651 I915_FIFO_LINE_SIZE
3652 };
3653 static const struct intel_watermark_params i915_wm_info = {
3654 I915_FIFO_SIZE,
3655 I915_MAX_WM,
3656 1,
3657 2,
3658 I915_FIFO_LINE_SIZE
3659 };
3660 static const struct intel_watermark_params i855_wm_info = {
3661 I855GM_FIFO_SIZE,
3662 I915_MAX_WM,
3663 1,
3664 2,
3665 I830_FIFO_LINE_SIZE
3666 };
3667 static const struct intel_watermark_params i830_wm_info = {
3668 I830_FIFO_SIZE,
3669 I915_MAX_WM,
3670 1,
3671 2,
3672 I830_FIFO_LINE_SIZE
3673 };
3674
3675 static const struct intel_watermark_params ironlake_display_wm_info = {
3676 ILK_DISPLAY_FIFO,
3677 ILK_DISPLAY_MAXWM,
3678 ILK_DISPLAY_DFTWM,
3679 2,
3680 ILK_FIFO_LINE_SIZE
3681 };
3682 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3683 ILK_CURSOR_FIFO,
3684 ILK_CURSOR_MAXWM,
3685 ILK_CURSOR_DFTWM,
3686 2,
3687 ILK_FIFO_LINE_SIZE
3688 };
3689 static const struct intel_watermark_params ironlake_display_srwm_info = {
3690 ILK_DISPLAY_SR_FIFO,
3691 ILK_DISPLAY_MAX_SRWM,
3692 ILK_DISPLAY_DFT_SRWM,
3693 2,
3694 ILK_FIFO_LINE_SIZE
3695 };
3696 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3697 ILK_CURSOR_SR_FIFO,
3698 ILK_CURSOR_MAX_SRWM,
3699 ILK_CURSOR_DFT_SRWM,
3700 2,
3701 ILK_FIFO_LINE_SIZE
3702 };
3703
3704 static const struct intel_watermark_params sandybridge_display_wm_info = {
3705 SNB_DISPLAY_FIFO,
3706 SNB_DISPLAY_MAXWM,
3707 SNB_DISPLAY_DFTWM,
3708 2,
3709 SNB_FIFO_LINE_SIZE
3710 };
3711 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3712 SNB_CURSOR_FIFO,
3713 SNB_CURSOR_MAXWM,
3714 SNB_CURSOR_DFTWM,
3715 2,
3716 SNB_FIFO_LINE_SIZE
3717 };
3718 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3719 SNB_DISPLAY_SR_FIFO,
3720 SNB_DISPLAY_MAX_SRWM,
3721 SNB_DISPLAY_DFT_SRWM,
3722 2,
3723 SNB_FIFO_LINE_SIZE
3724 };
3725 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3726 SNB_CURSOR_SR_FIFO,
3727 SNB_CURSOR_MAX_SRWM,
3728 SNB_CURSOR_DFT_SRWM,
3729 2,
3730 SNB_FIFO_LINE_SIZE
3731 };
3732
3733
3734 /**
3735 * intel_calculate_wm - calculate watermark level
3736 * @clock_in_khz: pixel clock
3737 * @wm: chip FIFO params
3738 * @pixel_size: display pixel size
3739 * @latency_ns: memory latency for the platform
3740 *
3741 * Calculate the watermark level (the level at which the display plane will
3742 * start fetching from memory again). Each chip has a different display
3743 * FIFO size and allocation, so the caller needs to figure that out and pass
3744 * in the correct intel_watermark_params structure.
3745 *
3746 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3747 * on the pixel size. When it reaches the watermark level, it'll start
3748 * fetching FIFO line sized based chunks from memory until the FIFO fills
3749 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3750 * will occur, and a display engine hang could result.
3751 */
3752 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3753 const struct intel_watermark_params *wm,
3754 int fifo_size,
3755 int pixel_size,
3756 unsigned long latency_ns)
3757 {
3758 long entries_required, wm_size;
3759
3760 /*
3761 * Note: we need to make sure we don't overflow for various clock &
3762 * latency values.
3763 * clocks go from a few thousand to several hundred thousand.
3764 * latency is usually a few thousand
3765 */
3766 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3767 1000;
3768 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3769
3770 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3771
3772 wm_size = fifo_size - (entries_required + wm->guard_size);
3773
3774 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3775
3776 /* Don't promote wm_size to unsigned... */
3777 if (wm_size > (long)wm->max_wm)
3778 wm_size = wm->max_wm;
3779 if (wm_size <= 0)
3780 wm_size = wm->default_wm;
3781 return wm_size;
3782 }
3783
3784 struct cxsr_latency {
3785 int is_desktop;
3786 int is_ddr3;
3787 unsigned long fsb_freq;
3788 unsigned long mem_freq;
3789 unsigned long display_sr;
3790 unsigned long display_hpll_disable;
3791 unsigned long cursor_sr;
3792 unsigned long cursor_hpll_disable;
3793 };
3794
3795 static const struct cxsr_latency cxsr_latency_table[] = {
3796 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3797 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3798 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3799 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3800 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3801
3802 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3803 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3804 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3805 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3806 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3807
3808 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3809 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3810 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3811 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3812 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3813
3814 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3815 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3816 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3817 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3818 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3819
3820 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3821 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3822 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3823 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3824 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3825
3826 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3827 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3828 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3829 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3830 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3831 };
3832
3833 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3834 int is_ddr3,
3835 int fsb,
3836 int mem)
3837 {
3838 const struct cxsr_latency *latency;
3839 int i;
3840
3841 if (fsb == 0 || mem == 0)
3842 return NULL;
3843
3844 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3845 latency = &cxsr_latency_table[i];
3846 if (is_desktop == latency->is_desktop &&
3847 is_ddr3 == latency->is_ddr3 &&
3848 fsb == latency->fsb_freq && mem == latency->mem_freq)
3849 return latency;
3850 }
3851
3852 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3853
3854 return NULL;
3855 }
3856
3857 static void pineview_disable_cxsr(struct drm_device *dev)
3858 {
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860
3861 /* deactivate cxsr */
3862 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3863 }
3864
3865 /*
3866 * Latency for FIFO fetches is dependent on several factors:
3867 * - memory configuration (speed, channels)
3868 * - chipset
3869 * - current MCH state
3870 * It can be fairly high in some situations, so here we assume a fairly
3871 * pessimal value. It's a tradeoff between extra memory fetches (if we
3872 * set this value too high, the FIFO will fetch frequently to stay full)
3873 * and power consumption (set it too low to save power and we might see
3874 * FIFO underruns and display "flicker").
3875 *
3876 * A value of 5us seems to be a good balance; safe for very low end
3877 * platforms but not overly aggressive on lower latency configs.
3878 */
3879 static const int latency_ns = 5000;
3880
3881 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3882 {
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884 uint32_t dsparb = I915_READ(DSPARB);
3885 int size;
3886
3887 size = dsparb & 0x7f;
3888 if (plane)
3889 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3890
3891 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3892 plane ? "B" : "A", size);
3893
3894 return size;
3895 }
3896
3897 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3898 {
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900 uint32_t dsparb = I915_READ(DSPARB);
3901 int size;
3902
3903 size = dsparb & 0x1ff;
3904 if (plane)
3905 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3906 size >>= 1; /* Convert to cachelines */
3907
3908 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3909 plane ? "B" : "A", size);
3910
3911 return size;
3912 }
3913
3914 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3915 {
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917 uint32_t dsparb = I915_READ(DSPARB);
3918 int size;
3919
3920 size = dsparb & 0x7f;
3921 size >>= 2; /* Convert to cachelines */
3922
3923 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3924 plane ? "B" : "A",
3925 size);
3926
3927 return size;
3928 }
3929
3930 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3931 {
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933 uint32_t dsparb = I915_READ(DSPARB);
3934 int size;
3935
3936 size = dsparb & 0x7f;
3937 size >>= 1; /* Convert to cachelines */
3938
3939 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3940 plane ? "B" : "A", size);
3941
3942 return size;
3943 }
3944
3945 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3946 {
3947 struct drm_crtc *crtc, *enabled = NULL;
3948
3949 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3950 if (crtc->enabled && crtc->fb) {
3951 if (enabled)
3952 return NULL;
3953 enabled = crtc;
3954 }
3955 }
3956
3957 return enabled;
3958 }
3959
3960 static void pineview_update_wm(struct drm_device *dev)
3961 {
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct drm_crtc *crtc;
3964 const struct cxsr_latency *latency;
3965 u32 reg;
3966 unsigned long wm;
3967
3968 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3969 dev_priv->fsb_freq, dev_priv->mem_freq);
3970 if (!latency) {
3971 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3972 pineview_disable_cxsr(dev);
3973 return;
3974 }
3975
3976 crtc = single_enabled_crtc(dev);
3977 if (crtc) {
3978 int clock = crtc->mode.clock;
3979 int pixel_size = crtc->fb->bits_per_pixel / 8;
3980
3981 /* Display SR */
3982 wm = intel_calculate_wm(clock, &pineview_display_wm,
3983 pineview_display_wm.fifo_size,
3984 pixel_size, latency->display_sr);
3985 reg = I915_READ(DSPFW1);
3986 reg &= ~DSPFW_SR_MASK;
3987 reg |= wm << DSPFW_SR_SHIFT;
3988 I915_WRITE(DSPFW1, reg);
3989 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3990
3991 /* cursor SR */
3992 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3993 pineview_display_wm.fifo_size,
3994 pixel_size, latency->cursor_sr);
3995 reg = I915_READ(DSPFW3);
3996 reg &= ~DSPFW_CURSOR_SR_MASK;
3997 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3998 I915_WRITE(DSPFW3, reg);
3999
4000 /* Display HPLL off SR */
4001 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4002 pineview_display_hplloff_wm.fifo_size,
4003 pixel_size, latency->display_hpll_disable);
4004 reg = I915_READ(DSPFW3);
4005 reg &= ~DSPFW_HPLL_SR_MASK;
4006 reg |= wm & DSPFW_HPLL_SR_MASK;
4007 I915_WRITE(DSPFW3, reg);
4008
4009 /* cursor HPLL off SR */
4010 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4011 pineview_display_hplloff_wm.fifo_size,
4012 pixel_size, latency->cursor_hpll_disable);
4013 reg = I915_READ(DSPFW3);
4014 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4015 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4016 I915_WRITE(DSPFW3, reg);
4017 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4018
4019 /* activate cxsr */
4020 I915_WRITE(DSPFW3,
4021 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4022 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4023 } else {
4024 pineview_disable_cxsr(dev);
4025 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4026 }
4027 }
4028
4029 static bool g4x_compute_wm0(struct drm_device *dev,
4030 int plane,
4031 const struct intel_watermark_params *display,
4032 int display_latency_ns,
4033 const struct intel_watermark_params *cursor,
4034 int cursor_latency_ns,
4035 int *plane_wm,
4036 int *cursor_wm)
4037 {
4038 struct drm_crtc *crtc;
4039 int htotal, hdisplay, clock, pixel_size;
4040 int line_time_us, line_count;
4041 int entries, tlb_miss;
4042
4043 crtc = intel_get_crtc_for_plane(dev, plane);
4044 if (crtc->fb == NULL || !crtc->enabled) {
4045 *cursor_wm = cursor->guard_size;
4046 *plane_wm = display->guard_size;
4047 return false;
4048 }
4049
4050 htotal = crtc->mode.htotal;
4051 hdisplay = crtc->mode.hdisplay;
4052 clock = crtc->mode.clock;
4053 pixel_size = crtc->fb->bits_per_pixel / 8;
4054
4055 /* Use the small buffer method to calculate plane watermark */
4056 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4057 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4058 if (tlb_miss > 0)
4059 entries += tlb_miss;
4060 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4061 *plane_wm = entries + display->guard_size;
4062 if (*plane_wm > (int)display->max_wm)
4063 *plane_wm = display->max_wm;
4064
4065 /* Use the large buffer method to calculate cursor watermark */
4066 line_time_us = ((htotal * 1000) / clock);
4067 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4068 entries = line_count * 64 * pixel_size;
4069 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4070 if (tlb_miss > 0)
4071 entries += tlb_miss;
4072 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4073 *cursor_wm = entries + cursor->guard_size;
4074 if (*cursor_wm > (int)cursor->max_wm)
4075 *cursor_wm = (int)cursor->max_wm;
4076
4077 return true;
4078 }
4079
4080 /*
4081 * Check the wm result.
4082 *
4083 * If any calculated watermark values is larger than the maximum value that
4084 * can be programmed into the associated watermark register, that watermark
4085 * must be disabled.
4086 */
4087 static bool g4x_check_srwm(struct drm_device *dev,
4088 int display_wm, int cursor_wm,
4089 const struct intel_watermark_params *display,
4090 const struct intel_watermark_params *cursor)
4091 {
4092 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4093 display_wm, cursor_wm);
4094
4095 if (display_wm > display->max_wm) {
4096 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4097 display_wm, display->max_wm);
4098 return false;
4099 }
4100
4101 if (cursor_wm > cursor->max_wm) {
4102 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4103 cursor_wm, cursor->max_wm);
4104 return false;
4105 }
4106
4107 if (!(display_wm || cursor_wm)) {
4108 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4109 return false;
4110 }
4111
4112 return true;
4113 }
4114
4115 static bool g4x_compute_srwm(struct drm_device *dev,
4116 int plane,
4117 int latency_ns,
4118 const struct intel_watermark_params *display,
4119 const struct intel_watermark_params *cursor,
4120 int *display_wm, int *cursor_wm)
4121 {
4122 struct drm_crtc *crtc;
4123 int hdisplay, htotal, pixel_size, clock;
4124 unsigned long line_time_us;
4125 int line_count, line_size;
4126 int small, large;
4127 int entries;
4128
4129 if (!latency_ns) {
4130 *display_wm = *cursor_wm = 0;
4131 return false;
4132 }
4133
4134 crtc = intel_get_crtc_for_plane(dev, plane);
4135 hdisplay = crtc->mode.hdisplay;
4136 htotal = crtc->mode.htotal;
4137 clock = crtc->mode.clock;
4138 pixel_size = crtc->fb->bits_per_pixel / 8;
4139
4140 line_time_us = (htotal * 1000) / clock;
4141 line_count = (latency_ns / line_time_us + 1000) / 1000;
4142 line_size = hdisplay * pixel_size;
4143
4144 /* Use the minimum of the small and large buffer method for primary */
4145 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4146 large = line_count * line_size;
4147
4148 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4149 *display_wm = entries + display->guard_size;
4150
4151 /* calculate the self-refresh watermark for display cursor */
4152 entries = line_count * pixel_size * 64;
4153 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4154 *cursor_wm = entries + cursor->guard_size;
4155
4156 return g4x_check_srwm(dev,
4157 *display_wm, *cursor_wm,
4158 display, cursor);
4159 }
4160
4161 #define single_plane_enabled(mask) is_power_of_2(mask)
4162
4163 static void g4x_update_wm(struct drm_device *dev)
4164 {
4165 static const int sr_latency_ns = 12000;
4166 struct drm_i915_private *dev_priv = dev->dev_private;
4167 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4168 int plane_sr, cursor_sr;
4169 unsigned int enabled = 0;
4170
4171 if (g4x_compute_wm0(dev, 0,
4172 &g4x_wm_info, latency_ns,
4173 &g4x_cursor_wm_info, latency_ns,
4174 &planea_wm, &cursora_wm))
4175 enabled |= 1;
4176
4177 if (g4x_compute_wm0(dev, 1,
4178 &g4x_wm_info, latency_ns,
4179 &g4x_cursor_wm_info, latency_ns,
4180 &planeb_wm, &cursorb_wm))
4181 enabled |= 2;
4182
4183 plane_sr = cursor_sr = 0;
4184 if (single_plane_enabled(enabled) &&
4185 g4x_compute_srwm(dev, ffs(enabled) - 1,
4186 sr_latency_ns,
4187 &g4x_wm_info,
4188 &g4x_cursor_wm_info,
4189 &plane_sr, &cursor_sr))
4190 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4191 else
4192 I915_WRITE(FW_BLC_SELF,
4193 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4194
4195 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4196 planea_wm, cursora_wm,
4197 planeb_wm, cursorb_wm,
4198 plane_sr, cursor_sr);
4199
4200 I915_WRITE(DSPFW1,
4201 (plane_sr << DSPFW_SR_SHIFT) |
4202 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4203 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4204 planea_wm);
4205 I915_WRITE(DSPFW2,
4206 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4207 (cursora_wm << DSPFW_CURSORA_SHIFT));
4208 /* HPLL off in SR has some issues on G4x... disable it */
4209 I915_WRITE(DSPFW3,
4210 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4211 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4212 }
4213
4214 static void i965_update_wm(struct drm_device *dev)
4215 {
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 struct drm_crtc *crtc;
4218 int srwm = 1;
4219 int cursor_sr = 16;
4220
4221 /* Calc sr entries for one plane configs */
4222 crtc = single_enabled_crtc(dev);
4223 if (crtc) {
4224 /* self-refresh has much higher latency */
4225 static const int sr_latency_ns = 12000;
4226 int clock = crtc->mode.clock;
4227 int htotal = crtc->mode.htotal;
4228 int hdisplay = crtc->mode.hdisplay;
4229 int pixel_size = crtc->fb->bits_per_pixel / 8;
4230 unsigned long line_time_us;
4231 int entries;
4232
4233 line_time_us = ((htotal * 1000) / clock);
4234
4235 /* Use ns/us then divide to preserve precision */
4236 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4237 pixel_size * hdisplay;
4238 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4239 srwm = I965_FIFO_SIZE - entries;
4240 if (srwm < 0)
4241 srwm = 1;
4242 srwm &= 0x1ff;
4243 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4244 entries, srwm);
4245
4246 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4247 pixel_size * 64;
4248 entries = DIV_ROUND_UP(entries,
4249 i965_cursor_wm_info.cacheline_size);
4250 cursor_sr = i965_cursor_wm_info.fifo_size -
4251 (entries + i965_cursor_wm_info.guard_size);
4252
4253 if (cursor_sr > i965_cursor_wm_info.max_wm)
4254 cursor_sr = i965_cursor_wm_info.max_wm;
4255
4256 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4257 "cursor %d\n", srwm, cursor_sr);
4258
4259 if (IS_CRESTLINE(dev))
4260 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4261 } else {
4262 /* Turn off self refresh if both pipes are enabled */
4263 if (IS_CRESTLINE(dev))
4264 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4265 & ~FW_BLC_SELF_EN);
4266 }
4267
4268 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4269 srwm);
4270
4271 /* 965 has limitations... */
4272 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4273 (8 << 16) | (8 << 8) | (8 << 0));
4274 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4275 /* update cursor SR watermark */
4276 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4277 }
4278
4279 static void i9xx_update_wm(struct drm_device *dev)
4280 {
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 const struct intel_watermark_params *wm_info;
4283 uint32_t fwater_lo;
4284 uint32_t fwater_hi;
4285 int cwm, srwm = 1;
4286 int fifo_size;
4287 int planea_wm, planeb_wm;
4288 struct drm_crtc *crtc, *enabled = NULL;
4289
4290 if (IS_I945GM(dev))
4291 wm_info = &i945_wm_info;
4292 else if (!IS_GEN2(dev))
4293 wm_info = &i915_wm_info;
4294 else
4295 wm_info = &i855_wm_info;
4296
4297 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4298 crtc = intel_get_crtc_for_plane(dev, 0);
4299 if (crtc->enabled && crtc->fb) {
4300 planea_wm = intel_calculate_wm(crtc->mode.clock,
4301 wm_info, fifo_size,
4302 crtc->fb->bits_per_pixel / 8,
4303 latency_ns);
4304 enabled = crtc;
4305 } else
4306 planea_wm = fifo_size - wm_info->guard_size;
4307
4308 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4309 crtc = intel_get_crtc_for_plane(dev, 1);
4310 if (crtc->enabled && crtc->fb) {
4311 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4312 wm_info, fifo_size,
4313 crtc->fb->bits_per_pixel / 8,
4314 latency_ns);
4315 if (enabled == NULL)
4316 enabled = crtc;
4317 else
4318 enabled = NULL;
4319 } else
4320 planeb_wm = fifo_size - wm_info->guard_size;
4321
4322 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4323
4324 /*
4325 * Overlay gets an aggressive default since video jitter is bad.
4326 */
4327 cwm = 2;
4328
4329 /* Play safe and disable self-refresh before adjusting watermarks. */
4330 if (IS_I945G(dev) || IS_I945GM(dev))
4331 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4332 else if (IS_I915GM(dev))
4333 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4334
4335 /* Calc sr entries for one plane configs */
4336 if (HAS_FW_BLC(dev) && enabled) {
4337 /* self-refresh has much higher latency */
4338 static const int sr_latency_ns = 6000;
4339 int clock = enabled->mode.clock;
4340 int htotal = enabled->mode.htotal;
4341 int hdisplay = enabled->mode.hdisplay;
4342 int pixel_size = enabled->fb->bits_per_pixel / 8;
4343 unsigned long line_time_us;
4344 int entries;
4345
4346 line_time_us = (htotal * 1000) / clock;
4347
4348 /* Use ns/us then divide to preserve precision */
4349 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4350 pixel_size * hdisplay;
4351 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4352 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4353 srwm = wm_info->fifo_size - entries;
4354 if (srwm < 0)
4355 srwm = 1;
4356
4357 if (IS_I945G(dev) || IS_I945GM(dev))
4358 I915_WRITE(FW_BLC_SELF,
4359 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4360 else if (IS_I915GM(dev))
4361 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4362 }
4363
4364 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4365 planea_wm, planeb_wm, cwm, srwm);
4366
4367 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4368 fwater_hi = (cwm & 0x1f);
4369
4370 /* Set request length to 8 cachelines per fetch */
4371 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4372 fwater_hi = fwater_hi | (1 << 8);
4373
4374 I915_WRITE(FW_BLC, fwater_lo);
4375 I915_WRITE(FW_BLC2, fwater_hi);
4376
4377 if (HAS_FW_BLC(dev)) {
4378 if (enabled) {
4379 if (IS_I945G(dev) || IS_I945GM(dev))
4380 I915_WRITE(FW_BLC_SELF,
4381 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4382 else if (IS_I915GM(dev))
4383 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4384 DRM_DEBUG_KMS("memory self refresh enabled\n");
4385 } else
4386 DRM_DEBUG_KMS("memory self refresh disabled\n");
4387 }
4388 }
4389
4390 static void i830_update_wm(struct drm_device *dev)
4391 {
4392 struct drm_i915_private *dev_priv = dev->dev_private;
4393 struct drm_crtc *crtc;
4394 uint32_t fwater_lo;
4395 int planea_wm;
4396
4397 crtc = single_enabled_crtc(dev);
4398 if (crtc == NULL)
4399 return;
4400
4401 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4402 dev_priv->display.get_fifo_size(dev, 0),
4403 crtc->fb->bits_per_pixel / 8,
4404 latency_ns);
4405 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4406 fwater_lo |= (3<<8) | planea_wm;
4407
4408 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4409
4410 I915_WRITE(FW_BLC, fwater_lo);
4411 }
4412
4413 #define ILK_LP0_PLANE_LATENCY 700
4414 #define ILK_LP0_CURSOR_LATENCY 1300
4415
4416 /*
4417 * Check the wm result.
4418 *
4419 * If any calculated watermark values is larger than the maximum value that
4420 * can be programmed into the associated watermark register, that watermark
4421 * must be disabled.
4422 */
4423 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4424 int fbc_wm, int display_wm, int cursor_wm,
4425 const struct intel_watermark_params *display,
4426 const struct intel_watermark_params *cursor)
4427 {
4428 struct drm_i915_private *dev_priv = dev->dev_private;
4429
4430 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4431 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4432
4433 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4434 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4435 fbc_wm, SNB_FBC_MAX_SRWM, level);
4436
4437 /* fbc has it's own way to disable FBC WM */
4438 I915_WRITE(DISP_ARB_CTL,
4439 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4440 return false;
4441 }
4442
4443 if (display_wm > display->max_wm) {
4444 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4445 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4446 return false;
4447 }
4448
4449 if (cursor_wm > cursor->max_wm) {
4450 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4451 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4452 return false;
4453 }
4454
4455 if (!(fbc_wm || display_wm || cursor_wm)) {
4456 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4457 return false;
4458 }
4459
4460 return true;
4461 }
4462
4463 /*
4464 * Compute watermark values of WM[1-3],
4465 */
4466 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4467 int latency_ns,
4468 const struct intel_watermark_params *display,
4469 const struct intel_watermark_params *cursor,
4470 int *fbc_wm, int *display_wm, int *cursor_wm)
4471 {
4472 struct drm_crtc *crtc;
4473 unsigned long line_time_us;
4474 int hdisplay, htotal, pixel_size, clock;
4475 int line_count, line_size;
4476 int small, large;
4477 int entries;
4478
4479 if (!latency_ns) {
4480 *fbc_wm = *display_wm = *cursor_wm = 0;
4481 return false;
4482 }
4483
4484 crtc = intel_get_crtc_for_plane(dev, plane);
4485 hdisplay = crtc->mode.hdisplay;
4486 htotal = crtc->mode.htotal;
4487 clock = crtc->mode.clock;
4488 pixel_size = crtc->fb->bits_per_pixel / 8;
4489
4490 line_time_us = (htotal * 1000) / clock;
4491 line_count = (latency_ns / line_time_us + 1000) / 1000;
4492 line_size = hdisplay * pixel_size;
4493
4494 /* Use the minimum of the small and large buffer method for primary */
4495 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4496 large = line_count * line_size;
4497
4498 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4499 *display_wm = entries + display->guard_size;
4500
4501 /*
4502 * Spec says:
4503 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4504 */
4505 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4506
4507 /* calculate the self-refresh watermark for display cursor */
4508 entries = line_count * pixel_size * 64;
4509 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4510 *cursor_wm = entries + cursor->guard_size;
4511
4512 return ironlake_check_srwm(dev, level,
4513 *fbc_wm, *display_wm, *cursor_wm,
4514 display, cursor);
4515 }
4516
4517 static void ironlake_update_wm(struct drm_device *dev)
4518 {
4519 struct drm_i915_private *dev_priv = dev->dev_private;
4520 int fbc_wm, plane_wm, cursor_wm;
4521 unsigned int enabled;
4522
4523 enabled = 0;
4524 if (g4x_compute_wm0(dev, 0,
4525 &ironlake_display_wm_info,
4526 ILK_LP0_PLANE_LATENCY,
4527 &ironlake_cursor_wm_info,
4528 ILK_LP0_CURSOR_LATENCY,
4529 &plane_wm, &cursor_wm)) {
4530 I915_WRITE(WM0_PIPEA_ILK,
4531 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4532 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4533 " plane %d, " "cursor: %d\n",
4534 plane_wm, cursor_wm);
4535 enabled |= 1;
4536 }
4537
4538 if (g4x_compute_wm0(dev, 1,
4539 &ironlake_display_wm_info,
4540 ILK_LP0_PLANE_LATENCY,
4541 &ironlake_cursor_wm_info,
4542 ILK_LP0_CURSOR_LATENCY,
4543 &plane_wm, &cursor_wm)) {
4544 I915_WRITE(WM0_PIPEB_ILK,
4545 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547 " plane %d, cursor: %d\n",
4548 plane_wm, cursor_wm);
4549 enabled |= 2;
4550 }
4551
4552 /*
4553 * Calculate and update the self-refresh watermark only when one
4554 * display plane is used.
4555 */
4556 I915_WRITE(WM3_LP_ILK, 0);
4557 I915_WRITE(WM2_LP_ILK, 0);
4558 I915_WRITE(WM1_LP_ILK, 0);
4559
4560 if (!single_plane_enabled(enabled))
4561 return;
4562 enabled = ffs(enabled) - 1;
4563
4564 /* WM1 */
4565 if (!ironlake_compute_srwm(dev, 1, enabled,
4566 ILK_READ_WM1_LATENCY() * 500,
4567 &ironlake_display_srwm_info,
4568 &ironlake_cursor_srwm_info,
4569 &fbc_wm, &plane_wm, &cursor_wm))
4570 return;
4571
4572 I915_WRITE(WM1_LP_ILK,
4573 WM1_LP_SR_EN |
4574 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4575 (fbc_wm << WM1_LP_FBC_SHIFT) |
4576 (plane_wm << WM1_LP_SR_SHIFT) |
4577 cursor_wm);
4578
4579 /* WM2 */
4580 if (!ironlake_compute_srwm(dev, 2, enabled,
4581 ILK_READ_WM2_LATENCY() * 500,
4582 &ironlake_display_srwm_info,
4583 &ironlake_cursor_srwm_info,
4584 &fbc_wm, &plane_wm, &cursor_wm))
4585 return;
4586
4587 I915_WRITE(WM2_LP_ILK,
4588 WM2_LP_EN |
4589 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4590 (fbc_wm << WM1_LP_FBC_SHIFT) |
4591 (plane_wm << WM1_LP_SR_SHIFT) |
4592 cursor_wm);
4593
4594 /*
4595 * WM3 is unsupported on ILK, probably because we don't have latency
4596 * data for that power state
4597 */
4598 }
4599
4600 void sandybridge_update_wm(struct drm_device *dev)
4601 {
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4604 u32 val;
4605 int fbc_wm, plane_wm, cursor_wm;
4606 unsigned int enabled;
4607
4608 enabled = 0;
4609 if (g4x_compute_wm0(dev, 0,
4610 &sandybridge_display_wm_info, latency,
4611 &sandybridge_cursor_wm_info, latency,
4612 &plane_wm, &cursor_wm)) {
4613 val = I915_READ(WM0_PIPEA_ILK);
4614 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4615 I915_WRITE(WM0_PIPEA_ILK, val |
4616 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4617 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4618 " plane %d, " "cursor: %d\n",
4619 plane_wm, cursor_wm);
4620 enabled |= 1;
4621 }
4622
4623 if (g4x_compute_wm0(dev, 1,
4624 &sandybridge_display_wm_info, latency,
4625 &sandybridge_cursor_wm_info, latency,
4626 &plane_wm, &cursor_wm)) {
4627 val = I915_READ(WM0_PIPEB_ILK);
4628 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4629 I915_WRITE(WM0_PIPEB_ILK, val |
4630 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4631 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4632 " plane %d, cursor: %d\n",
4633 plane_wm, cursor_wm);
4634 enabled |= 2;
4635 }
4636
4637 /* IVB has 3 pipes */
4638 if (IS_IVYBRIDGE(dev) &&
4639 g4x_compute_wm0(dev, 2,
4640 &sandybridge_display_wm_info, latency,
4641 &sandybridge_cursor_wm_info, latency,
4642 &plane_wm, &cursor_wm)) {
4643 val = I915_READ(WM0_PIPEC_IVB);
4644 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4645 I915_WRITE(WM0_PIPEC_IVB, val |
4646 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4647 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4648 " plane %d, cursor: %d\n",
4649 plane_wm, cursor_wm);
4650 enabled |= 3;
4651 }
4652
4653 /*
4654 * Calculate and update the self-refresh watermark only when one
4655 * display plane is used.
4656 *
4657 * SNB support 3 levels of watermark.
4658 *
4659 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4660 * and disabled in the descending order
4661 *
4662 */
4663 I915_WRITE(WM3_LP_ILK, 0);
4664 I915_WRITE(WM2_LP_ILK, 0);
4665 I915_WRITE(WM1_LP_ILK, 0);
4666
4667 if (!single_plane_enabled(enabled) ||
4668 dev_priv->sprite_scaling_enabled)
4669 return;
4670 enabled = ffs(enabled) - 1;
4671
4672 /* WM1 */
4673 if (!ironlake_compute_srwm(dev, 1, enabled,
4674 SNB_READ_WM1_LATENCY() * 500,
4675 &sandybridge_display_srwm_info,
4676 &sandybridge_cursor_srwm_info,
4677 &fbc_wm, &plane_wm, &cursor_wm))
4678 return;
4679
4680 I915_WRITE(WM1_LP_ILK,
4681 WM1_LP_SR_EN |
4682 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4683 (fbc_wm << WM1_LP_FBC_SHIFT) |
4684 (plane_wm << WM1_LP_SR_SHIFT) |
4685 cursor_wm);
4686
4687 /* WM2 */
4688 if (!ironlake_compute_srwm(dev, 2, enabled,
4689 SNB_READ_WM2_LATENCY() * 500,
4690 &sandybridge_display_srwm_info,
4691 &sandybridge_cursor_srwm_info,
4692 &fbc_wm, &plane_wm, &cursor_wm))
4693 return;
4694
4695 I915_WRITE(WM2_LP_ILK,
4696 WM2_LP_EN |
4697 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4698 (fbc_wm << WM1_LP_FBC_SHIFT) |
4699 (plane_wm << WM1_LP_SR_SHIFT) |
4700 cursor_wm);
4701
4702 /* WM3 */
4703 if (!ironlake_compute_srwm(dev, 3, enabled,
4704 SNB_READ_WM3_LATENCY() * 500,
4705 &sandybridge_display_srwm_info,
4706 &sandybridge_cursor_srwm_info,
4707 &fbc_wm, &plane_wm, &cursor_wm))
4708 return;
4709
4710 I915_WRITE(WM3_LP_ILK,
4711 WM3_LP_EN |
4712 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4713 (fbc_wm << WM1_LP_FBC_SHIFT) |
4714 (plane_wm << WM1_LP_SR_SHIFT) |
4715 cursor_wm);
4716 }
4717
4718 static bool
4719 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4720 uint32_t sprite_width, int pixel_size,
4721 const struct intel_watermark_params *display,
4722 int display_latency_ns, int *sprite_wm)
4723 {
4724 struct drm_crtc *crtc;
4725 int clock;
4726 int entries, tlb_miss;
4727
4728 crtc = intel_get_crtc_for_plane(dev, plane);
4729 if (crtc->fb == NULL || !crtc->enabled) {
4730 *sprite_wm = display->guard_size;
4731 return false;
4732 }
4733
4734 clock = crtc->mode.clock;
4735
4736 /* Use the small buffer method to calculate the sprite watermark */
4737 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4738 tlb_miss = display->fifo_size*display->cacheline_size -
4739 sprite_width * 8;
4740 if (tlb_miss > 0)
4741 entries += tlb_miss;
4742 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4743 *sprite_wm = entries + display->guard_size;
4744 if (*sprite_wm > (int)display->max_wm)
4745 *sprite_wm = display->max_wm;
4746
4747 return true;
4748 }
4749
4750 static bool
4751 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4752 uint32_t sprite_width, int pixel_size,
4753 const struct intel_watermark_params *display,
4754 int latency_ns, int *sprite_wm)
4755 {
4756 struct drm_crtc *crtc;
4757 unsigned long line_time_us;
4758 int clock;
4759 int line_count, line_size;
4760 int small, large;
4761 int entries;
4762
4763 if (!latency_ns) {
4764 *sprite_wm = 0;
4765 return false;
4766 }
4767
4768 crtc = intel_get_crtc_for_plane(dev, plane);
4769 clock = crtc->mode.clock;
4770 if (!clock) {
4771 *sprite_wm = 0;
4772 return false;
4773 }
4774
4775 line_time_us = (sprite_width * 1000) / clock;
4776 if (!line_time_us) {
4777 *sprite_wm = 0;
4778 return false;
4779 }
4780
4781 line_count = (latency_ns / line_time_us + 1000) / 1000;
4782 line_size = sprite_width * pixel_size;
4783
4784 /* Use the minimum of the small and large buffer method for primary */
4785 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4786 large = line_count * line_size;
4787
4788 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4789 *sprite_wm = entries + display->guard_size;
4790
4791 return *sprite_wm > 0x3ff ? false : true;
4792 }
4793
4794 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4795 uint32_t sprite_width, int pixel_size)
4796 {
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4799 u32 val;
4800 int sprite_wm, reg;
4801 int ret;
4802
4803 switch (pipe) {
4804 case 0:
4805 reg = WM0_PIPEA_ILK;
4806 break;
4807 case 1:
4808 reg = WM0_PIPEB_ILK;
4809 break;
4810 case 2:
4811 reg = WM0_PIPEC_IVB;
4812 break;
4813 default:
4814 return; /* bad pipe */
4815 }
4816
4817 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4818 &sandybridge_display_wm_info,
4819 latency, &sprite_wm);
4820 if (!ret) {
4821 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4822 pipe);
4823 return;
4824 }
4825
4826 val = I915_READ(reg);
4827 val &= ~WM0_PIPE_SPRITE_MASK;
4828 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4829 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4830
4831
4832 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4833 pixel_size,
4834 &sandybridge_display_srwm_info,
4835 SNB_READ_WM1_LATENCY() * 500,
4836 &sprite_wm);
4837 if (!ret) {
4838 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4839 pipe);
4840 return;
4841 }
4842 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4843
4844 /* Only IVB has two more LP watermarks for sprite */
4845 if (!IS_IVYBRIDGE(dev))
4846 return;
4847
4848 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4849 pixel_size,
4850 &sandybridge_display_srwm_info,
4851 SNB_READ_WM2_LATENCY() * 500,
4852 &sprite_wm);
4853 if (!ret) {
4854 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4855 pipe);
4856 return;
4857 }
4858 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4859
4860 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4861 pixel_size,
4862 &sandybridge_display_srwm_info,
4863 SNB_READ_WM3_LATENCY() * 500,
4864 &sprite_wm);
4865 if (!ret) {
4866 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4867 pipe);
4868 return;
4869 }
4870 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4871 }
4872
4873 /**
4874 * intel_update_watermarks - update FIFO watermark values based on current modes
4875 *
4876 * Calculate watermark values for the various WM regs based on current mode
4877 * and plane configuration.
4878 *
4879 * There are several cases to deal with here:
4880 * - normal (i.e. non-self-refresh)
4881 * - self-refresh (SR) mode
4882 * - lines are large relative to FIFO size (buffer can hold up to 2)
4883 * - lines are small relative to FIFO size (buffer can hold more than 2
4884 * lines), so need to account for TLB latency
4885 *
4886 * The normal calculation is:
4887 * watermark = dotclock * bytes per pixel * latency
4888 * where latency is platform & configuration dependent (we assume pessimal
4889 * values here).
4890 *
4891 * The SR calculation is:
4892 * watermark = (trunc(latency/line time)+1) * surface width *
4893 * bytes per pixel
4894 * where
4895 * line time = htotal / dotclock
4896 * surface width = hdisplay for normal plane and 64 for cursor
4897 * and latency is assumed to be high, as above.
4898 *
4899 * The final value programmed to the register should always be rounded up,
4900 * and include an extra 2 entries to account for clock crossings.
4901 *
4902 * We don't use the sprite, so we can ignore that. And on Crestline we have
4903 * to set the non-SR watermarks to 8.
4904 */
4905 static void intel_update_watermarks(struct drm_device *dev)
4906 {
4907 struct drm_i915_private *dev_priv = dev->dev_private;
4908
4909 if (dev_priv->display.update_wm)
4910 dev_priv->display.update_wm(dev);
4911 }
4912
4913 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4914 uint32_t sprite_width, int pixel_size)
4915 {
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4917
4918 if (dev_priv->display.update_sprite_wm)
4919 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4920 pixel_size);
4921 }
4922
4923 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4924 {
4925 if (i915_panel_use_ssc >= 0)
4926 return i915_panel_use_ssc != 0;
4927 return dev_priv->lvds_use_ssc
4928 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4929 }
4930
4931 /**
4932 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4933 * @crtc: CRTC structure
4934 * @mode: requested mode
4935 *
4936 * A pipe may be connected to one or more outputs. Based on the depth of the
4937 * attached framebuffer, choose a good color depth to use on the pipe.
4938 *
4939 * If possible, match the pipe depth to the fb depth. In some cases, this
4940 * isn't ideal, because the connected output supports a lesser or restricted
4941 * set of depths. Resolve that here:
4942 * LVDS typically supports only 6bpc, so clamp down in that case
4943 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4944 * Displays may support a restricted set as well, check EDID and clamp as
4945 * appropriate.
4946 * DP may want to dither down to 6bpc to fit larger modes
4947 *
4948 * RETURNS:
4949 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4950 * true if they don't match).
4951 */
4952 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4953 unsigned int *pipe_bpp,
4954 struct drm_display_mode *mode)
4955 {
4956 struct drm_device *dev = crtc->dev;
4957 struct drm_i915_private *dev_priv = dev->dev_private;
4958 struct drm_encoder *encoder;
4959 struct drm_connector *connector;
4960 unsigned int display_bpc = UINT_MAX, bpc;
4961
4962 /* Walk the encoders & connectors on this crtc, get min bpc */
4963 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4964 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4965
4966 if (encoder->crtc != crtc)
4967 continue;
4968
4969 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4970 unsigned int lvds_bpc;
4971
4972 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4973 LVDS_A3_POWER_UP)
4974 lvds_bpc = 8;
4975 else
4976 lvds_bpc = 6;
4977
4978 if (lvds_bpc < display_bpc) {
4979 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4980 display_bpc = lvds_bpc;
4981 }
4982 continue;
4983 }
4984
4985 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4986 /* Use VBT settings if we have an eDP panel */
4987 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4988
4989 if (edp_bpc < display_bpc) {
4990 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4991 display_bpc = edp_bpc;
4992 }
4993 continue;
4994 }
4995
4996 /* Not one of the known troublemakers, check the EDID */
4997 list_for_each_entry(connector, &dev->mode_config.connector_list,
4998 head) {
4999 if (connector->encoder != encoder)
5000 continue;
5001
5002 /* Don't use an invalid EDID bpc value */
5003 if (connector->display_info.bpc &&
5004 connector->display_info.bpc < display_bpc) {
5005 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5006 display_bpc = connector->display_info.bpc;
5007 }
5008 }
5009
5010 /*
5011 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5012 * through, clamp it down. (Note: >12bpc will be caught below.)
5013 */
5014 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5015 if (display_bpc > 8 && display_bpc < 12) {
5016 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5017 display_bpc = 12;
5018 } else {
5019 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5020 display_bpc = 8;
5021 }
5022 }
5023 }
5024
5025 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5026 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5027 display_bpc = 6;
5028 }
5029
5030 /*
5031 * We could just drive the pipe at the highest bpc all the time and
5032 * enable dithering as needed, but that costs bandwidth. So choose
5033 * the minimum value that expresses the full color range of the fb but
5034 * also stays within the max display bpc discovered above.
5035 */
5036
5037 switch (crtc->fb->depth) {
5038 case 8:
5039 bpc = 8; /* since we go through a colormap */
5040 break;
5041 case 15:
5042 case 16:
5043 bpc = 6; /* min is 18bpp */
5044 break;
5045 case 24:
5046 bpc = 8;
5047 break;
5048 case 30:
5049 bpc = 10;
5050 break;
5051 case 48:
5052 bpc = 12;
5053 break;
5054 default:
5055 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5056 bpc = min((unsigned int)8, display_bpc);
5057 break;
5058 }
5059
5060 display_bpc = min(display_bpc, bpc);
5061
5062 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5063 bpc, display_bpc);
5064
5065 *pipe_bpp = display_bpc * 3;
5066
5067 return display_bpc != bpc;
5068 }
5069
5070 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5071 {
5072 struct drm_device *dev = crtc->dev;
5073 struct drm_i915_private *dev_priv = dev->dev_private;
5074 int refclk;
5075
5076 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5077 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5078 refclk = dev_priv->lvds_ssc_freq * 1000;
5079 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5080 refclk / 1000);
5081 } else if (!IS_GEN2(dev)) {
5082 refclk = 96000;
5083 } else {
5084 refclk = 48000;
5085 }
5086
5087 return refclk;
5088 }
5089
5090 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5091 intel_clock_t *clock)
5092 {
5093 /* SDVO TV has fixed PLL values depend on its clock range,
5094 this mirrors vbios setting. */
5095 if (adjusted_mode->clock >= 100000
5096 && adjusted_mode->clock < 140500) {
5097 clock->p1 = 2;
5098 clock->p2 = 10;
5099 clock->n = 3;
5100 clock->m1 = 16;
5101 clock->m2 = 8;
5102 } else if (adjusted_mode->clock >= 140500
5103 && adjusted_mode->clock <= 200000) {
5104 clock->p1 = 1;
5105 clock->p2 = 10;
5106 clock->n = 6;
5107 clock->m1 = 12;
5108 clock->m2 = 8;
5109 }
5110 }
5111
5112 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5113 intel_clock_t *clock,
5114 intel_clock_t *reduced_clock)
5115 {
5116 struct drm_device *dev = crtc->dev;
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5119 int pipe = intel_crtc->pipe;
5120 u32 fp, fp2 = 0;
5121
5122 if (IS_PINEVIEW(dev)) {
5123 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5124 if (reduced_clock)
5125 fp2 = (1 << reduced_clock->n) << 16 |
5126 reduced_clock->m1 << 8 | reduced_clock->m2;
5127 } else {
5128 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5129 if (reduced_clock)
5130 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5131 reduced_clock->m2;
5132 }
5133
5134 I915_WRITE(FP0(pipe), fp);
5135
5136 intel_crtc->lowfreq_avail = false;
5137 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5138 reduced_clock && i915_powersave) {
5139 I915_WRITE(FP1(pipe), fp2);
5140 intel_crtc->lowfreq_avail = true;
5141 } else {
5142 I915_WRITE(FP1(pipe), fp);
5143 }
5144 }
5145
5146 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5147 struct drm_display_mode *mode,
5148 struct drm_display_mode *adjusted_mode,
5149 int x, int y,
5150 struct drm_framebuffer *old_fb)
5151 {
5152 struct drm_device *dev = crtc->dev;
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5155 int pipe = intel_crtc->pipe;
5156 int plane = intel_crtc->plane;
5157 int refclk, num_connectors = 0;
5158 intel_clock_t clock, reduced_clock;
5159 u32 dpll, dspcntr, pipeconf, vsyncshift;
5160 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5161 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5162 struct drm_mode_config *mode_config = &dev->mode_config;
5163 struct intel_encoder *encoder;
5164 const intel_limit_t *limit;
5165 int ret;
5166 u32 temp;
5167 u32 lvds_sync = 0;
5168
5169 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5170 if (encoder->base.crtc != crtc)
5171 continue;
5172
5173 switch (encoder->type) {
5174 case INTEL_OUTPUT_LVDS:
5175 is_lvds = true;
5176 break;
5177 case INTEL_OUTPUT_SDVO:
5178 case INTEL_OUTPUT_HDMI:
5179 is_sdvo = true;
5180 if (encoder->needs_tv_clock)
5181 is_tv = true;
5182 break;
5183 case INTEL_OUTPUT_DVO:
5184 is_dvo = true;
5185 break;
5186 case INTEL_OUTPUT_TVOUT:
5187 is_tv = true;
5188 break;
5189 case INTEL_OUTPUT_ANALOG:
5190 is_crt = true;
5191 break;
5192 case INTEL_OUTPUT_DISPLAYPORT:
5193 is_dp = true;
5194 break;
5195 }
5196
5197 num_connectors++;
5198 }
5199
5200 refclk = i9xx_get_refclk(crtc, num_connectors);
5201
5202 /*
5203 * Returns a set of divisors for the desired target clock with the given
5204 * refclk, or FALSE. The returned values represent the clock equation:
5205 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5206 */
5207 limit = intel_limit(crtc, refclk);
5208 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5209 &clock);
5210 if (!ok) {
5211 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5212 return -EINVAL;
5213 }
5214
5215 /* Ensure that the cursor is valid for the new mode before changing... */
5216 intel_crtc_update_cursor(crtc, true);
5217
5218 if (is_lvds && dev_priv->lvds_downclock_avail) {
5219 /*
5220 * Ensure we match the reduced clock's P to the target clock.
5221 * If the clocks don't match, we can't switch the display clock
5222 * by using the FP0/FP1. In such case we will disable the LVDS
5223 * downclock feature.
5224 */
5225 has_reduced_clock = limit->find_pll(limit, crtc,
5226 dev_priv->lvds_downclock,
5227 refclk,
5228 &clock,
5229 &reduced_clock);
5230 }
5231
5232 if (is_sdvo && is_tv)
5233 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5234
5235 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5236 &reduced_clock : NULL);
5237
5238 dpll = DPLL_VGA_MODE_DIS;
5239
5240 if (!IS_GEN2(dev)) {
5241 if (is_lvds)
5242 dpll |= DPLLB_MODE_LVDS;
5243 else
5244 dpll |= DPLLB_MODE_DAC_SERIAL;
5245 if (is_sdvo) {
5246 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5247 if (pixel_multiplier > 1) {
5248 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5249 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5250 }
5251 dpll |= DPLL_DVO_HIGH_SPEED;
5252 }
5253 if (is_dp)
5254 dpll |= DPLL_DVO_HIGH_SPEED;
5255
5256 /* compute bitmask from p1 value */
5257 if (IS_PINEVIEW(dev))
5258 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5259 else {
5260 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5261 if (IS_G4X(dev) && has_reduced_clock)
5262 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5263 }
5264 switch (clock.p2) {
5265 case 5:
5266 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5267 break;
5268 case 7:
5269 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5270 break;
5271 case 10:
5272 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5273 break;
5274 case 14:
5275 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5276 break;
5277 }
5278 if (INTEL_INFO(dev)->gen >= 4)
5279 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5280 } else {
5281 if (is_lvds) {
5282 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5283 } else {
5284 if (clock.p1 == 2)
5285 dpll |= PLL_P1_DIVIDE_BY_TWO;
5286 else
5287 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5288 if (clock.p2 == 4)
5289 dpll |= PLL_P2_DIVIDE_BY_4;
5290 }
5291 }
5292
5293 if (is_sdvo && is_tv)
5294 dpll |= PLL_REF_INPUT_TVCLKINBC;
5295 else if (is_tv)
5296 /* XXX: just matching BIOS for now */
5297 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5298 dpll |= 3;
5299 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5300 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5301 else
5302 dpll |= PLL_REF_INPUT_DREFCLK;
5303
5304 /* setup pipeconf */
5305 pipeconf = I915_READ(PIPECONF(pipe));
5306
5307 /* Set up the display plane register */
5308 dspcntr = DISPPLANE_GAMMA_ENABLE;
5309
5310 if (pipe == 0)
5311 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5312 else
5313 dspcntr |= DISPPLANE_SEL_PIPE_B;
5314
5315 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5316 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5317 * core speed.
5318 *
5319 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5320 * pipe == 0 check?
5321 */
5322 if (mode->clock >
5323 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5324 pipeconf |= PIPECONF_DOUBLE_WIDE;
5325 else
5326 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5327 }
5328
5329 /* default to 8bpc */
5330 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5331 if (is_dp) {
5332 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5333 pipeconf |= PIPECONF_BPP_6 |
5334 PIPECONF_DITHER_EN |
5335 PIPECONF_DITHER_TYPE_SP;
5336 }
5337 }
5338
5339 dpll |= DPLL_VCO_ENABLE;
5340
5341 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5342 drm_mode_debug_printmodeline(mode);
5343
5344 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5345
5346 POSTING_READ(DPLL(pipe));
5347 udelay(150);
5348
5349 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5350 * This is an exception to the general rule that mode_set doesn't turn
5351 * things on.
5352 */
5353 if (is_lvds) {
5354 temp = I915_READ(LVDS);
5355 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5356 if (pipe == 1) {
5357 temp |= LVDS_PIPEB_SELECT;
5358 } else {
5359 temp &= ~LVDS_PIPEB_SELECT;
5360 }
5361 /* set the corresponsding LVDS_BORDER bit */
5362 temp |= dev_priv->lvds_border_bits;
5363 /* Set the B0-B3 data pairs corresponding to whether we're going to
5364 * set the DPLLs for dual-channel mode or not.
5365 */
5366 if (clock.p2 == 7)
5367 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5368 else
5369 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5370
5371 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5372 * appropriately here, but we need to look more thoroughly into how
5373 * panels behave in the two modes.
5374 */
5375 /* set the dithering flag on LVDS as needed */
5376 if (INTEL_INFO(dev)->gen >= 4) {
5377 if (dev_priv->lvds_dither)
5378 temp |= LVDS_ENABLE_DITHER;
5379 else
5380 temp &= ~LVDS_ENABLE_DITHER;
5381 }
5382 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5383 lvds_sync |= LVDS_HSYNC_POLARITY;
5384 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5385 lvds_sync |= LVDS_VSYNC_POLARITY;
5386 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5387 != lvds_sync) {
5388 char flags[2] = "-+";
5389 DRM_INFO("Changing LVDS panel from "
5390 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5391 flags[!(temp & LVDS_HSYNC_POLARITY)],
5392 flags[!(temp & LVDS_VSYNC_POLARITY)],
5393 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5394 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5395 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5396 temp |= lvds_sync;
5397 }
5398 I915_WRITE(LVDS, temp);
5399 }
5400
5401 if (is_dp) {
5402 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5403 }
5404
5405 I915_WRITE(DPLL(pipe), dpll);
5406
5407 /* Wait for the clocks to stabilize. */
5408 POSTING_READ(DPLL(pipe));
5409 udelay(150);
5410
5411 if (INTEL_INFO(dev)->gen >= 4) {
5412 temp = 0;
5413 if (is_sdvo) {
5414 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5415 if (temp > 1)
5416 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5417 else
5418 temp = 0;
5419 }
5420 I915_WRITE(DPLL_MD(pipe), temp);
5421 } else {
5422 /* The pixel multiplier can only be updated once the
5423 * DPLL is enabled and the clocks are stable.
5424 *
5425 * So write it again.
5426 */
5427 I915_WRITE(DPLL(pipe), dpll);
5428 }
5429
5430 if (HAS_PIPE_CXSR(dev)) {
5431 if (intel_crtc->lowfreq_avail) {
5432 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5433 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5434 } else {
5435 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5436 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5437 }
5438 }
5439
5440 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5441 if (!IS_GEN2(dev) &&
5442 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5443 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5444 /* the chip adds 2 halflines automatically */
5445 adjusted_mode->crtc_vtotal -= 1;
5446 adjusted_mode->crtc_vblank_end -= 1;
5447 vsyncshift = adjusted_mode->crtc_hsync_start
5448 - adjusted_mode->crtc_htotal/2;
5449 } else {
5450 pipeconf |= PIPECONF_PROGRESSIVE;
5451 vsyncshift = 0;
5452 }
5453
5454 if (!IS_GEN3(dev))
5455 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5456
5457 I915_WRITE(HTOTAL(pipe),
5458 (adjusted_mode->crtc_hdisplay - 1) |
5459 ((adjusted_mode->crtc_htotal - 1) << 16));
5460 I915_WRITE(HBLANK(pipe),
5461 (adjusted_mode->crtc_hblank_start - 1) |
5462 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5463 I915_WRITE(HSYNC(pipe),
5464 (adjusted_mode->crtc_hsync_start - 1) |
5465 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5466
5467 I915_WRITE(VTOTAL(pipe),
5468 (adjusted_mode->crtc_vdisplay - 1) |
5469 ((adjusted_mode->crtc_vtotal - 1) << 16));
5470 I915_WRITE(VBLANK(pipe),
5471 (adjusted_mode->crtc_vblank_start - 1) |
5472 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5473 I915_WRITE(VSYNC(pipe),
5474 (adjusted_mode->crtc_vsync_start - 1) |
5475 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5476
5477 /* pipesrc and dspsize control the size that is scaled from,
5478 * which should always be the user's requested size.
5479 */
5480 I915_WRITE(DSPSIZE(plane),
5481 ((mode->vdisplay - 1) << 16) |
5482 (mode->hdisplay - 1));
5483 I915_WRITE(DSPPOS(plane), 0);
5484 I915_WRITE(PIPESRC(pipe),
5485 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5486
5487 I915_WRITE(PIPECONF(pipe), pipeconf);
5488 POSTING_READ(PIPECONF(pipe));
5489 intel_enable_pipe(dev_priv, pipe, false);
5490
5491 intel_wait_for_vblank(dev, pipe);
5492
5493 I915_WRITE(DSPCNTR(plane), dspcntr);
5494 POSTING_READ(DSPCNTR(plane));
5495 intel_enable_plane(dev_priv, plane, pipe);
5496
5497 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5498
5499 intel_update_watermarks(dev);
5500
5501 return ret;
5502 }
5503
5504 /*
5505 * Initialize reference clocks when the driver loads
5506 */
5507 void ironlake_init_pch_refclk(struct drm_device *dev)
5508 {
5509 struct drm_i915_private *dev_priv = dev->dev_private;
5510 struct drm_mode_config *mode_config = &dev->mode_config;
5511 struct intel_encoder *encoder;
5512 u32 temp;
5513 bool has_lvds = false;
5514 bool has_cpu_edp = false;
5515 bool has_pch_edp = false;
5516 bool has_panel = false;
5517 bool has_ck505 = false;
5518 bool can_ssc = false;
5519
5520 /* We need to take the global config into account */
5521 list_for_each_entry(encoder, &mode_config->encoder_list,
5522 base.head) {
5523 switch (encoder->type) {
5524 case INTEL_OUTPUT_LVDS:
5525 has_panel = true;
5526 has_lvds = true;
5527 break;
5528 case INTEL_OUTPUT_EDP:
5529 has_panel = true;
5530 if (intel_encoder_is_pch_edp(&encoder->base))
5531 has_pch_edp = true;
5532 else
5533 has_cpu_edp = true;
5534 break;
5535 }
5536 }
5537
5538 if (HAS_PCH_IBX(dev)) {
5539 has_ck505 = dev_priv->display_clock_mode;
5540 can_ssc = has_ck505;
5541 } else {
5542 has_ck505 = false;
5543 can_ssc = true;
5544 }
5545
5546 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5547 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5548 has_ck505);
5549
5550 /* Ironlake: try to setup display ref clock before DPLL
5551 * enabling. This is only under driver's control after
5552 * PCH B stepping, previous chipset stepping should be
5553 * ignoring this setting.
5554 */
5555 temp = I915_READ(PCH_DREF_CONTROL);
5556 /* Always enable nonspread source */
5557 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5558
5559 if (has_ck505)
5560 temp |= DREF_NONSPREAD_CK505_ENABLE;
5561 else
5562 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5563
5564 if (has_panel) {
5565 temp &= ~DREF_SSC_SOURCE_MASK;
5566 temp |= DREF_SSC_SOURCE_ENABLE;
5567
5568 /* SSC must be turned on before enabling the CPU output */
5569 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5570 DRM_DEBUG_KMS("Using SSC on panel\n");
5571 temp |= DREF_SSC1_ENABLE;
5572 } else
5573 temp &= ~DREF_SSC1_ENABLE;
5574
5575 /* Get SSC going before enabling the outputs */
5576 I915_WRITE(PCH_DREF_CONTROL, temp);
5577 POSTING_READ(PCH_DREF_CONTROL);
5578 udelay(200);
5579
5580 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5581
5582 /* Enable CPU source on CPU attached eDP */
5583 if (has_cpu_edp) {
5584 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5585 DRM_DEBUG_KMS("Using SSC on eDP\n");
5586 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5587 }
5588 else
5589 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5590 } else
5591 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5592
5593 I915_WRITE(PCH_DREF_CONTROL, temp);
5594 POSTING_READ(PCH_DREF_CONTROL);
5595 udelay(200);
5596 } else {
5597 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5598
5599 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5600
5601 /* Turn off CPU output */
5602 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5603
5604 I915_WRITE(PCH_DREF_CONTROL, temp);
5605 POSTING_READ(PCH_DREF_CONTROL);
5606 udelay(200);
5607
5608 /* Turn off the SSC source */
5609 temp &= ~DREF_SSC_SOURCE_MASK;
5610 temp |= DREF_SSC_SOURCE_DISABLE;
5611
5612 /* Turn off SSC1 */
5613 temp &= ~ DREF_SSC1_ENABLE;
5614
5615 I915_WRITE(PCH_DREF_CONTROL, temp);
5616 POSTING_READ(PCH_DREF_CONTROL);
5617 udelay(200);
5618 }
5619 }
5620
5621 static int ironlake_get_refclk(struct drm_crtc *crtc)
5622 {
5623 struct drm_device *dev = crtc->dev;
5624 struct drm_i915_private *dev_priv = dev->dev_private;
5625 struct intel_encoder *encoder;
5626 struct drm_mode_config *mode_config = &dev->mode_config;
5627 struct intel_encoder *edp_encoder = NULL;
5628 int num_connectors = 0;
5629 bool is_lvds = false;
5630
5631 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5632 if (encoder->base.crtc != crtc)
5633 continue;
5634
5635 switch (encoder->type) {
5636 case INTEL_OUTPUT_LVDS:
5637 is_lvds = true;
5638 break;
5639 case INTEL_OUTPUT_EDP:
5640 edp_encoder = encoder;
5641 break;
5642 }
5643 num_connectors++;
5644 }
5645
5646 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5647 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5648 dev_priv->lvds_ssc_freq);
5649 return dev_priv->lvds_ssc_freq * 1000;
5650 }
5651
5652 return 120000;
5653 }
5654
5655 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5656 struct drm_display_mode *mode,
5657 struct drm_display_mode *adjusted_mode,
5658 int x, int y,
5659 struct drm_framebuffer *old_fb)
5660 {
5661 struct drm_device *dev = crtc->dev;
5662 struct drm_i915_private *dev_priv = dev->dev_private;
5663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5664 int pipe = intel_crtc->pipe;
5665 int plane = intel_crtc->plane;
5666 int refclk, num_connectors = 0;
5667 intel_clock_t clock, reduced_clock;
5668 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5669 bool ok, has_reduced_clock = false, is_sdvo = false;
5670 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5671 struct intel_encoder *has_edp_encoder = NULL;
5672 struct drm_mode_config *mode_config = &dev->mode_config;
5673 struct intel_encoder *encoder;
5674 const intel_limit_t *limit;
5675 int ret;
5676 struct fdi_m_n m_n = {0};
5677 u32 temp;
5678 u32 lvds_sync = 0;
5679 int target_clock, pixel_multiplier, lane, link_bw, factor;
5680 unsigned int pipe_bpp;
5681 bool dither;
5682
5683 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5684 if (encoder->base.crtc != crtc)
5685 continue;
5686
5687 switch (encoder->type) {
5688 case INTEL_OUTPUT_LVDS:
5689 is_lvds = true;
5690 break;
5691 case INTEL_OUTPUT_SDVO:
5692 case INTEL_OUTPUT_HDMI:
5693 is_sdvo = true;
5694 if (encoder->needs_tv_clock)
5695 is_tv = true;
5696 break;
5697 case INTEL_OUTPUT_TVOUT:
5698 is_tv = true;
5699 break;
5700 case INTEL_OUTPUT_ANALOG:
5701 is_crt = true;
5702 break;
5703 case INTEL_OUTPUT_DISPLAYPORT:
5704 is_dp = true;
5705 break;
5706 case INTEL_OUTPUT_EDP:
5707 has_edp_encoder = encoder;
5708 break;
5709 }
5710
5711 num_connectors++;
5712 }
5713
5714 refclk = ironlake_get_refclk(crtc);
5715
5716 /*
5717 * Returns a set of divisors for the desired target clock with the given
5718 * refclk, or FALSE. The returned values represent the clock equation:
5719 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5720 */
5721 limit = intel_limit(crtc, refclk);
5722 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5723 &clock);
5724 if (!ok) {
5725 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5726 return -EINVAL;
5727 }
5728
5729 /* Ensure that the cursor is valid for the new mode before changing... */
5730 intel_crtc_update_cursor(crtc, true);
5731
5732 if (is_lvds && dev_priv->lvds_downclock_avail) {
5733 /*
5734 * Ensure we match the reduced clock's P to the target clock.
5735 * If the clocks don't match, we can't switch the display clock
5736 * by using the FP0/FP1. In such case we will disable the LVDS
5737 * downclock feature.
5738 */
5739 has_reduced_clock = limit->find_pll(limit, crtc,
5740 dev_priv->lvds_downclock,
5741 refclk,
5742 &clock,
5743 &reduced_clock);
5744 }
5745 /* SDVO TV has fixed PLL values depend on its clock range,
5746 this mirrors vbios setting. */
5747 if (is_sdvo && is_tv) {
5748 if (adjusted_mode->clock >= 100000
5749 && adjusted_mode->clock < 140500) {
5750 clock.p1 = 2;
5751 clock.p2 = 10;
5752 clock.n = 3;
5753 clock.m1 = 16;
5754 clock.m2 = 8;
5755 } else if (adjusted_mode->clock >= 140500
5756 && adjusted_mode->clock <= 200000) {
5757 clock.p1 = 1;
5758 clock.p2 = 10;
5759 clock.n = 6;
5760 clock.m1 = 12;
5761 clock.m2 = 8;
5762 }
5763 }
5764
5765 /* FDI link */
5766 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5767 lane = 0;
5768 /* CPU eDP doesn't require FDI link, so just set DP M/N
5769 according to current link config */
5770 if (has_edp_encoder &&
5771 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5772 target_clock = mode->clock;
5773 intel_edp_link_config(has_edp_encoder,
5774 &lane, &link_bw);
5775 } else {
5776 /* [e]DP over FDI requires target mode clock
5777 instead of link clock */
5778 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5779 target_clock = mode->clock;
5780 else
5781 target_clock = adjusted_mode->clock;
5782
5783 /* FDI is a binary signal running at ~2.7GHz, encoding
5784 * each output octet as 10 bits. The actual frequency
5785 * is stored as a divider into a 100MHz clock, and the
5786 * mode pixel clock is stored in units of 1KHz.
5787 * Hence the bw of each lane in terms of the mode signal
5788 * is:
5789 */
5790 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5791 }
5792
5793 /* determine panel color depth */
5794 temp = I915_READ(PIPECONF(pipe));
5795 temp &= ~PIPE_BPC_MASK;
5796 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5797 switch (pipe_bpp) {
5798 case 18:
5799 temp |= PIPE_6BPC;
5800 break;
5801 case 24:
5802 temp |= PIPE_8BPC;
5803 break;
5804 case 30:
5805 temp |= PIPE_10BPC;
5806 break;
5807 case 36:
5808 temp |= PIPE_12BPC;
5809 break;
5810 default:
5811 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5812 pipe_bpp);
5813 temp |= PIPE_8BPC;
5814 pipe_bpp = 24;
5815 break;
5816 }
5817
5818 intel_crtc->bpp = pipe_bpp;
5819 I915_WRITE(PIPECONF(pipe), temp);
5820
5821 if (!lane) {
5822 /*
5823 * Account for spread spectrum to avoid
5824 * oversubscribing the link. Max center spread
5825 * is 2.5%; use 5% for safety's sake.
5826 */
5827 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5828 lane = bps / (link_bw * 8) + 1;
5829 }
5830
5831 intel_crtc->fdi_lanes = lane;
5832
5833 if (pixel_multiplier > 1)
5834 link_bw *= pixel_multiplier;
5835 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5836 &m_n);
5837
5838 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5839 if (has_reduced_clock)
5840 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5841 reduced_clock.m2;
5842
5843 /* Enable autotuning of the PLL clock (if permissible) */
5844 factor = 21;
5845 if (is_lvds) {
5846 if ((intel_panel_use_ssc(dev_priv) &&
5847 dev_priv->lvds_ssc_freq == 100) ||
5848 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5849 factor = 25;
5850 } else if (is_sdvo && is_tv)
5851 factor = 20;
5852
5853 if (clock.m < factor * clock.n)
5854 fp |= FP_CB_TUNE;
5855
5856 dpll = 0;
5857
5858 if (is_lvds)
5859 dpll |= DPLLB_MODE_LVDS;
5860 else
5861 dpll |= DPLLB_MODE_DAC_SERIAL;
5862 if (is_sdvo) {
5863 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5864 if (pixel_multiplier > 1) {
5865 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5866 }
5867 dpll |= DPLL_DVO_HIGH_SPEED;
5868 }
5869 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5870 dpll |= DPLL_DVO_HIGH_SPEED;
5871
5872 /* compute bitmask from p1 value */
5873 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5874 /* also FPA1 */
5875 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5876
5877 switch (clock.p2) {
5878 case 5:
5879 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5880 break;
5881 case 7:
5882 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5883 break;
5884 case 10:
5885 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5886 break;
5887 case 14:
5888 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5889 break;
5890 }
5891
5892 if (is_sdvo && is_tv)
5893 dpll |= PLL_REF_INPUT_TVCLKINBC;
5894 else if (is_tv)
5895 /* XXX: just matching BIOS for now */
5896 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5897 dpll |= 3;
5898 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5899 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5900 else
5901 dpll |= PLL_REF_INPUT_DREFCLK;
5902
5903 /* setup pipeconf */
5904 pipeconf = I915_READ(PIPECONF(pipe));
5905
5906 /* Set up the display plane register */
5907 dspcntr = DISPPLANE_GAMMA_ENABLE;
5908
5909 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5910 drm_mode_debug_printmodeline(mode);
5911
5912 /* PCH eDP needs FDI, but CPU eDP does not */
5913 if (!intel_crtc->no_pll) {
5914 if (!has_edp_encoder ||
5915 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5916 I915_WRITE(PCH_FP0(pipe), fp);
5917 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5918
5919 POSTING_READ(PCH_DPLL(pipe));
5920 udelay(150);
5921 }
5922 } else {
5923 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5924 fp == I915_READ(PCH_FP0(0))) {
5925 intel_crtc->use_pll_a = true;
5926 DRM_DEBUG_KMS("using pipe a dpll\n");
5927 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5928 fp == I915_READ(PCH_FP0(1))) {
5929 intel_crtc->use_pll_a = false;
5930 DRM_DEBUG_KMS("using pipe b dpll\n");
5931 } else {
5932 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5933 return -EINVAL;
5934 }
5935 }
5936
5937 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5938 * This is an exception to the general rule that mode_set doesn't turn
5939 * things on.
5940 */
5941 if (is_lvds) {
5942 temp = I915_READ(PCH_LVDS);
5943 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5944 if (HAS_PCH_CPT(dev)) {
5945 temp &= ~PORT_TRANS_SEL_MASK;
5946 temp |= PORT_TRANS_SEL_CPT(pipe);
5947 } else {
5948 if (pipe == 1)
5949 temp |= LVDS_PIPEB_SELECT;
5950 else
5951 temp &= ~LVDS_PIPEB_SELECT;
5952 }
5953
5954 /* set the corresponsding LVDS_BORDER bit */
5955 temp |= dev_priv->lvds_border_bits;
5956 /* Set the B0-B3 data pairs corresponding to whether we're going to
5957 * set the DPLLs for dual-channel mode or not.
5958 */
5959 if (clock.p2 == 7)
5960 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5961 else
5962 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5963
5964 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5965 * appropriately here, but we need to look more thoroughly into how
5966 * panels behave in the two modes.
5967 */
5968 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5969 lvds_sync |= LVDS_HSYNC_POLARITY;
5970 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5971 lvds_sync |= LVDS_VSYNC_POLARITY;
5972 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5973 != lvds_sync) {
5974 char flags[2] = "-+";
5975 DRM_INFO("Changing LVDS panel from "
5976 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5977 flags[!(temp & LVDS_HSYNC_POLARITY)],
5978 flags[!(temp & LVDS_VSYNC_POLARITY)],
5979 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5980 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5981 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5982 temp |= lvds_sync;
5983 }
5984 I915_WRITE(PCH_LVDS, temp);
5985 }
5986
5987 pipeconf &= ~PIPECONF_DITHER_EN;
5988 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5989 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5990 pipeconf |= PIPECONF_DITHER_EN;
5991 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5992 }
5993 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5994 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5995 } else {
5996 /* For non-DP output, clear any trans DP clock recovery setting.*/
5997 I915_WRITE(TRANSDATA_M1(pipe), 0);
5998 I915_WRITE(TRANSDATA_N1(pipe), 0);
5999 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6000 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6001 }
6002
6003 if (!intel_crtc->no_pll &&
6004 (!has_edp_encoder ||
6005 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6006 I915_WRITE(PCH_DPLL(pipe), dpll);
6007
6008 /* Wait for the clocks to stabilize. */
6009 POSTING_READ(PCH_DPLL(pipe));
6010 udelay(150);
6011
6012 /* The pixel multiplier can only be updated once the
6013 * DPLL is enabled and the clocks are stable.
6014 *
6015 * So write it again.
6016 */
6017 I915_WRITE(PCH_DPLL(pipe), dpll);
6018 }
6019
6020 intel_crtc->lowfreq_avail = false;
6021 if (!intel_crtc->no_pll) {
6022 if (is_lvds && has_reduced_clock && i915_powersave) {
6023 I915_WRITE(PCH_FP1(pipe), fp2);
6024 intel_crtc->lowfreq_avail = true;
6025 if (HAS_PIPE_CXSR(dev)) {
6026 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6027 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6028 }
6029 } else {
6030 I915_WRITE(PCH_FP1(pipe), fp);
6031 if (HAS_PIPE_CXSR(dev)) {
6032 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6033 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6034 }
6035 }
6036 }
6037
6038 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6039 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6040 pipeconf |= PIPECONF_INTERLACED_ILK;
6041 /* the chip adds 2 halflines automatically */
6042 adjusted_mode->crtc_vtotal -= 1;
6043 adjusted_mode->crtc_vblank_end -= 1;
6044 I915_WRITE(VSYNCSHIFT(pipe),
6045 adjusted_mode->crtc_hsync_start
6046 - adjusted_mode->crtc_htotal/2);
6047 } else {
6048 pipeconf |= PIPECONF_PROGRESSIVE;
6049 I915_WRITE(VSYNCSHIFT(pipe), 0);
6050 }
6051
6052 I915_WRITE(HTOTAL(pipe),
6053 (adjusted_mode->crtc_hdisplay - 1) |
6054 ((adjusted_mode->crtc_htotal - 1) << 16));
6055 I915_WRITE(HBLANK(pipe),
6056 (adjusted_mode->crtc_hblank_start - 1) |
6057 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6058 I915_WRITE(HSYNC(pipe),
6059 (adjusted_mode->crtc_hsync_start - 1) |
6060 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6061
6062 I915_WRITE(VTOTAL(pipe),
6063 (adjusted_mode->crtc_vdisplay - 1) |
6064 ((adjusted_mode->crtc_vtotal - 1) << 16));
6065 I915_WRITE(VBLANK(pipe),
6066 (adjusted_mode->crtc_vblank_start - 1) |
6067 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6068 I915_WRITE(VSYNC(pipe),
6069 (adjusted_mode->crtc_vsync_start - 1) |
6070 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6071
6072 /* pipesrc controls the size that is scaled from, which should
6073 * always be the user's requested size.
6074 */
6075 I915_WRITE(PIPESRC(pipe),
6076 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6077
6078 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6079 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6080 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6081 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6082
6083 if (has_edp_encoder &&
6084 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6085 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6086 }
6087
6088 I915_WRITE(PIPECONF(pipe), pipeconf);
6089 POSTING_READ(PIPECONF(pipe));
6090
6091 intel_wait_for_vblank(dev, pipe);
6092
6093 I915_WRITE(DSPCNTR(plane), dspcntr);
6094 POSTING_READ(DSPCNTR(plane));
6095
6096 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6097
6098 intel_update_watermarks(dev);
6099
6100 return ret;
6101 }
6102
6103 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6104 struct drm_display_mode *mode,
6105 struct drm_display_mode *adjusted_mode,
6106 int x, int y,
6107 struct drm_framebuffer *old_fb)
6108 {
6109 struct drm_device *dev = crtc->dev;
6110 struct drm_i915_private *dev_priv = dev->dev_private;
6111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6112 int pipe = intel_crtc->pipe;
6113 int ret;
6114
6115 drm_vblank_pre_modeset(dev, pipe);
6116
6117 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6118 x, y, old_fb);
6119 drm_vblank_post_modeset(dev, pipe);
6120
6121 if (ret)
6122 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6123 else
6124 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6125
6126 return ret;
6127 }
6128
6129 static bool intel_eld_uptodate(struct drm_connector *connector,
6130 int reg_eldv, uint32_t bits_eldv,
6131 int reg_elda, uint32_t bits_elda,
6132 int reg_edid)
6133 {
6134 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6135 uint8_t *eld = connector->eld;
6136 uint32_t i;
6137
6138 i = I915_READ(reg_eldv);
6139 i &= bits_eldv;
6140
6141 if (!eld[0])
6142 return !i;
6143
6144 if (!i)
6145 return false;
6146
6147 i = I915_READ(reg_elda);
6148 i &= ~bits_elda;
6149 I915_WRITE(reg_elda, i);
6150
6151 for (i = 0; i < eld[2]; i++)
6152 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6153 return false;
6154
6155 return true;
6156 }
6157
6158 static void g4x_write_eld(struct drm_connector *connector,
6159 struct drm_crtc *crtc)
6160 {
6161 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6162 uint8_t *eld = connector->eld;
6163 uint32_t eldv;
6164 uint32_t len;
6165 uint32_t i;
6166
6167 i = I915_READ(G4X_AUD_VID_DID);
6168
6169 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6170 eldv = G4X_ELDV_DEVCL_DEVBLC;
6171 else
6172 eldv = G4X_ELDV_DEVCTG;
6173
6174 if (intel_eld_uptodate(connector,
6175 G4X_AUD_CNTL_ST, eldv,
6176 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6177 G4X_HDMIW_HDMIEDID))
6178 return;
6179
6180 i = I915_READ(G4X_AUD_CNTL_ST);
6181 i &= ~(eldv | G4X_ELD_ADDR);
6182 len = (i >> 9) & 0x1f; /* ELD buffer size */
6183 I915_WRITE(G4X_AUD_CNTL_ST, i);
6184
6185 if (!eld[0])
6186 return;
6187
6188 len = min_t(uint8_t, eld[2], len);
6189 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6190 for (i = 0; i < len; i++)
6191 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6192
6193 i = I915_READ(G4X_AUD_CNTL_ST);
6194 i |= eldv;
6195 I915_WRITE(G4X_AUD_CNTL_ST, i);
6196 }
6197
6198 static void ironlake_write_eld(struct drm_connector *connector,
6199 struct drm_crtc *crtc)
6200 {
6201 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6202 uint8_t *eld = connector->eld;
6203 uint32_t eldv;
6204 uint32_t i;
6205 int len;
6206 int hdmiw_hdmiedid;
6207 int aud_config;
6208 int aud_cntl_st;
6209 int aud_cntrl_st2;
6210
6211 if (HAS_PCH_IBX(connector->dev)) {
6212 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6213 aud_config = IBX_AUD_CONFIG_A;
6214 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6215 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6216 } else {
6217 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6218 aud_config = CPT_AUD_CONFIG_A;
6219 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6220 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6221 }
6222
6223 i = to_intel_crtc(crtc)->pipe;
6224 hdmiw_hdmiedid += i * 0x100;
6225 aud_cntl_st += i * 0x100;
6226 aud_config += i * 0x100;
6227
6228 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6229
6230 i = I915_READ(aud_cntl_st);
6231 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6232 if (!i) {
6233 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6234 /* operate blindly on all ports */
6235 eldv = IBX_ELD_VALIDB;
6236 eldv |= IBX_ELD_VALIDB << 4;
6237 eldv |= IBX_ELD_VALIDB << 8;
6238 } else {
6239 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6240 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6241 }
6242
6243 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6244 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6245 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6246 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6247 } else
6248 I915_WRITE(aud_config, 0);
6249
6250 if (intel_eld_uptodate(connector,
6251 aud_cntrl_st2, eldv,
6252 aud_cntl_st, IBX_ELD_ADDRESS,
6253 hdmiw_hdmiedid))
6254 return;
6255
6256 i = I915_READ(aud_cntrl_st2);
6257 i &= ~eldv;
6258 I915_WRITE(aud_cntrl_st2, i);
6259
6260 if (!eld[0])
6261 return;
6262
6263 i = I915_READ(aud_cntl_st);
6264 i &= ~IBX_ELD_ADDRESS;
6265 I915_WRITE(aud_cntl_st, i);
6266
6267 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6268 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6269 for (i = 0; i < len; i++)
6270 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6271
6272 i = I915_READ(aud_cntrl_st2);
6273 i |= eldv;
6274 I915_WRITE(aud_cntrl_st2, i);
6275 }
6276
6277 void intel_write_eld(struct drm_encoder *encoder,
6278 struct drm_display_mode *mode)
6279 {
6280 struct drm_crtc *crtc = encoder->crtc;
6281 struct drm_connector *connector;
6282 struct drm_device *dev = encoder->dev;
6283 struct drm_i915_private *dev_priv = dev->dev_private;
6284
6285 connector = drm_select_eld(encoder, mode);
6286 if (!connector)
6287 return;
6288
6289 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6290 connector->base.id,
6291 drm_get_connector_name(connector),
6292 connector->encoder->base.id,
6293 drm_get_encoder_name(connector->encoder));
6294
6295 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6296
6297 if (dev_priv->display.write_eld)
6298 dev_priv->display.write_eld(connector, crtc);
6299 }
6300
6301 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6302 void intel_crtc_load_lut(struct drm_crtc *crtc)
6303 {
6304 struct drm_device *dev = crtc->dev;
6305 struct drm_i915_private *dev_priv = dev->dev_private;
6306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307 int palreg = PALETTE(intel_crtc->pipe);
6308 int i;
6309
6310 /* The clocks have to be on to load the palette. */
6311 if (!crtc->enabled || !intel_crtc->active)
6312 return;
6313
6314 /* use legacy palette for Ironlake */
6315 if (HAS_PCH_SPLIT(dev))
6316 palreg = LGC_PALETTE(intel_crtc->pipe);
6317
6318 for (i = 0; i < 256; i++) {
6319 I915_WRITE(palreg + 4 * i,
6320 (intel_crtc->lut_r[i] << 16) |
6321 (intel_crtc->lut_g[i] << 8) |
6322 intel_crtc->lut_b[i]);
6323 }
6324 }
6325
6326 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6327 {
6328 struct drm_device *dev = crtc->dev;
6329 struct drm_i915_private *dev_priv = dev->dev_private;
6330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6331 bool visible = base != 0;
6332 u32 cntl;
6333
6334 if (intel_crtc->cursor_visible == visible)
6335 return;
6336
6337 cntl = I915_READ(_CURACNTR);
6338 if (visible) {
6339 /* On these chipsets we can only modify the base whilst
6340 * the cursor is disabled.
6341 */
6342 I915_WRITE(_CURABASE, base);
6343
6344 cntl &= ~(CURSOR_FORMAT_MASK);
6345 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6346 cntl |= CURSOR_ENABLE |
6347 CURSOR_GAMMA_ENABLE |
6348 CURSOR_FORMAT_ARGB;
6349 } else
6350 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6351 I915_WRITE(_CURACNTR, cntl);
6352
6353 intel_crtc->cursor_visible = visible;
6354 }
6355
6356 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6357 {
6358 struct drm_device *dev = crtc->dev;
6359 struct drm_i915_private *dev_priv = dev->dev_private;
6360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361 int pipe = intel_crtc->pipe;
6362 bool visible = base != 0;
6363
6364 if (intel_crtc->cursor_visible != visible) {
6365 uint32_t cntl = I915_READ(CURCNTR(pipe));
6366 if (base) {
6367 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6368 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6369 cntl |= pipe << 28; /* Connect to correct pipe */
6370 } else {
6371 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6372 cntl |= CURSOR_MODE_DISABLE;
6373 }
6374 I915_WRITE(CURCNTR(pipe), cntl);
6375
6376 intel_crtc->cursor_visible = visible;
6377 }
6378 /* and commit changes on next vblank */
6379 I915_WRITE(CURBASE(pipe), base);
6380 }
6381
6382 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6383 {
6384 struct drm_device *dev = crtc->dev;
6385 struct drm_i915_private *dev_priv = dev->dev_private;
6386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6387 int pipe = intel_crtc->pipe;
6388 bool visible = base != 0;
6389
6390 if (intel_crtc->cursor_visible != visible) {
6391 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6392 if (base) {
6393 cntl &= ~CURSOR_MODE;
6394 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6395 } else {
6396 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6397 cntl |= CURSOR_MODE_DISABLE;
6398 }
6399 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6400
6401 intel_crtc->cursor_visible = visible;
6402 }
6403 /* and commit changes on next vblank */
6404 I915_WRITE(CURBASE_IVB(pipe), base);
6405 }
6406
6407 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6408 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6409 bool on)
6410 {
6411 struct drm_device *dev = crtc->dev;
6412 struct drm_i915_private *dev_priv = dev->dev_private;
6413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6414 int pipe = intel_crtc->pipe;
6415 int x = intel_crtc->cursor_x;
6416 int y = intel_crtc->cursor_y;
6417 u32 base, pos;
6418 bool visible;
6419
6420 pos = 0;
6421
6422 if (on && crtc->enabled && crtc->fb) {
6423 base = intel_crtc->cursor_addr;
6424 if (x > (int) crtc->fb->width)
6425 base = 0;
6426
6427 if (y > (int) crtc->fb->height)
6428 base = 0;
6429 } else
6430 base = 0;
6431
6432 if (x < 0) {
6433 if (x + intel_crtc->cursor_width < 0)
6434 base = 0;
6435
6436 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6437 x = -x;
6438 }
6439 pos |= x << CURSOR_X_SHIFT;
6440
6441 if (y < 0) {
6442 if (y + intel_crtc->cursor_height < 0)
6443 base = 0;
6444
6445 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6446 y = -y;
6447 }
6448 pos |= y << CURSOR_Y_SHIFT;
6449
6450 visible = base != 0;
6451 if (!visible && !intel_crtc->cursor_visible)
6452 return;
6453
6454 if (IS_IVYBRIDGE(dev)) {
6455 I915_WRITE(CURPOS_IVB(pipe), pos);
6456 ivb_update_cursor(crtc, base);
6457 } else {
6458 I915_WRITE(CURPOS(pipe), pos);
6459 if (IS_845G(dev) || IS_I865G(dev))
6460 i845_update_cursor(crtc, base);
6461 else
6462 i9xx_update_cursor(crtc, base);
6463 }
6464
6465 if (visible)
6466 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6467 }
6468
6469 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6470 struct drm_file *file,
6471 uint32_t handle,
6472 uint32_t width, uint32_t height)
6473 {
6474 struct drm_device *dev = crtc->dev;
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6477 struct drm_i915_gem_object *obj;
6478 uint32_t addr;
6479 int ret;
6480
6481 DRM_DEBUG_KMS("\n");
6482
6483 /* if we want to turn off the cursor ignore width and height */
6484 if (!handle) {
6485 DRM_DEBUG_KMS("cursor off\n");
6486 addr = 0;
6487 obj = NULL;
6488 mutex_lock(&dev->struct_mutex);
6489 goto finish;
6490 }
6491
6492 /* Currently we only support 64x64 cursors */
6493 if (width != 64 || height != 64) {
6494 DRM_ERROR("we currently only support 64x64 cursors\n");
6495 return -EINVAL;
6496 }
6497
6498 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6499 if (&obj->base == NULL)
6500 return -ENOENT;
6501
6502 if (obj->base.size < width * height * 4) {
6503 DRM_ERROR("buffer is to small\n");
6504 ret = -ENOMEM;
6505 goto fail;
6506 }
6507
6508 /* we only need to pin inside GTT if cursor is non-phy */
6509 mutex_lock(&dev->struct_mutex);
6510 if (!dev_priv->info->cursor_needs_physical) {
6511 if (obj->tiling_mode) {
6512 DRM_ERROR("cursor cannot be tiled\n");
6513 ret = -EINVAL;
6514 goto fail_locked;
6515 }
6516
6517 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6518 if (ret) {
6519 DRM_ERROR("failed to move cursor bo into the GTT\n");
6520 goto fail_locked;
6521 }
6522
6523 ret = i915_gem_object_put_fence(obj);
6524 if (ret) {
6525 DRM_ERROR("failed to release fence for cursor");
6526 goto fail_unpin;
6527 }
6528
6529 addr = obj->gtt_offset;
6530 } else {
6531 int align = IS_I830(dev) ? 16 * 1024 : 256;
6532 ret = i915_gem_attach_phys_object(dev, obj,
6533 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6534 align);
6535 if (ret) {
6536 DRM_ERROR("failed to attach phys object\n");
6537 goto fail_locked;
6538 }
6539 addr = obj->phys_obj->handle->busaddr;
6540 }
6541
6542 if (IS_GEN2(dev))
6543 I915_WRITE(CURSIZE, (height << 12) | width);
6544
6545 finish:
6546 if (intel_crtc->cursor_bo) {
6547 if (dev_priv->info->cursor_needs_physical) {
6548 if (intel_crtc->cursor_bo != obj)
6549 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6550 } else
6551 i915_gem_object_unpin(intel_crtc->cursor_bo);
6552 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6553 }
6554
6555 mutex_unlock(&dev->struct_mutex);
6556
6557 intel_crtc->cursor_addr = addr;
6558 intel_crtc->cursor_bo = obj;
6559 intel_crtc->cursor_width = width;
6560 intel_crtc->cursor_height = height;
6561
6562 intel_crtc_update_cursor(crtc, true);
6563
6564 return 0;
6565 fail_unpin:
6566 i915_gem_object_unpin(obj);
6567 fail_locked:
6568 mutex_unlock(&dev->struct_mutex);
6569 fail:
6570 drm_gem_object_unreference_unlocked(&obj->base);
6571 return ret;
6572 }
6573
6574 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6575 {
6576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6577
6578 intel_crtc->cursor_x = x;
6579 intel_crtc->cursor_y = y;
6580
6581 intel_crtc_update_cursor(crtc, true);
6582
6583 return 0;
6584 }
6585
6586 /** Sets the color ramps on behalf of RandR */
6587 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6588 u16 blue, int regno)
6589 {
6590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591
6592 intel_crtc->lut_r[regno] = red >> 8;
6593 intel_crtc->lut_g[regno] = green >> 8;
6594 intel_crtc->lut_b[regno] = blue >> 8;
6595 }
6596
6597 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6598 u16 *blue, int regno)
6599 {
6600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601
6602 *red = intel_crtc->lut_r[regno] << 8;
6603 *green = intel_crtc->lut_g[regno] << 8;
6604 *blue = intel_crtc->lut_b[regno] << 8;
6605 }
6606
6607 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6608 u16 *blue, uint32_t start, uint32_t size)
6609 {
6610 int end = (start + size > 256) ? 256 : start + size, i;
6611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6612
6613 for (i = start; i < end; i++) {
6614 intel_crtc->lut_r[i] = red[i] >> 8;
6615 intel_crtc->lut_g[i] = green[i] >> 8;
6616 intel_crtc->lut_b[i] = blue[i] >> 8;
6617 }
6618
6619 intel_crtc_load_lut(crtc);
6620 }
6621
6622 /**
6623 * Get a pipe with a simple mode set on it for doing load-based monitor
6624 * detection.
6625 *
6626 * It will be up to the load-detect code to adjust the pipe as appropriate for
6627 * its requirements. The pipe will be connected to no other encoders.
6628 *
6629 * Currently this code will only succeed if there is a pipe with no encoders
6630 * configured for it. In the future, it could choose to temporarily disable
6631 * some outputs to free up a pipe for its use.
6632 *
6633 * \return crtc, or NULL if no pipes are available.
6634 */
6635
6636 /* VESA 640x480x72Hz mode to set on the pipe */
6637 static struct drm_display_mode load_detect_mode = {
6638 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6639 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6640 };
6641
6642 static struct drm_framebuffer *
6643 intel_framebuffer_create(struct drm_device *dev,
6644 struct drm_mode_fb_cmd2 *mode_cmd,
6645 struct drm_i915_gem_object *obj)
6646 {
6647 struct intel_framebuffer *intel_fb;
6648 int ret;
6649
6650 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6651 if (!intel_fb) {
6652 drm_gem_object_unreference_unlocked(&obj->base);
6653 return ERR_PTR(-ENOMEM);
6654 }
6655
6656 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6657 if (ret) {
6658 drm_gem_object_unreference_unlocked(&obj->base);
6659 kfree(intel_fb);
6660 return ERR_PTR(ret);
6661 }
6662
6663 return &intel_fb->base;
6664 }
6665
6666 static u32
6667 intel_framebuffer_pitch_for_width(int width, int bpp)
6668 {
6669 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6670 return ALIGN(pitch, 64);
6671 }
6672
6673 static u32
6674 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6675 {
6676 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6677 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6678 }
6679
6680 static struct drm_framebuffer *
6681 intel_framebuffer_create_for_mode(struct drm_device *dev,
6682 struct drm_display_mode *mode,
6683 int depth, int bpp)
6684 {
6685 struct drm_i915_gem_object *obj;
6686 struct drm_mode_fb_cmd2 mode_cmd;
6687
6688 obj = i915_gem_alloc_object(dev,
6689 intel_framebuffer_size_for_mode(mode, bpp));
6690 if (obj == NULL)
6691 return ERR_PTR(-ENOMEM);
6692
6693 mode_cmd.width = mode->hdisplay;
6694 mode_cmd.height = mode->vdisplay;
6695 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6696 bpp);
6697 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6698
6699 return intel_framebuffer_create(dev, &mode_cmd, obj);
6700 }
6701
6702 static struct drm_framebuffer *
6703 mode_fits_in_fbdev(struct drm_device *dev,
6704 struct drm_display_mode *mode)
6705 {
6706 struct drm_i915_private *dev_priv = dev->dev_private;
6707 struct drm_i915_gem_object *obj;
6708 struct drm_framebuffer *fb;
6709
6710 if (dev_priv->fbdev == NULL)
6711 return NULL;
6712
6713 obj = dev_priv->fbdev->ifb.obj;
6714 if (obj == NULL)
6715 return NULL;
6716
6717 fb = &dev_priv->fbdev->ifb.base;
6718 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6719 fb->bits_per_pixel))
6720 return NULL;
6721
6722 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6723 return NULL;
6724
6725 return fb;
6726 }
6727
6728 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6729 struct drm_connector *connector,
6730 struct drm_display_mode *mode,
6731 struct intel_load_detect_pipe *old)
6732 {
6733 struct intel_crtc *intel_crtc;
6734 struct drm_crtc *possible_crtc;
6735 struct drm_encoder *encoder = &intel_encoder->base;
6736 struct drm_crtc *crtc = NULL;
6737 struct drm_device *dev = encoder->dev;
6738 struct drm_framebuffer *old_fb;
6739 int i = -1;
6740
6741 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6742 connector->base.id, drm_get_connector_name(connector),
6743 encoder->base.id, drm_get_encoder_name(encoder));
6744
6745 /*
6746 * Algorithm gets a little messy:
6747 *
6748 * - if the connector already has an assigned crtc, use it (but make
6749 * sure it's on first)
6750 *
6751 * - try to find the first unused crtc that can drive this connector,
6752 * and use that if we find one
6753 */
6754
6755 /* See if we already have a CRTC for this connector */
6756 if (encoder->crtc) {
6757 crtc = encoder->crtc;
6758
6759 intel_crtc = to_intel_crtc(crtc);
6760 old->dpms_mode = intel_crtc->dpms_mode;
6761 old->load_detect_temp = false;
6762
6763 /* Make sure the crtc and connector are running */
6764 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6765 struct drm_encoder_helper_funcs *encoder_funcs;
6766 struct drm_crtc_helper_funcs *crtc_funcs;
6767
6768 crtc_funcs = crtc->helper_private;
6769 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6770
6771 encoder_funcs = encoder->helper_private;
6772 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6773 }
6774
6775 return true;
6776 }
6777
6778 /* Find an unused one (if possible) */
6779 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6780 i++;
6781 if (!(encoder->possible_crtcs & (1 << i)))
6782 continue;
6783 if (!possible_crtc->enabled) {
6784 crtc = possible_crtc;
6785 break;
6786 }
6787 }
6788
6789 /*
6790 * If we didn't find an unused CRTC, don't use any.
6791 */
6792 if (!crtc) {
6793 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6794 return false;
6795 }
6796
6797 encoder->crtc = crtc;
6798 connector->encoder = encoder;
6799
6800 intel_crtc = to_intel_crtc(crtc);
6801 old->dpms_mode = intel_crtc->dpms_mode;
6802 old->load_detect_temp = true;
6803 old->release_fb = NULL;
6804
6805 if (!mode)
6806 mode = &load_detect_mode;
6807
6808 old_fb = crtc->fb;
6809
6810 /* We need a framebuffer large enough to accommodate all accesses
6811 * that the plane may generate whilst we perform load detection.
6812 * We can not rely on the fbcon either being present (we get called
6813 * during its initialisation to detect all boot displays, or it may
6814 * not even exist) or that it is large enough to satisfy the
6815 * requested mode.
6816 */
6817 crtc->fb = mode_fits_in_fbdev(dev, mode);
6818 if (crtc->fb == NULL) {
6819 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6820 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6821 old->release_fb = crtc->fb;
6822 } else
6823 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6824 if (IS_ERR(crtc->fb)) {
6825 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6826 crtc->fb = old_fb;
6827 return false;
6828 }
6829
6830 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6831 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6832 if (old->release_fb)
6833 old->release_fb->funcs->destroy(old->release_fb);
6834 crtc->fb = old_fb;
6835 return false;
6836 }
6837
6838 /* let the connector get through one full cycle before testing */
6839 intel_wait_for_vblank(dev, intel_crtc->pipe);
6840
6841 return true;
6842 }
6843
6844 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6845 struct drm_connector *connector,
6846 struct intel_load_detect_pipe *old)
6847 {
6848 struct drm_encoder *encoder = &intel_encoder->base;
6849 struct drm_device *dev = encoder->dev;
6850 struct drm_crtc *crtc = encoder->crtc;
6851 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6852 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6853
6854 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6855 connector->base.id, drm_get_connector_name(connector),
6856 encoder->base.id, drm_get_encoder_name(encoder));
6857
6858 if (old->load_detect_temp) {
6859 connector->encoder = NULL;
6860 drm_helper_disable_unused_functions(dev);
6861
6862 if (old->release_fb)
6863 old->release_fb->funcs->destroy(old->release_fb);
6864
6865 return;
6866 }
6867
6868 /* Switch crtc and encoder back off if necessary */
6869 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6870 encoder_funcs->dpms(encoder, old->dpms_mode);
6871 crtc_funcs->dpms(crtc, old->dpms_mode);
6872 }
6873 }
6874
6875 /* Returns the clock of the currently programmed mode of the given pipe. */
6876 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6877 {
6878 struct drm_i915_private *dev_priv = dev->dev_private;
6879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6880 int pipe = intel_crtc->pipe;
6881 u32 dpll = I915_READ(DPLL(pipe));
6882 u32 fp;
6883 intel_clock_t clock;
6884
6885 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6886 fp = I915_READ(FP0(pipe));
6887 else
6888 fp = I915_READ(FP1(pipe));
6889
6890 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6891 if (IS_PINEVIEW(dev)) {
6892 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6893 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6894 } else {
6895 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6896 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6897 }
6898
6899 if (!IS_GEN2(dev)) {
6900 if (IS_PINEVIEW(dev))
6901 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6902 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6903 else
6904 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6905 DPLL_FPA01_P1_POST_DIV_SHIFT);
6906
6907 switch (dpll & DPLL_MODE_MASK) {
6908 case DPLLB_MODE_DAC_SERIAL:
6909 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6910 5 : 10;
6911 break;
6912 case DPLLB_MODE_LVDS:
6913 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6914 7 : 14;
6915 break;
6916 default:
6917 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6918 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6919 return 0;
6920 }
6921
6922 /* XXX: Handle the 100Mhz refclk */
6923 intel_clock(dev, 96000, &clock);
6924 } else {
6925 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6926
6927 if (is_lvds) {
6928 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6929 DPLL_FPA01_P1_POST_DIV_SHIFT);
6930 clock.p2 = 14;
6931
6932 if ((dpll & PLL_REF_INPUT_MASK) ==
6933 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6934 /* XXX: might not be 66MHz */
6935 intel_clock(dev, 66000, &clock);
6936 } else
6937 intel_clock(dev, 48000, &clock);
6938 } else {
6939 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6940 clock.p1 = 2;
6941 else {
6942 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6943 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6944 }
6945 if (dpll & PLL_P2_DIVIDE_BY_4)
6946 clock.p2 = 4;
6947 else
6948 clock.p2 = 2;
6949
6950 intel_clock(dev, 48000, &clock);
6951 }
6952 }
6953
6954 /* XXX: It would be nice to validate the clocks, but we can't reuse
6955 * i830PllIsValid() because it relies on the xf86_config connector
6956 * configuration being accurate, which it isn't necessarily.
6957 */
6958
6959 return clock.dot;
6960 }
6961
6962 /** Returns the currently programmed mode of the given pipe. */
6963 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6964 struct drm_crtc *crtc)
6965 {
6966 struct drm_i915_private *dev_priv = dev->dev_private;
6967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6968 int pipe = intel_crtc->pipe;
6969 struct drm_display_mode *mode;
6970 int htot = I915_READ(HTOTAL(pipe));
6971 int hsync = I915_READ(HSYNC(pipe));
6972 int vtot = I915_READ(VTOTAL(pipe));
6973 int vsync = I915_READ(VSYNC(pipe));
6974
6975 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6976 if (!mode)
6977 return NULL;
6978
6979 mode->clock = intel_crtc_clock_get(dev, crtc);
6980 mode->hdisplay = (htot & 0xffff) + 1;
6981 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6982 mode->hsync_start = (hsync & 0xffff) + 1;
6983 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6984 mode->vdisplay = (vtot & 0xffff) + 1;
6985 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6986 mode->vsync_start = (vsync & 0xffff) + 1;
6987 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6988
6989 drm_mode_set_name(mode);
6990 drm_mode_set_crtcinfo(mode, 0);
6991
6992 return mode;
6993 }
6994
6995 #define GPU_IDLE_TIMEOUT 500 /* ms */
6996
6997 /* When this timer fires, we've been idle for awhile */
6998 static void intel_gpu_idle_timer(unsigned long arg)
6999 {
7000 struct drm_device *dev = (struct drm_device *)arg;
7001 drm_i915_private_t *dev_priv = dev->dev_private;
7002
7003 if (!list_empty(&dev_priv->mm.active_list)) {
7004 /* Still processing requests, so just re-arm the timer. */
7005 mod_timer(&dev_priv->idle_timer, jiffies +
7006 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7007 return;
7008 }
7009
7010 dev_priv->busy = false;
7011 queue_work(dev_priv->wq, &dev_priv->idle_work);
7012 }
7013
7014 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
7015
7016 static void intel_crtc_idle_timer(unsigned long arg)
7017 {
7018 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
7019 struct drm_crtc *crtc = &intel_crtc->base;
7020 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7021 struct intel_framebuffer *intel_fb;
7022
7023 intel_fb = to_intel_framebuffer(crtc->fb);
7024 if (intel_fb && intel_fb->obj->active) {
7025 /* The framebuffer is still being accessed by the GPU. */
7026 mod_timer(&intel_crtc->idle_timer, jiffies +
7027 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7028 return;
7029 }
7030
7031 intel_crtc->busy = false;
7032 queue_work(dev_priv->wq, &dev_priv->idle_work);
7033 }
7034
7035 static void intel_increase_pllclock(struct drm_crtc *crtc)
7036 {
7037 struct drm_device *dev = crtc->dev;
7038 drm_i915_private_t *dev_priv = dev->dev_private;
7039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7040 int pipe = intel_crtc->pipe;
7041 int dpll_reg = DPLL(pipe);
7042 int dpll;
7043
7044 if (HAS_PCH_SPLIT(dev))
7045 return;
7046
7047 if (!dev_priv->lvds_downclock_avail)
7048 return;
7049
7050 dpll = I915_READ(dpll_reg);
7051 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7052 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7053
7054 assert_panel_unlocked(dev_priv, pipe);
7055
7056 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7057 I915_WRITE(dpll_reg, dpll);
7058 intel_wait_for_vblank(dev, pipe);
7059
7060 dpll = I915_READ(dpll_reg);
7061 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7062 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7063 }
7064
7065 /* Schedule downclock */
7066 mod_timer(&intel_crtc->idle_timer, jiffies +
7067 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7068 }
7069
7070 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7071 {
7072 struct drm_device *dev = crtc->dev;
7073 drm_i915_private_t *dev_priv = dev->dev_private;
7074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075
7076 if (HAS_PCH_SPLIT(dev))
7077 return;
7078
7079 if (!dev_priv->lvds_downclock_avail)
7080 return;
7081
7082 /*
7083 * Since this is called by a timer, we should never get here in
7084 * the manual case.
7085 */
7086 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7087 int pipe = intel_crtc->pipe;
7088 int dpll_reg = DPLL(pipe);
7089 u32 dpll;
7090
7091 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7092
7093 assert_panel_unlocked(dev_priv, pipe);
7094
7095 dpll = I915_READ(dpll_reg);
7096 dpll |= DISPLAY_RATE_SELECT_FPA1;
7097 I915_WRITE(dpll_reg, dpll);
7098 intel_wait_for_vblank(dev, pipe);
7099 dpll = I915_READ(dpll_reg);
7100 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7101 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7102 }
7103 }
7104
7105 /**
7106 * intel_idle_update - adjust clocks for idleness
7107 * @work: work struct
7108 *
7109 * Either the GPU or display (or both) went idle. Check the busy status
7110 * here and adjust the CRTC and GPU clocks as necessary.
7111 */
7112 static void intel_idle_update(struct work_struct *work)
7113 {
7114 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7115 idle_work);
7116 struct drm_device *dev = dev_priv->dev;
7117 struct drm_crtc *crtc;
7118 struct intel_crtc *intel_crtc;
7119
7120 if (!i915_powersave)
7121 return;
7122
7123 mutex_lock(&dev->struct_mutex);
7124
7125 i915_update_gfx_val(dev_priv);
7126
7127 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7128 /* Skip inactive CRTCs */
7129 if (!crtc->fb)
7130 continue;
7131
7132 intel_crtc = to_intel_crtc(crtc);
7133 if (!intel_crtc->busy)
7134 intel_decrease_pllclock(crtc);
7135 }
7136
7137
7138 mutex_unlock(&dev->struct_mutex);
7139 }
7140
7141 /**
7142 * intel_mark_busy - mark the GPU and possibly the display busy
7143 * @dev: drm device
7144 * @obj: object we're operating on
7145 *
7146 * Callers can use this function to indicate that the GPU is busy processing
7147 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7148 * buffer), we'll also mark the display as busy, so we know to increase its
7149 * clock frequency.
7150 */
7151 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7152 {
7153 drm_i915_private_t *dev_priv = dev->dev_private;
7154 struct drm_crtc *crtc = NULL;
7155 struct intel_framebuffer *intel_fb;
7156 struct intel_crtc *intel_crtc;
7157
7158 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7159 return;
7160
7161 if (!dev_priv->busy)
7162 dev_priv->busy = true;
7163 else
7164 mod_timer(&dev_priv->idle_timer, jiffies +
7165 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7166
7167 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7168 if (!crtc->fb)
7169 continue;
7170
7171 intel_crtc = to_intel_crtc(crtc);
7172 intel_fb = to_intel_framebuffer(crtc->fb);
7173 if (intel_fb->obj == obj) {
7174 if (!intel_crtc->busy) {
7175 /* Non-busy -> busy, upclock */
7176 intel_increase_pllclock(crtc);
7177 intel_crtc->busy = true;
7178 } else {
7179 /* Busy -> busy, put off timer */
7180 mod_timer(&intel_crtc->idle_timer, jiffies +
7181 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7182 }
7183 }
7184 }
7185 }
7186
7187 static void intel_crtc_destroy(struct drm_crtc *crtc)
7188 {
7189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7190 struct drm_device *dev = crtc->dev;
7191 struct intel_unpin_work *work;
7192 unsigned long flags;
7193
7194 spin_lock_irqsave(&dev->event_lock, flags);
7195 work = intel_crtc->unpin_work;
7196 intel_crtc->unpin_work = NULL;
7197 spin_unlock_irqrestore(&dev->event_lock, flags);
7198
7199 if (work) {
7200 cancel_work_sync(&work->work);
7201 kfree(work);
7202 }
7203
7204 drm_crtc_cleanup(crtc);
7205
7206 kfree(intel_crtc);
7207 }
7208
7209 static void intel_unpin_work_fn(struct work_struct *__work)
7210 {
7211 struct intel_unpin_work *work =
7212 container_of(__work, struct intel_unpin_work, work);
7213
7214 mutex_lock(&work->dev->struct_mutex);
7215 intel_unpin_fb_obj(work->old_fb_obj);
7216 drm_gem_object_unreference(&work->pending_flip_obj->base);
7217 drm_gem_object_unreference(&work->old_fb_obj->base);
7218
7219 intel_update_fbc(work->dev);
7220 mutex_unlock(&work->dev->struct_mutex);
7221 kfree(work);
7222 }
7223
7224 static void do_intel_finish_page_flip(struct drm_device *dev,
7225 struct drm_crtc *crtc)
7226 {
7227 drm_i915_private_t *dev_priv = dev->dev_private;
7228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7229 struct intel_unpin_work *work;
7230 struct drm_i915_gem_object *obj;
7231 struct drm_pending_vblank_event *e;
7232 struct timeval tnow, tvbl;
7233 unsigned long flags;
7234
7235 /* Ignore early vblank irqs */
7236 if (intel_crtc == NULL)
7237 return;
7238
7239 do_gettimeofday(&tnow);
7240
7241 spin_lock_irqsave(&dev->event_lock, flags);
7242 work = intel_crtc->unpin_work;
7243 if (work == NULL || !work->pending) {
7244 spin_unlock_irqrestore(&dev->event_lock, flags);
7245 return;
7246 }
7247
7248 intel_crtc->unpin_work = NULL;
7249
7250 if (work->event) {
7251 e = work->event;
7252 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7253
7254 /* Called before vblank count and timestamps have
7255 * been updated for the vblank interval of flip
7256 * completion? Need to increment vblank count and
7257 * add one videorefresh duration to returned timestamp
7258 * to account for this. We assume this happened if we
7259 * get called over 0.9 frame durations after the last
7260 * timestamped vblank.
7261 *
7262 * This calculation can not be used with vrefresh rates
7263 * below 5Hz (10Hz to be on the safe side) without
7264 * promoting to 64 integers.
7265 */
7266 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7267 9 * crtc->framedur_ns) {
7268 e->event.sequence++;
7269 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7270 crtc->framedur_ns);
7271 }
7272
7273 e->event.tv_sec = tvbl.tv_sec;
7274 e->event.tv_usec = tvbl.tv_usec;
7275
7276 list_add_tail(&e->base.link,
7277 &e->base.file_priv->event_list);
7278 wake_up_interruptible(&e->base.file_priv->event_wait);
7279 }
7280
7281 drm_vblank_put(dev, intel_crtc->pipe);
7282
7283 spin_unlock_irqrestore(&dev->event_lock, flags);
7284
7285 obj = work->old_fb_obj;
7286
7287 atomic_clear_mask(1 << intel_crtc->plane,
7288 &obj->pending_flip.counter);
7289 if (atomic_read(&obj->pending_flip) == 0)
7290 wake_up(&dev_priv->pending_flip_queue);
7291
7292 schedule_work(&work->work);
7293
7294 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7295 }
7296
7297 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7298 {
7299 drm_i915_private_t *dev_priv = dev->dev_private;
7300 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7301
7302 do_intel_finish_page_flip(dev, crtc);
7303 }
7304
7305 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7306 {
7307 drm_i915_private_t *dev_priv = dev->dev_private;
7308 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7309
7310 do_intel_finish_page_flip(dev, crtc);
7311 }
7312
7313 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7314 {
7315 drm_i915_private_t *dev_priv = dev->dev_private;
7316 struct intel_crtc *intel_crtc =
7317 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7318 unsigned long flags;
7319
7320 spin_lock_irqsave(&dev->event_lock, flags);
7321 if (intel_crtc->unpin_work) {
7322 if ((++intel_crtc->unpin_work->pending) > 1)
7323 DRM_ERROR("Prepared flip multiple times\n");
7324 } else {
7325 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7326 }
7327 spin_unlock_irqrestore(&dev->event_lock, flags);
7328 }
7329
7330 static int intel_gen2_queue_flip(struct drm_device *dev,
7331 struct drm_crtc *crtc,
7332 struct drm_framebuffer *fb,
7333 struct drm_i915_gem_object *obj)
7334 {
7335 struct drm_i915_private *dev_priv = dev->dev_private;
7336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7337 unsigned long offset;
7338 u32 flip_mask;
7339 int ret;
7340
7341 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7342 if (ret)
7343 goto out;
7344
7345 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7346 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7347
7348 ret = BEGIN_LP_RING(6);
7349 if (ret)
7350 goto out;
7351
7352 /* Can't queue multiple flips, so wait for the previous
7353 * one to finish before executing the next.
7354 */
7355 if (intel_crtc->plane)
7356 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7357 else
7358 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7359 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7360 OUT_RING(MI_NOOP);
7361 OUT_RING(MI_DISPLAY_FLIP |
7362 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7363 OUT_RING(fb->pitches[0]);
7364 OUT_RING(obj->gtt_offset + offset);
7365 OUT_RING(0); /* aux display base address, unused */
7366 ADVANCE_LP_RING();
7367 out:
7368 return ret;
7369 }
7370
7371 static int intel_gen3_queue_flip(struct drm_device *dev,
7372 struct drm_crtc *crtc,
7373 struct drm_framebuffer *fb,
7374 struct drm_i915_gem_object *obj)
7375 {
7376 struct drm_i915_private *dev_priv = dev->dev_private;
7377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7378 unsigned long offset;
7379 u32 flip_mask;
7380 int ret;
7381
7382 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7383 if (ret)
7384 goto out;
7385
7386 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7387 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7388
7389 ret = BEGIN_LP_RING(6);
7390 if (ret)
7391 goto out;
7392
7393 if (intel_crtc->plane)
7394 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7395 else
7396 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7397 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7398 OUT_RING(MI_NOOP);
7399 OUT_RING(MI_DISPLAY_FLIP_I915 |
7400 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7401 OUT_RING(fb->pitches[0]);
7402 OUT_RING(obj->gtt_offset + offset);
7403 OUT_RING(MI_NOOP);
7404
7405 ADVANCE_LP_RING();
7406 out:
7407 return ret;
7408 }
7409
7410 static int intel_gen4_queue_flip(struct drm_device *dev,
7411 struct drm_crtc *crtc,
7412 struct drm_framebuffer *fb,
7413 struct drm_i915_gem_object *obj)
7414 {
7415 struct drm_i915_private *dev_priv = dev->dev_private;
7416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7417 uint32_t pf, pipesrc;
7418 int ret;
7419
7420 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7421 if (ret)
7422 goto out;
7423
7424 ret = BEGIN_LP_RING(4);
7425 if (ret)
7426 goto out;
7427
7428 /* i965+ uses the linear or tiled offsets from the
7429 * Display Registers (which do not change across a page-flip)
7430 * so we need only reprogram the base address.
7431 */
7432 OUT_RING(MI_DISPLAY_FLIP |
7433 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7434 OUT_RING(fb->pitches[0]);
7435 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7436
7437 /* XXX Enabling the panel-fitter across page-flip is so far
7438 * untested on non-native modes, so ignore it for now.
7439 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7440 */
7441 pf = 0;
7442 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7443 OUT_RING(pf | pipesrc);
7444 ADVANCE_LP_RING();
7445 out:
7446 return ret;
7447 }
7448
7449 static int intel_gen6_queue_flip(struct drm_device *dev,
7450 struct drm_crtc *crtc,
7451 struct drm_framebuffer *fb,
7452 struct drm_i915_gem_object *obj)
7453 {
7454 struct drm_i915_private *dev_priv = dev->dev_private;
7455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7456 uint32_t pf, pipesrc;
7457 int ret;
7458
7459 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7460 if (ret)
7461 goto out;
7462
7463 ret = BEGIN_LP_RING(4);
7464 if (ret)
7465 goto out;
7466
7467 OUT_RING(MI_DISPLAY_FLIP |
7468 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7469 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7470 OUT_RING(obj->gtt_offset);
7471
7472 /* Contrary to the suggestions in the documentation,
7473 * "Enable Panel Fitter" does not seem to be required when page
7474 * flipping with a non-native mode, and worse causes a normal
7475 * modeset to fail.
7476 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7477 */
7478 pf = 0;
7479 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7480 OUT_RING(pf | pipesrc);
7481 ADVANCE_LP_RING();
7482 out:
7483 return ret;
7484 }
7485
7486 /*
7487 * On gen7 we currently use the blit ring because (in early silicon at least)
7488 * the render ring doesn't give us interrpts for page flip completion, which
7489 * means clients will hang after the first flip is queued. Fortunately the
7490 * blit ring generates interrupts properly, so use it instead.
7491 */
7492 static int intel_gen7_queue_flip(struct drm_device *dev,
7493 struct drm_crtc *crtc,
7494 struct drm_framebuffer *fb,
7495 struct drm_i915_gem_object *obj)
7496 {
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7499 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7500 int ret;
7501
7502 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7503 if (ret)
7504 goto out;
7505
7506 ret = intel_ring_begin(ring, 4);
7507 if (ret)
7508 goto out;
7509
7510 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7511 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7512 intel_ring_emit(ring, (obj->gtt_offset));
7513 intel_ring_emit(ring, (MI_NOOP));
7514 intel_ring_advance(ring);
7515 out:
7516 return ret;
7517 }
7518
7519 static int intel_default_queue_flip(struct drm_device *dev,
7520 struct drm_crtc *crtc,
7521 struct drm_framebuffer *fb,
7522 struct drm_i915_gem_object *obj)
7523 {
7524 return -ENODEV;
7525 }
7526
7527 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7528 struct drm_framebuffer *fb,
7529 struct drm_pending_vblank_event *event)
7530 {
7531 struct drm_device *dev = crtc->dev;
7532 struct drm_i915_private *dev_priv = dev->dev_private;
7533 struct intel_framebuffer *intel_fb;
7534 struct drm_i915_gem_object *obj;
7535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7536 struct intel_unpin_work *work;
7537 unsigned long flags;
7538 int ret;
7539
7540 work = kzalloc(sizeof *work, GFP_KERNEL);
7541 if (work == NULL)
7542 return -ENOMEM;
7543
7544 work->event = event;
7545 work->dev = crtc->dev;
7546 intel_fb = to_intel_framebuffer(crtc->fb);
7547 work->old_fb_obj = intel_fb->obj;
7548 INIT_WORK(&work->work, intel_unpin_work_fn);
7549
7550 ret = drm_vblank_get(dev, intel_crtc->pipe);
7551 if (ret)
7552 goto free_work;
7553
7554 /* We borrow the event spin lock for protecting unpin_work */
7555 spin_lock_irqsave(&dev->event_lock, flags);
7556 if (intel_crtc->unpin_work) {
7557 spin_unlock_irqrestore(&dev->event_lock, flags);
7558 kfree(work);
7559 drm_vblank_put(dev, intel_crtc->pipe);
7560
7561 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7562 return -EBUSY;
7563 }
7564 intel_crtc->unpin_work = work;
7565 spin_unlock_irqrestore(&dev->event_lock, flags);
7566
7567 intel_fb = to_intel_framebuffer(fb);
7568 obj = intel_fb->obj;
7569
7570 mutex_lock(&dev->struct_mutex);
7571
7572 /* Reference the objects for the scheduled work. */
7573 drm_gem_object_reference(&work->old_fb_obj->base);
7574 drm_gem_object_reference(&obj->base);
7575
7576 crtc->fb = fb;
7577
7578 work->pending_flip_obj = obj;
7579
7580 work->enable_stall_check = true;
7581
7582 /* Block clients from rendering to the new back buffer until
7583 * the flip occurs and the object is no longer visible.
7584 */
7585 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7586
7587 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7588 if (ret)
7589 goto cleanup_pending;
7590
7591 intel_disable_fbc(dev);
7592 mutex_unlock(&dev->struct_mutex);
7593
7594 trace_i915_flip_request(intel_crtc->plane, obj);
7595
7596 return 0;
7597
7598 cleanup_pending:
7599 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7600 drm_gem_object_unreference(&work->old_fb_obj->base);
7601 drm_gem_object_unreference(&obj->base);
7602 mutex_unlock(&dev->struct_mutex);
7603
7604 spin_lock_irqsave(&dev->event_lock, flags);
7605 intel_crtc->unpin_work = NULL;
7606 spin_unlock_irqrestore(&dev->event_lock, flags);
7607
7608 drm_vblank_put(dev, intel_crtc->pipe);
7609 free_work:
7610 kfree(work);
7611
7612 return ret;
7613 }
7614
7615 static void intel_sanitize_modesetting(struct drm_device *dev,
7616 int pipe, int plane)
7617 {
7618 struct drm_i915_private *dev_priv = dev->dev_private;
7619 u32 reg, val;
7620
7621 /* Clear any frame start delays used for debugging left by the BIOS */
7622 for_each_pipe(pipe) {
7623 reg = PIPECONF(pipe);
7624 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7625 }
7626
7627 if (HAS_PCH_SPLIT(dev))
7628 return;
7629
7630 /* Who knows what state these registers were left in by the BIOS or
7631 * grub?
7632 *
7633 * If we leave the registers in a conflicting state (e.g. with the
7634 * display plane reading from the other pipe than the one we intend
7635 * to use) then when we attempt to teardown the active mode, we will
7636 * not disable the pipes and planes in the correct order -- leaving
7637 * a plane reading from a disabled pipe and possibly leading to
7638 * undefined behaviour.
7639 */
7640
7641 reg = DSPCNTR(plane);
7642 val = I915_READ(reg);
7643
7644 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7645 return;
7646 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7647 return;
7648
7649 /* This display plane is active and attached to the other CPU pipe. */
7650 pipe = !pipe;
7651
7652 /* Disable the plane and wait for it to stop reading from the pipe. */
7653 intel_disable_plane(dev_priv, plane, pipe);
7654 intel_disable_pipe(dev_priv, pipe);
7655 }
7656
7657 static void intel_crtc_reset(struct drm_crtc *crtc)
7658 {
7659 struct drm_device *dev = crtc->dev;
7660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7661
7662 /* Reset flags back to the 'unknown' status so that they
7663 * will be correctly set on the initial modeset.
7664 */
7665 intel_crtc->dpms_mode = -1;
7666
7667 /* We need to fix up any BIOS configuration that conflicts with
7668 * our expectations.
7669 */
7670 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7671 }
7672
7673 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7674 .dpms = intel_crtc_dpms,
7675 .mode_fixup = intel_crtc_mode_fixup,
7676 .mode_set = intel_crtc_mode_set,
7677 .mode_set_base = intel_pipe_set_base,
7678 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7679 .load_lut = intel_crtc_load_lut,
7680 .disable = intel_crtc_disable,
7681 };
7682
7683 static const struct drm_crtc_funcs intel_crtc_funcs = {
7684 .reset = intel_crtc_reset,
7685 .cursor_set = intel_crtc_cursor_set,
7686 .cursor_move = intel_crtc_cursor_move,
7687 .gamma_set = intel_crtc_gamma_set,
7688 .set_config = drm_crtc_helper_set_config,
7689 .destroy = intel_crtc_destroy,
7690 .page_flip = intel_crtc_page_flip,
7691 };
7692
7693 static void intel_crtc_init(struct drm_device *dev, int pipe)
7694 {
7695 drm_i915_private_t *dev_priv = dev->dev_private;
7696 struct intel_crtc *intel_crtc;
7697 int i;
7698
7699 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7700 if (intel_crtc == NULL)
7701 return;
7702
7703 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7704
7705 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7706 for (i = 0; i < 256; i++) {
7707 intel_crtc->lut_r[i] = i;
7708 intel_crtc->lut_g[i] = i;
7709 intel_crtc->lut_b[i] = i;
7710 }
7711
7712 /* Swap pipes & planes for FBC on pre-965 */
7713 intel_crtc->pipe = pipe;
7714 intel_crtc->plane = pipe;
7715 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7716 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7717 intel_crtc->plane = !pipe;
7718 }
7719
7720 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7721 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7722 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7723 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7724
7725 intel_crtc_reset(&intel_crtc->base);
7726 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7727 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7728
7729 if (HAS_PCH_SPLIT(dev)) {
7730 if (pipe == 2 && IS_IVYBRIDGE(dev))
7731 intel_crtc->no_pll = true;
7732 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7733 intel_helper_funcs.commit = ironlake_crtc_commit;
7734 } else {
7735 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7736 intel_helper_funcs.commit = i9xx_crtc_commit;
7737 }
7738
7739 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7740
7741 intel_crtc->busy = false;
7742
7743 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7744 (unsigned long)intel_crtc);
7745 }
7746
7747 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7748 struct drm_file *file)
7749 {
7750 drm_i915_private_t *dev_priv = dev->dev_private;
7751 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7752 struct drm_mode_object *drmmode_obj;
7753 struct intel_crtc *crtc;
7754
7755 if (!dev_priv) {
7756 DRM_ERROR("called with no initialization\n");
7757 return -EINVAL;
7758 }
7759
7760 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7761 DRM_MODE_OBJECT_CRTC);
7762
7763 if (!drmmode_obj) {
7764 DRM_ERROR("no such CRTC id\n");
7765 return -EINVAL;
7766 }
7767
7768 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7769 pipe_from_crtc_id->pipe = crtc->pipe;
7770
7771 return 0;
7772 }
7773
7774 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7775 {
7776 struct intel_encoder *encoder;
7777 int index_mask = 0;
7778 int entry = 0;
7779
7780 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7781 if (type_mask & encoder->clone_mask)
7782 index_mask |= (1 << entry);
7783 entry++;
7784 }
7785
7786 return index_mask;
7787 }
7788
7789 static bool has_edp_a(struct drm_device *dev)
7790 {
7791 struct drm_i915_private *dev_priv = dev->dev_private;
7792
7793 if (!IS_MOBILE(dev))
7794 return false;
7795
7796 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7797 return false;
7798
7799 if (IS_GEN5(dev) &&
7800 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7801 return false;
7802
7803 return true;
7804 }
7805
7806 static void intel_setup_outputs(struct drm_device *dev)
7807 {
7808 struct drm_i915_private *dev_priv = dev->dev_private;
7809 struct intel_encoder *encoder;
7810 bool dpd_is_edp = false;
7811 bool has_lvds;
7812
7813 has_lvds = intel_lvds_init(dev);
7814 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7815 /* disable the panel fitter on everything but LVDS */
7816 I915_WRITE(PFIT_CONTROL, 0);
7817 }
7818
7819 if (HAS_PCH_SPLIT(dev)) {
7820 dpd_is_edp = intel_dpd_is_edp(dev);
7821
7822 if (has_edp_a(dev))
7823 intel_dp_init(dev, DP_A);
7824
7825 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7826 intel_dp_init(dev, PCH_DP_D);
7827 }
7828
7829 intel_crt_init(dev);
7830
7831 if (HAS_PCH_SPLIT(dev)) {
7832 int found;
7833
7834 if (I915_READ(HDMIB) & PORT_DETECTED) {
7835 /* PCH SDVOB multiplex with HDMIB */
7836 found = intel_sdvo_init(dev, PCH_SDVOB);
7837 if (!found)
7838 intel_hdmi_init(dev, HDMIB);
7839 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7840 intel_dp_init(dev, PCH_DP_B);
7841 }
7842
7843 if (I915_READ(HDMIC) & PORT_DETECTED)
7844 intel_hdmi_init(dev, HDMIC);
7845
7846 if (I915_READ(HDMID) & PORT_DETECTED)
7847 intel_hdmi_init(dev, HDMID);
7848
7849 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7850 intel_dp_init(dev, PCH_DP_C);
7851
7852 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7853 intel_dp_init(dev, PCH_DP_D);
7854
7855 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7856 bool found = false;
7857
7858 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7859 DRM_DEBUG_KMS("probing SDVOB\n");
7860 found = intel_sdvo_init(dev, SDVOB);
7861 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7862 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7863 intel_hdmi_init(dev, SDVOB);
7864 }
7865
7866 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7867 DRM_DEBUG_KMS("probing DP_B\n");
7868 intel_dp_init(dev, DP_B);
7869 }
7870 }
7871
7872 /* Before G4X SDVOC doesn't have its own detect register */
7873
7874 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7875 DRM_DEBUG_KMS("probing SDVOC\n");
7876 found = intel_sdvo_init(dev, SDVOC);
7877 }
7878
7879 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7880
7881 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7882 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7883 intel_hdmi_init(dev, SDVOC);
7884 }
7885 if (SUPPORTS_INTEGRATED_DP(dev)) {
7886 DRM_DEBUG_KMS("probing DP_C\n");
7887 intel_dp_init(dev, DP_C);
7888 }
7889 }
7890
7891 if (SUPPORTS_INTEGRATED_DP(dev) &&
7892 (I915_READ(DP_D) & DP_DETECTED)) {
7893 DRM_DEBUG_KMS("probing DP_D\n");
7894 intel_dp_init(dev, DP_D);
7895 }
7896 } else if (IS_GEN2(dev))
7897 intel_dvo_init(dev);
7898
7899 if (SUPPORTS_TV(dev))
7900 intel_tv_init(dev);
7901
7902 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7903 encoder->base.possible_crtcs = encoder->crtc_mask;
7904 encoder->base.possible_clones =
7905 intel_encoder_clones(dev, encoder->clone_mask);
7906 }
7907
7908 /* disable all the possible outputs/crtcs before entering KMS mode */
7909 drm_helper_disable_unused_functions(dev);
7910
7911 if (HAS_PCH_SPLIT(dev))
7912 ironlake_init_pch_refclk(dev);
7913 }
7914
7915 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7916 {
7917 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7918
7919 drm_framebuffer_cleanup(fb);
7920 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7921
7922 kfree(intel_fb);
7923 }
7924
7925 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7926 struct drm_file *file,
7927 unsigned int *handle)
7928 {
7929 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7930 struct drm_i915_gem_object *obj = intel_fb->obj;
7931
7932 return drm_gem_handle_create(file, &obj->base, handle);
7933 }
7934
7935 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7936 .destroy = intel_user_framebuffer_destroy,
7937 .create_handle = intel_user_framebuffer_create_handle,
7938 };
7939
7940 int intel_framebuffer_init(struct drm_device *dev,
7941 struct intel_framebuffer *intel_fb,
7942 struct drm_mode_fb_cmd2 *mode_cmd,
7943 struct drm_i915_gem_object *obj)
7944 {
7945 int ret;
7946
7947 if (obj->tiling_mode == I915_TILING_Y)
7948 return -EINVAL;
7949
7950 if (mode_cmd->pitches[0] & 63)
7951 return -EINVAL;
7952
7953 switch (mode_cmd->pixel_format) {
7954 case DRM_FORMAT_RGB332:
7955 case DRM_FORMAT_RGB565:
7956 case DRM_FORMAT_XRGB8888:
7957 case DRM_FORMAT_XBGR8888:
7958 case DRM_FORMAT_ARGB8888:
7959 case DRM_FORMAT_XRGB2101010:
7960 case DRM_FORMAT_ARGB2101010:
7961 /* RGB formats are common across chipsets */
7962 break;
7963 case DRM_FORMAT_YUYV:
7964 case DRM_FORMAT_UYVY:
7965 case DRM_FORMAT_YVYU:
7966 case DRM_FORMAT_VYUY:
7967 break;
7968 default:
7969 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7970 mode_cmd->pixel_format);
7971 return -EINVAL;
7972 }
7973
7974 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7975 if (ret) {
7976 DRM_ERROR("framebuffer init failed %d\n", ret);
7977 return ret;
7978 }
7979
7980 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7981 intel_fb->obj = obj;
7982 return 0;
7983 }
7984
7985 static struct drm_framebuffer *
7986 intel_user_framebuffer_create(struct drm_device *dev,
7987 struct drm_file *filp,
7988 struct drm_mode_fb_cmd2 *mode_cmd)
7989 {
7990 struct drm_i915_gem_object *obj;
7991
7992 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7993 mode_cmd->handles[0]));
7994 if (&obj->base == NULL)
7995 return ERR_PTR(-ENOENT);
7996
7997 return intel_framebuffer_create(dev, mode_cmd, obj);
7998 }
7999
8000 static const struct drm_mode_config_funcs intel_mode_funcs = {
8001 .fb_create = intel_user_framebuffer_create,
8002 .output_poll_changed = intel_fb_output_poll_changed,
8003 };
8004
8005 static struct drm_i915_gem_object *
8006 intel_alloc_context_page(struct drm_device *dev)
8007 {
8008 struct drm_i915_gem_object *ctx;
8009 int ret;
8010
8011 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8012
8013 ctx = i915_gem_alloc_object(dev, 4096);
8014 if (!ctx) {
8015 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8016 return NULL;
8017 }
8018
8019 ret = i915_gem_object_pin(ctx, 4096, true);
8020 if (ret) {
8021 DRM_ERROR("failed to pin power context: %d\n", ret);
8022 goto err_unref;
8023 }
8024
8025 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8026 if (ret) {
8027 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8028 goto err_unpin;
8029 }
8030
8031 return ctx;
8032
8033 err_unpin:
8034 i915_gem_object_unpin(ctx);
8035 err_unref:
8036 drm_gem_object_unreference(&ctx->base);
8037 mutex_unlock(&dev->struct_mutex);
8038 return NULL;
8039 }
8040
8041 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8042 {
8043 struct drm_i915_private *dev_priv = dev->dev_private;
8044 u16 rgvswctl;
8045
8046 rgvswctl = I915_READ16(MEMSWCTL);
8047 if (rgvswctl & MEMCTL_CMD_STS) {
8048 DRM_DEBUG("gpu busy, RCS change rejected\n");
8049 return false; /* still busy with another command */
8050 }
8051
8052 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8053 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8054 I915_WRITE16(MEMSWCTL, rgvswctl);
8055 POSTING_READ16(MEMSWCTL);
8056
8057 rgvswctl |= MEMCTL_CMD_STS;
8058 I915_WRITE16(MEMSWCTL, rgvswctl);
8059
8060 return true;
8061 }
8062
8063 void ironlake_enable_drps(struct drm_device *dev)
8064 {
8065 struct drm_i915_private *dev_priv = dev->dev_private;
8066 u32 rgvmodectl = I915_READ(MEMMODECTL);
8067 u8 fmax, fmin, fstart, vstart;
8068
8069 /* Enable temp reporting */
8070 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8071 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8072
8073 /* 100ms RC evaluation intervals */
8074 I915_WRITE(RCUPEI, 100000);
8075 I915_WRITE(RCDNEI, 100000);
8076
8077 /* Set max/min thresholds to 90ms and 80ms respectively */
8078 I915_WRITE(RCBMAXAVG, 90000);
8079 I915_WRITE(RCBMINAVG, 80000);
8080
8081 I915_WRITE(MEMIHYST, 1);
8082
8083 /* Set up min, max, and cur for interrupt handling */
8084 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8085 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8086 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8087 MEMMODE_FSTART_SHIFT;
8088
8089 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8090 PXVFREQ_PX_SHIFT;
8091
8092 dev_priv->fmax = fmax; /* IPS callback will increase this */
8093 dev_priv->fstart = fstart;
8094
8095 dev_priv->max_delay = fstart;
8096 dev_priv->min_delay = fmin;
8097 dev_priv->cur_delay = fstart;
8098
8099 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8100 fmax, fmin, fstart);
8101
8102 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8103
8104 /*
8105 * Interrupts will be enabled in ironlake_irq_postinstall
8106 */
8107
8108 I915_WRITE(VIDSTART, vstart);
8109 POSTING_READ(VIDSTART);
8110
8111 rgvmodectl |= MEMMODE_SWMODE_EN;
8112 I915_WRITE(MEMMODECTL, rgvmodectl);
8113
8114 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8115 DRM_ERROR("stuck trying to change perf mode\n");
8116 msleep(1);
8117
8118 ironlake_set_drps(dev, fstart);
8119
8120 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8121 I915_READ(0x112e0);
8122 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8123 dev_priv->last_count2 = I915_READ(0x112f4);
8124 getrawmonotonic(&dev_priv->last_time2);
8125 }
8126
8127 void ironlake_disable_drps(struct drm_device *dev)
8128 {
8129 struct drm_i915_private *dev_priv = dev->dev_private;
8130 u16 rgvswctl = I915_READ16(MEMSWCTL);
8131
8132 /* Ack interrupts, disable EFC interrupt */
8133 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8134 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8135 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8136 I915_WRITE(DEIIR, DE_PCU_EVENT);
8137 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8138
8139 /* Go back to the starting frequency */
8140 ironlake_set_drps(dev, dev_priv->fstart);
8141 msleep(1);
8142 rgvswctl |= MEMCTL_CMD_STS;
8143 I915_WRITE(MEMSWCTL, rgvswctl);
8144 msleep(1);
8145
8146 }
8147
8148 void gen6_set_rps(struct drm_device *dev, u8 val)
8149 {
8150 struct drm_i915_private *dev_priv = dev->dev_private;
8151 u32 swreq;
8152
8153 swreq = (val & 0x3ff) << 25;
8154 I915_WRITE(GEN6_RPNSWREQ, swreq);
8155 }
8156
8157 void gen6_disable_rps(struct drm_device *dev)
8158 {
8159 struct drm_i915_private *dev_priv = dev->dev_private;
8160
8161 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8162 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8163 I915_WRITE(GEN6_PMIER, 0);
8164 /* Complete PM interrupt masking here doesn't race with the rps work
8165 * item again unmasking PM interrupts because that is using a different
8166 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8167 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8168
8169 spin_lock_irq(&dev_priv->rps_lock);
8170 dev_priv->pm_iir = 0;
8171 spin_unlock_irq(&dev_priv->rps_lock);
8172
8173 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8174 }
8175
8176 static unsigned long intel_pxfreq(u32 vidfreq)
8177 {
8178 unsigned long freq;
8179 int div = (vidfreq & 0x3f0000) >> 16;
8180 int post = (vidfreq & 0x3000) >> 12;
8181 int pre = (vidfreq & 0x7);
8182
8183 if (!pre)
8184 return 0;
8185
8186 freq = ((div * 133333) / ((1<<post) * pre));
8187
8188 return freq;
8189 }
8190
8191 void intel_init_emon(struct drm_device *dev)
8192 {
8193 struct drm_i915_private *dev_priv = dev->dev_private;
8194 u32 lcfuse;
8195 u8 pxw[16];
8196 int i;
8197
8198 /* Disable to program */
8199 I915_WRITE(ECR, 0);
8200 POSTING_READ(ECR);
8201
8202 /* Program energy weights for various events */
8203 I915_WRITE(SDEW, 0x15040d00);
8204 I915_WRITE(CSIEW0, 0x007f0000);
8205 I915_WRITE(CSIEW1, 0x1e220004);
8206 I915_WRITE(CSIEW2, 0x04000004);
8207
8208 for (i = 0; i < 5; i++)
8209 I915_WRITE(PEW + (i * 4), 0);
8210 for (i = 0; i < 3; i++)
8211 I915_WRITE(DEW + (i * 4), 0);
8212
8213 /* Program P-state weights to account for frequency power adjustment */
8214 for (i = 0; i < 16; i++) {
8215 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8216 unsigned long freq = intel_pxfreq(pxvidfreq);
8217 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8218 PXVFREQ_PX_SHIFT;
8219 unsigned long val;
8220
8221 val = vid * vid;
8222 val *= (freq / 1000);
8223 val *= 255;
8224 val /= (127*127*900);
8225 if (val > 0xff)
8226 DRM_ERROR("bad pxval: %ld\n", val);
8227 pxw[i] = val;
8228 }
8229 /* Render standby states get 0 weight */
8230 pxw[14] = 0;
8231 pxw[15] = 0;
8232
8233 for (i = 0; i < 4; i++) {
8234 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8235 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8236 I915_WRITE(PXW + (i * 4), val);
8237 }
8238
8239 /* Adjust magic regs to magic values (more experimental results) */
8240 I915_WRITE(OGW0, 0);
8241 I915_WRITE(OGW1, 0);
8242 I915_WRITE(EG0, 0x00007f00);
8243 I915_WRITE(EG1, 0x0000000e);
8244 I915_WRITE(EG2, 0x000e0000);
8245 I915_WRITE(EG3, 0x68000300);
8246 I915_WRITE(EG4, 0x42000000);
8247 I915_WRITE(EG5, 0x00140031);
8248 I915_WRITE(EG6, 0);
8249 I915_WRITE(EG7, 0);
8250
8251 for (i = 0; i < 8; i++)
8252 I915_WRITE(PXWL + (i * 4), 0);
8253
8254 /* Enable PMON + select events */
8255 I915_WRITE(ECR, 0x80000019);
8256
8257 lcfuse = I915_READ(LCFUSE02);
8258
8259 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8260 }
8261
8262 static int intel_enable_rc6(struct drm_device *dev)
8263 {
8264 /*
8265 * Respect the kernel parameter if it is set
8266 */
8267 if (i915_enable_rc6 >= 0)
8268 return i915_enable_rc6;
8269
8270 /*
8271 * Disable RC6 on Ironlake
8272 */
8273 if (INTEL_INFO(dev)->gen == 5)
8274 return 0;
8275
8276 /*
8277 * Disable rc6 on Sandybridge
8278 */
8279 if (INTEL_INFO(dev)->gen == 6) {
8280 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
8281 return INTEL_RC6_ENABLE;
8282 }
8283 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8284 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8285 }
8286
8287 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8288 {
8289 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8290 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8291 u32 pcu_mbox, rc6_mask = 0;
8292 u32 gtfifodbg;
8293 int cur_freq, min_freq, max_freq;
8294 int rc6_mode;
8295 int i;
8296
8297 /* Here begins a magic sequence of register writes to enable
8298 * auto-downclocking.
8299 *
8300 * Perhaps there might be some value in exposing these to
8301 * userspace...
8302 */
8303 I915_WRITE(GEN6_RC_STATE, 0);
8304 mutex_lock(&dev_priv->dev->struct_mutex);
8305
8306 /* Clear the DBG now so we don't confuse earlier errors */
8307 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8308 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8309 I915_WRITE(GTFIFODBG, gtfifodbg);
8310 }
8311
8312 gen6_gt_force_wake_get(dev_priv);
8313
8314 /* disable the counters and set deterministic thresholds */
8315 I915_WRITE(GEN6_RC_CONTROL, 0);
8316
8317 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8318 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8319 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8320 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8321 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8322
8323 for (i = 0; i < I915_NUM_RINGS; i++)
8324 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8325
8326 I915_WRITE(GEN6_RC_SLEEP, 0);
8327 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8328 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8329 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8330 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8331
8332 rc6_mode = intel_enable_rc6(dev_priv->dev);
8333 if (rc6_mode & INTEL_RC6_ENABLE)
8334 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8335
8336 if (rc6_mode & INTEL_RC6p_ENABLE)
8337 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8338
8339 if (rc6_mode & INTEL_RC6pp_ENABLE)
8340 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8341
8342 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8343 (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8344 (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8345 (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8346
8347 I915_WRITE(GEN6_RC_CONTROL,
8348 rc6_mask |
8349 GEN6_RC_CTL_EI_MODE(1) |
8350 GEN6_RC_CTL_HW_ENABLE);
8351
8352 I915_WRITE(GEN6_RPNSWREQ,
8353 GEN6_FREQUENCY(10) |
8354 GEN6_OFFSET(0) |
8355 GEN6_AGGRESSIVE_TURBO);
8356 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8357 GEN6_FREQUENCY(12));
8358
8359 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8360 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8361 18 << 24 |
8362 6 << 16);
8363 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8364 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8365 I915_WRITE(GEN6_RP_UP_EI, 100000);
8366 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8367 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8368 I915_WRITE(GEN6_RP_CONTROL,
8369 GEN6_RP_MEDIA_TURBO |
8370 GEN6_RP_MEDIA_HW_MODE |
8371 GEN6_RP_MEDIA_IS_GFX |
8372 GEN6_RP_ENABLE |
8373 GEN6_RP_UP_BUSY_AVG |
8374 GEN6_RP_DOWN_IDLE_CONT);
8375
8376 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8377 500))
8378 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8379
8380 I915_WRITE(GEN6_PCODE_DATA, 0);
8381 I915_WRITE(GEN6_PCODE_MAILBOX,
8382 GEN6_PCODE_READY |
8383 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8384 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8385 500))
8386 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8387
8388 min_freq = (rp_state_cap & 0xff0000) >> 16;
8389 max_freq = rp_state_cap & 0xff;
8390 cur_freq = (gt_perf_status & 0xff00) >> 8;
8391
8392 /* Check for overclock support */
8393 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8394 500))
8395 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8396 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8397 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8398 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8399 500))
8400 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8401 if (pcu_mbox & (1<<31)) { /* OC supported */
8402 max_freq = pcu_mbox & 0xff;
8403 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8404 }
8405
8406 /* In units of 100MHz */
8407 dev_priv->max_delay = max_freq;
8408 dev_priv->min_delay = min_freq;
8409 dev_priv->cur_delay = cur_freq;
8410
8411 /* requires MSI enabled */
8412 I915_WRITE(GEN6_PMIER,
8413 GEN6_PM_MBOX_EVENT |
8414 GEN6_PM_THERMAL_EVENT |
8415 GEN6_PM_RP_DOWN_TIMEOUT |
8416 GEN6_PM_RP_UP_THRESHOLD |
8417 GEN6_PM_RP_DOWN_THRESHOLD |
8418 GEN6_PM_RP_UP_EI_EXPIRED |
8419 GEN6_PM_RP_DOWN_EI_EXPIRED);
8420 spin_lock_irq(&dev_priv->rps_lock);
8421 WARN_ON(dev_priv->pm_iir != 0);
8422 I915_WRITE(GEN6_PMIMR, 0);
8423 spin_unlock_irq(&dev_priv->rps_lock);
8424 /* enable all PM interrupts */
8425 I915_WRITE(GEN6_PMINTRMSK, 0);
8426
8427 gen6_gt_force_wake_put(dev_priv);
8428 mutex_unlock(&dev_priv->dev->struct_mutex);
8429 }
8430
8431 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8432 {
8433 int min_freq = 15;
8434 int gpu_freq, ia_freq, max_ia_freq;
8435 int scaling_factor = 180;
8436
8437 max_ia_freq = cpufreq_quick_get_max(0);
8438 /*
8439 * Default to measured freq if none found, PCU will ensure we don't go
8440 * over
8441 */
8442 if (!max_ia_freq)
8443 max_ia_freq = tsc_khz;
8444
8445 /* Convert from kHz to MHz */
8446 max_ia_freq /= 1000;
8447
8448 mutex_lock(&dev_priv->dev->struct_mutex);
8449
8450 /*
8451 * For each potential GPU frequency, load a ring frequency we'd like
8452 * to use for memory access. We do this by specifying the IA frequency
8453 * the PCU should use as a reference to determine the ring frequency.
8454 */
8455 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8456 gpu_freq--) {
8457 int diff = dev_priv->max_delay - gpu_freq;
8458
8459 /*
8460 * For GPU frequencies less than 750MHz, just use the lowest
8461 * ring freq.
8462 */
8463 if (gpu_freq < min_freq)
8464 ia_freq = 800;
8465 else
8466 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8467 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8468
8469 I915_WRITE(GEN6_PCODE_DATA,
8470 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8471 gpu_freq);
8472 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8473 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8474 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8475 GEN6_PCODE_READY) == 0, 10)) {
8476 DRM_ERROR("pcode write of freq table timed out\n");
8477 continue;
8478 }
8479 }
8480
8481 mutex_unlock(&dev_priv->dev->struct_mutex);
8482 }
8483
8484 static void ironlake_init_clock_gating(struct drm_device *dev)
8485 {
8486 struct drm_i915_private *dev_priv = dev->dev_private;
8487 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8488
8489 /* Required for FBC */
8490 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8491 DPFCRUNIT_CLOCK_GATE_DISABLE |
8492 DPFDUNIT_CLOCK_GATE_DISABLE;
8493 /* Required for CxSR */
8494 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8495
8496 I915_WRITE(PCH_3DCGDIS0,
8497 MARIUNIT_CLOCK_GATE_DISABLE |
8498 SVSMUNIT_CLOCK_GATE_DISABLE);
8499 I915_WRITE(PCH_3DCGDIS1,
8500 VFMUNIT_CLOCK_GATE_DISABLE);
8501
8502 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8503
8504 /*
8505 * According to the spec the following bits should be set in
8506 * order to enable memory self-refresh
8507 * The bit 22/21 of 0x42004
8508 * The bit 5 of 0x42020
8509 * The bit 15 of 0x45000
8510 */
8511 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8512 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8513 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8514 I915_WRITE(ILK_DSPCLK_GATE,
8515 (I915_READ(ILK_DSPCLK_GATE) |
8516 ILK_DPARB_CLK_GATE));
8517 I915_WRITE(DISP_ARB_CTL,
8518 (I915_READ(DISP_ARB_CTL) |
8519 DISP_FBC_WM_DIS));
8520 I915_WRITE(WM3_LP_ILK, 0);
8521 I915_WRITE(WM2_LP_ILK, 0);
8522 I915_WRITE(WM1_LP_ILK, 0);
8523
8524 /*
8525 * Based on the document from hardware guys the following bits
8526 * should be set unconditionally in order to enable FBC.
8527 * The bit 22 of 0x42000
8528 * The bit 22 of 0x42004
8529 * The bit 7,8,9 of 0x42020.
8530 */
8531 if (IS_IRONLAKE_M(dev)) {
8532 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8533 I915_READ(ILK_DISPLAY_CHICKEN1) |
8534 ILK_FBCQ_DIS);
8535 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8536 I915_READ(ILK_DISPLAY_CHICKEN2) |
8537 ILK_DPARB_GATE);
8538 I915_WRITE(ILK_DSPCLK_GATE,
8539 I915_READ(ILK_DSPCLK_GATE) |
8540 ILK_DPFC_DIS1 |
8541 ILK_DPFC_DIS2 |
8542 ILK_CLK_FBC);
8543 }
8544
8545 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8546 I915_READ(ILK_DISPLAY_CHICKEN2) |
8547 ILK_ELPIN_409_SELECT);
8548 I915_WRITE(_3D_CHICKEN2,
8549 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8550 _3D_CHICKEN2_WM_READ_PIPELINED);
8551 }
8552
8553 static void gen6_init_clock_gating(struct drm_device *dev)
8554 {
8555 struct drm_i915_private *dev_priv = dev->dev_private;
8556 int pipe;
8557 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8558
8559 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8560
8561 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8562 I915_READ(ILK_DISPLAY_CHICKEN2) |
8563 ILK_ELPIN_409_SELECT);
8564
8565 I915_WRITE(WM3_LP_ILK, 0);
8566 I915_WRITE(WM2_LP_ILK, 0);
8567 I915_WRITE(WM1_LP_ILK, 0);
8568
8569 I915_WRITE(GEN6_UCGCTL1,
8570 I915_READ(GEN6_UCGCTL1) |
8571 GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
8572
8573 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8574 * gating disable must be set. Failure to set it results in
8575 * flickering pixels due to Z write ordering failures after
8576 * some amount of runtime in the Mesa "fire" demo, and Unigine
8577 * Sanctuary and Tropics, and apparently anything else with
8578 * alpha test or pixel discard.
8579 *
8580 * According to the spec, bit 11 (RCCUNIT) must also be set,
8581 * but we didn't debug actual testcases to find it out.
8582 */
8583 I915_WRITE(GEN6_UCGCTL2,
8584 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8585 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8586
8587 /*
8588 * According to the spec the following bits should be
8589 * set in order to enable memory self-refresh and fbc:
8590 * The bit21 and bit22 of 0x42000
8591 * The bit21 and bit22 of 0x42004
8592 * The bit5 and bit7 of 0x42020
8593 * The bit14 of 0x70180
8594 * The bit14 of 0x71180
8595 */
8596 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8597 I915_READ(ILK_DISPLAY_CHICKEN1) |
8598 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8599 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8600 I915_READ(ILK_DISPLAY_CHICKEN2) |
8601 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8602 I915_WRITE(ILK_DSPCLK_GATE,
8603 I915_READ(ILK_DSPCLK_GATE) |
8604 ILK_DPARB_CLK_GATE |
8605 ILK_DPFD_CLK_GATE);
8606
8607 for_each_pipe(pipe) {
8608 I915_WRITE(DSPCNTR(pipe),
8609 I915_READ(DSPCNTR(pipe)) |
8610 DISPPLANE_TRICKLE_FEED_DISABLE);
8611 intel_flush_display_plane(dev_priv, pipe);
8612 }
8613 }
8614
8615 static void ivybridge_init_clock_gating(struct drm_device *dev)
8616 {
8617 struct drm_i915_private *dev_priv = dev->dev_private;
8618 int pipe;
8619 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8620
8621 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8622
8623 I915_WRITE(WM3_LP_ILK, 0);
8624 I915_WRITE(WM2_LP_ILK, 0);
8625 I915_WRITE(WM1_LP_ILK, 0);
8626
8627 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8628 * This implements the WaDisableRCZUnitClockGating workaround.
8629 */
8630 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8631
8632 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8633
8634 I915_WRITE(IVB_CHICKEN3,
8635 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8636 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8637
8638 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8639 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8640 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8641
8642 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8643 I915_WRITE(GEN7_L3CNTLREG1,
8644 GEN7_WA_FOR_GEN7_L3_CONTROL);
8645 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8646 GEN7_WA_L3_CHICKEN_MODE);
8647
8648 /* This is required by WaCatErrorRejectionIssue */
8649 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8650 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8651 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8652
8653 for_each_pipe(pipe) {
8654 I915_WRITE(DSPCNTR(pipe),
8655 I915_READ(DSPCNTR(pipe)) |
8656 DISPPLANE_TRICKLE_FEED_DISABLE);
8657 intel_flush_display_plane(dev_priv, pipe);
8658 }
8659 }
8660
8661 static void g4x_init_clock_gating(struct drm_device *dev)
8662 {
8663 struct drm_i915_private *dev_priv = dev->dev_private;
8664 uint32_t dspclk_gate;
8665
8666 I915_WRITE(RENCLK_GATE_D1, 0);
8667 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8668 GS_UNIT_CLOCK_GATE_DISABLE |
8669 CL_UNIT_CLOCK_GATE_DISABLE);
8670 I915_WRITE(RAMCLK_GATE_D, 0);
8671 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8672 OVRUNIT_CLOCK_GATE_DISABLE |
8673 OVCUNIT_CLOCK_GATE_DISABLE;
8674 if (IS_GM45(dev))
8675 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8676 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8677 }
8678
8679 static void crestline_init_clock_gating(struct drm_device *dev)
8680 {
8681 struct drm_i915_private *dev_priv = dev->dev_private;
8682
8683 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8684 I915_WRITE(RENCLK_GATE_D2, 0);
8685 I915_WRITE(DSPCLK_GATE_D, 0);
8686 I915_WRITE(RAMCLK_GATE_D, 0);
8687 I915_WRITE16(DEUC, 0);
8688 }
8689
8690 static void broadwater_init_clock_gating(struct drm_device *dev)
8691 {
8692 struct drm_i915_private *dev_priv = dev->dev_private;
8693
8694 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8695 I965_RCC_CLOCK_GATE_DISABLE |
8696 I965_RCPB_CLOCK_GATE_DISABLE |
8697 I965_ISC_CLOCK_GATE_DISABLE |
8698 I965_FBC_CLOCK_GATE_DISABLE);
8699 I915_WRITE(RENCLK_GATE_D2, 0);
8700 }
8701
8702 static void gen3_init_clock_gating(struct drm_device *dev)
8703 {
8704 struct drm_i915_private *dev_priv = dev->dev_private;
8705 u32 dstate = I915_READ(D_STATE);
8706
8707 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8708 DSTATE_DOT_CLOCK_GATING;
8709 I915_WRITE(D_STATE, dstate);
8710 }
8711
8712 static void i85x_init_clock_gating(struct drm_device *dev)
8713 {
8714 struct drm_i915_private *dev_priv = dev->dev_private;
8715
8716 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8717 }
8718
8719 static void i830_init_clock_gating(struct drm_device *dev)
8720 {
8721 struct drm_i915_private *dev_priv = dev->dev_private;
8722
8723 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8724 }
8725
8726 static void ibx_init_clock_gating(struct drm_device *dev)
8727 {
8728 struct drm_i915_private *dev_priv = dev->dev_private;
8729
8730 /*
8731 * On Ibex Peak and Cougar Point, we need to disable clock
8732 * gating for the panel power sequencer or it will fail to
8733 * start up when no ports are active.
8734 */
8735 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8736 }
8737
8738 static void cpt_init_clock_gating(struct drm_device *dev)
8739 {
8740 struct drm_i915_private *dev_priv = dev->dev_private;
8741 int pipe;
8742
8743 /*
8744 * On Ibex Peak and Cougar Point, we need to disable clock
8745 * gating for the panel power sequencer or it will fail to
8746 * start up when no ports are active.
8747 */
8748 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8749 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8750 DPLS_EDP_PPS_FIX_DIS);
8751 /* Without this, mode sets may fail silently on FDI */
8752 for_each_pipe(pipe)
8753 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8754 }
8755
8756 static void ironlake_teardown_rc6(struct drm_device *dev)
8757 {
8758 struct drm_i915_private *dev_priv = dev->dev_private;
8759
8760 if (dev_priv->renderctx) {
8761 i915_gem_object_unpin(dev_priv->renderctx);
8762 drm_gem_object_unreference(&dev_priv->renderctx->base);
8763 dev_priv->renderctx = NULL;
8764 }
8765
8766 if (dev_priv->pwrctx) {
8767 i915_gem_object_unpin(dev_priv->pwrctx);
8768 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8769 dev_priv->pwrctx = NULL;
8770 }
8771 }
8772
8773 static void ironlake_disable_rc6(struct drm_device *dev)
8774 {
8775 struct drm_i915_private *dev_priv = dev->dev_private;
8776
8777 if (I915_READ(PWRCTXA)) {
8778 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8779 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8780 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8781 50);
8782
8783 I915_WRITE(PWRCTXA, 0);
8784 POSTING_READ(PWRCTXA);
8785
8786 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8787 POSTING_READ(RSTDBYCTL);
8788 }
8789
8790 ironlake_teardown_rc6(dev);
8791 }
8792
8793 static int ironlake_setup_rc6(struct drm_device *dev)
8794 {
8795 struct drm_i915_private *dev_priv = dev->dev_private;
8796
8797 if (dev_priv->renderctx == NULL)
8798 dev_priv->renderctx = intel_alloc_context_page(dev);
8799 if (!dev_priv->renderctx)
8800 return -ENOMEM;
8801
8802 if (dev_priv->pwrctx == NULL)
8803 dev_priv->pwrctx = intel_alloc_context_page(dev);
8804 if (!dev_priv->pwrctx) {
8805 ironlake_teardown_rc6(dev);
8806 return -ENOMEM;
8807 }
8808
8809 return 0;
8810 }
8811
8812 void ironlake_enable_rc6(struct drm_device *dev)
8813 {
8814 struct drm_i915_private *dev_priv = dev->dev_private;
8815 int ret;
8816
8817 /* rc6 disabled by default due to repeated reports of hanging during
8818 * boot and resume.
8819 */
8820 if (!intel_enable_rc6(dev))
8821 return;
8822
8823 mutex_lock(&dev->struct_mutex);
8824 ret = ironlake_setup_rc6(dev);
8825 if (ret) {
8826 mutex_unlock(&dev->struct_mutex);
8827 return;
8828 }
8829
8830 /*
8831 * GPU can automatically power down the render unit if given a page
8832 * to save state.
8833 */
8834 ret = BEGIN_LP_RING(6);
8835 if (ret) {
8836 ironlake_teardown_rc6(dev);
8837 mutex_unlock(&dev->struct_mutex);
8838 return;
8839 }
8840
8841 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8842 OUT_RING(MI_SET_CONTEXT);
8843 OUT_RING(dev_priv->renderctx->gtt_offset |
8844 MI_MM_SPACE_GTT |
8845 MI_SAVE_EXT_STATE_EN |
8846 MI_RESTORE_EXT_STATE_EN |
8847 MI_RESTORE_INHIBIT);
8848 OUT_RING(MI_SUSPEND_FLUSH);
8849 OUT_RING(MI_NOOP);
8850 OUT_RING(MI_FLUSH);
8851 ADVANCE_LP_RING();
8852
8853 /*
8854 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8855 * does an implicit flush, combined with MI_FLUSH above, it should be
8856 * safe to assume that renderctx is valid
8857 */
8858 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8859 if (ret) {
8860 DRM_ERROR("failed to enable ironlake power power savings\n");
8861 ironlake_teardown_rc6(dev);
8862 mutex_unlock(&dev->struct_mutex);
8863 return;
8864 }
8865
8866 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8867 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8868 mutex_unlock(&dev->struct_mutex);
8869 }
8870
8871 void intel_init_clock_gating(struct drm_device *dev)
8872 {
8873 struct drm_i915_private *dev_priv = dev->dev_private;
8874
8875 dev_priv->display.init_clock_gating(dev);
8876
8877 if (dev_priv->display.init_pch_clock_gating)
8878 dev_priv->display.init_pch_clock_gating(dev);
8879 }
8880
8881 /* Set up chip specific display functions */
8882 static void intel_init_display(struct drm_device *dev)
8883 {
8884 struct drm_i915_private *dev_priv = dev->dev_private;
8885
8886 /* We always want a DPMS function */
8887 if (HAS_PCH_SPLIT(dev)) {
8888 dev_priv->display.dpms = ironlake_crtc_dpms;
8889 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8890 dev_priv->display.update_plane = ironlake_update_plane;
8891 } else {
8892 dev_priv->display.dpms = i9xx_crtc_dpms;
8893 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8894 dev_priv->display.update_plane = i9xx_update_plane;
8895 }
8896
8897 if (I915_HAS_FBC(dev)) {
8898 if (HAS_PCH_SPLIT(dev)) {
8899 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8900 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8901 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8902 } else if (IS_GM45(dev)) {
8903 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8904 dev_priv->display.enable_fbc = g4x_enable_fbc;
8905 dev_priv->display.disable_fbc = g4x_disable_fbc;
8906 } else if (IS_CRESTLINE(dev)) {
8907 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8908 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8909 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8910 }
8911 /* 855GM needs testing */
8912 }
8913
8914 /* Returns the core display clock speed */
8915 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8916 dev_priv->display.get_display_clock_speed =
8917 i945_get_display_clock_speed;
8918 else if (IS_I915G(dev))
8919 dev_priv->display.get_display_clock_speed =
8920 i915_get_display_clock_speed;
8921 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8922 dev_priv->display.get_display_clock_speed =
8923 i9xx_misc_get_display_clock_speed;
8924 else if (IS_I915GM(dev))
8925 dev_priv->display.get_display_clock_speed =
8926 i915gm_get_display_clock_speed;
8927 else if (IS_I865G(dev))
8928 dev_priv->display.get_display_clock_speed =
8929 i865_get_display_clock_speed;
8930 else if (IS_I85X(dev))
8931 dev_priv->display.get_display_clock_speed =
8932 i855_get_display_clock_speed;
8933 else /* 852, 830 */
8934 dev_priv->display.get_display_clock_speed =
8935 i830_get_display_clock_speed;
8936
8937 /* For FIFO watermark updates */
8938 if (HAS_PCH_SPLIT(dev)) {
8939 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8940 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8941
8942 /* IVB configs may use multi-threaded forcewake */
8943 if (IS_IVYBRIDGE(dev)) {
8944 u32 ecobus;
8945
8946 /* A small trick here - if the bios hasn't configured MT forcewake,
8947 * and if the device is in RC6, then force_wake_mt_get will not wake
8948 * the device and the ECOBUS read will return zero. Which will be
8949 * (correctly) interpreted by the test below as MT forcewake being
8950 * disabled.
8951 */
8952 mutex_lock(&dev->struct_mutex);
8953 __gen6_gt_force_wake_mt_get(dev_priv);
8954 ecobus = I915_READ_NOTRACE(ECOBUS);
8955 __gen6_gt_force_wake_mt_put(dev_priv);
8956 mutex_unlock(&dev->struct_mutex);
8957
8958 if (ecobus & FORCEWAKE_MT_ENABLE) {
8959 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8960 dev_priv->display.force_wake_get =
8961 __gen6_gt_force_wake_mt_get;
8962 dev_priv->display.force_wake_put =
8963 __gen6_gt_force_wake_mt_put;
8964 }
8965 }
8966
8967 if (HAS_PCH_IBX(dev))
8968 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8969 else if (HAS_PCH_CPT(dev))
8970 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8971
8972 if (IS_GEN5(dev)) {
8973 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8974 dev_priv->display.update_wm = ironlake_update_wm;
8975 else {
8976 DRM_DEBUG_KMS("Failed to get proper latency. "
8977 "Disable CxSR\n");
8978 dev_priv->display.update_wm = NULL;
8979 }
8980 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8981 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8982 dev_priv->display.write_eld = ironlake_write_eld;
8983 } else if (IS_GEN6(dev)) {
8984 if (SNB_READ_WM0_LATENCY()) {
8985 dev_priv->display.update_wm = sandybridge_update_wm;
8986 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8987 } else {
8988 DRM_DEBUG_KMS("Failed to read display plane latency. "
8989 "Disable CxSR\n");
8990 dev_priv->display.update_wm = NULL;
8991 }
8992 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8993 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8994 dev_priv->display.write_eld = ironlake_write_eld;
8995 } else if (IS_IVYBRIDGE(dev)) {
8996 /* FIXME: detect B0+ stepping and use auto training */
8997 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8998 if (SNB_READ_WM0_LATENCY()) {
8999 dev_priv->display.update_wm = sandybridge_update_wm;
9000 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9001 } else {
9002 DRM_DEBUG_KMS("Failed to read display plane latency. "
9003 "Disable CxSR\n");
9004 dev_priv->display.update_wm = NULL;
9005 }
9006 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9007 dev_priv->display.write_eld = ironlake_write_eld;
9008 } else
9009 dev_priv->display.update_wm = NULL;
9010 } else if (IS_PINEVIEW(dev)) {
9011 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9012 dev_priv->is_ddr3,
9013 dev_priv->fsb_freq,
9014 dev_priv->mem_freq)) {
9015 DRM_INFO("failed to find known CxSR latency "
9016 "(found ddr%s fsb freq %d, mem freq %d), "
9017 "disabling CxSR\n",
9018 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9019 dev_priv->fsb_freq, dev_priv->mem_freq);
9020 /* Disable CxSR and never update its watermark again */
9021 pineview_disable_cxsr(dev);
9022 dev_priv->display.update_wm = NULL;
9023 } else
9024 dev_priv->display.update_wm = pineview_update_wm;
9025 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9026 } else if (IS_G4X(dev)) {
9027 dev_priv->display.write_eld = g4x_write_eld;
9028 dev_priv->display.update_wm = g4x_update_wm;
9029 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9030 } else if (IS_GEN4(dev)) {
9031 dev_priv->display.update_wm = i965_update_wm;
9032 if (IS_CRESTLINE(dev))
9033 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9034 else if (IS_BROADWATER(dev))
9035 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9036 } else if (IS_GEN3(dev)) {
9037 dev_priv->display.update_wm = i9xx_update_wm;
9038 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9039 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9040 } else if (IS_I865G(dev)) {
9041 dev_priv->display.update_wm = i830_update_wm;
9042 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9043 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9044 } else if (IS_I85X(dev)) {
9045 dev_priv->display.update_wm = i9xx_update_wm;
9046 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9047 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9048 } else {
9049 dev_priv->display.update_wm = i830_update_wm;
9050 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9051 if (IS_845G(dev))
9052 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9053 else
9054 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9055 }
9056
9057 /* Default just returns -ENODEV to indicate unsupported */
9058 dev_priv->display.queue_flip = intel_default_queue_flip;
9059
9060 switch (INTEL_INFO(dev)->gen) {
9061 case 2:
9062 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9063 break;
9064
9065 case 3:
9066 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9067 break;
9068
9069 case 4:
9070 case 5:
9071 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9072 break;
9073
9074 case 6:
9075 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9076 break;
9077 case 7:
9078 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9079 break;
9080 }
9081 }
9082
9083 /*
9084 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9085 * resume, or other times. This quirk makes sure that's the case for
9086 * affected systems.
9087 */
9088 static void quirk_pipea_force(struct drm_device *dev)
9089 {
9090 struct drm_i915_private *dev_priv = dev->dev_private;
9091
9092 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9093 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
9094 }
9095
9096 /*
9097 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9098 */
9099 static void quirk_ssc_force_disable(struct drm_device *dev)
9100 {
9101 struct drm_i915_private *dev_priv = dev->dev_private;
9102 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9103 }
9104
9105 struct intel_quirk {
9106 int device;
9107 int subsystem_vendor;
9108 int subsystem_device;
9109 void (*hook)(struct drm_device *dev);
9110 };
9111
9112 struct intel_quirk intel_quirks[] = {
9113 /* HP Mini needs pipe A force quirk (LP: #322104) */
9114 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9115
9116 /* Thinkpad R31 needs pipe A force quirk */
9117 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9118 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9119 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9120
9121 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9122 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9123 /* ThinkPad X40 needs pipe A force quirk */
9124
9125 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9126 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9127
9128 /* 855 & before need to leave pipe A & dpll A up */
9129 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9130 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9131
9132 /* Lenovo U160 cannot use SSC on LVDS */
9133 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9134
9135 /* Sony Vaio Y cannot use SSC on LVDS */
9136 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9137 };
9138
9139 static void intel_init_quirks(struct drm_device *dev)
9140 {
9141 struct pci_dev *d = dev->pdev;
9142 int i;
9143
9144 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9145 struct intel_quirk *q = &intel_quirks[i];
9146
9147 if (d->device == q->device &&
9148 (d->subsystem_vendor == q->subsystem_vendor ||
9149 q->subsystem_vendor == PCI_ANY_ID) &&
9150 (d->subsystem_device == q->subsystem_device ||
9151 q->subsystem_device == PCI_ANY_ID))
9152 q->hook(dev);
9153 }
9154 }
9155
9156 /* Disable the VGA plane that we never use */
9157 static void i915_disable_vga(struct drm_device *dev)
9158 {
9159 struct drm_i915_private *dev_priv = dev->dev_private;
9160 u8 sr1;
9161 u32 vga_reg;
9162
9163 if (HAS_PCH_SPLIT(dev))
9164 vga_reg = CPU_VGACNTRL;
9165 else
9166 vga_reg = VGACNTRL;
9167
9168 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9169 outb(1, VGA_SR_INDEX);
9170 sr1 = inb(VGA_SR_DATA);
9171 outb(sr1 | 1<<5, VGA_SR_DATA);
9172 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9173 udelay(300);
9174
9175 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9176 POSTING_READ(vga_reg);
9177 }
9178
9179 void intel_modeset_init(struct drm_device *dev)
9180 {
9181 struct drm_i915_private *dev_priv = dev->dev_private;
9182 int i, ret;
9183
9184 drm_mode_config_init(dev);
9185
9186 dev->mode_config.min_width = 0;
9187 dev->mode_config.min_height = 0;
9188
9189 dev->mode_config.preferred_depth = 24;
9190 dev->mode_config.prefer_shadow = 1;
9191
9192 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9193
9194 intel_init_quirks(dev);
9195
9196 intel_init_display(dev);
9197
9198 if (IS_GEN2(dev)) {
9199 dev->mode_config.max_width = 2048;
9200 dev->mode_config.max_height = 2048;
9201 } else if (IS_GEN3(dev)) {
9202 dev->mode_config.max_width = 4096;
9203 dev->mode_config.max_height = 4096;
9204 } else {
9205 dev->mode_config.max_width = 8192;
9206 dev->mode_config.max_height = 8192;
9207 }
9208 dev->mode_config.fb_base = dev->agp->base;
9209
9210 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9211 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9212
9213 for (i = 0; i < dev_priv->num_pipe; i++) {
9214 intel_crtc_init(dev, i);
9215 ret = intel_plane_init(dev, i);
9216 if (ret)
9217 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9218 }
9219
9220 /* Just disable it once at startup */
9221 i915_disable_vga(dev);
9222 intel_setup_outputs(dev);
9223
9224 intel_init_clock_gating(dev);
9225
9226 if (IS_IRONLAKE_M(dev)) {
9227 ironlake_enable_drps(dev);
9228 intel_init_emon(dev);
9229 }
9230
9231 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9232 gen6_enable_rps(dev_priv);
9233 gen6_update_ring_freq(dev_priv);
9234 }
9235
9236 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9237 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9238 (unsigned long)dev);
9239 }
9240
9241 void intel_modeset_gem_init(struct drm_device *dev)
9242 {
9243 if (IS_IRONLAKE_M(dev))
9244 ironlake_enable_rc6(dev);
9245
9246 intel_setup_overlay(dev);
9247 }
9248
9249 void intel_modeset_cleanup(struct drm_device *dev)
9250 {
9251 struct drm_i915_private *dev_priv = dev->dev_private;
9252 struct drm_crtc *crtc;
9253 struct intel_crtc *intel_crtc;
9254
9255 drm_kms_helper_poll_fini(dev);
9256 mutex_lock(&dev->struct_mutex);
9257
9258 intel_unregister_dsm_handler();
9259
9260
9261 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9262 /* Skip inactive CRTCs */
9263 if (!crtc->fb)
9264 continue;
9265
9266 intel_crtc = to_intel_crtc(crtc);
9267 intel_increase_pllclock(crtc);
9268 }
9269
9270 intel_disable_fbc(dev);
9271
9272 if (IS_IRONLAKE_M(dev))
9273 ironlake_disable_drps(dev);
9274 if (IS_GEN6(dev) || IS_GEN7(dev))
9275 gen6_disable_rps(dev);
9276
9277 if (IS_IRONLAKE_M(dev))
9278 ironlake_disable_rc6(dev);
9279
9280 mutex_unlock(&dev->struct_mutex);
9281
9282 /* Disable the irq before mode object teardown, for the irq might
9283 * enqueue unpin/hotplug work. */
9284 drm_irq_uninstall(dev);
9285 cancel_work_sync(&dev_priv->hotplug_work);
9286 cancel_work_sync(&dev_priv->rps_work);
9287
9288 /* flush any delayed tasks or pending work */
9289 flush_scheduled_work();
9290
9291 /* Shut off idle work before the crtcs get freed. */
9292 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9293 intel_crtc = to_intel_crtc(crtc);
9294 del_timer_sync(&intel_crtc->idle_timer);
9295 }
9296 del_timer_sync(&dev_priv->idle_timer);
9297 cancel_work_sync(&dev_priv->idle_work);
9298
9299 drm_mode_config_cleanup(dev);
9300 }
9301
9302 /*
9303 * Return which encoder is currently attached for connector.
9304 */
9305 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9306 {
9307 return &intel_attached_encoder(connector)->base;
9308 }
9309
9310 void intel_connector_attach_encoder(struct intel_connector *connector,
9311 struct intel_encoder *encoder)
9312 {
9313 connector->encoder = encoder;
9314 drm_mode_connector_attach_encoder(&connector->base,
9315 &encoder->base);
9316 }
9317
9318 /*
9319 * set vga decode state - true == enable VGA decode
9320 */
9321 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9322 {
9323 struct drm_i915_private *dev_priv = dev->dev_private;
9324 u16 gmch_ctrl;
9325
9326 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9327 if (state)
9328 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9329 else
9330 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9331 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9332 return 0;
9333 }
9334
9335 #ifdef CONFIG_DEBUG_FS
9336 #include <linux/seq_file.h>
9337
9338 struct intel_display_error_state {
9339 struct intel_cursor_error_state {
9340 u32 control;
9341 u32 position;
9342 u32 base;
9343 u32 size;
9344 } cursor[2];
9345
9346 struct intel_pipe_error_state {
9347 u32 conf;
9348 u32 source;
9349
9350 u32 htotal;
9351 u32 hblank;
9352 u32 hsync;
9353 u32 vtotal;
9354 u32 vblank;
9355 u32 vsync;
9356 } pipe[2];
9357
9358 struct intel_plane_error_state {
9359 u32 control;
9360 u32 stride;
9361 u32 size;
9362 u32 pos;
9363 u32 addr;
9364 u32 surface;
9365 u32 tile_offset;
9366 } plane[2];
9367 };
9368
9369 struct intel_display_error_state *
9370 intel_display_capture_error_state(struct drm_device *dev)
9371 {
9372 drm_i915_private_t *dev_priv = dev->dev_private;
9373 struct intel_display_error_state *error;
9374 int i;
9375
9376 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9377 if (error == NULL)
9378 return NULL;
9379
9380 for (i = 0; i < 2; i++) {
9381 error->cursor[i].control = I915_READ(CURCNTR(i));
9382 error->cursor[i].position = I915_READ(CURPOS(i));
9383 error->cursor[i].base = I915_READ(CURBASE(i));
9384
9385 error->plane[i].control = I915_READ(DSPCNTR(i));
9386 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9387 error->plane[i].size = I915_READ(DSPSIZE(i));
9388 error->plane[i].pos = I915_READ(DSPPOS(i));
9389 error->plane[i].addr = I915_READ(DSPADDR(i));
9390 if (INTEL_INFO(dev)->gen >= 4) {
9391 error->plane[i].surface = I915_READ(DSPSURF(i));
9392 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9393 }
9394
9395 error->pipe[i].conf = I915_READ(PIPECONF(i));
9396 error->pipe[i].source = I915_READ(PIPESRC(i));
9397 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9398 error->pipe[i].hblank = I915_READ(HBLANK(i));
9399 error->pipe[i].hsync = I915_READ(HSYNC(i));
9400 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9401 error->pipe[i].vblank = I915_READ(VBLANK(i));
9402 error->pipe[i].vsync = I915_READ(VSYNC(i));
9403 }
9404
9405 return error;
9406 }
9407
9408 void
9409 intel_display_print_error_state(struct seq_file *m,
9410 struct drm_device *dev,
9411 struct intel_display_error_state *error)
9412 {
9413 int i;
9414
9415 for (i = 0; i < 2; i++) {
9416 seq_printf(m, "Pipe [%d]:\n", i);
9417 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9418 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9419 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9420 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9421 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9422 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9423 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9424 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9425
9426 seq_printf(m, "Plane [%d]:\n", i);
9427 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9428 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9429 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9430 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9431 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9432 if (INTEL_INFO(dev)->gen >= 4) {
9433 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9434 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9435 }
9436
9437 seq_printf(m, "Cursor [%d]:\n", i);
9438 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9439 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9440 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9441 }
9442 }
9443 #endif
This page took 0.247324 seconds and 6 git commands to generate.