Merge remote-tracking branch 'asoc/topic/max98371' into asoc-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
54 DRM_FORMAT_XRGB1555,
55 DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
72 DRM_FORMAT_XBGR8888,
73 DRM_FORMAT_ARGB8888,
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
76 DRM_FORMAT_XBGR2101010,
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122 int min, max;
123 } intel_range_t;
124
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152 {
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176
177 WARN_ON(!HAS_PCH_SPLIT(dev));
178
179 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 uint32_t clkcfg;
187
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190 return 200;
191
192 clkcfg = I915_READ(CLKCFG);
193 switch (clkcfg & CLKCFG_FSB_MASK) {
194 case CLKCFG_FSB_400:
195 return 100;
196 case CLKCFG_FSB_533:
197 return 133;
198 case CLKCFG_FSB_667:
199 return 166;
200 case CLKCFG_FSB_800:
201 return 200;
202 case CLKCFG_FSB_1067:
203 return 266;
204 case CLKCFG_FSB_1333:
205 return 333;
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600:
208 case CLKCFG_FSB_1600_ALT:
209 return 400;
210 default:
211 return 133;
212 }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218 return;
219
220 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 CCK_CZ_CLOCK_CONTROL);
222
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229 if (IS_GEN5(dev)) {
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 } else
233 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 .dot = { .min = 25000, .max = 350000 },
238 .vco = { .min = 908000, .max = 1512000 },
239 .n = { .min = 2, .max = 16 },
240 .m = { .min = 96, .max = 140 },
241 .m1 = { .min = 18, .max = 26 },
242 .m2 = { .min = 6, .max = 16 },
243 .p = { .min = 4, .max = 128 },
244 .p1 = { .min = 2, .max = 33 },
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 908000, .max = 1512000 },
252 .n = { .min = 2, .max = 16 },
253 .m = { .min = 96, .max = 140 },
254 .m1 = { .min = 18, .max = 26 },
255 .m2 = { .min = 6, .max = 16 },
256 .p = { .min = 4, .max = 128 },
257 .p1 = { .min = 2, .max = 33 },
258 .p2 = { .dot_limit = 165000,
259 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 1, .max = 6 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 .dot = { .min = 20000, .max = 400000 },
277 .vco = { .min = 1400000, .max = 2800000 },
278 .n = { .min = 1, .max = 6 },
279 .m = { .min = 70, .max = 120 },
280 .m1 = { .min = 8, .max = 18 },
281 .m2 = { .min = 3, .max = 7 },
282 .p = { .min = 5, .max = 80 },
283 .p1 = { .min = 1, .max = 8 },
284 .p2 = { .dot_limit = 200000,
285 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 .dot = { .min = 20000, .max = 400000 },
290 .vco = { .min = 1400000, .max = 2800000 },
291 .n = { .min = 1, .max = 6 },
292 .m = { .min = 70, .max = 120 },
293 .m1 = { .min = 8, .max = 18 },
294 .m2 = { .min = 3, .max = 7 },
295 .p = { .min = 7, .max = 98 },
296 .p1 = { .min = 1, .max = 8 },
297 .p2 = { .dot_limit = 112000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 .dot = { .min = 25000, .max = 270000 },
304 .vco = { .min = 1750000, .max = 3500000},
305 .n = { .min = 1, .max = 4 },
306 .m = { .min = 104, .max = 138 },
307 .m1 = { .min = 17, .max = 23 },
308 .m2 = { .min = 5, .max = 11 },
309 .p = { .min = 10, .max = 30 },
310 .p1 = { .min = 1, .max = 3},
311 .p2 = { .dot_limit = 270000,
312 .p2_slow = 10,
313 .p2_fast = 10
314 },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 .dot = { .min = 22000, .max = 400000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 16, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 5, .max = 80 },
325 .p1 = { .min = 1, .max = 8},
326 .p2 = { .dot_limit = 165000,
327 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 .dot = { .min = 20000, .max = 115000 },
332 .vco = { .min = 1750000, .max = 3500000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 104, .max = 138 },
335 .m1 = { .min = 17, .max = 23 },
336 .m2 = { .min = 5, .max = 11 },
337 .p = { .min = 28, .max = 112 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 0,
340 .p2_slow = 14, .p2_fast = 14
341 },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 .dot = { .min = 80000, .max = 224000 },
346 .vco = { .min = 1750000, .max = 3500000 },
347 .n = { .min = 1, .max = 3 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 17, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 14, .max = 42 },
352 .p1 = { .min = 2, .max = 6 },
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 7, .p2_fast = 7
355 },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 .dot = { .min = 20000, .max = 400000},
360 .vco = { .min = 1700000, .max = 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n = { .min = 3, .max = 6 },
363 .m = { .min = 2, .max = 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1 = { .min = 0, .max = 0 },
366 .m2 = { .min = 0, .max = 254 },
367 .p = { .min = 5, .max = 80 },
368 .p1 = { .min = 1, .max = 8 },
369 .p2 = { .dot_limit = 200000,
370 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 .dot = { .min = 20000, .max = 400000 },
375 .vco = { .min = 1700000, .max = 3500000 },
376 .n = { .min = 3, .max = 6 },
377 .m = { .min = 2, .max = 256 },
378 .m1 = { .min = 0, .max = 0 },
379 .m2 = { .min = 0, .max = 254 },
380 .p = { .min = 7, .max = 112 },
381 .p1 = { .min = 1, .max = 8 },
382 .p2 = { .dot_limit = 112000,
383 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387 *
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
390 */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 .dot = { .min = 25000, .max = 350000 },
393 .vco = { .min = 1760000, .max = 3510000 },
394 .n = { .min = 1, .max = 5 },
395 .m = { .min = 79, .max = 127 },
396 .m1 = { .min = 12, .max = 22 },
397 .m2 = { .min = 5, .max = 9 },
398 .p = { .min = 5, .max = 80 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 225000,
401 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 .dot = { .min = 25000, .max = 350000 },
406 .vco = { .min = 1760000, .max = 3510000 },
407 .n = { .min = 1, .max = 3 },
408 .m = { .min = 79, .max = 118 },
409 .m1 = { .min = 12, .max = 22 },
410 .m2 = { .min = 5, .max = 9 },
411 .p = { .min = 28, .max = 112 },
412 .p1 = { .min = 2, .max = 8 },
413 .p2 = { .dot_limit = 225000,
414 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 3 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 14, .max = 56 },
425 .p1 = { .min = 2, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 2 },
435 .m = { .min = 79, .max = 126 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 126 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 42 },
452 .p1 = { .min = 2, .max = 6 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458 /*
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
463 */
464 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 .vco = { .min = 4000000, .max = 6000000 },
466 .n = { .min = 1, .max = 7 },
467 .m1 = { .min = 2, .max = 3 },
468 .m2 = { .min = 11, .max = 156 },
469 .p1 = { .min = 2, .max = 3 },
470 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474 /*
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
479 */
480 .dot = { .min = 25000 * 5, .max = 540000 * 5},
481 .vco = { .min = 4800000, .max = 6480000 },
482 .n = { .min = 1, .max = 1 },
483 .m1 = { .min = 2, .max = 2 },
484 .m2 = { .min = 24 << 22, .max = 175 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490 /* FIXME: find real dot limits */
491 .dot = { .min = 0, .max = INT_MAX },
492 .vco = { .min = 4800000, .max = 6700000 },
493 .n = { .min = 1, .max = 1 },
494 .m1 = { .min = 2, .max = 2 },
495 /* FIXME: find real m2 limits */
496 .m2 = { .min = 2 << 22, .max = 255 << 22 },
497 .p1 = { .min = 2, .max = 4 },
498 .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504 return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508 * Returns whether any output on the specified pipe is of the specified type
509 */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512 struct drm_device *dev = crtc->base.dev;
513 struct intel_encoder *encoder;
514
515 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 if (encoder->type == type)
517 return true;
518
519 return false;
520 }
521
522 /**
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526 * encoder->crtc.
527 */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 int type)
530 {
531 struct drm_atomic_state *state = crtc_state->base.state;
532 struct drm_connector *connector;
533 struct drm_connector_state *connector_state;
534 struct intel_encoder *encoder;
535 int i, num_connectors = 0;
536
537 for_each_connector_in_state(state, connector, connector_state, i) {
538 if (connector_state->crtc != crtc_state->base.crtc)
539 continue;
540
541 num_connectors++;
542
543 encoder = to_intel_encoder(connector_state->best_encoder);
544 if (encoder->type == type)
545 return true;
546 }
547
548 WARN_ON(num_connectors == 0);
549
550 return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556 struct drm_device *dev = crtc_state->base.crtc->dev;
557 const intel_limit_t *limit;
558
559 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 if (intel_is_dual_link_lvds(dev)) {
561 if (refclk == 100000)
562 limit = &intel_limits_ironlake_dual_lvds_100m;
563 else
564 limit = &intel_limits_ironlake_dual_lvds;
565 } else {
566 if (refclk == 100000)
567 limit = &intel_limits_ironlake_single_lvds_100m;
568 else
569 limit = &intel_limits_ironlake_single_lvds;
570 }
571 } else
572 limit = &intel_limits_ironlake_dac;
573
574 return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580 struct drm_device *dev = crtc_state->base.crtc->dev;
581 const intel_limit_t *limit;
582
583 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 if (intel_is_dual_link_lvds(dev))
585 limit = &intel_limits_g4x_dual_channel_lvds;
586 else
587 limit = &intel_limits_g4x_single_channel_lvds;
588 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 limit = &intel_limits_g4x_hdmi;
591 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 limit = &intel_limits_g4x_sdvo;
593 } else /* The option is for other outputs */
594 limit = &intel_limits_i9xx_sdvo;
595
596 return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602 struct drm_device *dev = crtc_state->base.crtc->dev;
603 const intel_limit_t *limit;
604
605 if (IS_BROXTON(dev))
606 limit = &intel_limits_bxt;
607 else if (HAS_PCH_SPLIT(dev))
608 limit = intel_ironlake_limit(crtc_state, refclk);
609 else if (IS_G4X(dev)) {
610 limit = intel_g4x_limit(crtc_state);
611 } else if (IS_PINEVIEW(dev)) {
612 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 limit = &intel_limits_pineview_lvds;
614 else
615 limit = &intel_limits_pineview_sdvo;
616 } else if (IS_CHERRYVIEW(dev)) {
617 limit = &intel_limits_chv;
618 } else if (IS_VALLEYVIEW(dev)) {
619 limit = &intel_limits_vlv;
620 } else if (!IS_GEN2(dev)) {
621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 limit = &intel_limits_i9xx_lvds;
623 else
624 limit = &intel_limits_i9xx_sdvo;
625 } else {
626 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 limit = &intel_limits_i8xx_lvds;
628 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 limit = &intel_limits_i8xx_dvo;
630 else
631 limit = &intel_limits_i8xx_dac;
632 }
633 return limit;
634 }
635
636 /*
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
643 */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647 clock->m = clock->m2 + 2;
648 clock->p = clock->p1 * clock->p2;
649 if (WARN_ON(clock->n == 0 || clock->p == 0))
650 return 0;
651 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654 return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664 clock->m = i9xx_dpll_compute_m(clock);
665 clock->p = clock->p1 * clock->p2;
666 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 return 0;
668 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671 return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676 clock->m = clock->m1 * clock->m2;
677 clock->p = clock->p1 * clock->p2;
678 if (WARN_ON(clock->n == 0 || clock->p == 0))
679 return 0;
680 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683 return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688 clock->m = clock->m1 * clock->m2;
689 clock->p = clock->p1 * clock->p2;
690 if (WARN_ON(clock->n == 0 || clock->p == 0))
691 return 0;
692 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 clock->n << 22);
694 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696 return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
703 */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 const intel_limit_t *limit,
707 const intel_clock_t *clock)
708 {
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 INTELPllInvalid("n out of range\n");
711 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
716 INTELPllInvalid("m1 out of range\n");
717
718 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720 if (clock->m1 <= clock->m2)
721 INTELPllInvalid("m1 <= m2\n");
722
723 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724 if (clock->p < limit->p.min || limit->p.max < clock->p)
725 INTELPllInvalid("p out of range\n");
726 if (clock->m < limit->m.min || limit->m.max < clock->m)
727 INTELPllInvalid("m out of range\n");
728 }
729
730 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731 INTELPllInvalid("vco out of range\n");
732 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733 * connector, etc., rather than just a single range.
734 */
735 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736 INTELPllInvalid("dot out of range\n");
737
738 return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743 const struct intel_crtc_state *crtc_state,
744 int target)
745 {
746 struct drm_device *dev = crtc_state->base.crtc->dev;
747
748 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749 /*
750 * For LVDS just rely on its current settings for dual-channel.
751 * We haven't figured out how to reliably set up different
752 * single/dual channel state, if we even can.
753 */
754 if (intel_is_dual_link_lvds(dev))
755 return limit->p2.p2_fast;
756 else
757 return limit->p2.p2_slow;
758 } else {
759 if (target < limit->p2.dot_limit)
760 return limit->p2.p2_slow;
761 else
762 return limit->p2.p2_fast;
763 }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771 {
772 struct drm_device *dev = crtc_state->base.crtc->dev;
773 intel_clock_t clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 if (clock.m2 >= clock.m1)
785 break;
786 for (clock.n = limit->n.min;
787 clock.n <= limit->n.max; clock.n++) {
788 for (clock.p1 = limit->p1.min;
789 clock.p1 <= limit->p1.max; clock.p1++) {
790 int this_err;
791
792 i9xx_calc_dpll_params(refclk, &clock);
793 if (!intel_PLL_is_valid(dev, limit,
794 &clock))
795 continue;
796 if (match_clock &&
797 clock.p != match_clock->p)
798 continue;
799
800 this_err = abs(clock.dot - target);
801 if (this_err < err) {
802 *best_clock = clock;
803 err = this_err;
804 }
805 }
806 }
807 }
808 }
809
810 return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815 struct intel_crtc_state *crtc_state,
816 int target, int refclk, intel_clock_t *match_clock,
817 intel_clock_t *best_clock)
818 {
819 struct drm_device *dev = crtc_state->base.crtc->dev;
820 intel_clock_t clock;
821 int err = target;
822
823 memset(best_clock, 0, sizeof(*best_clock));
824
825 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828 clock.m1++) {
829 for (clock.m2 = limit->m2.min;
830 clock.m2 <= limit->m2.max; clock.m2++) {
831 for (clock.n = limit->n.min;
832 clock.n <= limit->n.max; clock.n++) {
833 for (clock.p1 = limit->p1.min;
834 clock.p1 <= limit->p1.max; clock.p1++) {
835 int this_err;
836
837 pnv_calc_dpll_params(refclk, &clock);
838 if (!intel_PLL_is_valid(dev, limit,
839 &clock))
840 continue;
841 if (match_clock &&
842 clock.p != match_clock->p)
843 continue;
844
845 this_err = abs(clock.dot - target);
846 if (this_err < err) {
847 *best_clock = clock;
848 err = this_err;
849 }
850 }
851 }
852 }
853 }
854
855 return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860 struct intel_crtc_state *crtc_state,
861 int target, int refclk, intel_clock_t *match_clock,
862 intel_clock_t *best_clock)
863 {
864 struct drm_device *dev = crtc_state->base.crtc->dev;
865 intel_clock_t clock;
866 int max_n;
867 bool found = false;
868 /* approximately equals target * 0.00585 */
869 int err_most = (target >> 8) + (target >> 9);
870
871 memset(best_clock, 0, sizeof(*best_clock));
872
873 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875 max_n = limit->n.max;
876 /* based on hardware requirement, prefer smaller n to precision */
877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878 /* based on hardware requirement, prefere larger m1,m2 */
879 for (clock.m1 = limit->m1.max;
880 clock.m1 >= limit->m1.min; clock.m1--) {
881 for (clock.m2 = limit->m2.max;
882 clock.m2 >= limit->m2.min; clock.m2--) {
883 for (clock.p1 = limit->p1.max;
884 clock.p1 >= limit->p1.min; clock.p1--) {
885 int this_err;
886
887 i9xx_calc_dpll_params(refclk, &clock);
888 if (!intel_PLL_is_valid(dev, limit,
889 &clock))
890 continue;
891
892 this_err = abs(clock.dot - target);
893 if (this_err < err_most) {
894 *best_clock = clock;
895 err_most = this_err;
896 max_n = clock.n;
897 found = true;
898 }
899 }
900 }
901 }
902 }
903 return found;
904 }
905
906 /*
907 * Check if the calculated PLL configuration is more optimal compared to the
908 * best configuration and error found so far. Return the calculated error.
909 */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911 const intel_clock_t *calculated_clock,
912 const intel_clock_t *best_clock,
913 unsigned int best_error_ppm,
914 unsigned int *error_ppm)
915 {
916 /*
917 * For CHV ignore the error and consider only the P value.
918 * Prefer a bigger P value based on HW requirements.
919 */
920 if (IS_CHERRYVIEW(dev)) {
921 *error_ppm = 0;
922
923 return calculated_clock->p > best_clock->p;
924 }
925
926 if (WARN_ON_ONCE(!target_freq))
927 return false;
928
929 *error_ppm = div_u64(1000000ULL *
930 abs(target_freq - calculated_clock->dot),
931 target_freq);
932 /*
933 * Prefer a better P value over a better (smaller) error if the error
934 * is small. Ensure this preference for future configurations too by
935 * setting the error to 0.
936 */
937 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938 *error_ppm = 0;
939
940 return true;
941 }
942
943 return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948 struct intel_crtc_state *crtc_state,
949 int target, int refclk, intel_clock_t *match_clock,
950 intel_clock_t *best_clock)
951 {
952 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953 struct drm_device *dev = crtc->base.dev;
954 intel_clock_t clock;
955 unsigned int bestppm = 1000000;
956 /* min update 19.2 MHz */
957 int max_n = min(limit->n.max, refclk / 19200);
958 bool found = false;
959
960 target *= 5; /* fast clock */
961
962 memset(best_clock, 0, sizeof(*best_clock));
963
964 /* based on hardware requirement, prefer smaller n to precision */
965 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969 clock.p = clock.p1 * clock.p2;
970 /* based on hardware requirement, prefer bigger m1,m2 values */
971 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972 unsigned int ppm;
973
974 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975 refclk * clock.m1);
976
977 vlv_calc_dpll_params(refclk, &clock);
978
979 if (!intel_PLL_is_valid(dev, limit,
980 &clock))
981 continue;
982
983 if (!vlv_PLL_is_optimal(dev, target,
984 &clock,
985 best_clock,
986 bestppm, &ppm))
987 continue;
988
989 *best_clock = clock;
990 bestppm = ppm;
991 found = true;
992 }
993 }
994 }
995 }
996
997 return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002 struct intel_crtc_state *crtc_state,
1003 int target, int refclk, intel_clock_t *match_clock,
1004 intel_clock_t *best_clock)
1005 {
1006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007 struct drm_device *dev = crtc->base.dev;
1008 unsigned int best_error_ppm;
1009 intel_clock_t clock;
1010 uint64_t m2;
1011 int found = false;
1012
1013 memset(best_clock, 0, sizeof(*best_clock));
1014 best_error_ppm = 1000000;
1015
1016 /*
1017 * Based on hardware doc, the n always set to 1, and m1 always
1018 * set to 2. If requires to support 200Mhz refclk, we need to
1019 * revisit this because n may not 1 anymore.
1020 */
1021 clock.n = 1, clock.m1 = 2;
1022 target *= 5; /* fast clock */
1023
1024 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025 for (clock.p2 = limit->p2.p2_fast;
1026 clock.p2 >= limit->p2.p2_slow;
1027 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028 unsigned int error_ppm;
1029
1030 clock.p = clock.p1 * clock.p2;
1031
1032 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033 clock.n) << 22, refclk * clock.m1);
1034
1035 if (m2 > INT_MAX/clock.m1)
1036 continue;
1037
1038 clock.m2 = m2;
1039
1040 chv_calc_dpll_params(refclk, &clock);
1041
1042 if (!intel_PLL_is_valid(dev, limit, &clock))
1043 continue;
1044
1045 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046 best_error_ppm, &error_ppm))
1047 continue;
1048
1049 *best_clock = clock;
1050 best_error_ppm = error_ppm;
1051 found = true;
1052 }
1053 }
1054
1055 return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059 intel_clock_t *best_clock)
1060 {
1061 int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064 target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071 /* Be paranoid as we can arrive here with only partial
1072 * state retrieved from the hardware during setup.
1073 *
1074 * We can ditch the adjusted_mode.crtc_clock check as soon
1075 * as Haswell has gained clock readout/fastboot support.
1076 *
1077 * We can ditch the crtc->primary->fb check as soon as we can
1078 * properly reconstruct framebuffers.
1079 *
1080 * FIXME: The intel_crtc->active here should be switched to
1081 * crtc->state->active once we have proper CRTC states wired up
1082 * for atomic.
1083 */
1084 return intel_crtc->active && crtc->primary->state->fb &&
1085 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089 enum pipe pipe)
1090 {
1091 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094 return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 i915_reg_t reg = PIPEDSL(pipe);
1101 u32 line1, line2;
1102 u32 line_mask;
1103
1104 if (IS_GEN2(dev))
1105 line_mask = DSL_LINEMASK_GEN2;
1106 else
1107 line_mask = DSL_LINEMASK_GEN3;
1108
1109 line1 = I915_READ(reg) & line_mask;
1110 msleep(5);
1111 line2 = I915_READ(reg) & line_mask;
1112
1113 return line1 == line2;
1114 }
1115
1116 /*
1117 * intel_wait_for_pipe_off - wait for pipe to turn off
1118 * @crtc: crtc whose pipe to wait for
1119 *
1120 * After disabling a pipe, we can't wait for vblank in the usual way,
1121 * spinning on the vblank interrupt status bit, since we won't actually
1122 * see an interrupt when the pipe is disabled.
1123 *
1124 * On Gen4 and above:
1125 * wait for the pipe register state bit to turn off
1126 *
1127 * Otherwise:
1128 * wait for the display line value to settle (it usually
1129 * ends up stopping at the start of the next frame).
1130 *
1131 */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134 struct drm_device *dev = crtc->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137 enum pipe pipe = crtc->pipe;
1138
1139 if (INTEL_INFO(dev)->gen >= 4) {
1140 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142 /* Wait for the Pipe State to go off */
1143 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144 100))
1145 WARN(1, "pipe_off wait timed out\n");
1146 } else {
1147 /* Wait for the display line to settle */
1148 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149 WARN(1, "pipe_off wait timed out\n");
1150 }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155 enum pipe pipe, bool state)
1156 {
1157 u32 val;
1158 bool cur_state;
1159
1160 val = I915_READ(DPLL(pipe));
1161 cur_state = !!(val & DPLL_VCO_ENABLE);
1162 I915_STATE_WARN(cur_state != state,
1163 "PLL state assertion failure (expected %s, current %s)\n",
1164 onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170 u32 val;
1171 bool cur_state;
1172
1173 mutex_lock(&dev_priv->sb_lock);
1174 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175 mutex_unlock(&dev_priv->sb_lock);
1176
1177 cur_state = val & DSI_PLL_VCO_EN;
1178 I915_STATE_WARN(cur_state != state,
1179 "DSI PLL state assertion failure (expected %s, current %s)\n",
1180 onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190 if (crtc->config->shared_dpll < 0)
1191 return NULL;
1192
1193 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198 struct intel_shared_dpll *pll,
1199 bool state)
1200 {
1201 bool cur_state;
1202 struct intel_dpll_hw_state hw_state;
1203
1204 if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205 return;
1206
1207 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208 I915_STATE_WARN(cur_state != state,
1209 "%s assertion failure (expected %s, current %s)\n",
1210 pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, bool state)
1215 {
1216 bool cur_state;
1217 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218 pipe);
1219
1220 if (HAS_DDI(dev_priv->dev)) {
1221 /* DDI does not have a specific FDI_TX register */
1222 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224 } else {
1225 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226 cur_state = !!(val & FDI_TX_ENABLE);
1227 }
1228 I915_STATE_WARN(cur_state != state,
1229 "FDI TX state assertion failure (expected %s, current %s)\n",
1230 onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236 enum pipe pipe, bool state)
1237 {
1238 u32 val;
1239 bool cur_state;
1240
1241 val = I915_READ(FDI_RX_CTL(pipe));
1242 cur_state = !!(val & FDI_RX_ENABLE);
1243 I915_STATE_WARN(cur_state != state,
1244 "FDI RX state assertion failure (expected %s, current %s)\n",
1245 onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251 enum pipe pipe)
1252 {
1253 u32 val;
1254
1255 /* ILK FDI PLL is always enabled */
1256 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257 return;
1258
1259 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260 if (HAS_DDI(dev_priv->dev))
1261 return;
1262
1263 val = I915_READ(FDI_TX_CTL(pipe));
1264 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268 enum pipe pipe, bool state)
1269 {
1270 u32 val;
1271 bool cur_state;
1272
1273 val = I915_READ(FDI_RX_CTL(pipe));
1274 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275 I915_STATE_WARN(cur_state != state,
1276 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277 onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281 enum pipe pipe)
1282 {
1283 struct drm_device *dev = dev_priv->dev;
1284 i915_reg_t pp_reg;
1285 u32 val;
1286 enum pipe panel_pipe = PIPE_A;
1287 bool locked = true;
1288
1289 if (WARN_ON(HAS_DDI(dev)))
1290 return;
1291
1292 if (HAS_PCH_SPLIT(dev)) {
1293 u32 port_sel;
1294
1295 pp_reg = PCH_PP_CONTROL;
1296 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300 panel_pipe = PIPE_B;
1301 /* XXX: else fix for eDP */
1302 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303 /* presumably write lock depends on pipe, not port select */
1304 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305 panel_pipe = pipe;
1306 } else {
1307 pp_reg = PP_CONTROL;
1308 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309 panel_pipe = PIPE_B;
1310 }
1311
1312 val = I915_READ(pp_reg);
1313 if (!(val & PANEL_POWER_ON) ||
1314 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315 locked = false;
1316
1317 I915_STATE_WARN(panel_pipe == pipe && locked,
1318 "panel assertion failure, pipe %c regs locked\n",
1319 pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323 enum pipe pipe, bool state)
1324 {
1325 struct drm_device *dev = dev_priv->dev;
1326 bool cur_state;
1327
1328 if (IS_845G(dev) || IS_I865G(dev))
1329 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330 else
1331 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333 I915_STATE_WARN(cur_state != state,
1334 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335 pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, bool state)
1342 {
1343 bool cur_state;
1344 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345 pipe);
1346 enum intel_display_power_domain power_domain;
1347
1348 /* if we need the pipe quirk it must be always on */
1349 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1350 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1351 state = true;
1352
1353 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1354 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1355 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1356 cur_state = !!(val & PIPECONF_ENABLE);
1357
1358 intel_display_power_put(dev_priv, power_domain);
1359 } else {
1360 cur_state = false;
1361 }
1362
1363 I915_STATE_WARN(cur_state != state,
1364 "pipe %c assertion failure (expected %s, current %s)\n",
1365 pipe_name(pipe), onoff(state), onoff(cur_state));
1366 }
1367
1368 static void assert_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane, bool state)
1370 {
1371 u32 val;
1372 bool cur_state;
1373
1374 val = I915_READ(DSPCNTR(plane));
1375 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1376 I915_STATE_WARN(cur_state != state,
1377 "plane %c assertion failure (expected %s, current %s)\n",
1378 plane_name(plane), onoff(state), onoff(cur_state));
1379 }
1380
1381 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1382 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1383
1384 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe)
1386 {
1387 struct drm_device *dev = dev_priv->dev;
1388 int i;
1389
1390 /* Primary planes are fixed to pipes on gen4+ */
1391 if (INTEL_INFO(dev)->gen >= 4) {
1392 u32 val = I915_READ(DSPCNTR(pipe));
1393 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1394 "plane %c assertion failure, should be disabled but not\n",
1395 plane_name(pipe));
1396 return;
1397 }
1398
1399 /* Need to check both planes against the pipe */
1400 for_each_pipe(dev_priv, i) {
1401 u32 val = I915_READ(DSPCNTR(i));
1402 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1403 DISPPLANE_SEL_PIPE_SHIFT;
1404 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1405 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1406 plane_name(i), pipe_name(pipe));
1407 }
1408 }
1409
1410 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe)
1412 {
1413 struct drm_device *dev = dev_priv->dev;
1414 int sprite;
1415
1416 if (INTEL_INFO(dev)->gen >= 9) {
1417 for_each_sprite(dev_priv, pipe, sprite) {
1418 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1419 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1420 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1421 sprite, pipe_name(pipe));
1422 }
1423 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1424 for_each_sprite(dev_priv, pipe, sprite) {
1425 u32 val = I915_READ(SPCNTR(pipe, sprite));
1426 I915_STATE_WARN(val & SP_ENABLE,
1427 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1428 sprite_name(pipe, sprite), pipe_name(pipe));
1429 }
1430 } else if (INTEL_INFO(dev)->gen >= 7) {
1431 u32 val = I915_READ(SPRCTL(pipe));
1432 I915_STATE_WARN(val & SPRITE_ENABLE,
1433 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1434 plane_name(pipe), pipe_name(pipe));
1435 } else if (INTEL_INFO(dev)->gen >= 5) {
1436 u32 val = I915_READ(DVSCNTR(pipe));
1437 I915_STATE_WARN(val & DVS_ENABLE,
1438 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1439 plane_name(pipe), pipe_name(pipe));
1440 }
1441 }
1442
1443 static void assert_vblank_disabled(struct drm_crtc *crtc)
1444 {
1445 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1446 drm_crtc_vblank_put(crtc);
1447 }
1448
1449 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1450 {
1451 u32 val;
1452 bool enabled;
1453
1454 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1455
1456 val = I915_READ(PCH_DREF_CONTROL);
1457 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1458 DREF_SUPERSPREAD_SOURCE_MASK));
1459 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1460 }
1461
1462 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe)
1464 {
1465 u32 val;
1466 bool enabled;
1467
1468 val = I915_READ(PCH_TRANSCONF(pipe));
1469 enabled = !!(val & TRANS_ENABLE);
1470 I915_STATE_WARN(enabled,
1471 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1472 pipe_name(pipe));
1473 }
1474
1475 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1476 enum pipe pipe, u32 port_sel, u32 val)
1477 {
1478 if ((val & DP_PORT_EN) == 0)
1479 return false;
1480
1481 if (HAS_PCH_CPT(dev_priv->dev)) {
1482 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1483 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1484 return false;
1485 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1486 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1487 return false;
1488 } else {
1489 if ((val & DP_PIPE_MASK) != (pipe << 30))
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497 {
1498 if ((val & SDVO_ENABLE) == 0)
1499 return false;
1500
1501 if (HAS_PCH_CPT(dev_priv->dev)) {
1502 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1503 return false;
1504 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1505 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1506 return false;
1507 } else {
1508 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1509 return false;
1510 }
1511 return true;
1512 }
1513
1514 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1515 enum pipe pipe, u32 val)
1516 {
1517 if ((val & LVDS_PORT_EN) == 0)
1518 return false;
1519
1520 if (HAS_PCH_CPT(dev_priv->dev)) {
1521 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1522 return false;
1523 } else {
1524 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1525 return false;
1526 }
1527 return true;
1528 }
1529
1530 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1531 enum pipe pipe, u32 val)
1532 {
1533 if ((val & ADPA_DAC_ENABLE) == 0)
1534 return false;
1535 if (HAS_PCH_CPT(dev_priv->dev)) {
1536 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1537 return false;
1538 } else {
1539 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1540 return false;
1541 }
1542 return true;
1543 }
1544
1545 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, i915_reg_t reg,
1547 u32 port_sel)
1548 {
1549 u32 val = I915_READ(reg);
1550 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1551 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1552 i915_mmio_reg_offset(reg), pipe_name(pipe));
1553
1554 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1555 && (val & DP_PIPEB_SELECT),
1556 "IBX PCH dp port still using transcoder B\n");
1557 }
1558
1559 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1560 enum pipe pipe, i915_reg_t reg)
1561 {
1562 u32 val = I915_READ(reg);
1563 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1564 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1565 i915_mmio_reg_offset(reg), pipe_name(pipe));
1566
1567 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1568 && (val & SDVO_PIPE_B_SELECT),
1569 "IBX PCH hdmi port still using transcoder B\n");
1570 }
1571
1572 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1573 enum pipe pipe)
1574 {
1575 u32 val;
1576
1577 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1580
1581 val = I915_READ(PCH_ADPA);
1582 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583 "PCH VGA enabled on transcoder %c, should be disabled\n",
1584 pipe_name(pipe));
1585
1586 val = I915_READ(PCH_LVDS);
1587 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1588 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1589 pipe_name(pipe));
1590
1591 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1594 }
1595
1596 static void vlv_enable_pll(struct intel_crtc *crtc,
1597 const struct intel_crtc_state *pipe_config)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 i915_reg_t reg = DPLL(crtc->pipe);
1602 u32 dpll = pipe_config->dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* PLL is protected by panel, make sure we can write it */
1607 if (IS_MOBILE(dev_priv->dev))
1608 assert_panel_unlocked(dev_priv, crtc->pipe);
1609
1610 I915_WRITE(reg, dpll);
1611 POSTING_READ(reg);
1612 udelay(150);
1613
1614 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1615 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1616
1617 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1618 POSTING_READ(DPLL_MD(crtc->pipe));
1619
1620 /* We do this three times for luck */
1621 I915_WRITE(reg, dpll);
1622 POSTING_READ(reg);
1623 udelay(150); /* wait for warmup */
1624 I915_WRITE(reg, dpll);
1625 POSTING_READ(reg);
1626 udelay(150); /* wait for warmup */
1627 I915_WRITE(reg, dpll);
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
1630 }
1631
1632 static void chv_enable_pll(struct intel_crtc *crtc,
1633 const struct intel_crtc_state *pipe_config)
1634 {
1635 struct drm_device *dev = crtc->base.dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 int pipe = crtc->pipe;
1638 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1639 u32 tmp;
1640
1641 assert_pipe_disabled(dev_priv, crtc->pipe);
1642
1643 mutex_lock(&dev_priv->sb_lock);
1644
1645 /* Enable back the 10bit clock to display controller */
1646 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1647 tmp |= DPIO_DCLKP_EN;
1648 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1649
1650 mutex_unlock(&dev_priv->sb_lock);
1651
1652 /*
1653 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1654 */
1655 udelay(1);
1656
1657 /* Enable PLL */
1658 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1659
1660 /* Check PLL is locked */
1661 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1662 DRM_ERROR("PLL %d failed to lock\n", pipe);
1663
1664 /* not sure when this should be written */
1665 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1666 POSTING_READ(DPLL_MD(pipe));
1667 }
1668
1669 static int intel_num_dvo_pipes(struct drm_device *dev)
1670 {
1671 struct intel_crtc *crtc;
1672 int count = 0;
1673
1674 for_each_intel_crtc(dev, crtc)
1675 count += crtc->base.state->active &&
1676 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1677
1678 return count;
1679 }
1680
1681 static void i9xx_enable_pll(struct intel_crtc *crtc)
1682 {
1683 struct drm_device *dev = crtc->base.dev;
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 i915_reg_t reg = DPLL(crtc->pipe);
1686 u32 dpll = crtc->config->dpll_hw_state.dpll;
1687
1688 assert_pipe_disabled(dev_priv, crtc->pipe);
1689
1690 /* No really, not for ILK+ */
1691 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1692
1693 /* PLL is protected by panel, make sure we can write it */
1694 if (IS_MOBILE(dev) && !IS_I830(dev))
1695 assert_panel_unlocked(dev_priv, crtc->pipe);
1696
1697 /* Enable DVO 2x clock on both PLLs if necessary */
1698 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1699 /*
1700 * It appears to be important that we don't enable this
1701 * for the current pipe before otherwise configuring the
1702 * PLL. No idea how this should be handled if multiple
1703 * DVO outputs are enabled simultaneosly.
1704 */
1705 dpll |= DPLL_DVO_2X_MODE;
1706 I915_WRITE(DPLL(!crtc->pipe),
1707 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1708 }
1709
1710 /*
1711 * Apparently we need to have VGA mode enabled prior to changing
1712 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1713 * dividers, even though the register value does change.
1714 */
1715 I915_WRITE(reg, 0);
1716
1717 I915_WRITE(reg, dpll);
1718
1719 /* Wait for the clocks to stabilize. */
1720 POSTING_READ(reg);
1721 udelay(150);
1722
1723 if (INTEL_INFO(dev)->gen >= 4) {
1724 I915_WRITE(DPLL_MD(crtc->pipe),
1725 crtc->config->dpll_hw_state.dpll_md);
1726 } else {
1727 /* The pixel multiplier can only be updated once the
1728 * DPLL is enabled and the clocks are stable.
1729 *
1730 * So write it again.
1731 */
1732 I915_WRITE(reg, dpll);
1733 }
1734
1735 /* We do this three times for luck */
1736 I915_WRITE(reg, dpll);
1737 POSTING_READ(reg);
1738 udelay(150); /* wait for warmup */
1739 I915_WRITE(reg, dpll);
1740 POSTING_READ(reg);
1741 udelay(150); /* wait for warmup */
1742 I915_WRITE(reg, dpll);
1743 POSTING_READ(reg);
1744 udelay(150); /* wait for warmup */
1745 }
1746
1747 /**
1748 * i9xx_disable_pll - disable a PLL
1749 * @dev_priv: i915 private structure
1750 * @pipe: pipe PLL to disable
1751 *
1752 * Disable the PLL for @pipe, making sure the pipe is off first.
1753 *
1754 * Note! This is for pre-ILK only.
1755 */
1756 static void i9xx_disable_pll(struct intel_crtc *crtc)
1757 {
1758 struct drm_device *dev = crtc->base.dev;
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 enum pipe pipe = crtc->pipe;
1761
1762 /* Disable DVO 2x clock on both PLLs if necessary */
1763 if (IS_I830(dev) &&
1764 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1765 !intel_num_dvo_pipes(dev)) {
1766 I915_WRITE(DPLL(PIPE_B),
1767 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1768 I915_WRITE(DPLL(PIPE_A),
1769 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1770 }
1771
1772 /* Don't disable pipe or pipe PLLs if needed */
1773 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1774 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1775 return;
1776
1777 /* Make sure the pipe isn't still relying on us */
1778 assert_pipe_disabled(dev_priv, pipe);
1779
1780 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1781 POSTING_READ(DPLL(pipe));
1782 }
1783
1784 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1785 {
1786 u32 val;
1787
1788 /* Make sure the pipe isn't still relying on us */
1789 assert_pipe_disabled(dev_priv, pipe);
1790
1791 /*
1792 * Leave integrated clock source and reference clock enabled for pipe B.
1793 * The latter is needed for VGA hotplug / manual detection.
1794 */
1795 val = DPLL_VGA_MODE_DIS;
1796 if (pipe == PIPE_B)
1797 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1798 I915_WRITE(DPLL(pipe), val);
1799 POSTING_READ(DPLL(pipe));
1800
1801 }
1802
1803 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1804 {
1805 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1806 u32 val;
1807
1808 /* Make sure the pipe isn't still relying on us */
1809 assert_pipe_disabled(dev_priv, pipe);
1810
1811 /* Set PLL en = 0 */
1812 val = DPLL_SSC_REF_CLK_CHV |
1813 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1814 if (pipe != PIPE_A)
1815 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1816 I915_WRITE(DPLL(pipe), val);
1817 POSTING_READ(DPLL(pipe));
1818
1819 mutex_lock(&dev_priv->sb_lock);
1820
1821 /* Disable 10bit clock to display controller */
1822 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1823 val &= ~DPIO_DCLKP_EN;
1824 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1825
1826 mutex_unlock(&dev_priv->sb_lock);
1827 }
1828
1829 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1830 struct intel_digital_port *dport,
1831 unsigned int expected_mask)
1832 {
1833 u32 port_mask;
1834 i915_reg_t dpll_reg;
1835
1836 switch (dport->port) {
1837 case PORT_B:
1838 port_mask = DPLL_PORTB_READY_MASK;
1839 dpll_reg = DPLL(0);
1840 break;
1841 case PORT_C:
1842 port_mask = DPLL_PORTC_READY_MASK;
1843 dpll_reg = DPLL(0);
1844 expected_mask <<= 4;
1845 break;
1846 case PORT_D:
1847 port_mask = DPLL_PORTD_READY_MASK;
1848 dpll_reg = DPIO_PHY_STATUS;
1849 break;
1850 default:
1851 BUG();
1852 }
1853
1854 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1855 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1856 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1857 }
1858
1859 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1860 {
1861 struct drm_device *dev = crtc->base.dev;
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1864
1865 if (WARN_ON(pll == NULL))
1866 return;
1867
1868 WARN_ON(!pll->config.crtc_mask);
1869 if (pll->active == 0) {
1870 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1871 WARN_ON(pll->on);
1872 assert_shared_dpll_disabled(dev_priv, pll);
1873
1874 pll->mode_set(dev_priv, pll);
1875 }
1876 }
1877
1878 /**
1879 * intel_enable_shared_dpll - enable PCH PLL
1880 * @dev_priv: i915 private structure
1881 * @pipe: pipe PLL to enable
1882 *
1883 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1884 * drives the transcoder clock.
1885 */
1886 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1887 {
1888 struct drm_device *dev = crtc->base.dev;
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1891
1892 if (WARN_ON(pll == NULL))
1893 return;
1894
1895 if (WARN_ON(pll->config.crtc_mask == 0))
1896 return;
1897
1898 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1899 pll->name, pll->active, pll->on,
1900 crtc->base.base.id);
1901
1902 if (pll->active++) {
1903 WARN_ON(!pll->on);
1904 assert_shared_dpll_enabled(dev_priv, pll);
1905 return;
1906 }
1907 WARN_ON(pll->on);
1908
1909 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1910
1911 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1912 pll->enable(dev_priv, pll);
1913 pll->on = true;
1914 }
1915
1916 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1917 {
1918 struct drm_device *dev = crtc->base.dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1921
1922 /* PCH only available on ILK+ */
1923 if (INTEL_INFO(dev)->gen < 5)
1924 return;
1925
1926 if (pll == NULL)
1927 return;
1928
1929 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1930 return;
1931
1932 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1933 pll->name, pll->active, pll->on,
1934 crtc->base.base.id);
1935
1936 if (WARN_ON(pll->active == 0)) {
1937 assert_shared_dpll_disabled(dev_priv, pll);
1938 return;
1939 }
1940
1941 assert_shared_dpll_enabled(dev_priv, pll);
1942 WARN_ON(!pll->on);
1943 if (--pll->active)
1944 return;
1945
1946 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1947 pll->disable(dev_priv, pll);
1948 pll->on = false;
1949
1950 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1951 }
1952
1953 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1954 enum pipe pipe)
1955 {
1956 struct drm_device *dev = dev_priv->dev;
1957 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959 i915_reg_t reg;
1960 uint32_t val, pipeconf_val;
1961
1962 /* PCH only available on ILK+ */
1963 BUG_ON(!HAS_PCH_SPLIT(dev));
1964
1965 /* Make sure PCH DPLL is enabled */
1966 assert_shared_dpll_enabled(dev_priv,
1967 intel_crtc_to_shared_dpll(intel_crtc));
1968
1969 /* FDI must be feeding us bits for PCH ports */
1970 assert_fdi_tx_enabled(dev_priv, pipe);
1971 assert_fdi_rx_enabled(dev_priv, pipe);
1972
1973 if (HAS_PCH_CPT(dev)) {
1974 /* Workaround: Set the timing override bit before enabling the
1975 * pch transcoder. */
1976 reg = TRANS_CHICKEN2(pipe);
1977 val = I915_READ(reg);
1978 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1979 I915_WRITE(reg, val);
1980 }
1981
1982 reg = PCH_TRANSCONF(pipe);
1983 val = I915_READ(reg);
1984 pipeconf_val = I915_READ(PIPECONF(pipe));
1985
1986 if (HAS_PCH_IBX(dev_priv->dev)) {
1987 /*
1988 * Make the BPC in transcoder be consistent with
1989 * that in pipeconf reg. For HDMI we must use 8bpc
1990 * here for both 8bpc and 12bpc.
1991 */
1992 val &= ~PIPECONF_BPC_MASK;
1993 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1994 val |= PIPECONF_8BPC;
1995 else
1996 val |= pipeconf_val & PIPECONF_BPC_MASK;
1997 }
1998
1999 val &= ~TRANS_INTERLACE_MASK;
2000 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2001 if (HAS_PCH_IBX(dev_priv->dev) &&
2002 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2003 val |= TRANS_LEGACY_INTERLACED_ILK;
2004 else
2005 val |= TRANS_INTERLACED;
2006 else
2007 val |= TRANS_PROGRESSIVE;
2008
2009 I915_WRITE(reg, val | TRANS_ENABLE);
2010 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2011 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2012 }
2013
2014 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2015 enum transcoder cpu_transcoder)
2016 {
2017 u32 val, pipeconf_val;
2018
2019 /* PCH only available on ILK+ */
2020 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2021
2022 /* FDI must be feeding us bits for PCH ports */
2023 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2024 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2025
2026 /* Workaround: set timing override bit. */
2027 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2028 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2029 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2030
2031 val = TRANS_ENABLE;
2032 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2033
2034 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2035 PIPECONF_INTERLACED_ILK)
2036 val |= TRANS_INTERLACED;
2037 else
2038 val |= TRANS_PROGRESSIVE;
2039
2040 I915_WRITE(LPT_TRANSCONF, val);
2041 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2042 DRM_ERROR("Failed to enable PCH transcoder\n");
2043 }
2044
2045 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2046 enum pipe pipe)
2047 {
2048 struct drm_device *dev = dev_priv->dev;
2049 i915_reg_t reg;
2050 uint32_t val;
2051
2052 /* FDI relies on the transcoder */
2053 assert_fdi_tx_disabled(dev_priv, pipe);
2054 assert_fdi_rx_disabled(dev_priv, pipe);
2055
2056 /* Ports must be off as well */
2057 assert_pch_ports_disabled(dev_priv, pipe);
2058
2059 reg = PCH_TRANSCONF(pipe);
2060 val = I915_READ(reg);
2061 val &= ~TRANS_ENABLE;
2062 I915_WRITE(reg, val);
2063 /* wait for PCH transcoder off, transcoder state */
2064 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2065 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2066
2067 if (HAS_PCH_CPT(dev)) {
2068 /* Workaround: Clear the timing override chicken bit again. */
2069 reg = TRANS_CHICKEN2(pipe);
2070 val = I915_READ(reg);
2071 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072 I915_WRITE(reg, val);
2073 }
2074 }
2075
2076 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2077 {
2078 u32 val;
2079
2080 val = I915_READ(LPT_TRANSCONF);
2081 val &= ~TRANS_ENABLE;
2082 I915_WRITE(LPT_TRANSCONF, val);
2083 /* wait for PCH transcoder off, transcoder state */
2084 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2085 DRM_ERROR("Failed to disable PCH transcoder\n");
2086
2087 /* Workaround: clear timing override bit. */
2088 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2089 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2091 }
2092
2093 /**
2094 * intel_enable_pipe - enable a pipe, asserting requirements
2095 * @crtc: crtc responsible for the pipe
2096 *
2097 * Enable @crtc's pipe, making sure that various hardware specific requirements
2098 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2099 */
2100 static void intel_enable_pipe(struct intel_crtc *crtc)
2101 {
2102 struct drm_device *dev = crtc->base.dev;
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104 enum pipe pipe = crtc->pipe;
2105 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2106 enum pipe pch_transcoder;
2107 i915_reg_t reg;
2108 u32 val;
2109
2110 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2111
2112 assert_planes_disabled(dev_priv, pipe);
2113 assert_cursor_disabled(dev_priv, pipe);
2114 assert_sprites_disabled(dev_priv, pipe);
2115
2116 if (HAS_PCH_LPT(dev_priv->dev))
2117 pch_transcoder = TRANSCODER_A;
2118 else
2119 pch_transcoder = pipe;
2120
2121 /*
2122 * A pipe without a PLL won't actually be able to drive bits from
2123 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2124 * need the check.
2125 */
2126 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2127 if (crtc->config->has_dsi_encoder)
2128 assert_dsi_pll_enabled(dev_priv);
2129 else
2130 assert_pll_enabled(dev_priv, pipe);
2131 else {
2132 if (crtc->config->has_pch_encoder) {
2133 /* if driving the PCH, we need FDI enabled */
2134 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2135 assert_fdi_tx_pll_enabled(dev_priv,
2136 (enum pipe) cpu_transcoder);
2137 }
2138 /* FIXME: assert CPU port conditions for SNB+ */
2139 }
2140
2141 reg = PIPECONF(cpu_transcoder);
2142 val = I915_READ(reg);
2143 if (val & PIPECONF_ENABLE) {
2144 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2145 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2146 return;
2147 }
2148
2149 I915_WRITE(reg, val | PIPECONF_ENABLE);
2150 POSTING_READ(reg);
2151
2152 /*
2153 * Until the pipe starts DSL will read as 0, which would cause
2154 * an apparent vblank timestamp jump, which messes up also the
2155 * frame count when it's derived from the timestamps. So let's
2156 * wait for the pipe to start properly before we call
2157 * drm_crtc_vblank_on()
2158 */
2159 if (dev->max_vblank_count == 0 &&
2160 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2161 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2162 }
2163
2164 /**
2165 * intel_disable_pipe - disable a pipe, asserting requirements
2166 * @crtc: crtc whose pipes is to be disabled
2167 *
2168 * Disable the pipe of @crtc, making sure that various hardware
2169 * specific requirements are met, if applicable, e.g. plane
2170 * disabled, panel fitter off, etc.
2171 *
2172 * Will wait until the pipe has shut down before returning.
2173 */
2174 static void intel_disable_pipe(struct intel_crtc *crtc)
2175 {
2176 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2177 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2178 enum pipe pipe = crtc->pipe;
2179 i915_reg_t reg;
2180 u32 val;
2181
2182 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2183
2184 /*
2185 * Make sure planes won't keep trying to pump pixels to us,
2186 * or we might hang the display.
2187 */
2188 assert_planes_disabled(dev_priv, pipe);
2189 assert_cursor_disabled(dev_priv, pipe);
2190 assert_sprites_disabled(dev_priv, pipe);
2191
2192 reg = PIPECONF(cpu_transcoder);
2193 val = I915_READ(reg);
2194 if ((val & PIPECONF_ENABLE) == 0)
2195 return;
2196
2197 /*
2198 * Double wide has implications for planes
2199 * so best keep it disabled when not needed.
2200 */
2201 if (crtc->config->double_wide)
2202 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204 /* Don't disable pipe or pipe PLLs if needed */
2205 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207 val &= ~PIPECONF_ENABLE;
2208
2209 I915_WRITE(reg, val);
2210 if ((val & PIPECONF_ENABLE) == 0)
2211 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 static bool need_vtd_wa(struct drm_device *dev)
2215 {
2216 #ifdef CONFIG_INTEL_IOMMU
2217 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2218 return true;
2219 #endif
2220 return false;
2221 }
2222
2223 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2224 {
2225 return IS_GEN2(dev_priv) ? 2048 : 4096;
2226 }
2227
2228 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2229 uint64_t fb_modifier, unsigned int cpp)
2230 {
2231 switch (fb_modifier) {
2232 case DRM_FORMAT_MOD_NONE:
2233 return cpp;
2234 case I915_FORMAT_MOD_X_TILED:
2235 if (IS_GEN2(dev_priv))
2236 return 128;
2237 else
2238 return 512;
2239 case I915_FORMAT_MOD_Y_TILED:
2240 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2241 return 128;
2242 else
2243 return 512;
2244 case I915_FORMAT_MOD_Yf_TILED:
2245 switch (cpp) {
2246 case 1:
2247 return 64;
2248 case 2:
2249 case 4:
2250 return 128;
2251 case 8:
2252 case 16:
2253 return 256;
2254 default:
2255 MISSING_CASE(cpp);
2256 return cpp;
2257 }
2258 break;
2259 default:
2260 MISSING_CASE(fb_modifier);
2261 return cpp;
2262 }
2263 }
2264
2265 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2266 uint64_t fb_modifier, unsigned int cpp)
2267 {
2268 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2269 return 1;
2270 else
2271 return intel_tile_size(dev_priv) /
2272 intel_tile_width(dev_priv, fb_modifier, cpp);
2273 }
2274
2275 unsigned int
2276 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2277 uint32_t pixel_format, uint64_t fb_modifier)
2278 {
2279 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2280 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2281
2282 return ALIGN(height, tile_height);
2283 }
2284
2285 static void
2286 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2287 const struct drm_plane_state *plane_state)
2288 {
2289 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2290 struct intel_rotation_info *info = &view->params.rotated;
2291 unsigned int tile_size, tile_width, tile_height, cpp;
2292
2293 *view = i915_ggtt_view_normal;
2294
2295 if (!plane_state)
2296 return;
2297
2298 if (!intel_rotation_90_or_270(plane_state->rotation))
2299 return;
2300
2301 *view = i915_ggtt_view_rotated;
2302
2303 info->height = fb->height;
2304 info->pixel_format = fb->pixel_format;
2305 info->pitch = fb->pitches[0];
2306 info->uv_offset = fb->offsets[1];
2307 info->fb_modifier = fb->modifier[0];
2308
2309 tile_size = intel_tile_size(dev_priv);
2310
2311 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2312 tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2313 tile_height = tile_size / tile_width;
2314
2315 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2316 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2317 info->size = info->width_pages * info->height_pages * tile_size;
2318
2319 if (info->pixel_format == DRM_FORMAT_NV12) {
2320 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2321 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2322 tile_height = tile_size / tile_width;
2323
2324 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2325 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2326 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2327 }
2328 }
2329
2330 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2331 {
2332 if (INTEL_INFO(dev_priv)->gen >= 9)
2333 return 256 * 1024;
2334 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2335 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2336 return 128 * 1024;
2337 else if (INTEL_INFO(dev_priv)->gen >= 4)
2338 return 4 * 1024;
2339 else
2340 return 0;
2341 }
2342
2343 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2344 uint64_t fb_modifier)
2345 {
2346 switch (fb_modifier) {
2347 case DRM_FORMAT_MOD_NONE:
2348 return intel_linear_alignment(dev_priv);
2349 case I915_FORMAT_MOD_X_TILED:
2350 if (INTEL_INFO(dev_priv)->gen >= 9)
2351 return 256 * 1024;
2352 return 0;
2353 case I915_FORMAT_MOD_Y_TILED:
2354 case I915_FORMAT_MOD_Yf_TILED:
2355 return 1 * 1024 * 1024;
2356 default:
2357 MISSING_CASE(fb_modifier);
2358 return 0;
2359 }
2360 }
2361
2362 int
2363 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2364 struct drm_framebuffer *fb,
2365 const struct drm_plane_state *plane_state)
2366 {
2367 struct drm_device *dev = fb->dev;
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2370 struct i915_ggtt_view view;
2371 u32 alignment;
2372 int ret;
2373
2374 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2375
2376 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2377
2378 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2379
2380 /* Note that the w/a also requires 64 PTE of padding following the
2381 * bo. We currently fill all unused PTE with the shadow page and so
2382 * we should always have valid PTE following the scanout preventing
2383 * the VT-d warning.
2384 */
2385 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2386 alignment = 256 * 1024;
2387
2388 /*
2389 * Global gtt pte registers are special registers which actually forward
2390 * writes to a chunk of system memory. Which means that there is no risk
2391 * that the register values disappear as soon as we call
2392 * intel_runtime_pm_put(), so it is correct to wrap only the
2393 * pin/unpin/fence and not more.
2394 */
2395 intel_runtime_pm_get(dev_priv);
2396
2397 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2398 &view);
2399 if (ret)
2400 goto err_pm;
2401
2402 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2403 * fence, whereas 965+ only requires a fence if using
2404 * framebuffer compression. For simplicity, we always install
2405 * a fence as the cost is not that onerous.
2406 */
2407 if (view.type == I915_GGTT_VIEW_NORMAL) {
2408 ret = i915_gem_object_get_fence(obj);
2409 if (ret == -EDEADLK) {
2410 /*
2411 * -EDEADLK means there are no free fences
2412 * no pending flips.
2413 *
2414 * This is propagated to atomic, but it uses
2415 * -EDEADLK to force a locking recovery, so
2416 * change the returned error to -EBUSY.
2417 */
2418 ret = -EBUSY;
2419 goto err_unpin;
2420 } else if (ret)
2421 goto err_unpin;
2422
2423 i915_gem_object_pin_fence(obj);
2424 }
2425
2426 intel_runtime_pm_put(dev_priv);
2427 return 0;
2428
2429 err_unpin:
2430 i915_gem_object_unpin_from_display_plane(obj, &view);
2431 err_pm:
2432 intel_runtime_pm_put(dev_priv);
2433 return ret;
2434 }
2435
2436 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2437 const struct drm_plane_state *plane_state)
2438 {
2439 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2440 struct i915_ggtt_view view;
2441
2442 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2443
2444 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2445
2446 if (view.type == I915_GGTT_VIEW_NORMAL)
2447 i915_gem_object_unpin_fence(obj);
2448
2449 i915_gem_object_unpin_from_display_plane(obj, &view);
2450 }
2451
2452 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2453 * is assumed to be a power-of-two. */
2454 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2455 int *x, int *y,
2456 uint64_t fb_modifier,
2457 unsigned int cpp,
2458 unsigned int pitch)
2459 {
2460 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2461 unsigned int tile_size, tile_width, tile_height;
2462 unsigned int tile_rows, tiles;
2463
2464 tile_size = intel_tile_size(dev_priv);
2465 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2466 tile_height = tile_size / tile_width;
2467
2468 tile_rows = *y / tile_height;
2469 *y %= tile_height;
2470
2471 tiles = *x / (tile_width/cpp);
2472 *x %= tile_width/cpp;
2473
2474 return tile_rows * pitch * tile_height + tiles * tile_size;
2475 } else {
2476 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2477 unsigned int offset;
2478
2479 offset = *y * pitch + *x * cpp;
2480 *y = (offset & alignment) / pitch;
2481 *x = ((offset & alignment) - *y * pitch) / cpp;
2482 return offset & ~alignment;
2483 }
2484 }
2485
2486 static int i9xx_format_to_fourcc(int format)
2487 {
2488 switch (format) {
2489 case DISPPLANE_8BPP:
2490 return DRM_FORMAT_C8;
2491 case DISPPLANE_BGRX555:
2492 return DRM_FORMAT_XRGB1555;
2493 case DISPPLANE_BGRX565:
2494 return DRM_FORMAT_RGB565;
2495 default:
2496 case DISPPLANE_BGRX888:
2497 return DRM_FORMAT_XRGB8888;
2498 case DISPPLANE_RGBX888:
2499 return DRM_FORMAT_XBGR8888;
2500 case DISPPLANE_BGRX101010:
2501 return DRM_FORMAT_XRGB2101010;
2502 case DISPPLANE_RGBX101010:
2503 return DRM_FORMAT_XBGR2101010;
2504 }
2505 }
2506
2507 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2508 {
2509 switch (format) {
2510 case PLANE_CTL_FORMAT_RGB_565:
2511 return DRM_FORMAT_RGB565;
2512 default:
2513 case PLANE_CTL_FORMAT_XRGB_8888:
2514 if (rgb_order) {
2515 if (alpha)
2516 return DRM_FORMAT_ABGR8888;
2517 else
2518 return DRM_FORMAT_XBGR8888;
2519 } else {
2520 if (alpha)
2521 return DRM_FORMAT_ARGB8888;
2522 else
2523 return DRM_FORMAT_XRGB8888;
2524 }
2525 case PLANE_CTL_FORMAT_XRGB_2101010:
2526 if (rgb_order)
2527 return DRM_FORMAT_XBGR2101010;
2528 else
2529 return DRM_FORMAT_XRGB2101010;
2530 }
2531 }
2532
2533 static bool
2534 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2535 struct intel_initial_plane_config *plane_config)
2536 {
2537 struct drm_device *dev = crtc->base.dev;
2538 struct drm_i915_private *dev_priv = to_i915(dev);
2539 struct drm_i915_gem_object *obj = NULL;
2540 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2541 struct drm_framebuffer *fb = &plane_config->fb->base;
2542 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2543 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2544 PAGE_SIZE);
2545
2546 size_aligned -= base_aligned;
2547
2548 if (plane_config->size == 0)
2549 return false;
2550
2551 /* If the FB is too big, just don't use it since fbdev is not very
2552 * important and we should probably use that space with FBC or other
2553 * features. */
2554 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2555 return false;
2556
2557 mutex_lock(&dev->struct_mutex);
2558
2559 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2560 base_aligned,
2561 base_aligned,
2562 size_aligned);
2563 if (!obj) {
2564 mutex_unlock(&dev->struct_mutex);
2565 return false;
2566 }
2567
2568 obj->tiling_mode = plane_config->tiling;
2569 if (obj->tiling_mode == I915_TILING_X)
2570 obj->stride = fb->pitches[0];
2571
2572 mode_cmd.pixel_format = fb->pixel_format;
2573 mode_cmd.width = fb->width;
2574 mode_cmd.height = fb->height;
2575 mode_cmd.pitches[0] = fb->pitches[0];
2576 mode_cmd.modifier[0] = fb->modifier[0];
2577 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2578
2579 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2580 &mode_cmd, obj)) {
2581 DRM_DEBUG_KMS("intel fb init failed\n");
2582 goto out_unref_obj;
2583 }
2584
2585 mutex_unlock(&dev->struct_mutex);
2586
2587 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2588 return true;
2589
2590 out_unref_obj:
2591 drm_gem_object_unreference(&obj->base);
2592 mutex_unlock(&dev->struct_mutex);
2593 return false;
2594 }
2595
2596 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2597 static void
2598 update_state_fb(struct drm_plane *plane)
2599 {
2600 if (plane->fb == plane->state->fb)
2601 return;
2602
2603 if (plane->state->fb)
2604 drm_framebuffer_unreference(plane->state->fb);
2605 plane->state->fb = plane->fb;
2606 if (plane->state->fb)
2607 drm_framebuffer_reference(plane->state->fb);
2608 }
2609
2610 static void
2611 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2612 struct intel_initial_plane_config *plane_config)
2613 {
2614 struct drm_device *dev = intel_crtc->base.dev;
2615 struct drm_i915_private *dev_priv = dev->dev_private;
2616 struct drm_crtc *c;
2617 struct intel_crtc *i;
2618 struct drm_i915_gem_object *obj;
2619 struct drm_plane *primary = intel_crtc->base.primary;
2620 struct drm_plane_state *plane_state = primary->state;
2621 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2622 struct intel_plane *intel_plane = to_intel_plane(primary);
2623 struct intel_plane_state *intel_state =
2624 to_intel_plane_state(plane_state);
2625 struct drm_framebuffer *fb;
2626
2627 if (!plane_config->fb)
2628 return;
2629
2630 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2631 fb = &plane_config->fb->base;
2632 goto valid_fb;
2633 }
2634
2635 kfree(plane_config->fb);
2636
2637 /*
2638 * Failed to alloc the obj, check to see if we should share
2639 * an fb with another CRTC instead
2640 */
2641 for_each_crtc(dev, c) {
2642 i = to_intel_crtc(c);
2643
2644 if (c == &intel_crtc->base)
2645 continue;
2646
2647 if (!i->active)
2648 continue;
2649
2650 fb = c->primary->fb;
2651 if (!fb)
2652 continue;
2653
2654 obj = intel_fb_obj(fb);
2655 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2656 drm_framebuffer_reference(fb);
2657 goto valid_fb;
2658 }
2659 }
2660
2661 /*
2662 * We've failed to reconstruct the BIOS FB. Current display state
2663 * indicates that the primary plane is visible, but has a NULL FB,
2664 * which will lead to problems later if we don't fix it up. The
2665 * simplest solution is to just disable the primary plane now and
2666 * pretend the BIOS never had it enabled.
2667 */
2668 to_intel_plane_state(plane_state)->visible = false;
2669 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2670 intel_pre_disable_primary(&intel_crtc->base);
2671 intel_plane->disable_plane(primary, &intel_crtc->base);
2672
2673 return;
2674
2675 valid_fb:
2676 plane_state->src_x = 0;
2677 plane_state->src_y = 0;
2678 plane_state->src_w = fb->width << 16;
2679 plane_state->src_h = fb->height << 16;
2680
2681 plane_state->crtc_x = 0;
2682 plane_state->crtc_y = 0;
2683 plane_state->crtc_w = fb->width;
2684 plane_state->crtc_h = fb->height;
2685
2686 intel_state->src.x1 = plane_state->src_x;
2687 intel_state->src.y1 = plane_state->src_y;
2688 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2689 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2690 intel_state->dst.x1 = plane_state->crtc_x;
2691 intel_state->dst.y1 = plane_state->crtc_y;
2692 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2693 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2694
2695 obj = intel_fb_obj(fb);
2696 if (obj->tiling_mode != I915_TILING_NONE)
2697 dev_priv->preserve_bios_swizzle = true;
2698
2699 drm_framebuffer_reference(fb);
2700 primary->fb = primary->state->fb = fb;
2701 primary->crtc = primary->state->crtc = &intel_crtc->base;
2702 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2703 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2704 }
2705
2706 static void i9xx_update_primary_plane(struct drm_plane *primary,
2707 const struct intel_crtc_state *crtc_state,
2708 const struct intel_plane_state *plane_state)
2709 {
2710 struct drm_device *dev = primary->dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2713 struct drm_framebuffer *fb = plane_state->base.fb;
2714 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2715 int plane = intel_crtc->plane;
2716 u32 linear_offset;
2717 u32 dspcntr;
2718 i915_reg_t reg = DSPCNTR(plane);
2719 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2720 int x = plane_state->src.x1 >> 16;
2721 int y = plane_state->src.y1 >> 16;
2722
2723 dspcntr = DISPPLANE_GAMMA_ENABLE;
2724
2725 dspcntr |= DISPLAY_PLANE_ENABLE;
2726
2727 if (INTEL_INFO(dev)->gen < 4) {
2728 if (intel_crtc->pipe == PIPE_B)
2729 dspcntr |= DISPPLANE_SEL_PIPE_B;
2730
2731 /* pipesrc and dspsize control the size that is scaled from,
2732 * which should always be the user's requested size.
2733 */
2734 I915_WRITE(DSPSIZE(plane),
2735 ((crtc_state->pipe_src_h - 1) << 16) |
2736 (crtc_state->pipe_src_w - 1));
2737 I915_WRITE(DSPPOS(plane), 0);
2738 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2739 I915_WRITE(PRIMSIZE(plane),
2740 ((crtc_state->pipe_src_h - 1) << 16) |
2741 (crtc_state->pipe_src_w - 1));
2742 I915_WRITE(PRIMPOS(plane), 0);
2743 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2744 }
2745
2746 switch (fb->pixel_format) {
2747 case DRM_FORMAT_C8:
2748 dspcntr |= DISPPLANE_8BPP;
2749 break;
2750 case DRM_FORMAT_XRGB1555:
2751 dspcntr |= DISPPLANE_BGRX555;
2752 break;
2753 case DRM_FORMAT_RGB565:
2754 dspcntr |= DISPPLANE_BGRX565;
2755 break;
2756 case DRM_FORMAT_XRGB8888:
2757 dspcntr |= DISPPLANE_BGRX888;
2758 break;
2759 case DRM_FORMAT_XBGR8888:
2760 dspcntr |= DISPPLANE_RGBX888;
2761 break;
2762 case DRM_FORMAT_XRGB2101010:
2763 dspcntr |= DISPPLANE_BGRX101010;
2764 break;
2765 case DRM_FORMAT_XBGR2101010:
2766 dspcntr |= DISPPLANE_RGBX101010;
2767 break;
2768 default:
2769 BUG();
2770 }
2771
2772 if (INTEL_INFO(dev)->gen >= 4 &&
2773 obj->tiling_mode != I915_TILING_NONE)
2774 dspcntr |= DISPPLANE_TILED;
2775
2776 if (IS_G4X(dev))
2777 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2778
2779 linear_offset = y * fb->pitches[0] + x * cpp;
2780
2781 if (INTEL_INFO(dev)->gen >= 4) {
2782 intel_crtc->dspaddr_offset =
2783 intel_compute_tile_offset(dev_priv, &x, &y,
2784 fb->modifier[0], cpp,
2785 fb->pitches[0]);
2786 linear_offset -= intel_crtc->dspaddr_offset;
2787 } else {
2788 intel_crtc->dspaddr_offset = linear_offset;
2789 }
2790
2791 if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2792 dspcntr |= DISPPLANE_ROTATE_180;
2793
2794 x += (crtc_state->pipe_src_w - 1);
2795 y += (crtc_state->pipe_src_h - 1);
2796
2797 /* Finding the last pixel of the last line of the display
2798 data and adding to linear_offset*/
2799 linear_offset +=
2800 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2801 (crtc_state->pipe_src_w - 1) * cpp;
2802 }
2803
2804 intel_crtc->adjusted_x = x;
2805 intel_crtc->adjusted_y = y;
2806
2807 I915_WRITE(reg, dspcntr);
2808
2809 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2810 if (INTEL_INFO(dev)->gen >= 4) {
2811 I915_WRITE(DSPSURF(plane),
2812 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2813 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2814 I915_WRITE(DSPLINOFF(plane), linear_offset);
2815 } else
2816 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2817 POSTING_READ(reg);
2818 }
2819
2820 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2821 struct drm_crtc *crtc)
2822 {
2823 struct drm_device *dev = crtc->dev;
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826 int plane = intel_crtc->plane;
2827
2828 I915_WRITE(DSPCNTR(plane), 0);
2829 if (INTEL_INFO(dev_priv)->gen >= 4)
2830 I915_WRITE(DSPSURF(plane), 0);
2831 else
2832 I915_WRITE(DSPADDR(plane), 0);
2833 POSTING_READ(DSPCNTR(plane));
2834 }
2835
2836 static void ironlake_update_primary_plane(struct drm_plane *primary,
2837 const struct intel_crtc_state *crtc_state,
2838 const struct intel_plane_state *plane_state)
2839 {
2840 struct drm_device *dev = primary->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2843 struct drm_framebuffer *fb = plane_state->base.fb;
2844 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2845 int plane = intel_crtc->plane;
2846 u32 linear_offset;
2847 u32 dspcntr;
2848 i915_reg_t reg = DSPCNTR(plane);
2849 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2850 int x = plane_state->src.x1 >> 16;
2851 int y = plane_state->src.y1 >> 16;
2852
2853 dspcntr = DISPPLANE_GAMMA_ENABLE;
2854 dspcntr |= DISPLAY_PLANE_ENABLE;
2855
2856 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2857 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2858
2859 switch (fb->pixel_format) {
2860 case DRM_FORMAT_C8:
2861 dspcntr |= DISPPLANE_8BPP;
2862 break;
2863 case DRM_FORMAT_RGB565:
2864 dspcntr |= DISPPLANE_BGRX565;
2865 break;
2866 case DRM_FORMAT_XRGB8888:
2867 dspcntr |= DISPPLANE_BGRX888;
2868 break;
2869 case DRM_FORMAT_XBGR8888:
2870 dspcntr |= DISPPLANE_RGBX888;
2871 break;
2872 case DRM_FORMAT_XRGB2101010:
2873 dspcntr |= DISPPLANE_BGRX101010;
2874 break;
2875 case DRM_FORMAT_XBGR2101010:
2876 dspcntr |= DISPPLANE_RGBX101010;
2877 break;
2878 default:
2879 BUG();
2880 }
2881
2882 if (obj->tiling_mode != I915_TILING_NONE)
2883 dspcntr |= DISPPLANE_TILED;
2884
2885 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2886 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2887
2888 linear_offset = y * fb->pitches[0] + x * cpp;
2889 intel_crtc->dspaddr_offset =
2890 intel_compute_tile_offset(dev_priv, &x, &y,
2891 fb->modifier[0], cpp,
2892 fb->pitches[0]);
2893 linear_offset -= intel_crtc->dspaddr_offset;
2894 if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2895 dspcntr |= DISPPLANE_ROTATE_180;
2896
2897 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2898 x += (crtc_state->pipe_src_w - 1);
2899 y += (crtc_state->pipe_src_h - 1);
2900
2901 /* Finding the last pixel of the last line of the display
2902 data and adding to linear_offset*/
2903 linear_offset +=
2904 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2905 (crtc_state->pipe_src_w - 1) * cpp;
2906 }
2907 }
2908
2909 intel_crtc->adjusted_x = x;
2910 intel_crtc->adjusted_y = y;
2911
2912 I915_WRITE(reg, dspcntr);
2913
2914 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2915 I915_WRITE(DSPSURF(plane),
2916 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2917 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2918 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2919 } else {
2920 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2921 I915_WRITE(DSPLINOFF(plane), linear_offset);
2922 }
2923 POSTING_READ(reg);
2924 }
2925
2926 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2927 uint64_t fb_modifier, uint32_t pixel_format)
2928 {
2929 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2930 return 64;
2931 } else {
2932 int cpp = drm_format_plane_cpp(pixel_format, 0);
2933
2934 return intel_tile_width(dev_priv, fb_modifier, cpp);
2935 }
2936 }
2937
2938 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2939 struct drm_i915_gem_object *obj,
2940 unsigned int plane)
2941 {
2942 struct i915_ggtt_view view;
2943 struct i915_vma *vma;
2944 u64 offset;
2945
2946 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2947 intel_plane->base.state);
2948
2949 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2950 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951 view.type))
2952 return -1;
2953
2954 offset = vma->node.start;
2955
2956 if (plane == 1) {
2957 offset += vma->ggtt_view.params.rotated.uv_start_page *
2958 PAGE_SIZE;
2959 }
2960
2961 WARN_ON(upper_32_bits(offset));
2962
2963 return lower_32_bits(offset);
2964 }
2965
2966 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2967 {
2968 struct drm_device *dev = intel_crtc->base.dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2972 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2973 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2974 }
2975
2976 /*
2977 * This function detaches (aka. unbinds) unused scalers in hardware
2978 */
2979 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2980 {
2981 struct intel_crtc_scaler_state *scaler_state;
2982 int i;
2983
2984 scaler_state = &intel_crtc->config->scaler_state;
2985
2986 /* loop through and disable scalers that aren't in use */
2987 for (i = 0; i < intel_crtc->num_scalers; i++) {
2988 if (!scaler_state->scalers[i].in_use)
2989 skl_detach_scaler(intel_crtc, i);
2990 }
2991 }
2992
2993 u32 skl_plane_ctl_format(uint32_t pixel_format)
2994 {
2995 switch (pixel_format) {
2996 case DRM_FORMAT_C8:
2997 return PLANE_CTL_FORMAT_INDEXED;
2998 case DRM_FORMAT_RGB565:
2999 return PLANE_CTL_FORMAT_RGB_565;
3000 case DRM_FORMAT_XBGR8888:
3001 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3002 case DRM_FORMAT_XRGB8888:
3003 return PLANE_CTL_FORMAT_XRGB_8888;
3004 /*
3005 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3006 * to be already pre-multiplied. We need to add a knob (or a different
3007 * DRM_FORMAT) for user-space to configure that.
3008 */
3009 case DRM_FORMAT_ABGR8888:
3010 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3011 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3012 case DRM_FORMAT_ARGB8888:
3013 return PLANE_CTL_FORMAT_XRGB_8888 |
3014 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3015 case DRM_FORMAT_XRGB2101010:
3016 return PLANE_CTL_FORMAT_XRGB_2101010;
3017 case DRM_FORMAT_XBGR2101010:
3018 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3019 case DRM_FORMAT_YUYV:
3020 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3021 case DRM_FORMAT_YVYU:
3022 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3023 case DRM_FORMAT_UYVY:
3024 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3025 case DRM_FORMAT_VYUY:
3026 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3027 default:
3028 MISSING_CASE(pixel_format);
3029 }
3030
3031 return 0;
3032 }
3033
3034 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3035 {
3036 switch (fb_modifier) {
3037 case DRM_FORMAT_MOD_NONE:
3038 break;
3039 case I915_FORMAT_MOD_X_TILED:
3040 return PLANE_CTL_TILED_X;
3041 case I915_FORMAT_MOD_Y_TILED:
3042 return PLANE_CTL_TILED_Y;
3043 case I915_FORMAT_MOD_Yf_TILED:
3044 return PLANE_CTL_TILED_YF;
3045 default:
3046 MISSING_CASE(fb_modifier);
3047 }
3048
3049 return 0;
3050 }
3051
3052 u32 skl_plane_ctl_rotation(unsigned int rotation)
3053 {
3054 switch (rotation) {
3055 case BIT(DRM_ROTATE_0):
3056 break;
3057 /*
3058 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3059 * while i915 HW rotation is clockwise, thats why this swapping.
3060 */
3061 case BIT(DRM_ROTATE_90):
3062 return PLANE_CTL_ROTATE_270;
3063 case BIT(DRM_ROTATE_180):
3064 return PLANE_CTL_ROTATE_180;
3065 case BIT(DRM_ROTATE_270):
3066 return PLANE_CTL_ROTATE_90;
3067 default:
3068 MISSING_CASE(rotation);
3069 }
3070
3071 return 0;
3072 }
3073
3074 static void skylake_update_primary_plane(struct drm_plane *plane,
3075 const struct intel_crtc_state *crtc_state,
3076 const struct intel_plane_state *plane_state)
3077 {
3078 struct drm_device *dev = plane->dev;
3079 struct drm_i915_private *dev_priv = dev->dev_private;
3080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3081 struct drm_framebuffer *fb = plane_state->base.fb;
3082 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3083 int pipe = intel_crtc->pipe;
3084 u32 plane_ctl, stride_div, stride;
3085 u32 tile_height, plane_offset, plane_size;
3086 unsigned int rotation = plane_state->base.rotation;
3087 int x_offset, y_offset;
3088 u32 surf_addr;
3089 int scaler_id = plane_state->scaler_id;
3090 int src_x = plane_state->src.x1 >> 16;
3091 int src_y = plane_state->src.y1 >> 16;
3092 int src_w = drm_rect_width(&plane_state->src) >> 16;
3093 int src_h = drm_rect_height(&plane_state->src) >> 16;
3094 int dst_x = plane_state->dst.x1;
3095 int dst_y = plane_state->dst.y1;
3096 int dst_w = drm_rect_width(&plane_state->dst);
3097 int dst_h = drm_rect_height(&plane_state->dst);
3098
3099 plane_ctl = PLANE_CTL_ENABLE |
3100 PLANE_CTL_PIPE_GAMMA_ENABLE |
3101 PLANE_CTL_PIPE_CSC_ENABLE;
3102
3103 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3104 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3105 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3106 plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
3108 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3109 fb->pixel_format);
3110 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3111
3112 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3113
3114 if (intel_rotation_90_or_270(rotation)) {
3115 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3116
3117 /* stride = Surface height in tiles */
3118 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3119 stride = DIV_ROUND_UP(fb->height, tile_height);
3120 x_offset = stride * tile_height - src_y - src_h;
3121 y_offset = src_x;
3122 plane_size = (src_w - 1) << 16 | (src_h - 1);
3123 } else {
3124 stride = fb->pitches[0] / stride_div;
3125 x_offset = src_x;
3126 y_offset = src_y;
3127 plane_size = (src_h - 1) << 16 | (src_w - 1);
3128 }
3129 plane_offset = y_offset << 16 | x_offset;
3130
3131 intel_crtc->adjusted_x = x_offset;
3132 intel_crtc->adjusted_y = y_offset;
3133
3134 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3135 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3136 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3137 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3138
3139 if (scaler_id >= 0) {
3140 uint32_t ps_ctrl = 0;
3141
3142 WARN_ON(!dst_w || !dst_h);
3143 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3144 crtc_state->scaler_state.scalers[scaler_id].mode;
3145 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3146 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3147 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3148 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3149 I915_WRITE(PLANE_POS(pipe, 0), 0);
3150 } else {
3151 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3152 }
3153
3154 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3155
3156 POSTING_READ(PLANE_SURF(pipe, 0));
3157 }
3158
3159 static void skylake_disable_primary_plane(struct drm_plane *primary,
3160 struct drm_crtc *crtc)
3161 {
3162 struct drm_device *dev = crtc->dev;
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164 int pipe = to_intel_crtc(crtc)->pipe;
3165
3166 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3167 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3168 POSTING_READ(PLANE_SURF(pipe, 0));
3169 }
3170
3171 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3172 static int
3173 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174 int x, int y, enum mode_set_atomic state)
3175 {
3176 /* Support for kgdboc is disabled, this needs a major rework. */
3177 DRM_ERROR("legacy panic handler not supported any more.\n");
3178
3179 return -ENODEV;
3180 }
3181
3182 static void intel_complete_page_flips(struct drm_device *dev)
3183 {
3184 struct drm_crtc *crtc;
3185
3186 for_each_crtc(dev, crtc) {
3187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188 enum plane plane = intel_crtc->plane;
3189
3190 intel_prepare_page_flip(dev, plane);
3191 intel_finish_page_flip_plane(dev, plane);
3192 }
3193 }
3194
3195 static void intel_update_primary_planes(struct drm_device *dev)
3196 {
3197 struct drm_crtc *crtc;
3198
3199 for_each_crtc(dev, crtc) {
3200 struct intel_plane *plane = to_intel_plane(crtc->primary);
3201 struct intel_plane_state *plane_state;
3202
3203 drm_modeset_lock_crtc(crtc, &plane->base);
3204 plane_state = to_intel_plane_state(plane->base.state);
3205
3206 if (plane_state->visible)
3207 plane->update_plane(&plane->base,
3208 to_intel_crtc_state(crtc->state),
3209 plane_state);
3210
3211 drm_modeset_unlock_crtc(crtc);
3212 }
3213 }
3214
3215 void intel_prepare_reset(struct drm_device *dev)
3216 {
3217 /* no reset support for gen2 */
3218 if (IS_GEN2(dev))
3219 return;
3220
3221 /* reset doesn't touch the display */
3222 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3223 return;
3224
3225 drm_modeset_lock_all(dev);
3226 /*
3227 * Disabling the crtcs gracefully seems nicer. Also the
3228 * g33 docs say we should at least disable all the planes.
3229 */
3230 intel_display_suspend(dev);
3231 }
3232
3233 void intel_finish_reset(struct drm_device *dev)
3234 {
3235 struct drm_i915_private *dev_priv = to_i915(dev);
3236
3237 /*
3238 * Flips in the rings will be nuked by the reset,
3239 * so complete all pending flips so that user space
3240 * will get its events and not get stuck.
3241 */
3242 intel_complete_page_flips(dev);
3243
3244 /* no reset support for gen2 */
3245 if (IS_GEN2(dev))
3246 return;
3247
3248 /* reset doesn't touch the display */
3249 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3250 /*
3251 * Flips in the rings have been nuked by the reset,
3252 * so update the base address of all primary
3253 * planes to the the last fb to make sure we're
3254 * showing the correct fb after a reset.
3255 *
3256 * FIXME: Atomic will make this obsolete since we won't schedule
3257 * CS-based flips (which might get lost in gpu resets) any more.
3258 */
3259 intel_update_primary_planes(dev);
3260 return;
3261 }
3262
3263 /*
3264 * The display has been reset as well,
3265 * so need a full re-initialization.
3266 */
3267 intel_runtime_pm_disable_interrupts(dev_priv);
3268 intel_runtime_pm_enable_interrupts(dev_priv);
3269
3270 intel_modeset_init_hw(dev);
3271
3272 spin_lock_irq(&dev_priv->irq_lock);
3273 if (dev_priv->display.hpd_irq_setup)
3274 dev_priv->display.hpd_irq_setup(dev);
3275 spin_unlock_irq(&dev_priv->irq_lock);
3276
3277 intel_display_resume(dev);
3278
3279 intel_hpd_init(dev_priv);
3280
3281 drm_modeset_unlock_all(dev);
3282 }
3283
3284 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3285 {
3286 struct drm_device *dev = crtc->dev;
3287 struct drm_i915_private *dev_priv = dev->dev_private;
3288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289 bool pending;
3290
3291 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3292 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3293 return false;
3294
3295 spin_lock_irq(&dev->event_lock);
3296 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3297 spin_unlock_irq(&dev->event_lock);
3298
3299 return pending;
3300 }
3301
3302 static void intel_update_pipe_config(struct intel_crtc *crtc,
3303 struct intel_crtc_state *old_crtc_state)
3304 {
3305 struct drm_device *dev = crtc->base.dev;
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307 struct intel_crtc_state *pipe_config =
3308 to_intel_crtc_state(crtc->base.state);
3309
3310 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3311 crtc->base.mode = crtc->base.state->mode;
3312
3313 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3314 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3315 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3316
3317 if (HAS_DDI(dev))
3318 intel_set_pipe_csc(&crtc->base);
3319
3320 /*
3321 * Update pipe size and adjust fitter if needed: the reason for this is
3322 * that in compute_mode_changes we check the native mode (not the pfit
3323 * mode) to see if we can flip rather than do a full mode set. In the
3324 * fastboot case, we'll flip, but if we don't update the pipesrc and
3325 * pfit state, we'll end up with a big fb scanned out into the wrong
3326 * sized surface.
3327 */
3328
3329 I915_WRITE(PIPESRC(crtc->pipe),
3330 ((pipe_config->pipe_src_w - 1) << 16) |
3331 (pipe_config->pipe_src_h - 1));
3332
3333 /* on skylake this is done by detaching scalers */
3334 if (INTEL_INFO(dev)->gen >= 9) {
3335 skl_detach_scalers(crtc);
3336
3337 if (pipe_config->pch_pfit.enabled)
3338 skylake_pfit_enable(crtc);
3339 } else if (HAS_PCH_SPLIT(dev)) {
3340 if (pipe_config->pch_pfit.enabled)
3341 ironlake_pfit_enable(crtc);
3342 else if (old_crtc_state->pch_pfit.enabled)
3343 ironlake_pfit_disable(crtc, true);
3344 }
3345 }
3346
3347 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3348 {
3349 struct drm_device *dev = crtc->dev;
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352 int pipe = intel_crtc->pipe;
3353 i915_reg_t reg;
3354 u32 temp;
3355
3356 /* enable normal train */
3357 reg = FDI_TX_CTL(pipe);
3358 temp = I915_READ(reg);
3359 if (IS_IVYBRIDGE(dev)) {
3360 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3361 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3362 } else {
3363 temp &= ~FDI_LINK_TRAIN_NONE;
3364 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3365 }
3366 I915_WRITE(reg, temp);
3367
3368 reg = FDI_RX_CTL(pipe);
3369 temp = I915_READ(reg);
3370 if (HAS_PCH_CPT(dev)) {
3371 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3372 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3373 } else {
3374 temp &= ~FDI_LINK_TRAIN_NONE;
3375 temp |= FDI_LINK_TRAIN_NONE;
3376 }
3377 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3378
3379 /* wait one idle pattern time */
3380 POSTING_READ(reg);
3381 udelay(1000);
3382
3383 /* IVB wants error correction enabled */
3384 if (IS_IVYBRIDGE(dev))
3385 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3386 FDI_FE_ERRC_ENABLE);
3387 }
3388
3389 /* The FDI link training functions for ILK/Ibexpeak. */
3390 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3391 {
3392 struct drm_device *dev = crtc->dev;
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3395 int pipe = intel_crtc->pipe;
3396 i915_reg_t reg;
3397 u32 temp, tries;
3398
3399 /* FDI needs bits from pipe first */
3400 assert_pipe_enabled(dev_priv, pipe);
3401
3402 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3403 for train result */
3404 reg = FDI_RX_IMR(pipe);
3405 temp = I915_READ(reg);
3406 temp &= ~FDI_RX_SYMBOL_LOCK;
3407 temp &= ~FDI_RX_BIT_LOCK;
3408 I915_WRITE(reg, temp);
3409 I915_READ(reg);
3410 udelay(150);
3411
3412 /* enable CPU FDI TX and PCH FDI RX */
3413 reg = FDI_TX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3416 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3420
3421 reg = FDI_RX_CTL(pipe);
3422 temp = I915_READ(reg);
3423 temp &= ~FDI_LINK_TRAIN_NONE;
3424 temp |= FDI_LINK_TRAIN_PATTERN_1;
3425 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 /* Ironlake workaround, enable clock pointer after FDI enable*/
3431 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3433 FDI_RX_PHASE_SYNC_POINTER_EN);
3434
3435 reg = FDI_RX_IIR(pipe);
3436 for (tries = 0; tries < 5; tries++) {
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439
3440 if ((temp & FDI_RX_BIT_LOCK)) {
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443 break;
3444 }
3445 }
3446 if (tries == 5)
3447 DRM_ERROR("FDI train 1 fail!\n");
3448
3449 /* Train 2 */
3450 reg = FDI_TX_CTL(pipe);
3451 temp = I915_READ(reg);
3452 temp &= ~FDI_LINK_TRAIN_NONE;
3453 temp |= FDI_LINK_TRAIN_PATTERN_2;
3454 I915_WRITE(reg, temp);
3455
3456 reg = FDI_RX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 temp &= ~FDI_LINK_TRAIN_NONE;
3459 temp |= FDI_LINK_TRAIN_PATTERN_2;
3460 I915_WRITE(reg, temp);
3461
3462 POSTING_READ(reg);
3463 udelay(150);
3464
3465 reg = FDI_RX_IIR(pipe);
3466 for (tries = 0; tries < 5; tries++) {
3467 temp = I915_READ(reg);
3468 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3469
3470 if (temp & FDI_RX_SYMBOL_LOCK) {
3471 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3472 DRM_DEBUG_KMS("FDI train 2 done.\n");
3473 break;
3474 }
3475 }
3476 if (tries == 5)
3477 DRM_ERROR("FDI train 2 fail!\n");
3478
3479 DRM_DEBUG_KMS("FDI train done\n");
3480
3481 }
3482
3483 static const int snb_b_fdi_train_param[] = {
3484 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3485 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3486 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3487 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3488 };
3489
3490 /* The FDI link training functions for SNB/Cougarpoint. */
3491 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3492 {
3493 struct drm_device *dev = crtc->dev;
3494 struct drm_i915_private *dev_priv = dev->dev_private;
3495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496 int pipe = intel_crtc->pipe;
3497 i915_reg_t reg;
3498 u32 temp, i, retry;
3499
3500 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501 for train result */
3502 reg = FDI_RX_IMR(pipe);
3503 temp = I915_READ(reg);
3504 temp &= ~FDI_RX_SYMBOL_LOCK;
3505 temp &= ~FDI_RX_BIT_LOCK;
3506 I915_WRITE(reg, temp);
3507
3508 POSTING_READ(reg);
3509 udelay(150);
3510
3511 /* enable CPU FDI TX and PCH FDI RX */
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516 temp &= ~FDI_LINK_TRAIN_NONE;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1;
3518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519 /* SNB-B */
3520 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523 I915_WRITE(FDI_RX_MISC(pipe),
3524 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 if (HAS_PCH_CPT(dev)) {
3529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531 } else {
3532 temp &= ~FDI_LINK_TRAIN_NONE;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534 }
3535 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537 POSTING_READ(reg);
3538 udelay(150);
3539
3540 for (i = 0; i < 4; i++) {
3541 reg = FDI_TX_CTL(pipe);
3542 temp = I915_READ(reg);
3543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 temp |= snb_b_fdi_train_param[i];
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
3548 udelay(500);
3549
3550 for (retry = 0; retry < 5; retry++) {
3551 reg = FDI_RX_IIR(pipe);
3552 temp = I915_READ(reg);
3553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554 if (temp & FDI_RX_BIT_LOCK) {
3555 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557 break;
3558 }
3559 udelay(50);
3560 }
3561 if (retry < 5)
3562 break;
3563 }
3564 if (i == 4)
3565 DRM_ERROR("FDI train 1 fail!\n");
3566
3567 /* Train 2 */
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~FDI_LINK_TRAIN_NONE;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2;
3572 if (IS_GEN6(dev)) {
3573 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574 /* SNB-B */
3575 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576 }
3577 I915_WRITE(reg, temp);
3578
3579 reg = FDI_RX_CTL(pipe);
3580 temp = I915_READ(reg);
3581 if (HAS_PCH_CPT(dev)) {
3582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584 } else {
3585 temp &= ~FDI_LINK_TRAIN_NONE;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587 }
3588 I915_WRITE(reg, temp);
3589
3590 POSTING_READ(reg);
3591 udelay(150);
3592
3593 for (i = 0; i < 4; i++) {
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597 temp |= snb_b_fdi_train_param[i];
3598 I915_WRITE(reg, temp);
3599
3600 POSTING_READ(reg);
3601 udelay(500);
3602
3603 for (retry = 0; retry < 5; retry++) {
3604 reg = FDI_RX_IIR(pipe);
3605 temp = I915_READ(reg);
3606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607 if (temp & FDI_RX_SYMBOL_LOCK) {
3608 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610 break;
3611 }
3612 udelay(50);
3613 }
3614 if (retry < 5)
3615 break;
3616 }
3617 if (i == 4)
3618 DRM_ERROR("FDI train 2 fail!\n");
3619
3620 DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 int pipe = intel_crtc->pipe;
3630 i915_reg_t reg;
3631 u32 temp, i, j;
3632
3633 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634 for train result */
3635 reg = FDI_RX_IMR(pipe);
3636 temp = I915_READ(reg);
3637 temp &= ~FDI_RX_SYMBOL_LOCK;
3638 temp &= ~FDI_RX_BIT_LOCK;
3639 I915_WRITE(reg, temp);
3640
3641 POSTING_READ(reg);
3642 udelay(150);
3643
3644 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645 I915_READ(FDI_RX_IIR(pipe)));
3646
3647 /* Try each vswing and preemphasis setting twice before moving on */
3648 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649 /* disable first in case we need to retry */
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
3652 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653 temp &= ~FDI_TX_ENABLE;
3654 I915_WRITE(reg, temp);
3655
3656 reg = FDI_RX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 temp &= ~FDI_LINK_TRAIN_AUTO;
3659 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660 temp &= ~FDI_RX_ENABLE;
3661 I915_WRITE(reg, temp);
3662
3663 /* enable CPU FDI TX and PCH FDI RX */
3664 reg = FDI_TX_CTL(pipe);
3665 temp = I915_READ(reg);
3666 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670 temp |= snb_b_fdi_train_param[j/2];
3671 temp |= FDI_COMPOSITE_SYNC;
3672 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674 I915_WRITE(FDI_RX_MISC(pipe),
3675 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677 reg = FDI_RX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680 temp |= FDI_COMPOSITE_SYNC;
3681 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683 POSTING_READ(reg);
3684 udelay(1); /* should be 0.5us */
3685
3686 for (i = 0; i < 4; i++) {
3687 reg = FDI_RX_IIR(pipe);
3688 temp = I915_READ(reg);
3689 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691 if (temp & FDI_RX_BIT_LOCK ||
3692 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695 i);
3696 break;
3697 }
3698 udelay(1); /* should be 0.5us */
3699 }
3700 if (i == 4) {
3701 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702 continue;
3703 }
3704
3705 /* Train 2 */
3706 reg = FDI_TX_CTL(pipe);
3707 temp = I915_READ(reg);
3708 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710 I915_WRITE(reg, temp);
3711
3712 reg = FDI_RX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716 I915_WRITE(reg, temp);
3717
3718 POSTING_READ(reg);
3719 udelay(2); /* should be 1.5us */
3720
3721 for (i = 0; i < 4; i++) {
3722 reg = FDI_RX_IIR(pipe);
3723 temp = I915_READ(reg);
3724 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726 if (temp & FDI_RX_SYMBOL_LOCK ||
3727 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730 i);
3731 goto train_done;
3732 }
3733 udelay(2); /* should be 1.5us */
3734 }
3735 if (i == 4)
3736 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737 }
3738
3739 train_done:
3740 DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745 struct drm_device *dev = intel_crtc->base.dev;
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747 int pipe = intel_crtc->pipe;
3748 i915_reg_t reg;
3749 u32 temp;
3750
3751 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752 reg = FDI_RX_CTL(pipe);
3753 temp = I915_READ(reg);
3754 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759 POSTING_READ(reg);
3760 udelay(200);
3761
3762 /* Switch from Rawclk to PCDclk */
3763 temp = I915_READ(reg);
3764 I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766 POSTING_READ(reg);
3767 udelay(200);
3768
3769 /* Enable CPU FDI TX PLL, always on for Ironlake */
3770 reg = FDI_TX_CTL(pipe);
3771 temp = I915_READ(reg);
3772 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775 POSTING_READ(reg);
3776 udelay(100);
3777 }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782 struct drm_device *dev = intel_crtc->base.dev;
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784 int pipe = intel_crtc->pipe;
3785 i915_reg_t reg;
3786 u32 temp;
3787
3788 /* Switch from PCDclk to Rawclk */
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793 /* Disable CPU FDI TX PLL */
3794 reg = FDI_TX_CTL(pipe);
3795 temp = I915_READ(reg);
3796 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798 POSTING_READ(reg);
3799 udelay(100);
3800
3801 reg = FDI_RX_CTL(pipe);
3802 temp = I915_READ(reg);
3803 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805 /* Wait for the clocks to turn off. */
3806 POSTING_READ(reg);
3807 udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812 struct drm_device *dev = crtc->dev;
3813 struct drm_i915_private *dev_priv = dev->dev_private;
3814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815 int pipe = intel_crtc->pipe;
3816 i915_reg_t reg;
3817 u32 temp;
3818
3819 /* disable CPU FDI tx and PCH FDI rx */
3820 reg = FDI_TX_CTL(pipe);
3821 temp = I915_READ(reg);
3822 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3823 POSTING_READ(reg);
3824
3825 reg = FDI_RX_CTL(pipe);
3826 temp = I915_READ(reg);
3827 temp &= ~(0x7 << 16);
3828 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3829 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3830
3831 POSTING_READ(reg);
3832 udelay(100);
3833
3834 /* Ironlake workaround, disable clock pointer after downing FDI */
3835 if (HAS_PCH_IBX(dev))
3836 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3837
3838 /* still set train pattern 1 */
3839 reg = FDI_TX_CTL(pipe);
3840 temp = I915_READ(reg);
3841 temp &= ~FDI_LINK_TRAIN_NONE;
3842 temp |= FDI_LINK_TRAIN_PATTERN_1;
3843 I915_WRITE(reg, temp);
3844
3845 reg = FDI_RX_CTL(pipe);
3846 temp = I915_READ(reg);
3847 if (HAS_PCH_CPT(dev)) {
3848 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3849 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3850 } else {
3851 temp &= ~FDI_LINK_TRAIN_NONE;
3852 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853 }
3854 /* BPC in FDI rx is consistent with that in PIPECONF */
3855 temp &= ~(0x07 << 16);
3856 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857 I915_WRITE(reg, temp);
3858
3859 POSTING_READ(reg);
3860 udelay(100);
3861 }
3862
3863 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3864 {
3865 struct intel_crtc *crtc;
3866
3867 /* Note that we don't need to be called with mode_config.lock here
3868 * as our list of CRTC objects is static for the lifetime of the
3869 * device and so cannot disappear as we iterate. Similarly, we can
3870 * happily treat the predicates as racy, atomic checks as userspace
3871 * cannot claim and pin a new fb without at least acquring the
3872 * struct_mutex and so serialising with us.
3873 */
3874 for_each_intel_crtc(dev, crtc) {
3875 if (atomic_read(&crtc->unpin_work_count) == 0)
3876 continue;
3877
3878 if (crtc->unpin_work)
3879 intel_wait_for_vblank(dev, crtc->pipe);
3880
3881 return true;
3882 }
3883
3884 return false;
3885 }
3886
3887 static void page_flip_completed(struct intel_crtc *intel_crtc)
3888 {
3889 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3890 struct intel_unpin_work *work = intel_crtc->unpin_work;
3891
3892 /* ensure that the unpin work is consistent wrt ->pending. */
3893 smp_rmb();
3894 intel_crtc->unpin_work = NULL;
3895
3896 if (work->event)
3897 drm_send_vblank_event(intel_crtc->base.dev,
3898 intel_crtc->pipe,
3899 work->event);
3900
3901 drm_crtc_vblank_put(&intel_crtc->base);
3902
3903 wake_up_all(&dev_priv->pending_flip_queue);
3904 queue_work(dev_priv->wq, &work->work);
3905
3906 trace_i915_flip_complete(intel_crtc->plane,
3907 work->pending_flip_obj);
3908 }
3909
3910 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3911 {
3912 struct drm_device *dev = crtc->dev;
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914 long ret;
3915
3916 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3917
3918 ret = wait_event_interruptible_timeout(
3919 dev_priv->pending_flip_queue,
3920 !intel_crtc_has_pending_flip(crtc),
3921 60*HZ);
3922
3923 if (ret < 0)
3924 return ret;
3925
3926 if (ret == 0) {
3927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3928
3929 spin_lock_irq(&dev->event_lock);
3930 if (intel_crtc->unpin_work) {
3931 WARN_ONCE(1, "Removing stuck page flip\n");
3932 page_flip_completed(intel_crtc);
3933 }
3934 spin_unlock_irq(&dev->event_lock);
3935 }
3936
3937 return 0;
3938 }
3939
3940 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3941 {
3942 u32 temp;
3943
3944 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3945
3946 mutex_lock(&dev_priv->sb_lock);
3947
3948 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3949 temp |= SBI_SSCCTL_DISABLE;
3950 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3951
3952 mutex_unlock(&dev_priv->sb_lock);
3953 }
3954
3955 /* Program iCLKIP clock to the desired frequency */
3956 static void lpt_program_iclkip(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3961 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3962 u32 temp;
3963
3964 lpt_disable_iclkip(dev_priv);
3965
3966 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3967 if (clock == 20000) {
3968 auxdiv = 1;
3969 divsel = 0x41;
3970 phaseinc = 0x20;
3971 } else {
3972 /* The iCLK virtual clock root frequency is in MHz,
3973 * but the adjusted_mode->crtc_clock in in KHz. To get the
3974 * divisors, it is necessary to divide one by another, so we
3975 * convert the virtual clock precision to KHz here for higher
3976 * precision.
3977 */
3978 u32 iclk_virtual_root_freq = 172800 * 1000;
3979 u32 iclk_pi_range = 64;
3980 u32 desired_divisor, msb_divisor_value, pi_value;
3981
3982 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3983 msb_divisor_value = desired_divisor / iclk_pi_range;
3984 pi_value = desired_divisor % iclk_pi_range;
3985
3986 auxdiv = 0;
3987 divsel = msb_divisor_value - 2;
3988 phaseinc = pi_value;
3989 }
3990
3991 /* This should not happen with any sane values */
3992 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3993 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3994 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3995 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3996
3997 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3998 clock,
3999 auxdiv,
4000 divsel,
4001 phasedir,
4002 phaseinc);
4003
4004 mutex_lock(&dev_priv->sb_lock);
4005
4006 /* Program SSCDIVINTPHASE6 */
4007 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4008 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4009 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4010 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4011 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4012 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4013 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4014 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4015
4016 /* Program SSCAUXDIV */
4017 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4018 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4019 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4020 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4021
4022 /* Enable modulator and associated divider */
4023 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4024 temp &= ~SBI_SSCCTL_DISABLE;
4025 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4026
4027 mutex_unlock(&dev_priv->sb_lock);
4028
4029 /* Wait for initialization time */
4030 udelay(24);
4031
4032 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4033 }
4034
4035 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4036 enum pipe pch_transcoder)
4037 {
4038 struct drm_device *dev = crtc->base.dev;
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4041
4042 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4043 I915_READ(HTOTAL(cpu_transcoder)));
4044 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4045 I915_READ(HBLANK(cpu_transcoder)));
4046 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4047 I915_READ(HSYNC(cpu_transcoder)));
4048
4049 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4050 I915_READ(VTOTAL(cpu_transcoder)));
4051 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4052 I915_READ(VBLANK(cpu_transcoder)));
4053 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4054 I915_READ(VSYNC(cpu_transcoder)));
4055 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4056 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4057 }
4058
4059 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4060 {
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 uint32_t temp;
4063
4064 temp = I915_READ(SOUTH_CHICKEN1);
4065 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4066 return;
4067
4068 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4069 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4070
4071 temp &= ~FDI_BC_BIFURCATION_SELECT;
4072 if (enable)
4073 temp |= FDI_BC_BIFURCATION_SELECT;
4074
4075 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4076 I915_WRITE(SOUTH_CHICKEN1, temp);
4077 POSTING_READ(SOUTH_CHICKEN1);
4078 }
4079
4080 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4081 {
4082 struct drm_device *dev = intel_crtc->base.dev;
4083
4084 switch (intel_crtc->pipe) {
4085 case PIPE_A:
4086 break;
4087 case PIPE_B:
4088 if (intel_crtc->config->fdi_lanes > 2)
4089 cpt_set_fdi_bc_bifurcation(dev, false);
4090 else
4091 cpt_set_fdi_bc_bifurcation(dev, true);
4092
4093 break;
4094 case PIPE_C:
4095 cpt_set_fdi_bc_bifurcation(dev, true);
4096
4097 break;
4098 default:
4099 BUG();
4100 }
4101 }
4102
4103 /* Return which DP Port should be selected for Transcoder DP control */
4104 static enum port
4105 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4106 {
4107 struct drm_device *dev = crtc->dev;
4108 struct intel_encoder *encoder;
4109
4110 for_each_encoder_on_crtc(dev, crtc, encoder) {
4111 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4112 encoder->type == INTEL_OUTPUT_EDP)
4113 return enc_to_dig_port(&encoder->base)->port;
4114 }
4115
4116 return -1;
4117 }
4118
4119 /*
4120 * Enable PCH resources required for PCH ports:
4121 * - PCH PLLs
4122 * - FDI training & RX/TX
4123 * - update transcoder timings
4124 * - DP transcoding bits
4125 * - transcoder
4126 */
4127 static void ironlake_pch_enable(struct drm_crtc *crtc)
4128 {
4129 struct drm_device *dev = crtc->dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132 int pipe = intel_crtc->pipe;
4133 u32 temp;
4134
4135 assert_pch_transcoder_disabled(dev_priv, pipe);
4136
4137 if (IS_IVYBRIDGE(dev))
4138 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4139
4140 /* Write the TU size bits before fdi link training, so that error
4141 * detection works. */
4142 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4143 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4144
4145 /*
4146 * Sometimes spurious CPU pipe underruns happen during FDI
4147 * training, at least with VGA+HDMI cloning. Suppress them.
4148 */
4149 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4150
4151 /* For PCH output, training FDI link */
4152 dev_priv->display.fdi_link_train(crtc);
4153
4154 /* We need to program the right clock selection before writing the pixel
4155 * mutliplier into the DPLL. */
4156 if (HAS_PCH_CPT(dev)) {
4157 u32 sel;
4158
4159 temp = I915_READ(PCH_DPLL_SEL);
4160 temp |= TRANS_DPLL_ENABLE(pipe);
4161 sel = TRANS_DPLLB_SEL(pipe);
4162 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4163 temp |= sel;
4164 else
4165 temp &= ~sel;
4166 I915_WRITE(PCH_DPLL_SEL, temp);
4167 }
4168
4169 /* XXX: pch pll's can be enabled any time before we enable the PCH
4170 * transcoder, and we actually should do this to not upset any PCH
4171 * transcoder that already use the clock when we share it.
4172 *
4173 * Note that enable_shared_dpll tries to do the right thing, but
4174 * get_shared_dpll unconditionally resets the pll - we need that to have
4175 * the right LVDS enable sequence. */
4176 intel_enable_shared_dpll(intel_crtc);
4177
4178 /* set transcoder timing, panel must allow it */
4179 assert_panel_unlocked(dev_priv, pipe);
4180 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4181
4182 intel_fdi_normal_train(crtc);
4183
4184 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4185
4186 /* For PCH DP, enable TRANS_DP_CTL */
4187 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4188 const struct drm_display_mode *adjusted_mode =
4189 &intel_crtc->config->base.adjusted_mode;
4190 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4191 i915_reg_t reg = TRANS_DP_CTL(pipe);
4192 temp = I915_READ(reg);
4193 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4194 TRANS_DP_SYNC_MASK |
4195 TRANS_DP_BPC_MASK);
4196 temp |= TRANS_DP_OUTPUT_ENABLE;
4197 temp |= bpc << 9; /* same format but at 11:9 */
4198
4199 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4200 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4201 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4202 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4203
4204 switch (intel_trans_dp_port_sel(crtc)) {
4205 case PORT_B:
4206 temp |= TRANS_DP_PORT_SEL_B;
4207 break;
4208 case PORT_C:
4209 temp |= TRANS_DP_PORT_SEL_C;
4210 break;
4211 case PORT_D:
4212 temp |= TRANS_DP_PORT_SEL_D;
4213 break;
4214 default:
4215 BUG();
4216 }
4217
4218 I915_WRITE(reg, temp);
4219 }
4220
4221 ironlake_enable_pch_transcoder(dev_priv, pipe);
4222 }
4223
4224 static void lpt_pch_enable(struct drm_crtc *crtc)
4225 {
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = dev->dev_private;
4228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4230
4231 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4232
4233 lpt_program_iclkip(crtc);
4234
4235 /* Set transcoder timing. */
4236 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4237
4238 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4239 }
4240
4241 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4242 struct intel_crtc_state *crtc_state)
4243 {
4244 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4245 struct intel_shared_dpll *pll;
4246 struct intel_shared_dpll_config *shared_dpll;
4247 enum intel_dpll_id i;
4248 int max = dev_priv->num_shared_dpll;
4249
4250 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4251
4252 if (HAS_PCH_IBX(dev_priv->dev)) {
4253 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4254 i = (enum intel_dpll_id) crtc->pipe;
4255 pll = &dev_priv->shared_dplls[i];
4256
4257 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258 crtc->base.base.id, pll->name);
4259
4260 WARN_ON(shared_dpll[i].crtc_mask);
4261
4262 goto found;
4263 }
4264
4265 if (IS_BROXTON(dev_priv->dev)) {
4266 /* PLL is attached to port in bxt */
4267 struct intel_encoder *encoder;
4268 struct intel_digital_port *intel_dig_port;
4269
4270 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4271 if (WARN_ON(!encoder))
4272 return NULL;
4273
4274 intel_dig_port = enc_to_dig_port(&encoder->base);
4275 /* 1:1 mapping between ports and PLLs */
4276 i = (enum intel_dpll_id)intel_dig_port->port;
4277 pll = &dev_priv->shared_dplls[i];
4278 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4279 crtc->base.base.id, pll->name);
4280 WARN_ON(shared_dpll[i].crtc_mask);
4281
4282 goto found;
4283 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4284 /* Do not consider SPLL */
4285 max = 2;
4286
4287 for (i = 0; i < max; i++) {
4288 pll = &dev_priv->shared_dplls[i];
4289
4290 /* Only want to check enabled timings first */
4291 if (shared_dpll[i].crtc_mask == 0)
4292 continue;
4293
4294 if (memcmp(&crtc_state->dpll_hw_state,
4295 &shared_dpll[i].hw_state,
4296 sizeof(crtc_state->dpll_hw_state)) == 0) {
4297 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4298 crtc->base.base.id, pll->name,
4299 shared_dpll[i].crtc_mask,
4300 pll->active);
4301 goto found;
4302 }
4303 }
4304
4305 /* Ok no matching timings, maybe there's a free one? */
4306 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4307 pll = &dev_priv->shared_dplls[i];
4308 if (shared_dpll[i].crtc_mask == 0) {
4309 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4310 crtc->base.base.id, pll->name);
4311 goto found;
4312 }
4313 }
4314
4315 return NULL;
4316
4317 found:
4318 if (shared_dpll[i].crtc_mask == 0)
4319 shared_dpll[i].hw_state =
4320 crtc_state->dpll_hw_state;
4321
4322 crtc_state->shared_dpll = i;
4323 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4324 pipe_name(crtc->pipe));
4325
4326 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4327
4328 return pll;
4329 }
4330
4331 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4332 {
4333 struct drm_i915_private *dev_priv = to_i915(state->dev);
4334 struct intel_shared_dpll_config *shared_dpll;
4335 struct intel_shared_dpll *pll;
4336 enum intel_dpll_id i;
4337
4338 if (!to_intel_atomic_state(state)->dpll_set)
4339 return;
4340
4341 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4342 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4343 pll = &dev_priv->shared_dplls[i];
4344 pll->config = shared_dpll[i];
4345 }
4346 }
4347
4348 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4349 {
4350 struct drm_i915_private *dev_priv = dev->dev_private;
4351 i915_reg_t dslreg = PIPEDSL(pipe);
4352 u32 temp;
4353
4354 temp = I915_READ(dslreg);
4355 udelay(500);
4356 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4357 if (wait_for(I915_READ(dslreg) != temp, 5))
4358 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4359 }
4360 }
4361
4362 static int
4363 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4364 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4365 int src_w, int src_h, int dst_w, int dst_h)
4366 {
4367 struct intel_crtc_scaler_state *scaler_state =
4368 &crtc_state->scaler_state;
4369 struct intel_crtc *intel_crtc =
4370 to_intel_crtc(crtc_state->base.crtc);
4371 int need_scaling;
4372
4373 need_scaling = intel_rotation_90_or_270(rotation) ?
4374 (src_h != dst_w || src_w != dst_h):
4375 (src_w != dst_w || src_h != dst_h);
4376
4377 /*
4378 * if plane is being disabled or scaler is no more required or force detach
4379 * - free scaler binded to this plane/crtc
4380 * - in order to do this, update crtc->scaler_usage
4381 *
4382 * Here scaler state in crtc_state is set free so that
4383 * scaler can be assigned to other user. Actual register
4384 * update to free the scaler is done in plane/panel-fit programming.
4385 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4386 */
4387 if (force_detach || !need_scaling) {
4388 if (*scaler_id >= 0) {
4389 scaler_state->scaler_users &= ~(1 << scaler_user);
4390 scaler_state->scalers[*scaler_id].in_use = 0;
4391
4392 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4393 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4394 intel_crtc->pipe, scaler_user, *scaler_id,
4395 scaler_state->scaler_users);
4396 *scaler_id = -1;
4397 }
4398 return 0;
4399 }
4400
4401 /* range checks */
4402 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4403 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4404
4405 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4406 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4407 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4408 "size is out of scaler range\n",
4409 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4410 return -EINVAL;
4411 }
4412
4413 /* mark this plane as a scaler user in crtc_state */
4414 scaler_state->scaler_users |= (1 << scaler_user);
4415 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4416 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4417 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4418 scaler_state->scaler_users);
4419
4420 return 0;
4421 }
4422
4423 /**
4424 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4425 *
4426 * @state: crtc's scaler state
4427 *
4428 * Return
4429 * 0 - scaler_usage updated successfully
4430 * error - requested scaling cannot be supported or other error condition
4431 */
4432 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4433 {
4434 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4435 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4436
4437 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4438 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4439
4440 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4441 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4442 state->pipe_src_w, state->pipe_src_h,
4443 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4444 }
4445
4446 /**
4447 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4448 *
4449 * @state: crtc's scaler state
4450 * @plane_state: atomic plane state to update
4451 *
4452 * Return
4453 * 0 - scaler_usage updated successfully
4454 * error - requested scaling cannot be supported or other error condition
4455 */
4456 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4457 struct intel_plane_state *plane_state)
4458 {
4459
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4461 struct intel_plane *intel_plane =
4462 to_intel_plane(plane_state->base.plane);
4463 struct drm_framebuffer *fb = plane_state->base.fb;
4464 int ret;
4465
4466 bool force_detach = !fb || !plane_state->visible;
4467
4468 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4469 intel_plane->base.base.id, intel_crtc->pipe,
4470 drm_plane_index(&intel_plane->base));
4471
4472 ret = skl_update_scaler(crtc_state, force_detach,
4473 drm_plane_index(&intel_plane->base),
4474 &plane_state->scaler_id,
4475 plane_state->base.rotation,
4476 drm_rect_width(&plane_state->src) >> 16,
4477 drm_rect_height(&plane_state->src) >> 16,
4478 drm_rect_width(&plane_state->dst),
4479 drm_rect_height(&plane_state->dst));
4480
4481 if (ret || plane_state->scaler_id < 0)
4482 return ret;
4483
4484 /* check colorkey */
4485 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4486 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4487 intel_plane->base.base.id);
4488 return -EINVAL;
4489 }
4490
4491 /* Check src format */
4492 switch (fb->pixel_format) {
4493 case DRM_FORMAT_RGB565:
4494 case DRM_FORMAT_XBGR8888:
4495 case DRM_FORMAT_XRGB8888:
4496 case DRM_FORMAT_ABGR8888:
4497 case DRM_FORMAT_ARGB8888:
4498 case DRM_FORMAT_XRGB2101010:
4499 case DRM_FORMAT_XBGR2101010:
4500 case DRM_FORMAT_YUYV:
4501 case DRM_FORMAT_YVYU:
4502 case DRM_FORMAT_UYVY:
4503 case DRM_FORMAT_VYUY:
4504 break;
4505 default:
4506 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4507 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4508 return -EINVAL;
4509 }
4510
4511 return 0;
4512 }
4513
4514 static void skylake_scaler_disable(struct intel_crtc *crtc)
4515 {
4516 int i;
4517
4518 for (i = 0; i < crtc->num_scalers; i++)
4519 skl_detach_scaler(crtc, i);
4520 }
4521
4522 static void skylake_pfit_enable(struct intel_crtc *crtc)
4523 {
4524 struct drm_device *dev = crtc->base.dev;
4525 struct drm_i915_private *dev_priv = dev->dev_private;
4526 int pipe = crtc->pipe;
4527 struct intel_crtc_scaler_state *scaler_state =
4528 &crtc->config->scaler_state;
4529
4530 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4531
4532 if (crtc->config->pch_pfit.enabled) {
4533 int id;
4534
4535 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4536 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4537 return;
4538 }
4539
4540 id = scaler_state->scaler_id;
4541 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4542 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4543 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4544 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4545
4546 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4547 }
4548 }
4549
4550 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4551 {
4552 struct drm_device *dev = crtc->base.dev;
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 int pipe = crtc->pipe;
4555
4556 if (crtc->config->pch_pfit.enabled) {
4557 /* Force use of hard-coded filter coefficients
4558 * as some pre-programmed values are broken,
4559 * e.g. x201.
4560 */
4561 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4562 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4563 PF_PIPE_SEL_IVB(pipe));
4564 else
4565 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4566 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4567 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4568 }
4569 }
4570
4571 void hsw_enable_ips(struct intel_crtc *crtc)
4572 {
4573 struct drm_device *dev = crtc->base.dev;
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575
4576 if (!crtc->config->ips_enabled)
4577 return;
4578
4579 /* We can only enable IPS after we enable a plane and wait for a vblank */
4580 intel_wait_for_vblank(dev, crtc->pipe);
4581
4582 assert_plane_enabled(dev_priv, crtc->plane);
4583 if (IS_BROADWELL(dev)) {
4584 mutex_lock(&dev_priv->rps.hw_lock);
4585 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4586 mutex_unlock(&dev_priv->rps.hw_lock);
4587 /* Quoting Art Runyan: "its not safe to expect any particular
4588 * value in IPS_CTL bit 31 after enabling IPS through the
4589 * mailbox." Moreover, the mailbox may return a bogus state,
4590 * so we need to just enable it and continue on.
4591 */
4592 } else {
4593 I915_WRITE(IPS_CTL, IPS_ENABLE);
4594 /* The bit only becomes 1 in the next vblank, so this wait here
4595 * is essentially intel_wait_for_vblank. If we don't have this
4596 * and don't wait for vblanks until the end of crtc_enable, then
4597 * the HW state readout code will complain that the expected
4598 * IPS_CTL value is not the one we read. */
4599 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4600 DRM_ERROR("Timed out waiting for IPS enable\n");
4601 }
4602 }
4603
4604 void hsw_disable_ips(struct intel_crtc *crtc)
4605 {
4606 struct drm_device *dev = crtc->base.dev;
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608
4609 if (!crtc->config->ips_enabled)
4610 return;
4611
4612 assert_plane_enabled(dev_priv, crtc->plane);
4613 if (IS_BROADWELL(dev)) {
4614 mutex_lock(&dev_priv->rps.hw_lock);
4615 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4616 mutex_unlock(&dev_priv->rps.hw_lock);
4617 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4618 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4619 DRM_ERROR("Timed out waiting for IPS disable\n");
4620 } else {
4621 I915_WRITE(IPS_CTL, 0);
4622 POSTING_READ(IPS_CTL);
4623 }
4624
4625 /* We need to wait for a vblank before we can disable the plane. */
4626 intel_wait_for_vblank(dev, crtc->pipe);
4627 }
4628
4629 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4630 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4631 {
4632 struct drm_device *dev = crtc->dev;
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635 enum pipe pipe = intel_crtc->pipe;
4636 int i;
4637 bool reenable_ips = false;
4638
4639 /* The clocks have to be on to load the palette. */
4640 if (!crtc->state->active)
4641 return;
4642
4643 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4644 if (intel_crtc->config->has_dsi_encoder)
4645 assert_dsi_pll_enabled(dev_priv);
4646 else
4647 assert_pll_enabled(dev_priv, pipe);
4648 }
4649
4650 /* Workaround : Do not read or write the pipe palette/gamma data while
4651 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4652 */
4653 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4654 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4655 GAMMA_MODE_MODE_SPLIT)) {
4656 hsw_disable_ips(intel_crtc);
4657 reenable_ips = true;
4658 }
4659
4660 for (i = 0; i < 256; i++) {
4661 i915_reg_t palreg;
4662
4663 if (HAS_GMCH_DISPLAY(dev))
4664 palreg = PALETTE(pipe, i);
4665 else
4666 palreg = LGC_PALETTE(pipe, i);
4667
4668 I915_WRITE(palreg,
4669 (intel_crtc->lut_r[i] << 16) |
4670 (intel_crtc->lut_g[i] << 8) |
4671 intel_crtc->lut_b[i]);
4672 }
4673
4674 if (reenable_ips)
4675 hsw_enable_ips(intel_crtc);
4676 }
4677
4678 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4679 {
4680 if (intel_crtc->overlay) {
4681 struct drm_device *dev = intel_crtc->base.dev;
4682 struct drm_i915_private *dev_priv = dev->dev_private;
4683
4684 mutex_lock(&dev->struct_mutex);
4685 dev_priv->mm.interruptible = false;
4686 (void) intel_overlay_switch_off(intel_crtc->overlay);
4687 dev_priv->mm.interruptible = true;
4688 mutex_unlock(&dev->struct_mutex);
4689 }
4690
4691 /* Let userspace switch the overlay on again. In most cases userspace
4692 * has to recompute where to put it anyway.
4693 */
4694 }
4695
4696 /**
4697 * intel_post_enable_primary - Perform operations after enabling primary plane
4698 * @crtc: the CRTC whose primary plane was just enabled
4699 *
4700 * Performs potentially sleeping operations that must be done after the primary
4701 * plane is enabled, such as updating FBC and IPS. Note that this may be
4702 * called due to an explicit primary plane update, or due to an implicit
4703 * re-enable that is caused when a sprite plane is updated to no longer
4704 * completely hide the primary plane.
4705 */
4706 static void
4707 intel_post_enable_primary(struct drm_crtc *crtc)
4708 {
4709 struct drm_device *dev = crtc->dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712 int pipe = intel_crtc->pipe;
4713
4714 /*
4715 * FIXME IPS should be fine as long as one plane is
4716 * enabled, but in practice it seems to have problems
4717 * when going from primary only to sprite only and vice
4718 * versa.
4719 */
4720 hsw_enable_ips(intel_crtc);
4721
4722 /*
4723 * Gen2 reports pipe underruns whenever all planes are disabled.
4724 * So don't enable underrun reporting before at least some planes
4725 * are enabled.
4726 * FIXME: Need to fix the logic to work when we turn off all planes
4727 * but leave the pipe running.
4728 */
4729 if (IS_GEN2(dev))
4730 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4731
4732 /* Underruns don't always raise interrupts, so check manually. */
4733 intel_check_cpu_fifo_underruns(dev_priv);
4734 intel_check_pch_fifo_underruns(dev_priv);
4735 }
4736
4737 /**
4738 * intel_pre_disable_primary - Perform operations before disabling primary plane
4739 * @crtc: the CRTC whose primary plane is to be disabled
4740 *
4741 * Performs potentially sleeping operations that must be done before the
4742 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4743 * be called due to an explicit primary plane update, or due to an implicit
4744 * disable that is caused when a sprite plane completely hides the primary
4745 * plane.
4746 */
4747 static void
4748 intel_pre_disable_primary(struct drm_crtc *crtc)
4749 {
4750 struct drm_device *dev = crtc->dev;
4751 struct drm_i915_private *dev_priv = dev->dev_private;
4752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4753 int pipe = intel_crtc->pipe;
4754
4755 /*
4756 * Gen2 reports pipe underruns whenever all planes are disabled.
4757 * So diasble underrun reporting before all the planes get disabled.
4758 * FIXME: Need to fix the logic to work when we turn off all planes
4759 * but leave the pipe running.
4760 */
4761 if (IS_GEN2(dev))
4762 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4763
4764 /*
4765 * Vblank time updates from the shadow to live plane control register
4766 * are blocked if the memory self-refresh mode is active at that
4767 * moment. So to make sure the plane gets truly disabled, disable
4768 * first the self-refresh mode. The self-refresh enable bit in turn
4769 * will be checked/applied by the HW only at the next frame start
4770 * event which is after the vblank start event, so we need to have a
4771 * wait-for-vblank between disabling the plane and the pipe.
4772 */
4773 if (HAS_GMCH_DISPLAY(dev)) {
4774 intel_set_memory_cxsr(dev_priv, false);
4775 dev_priv->wm.vlv.cxsr = false;
4776 intel_wait_for_vblank(dev, pipe);
4777 }
4778
4779 /*
4780 * FIXME IPS should be fine as long as one plane is
4781 * enabled, but in practice it seems to have problems
4782 * when going from primary only to sprite only and vice
4783 * versa.
4784 */
4785 hsw_disable_ips(intel_crtc);
4786 }
4787
4788 static void intel_post_plane_update(struct intel_crtc *crtc)
4789 {
4790 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4791 struct intel_crtc_state *pipe_config =
4792 to_intel_crtc_state(crtc->base.state);
4793 struct drm_device *dev = crtc->base.dev;
4794
4795 intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
4797 crtc->wm.cxsr_allowed = true;
4798
4799 if (pipe_config->wm_changed && pipe_config->base.active)
4800 intel_update_watermarks(&crtc->base);
4801
4802 if (atomic->update_fbc)
4803 intel_fbc_post_update(crtc);
4804
4805 if (atomic->post_enable_primary)
4806 intel_post_enable_primary(&crtc->base);
4807
4808 memset(atomic, 0, sizeof(*atomic));
4809 }
4810
4811 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4812 {
4813 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4814 struct drm_device *dev = crtc->base.dev;
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4817 struct intel_crtc_state *pipe_config =
4818 to_intel_crtc_state(crtc->base.state);
4819 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4820 struct drm_plane *primary = crtc->base.primary;
4821 struct drm_plane_state *old_pri_state =
4822 drm_atomic_get_existing_plane_state(old_state, primary);
4823 bool modeset = needs_modeset(&pipe_config->base);
4824
4825 if (atomic->update_fbc)
4826 intel_fbc_pre_update(crtc);
4827
4828 if (old_pri_state) {
4829 struct intel_plane_state *primary_state =
4830 to_intel_plane_state(primary->state);
4831 struct intel_plane_state *old_primary_state =
4832 to_intel_plane_state(old_pri_state);
4833
4834 if (old_primary_state->visible &&
4835 (modeset || !primary_state->visible))
4836 intel_pre_disable_primary(&crtc->base);
4837 }
4838
4839 if (pipe_config->disable_cxsr) {
4840 crtc->wm.cxsr_allowed = false;
4841
4842 if (old_crtc_state->base.active)
4843 intel_set_memory_cxsr(dev_priv, false);
4844 }
4845
4846 if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4847 intel_update_watermarks(&crtc->base);
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4851 {
4852 struct drm_device *dev = crtc->dev;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 struct drm_plane *p;
4855 int pipe = intel_crtc->pipe;
4856
4857 intel_crtc_dpms_overlay_disable(intel_crtc);
4858
4859 drm_for_each_plane_mask(p, dev, plane_mask)
4860 to_intel_plane(p)->disable_plane(p, crtc);
4861
4862 /*
4863 * FIXME: Once we grow proper nuclear flip support out of this we need
4864 * to compute the mask of flip planes precisely. For the time being
4865 * consider this a flip to a NULL plane.
4866 */
4867 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4868 }
4869
4870 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4871 {
4872 struct drm_device *dev = crtc->dev;
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 struct intel_encoder *encoder;
4876 int pipe = intel_crtc->pipe;
4877
4878 if (WARN_ON(intel_crtc->active))
4879 return;
4880
4881 if (intel_crtc->config->has_pch_encoder)
4882 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4883
4884 if (intel_crtc->config->has_pch_encoder)
4885 intel_prepare_shared_dpll(intel_crtc);
4886
4887 if (intel_crtc->config->has_dp_encoder)
4888 intel_dp_set_m_n(intel_crtc, M1_N1);
4889
4890 intel_set_pipe_timings(intel_crtc);
4891
4892 if (intel_crtc->config->has_pch_encoder) {
4893 intel_cpu_transcoder_set_m_n(intel_crtc,
4894 &intel_crtc->config->fdi_m_n, NULL);
4895 }
4896
4897 ironlake_set_pipeconf(crtc);
4898
4899 intel_crtc->active = true;
4900
4901 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903 for_each_encoder_on_crtc(dev, crtc, encoder)
4904 if (encoder->pre_enable)
4905 encoder->pre_enable(encoder);
4906
4907 if (intel_crtc->config->has_pch_encoder) {
4908 /* Note: FDI PLL enabling _must_ be done before we enable the
4909 * cpu pipes, hence this is separate from all the other fdi/pch
4910 * enabling. */
4911 ironlake_fdi_pll_enable(intel_crtc);
4912 } else {
4913 assert_fdi_tx_disabled(dev_priv, pipe);
4914 assert_fdi_rx_disabled(dev_priv, pipe);
4915 }
4916
4917 ironlake_pfit_enable(intel_crtc);
4918
4919 /*
4920 * On ILK+ LUT must be loaded before the pipe is running but with
4921 * clocks enabled
4922 */
4923 intel_crtc_load_lut(crtc);
4924
4925 intel_update_watermarks(crtc);
4926 intel_enable_pipe(intel_crtc);
4927
4928 if (intel_crtc->config->has_pch_encoder)
4929 ironlake_pch_enable(crtc);
4930
4931 assert_vblank_disabled(crtc);
4932 drm_crtc_vblank_on(crtc);
4933
4934 for_each_encoder_on_crtc(dev, crtc, encoder)
4935 encoder->enable(encoder);
4936
4937 if (HAS_PCH_CPT(dev))
4938 cpt_verify_modeset(dev, intel_crtc->pipe);
4939
4940 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4941 if (intel_crtc->config->has_pch_encoder)
4942 intel_wait_for_vblank(dev, pipe);
4943 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4944 }
4945
4946 /* IPS only exists on ULT machines and is tied to pipe A. */
4947 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4948 {
4949 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4950 }
4951
4952 static void haswell_crtc_enable(struct drm_crtc *crtc)
4953 {
4954 struct drm_device *dev = crtc->dev;
4955 struct drm_i915_private *dev_priv = dev->dev_private;
4956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957 struct intel_encoder *encoder;
4958 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4959 struct intel_crtc_state *pipe_config =
4960 to_intel_crtc_state(crtc->state);
4961
4962 if (WARN_ON(intel_crtc->active))
4963 return;
4964
4965 if (intel_crtc->config->has_pch_encoder)
4966 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4967 false);
4968
4969 if (intel_crtc_to_shared_dpll(intel_crtc))
4970 intel_enable_shared_dpll(intel_crtc);
4971
4972 if (intel_crtc->config->has_dp_encoder)
4973 intel_dp_set_m_n(intel_crtc, M1_N1);
4974
4975 intel_set_pipe_timings(intel_crtc);
4976
4977 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4978 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4979 intel_crtc->config->pixel_multiplier - 1);
4980 }
4981
4982 if (intel_crtc->config->has_pch_encoder) {
4983 intel_cpu_transcoder_set_m_n(intel_crtc,
4984 &intel_crtc->config->fdi_m_n, NULL);
4985 }
4986
4987 haswell_set_pipeconf(crtc);
4988
4989 intel_set_pipe_csc(crtc);
4990
4991 intel_crtc->active = true;
4992
4993 if (intel_crtc->config->has_pch_encoder)
4994 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4995 else
4996 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4997
4998 for_each_encoder_on_crtc(dev, crtc, encoder) {
4999 if (encoder->pre_enable)
5000 encoder->pre_enable(encoder);
5001 }
5002
5003 if (intel_crtc->config->has_pch_encoder)
5004 dev_priv->display.fdi_link_train(crtc);
5005
5006 if (!intel_crtc->config->has_dsi_encoder)
5007 intel_ddi_enable_pipe_clock(intel_crtc);
5008
5009 if (INTEL_INFO(dev)->gen >= 9)
5010 skylake_pfit_enable(intel_crtc);
5011 else
5012 ironlake_pfit_enable(intel_crtc);
5013
5014 /*
5015 * On ILK+ LUT must be loaded before the pipe is running but with
5016 * clocks enabled
5017 */
5018 intel_crtc_load_lut(crtc);
5019
5020 intel_ddi_set_pipe_settings(crtc);
5021 if (!intel_crtc->config->has_dsi_encoder)
5022 intel_ddi_enable_transcoder_func(crtc);
5023
5024 intel_update_watermarks(crtc);
5025 intel_enable_pipe(intel_crtc);
5026
5027 if (intel_crtc->config->has_pch_encoder)
5028 lpt_pch_enable(crtc);
5029
5030 if (intel_crtc->config->dp_encoder_is_mst)
5031 intel_ddi_set_vc_payload_alloc(crtc, true);
5032
5033 assert_vblank_disabled(crtc);
5034 drm_crtc_vblank_on(crtc);
5035
5036 for_each_encoder_on_crtc(dev, crtc, encoder) {
5037 encoder->enable(encoder);
5038 intel_opregion_notify_encoder(encoder, true);
5039 }
5040
5041 if (intel_crtc->config->has_pch_encoder) {
5042 intel_wait_for_vblank(dev, pipe);
5043 intel_wait_for_vblank(dev, pipe);
5044 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5045 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5046 true);
5047 }
5048
5049 /* If we change the relative order between pipe/planes enabling, we need
5050 * to change the workaround. */
5051 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5052 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5053 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5054 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5055 }
5056 }
5057
5058 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5059 {
5060 struct drm_device *dev = crtc->base.dev;
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062 int pipe = crtc->pipe;
5063
5064 /* To avoid upsetting the power well on haswell only disable the pfit if
5065 * it's in use. The hw state code will make sure we get this right. */
5066 if (force || crtc->config->pch_pfit.enabled) {
5067 I915_WRITE(PF_CTL(pipe), 0);
5068 I915_WRITE(PF_WIN_POS(pipe), 0);
5069 I915_WRITE(PF_WIN_SZ(pipe), 0);
5070 }
5071 }
5072
5073 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5074 {
5075 struct drm_device *dev = crtc->dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078 struct intel_encoder *encoder;
5079 int pipe = intel_crtc->pipe;
5080
5081 if (intel_crtc->config->has_pch_encoder)
5082 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5083
5084 for_each_encoder_on_crtc(dev, crtc, encoder)
5085 encoder->disable(encoder);
5086
5087 drm_crtc_vblank_off(crtc);
5088 assert_vblank_disabled(crtc);
5089
5090 /*
5091 * Sometimes spurious CPU pipe underruns happen when the
5092 * pipe is already disabled, but FDI RX/TX is still enabled.
5093 * Happens at least with VGA+HDMI cloning. Suppress them.
5094 */
5095 if (intel_crtc->config->has_pch_encoder)
5096 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5097
5098 intel_disable_pipe(intel_crtc);
5099
5100 ironlake_pfit_disable(intel_crtc, false);
5101
5102 if (intel_crtc->config->has_pch_encoder) {
5103 ironlake_fdi_disable(crtc);
5104 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5105 }
5106
5107 for_each_encoder_on_crtc(dev, crtc, encoder)
5108 if (encoder->post_disable)
5109 encoder->post_disable(encoder);
5110
5111 if (intel_crtc->config->has_pch_encoder) {
5112 ironlake_disable_pch_transcoder(dev_priv, pipe);
5113
5114 if (HAS_PCH_CPT(dev)) {
5115 i915_reg_t reg;
5116 u32 temp;
5117
5118 /* disable TRANS_DP_CTL */
5119 reg = TRANS_DP_CTL(pipe);
5120 temp = I915_READ(reg);
5121 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5122 TRANS_DP_PORT_SEL_MASK);
5123 temp |= TRANS_DP_PORT_SEL_NONE;
5124 I915_WRITE(reg, temp);
5125
5126 /* disable DPLL_SEL */
5127 temp = I915_READ(PCH_DPLL_SEL);
5128 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5129 I915_WRITE(PCH_DPLL_SEL, temp);
5130 }
5131
5132 ironlake_fdi_pll_disable(intel_crtc);
5133 }
5134
5135 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5136 }
5137
5138 static void haswell_crtc_disable(struct drm_crtc *crtc)
5139 {
5140 struct drm_device *dev = crtc->dev;
5141 struct drm_i915_private *dev_priv = dev->dev_private;
5142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143 struct intel_encoder *encoder;
5144 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5145
5146 if (intel_crtc->config->has_pch_encoder)
5147 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5148 false);
5149
5150 for_each_encoder_on_crtc(dev, crtc, encoder) {
5151 intel_opregion_notify_encoder(encoder, false);
5152 encoder->disable(encoder);
5153 }
5154
5155 drm_crtc_vblank_off(crtc);
5156 assert_vblank_disabled(crtc);
5157
5158 intel_disable_pipe(intel_crtc);
5159
5160 if (intel_crtc->config->dp_encoder_is_mst)
5161 intel_ddi_set_vc_payload_alloc(crtc, false);
5162
5163 if (!intel_crtc->config->has_dsi_encoder)
5164 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5165
5166 if (INTEL_INFO(dev)->gen >= 9)
5167 skylake_scaler_disable(intel_crtc);
5168 else
5169 ironlake_pfit_disable(intel_crtc, false);
5170
5171 if (!intel_crtc->config->has_dsi_encoder)
5172 intel_ddi_disable_pipe_clock(intel_crtc);
5173
5174 for_each_encoder_on_crtc(dev, crtc, encoder)
5175 if (encoder->post_disable)
5176 encoder->post_disable(encoder);
5177
5178 if (intel_crtc->config->has_pch_encoder) {
5179 lpt_disable_pch_transcoder(dev_priv);
5180 lpt_disable_iclkip(dev_priv);
5181 intel_ddi_fdi_disable(crtc);
5182
5183 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5184 true);
5185 }
5186 }
5187
5188 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5189 {
5190 struct drm_device *dev = crtc->base.dev;
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct intel_crtc_state *pipe_config = crtc->config;
5193
5194 if (!pipe_config->gmch_pfit.control)
5195 return;
5196
5197 /*
5198 * The panel fitter should only be adjusted whilst the pipe is disabled,
5199 * according to register description and PRM.
5200 */
5201 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5202 assert_pipe_disabled(dev_priv, crtc->pipe);
5203
5204 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5205 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5206
5207 /* Border color in case we don't scale up to the full screen. Black by
5208 * default, change to something else for debugging. */
5209 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5210 }
5211
5212 static enum intel_display_power_domain port_to_power_domain(enum port port)
5213 {
5214 switch (port) {
5215 case PORT_A:
5216 return POWER_DOMAIN_PORT_DDI_A_LANES;
5217 case PORT_B:
5218 return POWER_DOMAIN_PORT_DDI_B_LANES;
5219 case PORT_C:
5220 return POWER_DOMAIN_PORT_DDI_C_LANES;
5221 case PORT_D:
5222 return POWER_DOMAIN_PORT_DDI_D_LANES;
5223 case PORT_E:
5224 return POWER_DOMAIN_PORT_DDI_E_LANES;
5225 default:
5226 MISSING_CASE(port);
5227 return POWER_DOMAIN_PORT_OTHER;
5228 }
5229 }
5230
5231 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5232 {
5233 switch (port) {
5234 case PORT_A:
5235 return POWER_DOMAIN_AUX_A;
5236 case PORT_B:
5237 return POWER_DOMAIN_AUX_B;
5238 case PORT_C:
5239 return POWER_DOMAIN_AUX_C;
5240 case PORT_D:
5241 return POWER_DOMAIN_AUX_D;
5242 case PORT_E:
5243 /* FIXME: Check VBT for actual wiring of PORT E */
5244 return POWER_DOMAIN_AUX_D;
5245 default:
5246 MISSING_CASE(port);
5247 return POWER_DOMAIN_AUX_A;
5248 }
5249 }
5250
5251 enum intel_display_power_domain
5252 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5253 {
5254 struct drm_device *dev = intel_encoder->base.dev;
5255 struct intel_digital_port *intel_dig_port;
5256
5257 switch (intel_encoder->type) {
5258 case INTEL_OUTPUT_UNKNOWN:
5259 /* Only DDI platforms should ever use this output type */
5260 WARN_ON_ONCE(!HAS_DDI(dev));
5261 case INTEL_OUTPUT_DISPLAYPORT:
5262 case INTEL_OUTPUT_HDMI:
5263 case INTEL_OUTPUT_EDP:
5264 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5265 return port_to_power_domain(intel_dig_port->port);
5266 case INTEL_OUTPUT_DP_MST:
5267 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5268 return port_to_power_domain(intel_dig_port->port);
5269 case INTEL_OUTPUT_ANALOG:
5270 return POWER_DOMAIN_PORT_CRT;
5271 case INTEL_OUTPUT_DSI:
5272 return POWER_DOMAIN_PORT_DSI;
5273 default:
5274 return POWER_DOMAIN_PORT_OTHER;
5275 }
5276 }
5277
5278 enum intel_display_power_domain
5279 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5280 {
5281 struct drm_device *dev = intel_encoder->base.dev;
5282 struct intel_digital_port *intel_dig_port;
5283
5284 switch (intel_encoder->type) {
5285 case INTEL_OUTPUT_UNKNOWN:
5286 case INTEL_OUTPUT_HDMI:
5287 /*
5288 * Only DDI platforms should ever use these output types.
5289 * We can get here after the HDMI detect code has already set
5290 * the type of the shared encoder. Since we can't be sure
5291 * what's the status of the given connectors, play safe and
5292 * run the DP detection too.
5293 */
5294 WARN_ON_ONCE(!HAS_DDI(dev));
5295 case INTEL_OUTPUT_DISPLAYPORT:
5296 case INTEL_OUTPUT_EDP:
5297 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5298 return port_to_aux_power_domain(intel_dig_port->port);
5299 case INTEL_OUTPUT_DP_MST:
5300 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5301 return port_to_aux_power_domain(intel_dig_port->port);
5302 default:
5303 MISSING_CASE(intel_encoder->type);
5304 return POWER_DOMAIN_AUX_A;
5305 }
5306 }
5307
5308 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5309 struct intel_crtc_state *crtc_state)
5310 {
5311 struct drm_device *dev = crtc->dev;
5312 struct drm_encoder *encoder;
5313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5314 enum pipe pipe = intel_crtc->pipe;
5315 unsigned long mask;
5316 enum transcoder transcoder = crtc_state->cpu_transcoder;
5317
5318 if (!crtc_state->base.active)
5319 return 0;
5320
5321 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5322 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5323 if (crtc_state->pch_pfit.enabled ||
5324 crtc_state->pch_pfit.force_thru)
5325 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5326
5327 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5328 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5329
5330 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5331 }
5332
5333 return mask;
5334 }
5335
5336 static unsigned long
5337 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5338 struct intel_crtc_state *crtc_state)
5339 {
5340 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5342 enum intel_display_power_domain domain;
5343 unsigned long domains, new_domains, old_domains;
5344
5345 old_domains = intel_crtc->enabled_power_domains;
5346 intel_crtc->enabled_power_domains = new_domains =
5347 get_crtc_power_domains(crtc, crtc_state);
5348
5349 domains = new_domains & ~old_domains;
5350
5351 for_each_power_domain(domain, domains)
5352 intel_display_power_get(dev_priv, domain);
5353
5354 return old_domains & ~new_domains;
5355 }
5356
5357 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5358 unsigned long domains)
5359 {
5360 enum intel_display_power_domain domain;
5361
5362 for_each_power_domain(domain, domains)
5363 intel_display_power_put(dev_priv, domain);
5364 }
5365
5366 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5367 {
5368 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5369
5370 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5371 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5372 return max_cdclk_freq;
5373 else if (IS_CHERRYVIEW(dev_priv))
5374 return max_cdclk_freq*95/100;
5375 else if (INTEL_INFO(dev_priv)->gen < 4)
5376 return 2*max_cdclk_freq*90/100;
5377 else
5378 return max_cdclk_freq*90/100;
5379 }
5380
5381 static void intel_update_max_cdclk(struct drm_device *dev)
5382 {
5383 struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5386 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5387
5388 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5389 dev_priv->max_cdclk_freq = 675000;
5390 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5391 dev_priv->max_cdclk_freq = 540000;
5392 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5393 dev_priv->max_cdclk_freq = 450000;
5394 else
5395 dev_priv->max_cdclk_freq = 337500;
5396 } else if (IS_BROADWELL(dev)) {
5397 /*
5398 * FIXME with extra cooling we can allow
5399 * 540 MHz for ULX and 675 Mhz for ULT.
5400 * How can we know if extra cooling is
5401 * available? PCI ID, VTB, something else?
5402 */
5403 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5404 dev_priv->max_cdclk_freq = 450000;
5405 else if (IS_BDW_ULX(dev))
5406 dev_priv->max_cdclk_freq = 450000;
5407 else if (IS_BDW_ULT(dev))
5408 dev_priv->max_cdclk_freq = 540000;
5409 else
5410 dev_priv->max_cdclk_freq = 675000;
5411 } else if (IS_CHERRYVIEW(dev)) {
5412 dev_priv->max_cdclk_freq = 320000;
5413 } else if (IS_VALLEYVIEW(dev)) {
5414 dev_priv->max_cdclk_freq = 400000;
5415 } else {
5416 /* otherwise assume cdclk is fixed */
5417 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5418 }
5419
5420 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5421
5422 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5423 dev_priv->max_cdclk_freq);
5424
5425 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5426 dev_priv->max_dotclk_freq);
5427 }
5428
5429 static void intel_update_cdclk(struct drm_device *dev)
5430 {
5431 struct drm_i915_private *dev_priv = dev->dev_private;
5432
5433 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5434 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5435 dev_priv->cdclk_freq);
5436
5437 /*
5438 * Program the gmbus_freq based on the cdclk frequency.
5439 * BSpec erroneously claims we should aim for 4MHz, but
5440 * in fact 1MHz is the correct frequency.
5441 */
5442 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5443 /*
5444 * Program the gmbus_freq based on the cdclk frequency.
5445 * BSpec erroneously claims we should aim for 4MHz, but
5446 * in fact 1MHz is the correct frequency.
5447 */
5448 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5449 }
5450
5451 if (dev_priv->max_cdclk_freq == 0)
5452 intel_update_max_cdclk(dev);
5453 }
5454
5455 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5456 {
5457 struct drm_i915_private *dev_priv = dev->dev_private;
5458 uint32_t divider;
5459 uint32_t ratio;
5460 uint32_t current_freq;
5461 int ret;
5462
5463 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5464 switch (frequency) {
5465 case 144000:
5466 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5467 ratio = BXT_DE_PLL_RATIO(60);
5468 break;
5469 case 288000:
5470 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5471 ratio = BXT_DE_PLL_RATIO(60);
5472 break;
5473 case 384000:
5474 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5475 ratio = BXT_DE_PLL_RATIO(60);
5476 break;
5477 case 576000:
5478 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5479 ratio = BXT_DE_PLL_RATIO(60);
5480 break;
5481 case 624000:
5482 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5483 ratio = BXT_DE_PLL_RATIO(65);
5484 break;
5485 case 19200:
5486 /*
5487 * Bypass frequency with DE PLL disabled. Init ratio, divider
5488 * to suppress GCC warning.
5489 */
5490 ratio = 0;
5491 divider = 0;
5492 break;
5493 default:
5494 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5495
5496 return;
5497 }
5498
5499 mutex_lock(&dev_priv->rps.hw_lock);
5500 /* Inform power controller of upcoming frequency change */
5501 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5502 0x80000000);
5503 mutex_unlock(&dev_priv->rps.hw_lock);
5504
5505 if (ret) {
5506 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5507 ret, frequency);
5508 return;
5509 }
5510
5511 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5512 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5513 current_freq = current_freq * 500 + 1000;
5514
5515 /*
5516 * DE PLL has to be disabled when
5517 * - setting to 19.2MHz (bypass, PLL isn't used)
5518 * - before setting to 624MHz (PLL needs toggling)
5519 * - before setting to any frequency from 624MHz (PLL needs toggling)
5520 */
5521 if (frequency == 19200 || frequency == 624000 ||
5522 current_freq == 624000) {
5523 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5524 /* Timeout 200us */
5525 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5526 1))
5527 DRM_ERROR("timout waiting for DE PLL unlock\n");
5528 }
5529
5530 if (frequency != 19200) {
5531 uint32_t val;
5532
5533 val = I915_READ(BXT_DE_PLL_CTL);
5534 val &= ~BXT_DE_PLL_RATIO_MASK;
5535 val |= ratio;
5536 I915_WRITE(BXT_DE_PLL_CTL, val);
5537
5538 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5539 /* Timeout 200us */
5540 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5541 DRM_ERROR("timeout waiting for DE PLL lock\n");
5542
5543 val = I915_READ(CDCLK_CTL);
5544 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5545 val |= divider;
5546 /*
5547 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5548 * enable otherwise.
5549 */
5550 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5551 if (frequency >= 500000)
5552 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5553
5554 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5555 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5556 val |= (frequency - 1000) / 500;
5557 I915_WRITE(CDCLK_CTL, val);
5558 }
5559
5560 mutex_lock(&dev_priv->rps.hw_lock);
5561 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5562 DIV_ROUND_UP(frequency, 25000));
5563 mutex_unlock(&dev_priv->rps.hw_lock);
5564
5565 if (ret) {
5566 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5567 ret, frequency);
5568 return;
5569 }
5570
5571 intel_update_cdclk(dev);
5572 }
5573
5574 void broxton_init_cdclk(struct drm_device *dev)
5575 {
5576 struct drm_i915_private *dev_priv = dev->dev_private;
5577 uint32_t val;
5578
5579 /*
5580 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5581 * or else the reset will hang because there is no PCH to respond.
5582 * Move the handshake programming to initialization sequence.
5583 * Previously was left up to BIOS.
5584 */
5585 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5586 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5587 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5588
5589 /* Enable PG1 for cdclk */
5590 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5591
5592 /* check if cd clock is enabled */
5593 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5594 DRM_DEBUG_KMS("Display already initialized\n");
5595 return;
5596 }
5597
5598 /*
5599 * FIXME:
5600 * - The initial CDCLK needs to be read from VBT.
5601 * Need to make this change after VBT has changes for BXT.
5602 * - check if setting the max (or any) cdclk freq is really necessary
5603 * here, it belongs to modeset time
5604 */
5605 broxton_set_cdclk(dev, 624000);
5606
5607 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5608 POSTING_READ(DBUF_CTL);
5609
5610 udelay(10);
5611
5612 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5613 DRM_ERROR("DBuf power enable timeout!\n");
5614 }
5615
5616 void broxton_uninit_cdclk(struct drm_device *dev)
5617 {
5618 struct drm_i915_private *dev_priv = dev->dev_private;
5619
5620 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5621 POSTING_READ(DBUF_CTL);
5622
5623 udelay(10);
5624
5625 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5626 DRM_ERROR("DBuf power disable timeout!\n");
5627
5628 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5629 broxton_set_cdclk(dev, 19200);
5630
5631 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5632 }
5633
5634 static const struct skl_cdclk_entry {
5635 unsigned int freq;
5636 unsigned int vco;
5637 } skl_cdclk_frequencies[] = {
5638 { .freq = 308570, .vco = 8640 },
5639 { .freq = 337500, .vco = 8100 },
5640 { .freq = 432000, .vco = 8640 },
5641 { .freq = 450000, .vco = 8100 },
5642 { .freq = 540000, .vco = 8100 },
5643 { .freq = 617140, .vco = 8640 },
5644 { .freq = 675000, .vco = 8100 },
5645 };
5646
5647 static unsigned int skl_cdclk_decimal(unsigned int freq)
5648 {
5649 return (freq - 1000) / 500;
5650 }
5651
5652 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5653 {
5654 unsigned int i;
5655
5656 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5657 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5658
5659 if (e->freq == freq)
5660 return e->vco;
5661 }
5662
5663 return 8100;
5664 }
5665
5666 static void
5667 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5668 {
5669 unsigned int min_freq;
5670 u32 val;
5671
5672 /* select the minimum CDCLK before enabling DPLL 0 */
5673 val = I915_READ(CDCLK_CTL);
5674 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5675 val |= CDCLK_FREQ_337_308;
5676
5677 if (required_vco == 8640)
5678 min_freq = 308570;
5679 else
5680 min_freq = 337500;
5681
5682 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5683
5684 I915_WRITE(CDCLK_CTL, val);
5685 POSTING_READ(CDCLK_CTL);
5686
5687 /*
5688 * We always enable DPLL0 with the lowest link rate possible, but still
5689 * taking into account the VCO required to operate the eDP panel at the
5690 * desired frequency. The usual DP link rates operate with a VCO of
5691 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5692 * The modeset code is responsible for the selection of the exact link
5693 * rate later on, with the constraint of choosing a frequency that
5694 * works with required_vco.
5695 */
5696 val = I915_READ(DPLL_CTRL1);
5697
5698 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5699 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5700 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5701 if (required_vco == 8640)
5702 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5703 SKL_DPLL0);
5704 else
5705 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5706 SKL_DPLL0);
5707
5708 I915_WRITE(DPLL_CTRL1, val);
5709 POSTING_READ(DPLL_CTRL1);
5710
5711 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5712
5713 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5714 DRM_ERROR("DPLL0 not locked\n");
5715 }
5716
5717 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5718 {
5719 int ret;
5720 u32 val;
5721
5722 /* inform PCU we want to change CDCLK */
5723 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5724 mutex_lock(&dev_priv->rps.hw_lock);
5725 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5726 mutex_unlock(&dev_priv->rps.hw_lock);
5727
5728 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5729 }
5730
5731 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733 unsigned int i;
5734
5735 for (i = 0; i < 15; i++) {
5736 if (skl_cdclk_pcu_ready(dev_priv))
5737 return true;
5738 udelay(10);
5739 }
5740
5741 return false;
5742 }
5743
5744 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5745 {
5746 struct drm_device *dev = dev_priv->dev;
5747 u32 freq_select, pcu_ack;
5748
5749 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5750
5751 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5752 DRM_ERROR("failed to inform PCU about cdclk change\n");
5753 return;
5754 }
5755
5756 /* set CDCLK_CTL */
5757 switch(freq) {
5758 case 450000:
5759 case 432000:
5760 freq_select = CDCLK_FREQ_450_432;
5761 pcu_ack = 1;
5762 break;
5763 case 540000:
5764 freq_select = CDCLK_FREQ_540;
5765 pcu_ack = 2;
5766 break;
5767 case 308570:
5768 case 337500:
5769 default:
5770 freq_select = CDCLK_FREQ_337_308;
5771 pcu_ack = 0;
5772 break;
5773 case 617140:
5774 case 675000:
5775 freq_select = CDCLK_FREQ_675_617;
5776 pcu_ack = 3;
5777 break;
5778 }
5779
5780 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5781 POSTING_READ(CDCLK_CTL);
5782
5783 /* inform PCU of the change */
5784 mutex_lock(&dev_priv->rps.hw_lock);
5785 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5786 mutex_unlock(&dev_priv->rps.hw_lock);
5787
5788 intel_update_cdclk(dev);
5789 }
5790
5791 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5792 {
5793 /* disable DBUF power */
5794 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5795 POSTING_READ(DBUF_CTL);
5796
5797 udelay(10);
5798
5799 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5800 DRM_ERROR("DBuf power disable timeout\n");
5801
5802 /* disable DPLL0 */
5803 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5804 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5805 DRM_ERROR("Couldn't disable DPLL0\n");
5806 }
5807
5808 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5809 {
5810 unsigned int required_vco;
5811
5812 /* DPLL0 not enabled (happens on early BIOS versions) */
5813 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5814 /* enable DPLL0 */
5815 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5816 skl_dpll0_enable(dev_priv, required_vco);
5817 }
5818
5819 /* set CDCLK to the frequency the BIOS chose */
5820 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5821
5822 /* enable DBUF power */
5823 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5824 POSTING_READ(DBUF_CTL);
5825
5826 udelay(10);
5827
5828 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5829 DRM_ERROR("DBuf power enable timeout\n");
5830 }
5831
5832 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5833 {
5834 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5835 uint32_t cdctl = I915_READ(CDCLK_CTL);
5836 int freq = dev_priv->skl_boot_cdclk;
5837
5838 /*
5839 * check if the pre-os intialized the display
5840 * There is SWF18 scratchpad register defined which is set by the
5841 * pre-os which can be used by the OS drivers to check the status
5842 */
5843 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5844 goto sanitize;
5845
5846 /* Is PLL enabled and locked ? */
5847 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5848 goto sanitize;
5849
5850 /* DPLL okay; verify the cdclock
5851 *
5852 * Noticed in some instances that the freq selection is correct but
5853 * decimal part is programmed wrong from BIOS where pre-os does not
5854 * enable display. Verify the same as well.
5855 */
5856 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5857 /* All well; nothing to sanitize */
5858 return false;
5859 sanitize:
5860 /*
5861 * As of now initialize with max cdclk till
5862 * we get dynamic cdclk support
5863 * */
5864 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5865 skl_init_cdclk(dev_priv);
5866
5867 /* we did have to sanitize */
5868 return true;
5869 }
5870
5871 /* Adjust CDclk dividers to allow high res or save power if possible */
5872 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5873 {
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 u32 val, cmd;
5876
5877 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5878 != dev_priv->cdclk_freq);
5879
5880 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5881 cmd = 2;
5882 else if (cdclk == 266667)
5883 cmd = 1;
5884 else
5885 cmd = 0;
5886
5887 mutex_lock(&dev_priv->rps.hw_lock);
5888 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5889 val &= ~DSPFREQGUAR_MASK;
5890 val |= (cmd << DSPFREQGUAR_SHIFT);
5891 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5892 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5893 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5894 50)) {
5895 DRM_ERROR("timed out waiting for CDclk change\n");
5896 }
5897 mutex_unlock(&dev_priv->rps.hw_lock);
5898
5899 mutex_lock(&dev_priv->sb_lock);
5900
5901 if (cdclk == 400000) {
5902 u32 divider;
5903
5904 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5905
5906 /* adjust cdclk divider */
5907 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5908 val &= ~CCK_FREQUENCY_VALUES;
5909 val |= divider;
5910 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5911
5912 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5913 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5914 50))
5915 DRM_ERROR("timed out waiting for CDclk change\n");
5916 }
5917
5918 /* adjust self-refresh exit latency value */
5919 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5920 val &= ~0x7f;
5921
5922 /*
5923 * For high bandwidth configs, we set a higher latency in the bunit
5924 * so that the core display fetch happens in time to avoid underruns.
5925 */
5926 if (cdclk == 400000)
5927 val |= 4500 / 250; /* 4.5 usec */
5928 else
5929 val |= 3000 / 250; /* 3.0 usec */
5930 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5931
5932 mutex_unlock(&dev_priv->sb_lock);
5933
5934 intel_update_cdclk(dev);
5935 }
5936
5937 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5938 {
5939 struct drm_i915_private *dev_priv = dev->dev_private;
5940 u32 val, cmd;
5941
5942 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5943 != dev_priv->cdclk_freq);
5944
5945 switch (cdclk) {
5946 case 333333:
5947 case 320000:
5948 case 266667:
5949 case 200000:
5950 break;
5951 default:
5952 MISSING_CASE(cdclk);
5953 return;
5954 }
5955
5956 /*
5957 * Specs are full of misinformation, but testing on actual
5958 * hardware has shown that we just need to write the desired
5959 * CCK divider into the Punit register.
5960 */
5961 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5962
5963 mutex_lock(&dev_priv->rps.hw_lock);
5964 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5965 val &= ~DSPFREQGUAR_MASK_CHV;
5966 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5967 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5968 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5969 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5970 50)) {
5971 DRM_ERROR("timed out waiting for CDclk change\n");
5972 }
5973 mutex_unlock(&dev_priv->rps.hw_lock);
5974
5975 intel_update_cdclk(dev);
5976 }
5977
5978 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5979 int max_pixclk)
5980 {
5981 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5982 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5983
5984 /*
5985 * Really only a few cases to deal with, as only 4 CDclks are supported:
5986 * 200MHz
5987 * 267MHz
5988 * 320/333MHz (depends on HPLL freq)
5989 * 400MHz (VLV only)
5990 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5991 * of the lower bin and adjust if needed.
5992 *
5993 * We seem to get an unstable or solid color picture at 200MHz.
5994 * Not sure what's wrong. For now use 200MHz only when all pipes
5995 * are off.
5996 */
5997 if (!IS_CHERRYVIEW(dev_priv) &&
5998 max_pixclk > freq_320*limit/100)
5999 return 400000;
6000 else if (max_pixclk > 266667*limit/100)
6001 return freq_320;
6002 else if (max_pixclk > 0)
6003 return 266667;
6004 else
6005 return 200000;
6006 }
6007
6008 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6009 int max_pixclk)
6010 {
6011 /*
6012 * FIXME:
6013 * - remove the guardband, it's not needed on BXT
6014 * - set 19.2MHz bypass frequency if there are no active pipes
6015 */
6016 if (max_pixclk > 576000*9/10)
6017 return 624000;
6018 else if (max_pixclk > 384000*9/10)
6019 return 576000;
6020 else if (max_pixclk > 288000*9/10)
6021 return 384000;
6022 else if (max_pixclk > 144000*9/10)
6023 return 288000;
6024 else
6025 return 144000;
6026 }
6027
6028 /* Compute the max pixel clock for new configuration. */
6029 static int intel_mode_max_pixclk(struct drm_device *dev,
6030 struct drm_atomic_state *state)
6031 {
6032 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6033 struct drm_i915_private *dev_priv = dev->dev_private;
6034 struct drm_crtc *crtc;
6035 struct drm_crtc_state *crtc_state;
6036 unsigned max_pixclk = 0, i;
6037 enum pipe pipe;
6038
6039 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6040 sizeof(intel_state->min_pixclk));
6041
6042 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6043 int pixclk = 0;
6044
6045 if (crtc_state->enable)
6046 pixclk = crtc_state->adjusted_mode.crtc_clock;
6047
6048 intel_state->min_pixclk[i] = pixclk;
6049 }
6050
6051 for_each_pipe(dev_priv, pipe)
6052 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6053
6054 return max_pixclk;
6055 }
6056
6057 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059 struct drm_device *dev = state->dev;
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061 int max_pixclk = intel_mode_max_pixclk(dev, state);
6062 struct intel_atomic_state *intel_state =
6063 to_intel_atomic_state(state);
6064
6065 if (max_pixclk < 0)
6066 return max_pixclk;
6067
6068 intel_state->cdclk = intel_state->dev_cdclk =
6069 valleyview_calc_cdclk(dev_priv, max_pixclk);
6070
6071 if (!intel_state->active_crtcs)
6072 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6073
6074 return 0;
6075 }
6076
6077 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6078 {
6079 struct drm_device *dev = state->dev;
6080 struct drm_i915_private *dev_priv = dev->dev_private;
6081 int max_pixclk = intel_mode_max_pixclk(dev, state);
6082 struct intel_atomic_state *intel_state =
6083 to_intel_atomic_state(state);
6084
6085 if (max_pixclk < 0)
6086 return max_pixclk;
6087
6088 intel_state->cdclk = intel_state->dev_cdclk =
6089 broxton_calc_cdclk(dev_priv, max_pixclk);
6090
6091 if (!intel_state->active_crtcs)
6092 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6093
6094 return 0;
6095 }
6096
6097 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6098 {
6099 unsigned int credits, default_credits;
6100
6101 if (IS_CHERRYVIEW(dev_priv))
6102 default_credits = PFI_CREDIT(12);
6103 else
6104 default_credits = PFI_CREDIT(8);
6105
6106 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6107 /* CHV suggested value is 31 or 63 */
6108 if (IS_CHERRYVIEW(dev_priv))
6109 credits = PFI_CREDIT_63;
6110 else
6111 credits = PFI_CREDIT(15);
6112 } else {
6113 credits = default_credits;
6114 }
6115
6116 /*
6117 * WA - write default credits before re-programming
6118 * FIXME: should we also set the resend bit here?
6119 */
6120 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6121 default_credits);
6122
6123 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6124 credits | PFI_CREDIT_RESEND);
6125
6126 /*
6127 * FIXME is this guaranteed to clear
6128 * immediately or should we poll for it?
6129 */
6130 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6131 }
6132
6133 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6134 {
6135 struct drm_device *dev = old_state->dev;
6136 struct drm_i915_private *dev_priv = dev->dev_private;
6137 struct intel_atomic_state *old_intel_state =
6138 to_intel_atomic_state(old_state);
6139 unsigned req_cdclk = old_intel_state->dev_cdclk;
6140
6141 /*
6142 * FIXME: We can end up here with all power domains off, yet
6143 * with a CDCLK frequency other than the minimum. To account
6144 * for this take the PIPE-A power domain, which covers the HW
6145 * blocks needed for the following programming. This can be
6146 * removed once it's guaranteed that we get here either with
6147 * the minimum CDCLK set, or the required power domains
6148 * enabled.
6149 */
6150 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6151
6152 if (IS_CHERRYVIEW(dev))
6153 cherryview_set_cdclk(dev, req_cdclk);
6154 else
6155 valleyview_set_cdclk(dev, req_cdclk);
6156
6157 vlv_program_pfi_credits(dev_priv);
6158
6159 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6160 }
6161
6162 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6163 {
6164 struct drm_device *dev = crtc->dev;
6165 struct drm_i915_private *dev_priv = to_i915(dev);
6166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167 struct intel_encoder *encoder;
6168 int pipe = intel_crtc->pipe;
6169
6170 if (WARN_ON(intel_crtc->active))
6171 return;
6172
6173 if (intel_crtc->config->has_dp_encoder)
6174 intel_dp_set_m_n(intel_crtc, M1_N1);
6175
6176 intel_set_pipe_timings(intel_crtc);
6177
6178 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6182 I915_WRITE(CHV_CANVAS(pipe), 0);
6183 }
6184
6185 i9xx_set_pipeconf(intel_crtc);
6186
6187 intel_crtc->active = true;
6188
6189 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6190
6191 for_each_encoder_on_crtc(dev, crtc, encoder)
6192 if (encoder->pre_pll_enable)
6193 encoder->pre_pll_enable(encoder);
6194
6195 if (!intel_crtc->config->has_dsi_encoder) {
6196 if (IS_CHERRYVIEW(dev)) {
6197 chv_prepare_pll(intel_crtc, intel_crtc->config);
6198 chv_enable_pll(intel_crtc, intel_crtc->config);
6199 } else {
6200 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6201 vlv_enable_pll(intel_crtc, intel_crtc->config);
6202 }
6203 }
6204
6205 for_each_encoder_on_crtc(dev, crtc, encoder)
6206 if (encoder->pre_enable)
6207 encoder->pre_enable(encoder);
6208
6209 i9xx_pfit_enable(intel_crtc);
6210
6211 intel_crtc_load_lut(crtc);
6212
6213 intel_enable_pipe(intel_crtc);
6214
6215 assert_vblank_disabled(crtc);
6216 drm_crtc_vblank_on(crtc);
6217
6218 for_each_encoder_on_crtc(dev, crtc, encoder)
6219 encoder->enable(encoder);
6220 }
6221
6222 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6223 {
6224 struct drm_device *dev = crtc->base.dev;
6225 struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6228 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6229 }
6230
6231 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6232 {
6233 struct drm_device *dev = crtc->dev;
6234 struct drm_i915_private *dev_priv = to_i915(dev);
6235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6236 struct intel_encoder *encoder;
6237 int pipe = intel_crtc->pipe;
6238
6239 if (WARN_ON(intel_crtc->active))
6240 return;
6241
6242 i9xx_set_pll_dividers(intel_crtc);
6243
6244 if (intel_crtc->config->has_dp_encoder)
6245 intel_dp_set_m_n(intel_crtc, M1_N1);
6246
6247 intel_set_pipe_timings(intel_crtc);
6248
6249 i9xx_set_pipeconf(intel_crtc);
6250
6251 intel_crtc->active = true;
6252
6253 if (!IS_GEN2(dev))
6254 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6255
6256 for_each_encoder_on_crtc(dev, crtc, encoder)
6257 if (encoder->pre_enable)
6258 encoder->pre_enable(encoder);
6259
6260 i9xx_enable_pll(intel_crtc);
6261
6262 i9xx_pfit_enable(intel_crtc);
6263
6264 intel_crtc_load_lut(crtc);
6265
6266 intel_update_watermarks(crtc);
6267 intel_enable_pipe(intel_crtc);
6268
6269 assert_vblank_disabled(crtc);
6270 drm_crtc_vblank_on(crtc);
6271
6272 for_each_encoder_on_crtc(dev, crtc, encoder)
6273 encoder->enable(encoder);
6274 }
6275
6276 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6277 {
6278 struct drm_device *dev = crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280
6281 if (!crtc->config->gmch_pfit.control)
6282 return;
6283
6284 assert_pipe_disabled(dev_priv, crtc->pipe);
6285
6286 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6287 I915_READ(PFIT_CONTROL));
6288 I915_WRITE(PFIT_CONTROL, 0);
6289 }
6290
6291 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6292 {
6293 struct drm_device *dev = crtc->dev;
6294 struct drm_i915_private *dev_priv = dev->dev_private;
6295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296 struct intel_encoder *encoder;
6297 int pipe = intel_crtc->pipe;
6298
6299 /*
6300 * On gen2 planes are double buffered but the pipe isn't, so we must
6301 * wait for planes to fully turn off before disabling the pipe.
6302 * We also need to wait on all gmch platforms because of the
6303 * self-refresh mode constraint explained above.
6304 */
6305 intel_wait_for_vblank(dev, pipe);
6306
6307 for_each_encoder_on_crtc(dev, crtc, encoder)
6308 encoder->disable(encoder);
6309
6310 drm_crtc_vblank_off(crtc);
6311 assert_vblank_disabled(crtc);
6312
6313 intel_disable_pipe(intel_crtc);
6314
6315 i9xx_pfit_disable(intel_crtc);
6316
6317 for_each_encoder_on_crtc(dev, crtc, encoder)
6318 if (encoder->post_disable)
6319 encoder->post_disable(encoder);
6320
6321 if (!intel_crtc->config->has_dsi_encoder) {
6322 if (IS_CHERRYVIEW(dev))
6323 chv_disable_pll(dev_priv, pipe);
6324 else if (IS_VALLEYVIEW(dev))
6325 vlv_disable_pll(dev_priv, pipe);
6326 else
6327 i9xx_disable_pll(intel_crtc);
6328 }
6329
6330 for_each_encoder_on_crtc(dev, crtc, encoder)
6331 if (encoder->post_pll_disable)
6332 encoder->post_pll_disable(encoder);
6333
6334 if (!IS_GEN2(dev))
6335 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6336 }
6337
6338 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6339 {
6340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6341 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6342 enum intel_display_power_domain domain;
6343 unsigned long domains;
6344
6345 if (!intel_crtc->active)
6346 return;
6347
6348 if (to_intel_plane_state(crtc->primary->state)->visible) {
6349 WARN_ON(intel_crtc->unpin_work);
6350
6351 intel_pre_disable_primary(crtc);
6352
6353 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6354 to_intel_plane_state(crtc->primary->state)->visible = false;
6355 }
6356
6357 dev_priv->display.crtc_disable(crtc);
6358 intel_crtc->active = false;
6359 intel_fbc_disable(intel_crtc);
6360 intel_update_watermarks(crtc);
6361 intel_disable_shared_dpll(intel_crtc);
6362
6363 domains = intel_crtc->enabled_power_domains;
6364 for_each_power_domain(domain, domains)
6365 intel_display_power_put(dev_priv, domain);
6366 intel_crtc->enabled_power_domains = 0;
6367
6368 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6369 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6370 }
6371
6372 /*
6373 * turn all crtc's off, but do not adjust state
6374 * This has to be paired with a call to intel_modeset_setup_hw_state.
6375 */
6376 int intel_display_suspend(struct drm_device *dev)
6377 {
6378 struct drm_i915_private *dev_priv = to_i915(dev);
6379 struct drm_atomic_state *state;
6380 int ret;
6381
6382 state = drm_atomic_helper_suspend(dev);
6383 ret = PTR_ERR_OR_ZERO(state);
6384 if (ret)
6385 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6386 else
6387 dev_priv->modeset_restore_state = state;
6388 return ret;
6389 }
6390
6391 void intel_encoder_destroy(struct drm_encoder *encoder)
6392 {
6393 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6394
6395 drm_encoder_cleanup(encoder);
6396 kfree(intel_encoder);
6397 }
6398
6399 /* Cross check the actual hw state with our own modeset state tracking (and it's
6400 * internal consistency). */
6401 static void intel_connector_check_state(struct intel_connector *connector)
6402 {
6403 struct drm_crtc *crtc = connector->base.state->crtc;
6404
6405 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6406 connector->base.base.id,
6407 connector->base.name);
6408
6409 if (connector->get_hw_state(connector)) {
6410 struct intel_encoder *encoder = connector->encoder;
6411 struct drm_connector_state *conn_state = connector->base.state;
6412
6413 I915_STATE_WARN(!crtc,
6414 "connector enabled without attached crtc\n");
6415
6416 if (!crtc)
6417 return;
6418
6419 I915_STATE_WARN(!crtc->state->active,
6420 "connector is active, but attached crtc isn't\n");
6421
6422 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6423 return;
6424
6425 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6426 "atomic encoder doesn't match attached encoder\n");
6427
6428 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6429 "attached encoder crtc differs from connector crtc\n");
6430 } else {
6431 I915_STATE_WARN(crtc && crtc->state->active,
6432 "attached crtc is active, but connector isn't\n");
6433 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6434 "best encoder set without crtc!\n");
6435 }
6436 }
6437
6438 int intel_connector_init(struct intel_connector *connector)
6439 {
6440 drm_atomic_helper_connector_reset(&connector->base);
6441
6442 if (!connector->base.state)
6443 return -ENOMEM;
6444
6445 return 0;
6446 }
6447
6448 struct intel_connector *intel_connector_alloc(void)
6449 {
6450 struct intel_connector *connector;
6451
6452 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6453 if (!connector)
6454 return NULL;
6455
6456 if (intel_connector_init(connector) < 0) {
6457 kfree(connector);
6458 return NULL;
6459 }
6460
6461 return connector;
6462 }
6463
6464 /* Simple connector->get_hw_state implementation for encoders that support only
6465 * one connector and no cloning and hence the encoder state determines the state
6466 * of the connector. */
6467 bool intel_connector_get_hw_state(struct intel_connector *connector)
6468 {
6469 enum pipe pipe = 0;
6470 struct intel_encoder *encoder = connector->encoder;
6471
6472 return encoder->get_hw_state(encoder, &pipe);
6473 }
6474
6475 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6476 {
6477 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6478 return crtc_state->fdi_lanes;
6479
6480 return 0;
6481 }
6482
6483 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6484 struct intel_crtc_state *pipe_config)
6485 {
6486 struct drm_atomic_state *state = pipe_config->base.state;
6487 struct intel_crtc *other_crtc;
6488 struct intel_crtc_state *other_crtc_state;
6489
6490 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6491 pipe_name(pipe), pipe_config->fdi_lanes);
6492 if (pipe_config->fdi_lanes > 4) {
6493 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6494 pipe_name(pipe), pipe_config->fdi_lanes);
6495 return -EINVAL;
6496 }
6497
6498 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6499 if (pipe_config->fdi_lanes > 2) {
6500 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6501 pipe_config->fdi_lanes);
6502 return -EINVAL;
6503 } else {
6504 return 0;
6505 }
6506 }
6507
6508 if (INTEL_INFO(dev)->num_pipes == 2)
6509 return 0;
6510
6511 /* Ivybridge 3 pipe is really complicated */
6512 switch (pipe) {
6513 case PIPE_A:
6514 return 0;
6515 case PIPE_B:
6516 if (pipe_config->fdi_lanes <= 2)
6517 return 0;
6518
6519 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6520 other_crtc_state =
6521 intel_atomic_get_crtc_state(state, other_crtc);
6522 if (IS_ERR(other_crtc_state))
6523 return PTR_ERR(other_crtc_state);
6524
6525 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6526 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6527 pipe_name(pipe), pipe_config->fdi_lanes);
6528 return -EINVAL;
6529 }
6530 return 0;
6531 case PIPE_C:
6532 if (pipe_config->fdi_lanes > 2) {
6533 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6534 pipe_name(pipe), pipe_config->fdi_lanes);
6535 return -EINVAL;
6536 }
6537
6538 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6539 other_crtc_state =
6540 intel_atomic_get_crtc_state(state, other_crtc);
6541 if (IS_ERR(other_crtc_state))
6542 return PTR_ERR(other_crtc_state);
6543
6544 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6545 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6546 return -EINVAL;
6547 }
6548 return 0;
6549 default:
6550 BUG();
6551 }
6552 }
6553
6554 #define RETRY 1
6555 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6556 struct intel_crtc_state *pipe_config)
6557 {
6558 struct drm_device *dev = intel_crtc->base.dev;
6559 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560 int lane, link_bw, fdi_dotclock, ret;
6561 bool needs_recompute = false;
6562
6563 retry:
6564 /* FDI is a binary signal running at ~2.7GHz, encoding
6565 * each output octet as 10 bits. The actual frequency
6566 * is stored as a divider into a 100MHz clock, and the
6567 * mode pixel clock is stored in units of 1KHz.
6568 * Hence the bw of each lane in terms of the mode signal
6569 * is:
6570 */
6571 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6572
6573 fdi_dotclock = adjusted_mode->crtc_clock;
6574
6575 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6576 pipe_config->pipe_bpp);
6577
6578 pipe_config->fdi_lanes = lane;
6579
6580 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6581 link_bw, &pipe_config->fdi_m_n);
6582
6583 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6584 intel_crtc->pipe, pipe_config);
6585 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6586 pipe_config->pipe_bpp -= 2*3;
6587 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6588 pipe_config->pipe_bpp);
6589 needs_recompute = true;
6590 pipe_config->bw_constrained = true;
6591
6592 goto retry;
6593 }
6594
6595 if (needs_recompute)
6596 return RETRY;
6597
6598 return ret;
6599 }
6600
6601 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6602 struct intel_crtc_state *pipe_config)
6603 {
6604 if (pipe_config->pipe_bpp > 24)
6605 return false;
6606
6607 /* HSW can handle pixel rate up to cdclk? */
6608 if (IS_HASWELL(dev_priv->dev))
6609 return true;
6610
6611 /*
6612 * We compare against max which means we must take
6613 * the increased cdclk requirement into account when
6614 * calculating the new cdclk.
6615 *
6616 * Should measure whether using a lower cdclk w/o IPS
6617 */
6618 return ilk_pipe_pixel_rate(pipe_config) <=
6619 dev_priv->max_cdclk_freq * 95 / 100;
6620 }
6621
6622 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6623 struct intel_crtc_state *pipe_config)
6624 {
6625 struct drm_device *dev = crtc->base.dev;
6626 struct drm_i915_private *dev_priv = dev->dev_private;
6627
6628 pipe_config->ips_enabled = i915.enable_ips &&
6629 hsw_crtc_supports_ips(crtc) &&
6630 pipe_config_supports_ips(dev_priv, pipe_config);
6631 }
6632
6633 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6634 {
6635 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6636
6637 /* GDG double wide on either pipe, otherwise pipe A only */
6638 return INTEL_INFO(dev_priv)->gen < 4 &&
6639 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6640 }
6641
6642 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6643 struct intel_crtc_state *pipe_config)
6644 {
6645 struct drm_device *dev = crtc->base.dev;
6646 struct drm_i915_private *dev_priv = dev->dev_private;
6647 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6648
6649 /* FIXME should check pixel clock limits on all platforms */
6650 if (INTEL_INFO(dev)->gen < 4) {
6651 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6652
6653 /*
6654 * Enable double wide mode when the dot clock
6655 * is > 90% of the (display) core speed.
6656 */
6657 if (intel_crtc_supports_double_wide(crtc) &&
6658 adjusted_mode->crtc_clock > clock_limit) {
6659 clock_limit *= 2;
6660 pipe_config->double_wide = true;
6661 }
6662
6663 if (adjusted_mode->crtc_clock > clock_limit) {
6664 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6665 adjusted_mode->crtc_clock, clock_limit,
6666 yesno(pipe_config->double_wide));
6667 return -EINVAL;
6668 }
6669 }
6670
6671 /*
6672 * Pipe horizontal size must be even in:
6673 * - DVO ganged mode
6674 * - LVDS dual channel mode
6675 * - Double wide pipe
6676 */
6677 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6678 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6679 pipe_config->pipe_src_w &= ~1;
6680
6681 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6682 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6683 */
6684 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6685 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6686 return -EINVAL;
6687
6688 if (HAS_IPS(dev))
6689 hsw_compute_ips_config(crtc, pipe_config);
6690
6691 if (pipe_config->has_pch_encoder)
6692 return ironlake_fdi_compute_config(crtc, pipe_config);
6693
6694 return 0;
6695 }
6696
6697 static int skylake_get_display_clock_speed(struct drm_device *dev)
6698 {
6699 struct drm_i915_private *dev_priv = to_i915(dev);
6700 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6701 uint32_t cdctl = I915_READ(CDCLK_CTL);
6702 uint32_t linkrate;
6703
6704 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6705 return 24000; /* 24MHz is the cd freq with NSSC ref */
6706
6707 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6708 return 540000;
6709
6710 linkrate = (I915_READ(DPLL_CTRL1) &
6711 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6712
6713 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6714 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6715 /* vco 8640 */
6716 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6717 case CDCLK_FREQ_450_432:
6718 return 432000;
6719 case CDCLK_FREQ_337_308:
6720 return 308570;
6721 case CDCLK_FREQ_675_617:
6722 return 617140;
6723 default:
6724 WARN(1, "Unknown cd freq selection\n");
6725 }
6726 } else {
6727 /* vco 8100 */
6728 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6729 case CDCLK_FREQ_450_432:
6730 return 450000;
6731 case CDCLK_FREQ_337_308:
6732 return 337500;
6733 case CDCLK_FREQ_675_617:
6734 return 675000;
6735 default:
6736 WARN(1, "Unknown cd freq selection\n");
6737 }
6738 }
6739
6740 /* error case, do as if DPLL0 isn't enabled */
6741 return 24000;
6742 }
6743
6744 static int broxton_get_display_clock_speed(struct drm_device *dev)
6745 {
6746 struct drm_i915_private *dev_priv = to_i915(dev);
6747 uint32_t cdctl = I915_READ(CDCLK_CTL);
6748 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6749 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6750 int cdclk;
6751
6752 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6753 return 19200;
6754
6755 cdclk = 19200 * pll_ratio / 2;
6756
6757 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6758 case BXT_CDCLK_CD2X_DIV_SEL_1:
6759 return cdclk; /* 576MHz or 624MHz */
6760 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6761 return cdclk * 2 / 3; /* 384MHz */
6762 case BXT_CDCLK_CD2X_DIV_SEL_2:
6763 return cdclk / 2; /* 288MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_4:
6765 return cdclk / 4; /* 144MHz */
6766 }
6767
6768 /* error case, do as if DE PLL isn't enabled */
6769 return 19200;
6770 }
6771
6772 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6773 {
6774 struct drm_i915_private *dev_priv = dev->dev_private;
6775 uint32_t lcpll = I915_READ(LCPLL_CTL);
6776 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6777
6778 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6779 return 800000;
6780 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6781 return 450000;
6782 else if (freq == LCPLL_CLK_FREQ_450)
6783 return 450000;
6784 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6785 return 540000;
6786 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6787 return 337500;
6788 else
6789 return 675000;
6790 }
6791
6792 static int haswell_get_display_clock_speed(struct drm_device *dev)
6793 {
6794 struct drm_i915_private *dev_priv = dev->dev_private;
6795 uint32_t lcpll = I915_READ(LCPLL_CTL);
6796 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6797
6798 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6799 return 800000;
6800 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6801 return 450000;
6802 else if (freq == LCPLL_CLK_FREQ_450)
6803 return 450000;
6804 else if (IS_HSW_ULT(dev))
6805 return 337500;
6806 else
6807 return 540000;
6808 }
6809
6810 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6811 {
6812 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6813 CCK_DISPLAY_CLOCK_CONTROL);
6814 }
6815
6816 static int ilk_get_display_clock_speed(struct drm_device *dev)
6817 {
6818 return 450000;
6819 }
6820
6821 static int i945_get_display_clock_speed(struct drm_device *dev)
6822 {
6823 return 400000;
6824 }
6825
6826 static int i915_get_display_clock_speed(struct drm_device *dev)
6827 {
6828 return 333333;
6829 }
6830
6831 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6832 {
6833 return 200000;
6834 }
6835
6836 static int pnv_get_display_clock_speed(struct drm_device *dev)
6837 {
6838 u16 gcfgc = 0;
6839
6840 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6841
6842 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6843 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6844 return 266667;
6845 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6846 return 333333;
6847 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6848 return 444444;
6849 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6850 return 200000;
6851 default:
6852 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6853 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6854 return 133333;
6855 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6856 return 166667;
6857 }
6858 }
6859
6860 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6861 {
6862 u16 gcfgc = 0;
6863
6864 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6865
6866 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6867 return 133333;
6868 else {
6869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6870 case GC_DISPLAY_CLOCK_333_MHZ:
6871 return 333333;
6872 default:
6873 case GC_DISPLAY_CLOCK_190_200_MHZ:
6874 return 190000;
6875 }
6876 }
6877 }
6878
6879 static int i865_get_display_clock_speed(struct drm_device *dev)
6880 {
6881 return 266667;
6882 }
6883
6884 static int i85x_get_display_clock_speed(struct drm_device *dev)
6885 {
6886 u16 hpllcc = 0;
6887
6888 /*
6889 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6890 * encoding is different :(
6891 * FIXME is this the right way to detect 852GM/852GMV?
6892 */
6893 if (dev->pdev->revision == 0x1)
6894 return 133333;
6895
6896 pci_bus_read_config_word(dev->pdev->bus,
6897 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6898
6899 /* Assume that the hardware is in the high speed state. This
6900 * should be the default.
6901 */
6902 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6903 case GC_CLOCK_133_200:
6904 case GC_CLOCK_133_200_2:
6905 case GC_CLOCK_100_200:
6906 return 200000;
6907 case GC_CLOCK_166_250:
6908 return 250000;
6909 case GC_CLOCK_100_133:
6910 return 133333;
6911 case GC_CLOCK_133_266:
6912 case GC_CLOCK_133_266_2:
6913 case GC_CLOCK_166_266:
6914 return 266667;
6915 }
6916
6917 /* Shouldn't happen */
6918 return 0;
6919 }
6920
6921 static int i830_get_display_clock_speed(struct drm_device *dev)
6922 {
6923 return 133333;
6924 }
6925
6926 static unsigned int intel_hpll_vco(struct drm_device *dev)
6927 {
6928 struct drm_i915_private *dev_priv = dev->dev_private;
6929 static const unsigned int blb_vco[8] = {
6930 [0] = 3200000,
6931 [1] = 4000000,
6932 [2] = 5333333,
6933 [3] = 4800000,
6934 [4] = 6400000,
6935 };
6936 static const unsigned int pnv_vco[8] = {
6937 [0] = 3200000,
6938 [1] = 4000000,
6939 [2] = 5333333,
6940 [3] = 4800000,
6941 [4] = 2666667,
6942 };
6943 static const unsigned int cl_vco[8] = {
6944 [0] = 3200000,
6945 [1] = 4000000,
6946 [2] = 5333333,
6947 [3] = 6400000,
6948 [4] = 3333333,
6949 [5] = 3566667,
6950 [6] = 4266667,
6951 };
6952 static const unsigned int elk_vco[8] = {
6953 [0] = 3200000,
6954 [1] = 4000000,
6955 [2] = 5333333,
6956 [3] = 4800000,
6957 };
6958 static const unsigned int ctg_vco[8] = {
6959 [0] = 3200000,
6960 [1] = 4000000,
6961 [2] = 5333333,
6962 [3] = 6400000,
6963 [4] = 2666667,
6964 [5] = 4266667,
6965 };
6966 const unsigned int *vco_table;
6967 unsigned int vco;
6968 uint8_t tmp = 0;
6969
6970 /* FIXME other chipsets? */
6971 if (IS_GM45(dev))
6972 vco_table = ctg_vco;
6973 else if (IS_G4X(dev))
6974 vco_table = elk_vco;
6975 else if (IS_CRESTLINE(dev))
6976 vco_table = cl_vco;
6977 else if (IS_PINEVIEW(dev))
6978 vco_table = pnv_vco;
6979 else if (IS_G33(dev))
6980 vco_table = blb_vco;
6981 else
6982 return 0;
6983
6984 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6985
6986 vco = vco_table[tmp & 0x7];
6987 if (vco == 0)
6988 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6989 else
6990 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6991
6992 return vco;
6993 }
6994
6995 static int gm45_get_display_clock_speed(struct drm_device *dev)
6996 {
6997 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6998 uint16_t tmp = 0;
6999
7000 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7001
7002 cdclk_sel = (tmp >> 12) & 0x1;
7003
7004 switch (vco) {
7005 case 2666667:
7006 case 4000000:
7007 case 5333333:
7008 return cdclk_sel ? 333333 : 222222;
7009 case 3200000:
7010 return cdclk_sel ? 320000 : 228571;
7011 default:
7012 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7013 return 222222;
7014 }
7015 }
7016
7017 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7018 {
7019 static const uint8_t div_3200[] = { 16, 10, 8 };
7020 static const uint8_t div_4000[] = { 20, 12, 10 };
7021 static const uint8_t div_5333[] = { 24, 16, 14 };
7022 const uint8_t *div_table;
7023 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7024 uint16_t tmp = 0;
7025
7026 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7027
7028 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7029
7030 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7031 goto fail;
7032
7033 switch (vco) {
7034 case 3200000:
7035 div_table = div_3200;
7036 break;
7037 case 4000000:
7038 div_table = div_4000;
7039 break;
7040 case 5333333:
7041 div_table = div_5333;
7042 break;
7043 default:
7044 goto fail;
7045 }
7046
7047 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7048
7049 fail:
7050 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7051 return 200000;
7052 }
7053
7054 static int g33_get_display_clock_speed(struct drm_device *dev)
7055 {
7056 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7057 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7058 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7059 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7060 const uint8_t *div_table;
7061 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7062 uint16_t tmp = 0;
7063
7064 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7065
7066 cdclk_sel = (tmp >> 4) & 0x7;
7067
7068 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7069 goto fail;
7070
7071 switch (vco) {
7072 case 3200000:
7073 div_table = div_3200;
7074 break;
7075 case 4000000:
7076 div_table = div_4000;
7077 break;
7078 case 4800000:
7079 div_table = div_4800;
7080 break;
7081 case 5333333:
7082 div_table = div_5333;
7083 break;
7084 default:
7085 goto fail;
7086 }
7087
7088 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
7090 fail:
7091 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7092 return 190476;
7093 }
7094
7095 static void
7096 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7097 {
7098 while (*num > DATA_LINK_M_N_MASK ||
7099 *den > DATA_LINK_M_N_MASK) {
7100 *num >>= 1;
7101 *den >>= 1;
7102 }
7103 }
7104
7105 static void compute_m_n(unsigned int m, unsigned int n,
7106 uint32_t *ret_m, uint32_t *ret_n)
7107 {
7108 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7109 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7110 intel_reduce_m_n_ratio(ret_m, ret_n);
7111 }
7112
7113 void
7114 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7115 int pixel_clock, int link_clock,
7116 struct intel_link_m_n *m_n)
7117 {
7118 m_n->tu = 64;
7119
7120 compute_m_n(bits_per_pixel * pixel_clock,
7121 link_clock * nlanes * 8,
7122 &m_n->gmch_m, &m_n->gmch_n);
7123
7124 compute_m_n(pixel_clock, link_clock,
7125 &m_n->link_m, &m_n->link_n);
7126 }
7127
7128 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7129 {
7130 if (i915.panel_use_ssc >= 0)
7131 return i915.panel_use_ssc != 0;
7132 return dev_priv->vbt.lvds_use_ssc
7133 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7134 }
7135
7136 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7137 int num_connectors)
7138 {
7139 struct drm_device *dev = crtc_state->base.crtc->dev;
7140 struct drm_i915_private *dev_priv = dev->dev_private;
7141 int refclk;
7142
7143 WARN_ON(!crtc_state->base.state);
7144
7145 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7146 refclk = 100000;
7147 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7148 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7149 refclk = dev_priv->vbt.lvds_ssc_freq;
7150 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7151 } else if (!IS_GEN2(dev)) {
7152 refclk = 96000;
7153 } else {
7154 refclk = 48000;
7155 }
7156
7157 return refclk;
7158 }
7159
7160 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7161 {
7162 return (1 << dpll->n) << 16 | dpll->m2;
7163 }
7164
7165 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7166 {
7167 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7168 }
7169
7170 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7171 struct intel_crtc_state *crtc_state,
7172 intel_clock_t *reduced_clock)
7173 {
7174 struct drm_device *dev = crtc->base.dev;
7175 u32 fp, fp2 = 0;
7176
7177 if (IS_PINEVIEW(dev)) {
7178 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7179 if (reduced_clock)
7180 fp2 = pnv_dpll_compute_fp(reduced_clock);
7181 } else {
7182 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7183 if (reduced_clock)
7184 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7185 }
7186
7187 crtc_state->dpll_hw_state.fp0 = fp;
7188
7189 crtc->lowfreq_avail = false;
7190 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7191 reduced_clock) {
7192 crtc_state->dpll_hw_state.fp1 = fp2;
7193 crtc->lowfreq_avail = true;
7194 } else {
7195 crtc_state->dpll_hw_state.fp1 = fp;
7196 }
7197 }
7198
7199 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7200 pipe)
7201 {
7202 u32 reg_val;
7203
7204 /*
7205 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7206 * and set it to a reasonable value instead.
7207 */
7208 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7209 reg_val &= 0xffffff00;
7210 reg_val |= 0x00000030;
7211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7212
7213 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7214 reg_val &= 0x8cffffff;
7215 reg_val = 0x8c000000;
7216 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7217
7218 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7219 reg_val &= 0xffffff00;
7220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7221
7222 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7223 reg_val &= 0x00ffffff;
7224 reg_val |= 0xb0000000;
7225 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7226 }
7227
7228 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7229 struct intel_link_m_n *m_n)
7230 {
7231 struct drm_device *dev = crtc->base.dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 int pipe = crtc->pipe;
7234
7235 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7236 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7237 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7238 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7239 }
7240
7241 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7242 struct intel_link_m_n *m_n,
7243 struct intel_link_m_n *m2_n2)
7244 {
7245 struct drm_device *dev = crtc->base.dev;
7246 struct drm_i915_private *dev_priv = dev->dev_private;
7247 int pipe = crtc->pipe;
7248 enum transcoder transcoder = crtc->config->cpu_transcoder;
7249
7250 if (INTEL_INFO(dev)->gen >= 5) {
7251 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7252 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7253 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7254 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7255 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7256 * for gen < 8) and if DRRS is supported (to make sure the
7257 * registers are not unnecessarily accessed).
7258 */
7259 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7260 crtc->config->has_drrs) {
7261 I915_WRITE(PIPE_DATA_M2(transcoder),
7262 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7263 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7264 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7265 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7266 }
7267 } else {
7268 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7270 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7271 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7272 }
7273 }
7274
7275 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7276 {
7277 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7278
7279 if (m_n == M1_N1) {
7280 dp_m_n = &crtc->config->dp_m_n;
7281 dp_m2_n2 = &crtc->config->dp_m2_n2;
7282 } else if (m_n == M2_N2) {
7283
7284 /*
7285 * M2_N2 registers are not supported. Hence m2_n2 divider value
7286 * needs to be programmed into M1_N1.
7287 */
7288 dp_m_n = &crtc->config->dp_m2_n2;
7289 } else {
7290 DRM_ERROR("Unsupported divider value\n");
7291 return;
7292 }
7293
7294 if (crtc->config->has_pch_encoder)
7295 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7296 else
7297 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7298 }
7299
7300 static void vlv_compute_dpll(struct intel_crtc *crtc,
7301 struct intel_crtc_state *pipe_config)
7302 {
7303 u32 dpll, dpll_md;
7304
7305 /*
7306 * Enable DPIO clock input. We should never disable the reference
7307 * clock for pipe B, since VGA hotplug / manual detection depends
7308 * on it.
7309 */
7310 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7311 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7312 /* We should never disable this, set it here for state tracking */
7313 if (crtc->pipe == PIPE_B)
7314 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7315 dpll |= DPLL_VCO_ENABLE;
7316 pipe_config->dpll_hw_state.dpll = dpll;
7317
7318 dpll_md = (pipe_config->pixel_multiplier - 1)
7319 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7320 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7321 }
7322
7323 static void vlv_prepare_pll(struct intel_crtc *crtc,
7324 const struct intel_crtc_state *pipe_config)
7325 {
7326 struct drm_device *dev = crtc->base.dev;
7327 struct drm_i915_private *dev_priv = dev->dev_private;
7328 int pipe = crtc->pipe;
7329 u32 mdiv;
7330 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7331 u32 coreclk, reg_val;
7332
7333 mutex_lock(&dev_priv->sb_lock);
7334
7335 bestn = pipe_config->dpll.n;
7336 bestm1 = pipe_config->dpll.m1;
7337 bestm2 = pipe_config->dpll.m2;
7338 bestp1 = pipe_config->dpll.p1;
7339 bestp2 = pipe_config->dpll.p2;
7340
7341 /* See eDP HDMI DPIO driver vbios notes doc */
7342
7343 /* PLL B needs special handling */
7344 if (pipe == PIPE_B)
7345 vlv_pllb_recal_opamp(dev_priv, pipe);
7346
7347 /* Set up Tx target for periodic Rcomp update */
7348 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7349
7350 /* Disable target IRef on PLL */
7351 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7352 reg_val &= 0x00ffffff;
7353 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7354
7355 /* Disable fast lock */
7356 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7357
7358 /* Set idtafcrecal before PLL is enabled */
7359 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7360 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7361 mdiv |= ((bestn << DPIO_N_SHIFT));
7362 mdiv |= (1 << DPIO_K_SHIFT);
7363
7364 /*
7365 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7366 * but we don't support that).
7367 * Note: don't use the DAC post divider as it seems unstable.
7368 */
7369 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7370 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7371
7372 mdiv |= DPIO_ENABLE_CALIBRATION;
7373 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374
7375 /* Set HBR and RBR LPF coefficients */
7376 if (pipe_config->port_clock == 162000 ||
7377 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7378 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7379 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7380 0x009f0003);
7381 else
7382 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7383 0x00d0000f);
7384
7385 if (pipe_config->has_dp_encoder) {
7386 /* Use SSC source */
7387 if (pipe == PIPE_A)
7388 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389 0x0df40000);
7390 else
7391 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392 0x0df70000);
7393 } else { /* HDMI or VGA */
7394 /* Use bend source */
7395 if (pipe == PIPE_A)
7396 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7397 0x0df70000);
7398 else
7399 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7400 0x0df40000);
7401 }
7402
7403 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7404 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7405 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7406 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7407 coreclk |= 0x01000000;
7408 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7409
7410 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7411 mutex_unlock(&dev_priv->sb_lock);
7412 }
7413
7414 static void chv_compute_dpll(struct intel_crtc *crtc,
7415 struct intel_crtc_state *pipe_config)
7416 {
7417 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7418 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7419 DPLL_VCO_ENABLE;
7420 if (crtc->pipe != PIPE_A)
7421 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7422
7423 pipe_config->dpll_hw_state.dpll_md =
7424 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7425 }
7426
7427 static void chv_prepare_pll(struct intel_crtc *crtc,
7428 const struct intel_crtc_state *pipe_config)
7429 {
7430 struct drm_device *dev = crtc->base.dev;
7431 struct drm_i915_private *dev_priv = dev->dev_private;
7432 int pipe = crtc->pipe;
7433 i915_reg_t dpll_reg = DPLL(crtc->pipe);
7434 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7435 u32 loopfilter, tribuf_calcntr;
7436 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7437 u32 dpio_val;
7438 int vco;
7439
7440 bestn = pipe_config->dpll.n;
7441 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7442 bestm1 = pipe_config->dpll.m1;
7443 bestm2 = pipe_config->dpll.m2 >> 22;
7444 bestp1 = pipe_config->dpll.p1;
7445 bestp2 = pipe_config->dpll.p2;
7446 vco = pipe_config->dpll.vco;
7447 dpio_val = 0;
7448 loopfilter = 0;
7449
7450 /*
7451 * Enable Refclk and SSC
7452 */
7453 I915_WRITE(dpll_reg,
7454 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7455
7456 mutex_lock(&dev_priv->sb_lock);
7457
7458 /* p1 and p2 divider */
7459 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7460 5 << DPIO_CHV_S1_DIV_SHIFT |
7461 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7462 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7463 1 << DPIO_CHV_K_DIV_SHIFT);
7464
7465 /* Feedback post-divider - m2 */
7466 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7467
7468 /* Feedback refclk divider - n and m1 */
7469 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7470 DPIO_CHV_M1_DIV_BY_2 |
7471 1 << DPIO_CHV_N_DIV_SHIFT);
7472
7473 /* M2 fraction division */
7474 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7475
7476 /* M2 fraction division enable */
7477 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7478 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7479 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7480 if (bestm2_frac)
7481 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7482 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7483
7484 /* Program digital lock detect threshold */
7485 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7486 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7487 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7488 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7489 if (!bestm2_frac)
7490 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7491 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7492
7493 /* Loop filter */
7494 if (vco == 5400000) {
7495 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7496 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7497 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498 tribuf_calcntr = 0x9;
7499 } else if (vco <= 6200000) {
7500 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7501 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7502 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503 tribuf_calcntr = 0x9;
7504 } else if (vco <= 6480000) {
7505 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508 tribuf_calcntr = 0x8;
7509 } else {
7510 /* Not supported. Apply the same limits as in the max case */
7511 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7512 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7513 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7514 tribuf_calcntr = 0;
7515 }
7516 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7517
7518 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7519 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7520 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7521 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7522
7523 /* AFC Recal */
7524 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7525 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7526 DPIO_AFC_RECAL);
7527
7528 mutex_unlock(&dev_priv->sb_lock);
7529 }
7530
7531 /**
7532 * vlv_force_pll_on - forcibly enable just the PLL
7533 * @dev_priv: i915 private structure
7534 * @pipe: pipe PLL to enable
7535 * @dpll: PLL configuration
7536 *
7537 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7538 * in cases where we need the PLL enabled even when @pipe is not going to
7539 * be enabled.
7540 */
7541 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7542 const struct dpll *dpll)
7543 {
7544 struct intel_crtc *crtc =
7545 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7546 struct intel_crtc_state *pipe_config;
7547
7548 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7549 if (!pipe_config)
7550 return -ENOMEM;
7551
7552 pipe_config->base.crtc = &crtc->base;
7553 pipe_config->pixel_multiplier = 1;
7554 pipe_config->dpll = *dpll;
7555
7556 if (IS_CHERRYVIEW(dev)) {
7557 chv_compute_dpll(crtc, pipe_config);
7558 chv_prepare_pll(crtc, pipe_config);
7559 chv_enable_pll(crtc, pipe_config);
7560 } else {
7561 vlv_compute_dpll(crtc, pipe_config);
7562 vlv_prepare_pll(crtc, pipe_config);
7563 vlv_enable_pll(crtc, pipe_config);
7564 }
7565
7566 kfree(pipe_config);
7567
7568 return 0;
7569 }
7570
7571 /**
7572 * vlv_force_pll_off - forcibly disable just the PLL
7573 * @dev_priv: i915 private structure
7574 * @pipe: pipe PLL to disable
7575 *
7576 * Disable the PLL for @pipe. To be used in cases where we need
7577 * the PLL enabled even when @pipe is not going to be enabled.
7578 */
7579 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7580 {
7581 if (IS_CHERRYVIEW(dev))
7582 chv_disable_pll(to_i915(dev), pipe);
7583 else
7584 vlv_disable_pll(to_i915(dev), pipe);
7585 }
7586
7587 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7588 struct intel_crtc_state *crtc_state,
7589 intel_clock_t *reduced_clock,
7590 int num_connectors)
7591 {
7592 struct drm_device *dev = crtc->base.dev;
7593 struct drm_i915_private *dev_priv = dev->dev_private;
7594 u32 dpll;
7595 bool is_sdvo;
7596 struct dpll *clock = &crtc_state->dpll;
7597
7598 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7599
7600 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7601 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7602
7603 dpll = DPLL_VGA_MODE_DIS;
7604
7605 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7606 dpll |= DPLLB_MODE_LVDS;
7607 else
7608 dpll |= DPLLB_MODE_DAC_SERIAL;
7609
7610 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7611 dpll |= (crtc_state->pixel_multiplier - 1)
7612 << SDVO_MULTIPLIER_SHIFT_HIRES;
7613 }
7614
7615 if (is_sdvo)
7616 dpll |= DPLL_SDVO_HIGH_SPEED;
7617
7618 if (crtc_state->has_dp_encoder)
7619 dpll |= DPLL_SDVO_HIGH_SPEED;
7620
7621 /* compute bitmask from p1 value */
7622 if (IS_PINEVIEW(dev))
7623 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7624 else {
7625 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7626 if (IS_G4X(dev) && reduced_clock)
7627 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7628 }
7629 switch (clock->p2) {
7630 case 5:
7631 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7632 break;
7633 case 7:
7634 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7635 break;
7636 case 10:
7637 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7638 break;
7639 case 14:
7640 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7641 break;
7642 }
7643 if (INTEL_INFO(dev)->gen >= 4)
7644 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7645
7646 if (crtc_state->sdvo_tv_clock)
7647 dpll |= PLL_REF_INPUT_TVCLKINBC;
7648 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7650 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651 else
7652 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654 dpll |= DPLL_VCO_ENABLE;
7655 crtc_state->dpll_hw_state.dpll = dpll;
7656
7657 if (INTEL_INFO(dev)->gen >= 4) {
7658 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7659 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7660 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7661 }
7662 }
7663
7664 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7665 struct intel_crtc_state *crtc_state,
7666 intel_clock_t *reduced_clock,
7667 int num_connectors)
7668 {
7669 struct drm_device *dev = crtc->base.dev;
7670 struct drm_i915_private *dev_priv = dev->dev_private;
7671 u32 dpll;
7672 struct dpll *clock = &crtc_state->dpll;
7673
7674 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7675
7676 dpll = DPLL_VGA_MODE_DIS;
7677
7678 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7679 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7680 } else {
7681 if (clock->p1 == 2)
7682 dpll |= PLL_P1_DIVIDE_BY_TWO;
7683 else
7684 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7685 if (clock->p2 == 4)
7686 dpll |= PLL_P2_DIVIDE_BY_4;
7687 }
7688
7689 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7690 dpll |= DPLL_DVO_2X_MODE;
7691
7692 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7693 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7694 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7695 else
7696 dpll |= PLL_REF_INPUT_DREFCLK;
7697
7698 dpll |= DPLL_VCO_ENABLE;
7699 crtc_state->dpll_hw_state.dpll = dpll;
7700 }
7701
7702 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7703 {
7704 struct drm_device *dev = intel_crtc->base.dev;
7705 struct drm_i915_private *dev_priv = dev->dev_private;
7706 enum pipe pipe = intel_crtc->pipe;
7707 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7708 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7709 uint32_t crtc_vtotal, crtc_vblank_end;
7710 int vsyncshift = 0;
7711
7712 /* We need to be careful not to changed the adjusted mode, for otherwise
7713 * the hw state checker will get angry at the mismatch. */
7714 crtc_vtotal = adjusted_mode->crtc_vtotal;
7715 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7716
7717 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7718 /* the chip adds 2 halflines automatically */
7719 crtc_vtotal -= 1;
7720 crtc_vblank_end -= 1;
7721
7722 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7723 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7724 else
7725 vsyncshift = adjusted_mode->crtc_hsync_start -
7726 adjusted_mode->crtc_htotal / 2;
7727 if (vsyncshift < 0)
7728 vsyncshift += adjusted_mode->crtc_htotal;
7729 }
7730
7731 if (INTEL_INFO(dev)->gen > 3)
7732 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7733
7734 I915_WRITE(HTOTAL(cpu_transcoder),
7735 (adjusted_mode->crtc_hdisplay - 1) |
7736 ((adjusted_mode->crtc_htotal - 1) << 16));
7737 I915_WRITE(HBLANK(cpu_transcoder),
7738 (adjusted_mode->crtc_hblank_start - 1) |
7739 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7740 I915_WRITE(HSYNC(cpu_transcoder),
7741 (adjusted_mode->crtc_hsync_start - 1) |
7742 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7743
7744 I915_WRITE(VTOTAL(cpu_transcoder),
7745 (adjusted_mode->crtc_vdisplay - 1) |
7746 ((crtc_vtotal - 1) << 16));
7747 I915_WRITE(VBLANK(cpu_transcoder),
7748 (adjusted_mode->crtc_vblank_start - 1) |
7749 ((crtc_vblank_end - 1) << 16));
7750 I915_WRITE(VSYNC(cpu_transcoder),
7751 (adjusted_mode->crtc_vsync_start - 1) |
7752 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7753
7754 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7755 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7756 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7757 * bits. */
7758 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7759 (pipe == PIPE_B || pipe == PIPE_C))
7760 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7761
7762 /* pipesrc controls the size that is scaled from, which should
7763 * always be the user's requested size.
7764 */
7765 I915_WRITE(PIPESRC(pipe),
7766 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7767 (intel_crtc->config->pipe_src_h - 1));
7768 }
7769
7770 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7771 struct intel_crtc_state *pipe_config)
7772 {
7773 struct drm_device *dev = crtc->base.dev;
7774 struct drm_i915_private *dev_priv = dev->dev_private;
7775 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7776 uint32_t tmp;
7777
7778 tmp = I915_READ(HTOTAL(cpu_transcoder));
7779 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7780 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7781 tmp = I915_READ(HBLANK(cpu_transcoder));
7782 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7783 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7784 tmp = I915_READ(HSYNC(cpu_transcoder));
7785 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7786 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7787
7788 tmp = I915_READ(VTOTAL(cpu_transcoder));
7789 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7790 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7791 tmp = I915_READ(VBLANK(cpu_transcoder));
7792 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7793 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7794 tmp = I915_READ(VSYNC(cpu_transcoder));
7795 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7796 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7797
7798 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7799 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7800 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7801 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7802 }
7803
7804 tmp = I915_READ(PIPESRC(crtc->pipe));
7805 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7806 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7807
7808 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7809 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7810 }
7811
7812 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7813 struct intel_crtc_state *pipe_config)
7814 {
7815 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7816 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7817 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7818 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7819
7820 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7821 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7822 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7823 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7824
7825 mode->flags = pipe_config->base.adjusted_mode.flags;
7826 mode->type = DRM_MODE_TYPE_DRIVER;
7827
7828 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7829 mode->flags |= pipe_config->base.adjusted_mode.flags;
7830
7831 mode->hsync = drm_mode_hsync(mode);
7832 mode->vrefresh = drm_mode_vrefresh(mode);
7833 drm_mode_set_name(mode);
7834 }
7835
7836 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7837 {
7838 struct drm_device *dev = intel_crtc->base.dev;
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 uint32_t pipeconf;
7841
7842 pipeconf = 0;
7843
7844 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7845 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7846 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7847
7848 if (intel_crtc->config->double_wide)
7849 pipeconf |= PIPECONF_DOUBLE_WIDE;
7850
7851 /* only g4x and later have fancy bpc/dither controls */
7852 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7853 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7854 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7855 pipeconf |= PIPECONF_DITHER_EN |
7856 PIPECONF_DITHER_TYPE_SP;
7857
7858 switch (intel_crtc->config->pipe_bpp) {
7859 case 18:
7860 pipeconf |= PIPECONF_6BPC;
7861 break;
7862 case 24:
7863 pipeconf |= PIPECONF_8BPC;
7864 break;
7865 case 30:
7866 pipeconf |= PIPECONF_10BPC;
7867 break;
7868 default:
7869 /* Case prevented by intel_choose_pipe_bpp_dither. */
7870 BUG();
7871 }
7872 }
7873
7874 if (HAS_PIPE_CXSR(dev)) {
7875 if (intel_crtc->lowfreq_avail) {
7876 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7877 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7878 } else {
7879 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7880 }
7881 }
7882
7883 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7884 if (INTEL_INFO(dev)->gen < 4 ||
7885 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7886 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7887 else
7888 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7889 } else
7890 pipeconf |= PIPECONF_PROGRESSIVE;
7891
7892 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7893 intel_crtc->config->limited_color_range)
7894 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7895
7896 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7897 POSTING_READ(PIPECONF(intel_crtc->pipe));
7898 }
7899
7900 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7901 struct intel_crtc_state *crtc_state)
7902 {
7903 struct drm_device *dev = crtc->base.dev;
7904 struct drm_i915_private *dev_priv = dev->dev_private;
7905 int refclk, num_connectors = 0;
7906 intel_clock_t clock;
7907 bool ok;
7908 const intel_limit_t *limit;
7909 struct drm_atomic_state *state = crtc_state->base.state;
7910 struct drm_connector *connector;
7911 struct drm_connector_state *connector_state;
7912 int i;
7913
7914 memset(&crtc_state->dpll_hw_state, 0,
7915 sizeof(crtc_state->dpll_hw_state));
7916
7917 if (crtc_state->has_dsi_encoder)
7918 return 0;
7919
7920 for_each_connector_in_state(state, connector, connector_state, i) {
7921 if (connector_state->crtc == &crtc->base)
7922 num_connectors++;
7923 }
7924
7925 if (!crtc_state->clock_set) {
7926 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7927
7928 /*
7929 * Returns a set of divisors for the desired target clock with
7930 * the given refclk, or FALSE. The returned values represent
7931 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7932 * 2) / p1 / p2.
7933 */
7934 limit = intel_limit(crtc_state, refclk);
7935 ok = dev_priv->display.find_dpll(limit, crtc_state,
7936 crtc_state->port_clock,
7937 refclk, NULL, &clock);
7938 if (!ok) {
7939 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7940 return -EINVAL;
7941 }
7942
7943 /* Compat-code for transition, will disappear. */
7944 crtc_state->dpll.n = clock.n;
7945 crtc_state->dpll.m1 = clock.m1;
7946 crtc_state->dpll.m2 = clock.m2;
7947 crtc_state->dpll.p1 = clock.p1;
7948 crtc_state->dpll.p2 = clock.p2;
7949 }
7950
7951 if (IS_GEN2(dev)) {
7952 i8xx_compute_dpll(crtc, crtc_state, NULL,
7953 num_connectors);
7954 } else if (IS_CHERRYVIEW(dev)) {
7955 chv_compute_dpll(crtc, crtc_state);
7956 } else if (IS_VALLEYVIEW(dev)) {
7957 vlv_compute_dpll(crtc, crtc_state);
7958 } else {
7959 i9xx_compute_dpll(crtc, crtc_state, NULL,
7960 num_connectors);
7961 }
7962
7963 return 0;
7964 }
7965
7966 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7967 struct intel_crtc_state *pipe_config)
7968 {
7969 struct drm_device *dev = crtc->base.dev;
7970 struct drm_i915_private *dev_priv = dev->dev_private;
7971 uint32_t tmp;
7972
7973 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7974 return;
7975
7976 tmp = I915_READ(PFIT_CONTROL);
7977 if (!(tmp & PFIT_ENABLE))
7978 return;
7979
7980 /* Check whether the pfit is attached to our pipe. */
7981 if (INTEL_INFO(dev)->gen < 4) {
7982 if (crtc->pipe != PIPE_B)
7983 return;
7984 } else {
7985 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7986 return;
7987 }
7988
7989 pipe_config->gmch_pfit.control = tmp;
7990 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7991 }
7992
7993 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7994 struct intel_crtc_state *pipe_config)
7995 {
7996 struct drm_device *dev = crtc->base.dev;
7997 struct drm_i915_private *dev_priv = dev->dev_private;
7998 int pipe = pipe_config->cpu_transcoder;
7999 intel_clock_t clock;
8000 u32 mdiv;
8001 int refclk = 100000;
8002
8003 /* In case of MIPI DPLL will not even be used */
8004 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8005 return;
8006
8007 mutex_lock(&dev_priv->sb_lock);
8008 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8009 mutex_unlock(&dev_priv->sb_lock);
8010
8011 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8012 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8013 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8014 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8015 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8016
8017 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8018 }
8019
8020 static void
8021 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8022 struct intel_initial_plane_config *plane_config)
8023 {
8024 struct drm_device *dev = crtc->base.dev;
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 u32 val, base, offset;
8027 int pipe = crtc->pipe, plane = crtc->plane;
8028 int fourcc, pixel_format;
8029 unsigned int aligned_height;
8030 struct drm_framebuffer *fb;
8031 struct intel_framebuffer *intel_fb;
8032
8033 val = I915_READ(DSPCNTR(plane));
8034 if (!(val & DISPLAY_PLANE_ENABLE))
8035 return;
8036
8037 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8038 if (!intel_fb) {
8039 DRM_DEBUG_KMS("failed to alloc fb\n");
8040 return;
8041 }
8042
8043 fb = &intel_fb->base;
8044
8045 if (INTEL_INFO(dev)->gen >= 4) {
8046 if (val & DISPPLANE_TILED) {
8047 plane_config->tiling = I915_TILING_X;
8048 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8049 }
8050 }
8051
8052 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8053 fourcc = i9xx_format_to_fourcc(pixel_format);
8054 fb->pixel_format = fourcc;
8055 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8056
8057 if (INTEL_INFO(dev)->gen >= 4) {
8058 if (plane_config->tiling)
8059 offset = I915_READ(DSPTILEOFF(plane));
8060 else
8061 offset = I915_READ(DSPLINOFF(plane));
8062 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8063 } else {
8064 base = I915_READ(DSPADDR(plane));
8065 }
8066 plane_config->base = base;
8067
8068 val = I915_READ(PIPESRC(pipe));
8069 fb->width = ((val >> 16) & 0xfff) + 1;
8070 fb->height = ((val >> 0) & 0xfff) + 1;
8071
8072 val = I915_READ(DSPSTRIDE(pipe));
8073 fb->pitches[0] = val & 0xffffffc0;
8074
8075 aligned_height = intel_fb_align_height(dev, fb->height,
8076 fb->pixel_format,
8077 fb->modifier[0]);
8078
8079 plane_config->size = fb->pitches[0] * aligned_height;
8080
8081 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8082 pipe_name(pipe), plane, fb->width, fb->height,
8083 fb->bits_per_pixel, base, fb->pitches[0],
8084 plane_config->size);
8085
8086 plane_config->fb = intel_fb;
8087 }
8088
8089 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8090 struct intel_crtc_state *pipe_config)
8091 {
8092 struct drm_device *dev = crtc->base.dev;
8093 struct drm_i915_private *dev_priv = dev->dev_private;
8094 int pipe = pipe_config->cpu_transcoder;
8095 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8096 intel_clock_t clock;
8097 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8098 int refclk = 100000;
8099
8100 mutex_lock(&dev_priv->sb_lock);
8101 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8102 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8103 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8104 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8105 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8106 mutex_unlock(&dev_priv->sb_lock);
8107
8108 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8109 clock.m2 = (pll_dw0 & 0xff) << 22;
8110 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8111 clock.m2 |= pll_dw2 & 0x3fffff;
8112 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8113 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8114 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8115
8116 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8117 }
8118
8119 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8120 struct intel_crtc_state *pipe_config)
8121 {
8122 struct drm_device *dev = crtc->base.dev;
8123 struct drm_i915_private *dev_priv = dev->dev_private;
8124 enum intel_display_power_domain power_domain;
8125 uint32_t tmp;
8126 bool ret;
8127
8128 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8129 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8130 return false;
8131
8132 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8133 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8134
8135 ret = false;
8136
8137 tmp = I915_READ(PIPECONF(crtc->pipe));
8138 if (!(tmp & PIPECONF_ENABLE))
8139 goto out;
8140
8141 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8142 switch (tmp & PIPECONF_BPC_MASK) {
8143 case PIPECONF_6BPC:
8144 pipe_config->pipe_bpp = 18;
8145 break;
8146 case PIPECONF_8BPC:
8147 pipe_config->pipe_bpp = 24;
8148 break;
8149 case PIPECONF_10BPC:
8150 pipe_config->pipe_bpp = 30;
8151 break;
8152 default:
8153 break;
8154 }
8155 }
8156
8157 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8158 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8159 pipe_config->limited_color_range = true;
8160
8161 if (INTEL_INFO(dev)->gen < 4)
8162 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8163
8164 intel_get_pipe_timings(crtc, pipe_config);
8165
8166 i9xx_get_pfit_config(crtc, pipe_config);
8167
8168 if (INTEL_INFO(dev)->gen >= 4) {
8169 tmp = I915_READ(DPLL_MD(crtc->pipe));
8170 pipe_config->pixel_multiplier =
8171 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8172 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8173 pipe_config->dpll_hw_state.dpll_md = tmp;
8174 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8175 tmp = I915_READ(DPLL(crtc->pipe));
8176 pipe_config->pixel_multiplier =
8177 ((tmp & SDVO_MULTIPLIER_MASK)
8178 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8179 } else {
8180 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8181 * port and will be fixed up in the encoder->get_config
8182 * function. */
8183 pipe_config->pixel_multiplier = 1;
8184 }
8185 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8186 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8187 /*
8188 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8189 * on 830. Filter it out here so that we don't
8190 * report errors due to that.
8191 */
8192 if (IS_I830(dev))
8193 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8194
8195 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8196 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8197 } else {
8198 /* Mask out read-only status bits. */
8199 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8200 DPLL_PORTC_READY_MASK |
8201 DPLL_PORTB_READY_MASK);
8202 }
8203
8204 if (IS_CHERRYVIEW(dev))
8205 chv_crtc_clock_get(crtc, pipe_config);
8206 else if (IS_VALLEYVIEW(dev))
8207 vlv_crtc_clock_get(crtc, pipe_config);
8208 else
8209 i9xx_crtc_clock_get(crtc, pipe_config);
8210
8211 /*
8212 * Normally the dotclock is filled in by the encoder .get_config()
8213 * but in case the pipe is enabled w/o any ports we need a sane
8214 * default.
8215 */
8216 pipe_config->base.adjusted_mode.crtc_clock =
8217 pipe_config->port_clock / pipe_config->pixel_multiplier;
8218
8219 ret = true;
8220
8221 out:
8222 intel_display_power_put(dev_priv, power_domain);
8223
8224 return ret;
8225 }
8226
8227 static void ironlake_init_pch_refclk(struct drm_device *dev)
8228 {
8229 struct drm_i915_private *dev_priv = dev->dev_private;
8230 struct intel_encoder *encoder;
8231 u32 val, final;
8232 bool has_lvds = false;
8233 bool has_cpu_edp = false;
8234 bool has_panel = false;
8235 bool has_ck505 = false;
8236 bool can_ssc = false;
8237
8238 /* We need to take the global config into account */
8239 for_each_intel_encoder(dev, encoder) {
8240 switch (encoder->type) {
8241 case INTEL_OUTPUT_LVDS:
8242 has_panel = true;
8243 has_lvds = true;
8244 break;
8245 case INTEL_OUTPUT_EDP:
8246 has_panel = true;
8247 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8248 has_cpu_edp = true;
8249 break;
8250 default:
8251 break;
8252 }
8253 }
8254
8255 if (HAS_PCH_IBX(dev)) {
8256 has_ck505 = dev_priv->vbt.display_clock_mode;
8257 can_ssc = has_ck505;
8258 } else {
8259 has_ck505 = false;
8260 can_ssc = true;
8261 }
8262
8263 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264 has_panel, has_lvds, has_ck505);
8265
8266 /* Ironlake: try to setup display ref clock before DPLL
8267 * enabling. This is only under driver's control after
8268 * PCH B stepping, previous chipset stepping should be
8269 * ignoring this setting.
8270 */
8271 val = I915_READ(PCH_DREF_CONTROL);
8272
8273 /* As we must carefully and slowly disable/enable each source in turn,
8274 * compute the final state we want first and check if we need to
8275 * make any changes at all.
8276 */
8277 final = val;
8278 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279 if (has_ck505)
8280 final |= DREF_NONSPREAD_CK505_ENABLE;
8281 else
8282 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8283
8284 final &= ~DREF_SSC_SOURCE_MASK;
8285 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286 final &= ~DREF_SSC1_ENABLE;
8287
8288 if (has_panel) {
8289 final |= DREF_SSC_SOURCE_ENABLE;
8290
8291 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292 final |= DREF_SSC1_ENABLE;
8293
8294 if (has_cpu_edp) {
8295 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297 else
8298 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299 } else
8300 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301 } else {
8302 final |= DREF_SSC_SOURCE_DISABLE;
8303 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304 }
8305
8306 if (final == val)
8307 return;
8308
8309 /* Always enable nonspread source */
8310 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8311
8312 if (has_ck505)
8313 val |= DREF_NONSPREAD_CK505_ENABLE;
8314 else
8315 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8316
8317 if (has_panel) {
8318 val &= ~DREF_SSC_SOURCE_MASK;
8319 val |= DREF_SSC_SOURCE_ENABLE;
8320
8321 /* SSC must be turned on before enabling the CPU output */
8322 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323 DRM_DEBUG_KMS("Using SSC on panel\n");
8324 val |= DREF_SSC1_ENABLE;
8325 } else
8326 val &= ~DREF_SSC1_ENABLE;
8327
8328 /* Get SSC going before enabling the outputs */
8329 I915_WRITE(PCH_DREF_CONTROL, val);
8330 POSTING_READ(PCH_DREF_CONTROL);
8331 udelay(200);
8332
8333 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8334
8335 /* Enable CPU source on CPU attached eDP */
8336 if (has_cpu_edp) {
8337 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338 DRM_DEBUG_KMS("Using SSC on eDP\n");
8339 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340 } else
8341 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342 } else
8343 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8344
8345 I915_WRITE(PCH_DREF_CONTROL, val);
8346 POSTING_READ(PCH_DREF_CONTROL);
8347 udelay(200);
8348 } else {
8349 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8350
8351 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352
8353 /* Turn off CPU output */
8354 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355
8356 I915_WRITE(PCH_DREF_CONTROL, val);
8357 POSTING_READ(PCH_DREF_CONTROL);
8358 udelay(200);
8359
8360 /* Turn off the SSC source */
8361 val &= ~DREF_SSC_SOURCE_MASK;
8362 val |= DREF_SSC_SOURCE_DISABLE;
8363
8364 /* Turn off SSC1 */
8365 val &= ~DREF_SSC1_ENABLE;
8366
8367 I915_WRITE(PCH_DREF_CONTROL, val);
8368 POSTING_READ(PCH_DREF_CONTROL);
8369 udelay(200);
8370 }
8371
8372 BUG_ON(val != final);
8373 }
8374
8375 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8376 {
8377 uint32_t tmp;
8378
8379 tmp = I915_READ(SOUTH_CHICKEN2);
8380 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381 I915_WRITE(SOUTH_CHICKEN2, tmp);
8382
8383 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385 DRM_ERROR("FDI mPHY reset assert timeout\n");
8386
8387 tmp = I915_READ(SOUTH_CHICKEN2);
8388 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389 I915_WRITE(SOUTH_CHICKEN2, tmp);
8390
8391 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8392 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8393 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8394 }
8395
8396 /* WaMPhyProgramming:hsw */
8397 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399 uint32_t tmp;
8400
8401 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402 tmp &= ~(0xFF << 24);
8403 tmp |= (0x12 << 24);
8404 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8405
8406 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407 tmp |= (1 << 11);
8408 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8409
8410 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411 tmp |= (1 << 11);
8412 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8413
8414 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8417
8418 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8421
8422 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423 tmp &= ~(7 << 13);
8424 tmp |= (5 << 13);
8425 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8426
8427 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428 tmp &= ~(7 << 13);
8429 tmp |= (5 << 13);
8430 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8431
8432 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433 tmp &= ~0xFF;
8434 tmp |= 0x1C;
8435 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8436
8437 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438 tmp &= ~0xFF;
8439 tmp |= 0x1C;
8440 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8441
8442 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443 tmp &= ~(0xFF << 16);
8444 tmp |= (0x1C << 16);
8445 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8446
8447 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448 tmp &= ~(0xFF << 16);
8449 tmp |= (0x1C << 16);
8450 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8451
8452 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453 tmp |= (1 << 27);
8454 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8455
8456 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457 tmp |= (1 << 27);
8458 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8459
8460 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461 tmp &= ~(0xF << 28);
8462 tmp |= (4 << 28);
8463 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8464
8465 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466 tmp &= ~(0xF << 28);
8467 tmp |= (4 << 28);
8468 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8469 }
8470
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472 * Programming" based on the parameters passed:
8473 * - Sequence to enable CLKOUT_DP
8474 * - Sequence to enable CLKOUT_DP without spread
8475 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8476 */
8477 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478 bool with_fdi)
8479 {
8480 struct drm_i915_private *dev_priv = dev->dev_private;
8481 uint32_t reg, tmp;
8482
8483 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484 with_spread = true;
8485 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8486 with_fdi = false;
8487
8488 mutex_lock(&dev_priv->sb_lock);
8489
8490 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491 tmp &= ~SBI_SSCCTL_DISABLE;
8492 tmp |= SBI_SSCCTL_PATHALT;
8493 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494
8495 udelay(24);
8496
8497 if (with_spread) {
8498 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499 tmp &= ~SBI_SSCCTL_PATHALT;
8500 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8501
8502 if (with_fdi) {
8503 lpt_reset_fdi_mphy(dev_priv);
8504 lpt_program_fdi_mphy(dev_priv);
8505 }
8506 }
8507
8508 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8509 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8512
8513 mutex_unlock(&dev_priv->sb_lock);
8514 }
8515
8516 /* Sequence to disable CLKOUT_DP */
8517 static void lpt_disable_clkout_dp(struct drm_device *dev)
8518 {
8519 struct drm_i915_private *dev_priv = dev->dev_private;
8520 uint32_t reg, tmp;
8521
8522 mutex_lock(&dev_priv->sb_lock);
8523
8524 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8525 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8528
8529 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532 tmp |= SBI_SSCCTL_PATHALT;
8533 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534 udelay(32);
8535 }
8536 tmp |= SBI_SSCCTL_DISABLE;
8537 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538 }
8539
8540 mutex_unlock(&dev_priv->sb_lock);
8541 }
8542
8543 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8544
8545 static const uint16_t sscdivintphase[] = {
8546 [BEND_IDX( 50)] = 0x3B23,
8547 [BEND_IDX( 45)] = 0x3B23,
8548 [BEND_IDX( 40)] = 0x3C23,
8549 [BEND_IDX( 35)] = 0x3C23,
8550 [BEND_IDX( 30)] = 0x3D23,
8551 [BEND_IDX( 25)] = 0x3D23,
8552 [BEND_IDX( 20)] = 0x3E23,
8553 [BEND_IDX( 15)] = 0x3E23,
8554 [BEND_IDX( 10)] = 0x3F23,
8555 [BEND_IDX( 5)] = 0x3F23,
8556 [BEND_IDX( 0)] = 0x0025,
8557 [BEND_IDX( -5)] = 0x0025,
8558 [BEND_IDX(-10)] = 0x0125,
8559 [BEND_IDX(-15)] = 0x0125,
8560 [BEND_IDX(-20)] = 0x0225,
8561 [BEND_IDX(-25)] = 0x0225,
8562 [BEND_IDX(-30)] = 0x0325,
8563 [BEND_IDX(-35)] = 0x0325,
8564 [BEND_IDX(-40)] = 0x0425,
8565 [BEND_IDX(-45)] = 0x0425,
8566 [BEND_IDX(-50)] = 0x0525,
8567 };
8568
8569 /*
8570 * Bend CLKOUT_DP
8571 * steps -50 to 50 inclusive, in steps of 5
8572 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8573 * change in clock period = -(steps / 10) * 5.787 ps
8574 */
8575 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8576 {
8577 uint32_t tmp;
8578 int idx = BEND_IDX(steps);
8579
8580 if (WARN_ON(steps % 5 != 0))
8581 return;
8582
8583 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8584 return;
8585
8586 mutex_lock(&dev_priv->sb_lock);
8587
8588 if (steps % 10 != 0)
8589 tmp = 0xAAAAAAAB;
8590 else
8591 tmp = 0x00000000;
8592 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8593
8594 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8595 tmp &= 0xffff0000;
8596 tmp |= sscdivintphase[idx];
8597 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8598
8599 mutex_unlock(&dev_priv->sb_lock);
8600 }
8601
8602 #undef BEND_IDX
8603
8604 static void lpt_init_pch_refclk(struct drm_device *dev)
8605 {
8606 struct intel_encoder *encoder;
8607 bool has_vga = false;
8608
8609 for_each_intel_encoder(dev, encoder) {
8610 switch (encoder->type) {
8611 case INTEL_OUTPUT_ANALOG:
8612 has_vga = true;
8613 break;
8614 default:
8615 break;
8616 }
8617 }
8618
8619 if (has_vga) {
8620 lpt_bend_clkout_dp(to_i915(dev), 0);
8621 lpt_enable_clkout_dp(dev, true, true);
8622 } else {
8623 lpt_disable_clkout_dp(dev);
8624 }
8625 }
8626
8627 /*
8628 * Initialize reference clocks when the driver loads
8629 */
8630 void intel_init_pch_refclk(struct drm_device *dev)
8631 {
8632 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8633 ironlake_init_pch_refclk(dev);
8634 else if (HAS_PCH_LPT(dev))
8635 lpt_init_pch_refclk(dev);
8636 }
8637
8638 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8639 {
8640 struct drm_device *dev = crtc_state->base.crtc->dev;
8641 struct drm_i915_private *dev_priv = dev->dev_private;
8642 struct drm_atomic_state *state = crtc_state->base.state;
8643 struct drm_connector *connector;
8644 struct drm_connector_state *connector_state;
8645 struct intel_encoder *encoder;
8646 int num_connectors = 0, i;
8647 bool is_lvds = false;
8648
8649 for_each_connector_in_state(state, connector, connector_state, i) {
8650 if (connector_state->crtc != crtc_state->base.crtc)
8651 continue;
8652
8653 encoder = to_intel_encoder(connector_state->best_encoder);
8654
8655 switch (encoder->type) {
8656 case INTEL_OUTPUT_LVDS:
8657 is_lvds = true;
8658 break;
8659 default:
8660 break;
8661 }
8662 num_connectors++;
8663 }
8664
8665 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8666 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8667 dev_priv->vbt.lvds_ssc_freq);
8668 return dev_priv->vbt.lvds_ssc_freq;
8669 }
8670
8671 return 120000;
8672 }
8673
8674 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8675 {
8676 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678 int pipe = intel_crtc->pipe;
8679 uint32_t val;
8680
8681 val = 0;
8682
8683 switch (intel_crtc->config->pipe_bpp) {
8684 case 18:
8685 val |= PIPECONF_6BPC;
8686 break;
8687 case 24:
8688 val |= PIPECONF_8BPC;
8689 break;
8690 case 30:
8691 val |= PIPECONF_10BPC;
8692 break;
8693 case 36:
8694 val |= PIPECONF_12BPC;
8695 break;
8696 default:
8697 /* Case prevented by intel_choose_pipe_bpp_dither. */
8698 BUG();
8699 }
8700
8701 if (intel_crtc->config->dither)
8702 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8703
8704 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8705 val |= PIPECONF_INTERLACED_ILK;
8706 else
8707 val |= PIPECONF_PROGRESSIVE;
8708
8709 if (intel_crtc->config->limited_color_range)
8710 val |= PIPECONF_COLOR_RANGE_SELECT;
8711
8712 I915_WRITE(PIPECONF(pipe), val);
8713 POSTING_READ(PIPECONF(pipe));
8714 }
8715
8716 /*
8717 * Set up the pipe CSC unit.
8718 *
8719 * Currently only full range RGB to limited range RGB conversion
8720 * is supported, but eventually this should handle various
8721 * RGB<->YCbCr scenarios as well.
8722 */
8723 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8724 {
8725 struct drm_device *dev = crtc->dev;
8726 struct drm_i915_private *dev_priv = dev->dev_private;
8727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8728 int pipe = intel_crtc->pipe;
8729 uint16_t coeff = 0x7800; /* 1.0 */
8730
8731 /*
8732 * TODO: Check what kind of values actually come out of the pipe
8733 * with these coeff/postoff values and adjust to get the best
8734 * accuracy. Perhaps we even need to take the bpc value into
8735 * consideration.
8736 */
8737
8738 if (intel_crtc->config->limited_color_range)
8739 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8740
8741 /*
8742 * GY/GU and RY/RU should be the other way around according
8743 * to BSpec, but reality doesn't agree. Just set them up in
8744 * a way that results in the correct picture.
8745 */
8746 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8747 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8748
8749 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8750 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8751
8752 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8753 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8754
8755 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8756 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8757 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8758
8759 if (INTEL_INFO(dev)->gen > 6) {
8760 uint16_t postoff = 0;
8761
8762 if (intel_crtc->config->limited_color_range)
8763 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8764
8765 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8766 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8767 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8768
8769 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8770 } else {
8771 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8772
8773 if (intel_crtc->config->limited_color_range)
8774 mode |= CSC_BLACK_SCREEN_OFFSET;
8775
8776 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8777 }
8778 }
8779
8780 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8781 {
8782 struct drm_device *dev = crtc->dev;
8783 struct drm_i915_private *dev_priv = dev->dev_private;
8784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8785 enum pipe pipe = intel_crtc->pipe;
8786 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8787 uint32_t val;
8788
8789 val = 0;
8790
8791 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8792 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8793
8794 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8795 val |= PIPECONF_INTERLACED_ILK;
8796 else
8797 val |= PIPECONF_PROGRESSIVE;
8798
8799 I915_WRITE(PIPECONF(cpu_transcoder), val);
8800 POSTING_READ(PIPECONF(cpu_transcoder));
8801
8802 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8803 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8804
8805 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8806 val = 0;
8807
8808 switch (intel_crtc->config->pipe_bpp) {
8809 case 18:
8810 val |= PIPEMISC_DITHER_6_BPC;
8811 break;
8812 case 24:
8813 val |= PIPEMISC_DITHER_8_BPC;
8814 break;
8815 case 30:
8816 val |= PIPEMISC_DITHER_10_BPC;
8817 break;
8818 case 36:
8819 val |= PIPEMISC_DITHER_12_BPC;
8820 break;
8821 default:
8822 /* Case prevented by pipe_config_set_bpp. */
8823 BUG();
8824 }
8825
8826 if (intel_crtc->config->dither)
8827 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8828
8829 I915_WRITE(PIPEMISC(pipe), val);
8830 }
8831 }
8832
8833 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8834 struct intel_crtc_state *crtc_state,
8835 intel_clock_t *clock,
8836 bool *has_reduced_clock,
8837 intel_clock_t *reduced_clock)
8838 {
8839 struct drm_device *dev = crtc->dev;
8840 struct drm_i915_private *dev_priv = dev->dev_private;
8841 int refclk;
8842 const intel_limit_t *limit;
8843 bool ret;
8844
8845 refclk = ironlake_get_refclk(crtc_state);
8846
8847 /*
8848 * Returns a set of divisors for the desired target clock with the given
8849 * refclk, or FALSE. The returned values represent the clock equation:
8850 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8851 */
8852 limit = intel_limit(crtc_state, refclk);
8853 ret = dev_priv->display.find_dpll(limit, crtc_state,
8854 crtc_state->port_clock,
8855 refclk, NULL, clock);
8856 if (!ret)
8857 return false;
8858
8859 return true;
8860 }
8861
8862 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8863 {
8864 /*
8865 * Account for spread spectrum to avoid
8866 * oversubscribing the link. Max center spread
8867 * is 2.5%; use 5% for safety's sake.
8868 */
8869 u32 bps = target_clock * bpp * 21 / 20;
8870 return DIV_ROUND_UP(bps, link_bw * 8);
8871 }
8872
8873 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8874 {
8875 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8876 }
8877
8878 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8879 struct intel_crtc_state *crtc_state,
8880 u32 *fp,
8881 intel_clock_t *reduced_clock, u32 *fp2)
8882 {
8883 struct drm_crtc *crtc = &intel_crtc->base;
8884 struct drm_device *dev = crtc->dev;
8885 struct drm_i915_private *dev_priv = dev->dev_private;
8886 struct drm_atomic_state *state = crtc_state->base.state;
8887 struct drm_connector *connector;
8888 struct drm_connector_state *connector_state;
8889 struct intel_encoder *encoder;
8890 uint32_t dpll;
8891 int factor, num_connectors = 0, i;
8892 bool is_lvds = false, is_sdvo = false;
8893
8894 for_each_connector_in_state(state, connector, connector_state, i) {
8895 if (connector_state->crtc != crtc_state->base.crtc)
8896 continue;
8897
8898 encoder = to_intel_encoder(connector_state->best_encoder);
8899
8900 switch (encoder->type) {
8901 case INTEL_OUTPUT_LVDS:
8902 is_lvds = true;
8903 break;
8904 case INTEL_OUTPUT_SDVO:
8905 case INTEL_OUTPUT_HDMI:
8906 is_sdvo = true;
8907 break;
8908 default:
8909 break;
8910 }
8911
8912 num_connectors++;
8913 }
8914
8915 /* Enable autotuning of the PLL clock (if permissible) */
8916 factor = 21;
8917 if (is_lvds) {
8918 if ((intel_panel_use_ssc(dev_priv) &&
8919 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8920 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8921 factor = 25;
8922 } else if (crtc_state->sdvo_tv_clock)
8923 factor = 20;
8924
8925 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8926 *fp |= FP_CB_TUNE;
8927
8928 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8929 *fp2 |= FP_CB_TUNE;
8930
8931 dpll = 0;
8932
8933 if (is_lvds)
8934 dpll |= DPLLB_MODE_LVDS;
8935 else
8936 dpll |= DPLLB_MODE_DAC_SERIAL;
8937
8938 dpll |= (crtc_state->pixel_multiplier - 1)
8939 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8940
8941 if (is_sdvo)
8942 dpll |= DPLL_SDVO_HIGH_SPEED;
8943 if (crtc_state->has_dp_encoder)
8944 dpll |= DPLL_SDVO_HIGH_SPEED;
8945
8946 /* compute bitmask from p1 value */
8947 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8948 /* also FPA1 */
8949 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8950
8951 switch (crtc_state->dpll.p2) {
8952 case 5:
8953 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8954 break;
8955 case 7:
8956 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8957 break;
8958 case 10:
8959 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8960 break;
8961 case 14:
8962 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8963 break;
8964 }
8965
8966 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8967 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8968 else
8969 dpll |= PLL_REF_INPUT_DREFCLK;
8970
8971 return dpll | DPLL_VCO_ENABLE;
8972 }
8973
8974 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8975 struct intel_crtc_state *crtc_state)
8976 {
8977 struct drm_device *dev = crtc->base.dev;
8978 intel_clock_t clock, reduced_clock;
8979 u32 dpll = 0, fp = 0, fp2 = 0;
8980 bool ok, has_reduced_clock = false;
8981 bool is_lvds = false;
8982 struct intel_shared_dpll *pll;
8983
8984 memset(&crtc_state->dpll_hw_state, 0,
8985 sizeof(crtc_state->dpll_hw_state));
8986
8987 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8988
8989 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8990 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8991
8992 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8993 &has_reduced_clock, &reduced_clock);
8994 if (!ok && !crtc_state->clock_set) {
8995 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8996 return -EINVAL;
8997 }
8998 /* Compat-code for transition, will disappear. */
8999 if (!crtc_state->clock_set) {
9000 crtc_state->dpll.n = clock.n;
9001 crtc_state->dpll.m1 = clock.m1;
9002 crtc_state->dpll.m2 = clock.m2;
9003 crtc_state->dpll.p1 = clock.p1;
9004 crtc_state->dpll.p2 = clock.p2;
9005 }
9006
9007 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9008 if (crtc_state->has_pch_encoder) {
9009 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9010 if (has_reduced_clock)
9011 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9012
9013 dpll = ironlake_compute_dpll(crtc, crtc_state,
9014 &fp, &reduced_clock,
9015 has_reduced_clock ? &fp2 : NULL);
9016
9017 crtc_state->dpll_hw_state.dpll = dpll;
9018 crtc_state->dpll_hw_state.fp0 = fp;
9019 if (has_reduced_clock)
9020 crtc_state->dpll_hw_state.fp1 = fp2;
9021 else
9022 crtc_state->dpll_hw_state.fp1 = fp;
9023
9024 pll = intel_get_shared_dpll(crtc, crtc_state);
9025 if (pll == NULL) {
9026 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9027 pipe_name(crtc->pipe));
9028 return -EINVAL;
9029 }
9030 }
9031
9032 if (is_lvds && has_reduced_clock)
9033 crtc->lowfreq_avail = true;
9034 else
9035 crtc->lowfreq_avail = false;
9036
9037 return 0;
9038 }
9039
9040 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9041 struct intel_link_m_n *m_n)
9042 {
9043 struct drm_device *dev = crtc->base.dev;
9044 struct drm_i915_private *dev_priv = dev->dev_private;
9045 enum pipe pipe = crtc->pipe;
9046
9047 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9048 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9049 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9050 & ~TU_SIZE_MASK;
9051 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9052 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9053 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9054 }
9055
9056 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9057 enum transcoder transcoder,
9058 struct intel_link_m_n *m_n,
9059 struct intel_link_m_n *m2_n2)
9060 {
9061 struct drm_device *dev = crtc->base.dev;
9062 struct drm_i915_private *dev_priv = dev->dev_private;
9063 enum pipe pipe = crtc->pipe;
9064
9065 if (INTEL_INFO(dev)->gen >= 5) {
9066 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9067 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9068 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9069 & ~TU_SIZE_MASK;
9070 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9071 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9072 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9073 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9074 * gen < 8) and if DRRS is supported (to make sure the
9075 * registers are not unnecessarily read).
9076 */
9077 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9078 crtc->config->has_drrs) {
9079 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9080 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9081 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9082 & ~TU_SIZE_MASK;
9083 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9084 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9085 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9086 }
9087 } else {
9088 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9089 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9090 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9091 & ~TU_SIZE_MASK;
9092 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9093 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9094 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9095 }
9096 }
9097
9098 void intel_dp_get_m_n(struct intel_crtc *crtc,
9099 struct intel_crtc_state *pipe_config)
9100 {
9101 if (pipe_config->has_pch_encoder)
9102 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9103 else
9104 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9105 &pipe_config->dp_m_n,
9106 &pipe_config->dp_m2_n2);
9107 }
9108
9109 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9110 struct intel_crtc_state *pipe_config)
9111 {
9112 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9113 &pipe_config->fdi_m_n, NULL);
9114 }
9115
9116 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9117 struct intel_crtc_state *pipe_config)
9118 {
9119 struct drm_device *dev = crtc->base.dev;
9120 struct drm_i915_private *dev_priv = dev->dev_private;
9121 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9122 uint32_t ps_ctrl = 0;
9123 int id = -1;
9124 int i;
9125
9126 /* find scaler attached to this pipe */
9127 for (i = 0; i < crtc->num_scalers; i++) {
9128 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9129 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9130 id = i;
9131 pipe_config->pch_pfit.enabled = true;
9132 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9133 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9134 break;
9135 }
9136 }
9137
9138 scaler_state->scaler_id = id;
9139 if (id >= 0) {
9140 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9141 } else {
9142 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9143 }
9144 }
9145
9146 static void
9147 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9148 struct intel_initial_plane_config *plane_config)
9149 {
9150 struct drm_device *dev = crtc->base.dev;
9151 struct drm_i915_private *dev_priv = dev->dev_private;
9152 u32 val, base, offset, stride_mult, tiling;
9153 int pipe = crtc->pipe;
9154 int fourcc, pixel_format;
9155 unsigned int aligned_height;
9156 struct drm_framebuffer *fb;
9157 struct intel_framebuffer *intel_fb;
9158
9159 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9160 if (!intel_fb) {
9161 DRM_DEBUG_KMS("failed to alloc fb\n");
9162 return;
9163 }
9164
9165 fb = &intel_fb->base;
9166
9167 val = I915_READ(PLANE_CTL(pipe, 0));
9168 if (!(val & PLANE_CTL_ENABLE))
9169 goto error;
9170
9171 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9172 fourcc = skl_format_to_fourcc(pixel_format,
9173 val & PLANE_CTL_ORDER_RGBX,
9174 val & PLANE_CTL_ALPHA_MASK);
9175 fb->pixel_format = fourcc;
9176 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9177
9178 tiling = val & PLANE_CTL_TILED_MASK;
9179 switch (tiling) {
9180 case PLANE_CTL_TILED_LINEAR:
9181 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9182 break;
9183 case PLANE_CTL_TILED_X:
9184 plane_config->tiling = I915_TILING_X;
9185 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9186 break;
9187 case PLANE_CTL_TILED_Y:
9188 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9189 break;
9190 case PLANE_CTL_TILED_YF:
9191 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9192 break;
9193 default:
9194 MISSING_CASE(tiling);
9195 goto error;
9196 }
9197
9198 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9199 plane_config->base = base;
9200
9201 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9202
9203 val = I915_READ(PLANE_SIZE(pipe, 0));
9204 fb->height = ((val >> 16) & 0xfff) + 1;
9205 fb->width = ((val >> 0) & 0x1fff) + 1;
9206
9207 val = I915_READ(PLANE_STRIDE(pipe, 0));
9208 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9209 fb->pixel_format);
9210 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9211
9212 aligned_height = intel_fb_align_height(dev, fb->height,
9213 fb->pixel_format,
9214 fb->modifier[0]);
9215
9216 plane_config->size = fb->pitches[0] * aligned_height;
9217
9218 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9219 pipe_name(pipe), fb->width, fb->height,
9220 fb->bits_per_pixel, base, fb->pitches[0],
9221 plane_config->size);
9222
9223 plane_config->fb = intel_fb;
9224 return;
9225
9226 error:
9227 kfree(fb);
9228 }
9229
9230 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9231 struct intel_crtc_state *pipe_config)
9232 {
9233 struct drm_device *dev = crtc->base.dev;
9234 struct drm_i915_private *dev_priv = dev->dev_private;
9235 uint32_t tmp;
9236
9237 tmp = I915_READ(PF_CTL(crtc->pipe));
9238
9239 if (tmp & PF_ENABLE) {
9240 pipe_config->pch_pfit.enabled = true;
9241 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9242 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9243
9244 /* We currently do not free assignements of panel fitters on
9245 * ivb/hsw (since we don't use the higher upscaling modes which
9246 * differentiates them) so just WARN about this case for now. */
9247 if (IS_GEN7(dev)) {
9248 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9249 PF_PIPE_SEL_IVB(crtc->pipe));
9250 }
9251 }
9252 }
9253
9254 static void
9255 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9256 struct intel_initial_plane_config *plane_config)
9257 {
9258 struct drm_device *dev = crtc->base.dev;
9259 struct drm_i915_private *dev_priv = dev->dev_private;
9260 u32 val, base, offset;
9261 int pipe = crtc->pipe;
9262 int fourcc, pixel_format;
9263 unsigned int aligned_height;
9264 struct drm_framebuffer *fb;
9265 struct intel_framebuffer *intel_fb;
9266
9267 val = I915_READ(DSPCNTR(pipe));
9268 if (!(val & DISPLAY_PLANE_ENABLE))
9269 return;
9270
9271 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9272 if (!intel_fb) {
9273 DRM_DEBUG_KMS("failed to alloc fb\n");
9274 return;
9275 }
9276
9277 fb = &intel_fb->base;
9278
9279 if (INTEL_INFO(dev)->gen >= 4) {
9280 if (val & DISPPLANE_TILED) {
9281 plane_config->tiling = I915_TILING_X;
9282 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9283 }
9284 }
9285
9286 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9287 fourcc = i9xx_format_to_fourcc(pixel_format);
9288 fb->pixel_format = fourcc;
9289 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9290
9291 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9292 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9293 offset = I915_READ(DSPOFFSET(pipe));
9294 } else {
9295 if (plane_config->tiling)
9296 offset = I915_READ(DSPTILEOFF(pipe));
9297 else
9298 offset = I915_READ(DSPLINOFF(pipe));
9299 }
9300 plane_config->base = base;
9301
9302 val = I915_READ(PIPESRC(pipe));
9303 fb->width = ((val >> 16) & 0xfff) + 1;
9304 fb->height = ((val >> 0) & 0xfff) + 1;
9305
9306 val = I915_READ(DSPSTRIDE(pipe));
9307 fb->pitches[0] = val & 0xffffffc0;
9308
9309 aligned_height = intel_fb_align_height(dev, fb->height,
9310 fb->pixel_format,
9311 fb->modifier[0]);
9312
9313 plane_config->size = fb->pitches[0] * aligned_height;
9314
9315 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9316 pipe_name(pipe), fb->width, fb->height,
9317 fb->bits_per_pixel, base, fb->pitches[0],
9318 plane_config->size);
9319
9320 plane_config->fb = intel_fb;
9321 }
9322
9323 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9324 struct intel_crtc_state *pipe_config)
9325 {
9326 struct drm_device *dev = crtc->base.dev;
9327 struct drm_i915_private *dev_priv = dev->dev_private;
9328 enum intel_display_power_domain power_domain;
9329 uint32_t tmp;
9330 bool ret;
9331
9332 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9333 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9334 return false;
9335
9336 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9337 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9338
9339 ret = false;
9340 tmp = I915_READ(PIPECONF(crtc->pipe));
9341 if (!(tmp & PIPECONF_ENABLE))
9342 goto out;
9343
9344 switch (tmp & PIPECONF_BPC_MASK) {
9345 case PIPECONF_6BPC:
9346 pipe_config->pipe_bpp = 18;
9347 break;
9348 case PIPECONF_8BPC:
9349 pipe_config->pipe_bpp = 24;
9350 break;
9351 case PIPECONF_10BPC:
9352 pipe_config->pipe_bpp = 30;
9353 break;
9354 case PIPECONF_12BPC:
9355 pipe_config->pipe_bpp = 36;
9356 break;
9357 default:
9358 break;
9359 }
9360
9361 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9362 pipe_config->limited_color_range = true;
9363
9364 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9365 struct intel_shared_dpll *pll;
9366
9367 pipe_config->has_pch_encoder = true;
9368
9369 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9370 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9371 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9372
9373 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9374
9375 if (HAS_PCH_IBX(dev_priv->dev)) {
9376 pipe_config->shared_dpll =
9377 (enum intel_dpll_id) crtc->pipe;
9378 } else {
9379 tmp = I915_READ(PCH_DPLL_SEL);
9380 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9381 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9382 else
9383 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9384 }
9385
9386 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9387
9388 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9389 &pipe_config->dpll_hw_state));
9390
9391 tmp = pipe_config->dpll_hw_state.dpll;
9392 pipe_config->pixel_multiplier =
9393 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9394 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9395
9396 ironlake_pch_clock_get(crtc, pipe_config);
9397 } else {
9398 pipe_config->pixel_multiplier = 1;
9399 }
9400
9401 intel_get_pipe_timings(crtc, pipe_config);
9402
9403 ironlake_get_pfit_config(crtc, pipe_config);
9404
9405 ret = true;
9406
9407 out:
9408 intel_display_power_put(dev_priv, power_domain);
9409
9410 return ret;
9411 }
9412
9413 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9414 {
9415 struct drm_device *dev = dev_priv->dev;
9416 struct intel_crtc *crtc;
9417
9418 for_each_intel_crtc(dev, crtc)
9419 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9420 pipe_name(crtc->pipe));
9421
9422 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9423 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9424 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9425 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9426 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9427 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9428 "CPU PWM1 enabled\n");
9429 if (IS_HASWELL(dev))
9430 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9431 "CPU PWM2 enabled\n");
9432 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9433 "PCH PWM1 enabled\n");
9434 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9435 "Utility pin enabled\n");
9436 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9437
9438 /*
9439 * In theory we can still leave IRQs enabled, as long as only the HPD
9440 * interrupts remain enabled. We used to check for that, but since it's
9441 * gen-specific and since we only disable LCPLL after we fully disable
9442 * the interrupts, the check below should be enough.
9443 */
9444 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9445 }
9446
9447 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9448 {
9449 struct drm_device *dev = dev_priv->dev;
9450
9451 if (IS_HASWELL(dev))
9452 return I915_READ(D_COMP_HSW);
9453 else
9454 return I915_READ(D_COMP_BDW);
9455 }
9456
9457 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9458 {
9459 struct drm_device *dev = dev_priv->dev;
9460
9461 if (IS_HASWELL(dev)) {
9462 mutex_lock(&dev_priv->rps.hw_lock);
9463 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9464 val))
9465 DRM_ERROR("Failed to write to D_COMP\n");
9466 mutex_unlock(&dev_priv->rps.hw_lock);
9467 } else {
9468 I915_WRITE(D_COMP_BDW, val);
9469 POSTING_READ(D_COMP_BDW);
9470 }
9471 }
9472
9473 /*
9474 * This function implements pieces of two sequences from BSpec:
9475 * - Sequence for display software to disable LCPLL
9476 * - Sequence for display software to allow package C8+
9477 * The steps implemented here are just the steps that actually touch the LCPLL
9478 * register. Callers should take care of disabling all the display engine
9479 * functions, doing the mode unset, fixing interrupts, etc.
9480 */
9481 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9482 bool switch_to_fclk, bool allow_power_down)
9483 {
9484 uint32_t val;
9485
9486 assert_can_disable_lcpll(dev_priv);
9487
9488 val = I915_READ(LCPLL_CTL);
9489
9490 if (switch_to_fclk) {
9491 val |= LCPLL_CD_SOURCE_FCLK;
9492 I915_WRITE(LCPLL_CTL, val);
9493
9494 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9495 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9496 DRM_ERROR("Switching to FCLK failed\n");
9497
9498 val = I915_READ(LCPLL_CTL);
9499 }
9500
9501 val |= LCPLL_PLL_DISABLE;
9502 I915_WRITE(LCPLL_CTL, val);
9503 POSTING_READ(LCPLL_CTL);
9504
9505 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9506 DRM_ERROR("LCPLL still locked\n");
9507
9508 val = hsw_read_dcomp(dev_priv);
9509 val |= D_COMP_COMP_DISABLE;
9510 hsw_write_dcomp(dev_priv, val);
9511 ndelay(100);
9512
9513 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9514 1))
9515 DRM_ERROR("D_COMP RCOMP still in progress\n");
9516
9517 if (allow_power_down) {
9518 val = I915_READ(LCPLL_CTL);
9519 val |= LCPLL_POWER_DOWN_ALLOW;
9520 I915_WRITE(LCPLL_CTL, val);
9521 POSTING_READ(LCPLL_CTL);
9522 }
9523 }
9524
9525 /*
9526 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9527 * source.
9528 */
9529 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9530 {
9531 uint32_t val;
9532
9533 val = I915_READ(LCPLL_CTL);
9534
9535 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9536 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9537 return;
9538
9539 /*
9540 * Make sure we're not on PC8 state before disabling PC8, otherwise
9541 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9542 */
9543 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9544
9545 if (val & LCPLL_POWER_DOWN_ALLOW) {
9546 val &= ~LCPLL_POWER_DOWN_ALLOW;
9547 I915_WRITE(LCPLL_CTL, val);
9548 POSTING_READ(LCPLL_CTL);
9549 }
9550
9551 val = hsw_read_dcomp(dev_priv);
9552 val |= D_COMP_COMP_FORCE;
9553 val &= ~D_COMP_COMP_DISABLE;
9554 hsw_write_dcomp(dev_priv, val);
9555
9556 val = I915_READ(LCPLL_CTL);
9557 val &= ~LCPLL_PLL_DISABLE;
9558 I915_WRITE(LCPLL_CTL, val);
9559
9560 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9561 DRM_ERROR("LCPLL not locked yet\n");
9562
9563 if (val & LCPLL_CD_SOURCE_FCLK) {
9564 val = I915_READ(LCPLL_CTL);
9565 val &= ~LCPLL_CD_SOURCE_FCLK;
9566 I915_WRITE(LCPLL_CTL, val);
9567
9568 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9569 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9570 DRM_ERROR("Switching back to LCPLL failed\n");
9571 }
9572
9573 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9574 intel_update_cdclk(dev_priv->dev);
9575 }
9576
9577 /*
9578 * Package states C8 and deeper are really deep PC states that can only be
9579 * reached when all the devices on the system allow it, so even if the graphics
9580 * device allows PC8+, it doesn't mean the system will actually get to these
9581 * states. Our driver only allows PC8+ when going into runtime PM.
9582 *
9583 * The requirements for PC8+ are that all the outputs are disabled, the power
9584 * well is disabled and most interrupts are disabled, and these are also
9585 * requirements for runtime PM. When these conditions are met, we manually do
9586 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9587 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9588 * hang the machine.
9589 *
9590 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9591 * the state of some registers, so when we come back from PC8+ we need to
9592 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9593 * need to take care of the registers kept by RC6. Notice that this happens even
9594 * if we don't put the device in PCI D3 state (which is what currently happens
9595 * because of the runtime PM support).
9596 *
9597 * For more, read "Display Sequences for Package C8" on the hardware
9598 * documentation.
9599 */
9600 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9601 {
9602 struct drm_device *dev = dev_priv->dev;
9603 uint32_t val;
9604
9605 DRM_DEBUG_KMS("Enabling package C8+\n");
9606
9607 if (HAS_PCH_LPT_LP(dev)) {
9608 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9609 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9610 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9611 }
9612
9613 lpt_disable_clkout_dp(dev);
9614 hsw_disable_lcpll(dev_priv, true, true);
9615 }
9616
9617 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9618 {
9619 struct drm_device *dev = dev_priv->dev;
9620 uint32_t val;
9621
9622 DRM_DEBUG_KMS("Disabling package C8+\n");
9623
9624 hsw_restore_lcpll(dev_priv);
9625 lpt_init_pch_refclk(dev);
9626
9627 if (HAS_PCH_LPT_LP(dev)) {
9628 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9629 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9630 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9631 }
9632 }
9633
9634 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9635 {
9636 struct drm_device *dev = old_state->dev;
9637 struct intel_atomic_state *old_intel_state =
9638 to_intel_atomic_state(old_state);
9639 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9640
9641 broxton_set_cdclk(dev, req_cdclk);
9642 }
9643
9644 /* compute the max rate for new configuration */
9645 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9646 {
9647 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9648 struct drm_i915_private *dev_priv = state->dev->dev_private;
9649 struct drm_crtc *crtc;
9650 struct drm_crtc_state *cstate;
9651 struct intel_crtc_state *crtc_state;
9652 unsigned max_pixel_rate = 0, i;
9653 enum pipe pipe;
9654
9655 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9656 sizeof(intel_state->min_pixclk));
9657
9658 for_each_crtc_in_state(state, crtc, cstate, i) {
9659 int pixel_rate;
9660
9661 crtc_state = to_intel_crtc_state(cstate);
9662 if (!crtc_state->base.enable) {
9663 intel_state->min_pixclk[i] = 0;
9664 continue;
9665 }
9666
9667 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9668
9669 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9670 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9671 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9672
9673 intel_state->min_pixclk[i] = pixel_rate;
9674 }
9675
9676 for_each_pipe(dev_priv, pipe)
9677 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9678
9679 return max_pixel_rate;
9680 }
9681
9682 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9683 {
9684 struct drm_i915_private *dev_priv = dev->dev_private;
9685 uint32_t val, data;
9686 int ret;
9687
9688 if (WARN((I915_READ(LCPLL_CTL) &
9689 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9690 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9691 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9692 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9693 "trying to change cdclk frequency with cdclk not enabled\n"))
9694 return;
9695
9696 mutex_lock(&dev_priv->rps.hw_lock);
9697 ret = sandybridge_pcode_write(dev_priv,
9698 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9699 mutex_unlock(&dev_priv->rps.hw_lock);
9700 if (ret) {
9701 DRM_ERROR("failed to inform pcode about cdclk change\n");
9702 return;
9703 }
9704
9705 val = I915_READ(LCPLL_CTL);
9706 val |= LCPLL_CD_SOURCE_FCLK;
9707 I915_WRITE(LCPLL_CTL, val);
9708
9709 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9710 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9711 DRM_ERROR("Switching to FCLK failed\n");
9712
9713 val = I915_READ(LCPLL_CTL);
9714 val &= ~LCPLL_CLK_FREQ_MASK;
9715
9716 switch (cdclk) {
9717 case 450000:
9718 val |= LCPLL_CLK_FREQ_450;
9719 data = 0;
9720 break;
9721 case 540000:
9722 val |= LCPLL_CLK_FREQ_54O_BDW;
9723 data = 1;
9724 break;
9725 case 337500:
9726 val |= LCPLL_CLK_FREQ_337_5_BDW;
9727 data = 2;
9728 break;
9729 case 675000:
9730 val |= LCPLL_CLK_FREQ_675_BDW;
9731 data = 3;
9732 break;
9733 default:
9734 WARN(1, "invalid cdclk frequency\n");
9735 return;
9736 }
9737
9738 I915_WRITE(LCPLL_CTL, val);
9739
9740 val = I915_READ(LCPLL_CTL);
9741 val &= ~LCPLL_CD_SOURCE_FCLK;
9742 I915_WRITE(LCPLL_CTL, val);
9743
9744 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9745 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9746 DRM_ERROR("Switching back to LCPLL failed\n");
9747
9748 mutex_lock(&dev_priv->rps.hw_lock);
9749 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9750 mutex_unlock(&dev_priv->rps.hw_lock);
9751
9752 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9753
9754 intel_update_cdclk(dev);
9755
9756 WARN(cdclk != dev_priv->cdclk_freq,
9757 "cdclk requested %d kHz but got %d kHz\n",
9758 cdclk, dev_priv->cdclk_freq);
9759 }
9760
9761 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9762 {
9763 struct drm_i915_private *dev_priv = to_i915(state->dev);
9764 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9765 int max_pixclk = ilk_max_pixel_rate(state);
9766 int cdclk;
9767
9768 /*
9769 * FIXME should also account for plane ratio
9770 * once 64bpp pixel formats are supported.
9771 */
9772 if (max_pixclk > 540000)
9773 cdclk = 675000;
9774 else if (max_pixclk > 450000)
9775 cdclk = 540000;
9776 else if (max_pixclk > 337500)
9777 cdclk = 450000;
9778 else
9779 cdclk = 337500;
9780
9781 if (cdclk > dev_priv->max_cdclk_freq) {
9782 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9783 cdclk, dev_priv->max_cdclk_freq);
9784 return -EINVAL;
9785 }
9786
9787 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9788 if (!intel_state->active_crtcs)
9789 intel_state->dev_cdclk = 337500;
9790
9791 return 0;
9792 }
9793
9794 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9795 {
9796 struct drm_device *dev = old_state->dev;
9797 struct intel_atomic_state *old_intel_state =
9798 to_intel_atomic_state(old_state);
9799 unsigned req_cdclk = old_intel_state->dev_cdclk;
9800
9801 broadwell_set_cdclk(dev, req_cdclk);
9802 }
9803
9804 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9805 struct intel_crtc_state *crtc_state)
9806 {
9807 struct intel_encoder *intel_encoder =
9808 intel_ddi_get_crtc_new_encoder(crtc_state);
9809
9810 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9811 if (!intel_ddi_pll_select(crtc, crtc_state))
9812 return -EINVAL;
9813 }
9814
9815 crtc->lowfreq_avail = false;
9816
9817 return 0;
9818 }
9819
9820 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9821 enum port port,
9822 struct intel_crtc_state *pipe_config)
9823 {
9824 switch (port) {
9825 case PORT_A:
9826 pipe_config->ddi_pll_sel = SKL_DPLL0;
9827 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9828 break;
9829 case PORT_B:
9830 pipe_config->ddi_pll_sel = SKL_DPLL1;
9831 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9832 break;
9833 case PORT_C:
9834 pipe_config->ddi_pll_sel = SKL_DPLL2;
9835 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9836 break;
9837 default:
9838 DRM_ERROR("Incorrect port type\n");
9839 }
9840 }
9841
9842 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9843 enum port port,
9844 struct intel_crtc_state *pipe_config)
9845 {
9846 u32 temp, dpll_ctl1;
9847
9848 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9849 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9850
9851 switch (pipe_config->ddi_pll_sel) {
9852 case SKL_DPLL0:
9853 /*
9854 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9855 * of the shared DPLL framework and thus needs to be read out
9856 * separately
9857 */
9858 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9859 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9860 break;
9861 case SKL_DPLL1:
9862 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9863 break;
9864 case SKL_DPLL2:
9865 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9866 break;
9867 case SKL_DPLL3:
9868 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9869 break;
9870 }
9871 }
9872
9873 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9874 enum port port,
9875 struct intel_crtc_state *pipe_config)
9876 {
9877 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9878
9879 switch (pipe_config->ddi_pll_sel) {
9880 case PORT_CLK_SEL_WRPLL1:
9881 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9882 break;
9883 case PORT_CLK_SEL_WRPLL2:
9884 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9885 break;
9886 case PORT_CLK_SEL_SPLL:
9887 pipe_config->shared_dpll = DPLL_ID_SPLL;
9888 break;
9889 }
9890 }
9891
9892 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9893 struct intel_crtc_state *pipe_config)
9894 {
9895 struct drm_device *dev = crtc->base.dev;
9896 struct drm_i915_private *dev_priv = dev->dev_private;
9897 struct intel_shared_dpll *pll;
9898 enum port port;
9899 uint32_t tmp;
9900
9901 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9902
9903 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9904
9905 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9906 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9907 else if (IS_BROXTON(dev))
9908 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9909 else
9910 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9911
9912 if (pipe_config->shared_dpll >= 0) {
9913 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9914
9915 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9916 &pipe_config->dpll_hw_state));
9917 }
9918
9919 /*
9920 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9921 * DDI E. So just check whether this pipe is wired to DDI E and whether
9922 * the PCH transcoder is on.
9923 */
9924 if (INTEL_INFO(dev)->gen < 9 &&
9925 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9926 pipe_config->has_pch_encoder = true;
9927
9928 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9929 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9930 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9931
9932 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9933 }
9934 }
9935
9936 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9937 struct intel_crtc_state *pipe_config)
9938 {
9939 struct drm_device *dev = crtc->base.dev;
9940 struct drm_i915_private *dev_priv = dev->dev_private;
9941 enum intel_display_power_domain power_domain;
9942 unsigned long power_domain_mask;
9943 uint32_t tmp;
9944 bool ret;
9945
9946 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9947 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9948 return false;
9949 power_domain_mask = BIT(power_domain);
9950
9951 ret = false;
9952
9953 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9954 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9955
9956 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9957 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9958 enum pipe trans_edp_pipe;
9959 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9960 default:
9961 WARN(1, "unknown pipe linked to edp transcoder\n");
9962 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9963 case TRANS_DDI_EDP_INPUT_A_ON:
9964 trans_edp_pipe = PIPE_A;
9965 break;
9966 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9967 trans_edp_pipe = PIPE_B;
9968 break;
9969 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9970 trans_edp_pipe = PIPE_C;
9971 break;
9972 }
9973
9974 if (trans_edp_pipe == crtc->pipe)
9975 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9976 }
9977
9978 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9979 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9980 goto out;
9981 power_domain_mask |= BIT(power_domain);
9982
9983 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9984 if (!(tmp & PIPECONF_ENABLE))
9985 goto out;
9986
9987 haswell_get_ddi_port_state(crtc, pipe_config);
9988
9989 intel_get_pipe_timings(crtc, pipe_config);
9990
9991 if (INTEL_INFO(dev)->gen >= 9) {
9992 skl_init_scalers(dev, crtc, pipe_config);
9993 }
9994
9995 if (INTEL_INFO(dev)->gen >= 9) {
9996 pipe_config->scaler_state.scaler_id = -1;
9997 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9998 }
9999
10000 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10001 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10002 power_domain_mask |= BIT(power_domain);
10003 if (INTEL_INFO(dev)->gen >= 9)
10004 skylake_get_pfit_config(crtc, pipe_config);
10005 else
10006 ironlake_get_pfit_config(crtc, pipe_config);
10007 }
10008
10009 if (IS_HASWELL(dev))
10010 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10011 (I915_READ(IPS_CTL) & IPS_ENABLE);
10012
10013 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10014 pipe_config->pixel_multiplier =
10015 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10016 } else {
10017 pipe_config->pixel_multiplier = 1;
10018 }
10019
10020 ret = true;
10021
10022 out:
10023 for_each_power_domain(power_domain, power_domain_mask)
10024 intel_display_power_put(dev_priv, power_domain);
10025
10026 return ret;
10027 }
10028
10029 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10030 const struct intel_plane_state *plane_state)
10031 {
10032 struct drm_device *dev = crtc->dev;
10033 struct drm_i915_private *dev_priv = dev->dev_private;
10034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10035 uint32_t cntl = 0, size = 0;
10036
10037 if (plane_state && plane_state->visible) {
10038 unsigned int width = plane_state->base.crtc_w;
10039 unsigned int height = plane_state->base.crtc_h;
10040 unsigned int stride = roundup_pow_of_two(width) * 4;
10041
10042 switch (stride) {
10043 default:
10044 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10045 width, stride);
10046 stride = 256;
10047 /* fallthrough */
10048 case 256:
10049 case 512:
10050 case 1024:
10051 case 2048:
10052 break;
10053 }
10054
10055 cntl |= CURSOR_ENABLE |
10056 CURSOR_GAMMA_ENABLE |
10057 CURSOR_FORMAT_ARGB |
10058 CURSOR_STRIDE(stride);
10059
10060 size = (height << 12) | width;
10061 }
10062
10063 if (intel_crtc->cursor_cntl != 0 &&
10064 (intel_crtc->cursor_base != base ||
10065 intel_crtc->cursor_size != size ||
10066 intel_crtc->cursor_cntl != cntl)) {
10067 /* On these chipsets we can only modify the base/size/stride
10068 * whilst the cursor is disabled.
10069 */
10070 I915_WRITE(CURCNTR(PIPE_A), 0);
10071 POSTING_READ(CURCNTR(PIPE_A));
10072 intel_crtc->cursor_cntl = 0;
10073 }
10074
10075 if (intel_crtc->cursor_base != base) {
10076 I915_WRITE(CURBASE(PIPE_A), base);
10077 intel_crtc->cursor_base = base;
10078 }
10079
10080 if (intel_crtc->cursor_size != size) {
10081 I915_WRITE(CURSIZE, size);
10082 intel_crtc->cursor_size = size;
10083 }
10084
10085 if (intel_crtc->cursor_cntl != cntl) {
10086 I915_WRITE(CURCNTR(PIPE_A), cntl);
10087 POSTING_READ(CURCNTR(PIPE_A));
10088 intel_crtc->cursor_cntl = cntl;
10089 }
10090 }
10091
10092 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10093 const struct intel_plane_state *plane_state)
10094 {
10095 struct drm_device *dev = crtc->dev;
10096 struct drm_i915_private *dev_priv = dev->dev_private;
10097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10098 int pipe = intel_crtc->pipe;
10099 uint32_t cntl = 0;
10100
10101 if (plane_state && plane_state->visible) {
10102 cntl = MCURSOR_GAMMA_ENABLE;
10103 switch (plane_state->base.crtc_w) {
10104 case 64:
10105 cntl |= CURSOR_MODE_64_ARGB_AX;
10106 break;
10107 case 128:
10108 cntl |= CURSOR_MODE_128_ARGB_AX;
10109 break;
10110 case 256:
10111 cntl |= CURSOR_MODE_256_ARGB_AX;
10112 break;
10113 default:
10114 MISSING_CASE(plane_state->base.crtc_w);
10115 return;
10116 }
10117 cntl |= pipe << 28; /* Connect to correct pipe */
10118
10119 if (HAS_DDI(dev))
10120 cntl |= CURSOR_PIPE_CSC_ENABLE;
10121
10122 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10123 cntl |= CURSOR_ROTATE_180;
10124 }
10125
10126 if (intel_crtc->cursor_cntl != cntl) {
10127 I915_WRITE(CURCNTR(pipe), cntl);
10128 POSTING_READ(CURCNTR(pipe));
10129 intel_crtc->cursor_cntl = cntl;
10130 }
10131
10132 /* and commit changes on next vblank */
10133 I915_WRITE(CURBASE(pipe), base);
10134 POSTING_READ(CURBASE(pipe));
10135
10136 intel_crtc->cursor_base = base;
10137 }
10138
10139 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10140 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10141 const struct intel_plane_state *plane_state)
10142 {
10143 struct drm_device *dev = crtc->dev;
10144 struct drm_i915_private *dev_priv = dev->dev_private;
10145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10146 int pipe = intel_crtc->pipe;
10147 u32 base = intel_crtc->cursor_addr;
10148 u32 pos = 0;
10149
10150 if (plane_state) {
10151 int x = plane_state->base.crtc_x;
10152 int y = plane_state->base.crtc_y;
10153
10154 if (x < 0) {
10155 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10156 x = -x;
10157 }
10158 pos |= x << CURSOR_X_SHIFT;
10159
10160 if (y < 0) {
10161 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10162 y = -y;
10163 }
10164 pos |= y << CURSOR_Y_SHIFT;
10165
10166 /* ILK+ do this automagically */
10167 if (HAS_GMCH_DISPLAY(dev) &&
10168 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10169 base += (plane_state->base.crtc_h *
10170 plane_state->base.crtc_w - 1) * 4;
10171 }
10172 }
10173
10174 I915_WRITE(CURPOS(pipe), pos);
10175
10176 if (IS_845G(dev) || IS_I865G(dev))
10177 i845_update_cursor(crtc, base, plane_state);
10178 else
10179 i9xx_update_cursor(crtc, base, plane_state);
10180 }
10181
10182 static bool cursor_size_ok(struct drm_device *dev,
10183 uint32_t width, uint32_t height)
10184 {
10185 if (width == 0 || height == 0)
10186 return false;
10187
10188 /*
10189 * 845g/865g are special in that they are only limited by
10190 * the width of their cursors, the height is arbitrary up to
10191 * the precision of the register. Everything else requires
10192 * square cursors, limited to a few power-of-two sizes.
10193 */
10194 if (IS_845G(dev) || IS_I865G(dev)) {
10195 if ((width & 63) != 0)
10196 return false;
10197
10198 if (width > (IS_845G(dev) ? 64 : 512))
10199 return false;
10200
10201 if (height > 1023)
10202 return false;
10203 } else {
10204 switch (width | height) {
10205 case 256:
10206 case 128:
10207 if (IS_GEN2(dev))
10208 return false;
10209 case 64:
10210 break;
10211 default:
10212 return false;
10213 }
10214 }
10215
10216 return true;
10217 }
10218
10219 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10220 u16 *blue, uint32_t start, uint32_t size)
10221 {
10222 int end = (start + size > 256) ? 256 : start + size, i;
10223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10224
10225 for (i = start; i < end; i++) {
10226 intel_crtc->lut_r[i] = red[i] >> 8;
10227 intel_crtc->lut_g[i] = green[i] >> 8;
10228 intel_crtc->lut_b[i] = blue[i] >> 8;
10229 }
10230
10231 intel_crtc_load_lut(crtc);
10232 }
10233
10234 /* VESA 640x480x72Hz mode to set on the pipe */
10235 static struct drm_display_mode load_detect_mode = {
10236 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10237 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10238 };
10239
10240 struct drm_framebuffer *
10241 __intel_framebuffer_create(struct drm_device *dev,
10242 struct drm_mode_fb_cmd2 *mode_cmd,
10243 struct drm_i915_gem_object *obj)
10244 {
10245 struct intel_framebuffer *intel_fb;
10246 int ret;
10247
10248 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10249 if (!intel_fb)
10250 return ERR_PTR(-ENOMEM);
10251
10252 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10253 if (ret)
10254 goto err;
10255
10256 return &intel_fb->base;
10257
10258 err:
10259 kfree(intel_fb);
10260 return ERR_PTR(ret);
10261 }
10262
10263 static struct drm_framebuffer *
10264 intel_framebuffer_create(struct drm_device *dev,
10265 struct drm_mode_fb_cmd2 *mode_cmd,
10266 struct drm_i915_gem_object *obj)
10267 {
10268 struct drm_framebuffer *fb;
10269 int ret;
10270
10271 ret = i915_mutex_lock_interruptible(dev);
10272 if (ret)
10273 return ERR_PTR(ret);
10274 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10275 mutex_unlock(&dev->struct_mutex);
10276
10277 return fb;
10278 }
10279
10280 static u32
10281 intel_framebuffer_pitch_for_width(int width, int bpp)
10282 {
10283 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10284 return ALIGN(pitch, 64);
10285 }
10286
10287 static u32
10288 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10289 {
10290 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10291 return PAGE_ALIGN(pitch * mode->vdisplay);
10292 }
10293
10294 static struct drm_framebuffer *
10295 intel_framebuffer_create_for_mode(struct drm_device *dev,
10296 struct drm_display_mode *mode,
10297 int depth, int bpp)
10298 {
10299 struct drm_framebuffer *fb;
10300 struct drm_i915_gem_object *obj;
10301 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10302
10303 obj = i915_gem_alloc_object(dev,
10304 intel_framebuffer_size_for_mode(mode, bpp));
10305 if (obj == NULL)
10306 return ERR_PTR(-ENOMEM);
10307
10308 mode_cmd.width = mode->hdisplay;
10309 mode_cmd.height = mode->vdisplay;
10310 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10311 bpp);
10312 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10313
10314 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10315 if (IS_ERR(fb))
10316 drm_gem_object_unreference_unlocked(&obj->base);
10317
10318 return fb;
10319 }
10320
10321 static struct drm_framebuffer *
10322 mode_fits_in_fbdev(struct drm_device *dev,
10323 struct drm_display_mode *mode)
10324 {
10325 #ifdef CONFIG_DRM_FBDEV_EMULATION
10326 struct drm_i915_private *dev_priv = dev->dev_private;
10327 struct drm_i915_gem_object *obj;
10328 struct drm_framebuffer *fb;
10329
10330 if (!dev_priv->fbdev)
10331 return NULL;
10332
10333 if (!dev_priv->fbdev->fb)
10334 return NULL;
10335
10336 obj = dev_priv->fbdev->fb->obj;
10337 BUG_ON(!obj);
10338
10339 fb = &dev_priv->fbdev->fb->base;
10340 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10341 fb->bits_per_pixel))
10342 return NULL;
10343
10344 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10345 return NULL;
10346
10347 drm_framebuffer_reference(fb);
10348 return fb;
10349 #else
10350 return NULL;
10351 #endif
10352 }
10353
10354 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10355 struct drm_crtc *crtc,
10356 struct drm_display_mode *mode,
10357 struct drm_framebuffer *fb,
10358 int x, int y)
10359 {
10360 struct drm_plane_state *plane_state;
10361 int hdisplay, vdisplay;
10362 int ret;
10363
10364 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10365 if (IS_ERR(plane_state))
10366 return PTR_ERR(plane_state);
10367
10368 if (mode)
10369 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10370 else
10371 hdisplay = vdisplay = 0;
10372
10373 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10374 if (ret)
10375 return ret;
10376 drm_atomic_set_fb_for_plane(plane_state, fb);
10377 plane_state->crtc_x = 0;
10378 plane_state->crtc_y = 0;
10379 plane_state->crtc_w = hdisplay;
10380 plane_state->crtc_h = vdisplay;
10381 plane_state->src_x = x << 16;
10382 plane_state->src_y = y << 16;
10383 plane_state->src_w = hdisplay << 16;
10384 plane_state->src_h = vdisplay << 16;
10385
10386 return 0;
10387 }
10388
10389 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10390 struct drm_display_mode *mode,
10391 struct intel_load_detect_pipe *old,
10392 struct drm_modeset_acquire_ctx *ctx)
10393 {
10394 struct intel_crtc *intel_crtc;
10395 struct intel_encoder *intel_encoder =
10396 intel_attached_encoder(connector);
10397 struct drm_crtc *possible_crtc;
10398 struct drm_encoder *encoder = &intel_encoder->base;
10399 struct drm_crtc *crtc = NULL;
10400 struct drm_device *dev = encoder->dev;
10401 struct drm_framebuffer *fb;
10402 struct drm_mode_config *config = &dev->mode_config;
10403 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10404 struct drm_connector_state *connector_state;
10405 struct intel_crtc_state *crtc_state;
10406 int ret, i = -1;
10407
10408 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10409 connector->base.id, connector->name,
10410 encoder->base.id, encoder->name);
10411
10412 old->restore_state = NULL;
10413
10414 retry:
10415 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10416 if (ret)
10417 goto fail;
10418
10419 /*
10420 * Algorithm gets a little messy:
10421 *
10422 * - if the connector already has an assigned crtc, use it (but make
10423 * sure it's on first)
10424 *
10425 * - try to find the first unused crtc that can drive this connector,
10426 * and use that if we find one
10427 */
10428
10429 /* See if we already have a CRTC for this connector */
10430 if (connector->state->crtc) {
10431 crtc = connector->state->crtc;
10432
10433 ret = drm_modeset_lock(&crtc->mutex, ctx);
10434 if (ret)
10435 goto fail;
10436
10437 /* Make sure the crtc and connector are running */
10438 goto found;
10439 }
10440
10441 /* Find an unused one (if possible) */
10442 for_each_crtc(dev, possible_crtc) {
10443 i++;
10444 if (!(encoder->possible_crtcs & (1 << i)))
10445 continue;
10446
10447 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10448 if (ret)
10449 goto fail;
10450
10451 if (possible_crtc->state->enable) {
10452 drm_modeset_unlock(&possible_crtc->mutex);
10453 continue;
10454 }
10455
10456 crtc = possible_crtc;
10457 break;
10458 }
10459
10460 /*
10461 * If we didn't find an unused CRTC, don't use any.
10462 */
10463 if (!crtc) {
10464 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10465 goto fail;
10466 }
10467
10468 found:
10469 intel_crtc = to_intel_crtc(crtc);
10470
10471 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10472 if (ret)
10473 goto fail;
10474
10475 state = drm_atomic_state_alloc(dev);
10476 restore_state = drm_atomic_state_alloc(dev);
10477 if (!state || !restore_state) {
10478 ret = -ENOMEM;
10479 goto fail;
10480 }
10481
10482 state->acquire_ctx = ctx;
10483 restore_state->acquire_ctx = ctx;
10484
10485 connector_state = drm_atomic_get_connector_state(state, connector);
10486 if (IS_ERR(connector_state)) {
10487 ret = PTR_ERR(connector_state);
10488 goto fail;
10489 }
10490
10491 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10492 if (ret)
10493 goto fail;
10494
10495 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10496 if (IS_ERR(crtc_state)) {
10497 ret = PTR_ERR(crtc_state);
10498 goto fail;
10499 }
10500
10501 crtc_state->base.active = crtc_state->base.enable = true;
10502
10503 if (!mode)
10504 mode = &load_detect_mode;
10505
10506 /* We need a framebuffer large enough to accommodate all accesses
10507 * that the plane may generate whilst we perform load detection.
10508 * We can not rely on the fbcon either being present (we get called
10509 * during its initialisation to detect all boot displays, or it may
10510 * not even exist) or that it is large enough to satisfy the
10511 * requested mode.
10512 */
10513 fb = mode_fits_in_fbdev(dev, mode);
10514 if (fb == NULL) {
10515 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10516 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10517 } else
10518 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10519 if (IS_ERR(fb)) {
10520 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10521 goto fail;
10522 }
10523
10524 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10525 if (ret)
10526 goto fail;
10527
10528 drm_framebuffer_unreference(fb);
10529
10530 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10531 if (ret)
10532 goto fail;
10533
10534 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10535 if (!ret)
10536 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10537 if (!ret)
10538 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10539 if (ret) {
10540 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10541 goto fail;
10542 }
10543
10544 ret = drm_atomic_commit(state);
10545 if (ret) {
10546 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10547 goto fail;
10548 }
10549
10550 old->restore_state = restore_state;
10551
10552 /* let the connector get through one full cycle before testing */
10553 intel_wait_for_vblank(dev, intel_crtc->pipe);
10554 return true;
10555
10556 fail:
10557 drm_atomic_state_free(state);
10558 drm_atomic_state_free(restore_state);
10559 restore_state = state = NULL;
10560
10561 if (ret == -EDEADLK) {
10562 drm_modeset_backoff(ctx);
10563 goto retry;
10564 }
10565
10566 return false;
10567 }
10568
10569 void intel_release_load_detect_pipe(struct drm_connector *connector,
10570 struct intel_load_detect_pipe *old,
10571 struct drm_modeset_acquire_ctx *ctx)
10572 {
10573 struct intel_encoder *intel_encoder =
10574 intel_attached_encoder(connector);
10575 struct drm_encoder *encoder = &intel_encoder->base;
10576 struct drm_atomic_state *state = old->restore_state;
10577 int ret;
10578
10579 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10580 connector->base.id, connector->name,
10581 encoder->base.id, encoder->name);
10582
10583 if (!state)
10584 return;
10585
10586 ret = drm_atomic_commit(state);
10587 if (ret) {
10588 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10589 drm_atomic_state_free(state);
10590 }
10591 }
10592
10593 static int i9xx_pll_refclk(struct drm_device *dev,
10594 const struct intel_crtc_state *pipe_config)
10595 {
10596 struct drm_i915_private *dev_priv = dev->dev_private;
10597 u32 dpll = pipe_config->dpll_hw_state.dpll;
10598
10599 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10600 return dev_priv->vbt.lvds_ssc_freq;
10601 else if (HAS_PCH_SPLIT(dev))
10602 return 120000;
10603 else if (!IS_GEN2(dev))
10604 return 96000;
10605 else
10606 return 48000;
10607 }
10608
10609 /* Returns the clock of the currently programmed mode of the given pipe. */
10610 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10611 struct intel_crtc_state *pipe_config)
10612 {
10613 struct drm_device *dev = crtc->base.dev;
10614 struct drm_i915_private *dev_priv = dev->dev_private;
10615 int pipe = pipe_config->cpu_transcoder;
10616 u32 dpll = pipe_config->dpll_hw_state.dpll;
10617 u32 fp;
10618 intel_clock_t clock;
10619 int port_clock;
10620 int refclk = i9xx_pll_refclk(dev, pipe_config);
10621
10622 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10623 fp = pipe_config->dpll_hw_state.fp0;
10624 else
10625 fp = pipe_config->dpll_hw_state.fp1;
10626
10627 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10628 if (IS_PINEVIEW(dev)) {
10629 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10630 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10631 } else {
10632 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10633 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10634 }
10635
10636 if (!IS_GEN2(dev)) {
10637 if (IS_PINEVIEW(dev))
10638 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10639 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10640 else
10641 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10642 DPLL_FPA01_P1_POST_DIV_SHIFT);
10643
10644 switch (dpll & DPLL_MODE_MASK) {
10645 case DPLLB_MODE_DAC_SERIAL:
10646 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10647 5 : 10;
10648 break;
10649 case DPLLB_MODE_LVDS:
10650 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10651 7 : 14;
10652 break;
10653 default:
10654 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10655 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10656 return;
10657 }
10658
10659 if (IS_PINEVIEW(dev))
10660 port_clock = pnv_calc_dpll_params(refclk, &clock);
10661 else
10662 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10663 } else {
10664 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10665 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10666
10667 if (is_lvds) {
10668 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10669 DPLL_FPA01_P1_POST_DIV_SHIFT);
10670
10671 if (lvds & LVDS_CLKB_POWER_UP)
10672 clock.p2 = 7;
10673 else
10674 clock.p2 = 14;
10675 } else {
10676 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10677 clock.p1 = 2;
10678 else {
10679 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10680 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10681 }
10682 if (dpll & PLL_P2_DIVIDE_BY_4)
10683 clock.p2 = 4;
10684 else
10685 clock.p2 = 2;
10686 }
10687
10688 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10689 }
10690
10691 /*
10692 * This value includes pixel_multiplier. We will use
10693 * port_clock to compute adjusted_mode.crtc_clock in the
10694 * encoder's get_config() function.
10695 */
10696 pipe_config->port_clock = port_clock;
10697 }
10698
10699 int intel_dotclock_calculate(int link_freq,
10700 const struct intel_link_m_n *m_n)
10701 {
10702 /*
10703 * The calculation for the data clock is:
10704 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10705 * But we want to avoid losing precison if possible, so:
10706 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10707 *
10708 * and the link clock is simpler:
10709 * link_clock = (m * link_clock) / n
10710 */
10711
10712 if (!m_n->link_n)
10713 return 0;
10714
10715 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10716 }
10717
10718 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10719 struct intel_crtc_state *pipe_config)
10720 {
10721 struct drm_device *dev = crtc->base.dev;
10722
10723 /* read out port_clock from the DPLL */
10724 i9xx_crtc_clock_get(crtc, pipe_config);
10725
10726 /*
10727 * This value does not include pixel_multiplier.
10728 * We will check that port_clock and adjusted_mode.crtc_clock
10729 * agree once we know their relationship in the encoder's
10730 * get_config() function.
10731 */
10732 pipe_config->base.adjusted_mode.crtc_clock =
10733 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10734 &pipe_config->fdi_m_n);
10735 }
10736
10737 /** Returns the currently programmed mode of the given pipe. */
10738 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10739 struct drm_crtc *crtc)
10740 {
10741 struct drm_i915_private *dev_priv = dev->dev_private;
10742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10743 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10744 struct drm_display_mode *mode;
10745 struct intel_crtc_state *pipe_config;
10746 int htot = I915_READ(HTOTAL(cpu_transcoder));
10747 int hsync = I915_READ(HSYNC(cpu_transcoder));
10748 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10749 int vsync = I915_READ(VSYNC(cpu_transcoder));
10750 enum pipe pipe = intel_crtc->pipe;
10751
10752 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10753 if (!mode)
10754 return NULL;
10755
10756 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10757 if (!pipe_config) {
10758 kfree(mode);
10759 return NULL;
10760 }
10761
10762 /*
10763 * Construct a pipe_config sufficient for getting the clock info
10764 * back out of crtc_clock_get.
10765 *
10766 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10767 * to use a real value here instead.
10768 */
10769 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10770 pipe_config->pixel_multiplier = 1;
10771 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10772 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10773 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10774 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10775
10776 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10777 mode->hdisplay = (htot & 0xffff) + 1;
10778 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10779 mode->hsync_start = (hsync & 0xffff) + 1;
10780 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10781 mode->vdisplay = (vtot & 0xffff) + 1;
10782 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10783 mode->vsync_start = (vsync & 0xffff) + 1;
10784 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10785
10786 drm_mode_set_name(mode);
10787
10788 kfree(pipe_config);
10789
10790 return mode;
10791 }
10792
10793 void intel_mark_busy(struct drm_device *dev)
10794 {
10795 struct drm_i915_private *dev_priv = dev->dev_private;
10796
10797 if (dev_priv->mm.busy)
10798 return;
10799
10800 intel_runtime_pm_get(dev_priv);
10801 i915_update_gfx_val(dev_priv);
10802 if (INTEL_INFO(dev)->gen >= 6)
10803 gen6_rps_busy(dev_priv);
10804 dev_priv->mm.busy = true;
10805 }
10806
10807 void intel_mark_idle(struct drm_device *dev)
10808 {
10809 struct drm_i915_private *dev_priv = dev->dev_private;
10810
10811 if (!dev_priv->mm.busy)
10812 return;
10813
10814 dev_priv->mm.busy = false;
10815
10816 if (INTEL_INFO(dev)->gen >= 6)
10817 gen6_rps_idle(dev->dev_private);
10818
10819 intel_runtime_pm_put(dev_priv);
10820 }
10821
10822 static void intel_crtc_destroy(struct drm_crtc *crtc)
10823 {
10824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10825 struct drm_device *dev = crtc->dev;
10826 struct intel_unpin_work *work;
10827
10828 spin_lock_irq(&dev->event_lock);
10829 work = intel_crtc->unpin_work;
10830 intel_crtc->unpin_work = NULL;
10831 spin_unlock_irq(&dev->event_lock);
10832
10833 if (work) {
10834 cancel_work_sync(&work->work);
10835 kfree(work);
10836 }
10837
10838 drm_crtc_cleanup(crtc);
10839
10840 kfree(intel_crtc);
10841 }
10842
10843 static void intel_unpin_work_fn(struct work_struct *__work)
10844 {
10845 struct intel_unpin_work *work =
10846 container_of(__work, struct intel_unpin_work, work);
10847 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10848 struct drm_device *dev = crtc->base.dev;
10849 struct drm_plane *primary = crtc->base.primary;
10850
10851 mutex_lock(&dev->struct_mutex);
10852 intel_unpin_fb_obj(work->old_fb, primary->state);
10853 drm_gem_object_unreference(&work->pending_flip_obj->base);
10854
10855 if (work->flip_queued_req)
10856 i915_gem_request_assign(&work->flip_queued_req, NULL);
10857 mutex_unlock(&dev->struct_mutex);
10858
10859 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10860 intel_fbc_post_update(crtc);
10861 drm_framebuffer_unreference(work->old_fb);
10862
10863 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10864 atomic_dec(&crtc->unpin_work_count);
10865
10866 kfree(work);
10867 }
10868
10869 static void do_intel_finish_page_flip(struct drm_device *dev,
10870 struct drm_crtc *crtc)
10871 {
10872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10873 struct intel_unpin_work *work;
10874 unsigned long flags;
10875
10876 /* Ignore early vblank irqs */
10877 if (intel_crtc == NULL)
10878 return;
10879
10880 /*
10881 * This is called both by irq handlers and the reset code (to complete
10882 * lost pageflips) so needs the full irqsave spinlocks.
10883 */
10884 spin_lock_irqsave(&dev->event_lock, flags);
10885 work = intel_crtc->unpin_work;
10886
10887 /* Ensure we don't miss a work->pending update ... */
10888 smp_rmb();
10889
10890 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10891 spin_unlock_irqrestore(&dev->event_lock, flags);
10892 return;
10893 }
10894
10895 page_flip_completed(intel_crtc);
10896
10897 spin_unlock_irqrestore(&dev->event_lock, flags);
10898 }
10899
10900 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10901 {
10902 struct drm_i915_private *dev_priv = dev->dev_private;
10903 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10904
10905 do_intel_finish_page_flip(dev, crtc);
10906 }
10907
10908 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10909 {
10910 struct drm_i915_private *dev_priv = dev->dev_private;
10911 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10912
10913 do_intel_finish_page_flip(dev, crtc);
10914 }
10915
10916 /* Is 'a' after or equal to 'b'? */
10917 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10918 {
10919 return !((a - b) & 0x80000000);
10920 }
10921
10922 static bool page_flip_finished(struct intel_crtc *crtc)
10923 {
10924 struct drm_device *dev = crtc->base.dev;
10925 struct drm_i915_private *dev_priv = dev->dev_private;
10926
10927 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10928 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10929 return true;
10930
10931 /*
10932 * The relevant registers doen't exist on pre-ctg.
10933 * As the flip done interrupt doesn't trigger for mmio
10934 * flips on gmch platforms, a flip count check isn't
10935 * really needed there. But since ctg has the registers,
10936 * include it in the check anyway.
10937 */
10938 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10939 return true;
10940
10941 /*
10942 * BDW signals flip done immediately if the plane
10943 * is disabled, even if the plane enable is already
10944 * armed to occur at the next vblank :(
10945 */
10946
10947 /*
10948 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10949 * used the same base address. In that case the mmio flip might
10950 * have completed, but the CS hasn't even executed the flip yet.
10951 *
10952 * A flip count check isn't enough as the CS might have updated
10953 * the base address just after start of vblank, but before we
10954 * managed to process the interrupt. This means we'd complete the
10955 * CS flip too soon.
10956 *
10957 * Combining both checks should get us a good enough result. It may
10958 * still happen that the CS flip has been executed, but has not
10959 * yet actually completed. But in case the base address is the same
10960 * anyway, we don't really care.
10961 */
10962 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10963 crtc->unpin_work->gtt_offset &&
10964 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10965 crtc->unpin_work->flip_count);
10966 }
10967
10968 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10969 {
10970 struct drm_i915_private *dev_priv = dev->dev_private;
10971 struct intel_crtc *intel_crtc =
10972 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10973 unsigned long flags;
10974
10975
10976 /*
10977 * This is called both by irq handlers and the reset code (to complete
10978 * lost pageflips) so needs the full irqsave spinlocks.
10979 *
10980 * NB: An MMIO update of the plane base pointer will also
10981 * generate a page-flip completion irq, i.e. every modeset
10982 * is also accompanied by a spurious intel_prepare_page_flip().
10983 */
10984 spin_lock_irqsave(&dev->event_lock, flags);
10985 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10986 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10987 spin_unlock_irqrestore(&dev->event_lock, flags);
10988 }
10989
10990 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10991 {
10992 /* Ensure that the work item is consistent when activating it ... */
10993 smp_wmb();
10994 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10995 /* and that it is marked active as soon as the irq could fire. */
10996 smp_wmb();
10997 }
10998
10999 static int intel_gen2_queue_flip(struct drm_device *dev,
11000 struct drm_crtc *crtc,
11001 struct drm_framebuffer *fb,
11002 struct drm_i915_gem_object *obj,
11003 struct drm_i915_gem_request *req,
11004 uint32_t flags)
11005 {
11006 struct intel_engine_cs *ring = req->ring;
11007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11008 u32 flip_mask;
11009 int ret;
11010
11011 ret = intel_ring_begin(req, 6);
11012 if (ret)
11013 return ret;
11014
11015 /* Can't queue multiple flips, so wait for the previous
11016 * one to finish before executing the next.
11017 */
11018 if (intel_crtc->plane)
11019 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11020 else
11021 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11022 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11023 intel_ring_emit(ring, MI_NOOP);
11024 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11025 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11026 intel_ring_emit(ring, fb->pitches[0]);
11027 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11028 intel_ring_emit(ring, 0); /* aux display base address, unused */
11029
11030 intel_mark_page_flip_active(intel_crtc->unpin_work);
11031 return 0;
11032 }
11033
11034 static int intel_gen3_queue_flip(struct drm_device *dev,
11035 struct drm_crtc *crtc,
11036 struct drm_framebuffer *fb,
11037 struct drm_i915_gem_object *obj,
11038 struct drm_i915_gem_request *req,
11039 uint32_t flags)
11040 {
11041 struct intel_engine_cs *ring = req->ring;
11042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11043 u32 flip_mask;
11044 int ret;
11045
11046 ret = intel_ring_begin(req, 6);
11047 if (ret)
11048 return ret;
11049
11050 if (intel_crtc->plane)
11051 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11052 else
11053 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11054 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11055 intel_ring_emit(ring, MI_NOOP);
11056 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11057 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11058 intel_ring_emit(ring, fb->pitches[0]);
11059 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11060 intel_ring_emit(ring, MI_NOOP);
11061
11062 intel_mark_page_flip_active(intel_crtc->unpin_work);
11063 return 0;
11064 }
11065
11066 static int intel_gen4_queue_flip(struct drm_device *dev,
11067 struct drm_crtc *crtc,
11068 struct drm_framebuffer *fb,
11069 struct drm_i915_gem_object *obj,
11070 struct drm_i915_gem_request *req,
11071 uint32_t flags)
11072 {
11073 struct intel_engine_cs *ring = req->ring;
11074 struct drm_i915_private *dev_priv = dev->dev_private;
11075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11076 uint32_t pf, pipesrc;
11077 int ret;
11078
11079 ret = intel_ring_begin(req, 4);
11080 if (ret)
11081 return ret;
11082
11083 /* i965+ uses the linear or tiled offsets from the
11084 * Display Registers (which do not change across a page-flip)
11085 * so we need only reprogram the base address.
11086 */
11087 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11088 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11089 intel_ring_emit(ring, fb->pitches[0]);
11090 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11091 obj->tiling_mode);
11092
11093 /* XXX Enabling the panel-fitter across page-flip is so far
11094 * untested on non-native modes, so ignore it for now.
11095 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11096 */
11097 pf = 0;
11098 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11099 intel_ring_emit(ring, pf | pipesrc);
11100
11101 intel_mark_page_flip_active(intel_crtc->unpin_work);
11102 return 0;
11103 }
11104
11105 static int intel_gen6_queue_flip(struct drm_device *dev,
11106 struct drm_crtc *crtc,
11107 struct drm_framebuffer *fb,
11108 struct drm_i915_gem_object *obj,
11109 struct drm_i915_gem_request *req,
11110 uint32_t flags)
11111 {
11112 struct intel_engine_cs *ring = req->ring;
11113 struct drm_i915_private *dev_priv = dev->dev_private;
11114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11115 uint32_t pf, pipesrc;
11116 int ret;
11117
11118 ret = intel_ring_begin(req, 4);
11119 if (ret)
11120 return ret;
11121
11122 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11123 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11124 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11125 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11126
11127 /* Contrary to the suggestions in the documentation,
11128 * "Enable Panel Fitter" does not seem to be required when page
11129 * flipping with a non-native mode, and worse causes a normal
11130 * modeset to fail.
11131 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11132 */
11133 pf = 0;
11134 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11135 intel_ring_emit(ring, pf | pipesrc);
11136
11137 intel_mark_page_flip_active(intel_crtc->unpin_work);
11138 return 0;
11139 }
11140
11141 static int intel_gen7_queue_flip(struct drm_device *dev,
11142 struct drm_crtc *crtc,
11143 struct drm_framebuffer *fb,
11144 struct drm_i915_gem_object *obj,
11145 struct drm_i915_gem_request *req,
11146 uint32_t flags)
11147 {
11148 struct intel_engine_cs *ring = req->ring;
11149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11150 uint32_t plane_bit = 0;
11151 int len, ret;
11152
11153 switch (intel_crtc->plane) {
11154 case PLANE_A:
11155 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11156 break;
11157 case PLANE_B:
11158 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11159 break;
11160 case PLANE_C:
11161 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11162 break;
11163 default:
11164 WARN_ONCE(1, "unknown plane in flip command\n");
11165 return -ENODEV;
11166 }
11167
11168 len = 4;
11169 if (ring->id == RCS) {
11170 len += 6;
11171 /*
11172 * On Gen 8, SRM is now taking an extra dword to accommodate
11173 * 48bits addresses, and we need a NOOP for the batch size to
11174 * stay even.
11175 */
11176 if (IS_GEN8(dev))
11177 len += 2;
11178 }
11179
11180 /*
11181 * BSpec MI_DISPLAY_FLIP for IVB:
11182 * "The full packet must be contained within the same cache line."
11183 *
11184 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11185 * cacheline, if we ever start emitting more commands before
11186 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11187 * then do the cacheline alignment, and finally emit the
11188 * MI_DISPLAY_FLIP.
11189 */
11190 ret = intel_ring_cacheline_align(req);
11191 if (ret)
11192 return ret;
11193
11194 ret = intel_ring_begin(req, len);
11195 if (ret)
11196 return ret;
11197
11198 /* Unmask the flip-done completion message. Note that the bspec says that
11199 * we should do this for both the BCS and RCS, and that we must not unmask
11200 * more than one flip event at any time (or ensure that one flip message
11201 * can be sent by waiting for flip-done prior to queueing new flips).
11202 * Experimentation says that BCS works despite DERRMR masking all
11203 * flip-done completion events and that unmasking all planes at once
11204 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11205 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11206 */
11207 if (ring->id == RCS) {
11208 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11209 intel_ring_emit_reg(ring, DERRMR);
11210 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11211 DERRMR_PIPEB_PRI_FLIP_DONE |
11212 DERRMR_PIPEC_PRI_FLIP_DONE));
11213 if (IS_GEN8(dev))
11214 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11215 MI_SRM_LRM_GLOBAL_GTT);
11216 else
11217 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11218 MI_SRM_LRM_GLOBAL_GTT);
11219 intel_ring_emit_reg(ring, DERRMR);
11220 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11221 if (IS_GEN8(dev)) {
11222 intel_ring_emit(ring, 0);
11223 intel_ring_emit(ring, MI_NOOP);
11224 }
11225 }
11226
11227 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11228 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11229 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11230 intel_ring_emit(ring, (MI_NOOP));
11231
11232 intel_mark_page_flip_active(intel_crtc->unpin_work);
11233 return 0;
11234 }
11235
11236 static bool use_mmio_flip(struct intel_engine_cs *ring,
11237 struct drm_i915_gem_object *obj)
11238 {
11239 /*
11240 * This is not being used for older platforms, because
11241 * non-availability of flip done interrupt forces us to use
11242 * CS flips. Older platforms derive flip done using some clever
11243 * tricks involving the flip_pending status bits and vblank irqs.
11244 * So using MMIO flips there would disrupt this mechanism.
11245 */
11246
11247 if (ring == NULL)
11248 return true;
11249
11250 if (INTEL_INFO(ring->dev)->gen < 5)
11251 return false;
11252
11253 if (i915.use_mmio_flip < 0)
11254 return false;
11255 else if (i915.use_mmio_flip > 0)
11256 return true;
11257 else if (i915.enable_execlists)
11258 return true;
11259 else if (obj->base.dma_buf &&
11260 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11261 false))
11262 return true;
11263 else
11264 return ring != i915_gem_request_get_ring(obj->last_write_req);
11265 }
11266
11267 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11268 unsigned int rotation,
11269 struct intel_unpin_work *work)
11270 {
11271 struct drm_device *dev = intel_crtc->base.dev;
11272 struct drm_i915_private *dev_priv = dev->dev_private;
11273 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11274 const enum pipe pipe = intel_crtc->pipe;
11275 u32 ctl, stride, tile_height;
11276
11277 ctl = I915_READ(PLANE_CTL(pipe, 0));
11278 ctl &= ~PLANE_CTL_TILED_MASK;
11279 switch (fb->modifier[0]) {
11280 case DRM_FORMAT_MOD_NONE:
11281 break;
11282 case I915_FORMAT_MOD_X_TILED:
11283 ctl |= PLANE_CTL_TILED_X;
11284 break;
11285 case I915_FORMAT_MOD_Y_TILED:
11286 ctl |= PLANE_CTL_TILED_Y;
11287 break;
11288 case I915_FORMAT_MOD_Yf_TILED:
11289 ctl |= PLANE_CTL_TILED_YF;
11290 break;
11291 default:
11292 MISSING_CASE(fb->modifier[0]);
11293 }
11294
11295 /*
11296 * The stride is either expressed as a multiple of 64 bytes chunks for
11297 * linear buffers or in number of tiles for tiled buffers.
11298 */
11299 if (intel_rotation_90_or_270(rotation)) {
11300 /* stride = Surface height in tiles */
11301 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11302 stride = DIV_ROUND_UP(fb->height, tile_height);
11303 } else {
11304 stride = fb->pitches[0] /
11305 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11306 fb->pixel_format);
11307 }
11308
11309 /*
11310 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11311 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11312 */
11313 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11314 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11315
11316 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11317 POSTING_READ(PLANE_SURF(pipe, 0));
11318 }
11319
11320 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11321 struct intel_unpin_work *work)
11322 {
11323 struct drm_device *dev = intel_crtc->base.dev;
11324 struct drm_i915_private *dev_priv = dev->dev_private;
11325 struct intel_framebuffer *intel_fb =
11326 to_intel_framebuffer(intel_crtc->base.primary->fb);
11327 struct drm_i915_gem_object *obj = intel_fb->obj;
11328 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11329 u32 dspcntr;
11330
11331 dspcntr = I915_READ(reg);
11332
11333 if (obj->tiling_mode != I915_TILING_NONE)
11334 dspcntr |= DISPPLANE_TILED;
11335 else
11336 dspcntr &= ~DISPPLANE_TILED;
11337
11338 I915_WRITE(reg, dspcntr);
11339
11340 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11341 POSTING_READ(DSPSURF(intel_crtc->plane));
11342 }
11343
11344 /*
11345 * XXX: This is the temporary way to update the plane registers until we get
11346 * around to using the usual plane update functions for MMIO flips
11347 */
11348 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11349 {
11350 struct intel_crtc *crtc = mmio_flip->crtc;
11351 struct intel_unpin_work *work;
11352
11353 spin_lock_irq(&crtc->base.dev->event_lock);
11354 work = crtc->unpin_work;
11355 spin_unlock_irq(&crtc->base.dev->event_lock);
11356 if (work == NULL)
11357 return;
11358
11359 intel_mark_page_flip_active(work);
11360
11361 intel_pipe_update_start(crtc);
11362
11363 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11364 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11365 else
11366 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11367 ilk_do_mmio_flip(crtc, work);
11368
11369 intel_pipe_update_end(crtc);
11370 }
11371
11372 static void intel_mmio_flip_work_func(struct work_struct *work)
11373 {
11374 struct intel_mmio_flip *mmio_flip =
11375 container_of(work, struct intel_mmio_flip, work);
11376 struct intel_framebuffer *intel_fb =
11377 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11378 struct drm_i915_gem_object *obj = intel_fb->obj;
11379
11380 if (mmio_flip->req) {
11381 WARN_ON(__i915_wait_request(mmio_flip->req,
11382 mmio_flip->crtc->reset_counter,
11383 false, NULL,
11384 &mmio_flip->i915->rps.mmioflips));
11385 i915_gem_request_unreference__unlocked(mmio_flip->req);
11386 }
11387
11388 /* For framebuffer backed by dmabuf, wait for fence */
11389 if (obj->base.dma_buf)
11390 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11391 false, false,
11392 MAX_SCHEDULE_TIMEOUT) < 0);
11393
11394 intel_do_mmio_flip(mmio_flip);
11395 kfree(mmio_flip);
11396 }
11397
11398 static int intel_queue_mmio_flip(struct drm_device *dev,
11399 struct drm_crtc *crtc,
11400 struct drm_i915_gem_object *obj)
11401 {
11402 struct intel_mmio_flip *mmio_flip;
11403
11404 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11405 if (mmio_flip == NULL)
11406 return -ENOMEM;
11407
11408 mmio_flip->i915 = to_i915(dev);
11409 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11410 mmio_flip->crtc = to_intel_crtc(crtc);
11411 mmio_flip->rotation = crtc->primary->state->rotation;
11412
11413 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11414 schedule_work(&mmio_flip->work);
11415
11416 return 0;
11417 }
11418
11419 static int intel_default_queue_flip(struct drm_device *dev,
11420 struct drm_crtc *crtc,
11421 struct drm_framebuffer *fb,
11422 struct drm_i915_gem_object *obj,
11423 struct drm_i915_gem_request *req,
11424 uint32_t flags)
11425 {
11426 return -ENODEV;
11427 }
11428
11429 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11430 struct drm_crtc *crtc)
11431 {
11432 struct drm_i915_private *dev_priv = dev->dev_private;
11433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11434 struct intel_unpin_work *work = intel_crtc->unpin_work;
11435 u32 addr;
11436
11437 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11438 return true;
11439
11440 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11441 return false;
11442
11443 if (!work->enable_stall_check)
11444 return false;
11445
11446 if (work->flip_ready_vblank == 0) {
11447 if (work->flip_queued_req &&
11448 !i915_gem_request_completed(work->flip_queued_req, true))
11449 return false;
11450
11451 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11452 }
11453
11454 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11455 return false;
11456
11457 /* Potential stall - if we see that the flip has happened,
11458 * assume a missed interrupt. */
11459 if (INTEL_INFO(dev)->gen >= 4)
11460 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11461 else
11462 addr = I915_READ(DSPADDR(intel_crtc->plane));
11463
11464 /* There is a potential issue here with a false positive after a flip
11465 * to the same address. We could address this by checking for a
11466 * non-incrementing frame counter.
11467 */
11468 return addr == work->gtt_offset;
11469 }
11470
11471 void intel_check_page_flip(struct drm_device *dev, int pipe)
11472 {
11473 struct drm_i915_private *dev_priv = dev->dev_private;
11474 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11476 struct intel_unpin_work *work;
11477
11478 WARN_ON(!in_interrupt());
11479
11480 if (crtc == NULL)
11481 return;
11482
11483 spin_lock(&dev->event_lock);
11484 work = intel_crtc->unpin_work;
11485 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11486 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11487 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11488 page_flip_completed(intel_crtc);
11489 work = NULL;
11490 }
11491 if (work != NULL &&
11492 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11493 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11494 spin_unlock(&dev->event_lock);
11495 }
11496
11497 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11498 struct drm_framebuffer *fb,
11499 struct drm_pending_vblank_event *event,
11500 uint32_t page_flip_flags)
11501 {
11502 struct drm_device *dev = crtc->dev;
11503 struct drm_i915_private *dev_priv = dev->dev_private;
11504 struct drm_framebuffer *old_fb = crtc->primary->fb;
11505 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11507 struct drm_plane *primary = crtc->primary;
11508 enum pipe pipe = intel_crtc->pipe;
11509 struct intel_unpin_work *work;
11510 struct intel_engine_cs *ring;
11511 bool mmio_flip;
11512 struct drm_i915_gem_request *request = NULL;
11513 int ret;
11514
11515 /*
11516 * drm_mode_page_flip_ioctl() should already catch this, but double
11517 * check to be safe. In the future we may enable pageflipping from
11518 * a disabled primary plane.
11519 */
11520 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11521 return -EBUSY;
11522
11523 /* Can't change pixel format via MI display flips. */
11524 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11525 return -EINVAL;
11526
11527 /*
11528 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11529 * Note that pitch changes could also affect these register.
11530 */
11531 if (INTEL_INFO(dev)->gen > 3 &&
11532 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11533 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11534 return -EINVAL;
11535
11536 if (i915_terminally_wedged(&dev_priv->gpu_error))
11537 goto out_hang;
11538
11539 work = kzalloc(sizeof(*work), GFP_KERNEL);
11540 if (work == NULL)
11541 return -ENOMEM;
11542
11543 work->event = event;
11544 work->crtc = crtc;
11545 work->old_fb = old_fb;
11546 INIT_WORK(&work->work, intel_unpin_work_fn);
11547
11548 ret = drm_crtc_vblank_get(crtc);
11549 if (ret)
11550 goto free_work;
11551
11552 /* We borrow the event spin lock for protecting unpin_work */
11553 spin_lock_irq(&dev->event_lock);
11554 if (intel_crtc->unpin_work) {
11555 /* Before declaring the flip queue wedged, check if
11556 * the hardware completed the operation behind our backs.
11557 */
11558 if (__intel_pageflip_stall_check(dev, crtc)) {
11559 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11560 page_flip_completed(intel_crtc);
11561 } else {
11562 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11563 spin_unlock_irq(&dev->event_lock);
11564
11565 drm_crtc_vblank_put(crtc);
11566 kfree(work);
11567 return -EBUSY;
11568 }
11569 }
11570 intel_crtc->unpin_work = work;
11571 spin_unlock_irq(&dev->event_lock);
11572
11573 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11574 flush_workqueue(dev_priv->wq);
11575
11576 /* Reference the objects for the scheduled work. */
11577 drm_framebuffer_reference(work->old_fb);
11578 drm_gem_object_reference(&obj->base);
11579
11580 crtc->primary->fb = fb;
11581 update_state_fb(crtc->primary);
11582 intel_fbc_pre_update(intel_crtc);
11583
11584 work->pending_flip_obj = obj;
11585
11586 ret = i915_mutex_lock_interruptible(dev);
11587 if (ret)
11588 goto cleanup;
11589
11590 atomic_inc(&intel_crtc->unpin_work_count);
11591 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11592
11593 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11594 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11595
11596 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11597 ring = &dev_priv->ring[BCS];
11598 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11599 /* vlv: DISPLAY_FLIP fails to change tiling */
11600 ring = NULL;
11601 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11602 ring = &dev_priv->ring[BCS];
11603 } else if (INTEL_INFO(dev)->gen >= 7) {
11604 ring = i915_gem_request_get_ring(obj->last_write_req);
11605 if (ring == NULL || ring->id != RCS)
11606 ring = &dev_priv->ring[BCS];
11607 } else {
11608 ring = &dev_priv->ring[RCS];
11609 }
11610
11611 mmio_flip = use_mmio_flip(ring, obj);
11612
11613 /* When using CS flips, we want to emit semaphores between rings.
11614 * However, when using mmio flips we will create a task to do the
11615 * synchronisation, so all we want here is to pin the framebuffer
11616 * into the display plane and skip any waits.
11617 */
11618 if (!mmio_flip) {
11619 ret = i915_gem_object_sync(obj, ring, &request);
11620 if (ret)
11621 goto cleanup_pending;
11622 }
11623
11624 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11625 crtc->primary->state);
11626 if (ret)
11627 goto cleanup_pending;
11628
11629 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11630 obj, 0);
11631 work->gtt_offset += intel_crtc->dspaddr_offset;
11632
11633 if (mmio_flip) {
11634 ret = intel_queue_mmio_flip(dev, crtc, obj);
11635 if (ret)
11636 goto cleanup_unpin;
11637
11638 i915_gem_request_assign(&work->flip_queued_req,
11639 obj->last_write_req);
11640 } else {
11641 if (!request) {
11642 request = i915_gem_request_alloc(ring, NULL);
11643 if (IS_ERR(request)) {
11644 ret = PTR_ERR(request);
11645 goto cleanup_unpin;
11646 }
11647 }
11648
11649 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11650 page_flip_flags);
11651 if (ret)
11652 goto cleanup_unpin;
11653
11654 i915_gem_request_assign(&work->flip_queued_req, request);
11655 }
11656
11657 if (request)
11658 i915_add_request_no_flush(request);
11659
11660 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11661 work->enable_stall_check = true;
11662
11663 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11664 to_intel_plane(primary)->frontbuffer_bit);
11665 mutex_unlock(&dev->struct_mutex);
11666
11667 intel_frontbuffer_flip_prepare(dev,
11668 to_intel_plane(primary)->frontbuffer_bit);
11669
11670 trace_i915_flip_request(intel_crtc->plane, obj);
11671
11672 return 0;
11673
11674 cleanup_unpin:
11675 intel_unpin_fb_obj(fb, crtc->primary->state);
11676 cleanup_pending:
11677 if (!IS_ERR_OR_NULL(request))
11678 i915_gem_request_cancel(request);
11679 atomic_dec(&intel_crtc->unpin_work_count);
11680 mutex_unlock(&dev->struct_mutex);
11681 cleanup:
11682 crtc->primary->fb = old_fb;
11683 update_state_fb(crtc->primary);
11684
11685 drm_gem_object_unreference_unlocked(&obj->base);
11686 drm_framebuffer_unreference(work->old_fb);
11687
11688 spin_lock_irq(&dev->event_lock);
11689 intel_crtc->unpin_work = NULL;
11690 spin_unlock_irq(&dev->event_lock);
11691
11692 drm_crtc_vblank_put(crtc);
11693 free_work:
11694 kfree(work);
11695
11696 if (ret == -EIO) {
11697 struct drm_atomic_state *state;
11698 struct drm_plane_state *plane_state;
11699
11700 out_hang:
11701 state = drm_atomic_state_alloc(dev);
11702 if (!state)
11703 return -ENOMEM;
11704 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11705
11706 retry:
11707 plane_state = drm_atomic_get_plane_state(state, primary);
11708 ret = PTR_ERR_OR_ZERO(plane_state);
11709 if (!ret) {
11710 drm_atomic_set_fb_for_plane(plane_state, fb);
11711
11712 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11713 if (!ret)
11714 ret = drm_atomic_commit(state);
11715 }
11716
11717 if (ret == -EDEADLK) {
11718 drm_modeset_backoff(state->acquire_ctx);
11719 drm_atomic_state_clear(state);
11720 goto retry;
11721 }
11722
11723 if (ret)
11724 drm_atomic_state_free(state);
11725
11726 if (ret == 0 && event) {
11727 spin_lock_irq(&dev->event_lock);
11728 drm_send_vblank_event(dev, pipe, event);
11729 spin_unlock_irq(&dev->event_lock);
11730 }
11731 }
11732 return ret;
11733 }
11734
11735
11736 /**
11737 * intel_wm_need_update - Check whether watermarks need updating
11738 * @plane: drm plane
11739 * @state: new plane state
11740 *
11741 * Check current plane state versus the new one to determine whether
11742 * watermarks need to be recalculated.
11743 *
11744 * Returns true or false.
11745 */
11746 static bool intel_wm_need_update(struct drm_plane *plane,
11747 struct drm_plane_state *state)
11748 {
11749 struct intel_plane_state *new = to_intel_plane_state(state);
11750 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11751
11752 /* Update watermarks on tiling or size changes. */
11753 if (new->visible != cur->visible)
11754 return true;
11755
11756 if (!cur->base.fb || !new->base.fb)
11757 return false;
11758
11759 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11760 cur->base.rotation != new->base.rotation ||
11761 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11762 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11763 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11764 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11765 return true;
11766
11767 return false;
11768 }
11769
11770 static bool needs_scaling(struct intel_plane_state *state)
11771 {
11772 int src_w = drm_rect_width(&state->src) >> 16;
11773 int src_h = drm_rect_height(&state->src) >> 16;
11774 int dst_w = drm_rect_width(&state->dst);
11775 int dst_h = drm_rect_height(&state->dst);
11776
11777 return (src_w != dst_w || src_h != dst_h);
11778 }
11779
11780 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11781 struct drm_plane_state *plane_state)
11782 {
11783 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11784 struct drm_crtc *crtc = crtc_state->crtc;
11785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11786 struct drm_plane *plane = plane_state->plane;
11787 struct drm_device *dev = crtc->dev;
11788 struct intel_plane_state *old_plane_state =
11789 to_intel_plane_state(plane->state);
11790 int idx = intel_crtc->base.base.id, ret;
11791 bool mode_changed = needs_modeset(crtc_state);
11792 bool was_crtc_enabled = crtc->state->active;
11793 bool is_crtc_enabled = crtc_state->active;
11794 bool turn_off, turn_on, visible, was_visible;
11795 struct drm_framebuffer *fb = plane_state->fb;
11796
11797 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11798 plane->type != DRM_PLANE_TYPE_CURSOR) {
11799 ret = skl_update_scaler_plane(
11800 to_intel_crtc_state(crtc_state),
11801 to_intel_plane_state(plane_state));
11802 if (ret)
11803 return ret;
11804 }
11805
11806 was_visible = old_plane_state->visible;
11807 visible = to_intel_plane_state(plane_state)->visible;
11808
11809 if (!was_crtc_enabled && WARN_ON(was_visible))
11810 was_visible = false;
11811
11812 /*
11813 * Visibility is calculated as if the crtc was on, but
11814 * after scaler setup everything depends on it being off
11815 * when the crtc isn't active.
11816 */
11817 if (!is_crtc_enabled)
11818 to_intel_plane_state(plane_state)->visible = visible = false;
11819
11820 if (!was_visible && !visible)
11821 return 0;
11822
11823 if (fb != old_plane_state->base.fb)
11824 pipe_config->fb_changed = true;
11825
11826 turn_off = was_visible && (!visible || mode_changed);
11827 turn_on = visible && (!was_visible || mode_changed);
11828
11829 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11830 plane->base.id, fb ? fb->base.id : -1);
11831
11832 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11833 plane->base.id, was_visible, visible,
11834 turn_off, turn_on, mode_changed);
11835
11836 if (turn_on || turn_off) {
11837 pipe_config->wm_changed = true;
11838
11839 /* must disable cxsr around plane enable/disable */
11840 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11841 pipe_config->disable_cxsr = true;
11842 } else if (intel_wm_need_update(plane, plane_state)) {
11843 pipe_config->wm_changed = true;
11844 }
11845
11846 if (visible || was_visible)
11847 intel_crtc->atomic.fb_bits |=
11848 to_intel_plane(plane)->frontbuffer_bit;
11849
11850 switch (plane->type) {
11851 case DRM_PLANE_TYPE_PRIMARY:
11852 intel_crtc->atomic.post_enable_primary = turn_on;
11853 intel_crtc->atomic.update_fbc = true;
11854
11855 break;
11856 case DRM_PLANE_TYPE_CURSOR:
11857 break;
11858 case DRM_PLANE_TYPE_OVERLAY:
11859 /*
11860 * WaCxSRDisabledForSpriteScaling:ivb
11861 *
11862 * cstate->update_wm was already set above, so this flag will
11863 * take effect when we commit and program watermarks.
11864 */
11865 if (IS_IVYBRIDGE(dev) &&
11866 needs_scaling(to_intel_plane_state(plane_state)) &&
11867 !needs_scaling(old_plane_state))
11868 pipe_config->disable_lp_wm = true;
11869
11870 break;
11871 }
11872 return 0;
11873 }
11874
11875 static bool encoders_cloneable(const struct intel_encoder *a,
11876 const struct intel_encoder *b)
11877 {
11878 /* masks could be asymmetric, so check both ways */
11879 return a == b || (a->cloneable & (1 << b->type) &&
11880 b->cloneable & (1 << a->type));
11881 }
11882
11883 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11884 struct intel_crtc *crtc,
11885 struct intel_encoder *encoder)
11886 {
11887 struct intel_encoder *source_encoder;
11888 struct drm_connector *connector;
11889 struct drm_connector_state *connector_state;
11890 int i;
11891
11892 for_each_connector_in_state(state, connector, connector_state, i) {
11893 if (connector_state->crtc != &crtc->base)
11894 continue;
11895
11896 source_encoder =
11897 to_intel_encoder(connector_state->best_encoder);
11898 if (!encoders_cloneable(encoder, source_encoder))
11899 return false;
11900 }
11901
11902 return true;
11903 }
11904
11905 static bool check_encoder_cloning(struct drm_atomic_state *state,
11906 struct intel_crtc *crtc)
11907 {
11908 struct intel_encoder *encoder;
11909 struct drm_connector *connector;
11910 struct drm_connector_state *connector_state;
11911 int i;
11912
11913 for_each_connector_in_state(state, connector, connector_state, i) {
11914 if (connector_state->crtc != &crtc->base)
11915 continue;
11916
11917 encoder = to_intel_encoder(connector_state->best_encoder);
11918 if (!check_single_encoder_cloning(state, crtc, encoder))
11919 return false;
11920 }
11921
11922 return true;
11923 }
11924
11925 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11926 struct drm_crtc_state *crtc_state)
11927 {
11928 struct drm_device *dev = crtc->dev;
11929 struct drm_i915_private *dev_priv = dev->dev_private;
11930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11931 struct intel_crtc_state *pipe_config =
11932 to_intel_crtc_state(crtc_state);
11933 struct drm_atomic_state *state = crtc_state->state;
11934 int ret;
11935 bool mode_changed = needs_modeset(crtc_state);
11936
11937 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11938 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11939 return -EINVAL;
11940 }
11941
11942 if (mode_changed && !crtc_state->active)
11943 pipe_config->wm_changed = true;
11944
11945 if (mode_changed && crtc_state->enable &&
11946 dev_priv->display.crtc_compute_clock &&
11947 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11948 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11949 pipe_config);
11950 if (ret)
11951 return ret;
11952 }
11953
11954 ret = 0;
11955 if (dev_priv->display.compute_pipe_wm) {
11956 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11957 if (ret)
11958 return ret;
11959 }
11960
11961 if (INTEL_INFO(dev)->gen >= 9) {
11962 if (mode_changed)
11963 ret = skl_update_scaler_crtc(pipe_config);
11964
11965 if (!ret)
11966 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11967 pipe_config);
11968 }
11969
11970 return ret;
11971 }
11972
11973 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11974 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11975 .load_lut = intel_crtc_load_lut,
11976 .atomic_begin = intel_begin_crtc_commit,
11977 .atomic_flush = intel_finish_crtc_commit,
11978 .atomic_check = intel_crtc_atomic_check,
11979 };
11980
11981 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11982 {
11983 struct intel_connector *connector;
11984
11985 for_each_intel_connector(dev, connector) {
11986 if (connector->base.encoder) {
11987 connector->base.state->best_encoder =
11988 connector->base.encoder;
11989 connector->base.state->crtc =
11990 connector->base.encoder->crtc;
11991 } else {
11992 connector->base.state->best_encoder = NULL;
11993 connector->base.state->crtc = NULL;
11994 }
11995 }
11996 }
11997
11998 static void
11999 connected_sink_compute_bpp(struct intel_connector *connector,
12000 struct intel_crtc_state *pipe_config)
12001 {
12002 int bpp = pipe_config->pipe_bpp;
12003
12004 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12005 connector->base.base.id,
12006 connector->base.name);
12007
12008 /* Don't use an invalid EDID bpc value */
12009 if (connector->base.display_info.bpc &&
12010 connector->base.display_info.bpc * 3 < bpp) {
12011 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12012 bpp, connector->base.display_info.bpc*3);
12013 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12014 }
12015
12016 /* Clamp bpp to default limit on screens without EDID 1.4 */
12017 if (connector->base.display_info.bpc == 0) {
12018 int type = connector->base.connector_type;
12019 int clamp_bpp = 24;
12020
12021 /* Fall back to 18 bpp when DP sink capability is unknown. */
12022 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12023 type == DRM_MODE_CONNECTOR_eDP)
12024 clamp_bpp = 18;
12025
12026 if (bpp > clamp_bpp) {
12027 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12028 bpp, clamp_bpp);
12029 pipe_config->pipe_bpp = clamp_bpp;
12030 }
12031 }
12032 }
12033
12034 static int
12035 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12036 struct intel_crtc_state *pipe_config)
12037 {
12038 struct drm_device *dev = crtc->base.dev;
12039 struct drm_atomic_state *state;
12040 struct drm_connector *connector;
12041 struct drm_connector_state *connector_state;
12042 int bpp, i;
12043
12044 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12045 bpp = 10*3;
12046 else if (INTEL_INFO(dev)->gen >= 5)
12047 bpp = 12*3;
12048 else
12049 bpp = 8*3;
12050
12051
12052 pipe_config->pipe_bpp = bpp;
12053
12054 state = pipe_config->base.state;
12055
12056 /* Clamp display bpp to EDID value */
12057 for_each_connector_in_state(state, connector, connector_state, i) {
12058 if (connector_state->crtc != &crtc->base)
12059 continue;
12060
12061 connected_sink_compute_bpp(to_intel_connector(connector),
12062 pipe_config);
12063 }
12064
12065 return bpp;
12066 }
12067
12068 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12069 {
12070 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12071 "type: 0x%x flags: 0x%x\n",
12072 mode->crtc_clock,
12073 mode->crtc_hdisplay, mode->crtc_hsync_start,
12074 mode->crtc_hsync_end, mode->crtc_htotal,
12075 mode->crtc_vdisplay, mode->crtc_vsync_start,
12076 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12077 }
12078
12079 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12080 struct intel_crtc_state *pipe_config,
12081 const char *context)
12082 {
12083 struct drm_device *dev = crtc->base.dev;
12084 struct drm_plane *plane;
12085 struct intel_plane *intel_plane;
12086 struct intel_plane_state *state;
12087 struct drm_framebuffer *fb;
12088
12089 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12090 context, pipe_config, pipe_name(crtc->pipe));
12091
12092 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12093 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12094 pipe_config->pipe_bpp, pipe_config->dither);
12095 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12096 pipe_config->has_pch_encoder,
12097 pipe_config->fdi_lanes,
12098 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12099 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12100 pipe_config->fdi_m_n.tu);
12101 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12102 pipe_config->has_dp_encoder,
12103 pipe_config->lane_count,
12104 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12105 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12106 pipe_config->dp_m_n.tu);
12107
12108 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12109 pipe_config->has_dp_encoder,
12110 pipe_config->lane_count,
12111 pipe_config->dp_m2_n2.gmch_m,
12112 pipe_config->dp_m2_n2.gmch_n,
12113 pipe_config->dp_m2_n2.link_m,
12114 pipe_config->dp_m2_n2.link_n,
12115 pipe_config->dp_m2_n2.tu);
12116
12117 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12118 pipe_config->has_audio,
12119 pipe_config->has_infoframe);
12120
12121 DRM_DEBUG_KMS("requested mode:\n");
12122 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12123 DRM_DEBUG_KMS("adjusted mode:\n");
12124 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12125 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12126 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12127 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12128 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12129 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12130 crtc->num_scalers,
12131 pipe_config->scaler_state.scaler_users,
12132 pipe_config->scaler_state.scaler_id);
12133 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12134 pipe_config->gmch_pfit.control,
12135 pipe_config->gmch_pfit.pgm_ratios,
12136 pipe_config->gmch_pfit.lvds_border_bits);
12137 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12138 pipe_config->pch_pfit.pos,
12139 pipe_config->pch_pfit.size,
12140 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12141 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12142 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12143
12144 if (IS_BROXTON(dev)) {
12145 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12146 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12147 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12148 pipe_config->ddi_pll_sel,
12149 pipe_config->dpll_hw_state.ebb0,
12150 pipe_config->dpll_hw_state.ebb4,
12151 pipe_config->dpll_hw_state.pll0,
12152 pipe_config->dpll_hw_state.pll1,
12153 pipe_config->dpll_hw_state.pll2,
12154 pipe_config->dpll_hw_state.pll3,
12155 pipe_config->dpll_hw_state.pll6,
12156 pipe_config->dpll_hw_state.pll8,
12157 pipe_config->dpll_hw_state.pll9,
12158 pipe_config->dpll_hw_state.pll10,
12159 pipe_config->dpll_hw_state.pcsdw12);
12160 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12161 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12162 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12163 pipe_config->ddi_pll_sel,
12164 pipe_config->dpll_hw_state.ctrl1,
12165 pipe_config->dpll_hw_state.cfgcr1,
12166 pipe_config->dpll_hw_state.cfgcr2);
12167 } else if (HAS_DDI(dev)) {
12168 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12169 pipe_config->ddi_pll_sel,
12170 pipe_config->dpll_hw_state.wrpll,
12171 pipe_config->dpll_hw_state.spll);
12172 } else {
12173 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12174 "fp0: 0x%x, fp1: 0x%x\n",
12175 pipe_config->dpll_hw_state.dpll,
12176 pipe_config->dpll_hw_state.dpll_md,
12177 pipe_config->dpll_hw_state.fp0,
12178 pipe_config->dpll_hw_state.fp1);
12179 }
12180
12181 DRM_DEBUG_KMS("planes on this crtc\n");
12182 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12183 intel_plane = to_intel_plane(plane);
12184 if (intel_plane->pipe != crtc->pipe)
12185 continue;
12186
12187 state = to_intel_plane_state(plane->state);
12188 fb = state->base.fb;
12189 if (!fb) {
12190 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12191 "disabled, scaler_id = %d\n",
12192 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12193 plane->base.id, intel_plane->pipe,
12194 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12195 drm_plane_index(plane), state->scaler_id);
12196 continue;
12197 }
12198
12199 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12200 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12201 plane->base.id, intel_plane->pipe,
12202 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12203 drm_plane_index(plane));
12204 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12205 fb->base.id, fb->width, fb->height, fb->pixel_format);
12206 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12207 state->scaler_id,
12208 state->src.x1 >> 16, state->src.y1 >> 16,
12209 drm_rect_width(&state->src) >> 16,
12210 drm_rect_height(&state->src) >> 16,
12211 state->dst.x1, state->dst.y1,
12212 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12213 }
12214 }
12215
12216 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12217 {
12218 struct drm_device *dev = state->dev;
12219 struct drm_connector *connector;
12220 unsigned int used_ports = 0;
12221
12222 /*
12223 * Walk the connector list instead of the encoder
12224 * list to detect the problem on ddi platforms
12225 * where there's just one encoder per digital port.
12226 */
12227 drm_for_each_connector(connector, dev) {
12228 struct drm_connector_state *connector_state;
12229 struct intel_encoder *encoder;
12230
12231 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12232 if (!connector_state)
12233 connector_state = connector->state;
12234
12235 if (!connector_state->best_encoder)
12236 continue;
12237
12238 encoder = to_intel_encoder(connector_state->best_encoder);
12239
12240 WARN_ON(!connector_state->crtc);
12241
12242 switch (encoder->type) {
12243 unsigned int port_mask;
12244 case INTEL_OUTPUT_UNKNOWN:
12245 if (WARN_ON(!HAS_DDI(dev)))
12246 break;
12247 case INTEL_OUTPUT_DISPLAYPORT:
12248 case INTEL_OUTPUT_HDMI:
12249 case INTEL_OUTPUT_EDP:
12250 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12251
12252 /* the same port mustn't appear more than once */
12253 if (used_ports & port_mask)
12254 return false;
12255
12256 used_ports |= port_mask;
12257 default:
12258 break;
12259 }
12260 }
12261
12262 return true;
12263 }
12264
12265 static void
12266 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12267 {
12268 struct drm_crtc_state tmp_state;
12269 struct intel_crtc_scaler_state scaler_state;
12270 struct intel_dpll_hw_state dpll_hw_state;
12271 enum intel_dpll_id shared_dpll;
12272 uint32_t ddi_pll_sel;
12273 bool force_thru;
12274
12275 /* FIXME: before the switch to atomic started, a new pipe_config was
12276 * kzalloc'd. Code that depends on any field being zero should be
12277 * fixed, so that the crtc_state can be safely duplicated. For now,
12278 * only fields that are know to not cause problems are preserved. */
12279
12280 tmp_state = crtc_state->base;
12281 scaler_state = crtc_state->scaler_state;
12282 shared_dpll = crtc_state->shared_dpll;
12283 dpll_hw_state = crtc_state->dpll_hw_state;
12284 ddi_pll_sel = crtc_state->ddi_pll_sel;
12285 force_thru = crtc_state->pch_pfit.force_thru;
12286
12287 memset(crtc_state, 0, sizeof *crtc_state);
12288
12289 crtc_state->base = tmp_state;
12290 crtc_state->scaler_state = scaler_state;
12291 crtc_state->shared_dpll = shared_dpll;
12292 crtc_state->dpll_hw_state = dpll_hw_state;
12293 crtc_state->ddi_pll_sel = ddi_pll_sel;
12294 crtc_state->pch_pfit.force_thru = force_thru;
12295 }
12296
12297 static int
12298 intel_modeset_pipe_config(struct drm_crtc *crtc,
12299 struct intel_crtc_state *pipe_config)
12300 {
12301 struct drm_atomic_state *state = pipe_config->base.state;
12302 struct intel_encoder *encoder;
12303 struct drm_connector *connector;
12304 struct drm_connector_state *connector_state;
12305 int base_bpp, ret = -EINVAL;
12306 int i;
12307 bool retry = true;
12308
12309 clear_intel_crtc_state(pipe_config);
12310
12311 pipe_config->cpu_transcoder =
12312 (enum transcoder) to_intel_crtc(crtc)->pipe;
12313
12314 /*
12315 * Sanitize sync polarity flags based on requested ones. If neither
12316 * positive or negative polarity is requested, treat this as meaning
12317 * negative polarity.
12318 */
12319 if (!(pipe_config->base.adjusted_mode.flags &
12320 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12321 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12322
12323 if (!(pipe_config->base.adjusted_mode.flags &
12324 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12325 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12326
12327 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12328 pipe_config);
12329 if (base_bpp < 0)
12330 goto fail;
12331
12332 /*
12333 * Determine the real pipe dimensions. Note that stereo modes can
12334 * increase the actual pipe size due to the frame doubling and
12335 * insertion of additional space for blanks between the frame. This
12336 * is stored in the crtc timings. We use the requested mode to do this
12337 * computation to clearly distinguish it from the adjusted mode, which
12338 * can be changed by the connectors in the below retry loop.
12339 */
12340 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12341 &pipe_config->pipe_src_w,
12342 &pipe_config->pipe_src_h);
12343
12344 encoder_retry:
12345 /* Ensure the port clock defaults are reset when retrying. */
12346 pipe_config->port_clock = 0;
12347 pipe_config->pixel_multiplier = 1;
12348
12349 /* Fill in default crtc timings, allow encoders to overwrite them. */
12350 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12351 CRTC_STEREO_DOUBLE);
12352
12353 /* Pass our mode to the connectors and the CRTC to give them a chance to
12354 * adjust it according to limitations or connector properties, and also
12355 * a chance to reject the mode entirely.
12356 */
12357 for_each_connector_in_state(state, connector, connector_state, i) {
12358 if (connector_state->crtc != crtc)
12359 continue;
12360
12361 encoder = to_intel_encoder(connector_state->best_encoder);
12362
12363 if (!(encoder->compute_config(encoder, pipe_config))) {
12364 DRM_DEBUG_KMS("Encoder config failure\n");
12365 goto fail;
12366 }
12367 }
12368
12369 /* Set default port clock if not overwritten by the encoder. Needs to be
12370 * done afterwards in case the encoder adjusts the mode. */
12371 if (!pipe_config->port_clock)
12372 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12373 * pipe_config->pixel_multiplier;
12374
12375 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12376 if (ret < 0) {
12377 DRM_DEBUG_KMS("CRTC fixup failed\n");
12378 goto fail;
12379 }
12380
12381 if (ret == RETRY) {
12382 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12383 ret = -EINVAL;
12384 goto fail;
12385 }
12386
12387 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12388 retry = false;
12389 goto encoder_retry;
12390 }
12391
12392 /* Dithering seems to not pass-through bits correctly when it should, so
12393 * only enable it on 6bpc panels. */
12394 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12395 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12396 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12397
12398 fail:
12399 return ret;
12400 }
12401
12402 static void
12403 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12404 {
12405 struct drm_crtc *crtc;
12406 struct drm_crtc_state *crtc_state;
12407 int i;
12408
12409 /* Double check state. */
12410 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12411 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12412
12413 /* Update hwmode for vblank functions */
12414 if (crtc->state->active)
12415 crtc->hwmode = crtc->state->adjusted_mode;
12416 else
12417 crtc->hwmode.crtc_clock = 0;
12418
12419 /*
12420 * Update legacy state to satisfy fbc code. This can
12421 * be removed when fbc uses the atomic state.
12422 */
12423 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12424 struct drm_plane_state *plane_state = crtc->primary->state;
12425
12426 crtc->primary->fb = plane_state->fb;
12427 crtc->x = plane_state->src_x >> 16;
12428 crtc->y = plane_state->src_y >> 16;
12429 }
12430 }
12431 }
12432
12433 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12434 {
12435 int diff;
12436
12437 if (clock1 == clock2)
12438 return true;
12439
12440 if (!clock1 || !clock2)
12441 return false;
12442
12443 diff = abs(clock1 - clock2);
12444
12445 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12446 return true;
12447
12448 return false;
12449 }
12450
12451 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12452 list_for_each_entry((intel_crtc), \
12453 &(dev)->mode_config.crtc_list, \
12454 base.head) \
12455 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12456
12457 static bool
12458 intel_compare_m_n(unsigned int m, unsigned int n,
12459 unsigned int m2, unsigned int n2,
12460 bool exact)
12461 {
12462 if (m == m2 && n == n2)
12463 return true;
12464
12465 if (exact || !m || !n || !m2 || !n2)
12466 return false;
12467
12468 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12469
12470 if (n > n2) {
12471 while (n > n2) {
12472 m2 <<= 1;
12473 n2 <<= 1;
12474 }
12475 } else if (n < n2) {
12476 while (n < n2) {
12477 m <<= 1;
12478 n <<= 1;
12479 }
12480 }
12481
12482 if (n != n2)
12483 return false;
12484
12485 return intel_fuzzy_clock_check(m, m2);
12486 }
12487
12488 static bool
12489 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12490 struct intel_link_m_n *m2_n2,
12491 bool adjust)
12492 {
12493 if (m_n->tu == m2_n2->tu &&
12494 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12495 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12496 intel_compare_m_n(m_n->link_m, m_n->link_n,
12497 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12498 if (adjust)
12499 *m2_n2 = *m_n;
12500
12501 return true;
12502 }
12503
12504 return false;
12505 }
12506
12507 static bool
12508 intel_pipe_config_compare(struct drm_device *dev,
12509 struct intel_crtc_state *current_config,
12510 struct intel_crtc_state *pipe_config,
12511 bool adjust)
12512 {
12513 bool ret = true;
12514
12515 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12516 do { \
12517 if (!adjust) \
12518 DRM_ERROR(fmt, ##__VA_ARGS__); \
12519 else \
12520 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12521 } while (0)
12522
12523 #define PIPE_CONF_CHECK_X(name) \
12524 if (current_config->name != pipe_config->name) { \
12525 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12526 "(expected 0x%08x, found 0x%08x)\n", \
12527 current_config->name, \
12528 pipe_config->name); \
12529 ret = false; \
12530 }
12531
12532 #define PIPE_CONF_CHECK_I(name) \
12533 if (current_config->name != pipe_config->name) { \
12534 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12535 "(expected %i, found %i)\n", \
12536 current_config->name, \
12537 pipe_config->name); \
12538 ret = false; \
12539 }
12540
12541 #define PIPE_CONF_CHECK_M_N(name) \
12542 if (!intel_compare_link_m_n(&current_config->name, \
12543 &pipe_config->name,\
12544 adjust)) { \
12545 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12546 "(expected tu %i gmch %i/%i link %i/%i, " \
12547 "found tu %i, gmch %i/%i link %i/%i)\n", \
12548 current_config->name.tu, \
12549 current_config->name.gmch_m, \
12550 current_config->name.gmch_n, \
12551 current_config->name.link_m, \
12552 current_config->name.link_n, \
12553 pipe_config->name.tu, \
12554 pipe_config->name.gmch_m, \
12555 pipe_config->name.gmch_n, \
12556 pipe_config->name.link_m, \
12557 pipe_config->name.link_n); \
12558 ret = false; \
12559 }
12560
12561 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12562 if (!intel_compare_link_m_n(&current_config->name, \
12563 &pipe_config->name, adjust) && \
12564 !intel_compare_link_m_n(&current_config->alt_name, \
12565 &pipe_config->name, adjust)) { \
12566 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12567 "(expected tu %i gmch %i/%i link %i/%i, " \
12568 "or tu %i gmch %i/%i link %i/%i, " \
12569 "found tu %i, gmch %i/%i link %i/%i)\n", \
12570 current_config->name.tu, \
12571 current_config->name.gmch_m, \
12572 current_config->name.gmch_n, \
12573 current_config->name.link_m, \
12574 current_config->name.link_n, \
12575 current_config->alt_name.tu, \
12576 current_config->alt_name.gmch_m, \
12577 current_config->alt_name.gmch_n, \
12578 current_config->alt_name.link_m, \
12579 current_config->alt_name.link_n, \
12580 pipe_config->name.tu, \
12581 pipe_config->name.gmch_m, \
12582 pipe_config->name.gmch_n, \
12583 pipe_config->name.link_m, \
12584 pipe_config->name.link_n); \
12585 ret = false; \
12586 }
12587
12588 /* This is required for BDW+ where there is only one set of registers for
12589 * switching between high and low RR.
12590 * This macro can be used whenever a comparison has to be made between one
12591 * hw state and multiple sw state variables.
12592 */
12593 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12594 if ((current_config->name != pipe_config->name) && \
12595 (current_config->alt_name != pipe_config->name)) { \
12596 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12597 "(expected %i or %i, found %i)\n", \
12598 current_config->name, \
12599 current_config->alt_name, \
12600 pipe_config->name); \
12601 ret = false; \
12602 }
12603
12604 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12605 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12606 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12607 "(expected %i, found %i)\n", \
12608 current_config->name & (mask), \
12609 pipe_config->name & (mask)); \
12610 ret = false; \
12611 }
12612
12613 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12614 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12615 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12616 "(expected %i, found %i)\n", \
12617 current_config->name, \
12618 pipe_config->name); \
12619 ret = false; \
12620 }
12621
12622 #define PIPE_CONF_QUIRK(quirk) \
12623 ((current_config->quirks | pipe_config->quirks) & (quirk))
12624
12625 PIPE_CONF_CHECK_I(cpu_transcoder);
12626
12627 PIPE_CONF_CHECK_I(has_pch_encoder);
12628 PIPE_CONF_CHECK_I(fdi_lanes);
12629 PIPE_CONF_CHECK_M_N(fdi_m_n);
12630
12631 PIPE_CONF_CHECK_I(has_dp_encoder);
12632 PIPE_CONF_CHECK_I(lane_count);
12633
12634 if (INTEL_INFO(dev)->gen < 8) {
12635 PIPE_CONF_CHECK_M_N(dp_m_n);
12636
12637 if (current_config->has_drrs)
12638 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12639 } else
12640 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12641
12642 PIPE_CONF_CHECK_I(has_dsi_encoder);
12643
12644 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12645 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12646 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12647 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12648 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12649 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12650
12651 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12652 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12653 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12654 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12655 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12656 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12657
12658 PIPE_CONF_CHECK_I(pixel_multiplier);
12659 PIPE_CONF_CHECK_I(has_hdmi_sink);
12660 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12661 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12662 PIPE_CONF_CHECK_I(limited_color_range);
12663 PIPE_CONF_CHECK_I(has_infoframe);
12664
12665 PIPE_CONF_CHECK_I(has_audio);
12666
12667 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12668 DRM_MODE_FLAG_INTERLACE);
12669
12670 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12671 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12672 DRM_MODE_FLAG_PHSYNC);
12673 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12674 DRM_MODE_FLAG_NHSYNC);
12675 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12676 DRM_MODE_FLAG_PVSYNC);
12677 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12678 DRM_MODE_FLAG_NVSYNC);
12679 }
12680
12681 PIPE_CONF_CHECK_X(gmch_pfit.control);
12682 /* pfit ratios are autocomputed by the hw on gen4+ */
12683 if (INTEL_INFO(dev)->gen < 4)
12684 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12685 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12686
12687 if (!adjust) {
12688 PIPE_CONF_CHECK_I(pipe_src_w);
12689 PIPE_CONF_CHECK_I(pipe_src_h);
12690
12691 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12692 if (current_config->pch_pfit.enabled) {
12693 PIPE_CONF_CHECK_X(pch_pfit.pos);
12694 PIPE_CONF_CHECK_X(pch_pfit.size);
12695 }
12696
12697 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12698 }
12699
12700 /* BDW+ don't expose a synchronous way to read the state */
12701 if (IS_HASWELL(dev))
12702 PIPE_CONF_CHECK_I(ips_enabled);
12703
12704 PIPE_CONF_CHECK_I(double_wide);
12705
12706 PIPE_CONF_CHECK_X(ddi_pll_sel);
12707
12708 PIPE_CONF_CHECK_I(shared_dpll);
12709 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12710 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12711 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12712 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12713 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12714 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12715 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12716 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12717 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12718
12719 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12720 PIPE_CONF_CHECK_I(pipe_bpp);
12721
12722 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12723 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12724
12725 #undef PIPE_CONF_CHECK_X
12726 #undef PIPE_CONF_CHECK_I
12727 #undef PIPE_CONF_CHECK_I_ALT
12728 #undef PIPE_CONF_CHECK_FLAGS
12729 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12730 #undef PIPE_CONF_QUIRK
12731 #undef INTEL_ERR_OR_DBG_KMS
12732
12733 return ret;
12734 }
12735
12736 static void check_wm_state(struct drm_device *dev)
12737 {
12738 struct drm_i915_private *dev_priv = dev->dev_private;
12739 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12740 struct intel_crtc *intel_crtc;
12741 int plane;
12742
12743 if (INTEL_INFO(dev)->gen < 9)
12744 return;
12745
12746 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12747 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12748
12749 for_each_intel_crtc(dev, intel_crtc) {
12750 struct skl_ddb_entry *hw_entry, *sw_entry;
12751 const enum pipe pipe = intel_crtc->pipe;
12752
12753 if (!intel_crtc->active)
12754 continue;
12755
12756 /* planes */
12757 for_each_plane(dev_priv, pipe, plane) {
12758 hw_entry = &hw_ddb.plane[pipe][plane];
12759 sw_entry = &sw_ddb->plane[pipe][plane];
12760
12761 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12762 continue;
12763
12764 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12765 "(expected (%u,%u), found (%u,%u))\n",
12766 pipe_name(pipe), plane + 1,
12767 sw_entry->start, sw_entry->end,
12768 hw_entry->start, hw_entry->end);
12769 }
12770
12771 /* cursor */
12772 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12773 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12774
12775 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12776 continue;
12777
12778 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12779 "(expected (%u,%u), found (%u,%u))\n",
12780 pipe_name(pipe),
12781 sw_entry->start, sw_entry->end,
12782 hw_entry->start, hw_entry->end);
12783 }
12784 }
12785
12786 static void
12787 check_connector_state(struct drm_device *dev,
12788 struct drm_atomic_state *old_state)
12789 {
12790 struct drm_connector_state *old_conn_state;
12791 struct drm_connector *connector;
12792 int i;
12793
12794 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12795 struct drm_encoder *encoder = connector->encoder;
12796 struct drm_connector_state *state = connector->state;
12797
12798 /* This also checks the encoder/connector hw state with the
12799 * ->get_hw_state callbacks. */
12800 intel_connector_check_state(to_intel_connector(connector));
12801
12802 I915_STATE_WARN(state->best_encoder != encoder,
12803 "connector's atomic encoder doesn't match legacy encoder\n");
12804 }
12805 }
12806
12807 static void
12808 check_encoder_state(struct drm_device *dev)
12809 {
12810 struct intel_encoder *encoder;
12811 struct intel_connector *connector;
12812
12813 for_each_intel_encoder(dev, encoder) {
12814 bool enabled = false;
12815 enum pipe pipe;
12816
12817 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12818 encoder->base.base.id,
12819 encoder->base.name);
12820
12821 for_each_intel_connector(dev, connector) {
12822 if (connector->base.state->best_encoder != &encoder->base)
12823 continue;
12824 enabled = true;
12825
12826 I915_STATE_WARN(connector->base.state->crtc !=
12827 encoder->base.crtc,
12828 "connector's crtc doesn't match encoder crtc\n");
12829 }
12830
12831 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12832 "encoder's enabled state mismatch "
12833 "(expected %i, found %i)\n",
12834 !!encoder->base.crtc, enabled);
12835
12836 if (!encoder->base.crtc) {
12837 bool active;
12838
12839 active = encoder->get_hw_state(encoder, &pipe);
12840 I915_STATE_WARN(active,
12841 "encoder detached but still enabled on pipe %c.\n",
12842 pipe_name(pipe));
12843 }
12844 }
12845 }
12846
12847 static void
12848 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12849 {
12850 struct drm_i915_private *dev_priv = dev->dev_private;
12851 struct intel_encoder *encoder;
12852 struct drm_crtc_state *old_crtc_state;
12853 struct drm_crtc *crtc;
12854 int i;
12855
12856 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12857 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12858 struct intel_crtc_state *pipe_config, *sw_config;
12859 bool active;
12860
12861 if (!needs_modeset(crtc->state) &&
12862 !to_intel_crtc_state(crtc->state)->update_pipe)
12863 continue;
12864
12865 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12866 pipe_config = to_intel_crtc_state(old_crtc_state);
12867 memset(pipe_config, 0, sizeof(*pipe_config));
12868 pipe_config->base.crtc = crtc;
12869 pipe_config->base.state = old_state;
12870
12871 DRM_DEBUG_KMS("[CRTC:%d]\n",
12872 crtc->base.id);
12873
12874 active = dev_priv->display.get_pipe_config(intel_crtc,
12875 pipe_config);
12876
12877 /* hw state is inconsistent with the pipe quirk */
12878 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12879 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12880 active = crtc->state->active;
12881
12882 I915_STATE_WARN(crtc->state->active != active,
12883 "crtc active state doesn't match with hw state "
12884 "(expected %i, found %i)\n", crtc->state->active, active);
12885
12886 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12887 "transitional active state does not match atomic hw state "
12888 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12889
12890 for_each_encoder_on_crtc(dev, crtc, encoder) {
12891 enum pipe pipe;
12892
12893 active = encoder->get_hw_state(encoder, &pipe);
12894 I915_STATE_WARN(active != crtc->state->active,
12895 "[ENCODER:%i] active %i with crtc active %i\n",
12896 encoder->base.base.id, active, crtc->state->active);
12897
12898 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12899 "Encoder connected to wrong pipe %c\n",
12900 pipe_name(pipe));
12901
12902 if (active)
12903 encoder->get_config(encoder, pipe_config);
12904 }
12905
12906 if (!crtc->state->active)
12907 continue;
12908
12909 sw_config = to_intel_crtc_state(crtc->state);
12910 if (!intel_pipe_config_compare(dev, sw_config,
12911 pipe_config, false)) {
12912 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12913 intel_dump_pipe_config(intel_crtc, pipe_config,
12914 "[hw state]");
12915 intel_dump_pipe_config(intel_crtc, sw_config,
12916 "[sw state]");
12917 }
12918 }
12919 }
12920
12921 static void
12922 check_shared_dpll_state(struct drm_device *dev)
12923 {
12924 struct drm_i915_private *dev_priv = dev->dev_private;
12925 struct intel_crtc *crtc;
12926 struct intel_dpll_hw_state dpll_hw_state;
12927 int i;
12928
12929 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12930 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12931 int enabled_crtcs = 0, active_crtcs = 0;
12932 bool active;
12933
12934 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12935
12936 DRM_DEBUG_KMS("%s\n", pll->name);
12937
12938 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12939
12940 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12941 "more active pll users than references: %i vs %i\n",
12942 pll->active, hweight32(pll->config.crtc_mask));
12943 I915_STATE_WARN(pll->active && !pll->on,
12944 "pll in active use but not on in sw tracking\n");
12945 I915_STATE_WARN(pll->on && !pll->active,
12946 "pll in on but not on in use in sw tracking\n");
12947 I915_STATE_WARN(pll->on != active,
12948 "pll on state mismatch (expected %i, found %i)\n",
12949 pll->on, active);
12950
12951 for_each_intel_crtc(dev, crtc) {
12952 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12953 enabled_crtcs++;
12954 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12955 active_crtcs++;
12956 }
12957 I915_STATE_WARN(pll->active != active_crtcs,
12958 "pll active crtcs mismatch (expected %i, found %i)\n",
12959 pll->active, active_crtcs);
12960 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12961 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12962 hweight32(pll->config.crtc_mask), enabled_crtcs);
12963
12964 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12965 sizeof(dpll_hw_state)),
12966 "pll hw state mismatch\n");
12967 }
12968 }
12969
12970 static void
12971 intel_modeset_check_state(struct drm_device *dev,
12972 struct drm_atomic_state *old_state)
12973 {
12974 check_wm_state(dev);
12975 check_connector_state(dev, old_state);
12976 check_encoder_state(dev);
12977 check_crtc_state(dev, old_state);
12978 check_shared_dpll_state(dev);
12979 }
12980
12981 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12982 int dotclock)
12983 {
12984 /*
12985 * FDI already provided one idea for the dotclock.
12986 * Yell if the encoder disagrees.
12987 */
12988 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12989 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12990 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12991 }
12992
12993 static void update_scanline_offset(struct intel_crtc *crtc)
12994 {
12995 struct drm_device *dev = crtc->base.dev;
12996
12997 /*
12998 * The scanline counter increments at the leading edge of hsync.
12999 *
13000 * On most platforms it starts counting from vtotal-1 on the
13001 * first active line. That means the scanline counter value is
13002 * always one less than what we would expect. Ie. just after
13003 * start of vblank, which also occurs at start of hsync (on the
13004 * last active line), the scanline counter will read vblank_start-1.
13005 *
13006 * On gen2 the scanline counter starts counting from 1 instead
13007 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13008 * to keep the value positive), instead of adding one.
13009 *
13010 * On HSW+ the behaviour of the scanline counter depends on the output
13011 * type. For DP ports it behaves like most other platforms, but on HDMI
13012 * there's an extra 1 line difference. So we need to add two instead of
13013 * one to the value.
13014 */
13015 if (IS_GEN2(dev)) {
13016 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13017 int vtotal;
13018
13019 vtotal = adjusted_mode->crtc_vtotal;
13020 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13021 vtotal /= 2;
13022
13023 crtc->scanline_offset = vtotal - 1;
13024 } else if (HAS_DDI(dev) &&
13025 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13026 crtc->scanline_offset = 2;
13027 } else
13028 crtc->scanline_offset = 1;
13029 }
13030
13031 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13032 {
13033 struct drm_device *dev = state->dev;
13034 struct drm_i915_private *dev_priv = to_i915(dev);
13035 struct intel_shared_dpll_config *shared_dpll = NULL;
13036 struct drm_crtc *crtc;
13037 struct drm_crtc_state *crtc_state;
13038 int i;
13039
13040 if (!dev_priv->display.crtc_compute_clock)
13041 return;
13042
13043 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13045 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
13046
13047 if (!needs_modeset(crtc_state))
13048 continue;
13049
13050 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
13051
13052 if (old_dpll == DPLL_ID_PRIVATE)
13053 continue;
13054
13055 if (!shared_dpll)
13056 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13057
13058 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13059 }
13060 }
13061
13062 /*
13063 * This implements the workaround described in the "notes" section of the mode
13064 * set sequence documentation. When going from no pipes or single pipe to
13065 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13066 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13067 */
13068 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13069 {
13070 struct drm_crtc_state *crtc_state;
13071 struct intel_crtc *intel_crtc;
13072 struct drm_crtc *crtc;
13073 struct intel_crtc_state *first_crtc_state = NULL;
13074 struct intel_crtc_state *other_crtc_state = NULL;
13075 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13076 int i;
13077
13078 /* look at all crtc's that are going to be enabled in during modeset */
13079 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13080 intel_crtc = to_intel_crtc(crtc);
13081
13082 if (!crtc_state->active || !needs_modeset(crtc_state))
13083 continue;
13084
13085 if (first_crtc_state) {
13086 other_crtc_state = to_intel_crtc_state(crtc_state);
13087 break;
13088 } else {
13089 first_crtc_state = to_intel_crtc_state(crtc_state);
13090 first_pipe = intel_crtc->pipe;
13091 }
13092 }
13093
13094 /* No workaround needed? */
13095 if (!first_crtc_state)
13096 return 0;
13097
13098 /* w/a possibly needed, check how many crtc's are already enabled. */
13099 for_each_intel_crtc(state->dev, intel_crtc) {
13100 struct intel_crtc_state *pipe_config;
13101
13102 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13103 if (IS_ERR(pipe_config))
13104 return PTR_ERR(pipe_config);
13105
13106 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13107
13108 if (!pipe_config->base.active ||
13109 needs_modeset(&pipe_config->base))
13110 continue;
13111
13112 /* 2 or more enabled crtcs means no need for w/a */
13113 if (enabled_pipe != INVALID_PIPE)
13114 return 0;
13115
13116 enabled_pipe = intel_crtc->pipe;
13117 }
13118
13119 if (enabled_pipe != INVALID_PIPE)
13120 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13121 else if (other_crtc_state)
13122 other_crtc_state->hsw_workaround_pipe = first_pipe;
13123
13124 return 0;
13125 }
13126
13127 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13128 {
13129 struct drm_crtc *crtc;
13130 struct drm_crtc_state *crtc_state;
13131 int ret = 0;
13132
13133 /* add all active pipes to the state */
13134 for_each_crtc(state->dev, crtc) {
13135 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13136 if (IS_ERR(crtc_state))
13137 return PTR_ERR(crtc_state);
13138
13139 if (!crtc_state->active || needs_modeset(crtc_state))
13140 continue;
13141
13142 crtc_state->mode_changed = true;
13143
13144 ret = drm_atomic_add_affected_connectors(state, crtc);
13145 if (ret)
13146 break;
13147
13148 ret = drm_atomic_add_affected_planes(state, crtc);
13149 if (ret)
13150 break;
13151 }
13152
13153 return ret;
13154 }
13155
13156 static int intel_modeset_checks(struct drm_atomic_state *state)
13157 {
13158 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13159 struct drm_i915_private *dev_priv = state->dev->dev_private;
13160 struct drm_crtc *crtc;
13161 struct drm_crtc_state *crtc_state;
13162 int ret = 0, i;
13163
13164 if (!check_digital_port_conflicts(state)) {
13165 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13166 return -EINVAL;
13167 }
13168
13169 intel_state->modeset = true;
13170 intel_state->active_crtcs = dev_priv->active_crtcs;
13171
13172 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13173 if (crtc_state->active)
13174 intel_state->active_crtcs |= 1 << i;
13175 else
13176 intel_state->active_crtcs &= ~(1 << i);
13177 }
13178
13179 /*
13180 * See if the config requires any additional preparation, e.g.
13181 * to adjust global state with pipes off. We need to do this
13182 * here so we can get the modeset_pipe updated config for the new
13183 * mode set on this crtc. For other crtcs we need to use the
13184 * adjusted_mode bits in the crtc directly.
13185 */
13186 if (dev_priv->display.modeset_calc_cdclk) {
13187 ret = dev_priv->display.modeset_calc_cdclk(state);
13188
13189 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13190 ret = intel_modeset_all_pipes(state);
13191
13192 if (ret < 0)
13193 return ret;
13194
13195 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13196 intel_state->cdclk, intel_state->dev_cdclk);
13197 } else
13198 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13199
13200 intel_modeset_clear_plls(state);
13201
13202 if (IS_HASWELL(dev_priv))
13203 return haswell_mode_set_planes_workaround(state);
13204
13205 return 0;
13206 }
13207
13208 /*
13209 * Handle calculation of various watermark data at the end of the atomic check
13210 * phase. The code here should be run after the per-crtc and per-plane 'check'
13211 * handlers to ensure that all derived state has been updated.
13212 */
13213 static void calc_watermark_data(struct drm_atomic_state *state)
13214 {
13215 struct drm_device *dev = state->dev;
13216 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13217 struct drm_crtc *crtc;
13218 struct drm_crtc_state *cstate;
13219 struct drm_plane *plane;
13220 struct drm_plane_state *pstate;
13221
13222 /*
13223 * Calculate watermark configuration details now that derived
13224 * plane/crtc state is all properly updated.
13225 */
13226 drm_for_each_crtc(crtc, dev) {
13227 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13228 crtc->state;
13229
13230 if (cstate->active)
13231 intel_state->wm_config.num_pipes_active++;
13232 }
13233 drm_for_each_legacy_plane(plane, dev) {
13234 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13235 plane->state;
13236
13237 if (!to_intel_plane_state(pstate)->visible)
13238 continue;
13239
13240 intel_state->wm_config.sprites_enabled = true;
13241 if (pstate->crtc_w != pstate->src_w >> 16 ||
13242 pstate->crtc_h != pstate->src_h >> 16)
13243 intel_state->wm_config.sprites_scaled = true;
13244 }
13245 }
13246
13247 /**
13248 * intel_atomic_check - validate state object
13249 * @dev: drm device
13250 * @state: state to validate
13251 */
13252 static int intel_atomic_check(struct drm_device *dev,
13253 struct drm_atomic_state *state)
13254 {
13255 struct drm_i915_private *dev_priv = to_i915(dev);
13256 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13257 struct drm_crtc *crtc;
13258 struct drm_crtc_state *crtc_state;
13259 int ret, i;
13260 bool any_ms = false;
13261
13262 ret = drm_atomic_helper_check_modeset(dev, state);
13263 if (ret)
13264 return ret;
13265
13266 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13267 struct intel_crtc_state *pipe_config =
13268 to_intel_crtc_state(crtc_state);
13269
13270 memset(&to_intel_crtc(crtc)->atomic, 0,
13271 sizeof(struct intel_crtc_atomic_commit));
13272
13273 /* Catch I915_MODE_FLAG_INHERITED */
13274 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13275 crtc_state->mode_changed = true;
13276
13277 if (!crtc_state->enable) {
13278 if (needs_modeset(crtc_state))
13279 any_ms = true;
13280 continue;
13281 }
13282
13283 if (!needs_modeset(crtc_state))
13284 continue;
13285
13286 /* FIXME: For only active_changed we shouldn't need to do any
13287 * state recomputation at all. */
13288
13289 ret = drm_atomic_add_affected_connectors(state, crtc);
13290 if (ret)
13291 return ret;
13292
13293 ret = intel_modeset_pipe_config(crtc, pipe_config);
13294 if (ret)
13295 return ret;
13296
13297 if (i915.fastboot &&
13298 intel_pipe_config_compare(dev,
13299 to_intel_crtc_state(crtc->state),
13300 pipe_config, true)) {
13301 crtc_state->mode_changed = false;
13302 to_intel_crtc_state(crtc_state)->update_pipe = true;
13303 }
13304
13305 if (needs_modeset(crtc_state)) {
13306 any_ms = true;
13307
13308 ret = drm_atomic_add_affected_planes(state, crtc);
13309 if (ret)
13310 return ret;
13311 }
13312
13313 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13314 needs_modeset(crtc_state) ?
13315 "[modeset]" : "[fastset]");
13316 }
13317
13318 if (any_ms) {
13319 ret = intel_modeset_checks(state);
13320
13321 if (ret)
13322 return ret;
13323 } else
13324 intel_state->cdclk = dev_priv->cdclk_freq;
13325
13326 ret = drm_atomic_helper_check_planes(dev, state);
13327 if (ret)
13328 return ret;
13329
13330 intel_fbc_choose_crtc(dev_priv, state);
13331 calc_watermark_data(state);
13332
13333 return 0;
13334 }
13335
13336 static int intel_atomic_prepare_commit(struct drm_device *dev,
13337 struct drm_atomic_state *state,
13338 bool async)
13339 {
13340 struct drm_i915_private *dev_priv = dev->dev_private;
13341 struct drm_plane_state *plane_state;
13342 struct drm_crtc_state *crtc_state;
13343 struct drm_plane *plane;
13344 struct drm_crtc *crtc;
13345 int i, ret;
13346
13347 if (async) {
13348 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13349 return -EINVAL;
13350 }
13351
13352 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13353 if (state->legacy_cursor_update)
13354 continue;
13355
13356 ret = intel_crtc_wait_for_pending_flips(crtc);
13357 if (ret)
13358 return ret;
13359
13360 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13361 flush_workqueue(dev_priv->wq);
13362 }
13363
13364 ret = mutex_lock_interruptible(&dev->struct_mutex);
13365 if (ret)
13366 return ret;
13367
13368 ret = drm_atomic_helper_prepare_planes(dev, state);
13369 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13370 u32 reset_counter;
13371
13372 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13373 mutex_unlock(&dev->struct_mutex);
13374
13375 for_each_plane_in_state(state, plane, plane_state, i) {
13376 struct intel_plane_state *intel_plane_state =
13377 to_intel_plane_state(plane_state);
13378
13379 if (!intel_plane_state->wait_req)
13380 continue;
13381
13382 ret = __i915_wait_request(intel_plane_state->wait_req,
13383 reset_counter, true,
13384 NULL, NULL);
13385
13386 /* Swallow -EIO errors to allow updates during hw lockup. */
13387 if (ret == -EIO)
13388 ret = 0;
13389
13390 if (ret)
13391 break;
13392 }
13393
13394 if (!ret)
13395 return 0;
13396
13397 mutex_lock(&dev->struct_mutex);
13398 drm_atomic_helper_cleanup_planes(dev, state);
13399 }
13400
13401 mutex_unlock(&dev->struct_mutex);
13402 return ret;
13403 }
13404
13405 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13406 struct drm_i915_private *dev_priv,
13407 unsigned crtc_mask)
13408 {
13409 unsigned last_vblank_count[I915_MAX_PIPES];
13410 enum pipe pipe;
13411 int ret;
13412
13413 if (!crtc_mask)
13414 return;
13415
13416 for_each_pipe(dev_priv, pipe) {
13417 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13418
13419 if (!((1 << pipe) & crtc_mask))
13420 continue;
13421
13422 ret = drm_crtc_vblank_get(crtc);
13423 if (WARN_ON(ret != 0)) {
13424 crtc_mask &= ~(1 << pipe);
13425 continue;
13426 }
13427
13428 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13429 }
13430
13431 for_each_pipe(dev_priv, pipe) {
13432 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13433 long lret;
13434
13435 if (!((1 << pipe) & crtc_mask))
13436 continue;
13437
13438 lret = wait_event_timeout(dev->vblank[pipe].queue,
13439 last_vblank_count[pipe] !=
13440 drm_crtc_vblank_count(crtc),
13441 msecs_to_jiffies(50));
13442
13443 WARN_ON(!lret);
13444
13445 drm_crtc_vblank_put(crtc);
13446 }
13447 }
13448
13449 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13450 {
13451 /* fb updated, need to unpin old fb */
13452 if (crtc_state->fb_changed)
13453 return true;
13454
13455 /* wm changes, need vblank before final wm's */
13456 if (crtc_state->wm_changed)
13457 return true;
13458
13459 /*
13460 * cxsr is re-enabled after vblank.
13461 * This is already handled by crtc_state->wm_changed,
13462 * but added for clarity.
13463 */
13464 if (crtc_state->disable_cxsr)
13465 return true;
13466
13467 return false;
13468 }
13469
13470 /**
13471 * intel_atomic_commit - commit validated state object
13472 * @dev: DRM device
13473 * @state: the top-level driver state object
13474 * @async: asynchronous commit
13475 *
13476 * This function commits a top-level state object that has been validated
13477 * with drm_atomic_helper_check().
13478 *
13479 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13480 * we can only handle plane-related operations and do not yet support
13481 * asynchronous commit.
13482 *
13483 * RETURNS
13484 * Zero for success or -errno.
13485 */
13486 static int intel_atomic_commit(struct drm_device *dev,
13487 struct drm_atomic_state *state,
13488 bool async)
13489 {
13490 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13491 struct drm_i915_private *dev_priv = dev->dev_private;
13492 struct drm_crtc_state *crtc_state;
13493 struct drm_crtc *crtc;
13494 int ret = 0, i;
13495 bool hw_check = intel_state->modeset;
13496 unsigned long put_domains[I915_MAX_PIPES] = {};
13497 unsigned crtc_vblank_mask = 0;
13498
13499 ret = intel_atomic_prepare_commit(dev, state, async);
13500 if (ret) {
13501 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13502 return ret;
13503 }
13504
13505 drm_atomic_helper_swap_state(dev, state);
13506 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13507
13508 if (intel_state->modeset) {
13509 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13510 sizeof(intel_state->min_pixclk));
13511 dev_priv->active_crtcs = intel_state->active_crtcs;
13512 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13513
13514 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13515 }
13516
13517 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13519
13520 if (needs_modeset(crtc->state) ||
13521 to_intel_crtc_state(crtc->state)->update_pipe) {
13522 hw_check = true;
13523
13524 put_domains[to_intel_crtc(crtc)->pipe] =
13525 modeset_get_crtc_power_domains(crtc,
13526 to_intel_crtc_state(crtc->state));
13527 }
13528
13529 if (!needs_modeset(crtc->state))
13530 continue;
13531
13532 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13533
13534 if (crtc_state->active) {
13535 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13536 dev_priv->display.crtc_disable(crtc);
13537 intel_crtc->active = false;
13538 intel_fbc_disable(intel_crtc);
13539 intel_disable_shared_dpll(intel_crtc);
13540
13541 /*
13542 * Underruns don't always raise
13543 * interrupts, so check manually.
13544 */
13545 intel_check_cpu_fifo_underruns(dev_priv);
13546 intel_check_pch_fifo_underruns(dev_priv);
13547
13548 if (!crtc->state->active)
13549 intel_update_watermarks(crtc);
13550 }
13551 }
13552
13553 /* Only after disabling all output pipelines that will be changed can we
13554 * update the the output configuration. */
13555 intel_modeset_update_crtc_state(state);
13556
13557 if (intel_state->modeset) {
13558 intel_shared_dpll_commit(state);
13559
13560 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13561
13562 if (dev_priv->display.modeset_commit_cdclk &&
13563 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13564 dev_priv->display.modeset_commit_cdclk(state);
13565 }
13566
13567 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13568 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13570 bool modeset = needs_modeset(crtc->state);
13571 struct intel_crtc_state *pipe_config =
13572 to_intel_crtc_state(crtc->state);
13573 bool update_pipe = !modeset && pipe_config->update_pipe;
13574
13575 if (modeset && crtc->state->active) {
13576 update_scanline_offset(to_intel_crtc(crtc));
13577 dev_priv->display.crtc_enable(crtc);
13578 }
13579
13580 if (!modeset)
13581 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13582
13583 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13584 intel_fbc_enable(intel_crtc);
13585
13586 if (crtc->state->active &&
13587 (crtc->state->planes_changed || update_pipe))
13588 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13589
13590 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13591 crtc_vblank_mask |= 1 << i;
13592 }
13593
13594 /* FIXME: add subpixel order */
13595
13596 if (!state->legacy_cursor_update)
13597 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13598
13599 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13600 intel_post_plane_update(to_intel_crtc(crtc));
13601
13602 if (put_domains[i])
13603 modeset_put_power_domains(dev_priv, put_domains[i]);
13604 }
13605
13606 if (intel_state->modeset)
13607 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13608
13609 mutex_lock(&dev->struct_mutex);
13610 drm_atomic_helper_cleanup_planes(dev, state);
13611 mutex_unlock(&dev->struct_mutex);
13612
13613 if (hw_check)
13614 intel_modeset_check_state(dev, state);
13615
13616 drm_atomic_state_free(state);
13617
13618 /* As one of the primary mmio accessors, KMS has a high likelihood
13619 * of triggering bugs in unclaimed access. After we finish
13620 * modesetting, see if an error has been flagged, and if so
13621 * enable debugging for the next modeset - and hope we catch
13622 * the culprit.
13623 *
13624 * XXX note that we assume display power is on at this point.
13625 * This might hold true now but we need to add pm helper to check
13626 * unclaimed only when the hardware is on, as atomic commits
13627 * can happen also when the device is completely off.
13628 */
13629 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13630
13631 return 0;
13632 }
13633
13634 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13635 {
13636 struct drm_device *dev = crtc->dev;
13637 struct drm_atomic_state *state;
13638 struct drm_crtc_state *crtc_state;
13639 int ret;
13640
13641 state = drm_atomic_state_alloc(dev);
13642 if (!state) {
13643 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13644 crtc->base.id);
13645 return;
13646 }
13647
13648 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13649
13650 retry:
13651 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13652 ret = PTR_ERR_OR_ZERO(crtc_state);
13653 if (!ret) {
13654 if (!crtc_state->active)
13655 goto out;
13656
13657 crtc_state->mode_changed = true;
13658 ret = drm_atomic_commit(state);
13659 }
13660
13661 if (ret == -EDEADLK) {
13662 drm_atomic_state_clear(state);
13663 drm_modeset_backoff(state->acquire_ctx);
13664 goto retry;
13665 }
13666
13667 if (ret)
13668 out:
13669 drm_atomic_state_free(state);
13670 }
13671
13672 #undef for_each_intel_crtc_masked
13673
13674 static const struct drm_crtc_funcs intel_crtc_funcs = {
13675 .gamma_set = intel_crtc_gamma_set,
13676 .set_config = drm_atomic_helper_set_config,
13677 .destroy = intel_crtc_destroy,
13678 .page_flip = intel_crtc_page_flip,
13679 .atomic_duplicate_state = intel_crtc_duplicate_state,
13680 .atomic_destroy_state = intel_crtc_destroy_state,
13681 };
13682
13683 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13684 struct intel_shared_dpll *pll,
13685 struct intel_dpll_hw_state *hw_state)
13686 {
13687 uint32_t val;
13688
13689 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
13690 return false;
13691
13692 val = I915_READ(PCH_DPLL(pll->id));
13693 hw_state->dpll = val;
13694 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13695 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13696
13697 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
13698
13699 return val & DPLL_VCO_ENABLE;
13700 }
13701
13702 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13703 struct intel_shared_dpll *pll)
13704 {
13705 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13706 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13707 }
13708
13709 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13710 struct intel_shared_dpll *pll)
13711 {
13712 /* PCH refclock must be enabled first */
13713 ibx_assert_pch_refclk_enabled(dev_priv);
13714
13715 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13716
13717 /* Wait for the clocks to stabilize. */
13718 POSTING_READ(PCH_DPLL(pll->id));
13719 udelay(150);
13720
13721 /* The pixel multiplier can only be updated once the
13722 * DPLL is enabled and the clocks are stable.
13723 *
13724 * So write it again.
13725 */
13726 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13727 POSTING_READ(PCH_DPLL(pll->id));
13728 udelay(200);
13729 }
13730
13731 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13732 struct intel_shared_dpll *pll)
13733 {
13734 struct drm_device *dev = dev_priv->dev;
13735 struct intel_crtc *crtc;
13736
13737 /* Make sure no transcoder isn't still depending on us. */
13738 for_each_intel_crtc(dev, crtc) {
13739 if (intel_crtc_to_shared_dpll(crtc) == pll)
13740 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13741 }
13742
13743 I915_WRITE(PCH_DPLL(pll->id), 0);
13744 POSTING_READ(PCH_DPLL(pll->id));
13745 udelay(200);
13746 }
13747
13748 static char *ibx_pch_dpll_names[] = {
13749 "PCH DPLL A",
13750 "PCH DPLL B",
13751 };
13752
13753 static void ibx_pch_dpll_init(struct drm_device *dev)
13754 {
13755 struct drm_i915_private *dev_priv = dev->dev_private;
13756 int i;
13757
13758 dev_priv->num_shared_dpll = 2;
13759
13760 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13761 dev_priv->shared_dplls[i].id = i;
13762 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13763 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13764 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13765 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13766 dev_priv->shared_dplls[i].get_hw_state =
13767 ibx_pch_dpll_get_hw_state;
13768 }
13769 }
13770
13771 static void intel_shared_dpll_init(struct drm_device *dev)
13772 {
13773 struct drm_i915_private *dev_priv = dev->dev_private;
13774
13775 if (HAS_DDI(dev))
13776 intel_ddi_pll_init(dev);
13777 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13778 ibx_pch_dpll_init(dev);
13779 else
13780 dev_priv->num_shared_dpll = 0;
13781
13782 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13783 }
13784
13785 /**
13786 * intel_prepare_plane_fb - Prepare fb for usage on plane
13787 * @plane: drm plane to prepare for
13788 * @fb: framebuffer to prepare for presentation
13789 *
13790 * Prepares a framebuffer for usage on a display plane. Generally this
13791 * involves pinning the underlying object and updating the frontbuffer tracking
13792 * bits. Some older platforms need special physical address handling for
13793 * cursor planes.
13794 *
13795 * Must be called with struct_mutex held.
13796 *
13797 * Returns 0 on success, negative error code on failure.
13798 */
13799 int
13800 intel_prepare_plane_fb(struct drm_plane *plane,
13801 const struct drm_plane_state *new_state)
13802 {
13803 struct drm_device *dev = plane->dev;
13804 struct drm_framebuffer *fb = new_state->fb;
13805 struct intel_plane *intel_plane = to_intel_plane(plane);
13806 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13807 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13808 int ret = 0;
13809
13810 if (!obj && !old_obj)
13811 return 0;
13812
13813 if (old_obj) {
13814 struct drm_crtc_state *crtc_state =
13815 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13816
13817 /* Big Hammer, we also need to ensure that any pending
13818 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13819 * current scanout is retired before unpinning the old
13820 * framebuffer. Note that we rely on userspace rendering
13821 * into the buffer attached to the pipe they are waiting
13822 * on. If not, userspace generates a GPU hang with IPEHR
13823 * point to the MI_WAIT_FOR_EVENT.
13824 *
13825 * This should only fail upon a hung GPU, in which case we
13826 * can safely continue.
13827 */
13828 if (needs_modeset(crtc_state))
13829 ret = i915_gem_object_wait_rendering(old_obj, true);
13830
13831 /* Swallow -EIO errors to allow updates during hw lockup. */
13832 if (ret && ret != -EIO)
13833 return ret;
13834 }
13835
13836 /* For framebuffer backed by dmabuf, wait for fence */
13837 if (obj && obj->base.dma_buf) {
13838 long lret;
13839
13840 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13841 false, true,
13842 MAX_SCHEDULE_TIMEOUT);
13843 if (lret == -ERESTARTSYS)
13844 return lret;
13845
13846 WARN(lret < 0, "waiting returns %li\n", lret);
13847 }
13848
13849 if (!obj) {
13850 ret = 0;
13851 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13852 INTEL_INFO(dev)->cursor_needs_physical) {
13853 int align = IS_I830(dev) ? 16 * 1024 : 256;
13854 ret = i915_gem_object_attach_phys(obj, align);
13855 if (ret)
13856 DRM_DEBUG_KMS("failed to attach phys object\n");
13857 } else {
13858 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13859 }
13860
13861 if (ret == 0) {
13862 if (obj) {
13863 struct intel_plane_state *plane_state =
13864 to_intel_plane_state(new_state);
13865
13866 i915_gem_request_assign(&plane_state->wait_req,
13867 obj->last_write_req);
13868 }
13869
13870 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13871 }
13872
13873 return ret;
13874 }
13875
13876 /**
13877 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13878 * @plane: drm plane to clean up for
13879 * @fb: old framebuffer that was on plane
13880 *
13881 * Cleans up a framebuffer that has just been removed from a plane.
13882 *
13883 * Must be called with struct_mutex held.
13884 */
13885 void
13886 intel_cleanup_plane_fb(struct drm_plane *plane,
13887 const struct drm_plane_state *old_state)
13888 {
13889 struct drm_device *dev = plane->dev;
13890 struct intel_plane *intel_plane = to_intel_plane(plane);
13891 struct intel_plane_state *old_intel_state;
13892 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13893 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13894
13895 old_intel_state = to_intel_plane_state(old_state);
13896
13897 if (!obj && !old_obj)
13898 return;
13899
13900 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13901 !INTEL_INFO(dev)->cursor_needs_physical))
13902 intel_unpin_fb_obj(old_state->fb, old_state);
13903
13904 /* prepare_fb aborted? */
13905 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13906 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13907 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13908
13909 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13910
13911 }
13912
13913 int
13914 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13915 {
13916 int max_scale;
13917 struct drm_device *dev;
13918 struct drm_i915_private *dev_priv;
13919 int crtc_clock, cdclk;
13920
13921 if (!intel_crtc || !crtc_state->base.enable)
13922 return DRM_PLANE_HELPER_NO_SCALING;
13923
13924 dev = intel_crtc->base.dev;
13925 dev_priv = dev->dev_private;
13926 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13927 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13928
13929 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13930 return DRM_PLANE_HELPER_NO_SCALING;
13931
13932 /*
13933 * skl max scale is lower of:
13934 * close to 3 but not 3, -1 is for that purpose
13935 * or
13936 * cdclk/crtc_clock
13937 */
13938 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13939
13940 return max_scale;
13941 }
13942
13943 static int
13944 intel_check_primary_plane(struct drm_plane *plane,
13945 struct intel_crtc_state *crtc_state,
13946 struct intel_plane_state *state)
13947 {
13948 struct drm_crtc *crtc = state->base.crtc;
13949 struct drm_framebuffer *fb = state->base.fb;
13950 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13951 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13952 bool can_position = false;
13953
13954 if (INTEL_INFO(plane->dev)->gen >= 9) {
13955 /* use scaler when colorkey is not required */
13956 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13957 min_scale = 1;
13958 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13959 }
13960 can_position = true;
13961 }
13962
13963 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13964 &state->dst, &state->clip,
13965 min_scale, max_scale,
13966 can_position, true,
13967 &state->visible);
13968 }
13969
13970 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13971 struct drm_crtc_state *old_crtc_state)
13972 {
13973 struct drm_device *dev = crtc->dev;
13974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13975 struct intel_crtc_state *old_intel_state =
13976 to_intel_crtc_state(old_crtc_state);
13977 bool modeset = needs_modeset(crtc->state);
13978
13979 /* Perform vblank evasion around commit operation */
13980 intel_pipe_update_start(intel_crtc);
13981
13982 if (modeset)
13983 return;
13984
13985 if (to_intel_crtc_state(crtc->state)->update_pipe)
13986 intel_update_pipe_config(intel_crtc, old_intel_state);
13987 else if (INTEL_INFO(dev)->gen >= 9)
13988 skl_detach_scalers(intel_crtc);
13989 }
13990
13991 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13992 struct drm_crtc_state *old_crtc_state)
13993 {
13994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13995
13996 intel_pipe_update_end(intel_crtc);
13997 }
13998
13999 /**
14000 * intel_plane_destroy - destroy a plane
14001 * @plane: plane to destroy
14002 *
14003 * Common destruction function for all types of planes (primary, cursor,
14004 * sprite).
14005 */
14006 void intel_plane_destroy(struct drm_plane *plane)
14007 {
14008 struct intel_plane *intel_plane = to_intel_plane(plane);
14009 drm_plane_cleanup(plane);
14010 kfree(intel_plane);
14011 }
14012
14013 const struct drm_plane_funcs intel_plane_funcs = {
14014 .update_plane = drm_atomic_helper_update_plane,
14015 .disable_plane = drm_atomic_helper_disable_plane,
14016 .destroy = intel_plane_destroy,
14017 .set_property = drm_atomic_helper_plane_set_property,
14018 .atomic_get_property = intel_plane_atomic_get_property,
14019 .atomic_set_property = intel_plane_atomic_set_property,
14020 .atomic_duplicate_state = intel_plane_duplicate_state,
14021 .atomic_destroy_state = intel_plane_destroy_state,
14022
14023 };
14024
14025 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14026 int pipe)
14027 {
14028 struct intel_plane *primary;
14029 struct intel_plane_state *state;
14030 const uint32_t *intel_primary_formats;
14031 unsigned int num_formats;
14032
14033 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14034 if (primary == NULL)
14035 return NULL;
14036
14037 state = intel_create_plane_state(&primary->base);
14038 if (!state) {
14039 kfree(primary);
14040 return NULL;
14041 }
14042 primary->base.state = &state->base;
14043
14044 primary->can_scale = false;
14045 primary->max_downscale = 1;
14046 if (INTEL_INFO(dev)->gen >= 9) {
14047 primary->can_scale = true;
14048 state->scaler_id = -1;
14049 }
14050 primary->pipe = pipe;
14051 primary->plane = pipe;
14052 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14053 primary->check_plane = intel_check_primary_plane;
14054 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14055 primary->plane = !pipe;
14056
14057 if (INTEL_INFO(dev)->gen >= 9) {
14058 intel_primary_formats = skl_primary_formats;
14059 num_formats = ARRAY_SIZE(skl_primary_formats);
14060
14061 primary->update_plane = skylake_update_primary_plane;
14062 primary->disable_plane = skylake_disable_primary_plane;
14063 } else if (HAS_PCH_SPLIT(dev)) {
14064 intel_primary_formats = i965_primary_formats;
14065 num_formats = ARRAY_SIZE(i965_primary_formats);
14066
14067 primary->update_plane = ironlake_update_primary_plane;
14068 primary->disable_plane = i9xx_disable_primary_plane;
14069 } else if (INTEL_INFO(dev)->gen >= 4) {
14070 intel_primary_formats = i965_primary_formats;
14071 num_formats = ARRAY_SIZE(i965_primary_formats);
14072
14073 primary->update_plane = i9xx_update_primary_plane;
14074 primary->disable_plane = i9xx_disable_primary_plane;
14075 } else {
14076 intel_primary_formats = i8xx_primary_formats;
14077 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14078
14079 primary->update_plane = i9xx_update_primary_plane;
14080 primary->disable_plane = i9xx_disable_primary_plane;
14081 }
14082
14083 drm_universal_plane_init(dev, &primary->base, 0,
14084 &intel_plane_funcs,
14085 intel_primary_formats, num_formats,
14086 DRM_PLANE_TYPE_PRIMARY, NULL);
14087
14088 if (INTEL_INFO(dev)->gen >= 4)
14089 intel_create_rotation_property(dev, primary);
14090
14091 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14092
14093 return &primary->base;
14094 }
14095
14096 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14097 {
14098 if (!dev->mode_config.rotation_property) {
14099 unsigned long flags = BIT(DRM_ROTATE_0) |
14100 BIT(DRM_ROTATE_180);
14101
14102 if (INTEL_INFO(dev)->gen >= 9)
14103 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14104
14105 dev->mode_config.rotation_property =
14106 drm_mode_create_rotation_property(dev, flags);
14107 }
14108 if (dev->mode_config.rotation_property)
14109 drm_object_attach_property(&plane->base.base,
14110 dev->mode_config.rotation_property,
14111 plane->base.state->rotation);
14112 }
14113
14114 static int
14115 intel_check_cursor_plane(struct drm_plane *plane,
14116 struct intel_crtc_state *crtc_state,
14117 struct intel_plane_state *state)
14118 {
14119 struct drm_crtc *crtc = crtc_state->base.crtc;
14120 struct drm_framebuffer *fb = state->base.fb;
14121 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14122 enum pipe pipe = to_intel_plane(plane)->pipe;
14123 unsigned stride;
14124 int ret;
14125
14126 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14127 &state->dst, &state->clip,
14128 DRM_PLANE_HELPER_NO_SCALING,
14129 DRM_PLANE_HELPER_NO_SCALING,
14130 true, true, &state->visible);
14131 if (ret)
14132 return ret;
14133
14134 /* if we want to turn off the cursor ignore width and height */
14135 if (!obj)
14136 return 0;
14137
14138 /* Check for which cursor types we support */
14139 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14140 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14141 state->base.crtc_w, state->base.crtc_h);
14142 return -EINVAL;
14143 }
14144
14145 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14146 if (obj->base.size < stride * state->base.crtc_h) {
14147 DRM_DEBUG_KMS("buffer is too small\n");
14148 return -ENOMEM;
14149 }
14150
14151 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14152 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14153 return -EINVAL;
14154 }
14155
14156 /*
14157 * There's something wrong with the cursor on CHV pipe C.
14158 * If it straddles the left edge of the screen then
14159 * moving it away from the edge or disabling it often
14160 * results in a pipe underrun, and often that can lead to
14161 * dead pipe (constant underrun reported, and it scans
14162 * out just a solid color). To recover from that, the
14163 * display power well must be turned off and on again.
14164 * Refuse the put the cursor into that compromised position.
14165 */
14166 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14167 state->visible && state->base.crtc_x < 0) {
14168 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14169 return -EINVAL;
14170 }
14171
14172 return 0;
14173 }
14174
14175 static void
14176 intel_disable_cursor_plane(struct drm_plane *plane,
14177 struct drm_crtc *crtc)
14178 {
14179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14180
14181 intel_crtc->cursor_addr = 0;
14182 intel_crtc_update_cursor(crtc, NULL);
14183 }
14184
14185 static void
14186 intel_update_cursor_plane(struct drm_plane *plane,
14187 const struct intel_crtc_state *crtc_state,
14188 const struct intel_plane_state *state)
14189 {
14190 struct drm_crtc *crtc = crtc_state->base.crtc;
14191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14192 struct drm_device *dev = plane->dev;
14193 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14194 uint32_t addr;
14195
14196 if (!obj)
14197 addr = 0;
14198 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14199 addr = i915_gem_obj_ggtt_offset(obj);
14200 else
14201 addr = obj->phys_handle->busaddr;
14202
14203 intel_crtc->cursor_addr = addr;
14204 intel_crtc_update_cursor(crtc, state);
14205 }
14206
14207 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14208 int pipe)
14209 {
14210 struct intel_plane *cursor;
14211 struct intel_plane_state *state;
14212
14213 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14214 if (cursor == NULL)
14215 return NULL;
14216
14217 state = intel_create_plane_state(&cursor->base);
14218 if (!state) {
14219 kfree(cursor);
14220 return NULL;
14221 }
14222 cursor->base.state = &state->base;
14223
14224 cursor->can_scale = false;
14225 cursor->max_downscale = 1;
14226 cursor->pipe = pipe;
14227 cursor->plane = pipe;
14228 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14229 cursor->check_plane = intel_check_cursor_plane;
14230 cursor->update_plane = intel_update_cursor_plane;
14231 cursor->disable_plane = intel_disable_cursor_plane;
14232
14233 drm_universal_plane_init(dev, &cursor->base, 0,
14234 &intel_plane_funcs,
14235 intel_cursor_formats,
14236 ARRAY_SIZE(intel_cursor_formats),
14237 DRM_PLANE_TYPE_CURSOR, NULL);
14238
14239 if (INTEL_INFO(dev)->gen >= 4) {
14240 if (!dev->mode_config.rotation_property)
14241 dev->mode_config.rotation_property =
14242 drm_mode_create_rotation_property(dev,
14243 BIT(DRM_ROTATE_0) |
14244 BIT(DRM_ROTATE_180));
14245 if (dev->mode_config.rotation_property)
14246 drm_object_attach_property(&cursor->base.base,
14247 dev->mode_config.rotation_property,
14248 state->base.rotation);
14249 }
14250
14251 if (INTEL_INFO(dev)->gen >=9)
14252 state->scaler_id = -1;
14253
14254 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14255
14256 return &cursor->base;
14257 }
14258
14259 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14260 struct intel_crtc_state *crtc_state)
14261 {
14262 int i;
14263 struct intel_scaler *intel_scaler;
14264 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14265
14266 for (i = 0; i < intel_crtc->num_scalers; i++) {
14267 intel_scaler = &scaler_state->scalers[i];
14268 intel_scaler->in_use = 0;
14269 intel_scaler->mode = PS_SCALER_MODE_DYN;
14270 }
14271
14272 scaler_state->scaler_id = -1;
14273 }
14274
14275 static void intel_crtc_init(struct drm_device *dev, int pipe)
14276 {
14277 struct drm_i915_private *dev_priv = dev->dev_private;
14278 struct intel_crtc *intel_crtc;
14279 struct intel_crtc_state *crtc_state = NULL;
14280 struct drm_plane *primary = NULL;
14281 struct drm_plane *cursor = NULL;
14282 int i, ret;
14283
14284 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14285 if (intel_crtc == NULL)
14286 return;
14287
14288 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14289 if (!crtc_state)
14290 goto fail;
14291 intel_crtc->config = crtc_state;
14292 intel_crtc->base.state = &crtc_state->base;
14293 crtc_state->base.crtc = &intel_crtc->base;
14294
14295 /* initialize shared scalers */
14296 if (INTEL_INFO(dev)->gen >= 9) {
14297 if (pipe == PIPE_C)
14298 intel_crtc->num_scalers = 1;
14299 else
14300 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14301
14302 skl_init_scalers(dev, intel_crtc, crtc_state);
14303 }
14304
14305 primary = intel_primary_plane_create(dev, pipe);
14306 if (!primary)
14307 goto fail;
14308
14309 cursor = intel_cursor_plane_create(dev, pipe);
14310 if (!cursor)
14311 goto fail;
14312
14313 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14314 cursor, &intel_crtc_funcs, NULL);
14315 if (ret)
14316 goto fail;
14317
14318 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14319 for (i = 0; i < 256; i++) {
14320 intel_crtc->lut_r[i] = i;
14321 intel_crtc->lut_g[i] = i;
14322 intel_crtc->lut_b[i] = i;
14323 }
14324
14325 /*
14326 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14327 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14328 */
14329 intel_crtc->pipe = pipe;
14330 intel_crtc->plane = pipe;
14331 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14332 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14333 intel_crtc->plane = !pipe;
14334 }
14335
14336 intel_crtc->cursor_base = ~0;
14337 intel_crtc->cursor_cntl = ~0;
14338 intel_crtc->cursor_size = ~0;
14339
14340 intel_crtc->wm.cxsr_allowed = true;
14341
14342 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14343 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14344 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14345 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14346
14347 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14348
14349 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14350 return;
14351
14352 fail:
14353 if (primary)
14354 drm_plane_cleanup(primary);
14355 if (cursor)
14356 drm_plane_cleanup(cursor);
14357 kfree(crtc_state);
14358 kfree(intel_crtc);
14359 }
14360
14361 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14362 {
14363 struct drm_encoder *encoder = connector->base.encoder;
14364 struct drm_device *dev = connector->base.dev;
14365
14366 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14367
14368 if (!encoder || WARN_ON(!encoder->crtc))
14369 return INVALID_PIPE;
14370
14371 return to_intel_crtc(encoder->crtc)->pipe;
14372 }
14373
14374 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14375 struct drm_file *file)
14376 {
14377 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14378 struct drm_crtc *drmmode_crtc;
14379 struct intel_crtc *crtc;
14380
14381 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14382
14383 if (!drmmode_crtc) {
14384 DRM_ERROR("no such CRTC id\n");
14385 return -ENOENT;
14386 }
14387
14388 crtc = to_intel_crtc(drmmode_crtc);
14389 pipe_from_crtc_id->pipe = crtc->pipe;
14390
14391 return 0;
14392 }
14393
14394 static int intel_encoder_clones(struct intel_encoder *encoder)
14395 {
14396 struct drm_device *dev = encoder->base.dev;
14397 struct intel_encoder *source_encoder;
14398 int index_mask = 0;
14399 int entry = 0;
14400
14401 for_each_intel_encoder(dev, source_encoder) {
14402 if (encoders_cloneable(encoder, source_encoder))
14403 index_mask |= (1 << entry);
14404
14405 entry++;
14406 }
14407
14408 return index_mask;
14409 }
14410
14411 static bool has_edp_a(struct drm_device *dev)
14412 {
14413 struct drm_i915_private *dev_priv = dev->dev_private;
14414
14415 if (!IS_MOBILE(dev))
14416 return false;
14417
14418 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14419 return false;
14420
14421 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14422 return false;
14423
14424 return true;
14425 }
14426
14427 static bool intel_crt_present(struct drm_device *dev)
14428 {
14429 struct drm_i915_private *dev_priv = dev->dev_private;
14430
14431 if (INTEL_INFO(dev)->gen >= 9)
14432 return false;
14433
14434 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14435 return false;
14436
14437 if (IS_CHERRYVIEW(dev))
14438 return false;
14439
14440 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14441 return false;
14442
14443 /* DDI E can't be used if DDI A requires 4 lanes */
14444 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14445 return false;
14446
14447 if (!dev_priv->vbt.int_crt_support)
14448 return false;
14449
14450 return true;
14451 }
14452
14453 static void intel_setup_outputs(struct drm_device *dev)
14454 {
14455 struct drm_i915_private *dev_priv = dev->dev_private;
14456 struct intel_encoder *encoder;
14457 bool dpd_is_edp = false;
14458
14459 intel_lvds_init(dev);
14460
14461 if (intel_crt_present(dev))
14462 intel_crt_init(dev);
14463
14464 if (IS_BROXTON(dev)) {
14465 /*
14466 * FIXME: Broxton doesn't support port detection via the
14467 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14468 * detect the ports.
14469 */
14470 intel_ddi_init(dev, PORT_A);
14471 intel_ddi_init(dev, PORT_B);
14472 intel_ddi_init(dev, PORT_C);
14473 } else if (HAS_DDI(dev)) {
14474 int found;
14475
14476 /*
14477 * Haswell uses DDI functions to detect digital outputs.
14478 * On SKL pre-D0 the strap isn't connected, so we assume
14479 * it's there.
14480 */
14481 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14482 /* WaIgnoreDDIAStrap: skl */
14483 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14484 intel_ddi_init(dev, PORT_A);
14485
14486 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14487 * register */
14488 found = I915_READ(SFUSE_STRAP);
14489
14490 if (found & SFUSE_STRAP_DDIB_DETECTED)
14491 intel_ddi_init(dev, PORT_B);
14492 if (found & SFUSE_STRAP_DDIC_DETECTED)
14493 intel_ddi_init(dev, PORT_C);
14494 if (found & SFUSE_STRAP_DDID_DETECTED)
14495 intel_ddi_init(dev, PORT_D);
14496 /*
14497 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14498 */
14499 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14500 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14501 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14502 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14503 intel_ddi_init(dev, PORT_E);
14504
14505 } else if (HAS_PCH_SPLIT(dev)) {
14506 int found;
14507 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14508
14509 if (has_edp_a(dev))
14510 intel_dp_init(dev, DP_A, PORT_A);
14511
14512 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14513 /* PCH SDVOB multiplex with HDMIB */
14514 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14515 if (!found)
14516 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14517 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14518 intel_dp_init(dev, PCH_DP_B, PORT_B);
14519 }
14520
14521 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14522 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14523
14524 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14525 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14526
14527 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14528 intel_dp_init(dev, PCH_DP_C, PORT_C);
14529
14530 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14531 intel_dp_init(dev, PCH_DP_D, PORT_D);
14532 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14533 /*
14534 * The DP_DETECTED bit is the latched state of the DDC
14535 * SDA pin at boot. However since eDP doesn't require DDC
14536 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14537 * eDP ports may have been muxed to an alternate function.
14538 * Thus we can't rely on the DP_DETECTED bit alone to detect
14539 * eDP ports. Consult the VBT as well as DP_DETECTED to
14540 * detect eDP ports.
14541 */
14542 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14543 !intel_dp_is_edp(dev, PORT_B))
14544 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14545 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14546 intel_dp_is_edp(dev, PORT_B))
14547 intel_dp_init(dev, VLV_DP_B, PORT_B);
14548
14549 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14550 !intel_dp_is_edp(dev, PORT_C))
14551 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14552 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14553 intel_dp_is_edp(dev, PORT_C))
14554 intel_dp_init(dev, VLV_DP_C, PORT_C);
14555
14556 if (IS_CHERRYVIEW(dev)) {
14557 /* eDP not supported on port D, so don't check VBT */
14558 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14559 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14560 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14561 intel_dp_init(dev, CHV_DP_D, PORT_D);
14562 }
14563
14564 intel_dsi_init(dev);
14565 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14566 bool found = false;
14567
14568 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14569 DRM_DEBUG_KMS("probing SDVOB\n");
14570 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14571 if (!found && IS_G4X(dev)) {
14572 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14573 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14574 }
14575
14576 if (!found && IS_G4X(dev))
14577 intel_dp_init(dev, DP_B, PORT_B);
14578 }
14579
14580 /* Before G4X SDVOC doesn't have its own detect register */
14581
14582 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14583 DRM_DEBUG_KMS("probing SDVOC\n");
14584 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14585 }
14586
14587 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14588
14589 if (IS_G4X(dev)) {
14590 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14591 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14592 }
14593 if (IS_G4X(dev))
14594 intel_dp_init(dev, DP_C, PORT_C);
14595 }
14596
14597 if (IS_G4X(dev) &&
14598 (I915_READ(DP_D) & DP_DETECTED))
14599 intel_dp_init(dev, DP_D, PORT_D);
14600 } else if (IS_GEN2(dev))
14601 intel_dvo_init(dev);
14602
14603 if (SUPPORTS_TV(dev))
14604 intel_tv_init(dev);
14605
14606 intel_psr_init(dev);
14607
14608 for_each_intel_encoder(dev, encoder) {
14609 encoder->base.possible_crtcs = encoder->crtc_mask;
14610 encoder->base.possible_clones =
14611 intel_encoder_clones(encoder);
14612 }
14613
14614 intel_init_pch_refclk(dev);
14615
14616 drm_helper_move_panel_connectors_to_head(dev);
14617 }
14618
14619 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14620 {
14621 struct drm_device *dev = fb->dev;
14622 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14623
14624 drm_framebuffer_cleanup(fb);
14625 mutex_lock(&dev->struct_mutex);
14626 WARN_ON(!intel_fb->obj->framebuffer_references--);
14627 drm_gem_object_unreference(&intel_fb->obj->base);
14628 mutex_unlock(&dev->struct_mutex);
14629 kfree(intel_fb);
14630 }
14631
14632 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14633 struct drm_file *file,
14634 unsigned int *handle)
14635 {
14636 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14637 struct drm_i915_gem_object *obj = intel_fb->obj;
14638
14639 if (obj->userptr.mm) {
14640 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14641 return -EINVAL;
14642 }
14643
14644 return drm_gem_handle_create(file, &obj->base, handle);
14645 }
14646
14647 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14648 struct drm_file *file,
14649 unsigned flags, unsigned color,
14650 struct drm_clip_rect *clips,
14651 unsigned num_clips)
14652 {
14653 struct drm_device *dev = fb->dev;
14654 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14655 struct drm_i915_gem_object *obj = intel_fb->obj;
14656
14657 mutex_lock(&dev->struct_mutex);
14658 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14659 mutex_unlock(&dev->struct_mutex);
14660
14661 return 0;
14662 }
14663
14664 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14665 .destroy = intel_user_framebuffer_destroy,
14666 .create_handle = intel_user_framebuffer_create_handle,
14667 .dirty = intel_user_framebuffer_dirty,
14668 };
14669
14670 static
14671 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14672 uint32_t pixel_format)
14673 {
14674 u32 gen = INTEL_INFO(dev)->gen;
14675
14676 if (gen >= 9) {
14677 int cpp = drm_format_plane_cpp(pixel_format, 0);
14678
14679 /* "The stride in bytes must not exceed the of the size of 8K
14680 * pixels and 32K bytes."
14681 */
14682 return min(8192 * cpp, 32768);
14683 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14684 return 32*1024;
14685 } else if (gen >= 4) {
14686 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14687 return 16*1024;
14688 else
14689 return 32*1024;
14690 } else if (gen >= 3) {
14691 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14692 return 8*1024;
14693 else
14694 return 16*1024;
14695 } else {
14696 /* XXX DSPC is limited to 4k tiled */
14697 return 8*1024;
14698 }
14699 }
14700
14701 static int intel_framebuffer_init(struct drm_device *dev,
14702 struct intel_framebuffer *intel_fb,
14703 struct drm_mode_fb_cmd2 *mode_cmd,
14704 struct drm_i915_gem_object *obj)
14705 {
14706 struct drm_i915_private *dev_priv = to_i915(dev);
14707 unsigned int aligned_height;
14708 int ret;
14709 u32 pitch_limit, stride_alignment;
14710
14711 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14712
14713 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14714 /* Enforce that fb modifier and tiling mode match, but only for
14715 * X-tiled. This is needed for FBC. */
14716 if (!!(obj->tiling_mode == I915_TILING_X) !=
14717 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14718 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14719 return -EINVAL;
14720 }
14721 } else {
14722 if (obj->tiling_mode == I915_TILING_X)
14723 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14724 else if (obj->tiling_mode == I915_TILING_Y) {
14725 DRM_DEBUG("No Y tiling for legacy addfb\n");
14726 return -EINVAL;
14727 }
14728 }
14729
14730 /* Passed in modifier sanity checking. */
14731 switch (mode_cmd->modifier[0]) {
14732 case I915_FORMAT_MOD_Y_TILED:
14733 case I915_FORMAT_MOD_Yf_TILED:
14734 if (INTEL_INFO(dev)->gen < 9) {
14735 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14736 mode_cmd->modifier[0]);
14737 return -EINVAL;
14738 }
14739 case DRM_FORMAT_MOD_NONE:
14740 case I915_FORMAT_MOD_X_TILED:
14741 break;
14742 default:
14743 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14744 mode_cmd->modifier[0]);
14745 return -EINVAL;
14746 }
14747
14748 stride_alignment = intel_fb_stride_alignment(dev_priv,
14749 mode_cmd->modifier[0],
14750 mode_cmd->pixel_format);
14751 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14752 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14753 mode_cmd->pitches[0], stride_alignment);
14754 return -EINVAL;
14755 }
14756
14757 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14758 mode_cmd->pixel_format);
14759 if (mode_cmd->pitches[0] > pitch_limit) {
14760 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14761 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14762 "tiled" : "linear",
14763 mode_cmd->pitches[0], pitch_limit);
14764 return -EINVAL;
14765 }
14766
14767 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14768 mode_cmd->pitches[0] != obj->stride) {
14769 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14770 mode_cmd->pitches[0], obj->stride);
14771 return -EINVAL;
14772 }
14773
14774 /* Reject formats not supported by any plane early. */
14775 switch (mode_cmd->pixel_format) {
14776 case DRM_FORMAT_C8:
14777 case DRM_FORMAT_RGB565:
14778 case DRM_FORMAT_XRGB8888:
14779 case DRM_FORMAT_ARGB8888:
14780 break;
14781 case DRM_FORMAT_XRGB1555:
14782 if (INTEL_INFO(dev)->gen > 3) {
14783 DRM_DEBUG("unsupported pixel format: %s\n",
14784 drm_get_format_name(mode_cmd->pixel_format));
14785 return -EINVAL;
14786 }
14787 break;
14788 case DRM_FORMAT_ABGR8888:
14789 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14790 INTEL_INFO(dev)->gen < 9) {
14791 DRM_DEBUG("unsupported pixel format: %s\n",
14792 drm_get_format_name(mode_cmd->pixel_format));
14793 return -EINVAL;
14794 }
14795 break;
14796 case DRM_FORMAT_XBGR8888:
14797 case DRM_FORMAT_XRGB2101010:
14798 case DRM_FORMAT_XBGR2101010:
14799 if (INTEL_INFO(dev)->gen < 4) {
14800 DRM_DEBUG("unsupported pixel format: %s\n",
14801 drm_get_format_name(mode_cmd->pixel_format));
14802 return -EINVAL;
14803 }
14804 break;
14805 case DRM_FORMAT_ABGR2101010:
14806 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14807 DRM_DEBUG("unsupported pixel format: %s\n",
14808 drm_get_format_name(mode_cmd->pixel_format));
14809 return -EINVAL;
14810 }
14811 break;
14812 case DRM_FORMAT_YUYV:
14813 case DRM_FORMAT_UYVY:
14814 case DRM_FORMAT_YVYU:
14815 case DRM_FORMAT_VYUY:
14816 if (INTEL_INFO(dev)->gen < 5) {
14817 DRM_DEBUG("unsupported pixel format: %s\n",
14818 drm_get_format_name(mode_cmd->pixel_format));
14819 return -EINVAL;
14820 }
14821 break;
14822 default:
14823 DRM_DEBUG("unsupported pixel format: %s\n",
14824 drm_get_format_name(mode_cmd->pixel_format));
14825 return -EINVAL;
14826 }
14827
14828 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14829 if (mode_cmd->offsets[0] != 0)
14830 return -EINVAL;
14831
14832 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14833 mode_cmd->pixel_format,
14834 mode_cmd->modifier[0]);
14835 /* FIXME drm helper for size checks (especially planar formats)? */
14836 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14837 return -EINVAL;
14838
14839 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14840 intel_fb->obj = obj;
14841
14842 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14843 if (ret) {
14844 DRM_ERROR("framebuffer init failed %d\n", ret);
14845 return ret;
14846 }
14847
14848 intel_fb->obj->framebuffer_references++;
14849
14850 return 0;
14851 }
14852
14853 static struct drm_framebuffer *
14854 intel_user_framebuffer_create(struct drm_device *dev,
14855 struct drm_file *filp,
14856 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14857 {
14858 struct drm_framebuffer *fb;
14859 struct drm_i915_gem_object *obj;
14860 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14861
14862 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14863 mode_cmd.handles[0]));
14864 if (&obj->base == NULL)
14865 return ERR_PTR(-ENOENT);
14866
14867 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14868 if (IS_ERR(fb))
14869 drm_gem_object_unreference_unlocked(&obj->base);
14870
14871 return fb;
14872 }
14873
14874 #ifndef CONFIG_DRM_FBDEV_EMULATION
14875 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14876 {
14877 }
14878 #endif
14879
14880 static const struct drm_mode_config_funcs intel_mode_funcs = {
14881 .fb_create = intel_user_framebuffer_create,
14882 .output_poll_changed = intel_fbdev_output_poll_changed,
14883 .atomic_check = intel_atomic_check,
14884 .atomic_commit = intel_atomic_commit,
14885 .atomic_state_alloc = intel_atomic_state_alloc,
14886 .atomic_state_clear = intel_atomic_state_clear,
14887 };
14888
14889 /* Set up chip specific display functions */
14890 static void intel_init_display(struct drm_device *dev)
14891 {
14892 struct drm_i915_private *dev_priv = dev->dev_private;
14893
14894 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14895 dev_priv->display.find_dpll = g4x_find_best_dpll;
14896 else if (IS_CHERRYVIEW(dev))
14897 dev_priv->display.find_dpll = chv_find_best_dpll;
14898 else if (IS_VALLEYVIEW(dev))
14899 dev_priv->display.find_dpll = vlv_find_best_dpll;
14900 else if (IS_PINEVIEW(dev))
14901 dev_priv->display.find_dpll = pnv_find_best_dpll;
14902 else
14903 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14904
14905 if (INTEL_INFO(dev)->gen >= 9) {
14906 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14907 dev_priv->display.get_initial_plane_config =
14908 skylake_get_initial_plane_config;
14909 dev_priv->display.crtc_compute_clock =
14910 haswell_crtc_compute_clock;
14911 dev_priv->display.crtc_enable = haswell_crtc_enable;
14912 dev_priv->display.crtc_disable = haswell_crtc_disable;
14913 } else if (HAS_DDI(dev)) {
14914 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14915 dev_priv->display.get_initial_plane_config =
14916 ironlake_get_initial_plane_config;
14917 dev_priv->display.crtc_compute_clock =
14918 haswell_crtc_compute_clock;
14919 dev_priv->display.crtc_enable = haswell_crtc_enable;
14920 dev_priv->display.crtc_disable = haswell_crtc_disable;
14921 } else if (HAS_PCH_SPLIT(dev)) {
14922 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14923 dev_priv->display.get_initial_plane_config =
14924 ironlake_get_initial_plane_config;
14925 dev_priv->display.crtc_compute_clock =
14926 ironlake_crtc_compute_clock;
14927 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14928 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14929 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14930 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14931 dev_priv->display.get_initial_plane_config =
14932 i9xx_get_initial_plane_config;
14933 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14934 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14935 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14936 } else {
14937 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14938 dev_priv->display.get_initial_plane_config =
14939 i9xx_get_initial_plane_config;
14940 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14941 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14942 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14943 }
14944
14945 /* Returns the core display clock speed */
14946 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14947 dev_priv->display.get_display_clock_speed =
14948 skylake_get_display_clock_speed;
14949 else if (IS_BROXTON(dev))
14950 dev_priv->display.get_display_clock_speed =
14951 broxton_get_display_clock_speed;
14952 else if (IS_BROADWELL(dev))
14953 dev_priv->display.get_display_clock_speed =
14954 broadwell_get_display_clock_speed;
14955 else if (IS_HASWELL(dev))
14956 dev_priv->display.get_display_clock_speed =
14957 haswell_get_display_clock_speed;
14958 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14959 dev_priv->display.get_display_clock_speed =
14960 valleyview_get_display_clock_speed;
14961 else if (IS_GEN5(dev))
14962 dev_priv->display.get_display_clock_speed =
14963 ilk_get_display_clock_speed;
14964 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14965 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14966 dev_priv->display.get_display_clock_speed =
14967 i945_get_display_clock_speed;
14968 else if (IS_GM45(dev))
14969 dev_priv->display.get_display_clock_speed =
14970 gm45_get_display_clock_speed;
14971 else if (IS_CRESTLINE(dev))
14972 dev_priv->display.get_display_clock_speed =
14973 i965gm_get_display_clock_speed;
14974 else if (IS_PINEVIEW(dev))
14975 dev_priv->display.get_display_clock_speed =
14976 pnv_get_display_clock_speed;
14977 else if (IS_G33(dev) || IS_G4X(dev))
14978 dev_priv->display.get_display_clock_speed =
14979 g33_get_display_clock_speed;
14980 else if (IS_I915G(dev))
14981 dev_priv->display.get_display_clock_speed =
14982 i915_get_display_clock_speed;
14983 else if (IS_I945GM(dev) || IS_845G(dev))
14984 dev_priv->display.get_display_clock_speed =
14985 i9xx_misc_get_display_clock_speed;
14986 else if (IS_I915GM(dev))
14987 dev_priv->display.get_display_clock_speed =
14988 i915gm_get_display_clock_speed;
14989 else if (IS_I865G(dev))
14990 dev_priv->display.get_display_clock_speed =
14991 i865_get_display_clock_speed;
14992 else if (IS_I85X(dev))
14993 dev_priv->display.get_display_clock_speed =
14994 i85x_get_display_clock_speed;
14995 else { /* 830 */
14996 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14997 dev_priv->display.get_display_clock_speed =
14998 i830_get_display_clock_speed;
14999 }
15000
15001 if (IS_GEN5(dev)) {
15002 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15003 } else if (IS_GEN6(dev)) {
15004 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15005 } else if (IS_IVYBRIDGE(dev)) {
15006 /* FIXME: detect B0+ stepping and use auto training */
15007 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15008 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
15009 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15010 if (IS_BROADWELL(dev)) {
15011 dev_priv->display.modeset_commit_cdclk =
15012 broadwell_modeset_commit_cdclk;
15013 dev_priv->display.modeset_calc_cdclk =
15014 broadwell_modeset_calc_cdclk;
15015 }
15016 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15017 dev_priv->display.modeset_commit_cdclk =
15018 valleyview_modeset_commit_cdclk;
15019 dev_priv->display.modeset_calc_cdclk =
15020 valleyview_modeset_calc_cdclk;
15021 } else if (IS_BROXTON(dev)) {
15022 dev_priv->display.modeset_commit_cdclk =
15023 broxton_modeset_commit_cdclk;
15024 dev_priv->display.modeset_calc_cdclk =
15025 broxton_modeset_calc_cdclk;
15026 }
15027
15028 switch (INTEL_INFO(dev)->gen) {
15029 case 2:
15030 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15031 break;
15032
15033 case 3:
15034 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15035 break;
15036
15037 case 4:
15038 case 5:
15039 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15040 break;
15041
15042 case 6:
15043 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15044 break;
15045 case 7:
15046 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15047 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15048 break;
15049 case 9:
15050 /* Drop through - unsupported since execlist only. */
15051 default:
15052 /* Default just returns -ENODEV to indicate unsupported */
15053 dev_priv->display.queue_flip = intel_default_queue_flip;
15054 }
15055
15056 mutex_init(&dev_priv->pps_mutex);
15057 }
15058
15059 /*
15060 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15061 * resume, or other times. This quirk makes sure that's the case for
15062 * affected systems.
15063 */
15064 static void quirk_pipea_force(struct drm_device *dev)
15065 {
15066 struct drm_i915_private *dev_priv = dev->dev_private;
15067
15068 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15069 DRM_INFO("applying pipe a force quirk\n");
15070 }
15071
15072 static void quirk_pipeb_force(struct drm_device *dev)
15073 {
15074 struct drm_i915_private *dev_priv = dev->dev_private;
15075
15076 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15077 DRM_INFO("applying pipe b force quirk\n");
15078 }
15079
15080 /*
15081 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15082 */
15083 static void quirk_ssc_force_disable(struct drm_device *dev)
15084 {
15085 struct drm_i915_private *dev_priv = dev->dev_private;
15086 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15087 DRM_INFO("applying lvds SSC disable quirk\n");
15088 }
15089
15090 /*
15091 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15092 * brightness value
15093 */
15094 static void quirk_invert_brightness(struct drm_device *dev)
15095 {
15096 struct drm_i915_private *dev_priv = dev->dev_private;
15097 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15098 DRM_INFO("applying inverted panel brightness quirk\n");
15099 }
15100
15101 /* Some VBT's incorrectly indicate no backlight is present */
15102 static void quirk_backlight_present(struct drm_device *dev)
15103 {
15104 struct drm_i915_private *dev_priv = dev->dev_private;
15105 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15106 DRM_INFO("applying backlight present quirk\n");
15107 }
15108
15109 struct intel_quirk {
15110 int device;
15111 int subsystem_vendor;
15112 int subsystem_device;
15113 void (*hook)(struct drm_device *dev);
15114 };
15115
15116 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15117 struct intel_dmi_quirk {
15118 void (*hook)(struct drm_device *dev);
15119 const struct dmi_system_id (*dmi_id_list)[];
15120 };
15121
15122 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15123 {
15124 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15125 return 1;
15126 }
15127
15128 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15129 {
15130 .dmi_id_list = &(const struct dmi_system_id[]) {
15131 {
15132 .callback = intel_dmi_reverse_brightness,
15133 .ident = "NCR Corporation",
15134 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15135 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15136 },
15137 },
15138 { } /* terminating entry */
15139 },
15140 .hook = quirk_invert_brightness,
15141 },
15142 };
15143
15144 static struct intel_quirk intel_quirks[] = {
15145 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15146 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15147
15148 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15149 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15150
15151 /* 830 needs to leave pipe A & dpll A up */
15152 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15153
15154 /* 830 needs to leave pipe B & dpll B up */
15155 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15156
15157 /* Lenovo U160 cannot use SSC on LVDS */
15158 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15159
15160 /* Sony Vaio Y cannot use SSC on LVDS */
15161 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15162
15163 /* Acer Aspire 5734Z must invert backlight brightness */
15164 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15165
15166 /* Acer/eMachines G725 */
15167 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15168
15169 /* Acer/eMachines e725 */
15170 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15171
15172 /* Acer/Packard Bell NCL20 */
15173 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15174
15175 /* Acer Aspire 4736Z */
15176 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15177
15178 /* Acer Aspire 5336 */
15179 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15180
15181 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15182 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15183
15184 /* Acer C720 Chromebook (Core i3 4005U) */
15185 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15186
15187 /* Apple Macbook 2,1 (Core 2 T7400) */
15188 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15189
15190 /* Apple Macbook 4,1 */
15191 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15192
15193 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15194 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15195
15196 /* HP Chromebook 14 (Celeron 2955U) */
15197 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15198
15199 /* Dell Chromebook 11 */
15200 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15201
15202 /* Dell Chromebook 11 (2015 version) */
15203 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15204 };
15205
15206 static void intel_init_quirks(struct drm_device *dev)
15207 {
15208 struct pci_dev *d = dev->pdev;
15209 int i;
15210
15211 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15212 struct intel_quirk *q = &intel_quirks[i];
15213
15214 if (d->device == q->device &&
15215 (d->subsystem_vendor == q->subsystem_vendor ||
15216 q->subsystem_vendor == PCI_ANY_ID) &&
15217 (d->subsystem_device == q->subsystem_device ||
15218 q->subsystem_device == PCI_ANY_ID))
15219 q->hook(dev);
15220 }
15221 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15222 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15223 intel_dmi_quirks[i].hook(dev);
15224 }
15225 }
15226
15227 /* Disable the VGA plane that we never use */
15228 static void i915_disable_vga(struct drm_device *dev)
15229 {
15230 struct drm_i915_private *dev_priv = dev->dev_private;
15231 u8 sr1;
15232 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15233
15234 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15235 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15236 outb(SR01, VGA_SR_INDEX);
15237 sr1 = inb(VGA_SR_DATA);
15238 outb(sr1 | 1<<5, VGA_SR_DATA);
15239 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15240 udelay(300);
15241
15242 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15243 POSTING_READ(vga_reg);
15244 }
15245
15246 void intel_modeset_init_hw(struct drm_device *dev)
15247 {
15248 struct drm_i915_private *dev_priv = dev->dev_private;
15249
15250 intel_update_cdclk(dev);
15251
15252 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15253
15254 intel_init_clock_gating(dev);
15255 intel_enable_gt_powersave(dev);
15256 }
15257
15258 /*
15259 * Calculate what we think the watermarks should be for the state we've read
15260 * out of the hardware and then immediately program those watermarks so that
15261 * we ensure the hardware settings match our internal state.
15262 *
15263 * We can calculate what we think WM's should be by creating a duplicate of the
15264 * current state (which was constructed during hardware readout) and running it
15265 * through the atomic check code to calculate new watermark values in the
15266 * state object.
15267 */
15268 static void sanitize_watermarks(struct drm_device *dev)
15269 {
15270 struct drm_i915_private *dev_priv = to_i915(dev);
15271 struct drm_atomic_state *state;
15272 struct drm_crtc *crtc;
15273 struct drm_crtc_state *cstate;
15274 struct drm_modeset_acquire_ctx ctx;
15275 int ret;
15276 int i;
15277
15278 /* Only supported on platforms that use atomic watermark design */
15279 if (!dev_priv->display.program_watermarks)
15280 return;
15281
15282 /*
15283 * We need to hold connection_mutex before calling duplicate_state so
15284 * that the connector loop is protected.
15285 */
15286 drm_modeset_acquire_init(&ctx, 0);
15287 retry:
15288 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15289 if (ret == -EDEADLK) {
15290 drm_modeset_backoff(&ctx);
15291 goto retry;
15292 } else if (WARN_ON(ret)) {
15293 goto fail;
15294 }
15295
15296 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15297 if (WARN_ON(IS_ERR(state)))
15298 goto fail;
15299
15300 ret = intel_atomic_check(dev, state);
15301 if (ret) {
15302 /*
15303 * If we fail here, it means that the hardware appears to be
15304 * programmed in a way that shouldn't be possible, given our
15305 * understanding of watermark requirements. This might mean a
15306 * mistake in the hardware readout code or a mistake in the
15307 * watermark calculations for a given platform. Raise a WARN
15308 * so that this is noticeable.
15309 *
15310 * If this actually happens, we'll have to just leave the
15311 * BIOS-programmed watermarks untouched and hope for the best.
15312 */
15313 WARN(true, "Could not determine valid watermarks for inherited state\n");
15314 goto fail;
15315 }
15316
15317 /* Write calculated watermark values back */
15318 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15319 for_each_crtc_in_state(state, crtc, cstate, i) {
15320 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15321
15322 dev_priv->display.program_watermarks(cs);
15323 }
15324
15325 drm_atomic_state_free(state);
15326 fail:
15327 drm_modeset_drop_locks(&ctx);
15328 drm_modeset_acquire_fini(&ctx);
15329 }
15330
15331 void intel_modeset_init(struct drm_device *dev)
15332 {
15333 struct drm_i915_private *dev_priv = dev->dev_private;
15334 int sprite, ret;
15335 enum pipe pipe;
15336 struct intel_crtc *crtc;
15337
15338 drm_mode_config_init(dev);
15339
15340 dev->mode_config.min_width = 0;
15341 dev->mode_config.min_height = 0;
15342
15343 dev->mode_config.preferred_depth = 24;
15344 dev->mode_config.prefer_shadow = 1;
15345
15346 dev->mode_config.allow_fb_modifiers = true;
15347
15348 dev->mode_config.funcs = &intel_mode_funcs;
15349
15350 intel_init_quirks(dev);
15351
15352 intel_init_pm(dev);
15353
15354 if (INTEL_INFO(dev)->num_pipes == 0)
15355 return;
15356
15357 /*
15358 * There may be no VBT; and if the BIOS enabled SSC we can
15359 * just keep using it to avoid unnecessary flicker. Whereas if the
15360 * BIOS isn't using it, don't assume it will work even if the VBT
15361 * indicates as much.
15362 */
15363 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15364 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15365 DREF_SSC1_ENABLE);
15366
15367 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15368 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15369 bios_lvds_use_ssc ? "en" : "dis",
15370 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15371 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15372 }
15373 }
15374
15375 intel_init_display(dev);
15376 intel_init_audio(dev);
15377
15378 if (IS_GEN2(dev)) {
15379 dev->mode_config.max_width = 2048;
15380 dev->mode_config.max_height = 2048;
15381 } else if (IS_GEN3(dev)) {
15382 dev->mode_config.max_width = 4096;
15383 dev->mode_config.max_height = 4096;
15384 } else {
15385 dev->mode_config.max_width = 8192;
15386 dev->mode_config.max_height = 8192;
15387 }
15388
15389 if (IS_845G(dev) || IS_I865G(dev)) {
15390 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15391 dev->mode_config.cursor_height = 1023;
15392 } else if (IS_GEN2(dev)) {
15393 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15394 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15395 } else {
15396 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15397 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15398 }
15399
15400 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15401
15402 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15403 INTEL_INFO(dev)->num_pipes,
15404 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15405
15406 for_each_pipe(dev_priv, pipe) {
15407 intel_crtc_init(dev, pipe);
15408 for_each_sprite(dev_priv, pipe, sprite) {
15409 ret = intel_plane_init(dev, pipe, sprite);
15410 if (ret)
15411 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15412 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15413 }
15414 }
15415
15416 intel_update_czclk(dev_priv);
15417 intel_update_cdclk(dev);
15418
15419 intel_shared_dpll_init(dev);
15420
15421 /* Just disable it once at startup */
15422 i915_disable_vga(dev);
15423 intel_setup_outputs(dev);
15424
15425 drm_modeset_lock_all(dev);
15426 intel_modeset_setup_hw_state(dev);
15427 drm_modeset_unlock_all(dev);
15428
15429 for_each_intel_crtc(dev, crtc) {
15430 struct intel_initial_plane_config plane_config = {};
15431
15432 if (!crtc->active)
15433 continue;
15434
15435 /*
15436 * Note that reserving the BIOS fb up front prevents us
15437 * from stuffing other stolen allocations like the ring
15438 * on top. This prevents some ugliness at boot time, and
15439 * can even allow for smooth boot transitions if the BIOS
15440 * fb is large enough for the active pipe configuration.
15441 */
15442 dev_priv->display.get_initial_plane_config(crtc,
15443 &plane_config);
15444
15445 /*
15446 * If the fb is shared between multiple heads, we'll
15447 * just get the first one.
15448 */
15449 intel_find_initial_plane_obj(crtc, &plane_config);
15450 }
15451
15452 /*
15453 * Make sure hardware watermarks really match the state we read out.
15454 * Note that we need to do this after reconstructing the BIOS fb's
15455 * since the watermark calculation done here will use pstate->fb.
15456 */
15457 sanitize_watermarks(dev);
15458 }
15459
15460 static void intel_enable_pipe_a(struct drm_device *dev)
15461 {
15462 struct intel_connector *connector;
15463 struct drm_connector *crt = NULL;
15464 struct intel_load_detect_pipe load_detect_temp;
15465 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15466
15467 /* We can't just switch on the pipe A, we need to set things up with a
15468 * proper mode and output configuration. As a gross hack, enable pipe A
15469 * by enabling the load detect pipe once. */
15470 for_each_intel_connector(dev, connector) {
15471 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15472 crt = &connector->base;
15473 break;
15474 }
15475 }
15476
15477 if (!crt)
15478 return;
15479
15480 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15481 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15482 }
15483
15484 static bool
15485 intel_check_plane_mapping(struct intel_crtc *crtc)
15486 {
15487 struct drm_device *dev = crtc->base.dev;
15488 struct drm_i915_private *dev_priv = dev->dev_private;
15489 u32 val;
15490
15491 if (INTEL_INFO(dev)->num_pipes == 1)
15492 return true;
15493
15494 val = I915_READ(DSPCNTR(!crtc->plane));
15495
15496 if ((val & DISPLAY_PLANE_ENABLE) &&
15497 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15498 return false;
15499
15500 return true;
15501 }
15502
15503 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15504 {
15505 struct drm_device *dev = crtc->base.dev;
15506 struct intel_encoder *encoder;
15507
15508 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15509 return true;
15510
15511 return false;
15512 }
15513
15514 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15515 {
15516 struct drm_device *dev = encoder->base.dev;
15517 struct intel_connector *connector;
15518
15519 for_each_connector_on_encoder(dev, &encoder->base, connector)
15520 return true;
15521
15522 return false;
15523 }
15524
15525 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15526 {
15527 struct drm_device *dev = crtc->base.dev;
15528 struct drm_i915_private *dev_priv = dev->dev_private;
15529 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15530
15531 /* Clear any frame start delays used for debugging left by the BIOS */
15532 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15533
15534 /* restore vblank interrupts to correct state */
15535 drm_crtc_vblank_reset(&crtc->base);
15536 if (crtc->active) {
15537 struct intel_plane *plane;
15538
15539 drm_crtc_vblank_on(&crtc->base);
15540
15541 /* Disable everything but the primary plane */
15542 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15543 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15544 continue;
15545
15546 plane->disable_plane(&plane->base, &crtc->base);
15547 }
15548 }
15549
15550 /* We need to sanitize the plane -> pipe mapping first because this will
15551 * disable the crtc (and hence change the state) if it is wrong. Note
15552 * that gen4+ has a fixed plane -> pipe mapping. */
15553 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15554 bool plane;
15555
15556 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15557 crtc->base.base.id);
15558
15559 /* Pipe has the wrong plane attached and the plane is active.
15560 * Temporarily change the plane mapping and disable everything
15561 * ... */
15562 plane = crtc->plane;
15563 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15564 crtc->plane = !plane;
15565 intel_crtc_disable_noatomic(&crtc->base);
15566 crtc->plane = plane;
15567 }
15568
15569 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15570 crtc->pipe == PIPE_A && !crtc->active) {
15571 /* BIOS forgot to enable pipe A, this mostly happens after
15572 * resume. Force-enable the pipe to fix this, the update_dpms
15573 * call below we restore the pipe to the right state, but leave
15574 * the required bits on. */
15575 intel_enable_pipe_a(dev);
15576 }
15577
15578 /* Adjust the state of the output pipe according to whether we
15579 * have active connectors/encoders. */
15580 if (!intel_crtc_has_encoders(crtc))
15581 intel_crtc_disable_noatomic(&crtc->base);
15582
15583 if (crtc->active != crtc->base.state->active) {
15584 struct intel_encoder *encoder;
15585
15586 /* This can happen either due to bugs in the get_hw_state
15587 * functions or because of calls to intel_crtc_disable_noatomic,
15588 * or because the pipe is force-enabled due to the
15589 * pipe A quirk. */
15590 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15591 crtc->base.base.id,
15592 crtc->base.state->enable ? "enabled" : "disabled",
15593 crtc->active ? "enabled" : "disabled");
15594
15595 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15596 crtc->base.state->active = crtc->active;
15597 crtc->base.enabled = crtc->active;
15598 crtc->base.state->connector_mask = 0;
15599 crtc->base.state->encoder_mask = 0;
15600
15601 /* Because we only establish the connector -> encoder ->
15602 * crtc links if something is active, this means the
15603 * crtc is now deactivated. Break the links. connector
15604 * -> encoder links are only establish when things are
15605 * actually up, hence no need to break them. */
15606 WARN_ON(crtc->active);
15607
15608 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15609 encoder->base.crtc = NULL;
15610 }
15611
15612 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15613 /*
15614 * We start out with underrun reporting disabled to avoid races.
15615 * For correct bookkeeping mark this on active crtcs.
15616 *
15617 * Also on gmch platforms we dont have any hardware bits to
15618 * disable the underrun reporting. Which means we need to start
15619 * out with underrun reporting disabled also on inactive pipes,
15620 * since otherwise we'll complain about the garbage we read when
15621 * e.g. coming up after runtime pm.
15622 *
15623 * No protection against concurrent access is required - at
15624 * worst a fifo underrun happens which also sets this to false.
15625 */
15626 crtc->cpu_fifo_underrun_disabled = true;
15627 crtc->pch_fifo_underrun_disabled = true;
15628 }
15629 }
15630
15631 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15632 {
15633 struct intel_connector *connector;
15634 struct drm_device *dev = encoder->base.dev;
15635
15636 /* We need to check both for a crtc link (meaning that the
15637 * encoder is active and trying to read from a pipe) and the
15638 * pipe itself being active. */
15639 bool has_active_crtc = encoder->base.crtc &&
15640 to_intel_crtc(encoder->base.crtc)->active;
15641
15642 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15643 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15644 encoder->base.base.id,
15645 encoder->base.name);
15646
15647 /* Connector is active, but has no active pipe. This is
15648 * fallout from our resume register restoring. Disable
15649 * the encoder manually again. */
15650 if (encoder->base.crtc) {
15651 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15652 encoder->base.base.id,
15653 encoder->base.name);
15654 encoder->disable(encoder);
15655 if (encoder->post_disable)
15656 encoder->post_disable(encoder);
15657 }
15658 encoder->base.crtc = NULL;
15659
15660 /* Inconsistent output/port/pipe state happens presumably due to
15661 * a bug in one of the get_hw_state functions. Or someplace else
15662 * in our code, like the register restore mess on resume. Clamp
15663 * things to off as a safer default. */
15664 for_each_intel_connector(dev, connector) {
15665 if (connector->encoder != encoder)
15666 continue;
15667 connector->base.dpms = DRM_MODE_DPMS_OFF;
15668 connector->base.encoder = NULL;
15669 }
15670 }
15671 /* Enabled encoders without active connectors will be fixed in
15672 * the crtc fixup. */
15673 }
15674
15675 void i915_redisable_vga_power_on(struct drm_device *dev)
15676 {
15677 struct drm_i915_private *dev_priv = dev->dev_private;
15678 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15679
15680 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15681 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15682 i915_disable_vga(dev);
15683 }
15684 }
15685
15686 void i915_redisable_vga(struct drm_device *dev)
15687 {
15688 struct drm_i915_private *dev_priv = dev->dev_private;
15689
15690 /* This function can be called both from intel_modeset_setup_hw_state or
15691 * at a very early point in our resume sequence, where the power well
15692 * structures are not yet restored. Since this function is at a very
15693 * paranoid "someone might have enabled VGA while we were not looking"
15694 * level, just check if the power well is enabled instead of trying to
15695 * follow the "don't touch the power well if we don't need it" policy
15696 * the rest of the driver uses. */
15697 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15698 return;
15699
15700 i915_redisable_vga_power_on(dev);
15701
15702 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15703 }
15704
15705 static bool primary_get_hw_state(struct intel_plane *plane)
15706 {
15707 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15708
15709 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15710 }
15711
15712 /* FIXME read out full plane state for all planes */
15713 static void readout_plane_state(struct intel_crtc *crtc)
15714 {
15715 struct drm_plane *primary = crtc->base.primary;
15716 struct intel_plane_state *plane_state =
15717 to_intel_plane_state(primary->state);
15718
15719 plane_state->visible = crtc->active &&
15720 primary_get_hw_state(to_intel_plane(primary));
15721
15722 if (plane_state->visible)
15723 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15724 }
15725
15726 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15727 {
15728 struct drm_i915_private *dev_priv = dev->dev_private;
15729 enum pipe pipe;
15730 struct intel_crtc *crtc;
15731 struct intel_encoder *encoder;
15732 struct intel_connector *connector;
15733 int i;
15734
15735 dev_priv->active_crtcs = 0;
15736
15737 for_each_intel_crtc(dev, crtc) {
15738 struct intel_crtc_state *crtc_state = crtc->config;
15739 int pixclk = 0;
15740
15741 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15742 memset(crtc_state, 0, sizeof(*crtc_state));
15743 crtc_state->base.crtc = &crtc->base;
15744
15745 crtc_state->base.active = crtc_state->base.enable =
15746 dev_priv->display.get_pipe_config(crtc, crtc_state);
15747
15748 crtc->base.enabled = crtc_state->base.enable;
15749 crtc->active = crtc_state->base.active;
15750
15751 if (crtc_state->base.active) {
15752 dev_priv->active_crtcs |= 1 << crtc->pipe;
15753
15754 if (IS_BROADWELL(dev_priv)) {
15755 pixclk = ilk_pipe_pixel_rate(crtc_state);
15756
15757 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15758 if (crtc_state->ips_enabled)
15759 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15760 } else if (IS_VALLEYVIEW(dev_priv) ||
15761 IS_CHERRYVIEW(dev_priv) ||
15762 IS_BROXTON(dev_priv))
15763 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15764 else
15765 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15766 }
15767
15768 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15769
15770 readout_plane_state(crtc);
15771
15772 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15773 crtc->base.base.id,
15774 crtc->active ? "enabled" : "disabled");
15775 }
15776
15777 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15778 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15779
15780 pll->on = pll->get_hw_state(dev_priv, pll,
15781 &pll->config.hw_state);
15782 pll->active = 0;
15783 pll->config.crtc_mask = 0;
15784 for_each_intel_crtc(dev, crtc) {
15785 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15786 pll->active++;
15787 pll->config.crtc_mask |= 1 << crtc->pipe;
15788 }
15789 }
15790
15791 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15792 pll->name, pll->config.crtc_mask, pll->on);
15793
15794 if (pll->config.crtc_mask)
15795 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15796 }
15797
15798 for_each_intel_encoder(dev, encoder) {
15799 pipe = 0;
15800
15801 if (encoder->get_hw_state(encoder, &pipe)) {
15802 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15803 encoder->base.crtc = &crtc->base;
15804 encoder->get_config(encoder, crtc->config);
15805 } else {
15806 encoder->base.crtc = NULL;
15807 }
15808
15809 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15810 encoder->base.base.id,
15811 encoder->base.name,
15812 encoder->base.crtc ? "enabled" : "disabled",
15813 pipe_name(pipe));
15814 }
15815
15816 for_each_intel_connector(dev, connector) {
15817 if (connector->get_hw_state(connector)) {
15818 connector->base.dpms = DRM_MODE_DPMS_ON;
15819
15820 encoder = connector->encoder;
15821 connector->base.encoder = &encoder->base;
15822
15823 if (encoder->base.crtc &&
15824 encoder->base.crtc->state->active) {
15825 /*
15826 * This has to be done during hardware readout
15827 * because anything calling .crtc_disable may
15828 * rely on the connector_mask being accurate.
15829 */
15830 encoder->base.crtc->state->connector_mask |=
15831 1 << drm_connector_index(&connector->base);
15832 encoder->base.crtc->state->encoder_mask |=
15833 1 << drm_encoder_index(&encoder->base);
15834 }
15835
15836 } else {
15837 connector->base.dpms = DRM_MODE_DPMS_OFF;
15838 connector->base.encoder = NULL;
15839 }
15840 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15841 connector->base.base.id,
15842 connector->base.name,
15843 connector->base.encoder ? "enabled" : "disabled");
15844 }
15845
15846 for_each_intel_crtc(dev, crtc) {
15847 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15848
15849 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15850 if (crtc->base.state->active) {
15851 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15852 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15853 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15854
15855 /*
15856 * The initial mode needs to be set in order to keep
15857 * the atomic core happy. It wants a valid mode if the
15858 * crtc's enabled, so we do the above call.
15859 *
15860 * At this point some state updated by the connectors
15861 * in their ->detect() callback has not run yet, so
15862 * no recalculation can be done yet.
15863 *
15864 * Even if we could do a recalculation and modeset
15865 * right now it would cause a double modeset if
15866 * fbdev or userspace chooses a different initial mode.
15867 *
15868 * If that happens, someone indicated they wanted a
15869 * mode change, which means it's safe to do a full
15870 * recalculation.
15871 */
15872 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15873
15874 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15875 update_scanline_offset(crtc);
15876 }
15877 }
15878 }
15879
15880 /* Scan out the current hw modeset state,
15881 * and sanitizes it to the current state
15882 */
15883 static void
15884 intel_modeset_setup_hw_state(struct drm_device *dev)
15885 {
15886 struct drm_i915_private *dev_priv = dev->dev_private;
15887 enum pipe pipe;
15888 struct intel_crtc *crtc;
15889 struct intel_encoder *encoder;
15890 int i;
15891
15892 intel_modeset_readout_hw_state(dev);
15893
15894 /* HW state is read out, now we need to sanitize this mess. */
15895 for_each_intel_encoder(dev, encoder) {
15896 intel_sanitize_encoder(encoder);
15897 }
15898
15899 for_each_pipe(dev_priv, pipe) {
15900 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15901 intel_sanitize_crtc(crtc);
15902 intel_dump_pipe_config(crtc, crtc->config,
15903 "[setup_hw_state]");
15904 }
15905
15906 intel_modeset_update_connector_atomic_state(dev);
15907
15908 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15909 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15910
15911 if (!pll->on || pll->active)
15912 continue;
15913
15914 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15915
15916 pll->disable(dev_priv, pll);
15917 pll->on = false;
15918 }
15919
15920 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15921 vlv_wm_get_hw_state(dev);
15922 else if (IS_GEN9(dev))
15923 skl_wm_get_hw_state(dev);
15924 else if (HAS_PCH_SPLIT(dev))
15925 ilk_wm_get_hw_state(dev);
15926
15927 for_each_intel_crtc(dev, crtc) {
15928 unsigned long put_domains;
15929
15930 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15931 if (WARN_ON(put_domains))
15932 modeset_put_power_domains(dev_priv, put_domains);
15933 }
15934 intel_display_set_init_power(dev_priv, false);
15935
15936 intel_fbc_init_pipe_state(dev_priv);
15937 }
15938
15939 void intel_display_resume(struct drm_device *dev)
15940 {
15941 struct drm_i915_private *dev_priv = to_i915(dev);
15942 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15943 struct drm_modeset_acquire_ctx ctx;
15944 int ret;
15945 bool setup = false;
15946
15947 dev_priv->modeset_restore_state = NULL;
15948
15949 /*
15950 * This is a cludge because with real atomic modeset mode_config.mutex
15951 * won't be taken. Unfortunately some probed state like
15952 * audio_codec_enable is still protected by mode_config.mutex, so lock
15953 * it here for now.
15954 */
15955 mutex_lock(&dev->mode_config.mutex);
15956 drm_modeset_acquire_init(&ctx, 0);
15957
15958 retry:
15959 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15960
15961 if (ret == 0 && !setup) {
15962 setup = true;
15963
15964 intel_modeset_setup_hw_state(dev);
15965 i915_redisable_vga(dev);
15966 }
15967
15968 if (ret == 0 && state) {
15969 struct drm_crtc_state *crtc_state;
15970 struct drm_crtc *crtc;
15971 int i;
15972
15973 state->acquire_ctx = &ctx;
15974
15975 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15976 /*
15977 * Force recalculation even if we restore
15978 * current state. With fast modeset this may not result
15979 * in a modeset when the state is compatible.
15980 */
15981 crtc_state->mode_changed = true;
15982 }
15983
15984 ret = drm_atomic_commit(state);
15985 }
15986
15987 if (ret == -EDEADLK) {
15988 drm_modeset_backoff(&ctx);
15989 goto retry;
15990 }
15991
15992 drm_modeset_drop_locks(&ctx);
15993 drm_modeset_acquire_fini(&ctx);
15994 mutex_unlock(&dev->mode_config.mutex);
15995
15996 if (ret) {
15997 DRM_ERROR("Restoring old state failed with %i\n", ret);
15998 drm_atomic_state_free(state);
15999 }
16000 }
16001
16002 void intel_modeset_gem_init(struct drm_device *dev)
16003 {
16004 struct drm_crtc *c;
16005 struct drm_i915_gem_object *obj;
16006 int ret;
16007
16008 intel_init_gt_powersave(dev);
16009
16010 intel_modeset_init_hw(dev);
16011
16012 intel_setup_overlay(dev);
16013
16014 /*
16015 * Make sure any fbs we allocated at startup are properly
16016 * pinned & fenced. When we do the allocation it's too early
16017 * for this.
16018 */
16019 for_each_crtc(dev, c) {
16020 obj = intel_fb_obj(c->primary->fb);
16021 if (obj == NULL)
16022 continue;
16023
16024 mutex_lock(&dev->struct_mutex);
16025 ret = intel_pin_and_fence_fb_obj(c->primary,
16026 c->primary->fb,
16027 c->primary->state);
16028 mutex_unlock(&dev->struct_mutex);
16029 if (ret) {
16030 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16031 to_intel_crtc(c)->pipe);
16032 drm_framebuffer_unreference(c->primary->fb);
16033 c->primary->fb = NULL;
16034 c->primary->crtc = c->primary->state->crtc = NULL;
16035 update_state_fb(c->primary);
16036 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16037 }
16038 }
16039
16040 intel_backlight_register(dev);
16041 }
16042
16043 void intel_connector_unregister(struct intel_connector *intel_connector)
16044 {
16045 struct drm_connector *connector = &intel_connector->base;
16046
16047 intel_panel_destroy_backlight(connector);
16048 drm_connector_unregister(connector);
16049 }
16050
16051 void intel_modeset_cleanup(struct drm_device *dev)
16052 {
16053 struct drm_i915_private *dev_priv = dev->dev_private;
16054 struct intel_connector *connector;
16055
16056 intel_disable_gt_powersave(dev);
16057
16058 intel_backlight_unregister(dev);
16059
16060 /*
16061 * Interrupts and polling as the first thing to avoid creating havoc.
16062 * Too much stuff here (turning of connectors, ...) would
16063 * experience fancy races otherwise.
16064 */
16065 intel_irq_uninstall(dev_priv);
16066
16067 /*
16068 * Due to the hpd irq storm handling the hotplug work can re-arm the
16069 * poll handlers. Hence disable polling after hpd handling is shut down.
16070 */
16071 drm_kms_helper_poll_fini(dev);
16072
16073 intel_unregister_dsm_handler();
16074
16075 intel_fbc_global_disable(dev_priv);
16076
16077 /* flush any delayed tasks or pending work */
16078 flush_scheduled_work();
16079
16080 /* destroy the backlight and sysfs files before encoders/connectors */
16081 for_each_intel_connector(dev, connector)
16082 connector->unregister(connector);
16083
16084 drm_mode_config_cleanup(dev);
16085
16086 intel_cleanup_overlay(dev);
16087
16088 intel_cleanup_gt_powersave(dev);
16089
16090 intel_teardown_gmbus(dev);
16091 }
16092
16093 /*
16094 * Return which encoder is currently attached for connector.
16095 */
16096 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16097 {
16098 return &intel_attached_encoder(connector)->base;
16099 }
16100
16101 void intel_connector_attach_encoder(struct intel_connector *connector,
16102 struct intel_encoder *encoder)
16103 {
16104 connector->encoder = encoder;
16105 drm_mode_connector_attach_encoder(&connector->base,
16106 &encoder->base);
16107 }
16108
16109 /*
16110 * set vga decode state - true == enable VGA decode
16111 */
16112 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16113 {
16114 struct drm_i915_private *dev_priv = dev->dev_private;
16115 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16116 u16 gmch_ctrl;
16117
16118 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16119 DRM_ERROR("failed to read control word\n");
16120 return -EIO;
16121 }
16122
16123 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16124 return 0;
16125
16126 if (state)
16127 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16128 else
16129 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16130
16131 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16132 DRM_ERROR("failed to write control word\n");
16133 return -EIO;
16134 }
16135
16136 return 0;
16137 }
16138
16139 struct intel_display_error_state {
16140
16141 u32 power_well_driver;
16142
16143 int num_transcoders;
16144
16145 struct intel_cursor_error_state {
16146 u32 control;
16147 u32 position;
16148 u32 base;
16149 u32 size;
16150 } cursor[I915_MAX_PIPES];
16151
16152 struct intel_pipe_error_state {
16153 bool power_domain_on;
16154 u32 source;
16155 u32 stat;
16156 } pipe[I915_MAX_PIPES];
16157
16158 struct intel_plane_error_state {
16159 u32 control;
16160 u32 stride;
16161 u32 size;
16162 u32 pos;
16163 u32 addr;
16164 u32 surface;
16165 u32 tile_offset;
16166 } plane[I915_MAX_PIPES];
16167
16168 struct intel_transcoder_error_state {
16169 bool power_domain_on;
16170 enum transcoder cpu_transcoder;
16171
16172 u32 conf;
16173
16174 u32 htotal;
16175 u32 hblank;
16176 u32 hsync;
16177 u32 vtotal;
16178 u32 vblank;
16179 u32 vsync;
16180 } transcoder[4];
16181 };
16182
16183 struct intel_display_error_state *
16184 intel_display_capture_error_state(struct drm_device *dev)
16185 {
16186 struct drm_i915_private *dev_priv = dev->dev_private;
16187 struct intel_display_error_state *error;
16188 int transcoders[] = {
16189 TRANSCODER_A,
16190 TRANSCODER_B,
16191 TRANSCODER_C,
16192 TRANSCODER_EDP,
16193 };
16194 int i;
16195
16196 if (INTEL_INFO(dev)->num_pipes == 0)
16197 return NULL;
16198
16199 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16200 if (error == NULL)
16201 return NULL;
16202
16203 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16204 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16205
16206 for_each_pipe(dev_priv, i) {
16207 error->pipe[i].power_domain_on =
16208 __intel_display_power_is_enabled(dev_priv,
16209 POWER_DOMAIN_PIPE(i));
16210 if (!error->pipe[i].power_domain_on)
16211 continue;
16212
16213 error->cursor[i].control = I915_READ(CURCNTR(i));
16214 error->cursor[i].position = I915_READ(CURPOS(i));
16215 error->cursor[i].base = I915_READ(CURBASE(i));
16216
16217 error->plane[i].control = I915_READ(DSPCNTR(i));
16218 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16219 if (INTEL_INFO(dev)->gen <= 3) {
16220 error->plane[i].size = I915_READ(DSPSIZE(i));
16221 error->plane[i].pos = I915_READ(DSPPOS(i));
16222 }
16223 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16224 error->plane[i].addr = I915_READ(DSPADDR(i));
16225 if (INTEL_INFO(dev)->gen >= 4) {
16226 error->plane[i].surface = I915_READ(DSPSURF(i));
16227 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16228 }
16229
16230 error->pipe[i].source = I915_READ(PIPESRC(i));
16231
16232 if (HAS_GMCH_DISPLAY(dev))
16233 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16234 }
16235
16236 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16237 if (HAS_DDI(dev_priv->dev))
16238 error->num_transcoders++; /* Account for eDP. */
16239
16240 for (i = 0; i < error->num_transcoders; i++) {
16241 enum transcoder cpu_transcoder = transcoders[i];
16242
16243 error->transcoder[i].power_domain_on =
16244 __intel_display_power_is_enabled(dev_priv,
16245 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16246 if (!error->transcoder[i].power_domain_on)
16247 continue;
16248
16249 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16250
16251 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16252 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16253 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16254 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16255 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16256 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16257 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16258 }
16259
16260 return error;
16261 }
16262
16263 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16264
16265 void
16266 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16267 struct drm_device *dev,
16268 struct intel_display_error_state *error)
16269 {
16270 struct drm_i915_private *dev_priv = dev->dev_private;
16271 int i;
16272
16273 if (!error)
16274 return;
16275
16276 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16277 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16278 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16279 error->power_well_driver);
16280 for_each_pipe(dev_priv, i) {
16281 err_printf(m, "Pipe [%d]:\n", i);
16282 err_printf(m, " Power: %s\n",
16283 onoff(error->pipe[i].power_domain_on));
16284 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16285 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16286
16287 err_printf(m, "Plane [%d]:\n", i);
16288 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16289 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16290 if (INTEL_INFO(dev)->gen <= 3) {
16291 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16292 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16293 }
16294 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16295 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16296 if (INTEL_INFO(dev)->gen >= 4) {
16297 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16298 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16299 }
16300
16301 err_printf(m, "Cursor [%d]:\n", i);
16302 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16303 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16304 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16305 }
16306
16307 for (i = 0; i < error->num_transcoders; i++) {
16308 err_printf(m, "CPU transcoder: %c\n",
16309 transcoder_name(error->transcoder[i].cpu_transcoder));
16310 err_printf(m, " Power: %s\n",
16311 onoff(error->transcoder[i].power_domain_on));
16312 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16313 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16314 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16315 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16316 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16317 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16318 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16319 }
16320 }
This page took 0.369003 seconds and 6 git commands to generate.