Merge branch 'depends/rmk/gpio' into next/fixes
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
118 .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
146 .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
160 .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
176 },
177 .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
191 .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
205 },
206 .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
220 },
221 .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
235 .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
251 .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
265 .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269 *
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
272 */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
312 .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2,.max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2,.max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
341 .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
355 .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
360 {
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 const intel_limit_t *limit;
364
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
378 }
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
382 else
383 limit = &intel_limits_ironlake_dac;
384
385 return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
393
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
398 limit = &intel_limits_g4x_dual_channel_lvds;
399 else
400 /* LVDS with dual channel */
401 limit = &intel_limits_g4x_single_channel_lvds;
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404 limit = &intel_limits_g4x_hdmi;
405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406 limit = &intel_limits_g4x_sdvo;
407 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408 limit = &intel_limits_g4x_display_port;
409 } else /* The option is for other outputs */
410 limit = &intel_limits_i9xx_sdvo;
411
412 return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
419
420 if (HAS_PCH_SPLIT(dev))
421 limit = intel_ironlake_limit(crtc, refclk);
422 else if (IS_G4X(dev)) {
423 limit = intel_g4x_limit(crtc);
424 } else if (IS_PINEVIEW(dev)) {
425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426 limit = &intel_limits_pineview_lvds;
427 else
428 limit = &intel_limits_pineview_sdvo;
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i8xx_lvds;
437 else
438 limit = &intel_limits_i8xx_dvo;
439 }
440 return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
456 return;
457 }
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465 * Returns whether any output on the specified pipe is of the specified type
466 */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
472
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
476
477 return false;
478 }
479
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
484 */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
489 {
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid ("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid ("m1 out of range\n");
498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid ("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid ("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
508 */
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid ("dot out of range\n");
511
512 return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
518
519 {
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
523 int err = target;
524
525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526 (I915_READ(LVDS)) != 0) {
527 /*
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
532 */
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
543 }
544
545 memset (best_clock, 0, sizeof (*best_clock));
546
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
558 int this_err;
559
560 intel_clock(dev, refclk, &clock);
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581 {
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 int lvds_reg;
593
594 if (HAS_PCH_SPLIT(dev))
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
608 }
609
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
622
623 intel_clock(dev, refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627
628 this_err = abs(clock.dot - target);
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
634 }
635 }
636 }
637 }
638 }
639 return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
645 {
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
648
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
661 }
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
671 {
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
685 }
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
692 }
693
694 /**
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
698 *
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
701 */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 int pipestat_reg = PIPESTAT(pipe);
706
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
709 *
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
719 */
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
727 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731 * intel_wait_for_pipe_off - wait for pipe to turn off
732 * @dev: drm device
733 * @pipe: pipe to wait for
734 *
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
738 *
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
741 *
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
745 *
746 */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749 struct drm_i915_private *dev_priv = dev->dev_private;
750
751 if (INTEL_INFO(dev)->gen >= 4) {
752 int reg = PIPECONF(pipe);
753
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
760 int reg = PIPEDSL(pipe);
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763 /* Wait for the display line to settle */
764 do {
765 last_line = I915_READ(reg) & DSL_LINEMASK;
766 mdelay(5);
767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
771 }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776 return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
782 {
783 int reg;
784 u32 val;
785 bool cur_state;
786
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
800 {
801 int reg;
802 u32 val;
803 bool cur_state;
804
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
817 {
818 int reg;
819 u32 val;
820 bool cur_state;
821
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
834 {
835 int reg;
836 u32 val;
837 bool cur_state;
838
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
851 {
852 int reg;
853 u32 val;
854
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
858
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
866 {
867 int reg;
868 u32 val;
869
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
877 {
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = true;
882
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
889 }
890
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
895
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
898
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
901 pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
906 {
907 int reg;
908 u32 val;
909 bool cur_state;
910
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
923 {
924 int reg;
925 u32 val;
926
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
931 plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
936 {
937 int reg, i;
938 u32 val;
939 int cur_pipe;
940
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
944
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
954 }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959 u32 val;
960 bool enabled;
961
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
970 {
971 int reg;
972 u32 val;
973 bool enabled;
974
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
981 }
982
983 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
984 enum pipe pipe, u32 port_sel, u32 val)
985 {
986 if ((val & DP_PORT_EN) == 0)
987 return false;
988
989 if (HAS_PCH_CPT(dev_priv->dev)) {
990 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
991 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
992 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
993 return false;
994 } else {
995 if ((val & DP_PIPE_MASK) != (pipe << 30))
996 return false;
997 }
998 return true;
999 }
1000
1001 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1002 enum pipe pipe, u32 val)
1003 {
1004 if ((val & PORT_ENABLE) == 0)
1005 return false;
1006
1007 if (HAS_PCH_CPT(dev_priv->dev)) {
1008 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1009 return false;
1010 } else {
1011 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1012 return false;
1013 }
1014 return true;
1015 }
1016
1017 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, u32 val)
1019 {
1020 if ((val & LVDS_PORT_EN) == 0)
1021 return false;
1022
1023 if (HAS_PCH_CPT(dev_priv->dev)) {
1024 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1025 return false;
1026 } else {
1027 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1028 return false;
1029 }
1030 return true;
1031 }
1032
1033 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1034 enum pipe pipe, u32 val)
1035 {
1036 if ((val & ADPA_DAC_ENABLE) == 0)
1037 return false;
1038 if (HAS_PCH_CPT(dev_priv->dev)) {
1039 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1040 return false;
1041 } else {
1042 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1043 return false;
1044 }
1045 return true;
1046 }
1047
1048 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1049 enum pipe pipe, int reg, u32 port_sel)
1050 {
1051 u32 val = I915_READ(reg);
1052 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1053 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1054 reg, pipe_name(pipe));
1055 }
1056
1057 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1058 enum pipe pipe, int reg)
1059 {
1060 u32 val = I915_READ(reg);
1061 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1062 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1063 reg, pipe_name(pipe));
1064 }
1065
1066 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1067 enum pipe pipe)
1068 {
1069 int reg;
1070 u32 val;
1071
1072 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1073 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1074 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1075
1076 reg = PCH_ADPA;
1077 val = I915_READ(reg);
1078 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1079 "PCH VGA enabled on transcoder %c, should be disabled\n",
1080 pipe_name(pipe));
1081
1082 reg = PCH_LVDS;
1083 val = I915_READ(reg);
1084 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1085 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1086 pipe_name(pipe));
1087
1088 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1089 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1090 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1091 }
1092
1093 /**
1094 * intel_enable_pll - enable a PLL
1095 * @dev_priv: i915 private structure
1096 * @pipe: pipe PLL to enable
1097 *
1098 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1099 * make sure the PLL reg is writable first though, since the panel write
1100 * protect mechanism may be enabled.
1101 *
1102 * Note! This is for pre-ILK only.
1103 */
1104 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1105 {
1106 int reg;
1107 u32 val;
1108
1109 /* No really, not for ILK+ */
1110 BUG_ON(dev_priv->info->gen >= 5);
1111
1112 /* PLL is protected by panel, make sure we can write it */
1113 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1114 assert_panel_unlocked(dev_priv, pipe);
1115
1116 reg = DPLL(pipe);
1117 val = I915_READ(reg);
1118 val |= DPLL_VCO_ENABLE;
1119
1120 /* We do this three times for luck */
1121 I915_WRITE(reg, val);
1122 POSTING_READ(reg);
1123 udelay(150); /* wait for warmup */
1124 I915_WRITE(reg, val);
1125 POSTING_READ(reg);
1126 udelay(150); /* wait for warmup */
1127 I915_WRITE(reg, val);
1128 POSTING_READ(reg);
1129 udelay(150); /* wait for warmup */
1130 }
1131
1132 /**
1133 * intel_disable_pll - disable a PLL
1134 * @dev_priv: i915 private structure
1135 * @pipe: pipe PLL to disable
1136 *
1137 * Disable the PLL for @pipe, making sure the pipe is off first.
1138 *
1139 * Note! This is for pre-ILK only.
1140 */
1141 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1142 {
1143 int reg;
1144 u32 val;
1145
1146 /* Don't disable pipe A or pipe A PLLs if needed */
1147 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1148 return;
1149
1150 /* Make sure the pipe isn't still relying on us */
1151 assert_pipe_disabled(dev_priv, pipe);
1152
1153 reg = DPLL(pipe);
1154 val = I915_READ(reg);
1155 val &= ~DPLL_VCO_ENABLE;
1156 I915_WRITE(reg, val);
1157 POSTING_READ(reg);
1158 }
1159
1160 /**
1161 * intel_enable_pch_pll - enable PCH PLL
1162 * @dev_priv: i915 private structure
1163 * @pipe: pipe PLL to enable
1164 *
1165 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1166 * drives the transcoder clock.
1167 */
1168 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1169 enum pipe pipe)
1170 {
1171 int reg;
1172 u32 val;
1173
1174 /* PCH only available on ILK+ */
1175 BUG_ON(dev_priv->info->gen < 5);
1176
1177 /* PCH refclock must be enabled first */
1178 assert_pch_refclk_enabled(dev_priv);
1179
1180 reg = PCH_DPLL(pipe);
1181 val = I915_READ(reg);
1182 val |= DPLL_VCO_ENABLE;
1183 I915_WRITE(reg, val);
1184 POSTING_READ(reg);
1185 udelay(200);
1186 }
1187
1188 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int reg;
1192 u32 val;
1193
1194 /* PCH only available on ILK+ */
1195 BUG_ON(dev_priv->info->gen < 5);
1196
1197 /* Make sure transcoder isn't still depending on us */
1198 assert_transcoder_disabled(dev_priv, pipe);
1199
1200 reg = PCH_DPLL(pipe);
1201 val = I915_READ(reg);
1202 val &= ~DPLL_VCO_ENABLE;
1203 I915_WRITE(reg, val);
1204 POSTING_READ(reg);
1205 udelay(200);
1206 }
1207
1208 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1209 enum pipe pipe)
1210 {
1211 int reg;
1212 u32 val;
1213
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* Make sure PCH DPLL is enabled */
1218 assert_pch_pll_enabled(dev_priv, pipe);
1219
1220 /* FDI must be feeding us bits for PCH ports */
1221 assert_fdi_tx_enabled(dev_priv, pipe);
1222 assert_fdi_rx_enabled(dev_priv, pipe);
1223
1224 reg = TRANSCONF(pipe);
1225 val = I915_READ(reg);
1226
1227 if (HAS_PCH_IBX(dev_priv->dev)) {
1228 /*
1229 * make the BPC in transcoder be consistent with
1230 * that in pipeconf reg.
1231 */
1232 val &= ~PIPE_BPC_MASK;
1233 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1234 }
1235 I915_WRITE(reg, val | TRANS_ENABLE);
1236 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1237 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1238 }
1239
1240 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1241 enum pipe pipe)
1242 {
1243 int reg;
1244 u32 val;
1245
1246 /* FDI relies on the transcoder */
1247 assert_fdi_tx_disabled(dev_priv, pipe);
1248 assert_fdi_rx_disabled(dev_priv, pipe);
1249
1250 /* Ports must be off as well */
1251 assert_pch_ports_disabled(dev_priv, pipe);
1252
1253 reg = TRANSCONF(pipe);
1254 val = I915_READ(reg);
1255 val &= ~TRANS_ENABLE;
1256 I915_WRITE(reg, val);
1257 /* wait for PCH transcoder off, transcoder state */
1258 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1259 DRM_ERROR("failed to disable transcoder\n");
1260 }
1261
1262 /**
1263 * intel_enable_pipe - enable a pipe, asserting requirements
1264 * @dev_priv: i915 private structure
1265 * @pipe: pipe to enable
1266 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1267 *
1268 * Enable @pipe, making sure that various hardware specific requirements
1269 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1270 *
1271 * @pipe should be %PIPE_A or %PIPE_B.
1272 *
1273 * Will wait until the pipe is actually running (i.e. first vblank) before
1274 * returning.
1275 */
1276 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1277 bool pch_port)
1278 {
1279 int reg;
1280 u32 val;
1281
1282 /*
1283 * A pipe without a PLL won't actually be able to drive bits from
1284 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1285 * need the check.
1286 */
1287 if (!HAS_PCH_SPLIT(dev_priv->dev))
1288 assert_pll_enabled(dev_priv, pipe);
1289 else {
1290 if (pch_port) {
1291 /* if driving the PCH, we need FDI enabled */
1292 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1293 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1294 }
1295 /* FIXME: assert CPU port conditions for SNB+ */
1296 }
1297
1298 reg = PIPECONF(pipe);
1299 val = I915_READ(reg);
1300 if (val & PIPECONF_ENABLE)
1301 return;
1302
1303 I915_WRITE(reg, val | PIPECONF_ENABLE);
1304 intel_wait_for_vblank(dev_priv->dev, pipe);
1305 }
1306
1307 /**
1308 * intel_disable_pipe - disable a pipe, asserting requirements
1309 * @dev_priv: i915 private structure
1310 * @pipe: pipe to disable
1311 *
1312 * Disable @pipe, making sure that various hardware specific requirements
1313 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1314 *
1315 * @pipe should be %PIPE_A or %PIPE_B.
1316 *
1317 * Will wait until the pipe has shut down before returning.
1318 */
1319 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1320 enum pipe pipe)
1321 {
1322 int reg;
1323 u32 val;
1324
1325 /*
1326 * Make sure planes won't keep trying to pump pixels to us,
1327 * or we might hang the display.
1328 */
1329 assert_planes_disabled(dev_priv, pipe);
1330
1331 /* Don't disable pipe A or pipe A PLLs if needed */
1332 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1333 return;
1334
1335 reg = PIPECONF(pipe);
1336 val = I915_READ(reg);
1337 if ((val & PIPECONF_ENABLE) == 0)
1338 return;
1339
1340 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1341 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1342 }
1343
1344 /*
1345 * Plane regs are double buffered, going from enabled->disabled needs a
1346 * trigger in order to latch. The display address reg provides this.
1347 */
1348 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1349 enum plane plane)
1350 {
1351 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1352 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1353 }
1354
1355 /**
1356 * intel_enable_plane - enable a display plane on a given pipe
1357 * @dev_priv: i915 private structure
1358 * @plane: plane to enable
1359 * @pipe: pipe being fed
1360 *
1361 * Enable @plane on @pipe, making sure that @pipe is running first.
1362 */
1363 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1364 enum plane plane, enum pipe pipe)
1365 {
1366 int reg;
1367 u32 val;
1368
1369 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1370 assert_pipe_enabled(dev_priv, pipe);
1371
1372 reg = DSPCNTR(plane);
1373 val = I915_READ(reg);
1374 if (val & DISPLAY_PLANE_ENABLE)
1375 return;
1376
1377 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1378 intel_flush_display_plane(dev_priv, plane);
1379 intel_wait_for_vblank(dev_priv->dev, pipe);
1380 }
1381
1382 /**
1383 * intel_disable_plane - disable a display plane
1384 * @dev_priv: i915 private structure
1385 * @plane: plane to disable
1386 * @pipe: pipe consuming the data
1387 *
1388 * Disable @plane; should be an independent operation.
1389 */
1390 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1391 enum plane plane, enum pipe pipe)
1392 {
1393 int reg;
1394 u32 val;
1395
1396 reg = DSPCNTR(plane);
1397 val = I915_READ(reg);
1398 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1399 return;
1400
1401 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1402 intel_flush_display_plane(dev_priv, plane);
1403 intel_wait_for_vblank(dev_priv->dev, pipe);
1404 }
1405
1406 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, int reg, u32 port_sel)
1408 {
1409 u32 val = I915_READ(reg);
1410 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1411 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1412 I915_WRITE(reg, val & ~DP_PORT_EN);
1413 }
1414 }
1415
1416 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, int reg)
1418 {
1419 u32 val = I915_READ(reg);
1420 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1421 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1422 reg, pipe);
1423 I915_WRITE(reg, val & ~PORT_ENABLE);
1424 }
1425 }
1426
1427 /* Disable any ports connected to this transcoder */
1428 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1429 enum pipe pipe)
1430 {
1431 u32 reg, val;
1432
1433 val = I915_READ(PCH_PP_CONTROL);
1434 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1435
1436 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1437 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1438 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1439
1440 reg = PCH_ADPA;
1441 val = I915_READ(reg);
1442 if (adpa_pipe_enabled(dev_priv, val, pipe))
1443 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1444
1445 reg = PCH_LVDS;
1446 val = I915_READ(reg);
1447 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1448 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1449 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1450 POSTING_READ(reg);
1451 udelay(100);
1452 }
1453
1454 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1455 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1456 disable_pch_hdmi(dev_priv, pipe, HDMID);
1457 }
1458
1459 static void i8xx_disable_fbc(struct drm_device *dev)
1460 {
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 u32 fbc_ctl;
1463
1464 /* Disable compression */
1465 fbc_ctl = I915_READ(FBC_CONTROL);
1466 if ((fbc_ctl & FBC_CTL_EN) == 0)
1467 return;
1468
1469 fbc_ctl &= ~FBC_CTL_EN;
1470 I915_WRITE(FBC_CONTROL, fbc_ctl);
1471
1472 /* Wait for compressing bit to clear */
1473 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1474 DRM_DEBUG_KMS("FBC idle timed out\n");
1475 return;
1476 }
1477
1478 DRM_DEBUG_KMS("disabled FBC\n");
1479 }
1480
1481 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1482 {
1483 struct drm_device *dev = crtc->dev;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485 struct drm_framebuffer *fb = crtc->fb;
1486 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1487 struct drm_i915_gem_object *obj = intel_fb->obj;
1488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1489 int cfb_pitch;
1490 int plane, i;
1491 u32 fbc_ctl, fbc_ctl2;
1492
1493 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1494 if (fb->pitch < cfb_pitch)
1495 cfb_pitch = fb->pitch;
1496
1497 /* FBC_CTL wants 64B units */
1498 cfb_pitch = (cfb_pitch / 64) - 1;
1499 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1500
1501 /* Clear old tags */
1502 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1503 I915_WRITE(FBC_TAG + (i * 4), 0);
1504
1505 /* Set it up... */
1506 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1507 fbc_ctl2 |= plane;
1508 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1509 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1510
1511 /* enable it... */
1512 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1513 if (IS_I945GM(dev))
1514 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1515 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1516 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1517 fbc_ctl |= obj->fence_reg;
1518 I915_WRITE(FBC_CONTROL, fbc_ctl);
1519
1520 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1521 cfb_pitch, crtc->y, intel_crtc->plane);
1522 }
1523
1524 static bool i8xx_fbc_enabled(struct drm_device *dev)
1525 {
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527
1528 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1529 }
1530
1531 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1532 {
1533 struct drm_device *dev = crtc->dev;
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 struct drm_framebuffer *fb = crtc->fb;
1536 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1537 struct drm_i915_gem_object *obj = intel_fb->obj;
1538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1539 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1540 unsigned long stall_watermark = 200;
1541 u32 dpfc_ctl;
1542
1543 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1544 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1545 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1546
1547 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1548 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1549 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1550 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1551
1552 /* enable it... */
1553 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1554
1555 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1556 }
1557
1558 static void g4x_disable_fbc(struct drm_device *dev)
1559 {
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 u32 dpfc_ctl;
1562
1563 /* Disable compression */
1564 dpfc_ctl = I915_READ(DPFC_CONTROL);
1565 if (dpfc_ctl & DPFC_CTL_EN) {
1566 dpfc_ctl &= ~DPFC_CTL_EN;
1567 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1568
1569 DRM_DEBUG_KMS("disabled FBC\n");
1570 }
1571 }
1572
1573 static bool g4x_fbc_enabled(struct drm_device *dev)
1574 {
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576
1577 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1578 }
1579
1580 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1581 {
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 u32 blt_ecoskpd;
1584
1585 /* Make sure blitter notifies FBC of writes */
1586 gen6_gt_force_wake_get(dev_priv);
1587 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1588 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1589 GEN6_BLITTER_LOCK_SHIFT;
1590 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1591 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1592 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1593 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1594 GEN6_BLITTER_LOCK_SHIFT);
1595 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1596 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1597 gen6_gt_force_wake_put(dev_priv);
1598 }
1599
1600 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1601 {
1602 struct drm_device *dev = crtc->dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 struct drm_framebuffer *fb = crtc->fb;
1605 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1606 struct drm_i915_gem_object *obj = intel_fb->obj;
1607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1608 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1609 unsigned long stall_watermark = 200;
1610 u32 dpfc_ctl;
1611
1612 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1613 dpfc_ctl &= DPFC_RESERVED;
1614 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1615 /* Set persistent mode for front-buffer rendering, ala X. */
1616 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1617 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1618 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1619
1620 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1621 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1622 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1623 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1624 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1625 /* enable it... */
1626 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1627
1628 if (IS_GEN6(dev)) {
1629 I915_WRITE(SNB_DPFC_CTL_SA,
1630 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1631 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1632 sandybridge_blit_fbc_update(dev);
1633 }
1634
1635 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1636 }
1637
1638 static void ironlake_disable_fbc(struct drm_device *dev)
1639 {
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 u32 dpfc_ctl;
1642
1643 /* Disable compression */
1644 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1645 if (dpfc_ctl & DPFC_CTL_EN) {
1646 dpfc_ctl &= ~DPFC_CTL_EN;
1647 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1648
1649 DRM_DEBUG_KMS("disabled FBC\n");
1650 }
1651 }
1652
1653 static bool ironlake_fbc_enabled(struct drm_device *dev)
1654 {
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656
1657 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1658 }
1659
1660 bool intel_fbc_enabled(struct drm_device *dev)
1661 {
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663
1664 if (!dev_priv->display.fbc_enabled)
1665 return false;
1666
1667 return dev_priv->display.fbc_enabled(dev);
1668 }
1669
1670 static void intel_fbc_work_fn(struct work_struct *__work)
1671 {
1672 struct intel_fbc_work *work =
1673 container_of(to_delayed_work(__work),
1674 struct intel_fbc_work, work);
1675 struct drm_device *dev = work->crtc->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677
1678 mutex_lock(&dev->struct_mutex);
1679 if (work == dev_priv->fbc_work) {
1680 /* Double check that we haven't switched fb without cancelling
1681 * the prior work.
1682 */
1683 if (work->crtc->fb == work->fb) {
1684 dev_priv->display.enable_fbc(work->crtc,
1685 work->interval);
1686
1687 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1688 dev_priv->cfb_fb = work->crtc->fb->base.id;
1689 dev_priv->cfb_y = work->crtc->y;
1690 }
1691
1692 dev_priv->fbc_work = NULL;
1693 }
1694 mutex_unlock(&dev->struct_mutex);
1695
1696 kfree(work);
1697 }
1698
1699 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1700 {
1701 if (dev_priv->fbc_work == NULL)
1702 return;
1703
1704 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1705
1706 /* Synchronisation is provided by struct_mutex and checking of
1707 * dev_priv->fbc_work, so we can perform the cancellation
1708 * entirely asynchronously.
1709 */
1710 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1711 /* tasklet was killed before being run, clean up */
1712 kfree(dev_priv->fbc_work);
1713
1714 /* Mark the work as no longer wanted so that if it does
1715 * wake-up (because the work was already running and waiting
1716 * for our mutex), it will discover that is no longer
1717 * necessary to run.
1718 */
1719 dev_priv->fbc_work = NULL;
1720 }
1721
1722 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1723 {
1724 struct intel_fbc_work *work;
1725 struct drm_device *dev = crtc->dev;
1726 struct drm_i915_private *dev_priv = dev->dev_private;
1727
1728 if (!dev_priv->display.enable_fbc)
1729 return;
1730
1731 intel_cancel_fbc_work(dev_priv);
1732
1733 work = kzalloc(sizeof *work, GFP_KERNEL);
1734 if (work == NULL) {
1735 dev_priv->display.enable_fbc(crtc, interval);
1736 return;
1737 }
1738
1739 work->crtc = crtc;
1740 work->fb = crtc->fb;
1741 work->interval = interval;
1742 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1743
1744 dev_priv->fbc_work = work;
1745
1746 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1747
1748 /* Delay the actual enabling to let pageflipping cease and the
1749 * display to settle before starting the compression. Note that
1750 * this delay also serves a second purpose: it allows for a
1751 * vblank to pass after disabling the FBC before we attempt
1752 * to modify the control registers.
1753 *
1754 * A more complicated solution would involve tracking vblanks
1755 * following the termination of the page-flipping sequence
1756 * and indeed performing the enable as a co-routine and not
1757 * waiting synchronously upon the vblank.
1758 */
1759 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1760 }
1761
1762 void intel_disable_fbc(struct drm_device *dev)
1763 {
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765
1766 intel_cancel_fbc_work(dev_priv);
1767
1768 if (!dev_priv->display.disable_fbc)
1769 return;
1770
1771 dev_priv->display.disable_fbc(dev);
1772 dev_priv->cfb_plane = -1;
1773 }
1774
1775 /**
1776 * intel_update_fbc - enable/disable FBC as needed
1777 * @dev: the drm_device
1778 *
1779 * Set up the framebuffer compression hardware at mode set time. We
1780 * enable it if possible:
1781 * - plane A only (on pre-965)
1782 * - no pixel mulitply/line duplication
1783 * - no alpha buffer discard
1784 * - no dual wide
1785 * - framebuffer <= 2048 in width, 1536 in height
1786 *
1787 * We can't assume that any compression will take place (worst case),
1788 * so the compressed buffer has to be the same size as the uncompressed
1789 * one. It also must reside (along with the line length buffer) in
1790 * stolen memory.
1791 *
1792 * We need to enable/disable FBC on a global basis.
1793 */
1794 static void intel_update_fbc(struct drm_device *dev)
1795 {
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct drm_crtc *crtc = NULL, *tmp_crtc;
1798 struct intel_crtc *intel_crtc;
1799 struct drm_framebuffer *fb;
1800 struct intel_framebuffer *intel_fb;
1801 struct drm_i915_gem_object *obj;
1802 int enable_fbc;
1803
1804 DRM_DEBUG_KMS("\n");
1805
1806 if (!i915_powersave)
1807 return;
1808
1809 if (!I915_HAS_FBC(dev))
1810 return;
1811
1812 /*
1813 * If FBC is already on, we just have to verify that we can
1814 * keep it that way...
1815 * Need to disable if:
1816 * - more than one pipe is active
1817 * - changing FBC params (stride, fence, mode)
1818 * - new fb is too large to fit in compressed buffer
1819 * - going to an unsupported config (interlace, pixel multiply, etc.)
1820 */
1821 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1822 if (tmp_crtc->enabled && tmp_crtc->fb) {
1823 if (crtc) {
1824 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1825 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1826 goto out_disable;
1827 }
1828 crtc = tmp_crtc;
1829 }
1830 }
1831
1832 if (!crtc || crtc->fb == NULL) {
1833 DRM_DEBUG_KMS("no output, disabling\n");
1834 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1835 goto out_disable;
1836 }
1837
1838 intel_crtc = to_intel_crtc(crtc);
1839 fb = crtc->fb;
1840 intel_fb = to_intel_framebuffer(fb);
1841 obj = intel_fb->obj;
1842
1843 enable_fbc = i915_enable_fbc;
1844 if (enable_fbc < 0) {
1845 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1846 enable_fbc = 1;
1847 if (INTEL_INFO(dev)->gen <= 5)
1848 enable_fbc = 0;
1849 }
1850 if (!enable_fbc) {
1851 DRM_DEBUG_KMS("fbc disabled per module param\n");
1852 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1853 goto out_disable;
1854 }
1855 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1856 DRM_DEBUG_KMS("framebuffer too large, disabling "
1857 "compression\n");
1858 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1859 goto out_disable;
1860 }
1861 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1862 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1863 DRM_DEBUG_KMS("mode incompatible with compression, "
1864 "disabling\n");
1865 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1866 goto out_disable;
1867 }
1868 if ((crtc->mode.hdisplay > 2048) ||
1869 (crtc->mode.vdisplay > 1536)) {
1870 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1871 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1872 goto out_disable;
1873 }
1874 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1875 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1876 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1877 goto out_disable;
1878 }
1879
1880 /* The use of a CPU fence is mandatory in order to detect writes
1881 * by the CPU to the scanout and trigger updates to the FBC.
1882 */
1883 if (obj->tiling_mode != I915_TILING_X ||
1884 obj->fence_reg == I915_FENCE_REG_NONE) {
1885 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1886 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1887 goto out_disable;
1888 }
1889
1890 /* If the kernel debugger is active, always disable compression */
1891 if (in_dbg_master())
1892 goto out_disable;
1893
1894 /* If the scanout has not changed, don't modify the FBC settings.
1895 * Note that we make the fundamental assumption that the fb->obj
1896 * cannot be unpinned (and have its GTT offset and fence revoked)
1897 * without first being decoupled from the scanout and FBC disabled.
1898 */
1899 if (dev_priv->cfb_plane == intel_crtc->plane &&
1900 dev_priv->cfb_fb == fb->base.id &&
1901 dev_priv->cfb_y == crtc->y)
1902 return;
1903
1904 if (intel_fbc_enabled(dev)) {
1905 /* We update FBC along two paths, after changing fb/crtc
1906 * configuration (modeswitching) and after page-flipping
1907 * finishes. For the latter, we know that not only did
1908 * we disable the FBC at the start of the page-flip
1909 * sequence, but also more than one vblank has passed.
1910 *
1911 * For the former case of modeswitching, it is possible
1912 * to switch between two FBC valid configurations
1913 * instantaneously so we do need to disable the FBC
1914 * before we can modify its control registers. We also
1915 * have to wait for the next vblank for that to take
1916 * effect. However, since we delay enabling FBC we can
1917 * assume that a vblank has passed since disabling and
1918 * that we can safely alter the registers in the deferred
1919 * callback.
1920 *
1921 * In the scenario that we go from a valid to invalid
1922 * and then back to valid FBC configuration we have
1923 * no strict enforcement that a vblank occurred since
1924 * disabling the FBC. However, along all current pipe
1925 * disabling paths we do need to wait for a vblank at
1926 * some point. And we wait before enabling FBC anyway.
1927 */
1928 DRM_DEBUG_KMS("disabling active FBC for update\n");
1929 intel_disable_fbc(dev);
1930 }
1931
1932 intel_enable_fbc(crtc, 500);
1933 return;
1934
1935 out_disable:
1936 /* Multiple disables should be harmless */
1937 if (intel_fbc_enabled(dev)) {
1938 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1939 intel_disable_fbc(dev);
1940 }
1941 }
1942
1943 int
1944 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1945 struct drm_i915_gem_object *obj,
1946 struct intel_ring_buffer *pipelined)
1947 {
1948 struct drm_i915_private *dev_priv = dev->dev_private;
1949 u32 alignment;
1950 int ret;
1951
1952 switch (obj->tiling_mode) {
1953 case I915_TILING_NONE:
1954 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1955 alignment = 128 * 1024;
1956 else if (INTEL_INFO(dev)->gen >= 4)
1957 alignment = 4 * 1024;
1958 else
1959 alignment = 64 * 1024;
1960 break;
1961 case I915_TILING_X:
1962 /* pin() will align the object as required by fence */
1963 alignment = 0;
1964 break;
1965 case I915_TILING_Y:
1966 /* FIXME: Is this true? */
1967 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1968 return -EINVAL;
1969 default:
1970 BUG();
1971 }
1972
1973 dev_priv->mm.interruptible = false;
1974 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1975 if (ret)
1976 goto err_interruptible;
1977
1978 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1979 * fence, whereas 965+ only requires a fence if using
1980 * framebuffer compression. For simplicity, we always install
1981 * a fence as the cost is not that onerous.
1982 */
1983 if (obj->tiling_mode != I915_TILING_NONE) {
1984 ret = i915_gem_object_get_fence(obj, pipelined);
1985 if (ret)
1986 goto err_unpin;
1987 }
1988
1989 dev_priv->mm.interruptible = true;
1990 return 0;
1991
1992 err_unpin:
1993 i915_gem_object_unpin(obj);
1994 err_interruptible:
1995 dev_priv->mm.interruptible = true;
1996 return ret;
1997 }
1998
1999 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2000 int x, int y)
2001 {
2002 struct drm_device *dev = crtc->dev;
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005 struct intel_framebuffer *intel_fb;
2006 struct drm_i915_gem_object *obj;
2007 int plane = intel_crtc->plane;
2008 unsigned long Start, Offset;
2009 u32 dspcntr;
2010 u32 reg;
2011
2012 switch (plane) {
2013 case 0:
2014 case 1:
2015 break;
2016 default:
2017 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2018 return -EINVAL;
2019 }
2020
2021 intel_fb = to_intel_framebuffer(fb);
2022 obj = intel_fb->obj;
2023
2024 reg = DSPCNTR(plane);
2025 dspcntr = I915_READ(reg);
2026 /* Mask out pixel format bits in case we change it */
2027 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2028 switch (fb->bits_per_pixel) {
2029 case 8:
2030 dspcntr |= DISPPLANE_8BPP;
2031 break;
2032 case 16:
2033 if (fb->depth == 15)
2034 dspcntr |= DISPPLANE_15_16BPP;
2035 else
2036 dspcntr |= DISPPLANE_16BPP;
2037 break;
2038 case 24:
2039 case 32:
2040 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2041 break;
2042 default:
2043 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2044 return -EINVAL;
2045 }
2046 if (INTEL_INFO(dev)->gen >= 4) {
2047 if (obj->tiling_mode != I915_TILING_NONE)
2048 dspcntr |= DISPPLANE_TILED;
2049 else
2050 dspcntr &= ~DISPPLANE_TILED;
2051 }
2052
2053 I915_WRITE(reg, dspcntr);
2054
2055 Start = obj->gtt_offset;
2056 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2057
2058 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2059 Start, Offset, x, y, fb->pitch);
2060 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2061 if (INTEL_INFO(dev)->gen >= 4) {
2062 I915_WRITE(DSPSURF(plane), Start);
2063 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2064 I915_WRITE(DSPADDR(plane), Offset);
2065 } else
2066 I915_WRITE(DSPADDR(plane), Start + Offset);
2067 POSTING_READ(reg);
2068
2069 return 0;
2070 }
2071
2072 static int ironlake_update_plane(struct drm_crtc *crtc,
2073 struct drm_framebuffer *fb, int x, int y)
2074 {
2075 struct drm_device *dev = crtc->dev;
2076 struct drm_i915_private *dev_priv = dev->dev_private;
2077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2078 struct intel_framebuffer *intel_fb;
2079 struct drm_i915_gem_object *obj;
2080 int plane = intel_crtc->plane;
2081 unsigned long Start, Offset;
2082 u32 dspcntr;
2083 u32 reg;
2084
2085 switch (plane) {
2086 case 0:
2087 case 1:
2088 break;
2089 default:
2090 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091 return -EINVAL;
2092 }
2093
2094 intel_fb = to_intel_framebuffer(fb);
2095 obj = intel_fb->obj;
2096
2097 reg = DSPCNTR(plane);
2098 dspcntr = I915_READ(reg);
2099 /* Mask out pixel format bits in case we change it */
2100 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101 switch (fb->bits_per_pixel) {
2102 case 8:
2103 dspcntr |= DISPPLANE_8BPP;
2104 break;
2105 case 16:
2106 if (fb->depth != 16)
2107 return -EINVAL;
2108
2109 dspcntr |= DISPPLANE_16BPP;
2110 break;
2111 case 24:
2112 case 32:
2113 if (fb->depth == 24)
2114 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2115 else if (fb->depth == 30)
2116 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2117 else
2118 return -EINVAL;
2119 break;
2120 default:
2121 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2122 return -EINVAL;
2123 }
2124
2125 if (obj->tiling_mode != I915_TILING_NONE)
2126 dspcntr |= DISPPLANE_TILED;
2127 else
2128 dspcntr &= ~DISPPLANE_TILED;
2129
2130 /* must disable */
2131 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2132
2133 I915_WRITE(reg, dspcntr);
2134
2135 Start = obj->gtt_offset;
2136 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2137
2138 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2139 Start, Offset, x, y, fb->pitch);
2140 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2141 I915_WRITE(DSPSURF(plane), Start);
2142 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2143 I915_WRITE(DSPADDR(plane), Offset);
2144 POSTING_READ(reg);
2145
2146 return 0;
2147 }
2148
2149 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2150 static int
2151 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2152 int x, int y, enum mode_set_atomic state)
2153 {
2154 struct drm_device *dev = crtc->dev;
2155 struct drm_i915_private *dev_priv = dev->dev_private;
2156 int ret;
2157
2158 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2159 if (ret)
2160 return ret;
2161
2162 intel_update_fbc(dev);
2163 intel_increase_pllclock(crtc);
2164
2165 return 0;
2166 }
2167
2168 static int
2169 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2170 struct drm_framebuffer *old_fb)
2171 {
2172 struct drm_device *dev = crtc->dev;
2173 struct drm_i915_master_private *master_priv;
2174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175 int ret;
2176
2177 /* no fb bound */
2178 if (!crtc->fb) {
2179 DRM_ERROR("No FB bound\n");
2180 return 0;
2181 }
2182
2183 switch (intel_crtc->plane) {
2184 case 0:
2185 case 1:
2186 break;
2187 default:
2188 DRM_ERROR("no plane for crtc\n");
2189 return -EINVAL;
2190 }
2191
2192 mutex_lock(&dev->struct_mutex);
2193 ret = intel_pin_and_fence_fb_obj(dev,
2194 to_intel_framebuffer(crtc->fb)->obj,
2195 NULL);
2196 if (ret != 0) {
2197 mutex_unlock(&dev->struct_mutex);
2198 DRM_ERROR("pin & fence failed\n");
2199 return ret;
2200 }
2201
2202 if (old_fb) {
2203 struct drm_i915_private *dev_priv = dev->dev_private;
2204 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2205
2206 wait_event(dev_priv->pending_flip_queue,
2207 atomic_read(&dev_priv->mm.wedged) ||
2208 atomic_read(&obj->pending_flip) == 0);
2209
2210 /* Big Hammer, we also need to ensure that any pending
2211 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2212 * current scanout is retired before unpinning the old
2213 * framebuffer.
2214 *
2215 * This should only fail upon a hung GPU, in which case we
2216 * can safely continue.
2217 */
2218 ret = i915_gem_object_finish_gpu(obj);
2219 (void) ret;
2220 }
2221
2222 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2223 LEAVE_ATOMIC_MODE_SET);
2224 if (ret) {
2225 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2226 mutex_unlock(&dev->struct_mutex);
2227 DRM_ERROR("failed to update base address\n");
2228 return ret;
2229 }
2230
2231 if (old_fb) {
2232 intel_wait_for_vblank(dev, intel_crtc->pipe);
2233 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2234 }
2235
2236 mutex_unlock(&dev->struct_mutex);
2237
2238 if (!dev->primary->master)
2239 return 0;
2240
2241 master_priv = dev->primary->master->driver_priv;
2242 if (!master_priv->sarea_priv)
2243 return 0;
2244
2245 if (intel_crtc->pipe) {
2246 master_priv->sarea_priv->pipeB_x = x;
2247 master_priv->sarea_priv->pipeB_y = y;
2248 } else {
2249 master_priv->sarea_priv->pipeA_x = x;
2250 master_priv->sarea_priv->pipeA_y = y;
2251 }
2252
2253 return 0;
2254 }
2255
2256 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2257 {
2258 struct drm_device *dev = crtc->dev;
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 u32 dpa_ctl;
2261
2262 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2263 dpa_ctl = I915_READ(DP_A);
2264 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266 if (clock < 200000) {
2267 u32 temp;
2268 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269 /* workaround for 160Mhz:
2270 1) program 0x4600c bits 15:0 = 0x8124
2271 2) program 0x46010 bit 0 = 1
2272 3) program 0x46034 bit 24 = 1
2273 4) program 0x64000 bit 14 = 1
2274 */
2275 temp = I915_READ(0x4600c);
2276 temp &= 0xffff0000;
2277 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279 temp = I915_READ(0x46010);
2280 I915_WRITE(0x46010, temp | 1);
2281
2282 temp = I915_READ(0x46034);
2283 I915_WRITE(0x46034, temp | (1 << 24));
2284 } else {
2285 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286 }
2287 I915_WRITE(DP_A, dpa_ctl);
2288
2289 POSTING_READ(DP_A);
2290 udelay(500);
2291 }
2292
2293 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294 {
2295 struct drm_device *dev = crtc->dev;
2296 struct drm_i915_private *dev_priv = dev->dev_private;
2297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298 int pipe = intel_crtc->pipe;
2299 u32 reg, temp;
2300
2301 /* enable normal train */
2302 reg = FDI_TX_CTL(pipe);
2303 temp = I915_READ(reg);
2304 if (IS_IVYBRIDGE(dev)) {
2305 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2307 } else {
2308 temp &= ~FDI_LINK_TRAIN_NONE;
2309 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2310 }
2311 I915_WRITE(reg, temp);
2312
2313 reg = FDI_RX_CTL(pipe);
2314 temp = I915_READ(reg);
2315 if (HAS_PCH_CPT(dev)) {
2316 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318 } else {
2319 temp &= ~FDI_LINK_TRAIN_NONE;
2320 temp |= FDI_LINK_TRAIN_NONE;
2321 }
2322 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324 /* wait one idle pattern time */
2325 POSTING_READ(reg);
2326 udelay(1000);
2327
2328 /* IVB wants error correction enabled */
2329 if (IS_IVYBRIDGE(dev))
2330 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331 FDI_FE_ERRC_ENABLE);
2332 }
2333
2334 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339 flags |= FDI_PHASE_SYNC_OVR(pipe);
2340 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341 flags |= FDI_PHASE_SYNC_EN(pipe);
2342 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343 POSTING_READ(SOUTH_CHICKEN1);
2344 }
2345
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348 {
2349 struct drm_device *dev = crtc->dev;
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352 int pipe = intel_crtc->pipe;
2353 int plane = intel_crtc->plane;
2354 u32 reg, temp, tries;
2355
2356 /* FDI needs bits from pipe & plane first */
2357 assert_pipe_enabled(dev_priv, pipe);
2358 assert_plane_enabled(dev_priv, plane);
2359
2360 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361 for train result */
2362 reg = FDI_RX_IMR(pipe);
2363 temp = I915_READ(reg);
2364 temp &= ~FDI_RX_SYMBOL_LOCK;
2365 temp &= ~FDI_RX_BIT_LOCK;
2366 I915_WRITE(reg, temp);
2367 I915_READ(reg);
2368 udelay(150);
2369
2370 /* enable CPU FDI TX and PCH FDI RX */
2371 reg = FDI_TX_CTL(pipe);
2372 temp = I915_READ(reg);
2373 temp &= ~(7 << 19);
2374 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2375 temp &= ~FDI_LINK_TRAIN_NONE;
2376 temp |= FDI_LINK_TRAIN_PATTERN_1;
2377 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2378
2379 reg = FDI_RX_CTL(pipe);
2380 temp = I915_READ(reg);
2381 temp &= ~FDI_LINK_TRAIN_NONE;
2382 temp |= FDI_LINK_TRAIN_PATTERN_1;
2383 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385 POSTING_READ(reg);
2386 udelay(150);
2387
2388 /* Ironlake workaround, enable clock pointer after FDI enable*/
2389 if (HAS_PCH_IBX(dev)) {
2390 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392 FDI_RX_PHASE_SYNC_POINTER_EN);
2393 }
2394
2395 reg = FDI_RX_IIR(pipe);
2396 for (tries = 0; tries < 5; tries++) {
2397 temp = I915_READ(reg);
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400 if ((temp & FDI_RX_BIT_LOCK)) {
2401 DRM_DEBUG_KMS("FDI train 1 done.\n");
2402 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2403 break;
2404 }
2405 }
2406 if (tries == 5)
2407 DRM_ERROR("FDI train 1 fail!\n");
2408
2409 /* Train 2 */
2410 reg = FDI_TX_CTL(pipe);
2411 temp = I915_READ(reg);
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_PATTERN_2;
2414 I915_WRITE(reg, temp);
2415
2416 reg = FDI_RX_CTL(pipe);
2417 temp = I915_READ(reg);
2418 temp &= ~FDI_LINK_TRAIN_NONE;
2419 temp |= FDI_LINK_TRAIN_PATTERN_2;
2420 I915_WRITE(reg, temp);
2421
2422 POSTING_READ(reg);
2423 udelay(150);
2424
2425 reg = FDI_RX_IIR(pipe);
2426 for (tries = 0; tries < 5; tries++) {
2427 temp = I915_READ(reg);
2428 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430 if (temp & FDI_RX_SYMBOL_LOCK) {
2431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2432 DRM_DEBUG_KMS("FDI train 2 done.\n");
2433 break;
2434 }
2435 }
2436 if (tries == 5)
2437 DRM_ERROR("FDI train 2 fail!\n");
2438
2439 DRM_DEBUG_KMS("FDI train done\n");
2440
2441 }
2442
2443 static const int snb_b_fdi_train_param [] = {
2444 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448 };
2449
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452 {
2453 struct drm_device *dev = crtc->dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456 int pipe = intel_crtc->pipe;
2457 u32 reg, temp, i;
2458
2459 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460 for train result */
2461 reg = FDI_RX_IMR(pipe);
2462 temp = I915_READ(reg);
2463 temp &= ~FDI_RX_SYMBOL_LOCK;
2464 temp &= ~FDI_RX_BIT_LOCK;
2465 I915_WRITE(reg, temp);
2466
2467 POSTING_READ(reg);
2468 udelay(150);
2469
2470 /* enable CPU FDI TX and PCH FDI RX */
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~(7 << 19);
2474 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2475 temp &= ~FDI_LINK_TRAIN_NONE;
2476 temp |= FDI_LINK_TRAIN_PATTERN_1;
2477 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478 /* SNB-B */
2479 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2480 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2481
2482 reg = FDI_RX_CTL(pipe);
2483 temp = I915_READ(reg);
2484 if (HAS_PCH_CPT(dev)) {
2485 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2486 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2487 } else {
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 }
2491 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493 POSTING_READ(reg);
2494 udelay(150);
2495
2496 if (HAS_PCH_CPT(dev))
2497 cpt_phase_pointer_enable(dev, pipe);
2498
2499 for (i = 0; i < 4; i++ ) {
2500 reg = FDI_TX_CTL(pipe);
2501 temp = I915_READ(reg);
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 temp |= snb_b_fdi_train_param[i];
2504 I915_WRITE(reg, temp);
2505
2506 POSTING_READ(reg);
2507 udelay(500);
2508
2509 reg = FDI_RX_IIR(pipe);
2510 temp = I915_READ(reg);
2511 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2512
2513 if (temp & FDI_RX_BIT_LOCK) {
2514 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515 DRM_DEBUG_KMS("FDI train 1 done.\n");
2516 break;
2517 }
2518 }
2519 if (i == 4)
2520 DRM_ERROR("FDI train 1 fail!\n");
2521
2522 /* Train 2 */
2523 reg = FDI_TX_CTL(pipe);
2524 temp = I915_READ(reg);
2525 temp &= ~FDI_LINK_TRAIN_NONE;
2526 temp |= FDI_LINK_TRAIN_PATTERN_2;
2527 if (IS_GEN6(dev)) {
2528 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2529 /* SNB-B */
2530 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2531 }
2532 I915_WRITE(reg, temp);
2533
2534 reg = FDI_RX_CTL(pipe);
2535 temp = I915_READ(reg);
2536 if (HAS_PCH_CPT(dev)) {
2537 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2538 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2539 } else {
2540 temp &= ~FDI_LINK_TRAIN_NONE;
2541 temp |= FDI_LINK_TRAIN_PATTERN_2;
2542 }
2543 I915_WRITE(reg, temp);
2544
2545 POSTING_READ(reg);
2546 udelay(150);
2547
2548 for (i = 0; i < 4; i++ ) {
2549 reg = FDI_TX_CTL(pipe);
2550 temp = I915_READ(reg);
2551 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2552 temp |= snb_b_fdi_train_param[i];
2553 I915_WRITE(reg, temp);
2554
2555 POSTING_READ(reg);
2556 udelay(500);
2557
2558 reg = FDI_RX_IIR(pipe);
2559 temp = I915_READ(reg);
2560 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2561
2562 if (temp & FDI_RX_SYMBOL_LOCK) {
2563 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2564 DRM_DEBUG_KMS("FDI train 2 done.\n");
2565 break;
2566 }
2567 }
2568 if (i == 4)
2569 DRM_ERROR("FDI train 2 fail!\n");
2570
2571 DRM_DEBUG_KMS("FDI train done.\n");
2572 }
2573
2574 /* Manual link training for Ivy Bridge A0 parts */
2575 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2576 {
2577 struct drm_device *dev = crtc->dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580 int pipe = intel_crtc->pipe;
2581 u32 reg, temp, i;
2582
2583 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2584 for train result */
2585 reg = FDI_RX_IMR(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_RX_SYMBOL_LOCK;
2588 temp &= ~FDI_RX_BIT_LOCK;
2589 I915_WRITE(reg, temp);
2590
2591 POSTING_READ(reg);
2592 udelay(150);
2593
2594 /* enable CPU FDI TX and PCH FDI RX */
2595 reg = FDI_TX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~(7 << 19);
2598 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2599 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2600 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2601 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2602 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2603 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2604
2605 reg = FDI_RX_CTL(pipe);
2606 temp = I915_READ(reg);
2607 temp &= ~FDI_LINK_TRAIN_AUTO;
2608 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2609 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2610 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 if (HAS_PCH_CPT(dev))
2616 cpt_phase_pointer_enable(dev, pipe);
2617
2618 for (i = 0; i < 4; i++ ) {
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= snb_b_fdi_train_param[i];
2623 I915_WRITE(reg, temp);
2624
2625 POSTING_READ(reg);
2626 udelay(500);
2627
2628 reg = FDI_RX_IIR(pipe);
2629 temp = I915_READ(reg);
2630 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2631
2632 if (temp & FDI_RX_BIT_LOCK ||
2633 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2634 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2635 DRM_DEBUG_KMS("FDI train 1 done.\n");
2636 break;
2637 }
2638 }
2639 if (i == 4)
2640 DRM_ERROR("FDI train 1 fail!\n");
2641
2642 /* Train 2 */
2643 reg = FDI_TX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2649 I915_WRITE(reg, temp);
2650
2651 reg = FDI_RX_CTL(pipe);
2652 temp = I915_READ(reg);
2653 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2655 I915_WRITE(reg, temp);
2656
2657 POSTING_READ(reg);
2658 udelay(150);
2659
2660 for (i = 0; i < 4; i++ ) {
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= snb_b_fdi_train_param[i];
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(500);
2669
2670 reg = FDI_RX_IIR(pipe);
2671 temp = I915_READ(reg);
2672 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2673
2674 if (temp & FDI_RX_SYMBOL_LOCK) {
2675 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677 break;
2678 }
2679 }
2680 if (i == 4)
2681 DRM_ERROR("FDI train 2 fail!\n");
2682
2683 DRM_DEBUG_KMS("FDI train done.\n");
2684 }
2685
2686 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2687 {
2688 struct drm_device *dev = crtc->dev;
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2691 int pipe = intel_crtc->pipe;
2692 u32 reg, temp;
2693
2694 /* Write the TU size bits so error detection works */
2695 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2696 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2697
2698 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2699 reg = FDI_RX_CTL(pipe);
2700 temp = I915_READ(reg);
2701 temp &= ~((0x7 << 19) | (0x7 << 16));
2702 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2703 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2704 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2705
2706 POSTING_READ(reg);
2707 udelay(200);
2708
2709 /* Switch from Rawclk to PCDclk */
2710 temp = I915_READ(reg);
2711 I915_WRITE(reg, temp | FDI_PCDCLK);
2712
2713 POSTING_READ(reg);
2714 udelay(200);
2715
2716 /* Enable CPU FDI TX PLL, always on for Ironlake */
2717 reg = FDI_TX_CTL(pipe);
2718 temp = I915_READ(reg);
2719 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2720 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2721
2722 POSTING_READ(reg);
2723 udelay(100);
2724 }
2725 }
2726
2727 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2728 {
2729 struct drm_i915_private *dev_priv = dev->dev_private;
2730 u32 flags = I915_READ(SOUTH_CHICKEN1);
2731
2732 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2733 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2734 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2735 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2736 POSTING_READ(SOUTH_CHICKEN1);
2737 }
2738 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2739 {
2740 struct drm_device *dev = crtc->dev;
2741 struct drm_i915_private *dev_priv = dev->dev_private;
2742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2743 int pipe = intel_crtc->pipe;
2744 u32 reg, temp;
2745
2746 /* disable CPU FDI tx and PCH FDI rx */
2747 reg = FDI_TX_CTL(pipe);
2748 temp = I915_READ(reg);
2749 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2750 POSTING_READ(reg);
2751
2752 reg = FDI_RX_CTL(pipe);
2753 temp = I915_READ(reg);
2754 temp &= ~(0x7 << 16);
2755 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2756 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2757
2758 POSTING_READ(reg);
2759 udelay(100);
2760
2761 /* Ironlake workaround, disable clock pointer after downing FDI */
2762 if (HAS_PCH_IBX(dev)) {
2763 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2764 I915_WRITE(FDI_RX_CHICKEN(pipe),
2765 I915_READ(FDI_RX_CHICKEN(pipe) &
2766 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2767 } else if (HAS_PCH_CPT(dev)) {
2768 cpt_phase_pointer_disable(dev, pipe);
2769 }
2770
2771 /* still set train pattern 1 */
2772 reg = FDI_TX_CTL(pipe);
2773 temp = I915_READ(reg);
2774 temp &= ~FDI_LINK_TRAIN_NONE;
2775 temp |= FDI_LINK_TRAIN_PATTERN_1;
2776 I915_WRITE(reg, temp);
2777
2778 reg = FDI_RX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 if (HAS_PCH_CPT(dev)) {
2781 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2782 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2783 } else {
2784 temp &= ~FDI_LINK_TRAIN_NONE;
2785 temp |= FDI_LINK_TRAIN_PATTERN_1;
2786 }
2787 /* BPC in FDI rx is consistent with that in PIPECONF */
2788 temp &= ~(0x07 << 16);
2789 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2790 I915_WRITE(reg, temp);
2791
2792 POSTING_READ(reg);
2793 udelay(100);
2794 }
2795
2796 /*
2797 * When we disable a pipe, we need to clear any pending scanline wait events
2798 * to avoid hanging the ring, which we assume we are waiting on.
2799 */
2800 static void intel_clear_scanline_wait(struct drm_device *dev)
2801 {
2802 struct drm_i915_private *dev_priv = dev->dev_private;
2803 struct intel_ring_buffer *ring;
2804 u32 tmp;
2805
2806 if (IS_GEN2(dev))
2807 /* Can't break the hang on i8xx */
2808 return;
2809
2810 ring = LP_RING(dev_priv);
2811 tmp = I915_READ_CTL(ring);
2812 if (tmp & RING_WAIT)
2813 I915_WRITE_CTL(ring, tmp);
2814 }
2815
2816 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2817 {
2818 struct drm_i915_gem_object *obj;
2819 struct drm_i915_private *dev_priv;
2820
2821 if (crtc->fb == NULL)
2822 return;
2823
2824 obj = to_intel_framebuffer(crtc->fb)->obj;
2825 dev_priv = crtc->dev->dev_private;
2826 wait_event(dev_priv->pending_flip_queue,
2827 atomic_read(&obj->pending_flip) == 0);
2828 }
2829
2830 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2831 {
2832 struct drm_device *dev = crtc->dev;
2833 struct drm_mode_config *mode_config = &dev->mode_config;
2834 struct intel_encoder *encoder;
2835
2836 /*
2837 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2838 * must be driven by its own crtc; no sharing is possible.
2839 */
2840 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2841 if (encoder->base.crtc != crtc)
2842 continue;
2843
2844 switch (encoder->type) {
2845 case INTEL_OUTPUT_EDP:
2846 if (!intel_encoder_is_pch_edp(&encoder->base))
2847 return false;
2848 continue;
2849 }
2850 }
2851
2852 return true;
2853 }
2854
2855 /*
2856 * Enable PCH resources required for PCH ports:
2857 * - PCH PLLs
2858 * - FDI training & RX/TX
2859 * - update transcoder timings
2860 * - DP transcoding bits
2861 * - transcoder
2862 */
2863 static void ironlake_pch_enable(struct drm_crtc *crtc)
2864 {
2865 struct drm_device *dev = crtc->dev;
2866 struct drm_i915_private *dev_priv = dev->dev_private;
2867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2868 int pipe = intel_crtc->pipe;
2869 u32 reg, temp;
2870
2871 /* For PCH output, training FDI link */
2872 dev_priv->display.fdi_link_train(crtc);
2873
2874 intel_enable_pch_pll(dev_priv, pipe);
2875
2876 if (HAS_PCH_CPT(dev)) {
2877 /* Be sure PCH DPLL SEL is set */
2878 temp = I915_READ(PCH_DPLL_SEL);
2879 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2880 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2881 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2882 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2883 I915_WRITE(PCH_DPLL_SEL, temp);
2884 }
2885
2886 /* set transcoder timing, panel must allow it */
2887 assert_panel_unlocked(dev_priv, pipe);
2888 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2889 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2890 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2891
2892 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2893 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2894 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2895
2896 intel_fdi_normal_train(crtc);
2897
2898 /* For PCH DP, enable TRANS_DP_CTL */
2899 if (HAS_PCH_CPT(dev) &&
2900 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2901 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2902 reg = TRANS_DP_CTL(pipe);
2903 temp = I915_READ(reg);
2904 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2905 TRANS_DP_SYNC_MASK |
2906 TRANS_DP_BPC_MASK);
2907 temp |= (TRANS_DP_OUTPUT_ENABLE |
2908 TRANS_DP_ENH_FRAMING);
2909 temp |= bpc << 9; /* same format but at 11:9 */
2910
2911 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2912 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2913 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2914 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2915
2916 switch (intel_trans_dp_port_sel(crtc)) {
2917 case PCH_DP_B:
2918 temp |= TRANS_DP_PORT_SEL_B;
2919 break;
2920 case PCH_DP_C:
2921 temp |= TRANS_DP_PORT_SEL_C;
2922 break;
2923 case PCH_DP_D:
2924 temp |= TRANS_DP_PORT_SEL_D;
2925 break;
2926 default:
2927 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2928 temp |= TRANS_DP_PORT_SEL_B;
2929 break;
2930 }
2931
2932 I915_WRITE(reg, temp);
2933 }
2934
2935 intel_enable_transcoder(dev_priv, pipe);
2936 }
2937
2938 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2939 {
2940 struct drm_device *dev = crtc->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943 int pipe = intel_crtc->pipe;
2944 int plane = intel_crtc->plane;
2945 u32 temp;
2946 bool is_pch_port;
2947
2948 if (intel_crtc->active)
2949 return;
2950
2951 intel_crtc->active = true;
2952 intel_update_watermarks(dev);
2953
2954 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2955 temp = I915_READ(PCH_LVDS);
2956 if ((temp & LVDS_PORT_EN) == 0)
2957 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2958 }
2959
2960 is_pch_port = intel_crtc_driving_pch(crtc);
2961
2962 if (is_pch_port)
2963 ironlake_fdi_pll_enable(crtc);
2964 else
2965 ironlake_fdi_disable(crtc);
2966
2967 /* Enable panel fitting for LVDS */
2968 if (dev_priv->pch_pf_size &&
2969 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2970 /* Force use of hard-coded filter coefficients
2971 * as some pre-programmed values are broken,
2972 * e.g. x201.
2973 */
2974 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2975 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2976 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2977 }
2978
2979 /*
2980 * On ILK+ LUT must be loaded before the pipe is running but with
2981 * clocks enabled
2982 */
2983 intel_crtc_load_lut(crtc);
2984
2985 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2986 intel_enable_plane(dev_priv, plane, pipe);
2987
2988 if (is_pch_port)
2989 ironlake_pch_enable(crtc);
2990
2991 mutex_lock(&dev->struct_mutex);
2992 intel_update_fbc(dev);
2993 mutex_unlock(&dev->struct_mutex);
2994
2995 intel_crtc_update_cursor(crtc, true);
2996 }
2997
2998 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2999 {
3000 struct drm_device *dev = crtc->dev;
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3003 int pipe = intel_crtc->pipe;
3004 int plane = intel_crtc->plane;
3005 u32 reg, temp;
3006
3007 if (!intel_crtc->active)
3008 return;
3009
3010 intel_crtc_wait_for_pending_flips(crtc);
3011 drm_vblank_off(dev, pipe);
3012 intel_crtc_update_cursor(crtc, false);
3013
3014 intel_disable_plane(dev_priv, plane, pipe);
3015
3016 if (dev_priv->cfb_plane == plane)
3017 intel_disable_fbc(dev);
3018
3019 intel_disable_pipe(dev_priv, pipe);
3020
3021 /* Disable PF */
3022 I915_WRITE(PF_CTL(pipe), 0);
3023 I915_WRITE(PF_WIN_SZ(pipe), 0);
3024
3025 ironlake_fdi_disable(crtc);
3026
3027 /* This is a horrible layering violation; we should be doing this in
3028 * the connector/encoder ->prepare instead, but we don't always have
3029 * enough information there about the config to know whether it will
3030 * actually be necessary or just cause undesired flicker.
3031 */
3032 intel_disable_pch_ports(dev_priv, pipe);
3033
3034 intel_disable_transcoder(dev_priv, pipe);
3035
3036 if (HAS_PCH_CPT(dev)) {
3037 /* disable TRANS_DP_CTL */
3038 reg = TRANS_DP_CTL(pipe);
3039 temp = I915_READ(reg);
3040 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3041 temp |= TRANS_DP_PORT_SEL_NONE;
3042 I915_WRITE(reg, temp);
3043
3044 /* disable DPLL_SEL */
3045 temp = I915_READ(PCH_DPLL_SEL);
3046 switch (pipe) {
3047 case 0:
3048 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3049 break;
3050 case 1:
3051 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3052 break;
3053 case 2:
3054 /* FIXME: manage transcoder PLLs? */
3055 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3056 break;
3057 default:
3058 BUG(); /* wtf */
3059 }
3060 I915_WRITE(PCH_DPLL_SEL, temp);
3061 }
3062
3063 /* disable PCH DPLL */
3064 intel_disable_pch_pll(dev_priv, pipe);
3065
3066 /* Switch from PCDclk to Rawclk */
3067 reg = FDI_RX_CTL(pipe);
3068 temp = I915_READ(reg);
3069 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3070
3071 /* Disable CPU FDI TX PLL */
3072 reg = FDI_TX_CTL(pipe);
3073 temp = I915_READ(reg);
3074 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3075
3076 POSTING_READ(reg);
3077 udelay(100);
3078
3079 reg = FDI_RX_CTL(pipe);
3080 temp = I915_READ(reg);
3081 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3082
3083 /* Wait for the clocks to turn off. */
3084 POSTING_READ(reg);
3085 udelay(100);
3086
3087 intel_crtc->active = false;
3088 intel_update_watermarks(dev);
3089
3090 mutex_lock(&dev->struct_mutex);
3091 intel_update_fbc(dev);
3092 intel_clear_scanline_wait(dev);
3093 mutex_unlock(&dev->struct_mutex);
3094 }
3095
3096 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3097 {
3098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099 int pipe = intel_crtc->pipe;
3100 int plane = intel_crtc->plane;
3101
3102 /* XXX: When our outputs are all unaware of DPMS modes other than off
3103 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3104 */
3105 switch (mode) {
3106 case DRM_MODE_DPMS_ON:
3107 case DRM_MODE_DPMS_STANDBY:
3108 case DRM_MODE_DPMS_SUSPEND:
3109 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3110 ironlake_crtc_enable(crtc);
3111 break;
3112
3113 case DRM_MODE_DPMS_OFF:
3114 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3115 ironlake_crtc_disable(crtc);
3116 break;
3117 }
3118 }
3119
3120 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3121 {
3122 if (!enable && intel_crtc->overlay) {
3123 struct drm_device *dev = intel_crtc->base.dev;
3124 struct drm_i915_private *dev_priv = dev->dev_private;
3125
3126 mutex_lock(&dev->struct_mutex);
3127 dev_priv->mm.interruptible = false;
3128 (void) intel_overlay_switch_off(intel_crtc->overlay);
3129 dev_priv->mm.interruptible = true;
3130 mutex_unlock(&dev->struct_mutex);
3131 }
3132
3133 /* Let userspace switch the overlay on again. In most cases userspace
3134 * has to recompute where to put it anyway.
3135 */
3136 }
3137
3138 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3139 {
3140 struct drm_device *dev = crtc->dev;
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3143 int pipe = intel_crtc->pipe;
3144 int plane = intel_crtc->plane;
3145
3146 if (intel_crtc->active)
3147 return;
3148
3149 intel_crtc->active = true;
3150 intel_update_watermarks(dev);
3151
3152 intel_enable_pll(dev_priv, pipe);
3153 intel_enable_pipe(dev_priv, pipe, false);
3154 intel_enable_plane(dev_priv, plane, pipe);
3155
3156 intel_crtc_load_lut(crtc);
3157 intel_update_fbc(dev);
3158
3159 /* Give the overlay scaler a chance to enable if it's on this pipe */
3160 intel_crtc_dpms_overlay(intel_crtc, true);
3161 intel_crtc_update_cursor(crtc, true);
3162 }
3163
3164 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3165 {
3166 struct drm_device *dev = crtc->dev;
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3169 int pipe = intel_crtc->pipe;
3170 int plane = intel_crtc->plane;
3171
3172 if (!intel_crtc->active)
3173 return;
3174
3175 /* Give the overlay scaler a chance to disable if it's on this pipe */
3176 intel_crtc_wait_for_pending_flips(crtc);
3177 drm_vblank_off(dev, pipe);
3178 intel_crtc_dpms_overlay(intel_crtc, false);
3179 intel_crtc_update_cursor(crtc, false);
3180
3181 if (dev_priv->cfb_plane == plane)
3182 intel_disable_fbc(dev);
3183
3184 intel_disable_plane(dev_priv, plane, pipe);
3185 intel_disable_pipe(dev_priv, pipe);
3186 intel_disable_pll(dev_priv, pipe);
3187
3188 intel_crtc->active = false;
3189 intel_update_fbc(dev);
3190 intel_update_watermarks(dev);
3191 intel_clear_scanline_wait(dev);
3192 }
3193
3194 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3195 {
3196 /* XXX: When our outputs are all unaware of DPMS modes other than off
3197 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3198 */
3199 switch (mode) {
3200 case DRM_MODE_DPMS_ON:
3201 case DRM_MODE_DPMS_STANDBY:
3202 case DRM_MODE_DPMS_SUSPEND:
3203 i9xx_crtc_enable(crtc);
3204 break;
3205 case DRM_MODE_DPMS_OFF:
3206 i9xx_crtc_disable(crtc);
3207 break;
3208 }
3209 }
3210
3211 /**
3212 * Sets the power management mode of the pipe and plane.
3213 */
3214 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3215 {
3216 struct drm_device *dev = crtc->dev;
3217 struct drm_i915_private *dev_priv = dev->dev_private;
3218 struct drm_i915_master_private *master_priv;
3219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220 int pipe = intel_crtc->pipe;
3221 bool enabled;
3222
3223 if (intel_crtc->dpms_mode == mode)
3224 return;
3225
3226 intel_crtc->dpms_mode = mode;
3227
3228 dev_priv->display.dpms(crtc, mode);
3229
3230 if (!dev->primary->master)
3231 return;
3232
3233 master_priv = dev->primary->master->driver_priv;
3234 if (!master_priv->sarea_priv)
3235 return;
3236
3237 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3238
3239 switch (pipe) {
3240 case 0:
3241 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3242 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3243 break;
3244 case 1:
3245 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3246 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3247 break;
3248 default:
3249 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3250 break;
3251 }
3252 }
3253
3254 static void intel_crtc_disable(struct drm_crtc *crtc)
3255 {
3256 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3257 struct drm_device *dev = crtc->dev;
3258
3259 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3260
3261 if (crtc->fb) {
3262 mutex_lock(&dev->struct_mutex);
3263 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3264 mutex_unlock(&dev->struct_mutex);
3265 }
3266 }
3267
3268 /* Prepare for a mode set.
3269 *
3270 * Note we could be a lot smarter here. We need to figure out which outputs
3271 * will be enabled, which disabled (in short, how the config will changes)
3272 * and perform the minimum necessary steps to accomplish that, e.g. updating
3273 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3274 * panel fitting is in the proper state, etc.
3275 */
3276 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3277 {
3278 i9xx_crtc_disable(crtc);
3279 }
3280
3281 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3282 {
3283 i9xx_crtc_enable(crtc);
3284 }
3285
3286 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3287 {
3288 ironlake_crtc_disable(crtc);
3289 }
3290
3291 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3292 {
3293 ironlake_crtc_enable(crtc);
3294 }
3295
3296 void intel_encoder_prepare (struct drm_encoder *encoder)
3297 {
3298 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3299 /* lvds has its own version of prepare see intel_lvds_prepare */
3300 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3301 }
3302
3303 void intel_encoder_commit (struct drm_encoder *encoder)
3304 {
3305 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3306 /* lvds has its own version of commit see intel_lvds_commit */
3307 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3308 }
3309
3310 void intel_encoder_destroy(struct drm_encoder *encoder)
3311 {
3312 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3313
3314 drm_encoder_cleanup(encoder);
3315 kfree(intel_encoder);
3316 }
3317
3318 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3319 struct drm_display_mode *mode,
3320 struct drm_display_mode *adjusted_mode)
3321 {
3322 struct drm_device *dev = crtc->dev;
3323
3324 if (HAS_PCH_SPLIT(dev)) {
3325 /* FDI link clock is fixed at 2.7G */
3326 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3327 return false;
3328 }
3329
3330 /* XXX some encoders set the crtcinfo, others don't.
3331 * Obviously we need some form of conflict resolution here...
3332 */
3333 if (adjusted_mode->crtc_htotal == 0)
3334 drm_mode_set_crtcinfo(adjusted_mode, 0);
3335
3336 return true;
3337 }
3338
3339 static int i945_get_display_clock_speed(struct drm_device *dev)
3340 {
3341 return 400000;
3342 }
3343
3344 static int i915_get_display_clock_speed(struct drm_device *dev)
3345 {
3346 return 333000;
3347 }
3348
3349 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3350 {
3351 return 200000;
3352 }
3353
3354 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3355 {
3356 u16 gcfgc = 0;
3357
3358 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3359
3360 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3361 return 133000;
3362 else {
3363 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3364 case GC_DISPLAY_CLOCK_333_MHZ:
3365 return 333000;
3366 default:
3367 case GC_DISPLAY_CLOCK_190_200_MHZ:
3368 return 190000;
3369 }
3370 }
3371 }
3372
3373 static int i865_get_display_clock_speed(struct drm_device *dev)
3374 {
3375 return 266000;
3376 }
3377
3378 static int i855_get_display_clock_speed(struct drm_device *dev)
3379 {
3380 u16 hpllcc = 0;
3381 /* Assume that the hardware is in the high speed state. This
3382 * should be the default.
3383 */
3384 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3385 case GC_CLOCK_133_200:
3386 case GC_CLOCK_100_200:
3387 return 200000;
3388 case GC_CLOCK_166_250:
3389 return 250000;
3390 case GC_CLOCK_100_133:
3391 return 133000;
3392 }
3393
3394 /* Shouldn't happen */
3395 return 0;
3396 }
3397
3398 static int i830_get_display_clock_speed(struct drm_device *dev)
3399 {
3400 return 133000;
3401 }
3402
3403 struct fdi_m_n {
3404 u32 tu;
3405 u32 gmch_m;
3406 u32 gmch_n;
3407 u32 link_m;
3408 u32 link_n;
3409 };
3410
3411 static void
3412 fdi_reduce_ratio(u32 *num, u32 *den)
3413 {
3414 while (*num > 0xffffff || *den > 0xffffff) {
3415 *num >>= 1;
3416 *den >>= 1;
3417 }
3418 }
3419
3420 static void
3421 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3422 int link_clock, struct fdi_m_n *m_n)
3423 {
3424 m_n->tu = 64; /* default size */
3425
3426 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3427 m_n->gmch_m = bits_per_pixel * pixel_clock;
3428 m_n->gmch_n = link_clock * nlanes * 8;
3429 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3430
3431 m_n->link_m = pixel_clock;
3432 m_n->link_n = link_clock;
3433 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3434 }
3435
3436
3437 struct intel_watermark_params {
3438 unsigned long fifo_size;
3439 unsigned long max_wm;
3440 unsigned long default_wm;
3441 unsigned long guard_size;
3442 unsigned long cacheline_size;
3443 };
3444
3445 /* Pineview has different values for various configs */
3446 static const struct intel_watermark_params pineview_display_wm = {
3447 PINEVIEW_DISPLAY_FIFO,
3448 PINEVIEW_MAX_WM,
3449 PINEVIEW_DFT_WM,
3450 PINEVIEW_GUARD_WM,
3451 PINEVIEW_FIFO_LINE_SIZE
3452 };
3453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3454 PINEVIEW_DISPLAY_FIFO,
3455 PINEVIEW_MAX_WM,
3456 PINEVIEW_DFT_HPLLOFF_WM,
3457 PINEVIEW_GUARD_WM,
3458 PINEVIEW_FIFO_LINE_SIZE
3459 };
3460 static const struct intel_watermark_params pineview_cursor_wm = {
3461 PINEVIEW_CURSOR_FIFO,
3462 PINEVIEW_CURSOR_MAX_WM,
3463 PINEVIEW_CURSOR_DFT_WM,
3464 PINEVIEW_CURSOR_GUARD_WM,
3465 PINEVIEW_FIFO_LINE_SIZE,
3466 };
3467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3468 PINEVIEW_CURSOR_FIFO,
3469 PINEVIEW_CURSOR_MAX_WM,
3470 PINEVIEW_CURSOR_DFT_WM,
3471 PINEVIEW_CURSOR_GUARD_WM,
3472 PINEVIEW_FIFO_LINE_SIZE
3473 };
3474 static const struct intel_watermark_params g4x_wm_info = {
3475 G4X_FIFO_SIZE,
3476 G4X_MAX_WM,
3477 G4X_MAX_WM,
3478 2,
3479 G4X_FIFO_LINE_SIZE,
3480 };
3481 static const struct intel_watermark_params g4x_cursor_wm_info = {
3482 I965_CURSOR_FIFO,
3483 I965_CURSOR_MAX_WM,
3484 I965_CURSOR_DFT_WM,
3485 2,
3486 G4X_FIFO_LINE_SIZE,
3487 };
3488 static const struct intel_watermark_params i965_cursor_wm_info = {
3489 I965_CURSOR_FIFO,
3490 I965_CURSOR_MAX_WM,
3491 I965_CURSOR_DFT_WM,
3492 2,
3493 I915_FIFO_LINE_SIZE,
3494 };
3495 static const struct intel_watermark_params i945_wm_info = {
3496 I945_FIFO_SIZE,
3497 I915_MAX_WM,
3498 1,
3499 2,
3500 I915_FIFO_LINE_SIZE
3501 };
3502 static const struct intel_watermark_params i915_wm_info = {
3503 I915_FIFO_SIZE,
3504 I915_MAX_WM,
3505 1,
3506 2,
3507 I915_FIFO_LINE_SIZE
3508 };
3509 static const struct intel_watermark_params i855_wm_info = {
3510 I855GM_FIFO_SIZE,
3511 I915_MAX_WM,
3512 1,
3513 2,
3514 I830_FIFO_LINE_SIZE
3515 };
3516 static const struct intel_watermark_params i830_wm_info = {
3517 I830_FIFO_SIZE,
3518 I915_MAX_WM,
3519 1,
3520 2,
3521 I830_FIFO_LINE_SIZE
3522 };
3523
3524 static const struct intel_watermark_params ironlake_display_wm_info = {
3525 ILK_DISPLAY_FIFO,
3526 ILK_DISPLAY_MAXWM,
3527 ILK_DISPLAY_DFTWM,
3528 2,
3529 ILK_FIFO_LINE_SIZE
3530 };
3531 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3532 ILK_CURSOR_FIFO,
3533 ILK_CURSOR_MAXWM,
3534 ILK_CURSOR_DFTWM,
3535 2,
3536 ILK_FIFO_LINE_SIZE
3537 };
3538 static const struct intel_watermark_params ironlake_display_srwm_info = {
3539 ILK_DISPLAY_SR_FIFO,
3540 ILK_DISPLAY_MAX_SRWM,
3541 ILK_DISPLAY_DFT_SRWM,
3542 2,
3543 ILK_FIFO_LINE_SIZE
3544 };
3545 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3546 ILK_CURSOR_SR_FIFO,
3547 ILK_CURSOR_MAX_SRWM,
3548 ILK_CURSOR_DFT_SRWM,
3549 2,
3550 ILK_FIFO_LINE_SIZE
3551 };
3552
3553 static const struct intel_watermark_params sandybridge_display_wm_info = {
3554 SNB_DISPLAY_FIFO,
3555 SNB_DISPLAY_MAXWM,
3556 SNB_DISPLAY_DFTWM,
3557 2,
3558 SNB_FIFO_LINE_SIZE
3559 };
3560 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3561 SNB_CURSOR_FIFO,
3562 SNB_CURSOR_MAXWM,
3563 SNB_CURSOR_DFTWM,
3564 2,
3565 SNB_FIFO_LINE_SIZE
3566 };
3567 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3568 SNB_DISPLAY_SR_FIFO,
3569 SNB_DISPLAY_MAX_SRWM,
3570 SNB_DISPLAY_DFT_SRWM,
3571 2,
3572 SNB_FIFO_LINE_SIZE
3573 };
3574 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3575 SNB_CURSOR_SR_FIFO,
3576 SNB_CURSOR_MAX_SRWM,
3577 SNB_CURSOR_DFT_SRWM,
3578 2,
3579 SNB_FIFO_LINE_SIZE
3580 };
3581
3582
3583 /**
3584 * intel_calculate_wm - calculate watermark level
3585 * @clock_in_khz: pixel clock
3586 * @wm: chip FIFO params
3587 * @pixel_size: display pixel size
3588 * @latency_ns: memory latency for the platform
3589 *
3590 * Calculate the watermark level (the level at which the display plane will
3591 * start fetching from memory again). Each chip has a different display
3592 * FIFO size and allocation, so the caller needs to figure that out and pass
3593 * in the correct intel_watermark_params structure.
3594 *
3595 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3596 * on the pixel size. When it reaches the watermark level, it'll start
3597 * fetching FIFO line sized based chunks from memory until the FIFO fills
3598 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3599 * will occur, and a display engine hang could result.
3600 */
3601 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3602 const struct intel_watermark_params *wm,
3603 int fifo_size,
3604 int pixel_size,
3605 unsigned long latency_ns)
3606 {
3607 long entries_required, wm_size;
3608
3609 /*
3610 * Note: we need to make sure we don't overflow for various clock &
3611 * latency values.
3612 * clocks go from a few thousand to several hundred thousand.
3613 * latency is usually a few thousand
3614 */
3615 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3616 1000;
3617 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3618
3619 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3620
3621 wm_size = fifo_size - (entries_required + wm->guard_size);
3622
3623 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3624
3625 /* Don't promote wm_size to unsigned... */
3626 if (wm_size > (long)wm->max_wm)
3627 wm_size = wm->max_wm;
3628 if (wm_size <= 0)
3629 wm_size = wm->default_wm;
3630 return wm_size;
3631 }
3632
3633 struct cxsr_latency {
3634 int is_desktop;
3635 int is_ddr3;
3636 unsigned long fsb_freq;
3637 unsigned long mem_freq;
3638 unsigned long display_sr;
3639 unsigned long display_hpll_disable;
3640 unsigned long cursor_sr;
3641 unsigned long cursor_hpll_disable;
3642 };
3643
3644 static const struct cxsr_latency cxsr_latency_table[] = {
3645 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3646 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3647 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3648 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3649 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3650
3651 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3652 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3653 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3654 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3655 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3656
3657 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3658 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3659 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3660 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3661 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3662
3663 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3664 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3665 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3666 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3667 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3668
3669 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3670 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3671 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3672 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3673 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3674
3675 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3676 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3677 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3678 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3679 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3680 };
3681
3682 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3683 int is_ddr3,
3684 int fsb,
3685 int mem)
3686 {
3687 const struct cxsr_latency *latency;
3688 int i;
3689
3690 if (fsb == 0 || mem == 0)
3691 return NULL;
3692
3693 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3694 latency = &cxsr_latency_table[i];
3695 if (is_desktop == latency->is_desktop &&
3696 is_ddr3 == latency->is_ddr3 &&
3697 fsb == latency->fsb_freq && mem == latency->mem_freq)
3698 return latency;
3699 }
3700
3701 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3702
3703 return NULL;
3704 }
3705
3706 static void pineview_disable_cxsr(struct drm_device *dev)
3707 {
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710 /* deactivate cxsr */
3711 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3712 }
3713
3714 /*
3715 * Latency for FIFO fetches is dependent on several factors:
3716 * - memory configuration (speed, channels)
3717 * - chipset
3718 * - current MCH state
3719 * It can be fairly high in some situations, so here we assume a fairly
3720 * pessimal value. It's a tradeoff between extra memory fetches (if we
3721 * set this value too high, the FIFO will fetch frequently to stay full)
3722 * and power consumption (set it too low to save power and we might see
3723 * FIFO underruns and display "flicker").
3724 *
3725 * A value of 5us seems to be a good balance; safe for very low end
3726 * platforms but not overly aggressive on lower latency configs.
3727 */
3728 static const int latency_ns = 5000;
3729
3730 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3731 {
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 uint32_t dsparb = I915_READ(DSPARB);
3734 int size;
3735
3736 size = dsparb & 0x7f;
3737 if (plane)
3738 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3739
3740 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3741 plane ? "B" : "A", size);
3742
3743 return size;
3744 }
3745
3746 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3747 {
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 uint32_t dsparb = I915_READ(DSPARB);
3750 int size;
3751
3752 size = dsparb & 0x1ff;
3753 if (plane)
3754 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3755 size >>= 1; /* Convert to cachelines */
3756
3757 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3758 plane ? "B" : "A", size);
3759
3760 return size;
3761 }
3762
3763 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3764 {
3765 struct drm_i915_private *dev_priv = dev->dev_private;
3766 uint32_t dsparb = I915_READ(DSPARB);
3767 int size;
3768
3769 size = dsparb & 0x7f;
3770 size >>= 2; /* Convert to cachelines */
3771
3772 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3773 plane ? "B" : "A",
3774 size);
3775
3776 return size;
3777 }
3778
3779 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3780 {
3781 struct drm_i915_private *dev_priv = dev->dev_private;
3782 uint32_t dsparb = I915_READ(DSPARB);
3783 int size;
3784
3785 size = dsparb & 0x7f;
3786 size >>= 1; /* Convert to cachelines */
3787
3788 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3789 plane ? "B" : "A", size);
3790
3791 return size;
3792 }
3793
3794 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3795 {
3796 struct drm_crtc *crtc, *enabled = NULL;
3797
3798 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3799 if (crtc->enabled && crtc->fb) {
3800 if (enabled)
3801 return NULL;
3802 enabled = crtc;
3803 }
3804 }
3805
3806 return enabled;
3807 }
3808
3809 static void pineview_update_wm(struct drm_device *dev)
3810 {
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct drm_crtc *crtc;
3813 const struct cxsr_latency *latency;
3814 u32 reg;
3815 unsigned long wm;
3816
3817 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3818 dev_priv->fsb_freq, dev_priv->mem_freq);
3819 if (!latency) {
3820 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3821 pineview_disable_cxsr(dev);
3822 return;
3823 }
3824
3825 crtc = single_enabled_crtc(dev);
3826 if (crtc) {
3827 int clock = crtc->mode.clock;
3828 int pixel_size = crtc->fb->bits_per_pixel / 8;
3829
3830 /* Display SR */
3831 wm = intel_calculate_wm(clock, &pineview_display_wm,
3832 pineview_display_wm.fifo_size,
3833 pixel_size, latency->display_sr);
3834 reg = I915_READ(DSPFW1);
3835 reg &= ~DSPFW_SR_MASK;
3836 reg |= wm << DSPFW_SR_SHIFT;
3837 I915_WRITE(DSPFW1, reg);
3838 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3839
3840 /* cursor SR */
3841 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3842 pineview_display_wm.fifo_size,
3843 pixel_size, latency->cursor_sr);
3844 reg = I915_READ(DSPFW3);
3845 reg &= ~DSPFW_CURSOR_SR_MASK;
3846 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3847 I915_WRITE(DSPFW3, reg);
3848
3849 /* Display HPLL off SR */
3850 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3851 pineview_display_hplloff_wm.fifo_size,
3852 pixel_size, latency->display_hpll_disable);
3853 reg = I915_READ(DSPFW3);
3854 reg &= ~DSPFW_HPLL_SR_MASK;
3855 reg |= wm & DSPFW_HPLL_SR_MASK;
3856 I915_WRITE(DSPFW3, reg);
3857
3858 /* cursor HPLL off SR */
3859 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3860 pineview_display_hplloff_wm.fifo_size,
3861 pixel_size, latency->cursor_hpll_disable);
3862 reg = I915_READ(DSPFW3);
3863 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3864 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3865 I915_WRITE(DSPFW3, reg);
3866 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3867
3868 /* activate cxsr */
3869 I915_WRITE(DSPFW3,
3870 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3871 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3872 } else {
3873 pineview_disable_cxsr(dev);
3874 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3875 }
3876 }
3877
3878 static bool g4x_compute_wm0(struct drm_device *dev,
3879 int plane,
3880 const struct intel_watermark_params *display,
3881 int display_latency_ns,
3882 const struct intel_watermark_params *cursor,
3883 int cursor_latency_ns,
3884 int *plane_wm,
3885 int *cursor_wm)
3886 {
3887 struct drm_crtc *crtc;
3888 int htotal, hdisplay, clock, pixel_size;
3889 int line_time_us, line_count;
3890 int entries, tlb_miss;
3891
3892 crtc = intel_get_crtc_for_plane(dev, plane);
3893 if (crtc->fb == NULL || !crtc->enabled) {
3894 *cursor_wm = cursor->guard_size;
3895 *plane_wm = display->guard_size;
3896 return false;
3897 }
3898
3899 htotal = crtc->mode.htotal;
3900 hdisplay = crtc->mode.hdisplay;
3901 clock = crtc->mode.clock;
3902 pixel_size = crtc->fb->bits_per_pixel / 8;
3903
3904 /* Use the small buffer method to calculate plane watermark */
3905 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3906 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3907 if (tlb_miss > 0)
3908 entries += tlb_miss;
3909 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3910 *plane_wm = entries + display->guard_size;
3911 if (*plane_wm > (int)display->max_wm)
3912 *plane_wm = display->max_wm;
3913
3914 /* Use the large buffer method to calculate cursor watermark */
3915 line_time_us = ((htotal * 1000) / clock);
3916 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3917 entries = line_count * 64 * pixel_size;
3918 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3919 if (tlb_miss > 0)
3920 entries += tlb_miss;
3921 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3922 *cursor_wm = entries + cursor->guard_size;
3923 if (*cursor_wm > (int)cursor->max_wm)
3924 *cursor_wm = (int)cursor->max_wm;
3925
3926 return true;
3927 }
3928
3929 /*
3930 * Check the wm result.
3931 *
3932 * If any calculated watermark values is larger than the maximum value that
3933 * can be programmed into the associated watermark register, that watermark
3934 * must be disabled.
3935 */
3936 static bool g4x_check_srwm(struct drm_device *dev,
3937 int display_wm, int cursor_wm,
3938 const struct intel_watermark_params *display,
3939 const struct intel_watermark_params *cursor)
3940 {
3941 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3942 display_wm, cursor_wm);
3943
3944 if (display_wm > display->max_wm) {
3945 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3946 display_wm, display->max_wm);
3947 return false;
3948 }
3949
3950 if (cursor_wm > cursor->max_wm) {
3951 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3952 cursor_wm, cursor->max_wm);
3953 return false;
3954 }
3955
3956 if (!(display_wm || cursor_wm)) {
3957 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3958 return false;
3959 }
3960
3961 return true;
3962 }
3963
3964 static bool g4x_compute_srwm(struct drm_device *dev,
3965 int plane,
3966 int latency_ns,
3967 const struct intel_watermark_params *display,
3968 const struct intel_watermark_params *cursor,
3969 int *display_wm, int *cursor_wm)
3970 {
3971 struct drm_crtc *crtc;
3972 int hdisplay, htotal, pixel_size, clock;
3973 unsigned long line_time_us;
3974 int line_count, line_size;
3975 int small, large;
3976 int entries;
3977
3978 if (!latency_ns) {
3979 *display_wm = *cursor_wm = 0;
3980 return false;
3981 }
3982
3983 crtc = intel_get_crtc_for_plane(dev, plane);
3984 hdisplay = crtc->mode.hdisplay;
3985 htotal = crtc->mode.htotal;
3986 clock = crtc->mode.clock;
3987 pixel_size = crtc->fb->bits_per_pixel / 8;
3988
3989 line_time_us = (htotal * 1000) / clock;
3990 line_count = (latency_ns / line_time_us + 1000) / 1000;
3991 line_size = hdisplay * pixel_size;
3992
3993 /* Use the minimum of the small and large buffer method for primary */
3994 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3995 large = line_count * line_size;
3996
3997 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3998 *display_wm = entries + display->guard_size;
3999
4000 /* calculate the self-refresh watermark for display cursor */
4001 entries = line_count * pixel_size * 64;
4002 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4003 *cursor_wm = entries + cursor->guard_size;
4004
4005 return g4x_check_srwm(dev,
4006 *display_wm, *cursor_wm,
4007 display, cursor);
4008 }
4009
4010 #define single_plane_enabled(mask) is_power_of_2(mask)
4011
4012 static void g4x_update_wm(struct drm_device *dev)
4013 {
4014 static const int sr_latency_ns = 12000;
4015 struct drm_i915_private *dev_priv = dev->dev_private;
4016 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4017 int plane_sr, cursor_sr;
4018 unsigned int enabled = 0;
4019
4020 if (g4x_compute_wm0(dev, 0,
4021 &g4x_wm_info, latency_ns,
4022 &g4x_cursor_wm_info, latency_ns,
4023 &planea_wm, &cursora_wm))
4024 enabled |= 1;
4025
4026 if (g4x_compute_wm0(dev, 1,
4027 &g4x_wm_info, latency_ns,
4028 &g4x_cursor_wm_info, latency_ns,
4029 &planeb_wm, &cursorb_wm))
4030 enabled |= 2;
4031
4032 plane_sr = cursor_sr = 0;
4033 if (single_plane_enabled(enabled) &&
4034 g4x_compute_srwm(dev, ffs(enabled) - 1,
4035 sr_latency_ns,
4036 &g4x_wm_info,
4037 &g4x_cursor_wm_info,
4038 &plane_sr, &cursor_sr))
4039 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4040 else
4041 I915_WRITE(FW_BLC_SELF,
4042 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4043
4044 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4045 planea_wm, cursora_wm,
4046 planeb_wm, cursorb_wm,
4047 plane_sr, cursor_sr);
4048
4049 I915_WRITE(DSPFW1,
4050 (plane_sr << DSPFW_SR_SHIFT) |
4051 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4052 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4053 planea_wm);
4054 I915_WRITE(DSPFW2,
4055 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4056 (cursora_wm << DSPFW_CURSORA_SHIFT));
4057 /* HPLL off in SR has some issues on G4x... disable it */
4058 I915_WRITE(DSPFW3,
4059 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4060 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4061 }
4062
4063 static void i965_update_wm(struct drm_device *dev)
4064 {
4065 struct drm_i915_private *dev_priv = dev->dev_private;
4066 struct drm_crtc *crtc;
4067 int srwm = 1;
4068 int cursor_sr = 16;
4069
4070 /* Calc sr entries for one plane configs */
4071 crtc = single_enabled_crtc(dev);
4072 if (crtc) {
4073 /* self-refresh has much higher latency */
4074 static const int sr_latency_ns = 12000;
4075 int clock = crtc->mode.clock;
4076 int htotal = crtc->mode.htotal;
4077 int hdisplay = crtc->mode.hdisplay;
4078 int pixel_size = crtc->fb->bits_per_pixel / 8;
4079 unsigned long line_time_us;
4080 int entries;
4081
4082 line_time_us = ((htotal * 1000) / clock);
4083
4084 /* Use ns/us then divide to preserve precision */
4085 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4086 pixel_size * hdisplay;
4087 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4088 srwm = I965_FIFO_SIZE - entries;
4089 if (srwm < 0)
4090 srwm = 1;
4091 srwm &= 0x1ff;
4092 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4093 entries, srwm);
4094
4095 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4096 pixel_size * 64;
4097 entries = DIV_ROUND_UP(entries,
4098 i965_cursor_wm_info.cacheline_size);
4099 cursor_sr = i965_cursor_wm_info.fifo_size -
4100 (entries + i965_cursor_wm_info.guard_size);
4101
4102 if (cursor_sr > i965_cursor_wm_info.max_wm)
4103 cursor_sr = i965_cursor_wm_info.max_wm;
4104
4105 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4106 "cursor %d\n", srwm, cursor_sr);
4107
4108 if (IS_CRESTLINE(dev))
4109 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4110 } else {
4111 /* Turn off self refresh if both pipes are enabled */
4112 if (IS_CRESTLINE(dev))
4113 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4114 & ~FW_BLC_SELF_EN);
4115 }
4116
4117 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4118 srwm);
4119
4120 /* 965 has limitations... */
4121 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4122 (8 << 16) | (8 << 8) | (8 << 0));
4123 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4124 /* update cursor SR watermark */
4125 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4126 }
4127
4128 static void i9xx_update_wm(struct drm_device *dev)
4129 {
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 const struct intel_watermark_params *wm_info;
4132 uint32_t fwater_lo;
4133 uint32_t fwater_hi;
4134 int cwm, srwm = 1;
4135 int fifo_size;
4136 int planea_wm, planeb_wm;
4137 struct drm_crtc *crtc, *enabled = NULL;
4138
4139 if (IS_I945GM(dev))
4140 wm_info = &i945_wm_info;
4141 else if (!IS_GEN2(dev))
4142 wm_info = &i915_wm_info;
4143 else
4144 wm_info = &i855_wm_info;
4145
4146 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4147 crtc = intel_get_crtc_for_plane(dev, 0);
4148 if (crtc->enabled && crtc->fb) {
4149 planea_wm = intel_calculate_wm(crtc->mode.clock,
4150 wm_info, fifo_size,
4151 crtc->fb->bits_per_pixel / 8,
4152 latency_ns);
4153 enabled = crtc;
4154 } else
4155 planea_wm = fifo_size - wm_info->guard_size;
4156
4157 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4158 crtc = intel_get_crtc_for_plane(dev, 1);
4159 if (crtc->enabled && crtc->fb) {
4160 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4161 wm_info, fifo_size,
4162 crtc->fb->bits_per_pixel / 8,
4163 latency_ns);
4164 if (enabled == NULL)
4165 enabled = crtc;
4166 else
4167 enabled = NULL;
4168 } else
4169 planeb_wm = fifo_size - wm_info->guard_size;
4170
4171 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4172
4173 /*
4174 * Overlay gets an aggressive default since video jitter is bad.
4175 */
4176 cwm = 2;
4177
4178 /* Play safe and disable self-refresh before adjusting watermarks. */
4179 if (IS_I945G(dev) || IS_I945GM(dev))
4180 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4181 else if (IS_I915GM(dev))
4182 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4183
4184 /* Calc sr entries for one plane configs */
4185 if (HAS_FW_BLC(dev) && enabled) {
4186 /* self-refresh has much higher latency */
4187 static const int sr_latency_ns = 6000;
4188 int clock = enabled->mode.clock;
4189 int htotal = enabled->mode.htotal;
4190 int hdisplay = enabled->mode.hdisplay;
4191 int pixel_size = enabled->fb->bits_per_pixel / 8;
4192 unsigned long line_time_us;
4193 int entries;
4194
4195 line_time_us = (htotal * 1000) / clock;
4196
4197 /* Use ns/us then divide to preserve precision */
4198 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4199 pixel_size * hdisplay;
4200 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4201 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4202 srwm = wm_info->fifo_size - entries;
4203 if (srwm < 0)
4204 srwm = 1;
4205
4206 if (IS_I945G(dev) || IS_I945GM(dev))
4207 I915_WRITE(FW_BLC_SELF,
4208 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4209 else if (IS_I915GM(dev))
4210 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4211 }
4212
4213 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4214 planea_wm, planeb_wm, cwm, srwm);
4215
4216 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4217 fwater_hi = (cwm & 0x1f);
4218
4219 /* Set request length to 8 cachelines per fetch */
4220 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4221 fwater_hi = fwater_hi | (1 << 8);
4222
4223 I915_WRITE(FW_BLC, fwater_lo);
4224 I915_WRITE(FW_BLC2, fwater_hi);
4225
4226 if (HAS_FW_BLC(dev)) {
4227 if (enabled) {
4228 if (IS_I945G(dev) || IS_I945GM(dev))
4229 I915_WRITE(FW_BLC_SELF,
4230 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4231 else if (IS_I915GM(dev))
4232 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4233 DRM_DEBUG_KMS("memory self refresh enabled\n");
4234 } else
4235 DRM_DEBUG_KMS("memory self refresh disabled\n");
4236 }
4237 }
4238
4239 static void i830_update_wm(struct drm_device *dev)
4240 {
4241 struct drm_i915_private *dev_priv = dev->dev_private;
4242 struct drm_crtc *crtc;
4243 uint32_t fwater_lo;
4244 int planea_wm;
4245
4246 crtc = single_enabled_crtc(dev);
4247 if (crtc == NULL)
4248 return;
4249
4250 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4251 dev_priv->display.get_fifo_size(dev, 0),
4252 crtc->fb->bits_per_pixel / 8,
4253 latency_ns);
4254 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4255 fwater_lo |= (3<<8) | planea_wm;
4256
4257 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4258
4259 I915_WRITE(FW_BLC, fwater_lo);
4260 }
4261
4262 #define ILK_LP0_PLANE_LATENCY 700
4263 #define ILK_LP0_CURSOR_LATENCY 1300
4264
4265 /*
4266 * Check the wm result.
4267 *
4268 * If any calculated watermark values is larger than the maximum value that
4269 * can be programmed into the associated watermark register, that watermark
4270 * must be disabled.
4271 */
4272 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4273 int fbc_wm, int display_wm, int cursor_wm,
4274 const struct intel_watermark_params *display,
4275 const struct intel_watermark_params *cursor)
4276 {
4277 struct drm_i915_private *dev_priv = dev->dev_private;
4278
4279 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4280 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4281
4282 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4283 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4284 fbc_wm, SNB_FBC_MAX_SRWM, level);
4285
4286 /* fbc has it's own way to disable FBC WM */
4287 I915_WRITE(DISP_ARB_CTL,
4288 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4289 return false;
4290 }
4291
4292 if (display_wm > display->max_wm) {
4293 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4294 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4295 return false;
4296 }
4297
4298 if (cursor_wm > cursor->max_wm) {
4299 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4300 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4301 return false;
4302 }
4303
4304 if (!(fbc_wm || display_wm || cursor_wm)) {
4305 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4306 return false;
4307 }
4308
4309 return true;
4310 }
4311
4312 /*
4313 * Compute watermark values of WM[1-3],
4314 */
4315 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4316 int latency_ns,
4317 const struct intel_watermark_params *display,
4318 const struct intel_watermark_params *cursor,
4319 int *fbc_wm, int *display_wm, int *cursor_wm)
4320 {
4321 struct drm_crtc *crtc;
4322 unsigned long line_time_us;
4323 int hdisplay, htotal, pixel_size, clock;
4324 int line_count, line_size;
4325 int small, large;
4326 int entries;
4327
4328 if (!latency_ns) {
4329 *fbc_wm = *display_wm = *cursor_wm = 0;
4330 return false;
4331 }
4332
4333 crtc = intel_get_crtc_for_plane(dev, plane);
4334 hdisplay = crtc->mode.hdisplay;
4335 htotal = crtc->mode.htotal;
4336 clock = crtc->mode.clock;
4337 pixel_size = crtc->fb->bits_per_pixel / 8;
4338
4339 line_time_us = (htotal * 1000) / clock;
4340 line_count = (latency_ns / line_time_us + 1000) / 1000;
4341 line_size = hdisplay * pixel_size;
4342
4343 /* Use the minimum of the small and large buffer method for primary */
4344 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4345 large = line_count * line_size;
4346
4347 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4348 *display_wm = entries + display->guard_size;
4349
4350 /*
4351 * Spec says:
4352 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4353 */
4354 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4355
4356 /* calculate the self-refresh watermark for display cursor */
4357 entries = line_count * pixel_size * 64;
4358 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4359 *cursor_wm = entries + cursor->guard_size;
4360
4361 return ironlake_check_srwm(dev, level,
4362 *fbc_wm, *display_wm, *cursor_wm,
4363 display, cursor);
4364 }
4365
4366 static void ironlake_update_wm(struct drm_device *dev)
4367 {
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369 int fbc_wm, plane_wm, cursor_wm;
4370 unsigned int enabled;
4371
4372 enabled = 0;
4373 if (g4x_compute_wm0(dev, 0,
4374 &ironlake_display_wm_info,
4375 ILK_LP0_PLANE_LATENCY,
4376 &ironlake_cursor_wm_info,
4377 ILK_LP0_CURSOR_LATENCY,
4378 &plane_wm, &cursor_wm)) {
4379 I915_WRITE(WM0_PIPEA_ILK,
4380 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4381 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4382 " plane %d, " "cursor: %d\n",
4383 plane_wm, cursor_wm);
4384 enabled |= 1;
4385 }
4386
4387 if (g4x_compute_wm0(dev, 1,
4388 &ironlake_display_wm_info,
4389 ILK_LP0_PLANE_LATENCY,
4390 &ironlake_cursor_wm_info,
4391 ILK_LP0_CURSOR_LATENCY,
4392 &plane_wm, &cursor_wm)) {
4393 I915_WRITE(WM0_PIPEB_ILK,
4394 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4395 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4396 " plane %d, cursor: %d\n",
4397 plane_wm, cursor_wm);
4398 enabled |= 2;
4399 }
4400
4401 /*
4402 * Calculate and update the self-refresh watermark only when one
4403 * display plane is used.
4404 */
4405 I915_WRITE(WM3_LP_ILK, 0);
4406 I915_WRITE(WM2_LP_ILK, 0);
4407 I915_WRITE(WM1_LP_ILK, 0);
4408
4409 if (!single_plane_enabled(enabled))
4410 return;
4411 enabled = ffs(enabled) - 1;
4412
4413 /* WM1 */
4414 if (!ironlake_compute_srwm(dev, 1, enabled,
4415 ILK_READ_WM1_LATENCY() * 500,
4416 &ironlake_display_srwm_info,
4417 &ironlake_cursor_srwm_info,
4418 &fbc_wm, &plane_wm, &cursor_wm))
4419 return;
4420
4421 I915_WRITE(WM1_LP_ILK,
4422 WM1_LP_SR_EN |
4423 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4424 (fbc_wm << WM1_LP_FBC_SHIFT) |
4425 (plane_wm << WM1_LP_SR_SHIFT) |
4426 cursor_wm);
4427
4428 /* WM2 */
4429 if (!ironlake_compute_srwm(dev, 2, enabled,
4430 ILK_READ_WM2_LATENCY() * 500,
4431 &ironlake_display_srwm_info,
4432 &ironlake_cursor_srwm_info,
4433 &fbc_wm, &plane_wm, &cursor_wm))
4434 return;
4435
4436 I915_WRITE(WM2_LP_ILK,
4437 WM2_LP_EN |
4438 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4439 (fbc_wm << WM1_LP_FBC_SHIFT) |
4440 (plane_wm << WM1_LP_SR_SHIFT) |
4441 cursor_wm);
4442
4443 /*
4444 * WM3 is unsupported on ILK, probably because we don't have latency
4445 * data for that power state
4446 */
4447 }
4448
4449 static void sandybridge_update_wm(struct drm_device *dev)
4450 {
4451 struct drm_i915_private *dev_priv = dev->dev_private;
4452 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4453 int fbc_wm, plane_wm, cursor_wm;
4454 unsigned int enabled;
4455
4456 enabled = 0;
4457 if (g4x_compute_wm0(dev, 0,
4458 &sandybridge_display_wm_info, latency,
4459 &sandybridge_cursor_wm_info, latency,
4460 &plane_wm, &cursor_wm)) {
4461 I915_WRITE(WM0_PIPEA_ILK,
4462 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4463 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4464 " plane %d, " "cursor: %d\n",
4465 plane_wm, cursor_wm);
4466 enabled |= 1;
4467 }
4468
4469 if (g4x_compute_wm0(dev, 1,
4470 &sandybridge_display_wm_info, latency,
4471 &sandybridge_cursor_wm_info, latency,
4472 &plane_wm, &cursor_wm)) {
4473 I915_WRITE(WM0_PIPEB_ILK,
4474 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4475 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4476 " plane %d, cursor: %d\n",
4477 plane_wm, cursor_wm);
4478 enabled |= 2;
4479 }
4480
4481 /*
4482 * Calculate and update the self-refresh watermark only when one
4483 * display plane is used.
4484 *
4485 * SNB support 3 levels of watermark.
4486 *
4487 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4488 * and disabled in the descending order
4489 *
4490 */
4491 I915_WRITE(WM3_LP_ILK, 0);
4492 I915_WRITE(WM2_LP_ILK, 0);
4493 I915_WRITE(WM1_LP_ILK, 0);
4494
4495 if (!single_plane_enabled(enabled))
4496 return;
4497 enabled = ffs(enabled) - 1;
4498
4499 /* WM1 */
4500 if (!ironlake_compute_srwm(dev, 1, enabled,
4501 SNB_READ_WM1_LATENCY() * 500,
4502 &sandybridge_display_srwm_info,
4503 &sandybridge_cursor_srwm_info,
4504 &fbc_wm, &plane_wm, &cursor_wm))
4505 return;
4506
4507 I915_WRITE(WM1_LP_ILK,
4508 WM1_LP_SR_EN |
4509 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510 (fbc_wm << WM1_LP_FBC_SHIFT) |
4511 (plane_wm << WM1_LP_SR_SHIFT) |
4512 cursor_wm);
4513
4514 /* WM2 */
4515 if (!ironlake_compute_srwm(dev, 2, enabled,
4516 SNB_READ_WM2_LATENCY() * 500,
4517 &sandybridge_display_srwm_info,
4518 &sandybridge_cursor_srwm_info,
4519 &fbc_wm, &plane_wm, &cursor_wm))
4520 return;
4521
4522 I915_WRITE(WM2_LP_ILK,
4523 WM2_LP_EN |
4524 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4525 (fbc_wm << WM1_LP_FBC_SHIFT) |
4526 (plane_wm << WM1_LP_SR_SHIFT) |
4527 cursor_wm);
4528
4529 /* WM3 */
4530 if (!ironlake_compute_srwm(dev, 3, enabled,
4531 SNB_READ_WM3_LATENCY() * 500,
4532 &sandybridge_display_srwm_info,
4533 &sandybridge_cursor_srwm_info,
4534 &fbc_wm, &plane_wm, &cursor_wm))
4535 return;
4536
4537 I915_WRITE(WM3_LP_ILK,
4538 WM3_LP_EN |
4539 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4540 (fbc_wm << WM1_LP_FBC_SHIFT) |
4541 (plane_wm << WM1_LP_SR_SHIFT) |
4542 cursor_wm);
4543 }
4544
4545 /**
4546 * intel_update_watermarks - update FIFO watermark values based on current modes
4547 *
4548 * Calculate watermark values for the various WM regs based on current mode
4549 * and plane configuration.
4550 *
4551 * There are several cases to deal with here:
4552 * - normal (i.e. non-self-refresh)
4553 * - self-refresh (SR) mode
4554 * - lines are large relative to FIFO size (buffer can hold up to 2)
4555 * - lines are small relative to FIFO size (buffer can hold more than 2
4556 * lines), so need to account for TLB latency
4557 *
4558 * The normal calculation is:
4559 * watermark = dotclock * bytes per pixel * latency
4560 * where latency is platform & configuration dependent (we assume pessimal
4561 * values here).
4562 *
4563 * The SR calculation is:
4564 * watermark = (trunc(latency/line time)+1) * surface width *
4565 * bytes per pixel
4566 * where
4567 * line time = htotal / dotclock
4568 * surface width = hdisplay for normal plane and 64 for cursor
4569 * and latency is assumed to be high, as above.
4570 *
4571 * The final value programmed to the register should always be rounded up,
4572 * and include an extra 2 entries to account for clock crossings.
4573 *
4574 * We don't use the sprite, so we can ignore that. And on Crestline we have
4575 * to set the non-SR watermarks to 8.
4576 */
4577 static void intel_update_watermarks(struct drm_device *dev)
4578 {
4579 struct drm_i915_private *dev_priv = dev->dev_private;
4580
4581 if (dev_priv->display.update_wm)
4582 dev_priv->display.update_wm(dev);
4583 }
4584
4585 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4586 {
4587 return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4588 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4589 }
4590
4591 /**
4592 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4593 * @crtc: CRTC structure
4594 *
4595 * A pipe may be connected to one or more outputs. Based on the depth of the
4596 * attached framebuffer, choose a good color depth to use on the pipe.
4597 *
4598 * If possible, match the pipe depth to the fb depth. In some cases, this
4599 * isn't ideal, because the connected output supports a lesser or restricted
4600 * set of depths. Resolve that here:
4601 * LVDS typically supports only 6bpc, so clamp down in that case
4602 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4603 * Displays may support a restricted set as well, check EDID and clamp as
4604 * appropriate.
4605 *
4606 * RETURNS:
4607 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4608 * true if they don't match).
4609 */
4610 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4611 unsigned int *pipe_bpp)
4612 {
4613 struct drm_device *dev = crtc->dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 struct drm_encoder *encoder;
4616 struct drm_connector *connector;
4617 unsigned int display_bpc = UINT_MAX, bpc;
4618
4619 /* Walk the encoders & connectors on this crtc, get min bpc */
4620 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4621 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4622
4623 if (encoder->crtc != crtc)
4624 continue;
4625
4626 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4627 unsigned int lvds_bpc;
4628
4629 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4630 LVDS_A3_POWER_UP)
4631 lvds_bpc = 8;
4632 else
4633 lvds_bpc = 6;
4634
4635 if (lvds_bpc < display_bpc) {
4636 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4637 display_bpc = lvds_bpc;
4638 }
4639 continue;
4640 }
4641
4642 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4643 /* Use VBT settings if we have an eDP panel */
4644 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4645
4646 if (edp_bpc < display_bpc) {
4647 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4648 display_bpc = edp_bpc;
4649 }
4650 continue;
4651 }
4652
4653 /* Not one of the known troublemakers, check the EDID */
4654 list_for_each_entry(connector, &dev->mode_config.connector_list,
4655 head) {
4656 if (connector->encoder != encoder)
4657 continue;
4658
4659 /* Don't use an invalid EDID bpc value */
4660 if (connector->display_info.bpc &&
4661 connector->display_info.bpc < display_bpc) {
4662 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4663 display_bpc = connector->display_info.bpc;
4664 }
4665 }
4666
4667 /*
4668 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4669 * through, clamp it down. (Note: >12bpc will be caught below.)
4670 */
4671 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4672 if (display_bpc > 8 && display_bpc < 12) {
4673 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4674 display_bpc = 12;
4675 } else {
4676 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4677 display_bpc = 8;
4678 }
4679 }
4680 }
4681
4682 /*
4683 * We could just drive the pipe at the highest bpc all the time and
4684 * enable dithering as needed, but that costs bandwidth. So choose
4685 * the minimum value that expresses the full color range of the fb but
4686 * also stays within the max display bpc discovered above.
4687 */
4688
4689 switch (crtc->fb->depth) {
4690 case 8:
4691 bpc = 8; /* since we go through a colormap */
4692 break;
4693 case 15:
4694 case 16:
4695 bpc = 6; /* min is 18bpp */
4696 break;
4697 case 24:
4698 bpc = 8;
4699 break;
4700 case 30:
4701 bpc = 10;
4702 break;
4703 case 48:
4704 bpc = 12;
4705 break;
4706 default:
4707 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4708 bpc = min((unsigned int)8, display_bpc);
4709 break;
4710 }
4711
4712 display_bpc = min(display_bpc, bpc);
4713
4714 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4715 bpc, display_bpc);
4716
4717 *pipe_bpp = display_bpc * 3;
4718
4719 return display_bpc != bpc;
4720 }
4721
4722 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4723 struct drm_display_mode *mode,
4724 struct drm_display_mode *adjusted_mode,
4725 int x, int y,
4726 struct drm_framebuffer *old_fb)
4727 {
4728 struct drm_device *dev = crtc->dev;
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4731 int pipe = intel_crtc->pipe;
4732 int plane = intel_crtc->plane;
4733 int refclk, num_connectors = 0;
4734 intel_clock_t clock, reduced_clock;
4735 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4736 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4737 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4738 struct drm_mode_config *mode_config = &dev->mode_config;
4739 struct intel_encoder *encoder;
4740 const intel_limit_t *limit;
4741 int ret;
4742 u32 temp;
4743 u32 lvds_sync = 0;
4744
4745 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4746 if (encoder->base.crtc != crtc)
4747 continue;
4748
4749 switch (encoder->type) {
4750 case INTEL_OUTPUT_LVDS:
4751 is_lvds = true;
4752 break;
4753 case INTEL_OUTPUT_SDVO:
4754 case INTEL_OUTPUT_HDMI:
4755 is_sdvo = true;
4756 if (encoder->needs_tv_clock)
4757 is_tv = true;
4758 break;
4759 case INTEL_OUTPUT_DVO:
4760 is_dvo = true;
4761 break;
4762 case INTEL_OUTPUT_TVOUT:
4763 is_tv = true;
4764 break;
4765 case INTEL_OUTPUT_ANALOG:
4766 is_crt = true;
4767 break;
4768 case INTEL_OUTPUT_DISPLAYPORT:
4769 is_dp = true;
4770 break;
4771 }
4772
4773 num_connectors++;
4774 }
4775
4776 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4777 refclk = dev_priv->lvds_ssc_freq * 1000;
4778 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4779 refclk / 1000);
4780 } else if (!IS_GEN2(dev)) {
4781 refclk = 96000;
4782 } else {
4783 refclk = 48000;
4784 }
4785
4786 /*
4787 * Returns a set of divisors for the desired target clock with the given
4788 * refclk, or FALSE. The returned values represent the clock equation:
4789 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4790 */
4791 limit = intel_limit(crtc, refclk);
4792 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4793 if (!ok) {
4794 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4795 return -EINVAL;
4796 }
4797
4798 /* Ensure that the cursor is valid for the new mode before changing... */
4799 intel_crtc_update_cursor(crtc, true);
4800
4801 if (is_lvds && dev_priv->lvds_downclock_avail) {
4802 has_reduced_clock = limit->find_pll(limit, crtc,
4803 dev_priv->lvds_downclock,
4804 refclk,
4805 &reduced_clock);
4806 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4807 /*
4808 * If the different P is found, it means that we can't
4809 * switch the display clock by using the FP0/FP1.
4810 * In such case we will disable the LVDS downclock
4811 * feature.
4812 */
4813 DRM_DEBUG_KMS("Different P is found for "
4814 "LVDS clock/downclock\n");
4815 has_reduced_clock = 0;
4816 }
4817 }
4818 /* SDVO TV has fixed PLL values depend on its clock range,
4819 this mirrors vbios setting. */
4820 if (is_sdvo && is_tv) {
4821 if (adjusted_mode->clock >= 100000
4822 && adjusted_mode->clock < 140500) {
4823 clock.p1 = 2;
4824 clock.p2 = 10;
4825 clock.n = 3;
4826 clock.m1 = 16;
4827 clock.m2 = 8;
4828 } else if (adjusted_mode->clock >= 140500
4829 && adjusted_mode->clock <= 200000) {
4830 clock.p1 = 1;
4831 clock.p2 = 10;
4832 clock.n = 6;
4833 clock.m1 = 12;
4834 clock.m2 = 8;
4835 }
4836 }
4837
4838 if (IS_PINEVIEW(dev)) {
4839 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4840 if (has_reduced_clock)
4841 fp2 = (1 << reduced_clock.n) << 16 |
4842 reduced_clock.m1 << 8 | reduced_clock.m2;
4843 } else {
4844 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4845 if (has_reduced_clock)
4846 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4847 reduced_clock.m2;
4848 }
4849
4850 dpll = DPLL_VGA_MODE_DIS;
4851
4852 if (!IS_GEN2(dev)) {
4853 if (is_lvds)
4854 dpll |= DPLLB_MODE_LVDS;
4855 else
4856 dpll |= DPLLB_MODE_DAC_SERIAL;
4857 if (is_sdvo) {
4858 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4859 if (pixel_multiplier > 1) {
4860 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4861 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4862 }
4863 dpll |= DPLL_DVO_HIGH_SPEED;
4864 }
4865 if (is_dp)
4866 dpll |= DPLL_DVO_HIGH_SPEED;
4867
4868 /* compute bitmask from p1 value */
4869 if (IS_PINEVIEW(dev))
4870 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4871 else {
4872 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4873 if (IS_G4X(dev) && has_reduced_clock)
4874 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4875 }
4876 switch (clock.p2) {
4877 case 5:
4878 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4879 break;
4880 case 7:
4881 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4882 break;
4883 case 10:
4884 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4885 break;
4886 case 14:
4887 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4888 break;
4889 }
4890 if (INTEL_INFO(dev)->gen >= 4)
4891 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4892 } else {
4893 if (is_lvds) {
4894 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4895 } else {
4896 if (clock.p1 == 2)
4897 dpll |= PLL_P1_DIVIDE_BY_TWO;
4898 else
4899 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4900 if (clock.p2 == 4)
4901 dpll |= PLL_P2_DIVIDE_BY_4;
4902 }
4903 }
4904
4905 if (is_sdvo && is_tv)
4906 dpll |= PLL_REF_INPUT_TVCLKINBC;
4907 else if (is_tv)
4908 /* XXX: just matching BIOS for now */
4909 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4910 dpll |= 3;
4911 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4912 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4913 else
4914 dpll |= PLL_REF_INPUT_DREFCLK;
4915
4916 /* setup pipeconf */
4917 pipeconf = I915_READ(PIPECONF(pipe));
4918
4919 /* Set up the display plane register */
4920 dspcntr = DISPPLANE_GAMMA_ENABLE;
4921
4922 /* Ironlake's plane is forced to pipe, bit 24 is to
4923 enable color space conversion */
4924 if (pipe == 0)
4925 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4926 else
4927 dspcntr |= DISPPLANE_SEL_PIPE_B;
4928
4929 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4930 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4931 * core speed.
4932 *
4933 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4934 * pipe == 0 check?
4935 */
4936 if (mode->clock >
4937 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4938 pipeconf |= PIPECONF_DOUBLE_WIDE;
4939 else
4940 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4941 }
4942
4943 dpll |= DPLL_VCO_ENABLE;
4944
4945 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4946 drm_mode_debug_printmodeline(mode);
4947
4948 I915_WRITE(FP0(pipe), fp);
4949 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4950
4951 POSTING_READ(DPLL(pipe));
4952 udelay(150);
4953
4954 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4955 * This is an exception to the general rule that mode_set doesn't turn
4956 * things on.
4957 */
4958 if (is_lvds) {
4959 temp = I915_READ(LVDS);
4960 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4961 if (pipe == 1) {
4962 temp |= LVDS_PIPEB_SELECT;
4963 } else {
4964 temp &= ~LVDS_PIPEB_SELECT;
4965 }
4966 /* set the corresponsding LVDS_BORDER bit */
4967 temp |= dev_priv->lvds_border_bits;
4968 /* Set the B0-B3 data pairs corresponding to whether we're going to
4969 * set the DPLLs for dual-channel mode or not.
4970 */
4971 if (clock.p2 == 7)
4972 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4973 else
4974 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4975
4976 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4977 * appropriately here, but we need to look more thoroughly into how
4978 * panels behave in the two modes.
4979 */
4980 /* set the dithering flag on LVDS as needed */
4981 if (INTEL_INFO(dev)->gen >= 4) {
4982 if (dev_priv->lvds_dither)
4983 temp |= LVDS_ENABLE_DITHER;
4984 else
4985 temp &= ~LVDS_ENABLE_DITHER;
4986 }
4987 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4988 lvds_sync |= LVDS_HSYNC_POLARITY;
4989 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4990 lvds_sync |= LVDS_VSYNC_POLARITY;
4991 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4992 != lvds_sync) {
4993 char flags[2] = "-+";
4994 DRM_INFO("Changing LVDS panel from "
4995 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4996 flags[!(temp & LVDS_HSYNC_POLARITY)],
4997 flags[!(temp & LVDS_VSYNC_POLARITY)],
4998 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4999 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5000 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5001 temp |= lvds_sync;
5002 }
5003 I915_WRITE(LVDS, temp);
5004 }
5005
5006 if (is_dp) {
5007 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5008 }
5009
5010 I915_WRITE(DPLL(pipe), dpll);
5011
5012 /* Wait for the clocks to stabilize. */
5013 POSTING_READ(DPLL(pipe));
5014 udelay(150);
5015
5016 if (INTEL_INFO(dev)->gen >= 4) {
5017 temp = 0;
5018 if (is_sdvo) {
5019 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5020 if (temp > 1)
5021 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5022 else
5023 temp = 0;
5024 }
5025 I915_WRITE(DPLL_MD(pipe), temp);
5026 } else {
5027 /* The pixel multiplier can only be updated once the
5028 * DPLL is enabled and the clocks are stable.
5029 *
5030 * So write it again.
5031 */
5032 I915_WRITE(DPLL(pipe), dpll);
5033 }
5034
5035 intel_crtc->lowfreq_avail = false;
5036 if (is_lvds && has_reduced_clock && i915_powersave) {
5037 I915_WRITE(FP1(pipe), fp2);
5038 intel_crtc->lowfreq_avail = true;
5039 if (HAS_PIPE_CXSR(dev)) {
5040 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5041 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5042 }
5043 } else {
5044 I915_WRITE(FP1(pipe), fp);
5045 if (HAS_PIPE_CXSR(dev)) {
5046 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5047 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5048 }
5049 }
5050
5051 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5052 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5053 /* the chip adds 2 halflines automatically */
5054 adjusted_mode->crtc_vdisplay -= 1;
5055 adjusted_mode->crtc_vtotal -= 1;
5056 adjusted_mode->crtc_vblank_start -= 1;
5057 adjusted_mode->crtc_vblank_end -= 1;
5058 adjusted_mode->crtc_vsync_end -= 1;
5059 adjusted_mode->crtc_vsync_start -= 1;
5060 } else
5061 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5062
5063 I915_WRITE(HTOTAL(pipe),
5064 (adjusted_mode->crtc_hdisplay - 1) |
5065 ((adjusted_mode->crtc_htotal - 1) << 16));
5066 I915_WRITE(HBLANK(pipe),
5067 (adjusted_mode->crtc_hblank_start - 1) |
5068 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5069 I915_WRITE(HSYNC(pipe),
5070 (adjusted_mode->crtc_hsync_start - 1) |
5071 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5072
5073 I915_WRITE(VTOTAL(pipe),
5074 (adjusted_mode->crtc_vdisplay - 1) |
5075 ((adjusted_mode->crtc_vtotal - 1) << 16));
5076 I915_WRITE(VBLANK(pipe),
5077 (adjusted_mode->crtc_vblank_start - 1) |
5078 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5079 I915_WRITE(VSYNC(pipe),
5080 (adjusted_mode->crtc_vsync_start - 1) |
5081 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5082
5083 /* pipesrc and dspsize control the size that is scaled from,
5084 * which should always be the user's requested size.
5085 */
5086 I915_WRITE(DSPSIZE(plane),
5087 ((mode->vdisplay - 1) << 16) |
5088 (mode->hdisplay - 1));
5089 I915_WRITE(DSPPOS(plane), 0);
5090 I915_WRITE(PIPESRC(pipe),
5091 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5092
5093 I915_WRITE(PIPECONF(pipe), pipeconf);
5094 POSTING_READ(PIPECONF(pipe));
5095 intel_enable_pipe(dev_priv, pipe, false);
5096
5097 intel_wait_for_vblank(dev, pipe);
5098
5099 I915_WRITE(DSPCNTR(plane), dspcntr);
5100 POSTING_READ(DSPCNTR(plane));
5101 intel_enable_plane(dev_priv, plane, pipe);
5102
5103 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5104
5105 intel_update_watermarks(dev);
5106
5107 return ret;
5108 }
5109
5110 static void ironlake_update_pch_refclk(struct drm_device *dev)
5111 {
5112 struct drm_i915_private *dev_priv = dev->dev_private;
5113 struct drm_mode_config *mode_config = &dev->mode_config;
5114 struct drm_crtc *crtc;
5115 struct intel_encoder *encoder;
5116 struct intel_encoder *has_edp_encoder = NULL;
5117 u32 temp;
5118 bool has_lvds = false;
5119
5120 /* We need to take the global config into account */
5121 list_for_each_entry(crtc, &mode_config->crtc_list, head) {
5122 if (!crtc->enabled)
5123 continue;
5124
5125 list_for_each_entry(encoder, &mode_config->encoder_list,
5126 base.head) {
5127 if (encoder->base.crtc != crtc)
5128 continue;
5129
5130 switch (encoder->type) {
5131 case INTEL_OUTPUT_LVDS:
5132 has_lvds = true;
5133 case INTEL_OUTPUT_EDP:
5134 has_edp_encoder = encoder;
5135 break;
5136 }
5137 }
5138 }
5139
5140 /* Ironlake: try to setup display ref clock before DPLL
5141 * enabling. This is only under driver's control after
5142 * PCH B stepping, previous chipset stepping should be
5143 * ignoring this setting.
5144 */
5145 temp = I915_READ(PCH_DREF_CONTROL);
5146 /* Always enable nonspread source */
5147 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5148 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5149 temp &= ~DREF_SSC_SOURCE_MASK;
5150 temp |= DREF_SSC_SOURCE_ENABLE;
5151 I915_WRITE(PCH_DREF_CONTROL, temp);
5152
5153 POSTING_READ(PCH_DREF_CONTROL);
5154 udelay(200);
5155
5156 if (has_edp_encoder) {
5157 if (intel_panel_use_ssc(dev_priv)) {
5158 temp |= DREF_SSC1_ENABLE;
5159 I915_WRITE(PCH_DREF_CONTROL, temp);
5160
5161 POSTING_READ(PCH_DREF_CONTROL);
5162 udelay(200);
5163 }
5164 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5165
5166 /* Enable CPU source on CPU attached eDP */
5167 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5168 if (intel_panel_use_ssc(dev_priv))
5169 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5170 else
5171 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5172 } else {
5173 /* Enable SSC on PCH eDP if needed */
5174 if (intel_panel_use_ssc(dev_priv)) {
5175 DRM_ERROR("enabling SSC on PCH\n");
5176 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5177 }
5178 }
5179 I915_WRITE(PCH_DREF_CONTROL, temp);
5180 POSTING_READ(PCH_DREF_CONTROL);
5181 udelay(200);
5182 }
5183 }
5184
5185 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5186 struct drm_display_mode *mode,
5187 struct drm_display_mode *adjusted_mode,
5188 int x, int y,
5189 struct drm_framebuffer *old_fb)
5190 {
5191 struct drm_device *dev = crtc->dev;
5192 struct drm_i915_private *dev_priv = dev->dev_private;
5193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194 int pipe = intel_crtc->pipe;
5195 int plane = intel_crtc->plane;
5196 int refclk, num_connectors = 0;
5197 intel_clock_t clock, reduced_clock;
5198 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5199 bool ok, has_reduced_clock = false, is_sdvo = false;
5200 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5201 struct intel_encoder *has_edp_encoder = NULL;
5202 struct drm_mode_config *mode_config = &dev->mode_config;
5203 struct intel_encoder *encoder;
5204 const intel_limit_t *limit;
5205 int ret;
5206 struct fdi_m_n m_n = {0};
5207 u32 temp;
5208 u32 lvds_sync = 0;
5209 int target_clock, pixel_multiplier, lane, link_bw, factor;
5210 unsigned int pipe_bpp;
5211 bool dither;
5212
5213 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5214 if (encoder->base.crtc != crtc)
5215 continue;
5216
5217 switch (encoder->type) {
5218 case INTEL_OUTPUT_LVDS:
5219 is_lvds = true;
5220 break;
5221 case INTEL_OUTPUT_SDVO:
5222 case INTEL_OUTPUT_HDMI:
5223 is_sdvo = true;
5224 if (encoder->needs_tv_clock)
5225 is_tv = true;
5226 break;
5227 case INTEL_OUTPUT_TVOUT:
5228 is_tv = true;
5229 break;
5230 case INTEL_OUTPUT_ANALOG:
5231 is_crt = true;
5232 break;
5233 case INTEL_OUTPUT_DISPLAYPORT:
5234 is_dp = true;
5235 break;
5236 case INTEL_OUTPUT_EDP:
5237 has_edp_encoder = encoder;
5238 break;
5239 }
5240
5241 num_connectors++;
5242 }
5243
5244 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5245 refclk = dev_priv->lvds_ssc_freq * 1000;
5246 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5247 refclk / 1000);
5248 } else {
5249 refclk = 96000;
5250 if (!has_edp_encoder ||
5251 intel_encoder_is_pch_edp(&has_edp_encoder->base))
5252 refclk = 120000; /* 120Mhz refclk */
5253 }
5254
5255 /*
5256 * Returns a set of divisors for the desired target clock with the given
5257 * refclk, or FALSE. The returned values represent the clock equation:
5258 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5259 */
5260 limit = intel_limit(crtc, refclk);
5261 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5262 if (!ok) {
5263 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5264 return -EINVAL;
5265 }
5266
5267 /* Ensure that the cursor is valid for the new mode before changing... */
5268 intel_crtc_update_cursor(crtc, true);
5269
5270 if (is_lvds && dev_priv->lvds_downclock_avail) {
5271 has_reduced_clock = limit->find_pll(limit, crtc,
5272 dev_priv->lvds_downclock,
5273 refclk,
5274 &reduced_clock);
5275 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5276 /*
5277 * If the different P is found, it means that we can't
5278 * switch the display clock by using the FP0/FP1.
5279 * In such case we will disable the LVDS downclock
5280 * feature.
5281 */
5282 DRM_DEBUG_KMS("Different P is found for "
5283 "LVDS clock/downclock\n");
5284 has_reduced_clock = 0;
5285 }
5286 }
5287 /* SDVO TV has fixed PLL values depend on its clock range,
5288 this mirrors vbios setting. */
5289 if (is_sdvo && is_tv) {
5290 if (adjusted_mode->clock >= 100000
5291 && adjusted_mode->clock < 140500) {
5292 clock.p1 = 2;
5293 clock.p2 = 10;
5294 clock.n = 3;
5295 clock.m1 = 16;
5296 clock.m2 = 8;
5297 } else if (adjusted_mode->clock >= 140500
5298 && adjusted_mode->clock <= 200000) {
5299 clock.p1 = 1;
5300 clock.p2 = 10;
5301 clock.n = 6;
5302 clock.m1 = 12;
5303 clock.m2 = 8;
5304 }
5305 }
5306
5307 /* FDI link */
5308 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5309 lane = 0;
5310 /* CPU eDP doesn't require FDI link, so just set DP M/N
5311 according to current link config */
5312 if (has_edp_encoder &&
5313 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5314 target_clock = mode->clock;
5315 intel_edp_link_config(has_edp_encoder,
5316 &lane, &link_bw);
5317 } else {
5318 /* [e]DP over FDI requires target mode clock
5319 instead of link clock */
5320 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5321 target_clock = mode->clock;
5322 else
5323 target_clock = adjusted_mode->clock;
5324
5325 /* FDI is a binary signal running at ~2.7GHz, encoding
5326 * each output octet as 10 bits. The actual frequency
5327 * is stored as a divider into a 100MHz clock, and the
5328 * mode pixel clock is stored in units of 1KHz.
5329 * Hence the bw of each lane in terms of the mode signal
5330 * is:
5331 */
5332 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5333 }
5334
5335 /* determine panel color depth */
5336 temp = I915_READ(PIPECONF(pipe));
5337 temp &= ~PIPE_BPC_MASK;
5338 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5339 switch (pipe_bpp) {
5340 case 18:
5341 temp |= PIPE_6BPC;
5342 break;
5343 case 24:
5344 temp |= PIPE_8BPC;
5345 break;
5346 case 30:
5347 temp |= PIPE_10BPC;
5348 break;
5349 case 36:
5350 temp |= PIPE_12BPC;
5351 break;
5352 default:
5353 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5354 pipe_bpp);
5355 temp |= PIPE_8BPC;
5356 pipe_bpp = 24;
5357 break;
5358 }
5359
5360 intel_crtc->bpp = pipe_bpp;
5361 I915_WRITE(PIPECONF(pipe), temp);
5362
5363 if (!lane) {
5364 /*
5365 * Account for spread spectrum to avoid
5366 * oversubscribing the link. Max center spread
5367 * is 2.5%; use 5% for safety's sake.
5368 */
5369 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5370 lane = bps / (link_bw * 8) + 1;
5371 }
5372
5373 intel_crtc->fdi_lanes = lane;
5374
5375 if (pixel_multiplier > 1)
5376 link_bw *= pixel_multiplier;
5377 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5378 &m_n);
5379
5380 ironlake_update_pch_refclk(dev);
5381
5382 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5383 if (has_reduced_clock)
5384 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5385 reduced_clock.m2;
5386
5387 /* Enable autotuning of the PLL clock (if permissible) */
5388 factor = 21;
5389 if (is_lvds) {
5390 if ((intel_panel_use_ssc(dev_priv) &&
5391 dev_priv->lvds_ssc_freq == 100) ||
5392 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5393 factor = 25;
5394 } else if (is_sdvo && is_tv)
5395 factor = 20;
5396
5397 if (clock.m < factor * clock.n)
5398 fp |= FP_CB_TUNE;
5399
5400 dpll = 0;
5401
5402 if (is_lvds)
5403 dpll |= DPLLB_MODE_LVDS;
5404 else
5405 dpll |= DPLLB_MODE_DAC_SERIAL;
5406 if (is_sdvo) {
5407 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5408 if (pixel_multiplier > 1) {
5409 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5410 }
5411 dpll |= DPLL_DVO_HIGH_SPEED;
5412 }
5413 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5414 dpll |= DPLL_DVO_HIGH_SPEED;
5415
5416 /* compute bitmask from p1 value */
5417 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5418 /* also FPA1 */
5419 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5420
5421 switch (clock.p2) {
5422 case 5:
5423 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5424 break;
5425 case 7:
5426 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5427 break;
5428 case 10:
5429 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5430 break;
5431 case 14:
5432 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5433 break;
5434 }
5435
5436 if (is_sdvo && is_tv)
5437 dpll |= PLL_REF_INPUT_TVCLKINBC;
5438 else if (is_tv)
5439 /* XXX: just matching BIOS for now */
5440 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5441 dpll |= 3;
5442 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5443 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5444 else
5445 dpll |= PLL_REF_INPUT_DREFCLK;
5446
5447 /* setup pipeconf */
5448 pipeconf = I915_READ(PIPECONF(pipe));
5449
5450 /* Set up the display plane register */
5451 dspcntr = DISPPLANE_GAMMA_ENABLE;
5452
5453 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5454 drm_mode_debug_printmodeline(mode);
5455
5456 /* PCH eDP needs FDI, but CPU eDP does not */
5457 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5458 I915_WRITE(PCH_FP0(pipe), fp);
5459 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5460
5461 POSTING_READ(PCH_DPLL(pipe));
5462 udelay(150);
5463 }
5464
5465 /* enable transcoder DPLL */
5466 if (HAS_PCH_CPT(dev)) {
5467 temp = I915_READ(PCH_DPLL_SEL);
5468 switch (pipe) {
5469 case 0:
5470 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5471 break;
5472 case 1:
5473 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5474 break;
5475 case 2:
5476 /* FIXME: manage transcoder PLLs? */
5477 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5478 break;
5479 default:
5480 BUG();
5481 }
5482 I915_WRITE(PCH_DPLL_SEL, temp);
5483
5484 POSTING_READ(PCH_DPLL_SEL);
5485 udelay(150);
5486 }
5487
5488 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5489 * This is an exception to the general rule that mode_set doesn't turn
5490 * things on.
5491 */
5492 if (is_lvds) {
5493 temp = I915_READ(PCH_LVDS);
5494 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5495 if (pipe == 1) {
5496 if (HAS_PCH_CPT(dev))
5497 temp |= PORT_TRANS_B_SEL_CPT;
5498 else
5499 temp |= LVDS_PIPEB_SELECT;
5500 } else {
5501 if (HAS_PCH_CPT(dev))
5502 temp &= ~PORT_TRANS_SEL_MASK;
5503 else
5504 temp &= ~LVDS_PIPEB_SELECT;
5505 }
5506 /* set the corresponsding LVDS_BORDER bit */
5507 temp |= dev_priv->lvds_border_bits;
5508 /* Set the B0-B3 data pairs corresponding to whether we're going to
5509 * set the DPLLs for dual-channel mode or not.
5510 */
5511 if (clock.p2 == 7)
5512 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5513 else
5514 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5515
5516 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5517 * appropriately here, but we need to look more thoroughly into how
5518 * panels behave in the two modes.
5519 */
5520 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5521 lvds_sync |= LVDS_HSYNC_POLARITY;
5522 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5523 lvds_sync |= LVDS_VSYNC_POLARITY;
5524 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5525 != lvds_sync) {
5526 char flags[2] = "-+";
5527 DRM_INFO("Changing LVDS panel from "
5528 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5529 flags[!(temp & LVDS_HSYNC_POLARITY)],
5530 flags[!(temp & LVDS_VSYNC_POLARITY)],
5531 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5532 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5533 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5534 temp |= lvds_sync;
5535 }
5536 I915_WRITE(PCH_LVDS, temp);
5537 }
5538
5539 pipeconf &= ~PIPECONF_DITHER_EN;
5540 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5541 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5542 pipeconf |= PIPECONF_DITHER_EN;
5543 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5544 }
5545 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5546 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5547 } else {
5548 /* For non-DP output, clear any trans DP clock recovery setting.*/
5549 I915_WRITE(TRANSDATA_M1(pipe), 0);
5550 I915_WRITE(TRANSDATA_N1(pipe), 0);
5551 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5552 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5553 }
5554
5555 if (!has_edp_encoder ||
5556 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5557 I915_WRITE(PCH_DPLL(pipe), dpll);
5558
5559 /* Wait for the clocks to stabilize. */
5560 POSTING_READ(PCH_DPLL(pipe));
5561 udelay(150);
5562
5563 /* The pixel multiplier can only be updated once the
5564 * DPLL is enabled and the clocks are stable.
5565 *
5566 * So write it again.
5567 */
5568 I915_WRITE(PCH_DPLL(pipe), dpll);
5569 }
5570
5571 intel_crtc->lowfreq_avail = false;
5572 if (is_lvds && has_reduced_clock && i915_powersave) {
5573 I915_WRITE(PCH_FP1(pipe), fp2);
5574 intel_crtc->lowfreq_avail = true;
5575 if (HAS_PIPE_CXSR(dev)) {
5576 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5577 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5578 }
5579 } else {
5580 I915_WRITE(PCH_FP1(pipe), fp);
5581 if (HAS_PIPE_CXSR(dev)) {
5582 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5583 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5584 }
5585 }
5586
5587 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5588 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5589 /* the chip adds 2 halflines automatically */
5590 adjusted_mode->crtc_vdisplay -= 1;
5591 adjusted_mode->crtc_vtotal -= 1;
5592 adjusted_mode->crtc_vblank_start -= 1;
5593 adjusted_mode->crtc_vblank_end -= 1;
5594 adjusted_mode->crtc_vsync_end -= 1;
5595 adjusted_mode->crtc_vsync_start -= 1;
5596 } else
5597 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5598
5599 I915_WRITE(HTOTAL(pipe),
5600 (adjusted_mode->crtc_hdisplay - 1) |
5601 ((adjusted_mode->crtc_htotal - 1) << 16));
5602 I915_WRITE(HBLANK(pipe),
5603 (adjusted_mode->crtc_hblank_start - 1) |
5604 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5605 I915_WRITE(HSYNC(pipe),
5606 (adjusted_mode->crtc_hsync_start - 1) |
5607 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5608
5609 I915_WRITE(VTOTAL(pipe),
5610 (adjusted_mode->crtc_vdisplay - 1) |
5611 ((adjusted_mode->crtc_vtotal - 1) << 16));
5612 I915_WRITE(VBLANK(pipe),
5613 (adjusted_mode->crtc_vblank_start - 1) |
5614 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5615 I915_WRITE(VSYNC(pipe),
5616 (adjusted_mode->crtc_vsync_start - 1) |
5617 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5618
5619 /* pipesrc controls the size that is scaled from, which should
5620 * always be the user's requested size.
5621 */
5622 I915_WRITE(PIPESRC(pipe),
5623 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5624
5625 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5626 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5627 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5628 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5629
5630 if (has_edp_encoder &&
5631 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5632 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5633 }
5634
5635 I915_WRITE(PIPECONF(pipe), pipeconf);
5636 POSTING_READ(PIPECONF(pipe));
5637
5638 intel_wait_for_vblank(dev, pipe);
5639
5640 if (IS_GEN5(dev)) {
5641 /* enable address swizzle for tiling buffer */
5642 temp = I915_READ(DISP_ARB_CTL);
5643 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5644 }
5645
5646 I915_WRITE(DSPCNTR(plane), dspcntr);
5647 POSTING_READ(DSPCNTR(plane));
5648
5649 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5650
5651 intel_update_watermarks(dev);
5652
5653 return ret;
5654 }
5655
5656 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5657 struct drm_display_mode *mode,
5658 struct drm_display_mode *adjusted_mode,
5659 int x, int y,
5660 struct drm_framebuffer *old_fb)
5661 {
5662 struct drm_device *dev = crtc->dev;
5663 struct drm_i915_private *dev_priv = dev->dev_private;
5664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5665 int pipe = intel_crtc->pipe;
5666 int ret;
5667
5668 drm_vblank_pre_modeset(dev, pipe);
5669
5670 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5671 x, y, old_fb);
5672
5673 drm_vblank_post_modeset(dev, pipe);
5674
5675 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5676
5677 return ret;
5678 }
5679
5680 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5681 void intel_crtc_load_lut(struct drm_crtc *crtc)
5682 {
5683 struct drm_device *dev = crtc->dev;
5684 struct drm_i915_private *dev_priv = dev->dev_private;
5685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5686 int palreg = PALETTE(intel_crtc->pipe);
5687 int i;
5688
5689 /* The clocks have to be on to load the palette. */
5690 if (!crtc->enabled)
5691 return;
5692
5693 /* use legacy palette for Ironlake */
5694 if (HAS_PCH_SPLIT(dev))
5695 palreg = LGC_PALETTE(intel_crtc->pipe);
5696
5697 for (i = 0; i < 256; i++) {
5698 I915_WRITE(palreg + 4 * i,
5699 (intel_crtc->lut_r[i] << 16) |
5700 (intel_crtc->lut_g[i] << 8) |
5701 intel_crtc->lut_b[i]);
5702 }
5703 }
5704
5705 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5706 {
5707 struct drm_device *dev = crtc->dev;
5708 struct drm_i915_private *dev_priv = dev->dev_private;
5709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710 bool visible = base != 0;
5711 u32 cntl;
5712
5713 if (intel_crtc->cursor_visible == visible)
5714 return;
5715
5716 cntl = I915_READ(_CURACNTR);
5717 if (visible) {
5718 /* On these chipsets we can only modify the base whilst
5719 * the cursor is disabled.
5720 */
5721 I915_WRITE(_CURABASE, base);
5722
5723 cntl &= ~(CURSOR_FORMAT_MASK);
5724 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5725 cntl |= CURSOR_ENABLE |
5726 CURSOR_GAMMA_ENABLE |
5727 CURSOR_FORMAT_ARGB;
5728 } else
5729 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5730 I915_WRITE(_CURACNTR, cntl);
5731
5732 intel_crtc->cursor_visible = visible;
5733 }
5734
5735 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5736 {
5737 struct drm_device *dev = crtc->dev;
5738 struct drm_i915_private *dev_priv = dev->dev_private;
5739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5740 int pipe = intel_crtc->pipe;
5741 bool visible = base != 0;
5742
5743 if (intel_crtc->cursor_visible != visible) {
5744 uint32_t cntl = I915_READ(CURCNTR(pipe));
5745 if (base) {
5746 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5747 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5748 cntl |= pipe << 28; /* Connect to correct pipe */
5749 } else {
5750 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5751 cntl |= CURSOR_MODE_DISABLE;
5752 }
5753 I915_WRITE(CURCNTR(pipe), cntl);
5754
5755 intel_crtc->cursor_visible = visible;
5756 }
5757 /* and commit changes on next vblank */
5758 I915_WRITE(CURBASE(pipe), base);
5759 }
5760
5761 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5762 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5763 bool on)
5764 {
5765 struct drm_device *dev = crtc->dev;
5766 struct drm_i915_private *dev_priv = dev->dev_private;
5767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5768 int pipe = intel_crtc->pipe;
5769 int x = intel_crtc->cursor_x;
5770 int y = intel_crtc->cursor_y;
5771 u32 base, pos;
5772 bool visible;
5773
5774 pos = 0;
5775
5776 if (on && crtc->enabled && crtc->fb) {
5777 base = intel_crtc->cursor_addr;
5778 if (x > (int) crtc->fb->width)
5779 base = 0;
5780
5781 if (y > (int) crtc->fb->height)
5782 base = 0;
5783 } else
5784 base = 0;
5785
5786 if (x < 0) {
5787 if (x + intel_crtc->cursor_width < 0)
5788 base = 0;
5789
5790 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5791 x = -x;
5792 }
5793 pos |= x << CURSOR_X_SHIFT;
5794
5795 if (y < 0) {
5796 if (y + intel_crtc->cursor_height < 0)
5797 base = 0;
5798
5799 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5800 y = -y;
5801 }
5802 pos |= y << CURSOR_Y_SHIFT;
5803
5804 visible = base != 0;
5805 if (!visible && !intel_crtc->cursor_visible)
5806 return;
5807
5808 I915_WRITE(CURPOS(pipe), pos);
5809 if (IS_845G(dev) || IS_I865G(dev))
5810 i845_update_cursor(crtc, base);
5811 else
5812 i9xx_update_cursor(crtc, base);
5813
5814 if (visible)
5815 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5816 }
5817
5818 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5819 struct drm_file *file,
5820 uint32_t handle,
5821 uint32_t width, uint32_t height)
5822 {
5823 struct drm_device *dev = crtc->dev;
5824 struct drm_i915_private *dev_priv = dev->dev_private;
5825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826 struct drm_i915_gem_object *obj;
5827 uint32_t addr;
5828 int ret;
5829
5830 DRM_DEBUG_KMS("\n");
5831
5832 /* if we want to turn off the cursor ignore width and height */
5833 if (!handle) {
5834 DRM_DEBUG_KMS("cursor off\n");
5835 addr = 0;
5836 obj = NULL;
5837 mutex_lock(&dev->struct_mutex);
5838 goto finish;
5839 }
5840
5841 /* Currently we only support 64x64 cursors */
5842 if (width != 64 || height != 64) {
5843 DRM_ERROR("we currently only support 64x64 cursors\n");
5844 return -EINVAL;
5845 }
5846
5847 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5848 if (&obj->base == NULL)
5849 return -ENOENT;
5850
5851 if (obj->base.size < width * height * 4) {
5852 DRM_ERROR("buffer is to small\n");
5853 ret = -ENOMEM;
5854 goto fail;
5855 }
5856
5857 /* we only need to pin inside GTT if cursor is non-phy */
5858 mutex_lock(&dev->struct_mutex);
5859 if (!dev_priv->info->cursor_needs_physical) {
5860 if (obj->tiling_mode) {
5861 DRM_ERROR("cursor cannot be tiled\n");
5862 ret = -EINVAL;
5863 goto fail_locked;
5864 }
5865
5866 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5867 if (ret) {
5868 DRM_ERROR("failed to move cursor bo into the GTT\n");
5869 goto fail_locked;
5870 }
5871
5872 ret = i915_gem_object_put_fence(obj);
5873 if (ret) {
5874 DRM_ERROR("failed to release fence for cursor");
5875 goto fail_unpin;
5876 }
5877
5878 addr = obj->gtt_offset;
5879 } else {
5880 int align = IS_I830(dev) ? 16 * 1024 : 256;
5881 ret = i915_gem_attach_phys_object(dev, obj,
5882 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5883 align);
5884 if (ret) {
5885 DRM_ERROR("failed to attach phys object\n");
5886 goto fail_locked;
5887 }
5888 addr = obj->phys_obj->handle->busaddr;
5889 }
5890
5891 if (IS_GEN2(dev))
5892 I915_WRITE(CURSIZE, (height << 12) | width);
5893
5894 finish:
5895 if (intel_crtc->cursor_bo) {
5896 if (dev_priv->info->cursor_needs_physical) {
5897 if (intel_crtc->cursor_bo != obj)
5898 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5899 } else
5900 i915_gem_object_unpin(intel_crtc->cursor_bo);
5901 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5902 }
5903
5904 mutex_unlock(&dev->struct_mutex);
5905
5906 intel_crtc->cursor_addr = addr;
5907 intel_crtc->cursor_bo = obj;
5908 intel_crtc->cursor_width = width;
5909 intel_crtc->cursor_height = height;
5910
5911 intel_crtc_update_cursor(crtc, true);
5912
5913 return 0;
5914 fail_unpin:
5915 i915_gem_object_unpin(obj);
5916 fail_locked:
5917 mutex_unlock(&dev->struct_mutex);
5918 fail:
5919 drm_gem_object_unreference_unlocked(&obj->base);
5920 return ret;
5921 }
5922
5923 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5924 {
5925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5926
5927 intel_crtc->cursor_x = x;
5928 intel_crtc->cursor_y = y;
5929
5930 intel_crtc_update_cursor(crtc, true);
5931
5932 return 0;
5933 }
5934
5935 /** Sets the color ramps on behalf of RandR */
5936 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5937 u16 blue, int regno)
5938 {
5939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5940
5941 intel_crtc->lut_r[regno] = red >> 8;
5942 intel_crtc->lut_g[regno] = green >> 8;
5943 intel_crtc->lut_b[regno] = blue >> 8;
5944 }
5945
5946 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5947 u16 *blue, int regno)
5948 {
5949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5950
5951 *red = intel_crtc->lut_r[regno] << 8;
5952 *green = intel_crtc->lut_g[regno] << 8;
5953 *blue = intel_crtc->lut_b[regno] << 8;
5954 }
5955
5956 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5957 u16 *blue, uint32_t start, uint32_t size)
5958 {
5959 int end = (start + size > 256) ? 256 : start + size, i;
5960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5961
5962 for (i = start; i < end; i++) {
5963 intel_crtc->lut_r[i] = red[i] >> 8;
5964 intel_crtc->lut_g[i] = green[i] >> 8;
5965 intel_crtc->lut_b[i] = blue[i] >> 8;
5966 }
5967
5968 intel_crtc_load_lut(crtc);
5969 }
5970
5971 /**
5972 * Get a pipe with a simple mode set on it for doing load-based monitor
5973 * detection.
5974 *
5975 * It will be up to the load-detect code to adjust the pipe as appropriate for
5976 * its requirements. The pipe will be connected to no other encoders.
5977 *
5978 * Currently this code will only succeed if there is a pipe with no encoders
5979 * configured for it. In the future, it could choose to temporarily disable
5980 * some outputs to free up a pipe for its use.
5981 *
5982 * \return crtc, or NULL if no pipes are available.
5983 */
5984
5985 /* VESA 640x480x72Hz mode to set on the pipe */
5986 static struct drm_display_mode load_detect_mode = {
5987 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5988 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5989 };
5990
5991 static struct drm_framebuffer *
5992 intel_framebuffer_create(struct drm_device *dev,
5993 struct drm_mode_fb_cmd *mode_cmd,
5994 struct drm_i915_gem_object *obj)
5995 {
5996 struct intel_framebuffer *intel_fb;
5997 int ret;
5998
5999 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6000 if (!intel_fb) {
6001 drm_gem_object_unreference_unlocked(&obj->base);
6002 return ERR_PTR(-ENOMEM);
6003 }
6004
6005 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6006 if (ret) {
6007 drm_gem_object_unreference_unlocked(&obj->base);
6008 kfree(intel_fb);
6009 return ERR_PTR(ret);
6010 }
6011
6012 return &intel_fb->base;
6013 }
6014
6015 static u32
6016 intel_framebuffer_pitch_for_width(int width, int bpp)
6017 {
6018 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6019 return ALIGN(pitch, 64);
6020 }
6021
6022 static u32
6023 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6024 {
6025 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6026 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6027 }
6028
6029 static struct drm_framebuffer *
6030 intel_framebuffer_create_for_mode(struct drm_device *dev,
6031 struct drm_display_mode *mode,
6032 int depth, int bpp)
6033 {
6034 struct drm_i915_gem_object *obj;
6035 struct drm_mode_fb_cmd mode_cmd;
6036
6037 obj = i915_gem_alloc_object(dev,
6038 intel_framebuffer_size_for_mode(mode, bpp));
6039 if (obj == NULL)
6040 return ERR_PTR(-ENOMEM);
6041
6042 mode_cmd.width = mode->hdisplay;
6043 mode_cmd.height = mode->vdisplay;
6044 mode_cmd.depth = depth;
6045 mode_cmd.bpp = bpp;
6046 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6047
6048 return intel_framebuffer_create(dev, &mode_cmd, obj);
6049 }
6050
6051 static struct drm_framebuffer *
6052 mode_fits_in_fbdev(struct drm_device *dev,
6053 struct drm_display_mode *mode)
6054 {
6055 struct drm_i915_private *dev_priv = dev->dev_private;
6056 struct drm_i915_gem_object *obj;
6057 struct drm_framebuffer *fb;
6058
6059 if (dev_priv->fbdev == NULL)
6060 return NULL;
6061
6062 obj = dev_priv->fbdev->ifb.obj;
6063 if (obj == NULL)
6064 return NULL;
6065
6066 fb = &dev_priv->fbdev->ifb.base;
6067 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6068 fb->bits_per_pixel))
6069 return NULL;
6070
6071 if (obj->base.size < mode->vdisplay * fb->pitch)
6072 return NULL;
6073
6074 return fb;
6075 }
6076
6077 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6078 struct drm_connector *connector,
6079 struct drm_display_mode *mode,
6080 struct intel_load_detect_pipe *old)
6081 {
6082 struct intel_crtc *intel_crtc;
6083 struct drm_crtc *possible_crtc;
6084 struct drm_encoder *encoder = &intel_encoder->base;
6085 struct drm_crtc *crtc = NULL;
6086 struct drm_device *dev = encoder->dev;
6087 struct drm_framebuffer *old_fb;
6088 int i = -1;
6089
6090 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6091 connector->base.id, drm_get_connector_name(connector),
6092 encoder->base.id, drm_get_encoder_name(encoder));
6093
6094 /*
6095 * Algorithm gets a little messy:
6096 *
6097 * - if the connector already has an assigned crtc, use it (but make
6098 * sure it's on first)
6099 *
6100 * - try to find the first unused crtc that can drive this connector,
6101 * and use that if we find one
6102 */
6103
6104 /* See if we already have a CRTC for this connector */
6105 if (encoder->crtc) {
6106 crtc = encoder->crtc;
6107
6108 intel_crtc = to_intel_crtc(crtc);
6109 old->dpms_mode = intel_crtc->dpms_mode;
6110 old->load_detect_temp = false;
6111
6112 /* Make sure the crtc and connector are running */
6113 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6114 struct drm_encoder_helper_funcs *encoder_funcs;
6115 struct drm_crtc_helper_funcs *crtc_funcs;
6116
6117 crtc_funcs = crtc->helper_private;
6118 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6119
6120 encoder_funcs = encoder->helper_private;
6121 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6122 }
6123
6124 return true;
6125 }
6126
6127 /* Find an unused one (if possible) */
6128 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6129 i++;
6130 if (!(encoder->possible_crtcs & (1 << i)))
6131 continue;
6132 if (!possible_crtc->enabled) {
6133 crtc = possible_crtc;
6134 break;
6135 }
6136 }
6137
6138 /*
6139 * If we didn't find an unused CRTC, don't use any.
6140 */
6141 if (!crtc) {
6142 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6143 return false;
6144 }
6145
6146 encoder->crtc = crtc;
6147 connector->encoder = encoder;
6148
6149 intel_crtc = to_intel_crtc(crtc);
6150 old->dpms_mode = intel_crtc->dpms_mode;
6151 old->load_detect_temp = true;
6152 old->release_fb = NULL;
6153
6154 if (!mode)
6155 mode = &load_detect_mode;
6156
6157 old_fb = crtc->fb;
6158
6159 /* We need a framebuffer large enough to accommodate all accesses
6160 * that the plane may generate whilst we perform load detection.
6161 * We can not rely on the fbcon either being present (we get called
6162 * during its initialisation to detect all boot displays, or it may
6163 * not even exist) or that it is large enough to satisfy the
6164 * requested mode.
6165 */
6166 crtc->fb = mode_fits_in_fbdev(dev, mode);
6167 if (crtc->fb == NULL) {
6168 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6169 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6170 old->release_fb = crtc->fb;
6171 } else
6172 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6173 if (IS_ERR(crtc->fb)) {
6174 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6175 crtc->fb = old_fb;
6176 return false;
6177 }
6178
6179 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6180 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6181 if (old->release_fb)
6182 old->release_fb->funcs->destroy(old->release_fb);
6183 crtc->fb = old_fb;
6184 return false;
6185 }
6186
6187 /* let the connector get through one full cycle before testing */
6188 intel_wait_for_vblank(dev, intel_crtc->pipe);
6189
6190 return true;
6191 }
6192
6193 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6194 struct drm_connector *connector,
6195 struct intel_load_detect_pipe *old)
6196 {
6197 struct drm_encoder *encoder = &intel_encoder->base;
6198 struct drm_device *dev = encoder->dev;
6199 struct drm_crtc *crtc = encoder->crtc;
6200 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6201 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6202
6203 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6204 connector->base.id, drm_get_connector_name(connector),
6205 encoder->base.id, drm_get_encoder_name(encoder));
6206
6207 if (old->load_detect_temp) {
6208 connector->encoder = NULL;
6209 drm_helper_disable_unused_functions(dev);
6210
6211 if (old->release_fb)
6212 old->release_fb->funcs->destroy(old->release_fb);
6213
6214 return;
6215 }
6216
6217 /* Switch crtc and encoder back off if necessary */
6218 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6219 encoder_funcs->dpms(encoder, old->dpms_mode);
6220 crtc_funcs->dpms(crtc, old->dpms_mode);
6221 }
6222 }
6223
6224 /* Returns the clock of the currently programmed mode of the given pipe. */
6225 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6226 {
6227 struct drm_i915_private *dev_priv = dev->dev_private;
6228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6229 int pipe = intel_crtc->pipe;
6230 u32 dpll = I915_READ(DPLL(pipe));
6231 u32 fp;
6232 intel_clock_t clock;
6233
6234 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6235 fp = I915_READ(FP0(pipe));
6236 else
6237 fp = I915_READ(FP1(pipe));
6238
6239 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6240 if (IS_PINEVIEW(dev)) {
6241 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6242 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6243 } else {
6244 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6245 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6246 }
6247
6248 if (!IS_GEN2(dev)) {
6249 if (IS_PINEVIEW(dev))
6250 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6251 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6252 else
6253 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6254 DPLL_FPA01_P1_POST_DIV_SHIFT);
6255
6256 switch (dpll & DPLL_MODE_MASK) {
6257 case DPLLB_MODE_DAC_SERIAL:
6258 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6259 5 : 10;
6260 break;
6261 case DPLLB_MODE_LVDS:
6262 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6263 7 : 14;
6264 break;
6265 default:
6266 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6267 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6268 return 0;
6269 }
6270
6271 /* XXX: Handle the 100Mhz refclk */
6272 intel_clock(dev, 96000, &clock);
6273 } else {
6274 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6275
6276 if (is_lvds) {
6277 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6278 DPLL_FPA01_P1_POST_DIV_SHIFT);
6279 clock.p2 = 14;
6280
6281 if ((dpll & PLL_REF_INPUT_MASK) ==
6282 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6283 /* XXX: might not be 66MHz */
6284 intel_clock(dev, 66000, &clock);
6285 } else
6286 intel_clock(dev, 48000, &clock);
6287 } else {
6288 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6289 clock.p1 = 2;
6290 else {
6291 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6292 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6293 }
6294 if (dpll & PLL_P2_DIVIDE_BY_4)
6295 clock.p2 = 4;
6296 else
6297 clock.p2 = 2;
6298
6299 intel_clock(dev, 48000, &clock);
6300 }
6301 }
6302
6303 /* XXX: It would be nice to validate the clocks, but we can't reuse
6304 * i830PllIsValid() because it relies on the xf86_config connector
6305 * configuration being accurate, which it isn't necessarily.
6306 */
6307
6308 return clock.dot;
6309 }
6310
6311 /** Returns the currently programmed mode of the given pipe. */
6312 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6313 struct drm_crtc *crtc)
6314 {
6315 struct drm_i915_private *dev_priv = dev->dev_private;
6316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317 int pipe = intel_crtc->pipe;
6318 struct drm_display_mode *mode;
6319 int htot = I915_READ(HTOTAL(pipe));
6320 int hsync = I915_READ(HSYNC(pipe));
6321 int vtot = I915_READ(VTOTAL(pipe));
6322 int vsync = I915_READ(VSYNC(pipe));
6323
6324 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6325 if (!mode)
6326 return NULL;
6327
6328 mode->clock = intel_crtc_clock_get(dev, crtc);
6329 mode->hdisplay = (htot & 0xffff) + 1;
6330 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6331 mode->hsync_start = (hsync & 0xffff) + 1;
6332 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6333 mode->vdisplay = (vtot & 0xffff) + 1;
6334 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6335 mode->vsync_start = (vsync & 0xffff) + 1;
6336 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6337
6338 drm_mode_set_name(mode);
6339 drm_mode_set_crtcinfo(mode, 0);
6340
6341 return mode;
6342 }
6343
6344 #define GPU_IDLE_TIMEOUT 500 /* ms */
6345
6346 /* When this timer fires, we've been idle for awhile */
6347 static void intel_gpu_idle_timer(unsigned long arg)
6348 {
6349 struct drm_device *dev = (struct drm_device *)arg;
6350 drm_i915_private_t *dev_priv = dev->dev_private;
6351
6352 if (!list_empty(&dev_priv->mm.active_list)) {
6353 /* Still processing requests, so just re-arm the timer. */
6354 mod_timer(&dev_priv->idle_timer, jiffies +
6355 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6356 return;
6357 }
6358
6359 dev_priv->busy = false;
6360 queue_work(dev_priv->wq, &dev_priv->idle_work);
6361 }
6362
6363 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6364
6365 static void intel_crtc_idle_timer(unsigned long arg)
6366 {
6367 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6368 struct drm_crtc *crtc = &intel_crtc->base;
6369 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6370 struct intel_framebuffer *intel_fb;
6371
6372 intel_fb = to_intel_framebuffer(crtc->fb);
6373 if (intel_fb && intel_fb->obj->active) {
6374 /* The framebuffer is still being accessed by the GPU. */
6375 mod_timer(&intel_crtc->idle_timer, jiffies +
6376 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6377 return;
6378 }
6379
6380 intel_crtc->busy = false;
6381 queue_work(dev_priv->wq, &dev_priv->idle_work);
6382 }
6383
6384 static void intel_increase_pllclock(struct drm_crtc *crtc)
6385 {
6386 struct drm_device *dev = crtc->dev;
6387 drm_i915_private_t *dev_priv = dev->dev_private;
6388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389 int pipe = intel_crtc->pipe;
6390 int dpll_reg = DPLL(pipe);
6391 int dpll;
6392
6393 if (HAS_PCH_SPLIT(dev))
6394 return;
6395
6396 if (!dev_priv->lvds_downclock_avail)
6397 return;
6398
6399 dpll = I915_READ(dpll_reg);
6400 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6401 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6402
6403 /* Unlock panel regs */
6404 I915_WRITE(PP_CONTROL,
6405 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6406
6407 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6408 I915_WRITE(dpll_reg, dpll);
6409 intel_wait_for_vblank(dev, pipe);
6410
6411 dpll = I915_READ(dpll_reg);
6412 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6413 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6414
6415 /* ...and lock them again */
6416 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6417 }
6418
6419 /* Schedule downclock */
6420 mod_timer(&intel_crtc->idle_timer, jiffies +
6421 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6422 }
6423
6424 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6425 {
6426 struct drm_device *dev = crtc->dev;
6427 drm_i915_private_t *dev_priv = dev->dev_private;
6428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6429 int pipe = intel_crtc->pipe;
6430 int dpll_reg = DPLL(pipe);
6431 int dpll = I915_READ(dpll_reg);
6432
6433 if (HAS_PCH_SPLIT(dev))
6434 return;
6435
6436 if (!dev_priv->lvds_downclock_avail)
6437 return;
6438
6439 /*
6440 * Since this is called by a timer, we should never get here in
6441 * the manual case.
6442 */
6443 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6444 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6445
6446 /* Unlock panel regs */
6447 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6448 PANEL_UNLOCK_REGS);
6449
6450 dpll |= DISPLAY_RATE_SELECT_FPA1;
6451 I915_WRITE(dpll_reg, dpll);
6452 intel_wait_for_vblank(dev, pipe);
6453 dpll = I915_READ(dpll_reg);
6454 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6455 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6456
6457 /* ...and lock them again */
6458 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6459 }
6460
6461 }
6462
6463 /**
6464 * intel_idle_update - adjust clocks for idleness
6465 * @work: work struct
6466 *
6467 * Either the GPU or display (or both) went idle. Check the busy status
6468 * here and adjust the CRTC and GPU clocks as necessary.
6469 */
6470 static void intel_idle_update(struct work_struct *work)
6471 {
6472 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6473 idle_work);
6474 struct drm_device *dev = dev_priv->dev;
6475 struct drm_crtc *crtc;
6476 struct intel_crtc *intel_crtc;
6477
6478 if (!i915_powersave)
6479 return;
6480
6481 mutex_lock(&dev->struct_mutex);
6482
6483 i915_update_gfx_val(dev_priv);
6484
6485 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6486 /* Skip inactive CRTCs */
6487 if (!crtc->fb)
6488 continue;
6489
6490 intel_crtc = to_intel_crtc(crtc);
6491 if (!intel_crtc->busy)
6492 intel_decrease_pllclock(crtc);
6493 }
6494
6495
6496 mutex_unlock(&dev->struct_mutex);
6497 }
6498
6499 /**
6500 * intel_mark_busy - mark the GPU and possibly the display busy
6501 * @dev: drm device
6502 * @obj: object we're operating on
6503 *
6504 * Callers can use this function to indicate that the GPU is busy processing
6505 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6506 * buffer), we'll also mark the display as busy, so we know to increase its
6507 * clock frequency.
6508 */
6509 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6510 {
6511 drm_i915_private_t *dev_priv = dev->dev_private;
6512 struct drm_crtc *crtc = NULL;
6513 struct intel_framebuffer *intel_fb;
6514 struct intel_crtc *intel_crtc;
6515
6516 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6517 return;
6518
6519 if (!dev_priv->busy)
6520 dev_priv->busy = true;
6521 else
6522 mod_timer(&dev_priv->idle_timer, jiffies +
6523 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6524
6525 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6526 if (!crtc->fb)
6527 continue;
6528
6529 intel_crtc = to_intel_crtc(crtc);
6530 intel_fb = to_intel_framebuffer(crtc->fb);
6531 if (intel_fb->obj == obj) {
6532 if (!intel_crtc->busy) {
6533 /* Non-busy -> busy, upclock */
6534 intel_increase_pllclock(crtc);
6535 intel_crtc->busy = true;
6536 } else {
6537 /* Busy -> busy, put off timer */
6538 mod_timer(&intel_crtc->idle_timer, jiffies +
6539 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6540 }
6541 }
6542 }
6543 }
6544
6545 static void intel_crtc_destroy(struct drm_crtc *crtc)
6546 {
6547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6548 struct drm_device *dev = crtc->dev;
6549 struct intel_unpin_work *work;
6550 unsigned long flags;
6551
6552 spin_lock_irqsave(&dev->event_lock, flags);
6553 work = intel_crtc->unpin_work;
6554 intel_crtc->unpin_work = NULL;
6555 spin_unlock_irqrestore(&dev->event_lock, flags);
6556
6557 if (work) {
6558 cancel_work_sync(&work->work);
6559 kfree(work);
6560 }
6561
6562 drm_crtc_cleanup(crtc);
6563
6564 kfree(intel_crtc);
6565 }
6566
6567 static void intel_unpin_work_fn(struct work_struct *__work)
6568 {
6569 struct intel_unpin_work *work =
6570 container_of(__work, struct intel_unpin_work, work);
6571
6572 mutex_lock(&work->dev->struct_mutex);
6573 i915_gem_object_unpin(work->old_fb_obj);
6574 drm_gem_object_unreference(&work->pending_flip_obj->base);
6575 drm_gem_object_unreference(&work->old_fb_obj->base);
6576
6577 intel_update_fbc(work->dev);
6578 mutex_unlock(&work->dev->struct_mutex);
6579 kfree(work);
6580 }
6581
6582 static void do_intel_finish_page_flip(struct drm_device *dev,
6583 struct drm_crtc *crtc)
6584 {
6585 drm_i915_private_t *dev_priv = dev->dev_private;
6586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6587 struct intel_unpin_work *work;
6588 struct drm_i915_gem_object *obj;
6589 struct drm_pending_vblank_event *e;
6590 struct timeval tnow, tvbl;
6591 unsigned long flags;
6592
6593 /* Ignore early vblank irqs */
6594 if (intel_crtc == NULL)
6595 return;
6596
6597 do_gettimeofday(&tnow);
6598
6599 spin_lock_irqsave(&dev->event_lock, flags);
6600 work = intel_crtc->unpin_work;
6601 if (work == NULL || !work->pending) {
6602 spin_unlock_irqrestore(&dev->event_lock, flags);
6603 return;
6604 }
6605
6606 intel_crtc->unpin_work = NULL;
6607
6608 if (work->event) {
6609 e = work->event;
6610 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6611
6612 /* Called before vblank count and timestamps have
6613 * been updated for the vblank interval of flip
6614 * completion? Need to increment vblank count and
6615 * add one videorefresh duration to returned timestamp
6616 * to account for this. We assume this happened if we
6617 * get called over 0.9 frame durations after the last
6618 * timestamped vblank.
6619 *
6620 * This calculation can not be used with vrefresh rates
6621 * below 5Hz (10Hz to be on the safe side) without
6622 * promoting to 64 integers.
6623 */
6624 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6625 9 * crtc->framedur_ns) {
6626 e->event.sequence++;
6627 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6628 crtc->framedur_ns);
6629 }
6630
6631 e->event.tv_sec = tvbl.tv_sec;
6632 e->event.tv_usec = tvbl.tv_usec;
6633
6634 list_add_tail(&e->base.link,
6635 &e->base.file_priv->event_list);
6636 wake_up_interruptible(&e->base.file_priv->event_wait);
6637 }
6638
6639 drm_vblank_put(dev, intel_crtc->pipe);
6640
6641 spin_unlock_irqrestore(&dev->event_lock, flags);
6642
6643 obj = work->old_fb_obj;
6644
6645 atomic_clear_mask(1 << intel_crtc->plane,
6646 &obj->pending_flip.counter);
6647 if (atomic_read(&obj->pending_flip) == 0)
6648 wake_up(&dev_priv->pending_flip_queue);
6649
6650 schedule_work(&work->work);
6651
6652 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6653 }
6654
6655 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6656 {
6657 drm_i915_private_t *dev_priv = dev->dev_private;
6658 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6659
6660 do_intel_finish_page_flip(dev, crtc);
6661 }
6662
6663 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6664 {
6665 drm_i915_private_t *dev_priv = dev->dev_private;
6666 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6667
6668 do_intel_finish_page_flip(dev, crtc);
6669 }
6670
6671 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6672 {
6673 drm_i915_private_t *dev_priv = dev->dev_private;
6674 struct intel_crtc *intel_crtc =
6675 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6676 unsigned long flags;
6677
6678 spin_lock_irqsave(&dev->event_lock, flags);
6679 if (intel_crtc->unpin_work) {
6680 if ((++intel_crtc->unpin_work->pending) > 1)
6681 DRM_ERROR("Prepared flip multiple times\n");
6682 } else {
6683 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6684 }
6685 spin_unlock_irqrestore(&dev->event_lock, flags);
6686 }
6687
6688 static int intel_gen2_queue_flip(struct drm_device *dev,
6689 struct drm_crtc *crtc,
6690 struct drm_framebuffer *fb,
6691 struct drm_i915_gem_object *obj)
6692 {
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6695 unsigned long offset;
6696 u32 flip_mask;
6697 int ret;
6698
6699 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6700 if (ret)
6701 goto out;
6702
6703 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6704 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6705
6706 ret = BEGIN_LP_RING(6);
6707 if (ret)
6708 goto out;
6709
6710 /* Can't queue multiple flips, so wait for the previous
6711 * one to finish before executing the next.
6712 */
6713 if (intel_crtc->plane)
6714 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6715 else
6716 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6717 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6718 OUT_RING(MI_NOOP);
6719 OUT_RING(MI_DISPLAY_FLIP |
6720 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6721 OUT_RING(fb->pitch);
6722 OUT_RING(obj->gtt_offset + offset);
6723 OUT_RING(MI_NOOP);
6724 ADVANCE_LP_RING();
6725 out:
6726 return ret;
6727 }
6728
6729 static int intel_gen3_queue_flip(struct drm_device *dev,
6730 struct drm_crtc *crtc,
6731 struct drm_framebuffer *fb,
6732 struct drm_i915_gem_object *obj)
6733 {
6734 struct drm_i915_private *dev_priv = dev->dev_private;
6735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6736 unsigned long offset;
6737 u32 flip_mask;
6738 int ret;
6739
6740 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6741 if (ret)
6742 goto out;
6743
6744 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6745 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6746
6747 ret = BEGIN_LP_RING(6);
6748 if (ret)
6749 goto out;
6750
6751 if (intel_crtc->plane)
6752 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6753 else
6754 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6755 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6756 OUT_RING(MI_NOOP);
6757 OUT_RING(MI_DISPLAY_FLIP_I915 |
6758 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6759 OUT_RING(fb->pitch);
6760 OUT_RING(obj->gtt_offset + offset);
6761 OUT_RING(MI_NOOP);
6762
6763 ADVANCE_LP_RING();
6764 out:
6765 return ret;
6766 }
6767
6768 static int intel_gen4_queue_flip(struct drm_device *dev,
6769 struct drm_crtc *crtc,
6770 struct drm_framebuffer *fb,
6771 struct drm_i915_gem_object *obj)
6772 {
6773 struct drm_i915_private *dev_priv = dev->dev_private;
6774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6775 uint32_t pf, pipesrc;
6776 int ret;
6777
6778 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6779 if (ret)
6780 goto out;
6781
6782 ret = BEGIN_LP_RING(4);
6783 if (ret)
6784 goto out;
6785
6786 /* i965+ uses the linear or tiled offsets from the
6787 * Display Registers (which do not change across a page-flip)
6788 * so we need only reprogram the base address.
6789 */
6790 OUT_RING(MI_DISPLAY_FLIP |
6791 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6792 OUT_RING(fb->pitch);
6793 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6794
6795 /* XXX Enabling the panel-fitter across page-flip is so far
6796 * untested on non-native modes, so ignore it for now.
6797 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6798 */
6799 pf = 0;
6800 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6801 OUT_RING(pf | pipesrc);
6802 ADVANCE_LP_RING();
6803 out:
6804 return ret;
6805 }
6806
6807 static int intel_gen6_queue_flip(struct drm_device *dev,
6808 struct drm_crtc *crtc,
6809 struct drm_framebuffer *fb,
6810 struct drm_i915_gem_object *obj)
6811 {
6812 struct drm_i915_private *dev_priv = dev->dev_private;
6813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814 uint32_t pf, pipesrc;
6815 int ret;
6816
6817 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6818 if (ret)
6819 goto out;
6820
6821 ret = BEGIN_LP_RING(4);
6822 if (ret)
6823 goto out;
6824
6825 OUT_RING(MI_DISPLAY_FLIP |
6826 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6827 OUT_RING(fb->pitch | obj->tiling_mode);
6828 OUT_RING(obj->gtt_offset);
6829
6830 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6831 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6832 OUT_RING(pf | pipesrc);
6833 ADVANCE_LP_RING();
6834 out:
6835 return ret;
6836 }
6837
6838 /*
6839 * On gen7 we currently use the blit ring because (in early silicon at least)
6840 * the render ring doesn't give us interrpts for page flip completion, which
6841 * means clients will hang after the first flip is queued. Fortunately the
6842 * blit ring generates interrupts properly, so use it instead.
6843 */
6844 static int intel_gen7_queue_flip(struct drm_device *dev,
6845 struct drm_crtc *crtc,
6846 struct drm_framebuffer *fb,
6847 struct drm_i915_gem_object *obj)
6848 {
6849 struct drm_i915_private *dev_priv = dev->dev_private;
6850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6851 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6852 int ret;
6853
6854 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6855 if (ret)
6856 goto out;
6857
6858 ret = intel_ring_begin(ring, 4);
6859 if (ret)
6860 goto out;
6861
6862 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6863 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6864 intel_ring_emit(ring, (obj->gtt_offset));
6865 intel_ring_emit(ring, (MI_NOOP));
6866 intel_ring_advance(ring);
6867 out:
6868 return ret;
6869 }
6870
6871 static int intel_default_queue_flip(struct drm_device *dev,
6872 struct drm_crtc *crtc,
6873 struct drm_framebuffer *fb,
6874 struct drm_i915_gem_object *obj)
6875 {
6876 return -ENODEV;
6877 }
6878
6879 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6880 struct drm_framebuffer *fb,
6881 struct drm_pending_vblank_event *event)
6882 {
6883 struct drm_device *dev = crtc->dev;
6884 struct drm_i915_private *dev_priv = dev->dev_private;
6885 struct intel_framebuffer *intel_fb;
6886 struct drm_i915_gem_object *obj;
6887 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6888 struct intel_unpin_work *work;
6889 unsigned long flags;
6890 int ret;
6891
6892 work = kzalloc(sizeof *work, GFP_KERNEL);
6893 if (work == NULL)
6894 return -ENOMEM;
6895
6896 work->event = event;
6897 work->dev = crtc->dev;
6898 intel_fb = to_intel_framebuffer(crtc->fb);
6899 work->old_fb_obj = intel_fb->obj;
6900 INIT_WORK(&work->work, intel_unpin_work_fn);
6901
6902 /* We borrow the event spin lock for protecting unpin_work */
6903 spin_lock_irqsave(&dev->event_lock, flags);
6904 if (intel_crtc->unpin_work) {
6905 spin_unlock_irqrestore(&dev->event_lock, flags);
6906 kfree(work);
6907
6908 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6909 return -EBUSY;
6910 }
6911 intel_crtc->unpin_work = work;
6912 spin_unlock_irqrestore(&dev->event_lock, flags);
6913
6914 intel_fb = to_intel_framebuffer(fb);
6915 obj = intel_fb->obj;
6916
6917 mutex_lock(&dev->struct_mutex);
6918
6919 /* Reference the objects for the scheduled work. */
6920 drm_gem_object_reference(&work->old_fb_obj->base);
6921 drm_gem_object_reference(&obj->base);
6922
6923 crtc->fb = fb;
6924
6925 ret = drm_vblank_get(dev, intel_crtc->pipe);
6926 if (ret)
6927 goto cleanup_objs;
6928
6929 work->pending_flip_obj = obj;
6930
6931 work->enable_stall_check = true;
6932
6933 /* Block clients from rendering to the new back buffer until
6934 * the flip occurs and the object is no longer visible.
6935 */
6936 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6937
6938 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6939 if (ret)
6940 goto cleanup_pending;
6941
6942 intel_disable_fbc(dev);
6943 mutex_unlock(&dev->struct_mutex);
6944
6945 trace_i915_flip_request(intel_crtc->plane, obj);
6946
6947 return 0;
6948
6949 cleanup_pending:
6950 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6951 cleanup_objs:
6952 drm_gem_object_unreference(&work->old_fb_obj->base);
6953 drm_gem_object_unreference(&obj->base);
6954 mutex_unlock(&dev->struct_mutex);
6955
6956 spin_lock_irqsave(&dev->event_lock, flags);
6957 intel_crtc->unpin_work = NULL;
6958 spin_unlock_irqrestore(&dev->event_lock, flags);
6959
6960 kfree(work);
6961
6962 return ret;
6963 }
6964
6965 static void intel_sanitize_modesetting(struct drm_device *dev,
6966 int pipe, int plane)
6967 {
6968 struct drm_i915_private *dev_priv = dev->dev_private;
6969 u32 reg, val;
6970
6971 if (HAS_PCH_SPLIT(dev))
6972 return;
6973
6974 /* Who knows what state these registers were left in by the BIOS or
6975 * grub?
6976 *
6977 * If we leave the registers in a conflicting state (e.g. with the
6978 * display plane reading from the other pipe than the one we intend
6979 * to use) then when we attempt to teardown the active mode, we will
6980 * not disable the pipes and planes in the correct order -- leaving
6981 * a plane reading from a disabled pipe and possibly leading to
6982 * undefined behaviour.
6983 */
6984
6985 reg = DSPCNTR(plane);
6986 val = I915_READ(reg);
6987
6988 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6989 return;
6990 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6991 return;
6992
6993 /* This display plane is active and attached to the other CPU pipe. */
6994 pipe = !pipe;
6995
6996 /* Disable the plane and wait for it to stop reading from the pipe. */
6997 intel_disable_plane(dev_priv, plane, pipe);
6998 intel_disable_pipe(dev_priv, pipe);
6999 }
7000
7001 static void intel_crtc_reset(struct drm_crtc *crtc)
7002 {
7003 struct drm_device *dev = crtc->dev;
7004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7005
7006 /* Reset flags back to the 'unknown' status so that they
7007 * will be correctly set on the initial modeset.
7008 */
7009 intel_crtc->dpms_mode = -1;
7010
7011 /* We need to fix up any BIOS configuration that conflicts with
7012 * our expectations.
7013 */
7014 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7015 }
7016
7017 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7018 .dpms = intel_crtc_dpms,
7019 .mode_fixup = intel_crtc_mode_fixup,
7020 .mode_set = intel_crtc_mode_set,
7021 .mode_set_base = intel_pipe_set_base,
7022 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7023 .load_lut = intel_crtc_load_lut,
7024 .disable = intel_crtc_disable,
7025 };
7026
7027 static const struct drm_crtc_funcs intel_crtc_funcs = {
7028 .reset = intel_crtc_reset,
7029 .cursor_set = intel_crtc_cursor_set,
7030 .cursor_move = intel_crtc_cursor_move,
7031 .gamma_set = intel_crtc_gamma_set,
7032 .set_config = drm_crtc_helper_set_config,
7033 .destroy = intel_crtc_destroy,
7034 .page_flip = intel_crtc_page_flip,
7035 };
7036
7037 static void intel_crtc_init(struct drm_device *dev, int pipe)
7038 {
7039 drm_i915_private_t *dev_priv = dev->dev_private;
7040 struct intel_crtc *intel_crtc;
7041 int i;
7042
7043 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7044 if (intel_crtc == NULL)
7045 return;
7046
7047 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7048
7049 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7050 for (i = 0; i < 256; i++) {
7051 intel_crtc->lut_r[i] = i;
7052 intel_crtc->lut_g[i] = i;
7053 intel_crtc->lut_b[i] = i;
7054 }
7055
7056 /* Swap pipes & planes for FBC on pre-965 */
7057 intel_crtc->pipe = pipe;
7058 intel_crtc->plane = pipe;
7059 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7060 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7061 intel_crtc->plane = !pipe;
7062 }
7063
7064 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7065 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7066 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7067 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7068
7069 intel_crtc_reset(&intel_crtc->base);
7070 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7071 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7072
7073 if (HAS_PCH_SPLIT(dev)) {
7074 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7075 intel_helper_funcs.commit = ironlake_crtc_commit;
7076 } else {
7077 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7078 intel_helper_funcs.commit = i9xx_crtc_commit;
7079 }
7080
7081 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7082
7083 intel_crtc->busy = false;
7084
7085 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7086 (unsigned long)intel_crtc);
7087 }
7088
7089 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7090 struct drm_file *file)
7091 {
7092 drm_i915_private_t *dev_priv = dev->dev_private;
7093 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7094 struct drm_mode_object *drmmode_obj;
7095 struct intel_crtc *crtc;
7096
7097 if (!dev_priv) {
7098 DRM_ERROR("called with no initialization\n");
7099 return -EINVAL;
7100 }
7101
7102 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7103 DRM_MODE_OBJECT_CRTC);
7104
7105 if (!drmmode_obj) {
7106 DRM_ERROR("no such CRTC id\n");
7107 return -EINVAL;
7108 }
7109
7110 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7111 pipe_from_crtc_id->pipe = crtc->pipe;
7112
7113 return 0;
7114 }
7115
7116 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7117 {
7118 struct intel_encoder *encoder;
7119 int index_mask = 0;
7120 int entry = 0;
7121
7122 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7123 if (type_mask & encoder->clone_mask)
7124 index_mask |= (1 << entry);
7125 entry++;
7126 }
7127
7128 return index_mask;
7129 }
7130
7131 static bool has_edp_a(struct drm_device *dev)
7132 {
7133 struct drm_i915_private *dev_priv = dev->dev_private;
7134
7135 if (!IS_MOBILE(dev))
7136 return false;
7137
7138 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7139 return false;
7140
7141 if (IS_GEN5(dev) &&
7142 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7143 return false;
7144
7145 return true;
7146 }
7147
7148 static void intel_setup_outputs(struct drm_device *dev)
7149 {
7150 struct drm_i915_private *dev_priv = dev->dev_private;
7151 struct intel_encoder *encoder;
7152 bool dpd_is_edp = false;
7153 bool has_lvds = false;
7154
7155 if (IS_MOBILE(dev) && !IS_I830(dev))
7156 has_lvds = intel_lvds_init(dev);
7157 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7158 /* disable the panel fitter on everything but LVDS */
7159 I915_WRITE(PFIT_CONTROL, 0);
7160 }
7161
7162 if (HAS_PCH_SPLIT(dev)) {
7163 dpd_is_edp = intel_dpd_is_edp(dev);
7164
7165 if (has_edp_a(dev))
7166 intel_dp_init(dev, DP_A);
7167
7168 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7169 intel_dp_init(dev, PCH_DP_D);
7170 }
7171
7172 intel_crt_init(dev);
7173
7174 if (HAS_PCH_SPLIT(dev)) {
7175 int found;
7176
7177 if (I915_READ(HDMIB) & PORT_DETECTED) {
7178 /* PCH SDVOB multiplex with HDMIB */
7179 found = intel_sdvo_init(dev, PCH_SDVOB);
7180 if (!found)
7181 intel_hdmi_init(dev, HDMIB);
7182 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7183 intel_dp_init(dev, PCH_DP_B);
7184 }
7185
7186 if (I915_READ(HDMIC) & PORT_DETECTED)
7187 intel_hdmi_init(dev, HDMIC);
7188
7189 if (I915_READ(HDMID) & PORT_DETECTED)
7190 intel_hdmi_init(dev, HDMID);
7191
7192 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7193 intel_dp_init(dev, PCH_DP_C);
7194
7195 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7196 intel_dp_init(dev, PCH_DP_D);
7197
7198 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7199 bool found = false;
7200
7201 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7202 DRM_DEBUG_KMS("probing SDVOB\n");
7203 found = intel_sdvo_init(dev, SDVOB);
7204 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7205 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7206 intel_hdmi_init(dev, SDVOB);
7207 }
7208
7209 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7210 DRM_DEBUG_KMS("probing DP_B\n");
7211 intel_dp_init(dev, DP_B);
7212 }
7213 }
7214
7215 /* Before G4X SDVOC doesn't have its own detect register */
7216
7217 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7218 DRM_DEBUG_KMS("probing SDVOC\n");
7219 found = intel_sdvo_init(dev, SDVOC);
7220 }
7221
7222 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7223
7224 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7225 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7226 intel_hdmi_init(dev, SDVOC);
7227 }
7228 if (SUPPORTS_INTEGRATED_DP(dev)) {
7229 DRM_DEBUG_KMS("probing DP_C\n");
7230 intel_dp_init(dev, DP_C);
7231 }
7232 }
7233
7234 if (SUPPORTS_INTEGRATED_DP(dev) &&
7235 (I915_READ(DP_D) & DP_DETECTED)) {
7236 DRM_DEBUG_KMS("probing DP_D\n");
7237 intel_dp_init(dev, DP_D);
7238 }
7239 } else if (IS_GEN2(dev))
7240 intel_dvo_init(dev);
7241
7242 if (SUPPORTS_TV(dev))
7243 intel_tv_init(dev);
7244
7245 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7246 encoder->base.possible_crtcs = encoder->crtc_mask;
7247 encoder->base.possible_clones =
7248 intel_encoder_clones(dev, encoder->clone_mask);
7249 }
7250
7251 /* disable all the possible outputs/crtcs before entering KMS mode */
7252 drm_helper_disable_unused_functions(dev);
7253 }
7254
7255 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7256 {
7257 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7258
7259 drm_framebuffer_cleanup(fb);
7260 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7261
7262 kfree(intel_fb);
7263 }
7264
7265 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7266 struct drm_file *file,
7267 unsigned int *handle)
7268 {
7269 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7270 struct drm_i915_gem_object *obj = intel_fb->obj;
7271
7272 return drm_gem_handle_create(file, &obj->base, handle);
7273 }
7274
7275 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7276 .destroy = intel_user_framebuffer_destroy,
7277 .create_handle = intel_user_framebuffer_create_handle,
7278 };
7279
7280 int intel_framebuffer_init(struct drm_device *dev,
7281 struct intel_framebuffer *intel_fb,
7282 struct drm_mode_fb_cmd *mode_cmd,
7283 struct drm_i915_gem_object *obj)
7284 {
7285 int ret;
7286
7287 if (obj->tiling_mode == I915_TILING_Y)
7288 return -EINVAL;
7289
7290 if (mode_cmd->pitch & 63)
7291 return -EINVAL;
7292
7293 switch (mode_cmd->bpp) {
7294 case 8:
7295 case 16:
7296 /* Only pre-ILK can handle 5:5:5 */
7297 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7298 return -EINVAL;
7299 break;
7300
7301 case 24:
7302 case 32:
7303 break;
7304 default:
7305 return -EINVAL;
7306 }
7307
7308 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7309 if (ret) {
7310 DRM_ERROR("framebuffer init failed %d\n", ret);
7311 return ret;
7312 }
7313
7314 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7315 intel_fb->obj = obj;
7316 return 0;
7317 }
7318
7319 static struct drm_framebuffer *
7320 intel_user_framebuffer_create(struct drm_device *dev,
7321 struct drm_file *filp,
7322 struct drm_mode_fb_cmd *mode_cmd)
7323 {
7324 struct drm_i915_gem_object *obj;
7325
7326 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7327 if (&obj->base == NULL)
7328 return ERR_PTR(-ENOENT);
7329
7330 return intel_framebuffer_create(dev, mode_cmd, obj);
7331 }
7332
7333 static const struct drm_mode_config_funcs intel_mode_funcs = {
7334 .fb_create = intel_user_framebuffer_create,
7335 .output_poll_changed = intel_fb_output_poll_changed,
7336 };
7337
7338 static struct drm_i915_gem_object *
7339 intel_alloc_context_page(struct drm_device *dev)
7340 {
7341 struct drm_i915_gem_object *ctx;
7342 int ret;
7343
7344 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7345
7346 ctx = i915_gem_alloc_object(dev, 4096);
7347 if (!ctx) {
7348 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7349 return NULL;
7350 }
7351
7352 ret = i915_gem_object_pin(ctx, 4096, true);
7353 if (ret) {
7354 DRM_ERROR("failed to pin power context: %d\n", ret);
7355 goto err_unref;
7356 }
7357
7358 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7359 if (ret) {
7360 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7361 goto err_unpin;
7362 }
7363
7364 return ctx;
7365
7366 err_unpin:
7367 i915_gem_object_unpin(ctx);
7368 err_unref:
7369 drm_gem_object_unreference(&ctx->base);
7370 mutex_unlock(&dev->struct_mutex);
7371 return NULL;
7372 }
7373
7374 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7375 {
7376 struct drm_i915_private *dev_priv = dev->dev_private;
7377 u16 rgvswctl;
7378
7379 rgvswctl = I915_READ16(MEMSWCTL);
7380 if (rgvswctl & MEMCTL_CMD_STS) {
7381 DRM_DEBUG("gpu busy, RCS change rejected\n");
7382 return false; /* still busy with another command */
7383 }
7384
7385 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7386 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7387 I915_WRITE16(MEMSWCTL, rgvswctl);
7388 POSTING_READ16(MEMSWCTL);
7389
7390 rgvswctl |= MEMCTL_CMD_STS;
7391 I915_WRITE16(MEMSWCTL, rgvswctl);
7392
7393 return true;
7394 }
7395
7396 void ironlake_enable_drps(struct drm_device *dev)
7397 {
7398 struct drm_i915_private *dev_priv = dev->dev_private;
7399 u32 rgvmodectl = I915_READ(MEMMODECTL);
7400 u8 fmax, fmin, fstart, vstart;
7401
7402 /* Enable temp reporting */
7403 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7404 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7405
7406 /* 100ms RC evaluation intervals */
7407 I915_WRITE(RCUPEI, 100000);
7408 I915_WRITE(RCDNEI, 100000);
7409
7410 /* Set max/min thresholds to 90ms and 80ms respectively */
7411 I915_WRITE(RCBMAXAVG, 90000);
7412 I915_WRITE(RCBMINAVG, 80000);
7413
7414 I915_WRITE(MEMIHYST, 1);
7415
7416 /* Set up min, max, and cur for interrupt handling */
7417 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7418 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7419 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7420 MEMMODE_FSTART_SHIFT;
7421
7422 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7423 PXVFREQ_PX_SHIFT;
7424
7425 dev_priv->fmax = fmax; /* IPS callback will increase this */
7426 dev_priv->fstart = fstart;
7427
7428 dev_priv->max_delay = fstart;
7429 dev_priv->min_delay = fmin;
7430 dev_priv->cur_delay = fstart;
7431
7432 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7433 fmax, fmin, fstart);
7434
7435 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7436
7437 /*
7438 * Interrupts will be enabled in ironlake_irq_postinstall
7439 */
7440
7441 I915_WRITE(VIDSTART, vstart);
7442 POSTING_READ(VIDSTART);
7443
7444 rgvmodectl |= MEMMODE_SWMODE_EN;
7445 I915_WRITE(MEMMODECTL, rgvmodectl);
7446
7447 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7448 DRM_ERROR("stuck trying to change perf mode\n");
7449 msleep(1);
7450
7451 ironlake_set_drps(dev, fstart);
7452
7453 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7454 I915_READ(0x112e0);
7455 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7456 dev_priv->last_count2 = I915_READ(0x112f4);
7457 getrawmonotonic(&dev_priv->last_time2);
7458 }
7459
7460 void ironlake_disable_drps(struct drm_device *dev)
7461 {
7462 struct drm_i915_private *dev_priv = dev->dev_private;
7463 u16 rgvswctl = I915_READ16(MEMSWCTL);
7464
7465 /* Ack interrupts, disable EFC interrupt */
7466 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7467 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7468 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7469 I915_WRITE(DEIIR, DE_PCU_EVENT);
7470 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7471
7472 /* Go back to the starting frequency */
7473 ironlake_set_drps(dev, dev_priv->fstart);
7474 msleep(1);
7475 rgvswctl |= MEMCTL_CMD_STS;
7476 I915_WRITE(MEMSWCTL, rgvswctl);
7477 msleep(1);
7478
7479 }
7480
7481 void gen6_set_rps(struct drm_device *dev, u8 val)
7482 {
7483 struct drm_i915_private *dev_priv = dev->dev_private;
7484 u32 swreq;
7485
7486 swreq = (val & 0x3ff) << 25;
7487 I915_WRITE(GEN6_RPNSWREQ, swreq);
7488 }
7489
7490 void gen6_disable_rps(struct drm_device *dev)
7491 {
7492 struct drm_i915_private *dev_priv = dev->dev_private;
7493
7494 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7495 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7496 I915_WRITE(GEN6_PMIER, 0);
7497
7498 spin_lock_irq(&dev_priv->rps_lock);
7499 dev_priv->pm_iir = 0;
7500 spin_unlock_irq(&dev_priv->rps_lock);
7501
7502 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7503 }
7504
7505 static unsigned long intel_pxfreq(u32 vidfreq)
7506 {
7507 unsigned long freq;
7508 int div = (vidfreq & 0x3f0000) >> 16;
7509 int post = (vidfreq & 0x3000) >> 12;
7510 int pre = (vidfreq & 0x7);
7511
7512 if (!pre)
7513 return 0;
7514
7515 freq = ((div * 133333) / ((1<<post) * pre));
7516
7517 return freq;
7518 }
7519
7520 void intel_init_emon(struct drm_device *dev)
7521 {
7522 struct drm_i915_private *dev_priv = dev->dev_private;
7523 u32 lcfuse;
7524 u8 pxw[16];
7525 int i;
7526
7527 /* Disable to program */
7528 I915_WRITE(ECR, 0);
7529 POSTING_READ(ECR);
7530
7531 /* Program energy weights for various events */
7532 I915_WRITE(SDEW, 0x15040d00);
7533 I915_WRITE(CSIEW0, 0x007f0000);
7534 I915_WRITE(CSIEW1, 0x1e220004);
7535 I915_WRITE(CSIEW2, 0x04000004);
7536
7537 for (i = 0; i < 5; i++)
7538 I915_WRITE(PEW + (i * 4), 0);
7539 for (i = 0; i < 3; i++)
7540 I915_WRITE(DEW + (i * 4), 0);
7541
7542 /* Program P-state weights to account for frequency power adjustment */
7543 for (i = 0; i < 16; i++) {
7544 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7545 unsigned long freq = intel_pxfreq(pxvidfreq);
7546 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7547 PXVFREQ_PX_SHIFT;
7548 unsigned long val;
7549
7550 val = vid * vid;
7551 val *= (freq / 1000);
7552 val *= 255;
7553 val /= (127*127*900);
7554 if (val > 0xff)
7555 DRM_ERROR("bad pxval: %ld\n", val);
7556 pxw[i] = val;
7557 }
7558 /* Render standby states get 0 weight */
7559 pxw[14] = 0;
7560 pxw[15] = 0;
7561
7562 for (i = 0; i < 4; i++) {
7563 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7564 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7565 I915_WRITE(PXW + (i * 4), val);
7566 }
7567
7568 /* Adjust magic regs to magic values (more experimental results) */
7569 I915_WRITE(OGW0, 0);
7570 I915_WRITE(OGW1, 0);
7571 I915_WRITE(EG0, 0x00007f00);
7572 I915_WRITE(EG1, 0x0000000e);
7573 I915_WRITE(EG2, 0x000e0000);
7574 I915_WRITE(EG3, 0x68000300);
7575 I915_WRITE(EG4, 0x42000000);
7576 I915_WRITE(EG5, 0x00140031);
7577 I915_WRITE(EG6, 0);
7578 I915_WRITE(EG7, 0);
7579
7580 for (i = 0; i < 8; i++)
7581 I915_WRITE(PXWL + (i * 4), 0);
7582
7583 /* Enable PMON + select events */
7584 I915_WRITE(ECR, 0x80000019);
7585
7586 lcfuse = I915_READ(LCFUSE02);
7587
7588 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7589 }
7590
7591 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7592 {
7593 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7594 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7595 u32 pcu_mbox, rc6_mask = 0;
7596 int cur_freq, min_freq, max_freq;
7597 int i;
7598
7599 /* Here begins a magic sequence of register writes to enable
7600 * auto-downclocking.
7601 *
7602 * Perhaps there might be some value in exposing these to
7603 * userspace...
7604 */
7605 I915_WRITE(GEN6_RC_STATE, 0);
7606 mutex_lock(&dev_priv->dev->struct_mutex);
7607 gen6_gt_force_wake_get(dev_priv);
7608
7609 /* disable the counters and set deterministic thresholds */
7610 I915_WRITE(GEN6_RC_CONTROL, 0);
7611
7612 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7613 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7614 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7615 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7616 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7617
7618 for (i = 0; i < I915_NUM_RINGS; i++)
7619 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7620
7621 I915_WRITE(GEN6_RC_SLEEP, 0);
7622 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7623 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7624 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7625 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7626
7627 if (i915_enable_rc6)
7628 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7629 GEN6_RC_CTL_RC6_ENABLE;
7630
7631 I915_WRITE(GEN6_RC_CONTROL,
7632 rc6_mask |
7633 GEN6_RC_CTL_EI_MODE(1) |
7634 GEN6_RC_CTL_HW_ENABLE);
7635
7636 I915_WRITE(GEN6_RPNSWREQ,
7637 GEN6_FREQUENCY(10) |
7638 GEN6_OFFSET(0) |
7639 GEN6_AGGRESSIVE_TURBO);
7640 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7641 GEN6_FREQUENCY(12));
7642
7643 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7644 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7645 18 << 24 |
7646 6 << 16);
7647 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7648 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7649 I915_WRITE(GEN6_RP_UP_EI, 100000);
7650 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7651 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7652 I915_WRITE(GEN6_RP_CONTROL,
7653 GEN6_RP_MEDIA_TURBO |
7654 GEN6_RP_USE_NORMAL_FREQ |
7655 GEN6_RP_MEDIA_IS_GFX |
7656 GEN6_RP_ENABLE |
7657 GEN6_RP_UP_BUSY_AVG |
7658 GEN6_RP_DOWN_IDLE_CONT);
7659
7660 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7661 500))
7662 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7663
7664 I915_WRITE(GEN6_PCODE_DATA, 0);
7665 I915_WRITE(GEN6_PCODE_MAILBOX,
7666 GEN6_PCODE_READY |
7667 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7668 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7669 500))
7670 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7671
7672 min_freq = (rp_state_cap & 0xff0000) >> 16;
7673 max_freq = rp_state_cap & 0xff;
7674 cur_freq = (gt_perf_status & 0xff00) >> 8;
7675
7676 /* Check for overclock support */
7677 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7678 500))
7679 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7680 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7681 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7682 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7683 500))
7684 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7685 if (pcu_mbox & (1<<31)) { /* OC supported */
7686 max_freq = pcu_mbox & 0xff;
7687 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7688 }
7689
7690 /* In units of 100MHz */
7691 dev_priv->max_delay = max_freq;
7692 dev_priv->min_delay = min_freq;
7693 dev_priv->cur_delay = cur_freq;
7694
7695 /* requires MSI enabled */
7696 I915_WRITE(GEN6_PMIER,
7697 GEN6_PM_MBOX_EVENT |
7698 GEN6_PM_THERMAL_EVENT |
7699 GEN6_PM_RP_DOWN_TIMEOUT |
7700 GEN6_PM_RP_UP_THRESHOLD |
7701 GEN6_PM_RP_DOWN_THRESHOLD |
7702 GEN6_PM_RP_UP_EI_EXPIRED |
7703 GEN6_PM_RP_DOWN_EI_EXPIRED);
7704 spin_lock_irq(&dev_priv->rps_lock);
7705 WARN_ON(dev_priv->pm_iir != 0);
7706 I915_WRITE(GEN6_PMIMR, 0);
7707 spin_unlock_irq(&dev_priv->rps_lock);
7708 /* enable all PM interrupts */
7709 I915_WRITE(GEN6_PMINTRMSK, 0);
7710
7711 gen6_gt_force_wake_put(dev_priv);
7712 mutex_unlock(&dev_priv->dev->struct_mutex);
7713 }
7714
7715 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7716 {
7717 int min_freq = 15;
7718 int gpu_freq, ia_freq, max_ia_freq;
7719 int scaling_factor = 180;
7720
7721 max_ia_freq = cpufreq_quick_get_max(0);
7722 /*
7723 * Default to measured freq if none found, PCU will ensure we don't go
7724 * over
7725 */
7726 if (!max_ia_freq)
7727 max_ia_freq = tsc_khz;
7728
7729 /* Convert from kHz to MHz */
7730 max_ia_freq /= 1000;
7731
7732 mutex_lock(&dev_priv->dev->struct_mutex);
7733
7734 /*
7735 * For each potential GPU frequency, load a ring frequency we'd like
7736 * to use for memory access. We do this by specifying the IA frequency
7737 * the PCU should use as a reference to determine the ring frequency.
7738 */
7739 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7740 gpu_freq--) {
7741 int diff = dev_priv->max_delay - gpu_freq;
7742
7743 /*
7744 * For GPU frequencies less than 750MHz, just use the lowest
7745 * ring freq.
7746 */
7747 if (gpu_freq < min_freq)
7748 ia_freq = 800;
7749 else
7750 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7751 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7752
7753 I915_WRITE(GEN6_PCODE_DATA,
7754 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7755 gpu_freq);
7756 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7757 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7758 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7759 GEN6_PCODE_READY) == 0, 10)) {
7760 DRM_ERROR("pcode write of freq table timed out\n");
7761 continue;
7762 }
7763 }
7764
7765 mutex_unlock(&dev_priv->dev->struct_mutex);
7766 }
7767
7768 static void ironlake_init_clock_gating(struct drm_device *dev)
7769 {
7770 struct drm_i915_private *dev_priv = dev->dev_private;
7771 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7772
7773 /* Required for FBC */
7774 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7775 DPFCRUNIT_CLOCK_GATE_DISABLE |
7776 DPFDUNIT_CLOCK_GATE_DISABLE;
7777 /* Required for CxSR */
7778 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7779
7780 I915_WRITE(PCH_3DCGDIS0,
7781 MARIUNIT_CLOCK_GATE_DISABLE |
7782 SVSMUNIT_CLOCK_GATE_DISABLE);
7783 I915_WRITE(PCH_3DCGDIS1,
7784 VFMUNIT_CLOCK_GATE_DISABLE);
7785
7786 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7787
7788 /*
7789 * According to the spec the following bits should be set in
7790 * order to enable memory self-refresh
7791 * The bit 22/21 of 0x42004
7792 * The bit 5 of 0x42020
7793 * The bit 15 of 0x45000
7794 */
7795 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7796 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7797 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7798 I915_WRITE(ILK_DSPCLK_GATE,
7799 (I915_READ(ILK_DSPCLK_GATE) |
7800 ILK_DPARB_CLK_GATE));
7801 I915_WRITE(DISP_ARB_CTL,
7802 (I915_READ(DISP_ARB_CTL) |
7803 DISP_FBC_WM_DIS));
7804 I915_WRITE(WM3_LP_ILK, 0);
7805 I915_WRITE(WM2_LP_ILK, 0);
7806 I915_WRITE(WM1_LP_ILK, 0);
7807
7808 /*
7809 * Based on the document from hardware guys the following bits
7810 * should be set unconditionally in order to enable FBC.
7811 * The bit 22 of 0x42000
7812 * The bit 22 of 0x42004
7813 * The bit 7,8,9 of 0x42020.
7814 */
7815 if (IS_IRONLAKE_M(dev)) {
7816 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7817 I915_READ(ILK_DISPLAY_CHICKEN1) |
7818 ILK_FBCQ_DIS);
7819 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7820 I915_READ(ILK_DISPLAY_CHICKEN2) |
7821 ILK_DPARB_GATE);
7822 I915_WRITE(ILK_DSPCLK_GATE,
7823 I915_READ(ILK_DSPCLK_GATE) |
7824 ILK_DPFC_DIS1 |
7825 ILK_DPFC_DIS2 |
7826 ILK_CLK_FBC);
7827 }
7828
7829 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7830 I915_READ(ILK_DISPLAY_CHICKEN2) |
7831 ILK_ELPIN_409_SELECT);
7832 I915_WRITE(_3D_CHICKEN2,
7833 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7834 _3D_CHICKEN2_WM_READ_PIPELINED);
7835 }
7836
7837 static void gen6_init_clock_gating(struct drm_device *dev)
7838 {
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 int pipe;
7841 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7842
7843 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7844
7845 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7846 I915_READ(ILK_DISPLAY_CHICKEN2) |
7847 ILK_ELPIN_409_SELECT);
7848
7849 I915_WRITE(WM3_LP_ILK, 0);
7850 I915_WRITE(WM2_LP_ILK, 0);
7851 I915_WRITE(WM1_LP_ILK, 0);
7852
7853 /*
7854 * According to the spec the following bits should be
7855 * set in order to enable memory self-refresh and fbc:
7856 * The bit21 and bit22 of 0x42000
7857 * The bit21 and bit22 of 0x42004
7858 * The bit5 and bit7 of 0x42020
7859 * The bit14 of 0x70180
7860 * The bit14 of 0x71180
7861 */
7862 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7863 I915_READ(ILK_DISPLAY_CHICKEN1) |
7864 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7865 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7866 I915_READ(ILK_DISPLAY_CHICKEN2) |
7867 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7868 I915_WRITE(ILK_DSPCLK_GATE,
7869 I915_READ(ILK_DSPCLK_GATE) |
7870 ILK_DPARB_CLK_GATE |
7871 ILK_DPFD_CLK_GATE);
7872
7873 for_each_pipe(pipe) {
7874 I915_WRITE(DSPCNTR(pipe),
7875 I915_READ(DSPCNTR(pipe)) |
7876 DISPPLANE_TRICKLE_FEED_DISABLE);
7877 intel_flush_display_plane(dev_priv, pipe);
7878 }
7879 }
7880
7881 static void ivybridge_init_clock_gating(struct drm_device *dev)
7882 {
7883 struct drm_i915_private *dev_priv = dev->dev_private;
7884 int pipe;
7885 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7886
7887 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7888
7889 I915_WRITE(WM3_LP_ILK, 0);
7890 I915_WRITE(WM2_LP_ILK, 0);
7891 I915_WRITE(WM1_LP_ILK, 0);
7892
7893 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7894
7895 for_each_pipe(pipe) {
7896 I915_WRITE(DSPCNTR(pipe),
7897 I915_READ(DSPCNTR(pipe)) |
7898 DISPPLANE_TRICKLE_FEED_DISABLE);
7899 intel_flush_display_plane(dev_priv, pipe);
7900 }
7901 }
7902
7903 static void g4x_init_clock_gating(struct drm_device *dev)
7904 {
7905 struct drm_i915_private *dev_priv = dev->dev_private;
7906 uint32_t dspclk_gate;
7907
7908 I915_WRITE(RENCLK_GATE_D1, 0);
7909 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7910 GS_UNIT_CLOCK_GATE_DISABLE |
7911 CL_UNIT_CLOCK_GATE_DISABLE);
7912 I915_WRITE(RAMCLK_GATE_D, 0);
7913 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7914 OVRUNIT_CLOCK_GATE_DISABLE |
7915 OVCUNIT_CLOCK_GATE_DISABLE;
7916 if (IS_GM45(dev))
7917 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7918 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7919 }
7920
7921 static void crestline_init_clock_gating(struct drm_device *dev)
7922 {
7923 struct drm_i915_private *dev_priv = dev->dev_private;
7924
7925 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7926 I915_WRITE(RENCLK_GATE_D2, 0);
7927 I915_WRITE(DSPCLK_GATE_D, 0);
7928 I915_WRITE(RAMCLK_GATE_D, 0);
7929 I915_WRITE16(DEUC, 0);
7930 }
7931
7932 static void broadwater_init_clock_gating(struct drm_device *dev)
7933 {
7934 struct drm_i915_private *dev_priv = dev->dev_private;
7935
7936 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7937 I965_RCC_CLOCK_GATE_DISABLE |
7938 I965_RCPB_CLOCK_GATE_DISABLE |
7939 I965_ISC_CLOCK_GATE_DISABLE |
7940 I965_FBC_CLOCK_GATE_DISABLE);
7941 I915_WRITE(RENCLK_GATE_D2, 0);
7942 }
7943
7944 static void gen3_init_clock_gating(struct drm_device *dev)
7945 {
7946 struct drm_i915_private *dev_priv = dev->dev_private;
7947 u32 dstate = I915_READ(D_STATE);
7948
7949 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7950 DSTATE_DOT_CLOCK_GATING;
7951 I915_WRITE(D_STATE, dstate);
7952 }
7953
7954 static void i85x_init_clock_gating(struct drm_device *dev)
7955 {
7956 struct drm_i915_private *dev_priv = dev->dev_private;
7957
7958 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7959 }
7960
7961 static void i830_init_clock_gating(struct drm_device *dev)
7962 {
7963 struct drm_i915_private *dev_priv = dev->dev_private;
7964
7965 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7966 }
7967
7968 static void ibx_init_clock_gating(struct drm_device *dev)
7969 {
7970 struct drm_i915_private *dev_priv = dev->dev_private;
7971
7972 /*
7973 * On Ibex Peak and Cougar Point, we need to disable clock
7974 * gating for the panel power sequencer or it will fail to
7975 * start up when no ports are active.
7976 */
7977 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7978 }
7979
7980 static void cpt_init_clock_gating(struct drm_device *dev)
7981 {
7982 struct drm_i915_private *dev_priv = dev->dev_private;
7983 int pipe;
7984
7985 /*
7986 * On Ibex Peak and Cougar Point, we need to disable clock
7987 * gating for the panel power sequencer or it will fail to
7988 * start up when no ports are active.
7989 */
7990 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7991 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7992 DPLS_EDP_PPS_FIX_DIS);
7993 /* Without this, mode sets may fail silently on FDI */
7994 for_each_pipe(pipe)
7995 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
7996 }
7997
7998 static void ironlake_teardown_rc6(struct drm_device *dev)
7999 {
8000 struct drm_i915_private *dev_priv = dev->dev_private;
8001
8002 if (dev_priv->renderctx) {
8003 i915_gem_object_unpin(dev_priv->renderctx);
8004 drm_gem_object_unreference(&dev_priv->renderctx->base);
8005 dev_priv->renderctx = NULL;
8006 }
8007
8008 if (dev_priv->pwrctx) {
8009 i915_gem_object_unpin(dev_priv->pwrctx);
8010 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8011 dev_priv->pwrctx = NULL;
8012 }
8013 }
8014
8015 static void ironlake_disable_rc6(struct drm_device *dev)
8016 {
8017 struct drm_i915_private *dev_priv = dev->dev_private;
8018
8019 if (I915_READ(PWRCTXA)) {
8020 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8021 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8022 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8023 50);
8024
8025 I915_WRITE(PWRCTXA, 0);
8026 POSTING_READ(PWRCTXA);
8027
8028 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8029 POSTING_READ(RSTDBYCTL);
8030 }
8031
8032 ironlake_teardown_rc6(dev);
8033 }
8034
8035 static int ironlake_setup_rc6(struct drm_device *dev)
8036 {
8037 struct drm_i915_private *dev_priv = dev->dev_private;
8038
8039 if (dev_priv->renderctx == NULL)
8040 dev_priv->renderctx = intel_alloc_context_page(dev);
8041 if (!dev_priv->renderctx)
8042 return -ENOMEM;
8043
8044 if (dev_priv->pwrctx == NULL)
8045 dev_priv->pwrctx = intel_alloc_context_page(dev);
8046 if (!dev_priv->pwrctx) {
8047 ironlake_teardown_rc6(dev);
8048 return -ENOMEM;
8049 }
8050
8051 return 0;
8052 }
8053
8054 void ironlake_enable_rc6(struct drm_device *dev)
8055 {
8056 struct drm_i915_private *dev_priv = dev->dev_private;
8057 int ret;
8058
8059 /* rc6 disabled by default due to repeated reports of hanging during
8060 * boot and resume.
8061 */
8062 if (!i915_enable_rc6)
8063 return;
8064
8065 mutex_lock(&dev->struct_mutex);
8066 ret = ironlake_setup_rc6(dev);
8067 if (ret) {
8068 mutex_unlock(&dev->struct_mutex);
8069 return;
8070 }
8071
8072 /*
8073 * GPU can automatically power down the render unit if given a page
8074 * to save state.
8075 */
8076 ret = BEGIN_LP_RING(6);
8077 if (ret) {
8078 ironlake_teardown_rc6(dev);
8079 mutex_unlock(&dev->struct_mutex);
8080 return;
8081 }
8082
8083 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8084 OUT_RING(MI_SET_CONTEXT);
8085 OUT_RING(dev_priv->renderctx->gtt_offset |
8086 MI_MM_SPACE_GTT |
8087 MI_SAVE_EXT_STATE_EN |
8088 MI_RESTORE_EXT_STATE_EN |
8089 MI_RESTORE_INHIBIT);
8090 OUT_RING(MI_SUSPEND_FLUSH);
8091 OUT_RING(MI_NOOP);
8092 OUT_RING(MI_FLUSH);
8093 ADVANCE_LP_RING();
8094
8095 /*
8096 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8097 * does an implicit flush, combined with MI_FLUSH above, it should be
8098 * safe to assume that renderctx is valid
8099 */
8100 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8101 if (ret) {
8102 DRM_ERROR("failed to enable ironlake power power savings\n");
8103 ironlake_teardown_rc6(dev);
8104 mutex_unlock(&dev->struct_mutex);
8105 return;
8106 }
8107
8108 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8109 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8110 mutex_unlock(&dev->struct_mutex);
8111 }
8112
8113 void intel_init_clock_gating(struct drm_device *dev)
8114 {
8115 struct drm_i915_private *dev_priv = dev->dev_private;
8116
8117 dev_priv->display.init_clock_gating(dev);
8118
8119 if (dev_priv->display.init_pch_clock_gating)
8120 dev_priv->display.init_pch_clock_gating(dev);
8121 }
8122
8123 /* Set up chip specific display functions */
8124 static void intel_init_display(struct drm_device *dev)
8125 {
8126 struct drm_i915_private *dev_priv = dev->dev_private;
8127
8128 /* We always want a DPMS function */
8129 if (HAS_PCH_SPLIT(dev)) {
8130 dev_priv->display.dpms = ironlake_crtc_dpms;
8131 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8132 dev_priv->display.update_plane = ironlake_update_plane;
8133 } else {
8134 dev_priv->display.dpms = i9xx_crtc_dpms;
8135 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8136 dev_priv->display.update_plane = i9xx_update_plane;
8137 }
8138
8139 if (I915_HAS_FBC(dev)) {
8140 if (HAS_PCH_SPLIT(dev)) {
8141 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8142 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8143 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8144 } else if (IS_GM45(dev)) {
8145 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8146 dev_priv->display.enable_fbc = g4x_enable_fbc;
8147 dev_priv->display.disable_fbc = g4x_disable_fbc;
8148 } else if (IS_CRESTLINE(dev)) {
8149 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8150 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8151 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8152 }
8153 /* 855GM needs testing */
8154 }
8155
8156 /* Returns the core display clock speed */
8157 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
8158 dev_priv->display.get_display_clock_speed =
8159 i945_get_display_clock_speed;
8160 else if (IS_I915G(dev))
8161 dev_priv->display.get_display_clock_speed =
8162 i915_get_display_clock_speed;
8163 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8164 dev_priv->display.get_display_clock_speed =
8165 i9xx_misc_get_display_clock_speed;
8166 else if (IS_I915GM(dev))
8167 dev_priv->display.get_display_clock_speed =
8168 i915gm_get_display_clock_speed;
8169 else if (IS_I865G(dev))
8170 dev_priv->display.get_display_clock_speed =
8171 i865_get_display_clock_speed;
8172 else if (IS_I85X(dev))
8173 dev_priv->display.get_display_clock_speed =
8174 i855_get_display_clock_speed;
8175 else /* 852, 830 */
8176 dev_priv->display.get_display_clock_speed =
8177 i830_get_display_clock_speed;
8178
8179 /* For FIFO watermark updates */
8180 if (HAS_PCH_SPLIT(dev)) {
8181 if (HAS_PCH_IBX(dev))
8182 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8183 else if (HAS_PCH_CPT(dev))
8184 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8185
8186 if (IS_GEN5(dev)) {
8187 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8188 dev_priv->display.update_wm = ironlake_update_wm;
8189 else {
8190 DRM_DEBUG_KMS("Failed to get proper latency. "
8191 "Disable CxSR\n");
8192 dev_priv->display.update_wm = NULL;
8193 }
8194 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8195 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8196 } else if (IS_GEN6(dev)) {
8197 if (SNB_READ_WM0_LATENCY()) {
8198 dev_priv->display.update_wm = sandybridge_update_wm;
8199 } else {
8200 DRM_DEBUG_KMS("Failed to read display plane latency. "
8201 "Disable CxSR\n");
8202 dev_priv->display.update_wm = NULL;
8203 }
8204 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8205 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8206 } else if (IS_IVYBRIDGE(dev)) {
8207 /* FIXME: detect B0+ stepping and use auto training */
8208 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8209 if (SNB_READ_WM0_LATENCY()) {
8210 dev_priv->display.update_wm = sandybridge_update_wm;
8211 } else {
8212 DRM_DEBUG_KMS("Failed to read display plane latency. "
8213 "Disable CxSR\n");
8214 dev_priv->display.update_wm = NULL;
8215 }
8216 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8217
8218 } else
8219 dev_priv->display.update_wm = NULL;
8220 } else if (IS_PINEVIEW(dev)) {
8221 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8222 dev_priv->is_ddr3,
8223 dev_priv->fsb_freq,
8224 dev_priv->mem_freq)) {
8225 DRM_INFO("failed to find known CxSR latency "
8226 "(found ddr%s fsb freq %d, mem freq %d), "
8227 "disabling CxSR\n",
8228 (dev_priv->is_ddr3 == 1) ? "3": "2",
8229 dev_priv->fsb_freq, dev_priv->mem_freq);
8230 /* Disable CxSR and never update its watermark again */
8231 pineview_disable_cxsr(dev);
8232 dev_priv->display.update_wm = NULL;
8233 } else
8234 dev_priv->display.update_wm = pineview_update_wm;
8235 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8236 } else if (IS_G4X(dev)) {
8237 dev_priv->display.update_wm = g4x_update_wm;
8238 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8239 } else if (IS_GEN4(dev)) {
8240 dev_priv->display.update_wm = i965_update_wm;
8241 if (IS_CRESTLINE(dev))
8242 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8243 else if (IS_BROADWATER(dev))
8244 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8245 } else if (IS_GEN3(dev)) {
8246 dev_priv->display.update_wm = i9xx_update_wm;
8247 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8248 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8249 } else if (IS_I865G(dev)) {
8250 dev_priv->display.update_wm = i830_update_wm;
8251 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8252 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8253 } else if (IS_I85X(dev)) {
8254 dev_priv->display.update_wm = i9xx_update_wm;
8255 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8256 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8257 } else {
8258 dev_priv->display.update_wm = i830_update_wm;
8259 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8260 if (IS_845G(dev))
8261 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8262 else
8263 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8264 }
8265
8266 /* Default just returns -ENODEV to indicate unsupported */
8267 dev_priv->display.queue_flip = intel_default_queue_flip;
8268
8269 switch (INTEL_INFO(dev)->gen) {
8270 case 2:
8271 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8272 break;
8273
8274 case 3:
8275 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8276 break;
8277
8278 case 4:
8279 case 5:
8280 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8281 break;
8282
8283 case 6:
8284 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8285 break;
8286 case 7:
8287 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8288 break;
8289 }
8290 }
8291
8292 /*
8293 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8294 * resume, or other times. This quirk makes sure that's the case for
8295 * affected systems.
8296 */
8297 static void quirk_pipea_force (struct drm_device *dev)
8298 {
8299 struct drm_i915_private *dev_priv = dev->dev_private;
8300
8301 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8302 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8303 }
8304
8305 /*
8306 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8307 */
8308 static void quirk_ssc_force_disable(struct drm_device *dev)
8309 {
8310 struct drm_i915_private *dev_priv = dev->dev_private;
8311 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8312 }
8313
8314 struct intel_quirk {
8315 int device;
8316 int subsystem_vendor;
8317 int subsystem_device;
8318 void (*hook)(struct drm_device *dev);
8319 };
8320
8321 struct intel_quirk intel_quirks[] = {
8322 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8323 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8324 /* HP Mini needs pipe A force quirk (LP: #322104) */
8325 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8326
8327 /* Thinkpad R31 needs pipe A force quirk */
8328 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8329 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8330 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8331
8332 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8333 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8334 /* ThinkPad X40 needs pipe A force quirk */
8335
8336 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8337 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8338
8339 /* 855 & before need to leave pipe A & dpll A up */
8340 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8341 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8342
8343 /* Lenovo U160 cannot use SSC on LVDS */
8344 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8345
8346 /* Sony Vaio Y cannot use SSC on LVDS */
8347 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8348 };
8349
8350 static void intel_init_quirks(struct drm_device *dev)
8351 {
8352 struct pci_dev *d = dev->pdev;
8353 int i;
8354
8355 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8356 struct intel_quirk *q = &intel_quirks[i];
8357
8358 if (d->device == q->device &&
8359 (d->subsystem_vendor == q->subsystem_vendor ||
8360 q->subsystem_vendor == PCI_ANY_ID) &&
8361 (d->subsystem_device == q->subsystem_device ||
8362 q->subsystem_device == PCI_ANY_ID))
8363 q->hook(dev);
8364 }
8365 }
8366
8367 /* Disable the VGA plane that we never use */
8368 static void i915_disable_vga(struct drm_device *dev)
8369 {
8370 struct drm_i915_private *dev_priv = dev->dev_private;
8371 u8 sr1;
8372 u32 vga_reg;
8373
8374 if (HAS_PCH_SPLIT(dev))
8375 vga_reg = CPU_VGACNTRL;
8376 else
8377 vga_reg = VGACNTRL;
8378
8379 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8380 outb(1, VGA_SR_INDEX);
8381 sr1 = inb(VGA_SR_DATA);
8382 outb(sr1 | 1<<5, VGA_SR_DATA);
8383 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8384 udelay(300);
8385
8386 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8387 POSTING_READ(vga_reg);
8388 }
8389
8390 void intel_modeset_init(struct drm_device *dev)
8391 {
8392 struct drm_i915_private *dev_priv = dev->dev_private;
8393 int i;
8394
8395 drm_mode_config_init(dev);
8396
8397 dev->mode_config.min_width = 0;
8398 dev->mode_config.min_height = 0;
8399
8400 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8401
8402 intel_init_quirks(dev);
8403
8404 intel_init_display(dev);
8405
8406 if (IS_GEN2(dev)) {
8407 dev->mode_config.max_width = 2048;
8408 dev->mode_config.max_height = 2048;
8409 } else if (IS_GEN3(dev)) {
8410 dev->mode_config.max_width = 4096;
8411 dev->mode_config.max_height = 4096;
8412 } else {
8413 dev->mode_config.max_width = 8192;
8414 dev->mode_config.max_height = 8192;
8415 }
8416 dev->mode_config.fb_base = dev->agp->base;
8417
8418 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8419 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8420
8421 for (i = 0; i < dev_priv->num_pipe; i++) {
8422 intel_crtc_init(dev, i);
8423 }
8424
8425 /* Just disable it once at startup */
8426 i915_disable_vga(dev);
8427 intel_setup_outputs(dev);
8428
8429 intel_init_clock_gating(dev);
8430
8431 if (IS_IRONLAKE_M(dev)) {
8432 ironlake_enable_drps(dev);
8433 intel_init_emon(dev);
8434 }
8435
8436 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8437 gen6_enable_rps(dev_priv);
8438 gen6_update_ring_freq(dev_priv);
8439 }
8440
8441 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8442 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8443 (unsigned long)dev);
8444 }
8445
8446 void intel_modeset_gem_init(struct drm_device *dev)
8447 {
8448 if (IS_IRONLAKE_M(dev))
8449 ironlake_enable_rc6(dev);
8450
8451 intel_setup_overlay(dev);
8452 }
8453
8454 void intel_modeset_cleanup(struct drm_device *dev)
8455 {
8456 struct drm_i915_private *dev_priv = dev->dev_private;
8457 struct drm_crtc *crtc;
8458 struct intel_crtc *intel_crtc;
8459
8460 drm_kms_helper_poll_fini(dev);
8461 mutex_lock(&dev->struct_mutex);
8462
8463 intel_unregister_dsm_handler();
8464
8465
8466 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8467 /* Skip inactive CRTCs */
8468 if (!crtc->fb)
8469 continue;
8470
8471 intel_crtc = to_intel_crtc(crtc);
8472 intel_increase_pllclock(crtc);
8473 }
8474
8475 intel_disable_fbc(dev);
8476
8477 if (IS_IRONLAKE_M(dev))
8478 ironlake_disable_drps(dev);
8479 if (IS_GEN6(dev) || IS_GEN7(dev))
8480 gen6_disable_rps(dev);
8481
8482 if (IS_IRONLAKE_M(dev))
8483 ironlake_disable_rc6(dev);
8484
8485 mutex_unlock(&dev->struct_mutex);
8486
8487 /* Disable the irq before mode object teardown, for the irq might
8488 * enqueue unpin/hotplug work. */
8489 drm_irq_uninstall(dev);
8490 cancel_work_sync(&dev_priv->hotplug_work);
8491
8492 /* flush any delayed tasks or pending work */
8493 flush_scheduled_work();
8494
8495 /* Shut off idle work before the crtcs get freed. */
8496 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8497 intel_crtc = to_intel_crtc(crtc);
8498 del_timer_sync(&intel_crtc->idle_timer);
8499 }
8500 del_timer_sync(&dev_priv->idle_timer);
8501 cancel_work_sync(&dev_priv->idle_work);
8502
8503 drm_mode_config_cleanup(dev);
8504 }
8505
8506 /*
8507 * Return which encoder is currently attached for connector.
8508 */
8509 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8510 {
8511 return &intel_attached_encoder(connector)->base;
8512 }
8513
8514 void intel_connector_attach_encoder(struct intel_connector *connector,
8515 struct intel_encoder *encoder)
8516 {
8517 connector->encoder = encoder;
8518 drm_mode_connector_attach_encoder(&connector->base,
8519 &encoder->base);
8520 }
8521
8522 /*
8523 * set vga decode state - true == enable VGA decode
8524 */
8525 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8526 {
8527 struct drm_i915_private *dev_priv = dev->dev_private;
8528 u16 gmch_ctrl;
8529
8530 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8531 if (state)
8532 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8533 else
8534 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8535 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8536 return 0;
8537 }
8538
8539 #ifdef CONFIG_DEBUG_FS
8540 #include <linux/seq_file.h>
8541
8542 struct intel_display_error_state {
8543 struct intel_cursor_error_state {
8544 u32 control;
8545 u32 position;
8546 u32 base;
8547 u32 size;
8548 } cursor[2];
8549
8550 struct intel_pipe_error_state {
8551 u32 conf;
8552 u32 source;
8553
8554 u32 htotal;
8555 u32 hblank;
8556 u32 hsync;
8557 u32 vtotal;
8558 u32 vblank;
8559 u32 vsync;
8560 } pipe[2];
8561
8562 struct intel_plane_error_state {
8563 u32 control;
8564 u32 stride;
8565 u32 size;
8566 u32 pos;
8567 u32 addr;
8568 u32 surface;
8569 u32 tile_offset;
8570 } plane[2];
8571 };
8572
8573 struct intel_display_error_state *
8574 intel_display_capture_error_state(struct drm_device *dev)
8575 {
8576 drm_i915_private_t *dev_priv = dev->dev_private;
8577 struct intel_display_error_state *error;
8578 int i;
8579
8580 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8581 if (error == NULL)
8582 return NULL;
8583
8584 for (i = 0; i < 2; i++) {
8585 error->cursor[i].control = I915_READ(CURCNTR(i));
8586 error->cursor[i].position = I915_READ(CURPOS(i));
8587 error->cursor[i].base = I915_READ(CURBASE(i));
8588
8589 error->plane[i].control = I915_READ(DSPCNTR(i));
8590 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8591 error->plane[i].size = I915_READ(DSPSIZE(i));
8592 error->plane[i].pos= I915_READ(DSPPOS(i));
8593 error->plane[i].addr = I915_READ(DSPADDR(i));
8594 if (INTEL_INFO(dev)->gen >= 4) {
8595 error->plane[i].surface = I915_READ(DSPSURF(i));
8596 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8597 }
8598
8599 error->pipe[i].conf = I915_READ(PIPECONF(i));
8600 error->pipe[i].source = I915_READ(PIPESRC(i));
8601 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8602 error->pipe[i].hblank = I915_READ(HBLANK(i));
8603 error->pipe[i].hsync = I915_READ(HSYNC(i));
8604 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8605 error->pipe[i].vblank = I915_READ(VBLANK(i));
8606 error->pipe[i].vsync = I915_READ(VSYNC(i));
8607 }
8608
8609 return error;
8610 }
8611
8612 void
8613 intel_display_print_error_state(struct seq_file *m,
8614 struct drm_device *dev,
8615 struct intel_display_error_state *error)
8616 {
8617 int i;
8618
8619 for (i = 0; i < 2; i++) {
8620 seq_printf(m, "Pipe [%d]:\n", i);
8621 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8622 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8623 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8624 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8625 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8626 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8627 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8628 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8629
8630 seq_printf(m, "Plane [%d]:\n", i);
8631 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8632 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8633 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8634 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8635 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8636 if (INTEL_INFO(dev)->gen >= 4) {
8637 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8638 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8639 }
8640
8641 seq_printf(m, "Cursor [%d]:\n", i);
8642 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8643 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8644 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8645 }
8646 }
8647 #endif
This page took 0.363286 seconds and 6 git commands to generate.