drm/i915: remove dead code in ironlake_crtc_mode_set
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57 int min, max;
58 } intel_range_t;
59
60 typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 930000, .max = 1400000 },
94 .n = { .min = 3, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 930000, .max = 1400000 },
107 .n = { .min = 3, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 930000, .max = 1400000 },
120 .n = { .min = 3, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313 /*
314 * These are the data rate limits (measured in fast clocks)
315 * since those are the strictest limits we have. The fast
316 * clock and actual rate limits are more relaxed, so checking
317 * them would make no difference.
318 */
319 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320 .vco = { .min = 4000000, .max = 6000000 },
321 .n = { .min = 1, .max = 7 },
322 .m1 = { .min = 2, .max = 3 },
323 .m2 = { .min = 11, .max = 156 },
324 .p1 = { .min = 2, .max = 3 },
325 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330 clock->m = clock->m1 * clock->m2;
331 clock->p = clock->p1 * clock->p2;
332 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337 * Returns whether any output on the specified pipe is of the specified type
338 */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341 struct drm_device *dev = crtc->dev;
342 struct intel_encoder *encoder;
343
344 for_each_encoder_on_crtc(dev, crtc, encoder)
345 if (encoder->type == type)
346 return true;
347
348 return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352 int refclk)
353 {
354 struct drm_device *dev = crtc->dev;
355 const intel_limit_t *limit;
356
357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358 if (intel_is_dual_link_lvds(dev)) {
359 if (refclk == 100000)
360 limit = &intel_limits_ironlake_dual_lvds_100m;
361 else
362 limit = &intel_limits_ironlake_dual_lvds;
363 } else {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_single_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_single_lvds;
368 }
369 } else
370 limit = &intel_limits_ironlake_dac;
371
372 return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377 struct drm_device *dev = crtc->dev;
378 const intel_limit_t *limit;
379
380 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381 if (intel_is_dual_link_lvds(dev))
382 limit = &intel_limits_g4x_dual_channel_lvds;
383 else
384 limit = &intel_limits_g4x_single_channel_lvds;
385 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387 limit = &intel_limits_g4x_hdmi;
388 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389 limit = &intel_limits_g4x_sdvo;
390 } else /* The option is for other outputs */
391 limit = &intel_limits_i9xx_sdvo;
392
393 return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398 struct drm_device *dev = crtc->dev;
399 const intel_limit_t *limit;
400
401 if (HAS_PCH_SPLIT(dev))
402 limit = intel_ironlake_limit(crtc, refclk);
403 else if (IS_G4X(dev)) {
404 limit = intel_g4x_limit(crtc);
405 } else if (IS_PINEVIEW(dev)) {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_pineview_lvds;
408 else
409 limit = &intel_limits_pineview_sdvo;
410 } else if (IS_VALLEYVIEW(dev)) {
411 limit = &intel_limits_vlv;
412 } else if (!IS_GEN2(dev)) {
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414 limit = &intel_limits_i9xx_lvds;
415 else
416 limit = &intel_limits_i9xx_sdvo;
417 } else {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i8xx_lvds;
420 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421 limit = &intel_limits_i8xx_dvo;
422 else
423 limit = &intel_limits_i8xx_dac;
424 }
425 return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431 clock->m = clock->m2 + 2;
432 clock->p = clock->p1 * clock->p2;
433 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444 clock->m = i9xx_dpll_compute_m(clock);
445 clock->p = clock->p1 * clock->p2;
446 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452 * Returns whether the given set of divisors are valid for a given refclk with
453 * the given connectors.
454 */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457 const intel_limit_t *limit,
458 const intel_clock_t *clock)
459 {
460 if (clock->n < limit->n.min || limit->n.max < clock->n)
461 INTELPllInvalid("n out of range\n");
462 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
463 INTELPllInvalid("p1 out of range\n");
464 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
465 INTELPllInvalid("m2 out of range\n");
466 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
467 INTELPllInvalid("m1 out of range\n");
468
469 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470 if (clock->m1 <= clock->m2)
471 INTELPllInvalid("m1 <= m2\n");
472
473 if (!IS_VALLEYVIEW(dev)) {
474 if (clock->p < limit->p.min || limit->p.max < clock->p)
475 INTELPllInvalid("p out of range\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 }
479
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 struct drm_device *dev = crtc->dev;
674 intel_clock_t clock;
675 unsigned int bestppm = 1000000;
676 /* min update 19.2 MHz */
677 int max_n = min(limit->n.max, refclk / 19200);
678 bool found = false;
679
680 target *= 5; /* fast clock */
681
682 memset(best_clock, 0, sizeof(*best_clock));
683
684 /* based on hardware requirement, prefer smaller n to precision */
685 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689 clock.p = clock.p1 * clock.p2;
690 /* based on hardware requirement, prefer bigger m1,m2 values */
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692 unsigned int ppm, diff;
693
694 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695 refclk * clock.m1);
696
697 vlv_clock(refclk, &clock);
698
699 if (!intel_PLL_is_valid(dev, limit,
700 &clock))
701 continue;
702
703 diff = abs(clock.dot - target);
704 ppm = div_u64(1000000ULL * diff, target);
705
706 if (ppm < 100 && clock.p > best_clock->p) {
707 bestppm = 0;
708 *best_clock = clock;
709 found = true;
710 }
711
712 if (bestppm >= 10 && ppm < bestppm - 10) {
713 bestppm = ppm;
714 *best_clock = clock;
715 found = true;
716 }
717 }
718 }
719 }
720 }
721
722 return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729 /* Be paranoid as we can arrive here with only partial
730 * state retrieved from the hardware during setup.
731 *
732 * We can ditch the adjusted_mode.crtc_clock check as soon
733 * as Haswell has gained clock readout/fastboot support.
734 *
735 * We can ditch the crtc->fb check as soon as we can
736 * properly reconstruct framebuffers.
737 */
738 return intel_crtc->active && crtc->fb &&
739 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743 enum pipe pipe)
744 {
745 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748 return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 u32 frame, frame_reg = PIPEFRAME(pipe);
755
756 frame = I915_READ(frame_reg);
757
758 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763 * intel_wait_for_vblank - wait for vblank on a given pipe
764 * @dev: drm device
765 * @pipe: pipe to wait for
766 *
767 * Wait for vblank to occur on a given pipe. Needed for various bits of
768 * mode setting code.
769 */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772 struct drm_i915_private *dev_priv = dev->dev_private;
773 int pipestat_reg = PIPESTAT(pipe);
774
775 if (INTEL_INFO(dev)->gen >= 5) {
776 ironlake_wait_for_vblank(dev, pipe);
777 return;
778 }
779
780 /* Clear existing vblank status. Note this will clear any other
781 * sticky status fields as well.
782 *
783 * This races with i915_driver_irq_handler() with the result
784 * that either function could miss a vblank event. Here it is not
785 * fatal, as we will either wait upon the next vblank interrupt or
786 * timeout. Generally speaking intel_wait_for_vblank() is only
787 * called during modeset at which time the GPU should be idle and
788 * should *not* be performing page flips and thus not waiting on
789 * vblanks...
790 * Currently, the result of us stealing a vblank from the irq
791 * handler is that a single frame will be skipped during swapbuffers.
792 */
793 I915_WRITE(pipestat_reg,
794 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796 /* Wait for vblank interrupt bit to set */
797 if (wait_for(I915_READ(pipestat_reg) &
798 PIPE_VBLANK_INTERRUPT_STATUS,
799 50))
800 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 u32 reg = PIPEDSL(pipe);
807 u32 line1, line2;
808 u32 line_mask;
809
810 if (IS_GEN2(dev))
811 line_mask = DSL_LINEMASK_GEN2;
812 else
813 line_mask = DSL_LINEMASK_GEN3;
814
815 line1 = I915_READ(reg) & line_mask;
816 mdelay(5);
817 line2 = I915_READ(reg) & line_mask;
818
819 return line1 == line2;
820 }
821
822 /*
823 * intel_wait_for_pipe_off - wait for pipe to turn off
824 * @dev: drm device
825 * @pipe: pipe to wait for
826 *
827 * After disabling a pipe, we can't wait for vblank in the usual way,
828 * spinning on the vblank interrupt status bit, since we won't actually
829 * see an interrupt when the pipe is disabled.
830 *
831 * On Gen4 and above:
832 * wait for the pipe register state bit to turn off
833 *
834 * Otherwise:
835 * wait for the display line value to settle (it usually
836 * ends up stopping at the start of the next frame).
837 *
838 */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841 struct drm_i915_private *dev_priv = dev->dev_private;
842 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843 pipe);
844
845 if (INTEL_INFO(dev)->gen >= 4) {
846 int reg = PIPECONF(cpu_transcoder);
847
848 /* Wait for the Pipe State to go off */
849 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850 100))
851 WARN(1, "pipe_off wait timed out\n");
852 } else {
853 /* Wait for the display line to settle */
854 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855 WARN(1, "pipe_off wait timed out\n");
856 }
857 }
858
859 /*
860 * ibx_digital_port_connected - is the specified port connected?
861 * @dev_priv: i915 private structure
862 * @port: the port to test
863 *
864 * Returns true if @port is connected, false otherwise.
865 */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867 struct intel_digital_port *port)
868 {
869 u32 bit;
870
871 if (HAS_PCH_IBX(dev_priv->dev)) {
872 switch(port->port) {
873 case PORT_B:
874 bit = SDE_PORTB_HOTPLUG;
875 break;
876 case PORT_C:
877 bit = SDE_PORTC_HOTPLUG;
878 break;
879 case PORT_D:
880 bit = SDE_PORTD_HOTPLUG;
881 break;
882 default:
883 return true;
884 }
885 } else {
886 switch(port->port) {
887 case PORT_B:
888 bit = SDE_PORTB_HOTPLUG_CPT;
889 break;
890 case PORT_C:
891 bit = SDE_PORTC_HOTPLUG_CPT;
892 break;
893 case PORT_D:
894 bit = SDE_PORTD_HOTPLUG_CPT;
895 break;
896 default:
897 return true;
898 }
899 }
900
901 return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906 return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911 enum pipe pipe, bool state)
912 {
913 int reg;
914 u32 val;
915 bool cur_state;
916
917 reg = DPLL(pipe);
918 val = I915_READ(reg);
919 cur_state = !!(val & DPLL_VCO_ENABLE);
920 WARN(cur_state != state,
921 "PLL state assertion failure (expected %s, current %s)\n",
922 state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928 u32 val;
929 bool cur_state;
930
931 mutex_lock(&dev_priv->dpio_lock);
932 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933 mutex_unlock(&dev_priv->dpio_lock);
934
935 cur_state = val & DSI_PLL_VCO_EN;
936 WARN(cur_state != state,
937 "DSI PLL state assertion failure (expected %s, current %s)\n",
938 state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948 if (crtc->config.shared_dpll < 0)
949 return NULL;
950
951 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956 struct intel_shared_dpll *pll,
957 bool state)
958 {
959 bool cur_state;
960 struct intel_dpll_hw_state hw_state;
961
962 if (HAS_PCH_LPT(dev_priv->dev)) {
963 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964 return;
965 }
966
967 if (WARN (!pll,
968 "asserting DPLL %s with no DPLL\n", state_string(state)))
969 return;
970
971 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972 WARN(cur_state != state,
973 "%s assertion failure (expected %s, current %s)\n",
974 pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978 enum pipe pipe, bool state)
979 {
980 int reg;
981 u32 val;
982 bool cur_state;
983 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984 pipe);
985
986 if (HAS_DDI(dev_priv->dev)) {
987 /* DDI does not have a specific FDI_TX register */
988 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989 val = I915_READ(reg);
990 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991 } else {
992 reg = FDI_TX_CTL(pipe);
993 val = I915_READ(reg);
994 cur_state = !!(val & FDI_TX_ENABLE);
995 }
996 WARN(cur_state != state,
997 "FDI TX state assertion failure (expected %s, current %s)\n",
998 state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005 {
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = FDI_RX_CTL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & FDI_RX_ENABLE);
1013 WARN(cur_state != state,
1014 "FDI RX state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021 enum pipe pipe)
1022 {
1023 int reg;
1024 u32 val;
1025
1026 /* ILK FDI PLL is always enabled */
1027 if (dev_priv->info->gen == 5)
1028 return;
1029
1030 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031 if (HAS_DDI(dev_priv->dev))
1032 return;
1033
1034 reg = FDI_TX_CTL(pipe);
1035 val = I915_READ(reg);
1036 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040 enum pipe pipe, bool state)
1041 {
1042 int reg;
1043 u32 val;
1044 bool cur_state;
1045
1046 reg = FDI_RX_CTL(pipe);
1047 val = I915_READ(reg);
1048 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049 WARN(cur_state != state,
1050 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051 state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055 enum pipe pipe)
1056 {
1057 int pp_reg, lvds_reg;
1058 u32 val;
1059 enum pipe panel_pipe = PIPE_A;
1060 bool locked = true;
1061
1062 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063 pp_reg = PCH_PP_CONTROL;
1064 lvds_reg = PCH_LVDS;
1065 } else {
1066 pp_reg = PP_CONTROL;
1067 lvds_reg = LVDS;
1068 }
1069
1070 val = I915_READ(pp_reg);
1071 if (!(val & PANEL_POWER_ON) ||
1072 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073 locked = false;
1074
1075 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076 panel_pipe = PIPE_B;
1077
1078 WARN(panel_pipe == pipe && locked,
1079 "panel assertion failure, pipe %c regs locked\n",
1080 pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084 enum pipe pipe, bool state)
1085 {
1086 struct drm_device *dev = dev_priv->dev;
1087 bool cur_state;
1088
1089 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091 else if (IS_845G(dev) || IS_I865G(dev))
1092 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093 else
1094 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096 WARN(cur_state != state,
1097 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098 pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104 enum pipe pipe, bool state)
1105 {
1106 int reg;
1107 u32 val;
1108 bool cur_state;
1109 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110 pipe);
1111
1112 /* if we need the pipe A quirk it must be always on */
1113 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114 state = true;
1115
1116 if (!intel_display_power_enabled(dev_priv->dev,
1117 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118 cur_state = false;
1119 } else {
1120 reg = PIPECONF(cpu_transcoder);
1121 val = I915_READ(reg);
1122 cur_state = !!(val & PIPECONF_ENABLE);
1123 }
1124
1125 WARN(cur_state != state,
1126 "pipe %c assertion failure (expected %s, current %s)\n",
1127 pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131 enum plane plane, bool state)
1132 {
1133 int reg;
1134 u32 val;
1135 bool cur_state;
1136
1137 reg = DSPCNTR(plane);
1138 val = I915_READ(reg);
1139 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140 WARN(cur_state != state,
1141 "plane %c assertion failure (expected %s, current %s)\n",
1142 plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149 enum pipe pipe)
1150 {
1151 struct drm_device *dev = dev_priv->dev;
1152 int reg, i;
1153 u32 val;
1154 int cur_pipe;
1155
1156 /* Primary planes are fixed to pipes on gen4+ */
1157 if (INTEL_INFO(dev)->gen >= 4) {
1158 reg = DSPCNTR(pipe);
1159 val = I915_READ(reg);
1160 WARN((val & DISPLAY_PLANE_ENABLE),
1161 "plane %c assertion failure, should be disabled but not\n",
1162 plane_name(pipe));
1163 return;
1164 }
1165
1166 /* Need to check both planes against the pipe */
1167 for_each_pipe(i) {
1168 reg = DSPCNTR(i);
1169 val = I915_READ(reg);
1170 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171 DISPPLANE_SEL_PIPE_SHIFT;
1172 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174 plane_name(i), pipe_name(pipe));
1175 }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180 {
1181 struct drm_device *dev = dev_priv->dev;
1182 int reg, i;
1183 u32 val;
1184
1185 if (IS_VALLEYVIEW(dev)) {
1186 for (i = 0; i < dev_priv->num_plane; i++) {
1187 reg = SPCNTR(pipe, i);
1188 val = I915_READ(reg);
1189 WARN((val & SP_ENABLE),
1190 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191 sprite_name(pipe, i), pipe_name(pipe));
1192 }
1193 } else if (INTEL_INFO(dev)->gen >= 7) {
1194 reg = SPRCTL(pipe);
1195 val = I915_READ(reg);
1196 WARN((val & SPRITE_ENABLE),
1197 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198 plane_name(pipe), pipe_name(pipe));
1199 } else if (INTEL_INFO(dev)->gen >= 5) {
1200 reg = DVSCNTR(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & DVS_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210 u32 val;
1211 bool enabled;
1212
1213 if (HAS_PCH_LPT(dev_priv->dev)) {
1214 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215 return;
1216 }
1217
1218 val = I915_READ(PCH_DREF_CONTROL);
1219 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220 DREF_SUPERSPREAD_SOURCE_MASK));
1221 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225 enum pipe pipe)
1226 {
1227 int reg;
1228 u32 val;
1229 bool enabled;
1230
1231 reg = PCH_TRANSCONF(pipe);
1232 val = I915_READ(reg);
1233 enabled = !!(val & TRANS_ENABLE);
1234 WARN(enabled,
1235 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236 pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242 if ((val & DP_PORT_EN) == 0)
1243 return false;
1244
1245 if (HAS_PCH_CPT(dev_priv->dev)) {
1246 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249 return false;
1250 } else {
1251 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252 return false;
1253 }
1254 return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258 enum pipe pipe, u32 val)
1259 {
1260 if ((val & SDVO_ENABLE) == 0)
1261 return false;
1262
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, u32 val)
1275 {
1276 if ((val & LVDS_PORT_EN) == 0)
1277 return false;
1278
1279 if (HAS_PCH_CPT(dev_priv->dev)) {
1280 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281 return false;
1282 } else {
1283 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284 return false;
1285 }
1286 return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290 enum pipe pipe, u32 val)
1291 {
1292 if ((val & ADPA_DAC_ENABLE) == 0)
1293 return false;
1294 if (HAS_PCH_CPT(dev_priv->dev)) {
1295 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296 return false;
1297 } else {
1298 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299 return false;
1300 }
1301 return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305 enum pipe pipe, int reg, u32 port_sel)
1306 {
1307 u32 val = I915_READ(reg);
1308 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310 reg, pipe_name(pipe));
1311
1312 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313 && (val & DP_PIPEB_SELECT),
1314 "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, int reg)
1319 {
1320 u32 val = I915_READ(reg);
1321 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323 reg, pipe_name(pipe));
1324
1325 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326 && (val & SDVO_PIPE_B_SELECT),
1327 "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331 enum pipe pipe)
1332 {
1333 int reg;
1334 u32 val;
1335
1336 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340 reg = PCH_ADPA;
1341 val = I915_READ(reg);
1342 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343 "PCH VGA enabled on transcoder %c, should be disabled\n",
1344 pipe_name(pipe));
1345
1346 reg = PCH_LVDS;
1347 val = I915_READ(reg);
1348 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361 if (!IS_VALLEYVIEW(dev))
1362 return;
1363
1364 /*
1365 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1367 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368 * b. The other bits such as sfr settings / modesel may all be set
1369 * to 0.
1370 *
1371 * This should only be done on init and resume from S3 with both
1372 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373 */
1374 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375 }
1376
1377 static void vlv_enable_pll(struct intel_crtc *crtc)
1378 {
1379 struct drm_device *dev = crtc->base.dev;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 int reg = DPLL(crtc->pipe);
1382 u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384 assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386 /* No really, not for ILK+ */
1387 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389 /* PLL is protected by panel, make sure we can write it */
1390 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150);
1396
1397 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401 POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403 /* We do this three times for luck */
1404 I915_WRITE(reg, dpll);
1405 POSTING_READ(reg);
1406 udelay(150); /* wait for warmup */
1407 I915_WRITE(reg, dpll);
1408 POSTING_READ(reg);
1409 udelay(150); /* wait for warmup */
1410 I915_WRITE(reg, dpll);
1411 POSTING_READ(reg);
1412 udelay(150); /* wait for warmup */
1413 }
1414
1415 static void i9xx_enable_pll(struct intel_crtc *crtc)
1416 {
1417 struct drm_device *dev = crtc->base.dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 int reg = DPLL(crtc->pipe);
1420 u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422 assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424 /* No really, not for ILK+ */
1425 BUG_ON(dev_priv->info->gen >= 5);
1426
1427 /* PLL is protected by panel, make sure we can write it */
1428 if (IS_MOBILE(dev) && !IS_I830(dev))
1429 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431 I915_WRITE(reg, dpll);
1432
1433 /* Wait for the clocks to stabilize. */
1434 POSTING_READ(reg);
1435 udelay(150);
1436
1437 if (INTEL_INFO(dev)->gen >= 4) {
1438 I915_WRITE(DPLL_MD(crtc->pipe),
1439 crtc->config.dpll_hw_state.dpll_md);
1440 } else {
1441 /* The pixel multiplier can only be updated once the
1442 * DPLL is enabled and the clocks are stable.
1443 *
1444 * So write it again.
1445 */
1446 I915_WRITE(reg, dpll);
1447 }
1448
1449 /* We do this three times for luck */
1450 I915_WRITE(reg, dpll);
1451 POSTING_READ(reg);
1452 udelay(150); /* wait for warmup */
1453 I915_WRITE(reg, dpll);
1454 POSTING_READ(reg);
1455 udelay(150); /* wait for warmup */
1456 I915_WRITE(reg, dpll);
1457 POSTING_READ(reg);
1458 udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462 * i9xx_disable_pll - disable a PLL
1463 * @dev_priv: i915 private structure
1464 * @pipe: pipe PLL to disable
1465 *
1466 * Disable the PLL for @pipe, making sure the pipe is off first.
1467 *
1468 * Note! This is for pre-ILK only.
1469 */
1470 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472 /* Don't disable pipe A or pipe A PLLs if needed */
1473 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474 return;
1475
1476 /* Make sure the pipe isn't still relying on us */
1477 assert_pipe_disabled(dev_priv, pipe);
1478
1479 I915_WRITE(DPLL(pipe), 0);
1480 POSTING_READ(DPLL(pipe));
1481 }
1482
1483 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484 {
1485 u32 val = 0;
1486
1487 /* Make sure the pipe isn't still relying on us */
1488 assert_pipe_disabled(dev_priv, pipe);
1489
1490 /* Leave integrated clock source enabled */
1491 if (pipe == PIPE_B)
1492 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493 I915_WRITE(DPLL(pipe), val);
1494 POSTING_READ(DPLL(pipe));
1495 }
1496
1497 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498 {
1499 u32 port_mask;
1500
1501 if (!port)
1502 port_mask = DPLL_PORTB_READY_MASK;
1503 else
1504 port_mask = DPLL_PORTC_READY_MASK;
1505
1506 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508 'B' + port, I915_READ(DPLL(0)));
1509 }
1510
1511 /**
1512 * ironlake_enable_shared_dpll - enable PCH PLL
1513 * @dev_priv: i915 private structure
1514 * @pipe: pipe PLL to enable
1515 *
1516 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517 * drives the transcoder clock.
1518 */
1519 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524 /* PCH PLLs only available on ILK, SNB and IVB */
1525 BUG_ON(dev_priv->info->gen < 5);
1526 if (WARN_ON(pll == NULL))
1527 return;
1528
1529 if (WARN_ON(pll->refcount == 0))
1530 return;
1531
1532 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533 pll->name, pll->active, pll->on,
1534 crtc->base.base.id);
1535
1536 if (pll->active++) {
1537 WARN_ON(!pll->on);
1538 assert_shared_dpll_enabled(dev_priv, pll);
1539 return;
1540 }
1541 WARN_ON(pll->on);
1542
1543 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544 pll->enable(dev_priv, pll);
1545 pll->on = true;
1546 }
1547
1548 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549 {
1550 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553 /* PCH only available on ILK+ */
1554 BUG_ON(dev_priv->info->gen < 5);
1555 if (WARN_ON(pll == NULL))
1556 return;
1557
1558 if (WARN_ON(pll->refcount == 0))
1559 return;
1560
1561 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562 pll->name, pll->active, pll->on,
1563 crtc->base.base.id);
1564
1565 if (WARN_ON(pll->active == 0)) {
1566 assert_shared_dpll_disabled(dev_priv, pll);
1567 return;
1568 }
1569
1570 assert_shared_dpll_enabled(dev_priv, pll);
1571 WARN_ON(!pll->on);
1572 if (--pll->active)
1573 return;
1574
1575 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576 pll->disable(dev_priv, pll);
1577 pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581 enum pipe pipe)
1582 {
1583 struct drm_device *dev = dev_priv->dev;
1584 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586 uint32_t reg, val, pipeconf_val;
1587
1588 /* PCH only available on ILK+ */
1589 BUG_ON(dev_priv->info->gen < 5);
1590
1591 /* Make sure PCH DPLL is enabled */
1592 assert_shared_dpll_enabled(dev_priv,
1593 intel_crtc_to_shared_dpll(intel_crtc));
1594
1595 /* FDI must be feeding us bits for PCH ports */
1596 assert_fdi_tx_enabled(dev_priv, pipe);
1597 assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599 if (HAS_PCH_CPT(dev)) {
1600 /* Workaround: Set the timing override bit before enabling the
1601 * pch transcoder. */
1602 reg = TRANS_CHICKEN2(pipe);
1603 val = I915_READ(reg);
1604 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605 I915_WRITE(reg, val);
1606 }
1607
1608 reg = PCH_TRANSCONF(pipe);
1609 val = I915_READ(reg);
1610 pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612 if (HAS_PCH_IBX(dev_priv->dev)) {
1613 /*
1614 * make the BPC in transcoder be consistent with
1615 * that in pipeconf reg.
1616 */
1617 val &= ~PIPECONF_BPC_MASK;
1618 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619 }
1620
1621 val &= ~TRANS_INTERLACE_MASK;
1622 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623 if (HAS_PCH_IBX(dev_priv->dev) &&
1624 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625 val |= TRANS_LEGACY_INTERLACED_ILK;
1626 else
1627 val |= TRANS_INTERLACED;
1628 else
1629 val |= TRANS_PROGRESSIVE;
1630
1631 I915_WRITE(reg, val | TRANS_ENABLE);
1632 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637 enum transcoder cpu_transcoder)
1638 {
1639 u32 val, pipeconf_val;
1640
1641 /* PCH only available on ILK+ */
1642 BUG_ON(dev_priv->info->gen < 5);
1643
1644 /* FDI must be feeding us bits for PCH ports */
1645 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648 /* Workaround: set timing override bit. */
1649 val = I915_READ(_TRANSA_CHICKEN2);
1650 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651 I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653 val = TRANS_ENABLE;
1654 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657 PIPECONF_INTERLACED_ILK)
1658 val |= TRANS_INTERLACED;
1659 else
1660 val |= TRANS_PROGRESSIVE;
1661
1662 I915_WRITE(LPT_TRANSCONF, val);
1663 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668 enum pipe pipe)
1669 {
1670 struct drm_device *dev = dev_priv->dev;
1671 uint32_t reg, val;
1672
1673 /* FDI relies on the transcoder */
1674 assert_fdi_tx_disabled(dev_priv, pipe);
1675 assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677 /* Ports must be off as well */
1678 assert_pch_ports_disabled(dev_priv, pipe);
1679
1680 reg = PCH_TRANSCONF(pipe);
1681 val = I915_READ(reg);
1682 val &= ~TRANS_ENABLE;
1683 I915_WRITE(reg, val);
1684 /* wait for PCH transcoder off, transcoder state */
1685 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688 if (!HAS_PCH_IBX(dev)) {
1689 /* Workaround: Clear the timing override chicken bit again. */
1690 reg = TRANS_CHICKEN2(pipe);
1691 val = I915_READ(reg);
1692 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693 I915_WRITE(reg, val);
1694 }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699 u32 val;
1700
1701 val = I915_READ(LPT_TRANSCONF);
1702 val &= ~TRANS_ENABLE;
1703 I915_WRITE(LPT_TRANSCONF, val);
1704 /* wait for PCH transcoder off, transcoder state */
1705 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708 /* Workaround: clear timing override bit. */
1709 val = I915_READ(_TRANSA_CHICKEN2);
1710 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711 I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715 * intel_enable_pipe - enable a pipe, asserting requirements
1716 * @dev_priv: i915 private structure
1717 * @pipe: pipe to enable
1718 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719 *
1720 * Enable @pipe, making sure that various hardware specific requirements
1721 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722 *
1723 * @pipe should be %PIPE_A or %PIPE_B.
1724 *
1725 * Will wait until the pipe is actually running (i.e. first vblank) before
1726 * returning.
1727 */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729 bool pch_port, bool dsi)
1730 {
1731 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732 pipe);
1733 enum pipe pch_transcoder;
1734 int reg;
1735 u32 val;
1736
1737 assert_planes_disabled(dev_priv, pipe);
1738 assert_cursor_disabled(dev_priv, pipe);
1739 assert_sprites_disabled(dev_priv, pipe);
1740
1741 if (HAS_PCH_LPT(dev_priv->dev))
1742 pch_transcoder = TRANSCODER_A;
1743 else
1744 pch_transcoder = pipe;
1745
1746 /*
1747 * A pipe without a PLL won't actually be able to drive bits from
1748 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1749 * need the check.
1750 */
1751 if (!HAS_PCH_SPLIT(dev_priv->dev))
1752 if (dsi)
1753 assert_dsi_pll_enabled(dev_priv);
1754 else
1755 assert_pll_enabled(dev_priv, pipe);
1756 else {
1757 if (pch_port) {
1758 /* if driving the PCH, we need FDI enabled */
1759 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760 assert_fdi_tx_pll_enabled(dev_priv,
1761 (enum pipe) cpu_transcoder);
1762 }
1763 /* FIXME: assert CPU port conditions for SNB+ */
1764 }
1765
1766 reg = PIPECONF(cpu_transcoder);
1767 val = I915_READ(reg);
1768 if (val & PIPECONF_ENABLE)
1769 return;
1770
1771 I915_WRITE(reg, val | PIPECONF_ENABLE);
1772 intel_wait_for_vblank(dev_priv->dev, pipe);
1773 }
1774
1775 /**
1776 * intel_disable_pipe - disable a pipe, asserting requirements
1777 * @dev_priv: i915 private structure
1778 * @pipe: pipe to disable
1779 *
1780 * Disable @pipe, making sure that various hardware specific requirements
1781 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782 *
1783 * @pipe should be %PIPE_A or %PIPE_B.
1784 *
1785 * Will wait until the pipe has shut down before returning.
1786 */
1787 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788 enum pipe pipe)
1789 {
1790 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791 pipe);
1792 int reg;
1793 u32 val;
1794
1795 /*
1796 * Make sure planes won't keep trying to pump pixels to us,
1797 * or we might hang the display.
1798 */
1799 assert_planes_disabled(dev_priv, pipe);
1800 assert_cursor_disabled(dev_priv, pipe);
1801 assert_sprites_disabled(dev_priv, pipe);
1802
1803 /* Don't disable pipe A or pipe A PLLs if needed */
1804 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805 return;
1806
1807 reg = PIPECONF(cpu_transcoder);
1808 val = I915_READ(reg);
1809 if ((val & PIPECONF_ENABLE) == 0)
1810 return;
1811
1812 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814 }
1815
1816 /*
1817 * Plane regs are double buffered, going from enabled->disabled needs a
1818 * trigger in order to latch. The display address reg provides this.
1819 */
1820 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane)
1822 {
1823 u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825 I915_WRITE(reg, I915_READ(reg));
1826 POSTING_READ(reg);
1827 }
1828
1829 /**
1830 * intel_enable_primary_plane - enable the primary plane on a given pipe
1831 * @dev_priv: i915 private structure
1832 * @plane: plane to enable
1833 * @pipe: pipe being fed
1834 *
1835 * Enable @plane on @pipe, making sure that @pipe is running first.
1836 */
1837 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838 enum plane plane, enum pipe pipe)
1839 {
1840 struct intel_crtc *intel_crtc =
1841 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842 int reg;
1843 u32 val;
1844
1845 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846 assert_pipe_enabled(dev_priv, pipe);
1847
1848 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850 intel_crtc->primary_enabled = true;
1851
1852 reg = DSPCNTR(plane);
1853 val = I915_READ(reg);
1854 if (val & DISPLAY_PLANE_ENABLE)
1855 return;
1856
1857 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858 intel_flush_primary_plane(dev_priv, plane);
1859 intel_wait_for_vblank(dev_priv->dev, pipe);
1860 }
1861
1862 /**
1863 * intel_disable_primary_plane - disable the primary plane
1864 * @dev_priv: i915 private structure
1865 * @plane: plane to disable
1866 * @pipe: pipe consuming the data
1867 *
1868 * Disable @plane; should be an independent operation.
1869 */
1870 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871 enum plane plane, enum pipe pipe)
1872 {
1873 struct intel_crtc *intel_crtc =
1874 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875 int reg;
1876 u32 val;
1877
1878 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880 intel_crtc->primary_enabled = false;
1881
1882 reg = DSPCNTR(plane);
1883 val = I915_READ(reg);
1884 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885 return;
1886
1887 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888 intel_flush_primary_plane(dev_priv, plane);
1889 intel_wait_for_vblank(dev_priv->dev, pipe);
1890 }
1891
1892 static bool need_vtd_wa(struct drm_device *dev)
1893 {
1894 #ifdef CONFIG_INTEL_IOMMU
1895 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896 return true;
1897 #endif
1898 return false;
1899 }
1900
1901 int
1902 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903 struct drm_i915_gem_object *obj,
1904 struct intel_ring_buffer *pipelined)
1905 {
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 u32 alignment;
1908 int ret;
1909
1910 switch (obj->tiling_mode) {
1911 case I915_TILING_NONE:
1912 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913 alignment = 128 * 1024;
1914 else if (INTEL_INFO(dev)->gen >= 4)
1915 alignment = 4 * 1024;
1916 else
1917 alignment = 64 * 1024;
1918 break;
1919 case I915_TILING_X:
1920 /* pin() will align the object as required by fence */
1921 alignment = 0;
1922 break;
1923 case I915_TILING_Y:
1924 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925 return -EINVAL;
1926 default:
1927 BUG();
1928 }
1929
1930 /* Note that the w/a also requires 64 PTE of padding following the
1931 * bo. We currently fill all unused PTE with the shadow page and so
1932 * we should always have valid PTE following the scanout preventing
1933 * the VT-d warning.
1934 */
1935 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936 alignment = 256 * 1024;
1937
1938 dev_priv->mm.interruptible = false;
1939 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940 if (ret)
1941 goto err_interruptible;
1942
1943 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944 * fence, whereas 965+ only requires a fence if using
1945 * framebuffer compression. For simplicity, we always install
1946 * a fence as the cost is not that onerous.
1947 */
1948 ret = i915_gem_object_get_fence(obj);
1949 if (ret)
1950 goto err_unpin;
1951
1952 i915_gem_object_pin_fence(obj);
1953
1954 dev_priv->mm.interruptible = true;
1955 return 0;
1956
1957 err_unpin:
1958 i915_gem_object_unpin_from_display_plane(obj);
1959 err_interruptible:
1960 dev_priv->mm.interruptible = true;
1961 return ret;
1962 }
1963
1964 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965 {
1966 i915_gem_object_unpin_fence(obj);
1967 i915_gem_object_unpin_from_display_plane(obj);
1968 }
1969
1970 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971 * is assumed to be a power-of-two. */
1972 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973 unsigned int tiling_mode,
1974 unsigned int cpp,
1975 unsigned int pitch)
1976 {
1977 if (tiling_mode != I915_TILING_NONE) {
1978 unsigned int tile_rows, tiles;
1979
1980 tile_rows = *y / 8;
1981 *y %= 8;
1982
1983 tiles = *x / (512/cpp);
1984 *x %= 512/cpp;
1985
1986 return tile_rows * pitch * 8 + tiles * 4096;
1987 } else {
1988 unsigned int offset;
1989
1990 offset = *y * pitch + *x * cpp;
1991 *y = 0;
1992 *x = (offset & 4095) / cpp;
1993 return offset & -4096;
1994 }
1995 }
1996
1997 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998 int x, int y)
1999 {
2000 struct drm_device *dev = crtc->dev;
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003 struct intel_framebuffer *intel_fb;
2004 struct drm_i915_gem_object *obj;
2005 int plane = intel_crtc->plane;
2006 unsigned long linear_offset;
2007 u32 dspcntr;
2008 u32 reg;
2009
2010 switch (plane) {
2011 case 0:
2012 case 1:
2013 break;
2014 default:
2015 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016 return -EINVAL;
2017 }
2018
2019 intel_fb = to_intel_framebuffer(fb);
2020 obj = intel_fb->obj;
2021
2022 reg = DSPCNTR(plane);
2023 dspcntr = I915_READ(reg);
2024 /* Mask out pixel format bits in case we change it */
2025 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026 switch (fb->pixel_format) {
2027 case DRM_FORMAT_C8:
2028 dspcntr |= DISPPLANE_8BPP;
2029 break;
2030 case DRM_FORMAT_XRGB1555:
2031 case DRM_FORMAT_ARGB1555:
2032 dspcntr |= DISPPLANE_BGRX555;
2033 break;
2034 case DRM_FORMAT_RGB565:
2035 dspcntr |= DISPPLANE_BGRX565;
2036 break;
2037 case DRM_FORMAT_XRGB8888:
2038 case DRM_FORMAT_ARGB8888:
2039 dspcntr |= DISPPLANE_BGRX888;
2040 break;
2041 case DRM_FORMAT_XBGR8888:
2042 case DRM_FORMAT_ABGR8888:
2043 dspcntr |= DISPPLANE_RGBX888;
2044 break;
2045 case DRM_FORMAT_XRGB2101010:
2046 case DRM_FORMAT_ARGB2101010:
2047 dspcntr |= DISPPLANE_BGRX101010;
2048 break;
2049 case DRM_FORMAT_XBGR2101010:
2050 case DRM_FORMAT_ABGR2101010:
2051 dspcntr |= DISPPLANE_RGBX101010;
2052 break;
2053 default:
2054 BUG();
2055 }
2056
2057 if (INTEL_INFO(dev)->gen >= 4) {
2058 if (obj->tiling_mode != I915_TILING_NONE)
2059 dspcntr |= DISPPLANE_TILED;
2060 else
2061 dspcntr &= ~DISPPLANE_TILED;
2062 }
2063
2064 if (IS_G4X(dev))
2065 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067 I915_WRITE(reg, dspcntr);
2068
2069 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071 if (INTEL_INFO(dev)->gen >= 4) {
2072 intel_crtc->dspaddr_offset =
2073 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074 fb->bits_per_pixel / 8,
2075 fb->pitches[0]);
2076 linear_offset -= intel_crtc->dspaddr_offset;
2077 } else {
2078 intel_crtc->dspaddr_offset = linear_offset;
2079 }
2080
2081 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083 fb->pitches[0]);
2084 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085 if (INTEL_INFO(dev)->gen >= 4) {
2086 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090 } else
2091 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092 POSTING_READ(reg);
2093
2094 return 0;
2095 }
2096
2097 static int ironlake_update_plane(struct drm_crtc *crtc,
2098 struct drm_framebuffer *fb, int x, int y)
2099 {
2100 struct drm_device *dev = crtc->dev;
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103 struct intel_framebuffer *intel_fb;
2104 struct drm_i915_gem_object *obj;
2105 int plane = intel_crtc->plane;
2106 unsigned long linear_offset;
2107 u32 dspcntr;
2108 u32 reg;
2109
2110 switch (plane) {
2111 case 0:
2112 case 1:
2113 case 2:
2114 break;
2115 default:
2116 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117 return -EINVAL;
2118 }
2119
2120 intel_fb = to_intel_framebuffer(fb);
2121 obj = intel_fb->obj;
2122
2123 reg = DSPCNTR(plane);
2124 dspcntr = I915_READ(reg);
2125 /* Mask out pixel format bits in case we change it */
2126 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127 switch (fb->pixel_format) {
2128 case DRM_FORMAT_C8:
2129 dspcntr |= DISPPLANE_8BPP;
2130 break;
2131 case DRM_FORMAT_RGB565:
2132 dspcntr |= DISPPLANE_BGRX565;
2133 break;
2134 case DRM_FORMAT_XRGB8888:
2135 case DRM_FORMAT_ARGB8888:
2136 dspcntr |= DISPPLANE_BGRX888;
2137 break;
2138 case DRM_FORMAT_XBGR8888:
2139 case DRM_FORMAT_ABGR8888:
2140 dspcntr |= DISPPLANE_RGBX888;
2141 break;
2142 case DRM_FORMAT_XRGB2101010:
2143 case DRM_FORMAT_ARGB2101010:
2144 dspcntr |= DISPPLANE_BGRX101010;
2145 break;
2146 case DRM_FORMAT_XBGR2101010:
2147 case DRM_FORMAT_ABGR2101010:
2148 dspcntr |= DISPPLANE_RGBX101010;
2149 break;
2150 default:
2151 BUG();
2152 }
2153
2154 if (obj->tiling_mode != I915_TILING_NONE)
2155 dspcntr |= DISPPLANE_TILED;
2156 else
2157 dspcntr &= ~DISPPLANE_TILED;
2158
2159 if (IS_HASWELL(dev))
2160 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161 else
2162 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164 I915_WRITE(reg, dspcntr);
2165
2166 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167 intel_crtc->dspaddr_offset =
2168 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169 fb->bits_per_pixel / 8,
2170 fb->pitches[0]);
2171 linear_offset -= intel_crtc->dspaddr_offset;
2172
2173 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175 fb->pitches[0]);
2176 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177 I915_MODIFY_DISPBASE(DSPSURF(plane),
2178 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179 if (IS_HASWELL(dev)) {
2180 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181 } else {
2182 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184 }
2185 POSTING_READ(reg);
2186
2187 return 0;
2188 }
2189
2190 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2191 static int
2192 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193 int x, int y, enum mode_set_atomic state)
2194 {
2195 struct drm_device *dev = crtc->dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198 if (dev_priv->display.disable_fbc)
2199 dev_priv->display.disable_fbc(dev);
2200 intel_increase_pllclock(crtc);
2201
2202 return dev_priv->display.update_plane(crtc, fb, x, y);
2203 }
2204
2205 void intel_display_handle_reset(struct drm_device *dev)
2206 {
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_crtc *crtc;
2209
2210 /*
2211 * Flips in the rings have been nuked by the reset,
2212 * so complete all pending flips so that user space
2213 * will get its events and not get stuck.
2214 *
2215 * Also update the base address of all primary
2216 * planes to the the last fb to make sure we're
2217 * showing the correct fb after a reset.
2218 *
2219 * Need to make two loops over the crtcs so that we
2220 * don't try to grab a crtc mutex before the
2221 * pending_flip_queue really got woken up.
2222 */
2223
2224 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226 enum plane plane = intel_crtc->plane;
2227
2228 intel_prepare_page_flip(dev, plane);
2229 intel_finish_page_flip_plane(dev, plane);
2230 }
2231
2232 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 mutex_lock(&crtc->mutex);
2236 if (intel_crtc->active)
2237 dev_priv->display.update_plane(crtc, crtc->fb,
2238 crtc->x, crtc->y);
2239 mutex_unlock(&crtc->mutex);
2240 }
2241 }
2242
2243 static int
2244 intel_finish_fb(struct drm_framebuffer *old_fb)
2245 {
2246 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248 bool was_interruptible = dev_priv->mm.interruptible;
2249 int ret;
2250
2251 /* Big Hammer, we also need to ensure that any pending
2252 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253 * current scanout is retired before unpinning the old
2254 * framebuffer.
2255 *
2256 * This should only fail upon a hung GPU, in which case we
2257 * can safely continue.
2258 */
2259 dev_priv->mm.interruptible = false;
2260 ret = i915_gem_object_finish_gpu(obj);
2261 dev_priv->mm.interruptible = was_interruptible;
2262
2263 return ret;
2264 }
2265
2266 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267 {
2268 struct drm_device *dev = crtc->dev;
2269 struct drm_i915_master_private *master_priv;
2270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272 if (!dev->primary->master)
2273 return;
2274
2275 master_priv = dev->primary->master->driver_priv;
2276 if (!master_priv->sarea_priv)
2277 return;
2278
2279 switch (intel_crtc->pipe) {
2280 case 0:
2281 master_priv->sarea_priv->pipeA_x = x;
2282 master_priv->sarea_priv->pipeA_y = y;
2283 break;
2284 case 1:
2285 master_priv->sarea_priv->pipeB_x = x;
2286 master_priv->sarea_priv->pipeB_y = y;
2287 break;
2288 default:
2289 break;
2290 }
2291 }
2292
2293 static int
2294 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295 struct drm_framebuffer *fb)
2296 {
2297 struct drm_device *dev = crtc->dev;
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300 struct drm_framebuffer *old_fb;
2301 int ret;
2302
2303 /* no fb bound */
2304 if (!fb) {
2305 DRM_ERROR("No FB bound\n");
2306 return 0;
2307 }
2308
2309 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311 plane_name(intel_crtc->plane),
2312 INTEL_INFO(dev)->num_pipes);
2313 return -EINVAL;
2314 }
2315
2316 mutex_lock(&dev->struct_mutex);
2317 ret = intel_pin_and_fence_fb_obj(dev,
2318 to_intel_framebuffer(fb)->obj,
2319 NULL);
2320 if (ret != 0) {
2321 mutex_unlock(&dev->struct_mutex);
2322 DRM_ERROR("pin & fence failed\n");
2323 return ret;
2324 }
2325
2326 /*
2327 * Update pipe size and adjust fitter if needed: the reason for this is
2328 * that in compute_mode_changes we check the native mode (not the pfit
2329 * mode) to see if we can flip rather than do a full mode set. In the
2330 * fastboot case, we'll flip, but if we don't update the pipesrc and
2331 * pfit state, we'll end up with a big fb scanned out into the wrong
2332 * sized surface.
2333 *
2334 * To fix this properly, we need to hoist the checks up into
2335 * compute_mode_changes (or above), check the actual pfit state and
2336 * whether the platform allows pfit disable with pipe active, and only
2337 * then update the pipesrc and pfit state, even on the flip path.
2338 */
2339 if (i915_fastboot) {
2340 const struct drm_display_mode *adjusted_mode =
2341 &intel_crtc->config.adjusted_mode;
2342
2343 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345 (adjusted_mode->crtc_vdisplay - 1));
2346 if (!intel_crtc->config.pch_pfit.enabled &&
2347 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352 }
2353 }
2354
2355 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356 if (ret) {
2357 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358 mutex_unlock(&dev->struct_mutex);
2359 DRM_ERROR("failed to update base address\n");
2360 return ret;
2361 }
2362
2363 old_fb = crtc->fb;
2364 crtc->fb = fb;
2365 crtc->x = x;
2366 crtc->y = y;
2367
2368 if (old_fb) {
2369 if (intel_crtc->active && old_fb != fb)
2370 intel_wait_for_vblank(dev, intel_crtc->pipe);
2371 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372 }
2373
2374 intel_update_fbc(dev);
2375 intel_edp_psr_update(dev);
2376 mutex_unlock(&dev->struct_mutex);
2377
2378 intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380 return 0;
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385 struct drm_device *dev = crtc->dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388 int pipe = intel_crtc->pipe;
2389 u32 reg, temp;
2390
2391 /* enable normal train */
2392 reg = FDI_TX_CTL(pipe);
2393 temp = I915_READ(reg);
2394 if (IS_IVYBRIDGE(dev)) {
2395 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397 } else {
2398 temp &= ~FDI_LINK_TRAIN_NONE;
2399 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400 }
2401 I915_WRITE(reg, temp);
2402
2403 reg = FDI_RX_CTL(pipe);
2404 temp = I915_READ(reg);
2405 if (HAS_PCH_CPT(dev)) {
2406 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408 } else {
2409 temp &= ~FDI_LINK_TRAIN_NONE;
2410 temp |= FDI_LINK_TRAIN_NONE;
2411 }
2412 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414 /* wait one idle pattern time */
2415 POSTING_READ(reg);
2416 udelay(1000);
2417
2418 /* IVB wants error correction enabled */
2419 if (IS_IVYBRIDGE(dev))
2420 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421 FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2425 {
2426 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2427 }
2428
2429 static void ivb_modeset_global_resources(struct drm_device *dev)
2430 {
2431 struct drm_i915_private *dev_priv = dev->dev_private;
2432 struct intel_crtc *pipe_B_crtc =
2433 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2434 struct intel_crtc *pipe_C_crtc =
2435 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2436 uint32_t temp;
2437
2438 /*
2439 * When everything is off disable fdi C so that we could enable fdi B
2440 * with all lanes. Note that we don't care about enabled pipes without
2441 * an enabled pch encoder.
2442 */
2443 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2444 !pipe_has_enabled_pch(pipe_C_crtc)) {
2445 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2446 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2447
2448 temp = I915_READ(SOUTH_CHICKEN1);
2449 temp &= ~FDI_BC_BIFURCATION_SELECT;
2450 DRM_DEBUG_KMS("disabling fdi C rx\n");
2451 I915_WRITE(SOUTH_CHICKEN1, temp);
2452 }
2453 }
2454
2455 /* The FDI link training functions for ILK/Ibexpeak. */
2456 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2457 {
2458 struct drm_device *dev = crtc->dev;
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2461 int pipe = intel_crtc->pipe;
2462 int plane = intel_crtc->plane;
2463 u32 reg, temp, tries;
2464
2465 /* FDI needs bits from pipe & plane first */
2466 assert_pipe_enabled(dev_priv, pipe);
2467 assert_plane_enabled(dev_priv, plane);
2468
2469 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2470 for train result */
2471 reg = FDI_RX_IMR(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_RX_SYMBOL_LOCK;
2474 temp &= ~FDI_RX_BIT_LOCK;
2475 I915_WRITE(reg, temp);
2476 I915_READ(reg);
2477 udelay(150);
2478
2479 /* enable CPU FDI TX and PCH FDI RX */
2480 reg = FDI_TX_CTL(pipe);
2481 temp = I915_READ(reg);
2482 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2483 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2484 temp &= ~FDI_LINK_TRAIN_NONE;
2485 temp |= FDI_LINK_TRAIN_PATTERN_1;
2486 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2487
2488 reg = FDI_RX_CTL(pipe);
2489 temp = I915_READ(reg);
2490 temp &= ~FDI_LINK_TRAIN_NONE;
2491 temp |= FDI_LINK_TRAIN_PATTERN_1;
2492 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2493
2494 POSTING_READ(reg);
2495 udelay(150);
2496
2497 /* Ironlake workaround, enable clock pointer after FDI enable*/
2498 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2499 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2500 FDI_RX_PHASE_SYNC_POINTER_EN);
2501
2502 reg = FDI_RX_IIR(pipe);
2503 for (tries = 0; tries < 5; tries++) {
2504 temp = I915_READ(reg);
2505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2506
2507 if ((temp & FDI_RX_BIT_LOCK)) {
2508 DRM_DEBUG_KMS("FDI train 1 done.\n");
2509 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2510 break;
2511 }
2512 }
2513 if (tries == 5)
2514 DRM_ERROR("FDI train 1 fail!\n");
2515
2516 /* Train 2 */
2517 reg = FDI_TX_CTL(pipe);
2518 temp = I915_READ(reg);
2519 temp &= ~FDI_LINK_TRAIN_NONE;
2520 temp |= FDI_LINK_TRAIN_PATTERN_2;
2521 I915_WRITE(reg, temp);
2522
2523 reg = FDI_RX_CTL(pipe);
2524 temp = I915_READ(reg);
2525 temp &= ~FDI_LINK_TRAIN_NONE;
2526 temp |= FDI_LINK_TRAIN_PATTERN_2;
2527 I915_WRITE(reg, temp);
2528
2529 POSTING_READ(reg);
2530 udelay(150);
2531
2532 reg = FDI_RX_IIR(pipe);
2533 for (tries = 0; tries < 5; tries++) {
2534 temp = I915_READ(reg);
2535 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2536
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 }
2543 if (tries == 5)
2544 DRM_ERROR("FDI train 2 fail!\n");
2545
2546 DRM_DEBUG_KMS("FDI train done\n");
2547
2548 }
2549
2550 static const int snb_b_fdi_train_param[] = {
2551 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2552 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2553 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2554 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2555 };
2556
2557 /* The FDI link training functions for SNB/Cougarpoint. */
2558 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2559 {
2560 struct drm_device *dev = crtc->dev;
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2563 int pipe = intel_crtc->pipe;
2564 u32 reg, temp, i, retry;
2565
2566 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2567 for train result */
2568 reg = FDI_RX_IMR(pipe);
2569 temp = I915_READ(reg);
2570 temp &= ~FDI_RX_SYMBOL_LOCK;
2571 temp &= ~FDI_RX_BIT_LOCK;
2572 I915_WRITE(reg, temp);
2573
2574 POSTING_READ(reg);
2575 udelay(150);
2576
2577 /* enable CPU FDI TX and PCH FDI RX */
2578 reg = FDI_TX_CTL(pipe);
2579 temp = I915_READ(reg);
2580 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2581 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2582 temp &= ~FDI_LINK_TRAIN_NONE;
2583 temp |= FDI_LINK_TRAIN_PATTERN_1;
2584 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2585 /* SNB-B */
2586 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2587 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2588
2589 I915_WRITE(FDI_RX_MISC(pipe),
2590 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2591
2592 reg = FDI_RX_CTL(pipe);
2593 temp = I915_READ(reg);
2594 if (HAS_PCH_CPT(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2596 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2597 } else {
2598 temp &= ~FDI_LINK_TRAIN_NONE;
2599 temp |= FDI_LINK_TRAIN_PATTERN_1;
2600 }
2601 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2602
2603 POSTING_READ(reg);
2604 udelay(150);
2605
2606 for (i = 0; i < 4; i++) {
2607 reg = FDI_TX_CTL(pipe);
2608 temp = I915_READ(reg);
2609 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610 temp |= snb_b_fdi_train_param[i];
2611 I915_WRITE(reg, temp);
2612
2613 POSTING_READ(reg);
2614 udelay(500);
2615
2616 for (retry = 0; retry < 5; retry++) {
2617 reg = FDI_RX_IIR(pipe);
2618 temp = I915_READ(reg);
2619 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2620 if (temp & FDI_RX_BIT_LOCK) {
2621 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2622 DRM_DEBUG_KMS("FDI train 1 done.\n");
2623 break;
2624 }
2625 udelay(50);
2626 }
2627 if (retry < 5)
2628 break;
2629 }
2630 if (i == 4)
2631 DRM_ERROR("FDI train 1 fail!\n");
2632
2633 /* Train 2 */
2634 reg = FDI_TX_CTL(pipe);
2635 temp = I915_READ(reg);
2636 temp &= ~FDI_LINK_TRAIN_NONE;
2637 temp |= FDI_LINK_TRAIN_PATTERN_2;
2638 if (IS_GEN6(dev)) {
2639 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2640 /* SNB-B */
2641 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2642 }
2643 I915_WRITE(reg, temp);
2644
2645 reg = FDI_RX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 if (HAS_PCH_CPT(dev)) {
2648 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2649 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2650 } else {
2651 temp &= ~FDI_LINK_TRAIN_NONE;
2652 temp |= FDI_LINK_TRAIN_PATTERN_2;
2653 }
2654 I915_WRITE(reg, temp);
2655
2656 POSTING_READ(reg);
2657 udelay(150);
2658
2659 for (i = 0; i < 4; i++) {
2660 reg = FDI_TX_CTL(pipe);
2661 temp = I915_READ(reg);
2662 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2663 temp |= snb_b_fdi_train_param[i];
2664 I915_WRITE(reg, temp);
2665
2666 POSTING_READ(reg);
2667 udelay(500);
2668
2669 for (retry = 0; retry < 5; retry++) {
2670 reg = FDI_RX_IIR(pipe);
2671 temp = I915_READ(reg);
2672 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2673 if (temp & FDI_RX_SYMBOL_LOCK) {
2674 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2675 DRM_DEBUG_KMS("FDI train 2 done.\n");
2676 break;
2677 }
2678 udelay(50);
2679 }
2680 if (retry < 5)
2681 break;
2682 }
2683 if (i == 4)
2684 DRM_ERROR("FDI train 2 fail!\n");
2685
2686 DRM_DEBUG_KMS("FDI train done.\n");
2687 }
2688
2689 /* Manual link training for Ivy Bridge A0 parts */
2690 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2691 {
2692 struct drm_device *dev = crtc->dev;
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2695 int pipe = intel_crtc->pipe;
2696 u32 reg, temp, i, j;
2697
2698 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2699 for train result */
2700 reg = FDI_RX_IMR(pipe);
2701 temp = I915_READ(reg);
2702 temp &= ~FDI_RX_SYMBOL_LOCK;
2703 temp &= ~FDI_RX_BIT_LOCK;
2704 I915_WRITE(reg, temp);
2705
2706 POSTING_READ(reg);
2707 udelay(150);
2708
2709 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2710 I915_READ(FDI_RX_IIR(pipe)));
2711
2712 /* Try each vswing and preemphasis setting twice before moving on */
2713 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2714 /* disable first in case we need to retry */
2715 reg = FDI_TX_CTL(pipe);
2716 temp = I915_READ(reg);
2717 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2718 temp &= ~FDI_TX_ENABLE;
2719 I915_WRITE(reg, temp);
2720
2721 reg = FDI_RX_CTL(pipe);
2722 temp = I915_READ(reg);
2723 temp &= ~FDI_LINK_TRAIN_AUTO;
2724 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2725 temp &= ~FDI_RX_ENABLE;
2726 I915_WRITE(reg, temp);
2727
2728 /* enable CPU FDI TX and PCH FDI RX */
2729 reg = FDI_TX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2732 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2733 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2734 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2735 temp |= snb_b_fdi_train_param[j/2];
2736 temp |= FDI_COMPOSITE_SYNC;
2737 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2738
2739 I915_WRITE(FDI_RX_MISC(pipe),
2740 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2741
2742 reg = FDI_RX_CTL(pipe);
2743 temp = I915_READ(reg);
2744 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2745 temp |= FDI_COMPOSITE_SYNC;
2746 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2747
2748 POSTING_READ(reg);
2749 udelay(1); /* should be 0.5us */
2750
2751 for (i = 0; i < 4; i++) {
2752 reg = FDI_RX_IIR(pipe);
2753 temp = I915_READ(reg);
2754 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2755
2756 if (temp & FDI_RX_BIT_LOCK ||
2757 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2758 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2759 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2760 i);
2761 break;
2762 }
2763 udelay(1); /* should be 0.5us */
2764 }
2765 if (i == 4) {
2766 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2767 continue;
2768 }
2769
2770 /* Train 2 */
2771 reg = FDI_TX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2774 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2775 I915_WRITE(reg, temp);
2776
2777 reg = FDI_RX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2780 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2781 I915_WRITE(reg, temp);
2782
2783 POSTING_READ(reg);
2784 udelay(2); /* should be 1.5us */
2785
2786 for (i = 0; i < 4; i++) {
2787 reg = FDI_RX_IIR(pipe);
2788 temp = I915_READ(reg);
2789 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2790
2791 if (temp & FDI_RX_SYMBOL_LOCK ||
2792 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2793 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2794 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2795 i);
2796 goto train_done;
2797 }
2798 udelay(2); /* should be 1.5us */
2799 }
2800 if (i == 4)
2801 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2802 }
2803
2804 train_done:
2805 DRM_DEBUG_KMS("FDI train done.\n");
2806 }
2807
2808 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2809 {
2810 struct drm_device *dev = intel_crtc->base.dev;
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 int pipe = intel_crtc->pipe;
2813 u32 reg, temp;
2814
2815
2816 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2817 reg = FDI_RX_CTL(pipe);
2818 temp = I915_READ(reg);
2819 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2820 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2821 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2822 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2823
2824 POSTING_READ(reg);
2825 udelay(200);
2826
2827 /* Switch from Rawclk to PCDclk */
2828 temp = I915_READ(reg);
2829 I915_WRITE(reg, temp | FDI_PCDCLK);
2830
2831 POSTING_READ(reg);
2832 udelay(200);
2833
2834 /* Enable CPU FDI TX PLL, always on for Ironlake */
2835 reg = FDI_TX_CTL(pipe);
2836 temp = I915_READ(reg);
2837 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2838 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2839
2840 POSTING_READ(reg);
2841 udelay(100);
2842 }
2843 }
2844
2845 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2846 {
2847 struct drm_device *dev = intel_crtc->base.dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 int pipe = intel_crtc->pipe;
2850 u32 reg, temp;
2851
2852 /* Switch from PCDclk to Rawclk */
2853 reg = FDI_RX_CTL(pipe);
2854 temp = I915_READ(reg);
2855 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2856
2857 /* Disable CPU FDI TX PLL */
2858 reg = FDI_TX_CTL(pipe);
2859 temp = I915_READ(reg);
2860 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2861
2862 POSTING_READ(reg);
2863 udelay(100);
2864
2865 reg = FDI_RX_CTL(pipe);
2866 temp = I915_READ(reg);
2867 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2868
2869 /* Wait for the clocks to turn off. */
2870 POSTING_READ(reg);
2871 udelay(100);
2872 }
2873
2874 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2875 {
2876 struct drm_device *dev = crtc->dev;
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2879 int pipe = intel_crtc->pipe;
2880 u32 reg, temp;
2881
2882 /* disable CPU FDI tx and PCH FDI rx */
2883 reg = FDI_TX_CTL(pipe);
2884 temp = I915_READ(reg);
2885 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2886 POSTING_READ(reg);
2887
2888 reg = FDI_RX_CTL(pipe);
2889 temp = I915_READ(reg);
2890 temp &= ~(0x7 << 16);
2891 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2892 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2893
2894 POSTING_READ(reg);
2895 udelay(100);
2896
2897 /* Ironlake workaround, disable clock pointer after downing FDI */
2898 if (HAS_PCH_IBX(dev)) {
2899 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2900 }
2901
2902 /* still set train pattern 1 */
2903 reg = FDI_TX_CTL(pipe);
2904 temp = I915_READ(reg);
2905 temp &= ~FDI_LINK_TRAIN_NONE;
2906 temp |= FDI_LINK_TRAIN_PATTERN_1;
2907 I915_WRITE(reg, temp);
2908
2909 reg = FDI_RX_CTL(pipe);
2910 temp = I915_READ(reg);
2911 if (HAS_PCH_CPT(dev)) {
2912 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914 } else {
2915 temp &= ~FDI_LINK_TRAIN_NONE;
2916 temp |= FDI_LINK_TRAIN_PATTERN_1;
2917 }
2918 /* BPC in FDI rx is consistent with that in PIPECONF */
2919 temp &= ~(0x07 << 16);
2920 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2921 I915_WRITE(reg, temp);
2922
2923 POSTING_READ(reg);
2924 udelay(100);
2925 }
2926
2927 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2928 {
2929 struct drm_device *dev = crtc->dev;
2930 struct drm_i915_private *dev_priv = dev->dev_private;
2931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2932 unsigned long flags;
2933 bool pending;
2934
2935 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2936 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2937 return false;
2938
2939 spin_lock_irqsave(&dev->event_lock, flags);
2940 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2941 spin_unlock_irqrestore(&dev->event_lock, flags);
2942
2943 return pending;
2944 }
2945
2946 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2947 {
2948 struct drm_device *dev = crtc->dev;
2949 struct drm_i915_private *dev_priv = dev->dev_private;
2950
2951 if (crtc->fb == NULL)
2952 return;
2953
2954 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2955
2956 wait_event(dev_priv->pending_flip_queue,
2957 !intel_crtc_has_pending_flip(crtc));
2958
2959 mutex_lock(&dev->struct_mutex);
2960 intel_finish_fb(crtc->fb);
2961 mutex_unlock(&dev->struct_mutex);
2962 }
2963
2964 /* Program iCLKIP clock to the desired frequency */
2965 static void lpt_program_iclkip(struct drm_crtc *crtc)
2966 {
2967 struct drm_device *dev = crtc->dev;
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2970 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2971 u32 temp;
2972
2973 mutex_lock(&dev_priv->dpio_lock);
2974
2975 /* It is necessary to ungate the pixclk gate prior to programming
2976 * the divisors, and gate it back when it is done.
2977 */
2978 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2979
2980 /* Disable SSCCTL */
2981 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2982 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2983 SBI_SSCCTL_DISABLE,
2984 SBI_ICLK);
2985
2986 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2987 if (clock == 20000) {
2988 auxdiv = 1;
2989 divsel = 0x41;
2990 phaseinc = 0x20;
2991 } else {
2992 /* The iCLK virtual clock root frequency is in MHz,
2993 * but the adjusted_mode->crtc_clock in in KHz. To get the
2994 * divisors, it is necessary to divide one by another, so we
2995 * convert the virtual clock precision to KHz here for higher
2996 * precision.
2997 */
2998 u32 iclk_virtual_root_freq = 172800 * 1000;
2999 u32 iclk_pi_range = 64;
3000 u32 desired_divisor, msb_divisor_value, pi_value;
3001
3002 desired_divisor = (iclk_virtual_root_freq / clock);
3003 msb_divisor_value = desired_divisor / iclk_pi_range;
3004 pi_value = desired_divisor % iclk_pi_range;
3005
3006 auxdiv = 0;
3007 divsel = msb_divisor_value - 2;
3008 phaseinc = pi_value;
3009 }
3010
3011 /* This should not happen with any sane values */
3012 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3013 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3014 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3015 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3016
3017 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3018 clock,
3019 auxdiv,
3020 divsel,
3021 phasedir,
3022 phaseinc);
3023
3024 /* Program SSCDIVINTPHASE6 */
3025 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3026 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3027 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3028 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3029 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3030 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3031 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3032 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3033
3034 /* Program SSCAUXDIV */
3035 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3036 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3037 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3038 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3039
3040 /* Enable modulator and associated divider */
3041 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3042 temp &= ~SBI_SSCCTL_DISABLE;
3043 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3044
3045 /* Wait for initialization time */
3046 udelay(24);
3047
3048 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3049
3050 mutex_unlock(&dev_priv->dpio_lock);
3051 }
3052
3053 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3054 enum pipe pch_transcoder)
3055 {
3056 struct drm_device *dev = crtc->base.dev;
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3059
3060 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3061 I915_READ(HTOTAL(cpu_transcoder)));
3062 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3063 I915_READ(HBLANK(cpu_transcoder)));
3064 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3065 I915_READ(HSYNC(cpu_transcoder)));
3066
3067 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3068 I915_READ(VTOTAL(cpu_transcoder)));
3069 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3070 I915_READ(VBLANK(cpu_transcoder)));
3071 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3072 I915_READ(VSYNC(cpu_transcoder)));
3073 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3074 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3075 }
3076
3077 /*
3078 * Enable PCH resources required for PCH ports:
3079 * - PCH PLLs
3080 * - FDI training & RX/TX
3081 * - update transcoder timings
3082 * - DP transcoding bits
3083 * - transcoder
3084 */
3085 static void ironlake_pch_enable(struct drm_crtc *crtc)
3086 {
3087 struct drm_device *dev = crtc->dev;
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3090 int pipe = intel_crtc->pipe;
3091 u32 reg, temp;
3092
3093 assert_pch_transcoder_disabled(dev_priv, pipe);
3094
3095 /* Write the TU size bits before fdi link training, so that error
3096 * detection works. */
3097 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3098 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3099
3100 /* For PCH output, training FDI link */
3101 dev_priv->display.fdi_link_train(crtc);
3102
3103 /* We need to program the right clock selection before writing the pixel
3104 * mutliplier into the DPLL. */
3105 if (HAS_PCH_CPT(dev)) {
3106 u32 sel;
3107
3108 temp = I915_READ(PCH_DPLL_SEL);
3109 temp |= TRANS_DPLL_ENABLE(pipe);
3110 sel = TRANS_DPLLB_SEL(pipe);
3111 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3112 temp |= sel;
3113 else
3114 temp &= ~sel;
3115 I915_WRITE(PCH_DPLL_SEL, temp);
3116 }
3117
3118 /* XXX: pch pll's can be enabled any time before we enable the PCH
3119 * transcoder, and we actually should do this to not upset any PCH
3120 * transcoder that already use the clock when we share it.
3121 *
3122 * Note that enable_shared_dpll tries to do the right thing, but
3123 * get_shared_dpll unconditionally resets the pll - we need that to have
3124 * the right LVDS enable sequence. */
3125 ironlake_enable_shared_dpll(intel_crtc);
3126
3127 /* set transcoder timing, panel must allow it */
3128 assert_panel_unlocked(dev_priv, pipe);
3129 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3130
3131 intel_fdi_normal_train(crtc);
3132
3133 /* For PCH DP, enable TRANS_DP_CTL */
3134 if (HAS_PCH_CPT(dev) &&
3135 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3136 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3137 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3138 reg = TRANS_DP_CTL(pipe);
3139 temp = I915_READ(reg);
3140 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3141 TRANS_DP_SYNC_MASK |
3142 TRANS_DP_BPC_MASK);
3143 temp |= (TRANS_DP_OUTPUT_ENABLE |
3144 TRANS_DP_ENH_FRAMING);
3145 temp |= bpc << 9; /* same format but at 11:9 */
3146
3147 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3148 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3149 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3150 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3151
3152 switch (intel_trans_dp_port_sel(crtc)) {
3153 case PCH_DP_B:
3154 temp |= TRANS_DP_PORT_SEL_B;
3155 break;
3156 case PCH_DP_C:
3157 temp |= TRANS_DP_PORT_SEL_C;
3158 break;
3159 case PCH_DP_D:
3160 temp |= TRANS_DP_PORT_SEL_D;
3161 break;
3162 default:
3163 BUG();
3164 }
3165
3166 I915_WRITE(reg, temp);
3167 }
3168
3169 ironlake_enable_pch_transcoder(dev_priv, pipe);
3170 }
3171
3172 static void lpt_pch_enable(struct drm_crtc *crtc)
3173 {
3174 struct drm_device *dev = crtc->dev;
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3177 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3178
3179 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3180
3181 lpt_program_iclkip(crtc);
3182
3183 /* Set transcoder timing. */
3184 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3185
3186 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3187 }
3188
3189 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3190 {
3191 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3192
3193 if (pll == NULL)
3194 return;
3195
3196 if (pll->refcount == 0) {
3197 WARN(1, "bad %s refcount\n", pll->name);
3198 return;
3199 }
3200
3201 if (--pll->refcount == 0) {
3202 WARN_ON(pll->on);
3203 WARN_ON(pll->active);
3204 }
3205
3206 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3207 }
3208
3209 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3210 {
3211 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3212 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3213 enum intel_dpll_id i;
3214
3215 if (pll) {
3216 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3217 crtc->base.base.id, pll->name);
3218 intel_put_shared_dpll(crtc);
3219 }
3220
3221 if (HAS_PCH_IBX(dev_priv->dev)) {
3222 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3223 i = (enum intel_dpll_id) crtc->pipe;
3224 pll = &dev_priv->shared_dplls[i];
3225
3226 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3227 crtc->base.base.id, pll->name);
3228
3229 goto found;
3230 }
3231
3232 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3233 pll = &dev_priv->shared_dplls[i];
3234
3235 /* Only want to check enabled timings first */
3236 if (pll->refcount == 0)
3237 continue;
3238
3239 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3240 sizeof(pll->hw_state)) == 0) {
3241 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3242 crtc->base.base.id,
3243 pll->name, pll->refcount, pll->active);
3244
3245 goto found;
3246 }
3247 }
3248
3249 /* Ok no matching timings, maybe there's a free one? */
3250 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3251 pll = &dev_priv->shared_dplls[i];
3252 if (pll->refcount == 0) {
3253 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3254 crtc->base.base.id, pll->name);
3255 goto found;
3256 }
3257 }
3258
3259 return NULL;
3260
3261 found:
3262 crtc->config.shared_dpll = i;
3263 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3264 pipe_name(crtc->pipe));
3265
3266 if (pll->active == 0) {
3267 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3268 sizeof(pll->hw_state));
3269
3270 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3271 WARN_ON(pll->on);
3272 assert_shared_dpll_disabled(dev_priv, pll);
3273
3274 pll->mode_set(dev_priv, pll);
3275 }
3276 pll->refcount++;
3277
3278 return pll;
3279 }
3280
3281 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3282 {
3283 struct drm_i915_private *dev_priv = dev->dev_private;
3284 int dslreg = PIPEDSL(pipe);
3285 u32 temp;
3286
3287 temp = I915_READ(dslreg);
3288 udelay(500);
3289 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3290 if (wait_for(I915_READ(dslreg) != temp, 5))
3291 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3292 }
3293 }
3294
3295 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3296 {
3297 struct drm_device *dev = crtc->base.dev;
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299 int pipe = crtc->pipe;
3300
3301 if (crtc->config.pch_pfit.enabled) {
3302 /* Force use of hard-coded filter coefficients
3303 * as some pre-programmed values are broken,
3304 * e.g. x201.
3305 */
3306 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3307 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3308 PF_PIPE_SEL_IVB(pipe));
3309 else
3310 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3311 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3312 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3313 }
3314 }
3315
3316 static void intel_enable_planes(struct drm_crtc *crtc)
3317 {
3318 struct drm_device *dev = crtc->dev;
3319 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3320 struct intel_plane *intel_plane;
3321
3322 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3323 if (intel_plane->pipe == pipe)
3324 intel_plane_restore(&intel_plane->base);
3325 }
3326
3327 static void intel_disable_planes(struct drm_crtc *crtc)
3328 {
3329 struct drm_device *dev = crtc->dev;
3330 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3331 struct intel_plane *intel_plane;
3332
3333 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3334 if (intel_plane->pipe == pipe)
3335 intel_plane_disable(&intel_plane->base);
3336 }
3337
3338 void hsw_enable_ips(struct intel_crtc *crtc)
3339 {
3340 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3341
3342 if (!crtc->config.ips_enabled)
3343 return;
3344
3345 /* We can only enable IPS after we enable a plane and wait for a vblank.
3346 * We guarantee that the plane is enabled by calling intel_enable_ips
3347 * only after intel_enable_plane. And intel_enable_plane already waits
3348 * for a vblank, so all we need to do here is to enable the IPS bit. */
3349 assert_plane_enabled(dev_priv, crtc->plane);
3350 I915_WRITE(IPS_CTL, IPS_ENABLE);
3351
3352 /* The bit only becomes 1 in the next vblank, so this wait here is
3353 * essentially intel_wait_for_vblank. If we don't have this and don't
3354 * wait for vblanks until the end of crtc_enable, then the HW state
3355 * readout code will complain that the expected IPS_CTL value is not the
3356 * one we read. */
3357 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3358 DRM_ERROR("Timed out waiting for IPS enable\n");
3359 }
3360
3361 void hsw_disable_ips(struct intel_crtc *crtc)
3362 {
3363 struct drm_device *dev = crtc->base.dev;
3364 struct drm_i915_private *dev_priv = dev->dev_private;
3365
3366 if (!crtc->config.ips_enabled)
3367 return;
3368
3369 assert_plane_enabled(dev_priv, crtc->plane);
3370 I915_WRITE(IPS_CTL, 0);
3371 POSTING_READ(IPS_CTL);
3372
3373 /* We need to wait for a vblank before we can disable the plane. */
3374 intel_wait_for_vblank(dev, crtc->pipe);
3375 }
3376
3377 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3378 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3379 {
3380 struct drm_device *dev = crtc->dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383 enum pipe pipe = intel_crtc->pipe;
3384 int palreg = PALETTE(pipe);
3385 int i;
3386 bool reenable_ips = false;
3387
3388 /* The clocks have to be on to load the palette. */
3389 if (!crtc->enabled || !intel_crtc->active)
3390 return;
3391
3392 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3394 assert_dsi_pll_enabled(dev_priv);
3395 else
3396 assert_pll_enabled(dev_priv, pipe);
3397 }
3398
3399 /* use legacy palette for Ironlake */
3400 if (HAS_PCH_SPLIT(dev))
3401 palreg = LGC_PALETTE(pipe);
3402
3403 /* Workaround : Do not read or write the pipe palette/gamma data while
3404 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3405 */
3406 if (intel_crtc->config.ips_enabled &&
3407 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3408 GAMMA_MODE_MODE_SPLIT)) {
3409 hsw_disable_ips(intel_crtc);
3410 reenable_ips = true;
3411 }
3412
3413 for (i = 0; i < 256; i++) {
3414 I915_WRITE(palreg + 4 * i,
3415 (intel_crtc->lut_r[i] << 16) |
3416 (intel_crtc->lut_g[i] << 8) |
3417 intel_crtc->lut_b[i]);
3418 }
3419
3420 if (reenable_ips)
3421 hsw_enable_ips(intel_crtc);
3422 }
3423
3424 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3425 {
3426 struct drm_device *dev = crtc->dev;
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3429 struct intel_encoder *encoder;
3430 int pipe = intel_crtc->pipe;
3431 int plane = intel_crtc->plane;
3432
3433 WARN_ON(!crtc->enabled);
3434
3435 if (intel_crtc->active)
3436 return;
3437
3438 intel_crtc->active = true;
3439
3440 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3441 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3442
3443 for_each_encoder_on_crtc(dev, crtc, encoder)
3444 if (encoder->pre_enable)
3445 encoder->pre_enable(encoder);
3446
3447 if (intel_crtc->config.has_pch_encoder) {
3448 /* Note: FDI PLL enabling _must_ be done before we enable the
3449 * cpu pipes, hence this is separate from all the other fdi/pch
3450 * enabling. */
3451 ironlake_fdi_pll_enable(intel_crtc);
3452 } else {
3453 assert_fdi_tx_disabled(dev_priv, pipe);
3454 assert_fdi_rx_disabled(dev_priv, pipe);
3455 }
3456
3457 ironlake_pfit_enable(intel_crtc);
3458
3459 /*
3460 * On ILK+ LUT must be loaded before the pipe is running but with
3461 * clocks enabled
3462 */
3463 intel_crtc_load_lut(crtc);
3464
3465 intel_update_watermarks(crtc);
3466 intel_enable_pipe(dev_priv, pipe,
3467 intel_crtc->config.has_pch_encoder, false);
3468 intel_enable_primary_plane(dev_priv, plane, pipe);
3469 intel_enable_planes(crtc);
3470 intel_crtc_update_cursor(crtc, true);
3471
3472 if (intel_crtc->config.has_pch_encoder)
3473 ironlake_pch_enable(crtc);
3474
3475 mutex_lock(&dev->struct_mutex);
3476 intel_update_fbc(dev);
3477 mutex_unlock(&dev->struct_mutex);
3478
3479 for_each_encoder_on_crtc(dev, crtc, encoder)
3480 encoder->enable(encoder);
3481
3482 if (HAS_PCH_CPT(dev))
3483 cpt_verify_modeset(dev, intel_crtc->pipe);
3484
3485 /*
3486 * There seems to be a race in PCH platform hw (at least on some
3487 * outputs) where an enabled pipe still completes any pageflip right
3488 * away (as if the pipe is off) instead of waiting for vblank. As soon
3489 * as the first vblank happend, everything works as expected. Hence just
3490 * wait for one vblank before returning to avoid strange things
3491 * happening.
3492 */
3493 intel_wait_for_vblank(dev, intel_crtc->pipe);
3494 }
3495
3496 /* IPS only exists on ULT machines and is tied to pipe A. */
3497 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3498 {
3499 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3500 }
3501
3502 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3503 {
3504 struct drm_device *dev = crtc->dev;
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3507 int pipe = intel_crtc->pipe;
3508 int plane = intel_crtc->plane;
3509
3510 intel_enable_primary_plane(dev_priv, plane, pipe);
3511 intel_enable_planes(crtc);
3512 intel_crtc_update_cursor(crtc, true);
3513
3514 hsw_enable_ips(intel_crtc);
3515
3516 mutex_lock(&dev->struct_mutex);
3517 intel_update_fbc(dev);
3518 mutex_unlock(&dev->struct_mutex);
3519 }
3520
3521 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3522 {
3523 struct drm_device *dev = crtc->dev;
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3526 int pipe = intel_crtc->pipe;
3527 int plane = intel_crtc->plane;
3528
3529 intel_crtc_wait_for_pending_flips(crtc);
3530 drm_vblank_off(dev, pipe);
3531
3532 /* FBC must be disabled before disabling the plane on HSW. */
3533 if (dev_priv->fbc.plane == plane)
3534 intel_disable_fbc(dev);
3535
3536 hsw_disable_ips(intel_crtc);
3537
3538 intel_crtc_update_cursor(crtc, false);
3539 intel_disable_planes(crtc);
3540 intel_disable_primary_plane(dev_priv, plane, pipe);
3541 }
3542
3543 /*
3544 * This implements the workaround described in the "notes" section of the mode
3545 * set sequence documentation. When going from no pipes or single pipe to
3546 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3547 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3548 */
3549 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3550 {
3551 struct drm_device *dev = crtc->base.dev;
3552 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3553
3554 /* We want to get the other_active_crtc only if there's only 1 other
3555 * active crtc. */
3556 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3557 if (!crtc_it->active || crtc_it == crtc)
3558 continue;
3559
3560 if (other_active_crtc)
3561 return;
3562
3563 other_active_crtc = crtc_it;
3564 }
3565 if (!other_active_crtc)
3566 return;
3567
3568 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3569 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3570 }
3571
3572 static void haswell_crtc_enable(struct drm_crtc *crtc)
3573 {
3574 struct drm_device *dev = crtc->dev;
3575 struct drm_i915_private *dev_priv = dev->dev_private;
3576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3577 struct intel_encoder *encoder;
3578 int pipe = intel_crtc->pipe;
3579
3580 WARN_ON(!crtc->enabled);
3581
3582 if (intel_crtc->active)
3583 return;
3584
3585 intel_crtc->active = true;
3586
3587 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3588 if (intel_crtc->config.has_pch_encoder)
3589 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3590
3591 if (intel_crtc->config.has_pch_encoder)
3592 dev_priv->display.fdi_link_train(crtc);
3593
3594 for_each_encoder_on_crtc(dev, crtc, encoder)
3595 if (encoder->pre_enable)
3596 encoder->pre_enable(encoder);
3597
3598 intel_ddi_enable_pipe_clock(intel_crtc);
3599
3600 ironlake_pfit_enable(intel_crtc);
3601
3602 /*
3603 * On ILK+ LUT must be loaded before the pipe is running but with
3604 * clocks enabled
3605 */
3606 intel_crtc_load_lut(crtc);
3607
3608 intel_ddi_set_pipe_settings(crtc);
3609 intel_ddi_enable_transcoder_func(crtc);
3610
3611 intel_update_watermarks(crtc);
3612 intel_enable_pipe(dev_priv, pipe,
3613 intel_crtc->config.has_pch_encoder, false);
3614
3615 if (intel_crtc->config.has_pch_encoder)
3616 lpt_pch_enable(crtc);
3617
3618 for_each_encoder_on_crtc(dev, crtc, encoder) {
3619 encoder->enable(encoder);
3620 intel_opregion_notify_encoder(encoder, true);
3621 }
3622
3623 /* If we change the relative order between pipe/planes enabling, we need
3624 * to change the workaround. */
3625 haswell_mode_set_planes_workaround(intel_crtc);
3626 haswell_crtc_enable_planes(crtc);
3627
3628 /*
3629 * There seems to be a race in PCH platform hw (at least on some
3630 * outputs) where an enabled pipe still completes any pageflip right
3631 * away (as if the pipe is off) instead of waiting for vblank. As soon
3632 * as the first vblank happend, everything works as expected. Hence just
3633 * wait for one vblank before returning to avoid strange things
3634 * happening.
3635 */
3636 intel_wait_for_vblank(dev, intel_crtc->pipe);
3637 }
3638
3639 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3640 {
3641 struct drm_device *dev = crtc->base.dev;
3642 struct drm_i915_private *dev_priv = dev->dev_private;
3643 int pipe = crtc->pipe;
3644
3645 /* To avoid upsetting the power well on haswell only disable the pfit if
3646 * it's in use. The hw state code will make sure we get this right. */
3647 if (crtc->config.pch_pfit.enabled) {
3648 I915_WRITE(PF_CTL(pipe), 0);
3649 I915_WRITE(PF_WIN_POS(pipe), 0);
3650 I915_WRITE(PF_WIN_SZ(pipe), 0);
3651 }
3652 }
3653
3654 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3655 {
3656 struct drm_device *dev = crtc->dev;
3657 struct drm_i915_private *dev_priv = dev->dev_private;
3658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3659 struct intel_encoder *encoder;
3660 int pipe = intel_crtc->pipe;
3661 int plane = intel_crtc->plane;
3662 u32 reg, temp;
3663
3664
3665 if (!intel_crtc->active)
3666 return;
3667
3668 for_each_encoder_on_crtc(dev, crtc, encoder)
3669 encoder->disable(encoder);
3670
3671 intel_crtc_wait_for_pending_flips(crtc);
3672 drm_vblank_off(dev, pipe);
3673
3674 if (dev_priv->fbc.plane == plane)
3675 intel_disable_fbc(dev);
3676
3677 intel_crtc_update_cursor(crtc, false);
3678 intel_disable_planes(crtc);
3679 intel_disable_primary_plane(dev_priv, plane, pipe);
3680
3681 if (intel_crtc->config.has_pch_encoder)
3682 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3683
3684 intel_disable_pipe(dev_priv, pipe);
3685
3686 ironlake_pfit_disable(intel_crtc);
3687
3688 for_each_encoder_on_crtc(dev, crtc, encoder)
3689 if (encoder->post_disable)
3690 encoder->post_disable(encoder);
3691
3692 if (intel_crtc->config.has_pch_encoder) {
3693 ironlake_fdi_disable(crtc);
3694
3695 ironlake_disable_pch_transcoder(dev_priv, pipe);
3696 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3697
3698 if (HAS_PCH_CPT(dev)) {
3699 /* disable TRANS_DP_CTL */
3700 reg = TRANS_DP_CTL(pipe);
3701 temp = I915_READ(reg);
3702 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3703 TRANS_DP_PORT_SEL_MASK);
3704 temp |= TRANS_DP_PORT_SEL_NONE;
3705 I915_WRITE(reg, temp);
3706
3707 /* disable DPLL_SEL */
3708 temp = I915_READ(PCH_DPLL_SEL);
3709 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3710 I915_WRITE(PCH_DPLL_SEL, temp);
3711 }
3712
3713 /* disable PCH DPLL */
3714 intel_disable_shared_dpll(intel_crtc);
3715
3716 ironlake_fdi_pll_disable(intel_crtc);
3717 }
3718
3719 intel_crtc->active = false;
3720 intel_update_watermarks(crtc);
3721
3722 mutex_lock(&dev->struct_mutex);
3723 intel_update_fbc(dev);
3724 mutex_unlock(&dev->struct_mutex);
3725 }
3726
3727 static void haswell_crtc_disable(struct drm_crtc *crtc)
3728 {
3729 struct drm_device *dev = crtc->dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
3731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3732 struct intel_encoder *encoder;
3733 int pipe = intel_crtc->pipe;
3734 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3735
3736 if (!intel_crtc->active)
3737 return;
3738
3739 haswell_crtc_disable_planes(crtc);
3740
3741 for_each_encoder_on_crtc(dev, crtc, encoder) {
3742 intel_opregion_notify_encoder(encoder, false);
3743 encoder->disable(encoder);
3744 }
3745
3746 if (intel_crtc->config.has_pch_encoder)
3747 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3748 intel_disable_pipe(dev_priv, pipe);
3749
3750 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3751
3752 ironlake_pfit_disable(intel_crtc);
3753
3754 intel_ddi_disable_pipe_clock(intel_crtc);
3755
3756 for_each_encoder_on_crtc(dev, crtc, encoder)
3757 if (encoder->post_disable)
3758 encoder->post_disable(encoder);
3759
3760 if (intel_crtc->config.has_pch_encoder) {
3761 lpt_disable_pch_transcoder(dev_priv);
3762 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3763 intel_ddi_fdi_disable(crtc);
3764 }
3765
3766 intel_crtc->active = false;
3767 intel_update_watermarks(crtc);
3768
3769 mutex_lock(&dev->struct_mutex);
3770 intel_update_fbc(dev);
3771 mutex_unlock(&dev->struct_mutex);
3772 }
3773
3774 static void ironlake_crtc_off(struct drm_crtc *crtc)
3775 {
3776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3777 intel_put_shared_dpll(intel_crtc);
3778 }
3779
3780 static void haswell_crtc_off(struct drm_crtc *crtc)
3781 {
3782 intel_ddi_put_crtc_pll(crtc);
3783 }
3784
3785 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3786 {
3787 if (!enable && intel_crtc->overlay) {
3788 struct drm_device *dev = intel_crtc->base.dev;
3789 struct drm_i915_private *dev_priv = dev->dev_private;
3790
3791 mutex_lock(&dev->struct_mutex);
3792 dev_priv->mm.interruptible = false;
3793 (void) intel_overlay_switch_off(intel_crtc->overlay);
3794 dev_priv->mm.interruptible = true;
3795 mutex_unlock(&dev->struct_mutex);
3796 }
3797
3798 /* Let userspace switch the overlay on again. In most cases userspace
3799 * has to recompute where to put it anyway.
3800 */
3801 }
3802
3803 /**
3804 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3805 * cursor plane briefly if not already running after enabling the display
3806 * plane.
3807 * This workaround avoids occasional blank screens when self refresh is
3808 * enabled.
3809 */
3810 static void
3811 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3812 {
3813 u32 cntl = I915_READ(CURCNTR(pipe));
3814
3815 if ((cntl & CURSOR_MODE) == 0) {
3816 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3817
3818 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3819 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3820 intel_wait_for_vblank(dev_priv->dev, pipe);
3821 I915_WRITE(CURCNTR(pipe), cntl);
3822 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3823 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3824 }
3825 }
3826
3827 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3828 {
3829 struct drm_device *dev = crtc->base.dev;
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 struct intel_crtc_config *pipe_config = &crtc->config;
3832
3833 if (!crtc->config.gmch_pfit.control)
3834 return;
3835
3836 /*
3837 * The panel fitter should only be adjusted whilst the pipe is disabled,
3838 * according to register description and PRM.
3839 */
3840 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3841 assert_pipe_disabled(dev_priv, crtc->pipe);
3842
3843 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3844 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3845
3846 /* Border color in case we don't scale up to the full screen. Black by
3847 * default, change to something else for debugging. */
3848 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3849 }
3850
3851 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3852 {
3853 struct drm_device *dev = crtc->dev;
3854 struct drm_i915_private *dev_priv = dev->dev_private;
3855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3856 struct intel_encoder *encoder;
3857 int pipe = intel_crtc->pipe;
3858 int plane = intel_crtc->plane;
3859 bool is_dsi;
3860
3861 WARN_ON(!crtc->enabled);
3862
3863 if (intel_crtc->active)
3864 return;
3865
3866 intel_crtc->active = true;
3867
3868 for_each_encoder_on_crtc(dev, crtc, encoder)
3869 if (encoder->pre_pll_enable)
3870 encoder->pre_pll_enable(encoder);
3871
3872 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3873
3874 if (!is_dsi)
3875 vlv_enable_pll(intel_crtc);
3876
3877 for_each_encoder_on_crtc(dev, crtc, encoder)
3878 if (encoder->pre_enable)
3879 encoder->pre_enable(encoder);
3880
3881 i9xx_pfit_enable(intel_crtc);
3882
3883 intel_crtc_load_lut(crtc);
3884
3885 intel_update_watermarks(crtc);
3886 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3887 intel_enable_primary_plane(dev_priv, plane, pipe);
3888 intel_enable_planes(crtc);
3889 intel_crtc_update_cursor(crtc, true);
3890
3891 intel_update_fbc(dev);
3892
3893 for_each_encoder_on_crtc(dev, crtc, encoder)
3894 encoder->enable(encoder);
3895 }
3896
3897 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3898 {
3899 struct drm_device *dev = crtc->dev;
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902 struct intel_encoder *encoder;
3903 int pipe = intel_crtc->pipe;
3904 int plane = intel_crtc->plane;
3905
3906 WARN_ON(!crtc->enabled);
3907
3908 if (intel_crtc->active)
3909 return;
3910
3911 intel_crtc->active = true;
3912
3913 for_each_encoder_on_crtc(dev, crtc, encoder)
3914 if (encoder->pre_enable)
3915 encoder->pre_enable(encoder);
3916
3917 i9xx_enable_pll(intel_crtc);
3918
3919 i9xx_pfit_enable(intel_crtc);
3920
3921 intel_crtc_load_lut(crtc);
3922
3923 intel_update_watermarks(crtc);
3924 intel_enable_pipe(dev_priv, pipe, false, false);
3925 intel_enable_primary_plane(dev_priv, plane, pipe);
3926 intel_enable_planes(crtc);
3927 /* The fixup needs to happen before cursor is enabled */
3928 if (IS_G4X(dev))
3929 g4x_fixup_plane(dev_priv, pipe);
3930 intel_crtc_update_cursor(crtc, true);
3931
3932 /* Give the overlay scaler a chance to enable if it's on this pipe */
3933 intel_crtc_dpms_overlay(intel_crtc, true);
3934
3935 intel_update_fbc(dev);
3936
3937 for_each_encoder_on_crtc(dev, crtc, encoder)
3938 encoder->enable(encoder);
3939 }
3940
3941 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3942 {
3943 struct drm_device *dev = crtc->base.dev;
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945
3946 if (!crtc->config.gmch_pfit.control)
3947 return;
3948
3949 assert_pipe_disabled(dev_priv, crtc->pipe);
3950
3951 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3952 I915_READ(PFIT_CONTROL));
3953 I915_WRITE(PFIT_CONTROL, 0);
3954 }
3955
3956 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961 struct intel_encoder *encoder;
3962 int pipe = intel_crtc->pipe;
3963 int plane = intel_crtc->plane;
3964
3965 if (!intel_crtc->active)
3966 return;
3967
3968 for_each_encoder_on_crtc(dev, crtc, encoder)
3969 encoder->disable(encoder);
3970
3971 /* Give the overlay scaler a chance to disable if it's on this pipe */
3972 intel_crtc_wait_for_pending_flips(crtc);
3973 drm_vblank_off(dev, pipe);
3974
3975 if (dev_priv->fbc.plane == plane)
3976 intel_disable_fbc(dev);
3977
3978 intel_crtc_dpms_overlay(intel_crtc, false);
3979 intel_crtc_update_cursor(crtc, false);
3980 intel_disable_planes(crtc);
3981 intel_disable_primary_plane(dev_priv, plane, pipe);
3982
3983 intel_disable_pipe(dev_priv, pipe);
3984
3985 i9xx_pfit_disable(intel_crtc);
3986
3987 for_each_encoder_on_crtc(dev, crtc, encoder)
3988 if (encoder->post_disable)
3989 encoder->post_disable(encoder);
3990
3991 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3992 vlv_disable_pll(dev_priv, pipe);
3993 else if (!IS_VALLEYVIEW(dev))
3994 i9xx_disable_pll(dev_priv, pipe);
3995
3996 intel_crtc->active = false;
3997 intel_update_watermarks(crtc);
3998
3999 intel_update_fbc(dev);
4000 }
4001
4002 static void i9xx_crtc_off(struct drm_crtc *crtc)
4003 {
4004 }
4005
4006 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4007 bool enabled)
4008 {
4009 struct drm_device *dev = crtc->dev;
4010 struct drm_i915_master_private *master_priv;
4011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4012 int pipe = intel_crtc->pipe;
4013
4014 if (!dev->primary->master)
4015 return;
4016
4017 master_priv = dev->primary->master->driver_priv;
4018 if (!master_priv->sarea_priv)
4019 return;
4020
4021 switch (pipe) {
4022 case 0:
4023 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4024 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4025 break;
4026 case 1:
4027 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4028 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4029 break;
4030 default:
4031 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4032 break;
4033 }
4034 }
4035
4036 /**
4037 * Sets the power management mode of the pipe and plane.
4038 */
4039 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4040 {
4041 struct drm_device *dev = crtc->dev;
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043 struct intel_encoder *intel_encoder;
4044 bool enable = false;
4045
4046 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4047 enable |= intel_encoder->connectors_active;
4048
4049 if (enable)
4050 dev_priv->display.crtc_enable(crtc);
4051 else
4052 dev_priv->display.crtc_disable(crtc);
4053
4054 intel_crtc_update_sarea(crtc, enable);
4055 }
4056
4057 static void intel_crtc_disable(struct drm_crtc *crtc)
4058 {
4059 struct drm_device *dev = crtc->dev;
4060 struct drm_connector *connector;
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4063
4064 /* crtc should still be enabled when we disable it. */
4065 WARN_ON(!crtc->enabled);
4066
4067 dev_priv->display.crtc_disable(crtc);
4068 intel_crtc->eld_vld = false;
4069 intel_crtc_update_sarea(crtc, false);
4070 dev_priv->display.off(crtc);
4071
4072 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4073 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4074 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4075
4076 if (crtc->fb) {
4077 mutex_lock(&dev->struct_mutex);
4078 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4079 mutex_unlock(&dev->struct_mutex);
4080 crtc->fb = NULL;
4081 }
4082
4083 /* Update computed state. */
4084 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4085 if (!connector->encoder || !connector->encoder->crtc)
4086 continue;
4087
4088 if (connector->encoder->crtc != crtc)
4089 continue;
4090
4091 connector->dpms = DRM_MODE_DPMS_OFF;
4092 to_intel_encoder(connector->encoder)->connectors_active = false;
4093 }
4094 }
4095
4096 void intel_encoder_destroy(struct drm_encoder *encoder)
4097 {
4098 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4099
4100 drm_encoder_cleanup(encoder);
4101 kfree(intel_encoder);
4102 }
4103
4104 /* Simple dpms helper for encoders with just one connector, no cloning and only
4105 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4106 * state of the entire output pipe. */
4107 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4108 {
4109 if (mode == DRM_MODE_DPMS_ON) {
4110 encoder->connectors_active = true;
4111
4112 intel_crtc_update_dpms(encoder->base.crtc);
4113 } else {
4114 encoder->connectors_active = false;
4115
4116 intel_crtc_update_dpms(encoder->base.crtc);
4117 }
4118 }
4119
4120 /* Cross check the actual hw state with our own modeset state tracking (and it's
4121 * internal consistency). */
4122 static void intel_connector_check_state(struct intel_connector *connector)
4123 {
4124 if (connector->get_hw_state(connector)) {
4125 struct intel_encoder *encoder = connector->encoder;
4126 struct drm_crtc *crtc;
4127 bool encoder_enabled;
4128 enum pipe pipe;
4129
4130 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4131 connector->base.base.id,
4132 drm_get_connector_name(&connector->base));
4133
4134 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4135 "wrong connector dpms state\n");
4136 WARN(connector->base.encoder != &encoder->base,
4137 "active connector not linked to encoder\n");
4138 WARN(!encoder->connectors_active,
4139 "encoder->connectors_active not set\n");
4140
4141 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4142 WARN(!encoder_enabled, "encoder not enabled\n");
4143 if (WARN_ON(!encoder->base.crtc))
4144 return;
4145
4146 crtc = encoder->base.crtc;
4147
4148 WARN(!crtc->enabled, "crtc not enabled\n");
4149 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4150 WARN(pipe != to_intel_crtc(crtc)->pipe,
4151 "encoder active on the wrong pipe\n");
4152 }
4153 }
4154
4155 /* Even simpler default implementation, if there's really no special case to
4156 * consider. */
4157 void intel_connector_dpms(struct drm_connector *connector, int mode)
4158 {
4159 struct intel_encoder *encoder = intel_attached_encoder(connector);
4160
4161 /* All the simple cases only support two dpms states. */
4162 if (mode != DRM_MODE_DPMS_ON)
4163 mode = DRM_MODE_DPMS_OFF;
4164
4165 if (mode == connector->dpms)
4166 return;
4167
4168 connector->dpms = mode;
4169
4170 /* Only need to change hw state when actually enabled */
4171 if (encoder->base.crtc)
4172 intel_encoder_dpms(encoder, mode);
4173 else
4174 WARN_ON(encoder->connectors_active != false);
4175
4176 intel_modeset_check_state(connector->dev);
4177 }
4178
4179 /* Simple connector->get_hw_state implementation for encoders that support only
4180 * one connector and no cloning and hence the encoder state determines the state
4181 * of the connector. */
4182 bool intel_connector_get_hw_state(struct intel_connector *connector)
4183 {
4184 enum pipe pipe = 0;
4185 struct intel_encoder *encoder = connector->encoder;
4186
4187 return encoder->get_hw_state(encoder, &pipe);
4188 }
4189
4190 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4191 struct intel_crtc_config *pipe_config)
4192 {
4193 struct drm_i915_private *dev_priv = dev->dev_private;
4194 struct intel_crtc *pipe_B_crtc =
4195 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4196
4197 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4198 pipe_name(pipe), pipe_config->fdi_lanes);
4199 if (pipe_config->fdi_lanes > 4) {
4200 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4201 pipe_name(pipe), pipe_config->fdi_lanes);
4202 return false;
4203 }
4204
4205 if (IS_HASWELL(dev)) {
4206 if (pipe_config->fdi_lanes > 2) {
4207 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4208 pipe_config->fdi_lanes);
4209 return false;
4210 } else {
4211 return true;
4212 }
4213 }
4214
4215 if (INTEL_INFO(dev)->num_pipes == 2)
4216 return true;
4217
4218 /* Ivybridge 3 pipe is really complicated */
4219 switch (pipe) {
4220 case PIPE_A:
4221 return true;
4222 case PIPE_B:
4223 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4224 pipe_config->fdi_lanes > 2) {
4225 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4226 pipe_name(pipe), pipe_config->fdi_lanes);
4227 return false;
4228 }
4229 return true;
4230 case PIPE_C:
4231 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4232 pipe_B_crtc->config.fdi_lanes <= 2) {
4233 if (pipe_config->fdi_lanes > 2) {
4234 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4235 pipe_name(pipe), pipe_config->fdi_lanes);
4236 return false;
4237 }
4238 } else {
4239 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4240 return false;
4241 }
4242 return true;
4243 default:
4244 BUG();
4245 }
4246 }
4247
4248 #define RETRY 1
4249 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4250 struct intel_crtc_config *pipe_config)
4251 {
4252 struct drm_device *dev = intel_crtc->base.dev;
4253 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4254 int lane, link_bw, fdi_dotclock;
4255 bool setup_ok, needs_recompute = false;
4256
4257 retry:
4258 /* FDI is a binary signal running at ~2.7GHz, encoding
4259 * each output octet as 10 bits. The actual frequency
4260 * is stored as a divider into a 100MHz clock, and the
4261 * mode pixel clock is stored in units of 1KHz.
4262 * Hence the bw of each lane in terms of the mode signal
4263 * is:
4264 */
4265 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4266
4267 fdi_dotclock = adjusted_mode->crtc_clock;
4268
4269 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4270 pipe_config->pipe_bpp);
4271
4272 pipe_config->fdi_lanes = lane;
4273
4274 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4275 link_bw, &pipe_config->fdi_m_n);
4276
4277 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4278 intel_crtc->pipe, pipe_config);
4279 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4280 pipe_config->pipe_bpp -= 2*3;
4281 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4282 pipe_config->pipe_bpp);
4283 needs_recompute = true;
4284 pipe_config->bw_constrained = true;
4285
4286 goto retry;
4287 }
4288
4289 if (needs_recompute)
4290 return RETRY;
4291
4292 return setup_ok ? 0 : -EINVAL;
4293 }
4294
4295 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4296 struct intel_crtc_config *pipe_config)
4297 {
4298 pipe_config->ips_enabled = i915_enable_ips &&
4299 hsw_crtc_supports_ips(crtc) &&
4300 pipe_config->pipe_bpp <= 24;
4301 }
4302
4303 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4304 struct intel_crtc_config *pipe_config)
4305 {
4306 struct drm_device *dev = crtc->base.dev;
4307 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4308
4309 /* FIXME should check pixel clock limits on all platforms */
4310 if (INTEL_INFO(dev)->gen < 4) {
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 int clock_limit =
4313 dev_priv->display.get_display_clock_speed(dev);
4314
4315 /*
4316 * Enable pixel doubling when the dot clock
4317 * is > 90% of the (display) core speed.
4318 *
4319 * GDG double wide on either pipe,
4320 * otherwise pipe A only.
4321 */
4322 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4323 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4324 clock_limit *= 2;
4325 pipe_config->double_wide = true;
4326 }
4327
4328 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4329 return -EINVAL;
4330 }
4331
4332 /*
4333 * Pipe horizontal size must be even in:
4334 * - DVO ganged mode
4335 * - LVDS dual channel mode
4336 * - Double wide pipe
4337 */
4338 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4339 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4340 pipe_config->pipe_src_w &= ~1;
4341
4342 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4343 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4344 */
4345 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4346 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4347 return -EINVAL;
4348
4349 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4350 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4351 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4352 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4353 * for lvds. */
4354 pipe_config->pipe_bpp = 8*3;
4355 }
4356
4357 if (HAS_IPS(dev))
4358 hsw_compute_ips_config(crtc, pipe_config);
4359
4360 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4361 * clock survives for now. */
4362 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4363 pipe_config->shared_dpll = crtc->config.shared_dpll;
4364
4365 if (pipe_config->has_pch_encoder)
4366 return ironlake_fdi_compute_config(crtc, pipe_config);
4367
4368 return 0;
4369 }
4370
4371 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4372 {
4373 return 400000; /* FIXME */
4374 }
4375
4376 static int i945_get_display_clock_speed(struct drm_device *dev)
4377 {
4378 return 400000;
4379 }
4380
4381 static int i915_get_display_clock_speed(struct drm_device *dev)
4382 {
4383 return 333000;
4384 }
4385
4386 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4387 {
4388 return 200000;
4389 }
4390
4391 static int pnv_get_display_clock_speed(struct drm_device *dev)
4392 {
4393 u16 gcfgc = 0;
4394
4395 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4396
4397 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4398 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4399 return 267000;
4400 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4401 return 333000;
4402 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4403 return 444000;
4404 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4405 return 200000;
4406 default:
4407 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4408 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4409 return 133000;
4410 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4411 return 167000;
4412 }
4413 }
4414
4415 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4416 {
4417 u16 gcfgc = 0;
4418
4419 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4420
4421 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4422 return 133000;
4423 else {
4424 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4425 case GC_DISPLAY_CLOCK_333_MHZ:
4426 return 333000;
4427 default:
4428 case GC_DISPLAY_CLOCK_190_200_MHZ:
4429 return 190000;
4430 }
4431 }
4432 }
4433
4434 static int i865_get_display_clock_speed(struct drm_device *dev)
4435 {
4436 return 266000;
4437 }
4438
4439 static int i855_get_display_clock_speed(struct drm_device *dev)
4440 {
4441 u16 hpllcc = 0;
4442 /* Assume that the hardware is in the high speed state. This
4443 * should be the default.
4444 */
4445 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4446 case GC_CLOCK_133_200:
4447 case GC_CLOCK_100_200:
4448 return 200000;
4449 case GC_CLOCK_166_250:
4450 return 250000;
4451 case GC_CLOCK_100_133:
4452 return 133000;
4453 }
4454
4455 /* Shouldn't happen */
4456 return 0;
4457 }
4458
4459 static int i830_get_display_clock_speed(struct drm_device *dev)
4460 {
4461 return 133000;
4462 }
4463
4464 static void
4465 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4466 {
4467 while (*num > DATA_LINK_M_N_MASK ||
4468 *den > DATA_LINK_M_N_MASK) {
4469 *num >>= 1;
4470 *den >>= 1;
4471 }
4472 }
4473
4474 static void compute_m_n(unsigned int m, unsigned int n,
4475 uint32_t *ret_m, uint32_t *ret_n)
4476 {
4477 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4478 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4479 intel_reduce_m_n_ratio(ret_m, ret_n);
4480 }
4481
4482 void
4483 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4484 int pixel_clock, int link_clock,
4485 struct intel_link_m_n *m_n)
4486 {
4487 m_n->tu = 64;
4488
4489 compute_m_n(bits_per_pixel * pixel_clock,
4490 link_clock * nlanes * 8,
4491 &m_n->gmch_m, &m_n->gmch_n);
4492
4493 compute_m_n(pixel_clock, link_clock,
4494 &m_n->link_m, &m_n->link_n);
4495 }
4496
4497 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4498 {
4499 if (i915_panel_use_ssc >= 0)
4500 return i915_panel_use_ssc != 0;
4501 return dev_priv->vbt.lvds_use_ssc
4502 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4503 }
4504
4505 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4506 {
4507 struct drm_device *dev = crtc->dev;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 int refclk;
4510
4511 if (IS_VALLEYVIEW(dev)) {
4512 refclk = 100000;
4513 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4514 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4515 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4516 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4517 refclk / 1000);
4518 } else if (!IS_GEN2(dev)) {
4519 refclk = 96000;
4520 } else {
4521 refclk = 48000;
4522 }
4523
4524 return refclk;
4525 }
4526
4527 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4528 {
4529 return (1 << dpll->n) << 16 | dpll->m2;
4530 }
4531
4532 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4533 {
4534 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4535 }
4536
4537 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4538 intel_clock_t *reduced_clock)
4539 {
4540 struct drm_device *dev = crtc->base.dev;
4541 struct drm_i915_private *dev_priv = dev->dev_private;
4542 int pipe = crtc->pipe;
4543 u32 fp, fp2 = 0;
4544
4545 if (IS_PINEVIEW(dev)) {
4546 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4547 if (reduced_clock)
4548 fp2 = pnv_dpll_compute_fp(reduced_clock);
4549 } else {
4550 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4551 if (reduced_clock)
4552 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4553 }
4554
4555 I915_WRITE(FP0(pipe), fp);
4556 crtc->config.dpll_hw_state.fp0 = fp;
4557
4558 crtc->lowfreq_avail = false;
4559 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4560 reduced_clock && i915_powersave) {
4561 I915_WRITE(FP1(pipe), fp2);
4562 crtc->config.dpll_hw_state.fp1 = fp2;
4563 crtc->lowfreq_avail = true;
4564 } else {
4565 I915_WRITE(FP1(pipe), fp);
4566 crtc->config.dpll_hw_state.fp1 = fp;
4567 }
4568 }
4569
4570 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4571 pipe)
4572 {
4573 u32 reg_val;
4574
4575 /*
4576 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4577 * and set it to a reasonable value instead.
4578 */
4579 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4580 reg_val &= 0xffffff00;
4581 reg_val |= 0x00000030;
4582 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4583
4584 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4585 reg_val &= 0x8cffffff;
4586 reg_val = 0x8c000000;
4587 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4588
4589 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4590 reg_val &= 0xffffff00;
4591 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4592
4593 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4594 reg_val &= 0x00ffffff;
4595 reg_val |= 0xb0000000;
4596 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4597 }
4598
4599 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4600 struct intel_link_m_n *m_n)
4601 {
4602 struct drm_device *dev = crtc->base.dev;
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604 int pipe = crtc->pipe;
4605
4606 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4607 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4608 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4609 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4610 }
4611
4612 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4613 struct intel_link_m_n *m_n)
4614 {
4615 struct drm_device *dev = crtc->base.dev;
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4617 int pipe = crtc->pipe;
4618 enum transcoder transcoder = crtc->config.cpu_transcoder;
4619
4620 if (INTEL_INFO(dev)->gen >= 5) {
4621 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4622 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4623 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4624 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4625 } else {
4626 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4627 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4628 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4629 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4630 }
4631 }
4632
4633 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4634 {
4635 if (crtc->config.has_pch_encoder)
4636 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4637 else
4638 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4639 }
4640
4641 static void vlv_update_pll(struct intel_crtc *crtc)
4642 {
4643 struct drm_device *dev = crtc->base.dev;
4644 struct drm_i915_private *dev_priv = dev->dev_private;
4645 int pipe = crtc->pipe;
4646 u32 dpll, mdiv;
4647 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4648 u32 coreclk, reg_val, dpll_md;
4649
4650 mutex_lock(&dev_priv->dpio_lock);
4651
4652 bestn = crtc->config.dpll.n;
4653 bestm1 = crtc->config.dpll.m1;
4654 bestm2 = crtc->config.dpll.m2;
4655 bestp1 = crtc->config.dpll.p1;
4656 bestp2 = crtc->config.dpll.p2;
4657
4658 /* See eDP HDMI DPIO driver vbios notes doc */
4659
4660 /* PLL B needs special handling */
4661 if (pipe)
4662 vlv_pllb_recal_opamp(dev_priv, pipe);
4663
4664 /* Set up Tx target for periodic Rcomp update */
4665 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4666
4667 /* Disable target IRef on PLL */
4668 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4669 reg_val &= 0x00ffffff;
4670 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4671
4672 /* Disable fast lock */
4673 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4674
4675 /* Set idtafcrecal before PLL is enabled */
4676 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4677 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4678 mdiv |= ((bestn << DPIO_N_SHIFT));
4679 mdiv |= (1 << DPIO_K_SHIFT);
4680
4681 /*
4682 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4683 * but we don't support that).
4684 * Note: don't use the DAC post divider as it seems unstable.
4685 */
4686 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4687 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4688
4689 mdiv |= DPIO_ENABLE_CALIBRATION;
4690 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4691
4692 /* Set HBR and RBR LPF coefficients */
4693 if (crtc->config.port_clock == 162000 ||
4694 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4695 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4696 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4697 0x009f0003);
4698 else
4699 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4700 0x00d0000f);
4701
4702 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4703 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4704 /* Use SSC source */
4705 if (!pipe)
4706 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4707 0x0df40000);
4708 else
4709 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4710 0x0df70000);
4711 } else { /* HDMI or VGA */
4712 /* Use bend source */
4713 if (!pipe)
4714 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4715 0x0df70000);
4716 else
4717 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4718 0x0df40000);
4719 }
4720
4721 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4722 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4723 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4724 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4725 coreclk |= 0x01000000;
4726 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4727
4728 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4729
4730 /* Enable DPIO clock input */
4731 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4732 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4733 /* We should never disable this, set it here for state tracking */
4734 if (pipe == PIPE_B)
4735 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4736 dpll |= DPLL_VCO_ENABLE;
4737 crtc->config.dpll_hw_state.dpll = dpll;
4738
4739 dpll_md = (crtc->config.pixel_multiplier - 1)
4740 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4741 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4742
4743 if (crtc->config.has_dp_encoder)
4744 intel_dp_set_m_n(crtc);
4745
4746 mutex_unlock(&dev_priv->dpio_lock);
4747 }
4748
4749 static void i9xx_update_pll(struct intel_crtc *crtc,
4750 intel_clock_t *reduced_clock,
4751 int num_connectors)
4752 {
4753 struct drm_device *dev = crtc->base.dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
4755 u32 dpll;
4756 bool is_sdvo;
4757 struct dpll *clock = &crtc->config.dpll;
4758
4759 i9xx_update_pll_dividers(crtc, reduced_clock);
4760
4761 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4762 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4763
4764 dpll = DPLL_VGA_MODE_DIS;
4765
4766 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4767 dpll |= DPLLB_MODE_LVDS;
4768 else
4769 dpll |= DPLLB_MODE_DAC_SERIAL;
4770
4771 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4772 dpll |= (crtc->config.pixel_multiplier - 1)
4773 << SDVO_MULTIPLIER_SHIFT_HIRES;
4774 }
4775
4776 if (is_sdvo)
4777 dpll |= DPLL_SDVO_HIGH_SPEED;
4778
4779 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4780 dpll |= DPLL_SDVO_HIGH_SPEED;
4781
4782 /* compute bitmask from p1 value */
4783 if (IS_PINEVIEW(dev))
4784 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4785 else {
4786 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4787 if (IS_G4X(dev) && reduced_clock)
4788 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4789 }
4790 switch (clock->p2) {
4791 case 5:
4792 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4793 break;
4794 case 7:
4795 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4796 break;
4797 case 10:
4798 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4799 break;
4800 case 14:
4801 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4802 break;
4803 }
4804 if (INTEL_INFO(dev)->gen >= 4)
4805 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4806
4807 if (crtc->config.sdvo_tv_clock)
4808 dpll |= PLL_REF_INPUT_TVCLKINBC;
4809 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4810 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4811 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4812 else
4813 dpll |= PLL_REF_INPUT_DREFCLK;
4814
4815 dpll |= DPLL_VCO_ENABLE;
4816 crtc->config.dpll_hw_state.dpll = dpll;
4817
4818 if (INTEL_INFO(dev)->gen >= 4) {
4819 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4820 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4821 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4822 }
4823
4824 if (crtc->config.has_dp_encoder)
4825 intel_dp_set_m_n(crtc);
4826 }
4827
4828 static void i8xx_update_pll(struct intel_crtc *crtc,
4829 intel_clock_t *reduced_clock,
4830 int num_connectors)
4831 {
4832 struct drm_device *dev = crtc->base.dev;
4833 struct drm_i915_private *dev_priv = dev->dev_private;
4834 u32 dpll;
4835 struct dpll *clock = &crtc->config.dpll;
4836
4837 i9xx_update_pll_dividers(crtc, reduced_clock);
4838
4839 dpll = DPLL_VGA_MODE_DIS;
4840
4841 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4842 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4843 } else {
4844 if (clock->p1 == 2)
4845 dpll |= PLL_P1_DIVIDE_BY_TWO;
4846 else
4847 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4848 if (clock->p2 == 4)
4849 dpll |= PLL_P2_DIVIDE_BY_4;
4850 }
4851
4852 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4853 dpll |= DPLL_DVO_2X_MODE;
4854
4855 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4856 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4857 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4858 else
4859 dpll |= PLL_REF_INPUT_DREFCLK;
4860
4861 dpll |= DPLL_VCO_ENABLE;
4862 crtc->config.dpll_hw_state.dpll = dpll;
4863 }
4864
4865 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4866 {
4867 struct drm_device *dev = intel_crtc->base.dev;
4868 struct drm_i915_private *dev_priv = dev->dev_private;
4869 enum pipe pipe = intel_crtc->pipe;
4870 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4871 struct drm_display_mode *adjusted_mode =
4872 &intel_crtc->config.adjusted_mode;
4873 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4874
4875 /* We need to be careful not to changed the adjusted mode, for otherwise
4876 * the hw state checker will get angry at the mismatch. */
4877 crtc_vtotal = adjusted_mode->crtc_vtotal;
4878 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4879
4880 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4881 /* the chip adds 2 halflines automatically */
4882 crtc_vtotal -= 1;
4883 crtc_vblank_end -= 1;
4884 vsyncshift = adjusted_mode->crtc_hsync_start
4885 - adjusted_mode->crtc_htotal / 2;
4886 } else {
4887 vsyncshift = 0;
4888 }
4889
4890 if (INTEL_INFO(dev)->gen > 3)
4891 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4892
4893 I915_WRITE(HTOTAL(cpu_transcoder),
4894 (adjusted_mode->crtc_hdisplay - 1) |
4895 ((adjusted_mode->crtc_htotal - 1) << 16));
4896 I915_WRITE(HBLANK(cpu_transcoder),
4897 (adjusted_mode->crtc_hblank_start - 1) |
4898 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4899 I915_WRITE(HSYNC(cpu_transcoder),
4900 (adjusted_mode->crtc_hsync_start - 1) |
4901 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4902
4903 I915_WRITE(VTOTAL(cpu_transcoder),
4904 (adjusted_mode->crtc_vdisplay - 1) |
4905 ((crtc_vtotal - 1) << 16));
4906 I915_WRITE(VBLANK(cpu_transcoder),
4907 (adjusted_mode->crtc_vblank_start - 1) |
4908 ((crtc_vblank_end - 1) << 16));
4909 I915_WRITE(VSYNC(cpu_transcoder),
4910 (adjusted_mode->crtc_vsync_start - 1) |
4911 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4912
4913 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4914 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4915 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4916 * bits. */
4917 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4918 (pipe == PIPE_B || pipe == PIPE_C))
4919 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4920
4921 /* pipesrc controls the size that is scaled from, which should
4922 * always be the user's requested size.
4923 */
4924 I915_WRITE(PIPESRC(pipe),
4925 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4926 (intel_crtc->config.pipe_src_h - 1));
4927 }
4928
4929 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4930 struct intel_crtc_config *pipe_config)
4931 {
4932 struct drm_device *dev = crtc->base.dev;
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4935 uint32_t tmp;
4936
4937 tmp = I915_READ(HTOTAL(cpu_transcoder));
4938 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4939 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4940 tmp = I915_READ(HBLANK(cpu_transcoder));
4941 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4942 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4943 tmp = I915_READ(HSYNC(cpu_transcoder));
4944 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4945 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4946
4947 tmp = I915_READ(VTOTAL(cpu_transcoder));
4948 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4949 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4950 tmp = I915_READ(VBLANK(cpu_transcoder));
4951 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4952 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4953 tmp = I915_READ(VSYNC(cpu_transcoder));
4954 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4955 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4956
4957 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4958 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4959 pipe_config->adjusted_mode.crtc_vtotal += 1;
4960 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4961 }
4962
4963 tmp = I915_READ(PIPESRC(crtc->pipe));
4964 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4965 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4966
4967 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4968 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4969 }
4970
4971 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4972 struct intel_crtc_config *pipe_config)
4973 {
4974 struct drm_crtc *crtc = &intel_crtc->base;
4975
4976 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4977 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4978 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4979 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4980
4981 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4982 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4983 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4984 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4985
4986 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4987
4988 crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
4989 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4990 }
4991
4992 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4993 {
4994 struct drm_device *dev = intel_crtc->base.dev;
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996 uint32_t pipeconf;
4997
4998 pipeconf = 0;
4999
5000 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5001 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5002 pipeconf |= PIPECONF_ENABLE;
5003
5004 if (intel_crtc->config.double_wide)
5005 pipeconf |= PIPECONF_DOUBLE_WIDE;
5006
5007 /* only g4x and later have fancy bpc/dither controls */
5008 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5009 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5010 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5011 pipeconf |= PIPECONF_DITHER_EN |
5012 PIPECONF_DITHER_TYPE_SP;
5013
5014 switch (intel_crtc->config.pipe_bpp) {
5015 case 18:
5016 pipeconf |= PIPECONF_6BPC;
5017 break;
5018 case 24:
5019 pipeconf |= PIPECONF_8BPC;
5020 break;
5021 case 30:
5022 pipeconf |= PIPECONF_10BPC;
5023 break;
5024 default:
5025 /* Case prevented by intel_choose_pipe_bpp_dither. */
5026 BUG();
5027 }
5028 }
5029
5030 if (HAS_PIPE_CXSR(dev)) {
5031 if (intel_crtc->lowfreq_avail) {
5032 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5033 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5034 } else {
5035 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5036 }
5037 }
5038
5039 if (!IS_GEN2(dev) &&
5040 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5041 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5042 else
5043 pipeconf |= PIPECONF_PROGRESSIVE;
5044
5045 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5046 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5047
5048 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5049 POSTING_READ(PIPECONF(intel_crtc->pipe));
5050 }
5051
5052 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5053 int x, int y,
5054 struct drm_framebuffer *fb)
5055 {
5056 struct drm_device *dev = crtc->dev;
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5059 int pipe = intel_crtc->pipe;
5060 int plane = intel_crtc->plane;
5061 int refclk, num_connectors = 0;
5062 intel_clock_t clock, reduced_clock;
5063 u32 dspcntr;
5064 bool ok, has_reduced_clock = false;
5065 bool is_lvds = false, is_dsi = false;
5066 struct intel_encoder *encoder;
5067 const intel_limit_t *limit;
5068 int ret;
5069
5070 for_each_encoder_on_crtc(dev, crtc, encoder) {
5071 switch (encoder->type) {
5072 case INTEL_OUTPUT_LVDS:
5073 is_lvds = true;
5074 break;
5075 case INTEL_OUTPUT_DSI:
5076 is_dsi = true;
5077 break;
5078 }
5079
5080 num_connectors++;
5081 }
5082
5083 if (is_dsi)
5084 goto skip_dpll;
5085
5086 if (!intel_crtc->config.clock_set) {
5087 refclk = i9xx_get_refclk(crtc, num_connectors);
5088
5089 /*
5090 * Returns a set of divisors for the desired target clock with
5091 * the given refclk, or FALSE. The returned values represent
5092 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5093 * 2) / p1 / p2.
5094 */
5095 limit = intel_limit(crtc, refclk);
5096 ok = dev_priv->display.find_dpll(limit, crtc,
5097 intel_crtc->config.port_clock,
5098 refclk, NULL, &clock);
5099 if (!ok) {
5100 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5101 return -EINVAL;
5102 }
5103
5104 if (is_lvds && dev_priv->lvds_downclock_avail) {
5105 /*
5106 * Ensure we match the reduced clock's P to the target
5107 * clock. If the clocks don't match, we can't switch
5108 * the display clock by using the FP0/FP1. In such case
5109 * we will disable the LVDS downclock feature.
5110 */
5111 has_reduced_clock =
5112 dev_priv->display.find_dpll(limit, crtc,
5113 dev_priv->lvds_downclock,
5114 refclk, &clock,
5115 &reduced_clock);
5116 }
5117 /* Compat-code for transition, will disappear. */
5118 intel_crtc->config.dpll.n = clock.n;
5119 intel_crtc->config.dpll.m1 = clock.m1;
5120 intel_crtc->config.dpll.m2 = clock.m2;
5121 intel_crtc->config.dpll.p1 = clock.p1;
5122 intel_crtc->config.dpll.p2 = clock.p2;
5123 }
5124
5125 if (IS_GEN2(dev)) {
5126 i8xx_update_pll(intel_crtc,
5127 has_reduced_clock ? &reduced_clock : NULL,
5128 num_connectors);
5129 } else if (IS_VALLEYVIEW(dev)) {
5130 vlv_update_pll(intel_crtc);
5131 } else {
5132 i9xx_update_pll(intel_crtc,
5133 has_reduced_clock ? &reduced_clock : NULL,
5134 num_connectors);
5135 }
5136
5137 skip_dpll:
5138 /* Set up the display plane register */
5139 dspcntr = DISPPLANE_GAMMA_ENABLE;
5140
5141 if (!IS_VALLEYVIEW(dev)) {
5142 if (pipe == 0)
5143 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5144 else
5145 dspcntr |= DISPPLANE_SEL_PIPE_B;
5146 }
5147
5148 intel_set_pipe_timings(intel_crtc);
5149
5150 /* pipesrc and dspsize control the size that is scaled from,
5151 * which should always be the user's requested size.
5152 */
5153 I915_WRITE(DSPSIZE(plane),
5154 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5155 (intel_crtc->config.pipe_src_w - 1));
5156 I915_WRITE(DSPPOS(plane), 0);
5157
5158 i9xx_set_pipeconf(intel_crtc);
5159
5160 I915_WRITE(DSPCNTR(plane), dspcntr);
5161 POSTING_READ(DSPCNTR(plane));
5162
5163 ret = intel_pipe_set_base(crtc, x, y, fb);
5164
5165 return ret;
5166 }
5167
5168 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5169 struct intel_crtc_config *pipe_config)
5170 {
5171 struct drm_device *dev = crtc->base.dev;
5172 struct drm_i915_private *dev_priv = dev->dev_private;
5173 uint32_t tmp;
5174
5175 tmp = I915_READ(PFIT_CONTROL);
5176 if (!(tmp & PFIT_ENABLE))
5177 return;
5178
5179 /* Check whether the pfit is attached to our pipe. */
5180 if (INTEL_INFO(dev)->gen < 4) {
5181 if (crtc->pipe != PIPE_B)
5182 return;
5183 } else {
5184 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5185 return;
5186 }
5187
5188 pipe_config->gmch_pfit.control = tmp;
5189 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5190 if (INTEL_INFO(dev)->gen < 5)
5191 pipe_config->gmch_pfit.lvds_border_bits =
5192 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5193 }
5194
5195 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5196 struct intel_crtc_config *pipe_config)
5197 {
5198 struct drm_device *dev = crtc->base.dev;
5199 struct drm_i915_private *dev_priv = dev->dev_private;
5200 int pipe = pipe_config->cpu_transcoder;
5201 intel_clock_t clock;
5202 u32 mdiv;
5203 int refclk = 100000;
5204
5205 mutex_lock(&dev_priv->dpio_lock);
5206 mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5207 mutex_unlock(&dev_priv->dpio_lock);
5208
5209 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5210 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5211 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5212 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5213 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5214
5215 vlv_clock(refclk, &clock);
5216
5217 /* clock.dot is the fast clock */
5218 pipe_config->port_clock = clock.dot / 5;
5219 }
5220
5221 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5222 struct intel_crtc_config *pipe_config)
5223 {
5224 struct drm_device *dev = crtc->base.dev;
5225 struct drm_i915_private *dev_priv = dev->dev_private;
5226 uint32_t tmp;
5227
5228 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5229 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5230
5231 tmp = I915_READ(PIPECONF(crtc->pipe));
5232 if (!(tmp & PIPECONF_ENABLE))
5233 return false;
5234
5235 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5236 switch (tmp & PIPECONF_BPC_MASK) {
5237 case PIPECONF_6BPC:
5238 pipe_config->pipe_bpp = 18;
5239 break;
5240 case PIPECONF_8BPC:
5241 pipe_config->pipe_bpp = 24;
5242 break;
5243 case PIPECONF_10BPC:
5244 pipe_config->pipe_bpp = 30;
5245 break;
5246 default:
5247 break;
5248 }
5249 }
5250
5251 if (INTEL_INFO(dev)->gen < 4)
5252 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5253
5254 intel_get_pipe_timings(crtc, pipe_config);
5255
5256 i9xx_get_pfit_config(crtc, pipe_config);
5257
5258 if (INTEL_INFO(dev)->gen >= 4) {
5259 tmp = I915_READ(DPLL_MD(crtc->pipe));
5260 pipe_config->pixel_multiplier =
5261 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5262 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5263 pipe_config->dpll_hw_state.dpll_md = tmp;
5264 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5265 tmp = I915_READ(DPLL(crtc->pipe));
5266 pipe_config->pixel_multiplier =
5267 ((tmp & SDVO_MULTIPLIER_MASK)
5268 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5269 } else {
5270 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5271 * port and will be fixed up in the encoder->get_config
5272 * function. */
5273 pipe_config->pixel_multiplier = 1;
5274 }
5275 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5276 if (!IS_VALLEYVIEW(dev)) {
5277 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5278 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5279 } else {
5280 /* Mask out read-only status bits. */
5281 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5282 DPLL_PORTC_READY_MASK |
5283 DPLL_PORTB_READY_MASK);
5284 }
5285
5286 if (IS_VALLEYVIEW(dev))
5287 vlv_crtc_clock_get(crtc, pipe_config);
5288 else
5289 i9xx_crtc_clock_get(crtc, pipe_config);
5290
5291 return true;
5292 }
5293
5294 static void ironlake_init_pch_refclk(struct drm_device *dev)
5295 {
5296 struct drm_i915_private *dev_priv = dev->dev_private;
5297 struct drm_mode_config *mode_config = &dev->mode_config;
5298 struct intel_encoder *encoder;
5299 u32 val, final;
5300 bool has_lvds = false;
5301 bool has_cpu_edp = false;
5302 bool has_panel = false;
5303 bool has_ck505 = false;
5304 bool can_ssc = false;
5305
5306 /* We need to take the global config into account */
5307 list_for_each_entry(encoder, &mode_config->encoder_list,
5308 base.head) {
5309 switch (encoder->type) {
5310 case INTEL_OUTPUT_LVDS:
5311 has_panel = true;
5312 has_lvds = true;
5313 break;
5314 case INTEL_OUTPUT_EDP:
5315 has_panel = true;
5316 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5317 has_cpu_edp = true;
5318 break;
5319 }
5320 }
5321
5322 if (HAS_PCH_IBX(dev)) {
5323 has_ck505 = dev_priv->vbt.display_clock_mode;
5324 can_ssc = has_ck505;
5325 } else {
5326 has_ck505 = false;
5327 can_ssc = true;
5328 }
5329
5330 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5331 has_panel, has_lvds, has_ck505);
5332
5333 /* Ironlake: try to setup display ref clock before DPLL
5334 * enabling. This is only under driver's control after
5335 * PCH B stepping, previous chipset stepping should be
5336 * ignoring this setting.
5337 */
5338 val = I915_READ(PCH_DREF_CONTROL);
5339
5340 /* As we must carefully and slowly disable/enable each source in turn,
5341 * compute the final state we want first and check if we need to
5342 * make any changes at all.
5343 */
5344 final = val;
5345 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5346 if (has_ck505)
5347 final |= DREF_NONSPREAD_CK505_ENABLE;
5348 else
5349 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5350
5351 final &= ~DREF_SSC_SOURCE_MASK;
5352 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5353 final &= ~DREF_SSC1_ENABLE;
5354
5355 if (has_panel) {
5356 final |= DREF_SSC_SOURCE_ENABLE;
5357
5358 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5359 final |= DREF_SSC1_ENABLE;
5360
5361 if (has_cpu_edp) {
5362 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5363 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5364 else
5365 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5366 } else
5367 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5368 } else {
5369 final |= DREF_SSC_SOURCE_DISABLE;
5370 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5371 }
5372
5373 if (final == val)
5374 return;
5375
5376 /* Always enable nonspread source */
5377 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5378
5379 if (has_ck505)
5380 val |= DREF_NONSPREAD_CK505_ENABLE;
5381 else
5382 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5383
5384 if (has_panel) {
5385 val &= ~DREF_SSC_SOURCE_MASK;
5386 val |= DREF_SSC_SOURCE_ENABLE;
5387
5388 /* SSC must be turned on before enabling the CPU output */
5389 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5390 DRM_DEBUG_KMS("Using SSC on panel\n");
5391 val |= DREF_SSC1_ENABLE;
5392 } else
5393 val &= ~DREF_SSC1_ENABLE;
5394
5395 /* Get SSC going before enabling the outputs */
5396 I915_WRITE(PCH_DREF_CONTROL, val);
5397 POSTING_READ(PCH_DREF_CONTROL);
5398 udelay(200);
5399
5400 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5401
5402 /* Enable CPU source on CPU attached eDP */
5403 if (has_cpu_edp) {
5404 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5405 DRM_DEBUG_KMS("Using SSC on eDP\n");
5406 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5407 }
5408 else
5409 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5410 } else
5411 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5412
5413 I915_WRITE(PCH_DREF_CONTROL, val);
5414 POSTING_READ(PCH_DREF_CONTROL);
5415 udelay(200);
5416 } else {
5417 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5418
5419 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5420
5421 /* Turn off CPU output */
5422 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5423
5424 I915_WRITE(PCH_DREF_CONTROL, val);
5425 POSTING_READ(PCH_DREF_CONTROL);
5426 udelay(200);
5427
5428 /* Turn off the SSC source */
5429 val &= ~DREF_SSC_SOURCE_MASK;
5430 val |= DREF_SSC_SOURCE_DISABLE;
5431
5432 /* Turn off SSC1 */
5433 val &= ~DREF_SSC1_ENABLE;
5434
5435 I915_WRITE(PCH_DREF_CONTROL, val);
5436 POSTING_READ(PCH_DREF_CONTROL);
5437 udelay(200);
5438 }
5439
5440 BUG_ON(val != final);
5441 }
5442
5443 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5444 {
5445 uint32_t tmp;
5446
5447 tmp = I915_READ(SOUTH_CHICKEN2);
5448 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5449 I915_WRITE(SOUTH_CHICKEN2, tmp);
5450
5451 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5452 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5453 DRM_ERROR("FDI mPHY reset assert timeout\n");
5454
5455 tmp = I915_READ(SOUTH_CHICKEN2);
5456 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5457 I915_WRITE(SOUTH_CHICKEN2, tmp);
5458
5459 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5460 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5461 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5462 }
5463
5464 /* WaMPhyProgramming:hsw */
5465 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5466 {
5467 uint32_t tmp;
5468
5469 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5470 tmp &= ~(0xFF << 24);
5471 tmp |= (0x12 << 24);
5472 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5473
5474 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5475 tmp |= (1 << 11);
5476 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5477
5478 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5479 tmp |= (1 << 11);
5480 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5481
5482 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5483 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5484 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5485
5486 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5487 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5488 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5489
5490 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5491 tmp &= ~(7 << 13);
5492 tmp |= (5 << 13);
5493 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5494
5495 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5496 tmp &= ~(7 << 13);
5497 tmp |= (5 << 13);
5498 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5499
5500 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5501 tmp &= ~0xFF;
5502 tmp |= 0x1C;
5503 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5504
5505 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5506 tmp &= ~0xFF;
5507 tmp |= 0x1C;
5508 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5509
5510 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5511 tmp &= ~(0xFF << 16);
5512 tmp |= (0x1C << 16);
5513 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5514
5515 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5516 tmp &= ~(0xFF << 16);
5517 tmp |= (0x1C << 16);
5518 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5519
5520 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5521 tmp |= (1 << 27);
5522 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5523
5524 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5525 tmp |= (1 << 27);
5526 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5527
5528 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5529 tmp &= ~(0xF << 28);
5530 tmp |= (4 << 28);
5531 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5532
5533 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5534 tmp &= ~(0xF << 28);
5535 tmp |= (4 << 28);
5536 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5537 }
5538
5539 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5540 * Programming" based on the parameters passed:
5541 * - Sequence to enable CLKOUT_DP
5542 * - Sequence to enable CLKOUT_DP without spread
5543 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5544 */
5545 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5546 bool with_fdi)
5547 {
5548 struct drm_i915_private *dev_priv = dev->dev_private;
5549 uint32_t reg, tmp;
5550
5551 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5552 with_spread = true;
5553 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5554 with_fdi, "LP PCH doesn't have FDI\n"))
5555 with_fdi = false;
5556
5557 mutex_lock(&dev_priv->dpio_lock);
5558
5559 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5560 tmp &= ~SBI_SSCCTL_DISABLE;
5561 tmp |= SBI_SSCCTL_PATHALT;
5562 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5563
5564 udelay(24);
5565
5566 if (with_spread) {
5567 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5568 tmp &= ~SBI_SSCCTL_PATHALT;
5569 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5570
5571 if (with_fdi) {
5572 lpt_reset_fdi_mphy(dev_priv);
5573 lpt_program_fdi_mphy(dev_priv);
5574 }
5575 }
5576
5577 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5578 SBI_GEN0 : SBI_DBUFF0;
5579 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5580 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5581 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5582
5583 mutex_unlock(&dev_priv->dpio_lock);
5584 }
5585
5586 /* Sequence to disable CLKOUT_DP */
5587 static void lpt_disable_clkout_dp(struct drm_device *dev)
5588 {
5589 struct drm_i915_private *dev_priv = dev->dev_private;
5590 uint32_t reg, tmp;
5591
5592 mutex_lock(&dev_priv->dpio_lock);
5593
5594 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5595 SBI_GEN0 : SBI_DBUFF0;
5596 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5597 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5598 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5599
5600 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5601 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5602 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5603 tmp |= SBI_SSCCTL_PATHALT;
5604 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5605 udelay(32);
5606 }
5607 tmp |= SBI_SSCCTL_DISABLE;
5608 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5609 }
5610
5611 mutex_unlock(&dev_priv->dpio_lock);
5612 }
5613
5614 static void lpt_init_pch_refclk(struct drm_device *dev)
5615 {
5616 struct drm_mode_config *mode_config = &dev->mode_config;
5617 struct intel_encoder *encoder;
5618 bool has_vga = false;
5619
5620 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5621 switch (encoder->type) {
5622 case INTEL_OUTPUT_ANALOG:
5623 has_vga = true;
5624 break;
5625 }
5626 }
5627
5628 if (has_vga)
5629 lpt_enable_clkout_dp(dev, true, true);
5630 else
5631 lpt_disable_clkout_dp(dev);
5632 }
5633
5634 /*
5635 * Initialize reference clocks when the driver loads
5636 */
5637 void intel_init_pch_refclk(struct drm_device *dev)
5638 {
5639 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5640 ironlake_init_pch_refclk(dev);
5641 else if (HAS_PCH_LPT(dev))
5642 lpt_init_pch_refclk(dev);
5643 }
5644
5645 static int ironlake_get_refclk(struct drm_crtc *crtc)
5646 {
5647 struct drm_device *dev = crtc->dev;
5648 struct drm_i915_private *dev_priv = dev->dev_private;
5649 struct intel_encoder *encoder;
5650 int num_connectors = 0;
5651 bool is_lvds = false;
5652
5653 for_each_encoder_on_crtc(dev, crtc, encoder) {
5654 switch (encoder->type) {
5655 case INTEL_OUTPUT_LVDS:
5656 is_lvds = true;
5657 break;
5658 }
5659 num_connectors++;
5660 }
5661
5662 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5663 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5664 dev_priv->vbt.lvds_ssc_freq);
5665 return dev_priv->vbt.lvds_ssc_freq * 1000;
5666 }
5667
5668 return 120000;
5669 }
5670
5671 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5672 {
5673 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5675 int pipe = intel_crtc->pipe;
5676 uint32_t val;
5677
5678 val = 0;
5679
5680 switch (intel_crtc->config.pipe_bpp) {
5681 case 18:
5682 val |= PIPECONF_6BPC;
5683 break;
5684 case 24:
5685 val |= PIPECONF_8BPC;
5686 break;
5687 case 30:
5688 val |= PIPECONF_10BPC;
5689 break;
5690 case 36:
5691 val |= PIPECONF_12BPC;
5692 break;
5693 default:
5694 /* Case prevented by intel_choose_pipe_bpp_dither. */
5695 BUG();
5696 }
5697
5698 if (intel_crtc->config.dither)
5699 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5700
5701 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5702 val |= PIPECONF_INTERLACED_ILK;
5703 else
5704 val |= PIPECONF_PROGRESSIVE;
5705
5706 if (intel_crtc->config.limited_color_range)
5707 val |= PIPECONF_COLOR_RANGE_SELECT;
5708
5709 I915_WRITE(PIPECONF(pipe), val);
5710 POSTING_READ(PIPECONF(pipe));
5711 }
5712
5713 /*
5714 * Set up the pipe CSC unit.
5715 *
5716 * Currently only full range RGB to limited range RGB conversion
5717 * is supported, but eventually this should handle various
5718 * RGB<->YCbCr scenarios as well.
5719 */
5720 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5721 {
5722 struct drm_device *dev = crtc->dev;
5723 struct drm_i915_private *dev_priv = dev->dev_private;
5724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5725 int pipe = intel_crtc->pipe;
5726 uint16_t coeff = 0x7800; /* 1.0 */
5727
5728 /*
5729 * TODO: Check what kind of values actually come out of the pipe
5730 * with these coeff/postoff values and adjust to get the best
5731 * accuracy. Perhaps we even need to take the bpc value into
5732 * consideration.
5733 */
5734
5735 if (intel_crtc->config.limited_color_range)
5736 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5737
5738 /*
5739 * GY/GU and RY/RU should be the other way around according
5740 * to BSpec, but reality doesn't agree. Just set them up in
5741 * a way that results in the correct picture.
5742 */
5743 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5744 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5745
5746 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5747 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5748
5749 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5750 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5751
5752 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5753 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5754 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5755
5756 if (INTEL_INFO(dev)->gen > 6) {
5757 uint16_t postoff = 0;
5758
5759 if (intel_crtc->config.limited_color_range)
5760 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5761
5762 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5763 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5764 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5765
5766 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5767 } else {
5768 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5769
5770 if (intel_crtc->config.limited_color_range)
5771 mode |= CSC_BLACK_SCREEN_OFFSET;
5772
5773 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5774 }
5775 }
5776
5777 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5778 {
5779 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5781 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5782 uint32_t val;
5783
5784 val = 0;
5785
5786 if (intel_crtc->config.dither)
5787 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5788
5789 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5790 val |= PIPECONF_INTERLACED_ILK;
5791 else
5792 val |= PIPECONF_PROGRESSIVE;
5793
5794 I915_WRITE(PIPECONF(cpu_transcoder), val);
5795 POSTING_READ(PIPECONF(cpu_transcoder));
5796
5797 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5798 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5799 }
5800
5801 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5802 intel_clock_t *clock,
5803 bool *has_reduced_clock,
5804 intel_clock_t *reduced_clock)
5805 {
5806 struct drm_device *dev = crtc->dev;
5807 struct drm_i915_private *dev_priv = dev->dev_private;
5808 struct intel_encoder *intel_encoder;
5809 int refclk;
5810 const intel_limit_t *limit;
5811 bool ret, is_lvds = false;
5812
5813 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5814 switch (intel_encoder->type) {
5815 case INTEL_OUTPUT_LVDS:
5816 is_lvds = true;
5817 break;
5818 }
5819 }
5820
5821 refclk = ironlake_get_refclk(crtc);
5822
5823 /*
5824 * Returns a set of divisors for the desired target clock with the given
5825 * refclk, or FALSE. The returned values represent the clock equation:
5826 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5827 */
5828 limit = intel_limit(crtc, refclk);
5829 ret = dev_priv->display.find_dpll(limit, crtc,
5830 to_intel_crtc(crtc)->config.port_clock,
5831 refclk, NULL, clock);
5832 if (!ret)
5833 return false;
5834
5835 if (is_lvds && dev_priv->lvds_downclock_avail) {
5836 /*
5837 * Ensure we match the reduced clock's P to the target clock.
5838 * If the clocks don't match, we can't switch the display clock
5839 * by using the FP0/FP1. In such case we will disable the LVDS
5840 * downclock feature.
5841 */
5842 *has_reduced_clock =
5843 dev_priv->display.find_dpll(limit, crtc,
5844 dev_priv->lvds_downclock,
5845 refclk, clock,
5846 reduced_clock);
5847 }
5848
5849 return true;
5850 }
5851
5852 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5853 {
5854 struct drm_i915_private *dev_priv = dev->dev_private;
5855 uint32_t temp;
5856
5857 temp = I915_READ(SOUTH_CHICKEN1);
5858 if (temp & FDI_BC_BIFURCATION_SELECT)
5859 return;
5860
5861 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5862 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5863
5864 temp |= FDI_BC_BIFURCATION_SELECT;
5865 DRM_DEBUG_KMS("enabling fdi C rx\n");
5866 I915_WRITE(SOUTH_CHICKEN1, temp);
5867 POSTING_READ(SOUTH_CHICKEN1);
5868 }
5869
5870 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5871 {
5872 struct drm_device *dev = intel_crtc->base.dev;
5873 struct drm_i915_private *dev_priv = dev->dev_private;
5874
5875 switch (intel_crtc->pipe) {
5876 case PIPE_A:
5877 break;
5878 case PIPE_B:
5879 if (intel_crtc->config.fdi_lanes > 2)
5880 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5881 else
5882 cpt_enable_fdi_bc_bifurcation(dev);
5883
5884 break;
5885 case PIPE_C:
5886 cpt_enable_fdi_bc_bifurcation(dev);
5887
5888 break;
5889 default:
5890 BUG();
5891 }
5892 }
5893
5894 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5895 {
5896 /*
5897 * Account for spread spectrum to avoid
5898 * oversubscribing the link. Max center spread
5899 * is 2.5%; use 5% for safety's sake.
5900 */
5901 u32 bps = target_clock * bpp * 21 / 20;
5902 return bps / (link_bw * 8) + 1;
5903 }
5904
5905 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5906 {
5907 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5908 }
5909
5910 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5911 u32 *fp,
5912 intel_clock_t *reduced_clock, u32 *fp2)
5913 {
5914 struct drm_crtc *crtc = &intel_crtc->base;
5915 struct drm_device *dev = crtc->dev;
5916 struct drm_i915_private *dev_priv = dev->dev_private;
5917 struct intel_encoder *intel_encoder;
5918 uint32_t dpll;
5919 int factor, num_connectors = 0;
5920 bool is_lvds = false, is_sdvo = false;
5921
5922 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5923 switch (intel_encoder->type) {
5924 case INTEL_OUTPUT_LVDS:
5925 is_lvds = true;
5926 break;
5927 case INTEL_OUTPUT_SDVO:
5928 case INTEL_OUTPUT_HDMI:
5929 is_sdvo = true;
5930 break;
5931 }
5932
5933 num_connectors++;
5934 }
5935
5936 /* Enable autotuning of the PLL clock (if permissible) */
5937 factor = 21;
5938 if (is_lvds) {
5939 if ((intel_panel_use_ssc(dev_priv) &&
5940 dev_priv->vbt.lvds_ssc_freq == 100) ||
5941 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5942 factor = 25;
5943 } else if (intel_crtc->config.sdvo_tv_clock)
5944 factor = 20;
5945
5946 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5947 *fp |= FP_CB_TUNE;
5948
5949 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5950 *fp2 |= FP_CB_TUNE;
5951
5952 dpll = 0;
5953
5954 if (is_lvds)
5955 dpll |= DPLLB_MODE_LVDS;
5956 else
5957 dpll |= DPLLB_MODE_DAC_SERIAL;
5958
5959 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5960 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5961
5962 if (is_sdvo)
5963 dpll |= DPLL_SDVO_HIGH_SPEED;
5964 if (intel_crtc->config.has_dp_encoder)
5965 dpll |= DPLL_SDVO_HIGH_SPEED;
5966
5967 /* compute bitmask from p1 value */
5968 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5969 /* also FPA1 */
5970 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5971
5972 switch (intel_crtc->config.dpll.p2) {
5973 case 5:
5974 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5975 break;
5976 case 7:
5977 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5978 break;
5979 case 10:
5980 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5981 break;
5982 case 14:
5983 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5984 break;
5985 }
5986
5987 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5988 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5989 else
5990 dpll |= PLL_REF_INPUT_DREFCLK;
5991
5992 return dpll | DPLL_VCO_ENABLE;
5993 }
5994
5995 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5996 int x, int y,
5997 struct drm_framebuffer *fb)
5998 {
5999 struct drm_device *dev = crtc->dev;
6000 struct drm_i915_private *dev_priv = dev->dev_private;
6001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6002 int pipe = intel_crtc->pipe;
6003 int plane = intel_crtc->plane;
6004 int num_connectors = 0;
6005 intel_clock_t clock, reduced_clock;
6006 u32 dpll = 0, fp = 0, fp2 = 0;
6007 bool ok, has_reduced_clock = false;
6008 bool is_lvds = false;
6009 struct intel_encoder *encoder;
6010 struct intel_shared_dpll *pll;
6011 int ret;
6012
6013 for_each_encoder_on_crtc(dev, crtc, encoder) {
6014 switch (encoder->type) {
6015 case INTEL_OUTPUT_LVDS:
6016 is_lvds = true;
6017 break;
6018 }
6019
6020 num_connectors++;
6021 }
6022
6023 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6024 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6025
6026 ok = ironlake_compute_clocks(crtc, &clock,
6027 &has_reduced_clock, &reduced_clock);
6028 if (!ok && !intel_crtc->config.clock_set) {
6029 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6030 return -EINVAL;
6031 }
6032 /* Compat-code for transition, will disappear. */
6033 if (!intel_crtc->config.clock_set) {
6034 intel_crtc->config.dpll.n = clock.n;
6035 intel_crtc->config.dpll.m1 = clock.m1;
6036 intel_crtc->config.dpll.m2 = clock.m2;
6037 intel_crtc->config.dpll.p1 = clock.p1;
6038 intel_crtc->config.dpll.p2 = clock.p2;
6039 }
6040
6041 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6042 if (intel_crtc->config.has_pch_encoder) {
6043 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6044 if (has_reduced_clock)
6045 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6046
6047 dpll = ironlake_compute_dpll(intel_crtc,
6048 &fp, &reduced_clock,
6049 has_reduced_clock ? &fp2 : NULL);
6050
6051 intel_crtc->config.dpll_hw_state.dpll = dpll;
6052 intel_crtc->config.dpll_hw_state.fp0 = fp;
6053 if (has_reduced_clock)
6054 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6055 else
6056 intel_crtc->config.dpll_hw_state.fp1 = fp;
6057
6058 pll = intel_get_shared_dpll(intel_crtc);
6059 if (pll == NULL) {
6060 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6061 pipe_name(pipe));
6062 return -EINVAL;
6063 }
6064 } else
6065 intel_put_shared_dpll(intel_crtc);
6066
6067 if (intel_crtc->config.has_dp_encoder)
6068 intel_dp_set_m_n(intel_crtc);
6069
6070 if (is_lvds && has_reduced_clock && i915_powersave)
6071 intel_crtc->lowfreq_avail = true;
6072 else
6073 intel_crtc->lowfreq_avail = false;
6074
6075 intel_set_pipe_timings(intel_crtc);
6076
6077 if (intel_crtc->config.has_pch_encoder) {
6078 intel_cpu_transcoder_set_m_n(intel_crtc,
6079 &intel_crtc->config.fdi_m_n);
6080 }
6081
6082 if (IS_IVYBRIDGE(dev))
6083 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
6084
6085 ironlake_set_pipeconf(crtc);
6086
6087 /* Set up the display plane register */
6088 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6089 POSTING_READ(DSPCNTR(plane));
6090
6091 ret = intel_pipe_set_base(crtc, x, y, fb);
6092
6093 return ret;
6094 }
6095
6096 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6097 struct intel_link_m_n *m_n)
6098 {
6099 struct drm_device *dev = crtc->base.dev;
6100 struct drm_i915_private *dev_priv = dev->dev_private;
6101 enum pipe pipe = crtc->pipe;
6102
6103 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6104 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6105 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6106 & ~TU_SIZE_MASK;
6107 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6108 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6109 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6110 }
6111
6112 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6113 enum transcoder transcoder,
6114 struct intel_link_m_n *m_n)
6115 {
6116 struct drm_device *dev = crtc->base.dev;
6117 struct drm_i915_private *dev_priv = dev->dev_private;
6118 enum pipe pipe = crtc->pipe;
6119
6120 if (INTEL_INFO(dev)->gen >= 5) {
6121 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6122 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6123 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6124 & ~TU_SIZE_MASK;
6125 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6126 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6127 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6128 } else {
6129 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6130 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6131 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6132 & ~TU_SIZE_MASK;
6133 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6134 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6135 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6136 }
6137 }
6138
6139 void intel_dp_get_m_n(struct intel_crtc *crtc,
6140 struct intel_crtc_config *pipe_config)
6141 {
6142 if (crtc->config.has_pch_encoder)
6143 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6144 else
6145 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6146 &pipe_config->dp_m_n);
6147 }
6148
6149 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6150 struct intel_crtc_config *pipe_config)
6151 {
6152 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6153 &pipe_config->fdi_m_n);
6154 }
6155
6156 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6157 struct intel_crtc_config *pipe_config)
6158 {
6159 struct drm_device *dev = crtc->base.dev;
6160 struct drm_i915_private *dev_priv = dev->dev_private;
6161 uint32_t tmp;
6162
6163 tmp = I915_READ(PF_CTL(crtc->pipe));
6164
6165 if (tmp & PF_ENABLE) {
6166 pipe_config->pch_pfit.enabled = true;
6167 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6168 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6169
6170 /* We currently do not free assignements of panel fitters on
6171 * ivb/hsw (since we don't use the higher upscaling modes which
6172 * differentiates them) so just WARN about this case for now. */
6173 if (IS_GEN7(dev)) {
6174 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6175 PF_PIPE_SEL_IVB(crtc->pipe));
6176 }
6177 }
6178 }
6179
6180 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6181 struct intel_crtc_config *pipe_config)
6182 {
6183 struct drm_device *dev = crtc->base.dev;
6184 struct drm_i915_private *dev_priv = dev->dev_private;
6185 uint32_t tmp;
6186
6187 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6188 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6189
6190 tmp = I915_READ(PIPECONF(crtc->pipe));
6191 if (!(tmp & PIPECONF_ENABLE))
6192 return false;
6193
6194 switch (tmp & PIPECONF_BPC_MASK) {
6195 case PIPECONF_6BPC:
6196 pipe_config->pipe_bpp = 18;
6197 break;
6198 case PIPECONF_8BPC:
6199 pipe_config->pipe_bpp = 24;
6200 break;
6201 case PIPECONF_10BPC:
6202 pipe_config->pipe_bpp = 30;
6203 break;
6204 case PIPECONF_12BPC:
6205 pipe_config->pipe_bpp = 36;
6206 break;
6207 default:
6208 break;
6209 }
6210
6211 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6212 struct intel_shared_dpll *pll;
6213
6214 pipe_config->has_pch_encoder = true;
6215
6216 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6217 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6218 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6219
6220 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6221
6222 if (HAS_PCH_IBX(dev_priv->dev)) {
6223 pipe_config->shared_dpll =
6224 (enum intel_dpll_id) crtc->pipe;
6225 } else {
6226 tmp = I915_READ(PCH_DPLL_SEL);
6227 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6228 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6229 else
6230 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6231 }
6232
6233 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6234
6235 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6236 &pipe_config->dpll_hw_state));
6237
6238 tmp = pipe_config->dpll_hw_state.dpll;
6239 pipe_config->pixel_multiplier =
6240 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6241 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6242
6243 ironlake_pch_clock_get(crtc, pipe_config);
6244 } else {
6245 pipe_config->pixel_multiplier = 1;
6246 }
6247
6248 intel_get_pipe_timings(crtc, pipe_config);
6249
6250 ironlake_get_pfit_config(crtc, pipe_config);
6251
6252 return true;
6253 }
6254
6255 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6256 {
6257 struct drm_device *dev = dev_priv->dev;
6258 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6259 struct intel_crtc *crtc;
6260 unsigned long irqflags;
6261 uint32_t val;
6262
6263 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6264 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6265 pipe_name(crtc->pipe));
6266
6267 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6268 WARN(plls->spll_refcount, "SPLL enabled\n");
6269 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6270 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6271 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6272 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6273 "CPU PWM1 enabled\n");
6274 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6275 "CPU PWM2 enabled\n");
6276 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6277 "PCH PWM1 enabled\n");
6278 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6279 "Utility pin enabled\n");
6280 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6281
6282 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6283 val = I915_READ(DEIMR);
6284 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6285 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6286 val = I915_READ(SDEIMR);
6287 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6288 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6289 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6290 }
6291
6292 /*
6293 * This function implements pieces of two sequences from BSpec:
6294 * - Sequence for display software to disable LCPLL
6295 * - Sequence for display software to allow package C8+
6296 * The steps implemented here are just the steps that actually touch the LCPLL
6297 * register. Callers should take care of disabling all the display engine
6298 * functions, doing the mode unset, fixing interrupts, etc.
6299 */
6300 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6301 bool switch_to_fclk, bool allow_power_down)
6302 {
6303 uint32_t val;
6304
6305 assert_can_disable_lcpll(dev_priv);
6306
6307 val = I915_READ(LCPLL_CTL);
6308
6309 if (switch_to_fclk) {
6310 val |= LCPLL_CD_SOURCE_FCLK;
6311 I915_WRITE(LCPLL_CTL, val);
6312
6313 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6314 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6315 DRM_ERROR("Switching to FCLK failed\n");
6316
6317 val = I915_READ(LCPLL_CTL);
6318 }
6319
6320 val |= LCPLL_PLL_DISABLE;
6321 I915_WRITE(LCPLL_CTL, val);
6322 POSTING_READ(LCPLL_CTL);
6323
6324 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6325 DRM_ERROR("LCPLL still locked\n");
6326
6327 val = I915_READ(D_COMP);
6328 val |= D_COMP_COMP_DISABLE;
6329 mutex_lock(&dev_priv->rps.hw_lock);
6330 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6331 DRM_ERROR("Failed to disable D_COMP\n");
6332 mutex_unlock(&dev_priv->rps.hw_lock);
6333 POSTING_READ(D_COMP);
6334 ndelay(100);
6335
6336 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6337 DRM_ERROR("D_COMP RCOMP still in progress\n");
6338
6339 if (allow_power_down) {
6340 val = I915_READ(LCPLL_CTL);
6341 val |= LCPLL_POWER_DOWN_ALLOW;
6342 I915_WRITE(LCPLL_CTL, val);
6343 POSTING_READ(LCPLL_CTL);
6344 }
6345 }
6346
6347 /*
6348 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6349 * source.
6350 */
6351 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6352 {
6353 uint32_t val;
6354
6355 val = I915_READ(LCPLL_CTL);
6356
6357 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6358 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6359 return;
6360
6361 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6362 * we'll hang the machine! */
6363 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6364
6365 if (val & LCPLL_POWER_DOWN_ALLOW) {
6366 val &= ~LCPLL_POWER_DOWN_ALLOW;
6367 I915_WRITE(LCPLL_CTL, val);
6368 POSTING_READ(LCPLL_CTL);
6369 }
6370
6371 val = I915_READ(D_COMP);
6372 val |= D_COMP_COMP_FORCE;
6373 val &= ~D_COMP_COMP_DISABLE;
6374 mutex_lock(&dev_priv->rps.hw_lock);
6375 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6376 DRM_ERROR("Failed to enable D_COMP\n");
6377 mutex_unlock(&dev_priv->rps.hw_lock);
6378 POSTING_READ(D_COMP);
6379
6380 val = I915_READ(LCPLL_CTL);
6381 val &= ~LCPLL_PLL_DISABLE;
6382 I915_WRITE(LCPLL_CTL, val);
6383
6384 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6385 DRM_ERROR("LCPLL not locked yet\n");
6386
6387 if (val & LCPLL_CD_SOURCE_FCLK) {
6388 val = I915_READ(LCPLL_CTL);
6389 val &= ~LCPLL_CD_SOURCE_FCLK;
6390 I915_WRITE(LCPLL_CTL, val);
6391
6392 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6393 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6394 DRM_ERROR("Switching back to LCPLL failed\n");
6395 }
6396
6397 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6398 }
6399
6400 void hsw_enable_pc8_work(struct work_struct *__work)
6401 {
6402 struct drm_i915_private *dev_priv =
6403 container_of(to_delayed_work(__work), struct drm_i915_private,
6404 pc8.enable_work);
6405 struct drm_device *dev = dev_priv->dev;
6406 uint32_t val;
6407
6408 if (dev_priv->pc8.enabled)
6409 return;
6410
6411 DRM_DEBUG_KMS("Enabling package C8+\n");
6412
6413 dev_priv->pc8.enabled = true;
6414
6415 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6416 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6417 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6418 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6419 }
6420
6421 lpt_disable_clkout_dp(dev);
6422 hsw_pc8_disable_interrupts(dev);
6423 hsw_disable_lcpll(dev_priv, true, true);
6424 }
6425
6426 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6427 {
6428 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6429 WARN(dev_priv->pc8.disable_count < 1,
6430 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6431
6432 dev_priv->pc8.disable_count--;
6433 if (dev_priv->pc8.disable_count != 0)
6434 return;
6435
6436 schedule_delayed_work(&dev_priv->pc8.enable_work,
6437 msecs_to_jiffies(i915_pc8_timeout));
6438 }
6439
6440 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6441 {
6442 struct drm_device *dev = dev_priv->dev;
6443 uint32_t val;
6444
6445 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6446 WARN(dev_priv->pc8.disable_count < 0,
6447 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6448
6449 dev_priv->pc8.disable_count++;
6450 if (dev_priv->pc8.disable_count != 1)
6451 return;
6452
6453 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6454 if (!dev_priv->pc8.enabled)
6455 return;
6456
6457 DRM_DEBUG_KMS("Disabling package C8+\n");
6458
6459 hsw_restore_lcpll(dev_priv);
6460 hsw_pc8_restore_interrupts(dev);
6461 lpt_init_pch_refclk(dev);
6462
6463 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6464 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6465 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6466 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6467 }
6468
6469 intel_prepare_ddi(dev);
6470 i915_gem_init_swizzling(dev);
6471 mutex_lock(&dev_priv->rps.hw_lock);
6472 gen6_update_ring_freq(dev);
6473 mutex_unlock(&dev_priv->rps.hw_lock);
6474 dev_priv->pc8.enabled = false;
6475 }
6476
6477 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6478 {
6479 mutex_lock(&dev_priv->pc8.lock);
6480 __hsw_enable_package_c8(dev_priv);
6481 mutex_unlock(&dev_priv->pc8.lock);
6482 }
6483
6484 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6485 {
6486 mutex_lock(&dev_priv->pc8.lock);
6487 __hsw_disable_package_c8(dev_priv);
6488 mutex_unlock(&dev_priv->pc8.lock);
6489 }
6490
6491 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6492 {
6493 struct drm_device *dev = dev_priv->dev;
6494 struct intel_crtc *crtc;
6495 uint32_t val;
6496
6497 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6498 if (crtc->base.enabled)
6499 return false;
6500
6501 /* This case is still possible since we have the i915.disable_power_well
6502 * parameter and also the KVMr or something else might be requesting the
6503 * power well. */
6504 val = I915_READ(HSW_PWR_WELL_DRIVER);
6505 if (val != 0) {
6506 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6507 return false;
6508 }
6509
6510 return true;
6511 }
6512
6513 /* Since we're called from modeset_global_resources there's no way to
6514 * symmetrically increase and decrease the refcount, so we use
6515 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6516 * or not.
6517 */
6518 static void hsw_update_package_c8(struct drm_device *dev)
6519 {
6520 struct drm_i915_private *dev_priv = dev->dev_private;
6521 bool allow;
6522
6523 if (!i915_enable_pc8)
6524 return;
6525
6526 mutex_lock(&dev_priv->pc8.lock);
6527
6528 allow = hsw_can_enable_package_c8(dev_priv);
6529
6530 if (allow == dev_priv->pc8.requirements_met)
6531 goto done;
6532
6533 dev_priv->pc8.requirements_met = allow;
6534
6535 if (allow)
6536 __hsw_enable_package_c8(dev_priv);
6537 else
6538 __hsw_disable_package_c8(dev_priv);
6539
6540 done:
6541 mutex_unlock(&dev_priv->pc8.lock);
6542 }
6543
6544 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6545 {
6546 if (!dev_priv->pc8.gpu_idle) {
6547 dev_priv->pc8.gpu_idle = true;
6548 hsw_enable_package_c8(dev_priv);
6549 }
6550 }
6551
6552 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6553 {
6554 if (dev_priv->pc8.gpu_idle) {
6555 dev_priv->pc8.gpu_idle = false;
6556 hsw_disable_package_c8(dev_priv);
6557 }
6558 }
6559
6560 static void haswell_modeset_global_resources(struct drm_device *dev)
6561 {
6562 bool enable = false;
6563 struct intel_crtc *crtc;
6564
6565 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6566 if (!crtc->base.enabled)
6567 continue;
6568
6569 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6570 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6571 enable = true;
6572 }
6573
6574 intel_set_power_well(dev, enable);
6575
6576 hsw_update_package_c8(dev);
6577 }
6578
6579 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6580 int x, int y,
6581 struct drm_framebuffer *fb)
6582 {
6583 struct drm_device *dev = crtc->dev;
6584 struct drm_i915_private *dev_priv = dev->dev_private;
6585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6586 int plane = intel_crtc->plane;
6587 int ret;
6588
6589 if (!intel_ddi_pll_mode_set(crtc))
6590 return -EINVAL;
6591
6592 if (intel_crtc->config.has_dp_encoder)
6593 intel_dp_set_m_n(intel_crtc);
6594
6595 intel_crtc->lowfreq_avail = false;
6596
6597 intel_set_pipe_timings(intel_crtc);
6598
6599 if (intel_crtc->config.has_pch_encoder) {
6600 intel_cpu_transcoder_set_m_n(intel_crtc,
6601 &intel_crtc->config.fdi_m_n);
6602 }
6603
6604 haswell_set_pipeconf(crtc);
6605
6606 intel_set_pipe_csc(crtc);
6607
6608 /* Set up the display plane register */
6609 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6610 POSTING_READ(DSPCNTR(plane));
6611
6612 ret = intel_pipe_set_base(crtc, x, y, fb);
6613
6614 return ret;
6615 }
6616
6617 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6618 struct intel_crtc_config *pipe_config)
6619 {
6620 struct drm_device *dev = crtc->base.dev;
6621 struct drm_i915_private *dev_priv = dev->dev_private;
6622 enum intel_display_power_domain pfit_domain;
6623 uint32_t tmp;
6624
6625 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6626 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6627
6628 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6629 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6630 enum pipe trans_edp_pipe;
6631 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6632 default:
6633 WARN(1, "unknown pipe linked to edp transcoder\n");
6634 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6635 case TRANS_DDI_EDP_INPUT_A_ON:
6636 trans_edp_pipe = PIPE_A;
6637 break;
6638 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6639 trans_edp_pipe = PIPE_B;
6640 break;
6641 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6642 trans_edp_pipe = PIPE_C;
6643 break;
6644 }
6645
6646 if (trans_edp_pipe == crtc->pipe)
6647 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6648 }
6649
6650 if (!intel_display_power_enabled(dev,
6651 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6652 return false;
6653
6654 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6655 if (!(tmp & PIPECONF_ENABLE))
6656 return false;
6657
6658 /*
6659 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6660 * DDI E. So just check whether this pipe is wired to DDI E and whether
6661 * the PCH transcoder is on.
6662 */
6663 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6664 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6665 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6666 pipe_config->has_pch_encoder = true;
6667
6668 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6669 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6670 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6671
6672 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6673 }
6674
6675 intel_get_pipe_timings(crtc, pipe_config);
6676
6677 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6678 if (intel_display_power_enabled(dev, pfit_domain))
6679 ironlake_get_pfit_config(crtc, pipe_config);
6680
6681 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6682 (I915_READ(IPS_CTL) & IPS_ENABLE);
6683
6684 pipe_config->pixel_multiplier = 1;
6685
6686 return true;
6687 }
6688
6689 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6690 int x, int y,
6691 struct drm_framebuffer *fb)
6692 {
6693 struct drm_device *dev = crtc->dev;
6694 struct drm_i915_private *dev_priv = dev->dev_private;
6695 struct intel_encoder *encoder;
6696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6697 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6698 int pipe = intel_crtc->pipe;
6699 int ret;
6700
6701 drm_vblank_pre_modeset(dev, pipe);
6702
6703 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6704
6705 drm_vblank_post_modeset(dev, pipe);
6706
6707 if (ret != 0)
6708 return ret;
6709
6710 for_each_encoder_on_crtc(dev, crtc, encoder) {
6711 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6712 encoder->base.base.id,
6713 drm_get_encoder_name(&encoder->base),
6714 mode->base.id, mode->name);
6715 encoder->mode_set(encoder);
6716 }
6717
6718 return 0;
6719 }
6720
6721 static struct {
6722 int clock;
6723 u32 config;
6724 } hdmi_audio_clock[] = {
6725 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6726 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6727 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6728 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6729 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6730 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6731 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6732 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6733 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6734 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6735 };
6736
6737 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6738 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6739 {
6740 int i;
6741
6742 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6743 if (mode->clock == hdmi_audio_clock[i].clock)
6744 break;
6745 }
6746
6747 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6748 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6749 i = 1;
6750 }
6751
6752 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6753 hdmi_audio_clock[i].clock,
6754 hdmi_audio_clock[i].config);
6755
6756 return hdmi_audio_clock[i].config;
6757 }
6758
6759 static bool intel_eld_uptodate(struct drm_connector *connector,
6760 int reg_eldv, uint32_t bits_eldv,
6761 int reg_elda, uint32_t bits_elda,
6762 int reg_edid)
6763 {
6764 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6765 uint8_t *eld = connector->eld;
6766 uint32_t i;
6767
6768 i = I915_READ(reg_eldv);
6769 i &= bits_eldv;
6770
6771 if (!eld[0])
6772 return !i;
6773
6774 if (!i)
6775 return false;
6776
6777 i = I915_READ(reg_elda);
6778 i &= ~bits_elda;
6779 I915_WRITE(reg_elda, i);
6780
6781 for (i = 0; i < eld[2]; i++)
6782 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6783 return false;
6784
6785 return true;
6786 }
6787
6788 static void g4x_write_eld(struct drm_connector *connector,
6789 struct drm_crtc *crtc,
6790 struct drm_display_mode *mode)
6791 {
6792 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6793 uint8_t *eld = connector->eld;
6794 uint32_t eldv;
6795 uint32_t len;
6796 uint32_t i;
6797
6798 i = I915_READ(G4X_AUD_VID_DID);
6799
6800 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6801 eldv = G4X_ELDV_DEVCL_DEVBLC;
6802 else
6803 eldv = G4X_ELDV_DEVCTG;
6804
6805 if (intel_eld_uptodate(connector,
6806 G4X_AUD_CNTL_ST, eldv,
6807 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6808 G4X_HDMIW_HDMIEDID))
6809 return;
6810
6811 i = I915_READ(G4X_AUD_CNTL_ST);
6812 i &= ~(eldv | G4X_ELD_ADDR);
6813 len = (i >> 9) & 0x1f; /* ELD buffer size */
6814 I915_WRITE(G4X_AUD_CNTL_ST, i);
6815
6816 if (!eld[0])
6817 return;
6818
6819 len = min_t(uint8_t, eld[2], len);
6820 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6821 for (i = 0; i < len; i++)
6822 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6823
6824 i = I915_READ(G4X_AUD_CNTL_ST);
6825 i |= eldv;
6826 I915_WRITE(G4X_AUD_CNTL_ST, i);
6827 }
6828
6829 static void haswell_write_eld(struct drm_connector *connector,
6830 struct drm_crtc *crtc,
6831 struct drm_display_mode *mode)
6832 {
6833 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6834 uint8_t *eld = connector->eld;
6835 struct drm_device *dev = crtc->dev;
6836 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6837 uint32_t eldv;
6838 uint32_t i;
6839 int len;
6840 int pipe = to_intel_crtc(crtc)->pipe;
6841 int tmp;
6842
6843 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6844 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6845 int aud_config = HSW_AUD_CFG(pipe);
6846 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6847
6848
6849 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6850
6851 /* Audio output enable */
6852 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6853 tmp = I915_READ(aud_cntrl_st2);
6854 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6855 I915_WRITE(aud_cntrl_st2, tmp);
6856
6857 /* Wait for 1 vertical blank */
6858 intel_wait_for_vblank(dev, pipe);
6859
6860 /* Set ELD valid state */
6861 tmp = I915_READ(aud_cntrl_st2);
6862 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6863 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6864 I915_WRITE(aud_cntrl_st2, tmp);
6865 tmp = I915_READ(aud_cntrl_st2);
6866 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6867
6868 /* Enable HDMI mode */
6869 tmp = I915_READ(aud_config);
6870 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6871 /* clear N_programing_enable and N_value_index */
6872 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6873 I915_WRITE(aud_config, tmp);
6874
6875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6876
6877 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6878 intel_crtc->eld_vld = true;
6879
6880 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6881 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6882 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6883 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6884 } else {
6885 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
6886 }
6887
6888 if (intel_eld_uptodate(connector,
6889 aud_cntrl_st2, eldv,
6890 aud_cntl_st, IBX_ELD_ADDRESS,
6891 hdmiw_hdmiedid))
6892 return;
6893
6894 i = I915_READ(aud_cntrl_st2);
6895 i &= ~eldv;
6896 I915_WRITE(aud_cntrl_st2, i);
6897
6898 if (!eld[0])
6899 return;
6900
6901 i = I915_READ(aud_cntl_st);
6902 i &= ~IBX_ELD_ADDRESS;
6903 I915_WRITE(aud_cntl_st, i);
6904 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6905 DRM_DEBUG_DRIVER("port num:%d\n", i);
6906
6907 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6908 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6909 for (i = 0; i < len; i++)
6910 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6911
6912 i = I915_READ(aud_cntrl_st2);
6913 i |= eldv;
6914 I915_WRITE(aud_cntrl_st2, i);
6915
6916 }
6917
6918 static void ironlake_write_eld(struct drm_connector *connector,
6919 struct drm_crtc *crtc,
6920 struct drm_display_mode *mode)
6921 {
6922 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6923 uint8_t *eld = connector->eld;
6924 uint32_t eldv;
6925 uint32_t i;
6926 int len;
6927 int hdmiw_hdmiedid;
6928 int aud_config;
6929 int aud_cntl_st;
6930 int aud_cntrl_st2;
6931 int pipe = to_intel_crtc(crtc)->pipe;
6932
6933 if (HAS_PCH_IBX(connector->dev)) {
6934 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6935 aud_config = IBX_AUD_CFG(pipe);
6936 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6937 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6938 } else {
6939 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6940 aud_config = CPT_AUD_CFG(pipe);
6941 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6942 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6943 }
6944
6945 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6946
6947 i = I915_READ(aud_cntl_st);
6948 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6949 if (!i) {
6950 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6951 /* operate blindly on all ports */
6952 eldv = IBX_ELD_VALIDB;
6953 eldv |= IBX_ELD_VALIDB << 4;
6954 eldv |= IBX_ELD_VALIDB << 8;
6955 } else {
6956 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6957 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6958 }
6959
6960 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6961 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6962 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6963 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6964 } else {
6965 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
6966 }
6967
6968 if (intel_eld_uptodate(connector,
6969 aud_cntrl_st2, eldv,
6970 aud_cntl_st, IBX_ELD_ADDRESS,
6971 hdmiw_hdmiedid))
6972 return;
6973
6974 i = I915_READ(aud_cntrl_st2);
6975 i &= ~eldv;
6976 I915_WRITE(aud_cntrl_st2, i);
6977
6978 if (!eld[0])
6979 return;
6980
6981 i = I915_READ(aud_cntl_st);
6982 i &= ~IBX_ELD_ADDRESS;
6983 I915_WRITE(aud_cntl_st, i);
6984
6985 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6986 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6987 for (i = 0; i < len; i++)
6988 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6989
6990 i = I915_READ(aud_cntrl_st2);
6991 i |= eldv;
6992 I915_WRITE(aud_cntrl_st2, i);
6993 }
6994
6995 void intel_write_eld(struct drm_encoder *encoder,
6996 struct drm_display_mode *mode)
6997 {
6998 struct drm_crtc *crtc = encoder->crtc;
6999 struct drm_connector *connector;
7000 struct drm_device *dev = encoder->dev;
7001 struct drm_i915_private *dev_priv = dev->dev_private;
7002
7003 connector = drm_select_eld(encoder, mode);
7004 if (!connector)
7005 return;
7006
7007 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7008 connector->base.id,
7009 drm_get_connector_name(connector),
7010 connector->encoder->base.id,
7011 drm_get_encoder_name(connector->encoder));
7012
7013 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7014
7015 if (dev_priv->display.write_eld)
7016 dev_priv->display.write_eld(connector, crtc, mode);
7017 }
7018
7019 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7020 {
7021 struct drm_device *dev = crtc->dev;
7022 struct drm_i915_private *dev_priv = dev->dev_private;
7023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7024 bool visible = base != 0;
7025 u32 cntl;
7026
7027 if (intel_crtc->cursor_visible == visible)
7028 return;
7029
7030 cntl = I915_READ(_CURACNTR);
7031 if (visible) {
7032 /* On these chipsets we can only modify the base whilst
7033 * the cursor is disabled.
7034 */
7035 I915_WRITE(_CURABASE, base);
7036
7037 cntl &= ~(CURSOR_FORMAT_MASK);
7038 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7039 cntl |= CURSOR_ENABLE |
7040 CURSOR_GAMMA_ENABLE |
7041 CURSOR_FORMAT_ARGB;
7042 } else
7043 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7044 I915_WRITE(_CURACNTR, cntl);
7045
7046 intel_crtc->cursor_visible = visible;
7047 }
7048
7049 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7050 {
7051 struct drm_device *dev = crtc->dev;
7052 struct drm_i915_private *dev_priv = dev->dev_private;
7053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7054 int pipe = intel_crtc->pipe;
7055 bool visible = base != 0;
7056
7057 if (intel_crtc->cursor_visible != visible) {
7058 uint32_t cntl = I915_READ(CURCNTR(pipe));
7059 if (base) {
7060 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7061 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7062 cntl |= pipe << 28; /* Connect to correct pipe */
7063 } else {
7064 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7065 cntl |= CURSOR_MODE_DISABLE;
7066 }
7067 I915_WRITE(CURCNTR(pipe), cntl);
7068
7069 intel_crtc->cursor_visible = visible;
7070 }
7071 /* and commit changes on next vblank */
7072 I915_WRITE(CURBASE(pipe), base);
7073 }
7074
7075 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7076 {
7077 struct drm_device *dev = crtc->dev;
7078 struct drm_i915_private *dev_priv = dev->dev_private;
7079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7080 int pipe = intel_crtc->pipe;
7081 bool visible = base != 0;
7082
7083 if (intel_crtc->cursor_visible != visible) {
7084 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7085 if (base) {
7086 cntl &= ~CURSOR_MODE;
7087 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7088 } else {
7089 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7090 cntl |= CURSOR_MODE_DISABLE;
7091 }
7092 if (IS_HASWELL(dev)) {
7093 cntl |= CURSOR_PIPE_CSC_ENABLE;
7094 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7095 }
7096 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7097
7098 intel_crtc->cursor_visible = visible;
7099 }
7100 /* and commit changes on next vblank */
7101 I915_WRITE(CURBASE_IVB(pipe), base);
7102 }
7103
7104 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7105 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7106 bool on)
7107 {
7108 struct drm_device *dev = crtc->dev;
7109 struct drm_i915_private *dev_priv = dev->dev_private;
7110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7111 int pipe = intel_crtc->pipe;
7112 int x = intel_crtc->cursor_x;
7113 int y = intel_crtc->cursor_y;
7114 u32 base = 0, pos = 0;
7115 bool visible;
7116
7117 if (on)
7118 base = intel_crtc->cursor_addr;
7119
7120 if (x >= intel_crtc->config.pipe_src_w)
7121 base = 0;
7122
7123 if (y >= intel_crtc->config.pipe_src_h)
7124 base = 0;
7125
7126 if (x < 0) {
7127 if (x + intel_crtc->cursor_width <= 0)
7128 base = 0;
7129
7130 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7131 x = -x;
7132 }
7133 pos |= x << CURSOR_X_SHIFT;
7134
7135 if (y < 0) {
7136 if (y + intel_crtc->cursor_height <= 0)
7137 base = 0;
7138
7139 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7140 y = -y;
7141 }
7142 pos |= y << CURSOR_Y_SHIFT;
7143
7144 visible = base != 0;
7145 if (!visible && !intel_crtc->cursor_visible)
7146 return;
7147
7148 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
7149 I915_WRITE(CURPOS_IVB(pipe), pos);
7150 ivb_update_cursor(crtc, base);
7151 } else {
7152 I915_WRITE(CURPOS(pipe), pos);
7153 if (IS_845G(dev) || IS_I865G(dev))
7154 i845_update_cursor(crtc, base);
7155 else
7156 i9xx_update_cursor(crtc, base);
7157 }
7158 }
7159
7160 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7161 struct drm_file *file,
7162 uint32_t handle,
7163 uint32_t width, uint32_t height)
7164 {
7165 struct drm_device *dev = crtc->dev;
7166 struct drm_i915_private *dev_priv = dev->dev_private;
7167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7168 struct drm_i915_gem_object *obj;
7169 uint32_t addr;
7170 int ret;
7171
7172 /* if we want to turn off the cursor ignore width and height */
7173 if (!handle) {
7174 DRM_DEBUG_KMS("cursor off\n");
7175 addr = 0;
7176 obj = NULL;
7177 mutex_lock(&dev->struct_mutex);
7178 goto finish;
7179 }
7180
7181 /* Currently we only support 64x64 cursors */
7182 if (width != 64 || height != 64) {
7183 DRM_ERROR("we currently only support 64x64 cursors\n");
7184 return -EINVAL;
7185 }
7186
7187 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7188 if (&obj->base == NULL)
7189 return -ENOENT;
7190
7191 if (obj->base.size < width * height * 4) {
7192 DRM_ERROR("buffer is to small\n");
7193 ret = -ENOMEM;
7194 goto fail;
7195 }
7196
7197 /* we only need to pin inside GTT if cursor is non-phy */
7198 mutex_lock(&dev->struct_mutex);
7199 if (!dev_priv->info->cursor_needs_physical) {
7200 unsigned alignment;
7201
7202 if (obj->tiling_mode) {
7203 DRM_ERROR("cursor cannot be tiled\n");
7204 ret = -EINVAL;
7205 goto fail_locked;
7206 }
7207
7208 /* Note that the w/a also requires 2 PTE of padding following
7209 * the bo. We currently fill all unused PTE with the shadow
7210 * page and so we should always have valid PTE following the
7211 * cursor preventing the VT-d warning.
7212 */
7213 alignment = 0;
7214 if (need_vtd_wa(dev))
7215 alignment = 64*1024;
7216
7217 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7218 if (ret) {
7219 DRM_ERROR("failed to move cursor bo into the GTT\n");
7220 goto fail_locked;
7221 }
7222
7223 ret = i915_gem_object_put_fence(obj);
7224 if (ret) {
7225 DRM_ERROR("failed to release fence for cursor");
7226 goto fail_unpin;
7227 }
7228
7229 addr = i915_gem_obj_ggtt_offset(obj);
7230 } else {
7231 int align = IS_I830(dev) ? 16 * 1024 : 256;
7232 ret = i915_gem_attach_phys_object(dev, obj,
7233 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7234 align);
7235 if (ret) {
7236 DRM_ERROR("failed to attach phys object\n");
7237 goto fail_locked;
7238 }
7239 addr = obj->phys_obj->handle->busaddr;
7240 }
7241
7242 if (IS_GEN2(dev))
7243 I915_WRITE(CURSIZE, (height << 12) | width);
7244
7245 finish:
7246 if (intel_crtc->cursor_bo) {
7247 if (dev_priv->info->cursor_needs_physical) {
7248 if (intel_crtc->cursor_bo != obj)
7249 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7250 } else
7251 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7252 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7253 }
7254
7255 mutex_unlock(&dev->struct_mutex);
7256
7257 intel_crtc->cursor_addr = addr;
7258 intel_crtc->cursor_bo = obj;
7259 intel_crtc->cursor_width = width;
7260 intel_crtc->cursor_height = height;
7261
7262 if (intel_crtc->active)
7263 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7264
7265 return 0;
7266 fail_unpin:
7267 i915_gem_object_unpin_from_display_plane(obj);
7268 fail_locked:
7269 mutex_unlock(&dev->struct_mutex);
7270 fail:
7271 drm_gem_object_unreference_unlocked(&obj->base);
7272 return ret;
7273 }
7274
7275 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7276 {
7277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7278
7279 intel_crtc->cursor_x = x;
7280 intel_crtc->cursor_y = y;
7281
7282 if (intel_crtc->active)
7283 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7284
7285 return 0;
7286 }
7287
7288 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7289 u16 *blue, uint32_t start, uint32_t size)
7290 {
7291 int end = (start + size > 256) ? 256 : start + size, i;
7292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7293
7294 for (i = start; i < end; i++) {
7295 intel_crtc->lut_r[i] = red[i] >> 8;
7296 intel_crtc->lut_g[i] = green[i] >> 8;
7297 intel_crtc->lut_b[i] = blue[i] >> 8;
7298 }
7299
7300 intel_crtc_load_lut(crtc);
7301 }
7302
7303 /* VESA 640x480x72Hz mode to set on the pipe */
7304 static struct drm_display_mode load_detect_mode = {
7305 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7306 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7307 };
7308
7309 static struct drm_framebuffer *
7310 intel_framebuffer_create(struct drm_device *dev,
7311 struct drm_mode_fb_cmd2 *mode_cmd,
7312 struct drm_i915_gem_object *obj)
7313 {
7314 struct intel_framebuffer *intel_fb;
7315 int ret;
7316
7317 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7318 if (!intel_fb) {
7319 drm_gem_object_unreference_unlocked(&obj->base);
7320 return ERR_PTR(-ENOMEM);
7321 }
7322
7323 ret = i915_mutex_lock_interruptible(dev);
7324 if (ret)
7325 goto err;
7326
7327 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7328 mutex_unlock(&dev->struct_mutex);
7329 if (ret)
7330 goto err;
7331
7332 return &intel_fb->base;
7333 err:
7334 drm_gem_object_unreference_unlocked(&obj->base);
7335 kfree(intel_fb);
7336
7337 return ERR_PTR(ret);
7338 }
7339
7340 static u32
7341 intel_framebuffer_pitch_for_width(int width, int bpp)
7342 {
7343 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7344 return ALIGN(pitch, 64);
7345 }
7346
7347 static u32
7348 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7349 {
7350 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7351 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7352 }
7353
7354 static struct drm_framebuffer *
7355 intel_framebuffer_create_for_mode(struct drm_device *dev,
7356 struct drm_display_mode *mode,
7357 int depth, int bpp)
7358 {
7359 struct drm_i915_gem_object *obj;
7360 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7361
7362 obj = i915_gem_alloc_object(dev,
7363 intel_framebuffer_size_for_mode(mode, bpp));
7364 if (obj == NULL)
7365 return ERR_PTR(-ENOMEM);
7366
7367 mode_cmd.width = mode->hdisplay;
7368 mode_cmd.height = mode->vdisplay;
7369 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7370 bpp);
7371 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7372
7373 return intel_framebuffer_create(dev, &mode_cmd, obj);
7374 }
7375
7376 static struct drm_framebuffer *
7377 mode_fits_in_fbdev(struct drm_device *dev,
7378 struct drm_display_mode *mode)
7379 {
7380 #ifdef CONFIG_DRM_I915_FBDEV
7381 struct drm_i915_private *dev_priv = dev->dev_private;
7382 struct drm_i915_gem_object *obj;
7383 struct drm_framebuffer *fb;
7384
7385 if (dev_priv->fbdev == NULL)
7386 return NULL;
7387
7388 obj = dev_priv->fbdev->ifb.obj;
7389 if (obj == NULL)
7390 return NULL;
7391
7392 fb = &dev_priv->fbdev->ifb.base;
7393 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7394 fb->bits_per_pixel))
7395 return NULL;
7396
7397 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7398 return NULL;
7399
7400 return fb;
7401 #else
7402 return NULL;
7403 #endif
7404 }
7405
7406 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7407 struct drm_display_mode *mode,
7408 struct intel_load_detect_pipe *old)
7409 {
7410 struct intel_crtc *intel_crtc;
7411 struct intel_encoder *intel_encoder =
7412 intel_attached_encoder(connector);
7413 struct drm_crtc *possible_crtc;
7414 struct drm_encoder *encoder = &intel_encoder->base;
7415 struct drm_crtc *crtc = NULL;
7416 struct drm_device *dev = encoder->dev;
7417 struct drm_framebuffer *fb;
7418 int i = -1;
7419
7420 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7421 connector->base.id, drm_get_connector_name(connector),
7422 encoder->base.id, drm_get_encoder_name(encoder));
7423
7424 /*
7425 * Algorithm gets a little messy:
7426 *
7427 * - if the connector already has an assigned crtc, use it (but make
7428 * sure it's on first)
7429 *
7430 * - try to find the first unused crtc that can drive this connector,
7431 * and use that if we find one
7432 */
7433
7434 /* See if we already have a CRTC for this connector */
7435 if (encoder->crtc) {
7436 crtc = encoder->crtc;
7437
7438 mutex_lock(&crtc->mutex);
7439
7440 old->dpms_mode = connector->dpms;
7441 old->load_detect_temp = false;
7442
7443 /* Make sure the crtc and connector are running */
7444 if (connector->dpms != DRM_MODE_DPMS_ON)
7445 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7446
7447 return true;
7448 }
7449
7450 /* Find an unused one (if possible) */
7451 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7452 i++;
7453 if (!(encoder->possible_crtcs & (1 << i)))
7454 continue;
7455 if (!possible_crtc->enabled) {
7456 crtc = possible_crtc;
7457 break;
7458 }
7459 }
7460
7461 /*
7462 * If we didn't find an unused CRTC, don't use any.
7463 */
7464 if (!crtc) {
7465 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7466 return false;
7467 }
7468
7469 mutex_lock(&crtc->mutex);
7470 intel_encoder->new_crtc = to_intel_crtc(crtc);
7471 to_intel_connector(connector)->new_encoder = intel_encoder;
7472
7473 intel_crtc = to_intel_crtc(crtc);
7474 old->dpms_mode = connector->dpms;
7475 old->load_detect_temp = true;
7476 old->release_fb = NULL;
7477
7478 if (!mode)
7479 mode = &load_detect_mode;
7480
7481 /* We need a framebuffer large enough to accommodate all accesses
7482 * that the plane may generate whilst we perform load detection.
7483 * We can not rely on the fbcon either being present (we get called
7484 * during its initialisation to detect all boot displays, or it may
7485 * not even exist) or that it is large enough to satisfy the
7486 * requested mode.
7487 */
7488 fb = mode_fits_in_fbdev(dev, mode);
7489 if (fb == NULL) {
7490 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7491 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7492 old->release_fb = fb;
7493 } else
7494 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7495 if (IS_ERR(fb)) {
7496 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7497 mutex_unlock(&crtc->mutex);
7498 return false;
7499 }
7500
7501 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7502 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7503 if (old->release_fb)
7504 old->release_fb->funcs->destroy(old->release_fb);
7505 mutex_unlock(&crtc->mutex);
7506 return false;
7507 }
7508
7509 /* let the connector get through one full cycle before testing */
7510 intel_wait_for_vblank(dev, intel_crtc->pipe);
7511 return true;
7512 }
7513
7514 void intel_release_load_detect_pipe(struct drm_connector *connector,
7515 struct intel_load_detect_pipe *old)
7516 {
7517 struct intel_encoder *intel_encoder =
7518 intel_attached_encoder(connector);
7519 struct drm_encoder *encoder = &intel_encoder->base;
7520 struct drm_crtc *crtc = encoder->crtc;
7521
7522 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7523 connector->base.id, drm_get_connector_name(connector),
7524 encoder->base.id, drm_get_encoder_name(encoder));
7525
7526 if (old->load_detect_temp) {
7527 to_intel_connector(connector)->new_encoder = NULL;
7528 intel_encoder->new_crtc = NULL;
7529 intel_set_mode(crtc, NULL, 0, 0, NULL);
7530
7531 if (old->release_fb) {
7532 drm_framebuffer_unregister_private(old->release_fb);
7533 drm_framebuffer_unreference(old->release_fb);
7534 }
7535
7536 mutex_unlock(&crtc->mutex);
7537 return;
7538 }
7539
7540 /* Switch crtc and encoder back off if necessary */
7541 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7542 connector->funcs->dpms(connector, old->dpms_mode);
7543
7544 mutex_unlock(&crtc->mutex);
7545 }
7546
7547 static int i9xx_pll_refclk(struct drm_device *dev,
7548 const struct intel_crtc_config *pipe_config)
7549 {
7550 struct drm_i915_private *dev_priv = dev->dev_private;
7551 u32 dpll = pipe_config->dpll_hw_state.dpll;
7552
7553 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7554 return dev_priv->vbt.lvds_ssc_freq * 1000;
7555 else if (HAS_PCH_SPLIT(dev))
7556 return 120000;
7557 else if (!IS_GEN2(dev))
7558 return 96000;
7559 else
7560 return 48000;
7561 }
7562
7563 /* Returns the clock of the currently programmed mode of the given pipe. */
7564 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7565 struct intel_crtc_config *pipe_config)
7566 {
7567 struct drm_device *dev = crtc->base.dev;
7568 struct drm_i915_private *dev_priv = dev->dev_private;
7569 int pipe = pipe_config->cpu_transcoder;
7570 u32 dpll = pipe_config->dpll_hw_state.dpll;
7571 u32 fp;
7572 intel_clock_t clock;
7573 int refclk = i9xx_pll_refclk(dev, pipe_config);
7574
7575 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7576 fp = pipe_config->dpll_hw_state.fp0;
7577 else
7578 fp = pipe_config->dpll_hw_state.fp1;
7579
7580 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7581 if (IS_PINEVIEW(dev)) {
7582 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7583 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7584 } else {
7585 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7586 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7587 }
7588
7589 if (!IS_GEN2(dev)) {
7590 if (IS_PINEVIEW(dev))
7591 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7592 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7593 else
7594 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7595 DPLL_FPA01_P1_POST_DIV_SHIFT);
7596
7597 switch (dpll & DPLL_MODE_MASK) {
7598 case DPLLB_MODE_DAC_SERIAL:
7599 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7600 5 : 10;
7601 break;
7602 case DPLLB_MODE_LVDS:
7603 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7604 7 : 14;
7605 break;
7606 default:
7607 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7608 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7609 return;
7610 }
7611
7612 if (IS_PINEVIEW(dev))
7613 pineview_clock(refclk, &clock);
7614 else
7615 i9xx_clock(refclk, &clock);
7616 } else {
7617 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7618
7619 if (is_lvds) {
7620 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7621 DPLL_FPA01_P1_POST_DIV_SHIFT);
7622 clock.p2 = 14;
7623 } else {
7624 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7625 clock.p1 = 2;
7626 else {
7627 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7628 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7629 }
7630 if (dpll & PLL_P2_DIVIDE_BY_4)
7631 clock.p2 = 4;
7632 else
7633 clock.p2 = 2;
7634 }
7635
7636 i9xx_clock(refclk, &clock);
7637 }
7638
7639 /*
7640 * This value includes pixel_multiplier. We will use
7641 * port_clock to compute adjusted_mode.crtc_clock in the
7642 * encoder's get_config() function.
7643 */
7644 pipe_config->port_clock = clock.dot;
7645 }
7646
7647 int intel_dotclock_calculate(int link_freq,
7648 const struct intel_link_m_n *m_n)
7649 {
7650 /*
7651 * The calculation for the data clock is:
7652 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7653 * But we want to avoid losing precison if possible, so:
7654 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7655 *
7656 * and the link clock is simpler:
7657 * link_clock = (m * link_clock) / n
7658 */
7659
7660 if (!m_n->link_n)
7661 return 0;
7662
7663 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7664 }
7665
7666 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7667 struct intel_crtc_config *pipe_config)
7668 {
7669 struct drm_device *dev = crtc->base.dev;
7670
7671 /* read out port_clock from the DPLL */
7672 i9xx_crtc_clock_get(crtc, pipe_config);
7673
7674 /*
7675 * This value does not include pixel_multiplier.
7676 * We will check that port_clock and adjusted_mode.crtc_clock
7677 * agree once we know their relationship in the encoder's
7678 * get_config() function.
7679 */
7680 pipe_config->adjusted_mode.crtc_clock =
7681 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7682 &pipe_config->fdi_m_n);
7683 }
7684
7685 /** Returns the currently programmed mode of the given pipe. */
7686 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7687 struct drm_crtc *crtc)
7688 {
7689 struct drm_i915_private *dev_priv = dev->dev_private;
7690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7691 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7692 struct drm_display_mode *mode;
7693 struct intel_crtc_config pipe_config;
7694 int htot = I915_READ(HTOTAL(cpu_transcoder));
7695 int hsync = I915_READ(HSYNC(cpu_transcoder));
7696 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7697 int vsync = I915_READ(VSYNC(cpu_transcoder));
7698 enum pipe pipe = intel_crtc->pipe;
7699
7700 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7701 if (!mode)
7702 return NULL;
7703
7704 /*
7705 * Construct a pipe_config sufficient for getting the clock info
7706 * back out of crtc_clock_get.
7707 *
7708 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7709 * to use a real value here instead.
7710 */
7711 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7712 pipe_config.pixel_multiplier = 1;
7713 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7714 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7715 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7716 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7717
7718 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7719 mode->hdisplay = (htot & 0xffff) + 1;
7720 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7721 mode->hsync_start = (hsync & 0xffff) + 1;
7722 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7723 mode->vdisplay = (vtot & 0xffff) + 1;
7724 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7725 mode->vsync_start = (vsync & 0xffff) + 1;
7726 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7727
7728 drm_mode_set_name(mode);
7729
7730 return mode;
7731 }
7732
7733 static void intel_increase_pllclock(struct drm_crtc *crtc)
7734 {
7735 struct drm_device *dev = crtc->dev;
7736 drm_i915_private_t *dev_priv = dev->dev_private;
7737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7738 int pipe = intel_crtc->pipe;
7739 int dpll_reg = DPLL(pipe);
7740 int dpll;
7741
7742 if (HAS_PCH_SPLIT(dev))
7743 return;
7744
7745 if (!dev_priv->lvds_downclock_avail)
7746 return;
7747
7748 dpll = I915_READ(dpll_reg);
7749 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7750 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7751
7752 assert_panel_unlocked(dev_priv, pipe);
7753
7754 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7755 I915_WRITE(dpll_reg, dpll);
7756 intel_wait_for_vblank(dev, pipe);
7757
7758 dpll = I915_READ(dpll_reg);
7759 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7760 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7761 }
7762 }
7763
7764 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7765 {
7766 struct drm_device *dev = crtc->dev;
7767 drm_i915_private_t *dev_priv = dev->dev_private;
7768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7769
7770 if (HAS_PCH_SPLIT(dev))
7771 return;
7772
7773 if (!dev_priv->lvds_downclock_avail)
7774 return;
7775
7776 /*
7777 * Since this is called by a timer, we should never get here in
7778 * the manual case.
7779 */
7780 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7781 int pipe = intel_crtc->pipe;
7782 int dpll_reg = DPLL(pipe);
7783 int dpll;
7784
7785 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7786
7787 assert_panel_unlocked(dev_priv, pipe);
7788
7789 dpll = I915_READ(dpll_reg);
7790 dpll |= DISPLAY_RATE_SELECT_FPA1;
7791 I915_WRITE(dpll_reg, dpll);
7792 intel_wait_for_vblank(dev, pipe);
7793 dpll = I915_READ(dpll_reg);
7794 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7795 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7796 }
7797
7798 }
7799
7800 void intel_mark_busy(struct drm_device *dev)
7801 {
7802 struct drm_i915_private *dev_priv = dev->dev_private;
7803
7804 hsw_package_c8_gpu_busy(dev_priv);
7805 i915_update_gfx_val(dev_priv);
7806 }
7807
7808 void intel_mark_idle(struct drm_device *dev)
7809 {
7810 struct drm_i915_private *dev_priv = dev->dev_private;
7811 struct drm_crtc *crtc;
7812
7813 hsw_package_c8_gpu_idle(dev_priv);
7814
7815 if (!i915_powersave)
7816 return;
7817
7818 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7819 if (!crtc->fb)
7820 continue;
7821
7822 intel_decrease_pllclock(crtc);
7823 }
7824
7825 if (dev_priv->info->gen >= 6)
7826 gen6_rps_idle(dev->dev_private);
7827 }
7828
7829 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7830 struct intel_ring_buffer *ring)
7831 {
7832 struct drm_device *dev = obj->base.dev;
7833 struct drm_crtc *crtc;
7834
7835 if (!i915_powersave)
7836 return;
7837
7838 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7839 if (!crtc->fb)
7840 continue;
7841
7842 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7843 continue;
7844
7845 intel_increase_pllclock(crtc);
7846 if (ring && intel_fbc_enabled(dev))
7847 ring->fbc_dirty = true;
7848 }
7849 }
7850
7851 static void intel_crtc_destroy(struct drm_crtc *crtc)
7852 {
7853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7854 struct drm_device *dev = crtc->dev;
7855 struct intel_unpin_work *work;
7856 unsigned long flags;
7857
7858 spin_lock_irqsave(&dev->event_lock, flags);
7859 work = intel_crtc->unpin_work;
7860 intel_crtc->unpin_work = NULL;
7861 spin_unlock_irqrestore(&dev->event_lock, flags);
7862
7863 if (work) {
7864 cancel_work_sync(&work->work);
7865 kfree(work);
7866 }
7867
7868 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7869
7870 drm_crtc_cleanup(crtc);
7871
7872 kfree(intel_crtc);
7873 }
7874
7875 static void intel_unpin_work_fn(struct work_struct *__work)
7876 {
7877 struct intel_unpin_work *work =
7878 container_of(__work, struct intel_unpin_work, work);
7879 struct drm_device *dev = work->crtc->dev;
7880
7881 mutex_lock(&dev->struct_mutex);
7882 intel_unpin_fb_obj(work->old_fb_obj);
7883 drm_gem_object_unreference(&work->pending_flip_obj->base);
7884 drm_gem_object_unreference(&work->old_fb_obj->base);
7885
7886 intel_update_fbc(dev);
7887 mutex_unlock(&dev->struct_mutex);
7888
7889 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7890 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7891
7892 kfree(work);
7893 }
7894
7895 static void do_intel_finish_page_flip(struct drm_device *dev,
7896 struct drm_crtc *crtc)
7897 {
7898 drm_i915_private_t *dev_priv = dev->dev_private;
7899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7900 struct intel_unpin_work *work;
7901 unsigned long flags;
7902
7903 /* Ignore early vblank irqs */
7904 if (intel_crtc == NULL)
7905 return;
7906
7907 spin_lock_irqsave(&dev->event_lock, flags);
7908 work = intel_crtc->unpin_work;
7909
7910 /* Ensure we don't miss a work->pending update ... */
7911 smp_rmb();
7912
7913 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7914 spin_unlock_irqrestore(&dev->event_lock, flags);
7915 return;
7916 }
7917
7918 /* and that the unpin work is consistent wrt ->pending. */
7919 smp_rmb();
7920
7921 intel_crtc->unpin_work = NULL;
7922
7923 if (work->event)
7924 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7925
7926 drm_vblank_put(dev, intel_crtc->pipe);
7927
7928 spin_unlock_irqrestore(&dev->event_lock, flags);
7929
7930 wake_up_all(&dev_priv->pending_flip_queue);
7931
7932 queue_work(dev_priv->wq, &work->work);
7933
7934 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7935 }
7936
7937 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7938 {
7939 drm_i915_private_t *dev_priv = dev->dev_private;
7940 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7941
7942 do_intel_finish_page_flip(dev, crtc);
7943 }
7944
7945 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7946 {
7947 drm_i915_private_t *dev_priv = dev->dev_private;
7948 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7949
7950 do_intel_finish_page_flip(dev, crtc);
7951 }
7952
7953 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7954 {
7955 drm_i915_private_t *dev_priv = dev->dev_private;
7956 struct intel_crtc *intel_crtc =
7957 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7958 unsigned long flags;
7959
7960 /* NB: An MMIO update of the plane base pointer will also
7961 * generate a page-flip completion irq, i.e. every modeset
7962 * is also accompanied by a spurious intel_prepare_page_flip().
7963 */
7964 spin_lock_irqsave(&dev->event_lock, flags);
7965 if (intel_crtc->unpin_work)
7966 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7967 spin_unlock_irqrestore(&dev->event_lock, flags);
7968 }
7969
7970 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7971 {
7972 /* Ensure that the work item is consistent when activating it ... */
7973 smp_wmb();
7974 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7975 /* and that it is marked active as soon as the irq could fire. */
7976 smp_wmb();
7977 }
7978
7979 static int intel_gen2_queue_flip(struct drm_device *dev,
7980 struct drm_crtc *crtc,
7981 struct drm_framebuffer *fb,
7982 struct drm_i915_gem_object *obj,
7983 uint32_t flags)
7984 {
7985 struct drm_i915_private *dev_priv = dev->dev_private;
7986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7987 u32 flip_mask;
7988 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7989 int ret;
7990
7991 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7992 if (ret)
7993 goto err;
7994
7995 ret = intel_ring_begin(ring, 6);
7996 if (ret)
7997 goto err_unpin;
7998
7999 /* Can't queue multiple flips, so wait for the previous
8000 * one to finish before executing the next.
8001 */
8002 if (intel_crtc->plane)
8003 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8004 else
8005 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8006 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8007 intel_ring_emit(ring, MI_NOOP);
8008 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8009 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8010 intel_ring_emit(ring, fb->pitches[0]);
8011 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8012 intel_ring_emit(ring, 0); /* aux display base address, unused */
8013
8014 intel_mark_page_flip_active(intel_crtc);
8015 __intel_ring_advance(ring);
8016 return 0;
8017
8018 err_unpin:
8019 intel_unpin_fb_obj(obj);
8020 err:
8021 return ret;
8022 }
8023
8024 static int intel_gen3_queue_flip(struct drm_device *dev,
8025 struct drm_crtc *crtc,
8026 struct drm_framebuffer *fb,
8027 struct drm_i915_gem_object *obj,
8028 uint32_t flags)
8029 {
8030 struct drm_i915_private *dev_priv = dev->dev_private;
8031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8032 u32 flip_mask;
8033 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8034 int ret;
8035
8036 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8037 if (ret)
8038 goto err;
8039
8040 ret = intel_ring_begin(ring, 6);
8041 if (ret)
8042 goto err_unpin;
8043
8044 if (intel_crtc->plane)
8045 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8046 else
8047 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8048 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8049 intel_ring_emit(ring, MI_NOOP);
8050 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8051 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8052 intel_ring_emit(ring, fb->pitches[0]);
8053 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8054 intel_ring_emit(ring, MI_NOOP);
8055
8056 intel_mark_page_flip_active(intel_crtc);
8057 __intel_ring_advance(ring);
8058 return 0;
8059
8060 err_unpin:
8061 intel_unpin_fb_obj(obj);
8062 err:
8063 return ret;
8064 }
8065
8066 static int intel_gen4_queue_flip(struct drm_device *dev,
8067 struct drm_crtc *crtc,
8068 struct drm_framebuffer *fb,
8069 struct drm_i915_gem_object *obj,
8070 uint32_t flags)
8071 {
8072 struct drm_i915_private *dev_priv = dev->dev_private;
8073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8074 uint32_t pf, pipesrc;
8075 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8076 int ret;
8077
8078 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8079 if (ret)
8080 goto err;
8081
8082 ret = intel_ring_begin(ring, 4);
8083 if (ret)
8084 goto err_unpin;
8085
8086 /* i965+ uses the linear or tiled offsets from the
8087 * Display Registers (which do not change across a page-flip)
8088 * so we need only reprogram the base address.
8089 */
8090 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8091 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8092 intel_ring_emit(ring, fb->pitches[0]);
8093 intel_ring_emit(ring,
8094 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8095 obj->tiling_mode);
8096
8097 /* XXX Enabling the panel-fitter across page-flip is so far
8098 * untested on non-native modes, so ignore it for now.
8099 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8100 */
8101 pf = 0;
8102 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8103 intel_ring_emit(ring, pf | pipesrc);
8104
8105 intel_mark_page_flip_active(intel_crtc);
8106 __intel_ring_advance(ring);
8107 return 0;
8108
8109 err_unpin:
8110 intel_unpin_fb_obj(obj);
8111 err:
8112 return ret;
8113 }
8114
8115 static int intel_gen6_queue_flip(struct drm_device *dev,
8116 struct drm_crtc *crtc,
8117 struct drm_framebuffer *fb,
8118 struct drm_i915_gem_object *obj,
8119 uint32_t flags)
8120 {
8121 struct drm_i915_private *dev_priv = dev->dev_private;
8122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8123 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8124 uint32_t pf, pipesrc;
8125 int ret;
8126
8127 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8128 if (ret)
8129 goto err;
8130
8131 ret = intel_ring_begin(ring, 4);
8132 if (ret)
8133 goto err_unpin;
8134
8135 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8136 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8137 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8138 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8139
8140 /* Contrary to the suggestions in the documentation,
8141 * "Enable Panel Fitter" does not seem to be required when page
8142 * flipping with a non-native mode, and worse causes a normal
8143 * modeset to fail.
8144 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8145 */
8146 pf = 0;
8147 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8148 intel_ring_emit(ring, pf | pipesrc);
8149
8150 intel_mark_page_flip_active(intel_crtc);
8151 __intel_ring_advance(ring);
8152 return 0;
8153
8154 err_unpin:
8155 intel_unpin_fb_obj(obj);
8156 err:
8157 return ret;
8158 }
8159
8160 static int intel_gen7_queue_flip(struct drm_device *dev,
8161 struct drm_crtc *crtc,
8162 struct drm_framebuffer *fb,
8163 struct drm_i915_gem_object *obj,
8164 uint32_t flags)
8165 {
8166 struct drm_i915_private *dev_priv = dev->dev_private;
8167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8168 struct intel_ring_buffer *ring;
8169 uint32_t plane_bit = 0;
8170 int len, ret;
8171
8172 ring = obj->ring;
8173 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8174 ring = &dev_priv->ring[BCS];
8175
8176 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8177 if (ret)
8178 goto err;
8179
8180 switch(intel_crtc->plane) {
8181 case PLANE_A:
8182 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8183 break;
8184 case PLANE_B:
8185 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8186 break;
8187 case PLANE_C:
8188 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8189 break;
8190 default:
8191 WARN_ONCE(1, "unknown plane in flip command\n");
8192 ret = -ENODEV;
8193 goto err_unpin;
8194 }
8195
8196 len = 4;
8197 if (ring->id == RCS)
8198 len += 6;
8199
8200 ret = intel_ring_begin(ring, len);
8201 if (ret)
8202 goto err_unpin;
8203
8204 /* Unmask the flip-done completion message. Note that the bspec says that
8205 * we should do this for both the BCS and RCS, and that we must not unmask
8206 * more than one flip event at any time (or ensure that one flip message
8207 * can be sent by waiting for flip-done prior to queueing new flips).
8208 * Experimentation says that BCS works despite DERRMR masking all
8209 * flip-done completion events and that unmasking all planes at once
8210 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8211 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8212 */
8213 if (ring->id == RCS) {
8214 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8215 intel_ring_emit(ring, DERRMR);
8216 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8217 DERRMR_PIPEB_PRI_FLIP_DONE |
8218 DERRMR_PIPEC_PRI_FLIP_DONE));
8219 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8220 intel_ring_emit(ring, DERRMR);
8221 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8222 }
8223
8224 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8225 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8226 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8227 intel_ring_emit(ring, (MI_NOOP));
8228
8229 intel_mark_page_flip_active(intel_crtc);
8230 __intel_ring_advance(ring);
8231 return 0;
8232
8233 err_unpin:
8234 intel_unpin_fb_obj(obj);
8235 err:
8236 return ret;
8237 }
8238
8239 static int intel_default_queue_flip(struct drm_device *dev,
8240 struct drm_crtc *crtc,
8241 struct drm_framebuffer *fb,
8242 struct drm_i915_gem_object *obj,
8243 uint32_t flags)
8244 {
8245 return -ENODEV;
8246 }
8247
8248 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8249 struct drm_framebuffer *fb,
8250 struct drm_pending_vblank_event *event,
8251 uint32_t page_flip_flags)
8252 {
8253 struct drm_device *dev = crtc->dev;
8254 struct drm_i915_private *dev_priv = dev->dev_private;
8255 struct drm_framebuffer *old_fb = crtc->fb;
8256 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8258 struct intel_unpin_work *work;
8259 unsigned long flags;
8260 int ret;
8261
8262 /* Can't change pixel format via MI display flips. */
8263 if (fb->pixel_format != crtc->fb->pixel_format)
8264 return -EINVAL;
8265
8266 /*
8267 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8268 * Note that pitch changes could also affect these register.
8269 */
8270 if (INTEL_INFO(dev)->gen > 3 &&
8271 (fb->offsets[0] != crtc->fb->offsets[0] ||
8272 fb->pitches[0] != crtc->fb->pitches[0]))
8273 return -EINVAL;
8274
8275 work = kzalloc(sizeof(*work), GFP_KERNEL);
8276 if (work == NULL)
8277 return -ENOMEM;
8278
8279 work->event = event;
8280 work->crtc = crtc;
8281 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8282 INIT_WORK(&work->work, intel_unpin_work_fn);
8283
8284 ret = drm_vblank_get(dev, intel_crtc->pipe);
8285 if (ret)
8286 goto free_work;
8287
8288 /* We borrow the event spin lock for protecting unpin_work */
8289 spin_lock_irqsave(&dev->event_lock, flags);
8290 if (intel_crtc->unpin_work) {
8291 spin_unlock_irqrestore(&dev->event_lock, flags);
8292 kfree(work);
8293 drm_vblank_put(dev, intel_crtc->pipe);
8294
8295 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8296 return -EBUSY;
8297 }
8298 intel_crtc->unpin_work = work;
8299 spin_unlock_irqrestore(&dev->event_lock, flags);
8300
8301 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8302 flush_workqueue(dev_priv->wq);
8303
8304 ret = i915_mutex_lock_interruptible(dev);
8305 if (ret)
8306 goto cleanup;
8307
8308 /* Reference the objects for the scheduled work. */
8309 drm_gem_object_reference(&work->old_fb_obj->base);
8310 drm_gem_object_reference(&obj->base);
8311
8312 crtc->fb = fb;
8313
8314 work->pending_flip_obj = obj;
8315
8316 work->enable_stall_check = true;
8317
8318 atomic_inc(&intel_crtc->unpin_work_count);
8319 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8320
8321 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8322 if (ret)
8323 goto cleanup_pending;
8324
8325 intel_disable_fbc(dev);
8326 intel_mark_fb_busy(obj, NULL);
8327 mutex_unlock(&dev->struct_mutex);
8328
8329 trace_i915_flip_request(intel_crtc->plane, obj);
8330
8331 return 0;
8332
8333 cleanup_pending:
8334 atomic_dec(&intel_crtc->unpin_work_count);
8335 crtc->fb = old_fb;
8336 drm_gem_object_unreference(&work->old_fb_obj->base);
8337 drm_gem_object_unreference(&obj->base);
8338 mutex_unlock(&dev->struct_mutex);
8339
8340 cleanup:
8341 spin_lock_irqsave(&dev->event_lock, flags);
8342 intel_crtc->unpin_work = NULL;
8343 spin_unlock_irqrestore(&dev->event_lock, flags);
8344
8345 drm_vblank_put(dev, intel_crtc->pipe);
8346 free_work:
8347 kfree(work);
8348
8349 return ret;
8350 }
8351
8352 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8353 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8354 .load_lut = intel_crtc_load_lut,
8355 };
8356
8357 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8358 struct drm_crtc *crtc)
8359 {
8360 struct drm_device *dev;
8361 struct drm_crtc *tmp;
8362 int crtc_mask = 1;
8363
8364 WARN(!crtc, "checking null crtc?\n");
8365
8366 dev = crtc->dev;
8367
8368 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8369 if (tmp == crtc)
8370 break;
8371 crtc_mask <<= 1;
8372 }
8373
8374 if (encoder->possible_crtcs & crtc_mask)
8375 return true;
8376 return false;
8377 }
8378
8379 /**
8380 * intel_modeset_update_staged_output_state
8381 *
8382 * Updates the staged output configuration state, e.g. after we've read out the
8383 * current hw state.
8384 */
8385 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8386 {
8387 struct intel_encoder *encoder;
8388 struct intel_connector *connector;
8389
8390 list_for_each_entry(connector, &dev->mode_config.connector_list,
8391 base.head) {
8392 connector->new_encoder =
8393 to_intel_encoder(connector->base.encoder);
8394 }
8395
8396 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8397 base.head) {
8398 encoder->new_crtc =
8399 to_intel_crtc(encoder->base.crtc);
8400 }
8401 }
8402
8403 /**
8404 * intel_modeset_commit_output_state
8405 *
8406 * This function copies the stage display pipe configuration to the real one.
8407 */
8408 static void intel_modeset_commit_output_state(struct drm_device *dev)
8409 {
8410 struct intel_encoder *encoder;
8411 struct intel_connector *connector;
8412
8413 list_for_each_entry(connector, &dev->mode_config.connector_list,
8414 base.head) {
8415 connector->base.encoder = &connector->new_encoder->base;
8416 }
8417
8418 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8419 base.head) {
8420 encoder->base.crtc = &encoder->new_crtc->base;
8421 }
8422 }
8423
8424 static void
8425 connected_sink_compute_bpp(struct intel_connector * connector,
8426 struct intel_crtc_config *pipe_config)
8427 {
8428 int bpp = pipe_config->pipe_bpp;
8429
8430 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8431 connector->base.base.id,
8432 drm_get_connector_name(&connector->base));
8433
8434 /* Don't use an invalid EDID bpc value */
8435 if (connector->base.display_info.bpc &&
8436 connector->base.display_info.bpc * 3 < bpp) {
8437 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8438 bpp, connector->base.display_info.bpc*3);
8439 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8440 }
8441
8442 /* Clamp bpp to 8 on screens without EDID 1.4 */
8443 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8444 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8445 bpp);
8446 pipe_config->pipe_bpp = 24;
8447 }
8448 }
8449
8450 static int
8451 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8452 struct drm_framebuffer *fb,
8453 struct intel_crtc_config *pipe_config)
8454 {
8455 struct drm_device *dev = crtc->base.dev;
8456 struct intel_connector *connector;
8457 int bpp;
8458
8459 switch (fb->pixel_format) {
8460 case DRM_FORMAT_C8:
8461 bpp = 8*3; /* since we go through a colormap */
8462 break;
8463 case DRM_FORMAT_XRGB1555:
8464 case DRM_FORMAT_ARGB1555:
8465 /* checked in intel_framebuffer_init already */
8466 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8467 return -EINVAL;
8468 case DRM_FORMAT_RGB565:
8469 bpp = 6*3; /* min is 18bpp */
8470 break;
8471 case DRM_FORMAT_XBGR8888:
8472 case DRM_FORMAT_ABGR8888:
8473 /* checked in intel_framebuffer_init already */
8474 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8475 return -EINVAL;
8476 case DRM_FORMAT_XRGB8888:
8477 case DRM_FORMAT_ARGB8888:
8478 bpp = 8*3;
8479 break;
8480 case DRM_FORMAT_XRGB2101010:
8481 case DRM_FORMAT_ARGB2101010:
8482 case DRM_FORMAT_XBGR2101010:
8483 case DRM_FORMAT_ABGR2101010:
8484 /* checked in intel_framebuffer_init already */
8485 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8486 return -EINVAL;
8487 bpp = 10*3;
8488 break;
8489 /* TODO: gen4+ supports 16 bpc floating point, too. */
8490 default:
8491 DRM_DEBUG_KMS("unsupported depth\n");
8492 return -EINVAL;
8493 }
8494
8495 pipe_config->pipe_bpp = bpp;
8496
8497 /* Clamp display bpp to EDID value */
8498 list_for_each_entry(connector, &dev->mode_config.connector_list,
8499 base.head) {
8500 if (!connector->new_encoder ||
8501 connector->new_encoder->new_crtc != crtc)
8502 continue;
8503
8504 connected_sink_compute_bpp(connector, pipe_config);
8505 }
8506
8507 return bpp;
8508 }
8509
8510 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8511 {
8512 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8513 "type: 0x%x flags: 0x%x\n",
8514 mode->crtc_clock,
8515 mode->crtc_hdisplay, mode->crtc_hsync_start,
8516 mode->crtc_hsync_end, mode->crtc_htotal,
8517 mode->crtc_vdisplay, mode->crtc_vsync_start,
8518 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8519 }
8520
8521 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8522 struct intel_crtc_config *pipe_config,
8523 const char *context)
8524 {
8525 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8526 context, pipe_name(crtc->pipe));
8527
8528 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8529 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8530 pipe_config->pipe_bpp, pipe_config->dither);
8531 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8532 pipe_config->has_pch_encoder,
8533 pipe_config->fdi_lanes,
8534 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8535 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8536 pipe_config->fdi_m_n.tu);
8537 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8538 pipe_config->has_dp_encoder,
8539 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8540 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8541 pipe_config->dp_m_n.tu);
8542 DRM_DEBUG_KMS("requested mode:\n");
8543 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8544 DRM_DEBUG_KMS("adjusted mode:\n");
8545 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8546 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8547 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8548 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8549 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8550 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8551 pipe_config->gmch_pfit.control,
8552 pipe_config->gmch_pfit.pgm_ratios,
8553 pipe_config->gmch_pfit.lvds_border_bits);
8554 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8555 pipe_config->pch_pfit.pos,
8556 pipe_config->pch_pfit.size,
8557 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8558 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8559 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8560 }
8561
8562 static bool check_encoder_cloning(struct drm_crtc *crtc)
8563 {
8564 int num_encoders = 0;
8565 bool uncloneable_encoders = false;
8566 struct intel_encoder *encoder;
8567
8568 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8569 base.head) {
8570 if (&encoder->new_crtc->base != crtc)
8571 continue;
8572
8573 num_encoders++;
8574 if (!encoder->cloneable)
8575 uncloneable_encoders = true;
8576 }
8577
8578 return !(num_encoders > 1 && uncloneable_encoders);
8579 }
8580
8581 static struct intel_crtc_config *
8582 intel_modeset_pipe_config(struct drm_crtc *crtc,
8583 struct drm_framebuffer *fb,
8584 struct drm_display_mode *mode)
8585 {
8586 struct drm_device *dev = crtc->dev;
8587 struct intel_encoder *encoder;
8588 struct intel_crtc_config *pipe_config;
8589 int plane_bpp, ret = -EINVAL;
8590 bool retry = true;
8591
8592 if (!check_encoder_cloning(crtc)) {
8593 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8594 return ERR_PTR(-EINVAL);
8595 }
8596
8597 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8598 if (!pipe_config)
8599 return ERR_PTR(-ENOMEM);
8600
8601 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8602 drm_mode_copy(&pipe_config->requested_mode, mode);
8603
8604 pipe_config->cpu_transcoder =
8605 (enum transcoder) to_intel_crtc(crtc)->pipe;
8606 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8607
8608 /*
8609 * Sanitize sync polarity flags based on requested ones. If neither
8610 * positive or negative polarity is requested, treat this as meaning
8611 * negative polarity.
8612 */
8613 if (!(pipe_config->adjusted_mode.flags &
8614 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8615 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8616
8617 if (!(pipe_config->adjusted_mode.flags &
8618 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8619 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8620
8621 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8622 * plane pixel format and any sink constraints into account. Returns the
8623 * source plane bpp so that dithering can be selected on mismatches
8624 * after encoders and crtc also have had their say. */
8625 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8626 fb, pipe_config);
8627 if (plane_bpp < 0)
8628 goto fail;
8629
8630 /*
8631 * Determine the real pipe dimensions. Note that stereo modes can
8632 * increase the actual pipe size due to the frame doubling and
8633 * insertion of additional space for blanks between the frame. This
8634 * is stored in the crtc timings. We use the requested mode to do this
8635 * computation to clearly distinguish it from the adjusted mode, which
8636 * can be changed by the connectors in the below retry loop.
8637 */
8638 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8639 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8640 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8641
8642 encoder_retry:
8643 /* Ensure the port clock defaults are reset when retrying. */
8644 pipe_config->port_clock = 0;
8645 pipe_config->pixel_multiplier = 1;
8646
8647 /* Fill in default crtc timings, allow encoders to overwrite them. */
8648 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8649
8650 /* Pass our mode to the connectors and the CRTC to give them a chance to
8651 * adjust it according to limitations or connector properties, and also
8652 * a chance to reject the mode entirely.
8653 */
8654 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8655 base.head) {
8656
8657 if (&encoder->new_crtc->base != crtc)
8658 continue;
8659
8660 if (!(encoder->compute_config(encoder, pipe_config))) {
8661 DRM_DEBUG_KMS("Encoder config failure\n");
8662 goto fail;
8663 }
8664 }
8665
8666 /* Set default port clock if not overwritten by the encoder. Needs to be
8667 * done afterwards in case the encoder adjusts the mode. */
8668 if (!pipe_config->port_clock)
8669 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8670 * pipe_config->pixel_multiplier;
8671
8672 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8673 if (ret < 0) {
8674 DRM_DEBUG_KMS("CRTC fixup failed\n");
8675 goto fail;
8676 }
8677
8678 if (ret == RETRY) {
8679 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8680 ret = -EINVAL;
8681 goto fail;
8682 }
8683
8684 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8685 retry = false;
8686 goto encoder_retry;
8687 }
8688
8689 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8690 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8691 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8692
8693 return pipe_config;
8694 fail:
8695 kfree(pipe_config);
8696 return ERR_PTR(ret);
8697 }
8698
8699 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8700 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8701 static void
8702 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8703 unsigned *prepare_pipes, unsigned *disable_pipes)
8704 {
8705 struct intel_crtc *intel_crtc;
8706 struct drm_device *dev = crtc->dev;
8707 struct intel_encoder *encoder;
8708 struct intel_connector *connector;
8709 struct drm_crtc *tmp_crtc;
8710
8711 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8712
8713 /* Check which crtcs have changed outputs connected to them, these need
8714 * to be part of the prepare_pipes mask. We don't (yet) support global
8715 * modeset across multiple crtcs, so modeset_pipes will only have one
8716 * bit set at most. */
8717 list_for_each_entry(connector, &dev->mode_config.connector_list,
8718 base.head) {
8719 if (connector->base.encoder == &connector->new_encoder->base)
8720 continue;
8721
8722 if (connector->base.encoder) {
8723 tmp_crtc = connector->base.encoder->crtc;
8724
8725 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8726 }
8727
8728 if (connector->new_encoder)
8729 *prepare_pipes |=
8730 1 << connector->new_encoder->new_crtc->pipe;
8731 }
8732
8733 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8734 base.head) {
8735 if (encoder->base.crtc == &encoder->new_crtc->base)
8736 continue;
8737
8738 if (encoder->base.crtc) {
8739 tmp_crtc = encoder->base.crtc;
8740
8741 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8742 }
8743
8744 if (encoder->new_crtc)
8745 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8746 }
8747
8748 /* Check for any pipes that will be fully disabled ... */
8749 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8750 base.head) {
8751 bool used = false;
8752
8753 /* Don't try to disable disabled crtcs. */
8754 if (!intel_crtc->base.enabled)
8755 continue;
8756
8757 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8758 base.head) {
8759 if (encoder->new_crtc == intel_crtc)
8760 used = true;
8761 }
8762
8763 if (!used)
8764 *disable_pipes |= 1 << intel_crtc->pipe;
8765 }
8766
8767
8768 /* set_mode is also used to update properties on life display pipes. */
8769 intel_crtc = to_intel_crtc(crtc);
8770 if (crtc->enabled)
8771 *prepare_pipes |= 1 << intel_crtc->pipe;
8772
8773 /*
8774 * For simplicity do a full modeset on any pipe where the output routing
8775 * changed. We could be more clever, but that would require us to be
8776 * more careful with calling the relevant encoder->mode_set functions.
8777 */
8778 if (*prepare_pipes)
8779 *modeset_pipes = *prepare_pipes;
8780
8781 /* ... and mask these out. */
8782 *modeset_pipes &= ~(*disable_pipes);
8783 *prepare_pipes &= ~(*disable_pipes);
8784
8785 /*
8786 * HACK: We don't (yet) fully support global modesets. intel_set_config
8787 * obies this rule, but the modeset restore mode of
8788 * intel_modeset_setup_hw_state does not.
8789 */
8790 *modeset_pipes &= 1 << intel_crtc->pipe;
8791 *prepare_pipes &= 1 << intel_crtc->pipe;
8792
8793 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8794 *modeset_pipes, *prepare_pipes, *disable_pipes);
8795 }
8796
8797 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8798 {
8799 struct drm_encoder *encoder;
8800 struct drm_device *dev = crtc->dev;
8801
8802 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8803 if (encoder->crtc == crtc)
8804 return true;
8805
8806 return false;
8807 }
8808
8809 static void
8810 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8811 {
8812 struct intel_encoder *intel_encoder;
8813 struct intel_crtc *intel_crtc;
8814 struct drm_connector *connector;
8815
8816 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8817 base.head) {
8818 if (!intel_encoder->base.crtc)
8819 continue;
8820
8821 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8822
8823 if (prepare_pipes & (1 << intel_crtc->pipe))
8824 intel_encoder->connectors_active = false;
8825 }
8826
8827 intel_modeset_commit_output_state(dev);
8828
8829 /* Update computed state. */
8830 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8831 base.head) {
8832 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8833 }
8834
8835 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8836 if (!connector->encoder || !connector->encoder->crtc)
8837 continue;
8838
8839 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8840
8841 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8842 struct drm_property *dpms_property =
8843 dev->mode_config.dpms_property;
8844
8845 connector->dpms = DRM_MODE_DPMS_ON;
8846 drm_object_property_set_value(&connector->base,
8847 dpms_property,
8848 DRM_MODE_DPMS_ON);
8849
8850 intel_encoder = to_intel_encoder(connector->encoder);
8851 intel_encoder->connectors_active = true;
8852 }
8853 }
8854
8855 }
8856
8857 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8858 {
8859 int diff;
8860
8861 if (clock1 == clock2)
8862 return true;
8863
8864 if (!clock1 || !clock2)
8865 return false;
8866
8867 diff = abs(clock1 - clock2);
8868
8869 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8870 return true;
8871
8872 return false;
8873 }
8874
8875 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8876 list_for_each_entry((intel_crtc), \
8877 &(dev)->mode_config.crtc_list, \
8878 base.head) \
8879 if (mask & (1 <<(intel_crtc)->pipe))
8880
8881 static bool
8882 intel_pipe_config_compare(struct drm_device *dev,
8883 struct intel_crtc_config *current_config,
8884 struct intel_crtc_config *pipe_config)
8885 {
8886 #define PIPE_CONF_CHECK_X(name) \
8887 if (current_config->name != pipe_config->name) { \
8888 DRM_ERROR("mismatch in " #name " " \
8889 "(expected 0x%08x, found 0x%08x)\n", \
8890 current_config->name, \
8891 pipe_config->name); \
8892 return false; \
8893 }
8894
8895 #define PIPE_CONF_CHECK_I(name) \
8896 if (current_config->name != pipe_config->name) { \
8897 DRM_ERROR("mismatch in " #name " " \
8898 "(expected %i, found %i)\n", \
8899 current_config->name, \
8900 pipe_config->name); \
8901 return false; \
8902 }
8903
8904 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8905 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8906 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8907 "(expected %i, found %i)\n", \
8908 current_config->name & (mask), \
8909 pipe_config->name & (mask)); \
8910 return false; \
8911 }
8912
8913 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8914 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8915 DRM_ERROR("mismatch in " #name " " \
8916 "(expected %i, found %i)\n", \
8917 current_config->name, \
8918 pipe_config->name); \
8919 return false; \
8920 }
8921
8922 #define PIPE_CONF_QUIRK(quirk) \
8923 ((current_config->quirks | pipe_config->quirks) & (quirk))
8924
8925 PIPE_CONF_CHECK_I(cpu_transcoder);
8926
8927 PIPE_CONF_CHECK_I(has_pch_encoder);
8928 PIPE_CONF_CHECK_I(fdi_lanes);
8929 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8930 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8931 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8932 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8933 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8934
8935 PIPE_CONF_CHECK_I(has_dp_encoder);
8936 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8937 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8938 PIPE_CONF_CHECK_I(dp_m_n.link_m);
8939 PIPE_CONF_CHECK_I(dp_m_n.link_n);
8940 PIPE_CONF_CHECK_I(dp_m_n.tu);
8941
8942 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8943 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8944 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8945 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8946 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8947 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8948
8949 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8950 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8951 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8952 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8953 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8954 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8955
8956 PIPE_CONF_CHECK_I(pixel_multiplier);
8957
8958 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8959 DRM_MODE_FLAG_INTERLACE);
8960
8961 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8962 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8963 DRM_MODE_FLAG_PHSYNC);
8964 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8965 DRM_MODE_FLAG_NHSYNC);
8966 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8967 DRM_MODE_FLAG_PVSYNC);
8968 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8969 DRM_MODE_FLAG_NVSYNC);
8970 }
8971
8972 PIPE_CONF_CHECK_I(pipe_src_w);
8973 PIPE_CONF_CHECK_I(pipe_src_h);
8974
8975 PIPE_CONF_CHECK_I(gmch_pfit.control);
8976 /* pfit ratios are autocomputed by the hw on gen4+ */
8977 if (INTEL_INFO(dev)->gen < 4)
8978 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8979 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8980 PIPE_CONF_CHECK_I(pch_pfit.enabled);
8981 if (current_config->pch_pfit.enabled) {
8982 PIPE_CONF_CHECK_I(pch_pfit.pos);
8983 PIPE_CONF_CHECK_I(pch_pfit.size);
8984 }
8985
8986 PIPE_CONF_CHECK_I(ips_enabled);
8987
8988 PIPE_CONF_CHECK_I(double_wide);
8989
8990 PIPE_CONF_CHECK_I(shared_dpll);
8991 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8992 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8993 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8994 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8995
8996 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8997 PIPE_CONF_CHECK_I(pipe_bpp);
8998
8999 if (!IS_HASWELL(dev)) {
9000 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9001 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9002 }
9003
9004 #undef PIPE_CONF_CHECK_X
9005 #undef PIPE_CONF_CHECK_I
9006 #undef PIPE_CONF_CHECK_FLAGS
9007 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9008 #undef PIPE_CONF_QUIRK
9009
9010 return true;
9011 }
9012
9013 static void
9014 check_connector_state(struct drm_device *dev)
9015 {
9016 struct intel_connector *connector;
9017
9018 list_for_each_entry(connector, &dev->mode_config.connector_list,
9019 base.head) {
9020 /* This also checks the encoder/connector hw state with the
9021 * ->get_hw_state callbacks. */
9022 intel_connector_check_state(connector);
9023
9024 WARN(&connector->new_encoder->base != connector->base.encoder,
9025 "connector's staged encoder doesn't match current encoder\n");
9026 }
9027 }
9028
9029 static void
9030 check_encoder_state(struct drm_device *dev)
9031 {
9032 struct intel_encoder *encoder;
9033 struct intel_connector *connector;
9034
9035 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9036 base.head) {
9037 bool enabled = false;
9038 bool active = false;
9039 enum pipe pipe, tracked_pipe;
9040
9041 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9042 encoder->base.base.id,
9043 drm_get_encoder_name(&encoder->base));
9044
9045 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9046 "encoder's stage crtc doesn't match current crtc\n");
9047 WARN(encoder->connectors_active && !encoder->base.crtc,
9048 "encoder's active_connectors set, but no crtc\n");
9049
9050 list_for_each_entry(connector, &dev->mode_config.connector_list,
9051 base.head) {
9052 if (connector->base.encoder != &encoder->base)
9053 continue;
9054 enabled = true;
9055 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9056 active = true;
9057 }
9058 WARN(!!encoder->base.crtc != enabled,
9059 "encoder's enabled state mismatch "
9060 "(expected %i, found %i)\n",
9061 !!encoder->base.crtc, enabled);
9062 WARN(active && !encoder->base.crtc,
9063 "active encoder with no crtc\n");
9064
9065 WARN(encoder->connectors_active != active,
9066 "encoder's computed active state doesn't match tracked active state "
9067 "(expected %i, found %i)\n", active, encoder->connectors_active);
9068
9069 active = encoder->get_hw_state(encoder, &pipe);
9070 WARN(active != encoder->connectors_active,
9071 "encoder's hw state doesn't match sw tracking "
9072 "(expected %i, found %i)\n",
9073 encoder->connectors_active, active);
9074
9075 if (!encoder->base.crtc)
9076 continue;
9077
9078 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9079 WARN(active && pipe != tracked_pipe,
9080 "active encoder's pipe doesn't match"
9081 "(expected %i, found %i)\n",
9082 tracked_pipe, pipe);
9083
9084 }
9085 }
9086
9087 static void
9088 check_crtc_state(struct drm_device *dev)
9089 {
9090 drm_i915_private_t *dev_priv = dev->dev_private;
9091 struct intel_crtc *crtc;
9092 struct intel_encoder *encoder;
9093 struct intel_crtc_config pipe_config;
9094
9095 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9096 base.head) {
9097 bool enabled = false;
9098 bool active = false;
9099
9100 memset(&pipe_config, 0, sizeof(pipe_config));
9101
9102 DRM_DEBUG_KMS("[CRTC:%d]\n",
9103 crtc->base.base.id);
9104
9105 WARN(crtc->active && !crtc->base.enabled,
9106 "active crtc, but not enabled in sw tracking\n");
9107
9108 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9109 base.head) {
9110 if (encoder->base.crtc != &crtc->base)
9111 continue;
9112 enabled = true;
9113 if (encoder->connectors_active)
9114 active = true;
9115 }
9116
9117 WARN(active != crtc->active,
9118 "crtc's computed active state doesn't match tracked active state "
9119 "(expected %i, found %i)\n", active, crtc->active);
9120 WARN(enabled != crtc->base.enabled,
9121 "crtc's computed enabled state doesn't match tracked enabled state "
9122 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9123
9124 active = dev_priv->display.get_pipe_config(crtc,
9125 &pipe_config);
9126
9127 /* hw state is inconsistent with the pipe A quirk */
9128 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9129 active = crtc->active;
9130
9131 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9132 base.head) {
9133 enum pipe pipe;
9134 if (encoder->base.crtc != &crtc->base)
9135 continue;
9136 if (encoder->get_config &&
9137 encoder->get_hw_state(encoder, &pipe))
9138 encoder->get_config(encoder, &pipe_config);
9139 }
9140
9141 WARN(crtc->active != active,
9142 "crtc active state doesn't match with hw state "
9143 "(expected %i, found %i)\n", crtc->active, active);
9144
9145 if (active &&
9146 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9147 WARN(1, "pipe state doesn't match!\n");
9148 intel_dump_pipe_config(crtc, &pipe_config,
9149 "[hw state]");
9150 intel_dump_pipe_config(crtc, &crtc->config,
9151 "[sw state]");
9152 }
9153 }
9154 }
9155
9156 static void
9157 check_shared_dpll_state(struct drm_device *dev)
9158 {
9159 drm_i915_private_t *dev_priv = dev->dev_private;
9160 struct intel_crtc *crtc;
9161 struct intel_dpll_hw_state dpll_hw_state;
9162 int i;
9163
9164 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9165 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9166 int enabled_crtcs = 0, active_crtcs = 0;
9167 bool active;
9168
9169 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9170
9171 DRM_DEBUG_KMS("%s\n", pll->name);
9172
9173 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9174
9175 WARN(pll->active > pll->refcount,
9176 "more active pll users than references: %i vs %i\n",
9177 pll->active, pll->refcount);
9178 WARN(pll->active && !pll->on,
9179 "pll in active use but not on in sw tracking\n");
9180 WARN(pll->on && !pll->active,
9181 "pll in on but not on in use in sw tracking\n");
9182 WARN(pll->on != active,
9183 "pll on state mismatch (expected %i, found %i)\n",
9184 pll->on, active);
9185
9186 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9187 base.head) {
9188 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9189 enabled_crtcs++;
9190 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9191 active_crtcs++;
9192 }
9193 WARN(pll->active != active_crtcs,
9194 "pll active crtcs mismatch (expected %i, found %i)\n",
9195 pll->active, active_crtcs);
9196 WARN(pll->refcount != enabled_crtcs,
9197 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9198 pll->refcount, enabled_crtcs);
9199
9200 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9201 sizeof(dpll_hw_state)),
9202 "pll hw state mismatch\n");
9203 }
9204 }
9205
9206 void
9207 intel_modeset_check_state(struct drm_device *dev)
9208 {
9209 check_connector_state(dev);
9210 check_encoder_state(dev);
9211 check_crtc_state(dev);
9212 check_shared_dpll_state(dev);
9213 }
9214
9215 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9216 int dotclock)
9217 {
9218 /*
9219 * FDI already provided one idea for the dotclock.
9220 * Yell if the encoder disagrees.
9221 */
9222 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9223 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9224 pipe_config->adjusted_mode.crtc_clock, dotclock);
9225 }
9226
9227 static int __intel_set_mode(struct drm_crtc *crtc,
9228 struct drm_display_mode *mode,
9229 int x, int y, struct drm_framebuffer *fb)
9230 {
9231 struct drm_device *dev = crtc->dev;
9232 drm_i915_private_t *dev_priv = dev->dev_private;
9233 struct drm_display_mode *saved_mode, *saved_hwmode;
9234 struct intel_crtc_config *pipe_config = NULL;
9235 struct intel_crtc *intel_crtc;
9236 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9237 int ret = 0;
9238
9239 saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9240 if (!saved_mode)
9241 return -ENOMEM;
9242 saved_hwmode = saved_mode + 1;
9243
9244 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9245 &prepare_pipes, &disable_pipes);
9246
9247 *saved_hwmode = crtc->hwmode;
9248 *saved_mode = crtc->mode;
9249
9250 /* Hack: Because we don't (yet) support global modeset on multiple
9251 * crtcs, we don't keep track of the new mode for more than one crtc.
9252 * Hence simply check whether any bit is set in modeset_pipes in all the
9253 * pieces of code that are not yet converted to deal with mutliple crtcs
9254 * changing their mode at the same time. */
9255 if (modeset_pipes) {
9256 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9257 if (IS_ERR(pipe_config)) {
9258 ret = PTR_ERR(pipe_config);
9259 pipe_config = NULL;
9260
9261 goto out;
9262 }
9263 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9264 "[modeset]");
9265 }
9266
9267 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9268 intel_crtc_disable(&intel_crtc->base);
9269
9270 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9271 if (intel_crtc->base.enabled)
9272 dev_priv->display.crtc_disable(&intel_crtc->base);
9273 }
9274
9275 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9276 * to set it here already despite that we pass it down the callchain.
9277 */
9278 if (modeset_pipes) {
9279 crtc->mode = *mode;
9280 /* mode_set/enable/disable functions rely on a correct pipe
9281 * config. */
9282 to_intel_crtc(crtc)->config = *pipe_config;
9283 }
9284
9285 /* Only after disabling all output pipelines that will be changed can we
9286 * update the the output configuration. */
9287 intel_modeset_update_state(dev, prepare_pipes);
9288
9289 if (dev_priv->display.modeset_global_resources)
9290 dev_priv->display.modeset_global_resources(dev);
9291
9292 /* Set up the DPLL and any encoders state that needs to adjust or depend
9293 * on the DPLL.
9294 */
9295 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9296 ret = intel_crtc_mode_set(&intel_crtc->base,
9297 x, y, fb);
9298 if (ret)
9299 goto done;
9300 }
9301
9302 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9303 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9304 dev_priv->display.crtc_enable(&intel_crtc->base);
9305
9306 if (modeset_pipes) {
9307 /* Store real post-adjustment hardware mode. */
9308 crtc->hwmode = pipe_config->adjusted_mode;
9309
9310 /* Calculate and store various constants which
9311 * are later needed by vblank and swap-completion
9312 * timestamping. They are derived from true hwmode.
9313 */
9314 drm_calc_timestamping_constants(crtc);
9315 }
9316
9317 /* FIXME: add subpixel order */
9318 done:
9319 if (ret && crtc->enabled) {
9320 crtc->hwmode = *saved_hwmode;
9321 crtc->mode = *saved_mode;
9322 }
9323
9324 out:
9325 kfree(pipe_config);
9326 kfree(saved_mode);
9327 return ret;
9328 }
9329
9330 static int intel_set_mode(struct drm_crtc *crtc,
9331 struct drm_display_mode *mode,
9332 int x, int y, struct drm_framebuffer *fb)
9333 {
9334 int ret;
9335
9336 ret = __intel_set_mode(crtc, mode, x, y, fb);
9337
9338 if (ret == 0)
9339 intel_modeset_check_state(crtc->dev);
9340
9341 return ret;
9342 }
9343
9344 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9345 {
9346 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9347 }
9348
9349 #undef for_each_intel_crtc_masked
9350
9351 static void intel_set_config_free(struct intel_set_config *config)
9352 {
9353 if (!config)
9354 return;
9355
9356 kfree(config->save_connector_encoders);
9357 kfree(config->save_encoder_crtcs);
9358 kfree(config);
9359 }
9360
9361 static int intel_set_config_save_state(struct drm_device *dev,
9362 struct intel_set_config *config)
9363 {
9364 struct drm_encoder *encoder;
9365 struct drm_connector *connector;
9366 int count;
9367
9368 config->save_encoder_crtcs =
9369 kcalloc(dev->mode_config.num_encoder,
9370 sizeof(struct drm_crtc *), GFP_KERNEL);
9371 if (!config->save_encoder_crtcs)
9372 return -ENOMEM;
9373
9374 config->save_connector_encoders =
9375 kcalloc(dev->mode_config.num_connector,
9376 sizeof(struct drm_encoder *), GFP_KERNEL);
9377 if (!config->save_connector_encoders)
9378 return -ENOMEM;
9379
9380 /* Copy data. Note that driver private data is not affected.
9381 * Should anything bad happen only the expected state is
9382 * restored, not the drivers personal bookkeeping.
9383 */
9384 count = 0;
9385 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9386 config->save_encoder_crtcs[count++] = encoder->crtc;
9387 }
9388
9389 count = 0;
9390 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9391 config->save_connector_encoders[count++] = connector->encoder;
9392 }
9393
9394 return 0;
9395 }
9396
9397 static void intel_set_config_restore_state(struct drm_device *dev,
9398 struct intel_set_config *config)
9399 {
9400 struct intel_encoder *encoder;
9401 struct intel_connector *connector;
9402 int count;
9403
9404 count = 0;
9405 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9406 encoder->new_crtc =
9407 to_intel_crtc(config->save_encoder_crtcs[count++]);
9408 }
9409
9410 count = 0;
9411 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9412 connector->new_encoder =
9413 to_intel_encoder(config->save_connector_encoders[count++]);
9414 }
9415 }
9416
9417 static bool
9418 is_crtc_connector_off(struct drm_mode_set *set)
9419 {
9420 int i;
9421
9422 if (set->num_connectors == 0)
9423 return false;
9424
9425 if (WARN_ON(set->connectors == NULL))
9426 return false;
9427
9428 for (i = 0; i < set->num_connectors; i++)
9429 if (set->connectors[i]->encoder &&
9430 set->connectors[i]->encoder->crtc == set->crtc &&
9431 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9432 return true;
9433
9434 return false;
9435 }
9436
9437 static void
9438 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9439 struct intel_set_config *config)
9440 {
9441
9442 /* We should be able to check here if the fb has the same properties
9443 * and then just flip_or_move it */
9444 if (is_crtc_connector_off(set)) {
9445 config->mode_changed = true;
9446 } else if (set->crtc->fb != set->fb) {
9447 /* If we have no fb then treat it as a full mode set */
9448 if (set->crtc->fb == NULL) {
9449 struct intel_crtc *intel_crtc =
9450 to_intel_crtc(set->crtc);
9451
9452 if (intel_crtc->active && i915_fastboot) {
9453 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9454 config->fb_changed = true;
9455 } else {
9456 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9457 config->mode_changed = true;
9458 }
9459 } else if (set->fb == NULL) {
9460 config->mode_changed = true;
9461 } else if (set->fb->pixel_format !=
9462 set->crtc->fb->pixel_format) {
9463 config->mode_changed = true;
9464 } else {
9465 config->fb_changed = true;
9466 }
9467 }
9468
9469 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9470 config->fb_changed = true;
9471
9472 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9473 DRM_DEBUG_KMS("modes are different, full mode set\n");
9474 drm_mode_debug_printmodeline(&set->crtc->mode);
9475 drm_mode_debug_printmodeline(set->mode);
9476 config->mode_changed = true;
9477 }
9478
9479 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9480 set->crtc->base.id, config->mode_changed, config->fb_changed);
9481 }
9482
9483 static int
9484 intel_modeset_stage_output_state(struct drm_device *dev,
9485 struct drm_mode_set *set,
9486 struct intel_set_config *config)
9487 {
9488 struct drm_crtc *new_crtc;
9489 struct intel_connector *connector;
9490 struct intel_encoder *encoder;
9491 int ro;
9492
9493 /* The upper layers ensure that we either disable a crtc or have a list
9494 * of connectors. For paranoia, double-check this. */
9495 WARN_ON(!set->fb && (set->num_connectors != 0));
9496 WARN_ON(set->fb && (set->num_connectors == 0));
9497
9498 list_for_each_entry(connector, &dev->mode_config.connector_list,
9499 base.head) {
9500 /* Otherwise traverse passed in connector list and get encoders
9501 * for them. */
9502 for (ro = 0; ro < set->num_connectors; ro++) {
9503 if (set->connectors[ro] == &connector->base) {
9504 connector->new_encoder = connector->encoder;
9505 break;
9506 }
9507 }
9508
9509 /* If we disable the crtc, disable all its connectors. Also, if
9510 * the connector is on the changing crtc but not on the new
9511 * connector list, disable it. */
9512 if ((!set->fb || ro == set->num_connectors) &&
9513 connector->base.encoder &&
9514 connector->base.encoder->crtc == set->crtc) {
9515 connector->new_encoder = NULL;
9516
9517 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9518 connector->base.base.id,
9519 drm_get_connector_name(&connector->base));
9520 }
9521
9522
9523 if (&connector->new_encoder->base != connector->base.encoder) {
9524 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9525 config->mode_changed = true;
9526 }
9527 }
9528 /* connector->new_encoder is now updated for all connectors. */
9529
9530 /* Update crtc of enabled connectors. */
9531 list_for_each_entry(connector, &dev->mode_config.connector_list,
9532 base.head) {
9533 if (!connector->new_encoder)
9534 continue;
9535
9536 new_crtc = connector->new_encoder->base.crtc;
9537
9538 for (ro = 0; ro < set->num_connectors; ro++) {
9539 if (set->connectors[ro] == &connector->base)
9540 new_crtc = set->crtc;
9541 }
9542
9543 /* Make sure the new CRTC will work with the encoder */
9544 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9545 new_crtc)) {
9546 return -EINVAL;
9547 }
9548 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9549
9550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9551 connector->base.base.id,
9552 drm_get_connector_name(&connector->base),
9553 new_crtc->base.id);
9554 }
9555
9556 /* Check for any encoders that needs to be disabled. */
9557 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9558 base.head) {
9559 list_for_each_entry(connector,
9560 &dev->mode_config.connector_list,
9561 base.head) {
9562 if (connector->new_encoder == encoder) {
9563 WARN_ON(!connector->new_encoder->new_crtc);
9564
9565 goto next_encoder;
9566 }
9567 }
9568 encoder->new_crtc = NULL;
9569 next_encoder:
9570 /* Only now check for crtc changes so we don't miss encoders
9571 * that will be disabled. */
9572 if (&encoder->new_crtc->base != encoder->base.crtc) {
9573 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9574 config->mode_changed = true;
9575 }
9576 }
9577 /* Now we've also updated encoder->new_crtc for all encoders. */
9578
9579 return 0;
9580 }
9581
9582 static int intel_crtc_set_config(struct drm_mode_set *set)
9583 {
9584 struct drm_device *dev;
9585 struct drm_mode_set save_set;
9586 struct intel_set_config *config;
9587 int ret;
9588
9589 BUG_ON(!set);
9590 BUG_ON(!set->crtc);
9591 BUG_ON(!set->crtc->helper_private);
9592
9593 /* Enforce sane interface api - has been abused by the fb helper. */
9594 BUG_ON(!set->mode && set->fb);
9595 BUG_ON(set->fb && set->num_connectors == 0);
9596
9597 if (set->fb) {
9598 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9599 set->crtc->base.id, set->fb->base.id,
9600 (int)set->num_connectors, set->x, set->y);
9601 } else {
9602 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9603 }
9604
9605 dev = set->crtc->dev;
9606
9607 ret = -ENOMEM;
9608 config = kzalloc(sizeof(*config), GFP_KERNEL);
9609 if (!config)
9610 goto out_config;
9611
9612 ret = intel_set_config_save_state(dev, config);
9613 if (ret)
9614 goto out_config;
9615
9616 save_set.crtc = set->crtc;
9617 save_set.mode = &set->crtc->mode;
9618 save_set.x = set->crtc->x;
9619 save_set.y = set->crtc->y;
9620 save_set.fb = set->crtc->fb;
9621
9622 /* Compute whether we need a full modeset, only an fb base update or no
9623 * change at all. In the future we might also check whether only the
9624 * mode changed, e.g. for LVDS where we only change the panel fitter in
9625 * such cases. */
9626 intel_set_config_compute_mode_changes(set, config);
9627
9628 ret = intel_modeset_stage_output_state(dev, set, config);
9629 if (ret)
9630 goto fail;
9631
9632 if (config->mode_changed) {
9633 ret = intel_set_mode(set->crtc, set->mode,
9634 set->x, set->y, set->fb);
9635 } else if (config->fb_changed) {
9636 intel_crtc_wait_for_pending_flips(set->crtc);
9637
9638 ret = intel_pipe_set_base(set->crtc,
9639 set->x, set->y, set->fb);
9640 }
9641
9642 if (ret) {
9643 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9644 set->crtc->base.id, ret);
9645 fail:
9646 intel_set_config_restore_state(dev, config);
9647
9648 /* Try to restore the config */
9649 if (config->mode_changed &&
9650 intel_set_mode(save_set.crtc, save_set.mode,
9651 save_set.x, save_set.y, save_set.fb))
9652 DRM_ERROR("failed to restore config after modeset failure\n");
9653 }
9654
9655 out_config:
9656 intel_set_config_free(config);
9657 return ret;
9658 }
9659
9660 static const struct drm_crtc_funcs intel_crtc_funcs = {
9661 .cursor_set = intel_crtc_cursor_set,
9662 .cursor_move = intel_crtc_cursor_move,
9663 .gamma_set = intel_crtc_gamma_set,
9664 .set_config = intel_crtc_set_config,
9665 .destroy = intel_crtc_destroy,
9666 .page_flip = intel_crtc_page_flip,
9667 };
9668
9669 static void intel_cpu_pll_init(struct drm_device *dev)
9670 {
9671 if (HAS_DDI(dev))
9672 intel_ddi_pll_init(dev);
9673 }
9674
9675 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9676 struct intel_shared_dpll *pll,
9677 struct intel_dpll_hw_state *hw_state)
9678 {
9679 uint32_t val;
9680
9681 val = I915_READ(PCH_DPLL(pll->id));
9682 hw_state->dpll = val;
9683 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9684 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9685
9686 return val & DPLL_VCO_ENABLE;
9687 }
9688
9689 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9690 struct intel_shared_dpll *pll)
9691 {
9692 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9693 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9694 }
9695
9696 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9697 struct intel_shared_dpll *pll)
9698 {
9699 /* PCH refclock must be enabled first */
9700 assert_pch_refclk_enabled(dev_priv);
9701
9702 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9703
9704 /* Wait for the clocks to stabilize. */
9705 POSTING_READ(PCH_DPLL(pll->id));
9706 udelay(150);
9707
9708 /* The pixel multiplier can only be updated once the
9709 * DPLL is enabled and the clocks are stable.
9710 *
9711 * So write it again.
9712 */
9713 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9714 POSTING_READ(PCH_DPLL(pll->id));
9715 udelay(200);
9716 }
9717
9718 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9719 struct intel_shared_dpll *pll)
9720 {
9721 struct drm_device *dev = dev_priv->dev;
9722 struct intel_crtc *crtc;
9723
9724 /* Make sure no transcoder isn't still depending on us. */
9725 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9726 if (intel_crtc_to_shared_dpll(crtc) == pll)
9727 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9728 }
9729
9730 I915_WRITE(PCH_DPLL(pll->id), 0);
9731 POSTING_READ(PCH_DPLL(pll->id));
9732 udelay(200);
9733 }
9734
9735 static char *ibx_pch_dpll_names[] = {
9736 "PCH DPLL A",
9737 "PCH DPLL B",
9738 };
9739
9740 static void ibx_pch_dpll_init(struct drm_device *dev)
9741 {
9742 struct drm_i915_private *dev_priv = dev->dev_private;
9743 int i;
9744
9745 dev_priv->num_shared_dpll = 2;
9746
9747 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9748 dev_priv->shared_dplls[i].id = i;
9749 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9750 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9751 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9752 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9753 dev_priv->shared_dplls[i].get_hw_state =
9754 ibx_pch_dpll_get_hw_state;
9755 }
9756 }
9757
9758 static void intel_shared_dpll_init(struct drm_device *dev)
9759 {
9760 struct drm_i915_private *dev_priv = dev->dev_private;
9761
9762 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9763 ibx_pch_dpll_init(dev);
9764 else
9765 dev_priv->num_shared_dpll = 0;
9766
9767 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9768 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9769 dev_priv->num_shared_dpll);
9770 }
9771
9772 static void intel_crtc_init(struct drm_device *dev, int pipe)
9773 {
9774 drm_i915_private_t *dev_priv = dev->dev_private;
9775 struct intel_crtc *intel_crtc;
9776 int i;
9777
9778 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9779 if (intel_crtc == NULL)
9780 return;
9781
9782 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9783
9784 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9785 for (i = 0; i < 256; i++) {
9786 intel_crtc->lut_r[i] = i;
9787 intel_crtc->lut_g[i] = i;
9788 intel_crtc->lut_b[i] = i;
9789 }
9790
9791 /* Swap pipes & planes for FBC on pre-965 */
9792 intel_crtc->pipe = pipe;
9793 intel_crtc->plane = pipe;
9794 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9795 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9796 intel_crtc->plane = !pipe;
9797 }
9798
9799 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9800 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9801 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9802 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9803
9804 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9805 }
9806
9807 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9808 struct drm_file *file)
9809 {
9810 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9811 struct drm_mode_object *drmmode_obj;
9812 struct intel_crtc *crtc;
9813
9814 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9815 return -ENODEV;
9816
9817 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9818 DRM_MODE_OBJECT_CRTC);
9819
9820 if (!drmmode_obj) {
9821 DRM_ERROR("no such CRTC id\n");
9822 return -EINVAL;
9823 }
9824
9825 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9826 pipe_from_crtc_id->pipe = crtc->pipe;
9827
9828 return 0;
9829 }
9830
9831 static int intel_encoder_clones(struct intel_encoder *encoder)
9832 {
9833 struct drm_device *dev = encoder->base.dev;
9834 struct intel_encoder *source_encoder;
9835 int index_mask = 0;
9836 int entry = 0;
9837
9838 list_for_each_entry(source_encoder,
9839 &dev->mode_config.encoder_list, base.head) {
9840
9841 if (encoder == source_encoder)
9842 index_mask |= (1 << entry);
9843
9844 /* Intel hw has only one MUX where enocoders could be cloned. */
9845 if (encoder->cloneable && source_encoder->cloneable)
9846 index_mask |= (1 << entry);
9847
9848 entry++;
9849 }
9850
9851 return index_mask;
9852 }
9853
9854 static bool has_edp_a(struct drm_device *dev)
9855 {
9856 struct drm_i915_private *dev_priv = dev->dev_private;
9857
9858 if (!IS_MOBILE(dev))
9859 return false;
9860
9861 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9862 return false;
9863
9864 if (IS_GEN5(dev) &&
9865 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9866 return false;
9867
9868 return true;
9869 }
9870
9871 static void intel_setup_outputs(struct drm_device *dev)
9872 {
9873 struct drm_i915_private *dev_priv = dev->dev_private;
9874 struct intel_encoder *encoder;
9875 bool dpd_is_edp = false;
9876
9877 intel_lvds_init(dev);
9878
9879 if (!IS_ULT(dev))
9880 intel_crt_init(dev);
9881
9882 if (HAS_DDI(dev)) {
9883 int found;
9884
9885 /* Haswell uses DDI functions to detect digital outputs */
9886 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9887 /* DDI A only supports eDP */
9888 if (found)
9889 intel_ddi_init(dev, PORT_A);
9890
9891 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9892 * register */
9893 found = I915_READ(SFUSE_STRAP);
9894
9895 if (found & SFUSE_STRAP_DDIB_DETECTED)
9896 intel_ddi_init(dev, PORT_B);
9897 if (found & SFUSE_STRAP_DDIC_DETECTED)
9898 intel_ddi_init(dev, PORT_C);
9899 if (found & SFUSE_STRAP_DDID_DETECTED)
9900 intel_ddi_init(dev, PORT_D);
9901 } else if (HAS_PCH_SPLIT(dev)) {
9902 int found;
9903 dpd_is_edp = intel_dpd_is_edp(dev);
9904
9905 if (has_edp_a(dev))
9906 intel_dp_init(dev, DP_A, PORT_A);
9907
9908 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9909 /* PCH SDVOB multiplex with HDMIB */
9910 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9911 if (!found)
9912 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9913 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9914 intel_dp_init(dev, PCH_DP_B, PORT_B);
9915 }
9916
9917 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9918 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9919
9920 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9921 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9922
9923 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9924 intel_dp_init(dev, PCH_DP_C, PORT_C);
9925
9926 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9927 intel_dp_init(dev, PCH_DP_D, PORT_D);
9928 } else if (IS_VALLEYVIEW(dev)) {
9929 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9930 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9931 PORT_B);
9932 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9933 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9934 }
9935
9936 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9937 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9938 PORT_C);
9939 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9940 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9941 PORT_C);
9942 }
9943
9944 intel_dsi_init(dev);
9945 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9946 bool found = false;
9947
9948 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9949 DRM_DEBUG_KMS("probing SDVOB\n");
9950 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9951 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9952 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9953 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9954 }
9955
9956 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9957 intel_dp_init(dev, DP_B, PORT_B);
9958 }
9959
9960 /* Before G4X SDVOC doesn't have its own detect register */
9961
9962 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9963 DRM_DEBUG_KMS("probing SDVOC\n");
9964 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9965 }
9966
9967 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9968
9969 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9970 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9971 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9972 }
9973 if (SUPPORTS_INTEGRATED_DP(dev))
9974 intel_dp_init(dev, DP_C, PORT_C);
9975 }
9976
9977 if (SUPPORTS_INTEGRATED_DP(dev) &&
9978 (I915_READ(DP_D) & DP_DETECTED))
9979 intel_dp_init(dev, DP_D, PORT_D);
9980 } else if (IS_GEN2(dev))
9981 intel_dvo_init(dev);
9982
9983 if (SUPPORTS_TV(dev))
9984 intel_tv_init(dev);
9985
9986 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9987 encoder->base.possible_crtcs = encoder->crtc_mask;
9988 encoder->base.possible_clones =
9989 intel_encoder_clones(encoder);
9990 }
9991
9992 intel_init_pch_refclk(dev);
9993
9994 drm_helper_move_panel_connectors_to_head(dev);
9995 }
9996
9997 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9998 {
9999 drm_framebuffer_cleanup(&fb->base);
10000 WARN_ON(!fb->obj->framebuffer_references--);
10001 drm_gem_object_unreference_unlocked(&fb->obj->base);
10002 }
10003
10004 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10005 {
10006 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10007
10008 intel_framebuffer_fini(intel_fb);
10009 kfree(intel_fb);
10010 }
10011
10012 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10013 struct drm_file *file,
10014 unsigned int *handle)
10015 {
10016 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10017 struct drm_i915_gem_object *obj = intel_fb->obj;
10018
10019 return drm_gem_handle_create(file, &obj->base, handle);
10020 }
10021
10022 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10023 .destroy = intel_user_framebuffer_destroy,
10024 .create_handle = intel_user_framebuffer_create_handle,
10025 };
10026
10027 int intel_framebuffer_init(struct drm_device *dev,
10028 struct intel_framebuffer *intel_fb,
10029 struct drm_mode_fb_cmd2 *mode_cmd,
10030 struct drm_i915_gem_object *obj)
10031 {
10032 int aligned_height, tile_height;
10033 int pitch_limit;
10034 int ret;
10035
10036 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10037
10038 if (obj->tiling_mode == I915_TILING_Y) {
10039 DRM_DEBUG("hardware does not support tiling Y\n");
10040 return -EINVAL;
10041 }
10042
10043 if (mode_cmd->pitches[0] & 63) {
10044 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10045 mode_cmd->pitches[0]);
10046 return -EINVAL;
10047 }
10048
10049 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10050 pitch_limit = 32*1024;
10051 } else if (INTEL_INFO(dev)->gen >= 4) {
10052 if (obj->tiling_mode)
10053 pitch_limit = 16*1024;
10054 else
10055 pitch_limit = 32*1024;
10056 } else if (INTEL_INFO(dev)->gen >= 3) {
10057 if (obj->tiling_mode)
10058 pitch_limit = 8*1024;
10059 else
10060 pitch_limit = 16*1024;
10061 } else
10062 /* XXX DSPC is limited to 4k tiled */
10063 pitch_limit = 8*1024;
10064
10065 if (mode_cmd->pitches[0] > pitch_limit) {
10066 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10067 obj->tiling_mode ? "tiled" : "linear",
10068 mode_cmd->pitches[0], pitch_limit);
10069 return -EINVAL;
10070 }
10071
10072 if (obj->tiling_mode != I915_TILING_NONE &&
10073 mode_cmd->pitches[0] != obj->stride) {
10074 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10075 mode_cmd->pitches[0], obj->stride);
10076 return -EINVAL;
10077 }
10078
10079 /* Reject formats not supported by any plane early. */
10080 switch (mode_cmd->pixel_format) {
10081 case DRM_FORMAT_C8:
10082 case DRM_FORMAT_RGB565:
10083 case DRM_FORMAT_XRGB8888:
10084 case DRM_FORMAT_ARGB8888:
10085 break;
10086 case DRM_FORMAT_XRGB1555:
10087 case DRM_FORMAT_ARGB1555:
10088 if (INTEL_INFO(dev)->gen > 3) {
10089 DRM_DEBUG("unsupported pixel format: %s\n",
10090 drm_get_format_name(mode_cmd->pixel_format));
10091 return -EINVAL;
10092 }
10093 break;
10094 case DRM_FORMAT_XBGR8888:
10095 case DRM_FORMAT_ABGR8888:
10096 case DRM_FORMAT_XRGB2101010:
10097 case DRM_FORMAT_ARGB2101010:
10098 case DRM_FORMAT_XBGR2101010:
10099 case DRM_FORMAT_ABGR2101010:
10100 if (INTEL_INFO(dev)->gen < 4) {
10101 DRM_DEBUG("unsupported pixel format: %s\n",
10102 drm_get_format_name(mode_cmd->pixel_format));
10103 return -EINVAL;
10104 }
10105 break;
10106 case DRM_FORMAT_YUYV:
10107 case DRM_FORMAT_UYVY:
10108 case DRM_FORMAT_YVYU:
10109 case DRM_FORMAT_VYUY:
10110 if (INTEL_INFO(dev)->gen < 5) {
10111 DRM_DEBUG("unsupported pixel format: %s\n",
10112 drm_get_format_name(mode_cmd->pixel_format));
10113 return -EINVAL;
10114 }
10115 break;
10116 default:
10117 DRM_DEBUG("unsupported pixel format: %s\n",
10118 drm_get_format_name(mode_cmd->pixel_format));
10119 return -EINVAL;
10120 }
10121
10122 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10123 if (mode_cmd->offsets[0] != 0)
10124 return -EINVAL;
10125
10126 tile_height = IS_GEN2(dev) ? 16 : 8;
10127 aligned_height = ALIGN(mode_cmd->height,
10128 obj->tiling_mode ? tile_height : 1);
10129 /* FIXME drm helper for size checks (especially planar formats)? */
10130 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10131 return -EINVAL;
10132
10133 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10134 intel_fb->obj = obj;
10135 intel_fb->obj->framebuffer_references++;
10136
10137 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10138 if (ret) {
10139 DRM_ERROR("framebuffer init failed %d\n", ret);
10140 return ret;
10141 }
10142
10143 return 0;
10144 }
10145
10146 static struct drm_framebuffer *
10147 intel_user_framebuffer_create(struct drm_device *dev,
10148 struct drm_file *filp,
10149 struct drm_mode_fb_cmd2 *mode_cmd)
10150 {
10151 struct drm_i915_gem_object *obj;
10152
10153 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10154 mode_cmd->handles[0]));
10155 if (&obj->base == NULL)
10156 return ERR_PTR(-ENOENT);
10157
10158 return intel_framebuffer_create(dev, mode_cmd, obj);
10159 }
10160
10161 #ifndef CONFIG_DRM_I915_FBDEV
10162 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10163 {
10164 }
10165 #endif
10166
10167 static const struct drm_mode_config_funcs intel_mode_funcs = {
10168 .fb_create = intel_user_framebuffer_create,
10169 .output_poll_changed = intel_fbdev_output_poll_changed,
10170 };
10171
10172 /* Set up chip specific display functions */
10173 static void intel_init_display(struct drm_device *dev)
10174 {
10175 struct drm_i915_private *dev_priv = dev->dev_private;
10176
10177 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10178 dev_priv->display.find_dpll = g4x_find_best_dpll;
10179 else if (IS_VALLEYVIEW(dev))
10180 dev_priv->display.find_dpll = vlv_find_best_dpll;
10181 else if (IS_PINEVIEW(dev))
10182 dev_priv->display.find_dpll = pnv_find_best_dpll;
10183 else
10184 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10185
10186 if (HAS_DDI(dev)) {
10187 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10188 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10189 dev_priv->display.crtc_enable = haswell_crtc_enable;
10190 dev_priv->display.crtc_disable = haswell_crtc_disable;
10191 dev_priv->display.off = haswell_crtc_off;
10192 dev_priv->display.update_plane = ironlake_update_plane;
10193 } else if (HAS_PCH_SPLIT(dev)) {
10194 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10195 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10196 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10197 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10198 dev_priv->display.off = ironlake_crtc_off;
10199 dev_priv->display.update_plane = ironlake_update_plane;
10200 } else if (IS_VALLEYVIEW(dev)) {
10201 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10202 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10203 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10204 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10205 dev_priv->display.off = i9xx_crtc_off;
10206 dev_priv->display.update_plane = i9xx_update_plane;
10207 } else {
10208 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10209 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10210 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10211 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10212 dev_priv->display.off = i9xx_crtc_off;
10213 dev_priv->display.update_plane = i9xx_update_plane;
10214 }
10215
10216 /* Returns the core display clock speed */
10217 if (IS_VALLEYVIEW(dev))
10218 dev_priv->display.get_display_clock_speed =
10219 valleyview_get_display_clock_speed;
10220 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10221 dev_priv->display.get_display_clock_speed =
10222 i945_get_display_clock_speed;
10223 else if (IS_I915G(dev))
10224 dev_priv->display.get_display_clock_speed =
10225 i915_get_display_clock_speed;
10226 else if (IS_I945GM(dev) || IS_845G(dev))
10227 dev_priv->display.get_display_clock_speed =
10228 i9xx_misc_get_display_clock_speed;
10229 else if (IS_PINEVIEW(dev))
10230 dev_priv->display.get_display_clock_speed =
10231 pnv_get_display_clock_speed;
10232 else if (IS_I915GM(dev))
10233 dev_priv->display.get_display_clock_speed =
10234 i915gm_get_display_clock_speed;
10235 else if (IS_I865G(dev))
10236 dev_priv->display.get_display_clock_speed =
10237 i865_get_display_clock_speed;
10238 else if (IS_I85X(dev))
10239 dev_priv->display.get_display_clock_speed =
10240 i855_get_display_clock_speed;
10241 else /* 852, 830 */
10242 dev_priv->display.get_display_clock_speed =
10243 i830_get_display_clock_speed;
10244
10245 if (HAS_PCH_SPLIT(dev)) {
10246 if (IS_GEN5(dev)) {
10247 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10248 dev_priv->display.write_eld = ironlake_write_eld;
10249 } else if (IS_GEN6(dev)) {
10250 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10251 dev_priv->display.write_eld = ironlake_write_eld;
10252 } else if (IS_IVYBRIDGE(dev)) {
10253 /* FIXME: detect B0+ stepping and use auto training */
10254 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10255 dev_priv->display.write_eld = ironlake_write_eld;
10256 dev_priv->display.modeset_global_resources =
10257 ivb_modeset_global_resources;
10258 } else if (IS_HASWELL(dev)) {
10259 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10260 dev_priv->display.write_eld = haswell_write_eld;
10261 dev_priv->display.modeset_global_resources =
10262 haswell_modeset_global_resources;
10263 }
10264 } else if (IS_G4X(dev)) {
10265 dev_priv->display.write_eld = g4x_write_eld;
10266 }
10267
10268 /* Default just returns -ENODEV to indicate unsupported */
10269 dev_priv->display.queue_flip = intel_default_queue_flip;
10270
10271 switch (INTEL_INFO(dev)->gen) {
10272 case 2:
10273 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10274 break;
10275
10276 case 3:
10277 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10278 break;
10279
10280 case 4:
10281 case 5:
10282 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10283 break;
10284
10285 case 6:
10286 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10287 break;
10288 case 7:
10289 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10290 break;
10291 }
10292 }
10293
10294 /*
10295 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10296 * resume, or other times. This quirk makes sure that's the case for
10297 * affected systems.
10298 */
10299 static void quirk_pipea_force(struct drm_device *dev)
10300 {
10301 struct drm_i915_private *dev_priv = dev->dev_private;
10302
10303 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10304 DRM_INFO("applying pipe a force quirk\n");
10305 }
10306
10307 /*
10308 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10309 */
10310 static void quirk_ssc_force_disable(struct drm_device *dev)
10311 {
10312 struct drm_i915_private *dev_priv = dev->dev_private;
10313 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10314 DRM_INFO("applying lvds SSC disable quirk\n");
10315 }
10316
10317 /*
10318 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10319 * brightness value
10320 */
10321 static void quirk_invert_brightness(struct drm_device *dev)
10322 {
10323 struct drm_i915_private *dev_priv = dev->dev_private;
10324 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10325 DRM_INFO("applying inverted panel brightness quirk\n");
10326 }
10327
10328 /*
10329 * Some machines (Dell XPS13) suffer broken backlight controls if
10330 * BLM_PCH_PWM_ENABLE is set.
10331 */
10332 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10333 {
10334 struct drm_i915_private *dev_priv = dev->dev_private;
10335 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10336 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10337 }
10338
10339 struct intel_quirk {
10340 int device;
10341 int subsystem_vendor;
10342 int subsystem_device;
10343 void (*hook)(struct drm_device *dev);
10344 };
10345
10346 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10347 struct intel_dmi_quirk {
10348 void (*hook)(struct drm_device *dev);
10349 const struct dmi_system_id (*dmi_id_list)[];
10350 };
10351
10352 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10353 {
10354 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10355 return 1;
10356 }
10357
10358 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10359 {
10360 .dmi_id_list = &(const struct dmi_system_id[]) {
10361 {
10362 .callback = intel_dmi_reverse_brightness,
10363 .ident = "NCR Corporation",
10364 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10365 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10366 },
10367 },
10368 { } /* terminating entry */
10369 },
10370 .hook = quirk_invert_brightness,
10371 },
10372 };
10373
10374 static struct intel_quirk intel_quirks[] = {
10375 /* HP Mini needs pipe A force quirk (LP: #322104) */
10376 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10377
10378 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10379 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10380
10381 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10382 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10383
10384 /* 830 needs to leave pipe A & dpll A up */
10385 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10386
10387 /* Lenovo U160 cannot use SSC on LVDS */
10388 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10389
10390 /* Sony Vaio Y cannot use SSC on LVDS */
10391 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10392
10393 /*
10394 * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10395 * seem to use inverted backlight PWM.
10396 */
10397 { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10398
10399 /* Dell XPS13 HD Sandy Bridge */
10400 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10401 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10402 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10403 };
10404
10405 static void intel_init_quirks(struct drm_device *dev)
10406 {
10407 struct pci_dev *d = dev->pdev;
10408 int i;
10409
10410 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10411 struct intel_quirk *q = &intel_quirks[i];
10412
10413 if (d->device == q->device &&
10414 (d->subsystem_vendor == q->subsystem_vendor ||
10415 q->subsystem_vendor == PCI_ANY_ID) &&
10416 (d->subsystem_device == q->subsystem_device ||
10417 q->subsystem_device == PCI_ANY_ID))
10418 q->hook(dev);
10419 }
10420 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10421 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10422 intel_dmi_quirks[i].hook(dev);
10423 }
10424 }
10425
10426 /* Disable the VGA plane that we never use */
10427 static void i915_disable_vga(struct drm_device *dev)
10428 {
10429 struct drm_i915_private *dev_priv = dev->dev_private;
10430 u8 sr1;
10431 u32 vga_reg = i915_vgacntrl_reg(dev);
10432
10433 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10434 outb(SR01, VGA_SR_INDEX);
10435 sr1 = inb(VGA_SR_DATA);
10436 outb(sr1 | 1<<5, VGA_SR_DATA);
10437 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10438 udelay(300);
10439
10440 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10441 POSTING_READ(vga_reg);
10442 }
10443
10444 static void i915_enable_vga_mem(struct drm_device *dev)
10445 {
10446 /* Enable VGA memory on Intel HD */
10447 if (HAS_PCH_SPLIT(dev)) {
10448 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10449 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10450 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10451 VGA_RSRC_LEGACY_MEM |
10452 VGA_RSRC_NORMAL_IO |
10453 VGA_RSRC_NORMAL_MEM);
10454 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10455 }
10456 }
10457
10458 void i915_disable_vga_mem(struct drm_device *dev)
10459 {
10460 /* Disable VGA memory on Intel HD */
10461 if (HAS_PCH_SPLIT(dev)) {
10462 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10463 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10464 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10465 VGA_RSRC_NORMAL_IO |
10466 VGA_RSRC_NORMAL_MEM);
10467 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10468 }
10469 }
10470
10471 void intel_modeset_init_hw(struct drm_device *dev)
10472 {
10473 struct drm_i915_private *dev_priv = dev->dev_private;
10474
10475 intel_prepare_ddi(dev);
10476
10477 intel_init_clock_gating(dev);
10478
10479 /* Enable the CRI clock source so we can get at the display */
10480 if (IS_VALLEYVIEW(dev))
10481 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10482 DPLL_INTEGRATED_CRI_CLK_VLV);
10483
10484 intel_init_dpio(dev);
10485
10486 mutex_lock(&dev->struct_mutex);
10487 intel_enable_gt_powersave(dev);
10488 mutex_unlock(&dev->struct_mutex);
10489 }
10490
10491 void intel_modeset_suspend_hw(struct drm_device *dev)
10492 {
10493 intel_suspend_hw(dev);
10494 }
10495
10496 void intel_modeset_init(struct drm_device *dev)
10497 {
10498 struct drm_i915_private *dev_priv = dev->dev_private;
10499 int i, j, ret;
10500
10501 drm_mode_config_init(dev);
10502
10503 dev->mode_config.min_width = 0;
10504 dev->mode_config.min_height = 0;
10505
10506 dev->mode_config.preferred_depth = 24;
10507 dev->mode_config.prefer_shadow = 1;
10508
10509 dev->mode_config.funcs = &intel_mode_funcs;
10510
10511 intel_init_quirks(dev);
10512
10513 intel_init_pm(dev);
10514
10515 if (INTEL_INFO(dev)->num_pipes == 0)
10516 return;
10517
10518 intel_init_display(dev);
10519
10520 if (IS_GEN2(dev)) {
10521 dev->mode_config.max_width = 2048;
10522 dev->mode_config.max_height = 2048;
10523 } else if (IS_GEN3(dev)) {
10524 dev->mode_config.max_width = 4096;
10525 dev->mode_config.max_height = 4096;
10526 } else {
10527 dev->mode_config.max_width = 8192;
10528 dev->mode_config.max_height = 8192;
10529 }
10530 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10531
10532 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10533 INTEL_INFO(dev)->num_pipes,
10534 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10535
10536 for_each_pipe(i) {
10537 intel_crtc_init(dev, i);
10538 for (j = 0; j < dev_priv->num_plane; j++) {
10539 ret = intel_plane_init(dev, i, j);
10540 if (ret)
10541 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10542 pipe_name(i), sprite_name(i, j), ret);
10543 }
10544 }
10545
10546 intel_cpu_pll_init(dev);
10547 intel_shared_dpll_init(dev);
10548
10549 /* Just disable it once at startup */
10550 i915_disable_vga(dev);
10551 intel_setup_outputs(dev);
10552
10553 /* Just in case the BIOS is doing something questionable. */
10554 intel_disable_fbc(dev);
10555 }
10556
10557 static void
10558 intel_connector_break_all_links(struct intel_connector *connector)
10559 {
10560 connector->base.dpms = DRM_MODE_DPMS_OFF;
10561 connector->base.encoder = NULL;
10562 connector->encoder->connectors_active = false;
10563 connector->encoder->base.crtc = NULL;
10564 }
10565
10566 static void intel_enable_pipe_a(struct drm_device *dev)
10567 {
10568 struct intel_connector *connector;
10569 struct drm_connector *crt = NULL;
10570 struct intel_load_detect_pipe load_detect_temp;
10571
10572 /* We can't just switch on the pipe A, we need to set things up with a
10573 * proper mode and output configuration. As a gross hack, enable pipe A
10574 * by enabling the load detect pipe once. */
10575 list_for_each_entry(connector,
10576 &dev->mode_config.connector_list,
10577 base.head) {
10578 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10579 crt = &connector->base;
10580 break;
10581 }
10582 }
10583
10584 if (!crt)
10585 return;
10586
10587 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10588 intel_release_load_detect_pipe(crt, &load_detect_temp);
10589
10590
10591 }
10592
10593 static bool
10594 intel_check_plane_mapping(struct intel_crtc *crtc)
10595 {
10596 struct drm_device *dev = crtc->base.dev;
10597 struct drm_i915_private *dev_priv = dev->dev_private;
10598 u32 reg, val;
10599
10600 if (INTEL_INFO(dev)->num_pipes == 1)
10601 return true;
10602
10603 reg = DSPCNTR(!crtc->plane);
10604 val = I915_READ(reg);
10605
10606 if ((val & DISPLAY_PLANE_ENABLE) &&
10607 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10608 return false;
10609
10610 return true;
10611 }
10612
10613 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10614 {
10615 struct drm_device *dev = crtc->base.dev;
10616 struct drm_i915_private *dev_priv = dev->dev_private;
10617 u32 reg;
10618
10619 /* Clear any frame start delays used for debugging left by the BIOS */
10620 reg = PIPECONF(crtc->config.cpu_transcoder);
10621 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10622
10623 /* We need to sanitize the plane -> pipe mapping first because this will
10624 * disable the crtc (and hence change the state) if it is wrong. Note
10625 * that gen4+ has a fixed plane -> pipe mapping. */
10626 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10627 struct intel_connector *connector;
10628 bool plane;
10629
10630 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10631 crtc->base.base.id);
10632
10633 /* Pipe has the wrong plane attached and the plane is active.
10634 * Temporarily change the plane mapping and disable everything
10635 * ... */
10636 plane = crtc->plane;
10637 crtc->plane = !plane;
10638 dev_priv->display.crtc_disable(&crtc->base);
10639 crtc->plane = plane;
10640
10641 /* ... and break all links. */
10642 list_for_each_entry(connector, &dev->mode_config.connector_list,
10643 base.head) {
10644 if (connector->encoder->base.crtc != &crtc->base)
10645 continue;
10646
10647 intel_connector_break_all_links(connector);
10648 }
10649
10650 WARN_ON(crtc->active);
10651 crtc->base.enabled = false;
10652 }
10653
10654 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10655 crtc->pipe == PIPE_A && !crtc->active) {
10656 /* BIOS forgot to enable pipe A, this mostly happens after
10657 * resume. Force-enable the pipe to fix this, the update_dpms
10658 * call below we restore the pipe to the right state, but leave
10659 * the required bits on. */
10660 intel_enable_pipe_a(dev);
10661 }
10662
10663 /* Adjust the state of the output pipe according to whether we
10664 * have active connectors/encoders. */
10665 intel_crtc_update_dpms(&crtc->base);
10666
10667 if (crtc->active != crtc->base.enabled) {
10668 struct intel_encoder *encoder;
10669
10670 /* This can happen either due to bugs in the get_hw_state
10671 * functions or because the pipe is force-enabled due to the
10672 * pipe A quirk. */
10673 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10674 crtc->base.base.id,
10675 crtc->base.enabled ? "enabled" : "disabled",
10676 crtc->active ? "enabled" : "disabled");
10677
10678 crtc->base.enabled = crtc->active;
10679
10680 /* Because we only establish the connector -> encoder ->
10681 * crtc links if something is active, this means the
10682 * crtc is now deactivated. Break the links. connector
10683 * -> encoder links are only establish when things are
10684 * actually up, hence no need to break them. */
10685 WARN_ON(crtc->active);
10686
10687 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10688 WARN_ON(encoder->connectors_active);
10689 encoder->base.crtc = NULL;
10690 }
10691 }
10692 }
10693
10694 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10695 {
10696 struct intel_connector *connector;
10697 struct drm_device *dev = encoder->base.dev;
10698
10699 /* We need to check both for a crtc link (meaning that the
10700 * encoder is active and trying to read from a pipe) and the
10701 * pipe itself being active. */
10702 bool has_active_crtc = encoder->base.crtc &&
10703 to_intel_crtc(encoder->base.crtc)->active;
10704
10705 if (encoder->connectors_active && !has_active_crtc) {
10706 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10707 encoder->base.base.id,
10708 drm_get_encoder_name(&encoder->base));
10709
10710 /* Connector is active, but has no active pipe. This is
10711 * fallout from our resume register restoring. Disable
10712 * the encoder manually again. */
10713 if (encoder->base.crtc) {
10714 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10715 encoder->base.base.id,
10716 drm_get_encoder_name(&encoder->base));
10717 encoder->disable(encoder);
10718 }
10719
10720 /* Inconsistent output/port/pipe state happens presumably due to
10721 * a bug in one of the get_hw_state functions. Or someplace else
10722 * in our code, like the register restore mess on resume. Clamp
10723 * things to off as a safer default. */
10724 list_for_each_entry(connector,
10725 &dev->mode_config.connector_list,
10726 base.head) {
10727 if (connector->encoder != encoder)
10728 continue;
10729
10730 intel_connector_break_all_links(connector);
10731 }
10732 }
10733 /* Enabled encoders without active connectors will be fixed in
10734 * the crtc fixup. */
10735 }
10736
10737 void i915_redisable_vga(struct drm_device *dev)
10738 {
10739 struct drm_i915_private *dev_priv = dev->dev_private;
10740 u32 vga_reg = i915_vgacntrl_reg(dev);
10741
10742 /* This function can be called both from intel_modeset_setup_hw_state or
10743 * at a very early point in our resume sequence, where the power well
10744 * structures are not yet restored. Since this function is at a very
10745 * paranoid "someone might have enabled VGA while we were not looking"
10746 * level, just check if the power well is enabled instead of trying to
10747 * follow the "don't touch the power well if we don't need it" policy
10748 * the rest of the driver uses. */
10749 if (HAS_POWER_WELL(dev) &&
10750 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10751 return;
10752
10753 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10754 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10755 i915_disable_vga(dev);
10756 i915_disable_vga_mem(dev);
10757 }
10758 }
10759
10760 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10761 {
10762 struct drm_i915_private *dev_priv = dev->dev_private;
10763 enum pipe pipe;
10764 struct intel_crtc *crtc;
10765 struct intel_encoder *encoder;
10766 struct intel_connector *connector;
10767 int i;
10768
10769 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10770 base.head) {
10771 memset(&crtc->config, 0, sizeof(crtc->config));
10772
10773 crtc->active = dev_priv->display.get_pipe_config(crtc,
10774 &crtc->config);
10775
10776 crtc->base.enabled = crtc->active;
10777 crtc->primary_enabled = crtc->active;
10778
10779 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10780 crtc->base.base.id,
10781 crtc->active ? "enabled" : "disabled");
10782 }
10783
10784 /* FIXME: Smash this into the new shared dpll infrastructure. */
10785 if (HAS_DDI(dev))
10786 intel_ddi_setup_hw_pll_state(dev);
10787
10788 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10789 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10790
10791 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10792 pll->active = 0;
10793 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10794 base.head) {
10795 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10796 pll->active++;
10797 }
10798 pll->refcount = pll->active;
10799
10800 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10801 pll->name, pll->refcount, pll->on);
10802 }
10803
10804 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10805 base.head) {
10806 pipe = 0;
10807
10808 if (encoder->get_hw_state(encoder, &pipe)) {
10809 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10810 encoder->base.crtc = &crtc->base;
10811 if (encoder->get_config)
10812 encoder->get_config(encoder, &crtc->config);
10813 } else {
10814 encoder->base.crtc = NULL;
10815 }
10816
10817 encoder->connectors_active = false;
10818 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
10819 encoder->base.base.id,
10820 drm_get_encoder_name(&encoder->base),
10821 encoder->base.crtc ? "enabled" : "disabled",
10822 pipe_name(pipe));
10823 }
10824
10825 list_for_each_entry(connector, &dev->mode_config.connector_list,
10826 base.head) {
10827 if (connector->get_hw_state(connector)) {
10828 connector->base.dpms = DRM_MODE_DPMS_ON;
10829 connector->encoder->connectors_active = true;
10830 connector->base.encoder = &connector->encoder->base;
10831 } else {
10832 connector->base.dpms = DRM_MODE_DPMS_OFF;
10833 connector->base.encoder = NULL;
10834 }
10835 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10836 connector->base.base.id,
10837 drm_get_connector_name(&connector->base),
10838 connector->base.encoder ? "enabled" : "disabled");
10839 }
10840 }
10841
10842 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10843 * and i915 state tracking structures. */
10844 void intel_modeset_setup_hw_state(struct drm_device *dev,
10845 bool force_restore)
10846 {
10847 struct drm_i915_private *dev_priv = dev->dev_private;
10848 enum pipe pipe;
10849 struct intel_crtc *crtc;
10850 struct intel_encoder *encoder;
10851 int i;
10852
10853 intel_modeset_readout_hw_state(dev);
10854
10855 /*
10856 * Now that we have the config, copy it to each CRTC struct
10857 * Note that this could go away if we move to using crtc_config
10858 * checking everywhere.
10859 */
10860 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10861 base.head) {
10862 if (crtc->active && i915_fastboot) {
10863 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10864
10865 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10866 crtc->base.base.id);
10867 drm_mode_debug_printmodeline(&crtc->base.mode);
10868 }
10869 }
10870
10871 /* HW state is read out, now we need to sanitize this mess. */
10872 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10873 base.head) {
10874 intel_sanitize_encoder(encoder);
10875 }
10876
10877 for_each_pipe(pipe) {
10878 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10879 intel_sanitize_crtc(crtc);
10880 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10881 }
10882
10883 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10884 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10885
10886 if (!pll->on || pll->active)
10887 continue;
10888
10889 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10890
10891 pll->disable(dev_priv, pll);
10892 pll->on = false;
10893 }
10894
10895 if (IS_HASWELL(dev))
10896 ilk_wm_get_hw_state(dev);
10897
10898 if (force_restore) {
10899 i915_redisable_vga(dev);
10900
10901 /*
10902 * We need to use raw interfaces for restoring state to avoid
10903 * checking (bogus) intermediate states.
10904 */
10905 for_each_pipe(pipe) {
10906 struct drm_crtc *crtc =
10907 dev_priv->pipe_to_crtc_mapping[pipe];
10908
10909 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10910 crtc->fb);
10911 }
10912 } else {
10913 intel_modeset_update_staged_output_state(dev);
10914 }
10915
10916 intel_modeset_check_state(dev);
10917
10918 drm_mode_config_reset(dev);
10919 }
10920
10921 void intel_modeset_gem_init(struct drm_device *dev)
10922 {
10923 intel_modeset_init_hw(dev);
10924
10925 intel_setup_overlay(dev);
10926
10927 intel_modeset_setup_hw_state(dev, false);
10928 }
10929
10930 void intel_modeset_cleanup(struct drm_device *dev)
10931 {
10932 struct drm_i915_private *dev_priv = dev->dev_private;
10933 struct drm_crtc *crtc;
10934 struct drm_connector *connector;
10935
10936 /*
10937 * Interrupts and polling as the first thing to avoid creating havoc.
10938 * Too much stuff here (turning of rps, connectors, ...) would
10939 * experience fancy races otherwise.
10940 */
10941 drm_irq_uninstall(dev);
10942 cancel_work_sync(&dev_priv->hotplug_work);
10943 /*
10944 * Due to the hpd irq storm handling the hotplug work can re-arm the
10945 * poll handlers. Hence disable polling after hpd handling is shut down.
10946 */
10947 drm_kms_helper_poll_fini(dev);
10948
10949 mutex_lock(&dev->struct_mutex);
10950
10951 intel_unregister_dsm_handler();
10952
10953 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10954 /* Skip inactive CRTCs */
10955 if (!crtc->fb)
10956 continue;
10957
10958 intel_increase_pllclock(crtc);
10959 }
10960
10961 intel_disable_fbc(dev);
10962
10963 i915_enable_vga_mem(dev);
10964
10965 intel_disable_gt_powersave(dev);
10966
10967 ironlake_teardown_rc6(dev);
10968
10969 mutex_unlock(&dev->struct_mutex);
10970
10971 /* flush any delayed tasks or pending work */
10972 flush_scheduled_work();
10973
10974 /* destroy backlight, if any, before the connectors */
10975 intel_panel_destroy_backlight(dev);
10976
10977 /* destroy the sysfs files before encoders/connectors */
10978 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
10979 drm_sysfs_connector_remove(connector);
10980
10981 drm_mode_config_cleanup(dev);
10982
10983 intel_cleanup_overlay(dev);
10984 }
10985
10986 /*
10987 * Return which encoder is currently attached for connector.
10988 */
10989 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10990 {
10991 return &intel_attached_encoder(connector)->base;
10992 }
10993
10994 void intel_connector_attach_encoder(struct intel_connector *connector,
10995 struct intel_encoder *encoder)
10996 {
10997 connector->encoder = encoder;
10998 drm_mode_connector_attach_encoder(&connector->base,
10999 &encoder->base);
11000 }
11001
11002 /*
11003 * set vga decode state - true == enable VGA decode
11004 */
11005 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11006 {
11007 struct drm_i915_private *dev_priv = dev->dev_private;
11008 u16 gmch_ctrl;
11009
11010 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11011 if (state)
11012 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11013 else
11014 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11015 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11016 return 0;
11017 }
11018
11019 struct intel_display_error_state {
11020
11021 u32 power_well_driver;
11022
11023 int num_transcoders;
11024
11025 struct intel_cursor_error_state {
11026 u32 control;
11027 u32 position;
11028 u32 base;
11029 u32 size;
11030 } cursor[I915_MAX_PIPES];
11031
11032 struct intel_pipe_error_state {
11033 u32 source;
11034 } pipe[I915_MAX_PIPES];
11035
11036 struct intel_plane_error_state {
11037 u32 control;
11038 u32 stride;
11039 u32 size;
11040 u32 pos;
11041 u32 addr;
11042 u32 surface;
11043 u32 tile_offset;
11044 } plane[I915_MAX_PIPES];
11045
11046 struct intel_transcoder_error_state {
11047 enum transcoder cpu_transcoder;
11048
11049 u32 conf;
11050
11051 u32 htotal;
11052 u32 hblank;
11053 u32 hsync;
11054 u32 vtotal;
11055 u32 vblank;
11056 u32 vsync;
11057 } transcoder[4];
11058 };
11059
11060 struct intel_display_error_state *
11061 intel_display_capture_error_state(struct drm_device *dev)
11062 {
11063 drm_i915_private_t *dev_priv = dev->dev_private;
11064 struct intel_display_error_state *error;
11065 int transcoders[] = {
11066 TRANSCODER_A,
11067 TRANSCODER_B,
11068 TRANSCODER_C,
11069 TRANSCODER_EDP,
11070 };
11071 int i;
11072
11073 if (INTEL_INFO(dev)->num_pipes == 0)
11074 return NULL;
11075
11076 error = kmalloc(sizeof(*error), GFP_ATOMIC);
11077 if (error == NULL)
11078 return NULL;
11079
11080 if (HAS_POWER_WELL(dev))
11081 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11082
11083 for_each_pipe(i) {
11084 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11085 error->cursor[i].control = I915_READ(CURCNTR(i));
11086 error->cursor[i].position = I915_READ(CURPOS(i));
11087 error->cursor[i].base = I915_READ(CURBASE(i));
11088 } else {
11089 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11090 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11091 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11092 }
11093
11094 error->plane[i].control = I915_READ(DSPCNTR(i));
11095 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11096 if (INTEL_INFO(dev)->gen <= 3) {
11097 error->plane[i].size = I915_READ(DSPSIZE(i));
11098 error->plane[i].pos = I915_READ(DSPPOS(i));
11099 }
11100 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11101 error->plane[i].addr = I915_READ(DSPADDR(i));
11102 if (INTEL_INFO(dev)->gen >= 4) {
11103 error->plane[i].surface = I915_READ(DSPSURF(i));
11104 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11105 }
11106
11107 error->pipe[i].source = I915_READ(PIPESRC(i));
11108 }
11109
11110 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11111 if (HAS_DDI(dev_priv->dev))
11112 error->num_transcoders++; /* Account for eDP. */
11113
11114 for (i = 0; i < error->num_transcoders; i++) {
11115 enum transcoder cpu_transcoder = transcoders[i];
11116
11117 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11118
11119 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11120 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11121 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11122 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11123 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11124 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11125 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11126 }
11127
11128 /* In the code above we read the registers without checking if the power
11129 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
11130 * prevent the next I915_WRITE from detecting it and printing an error
11131 * message. */
11132 intel_uncore_clear_errors(dev);
11133
11134 return error;
11135 }
11136
11137 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11138
11139 void
11140 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11141 struct drm_device *dev,
11142 struct intel_display_error_state *error)
11143 {
11144 int i;
11145
11146 if (!error)
11147 return;
11148
11149 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11150 if (HAS_POWER_WELL(dev))
11151 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11152 error->power_well_driver);
11153 for_each_pipe(i) {
11154 err_printf(m, "Pipe [%d]:\n", i);
11155 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
11156
11157 err_printf(m, "Plane [%d]:\n", i);
11158 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
11159 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
11160 if (INTEL_INFO(dev)->gen <= 3) {
11161 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
11162 err_printf(m, " POS: %08x\n", error->plane[i].pos);
11163 }
11164 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11165 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
11166 if (INTEL_INFO(dev)->gen >= 4) {
11167 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
11168 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
11169 }
11170
11171 err_printf(m, "Cursor [%d]:\n", i);
11172 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
11173 err_printf(m, " POS: %08x\n", error->cursor[i].position);
11174 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
11175 }
11176
11177 for (i = 0; i < error->num_transcoders; i++) {
11178 err_printf(m, " CPU transcoder: %c\n",
11179 transcoder_name(error->transcoder[i].cpu_transcoder));
11180 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
11181 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
11182 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
11183 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
11184 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
11185 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
11186 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
11187 }
11188 }
This page took 0.799194 seconds and 6 git commands to generate.