Merge tag 'drm-intel-next-2013-09-21-merged' of git://people.freedesktop.org/~danvet...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76
77 WARN_ON(!HAS_PCH_SPLIT(dev));
78
79 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85 if (IS_GEN5(dev)) {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88 } else
89 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93 .dot = { .min = 25000, .max = 350000 },
94 .vco = { .min = 930000, .max = 1400000 },
95 .n = { .min = 3, .max = 16 },
96 .m = { .min = 96, .max = 140 },
97 .m1 = { .min = 18, .max = 26 },
98 .m2 = { .min = 6, .max = 16 },
99 .p = { .min = 4, .max = 128 },
100 .p1 = { .min = 2, .max = 33 },
101 .p2 = { .dot_limit = 165000,
102 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106 .dot = { .min = 25000, .max = 350000 },
107 .vco = { .min = 930000, .max = 1400000 },
108 .n = { .min = 3, .max = 16 },
109 .m = { .min = 96, .max = 140 },
110 .m1 = { .min = 18, .max = 26 },
111 .m2 = { .min = 6, .max = 16 },
112 .p = { .min = 4, .max = 128 },
113 .p1 = { .min = 2, .max = 33 },
114 .p2 = { .dot_limit = 165000,
115 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119 .dot = { .min = 25000, .max = 350000 },
120 .vco = { .min = 930000, .max = 1400000 },
121 .n = { .min = 3, .max = 16 },
122 .m = { .min = 96, .max = 140 },
123 .m1 = { .min = 18, .max = 26 },
124 .m2 = { .min = 6, .max = 16 },
125 .p = { .min = 4, .max = 128 },
126 .p1 = { .min = 1, .max = 6 },
127 .p2 = { .dot_limit = 165000,
128 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132 .dot = { .min = 20000, .max = 400000 },
133 .vco = { .min = 1400000, .max = 2800000 },
134 .n = { .min = 1, .max = 6 },
135 .m = { .min = 70, .max = 120 },
136 .m1 = { .min = 8, .max = 18 },
137 .m2 = { .min = 3, .max = 7 },
138 .p = { .min = 5, .max = 80 },
139 .p1 = { .min = 1, .max = 8 },
140 .p2 = { .dot_limit = 200000,
141 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 8, .max = 18 },
150 .m2 = { .min = 3, .max = 7 },
151 .p = { .min = 7, .max = 98 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 112000,
154 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159 .dot = { .min = 25000, .max = 270000 },
160 .vco = { .min = 1750000, .max = 3500000},
161 .n = { .min = 1, .max = 4 },
162 .m = { .min = 104, .max = 138 },
163 .m1 = { .min = 17, .max = 23 },
164 .m2 = { .min = 5, .max = 11 },
165 .p = { .min = 10, .max = 30 },
166 .p1 = { .min = 1, .max = 3},
167 .p2 = { .dot_limit = 270000,
168 .p2_slow = 10,
169 .p2_fast = 10
170 },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174 .dot = { .min = 22000, .max = 400000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 16, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 5, .max = 80 },
181 .p1 = { .min = 1, .max = 8},
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187 .dot = { .min = 20000, .max = 115000 },
188 .vco = { .min = 1750000, .max = 3500000 },
189 .n = { .min = 1, .max = 3 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 17, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 28, .max = 112 },
194 .p1 = { .min = 2, .max = 8 },
195 .p2 = { .dot_limit = 0,
196 .p2_slow = 14, .p2_fast = 14
197 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201 .dot = { .min = 80000, .max = 224000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 14, .max = 42 },
208 .p1 = { .min = 2, .max = 6 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 7, .p2_fast = 7
211 },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215 .dot = { .min = 20000, .max = 400000},
216 .vco = { .min = 1700000, .max = 3500000 },
217 /* Pineview's Ncounter is a ring counter */
218 .n = { .min = 3, .max = 6 },
219 .m = { .min = 2, .max = 256 },
220 /* Pineview only has one combined m divider, which we treat as m2. */
221 .m1 = { .min = 0, .max = 0 },
222 .m2 = { .min = 0, .max = 254 },
223 .p = { .min = 5, .max = 80 },
224 .p1 = { .min = 1, .max = 8 },
225 .p2 = { .dot_limit = 200000,
226 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230 .dot = { .min = 20000, .max = 400000 },
231 .vco = { .min = 1700000, .max = 3500000 },
232 .n = { .min = 3, .max = 6 },
233 .m = { .min = 2, .max = 256 },
234 .m1 = { .min = 0, .max = 0 },
235 .m2 = { .min = 0, .max = 254 },
236 .p = { .min = 7, .max = 112 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 112000,
239 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243 *
244 * We calculate clock using (register_value + 2) for N/M1/M2, so here
245 * the range value for them is (actual_value - 2).
246 */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248 .dot = { .min = 25000, .max = 350000 },
249 .vco = { .min = 1760000, .max = 3510000 },
250 .n = { .min = 1, .max = 5 },
251 .m = { .min = 79, .max = 127 },
252 .m1 = { .min = 12, .max = 22 },
253 .m2 = { .min = 5, .max = 9 },
254 .p = { .min = 5, .max = 80 },
255 .p1 = { .min = 1, .max = 8 },
256 .p2 = { .dot_limit = 225000,
257 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261 .dot = { .min = 25000, .max = 350000 },
262 .vco = { .min = 1760000, .max = 3510000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 79, .max = 118 },
265 .m1 = { .min = 12, .max = 22 },
266 .m2 = { .min = 5, .max = 9 },
267 .p = { .min = 28, .max = 112 },
268 .p1 = { .min = 2, .max = 8 },
269 .p2 = { .dot_limit = 225000,
270 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 3 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 14, .max = 56 },
281 .p1 = { .min = 2, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 2 },
291 .m = { .min = 79, .max = 126 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 3 },
304 .m = { .min = 79, .max = 126 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 14, .max = 42 },
308 .p1 = { .min = 2, .max = 6 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314 .dot = { .min = 25000, .max = 270000 },
315 .vco = { .min = 4000000, .max = 6000000 },
316 .n = { .min = 1, .max = 7 },
317 .m = { .min = 22, .max = 450 }, /* guess */
318 .m1 = { .min = 2, .max = 3 },
319 .m2 = { .min = 11, .max = 156 },
320 .p = { .min = 10, .max = 30 },
321 .p1 = { .min = 1, .max = 3 },
322 .p2 = { .dot_limit = 270000,
323 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327 .dot = { .min = 25000, .max = 270000 },
328 .vco = { .min = 4000000, .max = 6000000 },
329 .n = { .min = 1, .max = 7 },
330 .m = { .min = 60, .max = 300 }, /* guess */
331 .m1 = { .min = 2, .max = 3 },
332 .m2 = { .min = 11, .max = 156 },
333 .p = { .min = 10, .max = 30 },
334 .p1 = { .min = 2, .max = 3 },
335 .p2 = { .dot_limit = 270000,
336 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340 int refclk)
341 {
342 struct drm_device *dev = crtc->dev;
343 const intel_limit_t *limit;
344
345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346 if (intel_is_dual_link_lvds(dev)) {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_dual_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_dual_lvds;
351 } else {
352 if (refclk == 100000)
353 limit = &intel_limits_ironlake_single_lvds_100m;
354 else
355 limit = &intel_limits_ironlake_single_lvds;
356 }
357 } else
358 limit = &intel_limits_ironlake_dac;
359
360 return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365 struct drm_device *dev = crtc->dev;
366 const intel_limit_t *limit;
367
368 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369 if (intel_is_dual_link_lvds(dev))
370 limit = &intel_limits_g4x_dual_channel_lvds;
371 else
372 limit = &intel_limits_g4x_single_channel_lvds;
373 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375 limit = &intel_limits_g4x_hdmi;
376 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377 limit = &intel_limits_g4x_sdvo;
378 } else /* The option is for other outputs */
379 limit = &intel_limits_i9xx_sdvo;
380
381 return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386 struct drm_device *dev = crtc->dev;
387 const intel_limit_t *limit;
388
389 if (HAS_PCH_SPLIT(dev))
390 limit = intel_ironlake_limit(crtc, refclk);
391 else if (IS_G4X(dev)) {
392 limit = intel_g4x_limit(crtc);
393 } else if (IS_PINEVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395 limit = &intel_limits_pineview_lvds;
396 else
397 limit = &intel_limits_pineview_sdvo;
398 } else if (IS_VALLEYVIEW(dev)) {
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400 limit = &intel_limits_vlv_dac;
401 else
402 limit = &intel_limits_vlv_hdmi;
403 } else if (!IS_GEN2(dev)) {
404 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
405 limit = &intel_limits_i9xx_lvds;
406 else
407 limit = &intel_limits_i9xx_sdvo;
408 } else {
409 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
410 limit = &intel_limits_i8xx_lvds;
411 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
412 limit = &intel_limits_i8xx_dvo;
413 else
414 limit = &intel_limits_i8xx_dac;
415 }
416 return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422 clock->m = clock->m2 + 2;
423 clock->p = clock->p1 * clock->p2;
424 clock->vco = refclk * clock->m / clock->n;
425 clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435 clock->m = i9xx_dpll_compute_m(clock);
436 clock->p = clock->p1 * clock->p2;
437 clock->vco = refclk * clock->m / (clock->n + 2);
438 clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442 * Returns whether any output on the specified pipe is of the specified type
443 */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446 struct drm_device *dev = crtc->dev;
447 struct intel_encoder *encoder;
448
449 for_each_encoder_on_crtc(dev, crtc, encoder)
450 if (encoder->type == type)
451 return true;
452
453 return false;
454 }
455
456 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465 {
466 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
467 INTELPllInvalid("p1 out of range\n");
468 if (clock->p < limit->p.min || limit->p.max < clock->p)
469 INTELPllInvalid("p out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475 INTELPllInvalid("m1 <= m2\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 if (clock->n < limit->n.min || limit->n.max < clock->n)
479 INTELPllInvalid("n out of range\n");
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674 u32 m, n, fastclk;
675 u32 updrate, minupdate, p;
676 unsigned long bestppm, ppm, absppm;
677 int dotclk, flag;
678
679 flag = 0;
680 dotclk = target * 1000;
681 bestppm = 1000000;
682 ppm = absppm = 0;
683 fastclk = dotclk / (2*100);
684 updrate = 0;
685 minupdate = 19200;
686 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
687 bestm1 = bestm2 = bestp1 = bestp2 = 0;
688
689 /* based on hardware requirement, prefer smaller n to precision */
690 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
691 updrate = refclk / n;
692 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
693 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
694 if (p2 > 10)
695 p2 = p2 - 1;
696 p = p1 * p2;
697 /* based on hardware requirement, prefer bigger m1,m2 values */
698 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
699 m2 = (((2*(fastclk * p * n / m1 )) +
700 refclk) / (2*refclk));
701 m = m1 * m2;
702 vco = updrate * m;
703 if (vco >= limit->vco.min && vco < limit->vco.max) {
704 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
705 absppm = (ppm > 0) ? ppm : (-ppm);
706 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
707 bestppm = 0;
708 flag = 1;
709 }
710 if (absppm < bestppm - 10) {
711 bestppm = absppm;
712 flag = 1;
713 }
714 if (flag) {
715 bestn = n;
716 bestm1 = m1;
717 bestm2 = m2;
718 bestp1 = p1;
719 bestp2 = p2;
720 flag = 0;
721 }
722 }
723 }
724 }
725 }
726 }
727 best_clock->n = bestn;
728 best_clock->m1 = bestm1;
729 best_clock->m2 = bestm2;
730 best_clock->p1 = bestp1;
731 best_clock->p2 = bestp2;
732
733 return true;
734 }
735
736 bool intel_crtc_active(struct drm_crtc *crtc)
737 {
738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
739
740 /* Be paranoid as we can arrive here with only partial
741 * state retrieved from the hardware during setup.
742 *
743 * We can ditch the adjusted_mode.clock check as soon
744 * as Haswell has gained clock readout/fastboot support.
745 *
746 * We can ditch the crtc->fb check as soon as we can
747 * properly reconstruct framebuffers.
748 */
749 return intel_crtc->active && crtc->fb &&
750 intel_crtc->config.adjusted_mode.clock;
751 }
752
753 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
754 enum pipe pipe)
755 {
756 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758
759 return intel_crtc->config.cpu_transcoder;
760 }
761
762 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765 u32 frame, frame_reg = PIPEFRAME(pipe);
766
767 frame = I915_READ(frame_reg);
768
769 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
770 DRM_DEBUG_KMS("vblank wait timed out\n");
771 }
772
773 /**
774 * intel_wait_for_vblank - wait for vblank on a given pipe
775 * @dev: drm device
776 * @pipe: pipe to wait for
777 *
778 * Wait for vblank to occur on a given pipe. Needed for various bits of
779 * mode setting code.
780 */
781 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 int pipestat_reg = PIPESTAT(pipe);
785
786 if (INTEL_INFO(dev)->gen >= 5) {
787 ironlake_wait_for_vblank(dev, pipe);
788 return;
789 }
790
791 /* Clear existing vblank status. Note this will clear any other
792 * sticky status fields as well.
793 *
794 * This races with i915_driver_irq_handler() with the result
795 * that either function could miss a vblank event. Here it is not
796 * fatal, as we will either wait upon the next vblank interrupt or
797 * timeout. Generally speaking intel_wait_for_vblank() is only
798 * called during modeset at which time the GPU should be idle and
799 * should *not* be performing page flips and thus not waiting on
800 * vblanks...
801 * Currently, the result of us stealing a vblank from the irq
802 * handler is that a single frame will be skipped during swapbuffers.
803 */
804 I915_WRITE(pipestat_reg,
805 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
806
807 /* Wait for vblank interrupt bit to set */
808 if (wait_for(I915_READ(pipestat_reg) &
809 PIPE_VBLANK_INTERRUPT_STATUS,
810 50))
811 DRM_DEBUG_KMS("vblank wait timed out\n");
812 }
813
814 /*
815 * intel_wait_for_pipe_off - wait for pipe to turn off
816 * @dev: drm device
817 * @pipe: pipe to wait for
818 *
819 * After disabling a pipe, we can't wait for vblank in the usual way,
820 * spinning on the vblank interrupt status bit, since we won't actually
821 * see an interrupt when the pipe is disabled.
822 *
823 * On Gen4 and above:
824 * wait for the pipe register state bit to turn off
825 *
826 * Otherwise:
827 * wait for the display line value to settle (it usually
828 * ends up stopping at the start of the next frame).
829 *
830 */
831 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
832 {
833 struct drm_i915_private *dev_priv = dev->dev_private;
834 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
835 pipe);
836
837 if (INTEL_INFO(dev)->gen >= 4) {
838 int reg = PIPECONF(cpu_transcoder);
839
840 /* Wait for the Pipe State to go off */
841 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
842 100))
843 WARN(1, "pipe_off wait timed out\n");
844 } else {
845 u32 last_line, line_mask;
846 int reg = PIPEDSL(pipe);
847 unsigned long timeout = jiffies + msecs_to_jiffies(100);
848
849 if (IS_GEN2(dev))
850 line_mask = DSL_LINEMASK_GEN2;
851 else
852 line_mask = DSL_LINEMASK_GEN3;
853
854 /* Wait for the display line to settle */
855 do {
856 last_line = I915_READ(reg) & line_mask;
857 mdelay(5);
858 } while (((I915_READ(reg) & line_mask) != last_line) &&
859 time_after(timeout, jiffies));
860 if (time_after(jiffies, timeout))
861 WARN(1, "pipe_off wait timed out\n");
862 }
863 }
864
865 /*
866 * ibx_digital_port_connected - is the specified port connected?
867 * @dev_priv: i915 private structure
868 * @port: the port to test
869 *
870 * Returns true if @port is connected, false otherwise.
871 */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873 struct intel_digital_port *port)
874 {
875 u32 bit;
876
877 if (HAS_PCH_IBX(dev_priv->dev)) {
878 switch(port->port) {
879 case PORT_B:
880 bit = SDE_PORTB_HOTPLUG;
881 break;
882 case PORT_C:
883 bit = SDE_PORTC_HOTPLUG;
884 break;
885 case PORT_D:
886 bit = SDE_PORTD_HOTPLUG;
887 break;
888 default:
889 return true;
890 }
891 } else {
892 switch(port->port) {
893 case PORT_B:
894 bit = SDE_PORTB_HOTPLUG_CPT;
895 break;
896 case PORT_C:
897 bit = SDE_PORTC_HOTPLUG_CPT;
898 break;
899 case PORT_D:
900 bit = SDE_PORTD_HOTPLUG_CPT;
901 break;
902 default:
903 return true;
904 }
905 }
906
907 return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912 return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917 enum pipe pipe, bool state)
918 {
919 int reg;
920 u32 val;
921 bool cur_state;
922
923 reg = DPLL(pipe);
924 val = I915_READ(reg);
925 cur_state = !!(val & DPLL_VCO_ENABLE);
926 WARN(cur_state != state,
927 "PLL state assertion failure (expected %s, current %s)\n",
928 state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934 u32 val;
935 bool cur_state;
936
937 mutex_lock(&dev_priv->dpio_lock);
938 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939 mutex_unlock(&dev_priv->dpio_lock);
940
941 cur_state = val & DSI_PLL_VCO_EN;
942 WARN(cur_state != state,
943 "DSI PLL state assertion failure (expected %s, current %s)\n",
944 state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954 if (crtc->config.shared_dpll < 0)
955 return NULL;
956
957 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962 struct intel_shared_dpll *pll,
963 bool state)
964 {
965 bool cur_state;
966 struct intel_dpll_hw_state hw_state;
967
968 if (HAS_PCH_LPT(dev_priv->dev)) {
969 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970 return;
971 }
972
973 if (WARN (!pll,
974 "asserting DPLL %s with no DPLL\n", state_string(state)))
975 return;
976
977 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978 WARN(cur_state != state,
979 "%s assertion failure (expected %s, current %s)\n",
980 pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984 enum pipe pipe, bool state)
985 {
986 int reg;
987 u32 val;
988 bool cur_state;
989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990 pipe);
991
992 if (HAS_DDI(dev_priv->dev)) {
993 /* DDI does not have a specific FDI_TX register */
994 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995 val = I915_READ(reg);
996 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997 } else {
998 reg = FDI_TX_CTL(pipe);
999 val = I915_READ(reg);
1000 cur_state = !!(val & FDI_TX_ENABLE);
1001 }
1002 WARN(cur_state != state,
1003 "FDI TX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010 enum pipe pipe, bool state)
1011 {
1012 int reg;
1013 u32 val;
1014 bool cur_state;
1015
1016 reg = FDI_RX_CTL(pipe);
1017 val = I915_READ(reg);
1018 cur_state = !!(val & FDI_RX_ENABLE);
1019 WARN(cur_state != state,
1020 "FDI RX state assertion failure (expected %s, current %s)\n",
1021 state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 int reg;
1030 u32 val;
1031
1032 /* ILK FDI PLL is always enabled */
1033 if (dev_priv->info->gen == 5)
1034 return;
1035
1036 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037 if (HAS_DDI(dev_priv->dev))
1038 return;
1039
1040 reg = FDI_TX_CTL(pipe);
1041 val = I915_READ(reg);
1042 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = FDI_RX_CTL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055 WARN(cur_state != state,
1056 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061 enum pipe pipe)
1062 {
1063 int pp_reg, lvds_reg;
1064 u32 val;
1065 enum pipe panel_pipe = PIPE_A;
1066 bool locked = true;
1067
1068 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069 pp_reg = PCH_PP_CONTROL;
1070 lvds_reg = PCH_LVDS;
1071 } else {
1072 pp_reg = PP_CONTROL;
1073 lvds_reg = LVDS;
1074 }
1075
1076 val = I915_READ(pp_reg);
1077 if (!(val & PANEL_POWER_ON) ||
1078 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079 locked = false;
1080
1081 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082 panel_pipe = PIPE_B;
1083
1084 WARN(panel_pipe == pipe && locked,
1085 "panel assertion failure, pipe %c regs locked\n",
1086 pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, bool state)
1091 {
1092 struct drm_device *dev = dev_priv->dev;
1093 bool cur_state;
1094
1095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097 else if (IS_845G(dev) || IS_I865G(dev))
1098 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099 else
1100 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102 WARN(cur_state != state,
1103 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104 pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110 enum pipe pipe, bool state)
1111 {
1112 int reg;
1113 u32 val;
1114 bool cur_state;
1115 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116 pipe);
1117
1118 /* if we need the pipe A quirk it must be always on */
1119 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120 state = true;
1121
1122 if (!intel_display_power_enabled(dev_priv->dev,
1123 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124 cur_state = false;
1125 } else {
1126 reg = PIPECONF(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & PIPECONF_ENABLE);
1129 }
1130
1131 WARN(cur_state != state,
1132 "pipe %c assertion failure (expected %s, current %s)\n",
1133 pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137 enum plane plane, bool state)
1138 {
1139 int reg;
1140 u32 val;
1141 bool cur_state;
1142
1143 reg = DSPCNTR(plane);
1144 val = I915_READ(reg);
1145 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146 WARN(cur_state != state,
1147 "plane %c assertion failure (expected %s, current %s)\n",
1148 plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156 {
1157 struct drm_device *dev = dev_priv->dev;
1158 int reg, i;
1159 u32 val;
1160 int cur_pipe;
1161
1162 /* Primary planes are fixed to pipes on gen4+ */
1163 if (INTEL_INFO(dev)->gen >= 4) {
1164 reg = DSPCNTR(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & DISPLAY_PLANE_ENABLE),
1167 "plane %c assertion failure, should be disabled but not\n",
1168 plane_name(pipe));
1169 return;
1170 }
1171
1172 /* Need to check both planes against the pipe */
1173 for_each_pipe(i) {
1174 reg = DSPCNTR(i);
1175 val = I915_READ(reg);
1176 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177 DISPPLANE_SEL_PIPE_SHIFT;
1178 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180 plane_name(i), pipe_name(pipe));
1181 }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186 {
1187 struct drm_device *dev = dev_priv->dev;
1188 int reg, i;
1189 u32 val;
1190
1191 if (IS_VALLEYVIEW(dev)) {
1192 for (i = 0; i < dev_priv->num_plane; i++) {
1193 reg = SPCNTR(pipe, i);
1194 val = I915_READ(reg);
1195 WARN((val & SP_ENABLE),
1196 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197 sprite_name(pipe, i), pipe_name(pipe));
1198 }
1199 } else if (INTEL_INFO(dev)->gen >= 7) {
1200 reg = SPRCTL(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & SPRITE_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 } else if (INTEL_INFO(dev)->gen >= 5) {
1206 reg = DVSCNTR(pipe);
1207 val = I915_READ(reg);
1208 WARN((val & DVS_ENABLE),
1209 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210 plane_name(pipe), pipe_name(pipe));
1211 }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216 u32 val;
1217 bool enabled;
1218
1219 if (HAS_PCH_LPT(dev_priv->dev)) {
1220 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221 return;
1222 }
1223
1224 val = I915_READ(PCH_DREF_CONTROL);
1225 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226 DREF_SUPERSPREAD_SOURCE_MASK));
1227 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231 enum pipe pipe)
1232 {
1233 int reg;
1234 u32 val;
1235 bool enabled;
1236
1237 reg = PCH_TRANSCONF(pipe);
1238 val = I915_READ(reg);
1239 enabled = !!(val & TRANS_ENABLE);
1240 WARN(enabled,
1241 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248 if ((val & DP_PORT_EN) == 0)
1249 return false;
1250
1251 if (HAS_PCH_CPT(dev_priv->dev)) {
1252 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255 return false;
1256 } else {
1257 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258 return false;
1259 }
1260 return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, u32 val)
1265 {
1266 if ((val & SDVO_ENABLE) == 0)
1267 return false;
1268
1269 if (HAS_PCH_CPT(dev_priv->dev)) {
1270 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271 return false;
1272 } else {
1273 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274 return false;
1275 }
1276 return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, u32 val)
1281 {
1282 if ((val & LVDS_PORT_EN) == 0)
1283 return false;
1284
1285 if (HAS_PCH_CPT(dev_priv->dev)) {
1286 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287 return false;
1288 } else {
1289 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290 return false;
1291 }
1292 return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, u32 val)
1297 {
1298 if ((val & ADPA_DAC_ENABLE) == 0)
1299 return false;
1300 if (HAS_PCH_CPT(dev_priv->dev)) {
1301 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302 return false;
1303 } else {
1304 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe, int reg, u32 port_sel)
1312 {
1313 u32 val = I915_READ(reg);
1314 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316 reg, pipe_name(pipe));
1317
1318 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319 && (val & DP_PIPEB_SELECT),
1320 "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, int reg)
1325 {
1326 u32 val = I915_READ(reg);
1327 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329 reg, pipe_name(pipe));
1330
1331 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332 && (val & SDVO_PIPE_B_SELECT),
1333 "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe)
1338 {
1339 int reg;
1340 u32 val;
1341
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346 reg = PCH_ADPA;
1347 val = I915_READ(reg);
1348 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349 "PCH VGA enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 reg = PCH_LVDS;
1353 val = I915_READ(reg);
1354 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356 pipe_name(pipe));
1357
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void vlv_enable_pll(struct intel_crtc *crtc)
1364 {
1365 struct drm_device *dev = crtc->base.dev;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 int reg = DPLL(crtc->pipe);
1368 u32 dpll = crtc->config.dpll_hw_state.dpll;
1369
1370 assert_pipe_disabled(dev_priv, crtc->pipe);
1371
1372 /* No really, not for ILK+ */
1373 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1374
1375 /* PLL is protected by panel, make sure we can write it */
1376 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1377 assert_panel_unlocked(dev_priv, crtc->pipe);
1378
1379 I915_WRITE(reg, dpll);
1380 POSTING_READ(reg);
1381 udelay(150);
1382
1383 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1384 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1385
1386 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1387 POSTING_READ(DPLL_MD(crtc->pipe));
1388
1389 /* We do this three times for luck */
1390 I915_WRITE(reg, dpll);
1391 POSTING_READ(reg);
1392 udelay(150); /* wait for warmup */
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150); /* wait for warmup */
1396 I915_WRITE(reg, dpll);
1397 POSTING_READ(reg);
1398 udelay(150); /* wait for warmup */
1399 }
1400
1401 static void i9xx_enable_pll(struct intel_crtc *crtc)
1402 {
1403 struct drm_device *dev = crtc->base.dev;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int reg = DPLL(crtc->pipe);
1406 u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408 assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410 /* No really, not for ILK+ */
1411 BUG_ON(dev_priv->info->gen >= 5);
1412
1413 /* PLL is protected by panel, make sure we can write it */
1414 if (IS_MOBILE(dev) && !IS_I830(dev))
1415 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417 I915_WRITE(reg, dpll);
1418
1419 /* Wait for the clocks to stabilize. */
1420 POSTING_READ(reg);
1421 udelay(150);
1422
1423 if (INTEL_INFO(dev)->gen >= 4) {
1424 I915_WRITE(DPLL_MD(crtc->pipe),
1425 crtc->config.dpll_hw_state.dpll_md);
1426 } else {
1427 /* The pixel multiplier can only be updated once the
1428 * DPLL is enabled and the clocks are stable.
1429 *
1430 * So write it again.
1431 */
1432 I915_WRITE(reg, dpll);
1433 }
1434
1435 /* We do this three times for luck */
1436 I915_WRITE(reg, dpll);
1437 POSTING_READ(reg);
1438 udelay(150); /* wait for warmup */
1439 I915_WRITE(reg, dpll);
1440 POSTING_READ(reg);
1441 udelay(150); /* wait for warmup */
1442 I915_WRITE(reg, dpll);
1443 POSTING_READ(reg);
1444 udelay(150); /* wait for warmup */
1445 }
1446
1447 /**
1448 * i9xx_disable_pll - disable a PLL
1449 * @dev_priv: i915 private structure
1450 * @pipe: pipe PLL to disable
1451 *
1452 * Disable the PLL for @pipe, making sure the pipe is off first.
1453 *
1454 * Note! This is for pre-ILK only.
1455 */
1456 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458 /* Don't disable pipe A or pipe A PLLs if needed */
1459 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1460 return;
1461
1462 /* Make sure the pipe isn't still relying on us */
1463 assert_pipe_disabled(dev_priv, pipe);
1464
1465 I915_WRITE(DPLL(pipe), 0);
1466 POSTING_READ(DPLL(pipe));
1467 }
1468
1469 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1470 {
1471 u32 port_mask;
1472
1473 if (!port)
1474 port_mask = DPLL_PORTB_READY_MASK;
1475 else
1476 port_mask = DPLL_PORTC_READY_MASK;
1477
1478 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1479 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1480 'B' + port, I915_READ(DPLL(0)));
1481 }
1482
1483 /**
1484 * ironlake_enable_shared_dpll - enable PCH PLL
1485 * @dev_priv: i915 private structure
1486 * @pipe: pipe PLL to enable
1487 *
1488 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1489 * drives the transcoder clock.
1490 */
1491 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1492 {
1493 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1494 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1495
1496 /* PCH PLLs only available on ILK, SNB and IVB */
1497 BUG_ON(dev_priv->info->gen < 5);
1498 if (WARN_ON(pll == NULL))
1499 return;
1500
1501 if (WARN_ON(pll->refcount == 0))
1502 return;
1503
1504 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1505 pll->name, pll->active, pll->on,
1506 crtc->base.base.id);
1507
1508 if (pll->active++) {
1509 WARN_ON(!pll->on);
1510 assert_shared_dpll_enabled(dev_priv, pll);
1511 return;
1512 }
1513 WARN_ON(pll->on);
1514
1515 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1516 pll->enable(dev_priv, pll);
1517 pll->on = true;
1518 }
1519
1520 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1521 {
1522 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1523 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1524
1525 /* PCH only available on ILK+ */
1526 BUG_ON(dev_priv->info->gen < 5);
1527 if (WARN_ON(pll == NULL))
1528 return;
1529
1530 if (WARN_ON(pll->refcount == 0))
1531 return;
1532
1533 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1534 pll->name, pll->active, pll->on,
1535 crtc->base.base.id);
1536
1537 if (WARN_ON(pll->active == 0)) {
1538 assert_shared_dpll_disabled(dev_priv, pll);
1539 return;
1540 }
1541
1542 assert_shared_dpll_enabled(dev_priv, pll);
1543 WARN_ON(!pll->on);
1544 if (--pll->active)
1545 return;
1546
1547 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1548 pll->disable(dev_priv, pll);
1549 pll->on = false;
1550 }
1551
1552 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553 enum pipe pipe)
1554 {
1555 struct drm_device *dev = dev_priv->dev;
1556 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1558 uint32_t reg, val, pipeconf_val;
1559
1560 /* PCH only available on ILK+ */
1561 BUG_ON(dev_priv->info->gen < 5);
1562
1563 /* Make sure PCH DPLL is enabled */
1564 assert_shared_dpll_enabled(dev_priv,
1565 intel_crtc_to_shared_dpll(intel_crtc));
1566
1567 /* FDI must be feeding us bits for PCH ports */
1568 assert_fdi_tx_enabled(dev_priv, pipe);
1569 assert_fdi_rx_enabled(dev_priv, pipe);
1570
1571 if (HAS_PCH_CPT(dev)) {
1572 /* Workaround: Set the timing override bit before enabling the
1573 * pch transcoder. */
1574 reg = TRANS_CHICKEN2(pipe);
1575 val = I915_READ(reg);
1576 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1577 I915_WRITE(reg, val);
1578 }
1579
1580 reg = PCH_TRANSCONF(pipe);
1581 val = I915_READ(reg);
1582 pipeconf_val = I915_READ(PIPECONF(pipe));
1583
1584 if (HAS_PCH_IBX(dev_priv->dev)) {
1585 /*
1586 * make the BPC in transcoder be consistent with
1587 * that in pipeconf reg.
1588 */
1589 val &= ~PIPECONF_BPC_MASK;
1590 val |= pipeconf_val & PIPECONF_BPC_MASK;
1591 }
1592
1593 val &= ~TRANS_INTERLACE_MASK;
1594 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1595 if (HAS_PCH_IBX(dev_priv->dev) &&
1596 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1597 val |= TRANS_LEGACY_INTERLACED_ILK;
1598 else
1599 val |= TRANS_INTERLACED;
1600 else
1601 val |= TRANS_PROGRESSIVE;
1602
1603 I915_WRITE(reg, val | TRANS_ENABLE);
1604 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1605 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1606 }
1607
1608 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1609 enum transcoder cpu_transcoder)
1610 {
1611 u32 val, pipeconf_val;
1612
1613 /* PCH only available on ILK+ */
1614 BUG_ON(dev_priv->info->gen < 5);
1615
1616 /* FDI must be feeding us bits for PCH ports */
1617 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1618 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1619
1620 /* Workaround: set timing override bit. */
1621 val = I915_READ(_TRANSA_CHICKEN2);
1622 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623 I915_WRITE(_TRANSA_CHICKEN2, val);
1624
1625 val = TRANS_ENABLE;
1626 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1627
1628 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1629 PIPECONF_INTERLACED_ILK)
1630 val |= TRANS_INTERLACED;
1631 else
1632 val |= TRANS_PROGRESSIVE;
1633
1634 I915_WRITE(LPT_TRANSCONF, val);
1635 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1636 DRM_ERROR("Failed to enable PCH transcoder\n");
1637 }
1638
1639 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1640 enum pipe pipe)
1641 {
1642 struct drm_device *dev = dev_priv->dev;
1643 uint32_t reg, val;
1644
1645 /* FDI relies on the transcoder */
1646 assert_fdi_tx_disabled(dev_priv, pipe);
1647 assert_fdi_rx_disabled(dev_priv, pipe);
1648
1649 /* Ports must be off as well */
1650 assert_pch_ports_disabled(dev_priv, pipe);
1651
1652 reg = PCH_TRANSCONF(pipe);
1653 val = I915_READ(reg);
1654 val &= ~TRANS_ENABLE;
1655 I915_WRITE(reg, val);
1656 /* wait for PCH transcoder off, transcoder state */
1657 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1658 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1659
1660 if (!HAS_PCH_IBX(dev)) {
1661 /* Workaround: Clear the timing override chicken bit again. */
1662 reg = TRANS_CHICKEN2(pipe);
1663 val = I915_READ(reg);
1664 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1665 I915_WRITE(reg, val);
1666 }
1667 }
1668
1669 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1670 {
1671 u32 val;
1672
1673 val = I915_READ(LPT_TRANSCONF);
1674 val &= ~TRANS_ENABLE;
1675 I915_WRITE(LPT_TRANSCONF, val);
1676 /* wait for PCH transcoder off, transcoder state */
1677 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1678 DRM_ERROR("Failed to disable PCH transcoder\n");
1679
1680 /* Workaround: clear timing override bit. */
1681 val = I915_READ(_TRANSA_CHICKEN2);
1682 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1683 I915_WRITE(_TRANSA_CHICKEN2, val);
1684 }
1685
1686 /**
1687 * intel_enable_pipe - enable a pipe, asserting requirements
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe to enable
1690 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1691 *
1692 * Enable @pipe, making sure that various hardware specific requirements
1693 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1694 *
1695 * @pipe should be %PIPE_A or %PIPE_B.
1696 *
1697 * Will wait until the pipe is actually running (i.e. first vblank) before
1698 * returning.
1699 */
1700 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1701 bool pch_port, bool dsi)
1702 {
1703 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1704 pipe);
1705 enum pipe pch_transcoder;
1706 int reg;
1707 u32 val;
1708
1709 assert_planes_disabled(dev_priv, pipe);
1710 assert_cursor_disabled(dev_priv, pipe);
1711 assert_sprites_disabled(dev_priv, pipe);
1712
1713 if (HAS_PCH_LPT(dev_priv->dev))
1714 pch_transcoder = TRANSCODER_A;
1715 else
1716 pch_transcoder = pipe;
1717
1718 /*
1719 * A pipe without a PLL won't actually be able to drive bits from
1720 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1721 * need the check.
1722 */
1723 if (!HAS_PCH_SPLIT(dev_priv->dev))
1724 if (dsi)
1725 assert_dsi_pll_enabled(dev_priv);
1726 else
1727 assert_pll_enabled(dev_priv, pipe);
1728 else {
1729 if (pch_port) {
1730 /* if driving the PCH, we need FDI enabled */
1731 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1732 assert_fdi_tx_pll_enabled(dev_priv,
1733 (enum pipe) cpu_transcoder);
1734 }
1735 /* FIXME: assert CPU port conditions for SNB+ */
1736 }
1737
1738 reg = PIPECONF(cpu_transcoder);
1739 val = I915_READ(reg);
1740 if (val & PIPECONF_ENABLE)
1741 return;
1742
1743 I915_WRITE(reg, val | PIPECONF_ENABLE);
1744 intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748 * intel_disable_pipe - disable a pipe, asserting requirements
1749 * @dev_priv: i915 private structure
1750 * @pipe: pipe to disable
1751 *
1752 * Disable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe has shut down before returning.
1758 */
1759 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1760 enum pipe pipe)
1761 {
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 int reg;
1765 u32 val;
1766
1767 /*
1768 * Make sure planes won't keep trying to pump pixels to us,
1769 * or we might hang the display.
1770 */
1771 assert_planes_disabled(dev_priv, pipe);
1772 assert_cursor_disabled(dev_priv, pipe);
1773 assert_sprites_disabled(dev_priv, pipe);
1774
1775 /* Don't disable pipe A or pipe A PLLs if needed */
1776 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1777 return;
1778
1779 reg = PIPECONF(cpu_transcoder);
1780 val = I915_READ(reg);
1781 if ((val & PIPECONF_ENABLE) == 0)
1782 return;
1783
1784 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1785 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1786 }
1787
1788 /*
1789 * Plane regs are double buffered, going from enabled->disabled needs a
1790 * trigger in order to latch. The display address reg provides this.
1791 */
1792 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1793 enum plane plane)
1794 {
1795 if (dev_priv->info->gen >= 4)
1796 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1797 else
1798 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1799 }
1800
1801 /**
1802 * intel_enable_plane - enable a display plane on a given pipe
1803 * @dev_priv: i915 private structure
1804 * @plane: plane to enable
1805 * @pipe: pipe being fed
1806 *
1807 * Enable @plane on @pipe, making sure that @pipe is running first.
1808 */
1809 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1810 enum plane plane, enum pipe pipe)
1811 {
1812 int reg;
1813 u32 val;
1814
1815 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1816 assert_pipe_enabled(dev_priv, pipe);
1817
1818 reg = DSPCNTR(plane);
1819 val = I915_READ(reg);
1820 if (val & DISPLAY_PLANE_ENABLE)
1821 return;
1822
1823 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1824 intel_flush_display_plane(dev_priv, plane);
1825 intel_wait_for_vblank(dev_priv->dev, pipe);
1826 }
1827
1828 /**
1829 * intel_disable_plane - disable a display plane
1830 * @dev_priv: i915 private structure
1831 * @plane: plane to disable
1832 * @pipe: pipe consuming the data
1833 *
1834 * Disable @plane; should be an independent operation.
1835 */
1836 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1837 enum plane plane, enum pipe pipe)
1838 {
1839 int reg;
1840 u32 val;
1841
1842 reg = DSPCNTR(plane);
1843 val = I915_READ(reg);
1844 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1845 return;
1846
1847 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1848 intel_flush_display_plane(dev_priv, plane);
1849 intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 static bool need_vtd_wa(struct drm_device *dev)
1853 {
1854 #ifdef CONFIG_INTEL_IOMMU
1855 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1856 return true;
1857 #endif
1858 return false;
1859 }
1860
1861 int
1862 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1863 struct drm_i915_gem_object *obj,
1864 struct intel_ring_buffer *pipelined)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 u32 alignment;
1868 int ret;
1869
1870 switch (obj->tiling_mode) {
1871 case I915_TILING_NONE:
1872 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1873 alignment = 128 * 1024;
1874 else if (INTEL_INFO(dev)->gen >= 4)
1875 alignment = 4 * 1024;
1876 else
1877 alignment = 64 * 1024;
1878 break;
1879 case I915_TILING_X:
1880 /* pin() will align the object as required by fence */
1881 alignment = 0;
1882 break;
1883 case I915_TILING_Y:
1884 /* Despite that we check this in framebuffer_init userspace can
1885 * screw us over and change the tiling after the fact. Only
1886 * pinned buffers can't change their tiling. */
1887 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1888 return -EINVAL;
1889 default:
1890 BUG();
1891 }
1892
1893 /* Note that the w/a also requires 64 PTE of padding following the
1894 * bo. We currently fill all unused PTE with the shadow page and so
1895 * we should always have valid PTE following the scanout preventing
1896 * the VT-d warning.
1897 */
1898 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1899 alignment = 256 * 1024;
1900
1901 dev_priv->mm.interruptible = false;
1902 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1903 if (ret)
1904 goto err_interruptible;
1905
1906 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1907 * fence, whereas 965+ only requires a fence if using
1908 * framebuffer compression. For simplicity, we always install
1909 * a fence as the cost is not that onerous.
1910 */
1911 ret = i915_gem_object_get_fence(obj);
1912 if (ret)
1913 goto err_unpin;
1914
1915 i915_gem_object_pin_fence(obj);
1916
1917 dev_priv->mm.interruptible = true;
1918 return 0;
1919
1920 err_unpin:
1921 i915_gem_object_unpin_from_display_plane(obj);
1922 err_interruptible:
1923 dev_priv->mm.interruptible = true;
1924 return ret;
1925 }
1926
1927 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1928 {
1929 i915_gem_object_unpin_fence(obj);
1930 i915_gem_object_unpin_from_display_plane(obj);
1931 }
1932
1933 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1934 * is assumed to be a power-of-two. */
1935 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1936 unsigned int tiling_mode,
1937 unsigned int cpp,
1938 unsigned int pitch)
1939 {
1940 if (tiling_mode != I915_TILING_NONE) {
1941 unsigned int tile_rows, tiles;
1942
1943 tile_rows = *y / 8;
1944 *y %= 8;
1945
1946 tiles = *x / (512/cpp);
1947 *x %= 512/cpp;
1948
1949 return tile_rows * pitch * 8 + tiles * 4096;
1950 } else {
1951 unsigned int offset;
1952
1953 offset = *y * pitch + *x * cpp;
1954 *y = 0;
1955 *x = (offset & 4095) / cpp;
1956 return offset & -4096;
1957 }
1958 }
1959
1960 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1961 int x, int y)
1962 {
1963 struct drm_device *dev = crtc->dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 struct intel_framebuffer *intel_fb;
1967 struct drm_i915_gem_object *obj;
1968 int plane = intel_crtc->plane;
1969 unsigned long linear_offset;
1970 u32 dspcntr;
1971 u32 reg;
1972
1973 switch (plane) {
1974 case 0:
1975 case 1:
1976 break;
1977 default:
1978 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1979 return -EINVAL;
1980 }
1981
1982 intel_fb = to_intel_framebuffer(fb);
1983 obj = intel_fb->obj;
1984
1985 reg = DSPCNTR(plane);
1986 dspcntr = I915_READ(reg);
1987 /* Mask out pixel format bits in case we change it */
1988 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1989 switch (fb->pixel_format) {
1990 case DRM_FORMAT_C8:
1991 dspcntr |= DISPPLANE_8BPP;
1992 break;
1993 case DRM_FORMAT_XRGB1555:
1994 case DRM_FORMAT_ARGB1555:
1995 dspcntr |= DISPPLANE_BGRX555;
1996 break;
1997 case DRM_FORMAT_RGB565:
1998 dspcntr |= DISPPLANE_BGRX565;
1999 break;
2000 case DRM_FORMAT_XRGB8888:
2001 case DRM_FORMAT_ARGB8888:
2002 dspcntr |= DISPPLANE_BGRX888;
2003 break;
2004 case DRM_FORMAT_XBGR8888:
2005 case DRM_FORMAT_ABGR8888:
2006 dspcntr |= DISPPLANE_RGBX888;
2007 break;
2008 case DRM_FORMAT_XRGB2101010:
2009 case DRM_FORMAT_ARGB2101010:
2010 dspcntr |= DISPPLANE_BGRX101010;
2011 break;
2012 case DRM_FORMAT_XBGR2101010:
2013 case DRM_FORMAT_ABGR2101010:
2014 dspcntr |= DISPPLANE_RGBX101010;
2015 break;
2016 default:
2017 BUG();
2018 }
2019
2020 if (INTEL_INFO(dev)->gen >= 4) {
2021 if (obj->tiling_mode != I915_TILING_NONE)
2022 dspcntr |= DISPPLANE_TILED;
2023 else
2024 dspcntr &= ~DISPPLANE_TILED;
2025 }
2026
2027 if (IS_G4X(dev))
2028 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2029
2030 I915_WRITE(reg, dspcntr);
2031
2032 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2033
2034 if (INTEL_INFO(dev)->gen >= 4) {
2035 intel_crtc->dspaddr_offset =
2036 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2037 fb->bits_per_pixel / 8,
2038 fb->pitches[0]);
2039 linear_offset -= intel_crtc->dspaddr_offset;
2040 } else {
2041 intel_crtc->dspaddr_offset = linear_offset;
2042 }
2043
2044 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2045 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2046 fb->pitches[0]);
2047 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2048 if (INTEL_INFO(dev)->gen >= 4) {
2049 I915_MODIFY_DISPBASE(DSPSURF(plane),
2050 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2051 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2052 I915_WRITE(DSPLINOFF(plane), linear_offset);
2053 } else
2054 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2055 POSTING_READ(reg);
2056
2057 return 0;
2058 }
2059
2060 static int ironlake_update_plane(struct drm_crtc *crtc,
2061 struct drm_framebuffer *fb, int x, int y)
2062 {
2063 struct drm_device *dev = crtc->dev;
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2066 struct intel_framebuffer *intel_fb;
2067 struct drm_i915_gem_object *obj;
2068 int plane = intel_crtc->plane;
2069 unsigned long linear_offset;
2070 u32 dspcntr;
2071 u32 reg;
2072
2073 switch (plane) {
2074 case 0:
2075 case 1:
2076 case 2:
2077 break;
2078 default:
2079 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2080 return -EINVAL;
2081 }
2082
2083 intel_fb = to_intel_framebuffer(fb);
2084 obj = intel_fb->obj;
2085
2086 reg = DSPCNTR(plane);
2087 dspcntr = I915_READ(reg);
2088 /* Mask out pixel format bits in case we change it */
2089 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2090 switch (fb->pixel_format) {
2091 case DRM_FORMAT_C8:
2092 dspcntr |= DISPPLANE_8BPP;
2093 break;
2094 case DRM_FORMAT_RGB565:
2095 dspcntr |= DISPPLANE_BGRX565;
2096 break;
2097 case DRM_FORMAT_XRGB8888:
2098 case DRM_FORMAT_ARGB8888:
2099 dspcntr |= DISPPLANE_BGRX888;
2100 break;
2101 case DRM_FORMAT_XBGR8888:
2102 case DRM_FORMAT_ABGR8888:
2103 dspcntr |= DISPPLANE_RGBX888;
2104 break;
2105 case DRM_FORMAT_XRGB2101010:
2106 case DRM_FORMAT_ARGB2101010:
2107 dspcntr |= DISPPLANE_BGRX101010;
2108 break;
2109 case DRM_FORMAT_XBGR2101010:
2110 case DRM_FORMAT_ABGR2101010:
2111 dspcntr |= DISPPLANE_RGBX101010;
2112 break;
2113 default:
2114 BUG();
2115 }
2116
2117 if (obj->tiling_mode != I915_TILING_NONE)
2118 dspcntr |= DISPPLANE_TILED;
2119 else
2120 dspcntr &= ~DISPPLANE_TILED;
2121
2122 if (IS_HASWELL(dev))
2123 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2124 else
2125 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2126
2127 I915_WRITE(reg, dspcntr);
2128
2129 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130 intel_crtc->dspaddr_offset =
2131 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2132 fb->bits_per_pixel / 8,
2133 fb->pitches[0]);
2134 linear_offset -= intel_crtc->dspaddr_offset;
2135
2136 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2138 fb->pitches[0]);
2139 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2140 I915_MODIFY_DISPBASE(DSPSURF(plane),
2141 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2142 if (IS_HASWELL(dev)) {
2143 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2144 } else {
2145 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146 I915_WRITE(DSPLINOFF(plane), linear_offset);
2147 }
2148 POSTING_READ(reg);
2149
2150 return 0;
2151 }
2152
2153 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2154 static int
2155 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2156 int x, int y, enum mode_set_atomic state)
2157 {
2158 struct drm_device *dev = crtc->dev;
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160
2161 if (dev_priv->display.disable_fbc)
2162 dev_priv->display.disable_fbc(dev);
2163 intel_increase_pllclock(crtc);
2164
2165 return dev_priv->display.update_plane(crtc, fb, x, y);
2166 }
2167
2168 void intel_display_handle_reset(struct drm_device *dev)
2169 {
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 struct drm_crtc *crtc;
2172
2173 /*
2174 * Flips in the rings have been nuked by the reset,
2175 * so complete all pending flips so that user space
2176 * will get its events and not get stuck.
2177 *
2178 * Also update the base address of all primary
2179 * planes to the the last fb to make sure we're
2180 * showing the correct fb after a reset.
2181 *
2182 * Need to make two loops over the crtcs so that we
2183 * don't try to grab a crtc mutex before the
2184 * pending_flip_queue really got woken up.
2185 */
2186
2187 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189 enum plane plane = intel_crtc->plane;
2190
2191 intel_prepare_page_flip(dev, plane);
2192 intel_finish_page_flip_plane(dev, plane);
2193 }
2194
2195 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 mutex_lock(&crtc->mutex);
2199 if (intel_crtc->active)
2200 dev_priv->display.update_plane(crtc, crtc->fb,
2201 crtc->x, crtc->y);
2202 mutex_unlock(&crtc->mutex);
2203 }
2204 }
2205
2206 static int
2207 intel_finish_fb(struct drm_framebuffer *old_fb)
2208 {
2209 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2210 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211 bool was_interruptible = dev_priv->mm.interruptible;
2212 int ret;
2213
2214 /* Big Hammer, we also need to ensure that any pending
2215 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2216 * current scanout is retired before unpinning the old
2217 * framebuffer.
2218 *
2219 * This should only fail upon a hung GPU, in which case we
2220 * can safely continue.
2221 */
2222 dev_priv->mm.interruptible = false;
2223 ret = i915_gem_object_finish_gpu(obj);
2224 dev_priv->mm.interruptible = was_interruptible;
2225
2226 return ret;
2227 }
2228
2229 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2230 {
2231 struct drm_device *dev = crtc->dev;
2232 struct drm_i915_master_private *master_priv;
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 if (!dev->primary->master)
2236 return;
2237
2238 master_priv = dev->primary->master->driver_priv;
2239 if (!master_priv->sarea_priv)
2240 return;
2241
2242 switch (intel_crtc->pipe) {
2243 case 0:
2244 master_priv->sarea_priv->pipeA_x = x;
2245 master_priv->sarea_priv->pipeA_y = y;
2246 break;
2247 case 1:
2248 master_priv->sarea_priv->pipeB_x = x;
2249 master_priv->sarea_priv->pipeB_y = y;
2250 break;
2251 default:
2252 break;
2253 }
2254 }
2255
2256 static int
2257 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2258 struct drm_framebuffer *fb)
2259 {
2260 struct drm_device *dev = crtc->dev;
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263 struct drm_framebuffer *old_fb;
2264 int ret;
2265
2266 /* no fb bound */
2267 if (!fb) {
2268 DRM_ERROR("No FB bound\n");
2269 return 0;
2270 }
2271
2272 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2273 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2274 plane_name(intel_crtc->plane),
2275 INTEL_INFO(dev)->num_pipes);
2276 return -EINVAL;
2277 }
2278
2279 mutex_lock(&dev->struct_mutex);
2280 ret = intel_pin_and_fence_fb_obj(dev,
2281 to_intel_framebuffer(fb)->obj,
2282 NULL);
2283 if (ret != 0) {
2284 mutex_unlock(&dev->struct_mutex);
2285 DRM_ERROR("pin & fence failed\n");
2286 return ret;
2287 }
2288
2289 /* Update pipe size and adjust fitter if needed */
2290 if (i915_fastboot) {
2291 I915_WRITE(PIPESRC(intel_crtc->pipe),
2292 ((crtc->mode.hdisplay - 1) << 16) |
2293 (crtc->mode.vdisplay - 1));
2294 if (!intel_crtc->config.pch_pfit.enabled &&
2295 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2296 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2297 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2298 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2299 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2300 }
2301 }
2302
2303 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2304 if (ret) {
2305 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2306 mutex_unlock(&dev->struct_mutex);
2307 DRM_ERROR("failed to update base address\n");
2308 return ret;
2309 }
2310
2311 old_fb = crtc->fb;
2312 crtc->fb = fb;
2313 crtc->x = x;
2314 crtc->y = y;
2315
2316 if (old_fb) {
2317 if (intel_crtc->active && old_fb != fb)
2318 intel_wait_for_vblank(dev, intel_crtc->pipe);
2319 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2320 }
2321
2322 intel_update_fbc(dev);
2323 intel_edp_psr_update(dev);
2324 mutex_unlock(&dev->struct_mutex);
2325
2326 intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328 return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 int pipe = intel_crtc->pipe;
2337 u32 reg, temp;
2338
2339 /* enable normal train */
2340 reg = FDI_TX_CTL(pipe);
2341 temp = I915_READ(reg);
2342 if (IS_IVYBRIDGE(dev)) {
2343 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345 } else {
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348 }
2349 I915_WRITE(reg, temp);
2350
2351 reg = FDI_RX_CTL(pipe);
2352 temp = I915_READ(reg);
2353 if (HAS_PCH_CPT(dev)) {
2354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356 } else {
2357 temp &= ~FDI_LINK_TRAIN_NONE;
2358 temp |= FDI_LINK_TRAIN_NONE;
2359 }
2360 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362 /* wait one idle pattern time */
2363 POSTING_READ(reg);
2364 udelay(1000);
2365
2366 /* IVB wants error correction enabled */
2367 if (IS_IVYBRIDGE(dev))
2368 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369 FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380 struct intel_crtc *pipe_B_crtc =
2381 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382 struct intel_crtc *pipe_C_crtc =
2383 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384 uint32_t temp;
2385
2386 /*
2387 * When everything is off disable fdi C so that we could enable fdi B
2388 * with all lanes. Note that we don't care about enabled pipes without
2389 * an enabled pch encoder.
2390 */
2391 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392 !pipe_has_enabled_pch(pipe_C_crtc)) {
2393 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396 temp = I915_READ(SOUTH_CHICKEN1);
2397 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399 I915_WRITE(SOUTH_CHICKEN1, temp);
2400 }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406 struct drm_device *dev = crtc->dev;
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409 int pipe = intel_crtc->pipe;
2410 int plane = intel_crtc->plane;
2411 u32 reg, temp, tries;
2412
2413 /* FDI needs bits from pipe & plane first */
2414 assert_pipe_enabled(dev_priv, pipe);
2415 assert_plane_enabled(dev_priv, plane);
2416
2417 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418 for train result */
2419 reg = FDI_RX_IMR(pipe);
2420 temp = I915_READ(reg);
2421 temp &= ~FDI_RX_SYMBOL_LOCK;
2422 temp &= ~FDI_RX_BIT_LOCK;
2423 I915_WRITE(reg, temp);
2424 I915_READ(reg);
2425 udelay(150);
2426
2427 /* enable CPU FDI TX and PCH FDI RX */
2428 reg = FDI_TX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432 temp &= ~FDI_LINK_TRAIN_NONE;
2433 temp |= FDI_LINK_TRAIN_PATTERN_1;
2434 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436 reg = FDI_RX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 temp &= ~FDI_LINK_TRAIN_NONE;
2439 temp |= FDI_LINK_TRAIN_PATTERN_1;
2440 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442 POSTING_READ(reg);
2443 udelay(150);
2444
2445 /* Ironlake workaround, enable clock pointer after FDI enable*/
2446 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448 FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if ((temp & FDI_RX_BIT_LOCK)) {
2456 DRM_DEBUG_KMS("FDI train 1 done.\n");
2457 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458 break;
2459 }
2460 }
2461 if (tries == 5)
2462 DRM_ERROR("FDI train 1 fail!\n");
2463
2464 /* Train 2 */
2465 reg = FDI_TX_CTL(pipe);
2466 temp = I915_READ(reg);
2467 temp &= ~FDI_LINK_TRAIN_NONE;
2468 temp |= FDI_LINK_TRAIN_PATTERN_2;
2469 I915_WRITE(reg, temp);
2470
2471 reg = FDI_RX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~FDI_LINK_TRAIN_NONE;
2474 temp |= FDI_LINK_TRAIN_PATTERN_2;
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
2478 udelay(150);
2479
2480 reg = FDI_RX_IIR(pipe);
2481 for (tries = 0; tries < 5; tries++) {
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485 if (temp & FDI_RX_SYMBOL_LOCK) {
2486 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487 DRM_DEBUG_KMS("FDI train 2 done.\n");
2488 break;
2489 }
2490 }
2491 if (tries == 5)
2492 DRM_ERROR("FDI train 2 fail!\n");
2493
2494 DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508 struct drm_device *dev = crtc->dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511 int pipe = intel_crtc->pipe;
2512 u32 reg, temp, i, retry;
2513
2514 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515 for train result */
2516 reg = FDI_RX_IMR(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_RX_SYMBOL_LOCK;
2519 temp &= ~FDI_RX_BIT_LOCK;
2520 I915_WRITE(reg, temp);
2521
2522 POSTING_READ(reg);
2523 udelay(150);
2524
2525 /* enable CPU FDI TX and PCH FDI RX */
2526 reg = FDI_TX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530 temp &= ~FDI_LINK_TRAIN_NONE;
2531 temp |= FDI_LINK_TRAIN_PATTERN_1;
2532 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533 /* SNB-B */
2534 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537 I915_WRITE(FDI_RX_MISC(pipe),
2538 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540 reg = FDI_RX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 if (HAS_PCH_CPT(dev)) {
2543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545 } else {
2546 temp &= ~FDI_LINK_TRAIN_NONE;
2547 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548 }
2549 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551 POSTING_READ(reg);
2552 udelay(150);
2553
2554 for (i = 0; i < 4; i++) {
2555 reg = FDI_TX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558 temp |= snb_b_fdi_train_param[i];
2559 I915_WRITE(reg, temp);
2560
2561 POSTING_READ(reg);
2562 udelay(500);
2563
2564 for (retry = 0; retry < 5; retry++) {
2565 reg = FDI_RX_IIR(pipe);
2566 temp = I915_READ(reg);
2567 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568 if (temp & FDI_RX_BIT_LOCK) {
2569 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571 break;
2572 }
2573 udelay(50);
2574 }
2575 if (retry < 5)
2576 break;
2577 }
2578 if (i == 4)
2579 DRM_ERROR("FDI train 1 fail!\n");
2580
2581 /* Train 2 */
2582 reg = FDI_TX_CTL(pipe);
2583 temp = I915_READ(reg);
2584 temp &= ~FDI_LINK_TRAIN_NONE;
2585 temp |= FDI_LINK_TRAIN_PATTERN_2;
2586 if (IS_GEN6(dev)) {
2587 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588 /* SNB-B */
2589 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590 }
2591 I915_WRITE(reg, temp);
2592
2593 reg = FDI_RX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 if (HAS_PCH_CPT(dev)) {
2596 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598 } else {
2599 temp &= ~FDI_LINK_TRAIN_NONE;
2600 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601 }
2602 I915_WRITE(reg, temp);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 for (i = 0; i < 4; i++) {
2608 reg = FDI_TX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611 temp |= snb_b_fdi_train_param[i];
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(500);
2616
2617 for (retry = 0; retry < 5; retry++) {
2618 reg = FDI_RX_IIR(pipe);
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621 if (temp & FDI_RX_SYMBOL_LOCK) {
2622 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624 break;
2625 }
2626 udelay(50);
2627 }
2628 if (retry < 5)
2629 break;
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 2 fail!\n");
2633
2634 DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 int pipe = intel_crtc->pipe;
2644 u32 reg, temp, i, j;
2645
2646 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647 for train result */
2648 reg = FDI_RX_IMR(pipe);
2649 temp = I915_READ(reg);
2650 temp &= ~FDI_RX_SYMBOL_LOCK;
2651 temp &= ~FDI_RX_BIT_LOCK;
2652 I915_WRITE(reg, temp);
2653
2654 POSTING_READ(reg);
2655 udelay(150);
2656
2657 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658 I915_READ(FDI_RX_IIR(pipe)));
2659
2660 /* Try each vswing and preemphasis setting twice before moving on */
2661 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2662 /* disable first in case we need to retry */
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666 temp &= ~FDI_TX_ENABLE;
2667 I915_WRITE(reg, temp);
2668
2669 reg = FDI_RX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~FDI_LINK_TRAIN_AUTO;
2672 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673 temp &= ~FDI_RX_ENABLE;
2674 I915_WRITE(reg, temp);
2675
2676 /* enable CPU FDI TX and PCH FDI RX */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2680 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2681 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2682 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 temp |= snb_b_fdi_train_param[j/2];
2684 temp |= FDI_COMPOSITE_SYNC;
2685 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2686
2687 I915_WRITE(FDI_RX_MISC(pipe),
2688 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2689
2690 reg = FDI_RX_CTL(pipe);
2691 temp = I915_READ(reg);
2692 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2693 temp |= FDI_COMPOSITE_SYNC;
2694 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2695
2696 POSTING_READ(reg);
2697 udelay(1); /* should be 0.5us */
2698
2699 for (i = 0; i < 4; i++) {
2700 reg = FDI_RX_IIR(pipe);
2701 temp = I915_READ(reg);
2702 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704 if (temp & FDI_RX_BIT_LOCK ||
2705 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2708 i);
2709 break;
2710 }
2711 udelay(1); /* should be 0.5us */
2712 }
2713 if (i == 4) {
2714 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2715 continue;
2716 }
2717
2718 /* Train 2 */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2722 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2723 I915_WRITE(reg, temp);
2724
2725 reg = FDI_RX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729 I915_WRITE(reg, temp);
2730
2731 POSTING_READ(reg);
2732 udelay(2); /* should be 1.5us */
2733
2734 for (i = 0; i < 4; i++) {
2735 reg = FDI_RX_IIR(pipe);
2736 temp = I915_READ(reg);
2737 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2738
2739 if (temp & FDI_RX_SYMBOL_LOCK ||
2740 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2741 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2743 i);
2744 goto train_done;
2745 }
2746 udelay(2); /* should be 1.5us */
2747 }
2748 if (i == 4)
2749 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2750 }
2751
2752 train_done:
2753 DRM_DEBUG_KMS("FDI train done.\n");
2754 }
2755
2756 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2757 {
2758 struct drm_device *dev = intel_crtc->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int pipe = intel_crtc->pipe;
2761 u32 reg, temp;
2762
2763
2764 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2768 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2769 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2770 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(200);
2774
2775 /* Switch from Rawclk to PCDclk */
2776 temp = I915_READ(reg);
2777 I915_WRITE(reg, temp | FDI_PCDCLK);
2778
2779 POSTING_READ(reg);
2780 udelay(200);
2781
2782 /* Enable CPU FDI TX PLL, always on for Ironlake */
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2786 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2787
2788 POSTING_READ(reg);
2789 udelay(100);
2790 }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795 struct drm_device *dev = intel_crtc->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* Switch from PCDclk to Rawclk */
2801 reg = FDI_RX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805 /* Disable CPU FDI TX PLL */
2806 reg = FDI_TX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810 POSTING_READ(reg);
2811 udelay(100);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817 /* Wait for the clocks to turn off. */
2818 POSTING_READ(reg);
2819 udelay(100);
2820 }
2821
2822 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2823 {
2824 struct drm_device *dev = crtc->dev;
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827 int pipe = intel_crtc->pipe;
2828 u32 reg, temp;
2829
2830 /* disable CPU FDI tx and PCH FDI rx */
2831 reg = FDI_TX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2834 POSTING_READ(reg);
2835
2836 reg = FDI_RX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~(0x7 << 16);
2839 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2840 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2841
2842 POSTING_READ(reg);
2843 udelay(100);
2844
2845 /* Ironlake workaround, disable clock pointer after downing FDI */
2846 if (HAS_PCH_IBX(dev)) {
2847 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2848 }
2849
2850 /* still set train pattern 1 */
2851 reg = FDI_TX_CTL(pipe);
2852 temp = I915_READ(reg);
2853 temp &= ~FDI_LINK_TRAIN_NONE;
2854 temp |= FDI_LINK_TRAIN_PATTERN_1;
2855 I915_WRITE(reg, temp);
2856
2857 reg = FDI_RX_CTL(pipe);
2858 temp = I915_READ(reg);
2859 if (HAS_PCH_CPT(dev)) {
2860 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2861 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2862 } else {
2863 temp &= ~FDI_LINK_TRAIN_NONE;
2864 temp |= FDI_LINK_TRAIN_PATTERN_1;
2865 }
2866 /* BPC in FDI rx is consistent with that in PIPECONF */
2867 temp &= ~(0x07 << 16);
2868 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2869 I915_WRITE(reg, temp);
2870
2871 POSTING_READ(reg);
2872 udelay(100);
2873 }
2874
2875 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2876 {
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 unsigned long flags;
2881 bool pending;
2882
2883 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2884 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2885 return false;
2886
2887 spin_lock_irqsave(&dev->event_lock, flags);
2888 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2889 spin_unlock_irqrestore(&dev->event_lock, flags);
2890
2891 return pending;
2892 }
2893
2894 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2895 {
2896 struct drm_device *dev = crtc->dev;
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899 if (crtc->fb == NULL)
2900 return;
2901
2902 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2903
2904 wait_event(dev_priv->pending_flip_queue,
2905 !intel_crtc_has_pending_flip(crtc));
2906
2907 mutex_lock(&dev->struct_mutex);
2908 intel_finish_fb(crtc->fb);
2909 mutex_unlock(&dev->struct_mutex);
2910 }
2911
2912 /* Program iCLKIP clock to the desired frequency */
2913 static void lpt_program_iclkip(struct drm_crtc *crtc)
2914 {
2915 struct drm_device *dev = crtc->dev;
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2918 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2919 u32 temp;
2920
2921 mutex_lock(&dev_priv->dpio_lock);
2922
2923 /* It is necessary to ungate the pixclk gate prior to programming
2924 * the divisors, and gate it back when it is done.
2925 */
2926 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2927
2928 /* Disable SSCCTL */
2929 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2930 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2931 SBI_SSCCTL_DISABLE,
2932 SBI_ICLK);
2933
2934 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2935 if (clock == 20000) {
2936 auxdiv = 1;
2937 divsel = 0x41;
2938 phaseinc = 0x20;
2939 } else {
2940 /* The iCLK virtual clock root frequency is in MHz,
2941 * but the adjusted_mode->clock in in KHz. To get the divisors,
2942 * it is necessary to divide one by another, so we
2943 * convert the virtual clock precision to KHz here for higher
2944 * precision.
2945 */
2946 u32 iclk_virtual_root_freq = 172800 * 1000;
2947 u32 iclk_pi_range = 64;
2948 u32 desired_divisor, msb_divisor_value, pi_value;
2949
2950 desired_divisor = (iclk_virtual_root_freq / clock);
2951 msb_divisor_value = desired_divisor / iclk_pi_range;
2952 pi_value = desired_divisor % iclk_pi_range;
2953
2954 auxdiv = 0;
2955 divsel = msb_divisor_value - 2;
2956 phaseinc = pi_value;
2957 }
2958
2959 /* This should not happen with any sane values */
2960 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2961 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2962 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2963 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2964
2965 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2966 clock,
2967 auxdiv,
2968 divsel,
2969 phasedir,
2970 phaseinc);
2971
2972 /* Program SSCDIVINTPHASE6 */
2973 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2974 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2975 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2976 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2977 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2978 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2979 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2980 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2981
2982 /* Program SSCAUXDIV */
2983 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2984 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2985 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2986 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2987
2988 /* Enable modulator and associated divider */
2989 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2990 temp &= ~SBI_SSCCTL_DISABLE;
2991 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2992
2993 /* Wait for initialization time */
2994 udelay(24);
2995
2996 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2997
2998 mutex_unlock(&dev_priv->dpio_lock);
2999 }
3000
3001 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3002 enum pipe pch_transcoder)
3003 {
3004 struct drm_device *dev = crtc->base.dev;
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3007
3008 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3009 I915_READ(HTOTAL(cpu_transcoder)));
3010 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3011 I915_READ(HBLANK(cpu_transcoder)));
3012 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3013 I915_READ(HSYNC(cpu_transcoder)));
3014
3015 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3016 I915_READ(VTOTAL(cpu_transcoder)));
3017 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3018 I915_READ(VBLANK(cpu_transcoder)));
3019 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3020 I915_READ(VSYNC(cpu_transcoder)));
3021 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3022 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3023 }
3024
3025 /*
3026 * Enable PCH resources required for PCH ports:
3027 * - PCH PLLs
3028 * - FDI training & RX/TX
3029 * - update transcoder timings
3030 * - DP transcoding bits
3031 * - transcoder
3032 */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
3039 u32 reg, temp;
3040
3041 assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043 /* Write the TU size bits before fdi link training, so that error
3044 * detection works. */
3045 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3046 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3047
3048 /* For PCH output, training FDI link */
3049 dev_priv->display.fdi_link_train(crtc);
3050
3051 /* We need to program the right clock selection before writing the pixel
3052 * mutliplier into the DPLL. */
3053 if (HAS_PCH_CPT(dev)) {
3054 u32 sel;
3055
3056 temp = I915_READ(PCH_DPLL_SEL);
3057 temp |= TRANS_DPLL_ENABLE(pipe);
3058 sel = TRANS_DPLLB_SEL(pipe);
3059 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3060 temp |= sel;
3061 else
3062 temp &= ~sel;
3063 I915_WRITE(PCH_DPLL_SEL, temp);
3064 }
3065
3066 /* XXX: pch pll's can be enabled any time before we enable the PCH
3067 * transcoder, and we actually should do this to not upset any PCH
3068 * transcoder that already use the clock when we share it.
3069 *
3070 * Note that enable_shared_dpll tries to do the right thing, but
3071 * get_shared_dpll unconditionally resets the pll - we need that to have
3072 * the right LVDS enable sequence. */
3073 ironlake_enable_shared_dpll(intel_crtc);
3074
3075 /* set transcoder timing, panel must allow it */
3076 assert_panel_unlocked(dev_priv, pipe);
3077 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3078
3079 intel_fdi_normal_train(crtc);
3080
3081 /* For PCH DP, enable TRANS_DP_CTL */
3082 if (HAS_PCH_CPT(dev) &&
3083 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3086 reg = TRANS_DP_CTL(pipe);
3087 temp = I915_READ(reg);
3088 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089 TRANS_DP_SYNC_MASK |
3090 TRANS_DP_BPC_MASK);
3091 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092 TRANS_DP_ENH_FRAMING);
3093 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100 switch (intel_trans_dp_port_sel(crtc)) {
3101 case PCH_DP_B:
3102 temp |= TRANS_DP_PORT_SEL_B;
3103 break;
3104 case PCH_DP_C:
3105 temp |= TRANS_DP_PORT_SEL_C;
3106 break;
3107 case PCH_DP_D:
3108 temp |= TRANS_DP_PORT_SEL_D;
3109 break;
3110 default:
3111 BUG();
3112 }
3113
3114 I915_WRITE(reg, temp);
3115 }
3116
3117 ironlake_enable_pch_transcoder(dev_priv, pipe);
3118 }
3119
3120 static void lpt_pch_enable(struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3126
3127 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3128
3129 lpt_program_iclkip(crtc);
3130
3131 /* Set transcoder timing. */
3132 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3133
3134 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3135 }
3136
3137 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3138 {
3139 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3140
3141 if (pll == NULL)
3142 return;
3143
3144 if (pll->refcount == 0) {
3145 WARN(1, "bad %s refcount\n", pll->name);
3146 return;
3147 }
3148
3149 if (--pll->refcount == 0) {
3150 WARN_ON(pll->on);
3151 WARN_ON(pll->active);
3152 }
3153
3154 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3155 }
3156
3157 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3158 {
3159 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3160 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3161 enum intel_dpll_id i;
3162
3163 if (pll) {
3164 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3165 crtc->base.base.id, pll->name);
3166 intel_put_shared_dpll(crtc);
3167 }
3168
3169 if (HAS_PCH_IBX(dev_priv->dev)) {
3170 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171 i = (enum intel_dpll_id) crtc->pipe;
3172 pll = &dev_priv->shared_dplls[i];
3173
3174 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3175 crtc->base.base.id, pll->name);
3176
3177 goto found;
3178 }
3179
3180 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3181 pll = &dev_priv->shared_dplls[i];
3182
3183 /* Only want to check enabled timings first */
3184 if (pll->refcount == 0)
3185 continue;
3186
3187 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3188 sizeof(pll->hw_state)) == 0) {
3189 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3190 crtc->base.base.id,
3191 pll->name, pll->refcount, pll->active);
3192
3193 goto found;
3194 }
3195 }
3196
3197 /* Ok no matching timings, maybe there's a free one? */
3198 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3199 pll = &dev_priv->shared_dplls[i];
3200 if (pll->refcount == 0) {
3201 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3202 crtc->base.base.id, pll->name);
3203 goto found;
3204 }
3205 }
3206
3207 return NULL;
3208
3209 found:
3210 crtc->config.shared_dpll = i;
3211 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3212 pipe_name(crtc->pipe));
3213
3214 if (pll->active == 0) {
3215 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3216 sizeof(pll->hw_state));
3217
3218 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3219 WARN_ON(pll->on);
3220 assert_shared_dpll_disabled(dev_priv, pll);
3221
3222 pll->mode_set(dev_priv, pll);
3223 }
3224 pll->refcount++;
3225
3226 return pll;
3227 }
3228
3229 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3230 {
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 int dslreg = PIPEDSL(pipe);
3233 u32 temp;
3234
3235 temp = I915_READ(dslreg);
3236 udelay(500);
3237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3238 if (wait_for(I915_READ(dslreg) != temp, 5))
3239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3240 }
3241 }
3242
3243 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->base.dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 int pipe = crtc->pipe;
3248
3249 if (crtc->config.pch_pfit.enabled) {
3250 /* Force use of hard-coded filter coefficients
3251 * as some pre-programmed values are broken,
3252 * e.g. x201.
3253 */
3254 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3255 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3256 PF_PIPE_SEL_IVB(pipe));
3257 else
3258 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3259 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3260 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3261 }
3262 }
3263
3264 static void intel_enable_planes(struct drm_crtc *crtc)
3265 {
3266 struct drm_device *dev = crtc->dev;
3267 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3268 struct intel_plane *intel_plane;
3269
3270 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3271 if (intel_plane->pipe == pipe)
3272 intel_plane_restore(&intel_plane->base);
3273 }
3274
3275 static void intel_disable_planes(struct drm_crtc *crtc)
3276 {
3277 struct drm_device *dev = crtc->dev;
3278 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3279 struct intel_plane *intel_plane;
3280
3281 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3282 if (intel_plane->pipe == pipe)
3283 intel_plane_disable(&intel_plane->base);
3284 }
3285
3286 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3287 {
3288 struct drm_device *dev = crtc->dev;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291 struct intel_encoder *encoder;
3292 int pipe = intel_crtc->pipe;
3293 int plane = intel_crtc->plane;
3294
3295 WARN_ON(!crtc->enabled);
3296
3297 if (intel_crtc->active)
3298 return;
3299
3300 intel_crtc->active = true;
3301
3302 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3304
3305 for_each_encoder_on_crtc(dev, crtc, encoder)
3306 if (encoder->pre_enable)
3307 encoder->pre_enable(encoder);
3308
3309 if (intel_crtc->config.has_pch_encoder) {
3310 /* Note: FDI PLL enabling _must_ be done before we enable the
3311 * cpu pipes, hence this is separate from all the other fdi/pch
3312 * enabling. */
3313 ironlake_fdi_pll_enable(intel_crtc);
3314 } else {
3315 assert_fdi_tx_disabled(dev_priv, pipe);
3316 assert_fdi_rx_disabled(dev_priv, pipe);
3317 }
3318
3319 ironlake_pfit_enable(intel_crtc);
3320
3321 /*
3322 * On ILK+ LUT must be loaded before the pipe is running but with
3323 * clocks enabled
3324 */
3325 intel_crtc_load_lut(crtc);
3326
3327 intel_update_watermarks(crtc);
3328 intel_enable_pipe(dev_priv, pipe,
3329 intel_crtc->config.has_pch_encoder, false);
3330 intel_enable_plane(dev_priv, plane, pipe);
3331 intel_enable_planes(crtc);
3332 intel_crtc_update_cursor(crtc, true);
3333
3334 if (intel_crtc->config.has_pch_encoder)
3335 ironlake_pch_enable(crtc);
3336
3337 mutex_lock(&dev->struct_mutex);
3338 intel_update_fbc(dev);
3339 mutex_unlock(&dev->struct_mutex);
3340
3341 for_each_encoder_on_crtc(dev, crtc, encoder)
3342 encoder->enable(encoder);
3343
3344 if (HAS_PCH_CPT(dev))
3345 cpt_verify_modeset(dev, intel_crtc->pipe);
3346
3347 /*
3348 * There seems to be a race in PCH platform hw (at least on some
3349 * outputs) where an enabled pipe still completes any pageflip right
3350 * away (as if the pipe is off) instead of waiting for vblank. As soon
3351 * as the first vblank happend, everything works as expected. Hence just
3352 * wait for one vblank before returning to avoid strange things
3353 * happening.
3354 */
3355 intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 /* IPS only exists on ULT machines and is tied to pipe A. */
3359 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3360 {
3361 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3362 }
3363
3364 static void hsw_enable_ips(struct intel_crtc *crtc)
3365 {
3366 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3367
3368 if (!crtc->config.ips_enabled)
3369 return;
3370
3371 /* We can only enable IPS after we enable a plane and wait for a vblank.
3372 * We guarantee that the plane is enabled by calling intel_enable_ips
3373 * only after intel_enable_plane. And intel_enable_plane already waits
3374 * for a vblank, so all we need to do here is to enable the IPS bit. */
3375 assert_plane_enabled(dev_priv, crtc->plane);
3376 I915_WRITE(IPS_CTL, IPS_ENABLE);
3377 }
3378
3379 static void hsw_disable_ips(struct intel_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->base.dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 if (!crtc->config.ips_enabled)
3385 return;
3386
3387 assert_plane_enabled(dev_priv, crtc->plane);
3388 I915_WRITE(IPS_CTL, 0);
3389 POSTING_READ(IPS_CTL);
3390
3391 /* We need to wait for a vblank before we can disable the plane. */
3392 intel_wait_for_vblank(dev, crtc->pipe);
3393 }
3394
3395 static void haswell_crtc_enable(struct drm_crtc *crtc)
3396 {
3397 struct drm_device *dev = crtc->dev;
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3400 struct intel_encoder *encoder;
3401 int pipe = intel_crtc->pipe;
3402 int plane = intel_crtc->plane;
3403
3404 WARN_ON(!crtc->enabled);
3405
3406 if (intel_crtc->active)
3407 return;
3408
3409 intel_crtc->active = true;
3410
3411 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3412 if (intel_crtc->config.has_pch_encoder)
3413 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3414
3415 if (intel_crtc->config.has_pch_encoder)
3416 dev_priv->display.fdi_link_train(crtc);
3417
3418 for_each_encoder_on_crtc(dev, crtc, encoder)
3419 if (encoder->pre_enable)
3420 encoder->pre_enable(encoder);
3421
3422 intel_ddi_enable_pipe_clock(intel_crtc);
3423
3424 ironlake_pfit_enable(intel_crtc);
3425
3426 /*
3427 * On ILK+ LUT must be loaded before the pipe is running but with
3428 * clocks enabled
3429 */
3430 intel_crtc_load_lut(crtc);
3431
3432 intel_ddi_set_pipe_settings(crtc);
3433 intel_ddi_enable_transcoder_func(crtc);
3434
3435 intel_update_watermarks(crtc);
3436 intel_enable_pipe(dev_priv, pipe,
3437 intel_crtc->config.has_pch_encoder, false);
3438 intel_enable_plane(dev_priv, plane, pipe);
3439 intel_enable_planes(crtc);
3440 intel_crtc_update_cursor(crtc, true);
3441
3442 hsw_enable_ips(intel_crtc);
3443
3444 if (intel_crtc->config.has_pch_encoder)
3445 lpt_pch_enable(crtc);
3446
3447 mutex_lock(&dev->struct_mutex);
3448 intel_update_fbc(dev);
3449 mutex_unlock(&dev->struct_mutex);
3450
3451 for_each_encoder_on_crtc(dev, crtc, encoder) {
3452 encoder->enable(encoder);
3453 intel_opregion_notify_encoder(encoder, true);
3454 }
3455
3456 /*
3457 * There seems to be a race in PCH platform hw (at least on some
3458 * outputs) where an enabled pipe still completes any pageflip right
3459 * away (as if the pipe is off) instead of waiting for vblank. As soon
3460 * as the first vblank happend, everything works as expected. Hence just
3461 * wait for one vblank before returning to avoid strange things
3462 * happening.
3463 */
3464 intel_wait_for_vblank(dev, intel_crtc->pipe);
3465 }
3466
3467 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3468 {
3469 struct drm_device *dev = crtc->base.dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 int pipe = crtc->pipe;
3472
3473 /* To avoid upsetting the power well on haswell only disable the pfit if
3474 * it's in use. The hw state code will make sure we get this right. */
3475 if (crtc->config.pch_pfit.enabled) {
3476 I915_WRITE(PF_CTL(pipe), 0);
3477 I915_WRITE(PF_WIN_POS(pipe), 0);
3478 I915_WRITE(PF_WIN_SZ(pipe), 0);
3479 }
3480 }
3481
3482 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3483 {
3484 struct drm_device *dev = crtc->dev;
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487 struct intel_encoder *encoder;
3488 int pipe = intel_crtc->pipe;
3489 int plane = intel_crtc->plane;
3490 u32 reg, temp;
3491
3492
3493 if (!intel_crtc->active)
3494 return;
3495
3496 for_each_encoder_on_crtc(dev, crtc, encoder)
3497 encoder->disable(encoder);
3498
3499 intel_crtc_wait_for_pending_flips(crtc);
3500 drm_vblank_off(dev, pipe);
3501
3502 if (dev_priv->fbc.plane == plane)
3503 intel_disable_fbc(dev);
3504
3505 intel_crtc_update_cursor(crtc, false);
3506 intel_disable_planes(crtc);
3507 intel_disable_plane(dev_priv, plane, pipe);
3508
3509 if (intel_crtc->config.has_pch_encoder)
3510 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3511
3512 intel_disable_pipe(dev_priv, pipe);
3513
3514 ironlake_pfit_disable(intel_crtc);
3515
3516 for_each_encoder_on_crtc(dev, crtc, encoder)
3517 if (encoder->post_disable)
3518 encoder->post_disable(encoder);
3519
3520 if (intel_crtc->config.has_pch_encoder) {
3521 ironlake_fdi_disable(crtc);
3522
3523 ironlake_disable_pch_transcoder(dev_priv, pipe);
3524 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3525
3526 if (HAS_PCH_CPT(dev)) {
3527 /* disable TRANS_DP_CTL */
3528 reg = TRANS_DP_CTL(pipe);
3529 temp = I915_READ(reg);
3530 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3531 TRANS_DP_PORT_SEL_MASK);
3532 temp |= TRANS_DP_PORT_SEL_NONE;
3533 I915_WRITE(reg, temp);
3534
3535 /* disable DPLL_SEL */
3536 temp = I915_READ(PCH_DPLL_SEL);
3537 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3538 I915_WRITE(PCH_DPLL_SEL, temp);
3539 }
3540
3541 /* disable PCH DPLL */
3542 intel_disable_shared_dpll(intel_crtc);
3543
3544 ironlake_fdi_pll_disable(intel_crtc);
3545 }
3546
3547 intel_crtc->active = false;
3548 intel_update_watermarks(crtc);
3549
3550 mutex_lock(&dev->struct_mutex);
3551 intel_update_fbc(dev);
3552 mutex_unlock(&dev->struct_mutex);
3553 }
3554
3555 static void haswell_crtc_disable(struct drm_crtc *crtc)
3556 {
3557 struct drm_device *dev = crtc->dev;
3558 struct drm_i915_private *dev_priv = dev->dev_private;
3559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3560 struct intel_encoder *encoder;
3561 int pipe = intel_crtc->pipe;
3562 int plane = intel_crtc->plane;
3563 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3564
3565 if (!intel_crtc->active)
3566 return;
3567
3568 for_each_encoder_on_crtc(dev, crtc, encoder) {
3569 intel_opregion_notify_encoder(encoder, false);
3570 encoder->disable(encoder);
3571 }
3572
3573 intel_crtc_wait_for_pending_flips(crtc);
3574 drm_vblank_off(dev, pipe);
3575
3576 /* FBC must be disabled before disabling the plane on HSW. */
3577 if (dev_priv->fbc.plane == plane)
3578 intel_disable_fbc(dev);
3579
3580 hsw_disable_ips(intel_crtc);
3581
3582 intel_crtc_update_cursor(crtc, false);
3583 intel_disable_planes(crtc);
3584 intel_disable_plane(dev_priv, plane, pipe);
3585
3586 if (intel_crtc->config.has_pch_encoder)
3587 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3588 intel_disable_pipe(dev_priv, pipe);
3589
3590 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3591
3592 ironlake_pfit_disable(intel_crtc);
3593
3594 intel_ddi_disable_pipe_clock(intel_crtc);
3595
3596 for_each_encoder_on_crtc(dev, crtc, encoder)
3597 if (encoder->post_disable)
3598 encoder->post_disable(encoder);
3599
3600 if (intel_crtc->config.has_pch_encoder) {
3601 lpt_disable_pch_transcoder(dev_priv);
3602 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3603 intel_ddi_fdi_disable(crtc);
3604 }
3605
3606 intel_crtc->active = false;
3607 intel_update_watermarks(crtc);
3608
3609 mutex_lock(&dev->struct_mutex);
3610 intel_update_fbc(dev);
3611 mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617 intel_put_shared_dpll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622 intel_ddi_put_crtc_pll(crtc);
3623 }
3624
3625 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3626 {
3627 if (!enable && intel_crtc->overlay) {
3628 struct drm_device *dev = intel_crtc->base.dev;
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 mutex_lock(&dev->struct_mutex);
3632 dev_priv->mm.interruptible = false;
3633 (void) intel_overlay_switch_off(intel_crtc->overlay);
3634 dev_priv->mm.interruptible = true;
3635 mutex_unlock(&dev->struct_mutex);
3636 }
3637
3638 /* Let userspace switch the overlay on again. In most cases userspace
3639 * has to recompute where to put it anyway.
3640 */
3641 }
3642
3643 /**
3644 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3645 * cursor plane briefly if not already running after enabling the display
3646 * plane.
3647 * This workaround avoids occasional blank screens when self refresh is
3648 * enabled.
3649 */
3650 static void
3651 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3652 {
3653 u32 cntl = I915_READ(CURCNTR(pipe));
3654
3655 if ((cntl & CURSOR_MODE) == 0) {
3656 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3657
3658 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3659 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3660 intel_wait_for_vblank(dev_priv->dev, pipe);
3661 I915_WRITE(CURCNTR(pipe), cntl);
3662 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3663 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3664 }
3665 }
3666
3667 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3668 {
3669 struct drm_device *dev = crtc->base.dev;
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 struct intel_crtc_config *pipe_config = &crtc->config;
3672
3673 if (!crtc->config.gmch_pfit.control)
3674 return;
3675
3676 /*
3677 * The panel fitter should only be adjusted whilst the pipe is disabled,
3678 * according to register description and PRM.
3679 */
3680 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3681 assert_pipe_disabled(dev_priv, crtc->pipe);
3682
3683 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3684 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3685
3686 /* Border color in case we don't scale up to the full screen. Black by
3687 * default, change to something else for debugging. */
3688 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3689 }
3690
3691 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3692 {
3693 struct drm_device *dev = crtc->dev;
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696 struct intel_encoder *encoder;
3697 int pipe = intel_crtc->pipe;
3698 int plane = intel_crtc->plane;
3699 bool is_dsi;
3700
3701 WARN_ON(!crtc->enabled);
3702
3703 if (intel_crtc->active)
3704 return;
3705
3706 intel_crtc->active = true;
3707
3708 for_each_encoder_on_crtc(dev, crtc, encoder)
3709 if (encoder->pre_pll_enable)
3710 encoder->pre_pll_enable(encoder);
3711
3712 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3713
3714 if (!is_dsi)
3715 vlv_enable_pll(intel_crtc);
3716
3717 for_each_encoder_on_crtc(dev, crtc, encoder)
3718 if (encoder->pre_enable)
3719 encoder->pre_enable(encoder);
3720
3721 i9xx_pfit_enable(intel_crtc);
3722
3723 intel_crtc_load_lut(crtc);
3724
3725 intel_update_watermarks(crtc);
3726 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3727 intel_enable_plane(dev_priv, plane, pipe);
3728 intel_enable_planes(crtc);
3729 intel_crtc_update_cursor(crtc, true);
3730
3731 intel_update_fbc(dev);
3732
3733 for_each_encoder_on_crtc(dev, crtc, encoder)
3734 encoder->enable(encoder);
3735 }
3736
3737 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3738 {
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 struct intel_encoder *encoder;
3743 int pipe = intel_crtc->pipe;
3744 int plane = intel_crtc->plane;
3745
3746 WARN_ON(!crtc->enabled);
3747
3748 if (intel_crtc->active)
3749 return;
3750
3751 intel_crtc->active = true;
3752
3753 for_each_encoder_on_crtc(dev, crtc, encoder)
3754 if (encoder->pre_enable)
3755 encoder->pre_enable(encoder);
3756
3757 i9xx_enable_pll(intel_crtc);
3758
3759 i9xx_pfit_enable(intel_crtc);
3760
3761 intel_crtc_load_lut(crtc);
3762
3763 intel_update_watermarks(crtc);
3764 intel_enable_pipe(dev_priv, pipe, false, false);
3765 intel_enable_plane(dev_priv, plane, pipe);
3766 intel_enable_planes(crtc);
3767 /* The fixup needs to happen before cursor is enabled */
3768 if (IS_G4X(dev))
3769 g4x_fixup_plane(dev_priv, pipe);
3770 intel_crtc_update_cursor(crtc, true);
3771
3772 /* Give the overlay scaler a chance to enable if it's on this pipe */
3773 intel_crtc_dpms_overlay(intel_crtc, true);
3774
3775 intel_update_fbc(dev);
3776
3777 for_each_encoder_on_crtc(dev, crtc, encoder)
3778 encoder->enable(encoder);
3779 }
3780
3781 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3782 {
3783 struct drm_device *dev = crtc->base.dev;
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785
3786 if (!crtc->config.gmch_pfit.control)
3787 return;
3788
3789 assert_pipe_disabled(dev_priv, crtc->pipe);
3790
3791 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3792 I915_READ(PFIT_CONTROL));
3793 I915_WRITE(PFIT_CONTROL, 0);
3794 }
3795
3796 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3797 {
3798 struct drm_device *dev = crtc->dev;
3799 struct drm_i915_private *dev_priv = dev->dev_private;
3800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801 struct intel_encoder *encoder;
3802 int pipe = intel_crtc->pipe;
3803 int plane = intel_crtc->plane;
3804
3805 if (!intel_crtc->active)
3806 return;
3807
3808 for_each_encoder_on_crtc(dev, crtc, encoder)
3809 encoder->disable(encoder);
3810
3811 /* Give the overlay scaler a chance to disable if it's on this pipe */
3812 intel_crtc_wait_for_pending_flips(crtc);
3813 drm_vblank_off(dev, pipe);
3814
3815 if (dev_priv->fbc.plane == plane)
3816 intel_disable_fbc(dev);
3817
3818 intel_crtc_dpms_overlay(intel_crtc, false);
3819 intel_crtc_update_cursor(crtc, false);
3820 intel_disable_planes(crtc);
3821 intel_disable_plane(dev_priv, plane, pipe);
3822
3823 intel_disable_pipe(dev_priv, pipe);
3824
3825 i9xx_pfit_disable(intel_crtc);
3826
3827 for_each_encoder_on_crtc(dev, crtc, encoder)
3828 if (encoder->post_disable)
3829 encoder->post_disable(encoder);
3830
3831 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3832 i9xx_disable_pll(dev_priv, pipe);
3833
3834 intel_crtc->active = false;
3835 intel_update_watermarks(crtc);
3836
3837 intel_update_fbc(dev);
3838 }
3839
3840 static void i9xx_crtc_off(struct drm_crtc *crtc)
3841 {
3842 }
3843
3844 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3845 bool enabled)
3846 {
3847 struct drm_device *dev = crtc->dev;
3848 struct drm_i915_master_private *master_priv;
3849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3850 int pipe = intel_crtc->pipe;
3851
3852 if (!dev->primary->master)
3853 return;
3854
3855 master_priv = dev->primary->master->driver_priv;
3856 if (!master_priv->sarea_priv)
3857 return;
3858
3859 switch (pipe) {
3860 case 0:
3861 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3862 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3863 break;
3864 case 1:
3865 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3866 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3867 break;
3868 default:
3869 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3870 break;
3871 }
3872 }
3873
3874 /**
3875 * Sets the power management mode of the pipe and plane.
3876 */
3877 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3878 {
3879 struct drm_device *dev = crtc->dev;
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 struct intel_encoder *intel_encoder;
3882 bool enable = false;
3883
3884 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3885 enable |= intel_encoder->connectors_active;
3886
3887 if (enable)
3888 dev_priv->display.crtc_enable(crtc);
3889 else
3890 dev_priv->display.crtc_disable(crtc);
3891
3892 intel_crtc_update_sarea(crtc, enable);
3893 }
3894
3895 static void intel_crtc_disable(struct drm_crtc *crtc)
3896 {
3897 struct drm_device *dev = crtc->dev;
3898 struct drm_connector *connector;
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3901
3902 /* crtc should still be enabled when we disable it. */
3903 WARN_ON(!crtc->enabled);
3904
3905 dev_priv->display.crtc_disable(crtc);
3906 intel_crtc->eld_vld = false;
3907 intel_crtc_update_sarea(crtc, false);
3908 dev_priv->display.off(crtc);
3909
3910 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3911 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3912 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3913
3914 if (crtc->fb) {
3915 mutex_lock(&dev->struct_mutex);
3916 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3917 mutex_unlock(&dev->struct_mutex);
3918 crtc->fb = NULL;
3919 }
3920
3921 /* Update computed state. */
3922 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3923 if (!connector->encoder || !connector->encoder->crtc)
3924 continue;
3925
3926 if (connector->encoder->crtc != crtc)
3927 continue;
3928
3929 connector->dpms = DRM_MODE_DPMS_OFF;
3930 to_intel_encoder(connector->encoder)->connectors_active = false;
3931 }
3932 }
3933
3934 void intel_encoder_destroy(struct drm_encoder *encoder)
3935 {
3936 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3937
3938 drm_encoder_cleanup(encoder);
3939 kfree(intel_encoder);
3940 }
3941
3942 /* Simple dpms helper for encoders with just one connector, no cloning and only
3943 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3944 * state of the entire output pipe. */
3945 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3946 {
3947 if (mode == DRM_MODE_DPMS_ON) {
3948 encoder->connectors_active = true;
3949
3950 intel_crtc_update_dpms(encoder->base.crtc);
3951 } else {
3952 encoder->connectors_active = false;
3953
3954 intel_crtc_update_dpms(encoder->base.crtc);
3955 }
3956 }
3957
3958 /* Cross check the actual hw state with our own modeset state tracking (and it's
3959 * internal consistency). */
3960 static void intel_connector_check_state(struct intel_connector *connector)
3961 {
3962 if (connector->get_hw_state(connector)) {
3963 struct intel_encoder *encoder = connector->encoder;
3964 struct drm_crtc *crtc;
3965 bool encoder_enabled;
3966 enum pipe pipe;
3967
3968 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3969 connector->base.base.id,
3970 drm_get_connector_name(&connector->base));
3971
3972 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3973 "wrong connector dpms state\n");
3974 WARN(connector->base.encoder != &encoder->base,
3975 "active connector not linked to encoder\n");
3976 WARN(!encoder->connectors_active,
3977 "encoder->connectors_active not set\n");
3978
3979 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3980 WARN(!encoder_enabled, "encoder not enabled\n");
3981 if (WARN_ON(!encoder->base.crtc))
3982 return;
3983
3984 crtc = encoder->base.crtc;
3985
3986 WARN(!crtc->enabled, "crtc not enabled\n");
3987 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3988 WARN(pipe != to_intel_crtc(crtc)->pipe,
3989 "encoder active on the wrong pipe\n");
3990 }
3991 }
3992
3993 /* Even simpler default implementation, if there's really no special case to
3994 * consider. */
3995 void intel_connector_dpms(struct drm_connector *connector, int mode)
3996 {
3997 struct intel_encoder *encoder = intel_attached_encoder(connector);
3998
3999 /* All the simple cases only support two dpms states. */
4000 if (mode != DRM_MODE_DPMS_ON)
4001 mode = DRM_MODE_DPMS_OFF;
4002
4003 if (mode == connector->dpms)
4004 return;
4005
4006 connector->dpms = mode;
4007
4008 /* Only need to change hw state when actually enabled */
4009 if (encoder->base.crtc)
4010 intel_encoder_dpms(encoder, mode);
4011 else
4012 WARN_ON(encoder->connectors_active != false);
4013
4014 intel_modeset_check_state(connector->dev);
4015 }
4016
4017 /* Simple connector->get_hw_state implementation for encoders that support only
4018 * one connector and no cloning and hence the encoder state determines the state
4019 * of the connector. */
4020 bool intel_connector_get_hw_state(struct intel_connector *connector)
4021 {
4022 enum pipe pipe = 0;
4023 struct intel_encoder *encoder = connector->encoder;
4024
4025 return encoder->get_hw_state(encoder, &pipe);
4026 }
4027
4028 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4029 struct intel_crtc_config *pipe_config)
4030 {
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032 struct intel_crtc *pipe_B_crtc =
4033 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4034
4035 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4036 pipe_name(pipe), pipe_config->fdi_lanes);
4037 if (pipe_config->fdi_lanes > 4) {
4038 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4039 pipe_name(pipe), pipe_config->fdi_lanes);
4040 return false;
4041 }
4042
4043 if (IS_HASWELL(dev)) {
4044 if (pipe_config->fdi_lanes > 2) {
4045 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4046 pipe_config->fdi_lanes);
4047 return false;
4048 } else {
4049 return true;
4050 }
4051 }
4052
4053 if (INTEL_INFO(dev)->num_pipes == 2)
4054 return true;
4055
4056 /* Ivybridge 3 pipe is really complicated */
4057 switch (pipe) {
4058 case PIPE_A:
4059 return true;
4060 case PIPE_B:
4061 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4062 pipe_config->fdi_lanes > 2) {
4063 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4064 pipe_name(pipe), pipe_config->fdi_lanes);
4065 return false;
4066 }
4067 return true;
4068 case PIPE_C:
4069 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4070 pipe_B_crtc->config.fdi_lanes <= 2) {
4071 if (pipe_config->fdi_lanes > 2) {
4072 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4073 pipe_name(pipe), pipe_config->fdi_lanes);
4074 return false;
4075 }
4076 } else {
4077 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4078 return false;
4079 }
4080 return true;
4081 default:
4082 BUG();
4083 }
4084 }
4085
4086 #define RETRY 1
4087 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4088 struct intel_crtc_config *pipe_config)
4089 {
4090 struct drm_device *dev = intel_crtc->base.dev;
4091 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4092 int lane, link_bw, fdi_dotclock;
4093 bool setup_ok, needs_recompute = false;
4094
4095 retry:
4096 /* FDI is a binary signal running at ~2.7GHz, encoding
4097 * each output octet as 10 bits. The actual frequency
4098 * is stored as a divider into a 100MHz clock, and the
4099 * mode pixel clock is stored in units of 1KHz.
4100 * Hence the bw of each lane in terms of the mode signal
4101 * is:
4102 */
4103 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4104
4105 fdi_dotclock = adjusted_mode->clock;
4106
4107 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4108 pipe_config->pipe_bpp);
4109
4110 pipe_config->fdi_lanes = lane;
4111
4112 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4113 link_bw, &pipe_config->fdi_m_n);
4114
4115 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4116 intel_crtc->pipe, pipe_config);
4117 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4118 pipe_config->pipe_bpp -= 2*3;
4119 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4120 pipe_config->pipe_bpp);
4121 needs_recompute = true;
4122 pipe_config->bw_constrained = true;
4123
4124 goto retry;
4125 }
4126
4127 if (needs_recompute)
4128 return RETRY;
4129
4130 return setup_ok ? 0 : -EINVAL;
4131 }
4132
4133 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4134 struct intel_crtc_config *pipe_config)
4135 {
4136 pipe_config->ips_enabled = i915_enable_ips &&
4137 hsw_crtc_supports_ips(crtc) &&
4138 pipe_config->pipe_bpp <= 24;
4139 }
4140
4141 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4142 struct intel_crtc_config *pipe_config)
4143 {
4144 struct drm_device *dev = crtc->base.dev;
4145 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4146
4147 /* FIXME should check pixel clock limits on all platforms */
4148 if (INTEL_INFO(dev)->gen < 4) {
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 int clock_limit =
4151 dev_priv->display.get_display_clock_speed(dev);
4152
4153 /*
4154 * Enable pixel doubling when the dot clock
4155 * is > 90% of the (display) core speed.
4156 *
4157 * GDG double wide on either pipe,
4158 * otherwise pipe A only.
4159 */
4160 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4161 adjusted_mode->clock > clock_limit * 9 / 10) {
4162 clock_limit *= 2;
4163 pipe_config->double_wide = true;
4164 }
4165
4166 if (adjusted_mode->clock > clock_limit * 9 / 10)
4167 return -EINVAL;
4168 }
4169
4170 /*
4171 * Pipe horizontal size must be even in:
4172 * - DVO ganged mode
4173 * - LVDS dual channel mode
4174 * - Double wide pipe
4175 */
4176 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4177 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4178 pipe_config->pipe_src_w &= ~1;
4179
4180 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4181 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4182 */
4183 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4184 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4185 return -EINVAL;
4186
4187 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4188 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4189 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4190 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4191 * for lvds. */
4192 pipe_config->pipe_bpp = 8*3;
4193 }
4194
4195 if (HAS_IPS(dev))
4196 hsw_compute_ips_config(crtc, pipe_config);
4197
4198 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4199 * clock survives for now. */
4200 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4201 pipe_config->shared_dpll = crtc->config.shared_dpll;
4202
4203 if (pipe_config->has_pch_encoder)
4204 return ironlake_fdi_compute_config(crtc, pipe_config);
4205
4206 return 0;
4207 }
4208
4209 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4210 {
4211 return 400000; /* FIXME */
4212 }
4213
4214 static int i945_get_display_clock_speed(struct drm_device *dev)
4215 {
4216 return 400000;
4217 }
4218
4219 static int i915_get_display_clock_speed(struct drm_device *dev)
4220 {
4221 return 333000;
4222 }
4223
4224 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4225 {
4226 return 200000;
4227 }
4228
4229 static int pnv_get_display_clock_speed(struct drm_device *dev)
4230 {
4231 u16 gcfgc = 0;
4232
4233 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4234
4235 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4236 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4237 return 267000;
4238 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4239 return 333000;
4240 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4241 return 444000;
4242 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4243 return 200000;
4244 default:
4245 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4246 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4247 return 133000;
4248 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4249 return 167000;
4250 }
4251 }
4252
4253 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4254 {
4255 u16 gcfgc = 0;
4256
4257 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4258
4259 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4260 return 133000;
4261 else {
4262 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4263 case GC_DISPLAY_CLOCK_333_MHZ:
4264 return 333000;
4265 default:
4266 case GC_DISPLAY_CLOCK_190_200_MHZ:
4267 return 190000;
4268 }
4269 }
4270 }
4271
4272 static int i865_get_display_clock_speed(struct drm_device *dev)
4273 {
4274 return 266000;
4275 }
4276
4277 static int i855_get_display_clock_speed(struct drm_device *dev)
4278 {
4279 u16 hpllcc = 0;
4280 /* Assume that the hardware is in the high speed state. This
4281 * should be the default.
4282 */
4283 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4284 case GC_CLOCK_133_200:
4285 case GC_CLOCK_100_200:
4286 return 200000;
4287 case GC_CLOCK_166_250:
4288 return 250000;
4289 case GC_CLOCK_100_133:
4290 return 133000;
4291 }
4292
4293 /* Shouldn't happen */
4294 return 0;
4295 }
4296
4297 static int i830_get_display_clock_speed(struct drm_device *dev)
4298 {
4299 return 133000;
4300 }
4301
4302 static void
4303 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4304 {
4305 while (*num > DATA_LINK_M_N_MASK ||
4306 *den > DATA_LINK_M_N_MASK) {
4307 *num >>= 1;
4308 *den >>= 1;
4309 }
4310 }
4311
4312 static void compute_m_n(unsigned int m, unsigned int n,
4313 uint32_t *ret_m, uint32_t *ret_n)
4314 {
4315 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4316 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4317 intel_reduce_m_n_ratio(ret_m, ret_n);
4318 }
4319
4320 void
4321 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4322 int pixel_clock, int link_clock,
4323 struct intel_link_m_n *m_n)
4324 {
4325 m_n->tu = 64;
4326
4327 compute_m_n(bits_per_pixel * pixel_clock,
4328 link_clock * nlanes * 8,
4329 &m_n->gmch_m, &m_n->gmch_n);
4330
4331 compute_m_n(pixel_clock, link_clock,
4332 &m_n->link_m, &m_n->link_n);
4333 }
4334
4335 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4336 {
4337 if (i915_panel_use_ssc >= 0)
4338 return i915_panel_use_ssc != 0;
4339 return dev_priv->vbt.lvds_use_ssc
4340 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4341 }
4342
4343 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4344 {
4345 struct drm_device *dev = crtc->dev;
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 int refclk;
4348
4349 if (IS_VALLEYVIEW(dev)) {
4350 refclk = 100000;
4351 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4352 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4353 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4354 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4355 refclk / 1000);
4356 } else if (!IS_GEN2(dev)) {
4357 refclk = 96000;
4358 } else {
4359 refclk = 48000;
4360 }
4361
4362 return refclk;
4363 }
4364
4365 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4366 {
4367 return (1 << dpll->n) << 16 | dpll->m2;
4368 }
4369
4370 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4371 {
4372 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4373 }
4374
4375 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4376 intel_clock_t *reduced_clock)
4377 {
4378 struct drm_device *dev = crtc->base.dev;
4379 struct drm_i915_private *dev_priv = dev->dev_private;
4380 int pipe = crtc->pipe;
4381 u32 fp, fp2 = 0;
4382
4383 if (IS_PINEVIEW(dev)) {
4384 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4385 if (reduced_clock)
4386 fp2 = pnv_dpll_compute_fp(reduced_clock);
4387 } else {
4388 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4389 if (reduced_clock)
4390 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4391 }
4392
4393 I915_WRITE(FP0(pipe), fp);
4394 crtc->config.dpll_hw_state.fp0 = fp;
4395
4396 crtc->lowfreq_avail = false;
4397 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4398 reduced_clock && i915_powersave) {
4399 I915_WRITE(FP1(pipe), fp2);
4400 crtc->config.dpll_hw_state.fp1 = fp2;
4401 crtc->lowfreq_avail = true;
4402 } else {
4403 I915_WRITE(FP1(pipe), fp);
4404 crtc->config.dpll_hw_state.fp1 = fp;
4405 }
4406 }
4407
4408 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4409 pipe)
4410 {
4411 u32 reg_val;
4412
4413 /*
4414 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4415 * and set it to a reasonable value instead.
4416 */
4417 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4418 reg_val &= 0xffffff00;
4419 reg_val |= 0x00000030;
4420 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4421
4422 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4423 reg_val &= 0x8cffffff;
4424 reg_val = 0x8c000000;
4425 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4426
4427 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4428 reg_val &= 0xffffff00;
4429 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4430
4431 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4432 reg_val &= 0x00ffffff;
4433 reg_val |= 0xb0000000;
4434 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4435 }
4436
4437 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4438 struct intel_link_m_n *m_n)
4439 {
4440 struct drm_device *dev = crtc->base.dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 int pipe = crtc->pipe;
4443
4444 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4445 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4446 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4447 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4448 }
4449
4450 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4451 struct intel_link_m_n *m_n)
4452 {
4453 struct drm_device *dev = crtc->base.dev;
4454 struct drm_i915_private *dev_priv = dev->dev_private;
4455 int pipe = crtc->pipe;
4456 enum transcoder transcoder = crtc->config.cpu_transcoder;
4457
4458 if (INTEL_INFO(dev)->gen >= 5) {
4459 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4460 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4461 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4462 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4463 } else {
4464 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4465 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4466 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4467 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4468 }
4469 }
4470
4471 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4472 {
4473 if (crtc->config.has_pch_encoder)
4474 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4475 else
4476 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4477 }
4478
4479 static void vlv_update_pll(struct intel_crtc *crtc)
4480 {
4481 struct drm_device *dev = crtc->base.dev;
4482 struct drm_i915_private *dev_priv = dev->dev_private;
4483 int pipe = crtc->pipe;
4484 u32 dpll, mdiv;
4485 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4486 u32 coreclk, reg_val, dpll_md;
4487
4488 mutex_lock(&dev_priv->dpio_lock);
4489
4490 bestn = crtc->config.dpll.n;
4491 bestm1 = crtc->config.dpll.m1;
4492 bestm2 = crtc->config.dpll.m2;
4493 bestp1 = crtc->config.dpll.p1;
4494 bestp2 = crtc->config.dpll.p2;
4495
4496 /* See eDP HDMI DPIO driver vbios notes doc */
4497
4498 /* PLL B needs special handling */
4499 if (pipe)
4500 vlv_pllb_recal_opamp(dev_priv, pipe);
4501
4502 /* Set up Tx target for periodic Rcomp update */
4503 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4504
4505 /* Disable target IRef on PLL */
4506 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4507 reg_val &= 0x00ffffff;
4508 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4509
4510 /* Disable fast lock */
4511 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4512
4513 /* Set idtafcrecal before PLL is enabled */
4514 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4515 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4516 mdiv |= ((bestn << DPIO_N_SHIFT));
4517 mdiv |= (1 << DPIO_K_SHIFT);
4518
4519 /*
4520 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4521 * but we don't support that).
4522 * Note: don't use the DAC post divider as it seems unstable.
4523 */
4524 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4525 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4526
4527 mdiv |= DPIO_ENABLE_CALIBRATION;
4528 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4529
4530 /* Set HBR and RBR LPF coefficients */
4531 if (crtc->config.port_clock == 162000 ||
4532 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4533 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4534 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4535 0x009f0003);
4536 else
4537 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4538 0x00d0000f);
4539
4540 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4541 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4542 /* Use SSC source */
4543 if (!pipe)
4544 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4545 0x0df40000);
4546 else
4547 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4548 0x0df70000);
4549 } else { /* HDMI or VGA */
4550 /* Use bend source */
4551 if (!pipe)
4552 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4553 0x0df70000);
4554 else
4555 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4556 0x0df40000);
4557 }
4558
4559 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4560 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4561 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4562 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4563 coreclk |= 0x01000000;
4564 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4565
4566 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4567
4568 /* Enable DPIO clock input */
4569 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4570 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4571 if (pipe)
4572 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4573
4574 dpll |= DPLL_VCO_ENABLE;
4575 crtc->config.dpll_hw_state.dpll = dpll;
4576
4577 dpll_md = (crtc->config.pixel_multiplier - 1)
4578 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4579 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4580
4581 if (crtc->config.has_dp_encoder)
4582 intel_dp_set_m_n(crtc);
4583
4584 mutex_unlock(&dev_priv->dpio_lock);
4585 }
4586
4587 static void i9xx_update_pll(struct intel_crtc *crtc,
4588 intel_clock_t *reduced_clock,
4589 int num_connectors)
4590 {
4591 struct drm_device *dev = crtc->base.dev;
4592 struct drm_i915_private *dev_priv = dev->dev_private;
4593 u32 dpll;
4594 bool is_sdvo;
4595 struct dpll *clock = &crtc->config.dpll;
4596
4597 i9xx_update_pll_dividers(crtc, reduced_clock);
4598
4599 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4600 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4601
4602 dpll = DPLL_VGA_MODE_DIS;
4603
4604 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4605 dpll |= DPLLB_MODE_LVDS;
4606 else
4607 dpll |= DPLLB_MODE_DAC_SERIAL;
4608
4609 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4610 dpll |= (crtc->config.pixel_multiplier - 1)
4611 << SDVO_MULTIPLIER_SHIFT_HIRES;
4612 }
4613
4614 if (is_sdvo)
4615 dpll |= DPLL_SDVO_HIGH_SPEED;
4616
4617 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4618 dpll |= DPLL_SDVO_HIGH_SPEED;
4619
4620 /* compute bitmask from p1 value */
4621 if (IS_PINEVIEW(dev))
4622 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4623 else {
4624 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4625 if (IS_G4X(dev) && reduced_clock)
4626 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4627 }
4628 switch (clock->p2) {
4629 case 5:
4630 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4631 break;
4632 case 7:
4633 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4634 break;
4635 case 10:
4636 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4637 break;
4638 case 14:
4639 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4640 break;
4641 }
4642 if (INTEL_INFO(dev)->gen >= 4)
4643 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4644
4645 if (crtc->config.sdvo_tv_clock)
4646 dpll |= PLL_REF_INPUT_TVCLKINBC;
4647 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4648 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4649 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4650 else
4651 dpll |= PLL_REF_INPUT_DREFCLK;
4652
4653 dpll |= DPLL_VCO_ENABLE;
4654 crtc->config.dpll_hw_state.dpll = dpll;
4655
4656 if (INTEL_INFO(dev)->gen >= 4) {
4657 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4658 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4659 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4660 }
4661
4662 if (crtc->config.has_dp_encoder)
4663 intel_dp_set_m_n(crtc);
4664 }
4665
4666 static void i8xx_update_pll(struct intel_crtc *crtc,
4667 intel_clock_t *reduced_clock,
4668 int num_connectors)
4669 {
4670 struct drm_device *dev = crtc->base.dev;
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672 u32 dpll;
4673 struct dpll *clock = &crtc->config.dpll;
4674
4675 i9xx_update_pll_dividers(crtc, reduced_clock);
4676
4677 dpll = DPLL_VGA_MODE_DIS;
4678
4679 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4680 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4681 } else {
4682 if (clock->p1 == 2)
4683 dpll |= PLL_P1_DIVIDE_BY_TWO;
4684 else
4685 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4686 if (clock->p2 == 4)
4687 dpll |= PLL_P2_DIVIDE_BY_4;
4688 }
4689
4690 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4691 dpll |= DPLL_DVO_2X_MODE;
4692
4693 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4694 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4695 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4696 else
4697 dpll |= PLL_REF_INPUT_DREFCLK;
4698
4699 dpll |= DPLL_VCO_ENABLE;
4700 crtc->config.dpll_hw_state.dpll = dpll;
4701 }
4702
4703 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4704 {
4705 struct drm_device *dev = intel_crtc->base.dev;
4706 struct drm_i915_private *dev_priv = dev->dev_private;
4707 enum pipe pipe = intel_crtc->pipe;
4708 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4709 struct drm_display_mode *adjusted_mode =
4710 &intel_crtc->config.adjusted_mode;
4711 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4712
4713 /* We need to be careful not to changed the adjusted mode, for otherwise
4714 * the hw state checker will get angry at the mismatch. */
4715 crtc_vtotal = adjusted_mode->crtc_vtotal;
4716 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4717
4718 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4719 /* the chip adds 2 halflines automatically */
4720 crtc_vtotal -= 1;
4721 crtc_vblank_end -= 1;
4722 vsyncshift = adjusted_mode->crtc_hsync_start
4723 - adjusted_mode->crtc_htotal / 2;
4724 } else {
4725 vsyncshift = 0;
4726 }
4727
4728 if (INTEL_INFO(dev)->gen > 3)
4729 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4730
4731 I915_WRITE(HTOTAL(cpu_transcoder),
4732 (adjusted_mode->crtc_hdisplay - 1) |
4733 ((adjusted_mode->crtc_htotal - 1) << 16));
4734 I915_WRITE(HBLANK(cpu_transcoder),
4735 (adjusted_mode->crtc_hblank_start - 1) |
4736 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4737 I915_WRITE(HSYNC(cpu_transcoder),
4738 (adjusted_mode->crtc_hsync_start - 1) |
4739 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4740
4741 I915_WRITE(VTOTAL(cpu_transcoder),
4742 (adjusted_mode->crtc_vdisplay - 1) |
4743 ((crtc_vtotal - 1) << 16));
4744 I915_WRITE(VBLANK(cpu_transcoder),
4745 (adjusted_mode->crtc_vblank_start - 1) |
4746 ((crtc_vblank_end - 1) << 16));
4747 I915_WRITE(VSYNC(cpu_transcoder),
4748 (adjusted_mode->crtc_vsync_start - 1) |
4749 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4750
4751 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4752 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4753 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4754 * bits. */
4755 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4756 (pipe == PIPE_B || pipe == PIPE_C))
4757 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4758
4759 /* pipesrc controls the size that is scaled from, which should
4760 * always be the user's requested size.
4761 */
4762 I915_WRITE(PIPESRC(pipe),
4763 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4764 (intel_crtc->config.pipe_src_h - 1));
4765 }
4766
4767 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4768 struct intel_crtc_config *pipe_config)
4769 {
4770 struct drm_device *dev = crtc->base.dev;
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4773 uint32_t tmp;
4774
4775 tmp = I915_READ(HTOTAL(cpu_transcoder));
4776 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4777 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4778 tmp = I915_READ(HBLANK(cpu_transcoder));
4779 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4780 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4781 tmp = I915_READ(HSYNC(cpu_transcoder));
4782 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4783 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4784
4785 tmp = I915_READ(VTOTAL(cpu_transcoder));
4786 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4787 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4788 tmp = I915_READ(VBLANK(cpu_transcoder));
4789 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4790 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4791 tmp = I915_READ(VSYNC(cpu_transcoder));
4792 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4793 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4794
4795 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4796 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4797 pipe_config->adjusted_mode.crtc_vtotal += 1;
4798 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4799 }
4800
4801 tmp = I915_READ(PIPESRC(crtc->pipe));
4802 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4803 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4804
4805 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4806 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4807 }
4808
4809 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4810 struct intel_crtc_config *pipe_config)
4811 {
4812 struct drm_crtc *crtc = &intel_crtc->base;
4813
4814 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4815 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4816 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4817 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4818
4819 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4820 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4821 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4822 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4823
4824 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4825
4826 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4827 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4828 }
4829
4830 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4831 {
4832 struct drm_device *dev = intel_crtc->base.dev;
4833 struct drm_i915_private *dev_priv = dev->dev_private;
4834 uint32_t pipeconf;
4835
4836 pipeconf = 0;
4837
4838 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4839 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4840 pipeconf |= PIPECONF_ENABLE;
4841
4842 if (intel_crtc->config.double_wide)
4843 pipeconf |= PIPECONF_DOUBLE_WIDE;
4844
4845 /* only g4x and later have fancy bpc/dither controls */
4846 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4847 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4848 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4849 pipeconf |= PIPECONF_DITHER_EN |
4850 PIPECONF_DITHER_TYPE_SP;
4851
4852 switch (intel_crtc->config.pipe_bpp) {
4853 case 18:
4854 pipeconf |= PIPECONF_6BPC;
4855 break;
4856 case 24:
4857 pipeconf |= PIPECONF_8BPC;
4858 break;
4859 case 30:
4860 pipeconf |= PIPECONF_10BPC;
4861 break;
4862 default:
4863 /* Case prevented by intel_choose_pipe_bpp_dither. */
4864 BUG();
4865 }
4866 }
4867
4868 if (HAS_PIPE_CXSR(dev)) {
4869 if (intel_crtc->lowfreq_avail) {
4870 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4871 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4872 } else {
4873 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4874 }
4875 }
4876
4877 if (!IS_GEN2(dev) &&
4878 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4879 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4880 else
4881 pipeconf |= PIPECONF_PROGRESSIVE;
4882
4883 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4884 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4885
4886 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4887 POSTING_READ(PIPECONF(intel_crtc->pipe));
4888 }
4889
4890 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4891 int x, int y,
4892 struct drm_framebuffer *fb)
4893 {
4894 struct drm_device *dev = crtc->dev;
4895 struct drm_i915_private *dev_priv = dev->dev_private;
4896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4897 int pipe = intel_crtc->pipe;
4898 int plane = intel_crtc->plane;
4899 int refclk, num_connectors = 0;
4900 intel_clock_t clock, reduced_clock;
4901 u32 dspcntr;
4902 bool ok, has_reduced_clock = false;
4903 bool is_lvds = false, is_dsi = false;
4904 struct intel_encoder *encoder;
4905 const intel_limit_t *limit;
4906 int ret;
4907
4908 for_each_encoder_on_crtc(dev, crtc, encoder) {
4909 switch (encoder->type) {
4910 case INTEL_OUTPUT_LVDS:
4911 is_lvds = true;
4912 break;
4913 case INTEL_OUTPUT_DSI:
4914 is_dsi = true;
4915 break;
4916 }
4917
4918 num_connectors++;
4919 }
4920
4921 refclk = i9xx_get_refclk(crtc, num_connectors);
4922
4923 if (!is_dsi && !intel_crtc->config.clock_set) {
4924 /*
4925 * Returns a set of divisors for the desired target clock with
4926 * the given refclk, or FALSE. The returned values represent
4927 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4928 * 2) / p1 / p2.
4929 */
4930 limit = intel_limit(crtc, refclk);
4931 ok = dev_priv->display.find_dpll(limit, crtc,
4932 intel_crtc->config.port_clock,
4933 refclk, NULL, &clock);
4934 if (!ok && !intel_crtc->config.clock_set) {
4935 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4936 return -EINVAL;
4937 }
4938 }
4939
4940 if (is_lvds && dev_priv->lvds_downclock_avail) {
4941 /*
4942 * Ensure we match the reduced clock's P to the target clock.
4943 * If the clocks don't match, we can't switch the display clock
4944 * by using the FP0/FP1. In such case we will disable the LVDS
4945 * downclock feature.
4946 */
4947 limit = intel_limit(crtc, refclk);
4948 has_reduced_clock =
4949 dev_priv->display.find_dpll(limit, crtc,
4950 dev_priv->lvds_downclock,
4951 refclk, &clock,
4952 &reduced_clock);
4953 }
4954 /* Compat-code for transition, will disappear. */
4955 if (!intel_crtc->config.clock_set) {
4956 intel_crtc->config.dpll.n = clock.n;
4957 intel_crtc->config.dpll.m1 = clock.m1;
4958 intel_crtc->config.dpll.m2 = clock.m2;
4959 intel_crtc->config.dpll.p1 = clock.p1;
4960 intel_crtc->config.dpll.p2 = clock.p2;
4961 }
4962
4963 if (IS_GEN2(dev)) {
4964 i8xx_update_pll(intel_crtc,
4965 has_reduced_clock ? &reduced_clock : NULL,
4966 num_connectors);
4967 } else if (IS_VALLEYVIEW(dev)) {
4968 if (!is_dsi)
4969 vlv_update_pll(intel_crtc);
4970 } else {
4971 i9xx_update_pll(intel_crtc,
4972 has_reduced_clock ? &reduced_clock : NULL,
4973 num_connectors);
4974 }
4975
4976 /* Set up the display plane register */
4977 dspcntr = DISPPLANE_GAMMA_ENABLE;
4978
4979 if (!IS_VALLEYVIEW(dev)) {
4980 if (pipe == 0)
4981 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4982 else
4983 dspcntr |= DISPPLANE_SEL_PIPE_B;
4984 }
4985
4986 intel_set_pipe_timings(intel_crtc);
4987
4988 /* pipesrc and dspsize control the size that is scaled from,
4989 * which should always be the user's requested size.
4990 */
4991 I915_WRITE(DSPSIZE(plane),
4992 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4993 (intel_crtc->config.pipe_src_w - 1));
4994 I915_WRITE(DSPPOS(plane), 0);
4995
4996 i9xx_set_pipeconf(intel_crtc);
4997
4998 I915_WRITE(DSPCNTR(plane), dspcntr);
4999 POSTING_READ(DSPCNTR(plane));
5000
5001 ret = intel_pipe_set_base(crtc, x, y, fb);
5002
5003 return ret;
5004 }
5005
5006 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5007 struct intel_crtc_config *pipe_config)
5008 {
5009 struct drm_device *dev = crtc->base.dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 uint32_t tmp;
5012
5013 tmp = I915_READ(PFIT_CONTROL);
5014 if (!(tmp & PFIT_ENABLE))
5015 return;
5016
5017 /* Check whether the pfit is attached to our pipe. */
5018 if (INTEL_INFO(dev)->gen < 4) {
5019 if (crtc->pipe != PIPE_B)
5020 return;
5021 } else {
5022 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5023 return;
5024 }
5025
5026 pipe_config->gmch_pfit.control = tmp;
5027 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5028 if (INTEL_INFO(dev)->gen < 5)
5029 pipe_config->gmch_pfit.lvds_border_bits =
5030 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5031 }
5032
5033 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5034 struct intel_crtc_config *pipe_config)
5035 {
5036 struct drm_device *dev = crtc->base.dev;
5037 struct drm_i915_private *dev_priv = dev->dev_private;
5038 uint32_t tmp;
5039
5040 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5041 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5042
5043 tmp = I915_READ(PIPECONF(crtc->pipe));
5044 if (!(tmp & PIPECONF_ENABLE))
5045 return false;
5046
5047 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5048 switch (tmp & PIPECONF_BPC_MASK) {
5049 case PIPECONF_6BPC:
5050 pipe_config->pipe_bpp = 18;
5051 break;
5052 case PIPECONF_8BPC:
5053 pipe_config->pipe_bpp = 24;
5054 break;
5055 case PIPECONF_10BPC:
5056 pipe_config->pipe_bpp = 30;
5057 break;
5058 default:
5059 break;
5060 }
5061 }
5062
5063 if (INTEL_INFO(dev)->gen < 4)
5064 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5065
5066 intel_get_pipe_timings(crtc, pipe_config);
5067
5068 i9xx_get_pfit_config(crtc, pipe_config);
5069
5070 if (INTEL_INFO(dev)->gen >= 4) {
5071 tmp = I915_READ(DPLL_MD(crtc->pipe));
5072 pipe_config->pixel_multiplier =
5073 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5074 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5075 pipe_config->dpll_hw_state.dpll_md = tmp;
5076 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5077 tmp = I915_READ(DPLL(crtc->pipe));
5078 pipe_config->pixel_multiplier =
5079 ((tmp & SDVO_MULTIPLIER_MASK)
5080 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5081 } else {
5082 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5083 * port and will be fixed up in the encoder->get_config
5084 * function. */
5085 pipe_config->pixel_multiplier = 1;
5086 }
5087 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5088 if (!IS_VALLEYVIEW(dev)) {
5089 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5090 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5091 } else {
5092 /* Mask out read-only status bits. */
5093 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5094 DPLL_PORTC_READY_MASK |
5095 DPLL_PORTB_READY_MASK);
5096 }
5097
5098 i9xx_crtc_clock_get(crtc, pipe_config);
5099
5100 return true;
5101 }
5102
5103 static void ironlake_init_pch_refclk(struct drm_device *dev)
5104 {
5105 struct drm_i915_private *dev_priv = dev->dev_private;
5106 struct drm_mode_config *mode_config = &dev->mode_config;
5107 struct intel_encoder *encoder;
5108 u32 val, final;
5109 bool has_lvds = false;
5110 bool has_cpu_edp = false;
5111 bool has_panel = false;
5112 bool has_ck505 = false;
5113 bool can_ssc = false;
5114
5115 /* We need to take the global config into account */
5116 list_for_each_entry(encoder, &mode_config->encoder_list,
5117 base.head) {
5118 switch (encoder->type) {
5119 case INTEL_OUTPUT_LVDS:
5120 has_panel = true;
5121 has_lvds = true;
5122 break;
5123 case INTEL_OUTPUT_EDP:
5124 has_panel = true;
5125 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5126 has_cpu_edp = true;
5127 break;
5128 }
5129 }
5130
5131 if (HAS_PCH_IBX(dev)) {
5132 has_ck505 = dev_priv->vbt.display_clock_mode;
5133 can_ssc = has_ck505;
5134 } else {
5135 has_ck505 = false;
5136 can_ssc = true;
5137 }
5138
5139 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5140 has_panel, has_lvds, has_ck505);
5141
5142 /* Ironlake: try to setup display ref clock before DPLL
5143 * enabling. This is only under driver's control after
5144 * PCH B stepping, previous chipset stepping should be
5145 * ignoring this setting.
5146 */
5147 val = I915_READ(PCH_DREF_CONTROL);
5148
5149 /* As we must carefully and slowly disable/enable each source in turn,
5150 * compute the final state we want first and check if we need to
5151 * make any changes at all.
5152 */
5153 final = val;
5154 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5155 if (has_ck505)
5156 final |= DREF_NONSPREAD_CK505_ENABLE;
5157 else
5158 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5159
5160 final &= ~DREF_SSC_SOURCE_MASK;
5161 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5162 final &= ~DREF_SSC1_ENABLE;
5163
5164 if (has_panel) {
5165 final |= DREF_SSC_SOURCE_ENABLE;
5166
5167 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5168 final |= DREF_SSC1_ENABLE;
5169
5170 if (has_cpu_edp) {
5171 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5172 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5173 else
5174 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5175 } else
5176 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5177 } else {
5178 final |= DREF_SSC_SOURCE_DISABLE;
5179 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5180 }
5181
5182 if (final == val)
5183 return;
5184
5185 /* Always enable nonspread source */
5186 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5187
5188 if (has_ck505)
5189 val |= DREF_NONSPREAD_CK505_ENABLE;
5190 else
5191 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5192
5193 if (has_panel) {
5194 val &= ~DREF_SSC_SOURCE_MASK;
5195 val |= DREF_SSC_SOURCE_ENABLE;
5196
5197 /* SSC must be turned on before enabling the CPU output */
5198 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5199 DRM_DEBUG_KMS("Using SSC on panel\n");
5200 val |= DREF_SSC1_ENABLE;
5201 } else
5202 val &= ~DREF_SSC1_ENABLE;
5203
5204 /* Get SSC going before enabling the outputs */
5205 I915_WRITE(PCH_DREF_CONTROL, val);
5206 POSTING_READ(PCH_DREF_CONTROL);
5207 udelay(200);
5208
5209 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5210
5211 /* Enable CPU source on CPU attached eDP */
5212 if (has_cpu_edp) {
5213 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5214 DRM_DEBUG_KMS("Using SSC on eDP\n");
5215 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5216 }
5217 else
5218 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5219 } else
5220 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5221
5222 I915_WRITE(PCH_DREF_CONTROL, val);
5223 POSTING_READ(PCH_DREF_CONTROL);
5224 udelay(200);
5225 } else {
5226 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5227
5228 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5229
5230 /* Turn off CPU output */
5231 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5232
5233 I915_WRITE(PCH_DREF_CONTROL, val);
5234 POSTING_READ(PCH_DREF_CONTROL);
5235 udelay(200);
5236
5237 /* Turn off the SSC source */
5238 val &= ~DREF_SSC_SOURCE_MASK;
5239 val |= DREF_SSC_SOURCE_DISABLE;
5240
5241 /* Turn off SSC1 */
5242 val &= ~DREF_SSC1_ENABLE;
5243
5244 I915_WRITE(PCH_DREF_CONTROL, val);
5245 POSTING_READ(PCH_DREF_CONTROL);
5246 udelay(200);
5247 }
5248
5249 BUG_ON(val != final);
5250 }
5251
5252 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5253 {
5254 uint32_t tmp;
5255
5256 tmp = I915_READ(SOUTH_CHICKEN2);
5257 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5258 I915_WRITE(SOUTH_CHICKEN2, tmp);
5259
5260 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5261 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5262 DRM_ERROR("FDI mPHY reset assert timeout\n");
5263
5264 tmp = I915_READ(SOUTH_CHICKEN2);
5265 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5266 I915_WRITE(SOUTH_CHICKEN2, tmp);
5267
5268 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5269 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5270 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5271 }
5272
5273 /* WaMPhyProgramming:hsw */
5274 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5275 {
5276 uint32_t tmp;
5277
5278 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5279 tmp &= ~(0xFF << 24);
5280 tmp |= (0x12 << 24);
5281 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5282
5283 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5284 tmp |= (1 << 11);
5285 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5286
5287 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5288 tmp |= (1 << 11);
5289 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5290
5291 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5292 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5293 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5294
5295 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5296 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5297 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5298
5299 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5300 tmp &= ~(7 << 13);
5301 tmp |= (5 << 13);
5302 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5303
5304 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5305 tmp &= ~(7 << 13);
5306 tmp |= (5 << 13);
5307 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5308
5309 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5310 tmp &= ~0xFF;
5311 tmp |= 0x1C;
5312 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5313
5314 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5315 tmp &= ~0xFF;
5316 tmp |= 0x1C;
5317 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5318
5319 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5320 tmp &= ~(0xFF << 16);
5321 tmp |= (0x1C << 16);
5322 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5323
5324 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5325 tmp &= ~(0xFF << 16);
5326 tmp |= (0x1C << 16);
5327 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5328
5329 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5330 tmp |= (1 << 27);
5331 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5332
5333 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5334 tmp |= (1 << 27);
5335 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5336
5337 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5338 tmp &= ~(0xF << 28);
5339 tmp |= (4 << 28);
5340 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5341
5342 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5343 tmp &= ~(0xF << 28);
5344 tmp |= (4 << 28);
5345 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5346 }
5347
5348 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5349 * Programming" based on the parameters passed:
5350 * - Sequence to enable CLKOUT_DP
5351 * - Sequence to enable CLKOUT_DP without spread
5352 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5353 */
5354 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5355 bool with_fdi)
5356 {
5357 struct drm_i915_private *dev_priv = dev->dev_private;
5358 uint32_t reg, tmp;
5359
5360 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5361 with_spread = true;
5362 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5363 with_fdi, "LP PCH doesn't have FDI\n"))
5364 with_fdi = false;
5365
5366 mutex_lock(&dev_priv->dpio_lock);
5367
5368 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5369 tmp &= ~SBI_SSCCTL_DISABLE;
5370 tmp |= SBI_SSCCTL_PATHALT;
5371 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5372
5373 udelay(24);
5374
5375 if (with_spread) {
5376 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5377 tmp &= ~SBI_SSCCTL_PATHALT;
5378 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5379
5380 if (with_fdi) {
5381 lpt_reset_fdi_mphy(dev_priv);
5382 lpt_program_fdi_mphy(dev_priv);
5383 }
5384 }
5385
5386 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5387 SBI_GEN0 : SBI_DBUFF0;
5388 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5389 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5390 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5391
5392 mutex_unlock(&dev_priv->dpio_lock);
5393 }
5394
5395 /* Sequence to disable CLKOUT_DP */
5396 static void lpt_disable_clkout_dp(struct drm_device *dev)
5397 {
5398 struct drm_i915_private *dev_priv = dev->dev_private;
5399 uint32_t reg, tmp;
5400
5401 mutex_lock(&dev_priv->dpio_lock);
5402
5403 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5404 SBI_GEN0 : SBI_DBUFF0;
5405 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5406 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5407 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5408
5409 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5410 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5411 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5412 tmp |= SBI_SSCCTL_PATHALT;
5413 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5414 udelay(32);
5415 }
5416 tmp |= SBI_SSCCTL_DISABLE;
5417 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5418 }
5419
5420 mutex_unlock(&dev_priv->dpio_lock);
5421 }
5422
5423 static void lpt_init_pch_refclk(struct drm_device *dev)
5424 {
5425 struct drm_mode_config *mode_config = &dev->mode_config;
5426 struct intel_encoder *encoder;
5427 bool has_vga = false;
5428
5429 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5430 switch (encoder->type) {
5431 case INTEL_OUTPUT_ANALOG:
5432 has_vga = true;
5433 break;
5434 }
5435 }
5436
5437 if (has_vga)
5438 lpt_enable_clkout_dp(dev, true, true);
5439 else
5440 lpt_disable_clkout_dp(dev);
5441 }
5442
5443 /*
5444 * Initialize reference clocks when the driver loads
5445 */
5446 void intel_init_pch_refclk(struct drm_device *dev)
5447 {
5448 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5449 ironlake_init_pch_refclk(dev);
5450 else if (HAS_PCH_LPT(dev))
5451 lpt_init_pch_refclk(dev);
5452 }
5453
5454 static int ironlake_get_refclk(struct drm_crtc *crtc)
5455 {
5456 struct drm_device *dev = crtc->dev;
5457 struct drm_i915_private *dev_priv = dev->dev_private;
5458 struct intel_encoder *encoder;
5459 int num_connectors = 0;
5460 bool is_lvds = false;
5461
5462 for_each_encoder_on_crtc(dev, crtc, encoder) {
5463 switch (encoder->type) {
5464 case INTEL_OUTPUT_LVDS:
5465 is_lvds = true;
5466 break;
5467 }
5468 num_connectors++;
5469 }
5470
5471 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5472 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5473 dev_priv->vbt.lvds_ssc_freq);
5474 return dev_priv->vbt.lvds_ssc_freq * 1000;
5475 }
5476
5477 return 120000;
5478 }
5479
5480 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5481 {
5482 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5484 int pipe = intel_crtc->pipe;
5485 uint32_t val;
5486
5487 val = 0;
5488
5489 switch (intel_crtc->config.pipe_bpp) {
5490 case 18:
5491 val |= PIPECONF_6BPC;
5492 break;
5493 case 24:
5494 val |= PIPECONF_8BPC;
5495 break;
5496 case 30:
5497 val |= PIPECONF_10BPC;
5498 break;
5499 case 36:
5500 val |= PIPECONF_12BPC;
5501 break;
5502 default:
5503 /* Case prevented by intel_choose_pipe_bpp_dither. */
5504 BUG();
5505 }
5506
5507 if (intel_crtc->config.dither)
5508 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5509
5510 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5511 val |= PIPECONF_INTERLACED_ILK;
5512 else
5513 val |= PIPECONF_PROGRESSIVE;
5514
5515 if (intel_crtc->config.limited_color_range)
5516 val |= PIPECONF_COLOR_RANGE_SELECT;
5517
5518 I915_WRITE(PIPECONF(pipe), val);
5519 POSTING_READ(PIPECONF(pipe));
5520 }
5521
5522 /*
5523 * Set up the pipe CSC unit.
5524 *
5525 * Currently only full range RGB to limited range RGB conversion
5526 * is supported, but eventually this should handle various
5527 * RGB<->YCbCr scenarios as well.
5528 */
5529 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5530 {
5531 struct drm_device *dev = crtc->dev;
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5534 int pipe = intel_crtc->pipe;
5535 uint16_t coeff = 0x7800; /* 1.0 */
5536
5537 /*
5538 * TODO: Check what kind of values actually come out of the pipe
5539 * with these coeff/postoff values and adjust to get the best
5540 * accuracy. Perhaps we even need to take the bpc value into
5541 * consideration.
5542 */
5543
5544 if (intel_crtc->config.limited_color_range)
5545 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5546
5547 /*
5548 * GY/GU and RY/RU should be the other way around according
5549 * to BSpec, but reality doesn't agree. Just set them up in
5550 * a way that results in the correct picture.
5551 */
5552 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5553 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5554
5555 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5556 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5557
5558 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5559 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5560
5561 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5562 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5563 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5564
5565 if (INTEL_INFO(dev)->gen > 6) {
5566 uint16_t postoff = 0;
5567
5568 if (intel_crtc->config.limited_color_range)
5569 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5570
5571 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5572 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5573 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5574
5575 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5576 } else {
5577 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5578
5579 if (intel_crtc->config.limited_color_range)
5580 mode |= CSC_BLACK_SCREEN_OFFSET;
5581
5582 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5583 }
5584 }
5585
5586 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5587 {
5588 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5590 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5591 uint32_t val;
5592
5593 val = 0;
5594
5595 if (intel_crtc->config.dither)
5596 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5597
5598 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5599 val |= PIPECONF_INTERLACED_ILK;
5600 else
5601 val |= PIPECONF_PROGRESSIVE;
5602
5603 I915_WRITE(PIPECONF(cpu_transcoder), val);
5604 POSTING_READ(PIPECONF(cpu_transcoder));
5605
5606 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5607 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5608 }
5609
5610 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5611 intel_clock_t *clock,
5612 bool *has_reduced_clock,
5613 intel_clock_t *reduced_clock)
5614 {
5615 struct drm_device *dev = crtc->dev;
5616 struct drm_i915_private *dev_priv = dev->dev_private;
5617 struct intel_encoder *intel_encoder;
5618 int refclk;
5619 const intel_limit_t *limit;
5620 bool ret, is_lvds = false;
5621
5622 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5623 switch (intel_encoder->type) {
5624 case INTEL_OUTPUT_LVDS:
5625 is_lvds = true;
5626 break;
5627 }
5628 }
5629
5630 refclk = ironlake_get_refclk(crtc);
5631
5632 /*
5633 * Returns a set of divisors for the desired target clock with the given
5634 * refclk, or FALSE. The returned values represent the clock equation:
5635 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5636 */
5637 limit = intel_limit(crtc, refclk);
5638 ret = dev_priv->display.find_dpll(limit, crtc,
5639 to_intel_crtc(crtc)->config.port_clock,
5640 refclk, NULL, clock);
5641 if (!ret)
5642 return false;
5643
5644 if (is_lvds && dev_priv->lvds_downclock_avail) {
5645 /*
5646 * Ensure we match the reduced clock's P to the target clock.
5647 * If the clocks don't match, we can't switch the display clock
5648 * by using the FP0/FP1. In such case we will disable the LVDS
5649 * downclock feature.
5650 */
5651 *has_reduced_clock =
5652 dev_priv->display.find_dpll(limit, crtc,
5653 dev_priv->lvds_downclock,
5654 refclk, clock,
5655 reduced_clock);
5656 }
5657
5658 return true;
5659 }
5660
5661 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5662 {
5663 struct drm_i915_private *dev_priv = dev->dev_private;
5664 uint32_t temp;
5665
5666 temp = I915_READ(SOUTH_CHICKEN1);
5667 if (temp & FDI_BC_BIFURCATION_SELECT)
5668 return;
5669
5670 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5671 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5672
5673 temp |= FDI_BC_BIFURCATION_SELECT;
5674 DRM_DEBUG_KMS("enabling fdi C rx\n");
5675 I915_WRITE(SOUTH_CHICKEN1, temp);
5676 POSTING_READ(SOUTH_CHICKEN1);
5677 }
5678
5679 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5680 {
5681 struct drm_device *dev = intel_crtc->base.dev;
5682 struct drm_i915_private *dev_priv = dev->dev_private;
5683
5684 switch (intel_crtc->pipe) {
5685 case PIPE_A:
5686 break;
5687 case PIPE_B:
5688 if (intel_crtc->config.fdi_lanes > 2)
5689 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5690 else
5691 cpt_enable_fdi_bc_bifurcation(dev);
5692
5693 break;
5694 case PIPE_C:
5695 cpt_enable_fdi_bc_bifurcation(dev);
5696
5697 break;
5698 default:
5699 BUG();
5700 }
5701 }
5702
5703 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5704 {
5705 /*
5706 * Account for spread spectrum to avoid
5707 * oversubscribing the link. Max center spread
5708 * is 2.5%; use 5% for safety's sake.
5709 */
5710 u32 bps = target_clock * bpp * 21 / 20;
5711 return bps / (link_bw * 8) + 1;
5712 }
5713
5714 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5715 {
5716 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5717 }
5718
5719 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5720 u32 *fp,
5721 intel_clock_t *reduced_clock, u32 *fp2)
5722 {
5723 struct drm_crtc *crtc = &intel_crtc->base;
5724 struct drm_device *dev = crtc->dev;
5725 struct drm_i915_private *dev_priv = dev->dev_private;
5726 struct intel_encoder *intel_encoder;
5727 uint32_t dpll;
5728 int factor, num_connectors = 0;
5729 bool is_lvds = false, is_sdvo = false;
5730
5731 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5732 switch (intel_encoder->type) {
5733 case INTEL_OUTPUT_LVDS:
5734 is_lvds = true;
5735 break;
5736 case INTEL_OUTPUT_SDVO:
5737 case INTEL_OUTPUT_HDMI:
5738 is_sdvo = true;
5739 break;
5740 }
5741
5742 num_connectors++;
5743 }
5744
5745 /* Enable autotuning of the PLL clock (if permissible) */
5746 factor = 21;
5747 if (is_lvds) {
5748 if ((intel_panel_use_ssc(dev_priv) &&
5749 dev_priv->vbt.lvds_ssc_freq == 100) ||
5750 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5751 factor = 25;
5752 } else if (intel_crtc->config.sdvo_tv_clock)
5753 factor = 20;
5754
5755 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5756 *fp |= FP_CB_TUNE;
5757
5758 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5759 *fp2 |= FP_CB_TUNE;
5760
5761 dpll = 0;
5762
5763 if (is_lvds)
5764 dpll |= DPLLB_MODE_LVDS;
5765 else
5766 dpll |= DPLLB_MODE_DAC_SERIAL;
5767
5768 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5769 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5770
5771 if (is_sdvo)
5772 dpll |= DPLL_SDVO_HIGH_SPEED;
5773 if (intel_crtc->config.has_dp_encoder)
5774 dpll |= DPLL_SDVO_HIGH_SPEED;
5775
5776 /* compute bitmask from p1 value */
5777 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5778 /* also FPA1 */
5779 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5780
5781 switch (intel_crtc->config.dpll.p2) {
5782 case 5:
5783 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5784 break;
5785 case 7:
5786 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5787 break;
5788 case 10:
5789 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5790 break;
5791 case 14:
5792 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5793 break;
5794 }
5795
5796 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5797 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5798 else
5799 dpll |= PLL_REF_INPUT_DREFCLK;
5800
5801 return dpll | DPLL_VCO_ENABLE;
5802 }
5803
5804 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5805 int x, int y,
5806 struct drm_framebuffer *fb)
5807 {
5808 struct drm_device *dev = crtc->dev;
5809 struct drm_i915_private *dev_priv = dev->dev_private;
5810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5811 int pipe = intel_crtc->pipe;
5812 int plane = intel_crtc->plane;
5813 int num_connectors = 0;
5814 intel_clock_t clock, reduced_clock;
5815 u32 dpll = 0, fp = 0, fp2 = 0;
5816 bool ok, has_reduced_clock = false;
5817 bool is_lvds = false;
5818 struct intel_encoder *encoder;
5819 struct intel_shared_dpll *pll;
5820 int ret;
5821
5822 for_each_encoder_on_crtc(dev, crtc, encoder) {
5823 switch (encoder->type) {
5824 case INTEL_OUTPUT_LVDS:
5825 is_lvds = true;
5826 break;
5827 }
5828
5829 num_connectors++;
5830 }
5831
5832 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5833 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5834
5835 ok = ironlake_compute_clocks(crtc, &clock,
5836 &has_reduced_clock, &reduced_clock);
5837 if (!ok && !intel_crtc->config.clock_set) {
5838 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5839 return -EINVAL;
5840 }
5841 /* Compat-code for transition, will disappear. */
5842 if (!intel_crtc->config.clock_set) {
5843 intel_crtc->config.dpll.n = clock.n;
5844 intel_crtc->config.dpll.m1 = clock.m1;
5845 intel_crtc->config.dpll.m2 = clock.m2;
5846 intel_crtc->config.dpll.p1 = clock.p1;
5847 intel_crtc->config.dpll.p2 = clock.p2;
5848 }
5849
5850 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5851 if (intel_crtc->config.has_pch_encoder) {
5852 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5853 if (has_reduced_clock)
5854 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5855
5856 dpll = ironlake_compute_dpll(intel_crtc,
5857 &fp, &reduced_clock,
5858 has_reduced_clock ? &fp2 : NULL);
5859
5860 intel_crtc->config.dpll_hw_state.dpll = dpll;
5861 intel_crtc->config.dpll_hw_state.fp0 = fp;
5862 if (has_reduced_clock)
5863 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5864 else
5865 intel_crtc->config.dpll_hw_state.fp1 = fp;
5866
5867 pll = intel_get_shared_dpll(intel_crtc);
5868 if (pll == NULL) {
5869 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5870 pipe_name(pipe));
5871 return -EINVAL;
5872 }
5873 } else
5874 intel_put_shared_dpll(intel_crtc);
5875
5876 if (intel_crtc->config.has_dp_encoder)
5877 intel_dp_set_m_n(intel_crtc);
5878
5879 if (is_lvds && has_reduced_clock && i915_powersave)
5880 intel_crtc->lowfreq_avail = true;
5881 else
5882 intel_crtc->lowfreq_avail = false;
5883
5884 if (intel_crtc->config.has_pch_encoder) {
5885 pll = intel_crtc_to_shared_dpll(intel_crtc);
5886
5887 }
5888
5889 intel_set_pipe_timings(intel_crtc);
5890
5891 if (intel_crtc->config.has_pch_encoder) {
5892 intel_cpu_transcoder_set_m_n(intel_crtc,
5893 &intel_crtc->config.fdi_m_n);
5894 }
5895
5896 if (IS_IVYBRIDGE(dev))
5897 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5898
5899 ironlake_set_pipeconf(crtc);
5900
5901 /* Set up the display plane register */
5902 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5903 POSTING_READ(DSPCNTR(plane));
5904
5905 ret = intel_pipe_set_base(crtc, x, y, fb);
5906
5907 return ret;
5908 }
5909
5910 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5911 struct intel_link_m_n *m_n)
5912 {
5913 struct drm_device *dev = crtc->base.dev;
5914 struct drm_i915_private *dev_priv = dev->dev_private;
5915 enum pipe pipe = crtc->pipe;
5916
5917 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5918 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5919 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5920 & ~TU_SIZE_MASK;
5921 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5922 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5923 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5924 }
5925
5926 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5927 enum transcoder transcoder,
5928 struct intel_link_m_n *m_n)
5929 {
5930 struct drm_device *dev = crtc->base.dev;
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932 enum pipe pipe = crtc->pipe;
5933
5934 if (INTEL_INFO(dev)->gen >= 5) {
5935 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5936 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5937 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5938 & ~TU_SIZE_MASK;
5939 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5940 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5941 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5942 } else {
5943 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5944 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5945 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5946 & ~TU_SIZE_MASK;
5947 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5948 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5949 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5950 }
5951 }
5952
5953 void intel_dp_get_m_n(struct intel_crtc *crtc,
5954 struct intel_crtc_config *pipe_config)
5955 {
5956 if (crtc->config.has_pch_encoder)
5957 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
5958 else
5959 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5960 &pipe_config->dp_m_n);
5961 }
5962
5963 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5964 struct intel_crtc_config *pipe_config)
5965 {
5966 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5967 &pipe_config->fdi_m_n);
5968 }
5969
5970 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5971 struct intel_crtc_config *pipe_config)
5972 {
5973 struct drm_device *dev = crtc->base.dev;
5974 struct drm_i915_private *dev_priv = dev->dev_private;
5975 uint32_t tmp;
5976
5977 tmp = I915_READ(PF_CTL(crtc->pipe));
5978
5979 if (tmp & PF_ENABLE) {
5980 pipe_config->pch_pfit.enabled = true;
5981 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5982 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5983
5984 /* We currently do not free assignements of panel fitters on
5985 * ivb/hsw (since we don't use the higher upscaling modes which
5986 * differentiates them) so just WARN about this case for now. */
5987 if (IS_GEN7(dev)) {
5988 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5989 PF_PIPE_SEL_IVB(crtc->pipe));
5990 }
5991 }
5992 }
5993
5994 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5995 struct intel_crtc_config *pipe_config)
5996 {
5997 struct drm_device *dev = crtc->base.dev;
5998 struct drm_i915_private *dev_priv = dev->dev_private;
5999 uint32_t tmp;
6000
6001 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6002 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6003
6004 tmp = I915_READ(PIPECONF(crtc->pipe));
6005 if (!(tmp & PIPECONF_ENABLE))
6006 return false;
6007
6008 switch (tmp & PIPECONF_BPC_MASK) {
6009 case PIPECONF_6BPC:
6010 pipe_config->pipe_bpp = 18;
6011 break;
6012 case PIPECONF_8BPC:
6013 pipe_config->pipe_bpp = 24;
6014 break;
6015 case PIPECONF_10BPC:
6016 pipe_config->pipe_bpp = 30;
6017 break;
6018 case PIPECONF_12BPC:
6019 pipe_config->pipe_bpp = 36;
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6026 struct intel_shared_dpll *pll;
6027
6028 pipe_config->has_pch_encoder = true;
6029
6030 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6031 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6032 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6033
6034 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6035
6036 if (HAS_PCH_IBX(dev_priv->dev)) {
6037 pipe_config->shared_dpll =
6038 (enum intel_dpll_id) crtc->pipe;
6039 } else {
6040 tmp = I915_READ(PCH_DPLL_SEL);
6041 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6042 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6043 else
6044 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6045 }
6046
6047 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6048
6049 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6050 &pipe_config->dpll_hw_state));
6051
6052 tmp = pipe_config->dpll_hw_state.dpll;
6053 pipe_config->pixel_multiplier =
6054 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6055 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6056
6057 ironlake_pch_clock_get(crtc, pipe_config);
6058 } else {
6059 pipe_config->pixel_multiplier = 1;
6060 }
6061
6062 intel_get_pipe_timings(crtc, pipe_config);
6063
6064 ironlake_get_pfit_config(crtc, pipe_config);
6065
6066 return true;
6067 }
6068
6069 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6070 {
6071 struct drm_device *dev = dev_priv->dev;
6072 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6073 struct intel_crtc *crtc;
6074 unsigned long irqflags;
6075 uint32_t val;
6076
6077 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6078 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6079 pipe_name(crtc->pipe));
6080
6081 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6082 WARN(plls->spll_refcount, "SPLL enabled\n");
6083 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6084 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6085 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6086 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6087 "CPU PWM1 enabled\n");
6088 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6089 "CPU PWM2 enabled\n");
6090 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6091 "PCH PWM1 enabled\n");
6092 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6093 "Utility pin enabled\n");
6094 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6095
6096 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6097 val = I915_READ(DEIMR);
6098 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6099 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6100 val = I915_READ(SDEIMR);
6101 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6102 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6103 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6104 }
6105
6106 /*
6107 * This function implements pieces of two sequences from BSpec:
6108 * - Sequence for display software to disable LCPLL
6109 * - Sequence for display software to allow package C8+
6110 * The steps implemented here are just the steps that actually touch the LCPLL
6111 * register. Callers should take care of disabling all the display engine
6112 * functions, doing the mode unset, fixing interrupts, etc.
6113 */
6114 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6115 bool switch_to_fclk, bool allow_power_down)
6116 {
6117 uint32_t val;
6118
6119 assert_can_disable_lcpll(dev_priv);
6120
6121 val = I915_READ(LCPLL_CTL);
6122
6123 if (switch_to_fclk) {
6124 val |= LCPLL_CD_SOURCE_FCLK;
6125 I915_WRITE(LCPLL_CTL, val);
6126
6127 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6128 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6129 DRM_ERROR("Switching to FCLK failed\n");
6130
6131 val = I915_READ(LCPLL_CTL);
6132 }
6133
6134 val |= LCPLL_PLL_DISABLE;
6135 I915_WRITE(LCPLL_CTL, val);
6136 POSTING_READ(LCPLL_CTL);
6137
6138 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6139 DRM_ERROR("LCPLL still locked\n");
6140
6141 val = I915_READ(D_COMP);
6142 val |= D_COMP_COMP_DISABLE;
6143 mutex_lock(&dev_priv->rps.hw_lock);
6144 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6145 DRM_ERROR("Failed to disable D_COMP\n");
6146 mutex_unlock(&dev_priv->rps.hw_lock);
6147 POSTING_READ(D_COMP);
6148 ndelay(100);
6149
6150 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6151 DRM_ERROR("D_COMP RCOMP still in progress\n");
6152
6153 if (allow_power_down) {
6154 val = I915_READ(LCPLL_CTL);
6155 val |= LCPLL_POWER_DOWN_ALLOW;
6156 I915_WRITE(LCPLL_CTL, val);
6157 POSTING_READ(LCPLL_CTL);
6158 }
6159 }
6160
6161 /*
6162 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6163 * source.
6164 */
6165 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6166 {
6167 uint32_t val;
6168
6169 val = I915_READ(LCPLL_CTL);
6170
6171 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6172 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6173 return;
6174
6175 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6176 * we'll hang the machine! */
6177 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6178
6179 if (val & LCPLL_POWER_DOWN_ALLOW) {
6180 val &= ~LCPLL_POWER_DOWN_ALLOW;
6181 I915_WRITE(LCPLL_CTL, val);
6182 POSTING_READ(LCPLL_CTL);
6183 }
6184
6185 val = I915_READ(D_COMP);
6186 val |= D_COMP_COMP_FORCE;
6187 val &= ~D_COMP_COMP_DISABLE;
6188 mutex_lock(&dev_priv->rps.hw_lock);
6189 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6190 DRM_ERROR("Failed to enable D_COMP\n");
6191 mutex_unlock(&dev_priv->rps.hw_lock);
6192 POSTING_READ(D_COMP);
6193
6194 val = I915_READ(LCPLL_CTL);
6195 val &= ~LCPLL_PLL_DISABLE;
6196 I915_WRITE(LCPLL_CTL, val);
6197
6198 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6199 DRM_ERROR("LCPLL not locked yet\n");
6200
6201 if (val & LCPLL_CD_SOURCE_FCLK) {
6202 val = I915_READ(LCPLL_CTL);
6203 val &= ~LCPLL_CD_SOURCE_FCLK;
6204 I915_WRITE(LCPLL_CTL, val);
6205
6206 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6207 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6208 DRM_ERROR("Switching back to LCPLL failed\n");
6209 }
6210
6211 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6212 }
6213
6214 void hsw_enable_pc8_work(struct work_struct *__work)
6215 {
6216 struct drm_i915_private *dev_priv =
6217 container_of(to_delayed_work(__work), struct drm_i915_private,
6218 pc8.enable_work);
6219 struct drm_device *dev = dev_priv->dev;
6220 uint32_t val;
6221
6222 if (dev_priv->pc8.enabled)
6223 return;
6224
6225 DRM_DEBUG_KMS("Enabling package C8+\n");
6226
6227 dev_priv->pc8.enabled = true;
6228
6229 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6230 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6231 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6232 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6233 }
6234
6235 lpt_disable_clkout_dp(dev);
6236 hsw_pc8_disable_interrupts(dev);
6237 hsw_disable_lcpll(dev_priv, true, true);
6238 }
6239
6240 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6241 {
6242 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6243 WARN(dev_priv->pc8.disable_count < 1,
6244 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6245
6246 dev_priv->pc8.disable_count--;
6247 if (dev_priv->pc8.disable_count != 0)
6248 return;
6249
6250 schedule_delayed_work(&dev_priv->pc8.enable_work,
6251 msecs_to_jiffies(i915_pc8_timeout));
6252 }
6253
6254 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6255 {
6256 struct drm_device *dev = dev_priv->dev;
6257 uint32_t val;
6258
6259 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6260 WARN(dev_priv->pc8.disable_count < 0,
6261 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6262
6263 dev_priv->pc8.disable_count++;
6264 if (dev_priv->pc8.disable_count != 1)
6265 return;
6266
6267 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6268 if (!dev_priv->pc8.enabled)
6269 return;
6270
6271 DRM_DEBUG_KMS("Disabling package C8+\n");
6272
6273 hsw_restore_lcpll(dev_priv);
6274 hsw_pc8_restore_interrupts(dev);
6275 lpt_init_pch_refclk(dev);
6276
6277 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6278 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6279 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6280 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6281 }
6282
6283 intel_prepare_ddi(dev);
6284 i915_gem_init_swizzling(dev);
6285 mutex_lock(&dev_priv->rps.hw_lock);
6286 gen6_update_ring_freq(dev);
6287 mutex_unlock(&dev_priv->rps.hw_lock);
6288 dev_priv->pc8.enabled = false;
6289 }
6290
6291 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6292 {
6293 mutex_lock(&dev_priv->pc8.lock);
6294 __hsw_enable_package_c8(dev_priv);
6295 mutex_unlock(&dev_priv->pc8.lock);
6296 }
6297
6298 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6299 {
6300 mutex_lock(&dev_priv->pc8.lock);
6301 __hsw_disable_package_c8(dev_priv);
6302 mutex_unlock(&dev_priv->pc8.lock);
6303 }
6304
6305 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6306 {
6307 struct drm_device *dev = dev_priv->dev;
6308 struct intel_crtc *crtc;
6309 uint32_t val;
6310
6311 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6312 if (crtc->base.enabled)
6313 return false;
6314
6315 /* This case is still possible since we have the i915.disable_power_well
6316 * parameter and also the KVMr or something else might be requesting the
6317 * power well. */
6318 val = I915_READ(HSW_PWR_WELL_DRIVER);
6319 if (val != 0) {
6320 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6321 return false;
6322 }
6323
6324 return true;
6325 }
6326
6327 /* Since we're called from modeset_global_resources there's no way to
6328 * symmetrically increase and decrease the refcount, so we use
6329 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6330 * or not.
6331 */
6332 static void hsw_update_package_c8(struct drm_device *dev)
6333 {
6334 struct drm_i915_private *dev_priv = dev->dev_private;
6335 bool allow;
6336
6337 if (!i915_enable_pc8)
6338 return;
6339
6340 mutex_lock(&dev_priv->pc8.lock);
6341
6342 allow = hsw_can_enable_package_c8(dev_priv);
6343
6344 if (allow == dev_priv->pc8.requirements_met)
6345 goto done;
6346
6347 dev_priv->pc8.requirements_met = allow;
6348
6349 if (allow)
6350 __hsw_enable_package_c8(dev_priv);
6351 else
6352 __hsw_disable_package_c8(dev_priv);
6353
6354 done:
6355 mutex_unlock(&dev_priv->pc8.lock);
6356 }
6357
6358 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6359 {
6360 if (!dev_priv->pc8.gpu_idle) {
6361 dev_priv->pc8.gpu_idle = true;
6362 hsw_enable_package_c8(dev_priv);
6363 }
6364 }
6365
6366 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6367 {
6368 if (dev_priv->pc8.gpu_idle) {
6369 dev_priv->pc8.gpu_idle = false;
6370 hsw_disable_package_c8(dev_priv);
6371 }
6372 }
6373
6374 static void haswell_modeset_global_resources(struct drm_device *dev)
6375 {
6376 bool enable = false;
6377 struct intel_crtc *crtc;
6378
6379 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6380 if (!crtc->base.enabled)
6381 continue;
6382
6383 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6384 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6385 enable = true;
6386 }
6387
6388 intel_set_power_well(dev, enable);
6389
6390 hsw_update_package_c8(dev);
6391 }
6392
6393 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6394 int x, int y,
6395 struct drm_framebuffer *fb)
6396 {
6397 struct drm_device *dev = crtc->dev;
6398 struct drm_i915_private *dev_priv = dev->dev_private;
6399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6400 int plane = intel_crtc->plane;
6401 int ret;
6402
6403 if (!intel_ddi_pll_mode_set(crtc))
6404 return -EINVAL;
6405
6406 if (intel_crtc->config.has_dp_encoder)
6407 intel_dp_set_m_n(intel_crtc);
6408
6409 intel_crtc->lowfreq_avail = false;
6410
6411 intel_set_pipe_timings(intel_crtc);
6412
6413 if (intel_crtc->config.has_pch_encoder) {
6414 intel_cpu_transcoder_set_m_n(intel_crtc,
6415 &intel_crtc->config.fdi_m_n);
6416 }
6417
6418 haswell_set_pipeconf(crtc);
6419
6420 intel_set_pipe_csc(crtc);
6421
6422 /* Set up the display plane register */
6423 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6424 POSTING_READ(DSPCNTR(plane));
6425
6426 ret = intel_pipe_set_base(crtc, x, y, fb);
6427
6428 return ret;
6429 }
6430
6431 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6432 struct intel_crtc_config *pipe_config)
6433 {
6434 struct drm_device *dev = crtc->base.dev;
6435 struct drm_i915_private *dev_priv = dev->dev_private;
6436 enum intel_display_power_domain pfit_domain;
6437 uint32_t tmp;
6438
6439 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6440 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6441
6442 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6443 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6444 enum pipe trans_edp_pipe;
6445 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6446 default:
6447 WARN(1, "unknown pipe linked to edp transcoder\n");
6448 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6449 case TRANS_DDI_EDP_INPUT_A_ON:
6450 trans_edp_pipe = PIPE_A;
6451 break;
6452 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6453 trans_edp_pipe = PIPE_B;
6454 break;
6455 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6456 trans_edp_pipe = PIPE_C;
6457 break;
6458 }
6459
6460 if (trans_edp_pipe == crtc->pipe)
6461 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6462 }
6463
6464 if (!intel_display_power_enabled(dev,
6465 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6466 return false;
6467
6468 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6469 if (!(tmp & PIPECONF_ENABLE))
6470 return false;
6471
6472 /*
6473 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6474 * DDI E. So just check whether this pipe is wired to DDI E and whether
6475 * the PCH transcoder is on.
6476 */
6477 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6478 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6479 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6480 pipe_config->has_pch_encoder = true;
6481
6482 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6483 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6484 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6485
6486 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6487 }
6488
6489 intel_get_pipe_timings(crtc, pipe_config);
6490
6491 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6492 if (intel_display_power_enabled(dev, pfit_domain))
6493 ironlake_get_pfit_config(crtc, pipe_config);
6494
6495 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6496 (I915_READ(IPS_CTL) & IPS_ENABLE);
6497
6498 pipe_config->pixel_multiplier = 1;
6499
6500 return true;
6501 }
6502
6503 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6504 int x, int y,
6505 struct drm_framebuffer *fb)
6506 {
6507 struct drm_device *dev = crtc->dev;
6508 struct drm_i915_private *dev_priv = dev->dev_private;
6509 struct intel_encoder *encoder;
6510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6511 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6512 int pipe = intel_crtc->pipe;
6513 int ret;
6514
6515 drm_vblank_pre_modeset(dev, pipe);
6516
6517 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6518
6519 drm_vblank_post_modeset(dev, pipe);
6520
6521 if (ret != 0)
6522 return ret;
6523
6524 for_each_encoder_on_crtc(dev, crtc, encoder) {
6525 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6526 encoder->base.base.id,
6527 drm_get_encoder_name(&encoder->base),
6528 mode->base.id, mode->name);
6529 encoder->mode_set(encoder);
6530 }
6531
6532 return 0;
6533 }
6534
6535 static bool intel_eld_uptodate(struct drm_connector *connector,
6536 int reg_eldv, uint32_t bits_eldv,
6537 int reg_elda, uint32_t bits_elda,
6538 int reg_edid)
6539 {
6540 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6541 uint8_t *eld = connector->eld;
6542 uint32_t i;
6543
6544 i = I915_READ(reg_eldv);
6545 i &= bits_eldv;
6546
6547 if (!eld[0])
6548 return !i;
6549
6550 if (!i)
6551 return false;
6552
6553 i = I915_READ(reg_elda);
6554 i &= ~bits_elda;
6555 I915_WRITE(reg_elda, i);
6556
6557 for (i = 0; i < eld[2]; i++)
6558 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6559 return false;
6560
6561 return true;
6562 }
6563
6564 static void g4x_write_eld(struct drm_connector *connector,
6565 struct drm_crtc *crtc)
6566 {
6567 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6568 uint8_t *eld = connector->eld;
6569 uint32_t eldv;
6570 uint32_t len;
6571 uint32_t i;
6572
6573 i = I915_READ(G4X_AUD_VID_DID);
6574
6575 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6576 eldv = G4X_ELDV_DEVCL_DEVBLC;
6577 else
6578 eldv = G4X_ELDV_DEVCTG;
6579
6580 if (intel_eld_uptodate(connector,
6581 G4X_AUD_CNTL_ST, eldv,
6582 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6583 G4X_HDMIW_HDMIEDID))
6584 return;
6585
6586 i = I915_READ(G4X_AUD_CNTL_ST);
6587 i &= ~(eldv | G4X_ELD_ADDR);
6588 len = (i >> 9) & 0x1f; /* ELD buffer size */
6589 I915_WRITE(G4X_AUD_CNTL_ST, i);
6590
6591 if (!eld[0])
6592 return;
6593
6594 len = min_t(uint8_t, eld[2], len);
6595 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6596 for (i = 0; i < len; i++)
6597 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6598
6599 i = I915_READ(G4X_AUD_CNTL_ST);
6600 i |= eldv;
6601 I915_WRITE(G4X_AUD_CNTL_ST, i);
6602 }
6603
6604 static void haswell_write_eld(struct drm_connector *connector,
6605 struct drm_crtc *crtc)
6606 {
6607 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6608 uint8_t *eld = connector->eld;
6609 struct drm_device *dev = crtc->dev;
6610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6611 uint32_t eldv;
6612 uint32_t i;
6613 int len;
6614 int pipe = to_intel_crtc(crtc)->pipe;
6615 int tmp;
6616
6617 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6618 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6619 int aud_config = HSW_AUD_CFG(pipe);
6620 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6621
6622
6623 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6624
6625 /* Audio output enable */
6626 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6627 tmp = I915_READ(aud_cntrl_st2);
6628 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6629 I915_WRITE(aud_cntrl_st2, tmp);
6630
6631 /* Wait for 1 vertical blank */
6632 intel_wait_for_vblank(dev, pipe);
6633
6634 /* Set ELD valid state */
6635 tmp = I915_READ(aud_cntrl_st2);
6636 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6637 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6638 I915_WRITE(aud_cntrl_st2, tmp);
6639 tmp = I915_READ(aud_cntrl_st2);
6640 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6641
6642 /* Enable HDMI mode */
6643 tmp = I915_READ(aud_config);
6644 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6645 /* clear N_programing_enable and N_value_index */
6646 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6647 I915_WRITE(aud_config, tmp);
6648
6649 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6650
6651 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6652 intel_crtc->eld_vld = true;
6653
6654 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6655 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6656 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6657 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6658 } else
6659 I915_WRITE(aud_config, 0);
6660
6661 if (intel_eld_uptodate(connector,
6662 aud_cntrl_st2, eldv,
6663 aud_cntl_st, IBX_ELD_ADDRESS,
6664 hdmiw_hdmiedid))
6665 return;
6666
6667 i = I915_READ(aud_cntrl_st2);
6668 i &= ~eldv;
6669 I915_WRITE(aud_cntrl_st2, i);
6670
6671 if (!eld[0])
6672 return;
6673
6674 i = I915_READ(aud_cntl_st);
6675 i &= ~IBX_ELD_ADDRESS;
6676 I915_WRITE(aud_cntl_st, i);
6677 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6678 DRM_DEBUG_DRIVER("port num:%d\n", i);
6679
6680 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6681 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6682 for (i = 0; i < len; i++)
6683 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6684
6685 i = I915_READ(aud_cntrl_st2);
6686 i |= eldv;
6687 I915_WRITE(aud_cntrl_st2, i);
6688
6689 }
6690
6691 static void ironlake_write_eld(struct drm_connector *connector,
6692 struct drm_crtc *crtc)
6693 {
6694 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6695 uint8_t *eld = connector->eld;
6696 uint32_t eldv;
6697 uint32_t i;
6698 int len;
6699 int hdmiw_hdmiedid;
6700 int aud_config;
6701 int aud_cntl_st;
6702 int aud_cntrl_st2;
6703 int pipe = to_intel_crtc(crtc)->pipe;
6704
6705 if (HAS_PCH_IBX(connector->dev)) {
6706 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6707 aud_config = IBX_AUD_CFG(pipe);
6708 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6709 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6710 } else {
6711 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6712 aud_config = CPT_AUD_CFG(pipe);
6713 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6714 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6715 }
6716
6717 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6718
6719 i = I915_READ(aud_cntl_st);
6720 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6721 if (!i) {
6722 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6723 /* operate blindly on all ports */
6724 eldv = IBX_ELD_VALIDB;
6725 eldv |= IBX_ELD_VALIDB << 4;
6726 eldv |= IBX_ELD_VALIDB << 8;
6727 } else {
6728 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6729 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6730 }
6731
6732 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6733 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6734 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6735 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6736 } else
6737 I915_WRITE(aud_config, 0);
6738
6739 if (intel_eld_uptodate(connector,
6740 aud_cntrl_st2, eldv,
6741 aud_cntl_st, IBX_ELD_ADDRESS,
6742 hdmiw_hdmiedid))
6743 return;
6744
6745 i = I915_READ(aud_cntrl_st2);
6746 i &= ~eldv;
6747 I915_WRITE(aud_cntrl_st2, i);
6748
6749 if (!eld[0])
6750 return;
6751
6752 i = I915_READ(aud_cntl_st);
6753 i &= ~IBX_ELD_ADDRESS;
6754 I915_WRITE(aud_cntl_st, i);
6755
6756 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6757 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6758 for (i = 0; i < len; i++)
6759 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6760
6761 i = I915_READ(aud_cntrl_st2);
6762 i |= eldv;
6763 I915_WRITE(aud_cntrl_st2, i);
6764 }
6765
6766 void intel_write_eld(struct drm_encoder *encoder,
6767 struct drm_display_mode *mode)
6768 {
6769 struct drm_crtc *crtc = encoder->crtc;
6770 struct drm_connector *connector;
6771 struct drm_device *dev = encoder->dev;
6772 struct drm_i915_private *dev_priv = dev->dev_private;
6773
6774 connector = drm_select_eld(encoder, mode);
6775 if (!connector)
6776 return;
6777
6778 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6779 connector->base.id,
6780 drm_get_connector_name(connector),
6781 connector->encoder->base.id,
6782 drm_get_encoder_name(connector->encoder));
6783
6784 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6785
6786 if (dev_priv->display.write_eld)
6787 dev_priv->display.write_eld(connector, crtc);
6788 }
6789
6790 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6791 void intel_crtc_load_lut(struct drm_crtc *crtc)
6792 {
6793 struct drm_device *dev = crtc->dev;
6794 struct drm_i915_private *dev_priv = dev->dev_private;
6795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6796 enum pipe pipe = intel_crtc->pipe;
6797 int palreg = PALETTE(pipe);
6798 int i;
6799 bool reenable_ips = false;
6800
6801 /* The clocks have to be on to load the palette. */
6802 if (!crtc->enabled || !intel_crtc->active)
6803 return;
6804
6805 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
6806 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
6807 assert_dsi_pll_enabled(dev_priv);
6808 else
6809 assert_pll_enabled(dev_priv, pipe);
6810 }
6811
6812 /* use legacy palette for Ironlake */
6813 if (HAS_PCH_SPLIT(dev))
6814 palreg = LGC_PALETTE(pipe);
6815
6816 /* Workaround : Do not read or write the pipe palette/gamma data while
6817 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6818 */
6819 if (intel_crtc->config.ips_enabled &&
6820 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6821 GAMMA_MODE_MODE_SPLIT)) {
6822 hsw_disable_ips(intel_crtc);
6823 reenable_ips = true;
6824 }
6825
6826 for (i = 0; i < 256; i++) {
6827 I915_WRITE(palreg + 4 * i,
6828 (intel_crtc->lut_r[i] << 16) |
6829 (intel_crtc->lut_g[i] << 8) |
6830 intel_crtc->lut_b[i]);
6831 }
6832
6833 if (reenable_ips)
6834 hsw_enable_ips(intel_crtc);
6835 }
6836
6837 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6838 {
6839 struct drm_device *dev = crtc->dev;
6840 struct drm_i915_private *dev_priv = dev->dev_private;
6841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842 bool visible = base != 0;
6843 u32 cntl;
6844
6845 if (intel_crtc->cursor_visible == visible)
6846 return;
6847
6848 cntl = I915_READ(_CURACNTR);
6849 if (visible) {
6850 /* On these chipsets we can only modify the base whilst
6851 * the cursor is disabled.
6852 */
6853 I915_WRITE(_CURABASE, base);
6854
6855 cntl &= ~(CURSOR_FORMAT_MASK);
6856 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6857 cntl |= CURSOR_ENABLE |
6858 CURSOR_GAMMA_ENABLE |
6859 CURSOR_FORMAT_ARGB;
6860 } else
6861 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6862 I915_WRITE(_CURACNTR, cntl);
6863
6864 intel_crtc->cursor_visible = visible;
6865 }
6866
6867 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6868 {
6869 struct drm_device *dev = crtc->dev;
6870 struct drm_i915_private *dev_priv = dev->dev_private;
6871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6872 int pipe = intel_crtc->pipe;
6873 bool visible = base != 0;
6874
6875 if (intel_crtc->cursor_visible != visible) {
6876 uint32_t cntl = I915_READ(CURCNTR(pipe));
6877 if (base) {
6878 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6879 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6880 cntl |= pipe << 28; /* Connect to correct pipe */
6881 } else {
6882 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6883 cntl |= CURSOR_MODE_DISABLE;
6884 }
6885 I915_WRITE(CURCNTR(pipe), cntl);
6886
6887 intel_crtc->cursor_visible = visible;
6888 }
6889 /* and commit changes on next vblank */
6890 I915_WRITE(CURBASE(pipe), base);
6891 }
6892
6893 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6894 {
6895 struct drm_device *dev = crtc->dev;
6896 struct drm_i915_private *dev_priv = dev->dev_private;
6897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6898 int pipe = intel_crtc->pipe;
6899 bool visible = base != 0;
6900
6901 if (intel_crtc->cursor_visible != visible) {
6902 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6903 if (base) {
6904 cntl &= ~CURSOR_MODE;
6905 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6906 } else {
6907 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6908 cntl |= CURSOR_MODE_DISABLE;
6909 }
6910 if (IS_HASWELL(dev)) {
6911 cntl |= CURSOR_PIPE_CSC_ENABLE;
6912 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6913 }
6914 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6915
6916 intel_crtc->cursor_visible = visible;
6917 }
6918 /* and commit changes on next vblank */
6919 I915_WRITE(CURBASE_IVB(pipe), base);
6920 }
6921
6922 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6923 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6924 bool on)
6925 {
6926 struct drm_device *dev = crtc->dev;
6927 struct drm_i915_private *dev_priv = dev->dev_private;
6928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6929 int pipe = intel_crtc->pipe;
6930 int x = intel_crtc->cursor_x;
6931 int y = intel_crtc->cursor_y;
6932 u32 base = 0, pos = 0;
6933 bool visible;
6934
6935 if (on)
6936 base = intel_crtc->cursor_addr;
6937
6938 if (x >= intel_crtc->config.pipe_src_w)
6939 base = 0;
6940
6941 if (y >= intel_crtc->config.pipe_src_h)
6942 base = 0;
6943
6944 if (x < 0) {
6945 if (x + intel_crtc->cursor_width <= 0)
6946 base = 0;
6947
6948 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6949 x = -x;
6950 }
6951 pos |= x << CURSOR_X_SHIFT;
6952
6953 if (y < 0) {
6954 if (y + intel_crtc->cursor_height <= 0)
6955 base = 0;
6956
6957 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6958 y = -y;
6959 }
6960 pos |= y << CURSOR_Y_SHIFT;
6961
6962 visible = base != 0;
6963 if (!visible && !intel_crtc->cursor_visible)
6964 return;
6965
6966 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6967 I915_WRITE(CURPOS_IVB(pipe), pos);
6968 ivb_update_cursor(crtc, base);
6969 } else {
6970 I915_WRITE(CURPOS(pipe), pos);
6971 if (IS_845G(dev) || IS_I865G(dev))
6972 i845_update_cursor(crtc, base);
6973 else
6974 i9xx_update_cursor(crtc, base);
6975 }
6976 }
6977
6978 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6979 struct drm_file *file,
6980 uint32_t handle,
6981 uint32_t width, uint32_t height)
6982 {
6983 struct drm_device *dev = crtc->dev;
6984 struct drm_i915_private *dev_priv = dev->dev_private;
6985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6986 struct drm_i915_gem_object *obj;
6987 uint32_t addr;
6988 int ret;
6989
6990 /* if we want to turn off the cursor ignore width and height */
6991 if (!handle) {
6992 DRM_DEBUG_KMS("cursor off\n");
6993 addr = 0;
6994 obj = NULL;
6995 mutex_lock(&dev->struct_mutex);
6996 goto finish;
6997 }
6998
6999 /* Currently we only support 64x64 cursors */
7000 if (width != 64 || height != 64) {
7001 DRM_ERROR("we currently only support 64x64 cursors\n");
7002 return -EINVAL;
7003 }
7004
7005 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7006 if (&obj->base == NULL)
7007 return -ENOENT;
7008
7009 if (obj->base.size < width * height * 4) {
7010 DRM_ERROR("buffer is to small\n");
7011 ret = -ENOMEM;
7012 goto fail;
7013 }
7014
7015 /* we only need to pin inside GTT if cursor is non-phy */
7016 mutex_lock(&dev->struct_mutex);
7017 if (!dev_priv->info->cursor_needs_physical) {
7018 unsigned alignment;
7019
7020 if (obj->tiling_mode) {
7021 DRM_ERROR("cursor cannot be tiled\n");
7022 ret = -EINVAL;
7023 goto fail_locked;
7024 }
7025
7026 /* Note that the w/a also requires 2 PTE of padding following
7027 * the bo. We currently fill all unused PTE with the shadow
7028 * page and so we should always have valid PTE following the
7029 * cursor preventing the VT-d warning.
7030 */
7031 alignment = 0;
7032 if (need_vtd_wa(dev))
7033 alignment = 64*1024;
7034
7035 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7036 if (ret) {
7037 DRM_ERROR("failed to move cursor bo into the GTT\n");
7038 goto fail_locked;
7039 }
7040
7041 ret = i915_gem_object_put_fence(obj);
7042 if (ret) {
7043 DRM_ERROR("failed to release fence for cursor");
7044 goto fail_unpin;
7045 }
7046
7047 addr = i915_gem_obj_ggtt_offset(obj);
7048 } else {
7049 int align = IS_I830(dev) ? 16 * 1024 : 256;
7050 ret = i915_gem_attach_phys_object(dev, obj,
7051 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7052 align);
7053 if (ret) {
7054 DRM_ERROR("failed to attach phys object\n");
7055 goto fail_locked;
7056 }
7057 addr = obj->phys_obj->handle->busaddr;
7058 }
7059
7060 if (IS_GEN2(dev))
7061 I915_WRITE(CURSIZE, (height << 12) | width);
7062
7063 finish:
7064 if (intel_crtc->cursor_bo) {
7065 if (dev_priv->info->cursor_needs_physical) {
7066 if (intel_crtc->cursor_bo != obj)
7067 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7068 } else
7069 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7070 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7071 }
7072
7073 mutex_unlock(&dev->struct_mutex);
7074
7075 intel_crtc->cursor_addr = addr;
7076 intel_crtc->cursor_bo = obj;
7077 intel_crtc->cursor_width = width;
7078 intel_crtc->cursor_height = height;
7079
7080 if (intel_crtc->active)
7081 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7082
7083 return 0;
7084 fail_unpin:
7085 i915_gem_object_unpin_from_display_plane(obj);
7086 fail_locked:
7087 mutex_unlock(&dev->struct_mutex);
7088 fail:
7089 drm_gem_object_unreference_unlocked(&obj->base);
7090 return ret;
7091 }
7092
7093 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7094 {
7095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7096
7097 intel_crtc->cursor_x = x;
7098 intel_crtc->cursor_y = y;
7099
7100 if (intel_crtc->active)
7101 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7102
7103 return 0;
7104 }
7105
7106 /** Sets the color ramps on behalf of RandR */
7107 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7108 u16 blue, int regno)
7109 {
7110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7111
7112 intel_crtc->lut_r[regno] = red >> 8;
7113 intel_crtc->lut_g[regno] = green >> 8;
7114 intel_crtc->lut_b[regno] = blue >> 8;
7115 }
7116
7117 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7118 u16 *blue, int regno)
7119 {
7120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7121
7122 *red = intel_crtc->lut_r[regno] << 8;
7123 *green = intel_crtc->lut_g[regno] << 8;
7124 *blue = intel_crtc->lut_b[regno] << 8;
7125 }
7126
7127 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7128 u16 *blue, uint32_t start, uint32_t size)
7129 {
7130 int end = (start + size > 256) ? 256 : start + size, i;
7131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7132
7133 for (i = start; i < end; i++) {
7134 intel_crtc->lut_r[i] = red[i] >> 8;
7135 intel_crtc->lut_g[i] = green[i] >> 8;
7136 intel_crtc->lut_b[i] = blue[i] >> 8;
7137 }
7138
7139 intel_crtc_load_lut(crtc);
7140 }
7141
7142 /* VESA 640x480x72Hz mode to set on the pipe */
7143 static struct drm_display_mode load_detect_mode = {
7144 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7145 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7146 };
7147
7148 static struct drm_framebuffer *
7149 intel_framebuffer_create(struct drm_device *dev,
7150 struct drm_mode_fb_cmd2 *mode_cmd,
7151 struct drm_i915_gem_object *obj)
7152 {
7153 struct intel_framebuffer *intel_fb;
7154 int ret;
7155
7156 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7157 if (!intel_fb) {
7158 drm_gem_object_unreference_unlocked(&obj->base);
7159 return ERR_PTR(-ENOMEM);
7160 }
7161
7162 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7163 if (ret) {
7164 drm_gem_object_unreference_unlocked(&obj->base);
7165 kfree(intel_fb);
7166 return ERR_PTR(ret);
7167 }
7168
7169 return &intel_fb->base;
7170 }
7171
7172 static u32
7173 intel_framebuffer_pitch_for_width(int width, int bpp)
7174 {
7175 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7176 return ALIGN(pitch, 64);
7177 }
7178
7179 static u32
7180 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7181 {
7182 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7183 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7184 }
7185
7186 static struct drm_framebuffer *
7187 intel_framebuffer_create_for_mode(struct drm_device *dev,
7188 struct drm_display_mode *mode,
7189 int depth, int bpp)
7190 {
7191 struct drm_i915_gem_object *obj;
7192 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7193
7194 obj = i915_gem_alloc_object(dev,
7195 intel_framebuffer_size_for_mode(mode, bpp));
7196 if (obj == NULL)
7197 return ERR_PTR(-ENOMEM);
7198
7199 mode_cmd.width = mode->hdisplay;
7200 mode_cmd.height = mode->vdisplay;
7201 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7202 bpp);
7203 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7204
7205 return intel_framebuffer_create(dev, &mode_cmd, obj);
7206 }
7207
7208 static struct drm_framebuffer *
7209 mode_fits_in_fbdev(struct drm_device *dev,
7210 struct drm_display_mode *mode)
7211 {
7212 struct drm_i915_private *dev_priv = dev->dev_private;
7213 struct drm_i915_gem_object *obj;
7214 struct drm_framebuffer *fb;
7215
7216 if (dev_priv->fbdev == NULL)
7217 return NULL;
7218
7219 obj = dev_priv->fbdev->ifb.obj;
7220 if (obj == NULL)
7221 return NULL;
7222
7223 fb = &dev_priv->fbdev->ifb.base;
7224 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7225 fb->bits_per_pixel))
7226 return NULL;
7227
7228 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7229 return NULL;
7230
7231 return fb;
7232 }
7233
7234 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7235 struct drm_display_mode *mode,
7236 struct intel_load_detect_pipe *old)
7237 {
7238 struct intel_crtc *intel_crtc;
7239 struct intel_encoder *intel_encoder =
7240 intel_attached_encoder(connector);
7241 struct drm_crtc *possible_crtc;
7242 struct drm_encoder *encoder = &intel_encoder->base;
7243 struct drm_crtc *crtc = NULL;
7244 struct drm_device *dev = encoder->dev;
7245 struct drm_framebuffer *fb;
7246 int i = -1;
7247
7248 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7249 connector->base.id, drm_get_connector_name(connector),
7250 encoder->base.id, drm_get_encoder_name(encoder));
7251
7252 /*
7253 * Algorithm gets a little messy:
7254 *
7255 * - if the connector already has an assigned crtc, use it (but make
7256 * sure it's on first)
7257 *
7258 * - try to find the first unused crtc that can drive this connector,
7259 * and use that if we find one
7260 */
7261
7262 /* See if we already have a CRTC for this connector */
7263 if (encoder->crtc) {
7264 crtc = encoder->crtc;
7265
7266 mutex_lock(&crtc->mutex);
7267
7268 old->dpms_mode = connector->dpms;
7269 old->load_detect_temp = false;
7270
7271 /* Make sure the crtc and connector are running */
7272 if (connector->dpms != DRM_MODE_DPMS_ON)
7273 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7274
7275 return true;
7276 }
7277
7278 /* Find an unused one (if possible) */
7279 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7280 i++;
7281 if (!(encoder->possible_crtcs & (1 << i)))
7282 continue;
7283 if (!possible_crtc->enabled) {
7284 crtc = possible_crtc;
7285 break;
7286 }
7287 }
7288
7289 /*
7290 * If we didn't find an unused CRTC, don't use any.
7291 */
7292 if (!crtc) {
7293 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7294 return false;
7295 }
7296
7297 mutex_lock(&crtc->mutex);
7298 intel_encoder->new_crtc = to_intel_crtc(crtc);
7299 to_intel_connector(connector)->new_encoder = intel_encoder;
7300
7301 intel_crtc = to_intel_crtc(crtc);
7302 old->dpms_mode = connector->dpms;
7303 old->load_detect_temp = true;
7304 old->release_fb = NULL;
7305
7306 if (!mode)
7307 mode = &load_detect_mode;
7308
7309 /* We need a framebuffer large enough to accommodate all accesses
7310 * that the plane may generate whilst we perform load detection.
7311 * We can not rely on the fbcon either being present (we get called
7312 * during its initialisation to detect all boot displays, or it may
7313 * not even exist) or that it is large enough to satisfy the
7314 * requested mode.
7315 */
7316 fb = mode_fits_in_fbdev(dev, mode);
7317 if (fb == NULL) {
7318 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7319 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7320 old->release_fb = fb;
7321 } else
7322 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7323 if (IS_ERR(fb)) {
7324 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7325 mutex_unlock(&crtc->mutex);
7326 return false;
7327 }
7328
7329 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7330 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7331 if (old->release_fb)
7332 old->release_fb->funcs->destroy(old->release_fb);
7333 mutex_unlock(&crtc->mutex);
7334 return false;
7335 }
7336
7337 /* let the connector get through one full cycle before testing */
7338 intel_wait_for_vblank(dev, intel_crtc->pipe);
7339 return true;
7340 }
7341
7342 void intel_release_load_detect_pipe(struct drm_connector *connector,
7343 struct intel_load_detect_pipe *old)
7344 {
7345 struct intel_encoder *intel_encoder =
7346 intel_attached_encoder(connector);
7347 struct drm_encoder *encoder = &intel_encoder->base;
7348 struct drm_crtc *crtc = encoder->crtc;
7349
7350 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7351 connector->base.id, drm_get_connector_name(connector),
7352 encoder->base.id, drm_get_encoder_name(encoder));
7353
7354 if (old->load_detect_temp) {
7355 to_intel_connector(connector)->new_encoder = NULL;
7356 intel_encoder->new_crtc = NULL;
7357 intel_set_mode(crtc, NULL, 0, 0, NULL);
7358
7359 if (old->release_fb) {
7360 drm_framebuffer_unregister_private(old->release_fb);
7361 drm_framebuffer_unreference(old->release_fb);
7362 }
7363
7364 mutex_unlock(&crtc->mutex);
7365 return;
7366 }
7367
7368 /* Switch crtc and encoder back off if necessary */
7369 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7370 connector->funcs->dpms(connector, old->dpms_mode);
7371
7372 mutex_unlock(&crtc->mutex);
7373 }
7374
7375 static int i9xx_pll_refclk(struct drm_device *dev,
7376 const struct intel_crtc_config *pipe_config)
7377 {
7378 struct drm_i915_private *dev_priv = dev->dev_private;
7379 u32 dpll = pipe_config->dpll_hw_state.dpll;
7380
7381 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7382 return dev_priv->vbt.lvds_ssc_freq * 1000;
7383 else if (HAS_PCH_SPLIT(dev))
7384 return 120000;
7385 else if (!IS_GEN2(dev))
7386 return 96000;
7387 else
7388 return 48000;
7389 }
7390
7391 /* Returns the clock of the currently programmed mode of the given pipe. */
7392 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7393 struct intel_crtc_config *pipe_config)
7394 {
7395 struct drm_device *dev = crtc->base.dev;
7396 struct drm_i915_private *dev_priv = dev->dev_private;
7397 int pipe = pipe_config->cpu_transcoder;
7398 u32 dpll = pipe_config->dpll_hw_state.dpll;
7399 u32 fp;
7400 intel_clock_t clock;
7401 int refclk = i9xx_pll_refclk(dev, pipe_config);
7402
7403 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7404 fp = pipe_config->dpll_hw_state.fp0;
7405 else
7406 fp = pipe_config->dpll_hw_state.fp1;
7407
7408 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7409 if (IS_PINEVIEW(dev)) {
7410 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7411 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7412 } else {
7413 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7414 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7415 }
7416
7417 if (!IS_GEN2(dev)) {
7418 if (IS_PINEVIEW(dev))
7419 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7420 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7421 else
7422 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7423 DPLL_FPA01_P1_POST_DIV_SHIFT);
7424
7425 switch (dpll & DPLL_MODE_MASK) {
7426 case DPLLB_MODE_DAC_SERIAL:
7427 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7428 5 : 10;
7429 break;
7430 case DPLLB_MODE_LVDS:
7431 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7432 7 : 14;
7433 break;
7434 default:
7435 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7436 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7437 return;
7438 }
7439
7440 if (IS_PINEVIEW(dev))
7441 pineview_clock(refclk, &clock);
7442 else
7443 i9xx_clock(refclk, &clock);
7444 } else {
7445 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7446
7447 if (is_lvds) {
7448 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7449 DPLL_FPA01_P1_POST_DIV_SHIFT);
7450 clock.p2 = 14;
7451 } else {
7452 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7453 clock.p1 = 2;
7454 else {
7455 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7456 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7457 }
7458 if (dpll & PLL_P2_DIVIDE_BY_4)
7459 clock.p2 = 4;
7460 else
7461 clock.p2 = 2;
7462 }
7463
7464 i9xx_clock(refclk, &clock);
7465 }
7466
7467 /*
7468 * This value includes pixel_multiplier. We will use
7469 * port_clock to compute adjusted_mode.clock in the
7470 * encoder's get_config() function.
7471 */
7472 pipe_config->port_clock = clock.dot;
7473 }
7474
7475 int intel_dotclock_calculate(int link_freq,
7476 const struct intel_link_m_n *m_n)
7477 {
7478 /*
7479 * The calculation for the data clock is:
7480 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7481 * But we want to avoid losing precison if possible, so:
7482 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7483 *
7484 * and the link clock is simpler:
7485 * link_clock = (m * link_clock) / n
7486 */
7487
7488 if (!m_n->link_n)
7489 return 0;
7490
7491 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7492 }
7493
7494 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7495 struct intel_crtc_config *pipe_config)
7496 {
7497 struct drm_device *dev = crtc->base.dev;
7498
7499 /* read out port_clock from the DPLL */
7500 i9xx_crtc_clock_get(crtc, pipe_config);
7501
7502 /*
7503 * This value does not include pixel_multiplier.
7504 * We will check that port_clock and adjusted_mode.clock
7505 * agree once we know their relationship in the encoder's
7506 * get_config() function.
7507 */
7508 pipe_config->adjusted_mode.clock =
7509 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7510 &pipe_config->fdi_m_n);
7511 }
7512
7513 /** Returns the currently programmed mode of the given pipe. */
7514 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7515 struct drm_crtc *crtc)
7516 {
7517 struct drm_i915_private *dev_priv = dev->dev_private;
7518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7519 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7520 struct drm_display_mode *mode;
7521 struct intel_crtc_config pipe_config;
7522 int htot = I915_READ(HTOTAL(cpu_transcoder));
7523 int hsync = I915_READ(HSYNC(cpu_transcoder));
7524 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7525 int vsync = I915_READ(VSYNC(cpu_transcoder));
7526 enum pipe pipe = intel_crtc->pipe;
7527
7528 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7529 if (!mode)
7530 return NULL;
7531
7532 /*
7533 * Construct a pipe_config sufficient for getting the clock info
7534 * back out of crtc_clock_get.
7535 *
7536 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7537 * to use a real value here instead.
7538 */
7539 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7540 pipe_config.pixel_multiplier = 1;
7541 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7542 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7543 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7544 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7545
7546 mode->clock = pipe_config.adjusted_mode.clock;
7547 mode->hdisplay = (htot & 0xffff) + 1;
7548 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7549 mode->hsync_start = (hsync & 0xffff) + 1;
7550 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7551 mode->vdisplay = (vtot & 0xffff) + 1;
7552 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7553 mode->vsync_start = (vsync & 0xffff) + 1;
7554 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7555
7556 drm_mode_set_name(mode);
7557
7558 return mode;
7559 }
7560
7561 static void intel_increase_pllclock(struct drm_crtc *crtc)
7562 {
7563 struct drm_device *dev = crtc->dev;
7564 drm_i915_private_t *dev_priv = dev->dev_private;
7565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7566 int pipe = intel_crtc->pipe;
7567 int dpll_reg = DPLL(pipe);
7568 int dpll;
7569
7570 if (HAS_PCH_SPLIT(dev))
7571 return;
7572
7573 if (!dev_priv->lvds_downclock_avail)
7574 return;
7575
7576 dpll = I915_READ(dpll_reg);
7577 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7578 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7579
7580 assert_panel_unlocked(dev_priv, pipe);
7581
7582 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7583 I915_WRITE(dpll_reg, dpll);
7584 intel_wait_for_vblank(dev, pipe);
7585
7586 dpll = I915_READ(dpll_reg);
7587 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7588 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7589 }
7590 }
7591
7592 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7593 {
7594 struct drm_device *dev = crtc->dev;
7595 drm_i915_private_t *dev_priv = dev->dev_private;
7596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7597
7598 if (HAS_PCH_SPLIT(dev))
7599 return;
7600
7601 if (!dev_priv->lvds_downclock_avail)
7602 return;
7603
7604 /*
7605 * Since this is called by a timer, we should never get here in
7606 * the manual case.
7607 */
7608 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7609 int pipe = intel_crtc->pipe;
7610 int dpll_reg = DPLL(pipe);
7611 int dpll;
7612
7613 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7614
7615 assert_panel_unlocked(dev_priv, pipe);
7616
7617 dpll = I915_READ(dpll_reg);
7618 dpll |= DISPLAY_RATE_SELECT_FPA1;
7619 I915_WRITE(dpll_reg, dpll);
7620 intel_wait_for_vblank(dev, pipe);
7621 dpll = I915_READ(dpll_reg);
7622 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7623 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7624 }
7625
7626 }
7627
7628 void intel_mark_busy(struct drm_device *dev)
7629 {
7630 struct drm_i915_private *dev_priv = dev->dev_private;
7631
7632 hsw_package_c8_gpu_busy(dev_priv);
7633 i915_update_gfx_val(dev_priv);
7634 }
7635
7636 void intel_mark_idle(struct drm_device *dev)
7637 {
7638 struct drm_i915_private *dev_priv = dev->dev_private;
7639 struct drm_crtc *crtc;
7640
7641 hsw_package_c8_gpu_idle(dev_priv);
7642
7643 if (!i915_powersave)
7644 return;
7645
7646 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7647 if (!crtc->fb)
7648 continue;
7649
7650 intel_decrease_pllclock(crtc);
7651 }
7652 }
7653
7654 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7655 struct intel_ring_buffer *ring)
7656 {
7657 struct drm_device *dev = obj->base.dev;
7658 struct drm_crtc *crtc;
7659
7660 if (!i915_powersave)
7661 return;
7662
7663 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7664 if (!crtc->fb)
7665 continue;
7666
7667 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7668 continue;
7669
7670 intel_increase_pllclock(crtc);
7671 if (ring && intel_fbc_enabled(dev))
7672 ring->fbc_dirty = true;
7673 }
7674 }
7675
7676 static void intel_crtc_destroy(struct drm_crtc *crtc)
7677 {
7678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7679 struct drm_device *dev = crtc->dev;
7680 struct intel_unpin_work *work;
7681 unsigned long flags;
7682
7683 spin_lock_irqsave(&dev->event_lock, flags);
7684 work = intel_crtc->unpin_work;
7685 intel_crtc->unpin_work = NULL;
7686 spin_unlock_irqrestore(&dev->event_lock, flags);
7687
7688 if (work) {
7689 cancel_work_sync(&work->work);
7690 kfree(work);
7691 }
7692
7693 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7694
7695 drm_crtc_cleanup(crtc);
7696
7697 kfree(intel_crtc);
7698 }
7699
7700 static void intel_unpin_work_fn(struct work_struct *__work)
7701 {
7702 struct intel_unpin_work *work =
7703 container_of(__work, struct intel_unpin_work, work);
7704 struct drm_device *dev = work->crtc->dev;
7705
7706 mutex_lock(&dev->struct_mutex);
7707 intel_unpin_fb_obj(work->old_fb_obj);
7708 drm_gem_object_unreference(&work->pending_flip_obj->base);
7709 drm_gem_object_unreference(&work->old_fb_obj->base);
7710
7711 intel_update_fbc(dev);
7712 mutex_unlock(&dev->struct_mutex);
7713
7714 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7715 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7716
7717 kfree(work);
7718 }
7719
7720 static void do_intel_finish_page_flip(struct drm_device *dev,
7721 struct drm_crtc *crtc)
7722 {
7723 drm_i915_private_t *dev_priv = dev->dev_private;
7724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7725 struct intel_unpin_work *work;
7726 unsigned long flags;
7727
7728 /* Ignore early vblank irqs */
7729 if (intel_crtc == NULL)
7730 return;
7731
7732 spin_lock_irqsave(&dev->event_lock, flags);
7733 work = intel_crtc->unpin_work;
7734
7735 /* Ensure we don't miss a work->pending update ... */
7736 smp_rmb();
7737
7738 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7739 spin_unlock_irqrestore(&dev->event_lock, flags);
7740 return;
7741 }
7742
7743 /* and that the unpin work is consistent wrt ->pending. */
7744 smp_rmb();
7745
7746 intel_crtc->unpin_work = NULL;
7747
7748 if (work->event)
7749 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7750
7751 drm_vblank_put(dev, intel_crtc->pipe);
7752
7753 spin_unlock_irqrestore(&dev->event_lock, flags);
7754
7755 wake_up_all(&dev_priv->pending_flip_queue);
7756
7757 queue_work(dev_priv->wq, &work->work);
7758
7759 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7760 }
7761
7762 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7763 {
7764 drm_i915_private_t *dev_priv = dev->dev_private;
7765 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7766
7767 do_intel_finish_page_flip(dev, crtc);
7768 }
7769
7770 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7771 {
7772 drm_i915_private_t *dev_priv = dev->dev_private;
7773 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7774
7775 do_intel_finish_page_flip(dev, crtc);
7776 }
7777
7778 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7779 {
7780 drm_i915_private_t *dev_priv = dev->dev_private;
7781 struct intel_crtc *intel_crtc =
7782 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7783 unsigned long flags;
7784
7785 /* NB: An MMIO update of the plane base pointer will also
7786 * generate a page-flip completion irq, i.e. every modeset
7787 * is also accompanied by a spurious intel_prepare_page_flip().
7788 */
7789 spin_lock_irqsave(&dev->event_lock, flags);
7790 if (intel_crtc->unpin_work)
7791 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7792 spin_unlock_irqrestore(&dev->event_lock, flags);
7793 }
7794
7795 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7796 {
7797 /* Ensure that the work item is consistent when activating it ... */
7798 smp_wmb();
7799 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7800 /* and that it is marked active as soon as the irq could fire. */
7801 smp_wmb();
7802 }
7803
7804 static int intel_gen2_queue_flip(struct drm_device *dev,
7805 struct drm_crtc *crtc,
7806 struct drm_framebuffer *fb,
7807 struct drm_i915_gem_object *obj,
7808 uint32_t flags)
7809 {
7810 struct drm_i915_private *dev_priv = dev->dev_private;
7811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7812 u32 flip_mask;
7813 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7814 int ret;
7815
7816 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7817 if (ret)
7818 goto err;
7819
7820 ret = intel_ring_begin(ring, 6);
7821 if (ret)
7822 goto err_unpin;
7823
7824 /* Can't queue multiple flips, so wait for the previous
7825 * one to finish before executing the next.
7826 */
7827 if (intel_crtc->plane)
7828 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7829 else
7830 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7831 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7832 intel_ring_emit(ring, MI_NOOP);
7833 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7834 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7835 intel_ring_emit(ring, fb->pitches[0]);
7836 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7837 intel_ring_emit(ring, 0); /* aux display base address, unused */
7838
7839 intel_mark_page_flip_active(intel_crtc);
7840 __intel_ring_advance(ring);
7841 return 0;
7842
7843 err_unpin:
7844 intel_unpin_fb_obj(obj);
7845 err:
7846 return ret;
7847 }
7848
7849 static int intel_gen3_queue_flip(struct drm_device *dev,
7850 struct drm_crtc *crtc,
7851 struct drm_framebuffer *fb,
7852 struct drm_i915_gem_object *obj,
7853 uint32_t flags)
7854 {
7855 struct drm_i915_private *dev_priv = dev->dev_private;
7856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7857 u32 flip_mask;
7858 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7859 int ret;
7860
7861 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7862 if (ret)
7863 goto err;
7864
7865 ret = intel_ring_begin(ring, 6);
7866 if (ret)
7867 goto err_unpin;
7868
7869 if (intel_crtc->plane)
7870 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7871 else
7872 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7873 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7874 intel_ring_emit(ring, MI_NOOP);
7875 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7876 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7877 intel_ring_emit(ring, fb->pitches[0]);
7878 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7879 intel_ring_emit(ring, MI_NOOP);
7880
7881 intel_mark_page_flip_active(intel_crtc);
7882 __intel_ring_advance(ring);
7883 return 0;
7884
7885 err_unpin:
7886 intel_unpin_fb_obj(obj);
7887 err:
7888 return ret;
7889 }
7890
7891 static int intel_gen4_queue_flip(struct drm_device *dev,
7892 struct drm_crtc *crtc,
7893 struct drm_framebuffer *fb,
7894 struct drm_i915_gem_object *obj,
7895 uint32_t flags)
7896 {
7897 struct drm_i915_private *dev_priv = dev->dev_private;
7898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7899 uint32_t pf, pipesrc;
7900 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7901 int ret;
7902
7903 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7904 if (ret)
7905 goto err;
7906
7907 ret = intel_ring_begin(ring, 4);
7908 if (ret)
7909 goto err_unpin;
7910
7911 /* i965+ uses the linear or tiled offsets from the
7912 * Display Registers (which do not change across a page-flip)
7913 * so we need only reprogram the base address.
7914 */
7915 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7916 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7917 intel_ring_emit(ring, fb->pitches[0]);
7918 intel_ring_emit(ring,
7919 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7920 obj->tiling_mode);
7921
7922 /* XXX Enabling the panel-fitter across page-flip is so far
7923 * untested on non-native modes, so ignore it for now.
7924 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7925 */
7926 pf = 0;
7927 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7928 intel_ring_emit(ring, pf | pipesrc);
7929
7930 intel_mark_page_flip_active(intel_crtc);
7931 __intel_ring_advance(ring);
7932 return 0;
7933
7934 err_unpin:
7935 intel_unpin_fb_obj(obj);
7936 err:
7937 return ret;
7938 }
7939
7940 static int intel_gen6_queue_flip(struct drm_device *dev,
7941 struct drm_crtc *crtc,
7942 struct drm_framebuffer *fb,
7943 struct drm_i915_gem_object *obj,
7944 uint32_t flags)
7945 {
7946 struct drm_i915_private *dev_priv = dev->dev_private;
7947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7948 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7949 uint32_t pf, pipesrc;
7950 int ret;
7951
7952 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7953 if (ret)
7954 goto err;
7955
7956 ret = intel_ring_begin(ring, 4);
7957 if (ret)
7958 goto err_unpin;
7959
7960 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7961 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7962 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7963 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7964
7965 /* Contrary to the suggestions in the documentation,
7966 * "Enable Panel Fitter" does not seem to be required when page
7967 * flipping with a non-native mode, and worse causes a normal
7968 * modeset to fail.
7969 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7970 */
7971 pf = 0;
7972 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7973 intel_ring_emit(ring, pf | pipesrc);
7974
7975 intel_mark_page_flip_active(intel_crtc);
7976 __intel_ring_advance(ring);
7977 return 0;
7978
7979 err_unpin:
7980 intel_unpin_fb_obj(obj);
7981 err:
7982 return ret;
7983 }
7984
7985 static int intel_gen7_queue_flip(struct drm_device *dev,
7986 struct drm_crtc *crtc,
7987 struct drm_framebuffer *fb,
7988 struct drm_i915_gem_object *obj,
7989 uint32_t flags)
7990 {
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7993 struct intel_ring_buffer *ring;
7994 uint32_t plane_bit = 0;
7995 int len, ret;
7996
7997 ring = obj->ring;
7998 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7999 ring = &dev_priv->ring[BCS];
8000
8001 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8002 if (ret)
8003 goto err;
8004
8005 switch(intel_crtc->plane) {
8006 case PLANE_A:
8007 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8008 break;
8009 case PLANE_B:
8010 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8011 break;
8012 case PLANE_C:
8013 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8014 break;
8015 default:
8016 WARN_ONCE(1, "unknown plane in flip command\n");
8017 ret = -ENODEV;
8018 goto err_unpin;
8019 }
8020
8021 len = 4;
8022 if (ring->id == RCS)
8023 len += 6;
8024
8025 ret = intel_ring_begin(ring, len);
8026 if (ret)
8027 goto err_unpin;
8028
8029 /* Unmask the flip-done completion message. Note that the bspec says that
8030 * we should do this for both the BCS and RCS, and that we must not unmask
8031 * more than one flip event at any time (or ensure that one flip message
8032 * can be sent by waiting for flip-done prior to queueing new flips).
8033 * Experimentation says that BCS works despite DERRMR masking all
8034 * flip-done completion events and that unmasking all planes at once
8035 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8036 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8037 */
8038 if (ring->id == RCS) {
8039 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8040 intel_ring_emit(ring, DERRMR);
8041 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8042 DERRMR_PIPEB_PRI_FLIP_DONE |
8043 DERRMR_PIPEC_PRI_FLIP_DONE));
8044 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8045 intel_ring_emit(ring, DERRMR);
8046 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8047 }
8048
8049 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8050 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8051 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8052 intel_ring_emit(ring, (MI_NOOP));
8053
8054 intel_mark_page_flip_active(intel_crtc);
8055 __intel_ring_advance(ring);
8056 return 0;
8057
8058 err_unpin:
8059 intel_unpin_fb_obj(obj);
8060 err:
8061 return ret;
8062 }
8063
8064 static int intel_default_queue_flip(struct drm_device *dev,
8065 struct drm_crtc *crtc,
8066 struct drm_framebuffer *fb,
8067 struct drm_i915_gem_object *obj,
8068 uint32_t flags)
8069 {
8070 return -ENODEV;
8071 }
8072
8073 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8074 struct drm_framebuffer *fb,
8075 struct drm_pending_vblank_event *event,
8076 uint32_t page_flip_flags)
8077 {
8078 struct drm_device *dev = crtc->dev;
8079 struct drm_i915_private *dev_priv = dev->dev_private;
8080 struct drm_framebuffer *old_fb = crtc->fb;
8081 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8083 struct intel_unpin_work *work;
8084 unsigned long flags;
8085 int ret;
8086
8087 /* Can't change pixel format via MI display flips. */
8088 if (fb->pixel_format != crtc->fb->pixel_format)
8089 return -EINVAL;
8090
8091 /*
8092 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8093 * Note that pitch changes could also affect these register.
8094 */
8095 if (INTEL_INFO(dev)->gen > 3 &&
8096 (fb->offsets[0] != crtc->fb->offsets[0] ||
8097 fb->pitches[0] != crtc->fb->pitches[0]))
8098 return -EINVAL;
8099
8100 work = kzalloc(sizeof *work, GFP_KERNEL);
8101 if (work == NULL)
8102 return -ENOMEM;
8103
8104 work->event = event;
8105 work->crtc = crtc;
8106 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8107 INIT_WORK(&work->work, intel_unpin_work_fn);
8108
8109 ret = drm_vblank_get(dev, intel_crtc->pipe);
8110 if (ret)
8111 goto free_work;
8112
8113 /* We borrow the event spin lock for protecting unpin_work */
8114 spin_lock_irqsave(&dev->event_lock, flags);
8115 if (intel_crtc->unpin_work) {
8116 spin_unlock_irqrestore(&dev->event_lock, flags);
8117 kfree(work);
8118 drm_vblank_put(dev, intel_crtc->pipe);
8119
8120 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8121 return -EBUSY;
8122 }
8123 intel_crtc->unpin_work = work;
8124 spin_unlock_irqrestore(&dev->event_lock, flags);
8125
8126 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8127 flush_workqueue(dev_priv->wq);
8128
8129 ret = i915_mutex_lock_interruptible(dev);
8130 if (ret)
8131 goto cleanup;
8132
8133 /* Reference the objects for the scheduled work. */
8134 drm_gem_object_reference(&work->old_fb_obj->base);
8135 drm_gem_object_reference(&obj->base);
8136
8137 crtc->fb = fb;
8138
8139 work->pending_flip_obj = obj;
8140
8141 work->enable_stall_check = true;
8142
8143 atomic_inc(&intel_crtc->unpin_work_count);
8144 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8145
8146 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8147 if (ret)
8148 goto cleanup_pending;
8149
8150 intel_disable_fbc(dev);
8151 intel_mark_fb_busy(obj, NULL);
8152 mutex_unlock(&dev->struct_mutex);
8153
8154 trace_i915_flip_request(intel_crtc->plane, obj);
8155
8156 return 0;
8157
8158 cleanup_pending:
8159 atomic_dec(&intel_crtc->unpin_work_count);
8160 crtc->fb = old_fb;
8161 drm_gem_object_unreference(&work->old_fb_obj->base);
8162 drm_gem_object_unreference(&obj->base);
8163 mutex_unlock(&dev->struct_mutex);
8164
8165 cleanup:
8166 spin_lock_irqsave(&dev->event_lock, flags);
8167 intel_crtc->unpin_work = NULL;
8168 spin_unlock_irqrestore(&dev->event_lock, flags);
8169
8170 drm_vblank_put(dev, intel_crtc->pipe);
8171 free_work:
8172 kfree(work);
8173
8174 return ret;
8175 }
8176
8177 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8178 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8179 .load_lut = intel_crtc_load_lut,
8180 };
8181
8182 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8183 struct drm_crtc *crtc)
8184 {
8185 struct drm_device *dev;
8186 struct drm_crtc *tmp;
8187 int crtc_mask = 1;
8188
8189 WARN(!crtc, "checking null crtc?\n");
8190
8191 dev = crtc->dev;
8192
8193 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8194 if (tmp == crtc)
8195 break;
8196 crtc_mask <<= 1;
8197 }
8198
8199 if (encoder->possible_crtcs & crtc_mask)
8200 return true;
8201 return false;
8202 }
8203
8204 /**
8205 * intel_modeset_update_staged_output_state
8206 *
8207 * Updates the staged output configuration state, e.g. after we've read out the
8208 * current hw state.
8209 */
8210 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8211 {
8212 struct intel_encoder *encoder;
8213 struct intel_connector *connector;
8214
8215 list_for_each_entry(connector, &dev->mode_config.connector_list,
8216 base.head) {
8217 connector->new_encoder =
8218 to_intel_encoder(connector->base.encoder);
8219 }
8220
8221 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8222 base.head) {
8223 encoder->new_crtc =
8224 to_intel_crtc(encoder->base.crtc);
8225 }
8226 }
8227
8228 /**
8229 * intel_modeset_commit_output_state
8230 *
8231 * This function copies the stage display pipe configuration to the real one.
8232 */
8233 static void intel_modeset_commit_output_state(struct drm_device *dev)
8234 {
8235 struct intel_encoder *encoder;
8236 struct intel_connector *connector;
8237
8238 list_for_each_entry(connector, &dev->mode_config.connector_list,
8239 base.head) {
8240 connector->base.encoder = &connector->new_encoder->base;
8241 }
8242
8243 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8244 base.head) {
8245 encoder->base.crtc = &encoder->new_crtc->base;
8246 }
8247 }
8248
8249 static void
8250 connected_sink_compute_bpp(struct intel_connector * connector,
8251 struct intel_crtc_config *pipe_config)
8252 {
8253 int bpp = pipe_config->pipe_bpp;
8254
8255 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8256 connector->base.base.id,
8257 drm_get_connector_name(&connector->base));
8258
8259 /* Don't use an invalid EDID bpc value */
8260 if (connector->base.display_info.bpc &&
8261 connector->base.display_info.bpc * 3 < bpp) {
8262 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8263 bpp, connector->base.display_info.bpc*3);
8264 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8265 }
8266
8267 /* Clamp bpp to 8 on screens without EDID 1.4 */
8268 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8269 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8270 bpp);
8271 pipe_config->pipe_bpp = 24;
8272 }
8273 }
8274
8275 static int
8276 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8277 struct drm_framebuffer *fb,
8278 struct intel_crtc_config *pipe_config)
8279 {
8280 struct drm_device *dev = crtc->base.dev;
8281 struct intel_connector *connector;
8282 int bpp;
8283
8284 switch (fb->pixel_format) {
8285 case DRM_FORMAT_C8:
8286 bpp = 8*3; /* since we go through a colormap */
8287 break;
8288 case DRM_FORMAT_XRGB1555:
8289 case DRM_FORMAT_ARGB1555:
8290 /* checked in intel_framebuffer_init already */
8291 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8292 return -EINVAL;
8293 case DRM_FORMAT_RGB565:
8294 bpp = 6*3; /* min is 18bpp */
8295 break;
8296 case DRM_FORMAT_XBGR8888:
8297 case DRM_FORMAT_ABGR8888:
8298 /* checked in intel_framebuffer_init already */
8299 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8300 return -EINVAL;
8301 case DRM_FORMAT_XRGB8888:
8302 case DRM_FORMAT_ARGB8888:
8303 bpp = 8*3;
8304 break;
8305 case DRM_FORMAT_XRGB2101010:
8306 case DRM_FORMAT_ARGB2101010:
8307 case DRM_FORMAT_XBGR2101010:
8308 case DRM_FORMAT_ABGR2101010:
8309 /* checked in intel_framebuffer_init already */
8310 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8311 return -EINVAL;
8312 bpp = 10*3;
8313 break;
8314 /* TODO: gen4+ supports 16 bpc floating point, too. */
8315 default:
8316 DRM_DEBUG_KMS("unsupported depth\n");
8317 return -EINVAL;
8318 }
8319
8320 pipe_config->pipe_bpp = bpp;
8321
8322 /* Clamp display bpp to EDID value */
8323 list_for_each_entry(connector, &dev->mode_config.connector_list,
8324 base.head) {
8325 if (!connector->new_encoder ||
8326 connector->new_encoder->new_crtc != crtc)
8327 continue;
8328
8329 connected_sink_compute_bpp(connector, pipe_config);
8330 }
8331
8332 return bpp;
8333 }
8334
8335 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8336 {
8337 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8338 "type: 0x%x flags: 0x%x\n",
8339 mode->clock,
8340 mode->crtc_hdisplay, mode->crtc_hsync_start,
8341 mode->crtc_hsync_end, mode->crtc_htotal,
8342 mode->crtc_vdisplay, mode->crtc_vsync_start,
8343 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8344 }
8345
8346 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8347 struct intel_crtc_config *pipe_config,
8348 const char *context)
8349 {
8350 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8351 context, pipe_name(crtc->pipe));
8352
8353 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8354 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8355 pipe_config->pipe_bpp, pipe_config->dither);
8356 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8357 pipe_config->has_pch_encoder,
8358 pipe_config->fdi_lanes,
8359 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8360 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8361 pipe_config->fdi_m_n.tu);
8362 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8363 pipe_config->has_dp_encoder,
8364 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8365 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8366 pipe_config->dp_m_n.tu);
8367 DRM_DEBUG_KMS("requested mode:\n");
8368 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8369 DRM_DEBUG_KMS("adjusted mode:\n");
8370 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8371 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8372 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8373 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8374 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8375 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8376 pipe_config->gmch_pfit.control,
8377 pipe_config->gmch_pfit.pgm_ratios,
8378 pipe_config->gmch_pfit.lvds_border_bits);
8379 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8380 pipe_config->pch_pfit.pos,
8381 pipe_config->pch_pfit.size,
8382 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8383 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8384 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8385 }
8386
8387 static bool check_encoder_cloning(struct drm_crtc *crtc)
8388 {
8389 int num_encoders = 0;
8390 bool uncloneable_encoders = false;
8391 struct intel_encoder *encoder;
8392
8393 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8394 base.head) {
8395 if (&encoder->new_crtc->base != crtc)
8396 continue;
8397
8398 num_encoders++;
8399 if (!encoder->cloneable)
8400 uncloneable_encoders = true;
8401 }
8402
8403 return !(num_encoders > 1 && uncloneable_encoders);
8404 }
8405
8406 static struct intel_crtc_config *
8407 intel_modeset_pipe_config(struct drm_crtc *crtc,
8408 struct drm_framebuffer *fb,
8409 struct drm_display_mode *mode)
8410 {
8411 struct drm_device *dev = crtc->dev;
8412 struct intel_encoder *encoder;
8413 struct intel_crtc_config *pipe_config;
8414 int plane_bpp, ret = -EINVAL;
8415 bool retry = true;
8416
8417 if (!check_encoder_cloning(crtc)) {
8418 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8419 return ERR_PTR(-EINVAL);
8420 }
8421
8422 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8423 if (!pipe_config)
8424 return ERR_PTR(-ENOMEM);
8425
8426 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8427 drm_mode_copy(&pipe_config->requested_mode, mode);
8428
8429 pipe_config->pipe_src_w = mode->hdisplay;
8430 pipe_config->pipe_src_h = mode->vdisplay;
8431
8432 pipe_config->cpu_transcoder =
8433 (enum transcoder) to_intel_crtc(crtc)->pipe;
8434 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8435
8436 /*
8437 * Sanitize sync polarity flags based on requested ones. If neither
8438 * positive or negative polarity is requested, treat this as meaning
8439 * negative polarity.
8440 */
8441 if (!(pipe_config->adjusted_mode.flags &
8442 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8443 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8444
8445 if (!(pipe_config->adjusted_mode.flags &
8446 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8447 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8448
8449 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8450 * plane pixel format and any sink constraints into account. Returns the
8451 * source plane bpp so that dithering can be selected on mismatches
8452 * after encoders and crtc also have had their say. */
8453 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8454 fb, pipe_config);
8455 if (plane_bpp < 0)
8456 goto fail;
8457
8458 encoder_retry:
8459 /* Ensure the port clock defaults are reset when retrying. */
8460 pipe_config->port_clock = 0;
8461 pipe_config->pixel_multiplier = 1;
8462
8463 /* Fill in default crtc timings, allow encoders to overwrite them. */
8464 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8465
8466 /* Pass our mode to the connectors and the CRTC to give them a chance to
8467 * adjust it according to limitations or connector properties, and also
8468 * a chance to reject the mode entirely.
8469 */
8470 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8471 base.head) {
8472
8473 if (&encoder->new_crtc->base != crtc)
8474 continue;
8475
8476 if (!(encoder->compute_config(encoder, pipe_config))) {
8477 DRM_DEBUG_KMS("Encoder config failure\n");
8478 goto fail;
8479 }
8480 }
8481
8482 /* Set default port clock if not overwritten by the encoder. Needs to be
8483 * done afterwards in case the encoder adjusts the mode. */
8484 if (!pipe_config->port_clock)
8485 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8486 pipe_config->pixel_multiplier;
8487
8488 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8489 if (ret < 0) {
8490 DRM_DEBUG_KMS("CRTC fixup failed\n");
8491 goto fail;
8492 }
8493
8494 if (ret == RETRY) {
8495 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8496 ret = -EINVAL;
8497 goto fail;
8498 }
8499
8500 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8501 retry = false;
8502 goto encoder_retry;
8503 }
8504
8505 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8506 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8507 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8508
8509 return pipe_config;
8510 fail:
8511 kfree(pipe_config);
8512 return ERR_PTR(ret);
8513 }
8514
8515 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8516 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8517 static void
8518 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8519 unsigned *prepare_pipes, unsigned *disable_pipes)
8520 {
8521 struct intel_crtc *intel_crtc;
8522 struct drm_device *dev = crtc->dev;
8523 struct intel_encoder *encoder;
8524 struct intel_connector *connector;
8525 struct drm_crtc *tmp_crtc;
8526
8527 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8528
8529 /* Check which crtcs have changed outputs connected to them, these need
8530 * to be part of the prepare_pipes mask. We don't (yet) support global
8531 * modeset across multiple crtcs, so modeset_pipes will only have one
8532 * bit set at most. */
8533 list_for_each_entry(connector, &dev->mode_config.connector_list,
8534 base.head) {
8535 if (connector->base.encoder == &connector->new_encoder->base)
8536 continue;
8537
8538 if (connector->base.encoder) {
8539 tmp_crtc = connector->base.encoder->crtc;
8540
8541 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8542 }
8543
8544 if (connector->new_encoder)
8545 *prepare_pipes |=
8546 1 << connector->new_encoder->new_crtc->pipe;
8547 }
8548
8549 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8550 base.head) {
8551 if (encoder->base.crtc == &encoder->new_crtc->base)
8552 continue;
8553
8554 if (encoder->base.crtc) {
8555 tmp_crtc = encoder->base.crtc;
8556
8557 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8558 }
8559
8560 if (encoder->new_crtc)
8561 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8562 }
8563
8564 /* Check for any pipes that will be fully disabled ... */
8565 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8566 base.head) {
8567 bool used = false;
8568
8569 /* Don't try to disable disabled crtcs. */
8570 if (!intel_crtc->base.enabled)
8571 continue;
8572
8573 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8574 base.head) {
8575 if (encoder->new_crtc == intel_crtc)
8576 used = true;
8577 }
8578
8579 if (!used)
8580 *disable_pipes |= 1 << intel_crtc->pipe;
8581 }
8582
8583
8584 /* set_mode is also used to update properties on life display pipes. */
8585 intel_crtc = to_intel_crtc(crtc);
8586 if (crtc->enabled)
8587 *prepare_pipes |= 1 << intel_crtc->pipe;
8588
8589 /*
8590 * For simplicity do a full modeset on any pipe where the output routing
8591 * changed. We could be more clever, but that would require us to be
8592 * more careful with calling the relevant encoder->mode_set functions.
8593 */
8594 if (*prepare_pipes)
8595 *modeset_pipes = *prepare_pipes;
8596
8597 /* ... and mask these out. */
8598 *modeset_pipes &= ~(*disable_pipes);
8599 *prepare_pipes &= ~(*disable_pipes);
8600
8601 /*
8602 * HACK: We don't (yet) fully support global modesets. intel_set_config
8603 * obies this rule, but the modeset restore mode of
8604 * intel_modeset_setup_hw_state does not.
8605 */
8606 *modeset_pipes &= 1 << intel_crtc->pipe;
8607 *prepare_pipes &= 1 << intel_crtc->pipe;
8608
8609 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8610 *modeset_pipes, *prepare_pipes, *disable_pipes);
8611 }
8612
8613 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8614 {
8615 struct drm_encoder *encoder;
8616 struct drm_device *dev = crtc->dev;
8617
8618 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8619 if (encoder->crtc == crtc)
8620 return true;
8621
8622 return false;
8623 }
8624
8625 static void
8626 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8627 {
8628 struct intel_encoder *intel_encoder;
8629 struct intel_crtc *intel_crtc;
8630 struct drm_connector *connector;
8631
8632 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8633 base.head) {
8634 if (!intel_encoder->base.crtc)
8635 continue;
8636
8637 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8638
8639 if (prepare_pipes & (1 << intel_crtc->pipe))
8640 intel_encoder->connectors_active = false;
8641 }
8642
8643 intel_modeset_commit_output_state(dev);
8644
8645 /* Update computed state. */
8646 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8647 base.head) {
8648 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8649 }
8650
8651 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8652 if (!connector->encoder || !connector->encoder->crtc)
8653 continue;
8654
8655 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8656
8657 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8658 struct drm_property *dpms_property =
8659 dev->mode_config.dpms_property;
8660
8661 connector->dpms = DRM_MODE_DPMS_ON;
8662 drm_object_property_set_value(&connector->base,
8663 dpms_property,
8664 DRM_MODE_DPMS_ON);
8665
8666 intel_encoder = to_intel_encoder(connector->encoder);
8667 intel_encoder->connectors_active = true;
8668 }
8669 }
8670
8671 }
8672
8673 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8674 {
8675 int diff;
8676
8677 if (clock1 == clock2)
8678 return true;
8679
8680 if (!clock1 || !clock2)
8681 return false;
8682
8683 diff = abs(clock1 - clock2);
8684
8685 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8686 return true;
8687
8688 return false;
8689 }
8690
8691 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8692 list_for_each_entry((intel_crtc), \
8693 &(dev)->mode_config.crtc_list, \
8694 base.head) \
8695 if (mask & (1 <<(intel_crtc)->pipe))
8696
8697 static bool
8698 intel_pipe_config_compare(struct drm_device *dev,
8699 struct intel_crtc_config *current_config,
8700 struct intel_crtc_config *pipe_config)
8701 {
8702 #define PIPE_CONF_CHECK_X(name) \
8703 if (current_config->name != pipe_config->name) { \
8704 DRM_ERROR("mismatch in " #name " " \
8705 "(expected 0x%08x, found 0x%08x)\n", \
8706 current_config->name, \
8707 pipe_config->name); \
8708 return false; \
8709 }
8710
8711 #define PIPE_CONF_CHECK_I(name) \
8712 if (current_config->name != pipe_config->name) { \
8713 DRM_ERROR("mismatch in " #name " " \
8714 "(expected %i, found %i)\n", \
8715 current_config->name, \
8716 pipe_config->name); \
8717 return false; \
8718 }
8719
8720 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8721 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8722 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8723 "(expected %i, found %i)\n", \
8724 current_config->name & (mask), \
8725 pipe_config->name & (mask)); \
8726 return false; \
8727 }
8728
8729 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8730 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8731 DRM_ERROR("mismatch in " #name " " \
8732 "(expected %i, found %i)\n", \
8733 current_config->name, \
8734 pipe_config->name); \
8735 return false; \
8736 }
8737
8738 #define PIPE_CONF_QUIRK(quirk) \
8739 ((current_config->quirks | pipe_config->quirks) & (quirk))
8740
8741 PIPE_CONF_CHECK_I(cpu_transcoder);
8742
8743 PIPE_CONF_CHECK_I(has_pch_encoder);
8744 PIPE_CONF_CHECK_I(fdi_lanes);
8745 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8746 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8747 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8748 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8749 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8750
8751 PIPE_CONF_CHECK_I(has_dp_encoder);
8752 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8753 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8754 PIPE_CONF_CHECK_I(dp_m_n.link_m);
8755 PIPE_CONF_CHECK_I(dp_m_n.link_n);
8756 PIPE_CONF_CHECK_I(dp_m_n.tu);
8757
8758 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8759 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8760 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8761 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8762 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8763 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8764
8765 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8766 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8767 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8768 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8769 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8770 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8771
8772 PIPE_CONF_CHECK_I(pixel_multiplier);
8773
8774 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8775 DRM_MODE_FLAG_INTERLACE);
8776
8777 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8778 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8779 DRM_MODE_FLAG_PHSYNC);
8780 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8781 DRM_MODE_FLAG_NHSYNC);
8782 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8783 DRM_MODE_FLAG_PVSYNC);
8784 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8785 DRM_MODE_FLAG_NVSYNC);
8786 }
8787
8788 PIPE_CONF_CHECK_I(pipe_src_w);
8789 PIPE_CONF_CHECK_I(pipe_src_h);
8790
8791 PIPE_CONF_CHECK_I(gmch_pfit.control);
8792 /* pfit ratios are autocomputed by the hw on gen4+ */
8793 if (INTEL_INFO(dev)->gen < 4)
8794 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8795 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8796 PIPE_CONF_CHECK_I(pch_pfit.enabled);
8797 if (current_config->pch_pfit.enabled) {
8798 PIPE_CONF_CHECK_I(pch_pfit.pos);
8799 PIPE_CONF_CHECK_I(pch_pfit.size);
8800 }
8801
8802 PIPE_CONF_CHECK_I(ips_enabled);
8803
8804 PIPE_CONF_CHECK_I(double_wide);
8805
8806 PIPE_CONF_CHECK_I(shared_dpll);
8807 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8808 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8809 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8810 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8811
8812 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8813 PIPE_CONF_CHECK_I(pipe_bpp);
8814
8815 if (!IS_HASWELL(dev)) {
8816 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8817 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8818 }
8819
8820 #undef PIPE_CONF_CHECK_X
8821 #undef PIPE_CONF_CHECK_I
8822 #undef PIPE_CONF_CHECK_FLAGS
8823 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8824 #undef PIPE_CONF_QUIRK
8825
8826 return true;
8827 }
8828
8829 static void
8830 check_connector_state(struct drm_device *dev)
8831 {
8832 struct intel_connector *connector;
8833
8834 list_for_each_entry(connector, &dev->mode_config.connector_list,
8835 base.head) {
8836 /* This also checks the encoder/connector hw state with the
8837 * ->get_hw_state callbacks. */
8838 intel_connector_check_state(connector);
8839
8840 WARN(&connector->new_encoder->base != connector->base.encoder,
8841 "connector's staged encoder doesn't match current encoder\n");
8842 }
8843 }
8844
8845 static void
8846 check_encoder_state(struct drm_device *dev)
8847 {
8848 struct intel_encoder *encoder;
8849 struct intel_connector *connector;
8850
8851 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8852 base.head) {
8853 bool enabled = false;
8854 bool active = false;
8855 enum pipe pipe, tracked_pipe;
8856
8857 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8858 encoder->base.base.id,
8859 drm_get_encoder_name(&encoder->base));
8860
8861 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8862 "encoder's stage crtc doesn't match current crtc\n");
8863 WARN(encoder->connectors_active && !encoder->base.crtc,
8864 "encoder's active_connectors set, but no crtc\n");
8865
8866 list_for_each_entry(connector, &dev->mode_config.connector_list,
8867 base.head) {
8868 if (connector->base.encoder != &encoder->base)
8869 continue;
8870 enabled = true;
8871 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8872 active = true;
8873 }
8874 WARN(!!encoder->base.crtc != enabled,
8875 "encoder's enabled state mismatch "
8876 "(expected %i, found %i)\n",
8877 !!encoder->base.crtc, enabled);
8878 WARN(active && !encoder->base.crtc,
8879 "active encoder with no crtc\n");
8880
8881 WARN(encoder->connectors_active != active,
8882 "encoder's computed active state doesn't match tracked active state "
8883 "(expected %i, found %i)\n", active, encoder->connectors_active);
8884
8885 active = encoder->get_hw_state(encoder, &pipe);
8886 WARN(active != encoder->connectors_active,
8887 "encoder's hw state doesn't match sw tracking "
8888 "(expected %i, found %i)\n",
8889 encoder->connectors_active, active);
8890
8891 if (!encoder->base.crtc)
8892 continue;
8893
8894 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8895 WARN(active && pipe != tracked_pipe,
8896 "active encoder's pipe doesn't match"
8897 "(expected %i, found %i)\n",
8898 tracked_pipe, pipe);
8899
8900 }
8901 }
8902
8903 static void
8904 check_crtc_state(struct drm_device *dev)
8905 {
8906 drm_i915_private_t *dev_priv = dev->dev_private;
8907 struct intel_crtc *crtc;
8908 struct intel_encoder *encoder;
8909 struct intel_crtc_config pipe_config;
8910
8911 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8912 base.head) {
8913 bool enabled = false;
8914 bool active = false;
8915
8916 memset(&pipe_config, 0, sizeof(pipe_config));
8917
8918 DRM_DEBUG_KMS("[CRTC:%d]\n",
8919 crtc->base.base.id);
8920
8921 WARN(crtc->active && !crtc->base.enabled,
8922 "active crtc, but not enabled in sw tracking\n");
8923
8924 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8925 base.head) {
8926 if (encoder->base.crtc != &crtc->base)
8927 continue;
8928 enabled = true;
8929 if (encoder->connectors_active)
8930 active = true;
8931 }
8932
8933 WARN(active != crtc->active,
8934 "crtc's computed active state doesn't match tracked active state "
8935 "(expected %i, found %i)\n", active, crtc->active);
8936 WARN(enabled != crtc->base.enabled,
8937 "crtc's computed enabled state doesn't match tracked enabled state "
8938 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8939
8940 active = dev_priv->display.get_pipe_config(crtc,
8941 &pipe_config);
8942
8943 /* hw state is inconsistent with the pipe A quirk */
8944 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8945 active = crtc->active;
8946
8947 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8948 base.head) {
8949 enum pipe pipe;
8950 if (encoder->base.crtc != &crtc->base)
8951 continue;
8952 if (encoder->get_config &&
8953 encoder->get_hw_state(encoder, &pipe))
8954 encoder->get_config(encoder, &pipe_config);
8955 }
8956
8957 WARN(crtc->active != active,
8958 "crtc active state doesn't match with hw state "
8959 "(expected %i, found %i)\n", crtc->active, active);
8960
8961 if (active &&
8962 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8963 WARN(1, "pipe state doesn't match!\n");
8964 intel_dump_pipe_config(crtc, &pipe_config,
8965 "[hw state]");
8966 intel_dump_pipe_config(crtc, &crtc->config,
8967 "[sw state]");
8968 }
8969 }
8970 }
8971
8972 static void
8973 check_shared_dpll_state(struct drm_device *dev)
8974 {
8975 drm_i915_private_t *dev_priv = dev->dev_private;
8976 struct intel_crtc *crtc;
8977 struct intel_dpll_hw_state dpll_hw_state;
8978 int i;
8979
8980 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8981 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8982 int enabled_crtcs = 0, active_crtcs = 0;
8983 bool active;
8984
8985 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8986
8987 DRM_DEBUG_KMS("%s\n", pll->name);
8988
8989 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8990
8991 WARN(pll->active > pll->refcount,
8992 "more active pll users than references: %i vs %i\n",
8993 pll->active, pll->refcount);
8994 WARN(pll->active && !pll->on,
8995 "pll in active use but not on in sw tracking\n");
8996 WARN(pll->on && !pll->active,
8997 "pll in on but not on in use in sw tracking\n");
8998 WARN(pll->on != active,
8999 "pll on state mismatch (expected %i, found %i)\n",
9000 pll->on, active);
9001
9002 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9003 base.head) {
9004 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9005 enabled_crtcs++;
9006 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9007 active_crtcs++;
9008 }
9009 WARN(pll->active != active_crtcs,
9010 "pll active crtcs mismatch (expected %i, found %i)\n",
9011 pll->active, active_crtcs);
9012 WARN(pll->refcount != enabled_crtcs,
9013 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9014 pll->refcount, enabled_crtcs);
9015
9016 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9017 sizeof(dpll_hw_state)),
9018 "pll hw state mismatch\n");
9019 }
9020 }
9021
9022 void
9023 intel_modeset_check_state(struct drm_device *dev)
9024 {
9025 check_connector_state(dev);
9026 check_encoder_state(dev);
9027 check_crtc_state(dev);
9028 check_shared_dpll_state(dev);
9029 }
9030
9031 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9032 int dotclock)
9033 {
9034 /*
9035 * FDI already provided one idea for the dotclock.
9036 * Yell if the encoder disagrees.
9037 */
9038 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9039 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9040 pipe_config->adjusted_mode.clock, dotclock);
9041 }
9042
9043 static int __intel_set_mode(struct drm_crtc *crtc,
9044 struct drm_display_mode *mode,
9045 int x, int y, struct drm_framebuffer *fb)
9046 {
9047 struct drm_device *dev = crtc->dev;
9048 drm_i915_private_t *dev_priv = dev->dev_private;
9049 struct drm_display_mode *saved_mode, *saved_hwmode;
9050 struct intel_crtc_config *pipe_config = NULL;
9051 struct intel_crtc *intel_crtc;
9052 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9053 int ret = 0;
9054
9055 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
9056 if (!saved_mode)
9057 return -ENOMEM;
9058 saved_hwmode = saved_mode + 1;
9059
9060 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9061 &prepare_pipes, &disable_pipes);
9062
9063 *saved_hwmode = crtc->hwmode;
9064 *saved_mode = crtc->mode;
9065
9066 /* Hack: Because we don't (yet) support global modeset on multiple
9067 * crtcs, we don't keep track of the new mode for more than one crtc.
9068 * Hence simply check whether any bit is set in modeset_pipes in all the
9069 * pieces of code that are not yet converted to deal with mutliple crtcs
9070 * changing their mode at the same time. */
9071 if (modeset_pipes) {
9072 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9073 if (IS_ERR(pipe_config)) {
9074 ret = PTR_ERR(pipe_config);
9075 pipe_config = NULL;
9076
9077 goto out;
9078 }
9079 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9080 "[modeset]");
9081 }
9082
9083 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9084 intel_crtc_disable(&intel_crtc->base);
9085
9086 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9087 if (intel_crtc->base.enabled)
9088 dev_priv->display.crtc_disable(&intel_crtc->base);
9089 }
9090
9091 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9092 * to set it here already despite that we pass it down the callchain.
9093 */
9094 if (modeset_pipes) {
9095 crtc->mode = *mode;
9096 /* mode_set/enable/disable functions rely on a correct pipe
9097 * config. */
9098 to_intel_crtc(crtc)->config = *pipe_config;
9099 }
9100
9101 /* Only after disabling all output pipelines that will be changed can we
9102 * update the the output configuration. */
9103 intel_modeset_update_state(dev, prepare_pipes);
9104
9105 if (dev_priv->display.modeset_global_resources)
9106 dev_priv->display.modeset_global_resources(dev);
9107
9108 /* Set up the DPLL and any encoders state that needs to adjust or depend
9109 * on the DPLL.
9110 */
9111 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9112 ret = intel_crtc_mode_set(&intel_crtc->base,
9113 x, y, fb);
9114 if (ret)
9115 goto done;
9116 }
9117
9118 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9119 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9120 dev_priv->display.crtc_enable(&intel_crtc->base);
9121
9122 if (modeset_pipes) {
9123 /* Store real post-adjustment hardware mode. */
9124 crtc->hwmode = pipe_config->adjusted_mode;
9125
9126 /* Calculate and store various constants which
9127 * are later needed by vblank and swap-completion
9128 * timestamping. They are derived from true hwmode.
9129 */
9130 drm_calc_timestamping_constants(crtc);
9131 }
9132
9133 /* FIXME: add subpixel order */
9134 done:
9135 if (ret && crtc->enabled) {
9136 crtc->hwmode = *saved_hwmode;
9137 crtc->mode = *saved_mode;
9138 }
9139
9140 out:
9141 kfree(pipe_config);
9142 kfree(saved_mode);
9143 return ret;
9144 }
9145
9146 static int intel_set_mode(struct drm_crtc *crtc,
9147 struct drm_display_mode *mode,
9148 int x, int y, struct drm_framebuffer *fb)
9149 {
9150 int ret;
9151
9152 ret = __intel_set_mode(crtc, mode, x, y, fb);
9153
9154 if (ret == 0)
9155 intel_modeset_check_state(crtc->dev);
9156
9157 return ret;
9158 }
9159
9160 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9161 {
9162 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9163 }
9164
9165 #undef for_each_intel_crtc_masked
9166
9167 static void intel_set_config_free(struct intel_set_config *config)
9168 {
9169 if (!config)
9170 return;
9171
9172 kfree(config->save_connector_encoders);
9173 kfree(config->save_encoder_crtcs);
9174 kfree(config);
9175 }
9176
9177 static int intel_set_config_save_state(struct drm_device *dev,
9178 struct intel_set_config *config)
9179 {
9180 struct drm_encoder *encoder;
9181 struct drm_connector *connector;
9182 int count;
9183
9184 config->save_encoder_crtcs =
9185 kcalloc(dev->mode_config.num_encoder,
9186 sizeof(struct drm_crtc *), GFP_KERNEL);
9187 if (!config->save_encoder_crtcs)
9188 return -ENOMEM;
9189
9190 config->save_connector_encoders =
9191 kcalloc(dev->mode_config.num_connector,
9192 sizeof(struct drm_encoder *), GFP_KERNEL);
9193 if (!config->save_connector_encoders)
9194 return -ENOMEM;
9195
9196 /* Copy data. Note that driver private data is not affected.
9197 * Should anything bad happen only the expected state is
9198 * restored, not the drivers personal bookkeeping.
9199 */
9200 count = 0;
9201 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9202 config->save_encoder_crtcs[count++] = encoder->crtc;
9203 }
9204
9205 count = 0;
9206 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9207 config->save_connector_encoders[count++] = connector->encoder;
9208 }
9209
9210 return 0;
9211 }
9212
9213 static void intel_set_config_restore_state(struct drm_device *dev,
9214 struct intel_set_config *config)
9215 {
9216 struct intel_encoder *encoder;
9217 struct intel_connector *connector;
9218 int count;
9219
9220 count = 0;
9221 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9222 encoder->new_crtc =
9223 to_intel_crtc(config->save_encoder_crtcs[count++]);
9224 }
9225
9226 count = 0;
9227 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9228 connector->new_encoder =
9229 to_intel_encoder(config->save_connector_encoders[count++]);
9230 }
9231 }
9232
9233 static bool
9234 is_crtc_connector_off(struct drm_mode_set *set)
9235 {
9236 int i;
9237
9238 if (set->num_connectors == 0)
9239 return false;
9240
9241 if (WARN_ON(set->connectors == NULL))
9242 return false;
9243
9244 for (i = 0; i < set->num_connectors; i++)
9245 if (set->connectors[i]->encoder &&
9246 set->connectors[i]->encoder->crtc == set->crtc &&
9247 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9248 return true;
9249
9250 return false;
9251 }
9252
9253 static void
9254 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9255 struct intel_set_config *config)
9256 {
9257
9258 /* We should be able to check here if the fb has the same properties
9259 * and then just flip_or_move it */
9260 if (is_crtc_connector_off(set)) {
9261 config->mode_changed = true;
9262 } else if (set->crtc->fb != set->fb) {
9263 /* If we have no fb then treat it as a full mode set */
9264 if (set->crtc->fb == NULL) {
9265 struct intel_crtc *intel_crtc =
9266 to_intel_crtc(set->crtc);
9267
9268 if (intel_crtc->active && i915_fastboot) {
9269 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9270 config->fb_changed = true;
9271 } else {
9272 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9273 config->mode_changed = true;
9274 }
9275 } else if (set->fb == NULL) {
9276 config->mode_changed = true;
9277 } else if (set->fb->pixel_format !=
9278 set->crtc->fb->pixel_format) {
9279 config->mode_changed = true;
9280 } else {
9281 config->fb_changed = true;
9282 }
9283 }
9284
9285 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9286 config->fb_changed = true;
9287
9288 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9289 DRM_DEBUG_KMS("modes are different, full mode set\n");
9290 drm_mode_debug_printmodeline(&set->crtc->mode);
9291 drm_mode_debug_printmodeline(set->mode);
9292 config->mode_changed = true;
9293 }
9294
9295 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9296 set->crtc->base.id, config->mode_changed, config->fb_changed);
9297 }
9298
9299 static int
9300 intel_modeset_stage_output_state(struct drm_device *dev,
9301 struct drm_mode_set *set,
9302 struct intel_set_config *config)
9303 {
9304 struct drm_crtc *new_crtc;
9305 struct intel_connector *connector;
9306 struct intel_encoder *encoder;
9307 int ro;
9308
9309 /* The upper layers ensure that we either disable a crtc or have a list
9310 * of connectors. For paranoia, double-check this. */
9311 WARN_ON(!set->fb && (set->num_connectors != 0));
9312 WARN_ON(set->fb && (set->num_connectors == 0));
9313
9314 list_for_each_entry(connector, &dev->mode_config.connector_list,
9315 base.head) {
9316 /* Otherwise traverse passed in connector list and get encoders
9317 * for them. */
9318 for (ro = 0; ro < set->num_connectors; ro++) {
9319 if (set->connectors[ro] == &connector->base) {
9320 connector->new_encoder = connector->encoder;
9321 break;
9322 }
9323 }
9324
9325 /* If we disable the crtc, disable all its connectors. Also, if
9326 * the connector is on the changing crtc but not on the new
9327 * connector list, disable it. */
9328 if ((!set->fb || ro == set->num_connectors) &&
9329 connector->base.encoder &&
9330 connector->base.encoder->crtc == set->crtc) {
9331 connector->new_encoder = NULL;
9332
9333 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9334 connector->base.base.id,
9335 drm_get_connector_name(&connector->base));
9336 }
9337
9338
9339 if (&connector->new_encoder->base != connector->base.encoder) {
9340 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9341 config->mode_changed = true;
9342 }
9343 }
9344 /* connector->new_encoder is now updated for all connectors. */
9345
9346 /* Update crtc of enabled connectors. */
9347 list_for_each_entry(connector, &dev->mode_config.connector_list,
9348 base.head) {
9349 if (!connector->new_encoder)
9350 continue;
9351
9352 new_crtc = connector->new_encoder->base.crtc;
9353
9354 for (ro = 0; ro < set->num_connectors; ro++) {
9355 if (set->connectors[ro] == &connector->base)
9356 new_crtc = set->crtc;
9357 }
9358
9359 /* Make sure the new CRTC will work with the encoder */
9360 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9361 new_crtc)) {
9362 return -EINVAL;
9363 }
9364 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9365
9366 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9367 connector->base.base.id,
9368 drm_get_connector_name(&connector->base),
9369 new_crtc->base.id);
9370 }
9371
9372 /* Check for any encoders that needs to be disabled. */
9373 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9374 base.head) {
9375 list_for_each_entry(connector,
9376 &dev->mode_config.connector_list,
9377 base.head) {
9378 if (connector->new_encoder == encoder) {
9379 WARN_ON(!connector->new_encoder->new_crtc);
9380
9381 goto next_encoder;
9382 }
9383 }
9384 encoder->new_crtc = NULL;
9385 next_encoder:
9386 /* Only now check for crtc changes so we don't miss encoders
9387 * that will be disabled. */
9388 if (&encoder->new_crtc->base != encoder->base.crtc) {
9389 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9390 config->mode_changed = true;
9391 }
9392 }
9393 /* Now we've also updated encoder->new_crtc for all encoders. */
9394
9395 return 0;
9396 }
9397
9398 static int intel_crtc_set_config(struct drm_mode_set *set)
9399 {
9400 struct drm_device *dev;
9401 struct drm_mode_set save_set;
9402 struct intel_set_config *config;
9403 int ret;
9404
9405 BUG_ON(!set);
9406 BUG_ON(!set->crtc);
9407 BUG_ON(!set->crtc->helper_private);
9408
9409 /* Enforce sane interface api - has been abused by the fb helper. */
9410 BUG_ON(!set->mode && set->fb);
9411 BUG_ON(set->fb && set->num_connectors == 0);
9412
9413 if (set->fb) {
9414 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9415 set->crtc->base.id, set->fb->base.id,
9416 (int)set->num_connectors, set->x, set->y);
9417 } else {
9418 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9419 }
9420
9421 dev = set->crtc->dev;
9422
9423 ret = -ENOMEM;
9424 config = kzalloc(sizeof(*config), GFP_KERNEL);
9425 if (!config)
9426 goto out_config;
9427
9428 ret = intel_set_config_save_state(dev, config);
9429 if (ret)
9430 goto out_config;
9431
9432 save_set.crtc = set->crtc;
9433 save_set.mode = &set->crtc->mode;
9434 save_set.x = set->crtc->x;
9435 save_set.y = set->crtc->y;
9436 save_set.fb = set->crtc->fb;
9437
9438 /* Compute whether we need a full modeset, only an fb base update or no
9439 * change at all. In the future we might also check whether only the
9440 * mode changed, e.g. for LVDS where we only change the panel fitter in
9441 * such cases. */
9442 intel_set_config_compute_mode_changes(set, config);
9443
9444 ret = intel_modeset_stage_output_state(dev, set, config);
9445 if (ret)
9446 goto fail;
9447
9448 if (config->mode_changed) {
9449 ret = intel_set_mode(set->crtc, set->mode,
9450 set->x, set->y, set->fb);
9451 } else if (config->fb_changed) {
9452 intel_crtc_wait_for_pending_flips(set->crtc);
9453
9454 ret = intel_pipe_set_base(set->crtc,
9455 set->x, set->y, set->fb);
9456 }
9457
9458 if (ret) {
9459 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9460 set->crtc->base.id, ret);
9461 fail:
9462 intel_set_config_restore_state(dev, config);
9463
9464 /* Try to restore the config */
9465 if (config->mode_changed &&
9466 intel_set_mode(save_set.crtc, save_set.mode,
9467 save_set.x, save_set.y, save_set.fb))
9468 DRM_ERROR("failed to restore config after modeset failure\n");
9469 }
9470
9471 out_config:
9472 intel_set_config_free(config);
9473 return ret;
9474 }
9475
9476 static const struct drm_crtc_funcs intel_crtc_funcs = {
9477 .cursor_set = intel_crtc_cursor_set,
9478 .cursor_move = intel_crtc_cursor_move,
9479 .gamma_set = intel_crtc_gamma_set,
9480 .set_config = intel_crtc_set_config,
9481 .destroy = intel_crtc_destroy,
9482 .page_flip = intel_crtc_page_flip,
9483 };
9484
9485 static void intel_cpu_pll_init(struct drm_device *dev)
9486 {
9487 if (HAS_DDI(dev))
9488 intel_ddi_pll_init(dev);
9489 }
9490
9491 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9492 struct intel_shared_dpll *pll,
9493 struct intel_dpll_hw_state *hw_state)
9494 {
9495 uint32_t val;
9496
9497 val = I915_READ(PCH_DPLL(pll->id));
9498 hw_state->dpll = val;
9499 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9500 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9501
9502 return val & DPLL_VCO_ENABLE;
9503 }
9504
9505 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9506 struct intel_shared_dpll *pll)
9507 {
9508 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9509 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9510 }
9511
9512 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9513 struct intel_shared_dpll *pll)
9514 {
9515 /* PCH refclock must be enabled first */
9516 assert_pch_refclk_enabled(dev_priv);
9517
9518 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9519
9520 /* Wait for the clocks to stabilize. */
9521 POSTING_READ(PCH_DPLL(pll->id));
9522 udelay(150);
9523
9524 /* The pixel multiplier can only be updated once the
9525 * DPLL is enabled and the clocks are stable.
9526 *
9527 * So write it again.
9528 */
9529 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9530 POSTING_READ(PCH_DPLL(pll->id));
9531 udelay(200);
9532 }
9533
9534 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9535 struct intel_shared_dpll *pll)
9536 {
9537 struct drm_device *dev = dev_priv->dev;
9538 struct intel_crtc *crtc;
9539
9540 /* Make sure no transcoder isn't still depending on us. */
9541 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9542 if (intel_crtc_to_shared_dpll(crtc) == pll)
9543 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9544 }
9545
9546 I915_WRITE(PCH_DPLL(pll->id), 0);
9547 POSTING_READ(PCH_DPLL(pll->id));
9548 udelay(200);
9549 }
9550
9551 static char *ibx_pch_dpll_names[] = {
9552 "PCH DPLL A",
9553 "PCH DPLL B",
9554 };
9555
9556 static void ibx_pch_dpll_init(struct drm_device *dev)
9557 {
9558 struct drm_i915_private *dev_priv = dev->dev_private;
9559 int i;
9560
9561 dev_priv->num_shared_dpll = 2;
9562
9563 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9564 dev_priv->shared_dplls[i].id = i;
9565 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9566 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9567 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9568 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9569 dev_priv->shared_dplls[i].get_hw_state =
9570 ibx_pch_dpll_get_hw_state;
9571 }
9572 }
9573
9574 static void intel_shared_dpll_init(struct drm_device *dev)
9575 {
9576 struct drm_i915_private *dev_priv = dev->dev_private;
9577
9578 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9579 ibx_pch_dpll_init(dev);
9580 else
9581 dev_priv->num_shared_dpll = 0;
9582
9583 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9584 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9585 dev_priv->num_shared_dpll);
9586 }
9587
9588 static void intel_crtc_init(struct drm_device *dev, int pipe)
9589 {
9590 drm_i915_private_t *dev_priv = dev->dev_private;
9591 struct intel_crtc *intel_crtc;
9592 int i;
9593
9594 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9595 if (intel_crtc == NULL)
9596 return;
9597
9598 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9599
9600 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9601 for (i = 0; i < 256; i++) {
9602 intel_crtc->lut_r[i] = i;
9603 intel_crtc->lut_g[i] = i;
9604 intel_crtc->lut_b[i] = i;
9605 }
9606
9607 /* Swap pipes & planes for FBC on pre-965 */
9608 intel_crtc->pipe = pipe;
9609 intel_crtc->plane = pipe;
9610 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9611 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9612 intel_crtc->plane = !pipe;
9613 }
9614
9615 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9616 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9617 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9618 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9619
9620 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9621 }
9622
9623 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9624 struct drm_file *file)
9625 {
9626 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9627 struct drm_mode_object *drmmode_obj;
9628 struct intel_crtc *crtc;
9629
9630 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9631 return -ENODEV;
9632
9633 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9634 DRM_MODE_OBJECT_CRTC);
9635
9636 if (!drmmode_obj) {
9637 DRM_ERROR("no such CRTC id\n");
9638 return -EINVAL;
9639 }
9640
9641 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9642 pipe_from_crtc_id->pipe = crtc->pipe;
9643
9644 return 0;
9645 }
9646
9647 static int intel_encoder_clones(struct intel_encoder *encoder)
9648 {
9649 struct drm_device *dev = encoder->base.dev;
9650 struct intel_encoder *source_encoder;
9651 int index_mask = 0;
9652 int entry = 0;
9653
9654 list_for_each_entry(source_encoder,
9655 &dev->mode_config.encoder_list, base.head) {
9656
9657 if (encoder == source_encoder)
9658 index_mask |= (1 << entry);
9659
9660 /* Intel hw has only one MUX where enocoders could be cloned. */
9661 if (encoder->cloneable && source_encoder->cloneable)
9662 index_mask |= (1 << entry);
9663
9664 entry++;
9665 }
9666
9667 return index_mask;
9668 }
9669
9670 static bool has_edp_a(struct drm_device *dev)
9671 {
9672 struct drm_i915_private *dev_priv = dev->dev_private;
9673
9674 if (!IS_MOBILE(dev))
9675 return false;
9676
9677 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9678 return false;
9679
9680 if (IS_GEN5(dev) &&
9681 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9682 return false;
9683
9684 return true;
9685 }
9686
9687 static void intel_setup_outputs(struct drm_device *dev)
9688 {
9689 struct drm_i915_private *dev_priv = dev->dev_private;
9690 struct intel_encoder *encoder;
9691 bool dpd_is_edp = false;
9692
9693 intel_lvds_init(dev);
9694
9695 if (!IS_ULT(dev))
9696 intel_crt_init(dev);
9697
9698 if (HAS_DDI(dev)) {
9699 int found;
9700
9701 /* Haswell uses DDI functions to detect digital outputs */
9702 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9703 /* DDI A only supports eDP */
9704 if (found)
9705 intel_ddi_init(dev, PORT_A);
9706
9707 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9708 * register */
9709 found = I915_READ(SFUSE_STRAP);
9710
9711 if (found & SFUSE_STRAP_DDIB_DETECTED)
9712 intel_ddi_init(dev, PORT_B);
9713 if (found & SFUSE_STRAP_DDIC_DETECTED)
9714 intel_ddi_init(dev, PORT_C);
9715 if (found & SFUSE_STRAP_DDID_DETECTED)
9716 intel_ddi_init(dev, PORT_D);
9717 } else if (HAS_PCH_SPLIT(dev)) {
9718 int found;
9719 dpd_is_edp = intel_dpd_is_edp(dev);
9720
9721 if (has_edp_a(dev))
9722 intel_dp_init(dev, DP_A, PORT_A);
9723
9724 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9725 /* PCH SDVOB multiplex with HDMIB */
9726 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9727 if (!found)
9728 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9729 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9730 intel_dp_init(dev, PCH_DP_B, PORT_B);
9731 }
9732
9733 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9734 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9735
9736 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9737 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9738
9739 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9740 intel_dp_init(dev, PCH_DP_C, PORT_C);
9741
9742 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9743 intel_dp_init(dev, PCH_DP_D, PORT_D);
9744 } else if (IS_VALLEYVIEW(dev)) {
9745 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9746 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9747 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9748 PORT_C);
9749 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9750 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9751 PORT_C);
9752 }
9753
9754 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9755 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9756 PORT_B);
9757 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9758 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9759 }
9760
9761 intel_dsi_init(dev);
9762 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9763 bool found = false;
9764
9765 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9766 DRM_DEBUG_KMS("probing SDVOB\n");
9767 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9768 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9769 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9770 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9771 }
9772
9773 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9774 intel_dp_init(dev, DP_B, PORT_B);
9775 }
9776
9777 /* Before G4X SDVOC doesn't have its own detect register */
9778
9779 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9780 DRM_DEBUG_KMS("probing SDVOC\n");
9781 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9782 }
9783
9784 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9785
9786 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9787 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9788 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9789 }
9790 if (SUPPORTS_INTEGRATED_DP(dev))
9791 intel_dp_init(dev, DP_C, PORT_C);
9792 }
9793
9794 if (SUPPORTS_INTEGRATED_DP(dev) &&
9795 (I915_READ(DP_D) & DP_DETECTED))
9796 intel_dp_init(dev, DP_D, PORT_D);
9797 } else if (IS_GEN2(dev))
9798 intel_dvo_init(dev);
9799
9800 if (SUPPORTS_TV(dev))
9801 intel_tv_init(dev);
9802
9803 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9804 encoder->base.possible_crtcs = encoder->crtc_mask;
9805 encoder->base.possible_clones =
9806 intel_encoder_clones(encoder);
9807 }
9808
9809 intel_init_pch_refclk(dev);
9810
9811 drm_helper_move_panel_connectors_to_head(dev);
9812 }
9813
9814 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9815 {
9816 drm_framebuffer_cleanup(&fb->base);
9817 drm_gem_object_unreference_unlocked(&fb->obj->base);
9818 }
9819
9820 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9821 {
9822 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9823
9824 intel_framebuffer_fini(intel_fb);
9825 kfree(intel_fb);
9826 }
9827
9828 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9829 struct drm_file *file,
9830 unsigned int *handle)
9831 {
9832 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9833 struct drm_i915_gem_object *obj = intel_fb->obj;
9834
9835 return drm_gem_handle_create(file, &obj->base, handle);
9836 }
9837
9838 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9839 .destroy = intel_user_framebuffer_destroy,
9840 .create_handle = intel_user_framebuffer_create_handle,
9841 };
9842
9843 int intel_framebuffer_init(struct drm_device *dev,
9844 struct intel_framebuffer *intel_fb,
9845 struct drm_mode_fb_cmd2 *mode_cmd,
9846 struct drm_i915_gem_object *obj)
9847 {
9848 int pitch_limit;
9849 int ret;
9850
9851 if (obj->tiling_mode == I915_TILING_Y) {
9852 DRM_DEBUG("hardware does not support tiling Y\n");
9853 return -EINVAL;
9854 }
9855
9856 if (mode_cmd->pitches[0] & 63) {
9857 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9858 mode_cmd->pitches[0]);
9859 return -EINVAL;
9860 }
9861
9862 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9863 pitch_limit = 32*1024;
9864 } else if (INTEL_INFO(dev)->gen >= 4) {
9865 if (obj->tiling_mode)
9866 pitch_limit = 16*1024;
9867 else
9868 pitch_limit = 32*1024;
9869 } else if (INTEL_INFO(dev)->gen >= 3) {
9870 if (obj->tiling_mode)
9871 pitch_limit = 8*1024;
9872 else
9873 pitch_limit = 16*1024;
9874 } else
9875 /* XXX DSPC is limited to 4k tiled */
9876 pitch_limit = 8*1024;
9877
9878 if (mode_cmd->pitches[0] > pitch_limit) {
9879 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9880 obj->tiling_mode ? "tiled" : "linear",
9881 mode_cmd->pitches[0], pitch_limit);
9882 return -EINVAL;
9883 }
9884
9885 if (obj->tiling_mode != I915_TILING_NONE &&
9886 mode_cmd->pitches[0] != obj->stride) {
9887 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9888 mode_cmd->pitches[0], obj->stride);
9889 return -EINVAL;
9890 }
9891
9892 /* Reject formats not supported by any plane early. */
9893 switch (mode_cmd->pixel_format) {
9894 case DRM_FORMAT_C8:
9895 case DRM_FORMAT_RGB565:
9896 case DRM_FORMAT_XRGB8888:
9897 case DRM_FORMAT_ARGB8888:
9898 break;
9899 case DRM_FORMAT_XRGB1555:
9900 case DRM_FORMAT_ARGB1555:
9901 if (INTEL_INFO(dev)->gen > 3) {
9902 DRM_DEBUG("unsupported pixel format: %s\n",
9903 drm_get_format_name(mode_cmd->pixel_format));
9904 return -EINVAL;
9905 }
9906 break;
9907 case DRM_FORMAT_XBGR8888:
9908 case DRM_FORMAT_ABGR8888:
9909 case DRM_FORMAT_XRGB2101010:
9910 case DRM_FORMAT_ARGB2101010:
9911 case DRM_FORMAT_XBGR2101010:
9912 case DRM_FORMAT_ABGR2101010:
9913 if (INTEL_INFO(dev)->gen < 4) {
9914 DRM_DEBUG("unsupported pixel format: %s\n",
9915 drm_get_format_name(mode_cmd->pixel_format));
9916 return -EINVAL;
9917 }
9918 break;
9919 case DRM_FORMAT_YUYV:
9920 case DRM_FORMAT_UYVY:
9921 case DRM_FORMAT_YVYU:
9922 case DRM_FORMAT_VYUY:
9923 if (INTEL_INFO(dev)->gen < 5) {
9924 DRM_DEBUG("unsupported pixel format: %s\n",
9925 drm_get_format_name(mode_cmd->pixel_format));
9926 return -EINVAL;
9927 }
9928 break;
9929 default:
9930 DRM_DEBUG("unsupported pixel format: %s\n",
9931 drm_get_format_name(mode_cmd->pixel_format));
9932 return -EINVAL;
9933 }
9934
9935 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9936 if (mode_cmd->offsets[0] != 0)
9937 return -EINVAL;
9938
9939 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9940 intel_fb->obj = obj;
9941
9942 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9943 if (ret) {
9944 DRM_ERROR("framebuffer init failed %d\n", ret);
9945 return ret;
9946 }
9947
9948 return 0;
9949 }
9950
9951 static struct drm_framebuffer *
9952 intel_user_framebuffer_create(struct drm_device *dev,
9953 struct drm_file *filp,
9954 struct drm_mode_fb_cmd2 *mode_cmd)
9955 {
9956 struct drm_i915_gem_object *obj;
9957
9958 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9959 mode_cmd->handles[0]));
9960 if (&obj->base == NULL)
9961 return ERR_PTR(-ENOENT);
9962
9963 return intel_framebuffer_create(dev, mode_cmd, obj);
9964 }
9965
9966 static const struct drm_mode_config_funcs intel_mode_funcs = {
9967 .fb_create = intel_user_framebuffer_create,
9968 .output_poll_changed = intel_fb_output_poll_changed,
9969 };
9970
9971 /* Set up chip specific display functions */
9972 static void intel_init_display(struct drm_device *dev)
9973 {
9974 struct drm_i915_private *dev_priv = dev->dev_private;
9975
9976 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9977 dev_priv->display.find_dpll = g4x_find_best_dpll;
9978 else if (IS_VALLEYVIEW(dev))
9979 dev_priv->display.find_dpll = vlv_find_best_dpll;
9980 else if (IS_PINEVIEW(dev))
9981 dev_priv->display.find_dpll = pnv_find_best_dpll;
9982 else
9983 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9984
9985 if (HAS_DDI(dev)) {
9986 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9987 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9988 dev_priv->display.crtc_enable = haswell_crtc_enable;
9989 dev_priv->display.crtc_disable = haswell_crtc_disable;
9990 dev_priv->display.off = haswell_crtc_off;
9991 dev_priv->display.update_plane = ironlake_update_plane;
9992 } else if (HAS_PCH_SPLIT(dev)) {
9993 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9994 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9995 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9996 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9997 dev_priv->display.off = ironlake_crtc_off;
9998 dev_priv->display.update_plane = ironlake_update_plane;
9999 } else if (IS_VALLEYVIEW(dev)) {
10000 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10001 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10002 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10003 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10004 dev_priv->display.off = i9xx_crtc_off;
10005 dev_priv->display.update_plane = i9xx_update_plane;
10006 } else {
10007 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10008 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10009 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10010 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10011 dev_priv->display.off = i9xx_crtc_off;
10012 dev_priv->display.update_plane = i9xx_update_plane;
10013 }
10014
10015 /* Returns the core display clock speed */
10016 if (IS_VALLEYVIEW(dev))
10017 dev_priv->display.get_display_clock_speed =
10018 valleyview_get_display_clock_speed;
10019 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10020 dev_priv->display.get_display_clock_speed =
10021 i945_get_display_clock_speed;
10022 else if (IS_I915G(dev))
10023 dev_priv->display.get_display_clock_speed =
10024 i915_get_display_clock_speed;
10025 else if (IS_I945GM(dev) || IS_845G(dev))
10026 dev_priv->display.get_display_clock_speed =
10027 i9xx_misc_get_display_clock_speed;
10028 else if (IS_PINEVIEW(dev))
10029 dev_priv->display.get_display_clock_speed =
10030 pnv_get_display_clock_speed;
10031 else if (IS_I915GM(dev))
10032 dev_priv->display.get_display_clock_speed =
10033 i915gm_get_display_clock_speed;
10034 else if (IS_I865G(dev))
10035 dev_priv->display.get_display_clock_speed =
10036 i865_get_display_clock_speed;
10037 else if (IS_I85X(dev))
10038 dev_priv->display.get_display_clock_speed =
10039 i855_get_display_clock_speed;
10040 else /* 852, 830 */
10041 dev_priv->display.get_display_clock_speed =
10042 i830_get_display_clock_speed;
10043
10044 if (HAS_PCH_SPLIT(dev)) {
10045 if (IS_GEN5(dev)) {
10046 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10047 dev_priv->display.write_eld = ironlake_write_eld;
10048 } else if (IS_GEN6(dev)) {
10049 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10050 dev_priv->display.write_eld = ironlake_write_eld;
10051 } else if (IS_IVYBRIDGE(dev)) {
10052 /* FIXME: detect B0+ stepping and use auto training */
10053 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10054 dev_priv->display.write_eld = ironlake_write_eld;
10055 dev_priv->display.modeset_global_resources =
10056 ivb_modeset_global_resources;
10057 } else if (IS_HASWELL(dev)) {
10058 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10059 dev_priv->display.write_eld = haswell_write_eld;
10060 dev_priv->display.modeset_global_resources =
10061 haswell_modeset_global_resources;
10062 }
10063 } else if (IS_G4X(dev)) {
10064 dev_priv->display.write_eld = g4x_write_eld;
10065 }
10066
10067 /* Default just returns -ENODEV to indicate unsupported */
10068 dev_priv->display.queue_flip = intel_default_queue_flip;
10069
10070 switch (INTEL_INFO(dev)->gen) {
10071 case 2:
10072 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10073 break;
10074
10075 case 3:
10076 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10077 break;
10078
10079 case 4:
10080 case 5:
10081 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10082 break;
10083
10084 case 6:
10085 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10086 break;
10087 case 7:
10088 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10089 break;
10090 }
10091 }
10092
10093 /*
10094 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10095 * resume, or other times. This quirk makes sure that's the case for
10096 * affected systems.
10097 */
10098 static void quirk_pipea_force(struct drm_device *dev)
10099 {
10100 struct drm_i915_private *dev_priv = dev->dev_private;
10101
10102 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10103 DRM_INFO("applying pipe a force quirk\n");
10104 }
10105
10106 /*
10107 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10108 */
10109 static void quirk_ssc_force_disable(struct drm_device *dev)
10110 {
10111 struct drm_i915_private *dev_priv = dev->dev_private;
10112 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10113 DRM_INFO("applying lvds SSC disable quirk\n");
10114 }
10115
10116 /*
10117 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10118 * brightness value
10119 */
10120 static void quirk_invert_brightness(struct drm_device *dev)
10121 {
10122 struct drm_i915_private *dev_priv = dev->dev_private;
10123 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10124 DRM_INFO("applying inverted panel brightness quirk\n");
10125 }
10126
10127 /*
10128 * Some machines (Dell XPS13) suffer broken backlight controls if
10129 * BLM_PCH_PWM_ENABLE is set.
10130 */
10131 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10132 {
10133 struct drm_i915_private *dev_priv = dev->dev_private;
10134 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10135 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10136 }
10137
10138 struct intel_quirk {
10139 int device;
10140 int subsystem_vendor;
10141 int subsystem_device;
10142 void (*hook)(struct drm_device *dev);
10143 };
10144
10145 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10146 struct intel_dmi_quirk {
10147 void (*hook)(struct drm_device *dev);
10148 const struct dmi_system_id (*dmi_id_list)[];
10149 };
10150
10151 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10152 {
10153 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10154 return 1;
10155 }
10156
10157 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10158 {
10159 .dmi_id_list = &(const struct dmi_system_id[]) {
10160 {
10161 .callback = intel_dmi_reverse_brightness,
10162 .ident = "NCR Corporation",
10163 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10164 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10165 },
10166 },
10167 { } /* terminating entry */
10168 },
10169 .hook = quirk_invert_brightness,
10170 },
10171 };
10172
10173 static struct intel_quirk intel_quirks[] = {
10174 /* HP Mini needs pipe A force quirk (LP: #322104) */
10175 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10176
10177 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10178 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10179
10180 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10181 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10182
10183 /* 830/845 need to leave pipe A & dpll A up */
10184 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10185 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10186
10187 /* Lenovo U160 cannot use SSC on LVDS */
10188 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10189
10190 /* Sony Vaio Y cannot use SSC on LVDS */
10191 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10192
10193 /*
10194 * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10195 * seem to use inverted backlight PWM.
10196 */
10197 { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10198
10199 /* Dell XPS13 HD Sandy Bridge */
10200 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10201 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10202 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10203 };
10204
10205 static void intel_init_quirks(struct drm_device *dev)
10206 {
10207 struct pci_dev *d = dev->pdev;
10208 int i;
10209
10210 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10211 struct intel_quirk *q = &intel_quirks[i];
10212
10213 if (d->device == q->device &&
10214 (d->subsystem_vendor == q->subsystem_vendor ||
10215 q->subsystem_vendor == PCI_ANY_ID) &&
10216 (d->subsystem_device == q->subsystem_device ||
10217 q->subsystem_device == PCI_ANY_ID))
10218 q->hook(dev);
10219 }
10220 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10221 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10222 intel_dmi_quirks[i].hook(dev);
10223 }
10224 }
10225
10226 /* Disable the VGA plane that we never use */
10227 static void i915_disable_vga(struct drm_device *dev)
10228 {
10229 struct drm_i915_private *dev_priv = dev->dev_private;
10230 u8 sr1;
10231 u32 vga_reg = i915_vgacntrl_reg(dev);
10232
10233 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10234 outb(SR01, VGA_SR_INDEX);
10235 sr1 = inb(VGA_SR_DATA);
10236 outb(sr1 | 1<<5, VGA_SR_DATA);
10237 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10238 udelay(300);
10239
10240 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10241 POSTING_READ(vga_reg);
10242 }
10243
10244 static void i915_enable_vga_mem(struct drm_device *dev)
10245 {
10246 /* Enable VGA memory on Intel HD */
10247 if (HAS_PCH_SPLIT(dev)) {
10248 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10249 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10250 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10251 VGA_RSRC_LEGACY_MEM |
10252 VGA_RSRC_NORMAL_IO |
10253 VGA_RSRC_NORMAL_MEM);
10254 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10255 }
10256 }
10257
10258 void i915_disable_vga_mem(struct drm_device *dev)
10259 {
10260 /* Disable VGA memory on Intel HD */
10261 if (HAS_PCH_SPLIT(dev)) {
10262 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10263 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10264 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10265 VGA_RSRC_NORMAL_IO |
10266 VGA_RSRC_NORMAL_MEM);
10267 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10268 }
10269 }
10270
10271 void intel_modeset_init_hw(struct drm_device *dev)
10272 {
10273 intel_prepare_ddi(dev);
10274
10275 intel_init_clock_gating(dev);
10276
10277 mutex_lock(&dev->struct_mutex);
10278 intel_enable_gt_powersave(dev);
10279 mutex_unlock(&dev->struct_mutex);
10280 }
10281
10282 void intel_modeset_suspend_hw(struct drm_device *dev)
10283 {
10284 intel_suspend_hw(dev);
10285 }
10286
10287 void intel_modeset_init(struct drm_device *dev)
10288 {
10289 struct drm_i915_private *dev_priv = dev->dev_private;
10290 int i, j, ret;
10291
10292 drm_mode_config_init(dev);
10293
10294 dev->mode_config.min_width = 0;
10295 dev->mode_config.min_height = 0;
10296
10297 dev->mode_config.preferred_depth = 24;
10298 dev->mode_config.prefer_shadow = 1;
10299
10300 dev->mode_config.funcs = &intel_mode_funcs;
10301
10302 intel_init_quirks(dev);
10303
10304 intel_init_pm(dev);
10305
10306 if (INTEL_INFO(dev)->num_pipes == 0)
10307 return;
10308
10309 intel_init_display(dev);
10310
10311 if (IS_GEN2(dev)) {
10312 dev->mode_config.max_width = 2048;
10313 dev->mode_config.max_height = 2048;
10314 } else if (IS_GEN3(dev)) {
10315 dev->mode_config.max_width = 4096;
10316 dev->mode_config.max_height = 4096;
10317 } else {
10318 dev->mode_config.max_width = 8192;
10319 dev->mode_config.max_height = 8192;
10320 }
10321 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10322
10323 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10324 INTEL_INFO(dev)->num_pipes,
10325 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10326
10327 for_each_pipe(i) {
10328 intel_crtc_init(dev, i);
10329 for (j = 0; j < dev_priv->num_plane; j++) {
10330 ret = intel_plane_init(dev, i, j);
10331 if (ret)
10332 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10333 pipe_name(i), sprite_name(i, j), ret);
10334 }
10335 }
10336
10337 intel_cpu_pll_init(dev);
10338 intel_shared_dpll_init(dev);
10339
10340 /* Just disable it once at startup */
10341 i915_disable_vga(dev);
10342 intel_setup_outputs(dev);
10343
10344 /* Just in case the BIOS is doing something questionable. */
10345 intel_disable_fbc(dev);
10346 }
10347
10348 static void
10349 intel_connector_break_all_links(struct intel_connector *connector)
10350 {
10351 connector->base.dpms = DRM_MODE_DPMS_OFF;
10352 connector->base.encoder = NULL;
10353 connector->encoder->connectors_active = false;
10354 connector->encoder->base.crtc = NULL;
10355 }
10356
10357 static void intel_enable_pipe_a(struct drm_device *dev)
10358 {
10359 struct intel_connector *connector;
10360 struct drm_connector *crt = NULL;
10361 struct intel_load_detect_pipe load_detect_temp;
10362
10363 /* We can't just switch on the pipe A, we need to set things up with a
10364 * proper mode and output configuration. As a gross hack, enable pipe A
10365 * by enabling the load detect pipe once. */
10366 list_for_each_entry(connector,
10367 &dev->mode_config.connector_list,
10368 base.head) {
10369 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10370 crt = &connector->base;
10371 break;
10372 }
10373 }
10374
10375 if (!crt)
10376 return;
10377
10378 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10379 intel_release_load_detect_pipe(crt, &load_detect_temp);
10380
10381
10382 }
10383
10384 static bool
10385 intel_check_plane_mapping(struct intel_crtc *crtc)
10386 {
10387 struct drm_device *dev = crtc->base.dev;
10388 struct drm_i915_private *dev_priv = dev->dev_private;
10389 u32 reg, val;
10390
10391 if (INTEL_INFO(dev)->num_pipes == 1)
10392 return true;
10393
10394 reg = DSPCNTR(!crtc->plane);
10395 val = I915_READ(reg);
10396
10397 if ((val & DISPLAY_PLANE_ENABLE) &&
10398 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10399 return false;
10400
10401 return true;
10402 }
10403
10404 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10405 {
10406 struct drm_device *dev = crtc->base.dev;
10407 struct drm_i915_private *dev_priv = dev->dev_private;
10408 u32 reg;
10409
10410 /* Clear any frame start delays used for debugging left by the BIOS */
10411 reg = PIPECONF(crtc->config.cpu_transcoder);
10412 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10413
10414 /* We need to sanitize the plane -> pipe mapping first because this will
10415 * disable the crtc (and hence change the state) if it is wrong. Note
10416 * that gen4+ has a fixed plane -> pipe mapping. */
10417 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10418 struct intel_connector *connector;
10419 bool plane;
10420
10421 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10422 crtc->base.base.id);
10423
10424 /* Pipe has the wrong plane attached and the plane is active.
10425 * Temporarily change the plane mapping and disable everything
10426 * ... */
10427 plane = crtc->plane;
10428 crtc->plane = !plane;
10429 dev_priv->display.crtc_disable(&crtc->base);
10430 crtc->plane = plane;
10431
10432 /* ... and break all links. */
10433 list_for_each_entry(connector, &dev->mode_config.connector_list,
10434 base.head) {
10435 if (connector->encoder->base.crtc != &crtc->base)
10436 continue;
10437
10438 intel_connector_break_all_links(connector);
10439 }
10440
10441 WARN_ON(crtc->active);
10442 crtc->base.enabled = false;
10443 }
10444
10445 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10446 crtc->pipe == PIPE_A && !crtc->active) {
10447 /* BIOS forgot to enable pipe A, this mostly happens after
10448 * resume. Force-enable the pipe to fix this, the update_dpms
10449 * call below we restore the pipe to the right state, but leave
10450 * the required bits on. */
10451 intel_enable_pipe_a(dev);
10452 }
10453
10454 /* Adjust the state of the output pipe according to whether we
10455 * have active connectors/encoders. */
10456 intel_crtc_update_dpms(&crtc->base);
10457
10458 if (crtc->active != crtc->base.enabled) {
10459 struct intel_encoder *encoder;
10460
10461 /* This can happen either due to bugs in the get_hw_state
10462 * functions or because the pipe is force-enabled due to the
10463 * pipe A quirk. */
10464 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10465 crtc->base.base.id,
10466 crtc->base.enabled ? "enabled" : "disabled",
10467 crtc->active ? "enabled" : "disabled");
10468
10469 crtc->base.enabled = crtc->active;
10470
10471 /* Because we only establish the connector -> encoder ->
10472 * crtc links if something is active, this means the
10473 * crtc is now deactivated. Break the links. connector
10474 * -> encoder links are only establish when things are
10475 * actually up, hence no need to break them. */
10476 WARN_ON(crtc->active);
10477
10478 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10479 WARN_ON(encoder->connectors_active);
10480 encoder->base.crtc = NULL;
10481 }
10482 }
10483 }
10484
10485 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10486 {
10487 struct intel_connector *connector;
10488 struct drm_device *dev = encoder->base.dev;
10489
10490 /* We need to check both for a crtc link (meaning that the
10491 * encoder is active and trying to read from a pipe) and the
10492 * pipe itself being active. */
10493 bool has_active_crtc = encoder->base.crtc &&
10494 to_intel_crtc(encoder->base.crtc)->active;
10495
10496 if (encoder->connectors_active && !has_active_crtc) {
10497 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10498 encoder->base.base.id,
10499 drm_get_encoder_name(&encoder->base));
10500
10501 /* Connector is active, but has no active pipe. This is
10502 * fallout from our resume register restoring. Disable
10503 * the encoder manually again. */
10504 if (encoder->base.crtc) {
10505 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10506 encoder->base.base.id,
10507 drm_get_encoder_name(&encoder->base));
10508 encoder->disable(encoder);
10509 }
10510
10511 /* Inconsistent output/port/pipe state happens presumably due to
10512 * a bug in one of the get_hw_state functions. Or someplace else
10513 * in our code, like the register restore mess on resume. Clamp
10514 * things to off as a safer default. */
10515 list_for_each_entry(connector,
10516 &dev->mode_config.connector_list,
10517 base.head) {
10518 if (connector->encoder != encoder)
10519 continue;
10520
10521 intel_connector_break_all_links(connector);
10522 }
10523 }
10524 /* Enabled encoders without active connectors will be fixed in
10525 * the crtc fixup. */
10526 }
10527
10528 void i915_redisable_vga(struct drm_device *dev)
10529 {
10530 struct drm_i915_private *dev_priv = dev->dev_private;
10531 u32 vga_reg = i915_vgacntrl_reg(dev);
10532
10533 /* This function can be called both from intel_modeset_setup_hw_state or
10534 * at a very early point in our resume sequence, where the power well
10535 * structures are not yet restored. Since this function is at a very
10536 * paranoid "someone might have enabled VGA while we were not looking"
10537 * level, just check if the power well is enabled instead of trying to
10538 * follow the "don't touch the power well if we don't need it" policy
10539 * the rest of the driver uses. */
10540 if (HAS_POWER_WELL(dev) &&
10541 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10542 return;
10543
10544 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10545 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10546 i915_disable_vga(dev);
10547 i915_disable_vga_mem(dev);
10548 }
10549 }
10550
10551 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10552 {
10553 struct drm_i915_private *dev_priv = dev->dev_private;
10554 enum pipe pipe;
10555 struct intel_crtc *crtc;
10556 struct intel_encoder *encoder;
10557 struct intel_connector *connector;
10558 int i;
10559
10560 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10561 base.head) {
10562 memset(&crtc->config, 0, sizeof(crtc->config));
10563
10564 crtc->active = dev_priv->display.get_pipe_config(crtc,
10565 &crtc->config);
10566
10567 crtc->base.enabled = crtc->active;
10568
10569 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10570 crtc->base.base.id,
10571 crtc->active ? "enabled" : "disabled");
10572 }
10573
10574 /* FIXME: Smash this into the new shared dpll infrastructure. */
10575 if (HAS_DDI(dev))
10576 intel_ddi_setup_hw_pll_state(dev);
10577
10578 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10579 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10580
10581 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10582 pll->active = 0;
10583 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10584 base.head) {
10585 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10586 pll->active++;
10587 }
10588 pll->refcount = pll->active;
10589
10590 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10591 pll->name, pll->refcount, pll->on);
10592 }
10593
10594 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10595 base.head) {
10596 pipe = 0;
10597
10598 if (encoder->get_hw_state(encoder, &pipe)) {
10599 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10600 encoder->base.crtc = &crtc->base;
10601 if (encoder->get_config)
10602 encoder->get_config(encoder, &crtc->config);
10603 } else {
10604 encoder->base.crtc = NULL;
10605 }
10606
10607 encoder->connectors_active = false;
10608 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10609 encoder->base.base.id,
10610 drm_get_encoder_name(&encoder->base),
10611 encoder->base.crtc ? "enabled" : "disabled",
10612 pipe);
10613 }
10614
10615 list_for_each_entry(connector, &dev->mode_config.connector_list,
10616 base.head) {
10617 if (connector->get_hw_state(connector)) {
10618 connector->base.dpms = DRM_MODE_DPMS_ON;
10619 connector->encoder->connectors_active = true;
10620 connector->base.encoder = &connector->encoder->base;
10621 } else {
10622 connector->base.dpms = DRM_MODE_DPMS_OFF;
10623 connector->base.encoder = NULL;
10624 }
10625 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10626 connector->base.base.id,
10627 drm_get_connector_name(&connector->base),
10628 connector->base.encoder ? "enabled" : "disabled");
10629 }
10630 }
10631
10632 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10633 * and i915 state tracking structures. */
10634 void intel_modeset_setup_hw_state(struct drm_device *dev,
10635 bool force_restore)
10636 {
10637 struct drm_i915_private *dev_priv = dev->dev_private;
10638 enum pipe pipe;
10639 struct drm_plane *plane;
10640 struct intel_crtc *crtc;
10641 struct intel_encoder *encoder;
10642 int i;
10643
10644 intel_modeset_readout_hw_state(dev);
10645
10646 /*
10647 * Now that we have the config, copy it to each CRTC struct
10648 * Note that this could go away if we move to using crtc_config
10649 * checking everywhere.
10650 */
10651 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10652 base.head) {
10653 if (crtc->active && i915_fastboot) {
10654 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10655
10656 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10657 crtc->base.base.id);
10658 drm_mode_debug_printmodeline(&crtc->base.mode);
10659 }
10660 }
10661
10662 /* HW state is read out, now we need to sanitize this mess. */
10663 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10664 base.head) {
10665 intel_sanitize_encoder(encoder);
10666 }
10667
10668 for_each_pipe(pipe) {
10669 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10670 intel_sanitize_crtc(crtc);
10671 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10672 }
10673
10674 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10675 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10676
10677 if (!pll->on || pll->active)
10678 continue;
10679
10680 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10681
10682 pll->disable(dev_priv, pll);
10683 pll->on = false;
10684 }
10685
10686 if (force_restore) {
10687 /*
10688 * We need to use raw interfaces for restoring state to avoid
10689 * checking (bogus) intermediate states.
10690 */
10691 for_each_pipe(pipe) {
10692 struct drm_crtc *crtc =
10693 dev_priv->pipe_to_crtc_mapping[pipe];
10694
10695 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10696 crtc->fb);
10697 }
10698 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10699 intel_plane_restore(plane);
10700
10701 i915_redisable_vga(dev);
10702 } else {
10703 intel_modeset_update_staged_output_state(dev);
10704 }
10705
10706 intel_modeset_check_state(dev);
10707
10708 drm_mode_config_reset(dev);
10709 }
10710
10711 void intel_modeset_gem_init(struct drm_device *dev)
10712 {
10713 intel_modeset_init_hw(dev);
10714
10715 intel_setup_overlay(dev);
10716
10717 intel_modeset_setup_hw_state(dev, false);
10718 }
10719
10720 void intel_modeset_cleanup(struct drm_device *dev)
10721 {
10722 struct drm_i915_private *dev_priv = dev->dev_private;
10723 struct drm_crtc *crtc;
10724
10725 /*
10726 * Interrupts and polling as the first thing to avoid creating havoc.
10727 * Too much stuff here (turning of rps, connectors, ...) would
10728 * experience fancy races otherwise.
10729 */
10730 drm_irq_uninstall(dev);
10731 cancel_work_sync(&dev_priv->hotplug_work);
10732 /*
10733 * Due to the hpd irq storm handling the hotplug work can re-arm the
10734 * poll handlers. Hence disable polling after hpd handling is shut down.
10735 */
10736 drm_kms_helper_poll_fini(dev);
10737
10738 mutex_lock(&dev->struct_mutex);
10739
10740 intel_unregister_dsm_handler();
10741
10742 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10743 /* Skip inactive CRTCs */
10744 if (!crtc->fb)
10745 continue;
10746
10747 intel_increase_pllclock(crtc);
10748 }
10749
10750 intel_disable_fbc(dev);
10751
10752 i915_enable_vga_mem(dev);
10753
10754 intel_disable_gt_powersave(dev);
10755
10756 ironlake_teardown_rc6(dev);
10757
10758 mutex_unlock(&dev->struct_mutex);
10759
10760 /* flush any delayed tasks or pending work */
10761 flush_scheduled_work();
10762
10763 /* destroy backlight, if any, before the connectors */
10764 intel_panel_destroy_backlight(dev);
10765
10766 drm_mode_config_cleanup(dev);
10767
10768 intel_cleanup_overlay(dev);
10769 }
10770
10771 /*
10772 * Return which encoder is currently attached for connector.
10773 */
10774 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10775 {
10776 return &intel_attached_encoder(connector)->base;
10777 }
10778
10779 void intel_connector_attach_encoder(struct intel_connector *connector,
10780 struct intel_encoder *encoder)
10781 {
10782 connector->encoder = encoder;
10783 drm_mode_connector_attach_encoder(&connector->base,
10784 &encoder->base);
10785 }
10786
10787 /*
10788 * set vga decode state - true == enable VGA decode
10789 */
10790 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10791 {
10792 struct drm_i915_private *dev_priv = dev->dev_private;
10793 u16 gmch_ctrl;
10794
10795 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10796 if (state)
10797 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10798 else
10799 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10800 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10801 return 0;
10802 }
10803
10804 struct intel_display_error_state {
10805
10806 u32 power_well_driver;
10807
10808 int num_transcoders;
10809
10810 struct intel_cursor_error_state {
10811 u32 control;
10812 u32 position;
10813 u32 base;
10814 u32 size;
10815 } cursor[I915_MAX_PIPES];
10816
10817 struct intel_pipe_error_state {
10818 u32 source;
10819 } pipe[I915_MAX_PIPES];
10820
10821 struct intel_plane_error_state {
10822 u32 control;
10823 u32 stride;
10824 u32 size;
10825 u32 pos;
10826 u32 addr;
10827 u32 surface;
10828 u32 tile_offset;
10829 } plane[I915_MAX_PIPES];
10830
10831 struct intel_transcoder_error_state {
10832 enum transcoder cpu_transcoder;
10833
10834 u32 conf;
10835
10836 u32 htotal;
10837 u32 hblank;
10838 u32 hsync;
10839 u32 vtotal;
10840 u32 vblank;
10841 u32 vsync;
10842 } transcoder[4];
10843 };
10844
10845 struct intel_display_error_state *
10846 intel_display_capture_error_state(struct drm_device *dev)
10847 {
10848 drm_i915_private_t *dev_priv = dev->dev_private;
10849 struct intel_display_error_state *error;
10850 int transcoders[] = {
10851 TRANSCODER_A,
10852 TRANSCODER_B,
10853 TRANSCODER_C,
10854 TRANSCODER_EDP,
10855 };
10856 int i;
10857
10858 if (INTEL_INFO(dev)->num_pipes == 0)
10859 return NULL;
10860
10861 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10862 if (error == NULL)
10863 return NULL;
10864
10865 if (HAS_POWER_WELL(dev))
10866 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10867
10868 for_each_pipe(i) {
10869 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10870 error->cursor[i].control = I915_READ(CURCNTR(i));
10871 error->cursor[i].position = I915_READ(CURPOS(i));
10872 error->cursor[i].base = I915_READ(CURBASE(i));
10873 } else {
10874 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10875 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10876 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10877 }
10878
10879 error->plane[i].control = I915_READ(DSPCNTR(i));
10880 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10881 if (INTEL_INFO(dev)->gen <= 3) {
10882 error->plane[i].size = I915_READ(DSPSIZE(i));
10883 error->plane[i].pos = I915_READ(DSPPOS(i));
10884 }
10885 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10886 error->plane[i].addr = I915_READ(DSPADDR(i));
10887 if (INTEL_INFO(dev)->gen >= 4) {
10888 error->plane[i].surface = I915_READ(DSPSURF(i));
10889 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10890 }
10891
10892 error->pipe[i].source = I915_READ(PIPESRC(i));
10893 }
10894
10895 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10896 if (HAS_DDI(dev_priv->dev))
10897 error->num_transcoders++; /* Account for eDP. */
10898
10899 for (i = 0; i < error->num_transcoders; i++) {
10900 enum transcoder cpu_transcoder = transcoders[i];
10901
10902 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10903
10904 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10905 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10906 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10907 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10908 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10909 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10910 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10911 }
10912
10913 /* In the code above we read the registers without checking if the power
10914 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10915 * prevent the next I915_WRITE from detecting it and printing an error
10916 * message. */
10917 intel_uncore_clear_errors(dev);
10918
10919 return error;
10920 }
10921
10922 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10923
10924 void
10925 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10926 struct drm_device *dev,
10927 struct intel_display_error_state *error)
10928 {
10929 int i;
10930
10931 if (!error)
10932 return;
10933
10934 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10935 if (HAS_POWER_WELL(dev))
10936 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10937 error->power_well_driver);
10938 for_each_pipe(i) {
10939 err_printf(m, "Pipe [%d]:\n", i);
10940 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10941
10942 err_printf(m, "Plane [%d]:\n", i);
10943 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10944 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10945 if (INTEL_INFO(dev)->gen <= 3) {
10946 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10947 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10948 }
10949 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10950 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10951 if (INTEL_INFO(dev)->gen >= 4) {
10952 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10953 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10954 }
10955
10956 err_printf(m, "Cursor [%d]:\n", i);
10957 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10958 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10959 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10960 }
10961
10962 for (i = 0; i < error->num_transcoders; i++) {
10963 err_printf(m, " CPU transcoder: %c\n",
10964 transcoder_name(error->transcoder[i].cpu_transcoder));
10965 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10966 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10967 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10968 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10969 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10970 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10971 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10972 }
10973 }
This page took 0.304041 seconds and 6 git commands to generate.