drm/i915: Keep track of preferred cdclk vco frequency on SKL
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53 DRM_FORMAT_C8,
54 DRM_FORMAT_RGB565,
55 DRM_FORMAT_XRGB1555,
56 DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61 DRM_FORMAT_C8,
62 DRM_FORMAT_RGB565,
63 DRM_FORMAT_XRGB8888,
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70 DRM_FORMAT_C8,
71 DRM_FORMAT_RGB565,
72 DRM_FORMAT_XRGB8888,
73 DRM_FORMAT_XBGR8888,
74 DRM_FORMAT_ARGB8888,
75 DRM_FORMAT_ABGR8888,
76 DRM_FORMAT_XRGB2101010,
77 DRM_FORMAT_XBGR2101010,
78 DRM_FORMAT_YUYV,
79 DRM_FORMAT_YVYU,
80 DRM_FORMAT_UYVY,
81 DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86 DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92 struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95 struct intel_framebuffer *ifb,
96 struct drm_mode_fb_cmd2 *mode_cmd,
97 struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102 struct intel_link_m_n *m_n,
103 struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110 const struct intel_crtc_state *pipe_config);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static void skylake_pfit_enable(struct intel_crtc *crtc);
114 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
115 static void ironlake_pfit_enable(struct intel_crtc *crtc);
116 static void intel_modeset_setup_hw_state(struct drm_device *dev);
117 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
118 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
119 static void intel_modeset_verify_crtc(struct drm_crtc *crtc,
120 struct drm_crtc_state *old_state,
121 struct drm_crtc_state *new_state);
122
123 struct intel_limit {
124 struct {
125 int min, max;
126 } dot, vco, n, m, m1, m2, p, p1;
127
128 struct {
129 int dot_limit;
130 int p2_slow, p2_fast;
131 } p2;
132 };
133
134 /* returns HPLL frequency in kHz */
135 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
136 {
137 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
138
139 /* Obtain SKU information */
140 mutex_lock(&dev_priv->sb_lock);
141 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
142 CCK_FUSE_HPLL_FREQ_MASK;
143 mutex_unlock(&dev_priv->sb_lock);
144
145 return vco_freq[hpll_freq] * 1000;
146 }
147
148 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
149 const char *name, u32 reg, int ref_freq)
150 {
151 u32 val;
152 int divider;
153
154 mutex_lock(&dev_priv->sb_lock);
155 val = vlv_cck_read(dev_priv, reg);
156 mutex_unlock(&dev_priv->sb_lock);
157
158 divider = val & CCK_FREQUENCY_VALUES;
159
160 WARN((val & CCK_FREQUENCY_STATUS) !=
161 (divider << CCK_FREQUENCY_STATUS_SHIFT),
162 "%s change in progress\n", name);
163
164 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
165 }
166
167 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
168 const char *name, u32 reg)
169 {
170 if (dev_priv->hpll_freq == 0)
171 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
172
173 return vlv_get_cck_clock(dev_priv, name, reg,
174 dev_priv->hpll_freq);
175 }
176
177 static int
178 intel_pch_rawclk(struct drm_i915_private *dev_priv)
179 {
180 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
181 }
182
183 static int
184 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
185 {
186 /* RAWCLK_FREQ_VLV register updated from power well code */
187 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
188 CCK_DISPLAY_REF_CLOCK_CONTROL);
189 }
190
191 static int
192 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
193 {
194 uint32_t clkcfg;
195
196 /* hrawclock is 1/4 the FSB frequency */
197 clkcfg = I915_READ(CLKCFG);
198 switch (clkcfg & CLKCFG_FSB_MASK) {
199 case CLKCFG_FSB_400:
200 return 100000;
201 case CLKCFG_FSB_533:
202 return 133333;
203 case CLKCFG_FSB_667:
204 return 166667;
205 case CLKCFG_FSB_800:
206 return 200000;
207 case CLKCFG_FSB_1067:
208 return 266667;
209 case CLKCFG_FSB_1333:
210 return 333333;
211 /* these two are just a guess; one of them might be right */
212 case CLKCFG_FSB_1600:
213 case CLKCFG_FSB_1600_ALT:
214 return 400000;
215 default:
216 return 133333;
217 }
218 }
219
220 void intel_update_rawclk(struct drm_i915_private *dev_priv)
221 {
222 if (HAS_PCH_SPLIT(dev_priv))
223 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
224 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
225 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
226 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
227 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
228 else
229 return; /* no rawclk on other platforms, or no need to know it */
230
231 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
232 }
233
234 static void intel_update_czclk(struct drm_i915_private *dev_priv)
235 {
236 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
237 return;
238
239 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
240 CCK_CZ_CLOCK_CONTROL);
241
242 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
243 }
244
245 static inline u32 /* units of 100MHz */
246 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
247 const struct intel_crtc_state *pipe_config)
248 {
249 if (HAS_DDI(dev_priv))
250 return pipe_config->port_clock; /* SPLL */
251 else if (IS_GEN5(dev_priv))
252 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
253 else
254 return 270000;
255 }
256
257 static const struct intel_limit intel_limits_i8xx_dac = {
258 .dot = { .min = 25000, .max = 350000 },
259 .vco = { .min = 908000, .max = 1512000 },
260 .n = { .min = 2, .max = 16 },
261 .m = { .min = 96, .max = 140 },
262 .m1 = { .min = 18, .max = 26 },
263 .m2 = { .min = 6, .max = 16 },
264 .p = { .min = 4, .max = 128 },
265 .p1 = { .min = 2, .max = 33 },
266 .p2 = { .dot_limit = 165000,
267 .p2_slow = 4, .p2_fast = 2 },
268 };
269
270 static const struct intel_limit intel_limits_i8xx_dvo = {
271 .dot = { .min = 25000, .max = 350000 },
272 .vco = { .min = 908000, .max = 1512000 },
273 .n = { .min = 2, .max = 16 },
274 .m = { .min = 96, .max = 140 },
275 .m1 = { .min = 18, .max = 26 },
276 .m2 = { .min = 6, .max = 16 },
277 .p = { .min = 4, .max = 128 },
278 .p1 = { .min = 2, .max = 33 },
279 .p2 = { .dot_limit = 165000,
280 .p2_slow = 4, .p2_fast = 4 },
281 };
282
283 static const struct intel_limit intel_limits_i8xx_lvds = {
284 .dot = { .min = 25000, .max = 350000 },
285 .vco = { .min = 908000, .max = 1512000 },
286 .n = { .min = 2, .max = 16 },
287 .m = { .min = 96, .max = 140 },
288 .m1 = { .min = 18, .max = 26 },
289 .m2 = { .min = 6, .max = 16 },
290 .p = { .min = 4, .max = 128 },
291 .p1 = { .min = 1, .max = 6 },
292 .p2 = { .dot_limit = 165000,
293 .p2_slow = 14, .p2_fast = 7 },
294 };
295
296 static const struct intel_limit intel_limits_i9xx_sdvo = {
297 .dot = { .min = 20000, .max = 400000 },
298 .vco = { .min = 1400000, .max = 2800000 },
299 .n = { .min = 1, .max = 6 },
300 .m = { .min = 70, .max = 120 },
301 .m1 = { .min = 8, .max = 18 },
302 .m2 = { .min = 3, .max = 7 },
303 .p = { .min = 5, .max = 80 },
304 .p1 = { .min = 1, .max = 8 },
305 .p2 = { .dot_limit = 200000,
306 .p2_slow = 10, .p2_fast = 5 },
307 };
308
309 static const struct intel_limit intel_limits_i9xx_lvds = {
310 .dot = { .min = 20000, .max = 400000 },
311 .vco = { .min = 1400000, .max = 2800000 },
312 .n = { .min = 1, .max = 6 },
313 .m = { .min = 70, .max = 120 },
314 .m1 = { .min = 8, .max = 18 },
315 .m2 = { .min = 3, .max = 7 },
316 .p = { .min = 7, .max = 98 },
317 .p1 = { .min = 1, .max = 8 },
318 .p2 = { .dot_limit = 112000,
319 .p2_slow = 14, .p2_fast = 7 },
320 };
321
322
323 static const struct intel_limit intel_limits_g4x_sdvo = {
324 .dot = { .min = 25000, .max = 270000 },
325 .vco = { .min = 1750000, .max = 3500000},
326 .n = { .min = 1, .max = 4 },
327 .m = { .min = 104, .max = 138 },
328 .m1 = { .min = 17, .max = 23 },
329 .m2 = { .min = 5, .max = 11 },
330 .p = { .min = 10, .max = 30 },
331 .p1 = { .min = 1, .max = 3},
332 .p2 = { .dot_limit = 270000,
333 .p2_slow = 10,
334 .p2_fast = 10
335 },
336 };
337
338 static const struct intel_limit intel_limits_g4x_hdmi = {
339 .dot = { .min = 22000, .max = 400000 },
340 .vco = { .min = 1750000, .max = 3500000},
341 .n = { .min = 1, .max = 4 },
342 .m = { .min = 104, .max = 138 },
343 .m1 = { .min = 16, .max = 23 },
344 .m2 = { .min = 5, .max = 11 },
345 .p = { .min = 5, .max = 80 },
346 .p1 = { .min = 1, .max = 8},
347 .p2 = { .dot_limit = 165000,
348 .p2_slow = 10, .p2_fast = 5 },
349 };
350
351 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
352 .dot = { .min = 20000, .max = 115000 },
353 .vco = { .min = 1750000, .max = 3500000 },
354 .n = { .min = 1, .max = 3 },
355 .m = { .min = 104, .max = 138 },
356 .m1 = { .min = 17, .max = 23 },
357 .m2 = { .min = 5, .max = 11 },
358 .p = { .min = 28, .max = 112 },
359 .p1 = { .min = 2, .max = 8 },
360 .p2 = { .dot_limit = 0,
361 .p2_slow = 14, .p2_fast = 14
362 },
363 };
364
365 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
366 .dot = { .min = 80000, .max = 224000 },
367 .vco = { .min = 1750000, .max = 3500000 },
368 .n = { .min = 1, .max = 3 },
369 .m = { .min = 104, .max = 138 },
370 .m1 = { .min = 17, .max = 23 },
371 .m2 = { .min = 5, .max = 11 },
372 .p = { .min = 14, .max = 42 },
373 .p1 = { .min = 2, .max = 6 },
374 .p2 = { .dot_limit = 0,
375 .p2_slow = 7, .p2_fast = 7
376 },
377 };
378
379 static const struct intel_limit intel_limits_pineview_sdvo = {
380 .dot = { .min = 20000, .max = 400000},
381 .vco = { .min = 1700000, .max = 3500000 },
382 /* Pineview's Ncounter is a ring counter */
383 .n = { .min = 3, .max = 6 },
384 .m = { .min = 2, .max = 256 },
385 /* Pineview only has one combined m divider, which we treat as m2. */
386 .m1 = { .min = 0, .max = 0 },
387 .m2 = { .min = 0, .max = 254 },
388 .p = { .min = 5, .max = 80 },
389 .p1 = { .min = 1, .max = 8 },
390 .p2 = { .dot_limit = 200000,
391 .p2_slow = 10, .p2_fast = 5 },
392 };
393
394 static const struct intel_limit intel_limits_pineview_lvds = {
395 .dot = { .min = 20000, .max = 400000 },
396 .vco = { .min = 1700000, .max = 3500000 },
397 .n = { .min = 3, .max = 6 },
398 .m = { .min = 2, .max = 256 },
399 .m1 = { .min = 0, .max = 0 },
400 .m2 = { .min = 0, .max = 254 },
401 .p = { .min = 7, .max = 112 },
402 .p1 = { .min = 1, .max = 8 },
403 .p2 = { .dot_limit = 112000,
404 .p2_slow = 14, .p2_fast = 14 },
405 };
406
407 /* Ironlake / Sandybridge
408 *
409 * We calculate clock using (register_value + 2) for N/M1/M2, so here
410 * the range value for them is (actual_value - 2).
411 */
412 static const struct intel_limit intel_limits_ironlake_dac = {
413 .dot = { .min = 25000, .max = 350000 },
414 .vco = { .min = 1760000, .max = 3510000 },
415 .n = { .min = 1, .max = 5 },
416 .m = { .min = 79, .max = 127 },
417 .m1 = { .min = 12, .max = 22 },
418 .m2 = { .min = 5, .max = 9 },
419 .p = { .min = 5, .max = 80 },
420 .p1 = { .min = 1, .max = 8 },
421 .p2 = { .dot_limit = 225000,
422 .p2_slow = 10, .p2_fast = 5 },
423 };
424
425 static const struct intel_limit intel_limits_ironlake_single_lvds = {
426 .dot = { .min = 25000, .max = 350000 },
427 .vco = { .min = 1760000, .max = 3510000 },
428 .n = { .min = 1, .max = 3 },
429 .m = { .min = 79, .max = 118 },
430 .m1 = { .min = 12, .max = 22 },
431 .m2 = { .min = 5, .max = 9 },
432 .p = { .min = 28, .max = 112 },
433 .p1 = { .min = 2, .max = 8 },
434 .p2 = { .dot_limit = 225000,
435 .p2_slow = 14, .p2_fast = 14 },
436 };
437
438 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
439 .dot = { .min = 25000, .max = 350000 },
440 .vco = { .min = 1760000, .max = 3510000 },
441 .n = { .min = 1, .max = 3 },
442 .m = { .min = 79, .max = 127 },
443 .m1 = { .min = 12, .max = 22 },
444 .m2 = { .min = 5, .max = 9 },
445 .p = { .min = 14, .max = 56 },
446 .p1 = { .min = 2, .max = 8 },
447 .p2 = { .dot_limit = 225000,
448 .p2_slow = 7, .p2_fast = 7 },
449 };
450
451 /* LVDS 100mhz refclk limits. */
452 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
453 .dot = { .min = 25000, .max = 350000 },
454 .vco = { .min = 1760000, .max = 3510000 },
455 .n = { .min = 1, .max = 2 },
456 .m = { .min = 79, .max = 126 },
457 .m1 = { .min = 12, .max = 22 },
458 .m2 = { .min = 5, .max = 9 },
459 .p = { .min = 28, .max = 112 },
460 .p1 = { .min = 2, .max = 8 },
461 .p2 = { .dot_limit = 225000,
462 .p2_slow = 14, .p2_fast = 14 },
463 };
464
465 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
466 .dot = { .min = 25000, .max = 350000 },
467 .vco = { .min = 1760000, .max = 3510000 },
468 .n = { .min = 1, .max = 3 },
469 .m = { .min = 79, .max = 126 },
470 .m1 = { .min = 12, .max = 22 },
471 .m2 = { .min = 5, .max = 9 },
472 .p = { .min = 14, .max = 42 },
473 .p1 = { .min = 2, .max = 6 },
474 .p2 = { .dot_limit = 225000,
475 .p2_slow = 7, .p2_fast = 7 },
476 };
477
478 static const struct intel_limit intel_limits_vlv = {
479 /*
480 * These are the data rate limits (measured in fast clocks)
481 * since those are the strictest limits we have. The fast
482 * clock and actual rate limits are more relaxed, so checking
483 * them would make no difference.
484 */
485 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
486 .vco = { .min = 4000000, .max = 6000000 },
487 .n = { .min = 1, .max = 7 },
488 .m1 = { .min = 2, .max = 3 },
489 .m2 = { .min = 11, .max = 156 },
490 .p1 = { .min = 2, .max = 3 },
491 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
492 };
493
494 static const struct intel_limit intel_limits_chv = {
495 /*
496 * These are the data rate limits (measured in fast clocks)
497 * since those are the strictest limits we have. The fast
498 * clock and actual rate limits are more relaxed, so checking
499 * them would make no difference.
500 */
501 .dot = { .min = 25000 * 5, .max = 540000 * 5},
502 .vco = { .min = 4800000, .max = 6480000 },
503 .n = { .min = 1, .max = 1 },
504 .m1 = { .min = 2, .max = 2 },
505 .m2 = { .min = 24 << 22, .max = 175 << 22 },
506 .p1 = { .min = 2, .max = 4 },
507 .p2 = { .p2_slow = 1, .p2_fast = 14 },
508 };
509
510 static const struct intel_limit intel_limits_bxt = {
511 /* FIXME: find real dot limits */
512 .dot = { .min = 0, .max = INT_MAX },
513 .vco = { .min = 4800000, .max = 6700000 },
514 .n = { .min = 1, .max = 1 },
515 .m1 = { .min = 2, .max = 2 },
516 /* FIXME: find real m2 limits */
517 .m2 = { .min = 2 << 22, .max = 255 << 22 },
518 .p1 = { .min = 2, .max = 4 },
519 .p2 = { .p2_slow = 1, .p2_fast = 20 },
520 };
521
522 static bool
523 needs_modeset(struct drm_crtc_state *state)
524 {
525 return drm_atomic_crtc_needs_modeset(state);
526 }
527
528 /**
529 * Returns whether any output on the specified pipe is of the specified type
530 */
531 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
532 {
533 struct drm_device *dev = crtc->base.dev;
534 struct intel_encoder *encoder;
535
536 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
537 if (encoder->type == type)
538 return true;
539
540 return false;
541 }
542
543 /**
544 * Returns whether any output on the specified pipe will have the specified
545 * type after a staged modeset is complete, i.e., the same as
546 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
547 * encoder->crtc.
548 */
549 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
550 int type)
551 {
552 struct drm_atomic_state *state = crtc_state->base.state;
553 struct drm_connector *connector;
554 struct drm_connector_state *connector_state;
555 struct intel_encoder *encoder;
556 int i, num_connectors = 0;
557
558 for_each_connector_in_state(state, connector, connector_state, i) {
559 if (connector_state->crtc != crtc_state->base.crtc)
560 continue;
561
562 num_connectors++;
563
564 encoder = to_intel_encoder(connector_state->best_encoder);
565 if (encoder->type == type)
566 return true;
567 }
568
569 WARN_ON(num_connectors == 0);
570
571 return false;
572 }
573
574 /*
575 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
576 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
577 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
578 * The helpers' return value is the rate of the clock that is fed to the
579 * display engine's pipe which can be the above fast dot clock rate or a
580 * divided-down version of it.
581 */
582 /* m1 is reserved as 0 in Pineview, n is a ring counter */
583 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585 clock->m = clock->m2 + 2;
586 clock->p = clock->p1 * clock->p2;
587 if (WARN_ON(clock->n == 0 || clock->p == 0))
588 return 0;
589 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
590 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
591
592 return clock->dot;
593 }
594
595 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
596 {
597 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
598 }
599
600 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
601 {
602 clock->m = i9xx_dpll_compute_m(clock);
603 clock->p = clock->p1 * clock->p2;
604 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
605 return 0;
606 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
607 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
608
609 return clock->dot;
610 }
611
612 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
613 {
614 clock->m = clock->m1 * clock->m2;
615 clock->p = clock->p1 * clock->p2;
616 if (WARN_ON(clock->n == 0 || clock->p == 0))
617 return 0;
618 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
619 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
620
621 return clock->dot / 5;
622 }
623
624 int chv_calc_dpll_params(int refclk, struct dpll *clock)
625 {
626 clock->m = clock->m1 * clock->m2;
627 clock->p = clock->p1 * clock->p2;
628 if (WARN_ON(clock->n == 0 || clock->p == 0))
629 return 0;
630 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
631 clock->n << 22);
632 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
633
634 return clock->dot / 5;
635 }
636
637 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
638 /**
639 * Returns whether the given set of divisors are valid for a given refclk with
640 * the given connectors.
641 */
642
643 static bool intel_PLL_is_valid(struct drm_device *dev,
644 const struct intel_limit *limit,
645 const struct dpll *clock)
646 {
647 if (clock->n < limit->n.min || limit->n.max < clock->n)
648 INTELPllInvalid("n out of range\n");
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
652 INTELPllInvalid("m2 out of range\n");
653 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
654 INTELPllInvalid("m1 out of range\n");
655
656 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
657 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
658 if (clock->m1 <= clock->m2)
659 INTELPllInvalid("m1 <= m2\n");
660
661 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
662 if (clock->p < limit->p.min || limit->p.max < clock->p)
663 INTELPllInvalid("p out of range\n");
664 if (clock->m < limit->m.min || limit->m.max < clock->m)
665 INTELPllInvalid("m out of range\n");
666 }
667
668 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
669 INTELPllInvalid("vco out of range\n");
670 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
671 * connector, etc., rather than just a single range.
672 */
673 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
674 INTELPllInvalid("dot out of range\n");
675
676 return true;
677 }
678
679 static int
680 i9xx_select_p2_div(const struct intel_limit *limit,
681 const struct intel_crtc_state *crtc_state,
682 int target)
683 {
684 struct drm_device *dev = crtc_state->base.crtc->dev;
685
686 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
687 /*
688 * For LVDS just rely on its current settings for dual-channel.
689 * We haven't figured out how to reliably set up different
690 * single/dual channel state, if we even can.
691 */
692 if (intel_is_dual_link_lvds(dev))
693 return limit->p2.p2_fast;
694 else
695 return limit->p2.p2_slow;
696 } else {
697 if (target < limit->p2.dot_limit)
698 return limit->p2.p2_slow;
699 else
700 return limit->p2.p2_fast;
701 }
702 }
703
704 /*
705 * Returns a set of divisors for the desired target clock with the given
706 * refclk, or FALSE. The returned values represent the clock equation:
707 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
708 *
709 * Target and reference clocks are specified in kHz.
710 *
711 * If match_clock is provided, then best_clock P divider must match the P
712 * divider from @match_clock used for LVDS downclocking.
713 */
714 static bool
715 i9xx_find_best_dpll(const struct intel_limit *limit,
716 struct intel_crtc_state *crtc_state,
717 int target, int refclk, struct dpll *match_clock,
718 struct dpll *best_clock)
719 {
720 struct drm_device *dev = crtc_state->base.crtc->dev;
721 struct dpll clock;
722 int err = target;
723
724 memset(best_clock, 0, sizeof(*best_clock));
725
726 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
727
728 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
729 clock.m1++) {
730 for (clock.m2 = limit->m2.min;
731 clock.m2 <= limit->m2.max; clock.m2++) {
732 if (clock.m2 >= clock.m1)
733 break;
734 for (clock.n = limit->n.min;
735 clock.n <= limit->n.max; clock.n++) {
736 for (clock.p1 = limit->p1.min;
737 clock.p1 <= limit->p1.max; clock.p1++) {
738 int this_err;
739
740 i9xx_calc_dpll_params(refclk, &clock);
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
743 continue;
744 if (match_clock &&
745 clock.p != match_clock->p)
746 continue;
747
748 this_err = abs(clock.dot - target);
749 if (this_err < err) {
750 *best_clock = clock;
751 err = this_err;
752 }
753 }
754 }
755 }
756 }
757
758 return (err != target);
759 }
760
761 /*
762 * Returns a set of divisors for the desired target clock with the given
763 * refclk, or FALSE. The returned values represent the clock equation:
764 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
765 *
766 * Target and reference clocks are specified in kHz.
767 *
768 * If match_clock is provided, then best_clock P divider must match the P
769 * divider from @match_clock used for LVDS downclocking.
770 */
771 static bool
772 pnv_find_best_dpll(const struct intel_limit *limit,
773 struct intel_crtc_state *crtc_state,
774 int target, int refclk, struct dpll *match_clock,
775 struct dpll *best_clock)
776 {
777 struct drm_device *dev = crtc_state->base.crtc->dev;
778 struct dpll clock;
779 int err = target;
780
781 memset(best_clock, 0, sizeof(*best_clock));
782
783 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
784
785 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
786 clock.m1++) {
787 for (clock.m2 = limit->m2.min;
788 clock.m2 <= limit->m2.max; clock.m2++) {
789 for (clock.n = limit->n.min;
790 clock.n <= limit->n.max; clock.n++) {
791 for (clock.p1 = limit->p1.min;
792 clock.p1 <= limit->p1.max; clock.p1++) {
793 int this_err;
794
795 pnv_calc_dpll_params(refclk, &clock);
796 if (!intel_PLL_is_valid(dev, limit,
797 &clock))
798 continue;
799 if (match_clock &&
800 clock.p != match_clock->p)
801 continue;
802
803 this_err = abs(clock.dot - target);
804 if (this_err < err) {
805 *best_clock = clock;
806 err = this_err;
807 }
808 }
809 }
810 }
811 }
812
813 return (err != target);
814 }
815
816 /*
817 * Returns a set of divisors for the desired target clock with the given
818 * refclk, or FALSE. The returned values represent the clock equation:
819 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
820 *
821 * Target and reference clocks are specified in kHz.
822 *
823 * If match_clock is provided, then best_clock P divider must match the P
824 * divider from @match_clock used for LVDS downclocking.
825 */
826 static bool
827 g4x_find_best_dpll(const struct intel_limit *limit,
828 struct intel_crtc_state *crtc_state,
829 int target, int refclk, struct dpll *match_clock,
830 struct dpll *best_clock)
831 {
832 struct drm_device *dev = crtc_state->base.crtc->dev;
833 struct dpll clock;
834 int max_n;
835 bool found = false;
836 /* approximately equals target * 0.00585 */
837 int err_most = (target >> 8) + (target >> 9);
838
839 memset(best_clock, 0, sizeof(*best_clock));
840
841 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
842
843 max_n = limit->n.max;
844 /* based on hardware requirement, prefer smaller n to precision */
845 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
846 /* based on hardware requirement, prefere larger m1,m2 */
847 for (clock.m1 = limit->m1.max;
848 clock.m1 >= limit->m1.min; clock.m1--) {
849 for (clock.m2 = limit->m2.max;
850 clock.m2 >= limit->m2.min; clock.m2--) {
851 for (clock.p1 = limit->p1.max;
852 clock.p1 >= limit->p1.min; clock.p1--) {
853 int this_err;
854
855 i9xx_calc_dpll_params(refclk, &clock);
856 if (!intel_PLL_is_valid(dev, limit,
857 &clock))
858 continue;
859
860 this_err = abs(clock.dot - target);
861 if (this_err < err_most) {
862 *best_clock = clock;
863 err_most = this_err;
864 max_n = clock.n;
865 found = true;
866 }
867 }
868 }
869 }
870 }
871 return found;
872 }
873
874 /*
875 * Check if the calculated PLL configuration is more optimal compared to the
876 * best configuration and error found so far. Return the calculated error.
877 */
878 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
879 const struct dpll *calculated_clock,
880 const struct dpll *best_clock,
881 unsigned int best_error_ppm,
882 unsigned int *error_ppm)
883 {
884 /*
885 * For CHV ignore the error and consider only the P value.
886 * Prefer a bigger P value based on HW requirements.
887 */
888 if (IS_CHERRYVIEW(dev)) {
889 *error_ppm = 0;
890
891 return calculated_clock->p > best_clock->p;
892 }
893
894 if (WARN_ON_ONCE(!target_freq))
895 return false;
896
897 *error_ppm = div_u64(1000000ULL *
898 abs(target_freq - calculated_clock->dot),
899 target_freq);
900 /*
901 * Prefer a better P value over a better (smaller) error if the error
902 * is small. Ensure this preference for future configurations too by
903 * setting the error to 0.
904 */
905 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
906 *error_ppm = 0;
907
908 return true;
909 }
910
911 return *error_ppm + 10 < best_error_ppm;
912 }
913
914 /*
915 * Returns a set of divisors for the desired target clock with the given
916 * refclk, or FALSE. The returned values represent the clock equation:
917 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
918 */
919 static bool
920 vlv_find_best_dpll(const struct intel_limit *limit,
921 struct intel_crtc_state *crtc_state,
922 int target, int refclk, struct dpll *match_clock,
923 struct dpll *best_clock)
924 {
925 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
926 struct drm_device *dev = crtc->base.dev;
927 struct dpll clock;
928 unsigned int bestppm = 1000000;
929 /* min update 19.2 MHz */
930 int max_n = min(limit->n.max, refclk / 19200);
931 bool found = false;
932
933 target *= 5; /* fast clock */
934
935 memset(best_clock, 0, sizeof(*best_clock));
936
937 /* based on hardware requirement, prefer smaller n to precision */
938 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
939 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
940 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
941 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942 clock.p = clock.p1 * clock.p2;
943 /* based on hardware requirement, prefer bigger m1,m2 values */
944 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
945 unsigned int ppm;
946
947 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
948 refclk * clock.m1);
949
950 vlv_calc_dpll_params(refclk, &clock);
951
952 if (!intel_PLL_is_valid(dev, limit,
953 &clock))
954 continue;
955
956 if (!vlv_PLL_is_optimal(dev, target,
957 &clock,
958 best_clock,
959 bestppm, &ppm))
960 continue;
961
962 *best_clock = clock;
963 bestppm = ppm;
964 found = true;
965 }
966 }
967 }
968 }
969
970 return found;
971 }
972
973 /*
974 * Returns a set of divisors for the desired target clock with the given
975 * refclk, or FALSE. The returned values represent the clock equation:
976 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
977 */
978 static bool
979 chv_find_best_dpll(const struct intel_limit *limit,
980 struct intel_crtc_state *crtc_state,
981 int target, int refclk, struct dpll *match_clock,
982 struct dpll *best_clock)
983 {
984 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
985 struct drm_device *dev = crtc->base.dev;
986 unsigned int best_error_ppm;
987 struct dpll clock;
988 uint64_t m2;
989 int found = false;
990
991 memset(best_clock, 0, sizeof(*best_clock));
992 best_error_ppm = 1000000;
993
994 /*
995 * Based on hardware doc, the n always set to 1, and m1 always
996 * set to 2. If requires to support 200Mhz refclk, we need to
997 * revisit this because n may not 1 anymore.
998 */
999 clock.n = 1, clock.m1 = 2;
1000 target *= 5; /* fast clock */
1001
1002 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1003 for (clock.p2 = limit->p2.p2_fast;
1004 clock.p2 >= limit->p2.p2_slow;
1005 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1006 unsigned int error_ppm;
1007
1008 clock.p = clock.p1 * clock.p2;
1009
1010 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1011 clock.n) << 22, refclk * clock.m1);
1012
1013 if (m2 > INT_MAX/clock.m1)
1014 continue;
1015
1016 clock.m2 = m2;
1017
1018 chv_calc_dpll_params(refclk, &clock);
1019
1020 if (!intel_PLL_is_valid(dev, limit, &clock))
1021 continue;
1022
1023 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1024 best_error_ppm, &error_ppm))
1025 continue;
1026
1027 *best_clock = clock;
1028 best_error_ppm = error_ppm;
1029 found = true;
1030 }
1031 }
1032
1033 return found;
1034 }
1035
1036 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1037 struct dpll *best_clock)
1038 {
1039 int refclk = 100000;
1040 const struct intel_limit *limit = &intel_limits_bxt;
1041
1042 return chv_find_best_dpll(limit, crtc_state,
1043 target_clock, refclk, NULL, best_clock);
1044 }
1045
1046 bool intel_crtc_active(struct drm_crtc *crtc)
1047 {
1048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1049
1050 /* Be paranoid as we can arrive here with only partial
1051 * state retrieved from the hardware during setup.
1052 *
1053 * We can ditch the adjusted_mode.crtc_clock check as soon
1054 * as Haswell has gained clock readout/fastboot support.
1055 *
1056 * We can ditch the crtc->primary->fb check as soon as we can
1057 * properly reconstruct framebuffers.
1058 *
1059 * FIXME: The intel_crtc->active here should be switched to
1060 * crtc->state->active once we have proper CRTC states wired up
1061 * for atomic.
1062 */
1063 return intel_crtc->active && crtc->primary->state->fb &&
1064 intel_crtc->config->base.adjusted_mode.crtc_clock;
1065 }
1066
1067 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1068 enum pipe pipe)
1069 {
1070 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1072
1073 return intel_crtc->config->cpu_transcoder;
1074 }
1075
1076 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1077 {
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 i915_reg_t reg = PIPEDSL(pipe);
1080 u32 line1, line2;
1081 u32 line_mask;
1082
1083 if (IS_GEN2(dev))
1084 line_mask = DSL_LINEMASK_GEN2;
1085 else
1086 line_mask = DSL_LINEMASK_GEN3;
1087
1088 line1 = I915_READ(reg) & line_mask;
1089 msleep(5);
1090 line2 = I915_READ(reg) & line_mask;
1091
1092 return line1 == line2;
1093 }
1094
1095 /*
1096 * intel_wait_for_pipe_off - wait for pipe to turn off
1097 * @crtc: crtc whose pipe to wait for
1098 *
1099 * After disabling a pipe, we can't wait for vblank in the usual way,
1100 * spinning on the vblank interrupt status bit, since we won't actually
1101 * see an interrupt when the pipe is disabled.
1102 *
1103 * On Gen4 and above:
1104 * wait for the pipe register state bit to turn off
1105 *
1106 * Otherwise:
1107 * wait for the display line value to settle (it usually
1108 * ends up stopping at the start of the next frame).
1109 *
1110 */
1111 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1112 {
1113 struct drm_device *dev = crtc->base.dev;
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1116 enum pipe pipe = crtc->pipe;
1117
1118 if (INTEL_INFO(dev)->gen >= 4) {
1119 i915_reg_t reg = PIPECONF(cpu_transcoder);
1120
1121 /* Wait for the Pipe State to go off */
1122 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1123 100))
1124 WARN(1, "pipe_off wait timed out\n");
1125 } else {
1126 /* Wait for the display line to settle */
1127 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1128 WARN(1, "pipe_off wait timed out\n");
1129 }
1130 }
1131
1132 /* Only for pre-ILK configs */
1133 void assert_pll(struct drm_i915_private *dev_priv,
1134 enum pipe pipe, bool state)
1135 {
1136 u32 val;
1137 bool cur_state;
1138
1139 val = I915_READ(DPLL(pipe));
1140 cur_state = !!(val & DPLL_VCO_ENABLE);
1141 I915_STATE_WARN(cur_state != state,
1142 "PLL state assertion failure (expected %s, current %s)\n",
1143 onoff(state), onoff(cur_state));
1144 }
1145
1146 /* XXX: the dsi pll is shared between MIPI DSI ports */
1147 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1148 {
1149 u32 val;
1150 bool cur_state;
1151
1152 mutex_lock(&dev_priv->sb_lock);
1153 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1154 mutex_unlock(&dev_priv->sb_lock);
1155
1156 cur_state = val & DSI_PLL_VCO_EN;
1157 I915_STATE_WARN(cur_state != state,
1158 "DSI PLL state assertion failure (expected %s, current %s)\n",
1159 onoff(state), onoff(cur_state));
1160 }
1161
1162 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1163 enum pipe pipe, bool state)
1164 {
1165 bool cur_state;
1166 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1167 pipe);
1168
1169 if (HAS_DDI(dev_priv)) {
1170 /* DDI does not have a specific FDI_TX register */
1171 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1172 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1173 } else {
1174 u32 val = I915_READ(FDI_TX_CTL(pipe));
1175 cur_state = !!(val & FDI_TX_ENABLE);
1176 }
1177 I915_STATE_WARN(cur_state != state,
1178 "FDI TX state assertion failure (expected %s, current %s)\n",
1179 onoff(state), onoff(cur_state));
1180 }
1181 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1182 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1183
1184 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1185 enum pipe pipe, bool state)
1186 {
1187 u32 val;
1188 bool cur_state;
1189
1190 val = I915_READ(FDI_RX_CTL(pipe));
1191 cur_state = !!(val & FDI_RX_ENABLE);
1192 I915_STATE_WARN(cur_state != state,
1193 "FDI RX state assertion failure (expected %s, current %s)\n",
1194 onoff(state), onoff(cur_state));
1195 }
1196 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1197 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1198
1199 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1200 enum pipe pipe)
1201 {
1202 u32 val;
1203
1204 /* ILK FDI PLL is always enabled */
1205 if (IS_GEN5(dev_priv))
1206 return;
1207
1208 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1209 if (HAS_DDI(dev_priv))
1210 return;
1211
1212 val = I915_READ(FDI_TX_CTL(pipe));
1213 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1214 }
1215
1216 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
1218 {
1219 u32 val;
1220 bool cur_state;
1221
1222 val = I915_READ(FDI_RX_CTL(pipe));
1223 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1224 I915_STATE_WARN(cur_state != state,
1225 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1226 onoff(state), onoff(cur_state));
1227 }
1228
1229 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1230 enum pipe pipe)
1231 {
1232 struct drm_device *dev = dev_priv->dev;
1233 i915_reg_t pp_reg;
1234 u32 val;
1235 enum pipe panel_pipe = PIPE_A;
1236 bool locked = true;
1237
1238 if (WARN_ON(HAS_DDI(dev)))
1239 return;
1240
1241 if (HAS_PCH_SPLIT(dev)) {
1242 u32 port_sel;
1243
1244 pp_reg = PCH_PP_CONTROL;
1245 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1246
1247 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1248 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1249 panel_pipe = PIPE_B;
1250 /* XXX: else fix for eDP */
1251 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1252 /* presumably write lock depends on pipe, not port select */
1253 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1254 panel_pipe = pipe;
1255 } else {
1256 pp_reg = PP_CONTROL;
1257 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1258 panel_pipe = PIPE_B;
1259 }
1260
1261 val = I915_READ(pp_reg);
1262 if (!(val & PANEL_POWER_ON) ||
1263 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1264 locked = false;
1265
1266 I915_STATE_WARN(panel_pipe == pipe && locked,
1267 "panel assertion failure, pipe %c regs locked\n",
1268 pipe_name(pipe));
1269 }
1270
1271 static void assert_cursor(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, bool state)
1273 {
1274 struct drm_device *dev = dev_priv->dev;
1275 bool cur_state;
1276
1277 if (IS_845G(dev) || IS_I865G(dev))
1278 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1279 else
1280 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1281
1282 I915_STATE_WARN(cur_state != state,
1283 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1284 pipe_name(pipe), onoff(state), onoff(cur_state));
1285 }
1286 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1287 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1288
1289 void assert_pipe(struct drm_i915_private *dev_priv,
1290 enum pipe pipe, bool state)
1291 {
1292 bool cur_state;
1293 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1294 pipe);
1295 enum intel_display_power_domain power_domain;
1296
1297 /* if we need the pipe quirk it must be always on */
1298 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1299 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1300 state = true;
1301
1302 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1303 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1304 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1305 cur_state = !!(val & PIPECONF_ENABLE);
1306
1307 intel_display_power_put(dev_priv, power_domain);
1308 } else {
1309 cur_state = false;
1310 }
1311
1312 I915_STATE_WARN(cur_state != state,
1313 "pipe %c assertion failure (expected %s, current %s)\n",
1314 pipe_name(pipe), onoff(state), onoff(cur_state));
1315 }
1316
1317 static void assert_plane(struct drm_i915_private *dev_priv,
1318 enum plane plane, bool state)
1319 {
1320 u32 val;
1321 bool cur_state;
1322
1323 val = I915_READ(DSPCNTR(plane));
1324 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1325 I915_STATE_WARN(cur_state != state,
1326 "plane %c assertion failure (expected %s, current %s)\n",
1327 plane_name(plane), onoff(state), onoff(cur_state));
1328 }
1329
1330 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1331 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1332
1333 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1334 enum pipe pipe)
1335 {
1336 struct drm_device *dev = dev_priv->dev;
1337 int i;
1338
1339 /* Primary planes are fixed to pipes on gen4+ */
1340 if (INTEL_INFO(dev)->gen >= 4) {
1341 u32 val = I915_READ(DSPCNTR(pipe));
1342 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1343 "plane %c assertion failure, should be disabled but not\n",
1344 plane_name(pipe));
1345 return;
1346 }
1347
1348 /* Need to check both planes against the pipe */
1349 for_each_pipe(dev_priv, i) {
1350 u32 val = I915_READ(DSPCNTR(i));
1351 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1352 DISPPLANE_SEL_PIPE_SHIFT;
1353 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1354 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1355 plane_name(i), pipe_name(pipe));
1356 }
1357 }
1358
1359 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe)
1361 {
1362 struct drm_device *dev = dev_priv->dev;
1363 int sprite;
1364
1365 if (INTEL_INFO(dev)->gen >= 9) {
1366 for_each_sprite(dev_priv, pipe, sprite) {
1367 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1368 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1369 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1370 sprite, pipe_name(pipe));
1371 }
1372 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1373 for_each_sprite(dev_priv, pipe, sprite) {
1374 u32 val = I915_READ(SPCNTR(pipe, sprite));
1375 I915_STATE_WARN(val & SP_ENABLE,
1376 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1377 sprite_name(pipe, sprite), pipe_name(pipe));
1378 }
1379 } else if (INTEL_INFO(dev)->gen >= 7) {
1380 u32 val = I915_READ(SPRCTL(pipe));
1381 I915_STATE_WARN(val & SPRITE_ENABLE,
1382 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1383 plane_name(pipe), pipe_name(pipe));
1384 } else if (INTEL_INFO(dev)->gen >= 5) {
1385 u32 val = I915_READ(DVSCNTR(pipe));
1386 I915_STATE_WARN(val & DVS_ENABLE,
1387 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388 plane_name(pipe), pipe_name(pipe));
1389 }
1390 }
1391
1392 static void assert_vblank_disabled(struct drm_crtc *crtc)
1393 {
1394 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1395 drm_crtc_vblank_put(crtc);
1396 }
1397
1398 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1399 enum pipe pipe)
1400 {
1401 u32 val;
1402 bool enabled;
1403
1404 val = I915_READ(PCH_TRANSCONF(pipe));
1405 enabled = !!(val & TRANS_ENABLE);
1406 I915_STATE_WARN(enabled,
1407 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1408 pipe_name(pipe));
1409 }
1410
1411 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 port_sel, u32 val)
1413 {
1414 if ((val & DP_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv)) {
1418 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1419 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1420 return false;
1421 } else if (IS_CHERRYVIEW(dev_priv)) {
1422 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1423 return false;
1424 } else {
1425 if ((val & DP_PIPE_MASK) != (pipe << 30))
1426 return false;
1427 }
1428 return true;
1429 }
1430
1431 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1432 enum pipe pipe, u32 val)
1433 {
1434 if ((val & SDVO_ENABLE) == 0)
1435 return false;
1436
1437 if (HAS_PCH_CPT(dev_priv)) {
1438 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1439 return false;
1440 } else if (IS_CHERRYVIEW(dev_priv)) {
1441 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1442 return false;
1443 } else {
1444 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1445 return false;
1446 }
1447 return true;
1448 }
1449
1450 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, u32 val)
1452 {
1453 if ((val & LVDS_PORT_EN) == 0)
1454 return false;
1455
1456 if (HAS_PCH_CPT(dev_priv)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1461 return false;
1462 }
1463 return true;
1464 }
1465
1466 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, u32 val)
1468 {
1469 if ((val & ADPA_DAC_ENABLE) == 0)
1470 return false;
1471 if (HAS_PCH_CPT(dev_priv)) {
1472 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1473 return false;
1474 } else {
1475 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1476 return false;
1477 }
1478 return true;
1479 }
1480
1481 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1482 enum pipe pipe, i915_reg_t reg,
1483 u32 port_sel)
1484 {
1485 u32 val = I915_READ(reg);
1486 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1487 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1488 i915_mmio_reg_offset(reg), pipe_name(pipe));
1489
1490 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1491 && (val & DP_PIPEB_SELECT),
1492 "IBX PCH dp port still using transcoder B\n");
1493 }
1494
1495 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, i915_reg_t reg)
1497 {
1498 u32 val = I915_READ(reg);
1499 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1500 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1501 i915_mmio_reg_offset(reg), pipe_name(pipe));
1502
1503 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1504 && (val & SDVO_PIPE_B_SELECT),
1505 "IBX PCH hdmi port still using transcoder B\n");
1506 }
1507
1508 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe)
1510 {
1511 u32 val;
1512
1513 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1516
1517 val = I915_READ(PCH_ADPA);
1518 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1519 "PCH VGA enabled on transcoder %c, should be disabled\n",
1520 pipe_name(pipe));
1521
1522 val = I915_READ(PCH_LVDS);
1523 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1524 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1525 pipe_name(pipe));
1526
1527 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1528 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1529 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1530 }
1531
1532 static void _vlv_enable_pll(struct intel_crtc *crtc,
1533 const struct intel_crtc_state *pipe_config)
1534 {
1535 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1536 enum pipe pipe = crtc->pipe;
1537
1538 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1539 POSTING_READ(DPLL(pipe));
1540 udelay(150);
1541
1542 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1543 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1544 }
1545
1546 static void vlv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_state *pipe_config)
1548 {
1549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 enum pipe pipe = crtc->pipe;
1551
1552 assert_pipe_disabled(dev_priv, pipe);
1553
1554 /* PLL is protected by panel, make sure we can write it */
1555 assert_panel_unlocked(dev_priv, pipe);
1556
1557 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1558 _vlv_enable_pll(crtc, pipe_config);
1559
1560 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1561 POSTING_READ(DPLL_MD(pipe));
1562 }
1563
1564
1565 static void _chv_enable_pll(struct intel_crtc *crtc,
1566 const struct intel_crtc_state *pipe_config)
1567 {
1568 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1569 enum pipe pipe = crtc->pipe;
1570 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1571 u32 tmp;
1572
1573 mutex_lock(&dev_priv->sb_lock);
1574
1575 /* Enable back the 10bit clock to display controller */
1576 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1577 tmp |= DPIO_DCLKP_EN;
1578 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1579
1580 mutex_unlock(&dev_priv->sb_lock);
1581
1582 /*
1583 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1584 */
1585 udelay(1);
1586
1587 /* Enable PLL */
1588 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1589
1590 /* Check PLL is locked */
1591 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1592 DRM_ERROR("PLL %d failed to lock\n", pipe);
1593 }
1594
1595 static void chv_enable_pll(struct intel_crtc *crtc,
1596 const struct intel_crtc_state *pipe_config)
1597 {
1598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1599 enum pipe pipe = crtc->pipe;
1600
1601 assert_pipe_disabled(dev_priv, pipe);
1602
1603 /* PLL is protected by panel, make sure we can write it */
1604 assert_panel_unlocked(dev_priv, pipe);
1605
1606 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1607 _chv_enable_pll(crtc, pipe_config);
1608
1609 if (pipe != PIPE_A) {
1610 /*
1611 * WaPixelRepeatModeFixForC0:chv
1612 *
1613 * DPLLCMD is AWOL. Use chicken bits to propagate
1614 * the value from DPLLBMD to either pipe B or C.
1615 */
1616 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1617 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1618 I915_WRITE(CBR4_VLV, 0);
1619 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1620
1621 /*
1622 * DPLLB VGA mode also seems to cause problems.
1623 * We should always have it disabled.
1624 */
1625 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1626 } else {
1627 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1628 POSTING_READ(DPLL_MD(pipe));
1629 }
1630 }
1631
1632 static int intel_num_dvo_pipes(struct drm_device *dev)
1633 {
1634 struct intel_crtc *crtc;
1635 int count = 0;
1636
1637 for_each_intel_crtc(dev, crtc)
1638 count += crtc->base.state->active &&
1639 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1640
1641 return count;
1642 }
1643
1644 static void i9xx_enable_pll(struct intel_crtc *crtc)
1645 {
1646 struct drm_device *dev = crtc->base.dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 i915_reg_t reg = DPLL(crtc->pipe);
1649 u32 dpll = crtc->config->dpll_hw_state.dpll;
1650
1651 assert_pipe_disabled(dev_priv, crtc->pipe);
1652
1653 /* PLL is protected by panel, make sure we can write it */
1654 if (IS_MOBILE(dev) && !IS_I830(dev))
1655 assert_panel_unlocked(dev_priv, crtc->pipe);
1656
1657 /* Enable DVO 2x clock on both PLLs if necessary */
1658 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1659 /*
1660 * It appears to be important that we don't enable this
1661 * for the current pipe before otherwise configuring the
1662 * PLL. No idea how this should be handled if multiple
1663 * DVO outputs are enabled simultaneosly.
1664 */
1665 dpll |= DPLL_DVO_2X_MODE;
1666 I915_WRITE(DPLL(!crtc->pipe),
1667 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1668 }
1669
1670 /*
1671 * Apparently we need to have VGA mode enabled prior to changing
1672 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1673 * dividers, even though the register value does change.
1674 */
1675 I915_WRITE(reg, 0);
1676
1677 I915_WRITE(reg, dpll);
1678
1679 /* Wait for the clocks to stabilize. */
1680 POSTING_READ(reg);
1681 udelay(150);
1682
1683 if (INTEL_INFO(dev)->gen >= 4) {
1684 I915_WRITE(DPLL_MD(crtc->pipe),
1685 crtc->config->dpll_hw_state.dpll_md);
1686 } else {
1687 /* The pixel multiplier can only be updated once the
1688 * DPLL is enabled and the clocks are stable.
1689 *
1690 * So write it again.
1691 */
1692 I915_WRITE(reg, dpll);
1693 }
1694
1695 /* We do this three times for luck */
1696 I915_WRITE(reg, dpll);
1697 POSTING_READ(reg);
1698 udelay(150); /* wait for warmup */
1699 I915_WRITE(reg, dpll);
1700 POSTING_READ(reg);
1701 udelay(150); /* wait for warmup */
1702 I915_WRITE(reg, dpll);
1703 POSTING_READ(reg);
1704 udelay(150); /* wait for warmup */
1705 }
1706
1707 /**
1708 * i9xx_disable_pll - disable a PLL
1709 * @dev_priv: i915 private structure
1710 * @pipe: pipe PLL to disable
1711 *
1712 * Disable the PLL for @pipe, making sure the pipe is off first.
1713 *
1714 * Note! This is for pre-ILK only.
1715 */
1716 static void i9xx_disable_pll(struct intel_crtc *crtc)
1717 {
1718 struct drm_device *dev = crtc->base.dev;
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720 enum pipe pipe = crtc->pipe;
1721
1722 /* Disable DVO 2x clock on both PLLs if necessary */
1723 if (IS_I830(dev) &&
1724 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1725 !intel_num_dvo_pipes(dev)) {
1726 I915_WRITE(DPLL(PIPE_B),
1727 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1728 I915_WRITE(DPLL(PIPE_A),
1729 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1730 }
1731
1732 /* Don't disable pipe or pipe PLLs if needed */
1733 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1734 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1735 return;
1736
1737 /* Make sure the pipe isn't still relying on us */
1738 assert_pipe_disabled(dev_priv, pipe);
1739
1740 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1741 POSTING_READ(DPLL(pipe));
1742 }
1743
1744 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1745 {
1746 u32 val;
1747
1748 /* Make sure the pipe isn't still relying on us */
1749 assert_pipe_disabled(dev_priv, pipe);
1750
1751 val = DPLL_INTEGRATED_REF_CLK_VLV |
1752 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1753 if (pipe != PIPE_A)
1754 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1755
1756 I915_WRITE(DPLL(pipe), val);
1757 POSTING_READ(DPLL(pipe));
1758 }
1759
1760 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1761 {
1762 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1763 u32 val;
1764
1765 /* Make sure the pipe isn't still relying on us */
1766 assert_pipe_disabled(dev_priv, pipe);
1767
1768 val = DPLL_SSC_REF_CLK_CHV |
1769 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1770 if (pipe != PIPE_A)
1771 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1772
1773 I915_WRITE(DPLL(pipe), val);
1774 POSTING_READ(DPLL(pipe));
1775
1776 mutex_lock(&dev_priv->sb_lock);
1777
1778 /* Disable 10bit clock to display controller */
1779 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1780 val &= ~DPIO_DCLKP_EN;
1781 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1782
1783 mutex_unlock(&dev_priv->sb_lock);
1784 }
1785
1786 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1787 struct intel_digital_port *dport,
1788 unsigned int expected_mask)
1789 {
1790 u32 port_mask;
1791 i915_reg_t dpll_reg;
1792
1793 switch (dport->port) {
1794 case PORT_B:
1795 port_mask = DPLL_PORTB_READY_MASK;
1796 dpll_reg = DPLL(0);
1797 break;
1798 case PORT_C:
1799 port_mask = DPLL_PORTC_READY_MASK;
1800 dpll_reg = DPLL(0);
1801 expected_mask <<= 4;
1802 break;
1803 case PORT_D:
1804 port_mask = DPLL_PORTD_READY_MASK;
1805 dpll_reg = DPIO_PHY_STATUS;
1806 break;
1807 default:
1808 BUG();
1809 }
1810
1811 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1812 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1813 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1814 }
1815
1816 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1817 enum pipe pipe)
1818 {
1819 struct drm_device *dev = dev_priv->dev;
1820 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1822 i915_reg_t reg;
1823 uint32_t val, pipeconf_val;
1824
1825 /* Make sure PCH DPLL is enabled */
1826 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1827
1828 /* FDI must be feeding us bits for PCH ports */
1829 assert_fdi_tx_enabled(dev_priv, pipe);
1830 assert_fdi_rx_enabled(dev_priv, pipe);
1831
1832 if (HAS_PCH_CPT(dev)) {
1833 /* Workaround: Set the timing override bit before enabling the
1834 * pch transcoder. */
1835 reg = TRANS_CHICKEN2(pipe);
1836 val = I915_READ(reg);
1837 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1838 I915_WRITE(reg, val);
1839 }
1840
1841 reg = PCH_TRANSCONF(pipe);
1842 val = I915_READ(reg);
1843 pipeconf_val = I915_READ(PIPECONF(pipe));
1844
1845 if (HAS_PCH_IBX(dev_priv)) {
1846 /*
1847 * Make the BPC in transcoder be consistent with
1848 * that in pipeconf reg. For HDMI we must use 8bpc
1849 * here for both 8bpc and 12bpc.
1850 */
1851 val &= ~PIPECONF_BPC_MASK;
1852 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1853 val |= PIPECONF_8BPC;
1854 else
1855 val |= pipeconf_val & PIPECONF_BPC_MASK;
1856 }
1857
1858 val &= ~TRANS_INTERLACE_MASK;
1859 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1860 if (HAS_PCH_IBX(dev_priv) &&
1861 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1862 val |= TRANS_LEGACY_INTERLACED_ILK;
1863 else
1864 val |= TRANS_INTERLACED;
1865 else
1866 val |= TRANS_PROGRESSIVE;
1867
1868 I915_WRITE(reg, val | TRANS_ENABLE);
1869 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1870 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1871 }
1872
1873 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1874 enum transcoder cpu_transcoder)
1875 {
1876 u32 val, pipeconf_val;
1877
1878 /* FDI must be feeding us bits for PCH ports */
1879 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1880 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1881
1882 /* Workaround: set timing override bit. */
1883 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1884 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1885 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1886
1887 val = TRANS_ENABLE;
1888 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1889
1890 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1891 PIPECONF_INTERLACED_ILK)
1892 val |= TRANS_INTERLACED;
1893 else
1894 val |= TRANS_PROGRESSIVE;
1895
1896 I915_WRITE(LPT_TRANSCONF, val);
1897 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1898 DRM_ERROR("Failed to enable PCH transcoder\n");
1899 }
1900
1901 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1902 enum pipe pipe)
1903 {
1904 struct drm_device *dev = dev_priv->dev;
1905 i915_reg_t reg;
1906 uint32_t val;
1907
1908 /* FDI relies on the transcoder */
1909 assert_fdi_tx_disabled(dev_priv, pipe);
1910 assert_fdi_rx_disabled(dev_priv, pipe);
1911
1912 /* Ports must be off as well */
1913 assert_pch_ports_disabled(dev_priv, pipe);
1914
1915 reg = PCH_TRANSCONF(pipe);
1916 val = I915_READ(reg);
1917 val &= ~TRANS_ENABLE;
1918 I915_WRITE(reg, val);
1919 /* wait for PCH transcoder off, transcoder state */
1920 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1921 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1922
1923 if (HAS_PCH_CPT(dev)) {
1924 /* Workaround: Clear the timing override chicken bit again. */
1925 reg = TRANS_CHICKEN2(pipe);
1926 val = I915_READ(reg);
1927 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1928 I915_WRITE(reg, val);
1929 }
1930 }
1931
1932 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1933 {
1934 u32 val;
1935
1936 val = I915_READ(LPT_TRANSCONF);
1937 val &= ~TRANS_ENABLE;
1938 I915_WRITE(LPT_TRANSCONF, val);
1939 /* wait for PCH transcoder off, transcoder state */
1940 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1941 DRM_ERROR("Failed to disable PCH transcoder\n");
1942
1943 /* Workaround: clear timing override bit. */
1944 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1945 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1946 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1947 }
1948
1949 /**
1950 * intel_enable_pipe - enable a pipe, asserting requirements
1951 * @crtc: crtc responsible for the pipe
1952 *
1953 * Enable @crtc's pipe, making sure that various hardware specific requirements
1954 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1955 */
1956 static void intel_enable_pipe(struct intel_crtc *crtc)
1957 {
1958 struct drm_device *dev = crtc->base.dev;
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 enum pipe pipe = crtc->pipe;
1961 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1962 enum pipe pch_transcoder;
1963 i915_reg_t reg;
1964 u32 val;
1965
1966 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1967
1968 assert_planes_disabled(dev_priv, pipe);
1969 assert_cursor_disabled(dev_priv, pipe);
1970 assert_sprites_disabled(dev_priv, pipe);
1971
1972 if (HAS_PCH_LPT(dev_priv))
1973 pch_transcoder = TRANSCODER_A;
1974 else
1975 pch_transcoder = pipe;
1976
1977 /*
1978 * A pipe without a PLL won't actually be able to drive bits from
1979 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1980 * need the check.
1981 */
1982 if (HAS_GMCH_DISPLAY(dev_priv))
1983 if (crtc->config->has_dsi_encoder)
1984 assert_dsi_pll_enabled(dev_priv);
1985 else
1986 assert_pll_enabled(dev_priv, pipe);
1987 else {
1988 if (crtc->config->has_pch_encoder) {
1989 /* if driving the PCH, we need FDI enabled */
1990 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1991 assert_fdi_tx_pll_enabled(dev_priv,
1992 (enum pipe) cpu_transcoder);
1993 }
1994 /* FIXME: assert CPU port conditions for SNB+ */
1995 }
1996
1997 reg = PIPECONF(cpu_transcoder);
1998 val = I915_READ(reg);
1999 if (val & PIPECONF_ENABLE) {
2000 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2001 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2002 return;
2003 }
2004
2005 I915_WRITE(reg, val | PIPECONF_ENABLE);
2006 POSTING_READ(reg);
2007
2008 /*
2009 * Until the pipe starts DSL will read as 0, which would cause
2010 * an apparent vblank timestamp jump, which messes up also the
2011 * frame count when it's derived from the timestamps. So let's
2012 * wait for the pipe to start properly before we call
2013 * drm_crtc_vblank_on()
2014 */
2015 if (dev->max_vblank_count == 0 &&
2016 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2017 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2018 }
2019
2020 /**
2021 * intel_disable_pipe - disable a pipe, asserting requirements
2022 * @crtc: crtc whose pipes is to be disabled
2023 *
2024 * Disable the pipe of @crtc, making sure that various hardware
2025 * specific requirements are met, if applicable, e.g. plane
2026 * disabled, panel fitter off, etc.
2027 *
2028 * Will wait until the pipe has shut down before returning.
2029 */
2030 static void intel_disable_pipe(struct intel_crtc *crtc)
2031 {
2032 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2033 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2034 enum pipe pipe = crtc->pipe;
2035 i915_reg_t reg;
2036 u32 val;
2037
2038 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2039
2040 /*
2041 * Make sure planes won't keep trying to pump pixels to us,
2042 * or we might hang the display.
2043 */
2044 assert_planes_disabled(dev_priv, pipe);
2045 assert_cursor_disabled(dev_priv, pipe);
2046 assert_sprites_disabled(dev_priv, pipe);
2047
2048 reg = PIPECONF(cpu_transcoder);
2049 val = I915_READ(reg);
2050 if ((val & PIPECONF_ENABLE) == 0)
2051 return;
2052
2053 /*
2054 * Double wide has implications for planes
2055 * so best keep it disabled when not needed.
2056 */
2057 if (crtc->config->double_wide)
2058 val &= ~PIPECONF_DOUBLE_WIDE;
2059
2060 /* Don't disable pipe or pipe PLLs if needed */
2061 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2062 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2063 val &= ~PIPECONF_ENABLE;
2064
2065 I915_WRITE(reg, val);
2066 if ((val & PIPECONF_ENABLE) == 0)
2067 intel_wait_for_pipe_off(crtc);
2068 }
2069
2070 static bool need_vtd_wa(struct drm_device *dev)
2071 {
2072 #ifdef CONFIG_INTEL_IOMMU
2073 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2074 return true;
2075 #endif
2076 return false;
2077 }
2078
2079 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2080 {
2081 return IS_GEN2(dev_priv) ? 2048 : 4096;
2082 }
2083
2084 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2085 uint64_t fb_modifier, unsigned int cpp)
2086 {
2087 switch (fb_modifier) {
2088 case DRM_FORMAT_MOD_NONE:
2089 return cpp;
2090 case I915_FORMAT_MOD_X_TILED:
2091 if (IS_GEN2(dev_priv))
2092 return 128;
2093 else
2094 return 512;
2095 case I915_FORMAT_MOD_Y_TILED:
2096 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2097 return 128;
2098 else
2099 return 512;
2100 case I915_FORMAT_MOD_Yf_TILED:
2101 switch (cpp) {
2102 case 1:
2103 return 64;
2104 case 2:
2105 case 4:
2106 return 128;
2107 case 8:
2108 case 16:
2109 return 256;
2110 default:
2111 MISSING_CASE(cpp);
2112 return cpp;
2113 }
2114 break;
2115 default:
2116 MISSING_CASE(fb_modifier);
2117 return cpp;
2118 }
2119 }
2120
2121 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2122 uint64_t fb_modifier, unsigned int cpp)
2123 {
2124 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2125 return 1;
2126 else
2127 return intel_tile_size(dev_priv) /
2128 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2129 }
2130
2131 /* Return the tile dimensions in pixel units */
2132 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2133 unsigned int *tile_width,
2134 unsigned int *tile_height,
2135 uint64_t fb_modifier,
2136 unsigned int cpp)
2137 {
2138 unsigned int tile_width_bytes =
2139 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2140
2141 *tile_width = tile_width_bytes / cpp;
2142 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2143 }
2144
2145 unsigned int
2146 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2147 uint32_t pixel_format, uint64_t fb_modifier)
2148 {
2149 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2150 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2151
2152 return ALIGN(height, tile_height);
2153 }
2154
2155 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2156 {
2157 unsigned int size = 0;
2158 int i;
2159
2160 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2161 size += rot_info->plane[i].width * rot_info->plane[i].height;
2162
2163 return size;
2164 }
2165
2166 static void
2167 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2168 const struct drm_framebuffer *fb,
2169 unsigned int rotation)
2170 {
2171 if (intel_rotation_90_or_270(rotation)) {
2172 *view = i915_ggtt_view_rotated;
2173 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2174 } else {
2175 *view = i915_ggtt_view_normal;
2176 }
2177 }
2178
2179 static void
2180 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2181 struct drm_framebuffer *fb)
2182 {
2183 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2184 unsigned int tile_size, tile_width, tile_height, cpp;
2185
2186 tile_size = intel_tile_size(dev_priv);
2187
2188 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2189 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2190 fb->modifier[0], cpp);
2191
2192 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2193 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2194
2195 if (info->pixel_format == DRM_FORMAT_NV12) {
2196 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2197 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2198 fb->modifier[1], cpp);
2199
2200 info->uv_offset = fb->offsets[1];
2201 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2202 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2203 }
2204 }
2205
2206 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2207 {
2208 if (INTEL_INFO(dev_priv)->gen >= 9)
2209 return 256 * 1024;
2210 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2211 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2212 return 128 * 1024;
2213 else if (INTEL_INFO(dev_priv)->gen >= 4)
2214 return 4 * 1024;
2215 else
2216 return 0;
2217 }
2218
2219 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2220 uint64_t fb_modifier)
2221 {
2222 switch (fb_modifier) {
2223 case DRM_FORMAT_MOD_NONE:
2224 return intel_linear_alignment(dev_priv);
2225 case I915_FORMAT_MOD_X_TILED:
2226 if (INTEL_INFO(dev_priv)->gen >= 9)
2227 return 256 * 1024;
2228 return 0;
2229 case I915_FORMAT_MOD_Y_TILED:
2230 case I915_FORMAT_MOD_Yf_TILED:
2231 return 1 * 1024 * 1024;
2232 default:
2233 MISSING_CASE(fb_modifier);
2234 return 0;
2235 }
2236 }
2237
2238 int
2239 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2240 unsigned int rotation)
2241 {
2242 struct drm_device *dev = fb->dev;
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2245 struct i915_ggtt_view view;
2246 u32 alignment;
2247 int ret;
2248
2249 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2250
2251 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2252
2253 intel_fill_fb_ggtt_view(&view, fb, rotation);
2254
2255 /* Note that the w/a also requires 64 PTE of padding following the
2256 * bo. We currently fill all unused PTE with the shadow page and so
2257 * we should always have valid PTE following the scanout preventing
2258 * the VT-d warning.
2259 */
2260 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2261 alignment = 256 * 1024;
2262
2263 /*
2264 * Global gtt pte registers are special registers which actually forward
2265 * writes to a chunk of system memory. Which means that there is no risk
2266 * that the register values disappear as soon as we call
2267 * intel_runtime_pm_put(), so it is correct to wrap only the
2268 * pin/unpin/fence and not more.
2269 */
2270 intel_runtime_pm_get(dev_priv);
2271
2272 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2273 &view);
2274 if (ret)
2275 goto err_pm;
2276
2277 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2278 * fence, whereas 965+ only requires a fence if using
2279 * framebuffer compression. For simplicity, we always install
2280 * a fence as the cost is not that onerous.
2281 */
2282 if (view.type == I915_GGTT_VIEW_NORMAL) {
2283 ret = i915_gem_object_get_fence(obj);
2284 if (ret == -EDEADLK) {
2285 /*
2286 * -EDEADLK means there are no free fences
2287 * no pending flips.
2288 *
2289 * This is propagated to atomic, but it uses
2290 * -EDEADLK to force a locking recovery, so
2291 * change the returned error to -EBUSY.
2292 */
2293 ret = -EBUSY;
2294 goto err_unpin;
2295 } else if (ret)
2296 goto err_unpin;
2297
2298 i915_gem_object_pin_fence(obj);
2299 }
2300
2301 intel_runtime_pm_put(dev_priv);
2302 return 0;
2303
2304 err_unpin:
2305 i915_gem_object_unpin_from_display_plane(obj, &view);
2306 err_pm:
2307 intel_runtime_pm_put(dev_priv);
2308 return ret;
2309 }
2310
2311 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2312 {
2313 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2314 struct i915_ggtt_view view;
2315
2316 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2317
2318 intel_fill_fb_ggtt_view(&view, fb, rotation);
2319
2320 if (view.type == I915_GGTT_VIEW_NORMAL)
2321 i915_gem_object_unpin_fence(obj);
2322
2323 i915_gem_object_unpin_from_display_plane(obj, &view);
2324 }
2325
2326 /*
2327 * Adjust the tile offset by moving the difference into
2328 * the x/y offsets.
2329 *
2330 * Input tile dimensions and pitch must already be
2331 * rotated to match x and y, and in pixel units.
2332 */
2333 static u32 intel_adjust_tile_offset(int *x, int *y,
2334 unsigned int tile_width,
2335 unsigned int tile_height,
2336 unsigned int tile_size,
2337 unsigned int pitch_tiles,
2338 u32 old_offset,
2339 u32 new_offset)
2340 {
2341 unsigned int tiles;
2342
2343 WARN_ON(old_offset & (tile_size - 1));
2344 WARN_ON(new_offset & (tile_size - 1));
2345 WARN_ON(new_offset > old_offset);
2346
2347 tiles = (old_offset - new_offset) / tile_size;
2348
2349 *y += tiles / pitch_tiles * tile_height;
2350 *x += tiles % pitch_tiles * tile_width;
2351
2352 return new_offset;
2353 }
2354
2355 /*
2356 * Computes the linear offset to the base tile and adjusts
2357 * x, y. bytes per pixel is assumed to be a power-of-two.
2358 *
2359 * In the 90/270 rotated case, x and y are assumed
2360 * to be already rotated to match the rotated GTT view, and
2361 * pitch is the tile_height aligned framebuffer height.
2362 */
2363 u32 intel_compute_tile_offset(int *x, int *y,
2364 const struct drm_framebuffer *fb, int plane,
2365 unsigned int pitch,
2366 unsigned int rotation)
2367 {
2368 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2369 uint64_t fb_modifier = fb->modifier[plane];
2370 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2371 u32 offset, offset_aligned, alignment;
2372
2373 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2374 if (alignment)
2375 alignment--;
2376
2377 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2378 unsigned int tile_size, tile_width, tile_height;
2379 unsigned int tile_rows, tiles, pitch_tiles;
2380
2381 tile_size = intel_tile_size(dev_priv);
2382 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2383 fb_modifier, cpp);
2384
2385 if (intel_rotation_90_or_270(rotation)) {
2386 pitch_tiles = pitch / tile_height;
2387 swap(tile_width, tile_height);
2388 } else {
2389 pitch_tiles = pitch / (tile_width * cpp);
2390 }
2391
2392 tile_rows = *y / tile_height;
2393 *y %= tile_height;
2394
2395 tiles = *x / tile_width;
2396 *x %= tile_width;
2397
2398 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2399 offset_aligned = offset & ~alignment;
2400
2401 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2402 tile_size, pitch_tiles,
2403 offset, offset_aligned);
2404 } else {
2405 offset = *y * pitch + *x * cpp;
2406 offset_aligned = offset & ~alignment;
2407
2408 *y = (offset & alignment) / pitch;
2409 *x = ((offset & alignment) - *y * pitch) / cpp;
2410 }
2411
2412 return offset_aligned;
2413 }
2414
2415 static int i9xx_format_to_fourcc(int format)
2416 {
2417 switch (format) {
2418 case DISPPLANE_8BPP:
2419 return DRM_FORMAT_C8;
2420 case DISPPLANE_BGRX555:
2421 return DRM_FORMAT_XRGB1555;
2422 case DISPPLANE_BGRX565:
2423 return DRM_FORMAT_RGB565;
2424 default:
2425 case DISPPLANE_BGRX888:
2426 return DRM_FORMAT_XRGB8888;
2427 case DISPPLANE_RGBX888:
2428 return DRM_FORMAT_XBGR8888;
2429 case DISPPLANE_BGRX101010:
2430 return DRM_FORMAT_XRGB2101010;
2431 case DISPPLANE_RGBX101010:
2432 return DRM_FORMAT_XBGR2101010;
2433 }
2434 }
2435
2436 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2437 {
2438 switch (format) {
2439 case PLANE_CTL_FORMAT_RGB_565:
2440 return DRM_FORMAT_RGB565;
2441 default:
2442 case PLANE_CTL_FORMAT_XRGB_8888:
2443 if (rgb_order) {
2444 if (alpha)
2445 return DRM_FORMAT_ABGR8888;
2446 else
2447 return DRM_FORMAT_XBGR8888;
2448 } else {
2449 if (alpha)
2450 return DRM_FORMAT_ARGB8888;
2451 else
2452 return DRM_FORMAT_XRGB8888;
2453 }
2454 case PLANE_CTL_FORMAT_XRGB_2101010:
2455 if (rgb_order)
2456 return DRM_FORMAT_XBGR2101010;
2457 else
2458 return DRM_FORMAT_XRGB2101010;
2459 }
2460 }
2461
2462 static bool
2463 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2464 struct intel_initial_plane_config *plane_config)
2465 {
2466 struct drm_device *dev = crtc->base.dev;
2467 struct drm_i915_private *dev_priv = to_i915(dev);
2468 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2469 struct drm_i915_gem_object *obj = NULL;
2470 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2471 struct drm_framebuffer *fb = &plane_config->fb->base;
2472 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2473 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2474 PAGE_SIZE);
2475
2476 size_aligned -= base_aligned;
2477
2478 if (plane_config->size == 0)
2479 return false;
2480
2481 /* If the FB is too big, just don't use it since fbdev is not very
2482 * important and we should probably use that space with FBC or other
2483 * features. */
2484 if (size_aligned * 2 > ggtt->stolen_usable_size)
2485 return false;
2486
2487 mutex_lock(&dev->struct_mutex);
2488
2489 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2490 base_aligned,
2491 base_aligned,
2492 size_aligned);
2493 if (!obj) {
2494 mutex_unlock(&dev->struct_mutex);
2495 return false;
2496 }
2497
2498 obj->tiling_mode = plane_config->tiling;
2499 if (obj->tiling_mode == I915_TILING_X)
2500 obj->stride = fb->pitches[0];
2501
2502 mode_cmd.pixel_format = fb->pixel_format;
2503 mode_cmd.width = fb->width;
2504 mode_cmd.height = fb->height;
2505 mode_cmd.pitches[0] = fb->pitches[0];
2506 mode_cmd.modifier[0] = fb->modifier[0];
2507 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2508
2509 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2510 &mode_cmd, obj)) {
2511 DRM_DEBUG_KMS("intel fb init failed\n");
2512 goto out_unref_obj;
2513 }
2514
2515 mutex_unlock(&dev->struct_mutex);
2516
2517 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2518 return true;
2519
2520 out_unref_obj:
2521 drm_gem_object_unreference(&obj->base);
2522 mutex_unlock(&dev->struct_mutex);
2523 return false;
2524 }
2525
2526 static void
2527 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2528 struct intel_initial_plane_config *plane_config)
2529 {
2530 struct drm_device *dev = intel_crtc->base.dev;
2531 struct drm_i915_private *dev_priv = dev->dev_private;
2532 struct drm_crtc *c;
2533 struct intel_crtc *i;
2534 struct drm_i915_gem_object *obj;
2535 struct drm_plane *primary = intel_crtc->base.primary;
2536 struct drm_plane_state *plane_state = primary->state;
2537 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2538 struct intel_plane *intel_plane = to_intel_plane(primary);
2539 struct intel_plane_state *intel_state =
2540 to_intel_plane_state(plane_state);
2541 struct drm_framebuffer *fb;
2542
2543 if (!plane_config->fb)
2544 return;
2545
2546 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2547 fb = &plane_config->fb->base;
2548 goto valid_fb;
2549 }
2550
2551 kfree(plane_config->fb);
2552
2553 /*
2554 * Failed to alloc the obj, check to see if we should share
2555 * an fb with another CRTC instead
2556 */
2557 for_each_crtc(dev, c) {
2558 i = to_intel_crtc(c);
2559
2560 if (c == &intel_crtc->base)
2561 continue;
2562
2563 if (!i->active)
2564 continue;
2565
2566 fb = c->primary->fb;
2567 if (!fb)
2568 continue;
2569
2570 obj = intel_fb_obj(fb);
2571 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2572 drm_framebuffer_reference(fb);
2573 goto valid_fb;
2574 }
2575 }
2576
2577 /*
2578 * We've failed to reconstruct the BIOS FB. Current display state
2579 * indicates that the primary plane is visible, but has a NULL FB,
2580 * which will lead to problems later if we don't fix it up. The
2581 * simplest solution is to just disable the primary plane now and
2582 * pretend the BIOS never had it enabled.
2583 */
2584 to_intel_plane_state(plane_state)->visible = false;
2585 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2586 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2587 intel_plane->disable_plane(primary, &intel_crtc->base);
2588
2589 return;
2590
2591 valid_fb:
2592 plane_state->src_x = 0;
2593 plane_state->src_y = 0;
2594 plane_state->src_w = fb->width << 16;
2595 plane_state->src_h = fb->height << 16;
2596
2597 plane_state->crtc_x = 0;
2598 plane_state->crtc_y = 0;
2599 plane_state->crtc_w = fb->width;
2600 plane_state->crtc_h = fb->height;
2601
2602 intel_state->src.x1 = plane_state->src_x;
2603 intel_state->src.y1 = plane_state->src_y;
2604 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2605 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2606 intel_state->dst.x1 = plane_state->crtc_x;
2607 intel_state->dst.y1 = plane_state->crtc_y;
2608 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2609 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2610
2611 obj = intel_fb_obj(fb);
2612 if (obj->tiling_mode != I915_TILING_NONE)
2613 dev_priv->preserve_bios_swizzle = true;
2614
2615 drm_framebuffer_reference(fb);
2616 primary->fb = primary->state->fb = fb;
2617 primary->crtc = primary->state->crtc = &intel_crtc->base;
2618 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2619 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2620 }
2621
2622 static void i9xx_update_primary_plane(struct drm_plane *primary,
2623 const struct intel_crtc_state *crtc_state,
2624 const struct intel_plane_state *plane_state)
2625 {
2626 struct drm_device *dev = primary->dev;
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2629 struct drm_framebuffer *fb = plane_state->base.fb;
2630 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2631 int plane = intel_crtc->plane;
2632 u32 linear_offset;
2633 u32 dspcntr;
2634 i915_reg_t reg = DSPCNTR(plane);
2635 unsigned int rotation = plane_state->base.rotation;
2636 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2637 int x = plane_state->src.x1 >> 16;
2638 int y = plane_state->src.y1 >> 16;
2639
2640 dspcntr = DISPPLANE_GAMMA_ENABLE;
2641
2642 dspcntr |= DISPLAY_PLANE_ENABLE;
2643
2644 if (INTEL_INFO(dev)->gen < 4) {
2645 if (intel_crtc->pipe == PIPE_B)
2646 dspcntr |= DISPPLANE_SEL_PIPE_B;
2647
2648 /* pipesrc and dspsize control the size that is scaled from,
2649 * which should always be the user's requested size.
2650 */
2651 I915_WRITE(DSPSIZE(plane),
2652 ((crtc_state->pipe_src_h - 1) << 16) |
2653 (crtc_state->pipe_src_w - 1));
2654 I915_WRITE(DSPPOS(plane), 0);
2655 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2656 I915_WRITE(PRIMSIZE(plane),
2657 ((crtc_state->pipe_src_h - 1) << 16) |
2658 (crtc_state->pipe_src_w - 1));
2659 I915_WRITE(PRIMPOS(plane), 0);
2660 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2661 }
2662
2663 switch (fb->pixel_format) {
2664 case DRM_FORMAT_C8:
2665 dspcntr |= DISPPLANE_8BPP;
2666 break;
2667 case DRM_FORMAT_XRGB1555:
2668 dspcntr |= DISPPLANE_BGRX555;
2669 break;
2670 case DRM_FORMAT_RGB565:
2671 dspcntr |= DISPPLANE_BGRX565;
2672 break;
2673 case DRM_FORMAT_XRGB8888:
2674 dspcntr |= DISPPLANE_BGRX888;
2675 break;
2676 case DRM_FORMAT_XBGR8888:
2677 dspcntr |= DISPPLANE_RGBX888;
2678 break;
2679 case DRM_FORMAT_XRGB2101010:
2680 dspcntr |= DISPPLANE_BGRX101010;
2681 break;
2682 case DRM_FORMAT_XBGR2101010:
2683 dspcntr |= DISPPLANE_RGBX101010;
2684 break;
2685 default:
2686 BUG();
2687 }
2688
2689 if (INTEL_INFO(dev)->gen >= 4 &&
2690 obj->tiling_mode != I915_TILING_NONE)
2691 dspcntr |= DISPPLANE_TILED;
2692
2693 if (IS_G4X(dev))
2694 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2695
2696 linear_offset = y * fb->pitches[0] + x * cpp;
2697
2698 if (INTEL_INFO(dev)->gen >= 4) {
2699 intel_crtc->dspaddr_offset =
2700 intel_compute_tile_offset(&x, &y, fb, 0,
2701 fb->pitches[0], rotation);
2702 linear_offset -= intel_crtc->dspaddr_offset;
2703 } else {
2704 intel_crtc->dspaddr_offset = linear_offset;
2705 }
2706
2707 if (rotation == BIT(DRM_ROTATE_180)) {
2708 dspcntr |= DISPPLANE_ROTATE_180;
2709
2710 x += (crtc_state->pipe_src_w - 1);
2711 y += (crtc_state->pipe_src_h - 1);
2712
2713 /* Finding the last pixel of the last line of the display
2714 data and adding to linear_offset*/
2715 linear_offset +=
2716 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2717 (crtc_state->pipe_src_w - 1) * cpp;
2718 }
2719
2720 intel_crtc->adjusted_x = x;
2721 intel_crtc->adjusted_y = y;
2722
2723 I915_WRITE(reg, dspcntr);
2724
2725 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2726 if (INTEL_INFO(dev)->gen >= 4) {
2727 I915_WRITE(DSPSURF(plane),
2728 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2729 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2730 I915_WRITE(DSPLINOFF(plane), linear_offset);
2731 } else
2732 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2733 POSTING_READ(reg);
2734 }
2735
2736 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2737 struct drm_crtc *crtc)
2738 {
2739 struct drm_device *dev = crtc->dev;
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2742 int plane = intel_crtc->plane;
2743
2744 I915_WRITE(DSPCNTR(plane), 0);
2745 if (INTEL_INFO(dev_priv)->gen >= 4)
2746 I915_WRITE(DSPSURF(plane), 0);
2747 else
2748 I915_WRITE(DSPADDR(plane), 0);
2749 POSTING_READ(DSPCNTR(plane));
2750 }
2751
2752 static void ironlake_update_primary_plane(struct drm_plane *primary,
2753 const struct intel_crtc_state *crtc_state,
2754 const struct intel_plane_state *plane_state)
2755 {
2756 struct drm_device *dev = primary->dev;
2757 struct drm_i915_private *dev_priv = dev->dev_private;
2758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2759 struct drm_framebuffer *fb = plane_state->base.fb;
2760 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2761 int plane = intel_crtc->plane;
2762 u32 linear_offset;
2763 u32 dspcntr;
2764 i915_reg_t reg = DSPCNTR(plane);
2765 unsigned int rotation = plane_state->base.rotation;
2766 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2767 int x = plane_state->src.x1 >> 16;
2768 int y = plane_state->src.y1 >> 16;
2769
2770 dspcntr = DISPPLANE_GAMMA_ENABLE;
2771 dspcntr |= DISPLAY_PLANE_ENABLE;
2772
2773 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2774 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2775
2776 switch (fb->pixel_format) {
2777 case DRM_FORMAT_C8:
2778 dspcntr |= DISPPLANE_8BPP;
2779 break;
2780 case DRM_FORMAT_RGB565:
2781 dspcntr |= DISPPLANE_BGRX565;
2782 break;
2783 case DRM_FORMAT_XRGB8888:
2784 dspcntr |= DISPPLANE_BGRX888;
2785 break;
2786 case DRM_FORMAT_XBGR8888:
2787 dspcntr |= DISPPLANE_RGBX888;
2788 break;
2789 case DRM_FORMAT_XRGB2101010:
2790 dspcntr |= DISPPLANE_BGRX101010;
2791 break;
2792 case DRM_FORMAT_XBGR2101010:
2793 dspcntr |= DISPPLANE_RGBX101010;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 if (obj->tiling_mode != I915_TILING_NONE)
2800 dspcntr |= DISPPLANE_TILED;
2801
2802 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2803 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2804
2805 linear_offset = y * fb->pitches[0] + x * cpp;
2806 intel_crtc->dspaddr_offset =
2807 intel_compute_tile_offset(&x, &y, fb, 0,
2808 fb->pitches[0], rotation);
2809 linear_offset -= intel_crtc->dspaddr_offset;
2810 if (rotation == BIT(DRM_ROTATE_180)) {
2811 dspcntr |= DISPPLANE_ROTATE_180;
2812
2813 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2814 x += (crtc_state->pipe_src_w - 1);
2815 y += (crtc_state->pipe_src_h - 1);
2816
2817 /* Finding the last pixel of the last line of the display
2818 data and adding to linear_offset*/
2819 linear_offset +=
2820 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2821 (crtc_state->pipe_src_w - 1) * cpp;
2822 }
2823 }
2824
2825 intel_crtc->adjusted_x = x;
2826 intel_crtc->adjusted_y = y;
2827
2828 I915_WRITE(reg, dspcntr);
2829
2830 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2831 I915_WRITE(DSPSURF(plane),
2832 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2833 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2834 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2835 } else {
2836 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2837 I915_WRITE(DSPLINOFF(plane), linear_offset);
2838 }
2839 POSTING_READ(reg);
2840 }
2841
2842 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2843 uint64_t fb_modifier, uint32_t pixel_format)
2844 {
2845 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2846 return 64;
2847 } else {
2848 int cpp = drm_format_plane_cpp(pixel_format, 0);
2849
2850 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2851 }
2852 }
2853
2854 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2855 struct drm_i915_gem_object *obj,
2856 unsigned int plane)
2857 {
2858 struct i915_ggtt_view view;
2859 struct i915_vma *vma;
2860 u64 offset;
2861
2862 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2863 intel_plane->base.state->rotation);
2864
2865 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2866 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2867 view.type))
2868 return -1;
2869
2870 offset = vma->node.start;
2871
2872 if (plane == 1) {
2873 offset += vma->ggtt_view.params.rotated.uv_start_page *
2874 PAGE_SIZE;
2875 }
2876
2877 WARN_ON(upper_32_bits(offset));
2878
2879 return lower_32_bits(offset);
2880 }
2881
2882 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2883 {
2884 struct drm_device *dev = intel_crtc->base.dev;
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886
2887 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2888 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2889 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2890 }
2891
2892 /*
2893 * This function detaches (aka. unbinds) unused scalers in hardware
2894 */
2895 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2896 {
2897 struct intel_crtc_scaler_state *scaler_state;
2898 int i;
2899
2900 scaler_state = &intel_crtc->config->scaler_state;
2901
2902 /* loop through and disable scalers that aren't in use */
2903 for (i = 0; i < intel_crtc->num_scalers; i++) {
2904 if (!scaler_state->scalers[i].in_use)
2905 skl_detach_scaler(intel_crtc, i);
2906 }
2907 }
2908
2909 u32 skl_plane_ctl_format(uint32_t pixel_format)
2910 {
2911 switch (pixel_format) {
2912 case DRM_FORMAT_C8:
2913 return PLANE_CTL_FORMAT_INDEXED;
2914 case DRM_FORMAT_RGB565:
2915 return PLANE_CTL_FORMAT_RGB_565;
2916 case DRM_FORMAT_XBGR8888:
2917 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2918 case DRM_FORMAT_XRGB8888:
2919 return PLANE_CTL_FORMAT_XRGB_8888;
2920 /*
2921 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2922 * to be already pre-multiplied. We need to add a knob (or a different
2923 * DRM_FORMAT) for user-space to configure that.
2924 */
2925 case DRM_FORMAT_ABGR8888:
2926 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2927 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2928 case DRM_FORMAT_ARGB8888:
2929 return PLANE_CTL_FORMAT_XRGB_8888 |
2930 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2931 case DRM_FORMAT_XRGB2101010:
2932 return PLANE_CTL_FORMAT_XRGB_2101010;
2933 case DRM_FORMAT_XBGR2101010:
2934 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2935 case DRM_FORMAT_YUYV:
2936 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2937 case DRM_FORMAT_YVYU:
2938 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2939 case DRM_FORMAT_UYVY:
2940 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2941 case DRM_FORMAT_VYUY:
2942 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2943 default:
2944 MISSING_CASE(pixel_format);
2945 }
2946
2947 return 0;
2948 }
2949
2950 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2951 {
2952 switch (fb_modifier) {
2953 case DRM_FORMAT_MOD_NONE:
2954 break;
2955 case I915_FORMAT_MOD_X_TILED:
2956 return PLANE_CTL_TILED_X;
2957 case I915_FORMAT_MOD_Y_TILED:
2958 return PLANE_CTL_TILED_Y;
2959 case I915_FORMAT_MOD_Yf_TILED:
2960 return PLANE_CTL_TILED_YF;
2961 default:
2962 MISSING_CASE(fb_modifier);
2963 }
2964
2965 return 0;
2966 }
2967
2968 u32 skl_plane_ctl_rotation(unsigned int rotation)
2969 {
2970 switch (rotation) {
2971 case BIT(DRM_ROTATE_0):
2972 break;
2973 /*
2974 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2975 * while i915 HW rotation is clockwise, thats why this swapping.
2976 */
2977 case BIT(DRM_ROTATE_90):
2978 return PLANE_CTL_ROTATE_270;
2979 case BIT(DRM_ROTATE_180):
2980 return PLANE_CTL_ROTATE_180;
2981 case BIT(DRM_ROTATE_270):
2982 return PLANE_CTL_ROTATE_90;
2983 default:
2984 MISSING_CASE(rotation);
2985 }
2986
2987 return 0;
2988 }
2989
2990 static void skylake_update_primary_plane(struct drm_plane *plane,
2991 const struct intel_crtc_state *crtc_state,
2992 const struct intel_plane_state *plane_state)
2993 {
2994 struct drm_device *dev = plane->dev;
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2997 struct drm_framebuffer *fb = plane_state->base.fb;
2998 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2999 int pipe = intel_crtc->pipe;
3000 u32 plane_ctl, stride_div, stride;
3001 u32 tile_height, plane_offset, plane_size;
3002 unsigned int rotation = plane_state->base.rotation;
3003 int x_offset, y_offset;
3004 u32 surf_addr;
3005 int scaler_id = plane_state->scaler_id;
3006 int src_x = plane_state->src.x1 >> 16;
3007 int src_y = plane_state->src.y1 >> 16;
3008 int src_w = drm_rect_width(&plane_state->src) >> 16;
3009 int src_h = drm_rect_height(&plane_state->src) >> 16;
3010 int dst_x = plane_state->dst.x1;
3011 int dst_y = plane_state->dst.y1;
3012 int dst_w = drm_rect_width(&plane_state->dst);
3013 int dst_h = drm_rect_height(&plane_state->dst);
3014
3015 plane_ctl = PLANE_CTL_ENABLE |
3016 PLANE_CTL_PIPE_GAMMA_ENABLE |
3017 PLANE_CTL_PIPE_CSC_ENABLE;
3018
3019 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3020 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3021 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3022 plane_ctl |= skl_plane_ctl_rotation(rotation);
3023
3024 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3025 fb->pixel_format);
3026 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3027
3028 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3029
3030 if (intel_rotation_90_or_270(rotation)) {
3031 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3032
3033 /* stride = Surface height in tiles */
3034 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3035 stride = DIV_ROUND_UP(fb->height, tile_height);
3036 x_offset = stride * tile_height - src_y - src_h;
3037 y_offset = src_x;
3038 plane_size = (src_w - 1) << 16 | (src_h - 1);
3039 } else {
3040 stride = fb->pitches[0] / stride_div;
3041 x_offset = src_x;
3042 y_offset = src_y;
3043 plane_size = (src_h - 1) << 16 | (src_w - 1);
3044 }
3045 plane_offset = y_offset << 16 | x_offset;
3046
3047 intel_crtc->adjusted_x = x_offset;
3048 intel_crtc->adjusted_y = y_offset;
3049
3050 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3051 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3052 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3053 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3054
3055 if (scaler_id >= 0) {
3056 uint32_t ps_ctrl = 0;
3057
3058 WARN_ON(!dst_w || !dst_h);
3059 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3060 crtc_state->scaler_state.scalers[scaler_id].mode;
3061 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3062 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3063 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3064 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3065 I915_WRITE(PLANE_POS(pipe, 0), 0);
3066 } else {
3067 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3068 }
3069
3070 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3071
3072 POSTING_READ(PLANE_SURF(pipe, 0));
3073 }
3074
3075 static void skylake_disable_primary_plane(struct drm_plane *primary,
3076 struct drm_crtc *crtc)
3077 {
3078 struct drm_device *dev = crtc->dev;
3079 struct drm_i915_private *dev_priv = dev->dev_private;
3080 int pipe = to_intel_crtc(crtc)->pipe;
3081
3082 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3083 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3084 POSTING_READ(PLANE_SURF(pipe, 0));
3085 }
3086
3087 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3088 static int
3089 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3090 int x, int y, enum mode_set_atomic state)
3091 {
3092 /* Support for kgdboc is disabled, this needs a major rework. */
3093 DRM_ERROR("legacy panic handler not supported any more.\n");
3094
3095 return -ENODEV;
3096 }
3097
3098 static void intel_update_primary_planes(struct drm_device *dev)
3099 {
3100 struct drm_crtc *crtc;
3101
3102 for_each_crtc(dev, crtc) {
3103 struct intel_plane *plane = to_intel_plane(crtc->primary);
3104 struct intel_plane_state *plane_state;
3105
3106 drm_modeset_lock_crtc(crtc, &plane->base);
3107 plane_state = to_intel_plane_state(plane->base.state);
3108
3109 if (plane_state->visible)
3110 plane->update_plane(&plane->base,
3111 to_intel_crtc_state(crtc->state),
3112 plane_state);
3113
3114 drm_modeset_unlock_crtc(crtc);
3115 }
3116 }
3117
3118 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3119 {
3120 /* no reset support for gen2 */
3121 if (IS_GEN2(dev_priv))
3122 return;
3123
3124 /* reset doesn't touch the display */
3125 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3126 return;
3127
3128 drm_modeset_lock_all(dev_priv->dev);
3129 /*
3130 * Disabling the crtcs gracefully seems nicer. Also the
3131 * g33 docs say we should at least disable all the planes.
3132 */
3133 intel_display_suspend(dev_priv->dev);
3134 }
3135
3136 void intel_finish_reset(struct drm_i915_private *dev_priv)
3137 {
3138 /* no reset support for gen2 */
3139 if (IS_GEN2(dev_priv))
3140 return;
3141
3142 /* reset doesn't touch the display */
3143 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3144 /*
3145 * Flips in the rings have been nuked by the reset,
3146 * so update the base address of all primary
3147 * planes to the the last fb to make sure we're
3148 * showing the correct fb after a reset.
3149 *
3150 * FIXME: Atomic will make this obsolete since we won't schedule
3151 * CS-based flips (which might get lost in gpu resets) any more.
3152 */
3153 intel_update_primary_planes(dev_priv->dev);
3154 return;
3155 }
3156
3157 /*
3158 * The display has been reset as well,
3159 * so need a full re-initialization.
3160 */
3161 intel_runtime_pm_disable_interrupts(dev_priv);
3162 intel_runtime_pm_enable_interrupts(dev_priv);
3163
3164 intel_modeset_init_hw(dev_priv->dev);
3165
3166 spin_lock_irq(&dev_priv->irq_lock);
3167 if (dev_priv->display.hpd_irq_setup)
3168 dev_priv->display.hpd_irq_setup(dev_priv);
3169 spin_unlock_irq(&dev_priv->irq_lock);
3170
3171 intel_display_resume(dev_priv->dev);
3172
3173 intel_hpd_init(dev_priv);
3174
3175 drm_modeset_unlock_all(dev_priv->dev);
3176 }
3177
3178 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3179 {
3180 return !list_empty_careful(&to_intel_crtc(crtc)->flip_work);
3181 }
3182
3183 static void intel_update_pipe_config(struct intel_crtc *crtc,
3184 struct intel_crtc_state *old_crtc_state)
3185 {
3186 struct drm_device *dev = crtc->base.dev;
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188 struct intel_crtc_state *pipe_config =
3189 to_intel_crtc_state(crtc->base.state);
3190
3191 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3192 crtc->base.mode = crtc->base.state->mode;
3193
3194 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3195 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3196 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3197
3198 /*
3199 * Update pipe size and adjust fitter if needed: the reason for this is
3200 * that in compute_mode_changes we check the native mode (not the pfit
3201 * mode) to see if we can flip rather than do a full mode set. In the
3202 * fastboot case, we'll flip, but if we don't update the pipesrc and
3203 * pfit state, we'll end up with a big fb scanned out into the wrong
3204 * sized surface.
3205 */
3206
3207 I915_WRITE(PIPESRC(crtc->pipe),
3208 ((pipe_config->pipe_src_w - 1) << 16) |
3209 (pipe_config->pipe_src_h - 1));
3210
3211 /* on skylake this is done by detaching scalers */
3212 if (INTEL_INFO(dev)->gen >= 9) {
3213 skl_detach_scalers(crtc);
3214
3215 if (pipe_config->pch_pfit.enabled)
3216 skylake_pfit_enable(crtc);
3217 } else if (HAS_PCH_SPLIT(dev)) {
3218 if (pipe_config->pch_pfit.enabled)
3219 ironlake_pfit_enable(crtc);
3220 else if (old_crtc_state->pch_pfit.enabled)
3221 ironlake_pfit_disable(crtc, true);
3222 }
3223 }
3224
3225 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3226 {
3227 struct drm_device *dev = crtc->dev;
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3230 int pipe = intel_crtc->pipe;
3231 i915_reg_t reg;
3232 u32 temp;
3233
3234 /* enable normal train */
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
3237 if (IS_IVYBRIDGE(dev)) {
3238 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3239 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3240 } else {
3241 temp &= ~FDI_LINK_TRAIN_NONE;
3242 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3243 }
3244 I915_WRITE(reg, temp);
3245
3246 reg = FDI_RX_CTL(pipe);
3247 temp = I915_READ(reg);
3248 if (HAS_PCH_CPT(dev)) {
3249 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3250 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3251 } else {
3252 temp &= ~FDI_LINK_TRAIN_NONE;
3253 temp |= FDI_LINK_TRAIN_NONE;
3254 }
3255 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3256
3257 /* wait one idle pattern time */
3258 POSTING_READ(reg);
3259 udelay(1000);
3260
3261 /* IVB wants error correction enabled */
3262 if (IS_IVYBRIDGE(dev))
3263 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3264 FDI_FE_ERRC_ENABLE);
3265 }
3266
3267 /* The FDI link training functions for ILK/Ibexpeak. */
3268 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3269 {
3270 struct drm_device *dev = crtc->dev;
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273 int pipe = intel_crtc->pipe;
3274 i915_reg_t reg;
3275 u32 temp, tries;
3276
3277 /* FDI needs bits from pipe first */
3278 assert_pipe_enabled(dev_priv, pipe);
3279
3280 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3281 for train result */
3282 reg = FDI_RX_IMR(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_RX_SYMBOL_LOCK;
3285 temp &= ~FDI_RX_BIT_LOCK;
3286 I915_WRITE(reg, temp);
3287 I915_READ(reg);
3288 udelay(150);
3289
3290 /* enable CPU FDI TX and PCH FDI RX */
3291 reg = FDI_TX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3294 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3295 temp &= ~FDI_LINK_TRAIN_NONE;
3296 temp |= FDI_LINK_TRAIN_PATTERN_1;
3297 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3298
3299 reg = FDI_RX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 temp &= ~FDI_LINK_TRAIN_NONE;
3302 temp |= FDI_LINK_TRAIN_PATTERN_1;
3303 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3304
3305 POSTING_READ(reg);
3306 udelay(150);
3307
3308 /* Ironlake workaround, enable clock pointer after FDI enable*/
3309 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3310 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3311 FDI_RX_PHASE_SYNC_POINTER_EN);
3312
3313 reg = FDI_RX_IIR(pipe);
3314 for (tries = 0; tries < 5; tries++) {
3315 temp = I915_READ(reg);
3316 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3317
3318 if ((temp & FDI_RX_BIT_LOCK)) {
3319 DRM_DEBUG_KMS("FDI train 1 done.\n");
3320 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3321 break;
3322 }
3323 }
3324 if (tries == 5)
3325 DRM_ERROR("FDI train 1 fail!\n");
3326
3327 /* Train 2 */
3328 reg = FDI_TX_CTL(pipe);
3329 temp = I915_READ(reg);
3330 temp &= ~FDI_LINK_TRAIN_NONE;
3331 temp |= FDI_LINK_TRAIN_PATTERN_2;
3332 I915_WRITE(reg, temp);
3333
3334 reg = FDI_RX_CTL(pipe);
3335 temp = I915_READ(reg);
3336 temp &= ~FDI_LINK_TRAIN_NONE;
3337 temp |= FDI_LINK_TRAIN_PATTERN_2;
3338 I915_WRITE(reg, temp);
3339
3340 POSTING_READ(reg);
3341 udelay(150);
3342
3343 reg = FDI_RX_IIR(pipe);
3344 for (tries = 0; tries < 5; tries++) {
3345 temp = I915_READ(reg);
3346 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3347
3348 if (temp & FDI_RX_SYMBOL_LOCK) {
3349 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3350 DRM_DEBUG_KMS("FDI train 2 done.\n");
3351 break;
3352 }
3353 }
3354 if (tries == 5)
3355 DRM_ERROR("FDI train 2 fail!\n");
3356
3357 DRM_DEBUG_KMS("FDI train done\n");
3358
3359 }
3360
3361 static const int snb_b_fdi_train_param[] = {
3362 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3363 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3364 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3365 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3366 };
3367
3368 /* The FDI link training functions for SNB/Cougarpoint. */
3369 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3370 {
3371 struct drm_device *dev = crtc->dev;
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3374 int pipe = intel_crtc->pipe;
3375 i915_reg_t reg;
3376 u32 temp, i, retry;
3377
3378 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3379 for train result */
3380 reg = FDI_RX_IMR(pipe);
3381 temp = I915_READ(reg);
3382 temp &= ~FDI_RX_SYMBOL_LOCK;
3383 temp &= ~FDI_RX_BIT_LOCK;
3384 I915_WRITE(reg, temp);
3385
3386 POSTING_READ(reg);
3387 udelay(150);
3388
3389 /* enable CPU FDI TX and PCH FDI RX */
3390 reg = FDI_TX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3393 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3394 temp &= ~FDI_LINK_TRAIN_NONE;
3395 temp |= FDI_LINK_TRAIN_PATTERN_1;
3396 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3397 /* SNB-B */
3398 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3399 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3400
3401 I915_WRITE(FDI_RX_MISC(pipe),
3402 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3403
3404 reg = FDI_RX_CTL(pipe);
3405 temp = I915_READ(reg);
3406 if (HAS_PCH_CPT(dev)) {
3407 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3408 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3409 } else {
3410 temp &= ~FDI_LINK_TRAIN_NONE;
3411 temp |= FDI_LINK_TRAIN_PATTERN_1;
3412 }
3413 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3414
3415 POSTING_READ(reg);
3416 udelay(150);
3417
3418 for (i = 0; i < 4; i++) {
3419 reg = FDI_TX_CTL(pipe);
3420 temp = I915_READ(reg);
3421 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3422 temp |= snb_b_fdi_train_param[i];
3423 I915_WRITE(reg, temp);
3424
3425 POSTING_READ(reg);
3426 udelay(500);
3427
3428 for (retry = 0; retry < 5; retry++) {
3429 reg = FDI_RX_IIR(pipe);
3430 temp = I915_READ(reg);
3431 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3432 if (temp & FDI_RX_BIT_LOCK) {
3433 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3434 DRM_DEBUG_KMS("FDI train 1 done.\n");
3435 break;
3436 }
3437 udelay(50);
3438 }
3439 if (retry < 5)
3440 break;
3441 }
3442 if (i == 4)
3443 DRM_ERROR("FDI train 1 fail!\n");
3444
3445 /* Train 2 */
3446 reg = FDI_TX_CTL(pipe);
3447 temp = I915_READ(reg);
3448 temp &= ~FDI_LINK_TRAIN_NONE;
3449 temp |= FDI_LINK_TRAIN_PATTERN_2;
3450 if (IS_GEN6(dev)) {
3451 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3452 /* SNB-B */
3453 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3454 }
3455 I915_WRITE(reg, temp);
3456
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 if (HAS_PCH_CPT(dev)) {
3460 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3461 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3462 } else {
3463 temp &= ~FDI_LINK_TRAIN_NONE;
3464 temp |= FDI_LINK_TRAIN_PATTERN_2;
3465 }
3466 I915_WRITE(reg, temp);
3467
3468 POSTING_READ(reg);
3469 udelay(150);
3470
3471 for (i = 0; i < 4; i++) {
3472 reg = FDI_TX_CTL(pipe);
3473 temp = I915_READ(reg);
3474 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3475 temp |= snb_b_fdi_train_param[i];
3476 I915_WRITE(reg, temp);
3477
3478 POSTING_READ(reg);
3479 udelay(500);
3480
3481 for (retry = 0; retry < 5; retry++) {
3482 reg = FDI_RX_IIR(pipe);
3483 temp = I915_READ(reg);
3484 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3485 if (temp & FDI_RX_SYMBOL_LOCK) {
3486 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3487 DRM_DEBUG_KMS("FDI train 2 done.\n");
3488 break;
3489 }
3490 udelay(50);
3491 }
3492 if (retry < 5)
3493 break;
3494 }
3495 if (i == 4)
3496 DRM_ERROR("FDI train 2 fail!\n");
3497
3498 DRM_DEBUG_KMS("FDI train done.\n");
3499 }
3500
3501 /* Manual link training for Ivy Bridge A0 parts */
3502 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3503 {
3504 struct drm_device *dev = crtc->dev;
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3507 int pipe = intel_crtc->pipe;
3508 i915_reg_t reg;
3509 u32 temp, i, j;
3510
3511 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3512 for train result */
3513 reg = FDI_RX_IMR(pipe);
3514 temp = I915_READ(reg);
3515 temp &= ~FDI_RX_SYMBOL_LOCK;
3516 temp &= ~FDI_RX_BIT_LOCK;
3517 I915_WRITE(reg, temp);
3518
3519 POSTING_READ(reg);
3520 udelay(150);
3521
3522 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3523 I915_READ(FDI_RX_IIR(pipe)));
3524
3525 /* Try each vswing and preemphasis setting twice before moving on */
3526 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3527 /* disable first in case we need to retry */
3528 reg = FDI_TX_CTL(pipe);
3529 temp = I915_READ(reg);
3530 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3531 temp &= ~FDI_TX_ENABLE;
3532 I915_WRITE(reg, temp);
3533
3534 reg = FDI_RX_CTL(pipe);
3535 temp = I915_READ(reg);
3536 temp &= ~FDI_LINK_TRAIN_AUTO;
3537 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3538 temp &= ~FDI_RX_ENABLE;
3539 I915_WRITE(reg, temp);
3540
3541 /* enable CPU FDI TX and PCH FDI RX */
3542 reg = FDI_TX_CTL(pipe);
3543 temp = I915_READ(reg);
3544 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3545 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3546 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3547 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3548 temp |= snb_b_fdi_train_param[j/2];
3549 temp |= FDI_COMPOSITE_SYNC;
3550 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3551
3552 I915_WRITE(FDI_RX_MISC(pipe),
3553 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3554
3555 reg = FDI_RX_CTL(pipe);
3556 temp = I915_READ(reg);
3557 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3558 temp |= FDI_COMPOSITE_SYNC;
3559 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3560
3561 POSTING_READ(reg);
3562 udelay(1); /* should be 0.5us */
3563
3564 for (i = 0; i < 4; i++) {
3565 reg = FDI_RX_IIR(pipe);
3566 temp = I915_READ(reg);
3567 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3568
3569 if (temp & FDI_RX_BIT_LOCK ||
3570 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3571 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3572 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3573 i);
3574 break;
3575 }
3576 udelay(1); /* should be 0.5us */
3577 }
3578 if (i == 4) {
3579 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3580 continue;
3581 }
3582
3583 /* Train 2 */
3584 reg = FDI_TX_CTL(pipe);
3585 temp = I915_READ(reg);
3586 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3587 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3588 I915_WRITE(reg, temp);
3589
3590 reg = FDI_RX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3593 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3594 I915_WRITE(reg, temp);
3595
3596 POSTING_READ(reg);
3597 udelay(2); /* should be 1.5us */
3598
3599 for (i = 0; i < 4; i++) {
3600 reg = FDI_RX_IIR(pipe);
3601 temp = I915_READ(reg);
3602 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3603
3604 if (temp & FDI_RX_SYMBOL_LOCK ||
3605 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3606 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3607 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3608 i);
3609 goto train_done;
3610 }
3611 udelay(2); /* should be 1.5us */
3612 }
3613 if (i == 4)
3614 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3615 }
3616
3617 train_done:
3618 DRM_DEBUG_KMS("FDI train done.\n");
3619 }
3620
3621 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3622 {
3623 struct drm_device *dev = intel_crtc->base.dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 int pipe = intel_crtc->pipe;
3626 i915_reg_t reg;
3627 u32 temp;
3628
3629 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3630 reg = FDI_RX_CTL(pipe);
3631 temp = I915_READ(reg);
3632 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3633 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3634 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3635 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3636
3637 POSTING_READ(reg);
3638 udelay(200);
3639
3640 /* Switch from Rawclk to PCDclk */
3641 temp = I915_READ(reg);
3642 I915_WRITE(reg, temp | FDI_PCDCLK);
3643
3644 POSTING_READ(reg);
3645 udelay(200);
3646
3647 /* Enable CPU FDI TX PLL, always on for Ironlake */
3648 reg = FDI_TX_CTL(pipe);
3649 temp = I915_READ(reg);
3650 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3651 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3652
3653 POSTING_READ(reg);
3654 udelay(100);
3655 }
3656 }
3657
3658 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3659 {
3660 struct drm_device *dev = intel_crtc->base.dev;
3661 struct drm_i915_private *dev_priv = dev->dev_private;
3662 int pipe = intel_crtc->pipe;
3663 i915_reg_t reg;
3664 u32 temp;
3665
3666 /* Switch from PCDclk to Rawclk */
3667 reg = FDI_RX_CTL(pipe);
3668 temp = I915_READ(reg);
3669 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3670
3671 /* Disable CPU FDI TX PLL */
3672 reg = FDI_TX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3675
3676 POSTING_READ(reg);
3677 udelay(100);
3678
3679 reg = FDI_RX_CTL(pipe);
3680 temp = I915_READ(reg);
3681 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3682
3683 /* Wait for the clocks to turn off. */
3684 POSTING_READ(reg);
3685 udelay(100);
3686 }
3687
3688 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3689 {
3690 struct drm_device *dev = crtc->dev;
3691 struct drm_i915_private *dev_priv = dev->dev_private;
3692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693 int pipe = intel_crtc->pipe;
3694 i915_reg_t reg;
3695 u32 temp;
3696
3697 /* disable CPU FDI tx and PCH FDI rx */
3698 reg = FDI_TX_CTL(pipe);
3699 temp = I915_READ(reg);
3700 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3701 POSTING_READ(reg);
3702
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
3705 temp &= ~(0x7 << 16);
3706 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3707 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3708
3709 POSTING_READ(reg);
3710 udelay(100);
3711
3712 /* Ironlake workaround, disable clock pointer after downing FDI */
3713 if (HAS_PCH_IBX(dev))
3714 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3715
3716 /* still set train pattern 1 */
3717 reg = FDI_TX_CTL(pipe);
3718 temp = I915_READ(reg);
3719 temp &= ~FDI_LINK_TRAIN_NONE;
3720 temp |= FDI_LINK_TRAIN_PATTERN_1;
3721 I915_WRITE(reg, temp);
3722
3723 reg = FDI_RX_CTL(pipe);
3724 temp = I915_READ(reg);
3725 if (HAS_PCH_CPT(dev)) {
3726 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3727 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3728 } else {
3729 temp &= ~FDI_LINK_TRAIN_NONE;
3730 temp |= FDI_LINK_TRAIN_PATTERN_1;
3731 }
3732 /* BPC in FDI rx is consistent with that in PIPECONF */
3733 temp &= ~(0x07 << 16);
3734 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3735 I915_WRITE(reg, temp);
3736
3737 POSTING_READ(reg);
3738 udelay(100);
3739 }
3740
3741 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3742 {
3743 struct intel_crtc *crtc;
3744
3745 /* Note that we don't need to be called with mode_config.lock here
3746 * as our list of CRTC objects is static for the lifetime of the
3747 * device and so cannot disappear as we iterate. Similarly, we can
3748 * happily treat the predicates as racy, atomic checks as userspace
3749 * cannot claim and pin a new fb without at least acquring the
3750 * struct_mutex and so serialising with us.
3751 */
3752 for_each_intel_crtc(dev, crtc) {
3753 if (atomic_read(&crtc->unpin_work_count) == 0)
3754 continue;
3755
3756 if (!list_empty_careful(&crtc->flip_work))
3757 intel_wait_for_vblank(dev, crtc->pipe);
3758
3759 return true;
3760 }
3761
3762 return false;
3763 }
3764
3765 static void page_flip_completed(struct intel_crtc *intel_crtc, struct intel_flip_work *work)
3766 {
3767 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3768 struct drm_plane_state *new_plane_state;
3769 struct drm_plane *primary = intel_crtc->base.primary;
3770
3771 if (work->event)
3772 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3773
3774 drm_crtc_vblank_put(&intel_crtc->base);
3775
3776 new_plane_state = &work->old_plane_state[0]->base;
3777 if (work->num_planes >= 1 &&
3778 new_plane_state->plane == primary &&
3779 new_plane_state->fb)
3780 trace_i915_flip_complete(intel_crtc->plane,
3781 intel_fb_obj(new_plane_state->fb));
3782
3783 if (work->can_async_unpin) {
3784 list_del_init(&work->head);
3785 wake_up_all(&dev_priv->pending_flip_queue);
3786 }
3787
3788 queue_work(dev_priv->wq, &work->unpin_work);
3789 }
3790
3791 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3792 {
3793 struct drm_device *dev = crtc->dev;
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 long ret;
3796
3797 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3798
3799 ret = wait_event_interruptible_timeout(
3800 dev_priv->pending_flip_queue,
3801 !intel_crtc_has_pending_flip(crtc),
3802 60*HZ);
3803
3804 if (ret < 0)
3805 return ret;
3806
3807 WARN(ret == 0, "Stuck page flip\n");
3808
3809 return 0;
3810 }
3811
3812 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3813 {
3814 u32 temp;
3815
3816 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3817
3818 mutex_lock(&dev_priv->sb_lock);
3819
3820 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3821 temp |= SBI_SSCCTL_DISABLE;
3822 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3823
3824 mutex_unlock(&dev_priv->sb_lock);
3825 }
3826
3827 /* Program iCLKIP clock to the desired frequency */
3828 static void lpt_program_iclkip(struct drm_crtc *crtc)
3829 {
3830 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3831 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3832 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3833 u32 temp;
3834
3835 lpt_disable_iclkip(dev_priv);
3836
3837 /* The iCLK virtual clock root frequency is in MHz,
3838 * but the adjusted_mode->crtc_clock in in KHz. To get the
3839 * divisors, it is necessary to divide one by another, so we
3840 * convert the virtual clock precision to KHz here for higher
3841 * precision.
3842 */
3843 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3844 u32 iclk_virtual_root_freq = 172800 * 1000;
3845 u32 iclk_pi_range = 64;
3846 u32 desired_divisor;
3847
3848 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3849 clock << auxdiv);
3850 divsel = (desired_divisor / iclk_pi_range) - 2;
3851 phaseinc = desired_divisor % iclk_pi_range;
3852
3853 /*
3854 * Near 20MHz is a corner case which is
3855 * out of range for the 7-bit divisor
3856 */
3857 if (divsel <= 0x7f)
3858 break;
3859 }
3860
3861 /* This should not happen with any sane values */
3862 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3863 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3864 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3865 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3866
3867 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3868 clock,
3869 auxdiv,
3870 divsel,
3871 phasedir,
3872 phaseinc);
3873
3874 mutex_lock(&dev_priv->sb_lock);
3875
3876 /* Program SSCDIVINTPHASE6 */
3877 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3878 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3879 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3880 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3881 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3882 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3883 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3884 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3885
3886 /* Program SSCAUXDIV */
3887 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3888 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3889 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3890 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3891
3892 /* Enable modulator and associated divider */
3893 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3894 temp &= ~SBI_SSCCTL_DISABLE;
3895 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3896
3897 mutex_unlock(&dev_priv->sb_lock);
3898
3899 /* Wait for initialization time */
3900 udelay(24);
3901
3902 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3903 }
3904
3905 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3906 {
3907 u32 divsel, phaseinc, auxdiv;
3908 u32 iclk_virtual_root_freq = 172800 * 1000;
3909 u32 iclk_pi_range = 64;
3910 u32 desired_divisor;
3911 u32 temp;
3912
3913 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3914 return 0;
3915
3916 mutex_lock(&dev_priv->sb_lock);
3917
3918 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3919 if (temp & SBI_SSCCTL_DISABLE) {
3920 mutex_unlock(&dev_priv->sb_lock);
3921 return 0;
3922 }
3923
3924 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3925 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3926 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3927 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3928 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3929
3930 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3931 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3932 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3933
3934 mutex_unlock(&dev_priv->sb_lock);
3935
3936 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3937
3938 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3939 desired_divisor << auxdiv);
3940 }
3941
3942 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3943 enum pipe pch_transcoder)
3944 {
3945 struct drm_device *dev = crtc->base.dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3948
3949 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3950 I915_READ(HTOTAL(cpu_transcoder)));
3951 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3952 I915_READ(HBLANK(cpu_transcoder)));
3953 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3954 I915_READ(HSYNC(cpu_transcoder)));
3955
3956 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3957 I915_READ(VTOTAL(cpu_transcoder)));
3958 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3959 I915_READ(VBLANK(cpu_transcoder)));
3960 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3961 I915_READ(VSYNC(cpu_transcoder)));
3962 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3963 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3964 }
3965
3966 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3967 {
3968 struct drm_i915_private *dev_priv = dev->dev_private;
3969 uint32_t temp;
3970
3971 temp = I915_READ(SOUTH_CHICKEN1);
3972 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3973 return;
3974
3975 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3976 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3977
3978 temp &= ~FDI_BC_BIFURCATION_SELECT;
3979 if (enable)
3980 temp |= FDI_BC_BIFURCATION_SELECT;
3981
3982 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3983 I915_WRITE(SOUTH_CHICKEN1, temp);
3984 POSTING_READ(SOUTH_CHICKEN1);
3985 }
3986
3987 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3988 {
3989 struct drm_device *dev = intel_crtc->base.dev;
3990
3991 switch (intel_crtc->pipe) {
3992 case PIPE_A:
3993 break;
3994 case PIPE_B:
3995 if (intel_crtc->config->fdi_lanes > 2)
3996 cpt_set_fdi_bc_bifurcation(dev, false);
3997 else
3998 cpt_set_fdi_bc_bifurcation(dev, true);
3999
4000 break;
4001 case PIPE_C:
4002 cpt_set_fdi_bc_bifurcation(dev, true);
4003
4004 break;
4005 default:
4006 BUG();
4007 }
4008 }
4009
4010 /* Return which DP Port should be selected for Transcoder DP control */
4011 static enum port
4012 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4013 {
4014 struct drm_device *dev = crtc->dev;
4015 struct intel_encoder *encoder;
4016
4017 for_each_encoder_on_crtc(dev, crtc, encoder) {
4018 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4019 encoder->type == INTEL_OUTPUT_EDP)
4020 return enc_to_dig_port(&encoder->base)->port;
4021 }
4022
4023 return -1;
4024 }
4025
4026 /*
4027 * Enable PCH resources required for PCH ports:
4028 * - PCH PLLs
4029 * - FDI training & RX/TX
4030 * - update transcoder timings
4031 * - DP transcoding bits
4032 * - transcoder
4033 */
4034 static void ironlake_pch_enable(struct drm_crtc *crtc)
4035 {
4036 struct drm_device *dev = crtc->dev;
4037 struct drm_i915_private *dev_priv = dev->dev_private;
4038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4039 int pipe = intel_crtc->pipe;
4040 u32 temp;
4041
4042 assert_pch_transcoder_disabled(dev_priv, pipe);
4043
4044 if (IS_IVYBRIDGE(dev))
4045 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4046
4047 /* Write the TU size bits before fdi link training, so that error
4048 * detection works. */
4049 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4050 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4051
4052 /* For PCH output, training FDI link */
4053 dev_priv->display.fdi_link_train(crtc);
4054
4055 /* We need to program the right clock selection before writing the pixel
4056 * mutliplier into the DPLL. */
4057 if (HAS_PCH_CPT(dev)) {
4058 u32 sel;
4059
4060 temp = I915_READ(PCH_DPLL_SEL);
4061 temp |= TRANS_DPLL_ENABLE(pipe);
4062 sel = TRANS_DPLLB_SEL(pipe);
4063 if (intel_crtc->config->shared_dpll ==
4064 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4065 temp |= sel;
4066 else
4067 temp &= ~sel;
4068 I915_WRITE(PCH_DPLL_SEL, temp);
4069 }
4070
4071 /* XXX: pch pll's can be enabled any time before we enable the PCH
4072 * transcoder, and we actually should do this to not upset any PCH
4073 * transcoder that already use the clock when we share it.
4074 *
4075 * Note that enable_shared_dpll tries to do the right thing, but
4076 * get_shared_dpll unconditionally resets the pll - we need that to have
4077 * the right LVDS enable sequence. */
4078 intel_enable_shared_dpll(intel_crtc);
4079
4080 /* set transcoder timing, panel must allow it */
4081 assert_panel_unlocked(dev_priv, pipe);
4082 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4083
4084 intel_fdi_normal_train(crtc);
4085
4086 /* For PCH DP, enable TRANS_DP_CTL */
4087 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4088 const struct drm_display_mode *adjusted_mode =
4089 &intel_crtc->config->base.adjusted_mode;
4090 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4091 i915_reg_t reg = TRANS_DP_CTL(pipe);
4092 temp = I915_READ(reg);
4093 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4094 TRANS_DP_SYNC_MASK |
4095 TRANS_DP_BPC_MASK);
4096 temp |= TRANS_DP_OUTPUT_ENABLE;
4097 temp |= bpc << 9; /* same format but at 11:9 */
4098
4099 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4100 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4101 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4102 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4103
4104 switch (intel_trans_dp_port_sel(crtc)) {
4105 case PORT_B:
4106 temp |= TRANS_DP_PORT_SEL_B;
4107 break;
4108 case PORT_C:
4109 temp |= TRANS_DP_PORT_SEL_C;
4110 break;
4111 case PORT_D:
4112 temp |= TRANS_DP_PORT_SEL_D;
4113 break;
4114 default:
4115 BUG();
4116 }
4117
4118 I915_WRITE(reg, temp);
4119 }
4120
4121 ironlake_enable_pch_transcoder(dev_priv, pipe);
4122 }
4123
4124 static void lpt_pch_enable(struct drm_crtc *crtc)
4125 {
4126 struct drm_device *dev = crtc->dev;
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4129 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4130
4131 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4132
4133 lpt_program_iclkip(crtc);
4134
4135 /* Set transcoder timing. */
4136 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4137
4138 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4139 }
4140
4141 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4142 {
4143 struct drm_i915_private *dev_priv = dev->dev_private;
4144 i915_reg_t dslreg = PIPEDSL(pipe);
4145 u32 temp;
4146
4147 temp = I915_READ(dslreg);
4148 udelay(500);
4149 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4150 if (wait_for(I915_READ(dslreg) != temp, 5))
4151 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4152 }
4153 }
4154
4155 static int
4156 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4157 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4158 int src_w, int src_h, int dst_w, int dst_h)
4159 {
4160 struct intel_crtc_scaler_state *scaler_state =
4161 &crtc_state->scaler_state;
4162 struct intel_crtc *intel_crtc =
4163 to_intel_crtc(crtc_state->base.crtc);
4164 int need_scaling;
4165
4166 need_scaling = intel_rotation_90_or_270(rotation) ?
4167 (src_h != dst_w || src_w != dst_h):
4168 (src_w != dst_w || src_h != dst_h);
4169
4170 /*
4171 * if plane is being disabled or scaler is no more required or force detach
4172 * - free scaler binded to this plane/crtc
4173 * - in order to do this, update crtc->scaler_usage
4174 *
4175 * Here scaler state in crtc_state is set free so that
4176 * scaler can be assigned to other user. Actual register
4177 * update to free the scaler is done in plane/panel-fit programming.
4178 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4179 */
4180 if (force_detach || !need_scaling) {
4181 if (*scaler_id >= 0) {
4182 scaler_state->scaler_users &= ~(1 << scaler_user);
4183 scaler_state->scalers[*scaler_id].in_use = 0;
4184
4185 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4186 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4187 intel_crtc->pipe, scaler_user, *scaler_id,
4188 scaler_state->scaler_users);
4189 *scaler_id = -1;
4190 }
4191 return 0;
4192 }
4193
4194 /* range checks */
4195 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4196 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4197
4198 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4199 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4200 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4201 "size is out of scaler range\n",
4202 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4203 return -EINVAL;
4204 }
4205
4206 /* mark this plane as a scaler user in crtc_state */
4207 scaler_state->scaler_users |= (1 << scaler_user);
4208 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4209 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4210 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4211 scaler_state->scaler_users);
4212
4213 return 0;
4214 }
4215
4216 /**
4217 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4218 *
4219 * @state: crtc's scaler state
4220 *
4221 * Return
4222 * 0 - scaler_usage updated successfully
4223 * error - requested scaling cannot be supported or other error condition
4224 */
4225 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4226 {
4227 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4228 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4229
4230 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4231 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4232
4233 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4234 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4235 state->pipe_src_w, state->pipe_src_h,
4236 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4237 }
4238
4239 /**
4240 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4241 *
4242 * @state: crtc's scaler state
4243 * @plane_state: atomic plane state to update
4244 *
4245 * Return
4246 * 0 - scaler_usage updated successfully
4247 * error - requested scaling cannot be supported or other error condition
4248 */
4249 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4250 struct intel_plane_state *plane_state)
4251 {
4252
4253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4254 struct intel_plane *intel_plane =
4255 to_intel_plane(plane_state->base.plane);
4256 struct drm_framebuffer *fb = plane_state->base.fb;
4257 int ret;
4258
4259 bool force_detach = !fb || !plane_state->visible;
4260
4261 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4262 intel_plane->base.base.id, intel_crtc->pipe,
4263 drm_plane_index(&intel_plane->base));
4264
4265 ret = skl_update_scaler(crtc_state, force_detach,
4266 drm_plane_index(&intel_plane->base),
4267 &plane_state->scaler_id,
4268 plane_state->base.rotation,
4269 drm_rect_width(&plane_state->src) >> 16,
4270 drm_rect_height(&plane_state->src) >> 16,
4271 drm_rect_width(&plane_state->dst),
4272 drm_rect_height(&plane_state->dst));
4273
4274 if (ret || plane_state->scaler_id < 0)
4275 return ret;
4276
4277 /* check colorkey */
4278 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4279 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4280 intel_plane->base.base.id);
4281 return -EINVAL;
4282 }
4283
4284 /* Check src format */
4285 switch (fb->pixel_format) {
4286 case DRM_FORMAT_RGB565:
4287 case DRM_FORMAT_XBGR8888:
4288 case DRM_FORMAT_XRGB8888:
4289 case DRM_FORMAT_ABGR8888:
4290 case DRM_FORMAT_ARGB8888:
4291 case DRM_FORMAT_XRGB2101010:
4292 case DRM_FORMAT_XBGR2101010:
4293 case DRM_FORMAT_YUYV:
4294 case DRM_FORMAT_YVYU:
4295 case DRM_FORMAT_UYVY:
4296 case DRM_FORMAT_VYUY:
4297 break;
4298 default:
4299 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4300 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4301 return -EINVAL;
4302 }
4303
4304 return 0;
4305 }
4306
4307 static void skylake_scaler_disable(struct intel_crtc *crtc)
4308 {
4309 int i;
4310
4311 for (i = 0; i < crtc->num_scalers; i++)
4312 skl_detach_scaler(crtc, i);
4313 }
4314
4315 static void skylake_pfit_enable(struct intel_crtc *crtc)
4316 {
4317 struct drm_device *dev = crtc->base.dev;
4318 struct drm_i915_private *dev_priv = dev->dev_private;
4319 int pipe = crtc->pipe;
4320 struct intel_crtc_scaler_state *scaler_state =
4321 &crtc->config->scaler_state;
4322
4323 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4324
4325 if (crtc->config->pch_pfit.enabled) {
4326 int id;
4327
4328 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4329 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4330 return;
4331 }
4332
4333 id = scaler_state->scaler_id;
4334 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4335 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4336 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4337 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4338
4339 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4340 }
4341 }
4342
4343 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4344 {
4345 struct drm_device *dev = crtc->base.dev;
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 int pipe = crtc->pipe;
4348
4349 if (crtc->config->pch_pfit.enabled) {
4350 /* Force use of hard-coded filter coefficients
4351 * as some pre-programmed values are broken,
4352 * e.g. x201.
4353 */
4354 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4355 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4356 PF_PIPE_SEL_IVB(pipe));
4357 else
4358 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4359 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4360 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4361 }
4362 }
4363
4364 void hsw_enable_ips(struct intel_crtc *crtc)
4365 {
4366 struct drm_device *dev = crtc->base.dev;
4367 struct drm_i915_private *dev_priv = dev->dev_private;
4368
4369 if (!crtc->config->ips_enabled)
4370 return;
4371
4372 /*
4373 * We can only enable IPS after we enable a plane and wait for a vblank
4374 * This function is called from post_plane_update, which is run after
4375 * a vblank wait.
4376 */
4377
4378 assert_plane_enabled(dev_priv, crtc->plane);
4379 if (IS_BROADWELL(dev)) {
4380 mutex_lock(&dev_priv->rps.hw_lock);
4381 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4382 mutex_unlock(&dev_priv->rps.hw_lock);
4383 /* Quoting Art Runyan: "its not safe to expect any particular
4384 * value in IPS_CTL bit 31 after enabling IPS through the
4385 * mailbox." Moreover, the mailbox may return a bogus state,
4386 * so we need to just enable it and continue on.
4387 */
4388 } else {
4389 I915_WRITE(IPS_CTL, IPS_ENABLE);
4390 /* The bit only becomes 1 in the next vblank, so this wait here
4391 * is essentially intel_wait_for_vblank. If we don't have this
4392 * and don't wait for vblanks until the end of crtc_enable, then
4393 * the HW state readout code will complain that the expected
4394 * IPS_CTL value is not the one we read. */
4395 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4396 DRM_ERROR("Timed out waiting for IPS enable\n");
4397 }
4398 }
4399
4400 void hsw_disable_ips(struct intel_crtc *crtc)
4401 {
4402 struct drm_device *dev = crtc->base.dev;
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404
4405 if (!crtc->config->ips_enabled)
4406 return;
4407
4408 assert_plane_enabled(dev_priv, crtc->plane);
4409 if (IS_BROADWELL(dev)) {
4410 mutex_lock(&dev_priv->rps.hw_lock);
4411 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4412 mutex_unlock(&dev_priv->rps.hw_lock);
4413 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4414 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4415 DRM_ERROR("Timed out waiting for IPS disable\n");
4416 } else {
4417 I915_WRITE(IPS_CTL, 0);
4418 POSTING_READ(IPS_CTL);
4419 }
4420
4421 /* We need to wait for a vblank before we can disable the plane. */
4422 intel_wait_for_vblank(dev, crtc->pipe);
4423 }
4424
4425 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4426 {
4427 if (intel_crtc->overlay) {
4428 struct drm_device *dev = intel_crtc->base.dev;
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430
4431 mutex_lock(&dev->struct_mutex);
4432 dev_priv->mm.interruptible = false;
4433 (void) intel_overlay_switch_off(intel_crtc->overlay);
4434 dev_priv->mm.interruptible = true;
4435 mutex_unlock(&dev->struct_mutex);
4436 }
4437
4438 /* Let userspace switch the overlay on again. In most cases userspace
4439 * has to recompute where to put it anyway.
4440 */
4441 }
4442
4443 /**
4444 * intel_post_enable_primary - Perform operations after enabling primary plane
4445 * @crtc: the CRTC whose primary plane was just enabled
4446 *
4447 * Performs potentially sleeping operations that must be done after the primary
4448 * plane is enabled, such as updating FBC and IPS. Note that this may be
4449 * called due to an explicit primary plane update, or due to an implicit
4450 * re-enable that is caused when a sprite plane is updated to no longer
4451 * completely hide the primary plane.
4452 */
4453 static void
4454 intel_post_enable_primary(struct drm_crtc *crtc)
4455 {
4456 struct drm_device *dev = crtc->dev;
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4459 int pipe = intel_crtc->pipe;
4460
4461 /*
4462 * FIXME IPS should be fine as long as one plane is
4463 * enabled, but in practice it seems to have problems
4464 * when going from primary only to sprite only and vice
4465 * versa.
4466 */
4467 hsw_enable_ips(intel_crtc);
4468
4469 /*
4470 * Gen2 reports pipe underruns whenever all planes are disabled.
4471 * So don't enable underrun reporting before at least some planes
4472 * are enabled.
4473 * FIXME: Need to fix the logic to work when we turn off all planes
4474 * but leave the pipe running.
4475 */
4476 if (IS_GEN2(dev))
4477 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4478
4479 /* Underruns don't always raise interrupts, so check manually. */
4480 intel_check_cpu_fifo_underruns(dev_priv);
4481 intel_check_pch_fifo_underruns(dev_priv);
4482 }
4483
4484 /* FIXME move all this to pre_plane_update() with proper state tracking */
4485 static void
4486 intel_pre_disable_primary(struct drm_crtc *crtc)
4487 {
4488 struct drm_device *dev = crtc->dev;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4491 int pipe = intel_crtc->pipe;
4492
4493 /*
4494 * Gen2 reports pipe underruns whenever all planes are disabled.
4495 * So diasble underrun reporting before all the planes get disabled.
4496 * FIXME: Need to fix the logic to work when we turn off all planes
4497 * but leave the pipe running.
4498 */
4499 if (IS_GEN2(dev))
4500 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4501
4502 /*
4503 * FIXME IPS should be fine as long as one plane is
4504 * enabled, but in practice it seems to have problems
4505 * when going from primary only to sprite only and vice
4506 * versa.
4507 */
4508 hsw_disable_ips(intel_crtc);
4509 }
4510
4511 /* FIXME get rid of this and use pre_plane_update */
4512 static void
4513 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4514 {
4515 struct drm_device *dev = crtc->dev;
4516 struct drm_i915_private *dev_priv = dev->dev_private;
4517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4518 int pipe = intel_crtc->pipe;
4519
4520 intel_pre_disable_primary(crtc);
4521
4522 /*
4523 * Vblank time updates from the shadow to live plane control register
4524 * are blocked if the memory self-refresh mode is active at that
4525 * moment. So to make sure the plane gets truly disabled, disable
4526 * first the self-refresh mode. The self-refresh enable bit in turn
4527 * will be checked/applied by the HW only at the next frame start
4528 * event which is after the vblank start event, so we need to have a
4529 * wait-for-vblank between disabling the plane and the pipe.
4530 */
4531 if (HAS_GMCH_DISPLAY(dev)) {
4532 intel_set_memory_cxsr(dev_priv, false);
4533 dev_priv->wm.vlv.cxsr = false;
4534 intel_wait_for_vblank(dev, pipe);
4535 }
4536 }
4537
4538 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4539 {
4540 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4541 struct drm_device *dev = crtc->base.dev;
4542 struct drm_i915_private *dev_priv = dev->dev_private;
4543 struct intel_crtc_state *pipe_config =
4544 to_intel_crtc_state(crtc->base.state);
4545 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4546 struct drm_plane *primary = crtc->base.primary;
4547 struct drm_plane_state *old_pri_state =
4548 drm_atomic_get_existing_plane_state(old_state, primary);
4549 bool modeset = needs_modeset(&pipe_config->base);
4550
4551 if (old_pri_state) {
4552 struct intel_plane_state *primary_state =
4553 to_intel_plane_state(primary->state);
4554 struct intel_plane_state *old_primary_state =
4555 to_intel_plane_state(old_pri_state);
4556
4557 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4558
4559 if (old_primary_state->visible &&
4560 (modeset || !primary_state->visible))
4561 intel_pre_disable_primary(&crtc->base);
4562 }
4563
4564 if (pipe_config->disable_cxsr) {
4565 crtc->wm.cxsr_allowed = false;
4566
4567 /*
4568 * Vblank time updates from the shadow to live plane control register
4569 * are blocked if the memory self-refresh mode is active at that
4570 * moment. So to make sure the plane gets truly disabled, disable
4571 * first the self-refresh mode. The self-refresh enable bit in turn
4572 * will be checked/applied by the HW only at the next frame start
4573 * event which is after the vblank start event, so we need to have a
4574 * wait-for-vblank between disabling the plane and the pipe.
4575 */
4576 if (old_crtc_state->base.active) {
4577 intel_set_memory_cxsr(dev_priv, false);
4578 dev_priv->wm.vlv.cxsr = false;
4579 intel_wait_for_vblank(dev, crtc->pipe);
4580 }
4581 }
4582
4583 /*
4584 * IVB workaround: must disable low power watermarks for at least
4585 * one frame before enabling scaling. LP watermarks can be re-enabled
4586 * when scaling is disabled.
4587 *
4588 * WaCxSRDisabledForSpriteScaling:ivb
4589 */
4590 if (pipe_config->disable_lp_wm) {
4591 ilk_disable_lp_wm(dev);
4592 intel_wait_for_vblank(dev, crtc->pipe);
4593 }
4594
4595 /*
4596 * If we're doing a modeset, we're done. No need to do any pre-vblank
4597 * watermark programming here.
4598 */
4599 if (needs_modeset(&pipe_config->base))
4600 return;
4601
4602 /*
4603 * For platforms that support atomic watermarks, program the
4604 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4605 * will be the intermediate values that are safe for both pre- and
4606 * post- vblank; when vblank happens, the 'active' values will be set
4607 * to the final 'target' values and we'll do this again to get the
4608 * optimal watermarks. For gen9+ platforms, the values we program here
4609 * will be the final target values which will get automatically latched
4610 * at vblank time; no further programming will be necessary.
4611 *
4612 * If a platform hasn't been transitioned to atomic watermarks yet,
4613 * we'll continue to update watermarks the old way, if flags tell
4614 * us to.
4615 */
4616 if (dev_priv->display.initial_watermarks != NULL)
4617 dev_priv->display.initial_watermarks(pipe_config);
4618 else if (pipe_config->update_wm_pre)
4619 intel_update_watermarks(&crtc->base);
4620 }
4621
4622 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4623 {
4624 struct drm_device *dev = crtc->dev;
4625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4626 struct drm_plane *p;
4627 int pipe = intel_crtc->pipe;
4628
4629 intel_crtc_dpms_overlay_disable(intel_crtc);
4630
4631 drm_for_each_plane_mask(p, dev, plane_mask)
4632 to_intel_plane(p)->disable_plane(p, crtc);
4633
4634 /*
4635 * FIXME: Once we grow proper nuclear flip support out of this we need
4636 * to compute the mask of flip planes precisely. For the time being
4637 * consider this a flip to a NULL plane.
4638 */
4639 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4640 }
4641
4642 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4643 {
4644 struct drm_device *dev = crtc->dev;
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4647 struct intel_encoder *encoder;
4648 int pipe = intel_crtc->pipe;
4649 struct intel_crtc_state *pipe_config =
4650 to_intel_crtc_state(crtc->state);
4651
4652 if (WARN_ON(intel_crtc->active))
4653 return;
4654
4655 /*
4656 * Sometimes spurious CPU pipe underruns happen during FDI
4657 * training, at least with VGA+HDMI cloning. Suppress them.
4658 *
4659 * On ILK we get an occasional spurious CPU pipe underruns
4660 * between eDP port A enable and vdd enable. Also PCH port
4661 * enable seems to result in the occasional CPU pipe underrun.
4662 *
4663 * Spurious PCH underruns also occur during PCH enabling.
4664 */
4665 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4666 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4667 if (intel_crtc->config->has_pch_encoder)
4668 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4669
4670 if (intel_crtc->config->has_pch_encoder)
4671 intel_prepare_shared_dpll(intel_crtc);
4672
4673 if (intel_crtc->config->has_dp_encoder)
4674 intel_dp_set_m_n(intel_crtc, M1_N1);
4675
4676 intel_set_pipe_timings(intel_crtc);
4677 intel_set_pipe_src_size(intel_crtc);
4678
4679 if (intel_crtc->config->has_pch_encoder) {
4680 intel_cpu_transcoder_set_m_n(intel_crtc,
4681 &intel_crtc->config->fdi_m_n, NULL);
4682 }
4683
4684 ironlake_set_pipeconf(crtc);
4685
4686 intel_crtc->active = true;
4687
4688 for_each_encoder_on_crtc(dev, crtc, encoder)
4689 if (encoder->pre_enable)
4690 encoder->pre_enable(encoder);
4691
4692 if (intel_crtc->config->has_pch_encoder) {
4693 /* Note: FDI PLL enabling _must_ be done before we enable the
4694 * cpu pipes, hence this is separate from all the other fdi/pch
4695 * enabling. */
4696 ironlake_fdi_pll_enable(intel_crtc);
4697 } else {
4698 assert_fdi_tx_disabled(dev_priv, pipe);
4699 assert_fdi_rx_disabled(dev_priv, pipe);
4700 }
4701
4702 ironlake_pfit_enable(intel_crtc);
4703
4704 /*
4705 * On ILK+ LUT must be loaded before the pipe is running but with
4706 * clocks enabled
4707 */
4708 intel_color_load_luts(&pipe_config->base);
4709
4710 if (dev_priv->display.initial_watermarks != NULL)
4711 dev_priv->display.initial_watermarks(intel_crtc->config);
4712 intel_enable_pipe(intel_crtc);
4713
4714 if (intel_crtc->config->has_pch_encoder)
4715 ironlake_pch_enable(crtc);
4716
4717 assert_vblank_disabled(crtc);
4718 drm_crtc_vblank_on(crtc);
4719
4720 for_each_encoder_on_crtc(dev, crtc, encoder)
4721 encoder->enable(encoder);
4722
4723 if (HAS_PCH_CPT(dev))
4724 cpt_verify_modeset(dev, intel_crtc->pipe);
4725
4726 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4727 if (intel_crtc->config->has_pch_encoder)
4728 intel_wait_for_vblank(dev, pipe);
4729 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4730 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4731 }
4732
4733 /* IPS only exists on ULT machines and is tied to pipe A. */
4734 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4735 {
4736 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4737 }
4738
4739 static void haswell_crtc_enable(struct drm_crtc *crtc)
4740 {
4741 struct drm_device *dev = crtc->dev;
4742 struct drm_i915_private *dev_priv = dev->dev_private;
4743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4744 struct intel_encoder *encoder;
4745 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4746 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4747 struct intel_crtc_state *pipe_config =
4748 to_intel_crtc_state(crtc->state);
4749
4750 if (WARN_ON(intel_crtc->active))
4751 return;
4752
4753 if (intel_crtc->config->has_pch_encoder)
4754 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4755 false);
4756
4757 if (intel_crtc->config->shared_dpll)
4758 intel_enable_shared_dpll(intel_crtc);
4759
4760 if (intel_crtc->config->has_dp_encoder)
4761 intel_dp_set_m_n(intel_crtc, M1_N1);
4762
4763 if (!intel_crtc->config->has_dsi_encoder)
4764 intel_set_pipe_timings(intel_crtc);
4765
4766 intel_set_pipe_src_size(intel_crtc);
4767
4768 if (cpu_transcoder != TRANSCODER_EDP &&
4769 !transcoder_is_dsi(cpu_transcoder)) {
4770 I915_WRITE(PIPE_MULT(cpu_transcoder),
4771 intel_crtc->config->pixel_multiplier - 1);
4772 }
4773
4774 if (intel_crtc->config->has_pch_encoder) {
4775 intel_cpu_transcoder_set_m_n(intel_crtc,
4776 &intel_crtc->config->fdi_m_n, NULL);
4777 }
4778
4779 if (!intel_crtc->config->has_dsi_encoder)
4780 haswell_set_pipeconf(crtc);
4781
4782 haswell_set_pipemisc(crtc);
4783
4784 intel_color_set_csc(&pipe_config->base);
4785
4786 intel_crtc->active = true;
4787
4788 if (intel_crtc->config->has_pch_encoder)
4789 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4790 else
4791 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4792
4793 for_each_encoder_on_crtc(dev, crtc, encoder) {
4794 if (encoder->pre_enable)
4795 encoder->pre_enable(encoder);
4796 }
4797
4798 if (intel_crtc->config->has_pch_encoder)
4799 dev_priv->display.fdi_link_train(crtc);
4800
4801 if (!intel_crtc->config->has_dsi_encoder)
4802 intel_ddi_enable_pipe_clock(intel_crtc);
4803
4804 if (INTEL_INFO(dev)->gen >= 9)
4805 skylake_pfit_enable(intel_crtc);
4806 else
4807 ironlake_pfit_enable(intel_crtc);
4808
4809 /*
4810 * On ILK+ LUT must be loaded before the pipe is running but with
4811 * clocks enabled
4812 */
4813 intel_color_load_luts(&pipe_config->base);
4814
4815 intel_ddi_set_pipe_settings(crtc);
4816 if (!intel_crtc->config->has_dsi_encoder)
4817 intel_ddi_enable_transcoder_func(crtc);
4818
4819 if (dev_priv->display.initial_watermarks != NULL)
4820 dev_priv->display.initial_watermarks(pipe_config);
4821 else
4822 intel_update_watermarks(crtc);
4823
4824 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4825 if (!intel_crtc->config->has_dsi_encoder)
4826 intel_enable_pipe(intel_crtc);
4827
4828 if (intel_crtc->config->has_pch_encoder)
4829 lpt_pch_enable(crtc);
4830
4831 if (intel_crtc->config->dp_encoder_is_mst)
4832 intel_ddi_set_vc_payload_alloc(crtc, true);
4833
4834 assert_vblank_disabled(crtc);
4835 drm_crtc_vblank_on(crtc);
4836
4837 for_each_encoder_on_crtc(dev, crtc, encoder) {
4838 encoder->enable(encoder);
4839 intel_opregion_notify_encoder(encoder, true);
4840 }
4841
4842 if (intel_crtc->config->has_pch_encoder) {
4843 intel_wait_for_vblank(dev, pipe);
4844 intel_wait_for_vblank(dev, pipe);
4845 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4846 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4847 true);
4848 }
4849
4850 /* If we change the relative order between pipe/planes enabling, we need
4851 * to change the workaround. */
4852 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4853 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4854 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4855 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4856 }
4857 }
4858
4859 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4860 {
4861 struct drm_device *dev = crtc->base.dev;
4862 struct drm_i915_private *dev_priv = dev->dev_private;
4863 int pipe = crtc->pipe;
4864
4865 /* To avoid upsetting the power well on haswell only disable the pfit if
4866 * it's in use. The hw state code will make sure we get this right. */
4867 if (force || crtc->config->pch_pfit.enabled) {
4868 I915_WRITE(PF_CTL(pipe), 0);
4869 I915_WRITE(PF_WIN_POS(pipe), 0);
4870 I915_WRITE(PF_WIN_SZ(pipe), 0);
4871 }
4872 }
4873
4874 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4875 {
4876 struct drm_device *dev = crtc->dev;
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4879 struct intel_encoder *encoder;
4880 int pipe = intel_crtc->pipe;
4881
4882 /*
4883 * Sometimes spurious CPU pipe underruns happen when the
4884 * pipe is already disabled, but FDI RX/TX is still enabled.
4885 * Happens at least with VGA+HDMI cloning. Suppress them.
4886 */
4887 if (intel_crtc->config->has_pch_encoder) {
4888 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4889 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4890 }
4891
4892 for_each_encoder_on_crtc(dev, crtc, encoder)
4893 encoder->disable(encoder);
4894
4895 drm_crtc_vblank_off(crtc);
4896 assert_vblank_disabled(crtc);
4897
4898 intel_disable_pipe(intel_crtc);
4899
4900 ironlake_pfit_disable(intel_crtc, false);
4901
4902 if (intel_crtc->config->has_pch_encoder)
4903 ironlake_fdi_disable(crtc);
4904
4905 for_each_encoder_on_crtc(dev, crtc, encoder)
4906 if (encoder->post_disable)
4907 encoder->post_disable(encoder);
4908
4909 if (intel_crtc->config->has_pch_encoder) {
4910 ironlake_disable_pch_transcoder(dev_priv, pipe);
4911
4912 if (HAS_PCH_CPT(dev)) {
4913 i915_reg_t reg;
4914 u32 temp;
4915
4916 /* disable TRANS_DP_CTL */
4917 reg = TRANS_DP_CTL(pipe);
4918 temp = I915_READ(reg);
4919 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4920 TRANS_DP_PORT_SEL_MASK);
4921 temp |= TRANS_DP_PORT_SEL_NONE;
4922 I915_WRITE(reg, temp);
4923
4924 /* disable DPLL_SEL */
4925 temp = I915_READ(PCH_DPLL_SEL);
4926 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4927 I915_WRITE(PCH_DPLL_SEL, temp);
4928 }
4929
4930 ironlake_fdi_pll_disable(intel_crtc);
4931 }
4932
4933 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4934 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4935 }
4936
4937 static void haswell_crtc_disable(struct drm_crtc *crtc)
4938 {
4939 struct drm_device *dev = crtc->dev;
4940 struct drm_i915_private *dev_priv = dev->dev_private;
4941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4942 struct intel_encoder *encoder;
4943 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4944
4945 if (intel_crtc->config->has_pch_encoder)
4946 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4947 false);
4948
4949 for_each_encoder_on_crtc(dev, crtc, encoder) {
4950 intel_opregion_notify_encoder(encoder, false);
4951 encoder->disable(encoder);
4952 }
4953
4954 drm_crtc_vblank_off(crtc);
4955 assert_vblank_disabled(crtc);
4956
4957 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4958 if (!intel_crtc->config->has_dsi_encoder)
4959 intel_disable_pipe(intel_crtc);
4960
4961 if (intel_crtc->config->dp_encoder_is_mst)
4962 intel_ddi_set_vc_payload_alloc(crtc, false);
4963
4964 if (!intel_crtc->config->has_dsi_encoder)
4965 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4966
4967 if (INTEL_INFO(dev)->gen >= 9)
4968 skylake_scaler_disable(intel_crtc);
4969 else
4970 ironlake_pfit_disable(intel_crtc, false);
4971
4972 if (!intel_crtc->config->has_dsi_encoder)
4973 intel_ddi_disable_pipe_clock(intel_crtc);
4974
4975 for_each_encoder_on_crtc(dev, crtc, encoder)
4976 if (encoder->post_disable)
4977 encoder->post_disable(encoder);
4978
4979 if (intel_crtc->config->has_pch_encoder) {
4980 lpt_disable_pch_transcoder(dev_priv);
4981 lpt_disable_iclkip(dev_priv);
4982 intel_ddi_fdi_disable(crtc);
4983
4984 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4985 true);
4986 }
4987 }
4988
4989 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4990 {
4991 struct drm_device *dev = crtc->base.dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 struct intel_crtc_state *pipe_config = crtc->config;
4994
4995 if (!pipe_config->gmch_pfit.control)
4996 return;
4997
4998 /*
4999 * The panel fitter should only be adjusted whilst the pipe is disabled,
5000 * according to register description and PRM.
5001 */
5002 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5003 assert_pipe_disabled(dev_priv, crtc->pipe);
5004
5005 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5006 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5007
5008 /* Border color in case we don't scale up to the full screen. Black by
5009 * default, change to something else for debugging. */
5010 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5011 }
5012
5013 static enum intel_display_power_domain port_to_power_domain(enum port port)
5014 {
5015 switch (port) {
5016 case PORT_A:
5017 return POWER_DOMAIN_PORT_DDI_A_LANES;
5018 case PORT_B:
5019 return POWER_DOMAIN_PORT_DDI_B_LANES;
5020 case PORT_C:
5021 return POWER_DOMAIN_PORT_DDI_C_LANES;
5022 case PORT_D:
5023 return POWER_DOMAIN_PORT_DDI_D_LANES;
5024 case PORT_E:
5025 return POWER_DOMAIN_PORT_DDI_E_LANES;
5026 default:
5027 MISSING_CASE(port);
5028 return POWER_DOMAIN_PORT_OTHER;
5029 }
5030 }
5031
5032 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5033 {
5034 switch (port) {
5035 case PORT_A:
5036 return POWER_DOMAIN_AUX_A;
5037 case PORT_B:
5038 return POWER_DOMAIN_AUX_B;
5039 case PORT_C:
5040 return POWER_DOMAIN_AUX_C;
5041 case PORT_D:
5042 return POWER_DOMAIN_AUX_D;
5043 case PORT_E:
5044 /* FIXME: Check VBT for actual wiring of PORT E */
5045 return POWER_DOMAIN_AUX_D;
5046 default:
5047 MISSING_CASE(port);
5048 return POWER_DOMAIN_AUX_A;
5049 }
5050 }
5051
5052 enum intel_display_power_domain
5053 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5054 {
5055 struct drm_device *dev = intel_encoder->base.dev;
5056 struct intel_digital_port *intel_dig_port;
5057
5058 switch (intel_encoder->type) {
5059 case INTEL_OUTPUT_UNKNOWN:
5060 /* Only DDI platforms should ever use this output type */
5061 WARN_ON_ONCE(!HAS_DDI(dev));
5062 case INTEL_OUTPUT_DISPLAYPORT:
5063 case INTEL_OUTPUT_HDMI:
5064 case INTEL_OUTPUT_EDP:
5065 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5066 return port_to_power_domain(intel_dig_port->port);
5067 case INTEL_OUTPUT_DP_MST:
5068 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5069 return port_to_power_domain(intel_dig_port->port);
5070 case INTEL_OUTPUT_ANALOG:
5071 return POWER_DOMAIN_PORT_CRT;
5072 case INTEL_OUTPUT_DSI:
5073 return POWER_DOMAIN_PORT_DSI;
5074 default:
5075 return POWER_DOMAIN_PORT_OTHER;
5076 }
5077 }
5078
5079 enum intel_display_power_domain
5080 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5081 {
5082 struct drm_device *dev = intel_encoder->base.dev;
5083 struct intel_digital_port *intel_dig_port;
5084
5085 switch (intel_encoder->type) {
5086 case INTEL_OUTPUT_UNKNOWN:
5087 case INTEL_OUTPUT_HDMI:
5088 /*
5089 * Only DDI platforms should ever use these output types.
5090 * We can get here after the HDMI detect code has already set
5091 * the type of the shared encoder. Since we can't be sure
5092 * what's the status of the given connectors, play safe and
5093 * run the DP detection too.
5094 */
5095 WARN_ON_ONCE(!HAS_DDI(dev));
5096 case INTEL_OUTPUT_DISPLAYPORT:
5097 case INTEL_OUTPUT_EDP:
5098 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5099 return port_to_aux_power_domain(intel_dig_port->port);
5100 case INTEL_OUTPUT_DP_MST:
5101 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5102 return port_to_aux_power_domain(intel_dig_port->port);
5103 default:
5104 MISSING_CASE(intel_encoder->type);
5105 return POWER_DOMAIN_AUX_A;
5106 }
5107 }
5108
5109 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5110 struct intel_crtc_state *crtc_state)
5111 {
5112 struct drm_device *dev = crtc->dev;
5113 struct drm_encoder *encoder;
5114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5115 enum pipe pipe = intel_crtc->pipe;
5116 unsigned long mask;
5117 enum transcoder transcoder = crtc_state->cpu_transcoder;
5118
5119 if (!crtc_state->base.active)
5120 return 0;
5121
5122 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5123 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5124 if (crtc_state->pch_pfit.enabled ||
5125 crtc_state->pch_pfit.force_thru)
5126 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5127
5128 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5129 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5130
5131 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5132 }
5133
5134 if (crtc_state->shared_dpll)
5135 mask |= BIT(POWER_DOMAIN_PLLS);
5136
5137 return mask;
5138 }
5139
5140 static unsigned long
5141 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5142 struct intel_crtc_state *crtc_state)
5143 {
5144 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5146 enum intel_display_power_domain domain;
5147 unsigned long domains, new_domains, old_domains, ms_domain = 0;
5148
5149 old_domains = intel_crtc->enabled_power_domains;
5150 intel_crtc->enabled_power_domains = new_domains =
5151 get_crtc_power_domains(crtc, crtc_state);
5152
5153 if (needs_modeset(&crtc_state->base))
5154 ms_domain = BIT(POWER_DOMAIN_MODESET);
5155
5156 domains = (new_domains & ~old_domains) | ms_domain;
5157
5158 for_each_power_domain(domain, domains)
5159 intel_display_power_get(dev_priv, domain);
5160
5161 return (old_domains & ~new_domains) | ms_domain;
5162 }
5163
5164 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5165 unsigned long domains)
5166 {
5167 enum intel_display_power_domain domain;
5168
5169 for_each_power_domain(domain, domains)
5170 intel_display_power_put(dev_priv, domain);
5171 }
5172
5173 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5174 {
5175 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5176
5177 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5178 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5179 return max_cdclk_freq;
5180 else if (IS_CHERRYVIEW(dev_priv))
5181 return max_cdclk_freq*95/100;
5182 else if (INTEL_INFO(dev_priv)->gen < 4)
5183 return 2*max_cdclk_freq*90/100;
5184 else
5185 return max_cdclk_freq*90/100;
5186 }
5187
5188 static int skl_calc_cdclk(int max_pixclk, int vco);
5189
5190 static void intel_update_max_cdclk(struct drm_device *dev)
5191 {
5192 struct drm_i915_private *dev_priv = dev->dev_private;
5193
5194 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5195 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5196 int max_cdclk, vco;
5197
5198 vco = dev_priv->skl_preferred_vco_freq;
5199 WARN_ON(vco != 8100 && vco != 8640);
5200
5201 /*
5202 * Use the lower (vco 8640) cdclk values as a
5203 * first guess. skl_calc_cdclk() will correct it
5204 * if the preferred vco is 8100 instead.
5205 */
5206 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5207 max_cdclk = 617140;
5208 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5209 max_cdclk = 540000;
5210 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5211 max_cdclk = 432000;
5212 else
5213 max_cdclk = 308570;
5214
5215 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5216 } else if (IS_BROXTON(dev)) {
5217 dev_priv->max_cdclk_freq = 624000;
5218 } else if (IS_BROADWELL(dev)) {
5219 /*
5220 * FIXME with extra cooling we can allow
5221 * 540 MHz for ULX and 675 Mhz for ULT.
5222 * How can we know if extra cooling is
5223 * available? PCI ID, VTB, something else?
5224 */
5225 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5226 dev_priv->max_cdclk_freq = 450000;
5227 else if (IS_BDW_ULX(dev))
5228 dev_priv->max_cdclk_freq = 450000;
5229 else if (IS_BDW_ULT(dev))
5230 dev_priv->max_cdclk_freq = 540000;
5231 else
5232 dev_priv->max_cdclk_freq = 675000;
5233 } else if (IS_CHERRYVIEW(dev)) {
5234 dev_priv->max_cdclk_freq = 320000;
5235 } else if (IS_VALLEYVIEW(dev)) {
5236 dev_priv->max_cdclk_freq = 400000;
5237 } else {
5238 /* otherwise assume cdclk is fixed */
5239 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5240 }
5241
5242 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5243
5244 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5245 dev_priv->max_cdclk_freq);
5246
5247 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5248 dev_priv->max_dotclk_freq);
5249 }
5250
5251 static void intel_update_cdclk(struct drm_device *dev)
5252 {
5253 struct drm_i915_private *dev_priv = dev->dev_private;
5254
5255 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5256
5257 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5258 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d MHz\n",
5259 dev_priv->cdclk_freq, dev_priv->skl_vco_freq);
5260 else
5261 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5262 dev_priv->cdclk_freq);
5263
5264 /*
5265 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5266 * Programmng [sic] note: bit[9:2] should be programmed to the number
5267 * of cdclk that generates 4MHz reference clock freq which is used to
5268 * generate GMBus clock. This will vary with the cdclk freq.
5269 */
5270 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5271 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5272 }
5273
5274 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5275 static int skl_cdclk_decimal(int cdclk)
5276 {
5277 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5278 }
5279
5280 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5281 {
5282 uint32_t divider;
5283 uint32_t ratio;
5284 uint32_t current_cdclk;
5285 int ret;
5286
5287 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5288 switch (cdclk) {
5289 case 144000:
5290 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5291 ratio = BXT_DE_PLL_RATIO(60);
5292 break;
5293 case 288000:
5294 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5295 ratio = BXT_DE_PLL_RATIO(60);
5296 break;
5297 case 384000:
5298 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5299 ratio = BXT_DE_PLL_RATIO(60);
5300 break;
5301 case 576000:
5302 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5303 ratio = BXT_DE_PLL_RATIO(60);
5304 break;
5305 case 624000:
5306 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5307 ratio = BXT_DE_PLL_RATIO(65);
5308 break;
5309 case 19200:
5310 /*
5311 * Bypass frequency with DE PLL disabled. Init ratio, divider
5312 * to suppress GCC warning.
5313 */
5314 ratio = 0;
5315 divider = 0;
5316 break;
5317 default:
5318 DRM_ERROR("unsupported CDCLK freq %d", cdclk);
5319
5320 return;
5321 }
5322
5323 mutex_lock(&dev_priv->rps.hw_lock);
5324 /* Inform power controller of upcoming frequency change */
5325 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5326 0x80000000);
5327 mutex_unlock(&dev_priv->rps.hw_lock);
5328
5329 if (ret) {
5330 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5331 ret, cdclk);
5332 return;
5333 }
5334
5335 current_cdclk = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5336 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5337 current_cdclk = current_cdclk * 500 + 1000;
5338
5339 /*
5340 * DE PLL has to be disabled when
5341 * - setting to 19.2MHz (bypass, PLL isn't used)
5342 * - before setting to 624MHz (PLL needs toggling)
5343 * - before setting to any frequency from 624MHz (PLL needs toggling)
5344 */
5345 if (cdclk == 19200 || cdclk == 624000 ||
5346 current_cdclk == 624000) {
5347 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5348 /* Timeout 200us */
5349 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5350 1))
5351 DRM_ERROR("timout waiting for DE PLL unlock\n");
5352 }
5353
5354 if (cdclk != 19200) {
5355 uint32_t val;
5356
5357 val = I915_READ(BXT_DE_PLL_CTL);
5358 val &= ~BXT_DE_PLL_RATIO_MASK;
5359 val |= ratio;
5360 I915_WRITE(BXT_DE_PLL_CTL, val);
5361
5362 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5363 /* Timeout 200us */
5364 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5365 DRM_ERROR("timeout waiting for DE PLL lock\n");
5366
5367 val = divider | skl_cdclk_decimal(cdclk);
5368 /*
5369 * FIXME if only the cd2x divider needs changing, it could be done
5370 * without shutting off the pipe (if only one pipe is active).
5371 */
5372 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5373 /*
5374 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5375 * enable otherwise.
5376 */
5377 if (cdclk >= 500000)
5378 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5379 I915_WRITE(CDCLK_CTL, val);
5380 }
5381
5382 mutex_lock(&dev_priv->rps.hw_lock);
5383 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5384 DIV_ROUND_UP(cdclk, 25000));
5385 mutex_unlock(&dev_priv->rps.hw_lock);
5386
5387 if (ret) {
5388 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5389 ret, cdclk);
5390 return;
5391 }
5392
5393 intel_update_cdclk(dev_priv->dev);
5394 }
5395
5396 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5397 {
5398 if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5399 return false;
5400
5401 /* TODO: Check for a valid CDCLK rate */
5402
5403 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5404 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5405
5406 return false;
5407 }
5408
5409 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5410 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5411
5412 return false;
5413 }
5414
5415 return true;
5416 }
5417
5418 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5419 {
5420 return broxton_cdclk_is_enabled(dev_priv);
5421 }
5422
5423 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5424 {
5425 /* check if cd clock is enabled */
5426 if (broxton_cdclk_is_enabled(dev_priv)) {
5427 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5428 return;
5429 }
5430
5431 DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5432
5433 /*
5434 * FIXME:
5435 * - The initial CDCLK needs to be read from VBT.
5436 * Need to make this change after VBT has changes for BXT.
5437 * - check if setting the max (or any) cdclk freq is really necessary
5438 * here, it belongs to modeset time
5439 */
5440 broxton_set_cdclk(dev_priv, 624000);
5441
5442 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5443 POSTING_READ(DBUF_CTL);
5444
5445 udelay(10);
5446
5447 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5448 DRM_ERROR("DBuf power enable timeout!\n");
5449 }
5450
5451 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5452 {
5453 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5454 POSTING_READ(DBUF_CTL);
5455
5456 udelay(10);
5457
5458 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5459 DRM_ERROR("DBuf power disable timeout!\n");
5460
5461 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5462 broxton_set_cdclk(dev_priv, 19200);
5463 }
5464
5465 static int skl_calc_cdclk(int max_pixclk, int vco)
5466 {
5467 if (vco == 8640) {
5468 if (max_pixclk > 540000)
5469 return 617140;
5470 else if (max_pixclk > 432000)
5471 return 540000;
5472 else if (max_pixclk > 308570)
5473 return 432000;
5474 else
5475 return 308570;
5476 } else {
5477 /* VCO 8100 */
5478 if (max_pixclk > 540000)
5479 return 675000;
5480 else if (max_pixclk > 450000)
5481 return 540000;
5482 else if (max_pixclk > 337500)
5483 return 450000;
5484 else
5485 return 337500;
5486 }
5487 }
5488
5489 static void
5490 skl_dpll0_update(struct drm_i915_private *dev_priv)
5491 {
5492 u32 val;
5493
5494 val = I915_READ(LCPLL1_CTL);
5495 if ((val & LCPLL_PLL_ENABLE) == 0) {
5496 dev_priv->skl_vco_freq = 0;
5497 return;
5498 }
5499
5500 val = I915_READ(DPLL_CTRL1);
5501
5502 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5503 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5504 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5505 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5506 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5507 dev_priv->skl_vco_freq = 8100;
5508 break;
5509 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5510 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5511 dev_priv->skl_vco_freq = 8640;
5512 break;
5513 default:
5514 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5515 dev_priv->skl_vco_freq = 0;
5516 break;
5517 }
5518 }
5519
5520 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5521 {
5522 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5523
5524 dev_priv->skl_preferred_vco_freq = vco;
5525
5526 if (changed)
5527 intel_update_max_cdclk(dev_priv->dev);
5528 }
5529
5530 static void
5531 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5532 {
5533 int min_cdclk = skl_calc_cdclk(0, vco);
5534 u32 val;
5535
5536 WARN_ON(vco != 8100 && vco != 8640);
5537
5538 /* select the minimum CDCLK before enabling DPLL 0 */
5539 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5540 I915_WRITE(CDCLK_CTL, val);
5541 POSTING_READ(CDCLK_CTL);
5542
5543 /*
5544 * We always enable DPLL0 with the lowest link rate possible, but still
5545 * taking into account the VCO required to operate the eDP panel at the
5546 * desired frequency. The usual DP link rates operate with a VCO of
5547 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5548 * The modeset code is responsible for the selection of the exact link
5549 * rate later on, with the constraint of choosing a frequency that
5550 * works with vco.
5551 */
5552 val = I915_READ(DPLL_CTRL1);
5553
5554 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5555 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5556 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5557 if (vco == 8640)
5558 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5559 SKL_DPLL0);
5560 else
5561 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5562 SKL_DPLL0);
5563
5564 I915_WRITE(DPLL_CTRL1, val);
5565 POSTING_READ(DPLL_CTRL1);
5566
5567 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5568
5569 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5570 DRM_ERROR("DPLL0 not locked\n");
5571
5572 dev_priv->skl_vco_freq = vco;
5573
5574 /* We'll want to keep using the current vco from now on. */
5575 skl_set_preferred_cdclk_vco(dev_priv, vco);
5576 }
5577
5578 static void
5579 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5580 {
5581 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5582 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5583 DRM_ERROR("Couldn't disable DPLL0\n");
5584
5585 dev_priv->skl_vco_freq = 0;
5586 }
5587
5588 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5589 {
5590 int ret;
5591 u32 val;
5592
5593 /* inform PCU we want to change CDCLK */
5594 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5595 mutex_lock(&dev_priv->rps.hw_lock);
5596 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5597 mutex_unlock(&dev_priv->rps.hw_lock);
5598
5599 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5600 }
5601
5602 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5603 {
5604 unsigned int i;
5605
5606 for (i = 0; i < 15; i++) {
5607 if (skl_cdclk_pcu_ready(dev_priv))
5608 return true;
5609 udelay(10);
5610 }
5611
5612 return false;
5613 }
5614
5615 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5616 {
5617 struct drm_device *dev = dev_priv->dev;
5618 u32 freq_select, pcu_ack;
5619
5620 WARN_ON((cdclk == 24000) != (vco == 0));
5621
5622 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d MHz)\n", cdclk, vco);
5623
5624 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5625 DRM_ERROR("failed to inform PCU about cdclk change\n");
5626 return;
5627 }
5628
5629 /* set CDCLK_CTL */
5630 switch (cdclk) {
5631 case 450000:
5632 case 432000:
5633 freq_select = CDCLK_FREQ_450_432;
5634 pcu_ack = 1;
5635 break;
5636 case 540000:
5637 freq_select = CDCLK_FREQ_540;
5638 pcu_ack = 2;
5639 break;
5640 case 308570:
5641 case 337500:
5642 default:
5643 freq_select = CDCLK_FREQ_337_308;
5644 pcu_ack = 0;
5645 break;
5646 case 617140:
5647 case 675000:
5648 freq_select = CDCLK_FREQ_675_617;
5649 pcu_ack = 3;
5650 break;
5651 }
5652
5653 if (dev_priv->skl_vco_freq != 0 &&
5654 dev_priv->skl_vco_freq != vco)
5655 skl_dpll0_disable(dev_priv);
5656
5657 if (dev_priv->skl_vco_freq != vco)
5658 skl_dpll0_enable(dev_priv, vco);
5659
5660 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5661 POSTING_READ(CDCLK_CTL);
5662
5663 /* inform PCU of the change */
5664 mutex_lock(&dev_priv->rps.hw_lock);
5665 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5666 mutex_unlock(&dev_priv->rps.hw_lock);
5667
5668 intel_update_cdclk(dev);
5669 }
5670
5671 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5672 {
5673 /* disable DBUF power */
5674 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5675 POSTING_READ(DBUF_CTL);
5676
5677 udelay(10);
5678
5679 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5680 DRM_ERROR("DBuf power disable timeout\n");
5681
5682 skl_set_cdclk(dev_priv, 24000, 0);
5683 }
5684
5685 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5686 {
5687 /* DPLL0 not enabled (happens on early BIOS versions) */
5688 if (dev_priv->skl_vco_freq == 0) {
5689 int cdclk, vco;
5690
5691 /* set CDCLK to the lowest frequency, Modeset follows */
5692 vco = dev_priv->skl_preferred_vco_freq;
5693 if (vco == 0)
5694 vco = 8100;
5695 cdclk = skl_calc_cdclk(0, vco);
5696
5697 skl_set_cdclk(dev_priv, cdclk, vco);
5698 }
5699
5700 /* enable DBUF power */
5701 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5702 POSTING_READ(DBUF_CTL);
5703
5704 udelay(10);
5705
5706 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5707 DRM_ERROR("DBuf power enable timeout\n");
5708 }
5709
5710 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5711 {
5712 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5713 uint32_t cdctl = I915_READ(CDCLK_CTL);
5714 int freq = dev_priv->cdclk_freq;
5715
5716 /*
5717 * check if the pre-os intialized the display
5718 * There is SWF18 scratchpad register defined which is set by the
5719 * pre-os which can be used by the OS drivers to check the status
5720 */
5721 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5722 goto sanitize;
5723
5724 /* Is PLL enabled and locked ? */
5725 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5726 goto sanitize;
5727
5728 /* DPLL okay; verify the cdclock
5729 *
5730 * Noticed in some instances that the freq selection is correct but
5731 * decimal part is programmed wrong from BIOS where pre-os does not
5732 * enable display. Verify the same as well.
5733 */
5734 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5735 /* All well; nothing to sanitize */
5736 return false;
5737 sanitize:
5738
5739 skl_init_cdclk(dev_priv);
5740
5741 /* we did have to sanitize */
5742 return true;
5743 }
5744
5745 /* Adjust CDclk dividers to allow high res or save power if possible */
5746 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5747 {
5748 struct drm_i915_private *dev_priv = dev->dev_private;
5749 u32 val, cmd;
5750
5751 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5752 != dev_priv->cdclk_freq);
5753
5754 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5755 cmd = 2;
5756 else if (cdclk == 266667)
5757 cmd = 1;
5758 else
5759 cmd = 0;
5760
5761 mutex_lock(&dev_priv->rps.hw_lock);
5762 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5763 val &= ~DSPFREQGUAR_MASK;
5764 val |= (cmd << DSPFREQGUAR_SHIFT);
5765 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5766 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5767 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5768 50)) {
5769 DRM_ERROR("timed out waiting for CDclk change\n");
5770 }
5771 mutex_unlock(&dev_priv->rps.hw_lock);
5772
5773 mutex_lock(&dev_priv->sb_lock);
5774
5775 if (cdclk == 400000) {
5776 u32 divider;
5777
5778 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5779
5780 /* adjust cdclk divider */
5781 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5782 val &= ~CCK_FREQUENCY_VALUES;
5783 val |= divider;
5784 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5785
5786 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5787 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5788 50))
5789 DRM_ERROR("timed out waiting for CDclk change\n");
5790 }
5791
5792 /* adjust self-refresh exit latency value */
5793 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5794 val &= ~0x7f;
5795
5796 /*
5797 * For high bandwidth configs, we set a higher latency in the bunit
5798 * so that the core display fetch happens in time to avoid underruns.
5799 */
5800 if (cdclk == 400000)
5801 val |= 4500 / 250; /* 4.5 usec */
5802 else
5803 val |= 3000 / 250; /* 3.0 usec */
5804 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5805
5806 mutex_unlock(&dev_priv->sb_lock);
5807
5808 intel_update_cdclk(dev);
5809 }
5810
5811 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5812 {
5813 struct drm_i915_private *dev_priv = dev->dev_private;
5814 u32 val, cmd;
5815
5816 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5817 != dev_priv->cdclk_freq);
5818
5819 switch (cdclk) {
5820 case 333333:
5821 case 320000:
5822 case 266667:
5823 case 200000:
5824 break;
5825 default:
5826 MISSING_CASE(cdclk);
5827 return;
5828 }
5829
5830 /*
5831 * Specs are full of misinformation, but testing on actual
5832 * hardware has shown that we just need to write the desired
5833 * CCK divider into the Punit register.
5834 */
5835 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5836
5837 mutex_lock(&dev_priv->rps.hw_lock);
5838 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5839 val &= ~DSPFREQGUAR_MASK_CHV;
5840 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5841 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5842 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5843 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5844 50)) {
5845 DRM_ERROR("timed out waiting for CDclk change\n");
5846 }
5847 mutex_unlock(&dev_priv->rps.hw_lock);
5848
5849 intel_update_cdclk(dev);
5850 }
5851
5852 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5853 int max_pixclk)
5854 {
5855 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5856 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5857
5858 /*
5859 * Really only a few cases to deal with, as only 4 CDclks are supported:
5860 * 200MHz
5861 * 267MHz
5862 * 320/333MHz (depends on HPLL freq)
5863 * 400MHz (VLV only)
5864 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5865 * of the lower bin and adjust if needed.
5866 *
5867 * We seem to get an unstable or solid color picture at 200MHz.
5868 * Not sure what's wrong. For now use 200MHz only when all pipes
5869 * are off.
5870 */
5871 if (!IS_CHERRYVIEW(dev_priv) &&
5872 max_pixclk > freq_320*limit/100)
5873 return 400000;
5874 else if (max_pixclk > 266667*limit/100)
5875 return freq_320;
5876 else if (max_pixclk > 0)
5877 return 266667;
5878 else
5879 return 200000;
5880 }
5881
5882 static int broxton_calc_cdclk(int max_pixclk)
5883 {
5884 /*
5885 * FIXME:
5886 * - set 19.2MHz bypass frequency if there are no active pipes
5887 */
5888 if (max_pixclk > 576000)
5889 return 624000;
5890 else if (max_pixclk > 384000)
5891 return 576000;
5892 else if (max_pixclk > 288000)
5893 return 384000;
5894 else if (max_pixclk > 144000)
5895 return 288000;
5896 else
5897 return 144000;
5898 }
5899
5900 /* Compute the max pixel clock for new configuration. */
5901 static int intel_mode_max_pixclk(struct drm_device *dev,
5902 struct drm_atomic_state *state)
5903 {
5904 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5905 struct drm_i915_private *dev_priv = dev->dev_private;
5906 struct drm_crtc *crtc;
5907 struct drm_crtc_state *crtc_state;
5908 unsigned max_pixclk = 0, i;
5909 enum pipe pipe;
5910
5911 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5912 sizeof(intel_state->min_pixclk));
5913
5914 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5915 int pixclk = 0;
5916
5917 if (crtc_state->enable)
5918 pixclk = crtc_state->adjusted_mode.crtc_clock;
5919
5920 intel_state->min_pixclk[i] = pixclk;
5921 }
5922
5923 for_each_pipe(dev_priv, pipe)
5924 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5925
5926 return max_pixclk;
5927 }
5928
5929 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5930 {
5931 struct drm_device *dev = state->dev;
5932 struct drm_i915_private *dev_priv = dev->dev_private;
5933 int max_pixclk = intel_mode_max_pixclk(dev, state);
5934 struct intel_atomic_state *intel_state =
5935 to_intel_atomic_state(state);
5936
5937 intel_state->cdclk = intel_state->dev_cdclk =
5938 valleyview_calc_cdclk(dev_priv, max_pixclk);
5939
5940 if (!intel_state->active_crtcs)
5941 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5942
5943 return 0;
5944 }
5945
5946 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5947 {
5948 int max_pixclk = ilk_max_pixel_rate(state);
5949 struct intel_atomic_state *intel_state =
5950 to_intel_atomic_state(state);
5951
5952 intel_state->cdclk = intel_state->dev_cdclk =
5953 broxton_calc_cdclk(max_pixclk);
5954
5955 if (!intel_state->active_crtcs)
5956 intel_state->dev_cdclk = broxton_calc_cdclk(0);
5957
5958 return 0;
5959 }
5960
5961 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5962 {
5963 unsigned int credits, default_credits;
5964
5965 if (IS_CHERRYVIEW(dev_priv))
5966 default_credits = PFI_CREDIT(12);
5967 else
5968 default_credits = PFI_CREDIT(8);
5969
5970 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5971 /* CHV suggested value is 31 or 63 */
5972 if (IS_CHERRYVIEW(dev_priv))
5973 credits = PFI_CREDIT_63;
5974 else
5975 credits = PFI_CREDIT(15);
5976 } else {
5977 credits = default_credits;
5978 }
5979
5980 /*
5981 * WA - write default credits before re-programming
5982 * FIXME: should we also set the resend bit here?
5983 */
5984 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5985 default_credits);
5986
5987 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5988 credits | PFI_CREDIT_RESEND);
5989
5990 /*
5991 * FIXME is this guaranteed to clear
5992 * immediately or should we poll for it?
5993 */
5994 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5995 }
5996
5997 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5998 {
5999 struct drm_device *dev = old_state->dev;
6000 struct drm_i915_private *dev_priv = dev->dev_private;
6001 struct intel_atomic_state *old_intel_state =
6002 to_intel_atomic_state(old_state);
6003 unsigned req_cdclk = old_intel_state->dev_cdclk;
6004
6005 /*
6006 * FIXME: We can end up here with all power domains off, yet
6007 * with a CDCLK frequency other than the minimum. To account
6008 * for this take the PIPE-A power domain, which covers the HW
6009 * blocks needed for the following programming. This can be
6010 * removed once it's guaranteed that we get here either with
6011 * the minimum CDCLK set, or the required power domains
6012 * enabled.
6013 */
6014 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6015
6016 if (IS_CHERRYVIEW(dev))
6017 cherryview_set_cdclk(dev, req_cdclk);
6018 else
6019 valleyview_set_cdclk(dev, req_cdclk);
6020
6021 vlv_program_pfi_credits(dev_priv);
6022
6023 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6024 }
6025
6026 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6027 {
6028 struct drm_device *dev = crtc->dev;
6029 struct drm_i915_private *dev_priv = to_i915(dev);
6030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6031 struct intel_encoder *encoder;
6032 struct intel_crtc_state *pipe_config =
6033 to_intel_crtc_state(crtc->state);
6034 int pipe = intel_crtc->pipe;
6035
6036 if (WARN_ON(intel_crtc->active))
6037 return;
6038
6039 if (intel_crtc->config->has_dp_encoder)
6040 intel_dp_set_m_n(intel_crtc, M1_N1);
6041
6042 intel_set_pipe_timings(intel_crtc);
6043 intel_set_pipe_src_size(intel_crtc);
6044
6045 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6046 struct drm_i915_private *dev_priv = dev->dev_private;
6047
6048 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6049 I915_WRITE(CHV_CANVAS(pipe), 0);
6050 }
6051
6052 i9xx_set_pipeconf(intel_crtc);
6053
6054 intel_crtc->active = true;
6055
6056 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6057
6058 for_each_encoder_on_crtc(dev, crtc, encoder)
6059 if (encoder->pre_pll_enable)
6060 encoder->pre_pll_enable(encoder);
6061
6062 if (IS_CHERRYVIEW(dev)) {
6063 chv_prepare_pll(intel_crtc, intel_crtc->config);
6064 chv_enable_pll(intel_crtc, intel_crtc->config);
6065 } else {
6066 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6067 vlv_enable_pll(intel_crtc, intel_crtc->config);
6068 }
6069
6070 for_each_encoder_on_crtc(dev, crtc, encoder)
6071 if (encoder->pre_enable)
6072 encoder->pre_enable(encoder);
6073
6074 i9xx_pfit_enable(intel_crtc);
6075
6076 intel_color_load_luts(&pipe_config->base);
6077
6078 intel_update_watermarks(crtc);
6079 intel_enable_pipe(intel_crtc);
6080
6081 assert_vblank_disabled(crtc);
6082 drm_crtc_vblank_on(crtc);
6083
6084 for_each_encoder_on_crtc(dev, crtc, encoder)
6085 encoder->enable(encoder);
6086 }
6087
6088 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6089 {
6090 struct drm_device *dev = crtc->base.dev;
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092
6093 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6094 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6095 }
6096
6097 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6098 {
6099 struct drm_device *dev = crtc->dev;
6100 struct drm_i915_private *dev_priv = to_i915(dev);
6101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6102 struct intel_encoder *encoder;
6103 struct intel_crtc_state *pipe_config =
6104 to_intel_crtc_state(crtc->state);
6105 enum pipe pipe = intel_crtc->pipe;
6106
6107 if (WARN_ON(intel_crtc->active))
6108 return;
6109
6110 i9xx_set_pll_dividers(intel_crtc);
6111
6112 if (intel_crtc->config->has_dp_encoder)
6113 intel_dp_set_m_n(intel_crtc, M1_N1);
6114
6115 intel_set_pipe_timings(intel_crtc);
6116 intel_set_pipe_src_size(intel_crtc);
6117
6118 i9xx_set_pipeconf(intel_crtc);
6119
6120 intel_crtc->active = true;
6121
6122 if (!IS_GEN2(dev))
6123 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6124
6125 for_each_encoder_on_crtc(dev, crtc, encoder)
6126 if (encoder->pre_enable)
6127 encoder->pre_enable(encoder);
6128
6129 i9xx_enable_pll(intel_crtc);
6130
6131 i9xx_pfit_enable(intel_crtc);
6132
6133 intel_color_load_luts(&pipe_config->base);
6134
6135 intel_update_watermarks(crtc);
6136 intel_enable_pipe(intel_crtc);
6137
6138 assert_vblank_disabled(crtc);
6139 drm_crtc_vblank_on(crtc);
6140
6141 for_each_encoder_on_crtc(dev, crtc, encoder)
6142 encoder->enable(encoder);
6143 }
6144
6145 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6146 {
6147 struct drm_device *dev = crtc->base.dev;
6148 struct drm_i915_private *dev_priv = dev->dev_private;
6149
6150 if (!crtc->config->gmch_pfit.control)
6151 return;
6152
6153 assert_pipe_disabled(dev_priv, crtc->pipe);
6154
6155 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6156 I915_READ(PFIT_CONTROL));
6157 I915_WRITE(PFIT_CONTROL, 0);
6158 }
6159
6160 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6161 {
6162 struct drm_device *dev = crtc->dev;
6163 struct drm_i915_private *dev_priv = dev->dev_private;
6164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6165 struct intel_encoder *encoder;
6166 int pipe = intel_crtc->pipe;
6167
6168 /*
6169 * On gen2 planes are double buffered but the pipe isn't, so we must
6170 * wait for planes to fully turn off before disabling the pipe.
6171 */
6172 if (IS_GEN2(dev))
6173 intel_wait_for_vblank(dev, pipe);
6174
6175 for_each_encoder_on_crtc(dev, crtc, encoder)
6176 encoder->disable(encoder);
6177
6178 drm_crtc_vblank_off(crtc);
6179 assert_vblank_disabled(crtc);
6180
6181 intel_disable_pipe(intel_crtc);
6182
6183 i9xx_pfit_disable(intel_crtc);
6184
6185 for_each_encoder_on_crtc(dev, crtc, encoder)
6186 if (encoder->post_disable)
6187 encoder->post_disable(encoder);
6188
6189 if (!intel_crtc->config->has_dsi_encoder) {
6190 if (IS_CHERRYVIEW(dev))
6191 chv_disable_pll(dev_priv, pipe);
6192 else if (IS_VALLEYVIEW(dev))
6193 vlv_disable_pll(dev_priv, pipe);
6194 else
6195 i9xx_disable_pll(intel_crtc);
6196 }
6197
6198 for_each_encoder_on_crtc(dev, crtc, encoder)
6199 if (encoder->post_pll_disable)
6200 encoder->post_pll_disable(encoder);
6201
6202 if (!IS_GEN2(dev))
6203 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6204 }
6205
6206 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6207 {
6208 struct intel_encoder *encoder;
6209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6210 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6211 enum intel_display_power_domain domain;
6212 unsigned long domains;
6213
6214 if (!intel_crtc->active)
6215 return;
6216
6217 if (to_intel_plane_state(crtc->primary->state)->visible) {
6218 WARN_ON(list_empty(&intel_crtc->flip_work));
6219
6220 intel_pre_disable_primary_noatomic(crtc);
6221
6222 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6223 to_intel_plane_state(crtc->primary->state)->visible = false;
6224 }
6225
6226 dev_priv->display.crtc_disable(crtc);
6227
6228 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6229 crtc->base.id);
6230
6231 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6232 crtc->state->active = false;
6233 intel_crtc->active = false;
6234 crtc->enabled = false;
6235 crtc->state->connector_mask = 0;
6236 crtc->state->encoder_mask = 0;
6237
6238 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6239 encoder->base.crtc = NULL;
6240
6241 intel_fbc_disable(intel_crtc);
6242 intel_update_watermarks(crtc);
6243 intel_disable_shared_dpll(intel_crtc);
6244
6245 domains = intel_crtc->enabled_power_domains;
6246 for_each_power_domain(domain, domains)
6247 intel_display_power_put(dev_priv, domain);
6248 intel_crtc->enabled_power_domains = 0;
6249
6250 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6251 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6252 }
6253
6254 /*
6255 * turn all crtc's off, but do not adjust state
6256 * This has to be paired with a call to intel_modeset_setup_hw_state.
6257 */
6258 int intel_display_suspend(struct drm_device *dev)
6259 {
6260 struct drm_i915_private *dev_priv = to_i915(dev);
6261 struct drm_atomic_state *state;
6262 int ret;
6263
6264 state = drm_atomic_helper_suspend(dev);
6265 ret = PTR_ERR_OR_ZERO(state);
6266 if (ret)
6267 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6268 else
6269 dev_priv->modeset_restore_state = state;
6270
6271 /*
6272 * Make sure all unpin_work completes before returning.
6273 */
6274 flush_workqueue(dev_priv->wq);
6275
6276 return ret;
6277 }
6278
6279 void intel_encoder_destroy(struct drm_encoder *encoder)
6280 {
6281 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6282
6283 drm_encoder_cleanup(encoder);
6284 kfree(intel_encoder);
6285 }
6286
6287 /* Cross check the actual hw state with our own modeset state tracking (and it's
6288 * internal consistency). */
6289 static void intel_connector_verify_state(struct intel_connector *connector,
6290 struct drm_connector_state *conn_state)
6291 {
6292 struct drm_crtc *crtc = conn_state->crtc;
6293
6294 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6295 connector->base.base.id,
6296 connector->base.name);
6297
6298 if (connector->get_hw_state(connector)) {
6299 struct intel_encoder *encoder = connector->encoder;
6300
6301 I915_STATE_WARN(!crtc,
6302 "connector enabled without attached crtc\n");
6303
6304 if (!crtc)
6305 return;
6306
6307 I915_STATE_WARN(!crtc->state->active,
6308 "connector is active, but attached crtc isn't\n");
6309
6310 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6311 return;
6312
6313 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6314 "atomic encoder doesn't match attached encoder\n");
6315
6316 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6317 "attached encoder crtc differs from connector crtc\n");
6318 } else {
6319 I915_STATE_WARN(crtc && crtc->state->active,
6320 "attached crtc is active, but connector isn't\n");
6321 I915_STATE_WARN(!crtc && conn_state->best_encoder,
6322 "best encoder set without crtc!\n");
6323 }
6324 }
6325
6326 int intel_connector_init(struct intel_connector *connector)
6327 {
6328 drm_atomic_helper_connector_reset(&connector->base);
6329
6330 if (!connector->base.state)
6331 return -ENOMEM;
6332
6333 return 0;
6334 }
6335
6336 struct intel_connector *intel_connector_alloc(void)
6337 {
6338 struct intel_connector *connector;
6339
6340 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6341 if (!connector)
6342 return NULL;
6343
6344 if (intel_connector_init(connector) < 0) {
6345 kfree(connector);
6346 return NULL;
6347 }
6348
6349 return connector;
6350 }
6351
6352 /* Simple connector->get_hw_state implementation for encoders that support only
6353 * one connector and no cloning and hence the encoder state determines the state
6354 * of the connector. */
6355 bool intel_connector_get_hw_state(struct intel_connector *connector)
6356 {
6357 enum pipe pipe = 0;
6358 struct intel_encoder *encoder = connector->encoder;
6359
6360 return encoder->get_hw_state(encoder, &pipe);
6361 }
6362
6363 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6364 {
6365 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6366 return crtc_state->fdi_lanes;
6367
6368 return 0;
6369 }
6370
6371 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6372 struct intel_crtc_state *pipe_config)
6373 {
6374 struct drm_atomic_state *state = pipe_config->base.state;
6375 struct intel_crtc *other_crtc;
6376 struct intel_crtc_state *other_crtc_state;
6377
6378 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6379 pipe_name(pipe), pipe_config->fdi_lanes);
6380 if (pipe_config->fdi_lanes > 4) {
6381 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6382 pipe_name(pipe), pipe_config->fdi_lanes);
6383 return -EINVAL;
6384 }
6385
6386 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6387 if (pipe_config->fdi_lanes > 2) {
6388 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6389 pipe_config->fdi_lanes);
6390 return -EINVAL;
6391 } else {
6392 return 0;
6393 }
6394 }
6395
6396 if (INTEL_INFO(dev)->num_pipes == 2)
6397 return 0;
6398
6399 /* Ivybridge 3 pipe is really complicated */
6400 switch (pipe) {
6401 case PIPE_A:
6402 return 0;
6403 case PIPE_B:
6404 if (pipe_config->fdi_lanes <= 2)
6405 return 0;
6406
6407 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6408 other_crtc_state =
6409 intel_atomic_get_crtc_state(state, other_crtc);
6410 if (IS_ERR(other_crtc_state))
6411 return PTR_ERR(other_crtc_state);
6412
6413 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6414 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6415 pipe_name(pipe), pipe_config->fdi_lanes);
6416 return -EINVAL;
6417 }
6418 return 0;
6419 case PIPE_C:
6420 if (pipe_config->fdi_lanes > 2) {
6421 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6422 pipe_name(pipe), pipe_config->fdi_lanes);
6423 return -EINVAL;
6424 }
6425
6426 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6427 other_crtc_state =
6428 intel_atomic_get_crtc_state(state, other_crtc);
6429 if (IS_ERR(other_crtc_state))
6430 return PTR_ERR(other_crtc_state);
6431
6432 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6433 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6434 return -EINVAL;
6435 }
6436 return 0;
6437 default:
6438 BUG();
6439 }
6440 }
6441
6442 #define RETRY 1
6443 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6444 struct intel_crtc_state *pipe_config)
6445 {
6446 struct drm_device *dev = intel_crtc->base.dev;
6447 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6448 int lane, link_bw, fdi_dotclock, ret;
6449 bool needs_recompute = false;
6450
6451 retry:
6452 /* FDI is a binary signal running at ~2.7GHz, encoding
6453 * each output octet as 10 bits. The actual frequency
6454 * is stored as a divider into a 100MHz clock, and the
6455 * mode pixel clock is stored in units of 1KHz.
6456 * Hence the bw of each lane in terms of the mode signal
6457 * is:
6458 */
6459 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6460
6461 fdi_dotclock = adjusted_mode->crtc_clock;
6462
6463 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6464 pipe_config->pipe_bpp);
6465
6466 pipe_config->fdi_lanes = lane;
6467
6468 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6469 link_bw, &pipe_config->fdi_m_n);
6470
6471 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6472 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6473 pipe_config->pipe_bpp -= 2*3;
6474 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6475 pipe_config->pipe_bpp);
6476 needs_recompute = true;
6477 pipe_config->bw_constrained = true;
6478
6479 goto retry;
6480 }
6481
6482 if (needs_recompute)
6483 return RETRY;
6484
6485 return ret;
6486 }
6487
6488 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6489 struct intel_crtc_state *pipe_config)
6490 {
6491 if (pipe_config->pipe_bpp > 24)
6492 return false;
6493
6494 /* HSW can handle pixel rate up to cdclk? */
6495 if (IS_HASWELL(dev_priv))
6496 return true;
6497
6498 /*
6499 * We compare against max which means we must take
6500 * the increased cdclk requirement into account when
6501 * calculating the new cdclk.
6502 *
6503 * Should measure whether using a lower cdclk w/o IPS
6504 */
6505 return ilk_pipe_pixel_rate(pipe_config) <=
6506 dev_priv->max_cdclk_freq * 95 / 100;
6507 }
6508
6509 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6510 struct intel_crtc_state *pipe_config)
6511 {
6512 struct drm_device *dev = crtc->base.dev;
6513 struct drm_i915_private *dev_priv = dev->dev_private;
6514
6515 pipe_config->ips_enabled = i915.enable_ips &&
6516 hsw_crtc_supports_ips(crtc) &&
6517 pipe_config_supports_ips(dev_priv, pipe_config);
6518 }
6519
6520 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6521 {
6522 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6523
6524 /* GDG double wide on either pipe, otherwise pipe A only */
6525 return INTEL_INFO(dev_priv)->gen < 4 &&
6526 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6527 }
6528
6529 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6530 struct intel_crtc_state *pipe_config)
6531 {
6532 struct drm_device *dev = crtc->base.dev;
6533 struct drm_i915_private *dev_priv = dev->dev_private;
6534 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6535
6536 /* FIXME should check pixel clock limits on all platforms */
6537 if (INTEL_INFO(dev)->gen < 4) {
6538 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6539
6540 /*
6541 * Enable double wide mode when the dot clock
6542 * is > 90% of the (display) core speed.
6543 */
6544 if (intel_crtc_supports_double_wide(crtc) &&
6545 adjusted_mode->crtc_clock > clock_limit) {
6546 clock_limit *= 2;
6547 pipe_config->double_wide = true;
6548 }
6549
6550 if (adjusted_mode->crtc_clock > clock_limit) {
6551 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6552 adjusted_mode->crtc_clock, clock_limit,
6553 yesno(pipe_config->double_wide));
6554 return -EINVAL;
6555 }
6556 }
6557
6558 /*
6559 * Pipe horizontal size must be even in:
6560 * - DVO ganged mode
6561 * - LVDS dual channel mode
6562 * - Double wide pipe
6563 */
6564 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6565 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6566 pipe_config->pipe_src_w &= ~1;
6567
6568 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6569 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6570 */
6571 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6572 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6573 return -EINVAL;
6574
6575 if (HAS_IPS(dev))
6576 hsw_compute_ips_config(crtc, pipe_config);
6577
6578 if (pipe_config->has_pch_encoder)
6579 return ironlake_fdi_compute_config(crtc, pipe_config);
6580
6581 return 0;
6582 }
6583
6584 static int skylake_get_display_clock_speed(struct drm_device *dev)
6585 {
6586 struct drm_i915_private *dev_priv = to_i915(dev);
6587 uint32_t cdctl;
6588
6589 skl_dpll0_update(dev_priv);
6590
6591 if (dev_priv->skl_vco_freq == 0)
6592 return 24000; /* 24MHz is the cd freq with NSSC ref */
6593
6594 cdctl = I915_READ(CDCLK_CTL);
6595
6596 if (dev_priv->skl_vco_freq == 8640) {
6597 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6598 case CDCLK_FREQ_450_432:
6599 return 432000;
6600 case CDCLK_FREQ_337_308:
6601 return 308570;
6602 case CDCLK_FREQ_540:
6603 return 540000;
6604 case CDCLK_FREQ_675_617:
6605 return 617140;
6606 default:
6607 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6608 }
6609 } else {
6610 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6611 case CDCLK_FREQ_450_432:
6612 return 450000;
6613 case CDCLK_FREQ_337_308:
6614 return 337500;
6615 case CDCLK_FREQ_540:
6616 return 540000;
6617 case CDCLK_FREQ_675_617:
6618 return 675000;
6619 default:
6620 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6621 }
6622 }
6623
6624 /* error case, do as if DPLL0 isn't enabled */
6625 return 24000;
6626 }
6627
6628 static int broxton_get_display_clock_speed(struct drm_device *dev)
6629 {
6630 struct drm_i915_private *dev_priv = to_i915(dev);
6631 uint32_t cdctl = I915_READ(CDCLK_CTL);
6632 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6633 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6634 int cdclk;
6635
6636 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6637 return 19200;
6638
6639 cdclk = 19200 * pll_ratio / 2;
6640
6641 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6642 case BXT_CDCLK_CD2X_DIV_SEL_1:
6643 return cdclk; /* 576MHz or 624MHz */
6644 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6645 return cdclk * 2 / 3; /* 384MHz */
6646 case BXT_CDCLK_CD2X_DIV_SEL_2:
6647 return cdclk / 2; /* 288MHz */
6648 case BXT_CDCLK_CD2X_DIV_SEL_4:
6649 return cdclk / 4; /* 144MHz */
6650 }
6651
6652 /* error case, do as if DE PLL isn't enabled */
6653 return 19200;
6654 }
6655
6656 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6657 {
6658 struct drm_i915_private *dev_priv = dev->dev_private;
6659 uint32_t lcpll = I915_READ(LCPLL_CTL);
6660 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6661
6662 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6663 return 800000;
6664 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6665 return 450000;
6666 else if (freq == LCPLL_CLK_FREQ_450)
6667 return 450000;
6668 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6669 return 540000;
6670 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6671 return 337500;
6672 else
6673 return 675000;
6674 }
6675
6676 static int haswell_get_display_clock_speed(struct drm_device *dev)
6677 {
6678 struct drm_i915_private *dev_priv = dev->dev_private;
6679 uint32_t lcpll = I915_READ(LCPLL_CTL);
6680 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6681
6682 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6683 return 800000;
6684 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6685 return 450000;
6686 else if (freq == LCPLL_CLK_FREQ_450)
6687 return 450000;
6688 else if (IS_HSW_ULT(dev))
6689 return 337500;
6690 else
6691 return 540000;
6692 }
6693
6694 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6695 {
6696 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6697 CCK_DISPLAY_CLOCK_CONTROL);
6698 }
6699
6700 static int ilk_get_display_clock_speed(struct drm_device *dev)
6701 {
6702 return 450000;
6703 }
6704
6705 static int i945_get_display_clock_speed(struct drm_device *dev)
6706 {
6707 return 400000;
6708 }
6709
6710 static int i915_get_display_clock_speed(struct drm_device *dev)
6711 {
6712 return 333333;
6713 }
6714
6715 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6716 {
6717 return 200000;
6718 }
6719
6720 static int pnv_get_display_clock_speed(struct drm_device *dev)
6721 {
6722 u16 gcfgc = 0;
6723
6724 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6725
6726 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6727 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6728 return 266667;
6729 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6730 return 333333;
6731 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6732 return 444444;
6733 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6734 return 200000;
6735 default:
6736 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6737 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6738 return 133333;
6739 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6740 return 166667;
6741 }
6742 }
6743
6744 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6745 {
6746 u16 gcfgc = 0;
6747
6748 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6749
6750 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6751 return 133333;
6752 else {
6753 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6754 case GC_DISPLAY_CLOCK_333_MHZ:
6755 return 333333;
6756 default:
6757 case GC_DISPLAY_CLOCK_190_200_MHZ:
6758 return 190000;
6759 }
6760 }
6761 }
6762
6763 static int i865_get_display_clock_speed(struct drm_device *dev)
6764 {
6765 return 266667;
6766 }
6767
6768 static int i85x_get_display_clock_speed(struct drm_device *dev)
6769 {
6770 u16 hpllcc = 0;
6771
6772 /*
6773 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6774 * encoding is different :(
6775 * FIXME is this the right way to detect 852GM/852GMV?
6776 */
6777 if (dev->pdev->revision == 0x1)
6778 return 133333;
6779
6780 pci_bus_read_config_word(dev->pdev->bus,
6781 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6782
6783 /* Assume that the hardware is in the high speed state. This
6784 * should be the default.
6785 */
6786 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6787 case GC_CLOCK_133_200:
6788 case GC_CLOCK_133_200_2:
6789 case GC_CLOCK_100_200:
6790 return 200000;
6791 case GC_CLOCK_166_250:
6792 return 250000;
6793 case GC_CLOCK_100_133:
6794 return 133333;
6795 case GC_CLOCK_133_266:
6796 case GC_CLOCK_133_266_2:
6797 case GC_CLOCK_166_266:
6798 return 266667;
6799 }
6800
6801 /* Shouldn't happen */
6802 return 0;
6803 }
6804
6805 static int i830_get_display_clock_speed(struct drm_device *dev)
6806 {
6807 return 133333;
6808 }
6809
6810 static unsigned int intel_hpll_vco(struct drm_device *dev)
6811 {
6812 struct drm_i915_private *dev_priv = dev->dev_private;
6813 static const unsigned int blb_vco[8] = {
6814 [0] = 3200000,
6815 [1] = 4000000,
6816 [2] = 5333333,
6817 [3] = 4800000,
6818 [4] = 6400000,
6819 };
6820 static const unsigned int pnv_vco[8] = {
6821 [0] = 3200000,
6822 [1] = 4000000,
6823 [2] = 5333333,
6824 [3] = 4800000,
6825 [4] = 2666667,
6826 };
6827 static const unsigned int cl_vco[8] = {
6828 [0] = 3200000,
6829 [1] = 4000000,
6830 [2] = 5333333,
6831 [3] = 6400000,
6832 [4] = 3333333,
6833 [5] = 3566667,
6834 [6] = 4266667,
6835 };
6836 static const unsigned int elk_vco[8] = {
6837 [0] = 3200000,
6838 [1] = 4000000,
6839 [2] = 5333333,
6840 [3] = 4800000,
6841 };
6842 static const unsigned int ctg_vco[8] = {
6843 [0] = 3200000,
6844 [1] = 4000000,
6845 [2] = 5333333,
6846 [3] = 6400000,
6847 [4] = 2666667,
6848 [5] = 4266667,
6849 };
6850 const unsigned int *vco_table;
6851 unsigned int vco;
6852 uint8_t tmp = 0;
6853
6854 /* FIXME other chipsets? */
6855 if (IS_GM45(dev))
6856 vco_table = ctg_vco;
6857 else if (IS_G4X(dev))
6858 vco_table = elk_vco;
6859 else if (IS_CRESTLINE(dev))
6860 vco_table = cl_vco;
6861 else if (IS_PINEVIEW(dev))
6862 vco_table = pnv_vco;
6863 else if (IS_G33(dev))
6864 vco_table = blb_vco;
6865 else
6866 return 0;
6867
6868 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6869
6870 vco = vco_table[tmp & 0x7];
6871 if (vco == 0)
6872 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6873 else
6874 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6875
6876 return vco;
6877 }
6878
6879 static int gm45_get_display_clock_speed(struct drm_device *dev)
6880 {
6881 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6882 uint16_t tmp = 0;
6883
6884 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6885
6886 cdclk_sel = (tmp >> 12) & 0x1;
6887
6888 switch (vco) {
6889 case 2666667:
6890 case 4000000:
6891 case 5333333:
6892 return cdclk_sel ? 333333 : 222222;
6893 case 3200000:
6894 return cdclk_sel ? 320000 : 228571;
6895 default:
6896 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6897 return 222222;
6898 }
6899 }
6900
6901 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6902 {
6903 static const uint8_t div_3200[] = { 16, 10, 8 };
6904 static const uint8_t div_4000[] = { 20, 12, 10 };
6905 static const uint8_t div_5333[] = { 24, 16, 14 };
6906 const uint8_t *div_table;
6907 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6908 uint16_t tmp = 0;
6909
6910 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6911
6912 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6913
6914 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6915 goto fail;
6916
6917 switch (vco) {
6918 case 3200000:
6919 div_table = div_3200;
6920 break;
6921 case 4000000:
6922 div_table = div_4000;
6923 break;
6924 case 5333333:
6925 div_table = div_5333;
6926 break;
6927 default:
6928 goto fail;
6929 }
6930
6931 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6932
6933 fail:
6934 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6935 return 200000;
6936 }
6937
6938 static int g33_get_display_clock_speed(struct drm_device *dev)
6939 {
6940 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6941 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6942 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6943 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6944 const uint8_t *div_table;
6945 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6946 uint16_t tmp = 0;
6947
6948 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6949
6950 cdclk_sel = (tmp >> 4) & 0x7;
6951
6952 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6953 goto fail;
6954
6955 switch (vco) {
6956 case 3200000:
6957 div_table = div_3200;
6958 break;
6959 case 4000000:
6960 div_table = div_4000;
6961 break;
6962 case 4800000:
6963 div_table = div_4800;
6964 break;
6965 case 5333333:
6966 div_table = div_5333;
6967 break;
6968 default:
6969 goto fail;
6970 }
6971
6972 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6973
6974 fail:
6975 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6976 return 190476;
6977 }
6978
6979 static void
6980 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6981 {
6982 while (*num > DATA_LINK_M_N_MASK ||
6983 *den > DATA_LINK_M_N_MASK) {
6984 *num >>= 1;
6985 *den >>= 1;
6986 }
6987 }
6988
6989 static void compute_m_n(unsigned int m, unsigned int n,
6990 uint32_t *ret_m, uint32_t *ret_n)
6991 {
6992 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6993 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6994 intel_reduce_m_n_ratio(ret_m, ret_n);
6995 }
6996
6997 void
6998 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6999 int pixel_clock, int link_clock,
7000 struct intel_link_m_n *m_n)
7001 {
7002 m_n->tu = 64;
7003
7004 compute_m_n(bits_per_pixel * pixel_clock,
7005 link_clock * nlanes * 8,
7006 &m_n->gmch_m, &m_n->gmch_n);
7007
7008 compute_m_n(pixel_clock, link_clock,
7009 &m_n->link_m, &m_n->link_n);
7010 }
7011
7012 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7013 {
7014 if (i915.panel_use_ssc >= 0)
7015 return i915.panel_use_ssc != 0;
7016 return dev_priv->vbt.lvds_use_ssc
7017 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7018 }
7019
7020 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7021 {
7022 return (1 << dpll->n) << 16 | dpll->m2;
7023 }
7024
7025 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7026 {
7027 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7028 }
7029
7030 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7031 struct intel_crtc_state *crtc_state,
7032 struct dpll *reduced_clock)
7033 {
7034 struct drm_device *dev = crtc->base.dev;
7035 u32 fp, fp2 = 0;
7036
7037 if (IS_PINEVIEW(dev)) {
7038 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7039 if (reduced_clock)
7040 fp2 = pnv_dpll_compute_fp(reduced_clock);
7041 } else {
7042 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7043 if (reduced_clock)
7044 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7045 }
7046
7047 crtc_state->dpll_hw_state.fp0 = fp;
7048
7049 crtc->lowfreq_avail = false;
7050 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7051 reduced_clock) {
7052 crtc_state->dpll_hw_state.fp1 = fp2;
7053 crtc->lowfreq_avail = true;
7054 } else {
7055 crtc_state->dpll_hw_state.fp1 = fp;
7056 }
7057 }
7058
7059 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7060 pipe)
7061 {
7062 u32 reg_val;
7063
7064 /*
7065 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7066 * and set it to a reasonable value instead.
7067 */
7068 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7069 reg_val &= 0xffffff00;
7070 reg_val |= 0x00000030;
7071 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7072
7073 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7074 reg_val &= 0x8cffffff;
7075 reg_val = 0x8c000000;
7076 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7077
7078 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7079 reg_val &= 0xffffff00;
7080 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7081
7082 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7083 reg_val &= 0x00ffffff;
7084 reg_val |= 0xb0000000;
7085 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7086 }
7087
7088 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7089 struct intel_link_m_n *m_n)
7090 {
7091 struct drm_device *dev = crtc->base.dev;
7092 struct drm_i915_private *dev_priv = dev->dev_private;
7093 int pipe = crtc->pipe;
7094
7095 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7096 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7097 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7098 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7099 }
7100
7101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7102 struct intel_link_m_n *m_n,
7103 struct intel_link_m_n *m2_n2)
7104 {
7105 struct drm_device *dev = crtc->base.dev;
7106 struct drm_i915_private *dev_priv = dev->dev_private;
7107 int pipe = crtc->pipe;
7108 enum transcoder transcoder = crtc->config->cpu_transcoder;
7109
7110 if (INTEL_INFO(dev)->gen >= 5) {
7111 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7112 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7113 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7114 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7115 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7116 * for gen < 8) and if DRRS is supported (to make sure the
7117 * registers are not unnecessarily accessed).
7118 */
7119 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7120 crtc->config->has_drrs) {
7121 I915_WRITE(PIPE_DATA_M2(transcoder),
7122 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7123 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7124 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7125 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7126 }
7127 } else {
7128 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7129 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7130 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7131 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7132 }
7133 }
7134
7135 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7136 {
7137 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7138
7139 if (m_n == M1_N1) {
7140 dp_m_n = &crtc->config->dp_m_n;
7141 dp_m2_n2 = &crtc->config->dp_m2_n2;
7142 } else if (m_n == M2_N2) {
7143
7144 /*
7145 * M2_N2 registers are not supported. Hence m2_n2 divider value
7146 * needs to be programmed into M1_N1.
7147 */
7148 dp_m_n = &crtc->config->dp_m2_n2;
7149 } else {
7150 DRM_ERROR("Unsupported divider value\n");
7151 return;
7152 }
7153
7154 if (crtc->config->has_pch_encoder)
7155 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7156 else
7157 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7158 }
7159
7160 static void vlv_compute_dpll(struct intel_crtc *crtc,
7161 struct intel_crtc_state *pipe_config)
7162 {
7163 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7164 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7165 if (crtc->pipe != PIPE_A)
7166 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7167
7168 /* DPLL not used with DSI, but still need the rest set up */
7169 if (!pipe_config->has_dsi_encoder)
7170 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7171 DPLL_EXT_BUFFER_ENABLE_VLV;
7172
7173 pipe_config->dpll_hw_state.dpll_md =
7174 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7175 }
7176
7177 static void chv_compute_dpll(struct intel_crtc *crtc,
7178 struct intel_crtc_state *pipe_config)
7179 {
7180 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7181 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7182 if (crtc->pipe != PIPE_A)
7183 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7184
7185 /* DPLL not used with DSI, but still need the rest set up */
7186 if (!pipe_config->has_dsi_encoder)
7187 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7188
7189 pipe_config->dpll_hw_state.dpll_md =
7190 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7191 }
7192
7193 static void vlv_prepare_pll(struct intel_crtc *crtc,
7194 const struct intel_crtc_state *pipe_config)
7195 {
7196 struct drm_device *dev = crtc->base.dev;
7197 struct drm_i915_private *dev_priv = dev->dev_private;
7198 enum pipe pipe = crtc->pipe;
7199 u32 mdiv;
7200 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7201 u32 coreclk, reg_val;
7202
7203 /* Enable Refclk */
7204 I915_WRITE(DPLL(pipe),
7205 pipe_config->dpll_hw_state.dpll &
7206 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7207
7208 /* No need to actually set up the DPLL with DSI */
7209 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7210 return;
7211
7212 mutex_lock(&dev_priv->sb_lock);
7213
7214 bestn = pipe_config->dpll.n;
7215 bestm1 = pipe_config->dpll.m1;
7216 bestm2 = pipe_config->dpll.m2;
7217 bestp1 = pipe_config->dpll.p1;
7218 bestp2 = pipe_config->dpll.p2;
7219
7220 /* See eDP HDMI DPIO driver vbios notes doc */
7221
7222 /* PLL B needs special handling */
7223 if (pipe == PIPE_B)
7224 vlv_pllb_recal_opamp(dev_priv, pipe);
7225
7226 /* Set up Tx target for periodic Rcomp update */
7227 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7228
7229 /* Disable target IRef on PLL */
7230 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7231 reg_val &= 0x00ffffff;
7232 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7233
7234 /* Disable fast lock */
7235 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7236
7237 /* Set idtafcrecal before PLL is enabled */
7238 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7239 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7240 mdiv |= ((bestn << DPIO_N_SHIFT));
7241 mdiv |= (1 << DPIO_K_SHIFT);
7242
7243 /*
7244 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7245 * but we don't support that).
7246 * Note: don't use the DAC post divider as it seems unstable.
7247 */
7248 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7249 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7250
7251 mdiv |= DPIO_ENABLE_CALIBRATION;
7252 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7253
7254 /* Set HBR and RBR LPF coefficients */
7255 if (pipe_config->port_clock == 162000 ||
7256 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7257 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7258 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7259 0x009f0003);
7260 else
7261 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7262 0x00d0000f);
7263
7264 if (pipe_config->has_dp_encoder) {
7265 /* Use SSC source */
7266 if (pipe == PIPE_A)
7267 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7268 0x0df40000);
7269 else
7270 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7271 0x0df70000);
7272 } else { /* HDMI or VGA */
7273 /* Use bend source */
7274 if (pipe == PIPE_A)
7275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7276 0x0df70000);
7277 else
7278 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7279 0x0df40000);
7280 }
7281
7282 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7283 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7284 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7285 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7286 coreclk |= 0x01000000;
7287 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7288
7289 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7290 mutex_unlock(&dev_priv->sb_lock);
7291 }
7292
7293 static void chv_prepare_pll(struct intel_crtc *crtc,
7294 const struct intel_crtc_state *pipe_config)
7295 {
7296 struct drm_device *dev = crtc->base.dev;
7297 struct drm_i915_private *dev_priv = dev->dev_private;
7298 enum pipe pipe = crtc->pipe;
7299 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7300 u32 loopfilter, tribuf_calcntr;
7301 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7302 u32 dpio_val;
7303 int vco;
7304
7305 /* Enable Refclk and SSC */
7306 I915_WRITE(DPLL(pipe),
7307 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7308
7309 /* No need to actually set up the DPLL with DSI */
7310 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7311 return;
7312
7313 bestn = pipe_config->dpll.n;
7314 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7315 bestm1 = pipe_config->dpll.m1;
7316 bestm2 = pipe_config->dpll.m2 >> 22;
7317 bestp1 = pipe_config->dpll.p1;
7318 bestp2 = pipe_config->dpll.p2;
7319 vco = pipe_config->dpll.vco;
7320 dpio_val = 0;
7321 loopfilter = 0;
7322
7323 mutex_lock(&dev_priv->sb_lock);
7324
7325 /* p1 and p2 divider */
7326 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7327 5 << DPIO_CHV_S1_DIV_SHIFT |
7328 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7329 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7330 1 << DPIO_CHV_K_DIV_SHIFT);
7331
7332 /* Feedback post-divider - m2 */
7333 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7334
7335 /* Feedback refclk divider - n and m1 */
7336 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7337 DPIO_CHV_M1_DIV_BY_2 |
7338 1 << DPIO_CHV_N_DIV_SHIFT);
7339
7340 /* M2 fraction division */
7341 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7342
7343 /* M2 fraction division enable */
7344 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7345 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7346 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7347 if (bestm2_frac)
7348 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7349 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7350
7351 /* Program digital lock detect threshold */
7352 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7353 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7354 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7355 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7356 if (!bestm2_frac)
7357 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7358 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7359
7360 /* Loop filter */
7361 if (vco == 5400000) {
7362 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7363 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7364 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7365 tribuf_calcntr = 0x9;
7366 } else if (vco <= 6200000) {
7367 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7368 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7369 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7370 tribuf_calcntr = 0x9;
7371 } else if (vco <= 6480000) {
7372 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7373 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7374 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7375 tribuf_calcntr = 0x8;
7376 } else {
7377 /* Not supported. Apply the same limits as in the max case */
7378 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7379 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7380 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7381 tribuf_calcntr = 0;
7382 }
7383 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7384
7385 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7386 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7387 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7388 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7389
7390 /* AFC Recal */
7391 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7392 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7393 DPIO_AFC_RECAL);
7394
7395 mutex_unlock(&dev_priv->sb_lock);
7396 }
7397
7398 /**
7399 * vlv_force_pll_on - forcibly enable just the PLL
7400 * @dev_priv: i915 private structure
7401 * @pipe: pipe PLL to enable
7402 * @dpll: PLL configuration
7403 *
7404 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7405 * in cases where we need the PLL enabled even when @pipe is not going to
7406 * be enabled.
7407 */
7408 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7409 const struct dpll *dpll)
7410 {
7411 struct intel_crtc *crtc =
7412 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7413 struct intel_crtc_state *pipe_config;
7414
7415 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7416 if (!pipe_config)
7417 return -ENOMEM;
7418
7419 pipe_config->base.crtc = &crtc->base;
7420 pipe_config->pixel_multiplier = 1;
7421 pipe_config->dpll = *dpll;
7422
7423 if (IS_CHERRYVIEW(dev)) {
7424 chv_compute_dpll(crtc, pipe_config);
7425 chv_prepare_pll(crtc, pipe_config);
7426 chv_enable_pll(crtc, pipe_config);
7427 } else {
7428 vlv_compute_dpll(crtc, pipe_config);
7429 vlv_prepare_pll(crtc, pipe_config);
7430 vlv_enable_pll(crtc, pipe_config);
7431 }
7432
7433 kfree(pipe_config);
7434
7435 return 0;
7436 }
7437
7438 /**
7439 * vlv_force_pll_off - forcibly disable just the PLL
7440 * @dev_priv: i915 private structure
7441 * @pipe: pipe PLL to disable
7442 *
7443 * Disable the PLL for @pipe. To be used in cases where we need
7444 * the PLL enabled even when @pipe is not going to be enabled.
7445 */
7446 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7447 {
7448 if (IS_CHERRYVIEW(dev))
7449 chv_disable_pll(to_i915(dev), pipe);
7450 else
7451 vlv_disable_pll(to_i915(dev), pipe);
7452 }
7453
7454 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7455 struct intel_crtc_state *crtc_state,
7456 struct dpll *reduced_clock)
7457 {
7458 struct drm_device *dev = crtc->base.dev;
7459 struct drm_i915_private *dev_priv = dev->dev_private;
7460 u32 dpll;
7461 bool is_sdvo;
7462 struct dpll *clock = &crtc_state->dpll;
7463
7464 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7465
7466 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7467 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7468
7469 dpll = DPLL_VGA_MODE_DIS;
7470
7471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7472 dpll |= DPLLB_MODE_LVDS;
7473 else
7474 dpll |= DPLLB_MODE_DAC_SERIAL;
7475
7476 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7477 dpll |= (crtc_state->pixel_multiplier - 1)
7478 << SDVO_MULTIPLIER_SHIFT_HIRES;
7479 }
7480
7481 if (is_sdvo)
7482 dpll |= DPLL_SDVO_HIGH_SPEED;
7483
7484 if (crtc_state->has_dp_encoder)
7485 dpll |= DPLL_SDVO_HIGH_SPEED;
7486
7487 /* compute bitmask from p1 value */
7488 if (IS_PINEVIEW(dev))
7489 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7490 else {
7491 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7492 if (IS_G4X(dev) && reduced_clock)
7493 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7494 }
7495 switch (clock->p2) {
7496 case 5:
7497 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7498 break;
7499 case 7:
7500 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7501 break;
7502 case 10:
7503 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7504 break;
7505 case 14:
7506 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7507 break;
7508 }
7509 if (INTEL_INFO(dev)->gen >= 4)
7510 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7511
7512 if (crtc_state->sdvo_tv_clock)
7513 dpll |= PLL_REF_INPUT_TVCLKINBC;
7514 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7515 intel_panel_use_ssc(dev_priv))
7516 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7517 else
7518 dpll |= PLL_REF_INPUT_DREFCLK;
7519
7520 dpll |= DPLL_VCO_ENABLE;
7521 crtc_state->dpll_hw_state.dpll = dpll;
7522
7523 if (INTEL_INFO(dev)->gen >= 4) {
7524 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7525 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7526 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7527 }
7528 }
7529
7530 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7531 struct intel_crtc_state *crtc_state,
7532 struct dpll *reduced_clock)
7533 {
7534 struct drm_device *dev = crtc->base.dev;
7535 struct drm_i915_private *dev_priv = dev->dev_private;
7536 u32 dpll;
7537 struct dpll *clock = &crtc_state->dpll;
7538
7539 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7540
7541 dpll = DPLL_VGA_MODE_DIS;
7542
7543 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7544 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7545 } else {
7546 if (clock->p1 == 2)
7547 dpll |= PLL_P1_DIVIDE_BY_TWO;
7548 else
7549 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7550 if (clock->p2 == 4)
7551 dpll |= PLL_P2_DIVIDE_BY_4;
7552 }
7553
7554 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7555 dpll |= DPLL_DVO_2X_MODE;
7556
7557 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7558 intel_panel_use_ssc(dev_priv))
7559 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7560 else
7561 dpll |= PLL_REF_INPUT_DREFCLK;
7562
7563 dpll |= DPLL_VCO_ENABLE;
7564 crtc_state->dpll_hw_state.dpll = dpll;
7565 }
7566
7567 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7568 {
7569 struct drm_device *dev = intel_crtc->base.dev;
7570 struct drm_i915_private *dev_priv = dev->dev_private;
7571 enum pipe pipe = intel_crtc->pipe;
7572 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7573 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7574 uint32_t crtc_vtotal, crtc_vblank_end;
7575 int vsyncshift = 0;
7576
7577 /* We need to be careful not to changed the adjusted mode, for otherwise
7578 * the hw state checker will get angry at the mismatch. */
7579 crtc_vtotal = adjusted_mode->crtc_vtotal;
7580 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7581
7582 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7583 /* the chip adds 2 halflines automatically */
7584 crtc_vtotal -= 1;
7585 crtc_vblank_end -= 1;
7586
7587 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7588 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7589 else
7590 vsyncshift = adjusted_mode->crtc_hsync_start -
7591 adjusted_mode->crtc_htotal / 2;
7592 if (vsyncshift < 0)
7593 vsyncshift += adjusted_mode->crtc_htotal;
7594 }
7595
7596 if (INTEL_INFO(dev)->gen > 3)
7597 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7598
7599 I915_WRITE(HTOTAL(cpu_transcoder),
7600 (adjusted_mode->crtc_hdisplay - 1) |
7601 ((adjusted_mode->crtc_htotal - 1) << 16));
7602 I915_WRITE(HBLANK(cpu_transcoder),
7603 (adjusted_mode->crtc_hblank_start - 1) |
7604 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7605 I915_WRITE(HSYNC(cpu_transcoder),
7606 (adjusted_mode->crtc_hsync_start - 1) |
7607 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7608
7609 I915_WRITE(VTOTAL(cpu_transcoder),
7610 (adjusted_mode->crtc_vdisplay - 1) |
7611 ((crtc_vtotal - 1) << 16));
7612 I915_WRITE(VBLANK(cpu_transcoder),
7613 (adjusted_mode->crtc_vblank_start - 1) |
7614 ((crtc_vblank_end - 1) << 16));
7615 I915_WRITE(VSYNC(cpu_transcoder),
7616 (adjusted_mode->crtc_vsync_start - 1) |
7617 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7618
7619 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7620 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7621 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7622 * bits. */
7623 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7624 (pipe == PIPE_B || pipe == PIPE_C))
7625 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7626
7627 }
7628
7629 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7630 {
7631 struct drm_device *dev = intel_crtc->base.dev;
7632 struct drm_i915_private *dev_priv = dev->dev_private;
7633 enum pipe pipe = intel_crtc->pipe;
7634
7635 /* pipesrc controls the size that is scaled from, which should
7636 * always be the user's requested size.
7637 */
7638 I915_WRITE(PIPESRC(pipe),
7639 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7640 (intel_crtc->config->pipe_src_h - 1));
7641 }
7642
7643 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7644 struct intel_crtc_state *pipe_config)
7645 {
7646 struct drm_device *dev = crtc->base.dev;
7647 struct drm_i915_private *dev_priv = dev->dev_private;
7648 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7649 uint32_t tmp;
7650
7651 tmp = I915_READ(HTOTAL(cpu_transcoder));
7652 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7653 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7654 tmp = I915_READ(HBLANK(cpu_transcoder));
7655 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7656 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7657 tmp = I915_READ(HSYNC(cpu_transcoder));
7658 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7659 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7660
7661 tmp = I915_READ(VTOTAL(cpu_transcoder));
7662 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7663 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7664 tmp = I915_READ(VBLANK(cpu_transcoder));
7665 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7666 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7667 tmp = I915_READ(VSYNC(cpu_transcoder));
7668 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7669 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7670
7671 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7672 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7673 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7674 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7675 }
7676 }
7677
7678 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7679 struct intel_crtc_state *pipe_config)
7680 {
7681 struct drm_device *dev = crtc->base.dev;
7682 struct drm_i915_private *dev_priv = dev->dev_private;
7683 u32 tmp;
7684
7685 tmp = I915_READ(PIPESRC(crtc->pipe));
7686 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7687 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7688
7689 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7690 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7691 }
7692
7693 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7694 struct intel_crtc_state *pipe_config)
7695 {
7696 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7697 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7698 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7699 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7700
7701 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7702 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7703 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7704 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7705
7706 mode->flags = pipe_config->base.adjusted_mode.flags;
7707 mode->type = DRM_MODE_TYPE_DRIVER;
7708
7709 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7710 mode->flags |= pipe_config->base.adjusted_mode.flags;
7711
7712 mode->hsync = drm_mode_hsync(mode);
7713 mode->vrefresh = drm_mode_vrefresh(mode);
7714 drm_mode_set_name(mode);
7715 }
7716
7717 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7718 {
7719 struct drm_device *dev = intel_crtc->base.dev;
7720 struct drm_i915_private *dev_priv = dev->dev_private;
7721 uint32_t pipeconf;
7722
7723 pipeconf = 0;
7724
7725 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7726 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7727 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7728
7729 if (intel_crtc->config->double_wide)
7730 pipeconf |= PIPECONF_DOUBLE_WIDE;
7731
7732 /* only g4x and later have fancy bpc/dither controls */
7733 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7734 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7735 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7736 pipeconf |= PIPECONF_DITHER_EN |
7737 PIPECONF_DITHER_TYPE_SP;
7738
7739 switch (intel_crtc->config->pipe_bpp) {
7740 case 18:
7741 pipeconf |= PIPECONF_6BPC;
7742 break;
7743 case 24:
7744 pipeconf |= PIPECONF_8BPC;
7745 break;
7746 case 30:
7747 pipeconf |= PIPECONF_10BPC;
7748 break;
7749 default:
7750 /* Case prevented by intel_choose_pipe_bpp_dither. */
7751 BUG();
7752 }
7753 }
7754
7755 if (HAS_PIPE_CXSR(dev)) {
7756 if (intel_crtc->lowfreq_avail) {
7757 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7758 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7759 } else {
7760 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7761 }
7762 }
7763
7764 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7765 if (INTEL_INFO(dev)->gen < 4 ||
7766 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7767 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7768 else
7769 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7770 } else
7771 pipeconf |= PIPECONF_PROGRESSIVE;
7772
7773 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7774 intel_crtc->config->limited_color_range)
7775 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7776
7777 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7778 POSTING_READ(PIPECONF(intel_crtc->pipe));
7779 }
7780
7781 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7782 struct intel_crtc_state *crtc_state)
7783 {
7784 struct drm_device *dev = crtc->base.dev;
7785 struct drm_i915_private *dev_priv = dev->dev_private;
7786 const struct intel_limit *limit;
7787 int refclk = 48000;
7788
7789 memset(&crtc_state->dpll_hw_state, 0,
7790 sizeof(crtc_state->dpll_hw_state));
7791
7792 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7793 if (intel_panel_use_ssc(dev_priv)) {
7794 refclk = dev_priv->vbt.lvds_ssc_freq;
7795 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7796 }
7797
7798 limit = &intel_limits_i8xx_lvds;
7799 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7800 limit = &intel_limits_i8xx_dvo;
7801 } else {
7802 limit = &intel_limits_i8xx_dac;
7803 }
7804
7805 if (!crtc_state->clock_set &&
7806 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7807 refclk, NULL, &crtc_state->dpll)) {
7808 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7809 return -EINVAL;
7810 }
7811
7812 i8xx_compute_dpll(crtc, crtc_state, NULL);
7813
7814 return 0;
7815 }
7816
7817 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7818 struct intel_crtc_state *crtc_state)
7819 {
7820 struct drm_device *dev = crtc->base.dev;
7821 struct drm_i915_private *dev_priv = dev->dev_private;
7822 const struct intel_limit *limit;
7823 int refclk = 96000;
7824
7825 memset(&crtc_state->dpll_hw_state, 0,
7826 sizeof(crtc_state->dpll_hw_state));
7827
7828 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7829 if (intel_panel_use_ssc(dev_priv)) {
7830 refclk = dev_priv->vbt.lvds_ssc_freq;
7831 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7832 }
7833
7834 if (intel_is_dual_link_lvds(dev))
7835 limit = &intel_limits_g4x_dual_channel_lvds;
7836 else
7837 limit = &intel_limits_g4x_single_channel_lvds;
7838 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7839 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7840 limit = &intel_limits_g4x_hdmi;
7841 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7842 limit = &intel_limits_g4x_sdvo;
7843 } else {
7844 /* The option is for other outputs */
7845 limit = &intel_limits_i9xx_sdvo;
7846 }
7847
7848 if (!crtc_state->clock_set &&
7849 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7850 refclk, NULL, &crtc_state->dpll)) {
7851 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7852 return -EINVAL;
7853 }
7854
7855 i9xx_compute_dpll(crtc, crtc_state, NULL);
7856
7857 return 0;
7858 }
7859
7860 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7861 struct intel_crtc_state *crtc_state)
7862 {
7863 struct drm_device *dev = crtc->base.dev;
7864 struct drm_i915_private *dev_priv = dev->dev_private;
7865 const struct intel_limit *limit;
7866 int refclk = 96000;
7867
7868 memset(&crtc_state->dpll_hw_state, 0,
7869 sizeof(crtc_state->dpll_hw_state));
7870
7871 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7872 if (intel_panel_use_ssc(dev_priv)) {
7873 refclk = dev_priv->vbt.lvds_ssc_freq;
7874 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7875 }
7876
7877 limit = &intel_limits_pineview_lvds;
7878 } else {
7879 limit = &intel_limits_pineview_sdvo;
7880 }
7881
7882 if (!crtc_state->clock_set &&
7883 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7884 refclk, NULL, &crtc_state->dpll)) {
7885 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7886 return -EINVAL;
7887 }
7888
7889 i9xx_compute_dpll(crtc, crtc_state, NULL);
7890
7891 return 0;
7892 }
7893
7894 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7895 struct intel_crtc_state *crtc_state)
7896 {
7897 struct drm_device *dev = crtc->base.dev;
7898 struct drm_i915_private *dev_priv = dev->dev_private;
7899 const struct intel_limit *limit;
7900 int refclk = 96000;
7901
7902 memset(&crtc_state->dpll_hw_state, 0,
7903 sizeof(crtc_state->dpll_hw_state));
7904
7905 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7906 if (intel_panel_use_ssc(dev_priv)) {
7907 refclk = dev_priv->vbt.lvds_ssc_freq;
7908 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7909 }
7910
7911 limit = &intel_limits_i9xx_lvds;
7912 } else {
7913 limit = &intel_limits_i9xx_sdvo;
7914 }
7915
7916 if (!crtc_state->clock_set &&
7917 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7918 refclk, NULL, &crtc_state->dpll)) {
7919 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7920 return -EINVAL;
7921 }
7922
7923 i9xx_compute_dpll(crtc, crtc_state, NULL);
7924
7925 return 0;
7926 }
7927
7928 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7929 struct intel_crtc_state *crtc_state)
7930 {
7931 int refclk = 100000;
7932 const struct intel_limit *limit = &intel_limits_chv;
7933
7934 memset(&crtc_state->dpll_hw_state, 0,
7935 sizeof(crtc_state->dpll_hw_state));
7936
7937 if (!crtc_state->clock_set &&
7938 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7939 refclk, NULL, &crtc_state->dpll)) {
7940 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7941 return -EINVAL;
7942 }
7943
7944 chv_compute_dpll(crtc, crtc_state);
7945
7946 return 0;
7947 }
7948
7949 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7950 struct intel_crtc_state *crtc_state)
7951 {
7952 int refclk = 100000;
7953 const struct intel_limit *limit = &intel_limits_vlv;
7954
7955 memset(&crtc_state->dpll_hw_state, 0,
7956 sizeof(crtc_state->dpll_hw_state));
7957
7958 if (!crtc_state->clock_set &&
7959 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7960 refclk, NULL, &crtc_state->dpll)) {
7961 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7962 return -EINVAL;
7963 }
7964
7965 vlv_compute_dpll(crtc, crtc_state);
7966
7967 return 0;
7968 }
7969
7970 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7971 struct intel_crtc_state *pipe_config)
7972 {
7973 struct drm_device *dev = crtc->base.dev;
7974 struct drm_i915_private *dev_priv = dev->dev_private;
7975 uint32_t tmp;
7976
7977 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7978 return;
7979
7980 tmp = I915_READ(PFIT_CONTROL);
7981 if (!(tmp & PFIT_ENABLE))
7982 return;
7983
7984 /* Check whether the pfit is attached to our pipe. */
7985 if (INTEL_INFO(dev)->gen < 4) {
7986 if (crtc->pipe != PIPE_B)
7987 return;
7988 } else {
7989 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7990 return;
7991 }
7992
7993 pipe_config->gmch_pfit.control = tmp;
7994 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7995 }
7996
7997 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7998 struct intel_crtc_state *pipe_config)
7999 {
8000 struct drm_device *dev = crtc->base.dev;
8001 struct drm_i915_private *dev_priv = dev->dev_private;
8002 int pipe = pipe_config->cpu_transcoder;
8003 struct dpll clock;
8004 u32 mdiv;
8005 int refclk = 100000;
8006
8007 /* In case of DSI, DPLL will not be used */
8008 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8009 return;
8010
8011 mutex_lock(&dev_priv->sb_lock);
8012 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8013 mutex_unlock(&dev_priv->sb_lock);
8014
8015 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8016 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8017 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8018 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8019 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8020
8021 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8022 }
8023
8024 static void
8025 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8026 struct intel_initial_plane_config *plane_config)
8027 {
8028 struct drm_device *dev = crtc->base.dev;
8029 struct drm_i915_private *dev_priv = dev->dev_private;
8030 u32 val, base, offset;
8031 int pipe = crtc->pipe, plane = crtc->plane;
8032 int fourcc, pixel_format;
8033 unsigned int aligned_height;
8034 struct drm_framebuffer *fb;
8035 struct intel_framebuffer *intel_fb;
8036
8037 val = I915_READ(DSPCNTR(plane));
8038 if (!(val & DISPLAY_PLANE_ENABLE))
8039 return;
8040
8041 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8042 if (!intel_fb) {
8043 DRM_DEBUG_KMS("failed to alloc fb\n");
8044 return;
8045 }
8046
8047 fb = &intel_fb->base;
8048
8049 if (INTEL_INFO(dev)->gen >= 4) {
8050 if (val & DISPPLANE_TILED) {
8051 plane_config->tiling = I915_TILING_X;
8052 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8053 }
8054 }
8055
8056 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8057 fourcc = i9xx_format_to_fourcc(pixel_format);
8058 fb->pixel_format = fourcc;
8059 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8060
8061 if (INTEL_INFO(dev)->gen >= 4) {
8062 if (plane_config->tiling)
8063 offset = I915_READ(DSPTILEOFF(plane));
8064 else
8065 offset = I915_READ(DSPLINOFF(plane));
8066 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8067 } else {
8068 base = I915_READ(DSPADDR(plane));
8069 }
8070 plane_config->base = base;
8071
8072 val = I915_READ(PIPESRC(pipe));
8073 fb->width = ((val >> 16) & 0xfff) + 1;
8074 fb->height = ((val >> 0) & 0xfff) + 1;
8075
8076 val = I915_READ(DSPSTRIDE(pipe));
8077 fb->pitches[0] = val & 0xffffffc0;
8078
8079 aligned_height = intel_fb_align_height(dev, fb->height,
8080 fb->pixel_format,
8081 fb->modifier[0]);
8082
8083 plane_config->size = fb->pitches[0] * aligned_height;
8084
8085 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8086 pipe_name(pipe), plane, fb->width, fb->height,
8087 fb->bits_per_pixel, base, fb->pitches[0],
8088 plane_config->size);
8089
8090 plane_config->fb = intel_fb;
8091 }
8092
8093 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8094 struct intel_crtc_state *pipe_config)
8095 {
8096 struct drm_device *dev = crtc->base.dev;
8097 struct drm_i915_private *dev_priv = dev->dev_private;
8098 int pipe = pipe_config->cpu_transcoder;
8099 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8100 struct dpll clock;
8101 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8102 int refclk = 100000;
8103
8104 /* In case of DSI, DPLL will not be used */
8105 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8106 return;
8107
8108 mutex_lock(&dev_priv->sb_lock);
8109 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8110 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8111 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8112 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8113 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8114 mutex_unlock(&dev_priv->sb_lock);
8115
8116 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8117 clock.m2 = (pll_dw0 & 0xff) << 22;
8118 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8119 clock.m2 |= pll_dw2 & 0x3fffff;
8120 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8121 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8122 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8123
8124 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8125 }
8126
8127 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8128 struct intel_crtc_state *pipe_config)
8129 {
8130 struct drm_device *dev = crtc->base.dev;
8131 struct drm_i915_private *dev_priv = dev->dev_private;
8132 enum intel_display_power_domain power_domain;
8133 uint32_t tmp;
8134 bool ret;
8135
8136 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8137 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8138 return false;
8139
8140 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141 pipe_config->shared_dpll = NULL;
8142
8143 ret = false;
8144
8145 tmp = I915_READ(PIPECONF(crtc->pipe));
8146 if (!(tmp & PIPECONF_ENABLE))
8147 goto out;
8148
8149 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8150 switch (tmp & PIPECONF_BPC_MASK) {
8151 case PIPECONF_6BPC:
8152 pipe_config->pipe_bpp = 18;
8153 break;
8154 case PIPECONF_8BPC:
8155 pipe_config->pipe_bpp = 24;
8156 break;
8157 case PIPECONF_10BPC:
8158 pipe_config->pipe_bpp = 30;
8159 break;
8160 default:
8161 break;
8162 }
8163 }
8164
8165 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8166 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8167 pipe_config->limited_color_range = true;
8168
8169 if (INTEL_INFO(dev)->gen < 4)
8170 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8171
8172 intel_get_pipe_timings(crtc, pipe_config);
8173 intel_get_pipe_src_size(crtc, pipe_config);
8174
8175 i9xx_get_pfit_config(crtc, pipe_config);
8176
8177 if (INTEL_INFO(dev)->gen >= 4) {
8178 /* No way to read it out on pipes B and C */
8179 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8180 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8181 else
8182 tmp = I915_READ(DPLL_MD(crtc->pipe));
8183 pipe_config->pixel_multiplier =
8184 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8185 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8186 pipe_config->dpll_hw_state.dpll_md = tmp;
8187 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8188 tmp = I915_READ(DPLL(crtc->pipe));
8189 pipe_config->pixel_multiplier =
8190 ((tmp & SDVO_MULTIPLIER_MASK)
8191 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8192 } else {
8193 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8194 * port and will be fixed up in the encoder->get_config
8195 * function. */
8196 pipe_config->pixel_multiplier = 1;
8197 }
8198 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8199 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8200 /*
8201 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8202 * on 830. Filter it out here so that we don't
8203 * report errors due to that.
8204 */
8205 if (IS_I830(dev))
8206 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8207
8208 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8209 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8210 } else {
8211 /* Mask out read-only status bits. */
8212 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8213 DPLL_PORTC_READY_MASK |
8214 DPLL_PORTB_READY_MASK);
8215 }
8216
8217 if (IS_CHERRYVIEW(dev))
8218 chv_crtc_clock_get(crtc, pipe_config);
8219 else if (IS_VALLEYVIEW(dev))
8220 vlv_crtc_clock_get(crtc, pipe_config);
8221 else
8222 i9xx_crtc_clock_get(crtc, pipe_config);
8223
8224 /*
8225 * Normally the dotclock is filled in by the encoder .get_config()
8226 * but in case the pipe is enabled w/o any ports we need a sane
8227 * default.
8228 */
8229 pipe_config->base.adjusted_mode.crtc_clock =
8230 pipe_config->port_clock / pipe_config->pixel_multiplier;
8231
8232 ret = true;
8233
8234 out:
8235 intel_display_power_put(dev_priv, power_domain);
8236
8237 return ret;
8238 }
8239
8240 static void ironlake_init_pch_refclk(struct drm_device *dev)
8241 {
8242 struct drm_i915_private *dev_priv = dev->dev_private;
8243 struct intel_encoder *encoder;
8244 u32 val, final;
8245 bool has_lvds = false;
8246 bool has_cpu_edp = false;
8247 bool has_panel = false;
8248 bool has_ck505 = false;
8249 bool can_ssc = false;
8250
8251 /* We need to take the global config into account */
8252 for_each_intel_encoder(dev, encoder) {
8253 switch (encoder->type) {
8254 case INTEL_OUTPUT_LVDS:
8255 has_panel = true;
8256 has_lvds = true;
8257 break;
8258 case INTEL_OUTPUT_EDP:
8259 has_panel = true;
8260 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8261 has_cpu_edp = true;
8262 break;
8263 default:
8264 break;
8265 }
8266 }
8267
8268 if (HAS_PCH_IBX(dev)) {
8269 has_ck505 = dev_priv->vbt.display_clock_mode;
8270 can_ssc = has_ck505;
8271 } else {
8272 has_ck505 = false;
8273 can_ssc = true;
8274 }
8275
8276 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8277 has_panel, has_lvds, has_ck505);
8278
8279 /* Ironlake: try to setup display ref clock before DPLL
8280 * enabling. This is only under driver's control after
8281 * PCH B stepping, previous chipset stepping should be
8282 * ignoring this setting.
8283 */
8284 val = I915_READ(PCH_DREF_CONTROL);
8285
8286 /* As we must carefully and slowly disable/enable each source in turn,
8287 * compute the final state we want first and check if we need to
8288 * make any changes at all.
8289 */
8290 final = val;
8291 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8292 if (has_ck505)
8293 final |= DREF_NONSPREAD_CK505_ENABLE;
8294 else
8295 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8296
8297 final &= ~DREF_SSC_SOURCE_MASK;
8298 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8299 final &= ~DREF_SSC1_ENABLE;
8300
8301 if (has_panel) {
8302 final |= DREF_SSC_SOURCE_ENABLE;
8303
8304 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8305 final |= DREF_SSC1_ENABLE;
8306
8307 if (has_cpu_edp) {
8308 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8309 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8310 else
8311 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8312 } else
8313 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8314 } else {
8315 final |= DREF_SSC_SOURCE_DISABLE;
8316 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8317 }
8318
8319 if (final == val)
8320 return;
8321
8322 /* Always enable nonspread source */
8323 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8324
8325 if (has_ck505)
8326 val |= DREF_NONSPREAD_CK505_ENABLE;
8327 else
8328 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8329
8330 if (has_panel) {
8331 val &= ~DREF_SSC_SOURCE_MASK;
8332 val |= DREF_SSC_SOURCE_ENABLE;
8333
8334 /* SSC must be turned on before enabling the CPU output */
8335 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8336 DRM_DEBUG_KMS("Using SSC on panel\n");
8337 val |= DREF_SSC1_ENABLE;
8338 } else
8339 val &= ~DREF_SSC1_ENABLE;
8340
8341 /* Get SSC going before enabling the outputs */
8342 I915_WRITE(PCH_DREF_CONTROL, val);
8343 POSTING_READ(PCH_DREF_CONTROL);
8344 udelay(200);
8345
8346 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8347
8348 /* Enable CPU source on CPU attached eDP */
8349 if (has_cpu_edp) {
8350 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8351 DRM_DEBUG_KMS("Using SSC on eDP\n");
8352 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8353 } else
8354 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8355 } else
8356 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8357
8358 I915_WRITE(PCH_DREF_CONTROL, val);
8359 POSTING_READ(PCH_DREF_CONTROL);
8360 udelay(200);
8361 } else {
8362 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8363
8364 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8365
8366 /* Turn off CPU output */
8367 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8368
8369 I915_WRITE(PCH_DREF_CONTROL, val);
8370 POSTING_READ(PCH_DREF_CONTROL);
8371 udelay(200);
8372
8373 /* Turn off the SSC source */
8374 val &= ~DREF_SSC_SOURCE_MASK;
8375 val |= DREF_SSC_SOURCE_DISABLE;
8376
8377 /* Turn off SSC1 */
8378 val &= ~DREF_SSC1_ENABLE;
8379
8380 I915_WRITE(PCH_DREF_CONTROL, val);
8381 POSTING_READ(PCH_DREF_CONTROL);
8382 udelay(200);
8383 }
8384
8385 BUG_ON(val != final);
8386 }
8387
8388 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8389 {
8390 uint32_t tmp;
8391
8392 tmp = I915_READ(SOUTH_CHICKEN2);
8393 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8394 I915_WRITE(SOUTH_CHICKEN2, tmp);
8395
8396 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8397 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8398 DRM_ERROR("FDI mPHY reset assert timeout\n");
8399
8400 tmp = I915_READ(SOUTH_CHICKEN2);
8401 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8402 I915_WRITE(SOUTH_CHICKEN2, tmp);
8403
8404 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8405 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8406 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8407 }
8408
8409 /* WaMPhyProgramming:hsw */
8410 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8411 {
8412 uint32_t tmp;
8413
8414 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8415 tmp &= ~(0xFF << 24);
8416 tmp |= (0x12 << 24);
8417 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8418
8419 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8420 tmp |= (1 << 11);
8421 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8422
8423 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8424 tmp |= (1 << 11);
8425 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8426
8427 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8428 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8429 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8430
8431 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8432 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8433 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8434
8435 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8436 tmp &= ~(7 << 13);
8437 tmp |= (5 << 13);
8438 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8441 tmp &= ~(7 << 13);
8442 tmp |= (5 << 13);
8443 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8444
8445 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8446 tmp &= ~0xFF;
8447 tmp |= 0x1C;
8448 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8449
8450 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8451 tmp &= ~0xFF;
8452 tmp |= 0x1C;
8453 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8454
8455 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8456 tmp &= ~(0xFF << 16);
8457 tmp |= (0x1C << 16);
8458 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8459
8460 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8461 tmp &= ~(0xFF << 16);
8462 tmp |= (0x1C << 16);
8463 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8464
8465 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8466 tmp |= (1 << 27);
8467 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8468
8469 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8470 tmp |= (1 << 27);
8471 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8472
8473 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8474 tmp &= ~(0xF << 28);
8475 tmp |= (4 << 28);
8476 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8477
8478 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8479 tmp &= ~(0xF << 28);
8480 tmp |= (4 << 28);
8481 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8482 }
8483
8484 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8485 * Programming" based on the parameters passed:
8486 * - Sequence to enable CLKOUT_DP
8487 * - Sequence to enable CLKOUT_DP without spread
8488 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8489 */
8490 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8491 bool with_fdi)
8492 {
8493 struct drm_i915_private *dev_priv = dev->dev_private;
8494 uint32_t reg, tmp;
8495
8496 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8497 with_spread = true;
8498 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8499 with_fdi = false;
8500
8501 mutex_lock(&dev_priv->sb_lock);
8502
8503 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8504 tmp &= ~SBI_SSCCTL_DISABLE;
8505 tmp |= SBI_SSCCTL_PATHALT;
8506 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8507
8508 udelay(24);
8509
8510 if (with_spread) {
8511 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8512 tmp &= ~SBI_SSCCTL_PATHALT;
8513 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8514
8515 if (with_fdi) {
8516 lpt_reset_fdi_mphy(dev_priv);
8517 lpt_program_fdi_mphy(dev_priv);
8518 }
8519 }
8520
8521 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8522 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8523 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8524 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8525
8526 mutex_unlock(&dev_priv->sb_lock);
8527 }
8528
8529 /* Sequence to disable CLKOUT_DP */
8530 static void lpt_disable_clkout_dp(struct drm_device *dev)
8531 {
8532 struct drm_i915_private *dev_priv = dev->dev_private;
8533 uint32_t reg, tmp;
8534
8535 mutex_lock(&dev_priv->sb_lock);
8536
8537 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8538 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8539 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8540 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8541
8542 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8543 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8544 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8545 tmp |= SBI_SSCCTL_PATHALT;
8546 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8547 udelay(32);
8548 }
8549 tmp |= SBI_SSCCTL_DISABLE;
8550 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8551 }
8552
8553 mutex_unlock(&dev_priv->sb_lock);
8554 }
8555
8556 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8557
8558 static const uint16_t sscdivintphase[] = {
8559 [BEND_IDX( 50)] = 0x3B23,
8560 [BEND_IDX( 45)] = 0x3B23,
8561 [BEND_IDX( 40)] = 0x3C23,
8562 [BEND_IDX( 35)] = 0x3C23,
8563 [BEND_IDX( 30)] = 0x3D23,
8564 [BEND_IDX( 25)] = 0x3D23,
8565 [BEND_IDX( 20)] = 0x3E23,
8566 [BEND_IDX( 15)] = 0x3E23,
8567 [BEND_IDX( 10)] = 0x3F23,
8568 [BEND_IDX( 5)] = 0x3F23,
8569 [BEND_IDX( 0)] = 0x0025,
8570 [BEND_IDX( -5)] = 0x0025,
8571 [BEND_IDX(-10)] = 0x0125,
8572 [BEND_IDX(-15)] = 0x0125,
8573 [BEND_IDX(-20)] = 0x0225,
8574 [BEND_IDX(-25)] = 0x0225,
8575 [BEND_IDX(-30)] = 0x0325,
8576 [BEND_IDX(-35)] = 0x0325,
8577 [BEND_IDX(-40)] = 0x0425,
8578 [BEND_IDX(-45)] = 0x0425,
8579 [BEND_IDX(-50)] = 0x0525,
8580 };
8581
8582 /*
8583 * Bend CLKOUT_DP
8584 * steps -50 to 50 inclusive, in steps of 5
8585 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8586 * change in clock period = -(steps / 10) * 5.787 ps
8587 */
8588 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8589 {
8590 uint32_t tmp;
8591 int idx = BEND_IDX(steps);
8592
8593 if (WARN_ON(steps % 5 != 0))
8594 return;
8595
8596 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8597 return;
8598
8599 mutex_lock(&dev_priv->sb_lock);
8600
8601 if (steps % 10 != 0)
8602 tmp = 0xAAAAAAAB;
8603 else
8604 tmp = 0x00000000;
8605 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8606
8607 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8608 tmp &= 0xffff0000;
8609 tmp |= sscdivintphase[idx];
8610 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8611
8612 mutex_unlock(&dev_priv->sb_lock);
8613 }
8614
8615 #undef BEND_IDX
8616
8617 static void lpt_init_pch_refclk(struct drm_device *dev)
8618 {
8619 struct intel_encoder *encoder;
8620 bool has_vga = false;
8621
8622 for_each_intel_encoder(dev, encoder) {
8623 switch (encoder->type) {
8624 case INTEL_OUTPUT_ANALOG:
8625 has_vga = true;
8626 break;
8627 default:
8628 break;
8629 }
8630 }
8631
8632 if (has_vga) {
8633 lpt_bend_clkout_dp(to_i915(dev), 0);
8634 lpt_enable_clkout_dp(dev, true, true);
8635 } else {
8636 lpt_disable_clkout_dp(dev);
8637 }
8638 }
8639
8640 /*
8641 * Initialize reference clocks when the driver loads
8642 */
8643 void intel_init_pch_refclk(struct drm_device *dev)
8644 {
8645 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8646 ironlake_init_pch_refclk(dev);
8647 else if (HAS_PCH_LPT(dev))
8648 lpt_init_pch_refclk(dev);
8649 }
8650
8651 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8652 {
8653 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8655 int pipe = intel_crtc->pipe;
8656 uint32_t val;
8657
8658 val = 0;
8659
8660 switch (intel_crtc->config->pipe_bpp) {
8661 case 18:
8662 val |= PIPECONF_6BPC;
8663 break;
8664 case 24:
8665 val |= PIPECONF_8BPC;
8666 break;
8667 case 30:
8668 val |= PIPECONF_10BPC;
8669 break;
8670 case 36:
8671 val |= PIPECONF_12BPC;
8672 break;
8673 default:
8674 /* Case prevented by intel_choose_pipe_bpp_dither. */
8675 BUG();
8676 }
8677
8678 if (intel_crtc->config->dither)
8679 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8680
8681 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8682 val |= PIPECONF_INTERLACED_ILK;
8683 else
8684 val |= PIPECONF_PROGRESSIVE;
8685
8686 if (intel_crtc->config->limited_color_range)
8687 val |= PIPECONF_COLOR_RANGE_SELECT;
8688
8689 I915_WRITE(PIPECONF(pipe), val);
8690 POSTING_READ(PIPECONF(pipe));
8691 }
8692
8693 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8694 {
8695 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8697 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8698 u32 val = 0;
8699
8700 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8701 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8702
8703 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8704 val |= PIPECONF_INTERLACED_ILK;
8705 else
8706 val |= PIPECONF_PROGRESSIVE;
8707
8708 I915_WRITE(PIPECONF(cpu_transcoder), val);
8709 POSTING_READ(PIPECONF(cpu_transcoder));
8710 }
8711
8712 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8713 {
8714 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8716
8717 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8718 u32 val = 0;
8719
8720 switch (intel_crtc->config->pipe_bpp) {
8721 case 18:
8722 val |= PIPEMISC_DITHER_6_BPC;
8723 break;
8724 case 24:
8725 val |= PIPEMISC_DITHER_8_BPC;
8726 break;
8727 case 30:
8728 val |= PIPEMISC_DITHER_10_BPC;
8729 break;
8730 case 36:
8731 val |= PIPEMISC_DITHER_12_BPC;
8732 break;
8733 default:
8734 /* Case prevented by pipe_config_set_bpp. */
8735 BUG();
8736 }
8737
8738 if (intel_crtc->config->dither)
8739 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8740
8741 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8742 }
8743 }
8744
8745 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8746 {
8747 /*
8748 * Account for spread spectrum to avoid
8749 * oversubscribing the link. Max center spread
8750 * is 2.5%; use 5% for safety's sake.
8751 */
8752 u32 bps = target_clock * bpp * 21 / 20;
8753 return DIV_ROUND_UP(bps, link_bw * 8);
8754 }
8755
8756 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8757 {
8758 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8759 }
8760
8761 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8762 struct intel_crtc_state *crtc_state,
8763 struct dpll *reduced_clock)
8764 {
8765 struct drm_crtc *crtc = &intel_crtc->base;
8766 struct drm_device *dev = crtc->dev;
8767 struct drm_i915_private *dev_priv = dev->dev_private;
8768 struct drm_atomic_state *state = crtc_state->base.state;
8769 struct drm_connector *connector;
8770 struct drm_connector_state *connector_state;
8771 struct intel_encoder *encoder;
8772 u32 dpll, fp, fp2;
8773 int factor, i;
8774 bool is_lvds = false, is_sdvo = false;
8775
8776 for_each_connector_in_state(state, connector, connector_state, i) {
8777 if (connector_state->crtc != crtc_state->base.crtc)
8778 continue;
8779
8780 encoder = to_intel_encoder(connector_state->best_encoder);
8781
8782 switch (encoder->type) {
8783 case INTEL_OUTPUT_LVDS:
8784 is_lvds = true;
8785 break;
8786 case INTEL_OUTPUT_SDVO:
8787 case INTEL_OUTPUT_HDMI:
8788 is_sdvo = true;
8789 break;
8790 default:
8791 break;
8792 }
8793 }
8794
8795 /* Enable autotuning of the PLL clock (if permissible) */
8796 factor = 21;
8797 if (is_lvds) {
8798 if ((intel_panel_use_ssc(dev_priv) &&
8799 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8800 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8801 factor = 25;
8802 } else if (crtc_state->sdvo_tv_clock)
8803 factor = 20;
8804
8805 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8806
8807 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8808 fp |= FP_CB_TUNE;
8809
8810 if (reduced_clock) {
8811 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8812
8813 if (reduced_clock->m < factor * reduced_clock->n)
8814 fp2 |= FP_CB_TUNE;
8815 } else {
8816 fp2 = fp;
8817 }
8818
8819 dpll = 0;
8820
8821 if (is_lvds)
8822 dpll |= DPLLB_MODE_LVDS;
8823 else
8824 dpll |= DPLLB_MODE_DAC_SERIAL;
8825
8826 dpll |= (crtc_state->pixel_multiplier - 1)
8827 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8828
8829 if (is_sdvo)
8830 dpll |= DPLL_SDVO_HIGH_SPEED;
8831 if (crtc_state->has_dp_encoder)
8832 dpll |= DPLL_SDVO_HIGH_SPEED;
8833
8834 /* compute bitmask from p1 value */
8835 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8836 /* also FPA1 */
8837 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8838
8839 switch (crtc_state->dpll.p2) {
8840 case 5:
8841 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8842 break;
8843 case 7:
8844 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8845 break;
8846 case 10:
8847 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8848 break;
8849 case 14:
8850 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8851 break;
8852 }
8853
8854 if (is_lvds && intel_panel_use_ssc(dev_priv))
8855 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8856 else
8857 dpll |= PLL_REF_INPUT_DREFCLK;
8858
8859 dpll |= DPLL_VCO_ENABLE;
8860
8861 crtc_state->dpll_hw_state.dpll = dpll;
8862 crtc_state->dpll_hw_state.fp0 = fp;
8863 crtc_state->dpll_hw_state.fp1 = fp2;
8864 }
8865
8866 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8867 struct intel_crtc_state *crtc_state)
8868 {
8869 struct drm_device *dev = crtc->base.dev;
8870 struct drm_i915_private *dev_priv = dev->dev_private;
8871 struct dpll reduced_clock;
8872 bool has_reduced_clock = false;
8873 struct intel_shared_dpll *pll;
8874 const struct intel_limit *limit;
8875 int refclk = 120000;
8876
8877 memset(&crtc_state->dpll_hw_state, 0,
8878 sizeof(crtc_state->dpll_hw_state));
8879
8880 crtc->lowfreq_avail = false;
8881
8882 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8883 if (!crtc_state->has_pch_encoder)
8884 return 0;
8885
8886 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8887 if (intel_panel_use_ssc(dev_priv)) {
8888 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8889 dev_priv->vbt.lvds_ssc_freq);
8890 refclk = dev_priv->vbt.lvds_ssc_freq;
8891 }
8892
8893 if (intel_is_dual_link_lvds(dev)) {
8894 if (refclk == 100000)
8895 limit = &intel_limits_ironlake_dual_lvds_100m;
8896 else
8897 limit = &intel_limits_ironlake_dual_lvds;
8898 } else {
8899 if (refclk == 100000)
8900 limit = &intel_limits_ironlake_single_lvds_100m;
8901 else
8902 limit = &intel_limits_ironlake_single_lvds;
8903 }
8904 } else {
8905 limit = &intel_limits_ironlake_dac;
8906 }
8907
8908 if (!crtc_state->clock_set &&
8909 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8910 refclk, NULL, &crtc_state->dpll)) {
8911 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8912 return -EINVAL;
8913 }
8914
8915 ironlake_compute_dpll(crtc, crtc_state,
8916 has_reduced_clock ? &reduced_clock : NULL);
8917
8918 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8919 if (pll == NULL) {
8920 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8921 pipe_name(crtc->pipe));
8922 return -EINVAL;
8923 }
8924
8925 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8926 has_reduced_clock)
8927 crtc->lowfreq_avail = true;
8928
8929 return 0;
8930 }
8931
8932 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8933 struct intel_link_m_n *m_n)
8934 {
8935 struct drm_device *dev = crtc->base.dev;
8936 struct drm_i915_private *dev_priv = dev->dev_private;
8937 enum pipe pipe = crtc->pipe;
8938
8939 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8940 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8941 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8942 & ~TU_SIZE_MASK;
8943 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8944 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8945 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8946 }
8947
8948 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8949 enum transcoder transcoder,
8950 struct intel_link_m_n *m_n,
8951 struct intel_link_m_n *m2_n2)
8952 {
8953 struct drm_device *dev = crtc->base.dev;
8954 struct drm_i915_private *dev_priv = dev->dev_private;
8955 enum pipe pipe = crtc->pipe;
8956
8957 if (INTEL_INFO(dev)->gen >= 5) {
8958 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8959 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8960 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8961 & ~TU_SIZE_MASK;
8962 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8963 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8964 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8965 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8966 * gen < 8) and if DRRS is supported (to make sure the
8967 * registers are not unnecessarily read).
8968 */
8969 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8970 crtc->config->has_drrs) {
8971 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8972 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8973 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8974 & ~TU_SIZE_MASK;
8975 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8976 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8977 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8978 }
8979 } else {
8980 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8981 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8982 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8983 & ~TU_SIZE_MASK;
8984 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8985 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8986 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8987 }
8988 }
8989
8990 void intel_dp_get_m_n(struct intel_crtc *crtc,
8991 struct intel_crtc_state *pipe_config)
8992 {
8993 if (pipe_config->has_pch_encoder)
8994 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8995 else
8996 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8997 &pipe_config->dp_m_n,
8998 &pipe_config->dp_m2_n2);
8999 }
9000
9001 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9002 struct intel_crtc_state *pipe_config)
9003 {
9004 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9005 &pipe_config->fdi_m_n, NULL);
9006 }
9007
9008 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9009 struct intel_crtc_state *pipe_config)
9010 {
9011 struct drm_device *dev = crtc->base.dev;
9012 struct drm_i915_private *dev_priv = dev->dev_private;
9013 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9014 uint32_t ps_ctrl = 0;
9015 int id = -1;
9016 int i;
9017
9018 /* find scaler attached to this pipe */
9019 for (i = 0; i < crtc->num_scalers; i++) {
9020 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9021 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9022 id = i;
9023 pipe_config->pch_pfit.enabled = true;
9024 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9025 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9026 break;
9027 }
9028 }
9029
9030 scaler_state->scaler_id = id;
9031 if (id >= 0) {
9032 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9033 } else {
9034 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9035 }
9036 }
9037
9038 static void
9039 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9040 struct intel_initial_plane_config *plane_config)
9041 {
9042 struct drm_device *dev = crtc->base.dev;
9043 struct drm_i915_private *dev_priv = dev->dev_private;
9044 u32 val, base, offset, stride_mult, tiling;
9045 int pipe = crtc->pipe;
9046 int fourcc, pixel_format;
9047 unsigned int aligned_height;
9048 struct drm_framebuffer *fb;
9049 struct intel_framebuffer *intel_fb;
9050
9051 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9052 if (!intel_fb) {
9053 DRM_DEBUG_KMS("failed to alloc fb\n");
9054 return;
9055 }
9056
9057 fb = &intel_fb->base;
9058
9059 val = I915_READ(PLANE_CTL(pipe, 0));
9060 if (!(val & PLANE_CTL_ENABLE))
9061 goto error;
9062
9063 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9064 fourcc = skl_format_to_fourcc(pixel_format,
9065 val & PLANE_CTL_ORDER_RGBX,
9066 val & PLANE_CTL_ALPHA_MASK);
9067 fb->pixel_format = fourcc;
9068 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9069
9070 tiling = val & PLANE_CTL_TILED_MASK;
9071 switch (tiling) {
9072 case PLANE_CTL_TILED_LINEAR:
9073 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9074 break;
9075 case PLANE_CTL_TILED_X:
9076 plane_config->tiling = I915_TILING_X;
9077 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9078 break;
9079 case PLANE_CTL_TILED_Y:
9080 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9081 break;
9082 case PLANE_CTL_TILED_YF:
9083 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9084 break;
9085 default:
9086 MISSING_CASE(tiling);
9087 goto error;
9088 }
9089
9090 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9091 plane_config->base = base;
9092
9093 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9094
9095 val = I915_READ(PLANE_SIZE(pipe, 0));
9096 fb->height = ((val >> 16) & 0xfff) + 1;
9097 fb->width = ((val >> 0) & 0x1fff) + 1;
9098
9099 val = I915_READ(PLANE_STRIDE(pipe, 0));
9100 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9101 fb->pixel_format);
9102 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9103
9104 aligned_height = intel_fb_align_height(dev, fb->height,
9105 fb->pixel_format,
9106 fb->modifier[0]);
9107
9108 plane_config->size = fb->pitches[0] * aligned_height;
9109
9110 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9111 pipe_name(pipe), fb->width, fb->height,
9112 fb->bits_per_pixel, base, fb->pitches[0],
9113 plane_config->size);
9114
9115 plane_config->fb = intel_fb;
9116 return;
9117
9118 error:
9119 kfree(fb);
9120 }
9121
9122 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9123 struct intel_crtc_state *pipe_config)
9124 {
9125 struct drm_device *dev = crtc->base.dev;
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127 uint32_t tmp;
9128
9129 tmp = I915_READ(PF_CTL(crtc->pipe));
9130
9131 if (tmp & PF_ENABLE) {
9132 pipe_config->pch_pfit.enabled = true;
9133 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9134 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9135
9136 /* We currently do not free assignements of panel fitters on
9137 * ivb/hsw (since we don't use the higher upscaling modes which
9138 * differentiates them) so just WARN about this case for now. */
9139 if (IS_GEN7(dev)) {
9140 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9141 PF_PIPE_SEL_IVB(crtc->pipe));
9142 }
9143 }
9144 }
9145
9146 static void
9147 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9148 struct intel_initial_plane_config *plane_config)
9149 {
9150 struct drm_device *dev = crtc->base.dev;
9151 struct drm_i915_private *dev_priv = dev->dev_private;
9152 u32 val, base, offset;
9153 int pipe = crtc->pipe;
9154 int fourcc, pixel_format;
9155 unsigned int aligned_height;
9156 struct drm_framebuffer *fb;
9157 struct intel_framebuffer *intel_fb;
9158
9159 val = I915_READ(DSPCNTR(pipe));
9160 if (!(val & DISPLAY_PLANE_ENABLE))
9161 return;
9162
9163 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9164 if (!intel_fb) {
9165 DRM_DEBUG_KMS("failed to alloc fb\n");
9166 return;
9167 }
9168
9169 fb = &intel_fb->base;
9170
9171 if (INTEL_INFO(dev)->gen >= 4) {
9172 if (val & DISPPLANE_TILED) {
9173 plane_config->tiling = I915_TILING_X;
9174 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9175 }
9176 }
9177
9178 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9179 fourcc = i9xx_format_to_fourcc(pixel_format);
9180 fb->pixel_format = fourcc;
9181 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9182
9183 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9184 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9185 offset = I915_READ(DSPOFFSET(pipe));
9186 } else {
9187 if (plane_config->tiling)
9188 offset = I915_READ(DSPTILEOFF(pipe));
9189 else
9190 offset = I915_READ(DSPLINOFF(pipe));
9191 }
9192 plane_config->base = base;
9193
9194 val = I915_READ(PIPESRC(pipe));
9195 fb->width = ((val >> 16) & 0xfff) + 1;
9196 fb->height = ((val >> 0) & 0xfff) + 1;
9197
9198 val = I915_READ(DSPSTRIDE(pipe));
9199 fb->pitches[0] = val & 0xffffffc0;
9200
9201 aligned_height = intel_fb_align_height(dev, fb->height,
9202 fb->pixel_format,
9203 fb->modifier[0]);
9204
9205 plane_config->size = fb->pitches[0] * aligned_height;
9206
9207 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9208 pipe_name(pipe), fb->width, fb->height,
9209 fb->bits_per_pixel, base, fb->pitches[0],
9210 plane_config->size);
9211
9212 plane_config->fb = intel_fb;
9213 }
9214
9215 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9216 struct intel_crtc_state *pipe_config)
9217 {
9218 struct drm_device *dev = crtc->base.dev;
9219 struct drm_i915_private *dev_priv = dev->dev_private;
9220 enum intel_display_power_domain power_domain;
9221 uint32_t tmp;
9222 bool ret;
9223
9224 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9225 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9226 return false;
9227
9228 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9229 pipe_config->shared_dpll = NULL;
9230
9231 ret = false;
9232 tmp = I915_READ(PIPECONF(crtc->pipe));
9233 if (!(tmp & PIPECONF_ENABLE))
9234 goto out;
9235
9236 switch (tmp & PIPECONF_BPC_MASK) {
9237 case PIPECONF_6BPC:
9238 pipe_config->pipe_bpp = 18;
9239 break;
9240 case PIPECONF_8BPC:
9241 pipe_config->pipe_bpp = 24;
9242 break;
9243 case PIPECONF_10BPC:
9244 pipe_config->pipe_bpp = 30;
9245 break;
9246 case PIPECONF_12BPC:
9247 pipe_config->pipe_bpp = 36;
9248 break;
9249 default:
9250 break;
9251 }
9252
9253 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9254 pipe_config->limited_color_range = true;
9255
9256 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9257 struct intel_shared_dpll *pll;
9258 enum intel_dpll_id pll_id;
9259
9260 pipe_config->has_pch_encoder = true;
9261
9262 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9263 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9264 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9265
9266 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9267
9268 if (HAS_PCH_IBX(dev_priv)) {
9269 /*
9270 * The pipe->pch transcoder and pch transcoder->pll
9271 * mapping is fixed.
9272 */
9273 pll_id = (enum intel_dpll_id) crtc->pipe;
9274 } else {
9275 tmp = I915_READ(PCH_DPLL_SEL);
9276 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9277 pll_id = DPLL_ID_PCH_PLL_B;
9278 else
9279 pll_id= DPLL_ID_PCH_PLL_A;
9280 }
9281
9282 pipe_config->shared_dpll =
9283 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9284 pll = pipe_config->shared_dpll;
9285
9286 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9287 &pipe_config->dpll_hw_state));
9288
9289 tmp = pipe_config->dpll_hw_state.dpll;
9290 pipe_config->pixel_multiplier =
9291 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9292 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9293
9294 ironlake_pch_clock_get(crtc, pipe_config);
9295 } else {
9296 pipe_config->pixel_multiplier = 1;
9297 }
9298
9299 intel_get_pipe_timings(crtc, pipe_config);
9300 intel_get_pipe_src_size(crtc, pipe_config);
9301
9302 ironlake_get_pfit_config(crtc, pipe_config);
9303
9304 ret = true;
9305
9306 out:
9307 intel_display_power_put(dev_priv, power_domain);
9308
9309 return ret;
9310 }
9311
9312 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9313 {
9314 struct drm_device *dev = dev_priv->dev;
9315 struct intel_crtc *crtc;
9316
9317 for_each_intel_crtc(dev, crtc)
9318 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9319 pipe_name(crtc->pipe));
9320
9321 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9322 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9323 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9324 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9325 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9326 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9327 "CPU PWM1 enabled\n");
9328 if (IS_HASWELL(dev))
9329 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9330 "CPU PWM2 enabled\n");
9331 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9332 "PCH PWM1 enabled\n");
9333 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9334 "Utility pin enabled\n");
9335 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9336
9337 /*
9338 * In theory we can still leave IRQs enabled, as long as only the HPD
9339 * interrupts remain enabled. We used to check for that, but since it's
9340 * gen-specific and since we only disable LCPLL after we fully disable
9341 * the interrupts, the check below should be enough.
9342 */
9343 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9344 }
9345
9346 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9347 {
9348 struct drm_device *dev = dev_priv->dev;
9349
9350 if (IS_HASWELL(dev))
9351 return I915_READ(D_COMP_HSW);
9352 else
9353 return I915_READ(D_COMP_BDW);
9354 }
9355
9356 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9357 {
9358 struct drm_device *dev = dev_priv->dev;
9359
9360 if (IS_HASWELL(dev)) {
9361 mutex_lock(&dev_priv->rps.hw_lock);
9362 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9363 val))
9364 DRM_ERROR("Failed to write to D_COMP\n");
9365 mutex_unlock(&dev_priv->rps.hw_lock);
9366 } else {
9367 I915_WRITE(D_COMP_BDW, val);
9368 POSTING_READ(D_COMP_BDW);
9369 }
9370 }
9371
9372 /*
9373 * This function implements pieces of two sequences from BSpec:
9374 * - Sequence for display software to disable LCPLL
9375 * - Sequence for display software to allow package C8+
9376 * The steps implemented here are just the steps that actually touch the LCPLL
9377 * register. Callers should take care of disabling all the display engine
9378 * functions, doing the mode unset, fixing interrupts, etc.
9379 */
9380 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9381 bool switch_to_fclk, bool allow_power_down)
9382 {
9383 uint32_t val;
9384
9385 assert_can_disable_lcpll(dev_priv);
9386
9387 val = I915_READ(LCPLL_CTL);
9388
9389 if (switch_to_fclk) {
9390 val |= LCPLL_CD_SOURCE_FCLK;
9391 I915_WRITE(LCPLL_CTL, val);
9392
9393 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9394 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9395 DRM_ERROR("Switching to FCLK failed\n");
9396
9397 val = I915_READ(LCPLL_CTL);
9398 }
9399
9400 val |= LCPLL_PLL_DISABLE;
9401 I915_WRITE(LCPLL_CTL, val);
9402 POSTING_READ(LCPLL_CTL);
9403
9404 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9405 DRM_ERROR("LCPLL still locked\n");
9406
9407 val = hsw_read_dcomp(dev_priv);
9408 val |= D_COMP_COMP_DISABLE;
9409 hsw_write_dcomp(dev_priv, val);
9410 ndelay(100);
9411
9412 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9413 1))
9414 DRM_ERROR("D_COMP RCOMP still in progress\n");
9415
9416 if (allow_power_down) {
9417 val = I915_READ(LCPLL_CTL);
9418 val |= LCPLL_POWER_DOWN_ALLOW;
9419 I915_WRITE(LCPLL_CTL, val);
9420 POSTING_READ(LCPLL_CTL);
9421 }
9422 }
9423
9424 /*
9425 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9426 * source.
9427 */
9428 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9429 {
9430 uint32_t val;
9431
9432 val = I915_READ(LCPLL_CTL);
9433
9434 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9435 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9436 return;
9437
9438 /*
9439 * Make sure we're not on PC8 state before disabling PC8, otherwise
9440 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9441 */
9442 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9443
9444 if (val & LCPLL_POWER_DOWN_ALLOW) {
9445 val &= ~LCPLL_POWER_DOWN_ALLOW;
9446 I915_WRITE(LCPLL_CTL, val);
9447 POSTING_READ(LCPLL_CTL);
9448 }
9449
9450 val = hsw_read_dcomp(dev_priv);
9451 val |= D_COMP_COMP_FORCE;
9452 val &= ~D_COMP_COMP_DISABLE;
9453 hsw_write_dcomp(dev_priv, val);
9454
9455 val = I915_READ(LCPLL_CTL);
9456 val &= ~LCPLL_PLL_DISABLE;
9457 I915_WRITE(LCPLL_CTL, val);
9458
9459 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9460 DRM_ERROR("LCPLL not locked yet\n");
9461
9462 if (val & LCPLL_CD_SOURCE_FCLK) {
9463 val = I915_READ(LCPLL_CTL);
9464 val &= ~LCPLL_CD_SOURCE_FCLK;
9465 I915_WRITE(LCPLL_CTL, val);
9466
9467 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9468 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9469 DRM_ERROR("Switching back to LCPLL failed\n");
9470 }
9471
9472 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9473 intel_update_cdclk(dev_priv->dev);
9474 }
9475
9476 /*
9477 * Package states C8 and deeper are really deep PC states that can only be
9478 * reached when all the devices on the system allow it, so even if the graphics
9479 * device allows PC8+, it doesn't mean the system will actually get to these
9480 * states. Our driver only allows PC8+ when going into runtime PM.
9481 *
9482 * The requirements for PC8+ are that all the outputs are disabled, the power
9483 * well is disabled and most interrupts are disabled, and these are also
9484 * requirements for runtime PM. When these conditions are met, we manually do
9485 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9486 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9487 * hang the machine.
9488 *
9489 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9490 * the state of some registers, so when we come back from PC8+ we need to
9491 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9492 * need to take care of the registers kept by RC6. Notice that this happens even
9493 * if we don't put the device in PCI D3 state (which is what currently happens
9494 * because of the runtime PM support).
9495 *
9496 * For more, read "Display Sequences for Package C8" on the hardware
9497 * documentation.
9498 */
9499 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9500 {
9501 struct drm_device *dev = dev_priv->dev;
9502 uint32_t val;
9503
9504 DRM_DEBUG_KMS("Enabling package C8+\n");
9505
9506 if (HAS_PCH_LPT_LP(dev)) {
9507 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9508 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9509 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9510 }
9511
9512 lpt_disable_clkout_dp(dev);
9513 hsw_disable_lcpll(dev_priv, true, true);
9514 }
9515
9516 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9517 {
9518 struct drm_device *dev = dev_priv->dev;
9519 uint32_t val;
9520
9521 DRM_DEBUG_KMS("Disabling package C8+\n");
9522
9523 hsw_restore_lcpll(dev_priv);
9524 lpt_init_pch_refclk(dev);
9525
9526 if (HAS_PCH_LPT_LP(dev)) {
9527 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9528 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9529 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9530 }
9531 }
9532
9533 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9534 {
9535 struct drm_device *dev = old_state->dev;
9536 struct intel_atomic_state *old_intel_state =
9537 to_intel_atomic_state(old_state);
9538 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9539
9540 broxton_set_cdclk(to_i915(dev), req_cdclk);
9541 }
9542
9543 /* compute the max rate for new configuration */
9544 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9545 {
9546 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9547 struct drm_i915_private *dev_priv = state->dev->dev_private;
9548 struct drm_crtc *crtc;
9549 struct drm_crtc_state *cstate;
9550 struct intel_crtc_state *crtc_state;
9551 unsigned max_pixel_rate = 0, i;
9552 enum pipe pipe;
9553
9554 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9555 sizeof(intel_state->min_pixclk));
9556
9557 for_each_crtc_in_state(state, crtc, cstate, i) {
9558 int pixel_rate;
9559
9560 crtc_state = to_intel_crtc_state(cstate);
9561 if (!crtc_state->base.enable) {
9562 intel_state->min_pixclk[i] = 0;
9563 continue;
9564 }
9565
9566 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9567
9568 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9569 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9570 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9571
9572 intel_state->min_pixclk[i] = pixel_rate;
9573 }
9574
9575 for_each_pipe(dev_priv, pipe)
9576 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9577
9578 return max_pixel_rate;
9579 }
9580
9581 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9582 {
9583 struct drm_i915_private *dev_priv = dev->dev_private;
9584 uint32_t val, data;
9585 int ret;
9586
9587 if (WARN((I915_READ(LCPLL_CTL) &
9588 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9589 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9590 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9591 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9592 "trying to change cdclk frequency with cdclk not enabled\n"))
9593 return;
9594
9595 mutex_lock(&dev_priv->rps.hw_lock);
9596 ret = sandybridge_pcode_write(dev_priv,
9597 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9598 mutex_unlock(&dev_priv->rps.hw_lock);
9599 if (ret) {
9600 DRM_ERROR("failed to inform pcode about cdclk change\n");
9601 return;
9602 }
9603
9604 val = I915_READ(LCPLL_CTL);
9605 val |= LCPLL_CD_SOURCE_FCLK;
9606 I915_WRITE(LCPLL_CTL, val);
9607
9608 if (wait_for_us(I915_READ(LCPLL_CTL) &
9609 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9610 DRM_ERROR("Switching to FCLK failed\n");
9611
9612 val = I915_READ(LCPLL_CTL);
9613 val &= ~LCPLL_CLK_FREQ_MASK;
9614
9615 switch (cdclk) {
9616 case 450000:
9617 val |= LCPLL_CLK_FREQ_450;
9618 data = 0;
9619 break;
9620 case 540000:
9621 val |= LCPLL_CLK_FREQ_54O_BDW;
9622 data = 1;
9623 break;
9624 case 337500:
9625 val |= LCPLL_CLK_FREQ_337_5_BDW;
9626 data = 2;
9627 break;
9628 case 675000:
9629 val |= LCPLL_CLK_FREQ_675_BDW;
9630 data = 3;
9631 break;
9632 default:
9633 WARN(1, "invalid cdclk frequency\n");
9634 return;
9635 }
9636
9637 I915_WRITE(LCPLL_CTL, val);
9638
9639 val = I915_READ(LCPLL_CTL);
9640 val &= ~LCPLL_CD_SOURCE_FCLK;
9641 I915_WRITE(LCPLL_CTL, val);
9642
9643 if (wait_for_us((I915_READ(LCPLL_CTL) &
9644 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9645 DRM_ERROR("Switching back to LCPLL failed\n");
9646
9647 mutex_lock(&dev_priv->rps.hw_lock);
9648 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9649 mutex_unlock(&dev_priv->rps.hw_lock);
9650
9651 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9652
9653 intel_update_cdclk(dev);
9654
9655 WARN(cdclk != dev_priv->cdclk_freq,
9656 "cdclk requested %d kHz but got %d kHz\n",
9657 cdclk, dev_priv->cdclk_freq);
9658 }
9659
9660 static int broadwell_calc_cdclk(int max_pixclk)
9661 {
9662 if (max_pixclk > 540000)
9663 return 675000;
9664 else if (max_pixclk > 450000)
9665 return 540000;
9666 else if (max_pixclk > 337500)
9667 return 450000;
9668 else
9669 return 337500;
9670 }
9671
9672 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9673 {
9674 struct drm_i915_private *dev_priv = to_i915(state->dev);
9675 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9676 int max_pixclk = ilk_max_pixel_rate(state);
9677 int cdclk;
9678
9679 /*
9680 * FIXME should also account for plane ratio
9681 * once 64bpp pixel formats are supported.
9682 */
9683 cdclk = broadwell_calc_cdclk(max_pixclk);
9684
9685 if (cdclk > dev_priv->max_cdclk_freq) {
9686 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9687 cdclk, dev_priv->max_cdclk_freq);
9688 return -EINVAL;
9689 }
9690
9691 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9692 if (!intel_state->active_crtcs)
9693 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9694
9695 return 0;
9696 }
9697
9698 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9699 {
9700 struct drm_device *dev = old_state->dev;
9701 struct intel_atomic_state *old_intel_state =
9702 to_intel_atomic_state(old_state);
9703 unsigned req_cdclk = old_intel_state->dev_cdclk;
9704
9705 broadwell_set_cdclk(dev, req_cdclk);
9706 }
9707
9708 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9709 {
9710 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9711 struct drm_i915_private *dev_priv = to_i915(state->dev);
9712 const int max_pixclk = ilk_max_pixel_rate(state);
9713 int vco = intel_state->cdclk_pll_vco;
9714 int cdclk;
9715
9716 /*
9717 * FIXME should also account for plane ratio
9718 * once 64bpp pixel formats are supported.
9719 */
9720 cdclk = skl_calc_cdclk(max_pixclk, vco);
9721
9722 /*
9723 * FIXME move the cdclk caclulation to
9724 * compute_config() so we can fail gracegully.
9725 */
9726 if (cdclk > dev_priv->max_cdclk_freq) {
9727 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9728 cdclk, dev_priv->max_cdclk_freq);
9729 cdclk = dev_priv->max_cdclk_freq;
9730 }
9731
9732 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9733 if (!intel_state->active_crtcs)
9734 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9735
9736 return 0;
9737 }
9738
9739 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9740 {
9741 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9742 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9743 unsigned int req_cdclk = intel_state->dev_cdclk;
9744 unsigned int req_vco = intel_state->cdclk_pll_vco;
9745
9746 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9747 }
9748
9749 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9750 struct intel_crtc_state *crtc_state)
9751 {
9752 struct intel_encoder *intel_encoder =
9753 intel_ddi_get_crtc_new_encoder(crtc_state);
9754
9755 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9756 if (!intel_ddi_pll_select(crtc, crtc_state))
9757 return -EINVAL;
9758 }
9759
9760 crtc->lowfreq_avail = false;
9761
9762 return 0;
9763 }
9764
9765 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9766 enum port port,
9767 struct intel_crtc_state *pipe_config)
9768 {
9769 enum intel_dpll_id id;
9770
9771 switch (port) {
9772 case PORT_A:
9773 pipe_config->ddi_pll_sel = SKL_DPLL0;
9774 id = DPLL_ID_SKL_DPLL0;
9775 break;
9776 case PORT_B:
9777 pipe_config->ddi_pll_sel = SKL_DPLL1;
9778 id = DPLL_ID_SKL_DPLL1;
9779 break;
9780 case PORT_C:
9781 pipe_config->ddi_pll_sel = SKL_DPLL2;
9782 id = DPLL_ID_SKL_DPLL2;
9783 break;
9784 default:
9785 DRM_ERROR("Incorrect port type\n");
9786 return;
9787 }
9788
9789 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9790 }
9791
9792 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9793 enum port port,
9794 struct intel_crtc_state *pipe_config)
9795 {
9796 enum intel_dpll_id id;
9797 u32 temp;
9798
9799 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9800 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9801
9802 switch (pipe_config->ddi_pll_sel) {
9803 case SKL_DPLL0:
9804 id = DPLL_ID_SKL_DPLL0;
9805 break;
9806 case SKL_DPLL1:
9807 id = DPLL_ID_SKL_DPLL1;
9808 break;
9809 case SKL_DPLL2:
9810 id = DPLL_ID_SKL_DPLL2;
9811 break;
9812 case SKL_DPLL3:
9813 id = DPLL_ID_SKL_DPLL3;
9814 break;
9815 default:
9816 MISSING_CASE(pipe_config->ddi_pll_sel);
9817 return;
9818 }
9819
9820 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9821 }
9822
9823 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9824 enum port port,
9825 struct intel_crtc_state *pipe_config)
9826 {
9827 enum intel_dpll_id id;
9828
9829 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9830
9831 switch (pipe_config->ddi_pll_sel) {
9832 case PORT_CLK_SEL_WRPLL1:
9833 id = DPLL_ID_WRPLL1;
9834 break;
9835 case PORT_CLK_SEL_WRPLL2:
9836 id = DPLL_ID_WRPLL2;
9837 break;
9838 case PORT_CLK_SEL_SPLL:
9839 id = DPLL_ID_SPLL;
9840 break;
9841 case PORT_CLK_SEL_LCPLL_810:
9842 id = DPLL_ID_LCPLL_810;
9843 break;
9844 case PORT_CLK_SEL_LCPLL_1350:
9845 id = DPLL_ID_LCPLL_1350;
9846 break;
9847 case PORT_CLK_SEL_LCPLL_2700:
9848 id = DPLL_ID_LCPLL_2700;
9849 break;
9850 default:
9851 MISSING_CASE(pipe_config->ddi_pll_sel);
9852 /* fall through */
9853 case PORT_CLK_SEL_NONE:
9854 return;
9855 }
9856
9857 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9858 }
9859
9860 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9861 struct intel_crtc_state *pipe_config,
9862 unsigned long *power_domain_mask)
9863 {
9864 struct drm_device *dev = crtc->base.dev;
9865 struct drm_i915_private *dev_priv = dev->dev_private;
9866 enum intel_display_power_domain power_domain;
9867 u32 tmp;
9868
9869 /*
9870 * The pipe->transcoder mapping is fixed with the exception of the eDP
9871 * transcoder handled below.
9872 */
9873 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9874
9875 /*
9876 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9877 * consistency and less surprising code; it's in always on power).
9878 */
9879 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9880 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9881 enum pipe trans_edp_pipe;
9882 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9883 default:
9884 WARN(1, "unknown pipe linked to edp transcoder\n");
9885 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9886 case TRANS_DDI_EDP_INPUT_A_ON:
9887 trans_edp_pipe = PIPE_A;
9888 break;
9889 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9890 trans_edp_pipe = PIPE_B;
9891 break;
9892 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9893 trans_edp_pipe = PIPE_C;
9894 break;
9895 }
9896
9897 if (trans_edp_pipe == crtc->pipe)
9898 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9899 }
9900
9901 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9902 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9903 return false;
9904 *power_domain_mask |= BIT(power_domain);
9905
9906 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9907
9908 return tmp & PIPECONF_ENABLE;
9909 }
9910
9911 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9912 struct intel_crtc_state *pipe_config,
9913 unsigned long *power_domain_mask)
9914 {
9915 struct drm_device *dev = crtc->base.dev;
9916 struct drm_i915_private *dev_priv = dev->dev_private;
9917 enum intel_display_power_domain power_domain;
9918 enum port port;
9919 enum transcoder cpu_transcoder;
9920 u32 tmp;
9921
9922 pipe_config->has_dsi_encoder = false;
9923
9924 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9925 if (port == PORT_A)
9926 cpu_transcoder = TRANSCODER_DSI_A;
9927 else
9928 cpu_transcoder = TRANSCODER_DSI_C;
9929
9930 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9931 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9932 continue;
9933 *power_domain_mask |= BIT(power_domain);
9934
9935 /*
9936 * The PLL needs to be enabled with a valid divider
9937 * configuration, otherwise accessing DSI registers will hang
9938 * the machine. See BSpec North Display Engine
9939 * registers/MIPI[BXT]. We can break out here early, since we
9940 * need the same DSI PLL to be enabled for both DSI ports.
9941 */
9942 if (!intel_dsi_pll_is_enabled(dev_priv))
9943 break;
9944
9945 /* XXX: this works for video mode only */
9946 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9947 if (!(tmp & DPI_ENABLE))
9948 continue;
9949
9950 tmp = I915_READ(MIPI_CTRL(port));
9951 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9952 continue;
9953
9954 pipe_config->cpu_transcoder = cpu_transcoder;
9955 pipe_config->has_dsi_encoder = true;
9956 break;
9957 }
9958
9959 return pipe_config->has_dsi_encoder;
9960 }
9961
9962 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9963 struct intel_crtc_state *pipe_config)
9964 {
9965 struct drm_device *dev = crtc->base.dev;
9966 struct drm_i915_private *dev_priv = dev->dev_private;
9967 struct intel_shared_dpll *pll;
9968 enum port port;
9969 uint32_t tmp;
9970
9971 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9972
9973 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9974
9975 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9976 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9977 else if (IS_BROXTON(dev))
9978 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9979 else
9980 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9981
9982 pll = pipe_config->shared_dpll;
9983 if (pll) {
9984 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9985 &pipe_config->dpll_hw_state));
9986 }
9987
9988 /*
9989 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9990 * DDI E. So just check whether this pipe is wired to DDI E and whether
9991 * the PCH transcoder is on.
9992 */
9993 if (INTEL_INFO(dev)->gen < 9 &&
9994 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9995 pipe_config->has_pch_encoder = true;
9996
9997 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9998 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9999 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10000
10001 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10002 }
10003 }
10004
10005 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10006 struct intel_crtc_state *pipe_config)
10007 {
10008 struct drm_device *dev = crtc->base.dev;
10009 struct drm_i915_private *dev_priv = dev->dev_private;
10010 enum intel_display_power_domain power_domain;
10011 unsigned long power_domain_mask;
10012 bool active;
10013
10014 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10015 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10016 return false;
10017 power_domain_mask = BIT(power_domain);
10018
10019 pipe_config->shared_dpll = NULL;
10020
10021 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10022
10023 if (IS_BROXTON(dev_priv)) {
10024 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10025 &power_domain_mask);
10026 WARN_ON(active && pipe_config->has_dsi_encoder);
10027 if (pipe_config->has_dsi_encoder)
10028 active = true;
10029 }
10030
10031 if (!active)
10032 goto out;
10033
10034 if (!pipe_config->has_dsi_encoder) {
10035 haswell_get_ddi_port_state(crtc, pipe_config);
10036 intel_get_pipe_timings(crtc, pipe_config);
10037 }
10038
10039 intel_get_pipe_src_size(crtc, pipe_config);
10040
10041 pipe_config->gamma_mode =
10042 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10043
10044 if (INTEL_INFO(dev)->gen >= 9) {
10045 skl_init_scalers(dev, crtc, pipe_config);
10046 }
10047
10048 if (INTEL_INFO(dev)->gen >= 9) {
10049 pipe_config->scaler_state.scaler_id = -1;
10050 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10051 }
10052
10053 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10054 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10055 power_domain_mask |= BIT(power_domain);
10056 if (INTEL_INFO(dev)->gen >= 9)
10057 skylake_get_pfit_config(crtc, pipe_config);
10058 else
10059 ironlake_get_pfit_config(crtc, pipe_config);
10060 }
10061
10062 if (IS_HASWELL(dev))
10063 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10064 (I915_READ(IPS_CTL) & IPS_ENABLE);
10065
10066 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10067 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10068 pipe_config->pixel_multiplier =
10069 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10070 } else {
10071 pipe_config->pixel_multiplier = 1;
10072 }
10073
10074 out:
10075 for_each_power_domain(power_domain, power_domain_mask)
10076 intel_display_power_put(dev_priv, power_domain);
10077
10078 return active;
10079 }
10080
10081 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10082 const struct intel_plane_state *plane_state)
10083 {
10084 struct drm_device *dev = crtc->dev;
10085 struct drm_i915_private *dev_priv = dev->dev_private;
10086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10087 uint32_t cntl = 0, size = 0;
10088
10089 if (plane_state && plane_state->visible) {
10090 unsigned int width = plane_state->base.crtc_w;
10091 unsigned int height = plane_state->base.crtc_h;
10092 unsigned int stride = roundup_pow_of_two(width) * 4;
10093
10094 switch (stride) {
10095 default:
10096 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10097 width, stride);
10098 stride = 256;
10099 /* fallthrough */
10100 case 256:
10101 case 512:
10102 case 1024:
10103 case 2048:
10104 break;
10105 }
10106
10107 cntl |= CURSOR_ENABLE |
10108 CURSOR_GAMMA_ENABLE |
10109 CURSOR_FORMAT_ARGB |
10110 CURSOR_STRIDE(stride);
10111
10112 size = (height << 12) | width;
10113 }
10114
10115 if (intel_crtc->cursor_cntl != 0 &&
10116 (intel_crtc->cursor_base != base ||
10117 intel_crtc->cursor_size != size ||
10118 intel_crtc->cursor_cntl != cntl)) {
10119 /* On these chipsets we can only modify the base/size/stride
10120 * whilst the cursor is disabled.
10121 */
10122 I915_WRITE(CURCNTR(PIPE_A), 0);
10123 POSTING_READ(CURCNTR(PIPE_A));
10124 intel_crtc->cursor_cntl = 0;
10125 }
10126
10127 if (intel_crtc->cursor_base != base) {
10128 I915_WRITE(CURBASE(PIPE_A), base);
10129 intel_crtc->cursor_base = base;
10130 }
10131
10132 if (intel_crtc->cursor_size != size) {
10133 I915_WRITE(CURSIZE, size);
10134 intel_crtc->cursor_size = size;
10135 }
10136
10137 if (intel_crtc->cursor_cntl != cntl) {
10138 I915_WRITE(CURCNTR(PIPE_A), cntl);
10139 POSTING_READ(CURCNTR(PIPE_A));
10140 intel_crtc->cursor_cntl = cntl;
10141 }
10142 }
10143
10144 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10145 const struct intel_plane_state *plane_state)
10146 {
10147 struct drm_device *dev = crtc->dev;
10148 struct drm_i915_private *dev_priv = dev->dev_private;
10149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10150 int pipe = intel_crtc->pipe;
10151 uint32_t cntl = 0;
10152
10153 if (plane_state && plane_state->visible) {
10154 cntl = MCURSOR_GAMMA_ENABLE;
10155 switch (plane_state->base.crtc_w) {
10156 case 64:
10157 cntl |= CURSOR_MODE_64_ARGB_AX;
10158 break;
10159 case 128:
10160 cntl |= CURSOR_MODE_128_ARGB_AX;
10161 break;
10162 case 256:
10163 cntl |= CURSOR_MODE_256_ARGB_AX;
10164 break;
10165 default:
10166 MISSING_CASE(plane_state->base.crtc_w);
10167 return;
10168 }
10169 cntl |= pipe << 28; /* Connect to correct pipe */
10170
10171 if (HAS_DDI(dev))
10172 cntl |= CURSOR_PIPE_CSC_ENABLE;
10173
10174 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10175 cntl |= CURSOR_ROTATE_180;
10176 }
10177
10178 if (intel_crtc->cursor_cntl != cntl) {
10179 I915_WRITE(CURCNTR(pipe), cntl);
10180 POSTING_READ(CURCNTR(pipe));
10181 intel_crtc->cursor_cntl = cntl;
10182 }
10183
10184 /* and commit changes on next vblank */
10185 I915_WRITE(CURBASE(pipe), base);
10186 POSTING_READ(CURBASE(pipe));
10187
10188 intel_crtc->cursor_base = base;
10189 }
10190
10191 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10192 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10193 const struct intel_plane_state *plane_state)
10194 {
10195 struct drm_device *dev = crtc->dev;
10196 struct drm_i915_private *dev_priv = dev->dev_private;
10197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10198 int pipe = intel_crtc->pipe;
10199 u32 base = intel_crtc->cursor_addr;
10200 u32 pos = 0;
10201
10202 if (plane_state) {
10203 int x = plane_state->base.crtc_x;
10204 int y = plane_state->base.crtc_y;
10205
10206 if (x < 0) {
10207 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10208 x = -x;
10209 }
10210 pos |= x << CURSOR_X_SHIFT;
10211
10212 if (y < 0) {
10213 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10214 y = -y;
10215 }
10216 pos |= y << CURSOR_Y_SHIFT;
10217
10218 /* ILK+ do this automagically */
10219 if (HAS_GMCH_DISPLAY(dev) &&
10220 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10221 base += (plane_state->base.crtc_h *
10222 plane_state->base.crtc_w - 1) * 4;
10223 }
10224 }
10225
10226 I915_WRITE(CURPOS(pipe), pos);
10227
10228 if (IS_845G(dev) || IS_I865G(dev))
10229 i845_update_cursor(crtc, base, plane_state);
10230 else
10231 i9xx_update_cursor(crtc, base, plane_state);
10232 }
10233
10234 static bool cursor_size_ok(struct drm_device *dev,
10235 uint32_t width, uint32_t height)
10236 {
10237 if (width == 0 || height == 0)
10238 return false;
10239
10240 /*
10241 * 845g/865g are special in that they are only limited by
10242 * the width of their cursors, the height is arbitrary up to
10243 * the precision of the register. Everything else requires
10244 * square cursors, limited to a few power-of-two sizes.
10245 */
10246 if (IS_845G(dev) || IS_I865G(dev)) {
10247 if ((width & 63) != 0)
10248 return false;
10249
10250 if (width > (IS_845G(dev) ? 64 : 512))
10251 return false;
10252
10253 if (height > 1023)
10254 return false;
10255 } else {
10256 switch (width | height) {
10257 case 256:
10258 case 128:
10259 if (IS_GEN2(dev))
10260 return false;
10261 case 64:
10262 break;
10263 default:
10264 return false;
10265 }
10266 }
10267
10268 return true;
10269 }
10270
10271 /* VESA 640x480x72Hz mode to set on the pipe */
10272 static struct drm_display_mode load_detect_mode = {
10273 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10274 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10275 };
10276
10277 struct drm_framebuffer *
10278 __intel_framebuffer_create(struct drm_device *dev,
10279 struct drm_mode_fb_cmd2 *mode_cmd,
10280 struct drm_i915_gem_object *obj)
10281 {
10282 struct intel_framebuffer *intel_fb;
10283 int ret;
10284
10285 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10286 if (!intel_fb)
10287 return ERR_PTR(-ENOMEM);
10288
10289 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10290 if (ret)
10291 goto err;
10292
10293 return &intel_fb->base;
10294
10295 err:
10296 kfree(intel_fb);
10297 return ERR_PTR(ret);
10298 }
10299
10300 static struct drm_framebuffer *
10301 intel_framebuffer_create(struct drm_device *dev,
10302 struct drm_mode_fb_cmd2 *mode_cmd,
10303 struct drm_i915_gem_object *obj)
10304 {
10305 struct drm_framebuffer *fb;
10306 int ret;
10307
10308 ret = i915_mutex_lock_interruptible(dev);
10309 if (ret)
10310 return ERR_PTR(ret);
10311 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10312 mutex_unlock(&dev->struct_mutex);
10313
10314 return fb;
10315 }
10316
10317 static u32
10318 intel_framebuffer_pitch_for_width(int width, int bpp)
10319 {
10320 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10321 return ALIGN(pitch, 64);
10322 }
10323
10324 static u32
10325 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10326 {
10327 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10328 return PAGE_ALIGN(pitch * mode->vdisplay);
10329 }
10330
10331 static struct drm_framebuffer *
10332 intel_framebuffer_create_for_mode(struct drm_device *dev,
10333 struct drm_display_mode *mode,
10334 int depth, int bpp)
10335 {
10336 struct drm_framebuffer *fb;
10337 struct drm_i915_gem_object *obj;
10338 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10339
10340 obj = i915_gem_object_create(dev,
10341 intel_framebuffer_size_for_mode(mode, bpp));
10342 if (IS_ERR(obj))
10343 return ERR_CAST(obj);
10344
10345 mode_cmd.width = mode->hdisplay;
10346 mode_cmd.height = mode->vdisplay;
10347 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10348 bpp);
10349 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10350
10351 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10352 if (IS_ERR(fb))
10353 drm_gem_object_unreference_unlocked(&obj->base);
10354
10355 return fb;
10356 }
10357
10358 static struct drm_framebuffer *
10359 mode_fits_in_fbdev(struct drm_device *dev,
10360 struct drm_display_mode *mode)
10361 {
10362 #ifdef CONFIG_DRM_FBDEV_EMULATION
10363 struct drm_i915_private *dev_priv = dev->dev_private;
10364 struct drm_i915_gem_object *obj;
10365 struct drm_framebuffer *fb;
10366
10367 if (!dev_priv->fbdev)
10368 return NULL;
10369
10370 if (!dev_priv->fbdev->fb)
10371 return NULL;
10372
10373 obj = dev_priv->fbdev->fb->obj;
10374 BUG_ON(!obj);
10375
10376 fb = &dev_priv->fbdev->fb->base;
10377 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10378 fb->bits_per_pixel))
10379 return NULL;
10380
10381 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10382 return NULL;
10383
10384 drm_framebuffer_reference(fb);
10385 return fb;
10386 #else
10387 return NULL;
10388 #endif
10389 }
10390
10391 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10392 struct drm_crtc *crtc,
10393 struct drm_display_mode *mode,
10394 struct drm_framebuffer *fb,
10395 int x, int y)
10396 {
10397 struct drm_plane_state *plane_state;
10398 int hdisplay, vdisplay;
10399 int ret;
10400
10401 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10402 if (IS_ERR(plane_state))
10403 return PTR_ERR(plane_state);
10404
10405 if (mode)
10406 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10407 else
10408 hdisplay = vdisplay = 0;
10409
10410 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10411 if (ret)
10412 return ret;
10413 drm_atomic_set_fb_for_plane(plane_state, fb);
10414 plane_state->crtc_x = 0;
10415 plane_state->crtc_y = 0;
10416 plane_state->crtc_w = hdisplay;
10417 plane_state->crtc_h = vdisplay;
10418 plane_state->src_x = x << 16;
10419 plane_state->src_y = y << 16;
10420 plane_state->src_w = hdisplay << 16;
10421 plane_state->src_h = vdisplay << 16;
10422
10423 return 0;
10424 }
10425
10426 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10427 struct drm_display_mode *mode,
10428 struct intel_load_detect_pipe *old,
10429 struct drm_modeset_acquire_ctx *ctx)
10430 {
10431 struct intel_crtc *intel_crtc;
10432 struct intel_encoder *intel_encoder =
10433 intel_attached_encoder(connector);
10434 struct drm_crtc *possible_crtc;
10435 struct drm_encoder *encoder = &intel_encoder->base;
10436 struct drm_crtc *crtc = NULL;
10437 struct drm_device *dev = encoder->dev;
10438 struct drm_framebuffer *fb;
10439 struct drm_mode_config *config = &dev->mode_config;
10440 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10441 struct drm_connector_state *connector_state;
10442 struct intel_crtc_state *crtc_state;
10443 int ret, i = -1;
10444
10445 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10446 connector->base.id, connector->name,
10447 encoder->base.id, encoder->name);
10448
10449 old->restore_state = NULL;
10450
10451 retry:
10452 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10453 if (ret)
10454 goto fail;
10455
10456 /*
10457 * Algorithm gets a little messy:
10458 *
10459 * - if the connector already has an assigned crtc, use it (but make
10460 * sure it's on first)
10461 *
10462 * - try to find the first unused crtc that can drive this connector,
10463 * and use that if we find one
10464 */
10465
10466 /* See if we already have a CRTC for this connector */
10467 if (connector->state->crtc) {
10468 crtc = connector->state->crtc;
10469
10470 ret = drm_modeset_lock(&crtc->mutex, ctx);
10471 if (ret)
10472 goto fail;
10473
10474 /* Make sure the crtc and connector are running */
10475 goto found;
10476 }
10477
10478 /* Find an unused one (if possible) */
10479 for_each_crtc(dev, possible_crtc) {
10480 i++;
10481 if (!(encoder->possible_crtcs & (1 << i)))
10482 continue;
10483
10484 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10485 if (ret)
10486 goto fail;
10487
10488 if (possible_crtc->state->enable) {
10489 drm_modeset_unlock(&possible_crtc->mutex);
10490 continue;
10491 }
10492
10493 crtc = possible_crtc;
10494 break;
10495 }
10496
10497 /*
10498 * If we didn't find an unused CRTC, don't use any.
10499 */
10500 if (!crtc) {
10501 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10502 goto fail;
10503 }
10504
10505 found:
10506 intel_crtc = to_intel_crtc(crtc);
10507
10508 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10509 if (ret)
10510 goto fail;
10511
10512 state = drm_atomic_state_alloc(dev);
10513 restore_state = drm_atomic_state_alloc(dev);
10514 if (!state || !restore_state) {
10515 ret = -ENOMEM;
10516 goto fail;
10517 }
10518
10519 state->acquire_ctx = ctx;
10520 restore_state->acquire_ctx = ctx;
10521
10522 connector_state = drm_atomic_get_connector_state(state, connector);
10523 if (IS_ERR(connector_state)) {
10524 ret = PTR_ERR(connector_state);
10525 goto fail;
10526 }
10527
10528 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10529 if (ret)
10530 goto fail;
10531
10532 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10533 if (IS_ERR(crtc_state)) {
10534 ret = PTR_ERR(crtc_state);
10535 goto fail;
10536 }
10537
10538 crtc_state->base.active = crtc_state->base.enable = true;
10539
10540 if (!mode)
10541 mode = &load_detect_mode;
10542
10543 /* We need a framebuffer large enough to accommodate all accesses
10544 * that the plane may generate whilst we perform load detection.
10545 * We can not rely on the fbcon either being present (we get called
10546 * during its initialisation to detect all boot displays, or it may
10547 * not even exist) or that it is large enough to satisfy the
10548 * requested mode.
10549 */
10550 fb = mode_fits_in_fbdev(dev, mode);
10551 if (fb == NULL) {
10552 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10553 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10554 } else
10555 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10556 if (IS_ERR(fb)) {
10557 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10558 goto fail;
10559 }
10560
10561 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10562 if (ret)
10563 goto fail;
10564
10565 drm_framebuffer_unreference(fb);
10566
10567 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10568 if (ret)
10569 goto fail;
10570
10571 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10572 if (!ret)
10573 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10574 if (!ret)
10575 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10576 if (ret) {
10577 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10578 goto fail;
10579 }
10580
10581 ret = drm_atomic_commit(state);
10582 if (ret) {
10583 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10584 goto fail;
10585 }
10586
10587 old->restore_state = restore_state;
10588
10589 /* let the connector get through one full cycle before testing */
10590 intel_wait_for_vblank(dev, intel_crtc->pipe);
10591 return true;
10592
10593 fail:
10594 drm_atomic_state_free(state);
10595 drm_atomic_state_free(restore_state);
10596 restore_state = state = NULL;
10597
10598 if (ret == -EDEADLK) {
10599 drm_modeset_backoff(ctx);
10600 goto retry;
10601 }
10602
10603 return false;
10604 }
10605
10606 void intel_release_load_detect_pipe(struct drm_connector *connector,
10607 struct intel_load_detect_pipe *old,
10608 struct drm_modeset_acquire_ctx *ctx)
10609 {
10610 struct intel_encoder *intel_encoder =
10611 intel_attached_encoder(connector);
10612 struct drm_encoder *encoder = &intel_encoder->base;
10613 struct drm_atomic_state *state = old->restore_state;
10614 int ret;
10615
10616 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10617 connector->base.id, connector->name,
10618 encoder->base.id, encoder->name);
10619
10620 if (!state)
10621 return;
10622
10623 ret = drm_atomic_commit(state);
10624 if (ret) {
10625 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10626 drm_atomic_state_free(state);
10627 }
10628 }
10629
10630 static int i9xx_pll_refclk(struct drm_device *dev,
10631 const struct intel_crtc_state *pipe_config)
10632 {
10633 struct drm_i915_private *dev_priv = dev->dev_private;
10634 u32 dpll = pipe_config->dpll_hw_state.dpll;
10635
10636 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10637 return dev_priv->vbt.lvds_ssc_freq;
10638 else if (HAS_PCH_SPLIT(dev))
10639 return 120000;
10640 else if (!IS_GEN2(dev))
10641 return 96000;
10642 else
10643 return 48000;
10644 }
10645
10646 /* Returns the clock of the currently programmed mode of the given pipe. */
10647 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10648 struct intel_crtc_state *pipe_config)
10649 {
10650 struct drm_device *dev = crtc->base.dev;
10651 struct drm_i915_private *dev_priv = dev->dev_private;
10652 int pipe = pipe_config->cpu_transcoder;
10653 u32 dpll = pipe_config->dpll_hw_state.dpll;
10654 u32 fp;
10655 struct dpll clock;
10656 int port_clock;
10657 int refclk = i9xx_pll_refclk(dev, pipe_config);
10658
10659 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10660 fp = pipe_config->dpll_hw_state.fp0;
10661 else
10662 fp = pipe_config->dpll_hw_state.fp1;
10663
10664 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10665 if (IS_PINEVIEW(dev)) {
10666 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10667 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10668 } else {
10669 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10670 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10671 }
10672
10673 if (!IS_GEN2(dev)) {
10674 if (IS_PINEVIEW(dev))
10675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10676 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10677 else
10678 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10679 DPLL_FPA01_P1_POST_DIV_SHIFT);
10680
10681 switch (dpll & DPLL_MODE_MASK) {
10682 case DPLLB_MODE_DAC_SERIAL:
10683 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10684 5 : 10;
10685 break;
10686 case DPLLB_MODE_LVDS:
10687 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10688 7 : 14;
10689 break;
10690 default:
10691 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10692 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10693 return;
10694 }
10695
10696 if (IS_PINEVIEW(dev))
10697 port_clock = pnv_calc_dpll_params(refclk, &clock);
10698 else
10699 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10700 } else {
10701 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10702 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10703
10704 if (is_lvds) {
10705 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10706 DPLL_FPA01_P1_POST_DIV_SHIFT);
10707
10708 if (lvds & LVDS_CLKB_POWER_UP)
10709 clock.p2 = 7;
10710 else
10711 clock.p2 = 14;
10712 } else {
10713 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10714 clock.p1 = 2;
10715 else {
10716 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10717 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10718 }
10719 if (dpll & PLL_P2_DIVIDE_BY_4)
10720 clock.p2 = 4;
10721 else
10722 clock.p2 = 2;
10723 }
10724
10725 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10726 }
10727
10728 /*
10729 * This value includes pixel_multiplier. We will use
10730 * port_clock to compute adjusted_mode.crtc_clock in the
10731 * encoder's get_config() function.
10732 */
10733 pipe_config->port_clock = port_clock;
10734 }
10735
10736 int intel_dotclock_calculate(int link_freq,
10737 const struct intel_link_m_n *m_n)
10738 {
10739 /*
10740 * The calculation for the data clock is:
10741 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10742 * But we want to avoid losing precison if possible, so:
10743 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10744 *
10745 * and the link clock is simpler:
10746 * link_clock = (m * link_clock) / n
10747 */
10748
10749 if (!m_n->link_n)
10750 return 0;
10751
10752 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10753 }
10754
10755 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10756 struct intel_crtc_state *pipe_config)
10757 {
10758 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10759
10760 /* read out port_clock from the DPLL */
10761 i9xx_crtc_clock_get(crtc, pipe_config);
10762
10763 /*
10764 * In case there is an active pipe without active ports,
10765 * we may need some idea for the dotclock anyway.
10766 * Calculate one based on the FDI configuration.
10767 */
10768 pipe_config->base.adjusted_mode.crtc_clock =
10769 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10770 &pipe_config->fdi_m_n);
10771 }
10772
10773 /** Returns the currently programmed mode of the given pipe. */
10774 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10775 struct drm_crtc *crtc)
10776 {
10777 struct drm_i915_private *dev_priv = dev->dev_private;
10778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10780 struct drm_display_mode *mode;
10781 struct intel_crtc_state *pipe_config;
10782 int htot = I915_READ(HTOTAL(cpu_transcoder));
10783 int hsync = I915_READ(HSYNC(cpu_transcoder));
10784 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10785 int vsync = I915_READ(VSYNC(cpu_transcoder));
10786 enum pipe pipe = intel_crtc->pipe;
10787
10788 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10789 if (!mode)
10790 return NULL;
10791
10792 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10793 if (!pipe_config) {
10794 kfree(mode);
10795 return NULL;
10796 }
10797
10798 /*
10799 * Construct a pipe_config sufficient for getting the clock info
10800 * back out of crtc_clock_get.
10801 *
10802 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10803 * to use a real value here instead.
10804 */
10805 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10806 pipe_config->pixel_multiplier = 1;
10807 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10808 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10809 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10810 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10811
10812 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10813 mode->hdisplay = (htot & 0xffff) + 1;
10814 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10815 mode->hsync_start = (hsync & 0xffff) + 1;
10816 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10817 mode->vdisplay = (vtot & 0xffff) + 1;
10818 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10819 mode->vsync_start = (vsync & 0xffff) + 1;
10820 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10821
10822 drm_mode_set_name(mode);
10823
10824 kfree(pipe_config);
10825
10826 return mode;
10827 }
10828
10829 void intel_mark_busy(struct drm_i915_private *dev_priv)
10830 {
10831 if (dev_priv->mm.busy)
10832 return;
10833
10834 intel_runtime_pm_get(dev_priv);
10835 i915_update_gfx_val(dev_priv);
10836 if (INTEL_GEN(dev_priv) >= 6)
10837 gen6_rps_busy(dev_priv);
10838 dev_priv->mm.busy = true;
10839 }
10840
10841 void intel_mark_idle(struct drm_i915_private *dev_priv)
10842 {
10843 if (!dev_priv->mm.busy)
10844 return;
10845
10846 dev_priv->mm.busy = false;
10847
10848 if (INTEL_GEN(dev_priv) >= 6)
10849 gen6_rps_idle(dev_priv);
10850
10851 intel_runtime_pm_put(dev_priv);
10852 }
10853
10854 void intel_free_flip_work(struct intel_flip_work *work)
10855 {
10856 kfree(work->old_connector_state);
10857 kfree(work->new_connector_state);
10858 kfree(work);
10859 }
10860
10861 static void intel_crtc_destroy(struct drm_crtc *crtc)
10862 {
10863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10864 struct drm_device *dev = crtc->dev;
10865 struct intel_flip_work *work;
10866
10867 spin_lock_irq(&dev->event_lock);
10868 while (!list_empty(&intel_crtc->flip_work)) {
10869 work = list_first_entry(&intel_crtc->flip_work,
10870 struct intel_flip_work, head);
10871 list_del_init(&work->head);
10872 spin_unlock_irq(&dev->event_lock);
10873
10874 cancel_work_sync(&work->mmio_work);
10875 cancel_work_sync(&work->unpin_work);
10876 intel_free_flip_work(work);
10877
10878 spin_lock_irq(&dev->event_lock);
10879 }
10880 spin_unlock_irq(&dev->event_lock);
10881
10882 drm_crtc_cleanup(crtc);
10883
10884 kfree(intel_crtc);
10885 }
10886
10887 static void intel_crtc_post_flip_update(struct intel_flip_work *work,
10888 struct drm_crtc *crtc)
10889 {
10890 struct intel_crtc_state *crtc_state = work->new_crtc_state;
10891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10892
10893 if (crtc_state->disable_cxsr)
10894 intel_crtc->wm.cxsr_allowed = true;
10895
10896 if (crtc_state->update_wm_post && crtc_state->base.active)
10897 intel_update_watermarks(crtc);
10898
10899 if (work->num_planes > 0 &&
10900 work->old_plane_state[0]->base.plane == crtc->primary) {
10901 struct intel_plane_state *plane_state =
10902 work->new_plane_state[0];
10903
10904 if (plane_state->visible &&
10905 (needs_modeset(&crtc_state->base) ||
10906 !work->old_plane_state[0]->visible))
10907 intel_post_enable_primary(crtc);
10908 }
10909 }
10910
10911 static void intel_unpin_work_fn(struct work_struct *__work)
10912 {
10913 struct intel_flip_work *work =
10914 container_of(__work, struct intel_flip_work, unpin_work);
10915 struct drm_crtc *crtc = work->old_crtc_state->base.crtc;
10916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10917 struct drm_device *dev = crtc->dev;
10918 struct drm_i915_private *dev_priv = dev->dev_private;
10919 int i;
10920
10921 if (work->fb_bits)
10922 intel_frontbuffer_flip_complete(dev, work->fb_bits);
10923
10924 /*
10925 * Unless work->can_async_unpin is false, there's no way to ensure
10926 * that work->new_crtc_state contains valid memory during unpin
10927 * because intel_atomic_commit may free it before this runs.
10928 */
10929 if (!work->can_async_unpin) {
10930 intel_crtc_post_flip_update(work, crtc);
10931
10932 if (dev_priv->display.optimize_watermarks)
10933 dev_priv->display.optimize_watermarks(work->new_crtc_state);
10934 }
10935
10936 if (work->fb_bits & to_intel_plane(crtc->primary)->frontbuffer_bit)
10937 intel_fbc_post_update(intel_crtc);
10938
10939 if (work->put_power_domains)
10940 modeset_put_power_domains(dev_priv, work->put_power_domains);
10941
10942 /* Make sure mmio work is completely finished before freeing all state here. */
10943 flush_work(&work->mmio_work);
10944
10945 if (!work->can_async_unpin &&
10946 (work->new_crtc_state->update_pipe ||
10947 needs_modeset(&work->new_crtc_state->base))) {
10948 /* This must be called before work is unpinned for serialization. */
10949 intel_modeset_verify_crtc(crtc, &work->old_crtc_state->base,
10950 &work->new_crtc_state->base);
10951
10952 for (i = 0; i < work->num_new_connectors; i++) {
10953 struct drm_connector_state *conn_state =
10954 work->new_connector_state[i];
10955 struct drm_connector *con = conn_state->connector;
10956
10957 WARN_ON(!con);
10958
10959 intel_connector_verify_state(to_intel_connector(con),
10960 conn_state);
10961 }
10962 }
10963
10964 for (i = 0; i < work->num_old_connectors; i++) {
10965 struct drm_connector_state *old_con_state =
10966 work->old_connector_state[i];
10967 struct drm_connector *con =
10968 old_con_state->connector;
10969
10970 con->funcs->atomic_destroy_state(con, old_con_state);
10971 }
10972
10973 if (!work->can_async_unpin || !list_empty(&work->head)) {
10974 spin_lock_irq(&dev->event_lock);
10975 WARN(list_empty(&work->head) != work->can_async_unpin,
10976 "[CRTC:%i] Pin work %p async %i with %i planes, active %i -> %i ms %i\n",
10977 crtc->base.id, work, work->can_async_unpin, work->num_planes,
10978 work->old_crtc_state->base.active, work->new_crtc_state->base.active,
10979 needs_modeset(&work->new_crtc_state->base));
10980
10981 if (!list_empty(&work->head))
10982 list_del(&work->head);
10983
10984 wake_up_all(&dev_priv->pending_flip_queue);
10985 spin_unlock_irq(&dev->event_lock);
10986 }
10987
10988 /* New crtc_state freed? */
10989 if (work->free_new_crtc_state)
10990 intel_crtc_destroy_state(crtc, &work->new_crtc_state->base);
10991
10992 intel_crtc_destroy_state(crtc, &work->old_crtc_state->base);
10993
10994 for (i = 0; i < work->num_planes; i++) {
10995 struct intel_plane_state *old_plane_state =
10996 work->old_plane_state[i];
10997 struct drm_framebuffer *old_fb = old_plane_state->base.fb;
10998 struct drm_plane *plane = old_plane_state->base.plane;
10999 struct drm_i915_gem_request *req;
11000
11001 req = old_plane_state->wait_req;
11002 old_plane_state->wait_req = NULL;
11003 if (req)
11004 i915_gem_request_unreference(req);
11005
11006 fence_put(old_plane_state->base.fence);
11007 old_plane_state->base.fence = NULL;
11008
11009 if (old_fb &&
11010 (plane->type != DRM_PLANE_TYPE_CURSOR ||
11011 !INTEL_INFO(dev_priv)->cursor_needs_physical)) {
11012 mutex_lock(&dev->struct_mutex);
11013 intel_unpin_fb_obj(old_fb, old_plane_state->base.rotation);
11014 mutex_unlock(&dev->struct_mutex);
11015 }
11016
11017 intel_plane_destroy_state(plane, &old_plane_state->base);
11018 }
11019
11020 if (!WARN_ON(atomic_read(&intel_crtc->unpin_work_count) == 0))
11021 atomic_dec(&intel_crtc->unpin_work_count);
11022
11023 intel_free_flip_work(work);
11024 }
11025
11026
11027 static bool pageflip_finished(struct intel_crtc *crtc,
11028 struct intel_flip_work *work)
11029 {
11030 if (!atomic_read(&work->pending))
11031 return false;
11032
11033 smp_rmb();
11034
11035 /*
11036 * MMIO work completes when vblank is different from
11037 * flip_queued_vblank.
11038 */
11039 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11040 }
11041
11042 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11043 {
11044 struct drm_device *dev = dev_priv->dev;
11045 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11047 struct intel_flip_work *work;
11048 unsigned long flags;
11049
11050 /* Ignore early vblank irqs */
11051 if (!crtc)
11052 return;
11053
11054 /*
11055 * This is called both by irq handlers and the reset code (to complete
11056 * lost pageflips) so needs the full irqsave spinlocks.
11057 */
11058 spin_lock_irqsave(&dev->event_lock, flags);
11059 while (!list_empty(&intel_crtc->flip_work)) {
11060 work = list_first_entry(&intel_crtc->flip_work,
11061 struct intel_flip_work,
11062 head);
11063
11064 if (!pageflip_finished(intel_crtc, work) ||
11065 work_busy(&work->unpin_work))
11066 break;
11067
11068 page_flip_completed(intel_crtc, work);
11069 }
11070 spin_unlock_irqrestore(&dev->event_lock, flags);
11071 }
11072
11073 static void intel_mmio_flip_work_func(struct work_struct *w)
11074 {
11075 struct intel_flip_work *work =
11076 container_of(w, struct intel_flip_work, mmio_work);
11077 struct drm_crtc *crtc = work->old_crtc_state->base.crtc;
11078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11079 struct intel_crtc_state *crtc_state = work->new_crtc_state;
11080 struct drm_device *dev = crtc->dev;
11081 struct drm_i915_private *dev_priv = dev->dev_private;
11082 struct drm_i915_gem_request *req;
11083 int i, ret;
11084
11085 if (!needs_modeset(&crtc_state->base) && crtc_state->update_pipe) {
11086 work->put_power_domains =
11087 modeset_get_crtc_power_domains(crtc, crtc_state);
11088 }
11089
11090 for (i = 0; i < work->num_planes; i++) {
11091 struct intel_plane_state *old_plane_state = work->old_plane_state[i];
11092
11093 /* For framebuffer backed by dmabuf, wait for fence */
11094 if (old_plane_state->base.fence)
11095 WARN_ON(fence_wait(old_plane_state->base.fence, false) < 0);
11096
11097 req = old_plane_state->wait_req;
11098 if (!req)
11099 continue;
11100
11101 WARN_ON(__i915_wait_request(req, false, NULL,
11102 &dev_priv->rps.mmioflips));
11103 }
11104
11105 ret = drm_crtc_vblank_get(crtc);
11106 I915_STATE_WARN(ret < 0, "enabling vblank failed with %i\n", ret);
11107
11108 if (work->num_planes &&
11109 work->old_plane_state[0]->base.plane == crtc->primary)
11110 intel_fbc_enable(intel_crtc, work->new_crtc_state, work->new_plane_state[0]);
11111
11112 intel_frontbuffer_flip_prepare(dev, work->fb_bits);
11113
11114 intel_pipe_update_start(intel_crtc);
11115 if (!needs_modeset(&crtc_state->base)) {
11116 if (crtc_state->base.color_mgmt_changed || crtc_state->update_pipe) {
11117 intel_color_set_csc(&crtc_state->base);
11118 intel_color_load_luts(&crtc_state->base);
11119 }
11120
11121 if (crtc_state->update_pipe)
11122 intel_update_pipe_config(intel_crtc, work->old_crtc_state);
11123 else if (INTEL_INFO(dev)->gen >= 9)
11124 skl_detach_scalers(intel_crtc);
11125 }
11126
11127 for (i = 0; i < work->num_planes; i++) {
11128 struct intel_plane_state *new_plane_state = work->new_plane_state[i];
11129 struct intel_plane *plane = to_intel_plane(new_plane_state->base.plane);
11130
11131 if (new_plane_state->visible)
11132 plane->update_plane(&plane->base, crtc_state, new_plane_state);
11133 else
11134 plane->disable_plane(&plane->base, crtc);
11135 }
11136
11137 intel_pipe_update_end(intel_crtc, work);
11138 }
11139
11140 /**
11141 * intel_wm_need_update - Check whether watermarks need updating
11142 * @plane: drm plane
11143 * @state: new plane state
11144 *
11145 * Check current plane state versus the new one to determine whether
11146 * watermarks need to be recalculated.
11147 *
11148 * Returns true or false.
11149 */
11150 static bool intel_wm_need_update(struct drm_plane *plane,
11151 struct drm_plane_state *state)
11152 {
11153 struct intel_plane_state *new = to_intel_plane_state(state);
11154 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11155
11156 /* Update watermarks on tiling or size changes. */
11157 if (new->visible != cur->visible)
11158 return true;
11159
11160 if (!cur->base.fb || !new->base.fb)
11161 return false;
11162
11163 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11164 cur->base.rotation != new->base.rotation ||
11165 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11166 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11167 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11168 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11169 return true;
11170
11171 return false;
11172 }
11173
11174 static bool needs_scaling(struct intel_plane_state *state)
11175 {
11176 int src_w = drm_rect_width(&state->src) >> 16;
11177 int src_h = drm_rect_height(&state->src) >> 16;
11178 int dst_w = drm_rect_width(&state->dst);
11179 int dst_h = drm_rect_height(&state->dst);
11180
11181 return (src_w != dst_w || src_h != dst_h);
11182 }
11183
11184 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11185 struct drm_plane_state *plane_state)
11186 {
11187 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11188 struct drm_crtc *crtc = crtc_state->crtc;
11189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11190 struct drm_plane *plane = plane_state->plane;
11191 struct drm_device *dev = crtc->dev;
11192 struct drm_i915_private *dev_priv = to_i915(dev);
11193 struct intel_plane_state *old_plane_state =
11194 to_intel_plane_state(plane->state);
11195 int idx = intel_crtc->base.base.id, ret;
11196 bool mode_changed = needs_modeset(crtc_state);
11197 bool was_crtc_enabled = crtc->state->active;
11198 bool is_crtc_enabled = crtc_state->active;
11199 bool turn_off, turn_on, visible, was_visible;
11200 struct drm_framebuffer *fb = plane_state->fb;
11201
11202 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11203 plane->type != DRM_PLANE_TYPE_CURSOR) {
11204 ret = skl_update_scaler_plane(
11205 to_intel_crtc_state(crtc_state),
11206 to_intel_plane_state(plane_state));
11207 if (ret)
11208 return ret;
11209 }
11210
11211 was_visible = old_plane_state->visible;
11212 visible = to_intel_plane_state(plane_state)->visible;
11213
11214 if (!was_crtc_enabled && WARN_ON(was_visible))
11215 was_visible = false;
11216
11217 /*
11218 * Visibility is calculated as if the crtc was on, but
11219 * after scaler setup everything depends on it being off
11220 * when the crtc isn't active.
11221 *
11222 * FIXME this is wrong for watermarks. Watermarks should also
11223 * be computed as if the pipe would be active. Perhaps move
11224 * per-plane wm computation to the .check_plane() hook, and
11225 * only combine the results from all planes in the current place?
11226 */
11227 if (!is_crtc_enabled)
11228 to_intel_plane_state(plane_state)->visible = visible = false;
11229
11230 if (!was_visible && !visible)
11231 return 0;
11232
11233 if (fb != old_plane_state->base.fb)
11234 pipe_config->fb_changed = true;
11235
11236 turn_off = was_visible && (!visible || mode_changed);
11237 turn_on = visible && (!was_visible || mode_changed);
11238
11239 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11240 plane->base.id, fb ? fb->base.id : -1);
11241
11242 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11243 plane->base.id, was_visible, visible,
11244 turn_off, turn_on, mode_changed);
11245
11246 if (turn_on) {
11247 pipe_config->update_wm_pre = true;
11248
11249 /* must disable cxsr around plane enable/disable */
11250 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11251 pipe_config->disable_cxsr = true;
11252 } else if (turn_off) {
11253 pipe_config->update_wm_post = true;
11254
11255 /* must disable cxsr around plane enable/disable */
11256 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11257 pipe_config->disable_cxsr = true;
11258 } else if (intel_wm_need_update(plane, plane_state)) {
11259 /* FIXME bollocks */
11260 pipe_config->update_wm_pre = true;
11261 pipe_config->update_wm_post = true;
11262 }
11263
11264 /* Pre-gen9 platforms need two-step watermark updates */
11265 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11266 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11267 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11268
11269 if (visible || was_visible)
11270 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11271
11272 /*
11273 * WaCxSRDisabledForSpriteScaling:ivb
11274 *
11275 * cstate->update_wm was already set above, so this flag will
11276 * take effect when we commit and program watermarks.
11277 */
11278 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11279 needs_scaling(to_intel_plane_state(plane_state)) &&
11280 !needs_scaling(old_plane_state))
11281 pipe_config->disable_lp_wm = true;
11282
11283 return 0;
11284 }
11285
11286 static bool encoders_cloneable(const struct intel_encoder *a,
11287 const struct intel_encoder *b)
11288 {
11289 /* masks could be asymmetric, so check both ways */
11290 return a == b || (a->cloneable & (1 << b->type) &&
11291 b->cloneable & (1 << a->type));
11292 }
11293
11294 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11295 struct intel_crtc *crtc,
11296 struct intel_encoder *encoder)
11297 {
11298 struct intel_encoder *source_encoder;
11299 struct drm_connector *connector;
11300 struct drm_connector_state *connector_state;
11301 int i;
11302
11303 for_each_connector_in_state(state, connector, connector_state, i) {
11304 if (connector_state->crtc != &crtc->base)
11305 continue;
11306
11307 source_encoder =
11308 to_intel_encoder(connector_state->best_encoder);
11309 if (!encoders_cloneable(encoder, source_encoder))
11310 return false;
11311 }
11312
11313 return true;
11314 }
11315
11316 static bool check_encoder_cloning(struct drm_atomic_state *state,
11317 struct intel_crtc *crtc)
11318 {
11319 struct intel_encoder *encoder;
11320 struct drm_connector *connector;
11321 struct drm_connector_state *connector_state;
11322 int i;
11323
11324 for_each_connector_in_state(state, connector, connector_state, i) {
11325 if (connector_state->crtc != &crtc->base)
11326 continue;
11327
11328 encoder = to_intel_encoder(connector_state->best_encoder);
11329 if (!check_single_encoder_cloning(state, crtc, encoder))
11330 return false;
11331 }
11332
11333 return true;
11334 }
11335
11336 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11337 struct drm_crtc_state *crtc_state)
11338 {
11339 struct drm_device *dev = crtc->dev;
11340 struct drm_i915_private *dev_priv = dev->dev_private;
11341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11342 struct intel_crtc_state *pipe_config =
11343 to_intel_crtc_state(crtc_state);
11344 struct drm_atomic_state *state = crtc_state->state;
11345 int ret;
11346 bool mode_changed = needs_modeset(crtc_state);
11347
11348 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11349 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11350 return -EINVAL;
11351 }
11352
11353 if (mode_changed && !crtc_state->active)
11354 pipe_config->update_wm_post = true;
11355
11356 if (mode_changed && crtc_state->enable &&
11357 dev_priv->display.crtc_compute_clock &&
11358 !WARN_ON(pipe_config->shared_dpll)) {
11359 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11360 pipe_config);
11361 if (ret)
11362 return ret;
11363 }
11364
11365 if (crtc_state->color_mgmt_changed) {
11366 ret = intel_color_check(crtc, crtc_state);
11367 if (ret)
11368 return ret;
11369 }
11370
11371 ret = 0;
11372 if (dev_priv->display.compute_pipe_wm) {
11373 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11374 if (ret) {
11375 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11376 return ret;
11377 }
11378 }
11379
11380 if (dev_priv->display.compute_intermediate_wm &&
11381 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11382 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11383 return 0;
11384
11385 /*
11386 * Calculate 'intermediate' watermarks that satisfy both the
11387 * old state and the new state. We can program these
11388 * immediately.
11389 */
11390 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11391 intel_crtc,
11392 pipe_config);
11393 if (ret) {
11394 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11395 return ret;
11396 }
11397 } else if (dev_priv->display.compute_intermediate_wm) {
11398 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11399 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11400 }
11401
11402 if (INTEL_INFO(dev)->gen >= 9) {
11403 if (mode_changed)
11404 ret = skl_update_scaler_crtc(pipe_config);
11405
11406 if (!ret)
11407 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11408 pipe_config);
11409 }
11410
11411 return ret;
11412 }
11413
11414 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11415 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11416 .atomic_check = intel_crtc_atomic_check,
11417 };
11418
11419 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11420 {
11421 struct intel_connector *connector;
11422
11423 for_each_intel_connector(dev, connector) {
11424 if (connector->base.state->crtc)
11425 drm_connector_unreference(&connector->base);
11426
11427 if (connector->base.encoder) {
11428 connector->base.state->best_encoder =
11429 connector->base.encoder;
11430 connector->base.state->crtc =
11431 connector->base.encoder->crtc;
11432
11433 drm_connector_reference(&connector->base);
11434 } else {
11435 connector->base.state->best_encoder = NULL;
11436 connector->base.state->crtc = NULL;
11437 }
11438 }
11439 }
11440
11441 static void
11442 connected_sink_compute_bpp(struct intel_connector *connector,
11443 struct intel_crtc_state *pipe_config)
11444 {
11445 int bpp = pipe_config->pipe_bpp;
11446
11447 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11448 connector->base.base.id,
11449 connector->base.name);
11450
11451 /* Don't use an invalid EDID bpc value */
11452 if (connector->base.display_info.bpc &&
11453 connector->base.display_info.bpc * 3 < bpp) {
11454 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11455 bpp, connector->base.display_info.bpc*3);
11456 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11457 }
11458
11459 /* Clamp bpp to default limit on screens without EDID 1.4 */
11460 if (connector->base.display_info.bpc == 0) {
11461 int type = connector->base.connector_type;
11462 int clamp_bpp = 24;
11463
11464 /* Fall back to 18 bpp when DP sink capability is unknown. */
11465 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
11466 type == DRM_MODE_CONNECTOR_eDP)
11467 clamp_bpp = 18;
11468
11469 if (bpp > clamp_bpp) {
11470 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
11471 bpp, clamp_bpp);
11472 pipe_config->pipe_bpp = clamp_bpp;
11473 }
11474 }
11475 }
11476
11477 static int
11478 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11479 struct intel_crtc_state *pipe_config)
11480 {
11481 struct drm_device *dev = crtc->base.dev;
11482 struct drm_atomic_state *state;
11483 struct drm_connector *connector;
11484 struct drm_connector_state *connector_state;
11485 int bpp, i;
11486
11487 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
11488 bpp = 10*3;
11489 else if (INTEL_INFO(dev)->gen >= 5)
11490 bpp = 12*3;
11491 else
11492 bpp = 8*3;
11493
11494
11495 pipe_config->pipe_bpp = bpp;
11496
11497 state = pipe_config->base.state;
11498
11499 /* Clamp display bpp to EDID value */
11500 for_each_connector_in_state(state, connector, connector_state, i) {
11501 if (connector_state->crtc != &crtc->base)
11502 continue;
11503
11504 connected_sink_compute_bpp(to_intel_connector(connector),
11505 pipe_config);
11506 }
11507
11508 return bpp;
11509 }
11510
11511 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11512 {
11513 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11514 "type: 0x%x flags: 0x%x\n",
11515 mode->crtc_clock,
11516 mode->crtc_hdisplay, mode->crtc_hsync_start,
11517 mode->crtc_hsync_end, mode->crtc_htotal,
11518 mode->crtc_vdisplay, mode->crtc_vsync_start,
11519 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11520 }
11521
11522 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11523 struct intel_crtc_state *pipe_config,
11524 const char *context)
11525 {
11526 struct drm_device *dev = crtc->base.dev;
11527 struct drm_plane *plane;
11528 struct intel_plane *intel_plane;
11529 struct intel_plane_state *state;
11530 struct drm_framebuffer *fb;
11531
11532 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11533 context, pipe_config, pipe_name(crtc->pipe));
11534
11535 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
11536 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11537 pipe_config->pipe_bpp, pipe_config->dither);
11538 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11539 pipe_config->has_pch_encoder,
11540 pipe_config->fdi_lanes,
11541 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11542 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11543 pipe_config->fdi_m_n.tu);
11544 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11545 pipe_config->has_dp_encoder,
11546 pipe_config->lane_count,
11547 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11548 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11549 pipe_config->dp_m_n.tu);
11550
11551 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11552 pipe_config->has_dp_encoder,
11553 pipe_config->lane_count,
11554 pipe_config->dp_m2_n2.gmch_m,
11555 pipe_config->dp_m2_n2.gmch_n,
11556 pipe_config->dp_m2_n2.link_m,
11557 pipe_config->dp_m2_n2.link_n,
11558 pipe_config->dp_m2_n2.tu);
11559
11560 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11561 pipe_config->has_audio,
11562 pipe_config->has_infoframe);
11563
11564 DRM_DEBUG_KMS("requested mode:\n");
11565 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11566 DRM_DEBUG_KMS("adjusted mode:\n");
11567 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11568 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11569 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11570 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11571 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11572 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11573 crtc->num_scalers,
11574 pipe_config->scaler_state.scaler_users,
11575 pipe_config->scaler_state.scaler_id);
11576 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11577 pipe_config->gmch_pfit.control,
11578 pipe_config->gmch_pfit.pgm_ratios,
11579 pipe_config->gmch_pfit.lvds_border_bits);
11580 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11581 pipe_config->pch_pfit.pos,
11582 pipe_config->pch_pfit.size,
11583 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11584 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11585 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11586
11587 if (IS_BROXTON(dev)) {
11588 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11589 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11590 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11591 pipe_config->ddi_pll_sel,
11592 pipe_config->dpll_hw_state.ebb0,
11593 pipe_config->dpll_hw_state.ebb4,
11594 pipe_config->dpll_hw_state.pll0,
11595 pipe_config->dpll_hw_state.pll1,
11596 pipe_config->dpll_hw_state.pll2,
11597 pipe_config->dpll_hw_state.pll3,
11598 pipe_config->dpll_hw_state.pll6,
11599 pipe_config->dpll_hw_state.pll8,
11600 pipe_config->dpll_hw_state.pll9,
11601 pipe_config->dpll_hw_state.pll10,
11602 pipe_config->dpll_hw_state.pcsdw12);
11603 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
11604 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11605 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11606 pipe_config->ddi_pll_sel,
11607 pipe_config->dpll_hw_state.ctrl1,
11608 pipe_config->dpll_hw_state.cfgcr1,
11609 pipe_config->dpll_hw_state.cfgcr2);
11610 } else if (HAS_DDI(dev)) {
11611 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
11612 pipe_config->ddi_pll_sel,
11613 pipe_config->dpll_hw_state.wrpll,
11614 pipe_config->dpll_hw_state.spll);
11615 } else {
11616 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11617 "fp0: 0x%x, fp1: 0x%x\n",
11618 pipe_config->dpll_hw_state.dpll,
11619 pipe_config->dpll_hw_state.dpll_md,
11620 pipe_config->dpll_hw_state.fp0,
11621 pipe_config->dpll_hw_state.fp1);
11622 }
11623
11624 DRM_DEBUG_KMS("planes on this crtc\n");
11625 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11626 intel_plane = to_intel_plane(plane);
11627 if (intel_plane->pipe != crtc->pipe)
11628 continue;
11629
11630 state = to_intel_plane_state(plane->state);
11631 fb = state->base.fb;
11632 if (!fb) {
11633 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11634 "disabled, scaler_id = %d\n",
11635 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11636 plane->base.id, intel_plane->pipe,
11637 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11638 drm_plane_index(plane), state->scaler_id);
11639 continue;
11640 }
11641
11642 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11643 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11644 plane->base.id, intel_plane->pipe,
11645 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11646 drm_plane_index(plane));
11647 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11648 fb->base.id, fb->width, fb->height, fb->pixel_format);
11649 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11650 state->scaler_id,
11651 state->src.x1 >> 16, state->src.y1 >> 16,
11652 drm_rect_width(&state->src) >> 16,
11653 drm_rect_height(&state->src) >> 16,
11654 state->dst.x1, state->dst.y1,
11655 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11656 }
11657 }
11658
11659 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11660 {
11661 struct drm_device *dev = state->dev;
11662 struct drm_connector *connector;
11663 unsigned int used_ports = 0;
11664
11665 /*
11666 * Walk the connector list instead of the encoder
11667 * list to detect the problem on ddi platforms
11668 * where there's just one encoder per digital port.
11669 */
11670 drm_for_each_connector(connector, dev) {
11671 struct drm_connector_state *connector_state;
11672 struct intel_encoder *encoder;
11673
11674 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11675 if (!connector_state)
11676 connector_state = connector->state;
11677
11678 if (!connector_state->best_encoder)
11679 continue;
11680
11681 encoder = to_intel_encoder(connector_state->best_encoder);
11682
11683 WARN_ON(!connector_state->crtc);
11684
11685 switch (encoder->type) {
11686 unsigned int port_mask;
11687 case INTEL_OUTPUT_UNKNOWN:
11688 if (WARN_ON(!HAS_DDI(dev)))
11689 break;
11690 case INTEL_OUTPUT_DISPLAYPORT:
11691 case INTEL_OUTPUT_HDMI:
11692 case INTEL_OUTPUT_EDP:
11693 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11694
11695 /* the same port mustn't appear more than once */
11696 if (used_ports & port_mask)
11697 return false;
11698
11699 used_ports |= port_mask;
11700 default:
11701 break;
11702 }
11703 }
11704
11705 return true;
11706 }
11707
11708 static void
11709 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11710 {
11711 struct drm_crtc_state tmp_state;
11712 struct intel_crtc_scaler_state scaler_state;
11713 struct intel_dpll_hw_state dpll_hw_state;
11714 struct intel_shared_dpll *shared_dpll;
11715 uint32_t ddi_pll_sel;
11716 bool force_thru;
11717
11718 /* FIXME: before the switch to atomic started, a new pipe_config was
11719 * kzalloc'd. Code that depends on any field being zero should be
11720 * fixed, so that the crtc_state can be safely duplicated. For now,
11721 * only fields that are know to not cause problems are preserved. */
11722
11723 tmp_state = crtc_state->base;
11724 scaler_state = crtc_state->scaler_state;
11725 shared_dpll = crtc_state->shared_dpll;
11726 dpll_hw_state = crtc_state->dpll_hw_state;
11727 ddi_pll_sel = crtc_state->ddi_pll_sel;
11728 force_thru = crtc_state->pch_pfit.force_thru;
11729
11730 memset(crtc_state, 0, sizeof *crtc_state);
11731
11732 crtc_state->base = tmp_state;
11733 crtc_state->scaler_state = scaler_state;
11734 crtc_state->shared_dpll = shared_dpll;
11735 crtc_state->dpll_hw_state = dpll_hw_state;
11736 crtc_state->ddi_pll_sel = ddi_pll_sel;
11737 crtc_state->pch_pfit.force_thru = force_thru;
11738 }
11739
11740 static int
11741 intel_modeset_pipe_config(struct drm_crtc *crtc,
11742 struct intel_crtc_state *pipe_config)
11743 {
11744 struct drm_atomic_state *state = pipe_config->base.state;
11745 struct intel_encoder *encoder;
11746 struct drm_connector *connector;
11747 struct drm_connector_state *connector_state;
11748 int base_bpp, ret = -EINVAL;
11749 int i;
11750 bool retry = true;
11751
11752 clear_intel_crtc_state(pipe_config);
11753
11754 pipe_config->cpu_transcoder =
11755 (enum transcoder) to_intel_crtc(crtc)->pipe;
11756
11757 /*
11758 * Sanitize sync polarity flags based on requested ones. If neither
11759 * positive or negative polarity is requested, treat this as meaning
11760 * negative polarity.
11761 */
11762 if (!(pipe_config->base.adjusted_mode.flags &
11763 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11764 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11765
11766 if (!(pipe_config->base.adjusted_mode.flags &
11767 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11768 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11769
11770 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11771 pipe_config);
11772 if (base_bpp < 0)
11773 goto fail;
11774
11775 /*
11776 * Determine the real pipe dimensions. Note that stereo modes can
11777 * increase the actual pipe size due to the frame doubling and
11778 * insertion of additional space for blanks between the frame. This
11779 * is stored in the crtc timings. We use the requested mode to do this
11780 * computation to clearly distinguish it from the adjusted mode, which
11781 * can be changed by the connectors in the below retry loop.
11782 */
11783 drm_crtc_get_hv_timing(&pipe_config->base.mode,
11784 &pipe_config->pipe_src_w,
11785 &pipe_config->pipe_src_h);
11786
11787 encoder_retry:
11788 /* Ensure the port clock defaults are reset when retrying. */
11789 pipe_config->port_clock = 0;
11790 pipe_config->pixel_multiplier = 1;
11791
11792 /* Fill in default crtc timings, allow encoders to overwrite them. */
11793 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11794 CRTC_STEREO_DOUBLE);
11795
11796 /* Pass our mode to the connectors and the CRTC to give them a chance to
11797 * adjust it according to limitations or connector properties, and also
11798 * a chance to reject the mode entirely.
11799 */
11800 for_each_connector_in_state(state, connector, connector_state, i) {
11801 if (connector_state->crtc != crtc)
11802 continue;
11803
11804 encoder = to_intel_encoder(connector_state->best_encoder);
11805
11806 if (!(encoder->compute_config(encoder, pipe_config))) {
11807 DRM_DEBUG_KMS("Encoder config failure\n");
11808 goto fail;
11809 }
11810 }
11811
11812 /* Set default port clock if not overwritten by the encoder. Needs to be
11813 * done afterwards in case the encoder adjusts the mode. */
11814 if (!pipe_config->port_clock)
11815 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11816 * pipe_config->pixel_multiplier;
11817
11818 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11819 if (ret < 0) {
11820 DRM_DEBUG_KMS("CRTC fixup failed\n");
11821 goto fail;
11822 }
11823
11824 if (ret == RETRY) {
11825 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11826 ret = -EINVAL;
11827 goto fail;
11828 }
11829
11830 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11831 retry = false;
11832 goto encoder_retry;
11833 }
11834
11835 /* Dithering seems to not pass-through bits correctly when it should, so
11836 * only enable it on 6bpc panels. */
11837 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
11838 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11839 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11840
11841 fail:
11842 return ret;
11843 }
11844
11845 static void
11846 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11847 {
11848 struct drm_crtc *crtc;
11849 struct drm_crtc_state *crtc_state;
11850 int i;
11851
11852 /* Double check state. */
11853 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11854 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
11855
11856 /* Update hwmode for vblank functions */
11857 if (crtc->state->active)
11858 crtc->hwmode = crtc->state->adjusted_mode;
11859 else
11860 crtc->hwmode.crtc_clock = 0;
11861
11862 /*
11863 * Update legacy state to satisfy fbc code. This can
11864 * be removed when fbc uses the atomic state.
11865 */
11866 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11867 struct drm_plane_state *plane_state = crtc->primary->state;
11868
11869 crtc->primary->fb = plane_state->fb;
11870 crtc->x = plane_state->src_x >> 16;
11871 crtc->y = plane_state->src_y >> 16;
11872 }
11873 }
11874 }
11875
11876 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11877 {
11878 int diff;
11879
11880 if (clock1 == clock2)
11881 return true;
11882
11883 if (!clock1 || !clock2)
11884 return false;
11885
11886 diff = abs(clock1 - clock2);
11887
11888 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11889 return true;
11890
11891 return false;
11892 }
11893
11894 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11895 list_for_each_entry((intel_crtc), \
11896 &(dev)->mode_config.crtc_list, \
11897 base.head) \
11898 for_each_if (mask & (1 <<(intel_crtc)->pipe))
11899
11900 static bool
11901 intel_compare_m_n(unsigned int m, unsigned int n,
11902 unsigned int m2, unsigned int n2,
11903 bool exact)
11904 {
11905 if (m == m2 && n == n2)
11906 return true;
11907
11908 if (exact || !m || !n || !m2 || !n2)
11909 return false;
11910
11911 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11912
11913 if (n > n2) {
11914 while (n > n2) {
11915 m2 <<= 1;
11916 n2 <<= 1;
11917 }
11918 } else if (n < n2) {
11919 while (n < n2) {
11920 m <<= 1;
11921 n <<= 1;
11922 }
11923 }
11924
11925 if (n != n2)
11926 return false;
11927
11928 return intel_fuzzy_clock_check(m, m2);
11929 }
11930
11931 static bool
11932 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11933 struct intel_link_m_n *m2_n2,
11934 bool adjust)
11935 {
11936 if (m_n->tu == m2_n2->tu &&
11937 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11938 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11939 intel_compare_m_n(m_n->link_m, m_n->link_n,
11940 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11941 if (adjust)
11942 *m2_n2 = *m_n;
11943
11944 return true;
11945 }
11946
11947 return false;
11948 }
11949
11950 static bool
11951 intel_pipe_config_compare(struct drm_device *dev,
11952 struct intel_crtc_state *current_config,
11953 struct intel_crtc_state *pipe_config,
11954 bool adjust)
11955 {
11956 bool ret = true;
11957
11958 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
11959 do { \
11960 if (!adjust) \
11961 DRM_ERROR(fmt, ##__VA_ARGS__); \
11962 else \
11963 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
11964 } while (0)
11965
11966 #define PIPE_CONF_CHECK_X(name) \
11967 if (current_config->name != pipe_config->name) { \
11968 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
11969 "(expected 0x%08x, found 0x%08x)\n", \
11970 current_config->name, \
11971 pipe_config->name); \
11972 ret = false; \
11973 }
11974
11975 #define PIPE_CONF_CHECK_I(name) \
11976 if (current_config->name != pipe_config->name) { \
11977 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
11978 "(expected %i, found %i)\n", \
11979 current_config->name, \
11980 pipe_config->name); \
11981 ret = false; \
11982 }
11983
11984 #define PIPE_CONF_CHECK_P(name) \
11985 if (current_config->name != pipe_config->name) { \
11986 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
11987 "(expected %p, found %p)\n", \
11988 current_config->name, \
11989 pipe_config->name); \
11990 ret = false; \
11991 }
11992
11993 #define PIPE_CONF_CHECK_M_N(name) \
11994 if (!intel_compare_link_m_n(&current_config->name, \
11995 &pipe_config->name,\
11996 adjust)) { \
11997 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
11998 "(expected tu %i gmch %i/%i link %i/%i, " \
11999 "found tu %i, gmch %i/%i link %i/%i)\n", \
12000 current_config->name.tu, \
12001 current_config->name.gmch_m, \
12002 current_config->name.gmch_n, \
12003 current_config->name.link_m, \
12004 current_config->name.link_n, \
12005 pipe_config->name.tu, \
12006 pipe_config->name.gmch_m, \
12007 pipe_config->name.gmch_n, \
12008 pipe_config->name.link_m, \
12009 pipe_config->name.link_n); \
12010 ret = false; \
12011 }
12012
12013 /* This is required for BDW+ where there is only one set of registers for
12014 * switching between high and low RR.
12015 * This macro can be used whenever a comparison has to be made between one
12016 * hw state and multiple sw state variables.
12017 */
12018 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12019 if (!intel_compare_link_m_n(&current_config->name, \
12020 &pipe_config->name, adjust) && \
12021 !intel_compare_link_m_n(&current_config->alt_name, \
12022 &pipe_config->name, adjust)) { \
12023 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12024 "(expected tu %i gmch %i/%i link %i/%i, " \
12025 "or tu %i gmch %i/%i link %i/%i, " \
12026 "found tu %i, gmch %i/%i link %i/%i)\n", \
12027 current_config->name.tu, \
12028 current_config->name.gmch_m, \
12029 current_config->name.gmch_n, \
12030 current_config->name.link_m, \
12031 current_config->name.link_n, \
12032 current_config->alt_name.tu, \
12033 current_config->alt_name.gmch_m, \
12034 current_config->alt_name.gmch_n, \
12035 current_config->alt_name.link_m, \
12036 current_config->alt_name.link_n, \
12037 pipe_config->name.tu, \
12038 pipe_config->name.gmch_m, \
12039 pipe_config->name.gmch_n, \
12040 pipe_config->name.link_m, \
12041 pipe_config->name.link_n); \
12042 ret = false; \
12043 }
12044
12045 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12046 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12047 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12048 "(expected %i, found %i)\n", \
12049 current_config->name & (mask), \
12050 pipe_config->name & (mask)); \
12051 ret = false; \
12052 }
12053
12054 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12055 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12056 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12057 "(expected %i, found %i)\n", \
12058 current_config->name, \
12059 pipe_config->name); \
12060 ret = false; \
12061 }
12062
12063 #define PIPE_CONF_QUIRK(quirk) \
12064 ((current_config->quirks | pipe_config->quirks) & (quirk))
12065
12066 PIPE_CONF_CHECK_I(cpu_transcoder);
12067
12068 PIPE_CONF_CHECK_I(has_pch_encoder);
12069 PIPE_CONF_CHECK_I(fdi_lanes);
12070 PIPE_CONF_CHECK_M_N(fdi_m_n);
12071
12072 PIPE_CONF_CHECK_I(has_dp_encoder);
12073 PIPE_CONF_CHECK_I(lane_count);
12074
12075 if (INTEL_INFO(dev)->gen < 8) {
12076 PIPE_CONF_CHECK_M_N(dp_m_n);
12077
12078 if (current_config->has_drrs)
12079 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12080 } else
12081 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12082
12083 PIPE_CONF_CHECK_I(has_dsi_encoder);
12084
12085 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12086 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12087 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12088 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12089 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12090 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12091
12092 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12093 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12094 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12095 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12096 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12097 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12098
12099 PIPE_CONF_CHECK_I(pixel_multiplier);
12100 PIPE_CONF_CHECK_I(has_hdmi_sink);
12101 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12102 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12103 PIPE_CONF_CHECK_I(limited_color_range);
12104 PIPE_CONF_CHECK_I(has_infoframe);
12105
12106 PIPE_CONF_CHECK_I(has_audio);
12107
12108 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12109 DRM_MODE_FLAG_INTERLACE);
12110
12111 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12112 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12113 DRM_MODE_FLAG_PHSYNC);
12114 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12115 DRM_MODE_FLAG_NHSYNC);
12116 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12117 DRM_MODE_FLAG_PVSYNC);
12118 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12119 DRM_MODE_FLAG_NVSYNC);
12120 }
12121
12122 PIPE_CONF_CHECK_X(gmch_pfit.control);
12123 /* pfit ratios are autocomputed by the hw on gen4+ */
12124 if (INTEL_INFO(dev)->gen < 4)
12125 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12126 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12127
12128 if (!adjust) {
12129 PIPE_CONF_CHECK_I(pipe_src_w);
12130 PIPE_CONF_CHECK_I(pipe_src_h);
12131
12132 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12133 if (current_config->pch_pfit.enabled) {
12134 PIPE_CONF_CHECK_X(pch_pfit.pos);
12135 PIPE_CONF_CHECK_X(pch_pfit.size);
12136 }
12137
12138 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12139 }
12140
12141 /* BDW+ don't expose a synchronous way to read the state */
12142 if (IS_HASWELL(dev))
12143 PIPE_CONF_CHECK_I(ips_enabled);
12144
12145 PIPE_CONF_CHECK_I(double_wide);
12146
12147 PIPE_CONF_CHECK_X(ddi_pll_sel);
12148
12149 PIPE_CONF_CHECK_P(shared_dpll);
12150 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12151 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12152 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12153 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12154 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12155 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12156 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12157 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12158 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12159
12160 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12161 PIPE_CONF_CHECK_X(dsi_pll.div);
12162
12163 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12164 PIPE_CONF_CHECK_I(pipe_bpp);
12165
12166 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12167 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12168
12169 #undef PIPE_CONF_CHECK_X
12170 #undef PIPE_CONF_CHECK_I
12171 #undef PIPE_CONF_CHECK_P
12172 #undef PIPE_CONF_CHECK_FLAGS
12173 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12174 #undef PIPE_CONF_QUIRK
12175 #undef INTEL_ERR_OR_DBG_KMS
12176
12177 return ret;
12178 }
12179
12180 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12181 const struct intel_crtc_state *pipe_config)
12182 {
12183 if (pipe_config->has_pch_encoder) {
12184 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12185 &pipe_config->fdi_m_n);
12186 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12187
12188 /*
12189 * FDI already provided one idea for the dotclock.
12190 * Yell if the encoder disagrees.
12191 */
12192 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12193 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12194 fdi_dotclock, dotclock);
12195 }
12196 }
12197
12198 static void verify_wm_state(struct drm_crtc *crtc,
12199 struct drm_crtc_state *new_state)
12200 {
12201 struct drm_device *dev = crtc->dev;
12202 struct drm_i915_private *dev_priv = dev->dev_private;
12203 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12204 struct skl_ddb_entry *hw_entry, *sw_entry;
12205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12206 const enum pipe pipe = intel_crtc->pipe;
12207 int plane;
12208
12209 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12210 return;
12211
12212 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12213 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12214
12215 /* planes */
12216 for_each_plane(dev_priv, pipe, plane) {
12217 hw_entry = &hw_ddb.plane[pipe][plane];
12218 sw_entry = &sw_ddb->plane[pipe][plane];
12219
12220 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12221 continue;
12222
12223 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12224 "(expected (%u,%u), found (%u,%u))\n",
12225 pipe_name(pipe), plane + 1,
12226 sw_entry->start, sw_entry->end,
12227 hw_entry->start, hw_entry->end);
12228 }
12229
12230 /* cursor */
12231 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12232 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12233
12234 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12235 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12236 "(expected (%u,%u), found (%u,%u))\n",
12237 pipe_name(pipe),
12238 sw_entry->start, sw_entry->end,
12239 hw_entry->start, hw_entry->end);
12240 }
12241 }
12242
12243 static void
12244 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12245 {
12246 struct drm_connector *connector;
12247
12248 drm_for_each_connector(connector, dev) {
12249 struct drm_encoder *encoder = connector->encoder;
12250 struct drm_connector_state *state = connector->state;
12251
12252 if (state->crtc != crtc)
12253 continue;
12254
12255 intel_connector_verify_state(to_intel_connector(connector),
12256 connector->state);
12257
12258 I915_STATE_WARN(state->best_encoder != encoder,
12259 "connector's atomic encoder doesn't match legacy encoder\n");
12260 }
12261 }
12262
12263 static void
12264 verify_encoder_state(struct drm_device *dev)
12265 {
12266 struct intel_encoder *encoder;
12267 struct intel_connector *connector;
12268
12269 for_each_intel_encoder(dev, encoder) {
12270 bool enabled = false;
12271 enum pipe pipe;
12272
12273 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12274 encoder->base.base.id,
12275 encoder->base.name);
12276
12277 for_each_intel_connector(dev, connector) {
12278 if (connector->base.state->best_encoder != &encoder->base)
12279 continue;
12280 enabled = true;
12281
12282 I915_STATE_WARN(connector->base.state->crtc !=
12283 encoder->base.crtc,
12284 "connector's crtc doesn't match encoder crtc\n");
12285 }
12286
12287 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12288 "encoder's enabled state mismatch "
12289 "(expected %i, found %i)\n",
12290 !!encoder->base.crtc, enabled);
12291
12292 if (!encoder->base.crtc) {
12293 bool active;
12294
12295 active = encoder->get_hw_state(encoder, &pipe);
12296 I915_STATE_WARN(active,
12297 "encoder detached but still enabled on pipe %c.\n",
12298 pipe_name(pipe));
12299 }
12300 }
12301 }
12302
12303 static void
12304 verify_crtc_state(struct drm_crtc *crtc,
12305 struct drm_crtc_state *old_crtc_state,
12306 struct drm_crtc_state *new_crtc_state)
12307 {
12308 struct drm_device *dev = crtc->dev;
12309 struct drm_i915_private *dev_priv = dev->dev_private;
12310 struct intel_encoder *encoder;
12311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12312 struct intel_crtc_state *pipe_config, *sw_config;
12313 struct drm_atomic_state *old_state;
12314 bool active;
12315
12316 old_state = old_crtc_state->state;
12317 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12318 pipe_config = to_intel_crtc_state(old_crtc_state);
12319 memset(pipe_config, 0, sizeof(*pipe_config));
12320 pipe_config->base.crtc = crtc;
12321 pipe_config->base.state = old_state;
12322
12323 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12324
12325 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12326
12327 /* hw state is inconsistent with the pipe quirk */
12328 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12329 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12330 active = new_crtc_state->active;
12331
12332 I915_STATE_WARN(new_crtc_state->active != active,
12333 "crtc active state doesn't match with hw state "
12334 "(expected %i, found %i)\n", new_crtc_state->active, active);
12335
12336 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12337 "transitional active state does not match atomic hw state "
12338 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12339
12340 for_each_encoder_on_crtc(dev, crtc, encoder) {
12341 enum pipe pipe;
12342
12343 active = encoder->get_hw_state(encoder, &pipe);
12344 I915_STATE_WARN(active != new_crtc_state->active,
12345 "[ENCODER:%i] active %i with crtc active %i\n",
12346 encoder->base.base.id, active, new_crtc_state->active);
12347
12348 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12349 "Encoder connected to wrong pipe %c\n",
12350 pipe_name(pipe));
12351
12352 if (active)
12353 encoder->get_config(encoder, pipe_config);
12354 }
12355
12356 if (!new_crtc_state->active)
12357 return;
12358
12359 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12360
12361 sw_config = to_intel_crtc_state(crtc->state);
12362 if (!intel_pipe_config_compare(dev, sw_config,
12363 pipe_config, false)) {
12364 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12365 intel_dump_pipe_config(intel_crtc, pipe_config,
12366 "[hw state]");
12367 intel_dump_pipe_config(intel_crtc, sw_config,
12368 "[sw state]");
12369 }
12370 }
12371
12372 static void
12373 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12374 struct intel_shared_dpll *pll,
12375 struct drm_crtc *crtc,
12376 struct drm_crtc_state *new_state)
12377 {
12378 struct intel_dpll_hw_state dpll_hw_state;
12379 unsigned crtc_mask;
12380 bool active;
12381
12382 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12383
12384 DRM_DEBUG_KMS("%s\n", pll->name);
12385
12386 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12387
12388 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12389 I915_STATE_WARN(!pll->on && pll->active_mask,
12390 "pll in active use but not on in sw tracking\n");
12391 I915_STATE_WARN(pll->on && !pll->active_mask,
12392 "pll is on but not used by any active crtc\n");
12393 I915_STATE_WARN(pll->on != active,
12394 "pll on state mismatch (expected %i, found %i)\n",
12395 pll->on, active);
12396 }
12397
12398 if (!crtc) {
12399 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12400 "more active pll users than references: %x vs %x\n",
12401 pll->active_mask, pll->config.crtc_mask);
12402
12403 return;
12404 }
12405
12406 crtc_mask = 1 << drm_crtc_index(crtc);
12407
12408 if (new_state->active)
12409 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12410 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12411 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12412 else
12413 I915_STATE_WARN(pll->active_mask & crtc_mask,
12414 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12415 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12416
12417 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
12418 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12419 crtc_mask, pll->config.crtc_mask);
12420
12421 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
12422 &dpll_hw_state,
12423 sizeof(dpll_hw_state)),
12424 "pll hw state mismatch\n");
12425 }
12426
12427 static void
12428 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12429 struct drm_crtc_state *old_crtc_state,
12430 struct drm_crtc_state *new_crtc_state)
12431 {
12432 struct drm_i915_private *dev_priv = dev->dev_private;
12433 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12434 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12435
12436 if (new_state->shared_dpll)
12437 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12438
12439 if (old_state->shared_dpll &&
12440 old_state->shared_dpll != new_state->shared_dpll) {
12441 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12442 struct intel_shared_dpll *pll = old_state->shared_dpll;
12443
12444 I915_STATE_WARN(pll->active_mask & crtc_mask,
12445 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12446 pipe_name(drm_crtc_index(crtc)));
12447 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
12448 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12449 pipe_name(drm_crtc_index(crtc)));
12450 }
12451 }
12452
12453 static void
12454 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12455 struct drm_crtc_state *old_state,
12456 struct drm_crtc_state *new_state)
12457 {
12458 verify_wm_state(crtc, new_state);
12459 verify_crtc_state(crtc, old_state, new_state);
12460 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12461 }
12462
12463 static void
12464 verify_disabled_dpll_state(struct drm_device *dev)
12465 {
12466 struct drm_i915_private *dev_priv = dev->dev_private;
12467 int i;
12468
12469 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12470 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12471 }
12472
12473 static void
12474 intel_modeset_verify_disabled(struct drm_device *dev)
12475 {
12476 verify_encoder_state(dev);
12477 verify_connector_state(dev, NULL);
12478 verify_disabled_dpll_state(dev);
12479 }
12480
12481 static void update_scanline_offset(struct intel_crtc *crtc)
12482 {
12483 struct drm_device *dev = crtc->base.dev;
12484
12485 /*
12486 * The scanline counter increments at the leading edge of hsync.
12487 *
12488 * On most platforms it starts counting from vtotal-1 on the
12489 * first active line. That means the scanline counter value is
12490 * always one less than what we would expect. Ie. just after
12491 * start of vblank, which also occurs at start of hsync (on the
12492 * last active line), the scanline counter will read vblank_start-1.
12493 *
12494 * On gen2 the scanline counter starts counting from 1 instead
12495 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12496 * to keep the value positive), instead of adding one.
12497 *
12498 * On HSW+ the behaviour of the scanline counter depends on the output
12499 * type. For DP ports it behaves like most other platforms, but on HDMI
12500 * there's an extra 1 line difference. So we need to add two instead of
12501 * one to the value.
12502 */
12503 if (IS_GEN2(dev)) {
12504 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12505 int vtotal;
12506
12507 vtotal = adjusted_mode->crtc_vtotal;
12508 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12509 vtotal /= 2;
12510
12511 crtc->scanline_offset = vtotal - 1;
12512 } else if (HAS_DDI(dev) &&
12513 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12514 crtc->scanline_offset = 2;
12515 } else
12516 crtc->scanline_offset = 1;
12517 }
12518
12519 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12520 {
12521 struct drm_device *dev = state->dev;
12522 struct drm_i915_private *dev_priv = to_i915(dev);
12523 struct intel_shared_dpll_config *shared_dpll = NULL;
12524 struct drm_crtc *crtc;
12525 struct drm_crtc_state *crtc_state;
12526 int i;
12527
12528 if (!dev_priv->display.crtc_compute_clock)
12529 return;
12530
12531 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12533 struct intel_shared_dpll *old_dpll =
12534 to_intel_crtc_state(crtc->state)->shared_dpll;
12535
12536 if (!needs_modeset(crtc_state))
12537 continue;
12538
12539 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
12540
12541 if (!old_dpll)
12542 continue;
12543
12544 if (!shared_dpll)
12545 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12546
12547 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
12548 }
12549 }
12550
12551 /*
12552 * This implements the workaround described in the "notes" section of the mode
12553 * set sequence documentation. When going from no pipes or single pipe to
12554 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12555 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12556 */
12557 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12558 {
12559 struct drm_crtc_state *crtc_state;
12560 struct intel_crtc *intel_crtc;
12561 struct drm_crtc *crtc;
12562 struct intel_crtc_state *first_crtc_state = NULL;
12563 struct intel_crtc_state *other_crtc_state = NULL;
12564 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12565 int i;
12566
12567 /* look at all crtc's that are going to be enabled in during modeset */
12568 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12569 intel_crtc = to_intel_crtc(crtc);
12570
12571 if (!crtc_state->active || !needs_modeset(crtc_state))
12572 continue;
12573
12574 if (first_crtc_state) {
12575 other_crtc_state = to_intel_crtc_state(crtc_state);
12576 break;
12577 } else {
12578 first_crtc_state = to_intel_crtc_state(crtc_state);
12579 first_pipe = intel_crtc->pipe;
12580 }
12581 }
12582
12583 /* No workaround needed? */
12584 if (!first_crtc_state)
12585 return 0;
12586
12587 /* w/a possibly needed, check how many crtc's are already enabled. */
12588 for_each_intel_crtc(state->dev, intel_crtc) {
12589 struct intel_crtc_state *pipe_config;
12590
12591 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12592 if (IS_ERR(pipe_config))
12593 return PTR_ERR(pipe_config);
12594
12595 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12596
12597 if (!pipe_config->base.active ||
12598 needs_modeset(&pipe_config->base))
12599 continue;
12600
12601 /* 2 or more enabled crtcs means no need for w/a */
12602 if (enabled_pipe != INVALID_PIPE)
12603 return 0;
12604
12605 enabled_pipe = intel_crtc->pipe;
12606 }
12607
12608 if (enabled_pipe != INVALID_PIPE)
12609 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12610 else if (other_crtc_state)
12611 other_crtc_state->hsw_workaround_pipe = first_pipe;
12612
12613 return 0;
12614 }
12615
12616 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12617 {
12618 struct drm_crtc *crtc;
12619 struct drm_crtc_state *crtc_state;
12620 int ret = 0;
12621
12622 /* add all active pipes to the state */
12623 for_each_crtc(state->dev, crtc) {
12624 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12625 if (IS_ERR(crtc_state))
12626 return PTR_ERR(crtc_state);
12627
12628 if (!crtc_state->active || needs_modeset(crtc_state))
12629 continue;
12630
12631 crtc_state->mode_changed = true;
12632
12633 ret = drm_atomic_add_affected_connectors(state, crtc);
12634 if (ret)
12635 break;
12636
12637 ret = drm_atomic_add_affected_planes(state, crtc);
12638 if (ret)
12639 break;
12640 }
12641
12642 return ret;
12643 }
12644
12645 static int intel_modeset_checks(struct drm_atomic_state *state)
12646 {
12647 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12648 struct drm_i915_private *dev_priv = state->dev->dev_private;
12649 struct drm_crtc *crtc;
12650 struct drm_crtc_state *crtc_state;
12651 int ret = 0, i;
12652
12653 if (!check_digital_port_conflicts(state)) {
12654 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12655 return -EINVAL;
12656 }
12657
12658 intel_state->modeset = true;
12659 intel_state->active_crtcs = dev_priv->active_crtcs;
12660
12661 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12662 if (crtc_state->active)
12663 intel_state->active_crtcs |= 1 << i;
12664 else
12665 intel_state->active_crtcs &= ~(1 << i);
12666
12667 if (crtc_state->active != crtc->state->active)
12668 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12669 }
12670
12671 /*
12672 * See if the config requires any additional preparation, e.g.
12673 * to adjust global state with pipes off. We need to do this
12674 * here so we can get the modeset_pipe updated config for the new
12675 * mode set on this crtc. For other crtcs we need to use the
12676 * adjusted_mode bits in the crtc directly.
12677 */
12678 if (dev_priv->display.modeset_calc_cdclk) {
12679 if (!intel_state->cdclk_pll_vco)
12680 intel_state->cdclk_pll_vco = dev_priv->skl_vco_freq;
12681 if (!intel_state->cdclk_pll_vco)
12682 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
12683
12684 ret = dev_priv->display.modeset_calc_cdclk(state);
12685 if (ret < 0)
12686 return ret;
12687
12688 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
12689 intel_state->cdclk_pll_vco != dev_priv->skl_vco_freq)
12690 ret = intel_modeset_all_pipes(state);
12691
12692 if (ret < 0)
12693 return ret;
12694
12695 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
12696 intel_state->cdclk, intel_state->dev_cdclk);
12697 } else
12698 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
12699
12700 intel_modeset_clear_plls(state);
12701
12702 if (IS_HASWELL(dev_priv))
12703 return haswell_mode_set_planes_workaround(state);
12704
12705 return 0;
12706 }
12707
12708 /*
12709 * Handle calculation of various watermark data at the end of the atomic check
12710 * phase. The code here should be run after the per-crtc and per-plane 'check'
12711 * handlers to ensure that all derived state has been updated.
12712 */
12713 static int calc_watermark_data(struct drm_atomic_state *state)
12714 {
12715 struct drm_device *dev = state->dev;
12716 struct drm_i915_private *dev_priv = to_i915(dev);
12717
12718 /* Is there platform-specific watermark information to calculate? */
12719 if (dev_priv->display.compute_global_watermarks)
12720 return dev_priv->display.compute_global_watermarks(state);
12721
12722 return 0;
12723 }
12724
12725 /**
12726 * intel_atomic_check - validate state object
12727 * @dev: drm device
12728 * @state: state to validate
12729 */
12730 static int intel_atomic_check(struct drm_device *dev,
12731 struct drm_atomic_state *state)
12732 {
12733 struct drm_i915_private *dev_priv = to_i915(dev);
12734 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12735 struct drm_crtc *crtc;
12736 struct drm_crtc_state *crtc_state;
12737 int ret, i;
12738 bool any_ms = false;
12739
12740 ret = drm_atomic_helper_check_modeset(dev, state);
12741 if (ret)
12742 return ret;
12743
12744 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12745 struct intel_crtc_state *pipe_config =
12746 to_intel_crtc_state(crtc_state);
12747
12748 /* Catch I915_MODE_FLAG_INHERITED */
12749 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
12750 crtc_state->mode_changed = true;
12751
12752 if (!needs_modeset(crtc_state))
12753 continue;
12754
12755 if (!crtc_state->enable) {
12756 any_ms = true;
12757 continue;
12758 }
12759
12760 /* FIXME: For only active_changed we shouldn't need to do any
12761 * state recomputation at all. */
12762
12763 ret = drm_atomic_add_affected_connectors(state, crtc);
12764 if (ret)
12765 return ret;
12766
12767 ret = intel_modeset_pipe_config(crtc, pipe_config);
12768 if (ret) {
12769 intel_dump_pipe_config(to_intel_crtc(crtc),
12770 pipe_config, "[failed]");
12771 return ret;
12772 }
12773
12774 if (i915.fastboot &&
12775 intel_pipe_config_compare(dev,
12776 to_intel_crtc_state(crtc->state),
12777 pipe_config, true)) {
12778 crtc_state->mode_changed = false;
12779 to_intel_crtc_state(crtc_state)->update_pipe = true;
12780 }
12781
12782 if (needs_modeset(crtc_state))
12783 any_ms = true;
12784
12785 ret = drm_atomic_add_affected_planes(state, crtc);
12786 if (ret)
12787 return ret;
12788
12789 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12790 needs_modeset(crtc_state) ?
12791 "[modeset]" : "[fastset]");
12792 }
12793
12794 if (any_ms) {
12795 ret = intel_modeset_checks(state);
12796
12797 if (ret)
12798 return ret;
12799 } else
12800 intel_state->cdclk = dev_priv->cdclk_freq;
12801
12802 ret = drm_atomic_helper_check_planes(dev, state);
12803 if (ret)
12804 return ret;
12805
12806 intel_fbc_choose_crtc(dev_priv, state);
12807 return calc_watermark_data(state);
12808 }
12809
12810 static bool needs_work(struct drm_crtc_state *crtc_state)
12811 {
12812 /* hw state checker needs to run */
12813 if (needs_modeset(crtc_state))
12814 return true;
12815
12816 /* unpin old fb's, possibly vblank update */
12817 if (crtc_state->planes_changed)
12818 return true;
12819
12820 /* pipe parameters need to be updated, and hw state checker */
12821 if (to_intel_crtc_state(crtc_state)->update_pipe)
12822 return true;
12823
12824 /* vblank event requested? */
12825 if (crtc_state->event)
12826 return true;
12827
12828 return false;
12829 }
12830
12831 static int intel_atomic_prepare_commit(struct drm_device *dev,
12832 struct drm_atomic_state *state,
12833 bool nonblock)
12834 {
12835 struct drm_i915_private *dev_priv = dev->dev_private;
12836 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12837 struct drm_plane_state *plane_state;
12838 struct drm_crtc_state *crtc_state;
12839 struct drm_plane *plane;
12840 struct drm_crtc *crtc;
12841 int i, ret;
12842
12843 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12845 struct intel_flip_work *work;
12846
12847 if (!state->legacy_cursor_update) {
12848 ret = intel_crtc_wait_for_pending_flips(crtc);
12849 if (ret)
12850 return ret;
12851
12852 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12853 flush_workqueue(dev_priv->wq);
12854 }
12855
12856 /* test if we need to update something */
12857 if (!needs_work(crtc_state))
12858 continue;
12859
12860 intel_state->work[i] = work =
12861 kzalloc(sizeof(**intel_state->work), GFP_KERNEL);
12862
12863 if (!work)
12864 return -ENOMEM;
12865
12866 if (needs_modeset(crtc_state) ||
12867 to_intel_crtc_state(crtc_state)->update_pipe) {
12868 work->num_old_connectors = hweight32(crtc->state->connector_mask);
12869
12870 work->old_connector_state = kcalloc(work->num_old_connectors,
12871 sizeof(*work->old_connector_state),
12872 GFP_KERNEL);
12873
12874 work->num_new_connectors = hweight32(crtc_state->connector_mask);
12875 work->new_connector_state = kcalloc(work->num_new_connectors,
12876 sizeof(*work->new_connector_state),
12877 GFP_KERNEL);
12878
12879 if (!work->old_connector_state || !work->new_connector_state)
12880 return -ENOMEM;
12881 }
12882 }
12883
12884 if (intel_state->modeset && nonblock) {
12885 DRM_DEBUG_ATOMIC("Nonblock modesets are not yet supported!\n");
12886 return -EINVAL;
12887 }
12888
12889 ret = mutex_lock_interruptible(&dev->struct_mutex);
12890 if (ret)
12891 return ret;
12892
12893 ret = drm_atomic_helper_prepare_planes(dev, state);
12894 mutex_unlock(&dev->struct_mutex);
12895
12896 if (!ret && !nonblock) {
12897 for_each_plane_in_state(state, plane, plane_state, i) {
12898 struct intel_plane_state *intel_plane_state =
12899 to_intel_plane_state(plane_state);
12900
12901 if (plane_state->fence) {
12902 long lret = fence_wait(plane_state->fence, true);
12903
12904 if (lret < 0) {
12905 ret = lret;
12906 break;
12907 }
12908 }
12909
12910 if (!intel_plane_state->wait_req)
12911 continue;
12912
12913 ret = __i915_wait_request(intel_plane_state->wait_req,
12914 true, NULL, NULL);
12915 if (ret) {
12916 /* Any hang should be swallowed by the wait */
12917 WARN_ON(ret == -EIO);
12918 mutex_lock(&dev->struct_mutex);
12919 drm_atomic_helper_cleanup_planes(dev, state);
12920 mutex_unlock(&dev->struct_mutex);
12921 break;
12922 }
12923 }
12924 }
12925
12926 return ret;
12927 }
12928
12929 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12930 {
12931 struct drm_device *dev = crtc->base.dev;
12932
12933 if (!dev->max_vblank_count)
12934 return drm_accurate_vblank_count(&crtc->base);
12935
12936 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12937 }
12938
12939 static void intel_prepare_work(struct drm_crtc *crtc,
12940 struct intel_flip_work *work,
12941 struct drm_atomic_state *state,
12942 struct drm_crtc_state *old_crtc_state)
12943 {
12944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12945 struct drm_plane_state *old_plane_state;
12946 struct drm_plane *plane;
12947 int i, j = 0;
12948
12949 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12950 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12951 atomic_inc(&intel_crtc->unpin_work_count);
12952
12953 for_each_plane_in_state(state, plane, old_plane_state, i) {
12954 struct intel_plane_state *old_state = to_intel_plane_state(old_plane_state);
12955 struct intel_plane_state *new_state = to_intel_plane_state(plane->state);
12956
12957 if (old_state->base.crtc != crtc &&
12958 new_state->base.crtc != crtc)
12959 continue;
12960
12961 if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
12962 plane->fb = new_state->base.fb;
12963 crtc->x = new_state->base.src_x >> 16;
12964 crtc->y = new_state->base.src_y >> 16;
12965 }
12966
12967 old_state->wait_req = new_state->wait_req;
12968 new_state->wait_req = NULL;
12969
12970 old_state->base.fence = new_state->base.fence;
12971 new_state->base.fence = NULL;
12972
12973 /* remove plane state from the atomic state and move it to work */
12974 old_plane_state->state = NULL;
12975 state->planes[i] = NULL;
12976 state->plane_states[i] = NULL;
12977
12978 work->old_plane_state[j] = old_state;
12979 work->new_plane_state[j++] = new_state;
12980 }
12981
12982 old_crtc_state->state = NULL;
12983 state->crtcs[drm_crtc_index(crtc)] = NULL;
12984 state->crtc_states[drm_crtc_index(crtc)] = NULL;
12985
12986 work->old_crtc_state = to_intel_crtc_state(old_crtc_state);
12987 work->new_crtc_state = to_intel_crtc_state(crtc->state);
12988 work->num_planes = j;
12989
12990 work->event = crtc->state->event;
12991 crtc->state->event = NULL;
12992
12993 if (needs_modeset(crtc->state) || work->new_crtc_state->update_pipe) {
12994 struct drm_connector *conn;
12995 struct drm_connector_state *old_conn_state;
12996 int k = 0;
12997
12998 j = 0;
12999
13000 /*
13001 * intel_unpin_work_fn cannot depend on the connector list
13002 * because it may be freed from underneath it, so add
13003 * them all to the work struct while we're holding locks.
13004 */
13005 for_each_connector_in_state(state, conn, old_conn_state, i) {
13006 if (old_conn_state->crtc == crtc) {
13007 work->old_connector_state[j++] = old_conn_state;
13008
13009 state->connectors[i] = NULL;
13010 state->connector_states[i] = NULL;
13011 }
13012 }
13013
13014 /* If another crtc has stolen the connector from state,
13015 * then for_each_connector_in_state is no longer reliable,
13016 * so use drm_for_each_connector here.
13017 */
13018 drm_for_each_connector(conn, state->dev)
13019 if (conn->state->crtc == crtc)
13020 work->new_connector_state[k++] = conn->state;
13021
13022 WARN(j != work->num_old_connectors, "j = %i, expected %i\n", j, work->num_old_connectors);
13023 WARN(k != work->num_new_connectors, "k = %i, expected %i\n", k, work->num_new_connectors);
13024 } else if (!work->new_crtc_state->update_wm_post)
13025 work->can_async_unpin = true;
13026
13027 work->fb_bits = work->new_crtc_state->fb_bits;
13028 }
13029
13030 static void intel_schedule_unpin(struct drm_crtc *crtc,
13031 struct intel_atomic_state *state,
13032 struct intel_flip_work *work)
13033 {
13034 struct drm_device *dev = crtc->dev;
13035 struct drm_i915_private *dev_priv = dev->dev_private;
13036
13037 to_intel_crtc(crtc)->config = work->new_crtc_state;
13038
13039 queue_work(dev_priv->wq, &work->unpin_work);
13040 }
13041
13042 static void intel_schedule_flip(struct drm_crtc *crtc,
13043 struct intel_atomic_state *state,
13044 struct intel_flip_work *work,
13045 bool nonblock)
13046 {
13047 struct intel_crtc_state *crtc_state = work->new_crtc_state;
13048
13049 if (crtc_state->base.planes_changed ||
13050 needs_modeset(&crtc_state->base) ||
13051 crtc_state->update_pipe) {
13052 if (nonblock)
13053 schedule_work(&work->mmio_work);
13054 else
13055 intel_mmio_flip_work_func(&work->mmio_work);
13056 } else {
13057 int ret;
13058
13059 ret = drm_crtc_vblank_get(crtc);
13060 I915_STATE_WARN(ret < 0, "enabling vblank failed with %i\n", ret);
13061
13062 work->flip_queued_vblank = intel_crtc_get_vblank_counter(to_intel_crtc(crtc));
13063 smp_mb__before_atomic();
13064 atomic_set(&work->pending, 1);
13065 }
13066 }
13067
13068 static void intel_schedule_update(struct drm_crtc *crtc,
13069 struct intel_atomic_state *state,
13070 struct intel_flip_work *work,
13071 bool nonblock)
13072 {
13073 struct drm_device *dev = crtc->dev;
13074 struct intel_crtc_state *pipe_config = work->new_crtc_state;
13075
13076 if (!pipe_config->base.active && work->can_async_unpin) {
13077 INIT_LIST_HEAD(&work->head);
13078 intel_schedule_unpin(crtc, state, work);
13079 return;
13080 }
13081
13082 spin_lock_irq(&dev->event_lock);
13083 list_add_tail(&work->head, &to_intel_crtc(crtc)->flip_work);
13084 spin_unlock_irq(&dev->event_lock);
13085
13086 if (!pipe_config->base.active)
13087 intel_schedule_unpin(crtc, state, work);
13088 else
13089 intel_schedule_flip(crtc, state, work, nonblock);
13090 }
13091
13092 /**
13093 * intel_atomic_commit - commit validated state object
13094 * @dev: DRM device
13095 * @state: the top-level driver state object
13096 * @nonblock: nonblocking commit
13097 *
13098 * This function commits a top-level state object that has been validated
13099 * with drm_atomic_helper_check().
13100 *
13101 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13102 * we can only handle plane-related operations and do not yet support
13103 * nonblocking commit.
13104 *
13105 * RETURNS
13106 * Zero for success or -errno.
13107 */
13108 static int intel_atomic_commit(struct drm_device *dev,
13109 struct drm_atomic_state *state,
13110 bool nonblock)
13111 {
13112 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13113 struct drm_i915_private *dev_priv = dev->dev_private;
13114 struct drm_crtc_state *old_crtc_state;
13115 struct drm_crtc *crtc;
13116 int ret = 0, i;
13117
13118 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13119 if (ret) {
13120 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13121 return ret;
13122 }
13123
13124 drm_atomic_helper_swap_state(dev, state);
13125 dev_priv->wm.distrust_bios_wm = false;
13126 dev_priv->wm.skl_results = intel_state->wm_results;
13127 intel_shared_dpll_commit(state);
13128
13129 if (intel_state->modeset) {
13130 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13131 sizeof(intel_state->min_pixclk));
13132 dev_priv->active_crtcs = intel_state->active_crtcs;
13133 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13134 }
13135
13136 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13138
13139 if (!needs_modeset(crtc->state))
13140 continue;
13141
13142 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13143
13144 intel_state->work[i]->put_power_domains =
13145 modeset_get_crtc_power_domains(crtc,
13146 to_intel_crtc_state(crtc->state));
13147
13148 if (old_crtc_state->active) {
13149 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13150 dev_priv->display.crtc_disable(crtc);
13151 intel_crtc->active = false;
13152 intel_fbc_disable(intel_crtc);
13153 intel_disable_shared_dpll(intel_crtc);
13154
13155 /*
13156 * Underruns don't always raise
13157 * interrupts, so check manually.
13158 */
13159 intel_check_cpu_fifo_underruns(dev_priv);
13160 intel_check_pch_fifo_underruns(dev_priv);
13161
13162 if (!crtc->state->active)
13163 intel_update_watermarks(crtc);
13164 }
13165 }
13166
13167 /* Only after disabling all output pipelines that will be changed can we
13168 * update the the output configuration. */
13169 intel_modeset_update_crtc_state(state);
13170
13171 if (intel_state->modeset) {
13172 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13173
13174 if (dev_priv->display.modeset_commit_cdclk &&
13175 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13176 intel_state->cdclk_pll_vco != dev_priv->skl_vco_freq))
13177 dev_priv->display.modeset_commit_cdclk(state);
13178
13179 intel_modeset_verify_disabled(dev);
13180 }
13181
13182 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13183 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13184 struct intel_flip_work *work = intel_state->work[i];
13185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13186 bool modeset = needs_modeset(crtc->state);
13187
13188 if (modeset && crtc->state->active) {
13189 update_scanline_offset(to_intel_crtc(crtc));
13190 dev_priv->display.crtc_enable(crtc);
13191 }
13192
13193 if (!modeset)
13194 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13195
13196 if (!work) {
13197 if (!list_empty_careful(&intel_crtc->flip_work)) {
13198 spin_lock_irq(&dev->event_lock);
13199 if (!list_empty(&intel_crtc->flip_work))
13200 work = list_last_entry(&intel_crtc->flip_work,
13201 struct intel_flip_work, head);
13202
13203 if (work && work->new_crtc_state == to_intel_crtc_state(old_crtc_state)) {
13204 work->free_new_crtc_state = true;
13205 state->crtc_states[i] = NULL;
13206 state->crtcs[i] = NULL;
13207 }
13208 spin_unlock_irq(&dev->event_lock);
13209 }
13210 continue;
13211 }
13212
13213 intel_state->work[i] = NULL;
13214 intel_prepare_work(crtc, work, state, old_crtc_state);
13215 intel_schedule_update(crtc, intel_state, work, nonblock);
13216 }
13217
13218 /* FIXME: add subpixel order */
13219
13220 drm_atomic_state_free(state);
13221
13222 /* As one of the primary mmio accessors, KMS has a high likelihood
13223 * of triggering bugs in unclaimed access. After we finish
13224 * modesetting, see if an error has been flagged, and if so
13225 * enable debugging for the next modeset - and hope we catch
13226 * the culprit.
13227 *
13228 * XXX note that we assume display power is on at this point.
13229 * This might hold true now but we need to add pm helper to check
13230 * unclaimed only when the hardware is on, as atomic commits
13231 * can happen also when the device is completely off.
13232 */
13233 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13234
13235 return 0;
13236 }
13237
13238 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13239 {
13240 struct drm_device *dev = crtc->dev;
13241 struct drm_atomic_state *state;
13242 struct drm_crtc_state *crtc_state;
13243 int ret;
13244
13245 state = drm_atomic_state_alloc(dev);
13246 if (!state) {
13247 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13248 crtc->base.id);
13249 return;
13250 }
13251
13252 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13253
13254 retry:
13255 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13256 ret = PTR_ERR_OR_ZERO(crtc_state);
13257 if (!ret) {
13258 if (!crtc_state->active)
13259 goto out;
13260
13261 crtc_state->mode_changed = true;
13262 ret = drm_atomic_commit(state);
13263 }
13264
13265 if (ret == -EDEADLK) {
13266 drm_atomic_state_clear(state);
13267 drm_modeset_backoff(state->acquire_ctx);
13268 goto retry;
13269 }
13270
13271 if (ret)
13272 out:
13273 drm_atomic_state_free(state);
13274 }
13275
13276 #undef for_each_intel_crtc_masked
13277
13278 static const struct drm_crtc_funcs intel_crtc_funcs = {
13279 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13280 .set_config = drm_atomic_helper_set_config,
13281 .set_property = drm_atomic_helper_crtc_set_property,
13282 .destroy = intel_crtc_destroy,
13283 .page_flip = drm_atomic_helper_page_flip,
13284 .atomic_duplicate_state = intel_crtc_duplicate_state,
13285 .atomic_destroy_state = intel_crtc_destroy_state,
13286 };
13287
13288 static struct fence *intel_get_excl_fence(struct drm_i915_gem_object *obj)
13289 {
13290 struct reservation_object *resv;
13291
13292
13293 if (!obj->base.dma_buf)
13294 return NULL;
13295
13296 resv = obj->base.dma_buf->resv;
13297
13298 /* For framebuffer backed by dmabuf, wait for fence */
13299 while (1) {
13300 struct fence *fence_excl, *ret = NULL;
13301
13302 rcu_read_lock();
13303
13304 fence_excl = rcu_dereference(resv->fence_excl);
13305 if (fence_excl)
13306 ret = fence_get_rcu(fence_excl);
13307
13308 rcu_read_unlock();
13309
13310 if (ret == fence_excl)
13311 return ret;
13312 }
13313 }
13314
13315 /**
13316 * intel_prepare_plane_fb - Prepare fb for usage on plane
13317 * @plane: drm plane to prepare for
13318 * @fb: framebuffer to prepare for presentation
13319 *
13320 * Prepares a framebuffer for usage on a display plane. Generally this
13321 * involves pinning the underlying object and updating the frontbuffer tracking
13322 * bits. Some older platforms need special physical address handling for
13323 * cursor planes.
13324 *
13325 * Must be called with struct_mutex held.
13326 *
13327 * Returns 0 on success, negative error code on failure.
13328 */
13329 int
13330 intel_prepare_plane_fb(struct drm_plane *plane,
13331 const struct drm_plane_state *new_state)
13332 {
13333 struct drm_device *dev = plane->dev;
13334 struct drm_framebuffer *fb = new_state->fb;
13335 struct intel_plane *intel_plane = to_intel_plane(plane);
13336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13337 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13338 struct drm_crtc *crtc = new_state->crtc ?: plane->state->crtc;
13339 int ret = 0;
13340
13341 if (!obj && !old_obj)
13342 return 0;
13343
13344 if (WARN_ON(!new_state->state) || WARN_ON(!crtc) ||
13345 WARN_ON(!to_intel_atomic_state(new_state->state)->work[to_intel_crtc(crtc)->pipe])) {
13346 if (WARN_ON(old_obj != obj))
13347 return -EINVAL;
13348
13349 return 0;
13350 }
13351
13352 if (old_obj) {
13353 struct drm_crtc_state *crtc_state =
13354 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13355
13356 /* Big Hammer, we also need to ensure that any pending
13357 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13358 * current scanout is retired before unpinning the old
13359 * framebuffer. Note that we rely on userspace rendering
13360 * into the buffer attached to the pipe they are waiting
13361 * on. If not, userspace generates a GPU hang with IPEHR
13362 * point to the MI_WAIT_FOR_EVENT.
13363 *
13364 * This should only fail upon a hung GPU, in which case we
13365 * can safely continue.
13366 */
13367 if (needs_modeset(crtc_state))
13368 ret = i915_gem_object_wait_rendering(old_obj, true);
13369 if (ret) {
13370 /* GPU hangs should have been swallowed by the wait */
13371 WARN_ON(ret == -EIO);
13372 return ret;
13373 }
13374 }
13375
13376 if (!obj) {
13377 ret = 0;
13378 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13379 INTEL_INFO(dev)->cursor_needs_physical) {
13380 int align = IS_I830(dev) ? 16 * 1024 : 256;
13381 ret = i915_gem_object_attach_phys(obj, align);
13382 if (ret)
13383 DRM_DEBUG_KMS("failed to attach phys object\n");
13384 } else {
13385 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13386 }
13387
13388 if (ret == 0) {
13389 if (obj) {
13390 struct intel_plane_state *plane_state =
13391 to_intel_plane_state(new_state);
13392
13393 i915_gem_request_assign(&plane_state->wait_req,
13394 obj->last_write_req);
13395
13396 plane_state->base.fence = intel_get_excl_fence(obj);
13397 }
13398
13399 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13400 }
13401
13402 return ret;
13403 }
13404
13405 /**
13406 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13407 * @plane: drm plane to clean up for
13408 * @fb: old framebuffer that was on plane
13409 *
13410 * Cleans up a framebuffer that has just been removed from a plane.
13411 *
13412 * Must be called with struct_mutex held.
13413 */
13414 void
13415 intel_cleanup_plane_fb(struct drm_plane *plane,
13416 const struct drm_plane_state *old_state)
13417 {
13418 struct drm_device *dev = plane->dev;
13419 struct intel_plane *intel_plane = to_intel_plane(plane);
13420 struct intel_plane_state *old_intel_state;
13421 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13422 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13423
13424 old_intel_state = to_intel_plane_state(old_state);
13425
13426 if (!obj && !old_obj)
13427 return;
13428
13429 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13430 !INTEL_INFO(dev)->cursor_needs_physical))
13431 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13432
13433 /* prepare_fb aborted? */
13434 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13435 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13436 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13437
13438 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13439
13440 fence_put(old_intel_state->base.fence);
13441 old_intel_state->base.fence = NULL;
13442 }
13443
13444 int
13445 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13446 {
13447 int max_scale;
13448 struct drm_device *dev;
13449 struct drm_i915_private *dev_priv;
13450 int crtc_clock, cdclk;
13451
13452 if (!intel_crtc || !crtc_state->base.enable)
13453 return DRM_PLANE_HELPER_NO_SCALING;
13454
13455 dev = intel_crtc->base.dev;
13456 dev_priv = dev->dev_private;
13457 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13458 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13459
13460 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13461 return DRM_PLANE_HELPER_NO_SCALING;
13462
13463 /*
13464 * skl max scale is lower of:
13465 * close to 3 but not 3, -1 is for that purpose
13466 * or
13467 * cdclk/crtc_clock
13468 */
13469 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13470
13471 return max_scale;
13472 }
13473
13474 static int
13475 intel_check_primary_plane(struct drm_plane *plane,
13476 struct intel_crtc_state *crtc_state,
13477 struct intel_plane_state *state)
13478 {
13479 struct drm_crtc *crtc = state->base.crtc;
13480 struct drm_framebuffer *fb = state->base.fb;
13481 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13482 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13483 bool can_position = false;
13484
13485 if (INTEL_INFO(plane->dev)->gen >= 9) {
13486 /* use scaler when colorkey is not required */
13487 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13488 min_scale = 1;
13489 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13490 }
13491 can_position = true;
13492 }
13493
13494 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13495 &state->dst, &state->clip,
13496 min_scale, max_scale,
13497 can_position, true,
13498 &state->visible);
13499 }
13500
13501 /**
13502 * intel_plane_destroy - destroy a plane
13503 * @plane: plane to destroy
13504 *
13505 * Common destruction function for all types of planes (primary, cursor,
13506 * sprite).
13507 */
13508 void intel_plane_destroy(struct drm_plane *plane)
13509 {
13510 struct intel_plane *intel_plane = to_intel_plane(plane);
13511 drm_plane_cleanup(plane);
13512 kfree(intel_plane);
13513 }
13514
13515 const struct drm_plane_funcs intel_plane_funcs = {
13516 .update_plane = drm_atomic_helper_update_plane,
13517 .disable_plane = drm_atomic_helper_disable_plane,
13518 .destroy = intel_plane_destroy,
13519 .set_property = drm_atomic_helper_plane_set_property,
13520 .atomic_get_property = intel_plane_atomic_get_property,
13521 .atomic_set_property = intel_plane_atomic_set_property,
13522 .atomic_duplicate_state = intel_plane_duplicate_state,
13523 .atomic_destroy_state = intel_plane_destroy_state,
13524
13525 };
13526
13527 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13528 int pipe)
13529 {
13530 struct intel_plane *primary = NULL;
13531 struct intel_plane_state *state = NULL;
13532 const uint32_t *intel_primary_formats;
13533 unsigned int num_formats;
13534 int ret;
13535
13536 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13537 if (!primary)
13538 goto fail;
13539
13540 state = intel_create_plane_state(&primary->base);
13541 if (!state)
13542 goto fail;
13543 primary->base.state = &state->base;
13544
13545 primary->can_scale = false;
13546 primary->max_downscale = 1;
13547 if (INTEL_INFO(dev)->gen >= 9) {
13548 primary->can_scale = true;
13549 state->scaler_id = -1;
13550 }
13551 primary->pipe = pipe;
13552 primary->plane = pipe;
13553 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13554 primary->check_plane = intel_check_primary_plane;
13555 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13556 primary->plane = !pipe;
13557
13558 if (INTEL_INFO(dev)->gen >= 9) {
13559 intel_primary_formats = skl_primary_formats;
13560 num_formats = ARRAY_SIZE(skl_primary_formats);
13561
13562 primary->update_plane = skylake_update_primary_plane;
13563 primary->disable_plane = skylake_disable_primary_plane;
13564 } else if (HAS_PCH_SPLIT(dev)) {
13565 intel_primary_formats = i965_primary_formats;
13566 num_formats = ARRAY_SIZE(i965_primary_formats);
13567
13568 primary->update_plane = ironlake_update_primary_plane;
13569 primary->disable_plane = i9xx_disable_primary_plane;
13570 } else if (INTEL_INFO(dev)->gen >= 4) {
13571 intel_primary_formats = i965_primary_formats;
13572 num_formats = ARRAY_SIZE(i965_primary_formats);
13573
13574 primary->update_plane = i9xx_update_primary_plane;
13575 primary->disable_plane = i9xx_disable_primary_plane;
13576 } else {
13577 intel_primary_formats = i8xx_primary_formats;
13578 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13579
13580 primary->update_plane = i9xx_update_primary_plane;
13581 primary->disable_plane = i9xx_disable_primary_plane;
13582 }
13583
13584 ret = drm_universal_plane_init(dev, &primary->base, 0,
13585 &intel_plane_funcs,
13586 intel_primary_formats, num_formats,
13587 DRM_PLANE_TYPE_PRIMARY, NULL);
13588 if (ret)
13589 goto fail;
13590
13591 if (INTEL_INFO(dev)->gen >= 4)
13592 intel_create_rotation_property(dev, primary);
13593
13594 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13595
13596 return &primary->base;
13597
13598 fail:
13599 kfree(state);
13600 kfree(primary);
13601
13602 return NULL;
13603 }
13604
13605 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13606 {
13607 if (!dev->mode_config.rotation_property) {
13608 unsigned long flags = BIT(DRM_ROTATE_0) |
13609 BIT(DRM_ROTATE_180);
13610
13611 if (INTEL_INFO(dev)->gen >= 9)
13612 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13613
13614 dev->mode_config.rotation_property =
13615 drm_mode_create_rotation_property(dev, flags);
13616 }
13617 if (dev->mode_config.rotation_property)
13618 drm_object_attach_property(&plane->base.base,
13619 dev->mode_config.rotation_property,
13620 plane->base.state->rotation);
13621 }
13622
13623 static int
13624 intel_check_cursor_plane(struct drm_plane *plane,
13625 struct intel_crtc_state *crtc_state,
13626 struct intel_plane_state *state)
13627 {
13628 struct drm_crtc *crtc = crtc_state->base.crtc;
13629 struct drm_framebuffer *fb = state->base.fb;
13630 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13631 enum pipe pipe = to_intel_plane(plane)->pipe;
13632 unsigned stride;
13633 int ret;
13634
13635 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13636 &state->dst, &state->clip,
13637 DRM_PLANE_HELPER_NO_SCALING,
13638 DRM_PLANE_HELPER_NO_SCALING,
13639 true, true, &state->visible);
13640 if (ret)
13641 return ret;
13642
13643 /* if we want to turn off the cursor ignore width and height */
13644 if (!obj)
13645 return 0;
13646
13647 /* Check for which cursor types we support */
13648 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13649 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13650 state->base.crtc_w, state->base.crtc_h);
13651 return -EINVAL;
13652 }
13653
13654 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13655 if (obj->base.size < stride * state->base.crtc_h) {
13656 DRM_DEBUG_KMS("buffer is too small\n");
13657 return -ENOMEM;
13658 }
13659
13660 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13661 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13662 return -EINVAL;
13663 }
13664
13665 /*
13666 * There's something wrong with the cursor on CHV pipe C.
13667 * If it straddles the left edge of the screen then
13668 * moving it away from the edge or disabling it often
13669 * results in a pipe underrun, and often that can lead to
13670 * dead pipe (constant underrun reported, and it scans
13671 * out just a solid color). To recover from that, the
13672 * display power well must be turned off and on again.
13673 * Refuse the put the cursor into that compromised position.
13674 */
13675 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13676 state->visible && state->base.crtc_x < 0) {
13677 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13678 return -EINVAL;
13679 }
13680
13681 return 0;
13682 }
13683
13684 static void
13685 intel_disable_cursor_plane(struct drm_plane *plane,
13686 struct drm_crtc *crtc)
13687 {
13688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13689
13690 intel_crtc->cursor_addr = 0;
13691 intel_crtc_update_cursor(crtc, NULL);
13692 }
13693
13694 static void
13695 intel_update_cursor_plane(struct drm_plane *plane,
13696 const struct intel_crtc_state *crtc_state,
13697 const struct intel_plane_state *state)
13698 {
13699 struct drm_crtc *crtc = crtc_state->base.crtc;
13700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13701 struct drm_device *dev = plane->dev;
13702 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13703 uint32_t addr;
13704
13705 if (!obj)
13706 addr = 0;
13707 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13708 addr = i915_gem_obj_ggtt_offset(obj);
13709 else
13710 addr = obj->phys_handle->busaddr;
13711
13712 intel_crtc->cursor_addr = addr;
13713 intel_crtc_update_cursor(crtc, state);
13714 }
13715
13716 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13717 int pipe)
13718 {
13719 struct intel_plane *cursor = NULL;
13720 struct intel_plane_state *state = NULL;
13721 int ret;
13722
13723 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13724 if (!cursor)
13725 goto fail;
13726
13727 state = intel_create_plane_state(&cursor->base);
13728 if (!state)
13729 goto fail;
13730 cursor->base.state = &state->base;
13731
13732 cursor->can_scale = false;
13733 cursor->max_downscale = 1;
13734 cursor->pipe = pipe;
13735 cursor->plane = pipe;
13736 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13737 cursor->check_plane = intel_check_cursor_plane;
13738 cursor->update_plane = intel_update_cursor_plane;
13739 cursor->disable_plane = intel_disable_cursor_plane;
13740
13741 ret = drm_universal_plane_init(dev, &cursor->base, 0,
13742 &intel_plane_funcs,
13743 intel_cursor_formats,
13744 ARRAY_SIZE(intel_cursor_formats),
13745 DRM_PLANE_TYPE_CURSOR, NULL);
13746 if (ret)
13747 goto fail;
13748
13749 if (INTEL_INFO(dev)->gen >= 4) {
13750 if (!dev->mode_config.rotation_property)
13751 dev->mode_config.rotation_property =
13752 drm_mode_create_rotation_property(dev,
13753 BIT(DRM_ROTATE_0) |
13754 BIT(DRM_ROTATE_180));
13755 if (dev->mode_config.rotation_property)
13756 drm_object_attach_property(&cursor->base.base,
13757 dev->mode_config.rotation_property,
13758 state->base.rotation);
13759 }
13760
13761 if (INTEL_INFO(dev)->gen >=9)
13762 state->scaler_id = -1;
13763
13764 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13765
13766 return &cursor->base;
13767
13768 fail:
13769 kfree(state);
13770 kfree(cursor);
13771
13772 return NULL;
13773 }
13774
13775 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13776 struct intel_crtc_state *crtc_state)
13777 {
13778 int i;
13779 struct intel_scaler *intel_scaler;
13780 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13781
13782 for (i = 0; i < intel_crtc->num_scalers; i++) {
13783 intel_scaler = &scaler_state->scalers[i];
13784 intel_scaler->in_use = 0;
13785 intel_scaler->mode = PS_SCALER_MODE_DYN;
13786 }
13787
13788 scaler_state->scaler_id = -1;
13789 }
13790
13791 static void intel_crtc_init(struct drm_device *dev, int pipe)
13792 {
13793 struct drm_i915_private *dev_priv = dev->dev_private;
13794 struct intel_crtc *intel_crtc;
13795 struct intel_crtc_state *crtc_state = NULL;
13796 struct drm_plane *primary = NULL;
13797 struct drm_plane *cursor = NULL;
13798 int ret;
13799
13800 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13801 if (intel_crtc == NULL)
13802 return;
13803
13804 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13805 if (!crtc_state)
13806 goto fail;
13807 intel_crtc->config = crtc_state;
13808 intel_crtc->base.state = &crtc_state->base;
13809 crtc_state->base.crtc = &intel_crtc->base;
13810
13811 INIT_LIST_HEAD(&intel_crtc->flip_work);
13812
13813 /* initialize shared scalers */
13814 if (INTEL_INFO(dev)->gen >= 9) {
13815 if (pipe == PIPE_C)
13816 intel_crtc->num_scalers = 1;
13817 else
13818 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13819
13820 skl_init_scalers(dev, intel_crtc, crtc_state);
13821 }
13822
13823 primary = intel_primary_plane_create(dev, pipe);
13824 if (!primary)
13825 goto fail;
13826
13827 cursor = intel_cursor_plane_create(dev, pipe);
13828 if (!cursor)
13829 goto fail;
13830
13831 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13832 cursor, &intel_crtc_funcs, NULL);
13833 if (ret)
13834 goto fail;
13835
13836 /*
13837 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13838 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13839 */
13840 intel_crtc->pipe = pipe;
13841 intel_crtc->plane = pipe;
13842 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13843 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13844 intel_crtc->plane = !pipe;
13845 }
13846
13847 intel_crtc->cursor_base = ~0;
13848 intel_crtc->cursor_cntl = ~0;
13849 intel_crtc->cursor_size = ~0;
13850
13851 intel_crtc->wm.cxsr_allowed = true;
13852
13853 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13854 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13855 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13856 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13857
13858 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13859
13860 intel_color_init(&intel_crtc->base);
13861
13862 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13863 return;
13864
13865 fail:
13866 if (primary)
13867 drm_plane_cleanup(primary);
13868 if (cursor)
13869 drm_plane_cleanup(cursor);
13870 kfree(crtc_state);
13871 kfree(intel_crtc);
13872 }
13873
13874 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13875 {
13876 struct drm_encoder *encoder = connector->base.encoder;
13877 struct drm_device *dev = connector->base.dev;
13878
13879 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13880
13881 if (!encoder || WARN_ON(!encoder->crtc))
13882 return INVALID_PIPE;
13883
13884 return to_intel_crtc(encoder->crtc)->pipe;
13885 }
13886
13887 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13888 struct drm_file *file)
13889 {
13890 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13891 struct drm_crtc *drmmode_crtc;
13892 struct intel_crtc *crtc;
13893
13894 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13895
13896 if (!drmmode_crtc) {
13897 DRM_ERROR("no such CRTC id\n");
13898 return -ENOENT;
13899 }
13900
13901 crtc = to_intel_crtc(drmmode_crtc);
13902 pipe_from_crtc_id->pipe = crtc->pipe;
13903
13904 return 0;
13905 }
13906
13907 static int intel_encoder_clones(struct intel_encoder *encoder)
13908 {
13909 struct drm_device *dev = encoder->base.dev;
13910 struct intel_encoder *source_encoder;
13911 int index_mask = 0;
13912 int entry = 0;
13913
13914 for_each_intel_encoder(dev, source_encoder) {
13915 if (encoders_cloneable(encoder, source_encoder))
13916 index_mask |= (1 << entry);
13917
13918 entry++;
13919 }
13920
13921 return index_mask;
13922 }
13923
13924 static bool has_edp_a(struct drm_device *dev)
13925 {
13926 struct drm_i915_private *dev_priv = dev->dev_private;
13927
13928 if (!IS_MOBILE(dev))
13929 return false;
13930
13931 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13932 return false;
13933
13934 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13935 return false;
13936
13937 return true;
13938 }
13939
13940 static bool intel_crt_present(struct drm_device *dev)
13941 {
13942 struct drm_i915_private *dev_priv = dev->dev_private;
13943
13944 if (INTEL_INFO(dev)->gen >= 9)
13945 return false;
13946
13947 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13948 return false;
13949
13950 if (IS_CHERRYVIEW(dev))
13951 return false;
13952
13953 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13954 return false;
13955
13956 /* DDI E can't be used if DDI A requires 4 lanes */
13957 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13958 return false;
13959
13960 if (!dev_priv->vbt.int_crt_support)
13961 return false;
13962
13963 return true;
13964 }
13965
13966 static void intel_setup_outputs(struct drm_device *dev)
13967 {
13968 struct drm_i915_private *dev_priv = dev->dev_private;
13969 struct intel_encoder *encoder;
13970 bool dpd_is_edp = false;
13971
13972 intel_lvds_init(dev);
13973
13974 if (intel_crt_present(dev))
13975 intel_crt_init(dev);
13976
13977 if (IS_BROXTON(dev)) {
13978 /*
13979 * FIXME: Broxton doesn't support port detection via the
13980 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13981 * detect the ports.
13982 */
13983 intel_ddi_init(dev, PORT_A);
13984 intel_ddi_init(dev, PORT_B);
13985 intel_ddi_init(dev, PORT_C);
13986
13987 intel_dsi_init(dev);
13988 } else if (HAS_DDI(dev)) {
13989 int found;
13990
13991 /*
13992 * Haswell uses DDI functions to detect digital outputs.
13993 * On SKL pre-D0 the strap isn't connected, so we assume
13994 * it's there.
13995 */
13996 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13997 /* WaIgnoreDDIAStrap: skl */
13998 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
13999 intel_ddi_init(dev, PORT_A);
14000
14001 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14002 * register */
14003 found = I915_READ(SFUSE_STRAP);
14004
14005 if (found & SFUSE_STRAP_DDIB_DETECTED)
14006 intel_ddi_init(dev, PORT_B);
14007 if (found & SFUSE_STRAP_DDIC_DETECTED)
14008 intel_ddi_init(dev, PORT_C);
14009 if (found & SFUSE_STRAP_DDID_DETECTED)
14010 intel_ddi_init(dev, PORT_D);
14011 /*
14012 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14013 */
14014 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14015 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14016 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14017 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14018 intel_ddi_init(dev, PORT_E);
14019
14020 } else if (HAS_PCH_SPLIT(dev)) {
14021 int found;
14022 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14023
14024 if (has_edp_a(dev))
14025 intel_dp_init(dev, DP_A, PORT_A);
14026
14027 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14028 /* PCH SDVOB multiplex with HDMIB */
14029 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14030 if (!found)
14031 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14032 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14033 intel_dp_init(dev, PCH_DP_B, PORT_B);
14034 }
14035
14036 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14037 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14038
14039 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14040 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14041
14042 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14043 intel_dp_init(dev, PCH_DP_C, PORT_C);
14044
14045 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14046 intel_dp_init(dev, PCH_DP_D, PORT_D);
14047 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14048 /*
14049 * The DP_DETECTED bit is the latched state of the DDC
14050 * SDA pin at boot. However since eDP doesn't require DDC
14051 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14052 * eDP ports may have been muxed to an alternate function.
14053 * Thus we can't rely on the DP_DETECTED bit alone to detect
14054 * eDP ports. Consult the VBT as well as DP_DETECTED to
14055 * detect eDP ports.
14056 */
14057 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14058 !intel_dp_is_edp(dev, PORT_B))
14059 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14060 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14061 intel_dp_is_edp(dev, PORT_B))
14062 intel_dp_init(dev, VLV_DP_B, PORT_B);
14063
14064 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14065 !intel_dp_is_edp(dev, PORT_C))
14066 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14067 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14068 intel_dp_is_edp(dev, PORT_C))
14069 intel_dp_init(dev, VLV_DP_C, PORT_C);
14070
14071 if (IS_CHERRYVIEW(dev)) {
14072 /* eDP not supported on port D, so don't check VBT */
14073 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14074 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14075 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14076 intel_dp_init(dev, CHV_DP_D, PORT_D);
14077 }
14078
14079 intel_dsi_init(dev);
14080 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14081 bool found = false;
14082
14083 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14084 DRM_DEBUG_KMS("probing SDVOB\n");
14085 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14086 if (!found && IS_G4X(dev)) {
14087 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14088 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14089 }
14090
14091 if (!found && IS_G4X(dev))
14092 intel_dp_init(dev, DP_B, PORT_B);
14093 }
14094
14095 /* Before G4X SDVOC doesn't have its own detect register */
14096
14097 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14098 DRM_DEBUG_KMS("probing SDVOC\n");
14099 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14100 }
14101
14102 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14103
14104 if (IS_G4X(dev)) {
14105 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14106 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14107 }
14108 if (IS_G4X(dev))
14109 intel_dp_init(dev, DP_C, PORT_C);
14110 }
14111
14112 if (IS_G4X(dev) &&
14113 (I915_READ(DP_D) & DP_DETECTED))
14114 intel_dp_init(dev, DP_D, PORT_D);
14115 } else if (IS_GEN2(dev))
14116 intel_dvo_init(dev);
14117
14118 if (SUPPORTS_TV(dev))
14119 intel_tv_init(dev);
14120
14121 intel_psr_init(dev);
14122
14123 for_each_intel_encoder(dev, encoder) {
14124 encoder->base.possible_crtcs = encoder->crtc_mask;
14125 encoder->base.possible_clones =
14126 intel_encoder_clones(encoder);
14127 }
14128
14129 intel_init_pch_refclk(dev);
14130
14131 drm_helper_move_panel_connectors_to_head(dev);
14132 }
14133
14134 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14135 {
14136 struct drm_device *dev = fb->dev;
14137 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14138
14139 drm_framebuffer_cleanup(fb);
14140 mutex_lock(&dev->struct_mutex);
14141 WARN_ON(!intel_fb->obj->framebuffer_references--);
14142 drm_gem_object_unreference(&intel_fb->obj->base);
14143 mutex_unlock(&dev->struct_mutex);
14144 kfree(intel_fb);
14145 }
14146
14147 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14148 struct drm_file *file,
14149 unsigned int *handle)
14150 {
14151 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14152 struct drm_i915_gem_object *obj = intel_fb->obj;
14153
14154 if (obj->userptr.mm) {
14155 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14156 return -EINVAL;
14157 }
14158
14159 return drm_gem_handle_create(file, &obj->base, handle);
14160 }
14161
14162 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14163 struct drm_file *file,
14164 unsigned flags, unsigned color,
14165 struct drm_clip_rect *clips,
14166 unsigned num_clips)
14167 {
14168 struct drm_device *dev = fb->dev;
14169 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14170 struct drm_i915_gem_object *obj = intel_fb->obj;
14171
14172 mutex_lock(&dev->struct_mutex);
14173 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14174 mutex_unlock(&dev->struct_mutex);
14175
14176 return 0;
14177 }
14178
14179 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14180 .destroy = intel_user_framebuffer_destroy,
14181 .create_handle = intel_user_framebuffer_create_handle,
14182 .dirty = intel_user_framebuffer_dirty,
14183 };
14184
14185 static
14186 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14187 uint32_t pixel_format)
14188 {
14189 u32 gen = INTEL_INFO(dev)->gen;
14190
14191 if (gen >= 9) {
14192 int cpp = drm_format_plane_cpp(pixel_format, 0);
14193
14194 /* "The stride in bytes must not exceed the of the size of 8K
14195 * pixels and 32K bytes."
14196 */
14197 return min(8192 * cpp, 32768);
14198 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14199 return 32*1024;
14200 } else if (gen >= 4) {
14201 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14202 return 16*1024;
14203 else
14204 return 32*1024;
14205 } else if (gen >= 3) {
14206 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14207 return 8*1024;
14208 else
14209 return 16*1024;
14210 } else {
14211 /* XXX DSPC is limited to 4k tiled */
14212 return 8*1024;
14213 }
14214 }
14215
14216 static int intel_framebuffer_init(struct drm_device *dev,
14217 struct intel_framebuffer *intel_fb,
14218 struct drm_mode_fb_cmd2 *mode_cmd,
14219 struct drm_i915_gem_object *obj)
14220 {
14221 struct drm_i915_private *dev_priv = to_i915(dev);
14222 unsigned int aligned_height;
14223 int ret;
14224 u32 pitch_limit, stride_alignment;
14225
14226 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14227
14228 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14229 /* Enforce that fb modifier and tiling mode match, but only for
14230 * X-tiled. This is needed for FBC. */
14231 if (!!(obj->tiling_mode == I915_TILING_X) !=
14232 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14233 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14234 return -EINVAL;
14235 }
14236 } else {
14237 if (obj->tiling_mode == I915_TILING_X)
14238 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14239 else if (obj->tiling_mode == I915_TILING_Y) {
14240 DRM_DEBUG("No Y tiling for legacy addfb\n");
14241 return -EINVAL;
14242 }
14243 }
14244
14245 /* Passed in modifier sanity checking. */
14246 switch (mode_cmd->modifier[0]) {
14247 case I915_FORMAT_MOD_Y_TILED:
14248 case I915_FORMAT_MOD_Yf_TILED:
14249 if (INTEL_INFO(dev)->gen < 9) {
14250 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14251 mode_cmd->modifier[0]);
14252 return -EINVAL;
14253 }
14254 case DRM_FORMAT_MOD_NONE:
14255 case I915_FORMAT_MOD_X_TILED:
14256 break;
14257 default:
14258 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14259 mode_cmd->modifier[0]);
14260 return -EINVAL;
14261 }
14262
14263 stride_alignment = intel_fb_stride_alignment(dev_priv,
14264 mode_cmd->modifier[0],
14265 mode_cmd->pixel_format);
14266 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14267 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14268 mode_cmd->pitches[0], stride_alignment);
14269 return -EINVAL;
14270 }
14271
14272 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14273 mode_cmd->pixel_format);
14274 if (mode_cmd->pitches[0] > pitch_limit) {
14275 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14276 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14277 "tiled" : "linear",
14278 mode_cmd->pitches[0], pitch_limit);
14279 return -EINVAL;
14280 }
14281
14282 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14283 mode_cmd->pitches[0] != obj->stride) {
14284 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14285 mode_cmd->pitches[0], obj->stride);
14286 return -EINVAL;
14287 }
14288
14289 /* Reject formats not supported by any plane early. */
14290 switch (mode_cmd->pixel_format) {
14291 case DRM_FORMAT_C8:
14292 case DRM_FORMAT_RGB565:
14293 case DRM_FORMAT_XRGB8888:
14294 case DRM_FORMAT_ARGB8888:
14295 break;
14296 case DRM_FORMAT_XRGB1555:
14297 if (INTEL_INFO(dev)->gen > 3) {
14298 DRM_DEBUG("unsupported pixel format: %s\n",
14299 drm_get_format_name(mode_cmd->pixel_format));
14300 return -EINVAL;
14301 }
14302 break;
14303 case DRM_FORMAT_ABGR8888:
14304 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14305 INTEL_INFO(dev)->gen < 9) {
14306 DRM_DEBUG("unsupported pixel format: %s\n",
14307 drm_get_format_name(mode_cmd->pixel_format));
14308 return -EINVAL;
14309 }
14310 break;
14311 case DRM_FORMAT_XBGR8888:
14312 case DRM_FORMAT_XRGB2101010:
14313 case DRM_FORMAT_XBGR2101010:
14314 if (INTEL_INFO(dev)->gen < 4) {
14315 DRM_DEBUG("unsupported pixel format: %s\n",
14316 drm_get_format_name(mode_cmd->pixel_format));
14317 return -EINVAL;
14318 }
14319 break;
14320 case DRM_FORMAT_ABGR2101010:
14321 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14322 DRM_DEBUG("unsupported pixel format: %s\n",
14323 drm_get_format_name(mode_cmd->pixel_format));
14324 return -EINVAL;
14325 }
14326 break;
14327 case DRM_FORMAT_YUYV:
14328 case DRM_FORMAT_UYVY:
14329 case DRM_FORMAT_YVYU:
14330 case DRM_FORMAT_VYUY:
14331 if (INTEL_INFO(dev)->gen < 5) {
14332 DRM_DEBUG("unsupported pixel format: %s\n",
14333 drm_get_format_name(mode_cmd->pixel_format));
14334 return -EINVAL;
14335 }
14336 break;
14337 default:
14338 DRM_DEBUG("unsupported pixel format: %s\n",
14339 drm_get_format_name(mode_cmd->pixel_format));
14340 return -EINVAL;
14341 }
14342
14343 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14344 if (mode_cmd->offsets[0] != 0)
14345 return -EINVAL;
14346
14347 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14348 mode_cmd->pixel_format,
14349 mode_cmd->modifier[0]);
14350 /* FIXME drm helper for size checks (especially planar formats)? */
14351 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14352 return -EINVAL;
14353
14354 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14355 intel_fb->obj = obj;
14356
14357 intel_fill_fb_info(dev_priv, &intel_fb->base);
14358
14359 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14360 if (ret) {
14361 DRM_ERROR("framebuffer init failed %d\n", ret);
14362 return ret;
14363 }
14364
14365 intel_fb->obj->framebuffer_references++;
14366
14367 return 0;
14368 }
14369
14370 static struct drm_framebuffer *
14371 intel_user_framebuffer_create(struct drm_device *dev,
14372 struct drm_file *filp,
14373 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14374 {
14375 struct drm_framebuffer *fb;
14376 struct drm_i915_gem_object *obj;
14377 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14378
14379 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14380 mode_cmd.handles[0]));
14381 if (&obj->base == NULL)
14382 return ERR_PTR(-ENOENT);
14383
14384 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14385 if (IS_ERR(fb))
14386 drm_gem_object_unreference_unlocked(&obj->base);
14387
14388 return fb;
14389 }
14390
14391 #ifndef CONFIG_DRM_FBDEV_EMULATION
14392 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14393 {
14394 }
14395 #endif
14396
14397 static const struct drm_mode_config_funcs intel_mode_funcs = {
14398 .fb_create = intel_user_framebuffer_create,
14399 .output_poll_changed = intel_fbdev_output_poll_changed,
14400 .atomic_check = intel_atomic_check,
14401 .atomic_commit = intel_atomic_commit,
14402 .atomic_state_alloc = intel_atomic_state_alloc,
14403 .atomic_state_clear = intel_atomic_state_clear,
14404 };
14405
14406 /**
14407 * intel_init_display_hooks - initialize the display modesetting hooks
14408 * @dev_priv: device private
14409 */
14410 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14411 {
14412 if (INTEL_INFO(dev_priv)->gen >= 9) {
14413 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14414 dev_priv->display.get_initial_plane_config =
14415 skylake_get_initial_plane_config;
14416 dev_priv->display.crtc_compute_clock =
14417 haswell_crtc_compute_clock;
14418 dev_priv->display.crtc_enable = haswell_crtc_enable;
14419 dev_priv->display.crtc_disable = haswell_crtc_disable;
14420 } else if (HAS_DDI(dev_priv)) {
14421 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14422 dev_priv->display.get_initial_plane_config =
14423 ironlake_get_initial_plane_config;
14424 dev_priv->display.crtc_compute_clock =
14425 haswell_crtc_compute_clock;
14426 dev_priv->display.crtc_enable = haswell_crtc_enable;
14427 dev_priv->display.crtc_disable = haswell_crtc_disable;
14428 } else if (HAS_PCH_SPLIT(dev_priv)) {
14429 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14430 dev_priv->display.get_initial_plane_config =
14431 ironlake_get_initial_plane_config;
14432 dev_priv->display.crtc_compute_clock =
14433 ironlake_crtc_compute_clock;
14434 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14435 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14436 } else if (IS_CHERRYVIEW(dev_priv)) {
14437 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14438 dev_priv->display.get_initial_plane_config =
14439 i9xx_get_initial_plane_config;
14440 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14441 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14442 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14443 } else if (IS_VALLEYVIEW(dev_priv)) {
14444 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14445 dev_priv->display.get_initial_plane_config =
14446 i9xx_get_initial_plane_config;
14447 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14448 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14449 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14450 } else if (IS_G4X(dev_priv)) {
14451 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14452 dev_priv->display.get_initial_plane_config =
14453 i9xx_get_initial_plane_config;
14454 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14455 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14456 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14457 } else if (IS_PINEVIEW(dev_priv)) {
14458 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14459 dev_priv->display.get_initial_plane_config =
14460 i9xx_get_initial_plane_config;
14461 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14462 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14463 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14464 } else if (!IS_GEN2(dev_priv)) {
14465 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14466 dev_priv->display.get_initial_plane_config =
14467 i9xx_get_initial_plane_config;
14468 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14469 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14470 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14471 } else {
14472 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14473 dev_priv->display.get_initial_plane_config =
14474 i9xx_get_initial_plane_config;
14475 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14476 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14477 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14478 }
14479
14480 /* Returns the core display clock speed */
14481 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14482 dev_priv->display.get_display_clock_speed =
14483 skylake_get_display_clock_speed;
14484 else if (IS_BROXTON(dev_priv))
14485 dev_priv->display.get_display_clock_speed =
14486 broxton_get_display_clock_speed;
14487 else if (IS_BROADWELL(dev_priv))
14488 dev_priv->display.get_display_clock_speed =
14489 broadwell_get_display_clock_speed;
14490 else if (IS_HASWELL(dev_priv))
14491 dev_priv->display.get_display_clock_speed =
14492 haswell_get_display_clock_speed;
14493 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14494 dev_priv->display.get_display_clock_speed =
14495 valleyview_get_display_clock_speed;
14496 else if (IS_GEN5(dev_priv))
14497 dev_priv->display.get_display_clock_speed =
14498 ilk_get_display_clock_speed;
14499 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14500 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14501 dev_priv->display.get_display_clock_speed =
14502 i945_get_display_clock_speed;
14503 else if (IS_GM45(dev_priv))
14504 dev_priv->display.get_display_clock_speed =
14505 gm45_get_display_clock_speed;
14506 else if (IS_CRESTLINE(dev_priv))
14507 dev_priv->display.get_display_clock_speed =
14508 i965gm_get_display_clock_speed;
14509 else if (IS_PINEVIEW(dev_priv))
14510 dev_priv->display.get_display_clock_speed =
14511 pnv_get_display_clock_speed;
14512 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
14513 dev_priv->display.get_display_clock_speed =
14514 g33_get_display_clock_speed;
14515 else if (IS_I915G(dev_priv))
14516 dev_priv->display.get_display_clock_speed =
14517 i915_get_display_clock_speed;
14518 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
14519 dev_priv->display.get_display_clock_speed =
14520 i9xx_misc_get_display_clock_speed;
14521 else if (IS_I915GM(dev_priv))
14522 dev_priv->display.get_display_clock_speed =
14523 i915gm_get_display_clock_speed;
14524 else if (IS_I865G(dev_priv))
14525 dev_priv->display.get_display_clock_speed =
14526 i865_get_display_clock_speed;
14527 else if (IS_I85X(dev_priv))
14528 dev_priv->display.get_display_clock_speed =
14529 i85x_get_display_clock_speed;
14530 else { /* 830 */
14531 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
14532 dev_priv->display.get_display_clock_speed =
14533 i830_get_display_clock_speed;
14534 }
14535
14536 if (IS_GEN5(dev_priv)) {
14537 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14538 } else if (IS_GEN6(dev_priv)) {
14539 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14540 } else if (IS_IVYBRIDGE(dev_priv)) {
14541 /* FIXME: detect B0+ stepping and use auto training */
14542 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14543 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14544 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14545 }
14546
14547 if (IS_BROADWELL(dev_priv)) {
14548 dev_priv->display.modeset_commit_cdclk =
14549 broadwell_modeset_commit_cdclk;
14550 dev_priv->display.modeset_calc_cdclk =
14551 broadwell_modeset_calc_cdclk;
14552 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14553 dev_priv->display.modeset_commit_cdclk =
14554 valleyview_modeset_commit_cdclk;
14555 dev_priv->display.modeset_calc_cdclk =
14556 valleyview_modeset_calc_cdclk;
14557 } else if (IS_BROXTON(dev_priv)) {
14558 dev_priv->display.modeset_commit_cdclk =
14559 broxton_modeset_commit_cdclk;
14560 dev_priv->display.modeset_calc_cdclk =
14561 broxton_modeset_calc_cdclk;
14562 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
14563 dev_priv->display.modeset_commit_cdclk =
14564 skl_modeset_commit_cdclk;
14565 dev_priv->display.modeset_calc_cdclk =
14566 skl_modeset_calc_cdclk;
14567 }
14568 }
14569
14570 /*
14571 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14572 * resume, or other times. This quirk makes sure that's the case for
14573 * affected systems.
14574 */
14575 static void quirk_pipea_force(struct drm_device *dev)
14576 {
14577 struct drm_i915_private *dev_priv = dev->dev_private;
14578
14579 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14580 DRM_INFO("applying pipe a force quirk\n");
14581 }
14582
14583 static void quirk_pipeb_force(struct drm_device *dev)
14584 {
14585 struct drm_i915_private *dev_priv = dev->dev_private;
14586
14587 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14588 DRM_INFO("applying pipe b force quirk\n");
14589 }
14590
14591 /*
14592 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14593 */
14594 static void quirk_ssc_force_disable(struct drm_device *dev)
14595 {
14596 struct drm_i915_private *dev_priv = dev->dev_private;
14597 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14598 DRM_INFO("applying lvds SSC disable quirk\n");
14599 }
14600
14601 /*
14602 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14603 * brightness value
14604 */
14605 static void quirk_invert_brightness(struct drm_device *dev)
14606 {
14607 struct drm_i915_private *dev_priv = dev->dev_private;
14608 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14609 DRM_INFO("applying inverted panel brightness quirk\n");
14610 }
14611
14612 /* Some VBT's incorrectly indicate no backlight is present */
14613 static void quirk_backlight_present(struct drm_device *dev)
14614 {
14615 struct drm_i915_private *dev_priv = dev->dev_private;
14616 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14617 DRM_INFO("applying backlight present quirk\n");
14618 }
14619
14620 struct intel_quirk {
14621 int device;
14622 int subsystem_vendor;
14623 int subsystem_device;
14624 void (*hook)(struct drm_device *dev);
14625 };
14626
14627 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14628 struct intel_dmi_quirk {
14629 void (*hook)(struct drm_device *dev);
14630 const struct dmi_system_id (*dmi_id_list)[];
14631 };
14632
14633 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14634 {
14635 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14636 return 1;
14637 }
14638
14639 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14640 {
14641 .dmi_id_list = &(const struct dmi_system_id[]) {
14642 {
14643 .callback = intel_dmi_reverse_brightness,
14644 .ident = "NCR Corporation",
14645 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14646 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14647 },
14648 },
14649 { } /* terminating entry */
14650 },
14651 .hook = quirk_invert_brightness,
14652 },
14653 };
14654
14655 static struct intel_quirk intel_quirks[] = {
14656 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14657 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14658
14659 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14660 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14661
14662 /* 830 needs to leave pipe A & dpll A up */
14663 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14664
14665 /* 830 needs to leave pipe B & dpll B up */
14666 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14667
14668 /* Lenovo U160 cannot use SSC on LVDS */
14669 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14670
14671 /* Sony Vaio Y cannot use SSC on LVDS */
14672 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14673
14674 /* Acer Aspire 5734Z must invert backlight brightness */
14675 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14676
14677 /* Acer/eMachines G725 */
14678 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14679
14680 /* Acer/eMachines e725 */
14681 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14682
14683 /* Acer/Packard Bell NCL20 */
14684 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14685
14686 /* Acer Aspire 4736Z */
14687 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14688
14689 /* Acer Aspire 5336 */
14690 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14691
14692 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14693 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14694
14695 /* Acer C720 Chromebook (Core i3 4005U) */
14696 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14697
14698 /* Apple Macbook 2,1 (Core 2 T7400) */
14699 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14700
14701 /* Apple Macbook 4,1 */
14702 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14703
14704 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14705 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14706
14707 /* HP Chromebook 14 (Celeron 2955U) */
14708 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14709
14710 /* Dell Chromebook 11 */
14711 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14712
14713 /* Dell Chromebook 11 (2015 version) */
14714 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14715 };
14716
14717 static void intel_init_quirks(struct drm_device *dev)
14718 {
14719 struct pci_dev *d = dev->pdev;
14720 int i;
14721
14722 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14723 struct intel_quirk *q = &intel_quirks[i];
14724
14725 if (d->device == q->device &&
14726 (d->subsystem_vendor == q->subsystem_vendor ||
14727 q->subsystem_vendor == PCI_ANY_ID) &&
14728 (d->subsystem_device == q->subsystem_device ||
14729 q->subsystem_device == PCI_ANY_ID))
14730 q->hook(dev);
14731 }
14732 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14733 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14734 intel_dmi_quirks[i].hook(dev);
14735 }
14736 }
14737
14738 /* Disable the VGA plane that we never use */
14739 static void i915_disable_vga(struct drm_device *dev)
14740 {
14741 struct drm_i915_private *dev_priv = dev->dev_private;
14742 u8 sr1;
14743 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
14744
14745 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14746 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14747 outb(SR01, VGA_SR_INDEX);
14748 sr1 = inb(VGA_SR_DATA);
14749 outb(sr1 | 1<<5, VGA_SR_DATA);
14750 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14751 udelay(300);
14752
14753 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14754 POSTING_READ(vga_reg);
14755 }
14756
14757 void intel_modeset_init_hw(struct drm_device *dev)
14758 {
14759 struct drm_i915_private *dev_priv = dev->dev_private;
14760
14761 intel_update_cdclk(dev);
14762
14763 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
14764
14765 intel_init_clock_gating(dev);
14766 intel_enable_gt_powersave(dev_priv);
14767 }
14768
14769 /*
14770 * Calculate what we think the watermarks should be for the state we've read
14771 * out of the hardware and then immediately program those watermarks so that
14772 * we ensure the hardware settings match our internal state.
14773 *
14774 * We can calculate what we think WM's should be by creating a duplicate of the
14775 * current state (which was constructed during hardware readout) and running it
14776 * through the atomic check code to calculate new watermark values in the
14777 * state object.
14778 */
14779 static void sanitize_watermarks(struct drm_device *dev)
14780 {
14781 struct drm_i915_private *dev_priv = to_i915(dev);
14782 struct drm_atomic_state *state;
14783 struct drm_crtc *crtc;
14784 struct drm_crtc_state *cstate;
14785 struct drm_modeset_acquire_ctx ctx;
14786 int ret;
14787 int i;
14788
14789 /* Only supported on platforms that use atomic watermark design */
14790 if (!dev_priv->display.optimize_watermarks)
14791 return;
14792
14793 /*
14794 * We need to hold connection_mutex before calling duplicate_state so
14795 * that the connector loop is protected.
14796 */
14797 drm_modeset_acquire_init(&ctx, 0);
14798 retry:
14799 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14800 if (ret == -EDEADLK) {
14801 drm_modeset_backoff(&ctx);
14802 goto retry;
14803 } else if (WARN_ON(ret)) {
14804 goto fail;
14805 }
14806
14807 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14808 if (WARN_ON(IS_ERR(state)))
14809 goto fail;
14810
14811 /*
14812 * Hardware readout is the only time we don't want to calculate
14813 * intermediate watermarks (since we don't trust the current
14814 * watermarks).
14815 */
14816 to_intel_atomic_state(state)->skip_intermediate_wm = true;
14817
14818 ret = intel_atomic_check(dev, state);
14819 if (ret) {
14820 /*
14821 * If we fail here, it means that the hardware appears to be
14822 * programmed in a way that shouldn't be possible, given our
14823 * understanding of watermark requirements. This might mean a
14824 * mistake in the hardware readout code or a mistake in the
14825 * watermark calculations for a given platform. Raise a WARN
14826 * so that this is noticeable.
14827 *
14828 * If this actually happens, we'll have to just leave the
14829 * BIOS-programmed watermarks untouched and hope for the best.
14830 */
14831 WARN(true, "Could not determine valid watermarks for inherited state\n");
14832 goto fail;
14833 }
14834
14835 /* Write calculated watermark values back */
14836 for_each_crtc_in_state(state, crtc, cstate, i) {
14837 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14838
14839 cs->wm.need_postvbl_update = true;
14840 dev_priv->display.optimize_watermarks(cs);
14841 }
14842
14843 drm_atomic_state_free(state);
14844 fail:
14845 drm_modeset_drop_locks(&ctx);
14846 drm_modeset_acquire_fini(&ctx);
14847 }
14848
14849 void intel_modeset_init(struct drm_device *dev)
14850 {
14851 struct drm_i915_private *dev_priv = to_i915(dev);
14852 struct i915_ggtt *ggtt = &dev_priv->ggtt;
14853 int sprite, ret;
14854 enum pipe pipe;
14855 struct intel_crtc *crtc;
14856
14857 drm_mode_config_init(dev);
14858
14859 dev->mode_config.min_width = 0;
14860 dev->mode_config.min_height = 0;
14861
14862 dev->mode_config.preferred_depth = 24;
14863 dev->mode_config.prefer_shadow = 1;
14864
14865 dev->mode_config.allow_fb_modifiers = true;
14866
14867 dev->mode_config.funcs = &intel_mode_funcs;
14868
14869 intel_init_quirks(dev);
14870
14871 intel_init_pm(dev);
14872
14873 if (INTEL_INFO(dev)->num_pipes == 0)
14874 return;
14875
14876 /*
14877 * There may be no VBT; and if the BIOS enabled SSC we can
14878 * just keep using it to avoid unnecessary flicker. Whereas if the
14879 * BIOS isn't using it, don't assume it will work even if the VBT
14880 * indicates as much.
14881 */
14882 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14883 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14884 DREF_SSC1_ENABLE);
14885
14886 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14887 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14888 bios_lvds_use_ssc ? "en" : "dis",
14889 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14890 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14891 }
14892 }
14893
14894 if (IS_GEN2(dev)) {
14895 dev->mode_config.max_width = 2048;
14896 dev->mode_config.max_height = 2048;
14897 } else if (IS_GEN3(dev)) {
14898 dev->mode_config.max_width = 4096;
14899 dev->mode_config.max_height = 4096;
14900 } else {
14901 dev->mode_config.max_width = 8192;
14902 dev->mode_config.max_height = 8192;
14903 }
14904
14905 if (IS_845G(dev) || IS_I865G(dev)) {
14906 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14907 dev->mode_config.cursor_height = 1023;
14908 } else if (IS_GEN2(dev)) {
14909 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14910 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14911 } else {
14912 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14913 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14914 }
14915
14916 dev->mode_config.fb_base = ggtt->mappable_base;
14917
14918 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14919 INTEL_INFO(dev)->num_pipes,
14920 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14921
14922 for_each_pipe(dev_priv, pipe) {
14923 intel_crtc_init(dev, pipe);
14924 for_each_sprite(dev_priv, pipe, sprite) {
14925 ret = intel_plane_init(dev, pipe, sprite);
14926 if (ret)
14927 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14928 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14929 }
14930 }
14931
14932 intel_update_czclk(dev_priv);
14933 intel_update_cdclk(dev);
14934
14935 intel_shared_dpll_init(dev);
14936
14937 if (dev_priv->max_cdclk_freq == 0)
14938 intel_update_max_cdclk(dev);
14939
14940 /* Just disable it once at startup */
14941 i915_disable_vga(dev);
14942 intel_setup_outputs(dev);
14943
14944 drm_modeset_lock_all(dev);
14945 intel_modeset_setup_hw_state(dev);
14946 drm_modeset_unlock_all(dev);
14947
14948 for_each_intel_crtc(dev, crtc) {
14949 struct intel_initial_plane_config plane_config = {};
14950
14951 if (!crtc->active)
14952 continue;
14953
14954 /*
14955 * Note that reserving the BIOS fb up front prevents us
14956 * from stuffing other stolen allocations like the ring
14957 * on top. This prevents some ugliness at boot time, and
14958 * can even allow for smooth boot transitions if the BIOS
14959 * fb is large enough for the active pipe configuration.
14960 */
14961 dev_priv->display.get_initial_plane_config(crtc,
14962 &plane_config);
14963
14964 /*
14965 * If the fb is shared between multiple heads, we'll
14966 * just get the first one.
14967 */
14968 intel_find_initial_plane_obj(crtc, &plane_config);
14969 }
14970
14971 /*
14972 * Make sure hardware watermarks really match the state we read out.
14973 * Note that we need to do this after reconstructing the BIOS fb's
14974 * since the watermark calculation done here will use pstate->fb.
14975 */
14976 sanitize_watermarks(dev);
14977 }
14978
14979 static void intel_enable_pipe_a(struct drm_device *dev)
14980 {
14981 struct intel_connector *connector;
14982 struct drm_connector *crt = NULL;
14983 struct intel_load_detect_pipe load_detect_temp;
14984 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14985
14986 /* We can't just switch on the pipe A, we need to set things up with a
14987 * proper mode and output configuration. As a gross hack, enable pipe A
14988 * by enabling the load detect pipe once. */
14989 for_each_intel_connector(dev, connector) {
14990 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14991 crt = &connector->base;
14992 break;
14993 }
14994 }
14995
14996 if (!crt)
14997 return;
14998
14999 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15000 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15001 }
15002
15003 static bool
15004 intel_check_plane_mapping(struct intel_crtc *crtc)
15005 {
15006 struct drm_device *dev = crtc->base.dev;
15007 struct drm_i915_private *dev_priv = dev->dev_private;
15008 u32 val;
15009
15010 if (INTEL_INFO(dev)->num_pipes == 1)
15011 return true;
15012
15013 val = I915_READ(DSPCNTR(!crtc->plane));
15014
15015 if ((val & DISPLAY_PLANE_ENABLE) &&
15016 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15017 return false;
15018
15019 return true;
15020 }
15021
15022 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15023 {
15024 struct drm_device *dev = crtc->base.dev;
15025 struct intel_encoder *encoder;
15026
15027 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15028 return true;
15029
15030 return false;
15031 }
15032
15033 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15034 {
15035 struct drm_device *dev = encoder->base.dev;
15036 struct intel_connector *connector;
15037
15038 for_each_connector_on_encoder(dev, &encoder->base, connector)
15039 return true;
15040
15041 return false;
15042 }
15043
15044 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15045 {
15046 struct drm_device *dev = crtc->base.dev;
15047 struct drm_i915_private *dev_priv = dev->dev_private;
15048 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15049
15050 /* Clear any frame start delays used for debugging left by the BIOS */
15051 if (!transcoder_is_dsi(cpu_transcoder)) {
15052 i915_reg_t reg = PIPECONF(cpu_transcoder);
15053
15054 I915_WRITE(reg,
15055 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15056 }
15057
15058 /* restore vblank interrupts to correct state */
15059 drm_crtc_vblank_reset(&crtc->base);
15060 if (crtc->active) {
15061 struct intel_plane *plane;
15062
15063 drm_crtc_vblank_on(&crtc->base);
15064
15065 /* Disable everything but the primary plane */
15066 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15067 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15068 continue;
15069
15070 plane->disable_plane(&plane->base, &crtc->base);
15071 }
15072 }
15073
15074 /* We need to sanitize the plane -> pipe mapping first because this will
15075 * disable the crtc (and hence change the state) if it is wrong. Note
15076 * that gen4+ has a fixed plane -> pipe mapping. */
15077 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15078 bool plane;
15079
15080 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15081 crtc->base.base.id);
15082
15083 /* Pipe has the wrong plane attached and the plane is active.
15084 * Temporarily change the plane mapping and disable everything
15085 * ... */
15086 plane = crtc->plane;
15087 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15088 crtc->plane = !plane;
15089 intel_crtc_disable_noatomic(&crtc->base);
15090 crtc->plane = plane;
15091 }
15092
15093 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15094 crtc->pipe == PIPE_A && !crtc->active) {
15095 /* BIOS forgot to enable pipe A, this mostly happens after
15096 * resume. Force-enable the pipe to fix this, the update_dpms
15097 * call below we restore the pipe to the right state, but leave
15098 * the required bits on. */
15099 intel_enable_pipe_a(dev);
15100 }
15101
15102 /* Adjust the state of the output pipe according to whether we
15103 * have active connectors/encoders. */
15104 if (crtc->active && !intel_crtc_has_encoders(crtc))
15105 intel_crtc_disable_noatomic(&crtc->base);
15106
15107 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15108 /*
15109 * We start out with underrun reporting disabled to avoid races.
15110 * For correct bookkeeping mark this on active crtcs.
15111 *
15112 * Also on gmch platforms we dont have any hardware bits to
15113 * disable the underrun reporting. Which means we need to start
15114 * out with underrun reporting disabled also on inactive pipes,
15115 * since otherwise we'll complain about the garbage we read when
15116 * e.g. coming up after runtime pm.
15117 *
15118 * No protection against concurrent access is required - at
15119 * worst a fifo underrun happens which also sets this to false.
15120 */
15121 crtc->cpu_fifo_underrun_disabled = true;
15122 crtc->pch_fifo_underrun_disabled = true;
15123 }
15124 }
15125
15126 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15127 {
15128 struct intel_connector *connector;
15129 struct drm_device *dev = encoder->base.dev;
15130
15131 /* We need to check both for a crtc link (meaning that the
15132 * encoder is active and trying to read from a pipe) and the
15133 * pipe itself being active. */
15134 bool has_active_crtc = encoder->base.crtc &&
15135 to_intel_crtc(encoder->base.crtc)->active;
15136
15137 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15138 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15139 encoder->base.base.id,
15140 encoder->base.name);
15141
15142 /* Connector is active, but has no active pipe. This is
15143 * fallout from our resume register restoring. Disable
15144 * the encoder manually again. */
15145 if (encoder->base.crtc) {
15146 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15147 encoder->base.base.id,
15148 encoder->base.name);
15149 encoder->disable(encoder);
15150 if (encoder->post_disable)
15151 encoder->post_disable(encoder);
15152 }
15153 encoder->base.crtc = NULL;
15154
15155 /* Inconsistent output/port/pipe state happens presumably due to
15156 * a bug in one of the get_hw_state functions. Or someplace else
15157 * in our code, like the register restore mess on resume. Clamp
15158 * things to off as a safer default. */
15159 for_each_intel_connector(dev, connector) {
15160 if (connector->encoder != encoder)
15161 continue;
15162 connector->base.dpms = DRM_MODE_DPMS_OFF;
15163 connector->base.encoder = NULL;
15164 }
15165 }
15166 /* Enabled encoders without active connectors will be fixed in
15167 * the crtc fixup. */
15168 }
15169
15170 void i915_redisable_vga_power_on(struct drm_device *dev)
15171 {
15172 struct drm_i915_private *dev_priv = dev->dev_private;
15173 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15174
15175 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15176 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15177 i915_disable_vga(dev);
15178 }
15179 }
15180
15181 void i915_redisable_vga(struct drm_device *dev)
15182 {
15183 struct drm_i915_private *dev_priv = dev->dev_private;
15184
15185 /* This function can be called both from intel_modeset_setup_hw_state or
15186 * at a very early point in our resume sequence, where the power well
15187 * structures are not yet restored. Since this function is at a very
15188 * paranoid "someone might have enabled VGA while we were not looking"
15189 * level, just check if the power well is enabled instead of trying to
15190 * follow the "don't touch the power well if we don't need it" policy
15191 * the rest of the driver uses. */
15192 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15193 return;
15194
15195 i915_redisable_vga_power_on(dev);
15196
15197 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15198 }
15199
15200 static bool primary_get_hw_state(struct intel_plane *plane)
15201 {
15202 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15203
15204 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15205 }
15206
15207 /* FIXME read out full plane state for all planes */
15208 static void readout_plane_state(struct intel_crtc *crtc)
15209 {
15210 struct drm_plane *primary = crtc->base.primary;
15211 struct intel_plane_state *plane_state =
15212 to_intel_plane_state(primary->state);
15213
15214 plane_state->visible = crtc->active &&
15215 primary_get_hw_state(to_intel_plane(primary));
15216
15217 if (plane_state->visible)
15218 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15219 }
15220
15221 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15222 {
15223 struct drm_i915_private *dev_priv = dev->dev_private;
15224 enum pipe pipe;
15225 struct intel_crtc *crtc;
15226 struct intel_encoder *encoder;
15227 struct intel_connector *connector;
15228 int i;
15229
15230 dev_priv->active_crtcs = 0;
15231
15232 for_each_intel_crtc(dev, crtc) {
15233 struct intel_crtc_state *crtc_state = crtc->config;
15234 int pixclk = 0;
15235
15236 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15237 memset(crtc_state, 0, sizeof(*crtc_state));
15238 crtc_state->base.crtc = &crtc->base;
15239
15240 crtc_state->base.active = crtc_state->base.enable =
15241 dev_priv->display.get_pipe_config(crtc, crtc_state);
15242
15243 crtc->base.enabled = crtc_state->base.enable;
15244 crtc->active = crtc_state->base.active;
15245
15246 if (crtc_state->base.active) {
15247 dev_priv->active_crtcs |= 1 << crtc->pipe;
15248
15249 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15250 pixclk = ilk_pipe_pixel_rate(crtc_state);
15251 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15252 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15253 else
15254 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15255
15256 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15257 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15258 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15259 }
15260
15261 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15262
15263 readout_plane_state(crtc);
15264
15265 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15266 crtc->base.base.id,
15267 crtc->active ? "enabled" : "disabled");
15268 }
15269
15270 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15271 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15272
15273 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15274 &pll->config.hw_state);
15275 pll->config.crtc_mask = 0;
15276 for_each_intel_crtc(dev, crtc) {
15277 if (crtc->active && crtc->config->shared_dpll == pll)
15278 pll->config.crtc_mask |= 1 << crtc->pipe;
15279 }
15280 pll->active_mask = pll->config.crtc_mask;
15281
15282 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15283 pll->name, pll->config.crtc_mask, pll->on);
15284 }
15285
15286 for_each_intel_encoder(dev, encoder) {
15287 pipe = 0;
15288
15289 if (encoder->get_hw_state(encoder, &pipe)) {
15290 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15291 encoder->base.crtc = &crtc->base;
15292 encoder->get_config(encoder, crtc->config);
15293 } else {
15294 encoder->base.crtc = NULL;
15295 }
15296
15297 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15298 encoder->base.base.id,
15299 encoder->base.name,
15300 encoder->base.crtc ? "enabled" : "disabled",
15301 pipe_name(pipe));
15302 }
15303
15304 for_each_intel_connector(dev, connector) {
15305 if (connector->get_hw_state(connector)) {
15306 connector->base.dpms = DRM_MODE_DPMS_ON;
15307
15308 encoder = connector->encoder;
15309 connector->base.encoder = &encoder->base;
15310
15311 if (encoder->base.crtc &&
15312 encoder->base.crtc->state->active) {
15313 /*
15314 * This has to be done during hardware readout
15315 * because anything calling .crtc_disable may
15316 * rely on the connector_mask being accurate.
15317 */
15318 encoder->base.crtc->state->connector_mask |=
15319 1 << drm_connector_index(&connector->base);
15320 encoder->base.crtc->state->encoder_mask |=
15321 1 << drm_encoder_index(&encoder->base);
15322 }
15323
15324 } else {
15325 connector->base.dpms = DRM_MODE_DPMS_OFF;
15326 connector->base.encoder = NULL;
15327 }
15328 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15329 connector->base.base.id,
15330 connector->base.name,
15331 connector->base.encoder ? "enabled" : "disabled");
15332 }
15333
15334 for_each_intel_crtc(dev, crtc) {
15335 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15336
15337 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15338 if (crtc->base.state->active) {
15339 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15340 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15341 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15342
15343 /*
15344 * The initial mode needs to be set in order to keep
15345 * the atomic core happy. It wants a valid mode if the
15346 * crtc's enabled, so we do the above call.
15347 *
15348 * At this point some state updated by the connectors
15349 * in their ->detect() callback has not run yet, so
15350 * no recalculation can be done yet.
15351 *
15352 * Even if we could do a recalculation and modeset
15353 * right now it would cause a double modeset if
15354 * fbdev or userspace chooses a different initial mode.
15355 *
15356 * If that happens, someone indicated they wanted a
15357 * mode change, which means it's safe to do a full
15358 * recalculation.
15359 */
15360 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15361
15362 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15363 update_scanline_offset(crtc);
15364 }
15365
15366 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15367 }
15368 }
15369
15370 /* Scan out the current hw modeset state,
15371 * and sanitizes it to the current state
15372 */
15373 static void
15374 intel_modeset_setup_hw_state(struct drm_device *dev)
15375 {
15376 struct drm_i915_private *dev_priv = dev->dev_private;
15377 enum pipe pipe;
15378 struct intel_crtc *crtc;
15379 struct intel_encoder *encoder;
15380 int i;
15381
15382 intel_modeset_readout_hw_state(dev);
15383
15384 /* HW state is read out, now we need to sanitize this mess. */
15385 for_each_intel_encoder(dev, encoder) {
15386 intel_sanitize_encoder(encoder);
15387 }
15388
15389 for_each_pipe(dev_priv, pipe) {
15390 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15391 intel_sanitize_crtc(crtc);
15392 intel_dump_pipe_config(crtc, crtc->config,
15393 "[setup_hw_state]");
15394 }
15395
15396 intel_modeset_update_connector_atomic_state(dev);
15397
15398 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15399 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15400
15401 if (!pll->on || pll->active_mask)
15402 continue;
15403
15404 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15405
15406 pll->funcs.disable(dev_priv, pll);
15407 pll->on = false;
15408 }
15409
15410 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15411 vlv_wm_get_hw_state(dev);
15412 else if (IS_GEN9(dev))
15413 skl_wm_get_hw_state(dev);
15414 else if (HAS_PCH_SPLIT(dev))
15415 ilk_wm_get_hw_state(dev);
15416
15417 for_each_intel_crtc(dev, crtc) {
15418 unsigned long put_domains;
15419
15420 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15421 if (WARN_ON(put_domains))
15422 modeset_put_power_domains(dev_priv, put_domains);
15423 }
15424 intel_display_set_init_power(dev_priv, false);
15425
15426 intel_fbc_init_pipe_state(dev_priv);
15427 }
15428
15429 void intel_display_resume(struct drm_device *dev)
15430 {
15431 struct drm_i915_private *dev_priv = to_i915(dev);
15432 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15433 struct drm_modeset_acquire_ctx ctx;
15434 int ret;
15435 bool setup = false;
15436
15437 dev_priv->modeset_restore_state = NULL;
15438
15439 /*
15440 * This is a cludge because with real atomic modeset mode_config.mutex
15441 * won't be taken. Unfortunately some probed state like
15442 * audio_codec_enable is still protected by mode_config.mutex, so lock
15443 * it here for now.
15444 */
15445 mutex_lock(&dev->mode_config.mutex);
15446 drm_modeset_acquire_init(&ctx, 0);
15447
15448 retry:
15449 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15450
15451 if (ret == 0 && !setup) {
15452 setup = true;
15453
15454 intel_modeset_setup_hw_state(dev);
15455 i915_redisable_vga(dev);
15456 }
15457
15458 if (ret == 0 && state) {
15459 struct drm_crtc_state *crtc_state;
15460 struct drm_crtc *crtc;
15461 int i;
15462
15463 state->acquire_ctx = &ctx;
15464
15465 /* ignore any reset values/BIOS leftovers in the WM registers */
15466 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15467
15468 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15469 /*
15470 * Force recalculation even if we restore
15471 * current state. With fast modeset this may not result
15472 * in a modeset when the state is compatible.
15473 */
15474 crtc_state->mode_changed = true;
15475 }
15476
15477 ret = drm_atomic_commit(state);
15478 }
15479
15480 if (ret == -EDEADLK) {
15481 drm_modeset_backoff(&ctx);
15482 goto retry;
15483 }
15484
15485 drm_modeset_drop_locks(&ctx);
15486 drm_modeset_acquire_fini(&ctx);
15487 mutex_unlock(&dev->mode_config.mutex);
15488
15489 if (ret) {
15490 DRM_ERROR("Restoring old state failed with %i\n", ret);
15491 drm_atomic_state_free(state);
15492 }
15493 }
15494
15495 void intel_modeset_gem_init(struct drm_device *dev)
15496 {
15497 struct drm_i915_private *dev_priv = to_i915(dev);
15498 struct drm_crtc *c;
15499 struct drm_i915_gem_object *obj;
15500 int ret;
15501
15502 intel_init_gt_powersave(dev_priv);
15503
15504 intel_modeset_init_hw(dev);
15505
15506 intel_setup_overlay(dev_priv);
15507
15508 /*
15509 * Make sure any fbs we allocated at startup are properly
15510 * pinned & fenced. When we do the allocation it's too early
15511 * for this.
15512 */
15513 for_each_crtc(dev, c) {
15514 obj = intel_fb_obj(c->primary->fb);
15515 if (obj == NULL)
15516 continue;
15517
15518 mutex_lock(&dev->struct_mutex);
15519 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15520 c->primary->state->rotation);
15521 mutex_unlock(&dev->struct_mutex);
15522 if (ret) {
15523 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15524 to_intel_crtc(c)->pipe);
15525 drm_framebuffer_unreference(c->primary->fb);
15526 drm_framebuffer_unreference(c->primary->state->fb);
15527 c->primary->fb = c->primary->state->fb = NULL;
15528 c->primary->crtc = c->primary->state->crtc = NULL;
15529 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15530 }
15531 }
15532
15533 intel_backlight_register(dev);
15534 }
15535
15536 void intel_connector_unregister(struct intel_connector *intel_connector)
15537 {
15538 struct drm_connector *connector = &intel_connector->base;
15539
15540 intel_panel_destroy_backlight(connector);
15541 drm_connector_unregister(connector);
15542 }
15543
15544 void intel_modeset_cleanup(struct drm_device *dev)
15545 {
15546 struct drm_i915_private *dev_priv = dev->dev_private;
15547 struct intel_connector *connector;
15548
15549 intel_disable_gt_powersave(dev_priv);
15550
15551 intel_backlight_unregister(dev);
15552
15553 /*
15554 * Interrupts and polling as the first thing to avoid creating havoc.
15555 * Too much stuff here (turning of connectors, ...) would
15556 * experience fancy races otherwise.
15557 */
15558 intel_irq_uninstall(dev_priv);
15559
15560 /*
15561 * Due to the hpd irq storm handling the hotplug work can re-arm the
15562 * poll handlers. Hence disable polling after hpd handling is shut down.
15563 */
15564 drm_kms_helper_poll_fini(dev);
15565
15566 intel_unregister_dsm_handler();
15567
15568 intel_fbc_global_disable(dev_priv);
15569
15570 /* flush any delayed tasks or pending work */
15571 flush_scheduled_work();
15572
15573 /* destroy the backlight and sysfs files before encoders/connectors */
15574 for_each_intel_connector(dev, connector)
15575 connector->unregister(connector);
15576
15577 drm_mode_config_cleanup(dev);
15578
15579 intel_cleanup_overlay(dev_priv);
15580
15581 intel_cleanup_gt_powersave(dev_priv);
15582
15583 intel_teardown_gmbus(dev);
15584 }
15585
15586 /*
15587 * Return which encoder is currently attached for connector.
15588 */
15589 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15590 {
15591 return &intel_attached_encoder(connector)->base;
15592 }
15593
15594 void intel_connector_attach_encoder(struct intel_connector *connector,
15595 struct intel_encoder *encoder)
15596 {
15597 connector->encoder = encoder;
15598 drm_mode_connector_attach_encoder(&connector->base,
15599 &encoder->base);
15600 }
15601
15602 /*
15603 * set vga decode state - true == enable VGA decode
15604 */
15605 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15606 {
15607 struct drm_i915_private *dev_priv = dev->dev_private;
15608 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15609 u16 gmch_ctrl;
15610
15611 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15612 DRM_ERROR("failed to read control word\n");
15613 return -EIO;
15614 }
15615
15616 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15617 return 0;
15618
15619 if (state)
15620 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15621 else
15622 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15623
15624 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15625 DRM_ERROR("failed to write control word\n");
15626 return -EIO;
15627 }
15628
15629 return 0;
15630 }
15631
15632 struct intel_display_error_state {
15633
15634 u32 power_well_driver;
15635
15636 int num_transcoders;
15637
15638 struct intel_cursor_error_state {
15639 u32 control;
15640 u32 position;
15641 u32 base;
15642 u32 size;
15643 } cursor[I915_MAX_PIPES];
15644
15645 struct intel_pipe_error_state {
15646 bool power_domain_on;
15647 u32 source;
15648 u32 stat;
15649 } pipe[I915_MAX_PIPES];
15650
15651 struct intel_plane_error_state {
15652 u32 control;
15653 u32 stride;
15654 u32 size;
15655 u32 pos;
15656 u32 addr;
15657 u32 surface;
15658 u32 tile_offset;
15659 } plane[I915_MAX_PIPES];
15660
15661 struct intel_transcoder_error_state {
15662 bool power_domain_on;
15663 enum transcoder cpu_transcoder;
15664
15665 u32 conf;
15666
15667 u32 htotal;
15668 u32 hblank;
15669 u32 hsync;
15670 u32 vtotal;
15671 u32 vblank;
15672 u32 vsync;
15673 } transcoder[4];
15674 };
15675
15676 struct intel_display_error_state *
15677 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15678 {
15679 struct intel_display_error_state *error;
15680 int transcoders[] = {
15681 TRANSCODER_A,
15682 TRANSCODER_B,
15683 TRANSCODER_C,
15684 TRANSCODER_EDP,
15685 };
15686 int i;
15687
15688 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15689 return NULL;
15690
15691 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15692 if (error == NULL)
15693 return NULL;
15694
15695 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15696 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15697
15698 for_each_pipe(dev_priv, i) {
15699 error->pipe[i].power_domain_on =
15700 __intel_display_power_is_enabled(dev_priv,
15701 POWER_DOMAIN_PIPE(i));
15702 if (!error->pipe[i].power_domain_on)
15703 continue;
15704
15705 error->cursor[i].control = I915_READ(CURCNTR(i));
15706 error->cursor[i].position = I915_READ(CURPOS(i));
15707 error->cursor[i].base = I915_READ(CURBASE(i));
15708
15709 error->plane[i].control = I915_READ(DSPCNTR(i));
15710 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15711 if (INTEL_GEN(dev_priv) <= 3) {
15712 error->plane[i].size = I915_READ(DSPSIZE(i));
15713 error->plane[i].pos = I915_READ(DSPPOS(i));
15714 }
15715 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15716 error->plane[i].addr = I915_READ(DSPADDR(i));
15717 if (INTEL_GEN(dev_priv) >= 4) {
15718 error->plane[i].surface = I915_READ(DSPSURF(i));
15719 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15720 }
15721
15722 error->pipe[i].source = I915_READ(PIPESRC(i));
15723
15724 if (HAS_GMCH_DISPLAY(dev_priv))
15725 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15726 }
15727
15728 /* Note: this does not include DSI transcoders. */
15729 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15730 if (HAS_DDI(dev_priv))
15731 error->num_transcoders++; /* Account for eDP. */
15732
15733 for (i = 0; i < error->num_transcoders; i++) {
15734 enum transcoder cpu_transcoder = transcoders[i];
15735
15736 error->transcoder[i].power_domain_on =
15737 __intel_display_power_is_enabled(dev_priv,
15738 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15739 if (!error->transcoder[i].power_domain_on)
15740 continue;
15741
15742 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15743
15744 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15745 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15746 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15747 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15748 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15749 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15750 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15751 }
15752
15753 return error;
15754 }
15755
15756 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15757
15758 void
15759 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15760 struct drm_device *dev,
15761 struct intel_display_error_state *error)
15762 {
15763 struct drm_i915_private *dev_priv = dev->dev_private;
15764 int i;
15765
15766 if (!error)
15767 return;
15768
15769 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15770 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15771 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15772 error->power_well_driver);
15773 for_each_pipe(dev_priv, i) {
15774 err_printf(m, "Pipe [%d]:\n", i);
15775 err_printf(m, " Power: %s\n",
15776 onoff(error->pipe[i].power_domain_on));
15777 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15778 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15779
15780 err_printf(m, "Plane [%d]:\n", i);
15781 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15782 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15783 if (INTEL_INFO(dev)->gen <= 3) {
15784 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15785 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15786 }
15787 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15788 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15789 if (INTEL_INFO(dev)->gen >= 4) {
15790 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15791 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15792 }
15793
15794 err_printf(m, "Cursor [%d]:\n", i);
15795 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15796 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15797 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15798 }
15799
15800 for (i = 0; i < error->num_transcoders; i++) {
15801 err_printf(m, "CPU transcoder: %s\n",
15802 transcoder_name(error->transcoder[i].cpu_transcoder));
15803 err_printf(m, " Power: %s\n",
15804 onoff(error->transcoder[i].power_domain_on));
15805 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15806 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15807 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15808 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15809 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15810 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15811 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15812 }
15813 }
This page took 0.352474 seconds and 6 git commands to generate.