drm/i915: Use crtc state in intel_modeset_pipe_config
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_atomic_state *state);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void chv_prepare_pll(struct intel_crtc *crtc,
105 const struct intel_crtc_state *pipe_config);
106 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
108 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109 struct intel_crtc_state *crtc_state);
110 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111 int num_connectors);
112 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
113 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
114
115 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
116 {
117 if (!connector->mst_port)
118 return connector->encoder;
119 else
120 return &connector->mst_port->mst_encoders[pipe]->base;
121 }
122
123 typedef struct {
124 int min, max;
125 } intel_range_t;
126
127 typedef struct {
128 int dot_limit;
129 int p2_slow, p2_fast;
130 } intel_p2_t;
131
132 typedef struct intel_limit intel_limit_t;
133 struct intel_limit {
134 intel_range_t dot, vco, n, m, m1, m2, p, p1;
135 intel_p2_t p2;
136 };
137
138 int
139 intel_pch_rawclk(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142
143 WARN_ON(!HAS_PCH_SPLIT(dev));
144
145 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
146 }
147
148 static inline u32 /* units of 100MHz */
149 intel_fdi_link_freq(struct drm_device *dev)
150 {
151 if (IS_GEN5(dev)) {
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
154 } else
155 return 27;
156 }
157
158 static const intel_limit_t intel_limits_i8xx_dac = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 2 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_dvo = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 2, .max = 33 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 4, .p2_fast = 4 },
182 };
183
184 static const intel_limit_t intel_limits_i8xx_lvds = {
185 .dot = { .min = 25000, .max = 350000 },
186 .vco = { .min = 908000, .max = 1512000 },
187 .n = { .min = 2, .max = 16 },
188 .m = { .min = 96, .max = 140 },
189 .m1 = { .min = 18, .max = 26 },
190 .m2 = { .min = 6, .max = 16 },
191 .p = { .min = 4, .max = 128 },
192 .p1 = { .min = 1, .max = 6 },
193 .p2 = { .dot_limit = 165000,
194 .p2_slow = 14, .p2_fast = 7 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_sdvo = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 200000,
207 .p2_slow = 10, .p2_fast = 5 },
208 };
209
210 static const intel_limit_t intel_limits_i9xx_lvds = {
211 .dot = { .min = 20000, .max = 400000 },
212 .vco = { .min = 1400000, .max = 2800000 },
213 .n = { .min = 1, .max = 6 },
214 .m = { .min = 70, .max = 120 },
215 .m1 = { .min = 8, .max = 18 },
216 .m2 = { .min = 3, .max = 7 },
217 .p = { .min = 7, .max = 98 },
218 .p1 = { .min = 1, .max = 8 },
219 .p2 = { .dot_limit = 112000,
220 .p2_slow = 14, .p2_fast = 7 },
221 };
222
223
224 static const intel_limit_t intel_limits_g4x_sdvo = {
225 .dot = { .min = 25000, .max = 270000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 4 },
228 .m = { .min = 104, .max = 138 },
229 .m1 = { .min = 17, .max = 23 },
230 .m2 = { .min = 5, .max = 11 },
231 .p = { .min = 10, .max = 30 },
232 .p1 = { .min = 1, .max = 3},
233 .p2 = { .dot_limit = 270000,
234 .p2_slow = 10,
235 .p2_fast = 10
236 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_hdmi = {
240 .dot = { .min = 22000, .max = 400000 },
241 .vco = { .min = 1750000, .max = 3500000},
242 .n = { .min = 1, .max = 4 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 16, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 5, .max = 80 },
247 .p1 = { .min = 1, .max = 8},
248 .p2 = { .dot_limit = 165000,
249 .p2_slow = 10, .p2_fast = 5 },
250 };
251
252 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
253 .dot = { .min = 20000, .max = 115000 },
254 .vco = { .min = 1750000, .max = 3500000 },
255 .n = { .min = 1, .max = 3 },
256 .m = { .min = 104, .max = 138 },
257 .m1 = { .min = 17, .max = 23 },
258 .m2 = { .min = 5, .max = 11 },
259 .p = { .min = 28, .max = 112 },
260 .p1 = { .min = 2, .max = 8 },
261 .p2 = { .dot_limit = 0,
262 .p2_slow = 14, .p2_fast = 14
263 },
264 };
265
266 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
267 .dot = { .min = 80000, .max = 224000 },
268 .vco = { .min = 1750000, .max = 3500000 },
269 .n = { .min = 1, .max = 3 },
270 .m = { .min = 104, .max = 138 },
271 .m1 = { .min = 17, .max = 23 },
272 .m2 = { .min = 5, .max = 11 },
273 .p = { .min = 14, .max = 42 },
274 .p1 = { .min = 2, .max = 6 },
275 .p2 = { .dot_limit = 0,
276 .p2_slow = 7, .p2_fast = 7
277 },
278 };
279
280 static const intel_limit_t intel_limits_pineview_sdvo = {
281 .dot = { .min = 20000, .max = 400000},
282 .vco = { .min = 1700000, .max = 3500000 },
283 /* Pineview's Ncounter is a ring counter */
284 .n = { .min = 3, .max = 6 },
285 .m = { .min = 2, .max = 256 },
286 /* Pineview only has one combined m divider, which we treat as m2. */
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 200000,
292 .p2_slow = 10, .p2_fast = 5 },
293 };
294
295 static const intel_limit_t intel_limits_pineview_lvds = {
296 .dot = { .min = 20000, .max = 400000 },
297 .vco = { .min = 1700000, .max = 3500000 },
298 .n = { .min = 3, .max = 6 },
299 .m = { .min = 2, .max = 256 },
300 .m1 = { .min = 0, .max = 0 },
301 .m2 = { .min = 0, .max = 254 },
302 .p = { .min = 7, .max = 112 },
303 .p1 = { .min = 1, .max = 8 },
304 .p2 = { .dot_limit = 112000,
305 .p2_slow = 14, .p2_fast = 14 },
306 };
307
308 /* Ironlake / Sandybridge
309 *
310 * We calculate clock using (register_value + 2) for N/M1/M2, so here
311 * the range value for them is (actual_value - 2).
312 */
313 static const intel_limit_t intel_limits_ironlake_dac = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 5 },
317 .m = { .min = 79, .max = 127 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 5, .max = 80 },
321 .p1 = { .min = 1, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 10, .p2_fast = 5 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_single_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 118 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 28, .max = 112 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 14, .p2_fast = 14 },
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 127 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 56 },
347 .p1 = { .min = 2, .max = 8 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 };
351
352 /* LVDS 100mhz refclk limits. */
353 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 28, .max = 112 },
361 .p1 = { .min = 2, .max = 8 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 14, .p2_fast = 14 },
364 };
365
366 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
367 .dot = { .min = 25000, .max = 350000 },
368 .vco = { .min = 1760000, .max = 3510000 },
369 .n = { .min = 1, .max = 3 },
370 .m = { .min = 79, .max = 126 },
371 .m1 = { .min = 12, .max = 22 },
372 .m2 = { .min = 5, .max = 9 },
373 .p = { .min = 14, .max = 42 },
374 .p1 = { .min = 2, .max = 6 },
375 .p2 = { .dot_limit = 225000,
376 .p2_slow = 7, .p2_fast = 7 },
377 };
378
379 static const intel_limit_t intel_limits_vlv = {
380 /*
381 * These are the data rate limits (measured in fast clocks)
382 * since those are the strictest limits we have. The fast
383 * clock and actual rate limits are more relaxed, so checking
384 * them would make no difference.
385 */
386 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
387 .vco = { .min = 4000000, .max = 6000000 },
388 .n = { .min = 1, .max = 7 },
389 .m1 = { .min = 2, .max = 3 },
390 .m2 = { .min = 11, .max = 156 },
391 .p1 = { .min = 2, .max = 3 },
392 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
393 };
394
395 static const intel_limit_t intel_limits_chv = {
396 /*
397 * These are the data rate limits (measured in fast clocks)
398 * since those are the strictest limits we have. The fast
399 * clock and actual rate limits are more relaxed, so checking
400 * them would make no difference.
401 */
402 .dot = { .min = 25000 * 5, .max = 540000 * 5},
403 .vco = { .min = 4800000, .max = 6480000 },
404 .n = { .min = 1, .max = 1 },
405 .m1 = { .min = 2, .max = 2 },
406 .m2 = { .min = 24 << 22, .max = 175 << 22 },
407 .p1 = { .min = 2, .max = 4 },
408 .p2 = { .p2_slow = 1, .p2_fast = 14 },
409 };
410
411 static const intel_limit_t intel_limits_bxt = {
412 /* FIXME: find real dot limits */
413 .dot = { .min = 0, .max = INT_MAX },
414 .vco = { .min = 4800000, .max = 6480000 },
415 .n = { .min = 1, .max = 1 },
416 .m1 = { .min = 2, .max = 2 },
417 /* FIXME: find real m2 limits */
418 .m2 = { .min = 2 << 22, .max = 255 << 22 },
419 .p1 = { .min = 2, .max = 4 },
420 .p2 = { .p2_slow = 1, .p2_fast = 20 },
421 };
422
423 static void vlv_clock(int refclk, intel_clock_t *clock)
424 {
425 clock->m = clock->m1 * clock->m2;
426 clock->p = clock->p1 * clock->p2;
427 if (WARN_ON(clock->n == 0 || clock->p == 0))
428 return;
429 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
430 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
431 }
432
433 static bool
434 needs_modeset(struct drm_crtc_state *state)
435 {
436 return state->mode_changed || state->active_changed;
437 }
438
439 /**
440 * Returns whether any output on the specified pipe is of the specified type
441 */
442 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 struct intel_encoder *encoder;
446
447 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
448 if (encoder->type == type)
449 return true;
450
451 return false;
452 }
453
454 /**
455 * Returns whether any output on the specified pipe will have the specified
456 * type after a staged modeset is complete, i.e., the same as
457 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
458 * encoder->crtc.
459 */
460 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
461 int type)
462 {
463 struct drm_atomic_state *state = crtc_state->base.state;
464 struct drm_connector *connector;
465 struct drm_connector_state *connector_state;
466 struct intel_encoder *encoder;
467 int i, num_connectors = 0;
468
469 for_each_connector_in_state(state, connector, connector_state, i) {
470 if (connector_state->crtc != crtc_state->base.crtc)
471 continue;
472
473 num_connectors++;
474
475 encoder = to_intel_encoder(connector_state->best_encoder);
476 if (encoder->type == type)
477 return true;
478 }
479
480 WARN_ON(num_connectors == 0);
481
482 return false;
483 }
484
485 static const intel_limit_t *
486 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
487 {
488 struct drm_device *dev = crtc_state->base.crtc->dev;
489 const intel_limit_t *limit;
490
491 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
492 if (intel_is_dual_link_lvds(dev)) {
493 if (refclk == 100000)
494 limit = &intel_limits_ironlake_dual_lvds_100m;
495 else
496 limit = &intel_limits_ironlake_dual_lvds;
497 } else {
498 if (refclk == 100000)
499 limit = &intel_limits_ironlake_single_lvds_100m;
500 else
501 limit = &intel_limits_ironlake_single_lvds;
502 }
503 } else
504 limit = &intel_limits_ironlake_dac;
505
506 return limit;
507 }
508
509 static const intel_limit_t *
510 intel_g4x_limit(struct intel_crtc_state *crtc_state)
511 {
512 struct drm_device *dev = crtc_state->base.crtc->dev;
513 const intel_limit_t *limit;
514
515 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
516 if (intel_is_dual_link_lvds(dev))
517 limit = &intel_limits_g4x_dual_channel_lvds;
518 else
519 limit = &intel_limits_g4x_single_channel_lvds;
520 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
521 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
522 limit = &intel_limits_g4x_hdmi;
523 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
524 limit = &intel_limits_g4x_sdvo;
525 } else /* The option is for other outputs */
526 limit = &intel_limits_i9xx_sdvo;
527
528 return limit;
529 }
530
531 static const intel_limit_t *
532 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
533 {
534 struct drm_device *dev = crtc_state->base.crtc->dev;
535 const intel_limit_t *limit;
536
537 if (IS_BROXTON(dev))
538 limit = &intel_limits_bxt;
539 else if (HAS_PCH_SPLIT(dev))
540 limit = intel_ironlake_limit(crtc_state, refclk);
541 else if (IS_G4X(dev)) {
542 limit = intel_g4x_limit(crtc_state);
543 } else if (IS_PINEVIEW(dev)) {
544 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
545 limit = &intel_limits_pineview_lvds;
546 else
547 limit = &intel_limits_pineview_sdvo;
548 } else if (IS_CHERRYVIEW(dev)) {
549 limit = &intel_limits_chv;
550 } else if (IS_VALLEYVIEW(dev)) {
551 limit = &intel_limits_vlv;
552 } else if (!IS_GEN2(dev)) {
553 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554 limit = &intel_limits_i9xx_lvds;
555 else
556 limit = &intel_limits_i9xx_sdvo;
557 } else {
558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
559 limit = &intel_limits_i8xx_lvds;
560 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
561 limit = &intel_limits_i8xx_dvo;
562 else
563 limit = &intel_limits_i8xx_dac;
564 }
565 return limit;
566 }
567
568 /* m1 is reserved as 0 in Pineview, n is a ring counter */
569 static void pineview_clock(int refclk, intel_clock_t *clock)
570 {
571 clock->m = clock->m2 + 2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
576 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
577 }
578
579 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
580 {
581 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
582 }
583
584 static void i9xx_clock(int refclk, intel_clock_t *clock)
585 {
586 clock->m = i9xx_dpll_compute_m(clock);
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
589 return;
590 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592 }
593
594 static void chv_clock(int refclk, intel_clock_t *clock)
595 {
596 clock->m = clock->m1 * clock->m2;
597 clock->p = clock->p1 * clock->p2;
598 if (WARN_ON(clock->n == 0 || clock->p == 0))
599 return;
600 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
601 clock->n << 22);
602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 }
604
605 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
606 /**
607 * Returns whether the given set of divisors are valid for a given refclk with
608 * the given connectors.
609 */
610
611 static bool intel_PLL_is_valid(struct drm_device *dev,
612 const intel_limit_t *limit,
613 const intel_clock_t *clock)
614 {
615 if (clock->n < limit->n.min || limit->n.max < clock->n)
616 INTELPllInvalid("n out of range\n");
617 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
618 INTELPllInvalid("p1 out of range\n");
619 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
620 INTELPllInvalid("m2 out of range\n");
621 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
622 INTELPllInvalid("m1 out of range\n");
623
624 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
625 if (clock->m1 <= clock->m2)
626 INTELPllInvalid("m1 <= m2\n");
627
628 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
629 if (clock->p < limit->p.min || limit->p.max < clock->p)
630 INTELPllInvalid("p out of range\n");
631 if (clock->m < limit->m.min || limit->m.max < clock->m)
632 INTELPllInvalid("m out of range\n");
633 }
634
635 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
636 INTELPllInvalid("vco out of range\n");
637 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
638 * connector, etc., rather than just a single range.
639 */
640 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
641 INTELPllInvalid("dot out of range\n");
642
643 return true;
644 }
645
646 static bool
647 i9xx_find_best_dpll(const intel_limit_t *limit,
648 struct intel_crtc_state *crtc_state,
649 int target, int refclk, intel_clock_t *match_clock,
650 intel_clock_t *best_clock)
651 {
652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
653 struct drm_device *dev = crtc->base.dev;
654 intel_clock_t clock;
655 int err = target;
656
657 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
658 /*
659 * For LVDS just rely on its current settings for dual-channel.
660 * We haven't figured out how to reliably set up different
661 * single/dual channel state, if we even can.
662 */
663 if (intel_is_dual_link_lvds(dev))
664 clock.p2 = limit->p2.p2_fast;
665 else
666 clock.p2 = limit->p2.p2_slow;
667 } else {
668 if (target < limit->p2.dot_limit)
669 clock.p2 = limit->p2.p2_slow;
670 else
671 clock.p2 = limit->p2.p2_fast;
672 }
673
674 memset(best_clock, 0, sizeof(*best_clock));
675
676 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
677 clock.m1++) {
678 for (clock.m2 = limit->m2.min;
679 clock.m2 <= limit->m2.max; clock.m2++) {
680 if (clock.m2 >= clock.m1)
681 break;
682 for (clock.n = limit->n.min;
683 clock.n <= limit->n.max; clock.n++) {
684 for (clock.p1 = limit->p1.min;
685 clock.p1 <= limit->p1.max; clock.p1++) {
686 int this_err;
687
688 i9xx_clock(refclk, &clock);
689 if (!intel_PLL_is_valid(dev, limit,
690 &clock))
691 continue;
692 if (match_clock &&
693 clock.p != match_clock->p)
694 continue;
695
696 this_err = abs(clock.dot - target);
697 if (this_err < err) {
698 *best_clock = clock;
699 err = this_err;
700 }
701 }
702 }
703 }
704 }
705
706 return (err != target);
707 }
708
709 static bool
710 pnv_find_best_dpll(const intel_limit_t *limit,
711 struct intel_crtc_state *crtc_state,
712 int target, int refclk, intel_clock_t *match_clock,
713 intel_clock_t *best_clock)
714 {
715 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
716 struct drm_device *dev = crtc->base.dev;
717 intel_clock_t clock;
718 int err = target;
719
720 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
721 /*
722 * For LVDS just rely on its current settings for dual-channel.
723 * We haven't figured out how to reliably set up different
724 * single/dual channel state, if we even can.
725 */
726 if (intel_is_dual_link_lvds(dev))
727 clock.p2 = limit->p2.p2_fast;
728 else
729 clock.p2 = limit->p2.p2_slow;
730 } else {
731 if (target < limit->p2.dot_limit)
732 clock.p2 = limit->p2.p2_slow;
733 else
734 clock.p2 = limit->p2.p2_fast;
735 }
736
737 memset(best_clock, 0, sizeof(*best_clock));
738
739 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
740 clock.m1++) {
741 for (clock.m2 = limit->m2.min;
742 clock.m2 <= limit->m2.max; clock.m2++) {
743 for (clock.n = limit->n.min;
744 clock.n <= limit->n.max; clock.n++) {
745 for (clock.p1 = limit->p1.min;
746 clock.p1 <= limit->p1.max; clock.p1++) {
747 int this_err;
748
749 pineview_clock(refclk, &clock);
750 if (!intel_PLL_is_valid(dev, limit,
751 &clock))
752 continue;
753 if (match_clock &&
754 clock.p != match_clock->p)
755 continue;
756
757 this_err = abs(clock.dot - target);
758 if (this_err < err) {
759 *best_clock = clock;
760 err = this_err;
761 }
762 }
763 }
764 }
765 }
766
767 return (err != target);
768 }
769
770 static bool
771 g4x_find_best_dpll(const intel_limit_t *limit,
772 struct intel_crtc_state *crtc_state,
773 int target, int refclk, intel_clock_t *match_clock,
774 intel_clock_t *best_clock)
775 {
776 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
777 struct drm_device *dev = crtc->base.dev;
778 intel_clock_t clock;
779 int max_n;
780 bool found;
781 /* approximately equals target * 0.00585 */
782 int err_most = (target >> 8) + (target >> 9);
783 found = false;
784
785 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
786 if (intel_is_dual_link_lvds(dev))
787 clock.p2 = limit->p2.p2_fast;
788 else
789 clock.p2 = limit->p2.p2_slow;
790 } else {
791 if (target < limit->p2.dot_limit)
792 clock.p2 = limit->p2.p2_slow;
793 else
794 clock.p2 = limit->p2.p2_fast;
795 }
796
797 memset(best_clock, 0, sizeof(*best_clock));
798 max_n = limit->n.max;
799 /* based on hardware requirement, prefer smaller n to precision */
800 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
801 /* based on hardware requirement, prefere larger m1,m2 */
802 for (clock.m1 = limit->m1.max;
803 clock.m1 >= limit->m1.min; clock.m1--) {
804 for (clock.m2 = limit->m2.max;
805 clock.m2 >= limit->m2.min; clock.m2--) {
806 for (clock.p1 = limit->p1.max;
807 clock.p1 >= limit->p1.min; clock.p1--) {
808 int this_err;
809
810 i9xx_clock(refclk, &clock);
811 if (!intel_PLL_is_valid(dev, limit,
812 &clock))
813 continue;
814
815 this_err = abs(clock.dot - target);
816 if (this_err < err_most) {
817 *best_clock = clock;
818 err_most = this_err;
819 max_n = clock.n;
820 found = true;
821 }
822 }
823 }
824 }
825 }
826 return found;
827 }
828
829 /*
830 * Check if the calculated PLL configuration is more optimal compared to the
831 * best configuration and error found so far. Return the calculated error.
832 */
833 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
834 const intel_clock_t *calculated_clock,
835 const intel_clock_t *best_clock,
836 unsigned int best_error_ppm,
837 unsigned int *error_ppm)
838 {
839 /*
840 * For CHV ignore the error and consider only the P value.
841 * Prefer a bigger P value based on HW requirements.
842 */
843 if (IS_CHERRYVIEW(dev)) {
844 *error_ppm = 0;
845
846 return calculated_clock->p > best_clock->p;
847 }
848
849 if (WARN_ON_ONCE(!target_freq))
850 return false;
851
852 *error_ppm = div_u64(1000000ULL *
853 abs(target_freq - calculated_clock->dot),
854 target_freq);
855 /*
856 * Prefer a better P value over a better (smaller) error if the error
857 * is small. Ensure this preference for future configurations too by
858 * setting the error to 0.
859 */
860 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
861 *error_ppm = 0;
862
863 return true;
864 }
865
866 return *error_ppm + 10 < best_error_ppm;
867 }
868
869 static bool
870 vlv_find_best_dpll(const intel_limit_t *limit,
871 struct intel_crtc_state *crtc_state,
872 int target, int refclk, intel_clock_t *match_clock,
873 intel_clock_t *best_clock)
874 {
875 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
876 struct drm_device *dev = crtc->base.dev;
877 intel_clock_t clock;
878 unsigned int bestppm = 1000000;
879 /* min update 19.2 MHz */
880 int max_n = min(limit->n.max, refclk / 19200);
881 bool found = false;
882
883 target *= 5; /* fast clock */
884
885 memset(best_clock, 0, sizeof(*best_clock));
886
887 /* based on hardware requirement, prefer smaller n to precision */
888 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
889 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
890 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
891 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
892 clock.p = clock.p1 * clock.p2;
893 /* based on hardware requirement, prefer bigger m1,m2 values */
894 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
895 unsigned int ppm;
896
897 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
898 refclk * clock.m1);
899
900 vlv_clock(refclk, &clock);
901
902 if (!intel_PLL_is_valid(dev, limit,
903 &clock))
904 continue;
905
906 if (!vlv_PLL_is_optimal(dev, target,
907 &clock,
908 best_clock,
909 bestppm, &ppm))
910 continue;
911
912 *best_clock = clock;
913 bestppm = ppm;
914 found = true;
915 }
916 }
917 }
918 }
919
920 return found;
921 }
922
923 static bool
924 chv_find_best_dpll(const intel_limit_t *limit,
925 struct intel_crtc_state *crtc_state,
926 int target, int refclk, intel_clock_t *match_clock,
927 intel_clock_t *best_clock)
928 {
929 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
930 struct drm_device *dev = crtc->base.dev;
931 unsigned int best_error_ppm;
932 intel_clock_t clock;
933 uint64_t m2;
934 int found = false;
935
936 memset(best_clock, 0, sizeof(*best_clock));
937 best_error_ppm = 1000000;
938
939 /*
940 * Based on hardware doc, the n always set to 1, and m1 always
941 * set to 2. If requires to support 200Mhz refclk, we need to
942 * revisit this because n may not 1 anymore.
943 */
944 clock.n = 1, clock.m1 = 2;
945 target *= 5; /* fast clock */
946
947 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
948 for (clock.p2 = limit->p2.p2_fast;
949 clock.p2 >= limit->p2.p2_slow;
950 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
951 unsigned int error_ppm;
952
953 clock.p = clock.p1 * clock.p2;
954
955 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
956 clock.n) << 22, refclk * clock.m1);
957
958 if (m2 > INT_MAX/clock.m1)
959 continue;
960
961 clock.m2 = m2;
962
963 chv_clock(refclk, &clock);
964
965 if (!intel_PLL_is_valid(dev, limit, &clock))
966 continue;
967
968 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
969 best_error_ppm, &error_ppm))
970 continue;
971
972 *best_clock = clock;
973 best_error_ppm = error_ppm;
974 found = true;
975 }
976 }
977
978 return found;
979 }
980
981 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
982 intel_clock_t *best_clock)
983 {
984 int refclk = i9xx_get_refclk(crtc_state, 0);
985
986 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
987 target_clock, refclk, NULL, best_clock);
988 }
989
990 bool intel_crtc_active(struct drm_crtc *crtc)
991 {
992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
993
994 /* Be paranoid as we can arrive here with only partial
995 * state retrieved from the hardware during setup.
996 *
997 * We can ditch the adjusted_mode.crtc_clock check as soon
998 * as Haswell has gained clock readout/fastboot support.
999 *
1000 * We can ditch the crtc->primary->fb check as soon as we can
1001 * properly reconstruct framebuffers.
1002 *
1003 * FIXME: The intel_crtc->active here should be switched to
1004 * crtc->state->active once we have proper CRTC states wired up
1005 * for atomic.
1006 */
1007 return intel_crtc->active && crtc->primary->state->fb &&
1008 intel_crtc->config->base.adjusted_mode.crtc_clock;
1009 }
1010
1011 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1012 enum pipe pipe)
1013 {
1014 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1016
1017 return intel_crtc->config->cpu_transcoder;
1018 }
1019
1020 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1021 {
1022 struct drm_i915_private *dev_priv = dev->dev_private;
1023 u32 reg = PIPEDSL(pipe);
1024 u32 line1, line2;
1025 u32 line_mask;
1026
1027 if (IS_GEN2(dev))
1028 line_mask = DSL_LINEMASK_GEN2;
1029 else
1030 line_mask = DSL_LINEMASK_GEN3;
1031
1032 line1 = I915_READ(reg) & line_mask;
1033 mdelay(5);
1034 line2 = I915_READ(reg) & line_mask;
1035
1036 return line1 == line2;
1037 }
1038
1039 /*
1040 * intel_wait_for_pipe_off - wait for pipe to turn off
1041 * @crtc: crtc whose pipe to wait for
1042 *
1043 * After disabling a pipe, we can't wait for vblank in the usual way,
1044 * spinning on the vblank interrupt status bit, since we won't actually
1045 * see an interrupt when the pipe is disabled.
1046 *
1047 * On Gen4 and above:
1048 * wait for the pipe register state bit to turn off
1049 *
1050 * Otherwise:
1051 * wait for the display line value to settle (it usually
1052 * ends up stopping at the start of the next frame).
1053 *
1054 */
1055 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1056 {
1057 struct drm_device *dev = crtc->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1060 enum pipe pipe = crtc->pipe;
1061
1062 if (INTEL_INFO(dev)->gen >= 4) {
1063 int reg = PIPECONF(cpu_transcoder);
1064
1065 /* Wait for the Pipe State to go off */
1066 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1067 100))
1068 WARN(1, "pipe_off wait timed out\n");
1069 } else {
1070 /* Wait for the display line to settle */
1071 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1072 WARN(1, "pipe_off wait timed out\n");
1073 }
1074 }
1075
1076 /*
1077 * ibx_digital_port_connected - is the specified port connected?
1078 * @dev_priv: i915 private structure
1079 * @port: the port to test
1080 *
1081 * Returns true if @port is connected, false otherwise.
1082 */
1083 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1084 struct intel_digital_port *port)
1085 {
1086 u32 bit;
1087
1088 if (HAS_PCH_IBX(dev_priv->dev)) {
1089 switch (port->port) {
1090 case PORT_B:
1091 bit = SDE_PORTB_HOTPLUG;
1092 break;
1093 case PORT_C:
1094 bit = SDE_PORTC_HOTPLUG;
1095 break;
1096 case PORT_D:
1097 bit = SDE_PORTD_HOTPLUG;
1098 break;
1099 default:
1100 return true;
1101 }
1102 } else {
1103 switch (port->port) {
1104 case PORT_B:
1105 bit = SDE_PORTB_HOTPLUG_CPT;
1106 break;
1107 case PORT_C:
1108 bit = SDE_PORTC_HOTPLUG_CPT;
1109 break;
1110 case PORT_D:
1111 bit = SDE_PORTD_HOTPLUG_CPT;
1112 break;
1113 default:
1114 return true;
1115 }
1116 }
1117
1118 return I915_READ(SDEISR) & bit;
1119 }
1120
1121 static const char *state_string(bool enabled)
1122 {
1123 return enabled ? "on" : "off";
1124 }
1125
1126 /* Only for pre-ILK configs */
1127 void assert_pll(struct drm_i915_private *dev_priv,
1128 enum pipe pipe, bool state)
1129 {
1130 int reg;
1131 u32 val;
1132 bool cur_state;
1133
1134 reg = DPLL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & DPLL_VCO_ENABLE);
1137 I915_STATE_WARN(cur_state != state,
1138 "PLL state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140 }
1141
1142 /* XXX: the dsi pll is shared between MIPI DSI ports */
1143 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1144 {
1145 u32 val;
1146 bool cur_state;
1147
1148 mutex_lock(&dev_priv->sb_lock);
1149 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1150 mutex_unlock(&dev_priv->sb_lock);
1151
1152 cur_state = val & DSI_PLL_VCO_EN;
1153 I915_STATE_WARN(cur_state != state,
1154 "DSI PLL state assertion failure (expected %s, current %s)\n",
1155 state_string(state), state_string(cur_state));
1156 }
1157 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1158 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1159
1160 struct intel_shared_dpll *
1161 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1162 {
1163 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1164
1165 if (crtc->config->shared_dpll < 0)
1166 return NULL;
1167
1168 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1169 }
1170
1171 /* For ILK+ */
1172 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1173 struct intel_shared_dpll *pll,
1174 bool state)
1175 {
1176 bool cur_state;
1177 struct intel_dpll_hw_state hw_state;
1178
1179 if (WARN (!pll,
1180 "asserting DPLL %s with no DPLL\n", state_string(state)))
1181 return;
1182
1183 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1184 I915_STATE_WARN(cur_state != state,
1185 "%s assertion failure (expected %s, current %s)\n",
1186 pll->name, state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1190 enum pipe pipe, bool state)
1191 {
1192 int reg;
1193 u32 val;
1194 bool cur_state;
1195 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1196 pipe);
1197
1198 if (HAS_DDI(dev_priv->dev)) {
1199 /* DDI does not have a specific FDI_TX register */
1200 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1201 val = I915_READ(reg);
1202 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1203 } else {
1204 reg = FDI_TX_CTL(pipe);
1205 val = I915_READ(reg);
1206 cur_state = !!(val & FDI_TX_ENABLE);
1207 }
1208 I915_STATE_WARN(cur_state != state,
1209 "FDI TX state assertion failure (expected %s, current %s)\n",
1210 state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1213 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1214
1215 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1216 enum pipe pipe, bool state)
1217 {
1218 int reg;
1219 u32 val;
1220 bool cur_state;
1221
1222 reg = FDI_RX_CTL(pipe);
1223 val = I915_READ(reg);
1224 cur_state = !!(val & FDI_RX_ENABLE);
1225 I915_STATE_WARN(cur_state != state,
1226 "FDI RX state assertion failure (expected %s, current %s)\n",
1227 state_string(state), state_string(cur_state));
1228 }
1229 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1230 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1231
1232 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 int reg;
1236 u32 val;
1237
1238 /* ILK FDI PLL is always enabled */
1239 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1240 return;
1241
1242 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1243 if (HAS_DDI(dev_priv->dev))
1244 return;
1245
1246 reg = FDI_TX_CTL(pipe);
1247 val = I915_READ(reg);
1248 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1249 }
1250
1251 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1252 enum pipe pipe, bool state)
1253 {
1254 int reg;
1255 u32 val;
1256 bool cur_state;
1257
1258 reg = FDI_RX_CTL(pipe);
1259 val = I915_READ(reg);
1260 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1261 I915_STATE_WARN(cur_state != state,
1262 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1263 state_string(state), state_string(cur_state));
1264 }
1265
1266 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1267 enum pipe pipe)
1268 {
1269 struct drm_device *dev = dev_priv->dev;
1270 int pp_reg;
1271 u32 val;
1272 enum pipe panel_pipe = PIPE_A;
1273 bool locked = true;
1274
1275 if (WARN_ON(HAS_DDI(dev)))
1276 return;
1277
1278 if (HAS_PCH_SPLIT(dev)) {
1279 u32 port_sel;
1280
1281 pp_reg = PCH_PP_CONTROL;
1282 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1283
1284 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1285 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1286 panel_pipe = PIPE_B;
1287 /* XXX: else fix for eDP */
1288 } else if (IS_VALLEYVIEW(dev)) {
1289 /* presumably write lock depends on pipe, not port select */
1290 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1291 panel_pipe = pipe;
1292 } else {
1293 pp_reg = PP_CONTROL;
1294 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1295 panel_pipe = PIPE_B;
1296 }
1297
1298 val = I915_READ(pp_reg);
1299 if (!(val & PANEL_POWER_ON) ||
1300 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1301 locked = false;
1302
1303 I915_STATE_WARN(panel_pipe == pipe && locked,
1304 "panel assertion failure, pipe %c regs locked\n",
1305 pipe_name(pipe));
1306 }
1307
1308 static void assert_cursor(struct drm_i915_private *dev_priv,
1309 enum pipe pipe, bool state)
1310 {
1311 struct drm_device *dev = dev_priv->dev;
1312 bool cur_state;
1313
1314 if (IS_845G(dev) || IS_I865G(dev))
1315 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1316 else
1317 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1318
1319 I915_STATE_WARN(cur_state != state,
1320 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1321 pipe_name(pipe), state_string(state), state_string(cur_state));
1322 }
1323 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1324 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1325
1326 void assert_pipe(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328 {
1329 int reg;
1330 u32 val;
1331 bool cur_state;
1332 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1333 pipe);
1334
1335 /* if we need the pipe quirk it must be always on */
1336 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1338 state = true;
1339
1340 if (!intel_display_power_is_enabled(dev_priv,
1341 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1342 cur_state = false;
1343 } else {
1344 reg = PIPECONF(cpu_transcoder);
1345 val = I915_READ(reg);
1346 cur_state = !!(val & PIPECONF_ENABLE);
1347 }
1348
1349 I915_STATE_WARN(cur_state != state,
1350 "pipe %c assertion failure (expected %s, current %s)\n",
1351 pipe_name(pipe), state_string(state), state_string(cur_state));
1352 }
1353
1354 static void assert_plane(struct drm_i915_private *dev_priv,
1355 enum plane plane, bool state)
1356 {
1357 int reg;
1358 u32 val;
1359 bool cur_state;
1360
1361 reg = DSPCNTR(plane);
1362 val = I915_READ(reg);
1363 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1364 I915_STATE_WARN(cur_state != state,
1365 "plane %c assertion failure (expected %s, current %s)\n",
1366 plane_name(plane), state_string(state), state_string(cur_state));
1367 }
1368
1369 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1370 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1371
1372 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe)
1374 {
1375 struct drm_device *dev = dev_priv->dev;
1376 int reg, i;
1377 u32 val;
1378 int cur_pipe;
1379
1380 /* Primary planes are fixed to pipes on gen4+ */
1381 if (INTEL_INFO(dev)->gen >= 4) {
1382 reg = DSPCNTR(pipe);
1383 val = I915_READ(reg);
1384 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1385 "plane %c assertion failure, should be disabled but not\n",
1386 plane_name(pipe));
1387 return;
1388 }
1389
1390 /* Need to check both planes against the pipe */
1391 for_each_pipe(dev_priv, i) {
1392 reg = DSPCNTR(i);
1393 val = I915_READ(reg);
1394 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1395 DISPPLANE_SEL_PIPE_SHIFT;
1396 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1397 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1398 plane_name(i), pipe_name(pipe));
1399 }
1400 }
1401
1402 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1403 enum pipe pipe)
1404 {
1405 struct drm_device *dev = dev_priv->dev;
1406 int reg, sprite;
1407 u32 val;
1408
1409 if (INTEL_INFO(dev)->gen >= 9) {
1410 for_each_sprite(dev_priv, pipe, sprite) {
1411 val = I915_READ(PLANE_CTL(pipe, sprite));
1412 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1413 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1414 sprite, pipe_name(pipe));
1415 }
1416 } else if (IS_VALLEYVIEW(dev)) {
1417 for_each_sprite(dev_priv, pipe, sprite) {
1418 reg = SPCNTR(pipe, sprite);
1419 val = I915_READ(reg);
1420 I915_STATE_WARN(val & SP_ENABLE,
1421 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1422 sprite_name(pipe, sprite), pipe_name(pipe));
1423 }
1424 } else if (INTEL_INFO(dev)->gen >= 7) {
1425 reg = SPRCTL(pipe);
1426 val = I915_READ(reg);
1427 I915_STATE_WARN(val & SPRITE_ENABLE,
1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429 plane_name(pipe), pipe_name(pipe));
1430 } else if (INTEL_INFO(dev)->gen >= 5) {
1431 reg = DVSCNTR(pipe);
1432 val = I915_READ(reg);
1433 I915_STATE_WARN(val & DVS_ENABLE,
1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435 plane_name(pipe), pipe_name(pipe));
1436 }
1437 }
1438
1439 static void assert_vblank_disabled(struct drm_crtc *crtc)
1440 {
1441 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1442 drm_crtc_vblank_put(crtc);
1443 }
1444
1445 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1446 {
1447 u32 val;
1448 bool enabled;
1449
1450 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1451
1452 val = I915_READ(PCH_DREF_CONTROL);
1453 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1454 DREF_SUPERSPREAD_SOURCE_MASK));
1455 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1456 }
1457
1458 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1459 enum pipe pipe)
1460 {
1461 int reg;
1462 u32 val;
1463 bool enabled;
1464
1465 reg = PCH_TRANSCONF(pipe);
1466 val = I915_READ(reg);
1467 enabled = !!(val & TRANS_ENABLE);
1468 I915_STATE_WARN(enabled,
1469 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1470 pipe_name(pipe));
1471 }
1472
1473 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1474 enum pipe pipe, u32 port_sel, u32 val)
1475 {
1476 if ((val & DP_PORT_EN) == 0)
1477 return false;
1478
1479 if (HAS_PCH_CPT(dev_priv->dev)) {
1480 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1481 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1482 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1483 return false;
1484 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1485 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1486 return false;
1487 } else {
1488 if ((val & DP_PIPE_MASK) != (pipe << 30))
1489 return false;
1490 }
1491 return true;
1492 }
1493
1494 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1495 enum pipe pipe, u32 val)
1496 {
1497 if ((val & SDVO_ENABLE) == 0)
1498 return false;
1499
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1502 return false;
1503 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1504 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1505 return false;
1506 } else {
1507 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1508 return false;
1509 }
1510 return true;
1511 }
1512
1513 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1514 enum pipe pipe, u32 val)
1515 {
1516 if ((val & LVDS_PORT_EN) == 0)
1517 return false;
1518
1519 if (HAS_PCH_CPT(dev_priv->dev)) {
1520 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1521 return false;
1522 } else {
1523 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1524 return false;
1525 }
1526 return true;
1527 }
1528
1529 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1530 enum pipe pipe, u32 val)
1531 {
1532 if ((val & ADPA_DAC_ENABLE) == 0)
1533 return false;
1534 if (HAS_PCH_CPT(dev_priv->dev)) {
1535 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1536 return false;
1537 } else {
1538 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1539 return false;
1540 }
1541 return true;
1542 }
1543
1544 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1545 enum pipe pipe, int reg, u32 port_sel)
1546 {
1547 u32 val = I915_READ(reg);
1548 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1549 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1550 reg, pipe_name(pipe));
1551
1552 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1553 && (val & DP_PIPEB_SELECT),
1554 "IBX PCH dp port still using transcoder B\n");
1555 }
1556
1557 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1558 enum pipe pipe, int reg)
1559 {
1560 u32 val = I915_READ(reg);
1561 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1562 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1563 reg, pipe_name(pipe));
1564
1565 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1566 && (val & SDVO_PIPE_B_SELECT),
1567 "IBX PCH hdmi port still using transcoder B\n");
1568 }
1569
1570 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1571 enum pipe pipe)
1572 {
1573 int reg;
1574 u32 val;
1575
1576 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1577 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1579
1580 reg = PCH_ADPA;
1581 val = I915_READ(reg);
1582 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583 "PCH VGA enabled on transcoder %c, should be disabled\n",
1584 pipe_name(pipe));
1585
1586 reg = PCH_LVDS;
1587 val = I915_READ(reg);
1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590 pipe_name(pipe));
1591
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void intel_init_dpio(struct drm_device *dev)
1598 {
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600
1601 if (!IS_VALLEYVIEW(dev))
1602 return;
1603
1604 /*
1605 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1606 * CHV x1 PHY (DP/HDMI D)
1607 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1608 */
1609 if (IS_CHERRYVIEW(dev)) {
1610 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1611 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1612 } else {
1613 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1614 }
1615 }
1616
1617 static void vlv_enable_pll(struct intel_crtc *crtc,
1618 const struct intel_crtc_state *pipe_config)
1619 {
1620 struct drm_device *dev = crtc->base.dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 int reg = DPLL(crtc->pipe);
1623 u32 dpll = pipe_config->dpll_hw_state.dpll;
1624
1625 assert_pipe_disabled(dev_priv, crtc->pipe);
1626
1627 /* No really, not for ILK+ */
1628 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1629
1630 /* PLL is protected by panel, make sure we can write it */
1631 if (IS_MOBILE(dev_priv->dev))
1632 assert_panel_unlocked(dev_priv, crtc->pipe);
1633
1634 I915_WRITE(reg, dpll);
1635 POSTING_READ(reg);
1636 udelay(150);
1637
1638 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1639 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1640
1641 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1642 POSTING_READ(DPLL_MD(crtc->pipe));
1643
1644 /* We do this three times for luck */
1645 I915_WRITE(reg, dpll);
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
1648 I915_WRITE(reg, dpll);
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
1651 I915_WRITE(reg, dpll);
1652 POSTING_READ(reg);
1653 udelay(150); /* wait for warmup */
1654 }
1655
1656 static void chv_enable_pll(struct intel_crtc *crtc,
1657 const struct intel_crtc_state *pipe_config)
1658 {
1659 struct drm_device *dev = crtc->base.dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 int pipe = crtc->pipe;
1662 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1663 u32 tmp;
1664
1665 assert_pipe_disabled(dev_priv, crtc->pipe);
1666
1667 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1668
1669 mutex_lock(&dev_priv->sb_lock);
1670
1671 /* Enable back the 10bit clock to display controller */
1672 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1673 tmp |= DPIO_DCLKP_EN;
1674 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1675
1676 mutex_unlock(&dev_priv->sb_lock);
1677
1678 /*
1679 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1680 */
1681 udelay(1);
1682
1683 /* Enable PLL */
1684 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1685
1686 /* Check PLL is locked */
1687 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1688 DRM_ERROR("PLL %d failed to lock\n", pipe);
1689
1690 /* not sure when this should be written */
1691 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1692 POSTING_READ(DPLL_MD(pipe));
1693 }
1694
1695 static int intel_num_dvo_pipes(struct drm_device *dev)
1696 {
1697 struct intel_crtc *crtc;
1698 int count = 0;
1699
1700 for_each_intel_crtc(dev, crtc)
1701 count += crtc->base.state->active &&
1702 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1703
1704 return count;
1705 }
1706
1707 static void i9xx_enable_pll(struct intel_crtc *crtc)
1708 {
1709 struct drm_device *dev = crtc->base.dev;
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 int reg = DPLL(crtc->pipe);
1712 u32 dpll = crtc->config->dpll_hw_state.dpll;
1713
1714 assert_pipe_disabled(dev_priv, crtc->pipe);
1715
1716 /* No really, not for ILK+ */
1717 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1718
1719 /* PLL is protected by panel, make sure we can write it */
1720 if (IS_MOBILE(dev) && !IS_I830(dev))
1721 assert_panel_unlocked(dev_priv, crtc->pipe);
1722
1723 /* Enable DVO 2x clock on both PLLs if necessary */
1724 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1725 /*
1726 * It appears to be important that we don't enable this
1727 * for the current pipe before otherwise configuring the
1728 * PLL. No idea how this should be handled if multiple
1729 * DVO outputs are enabled simultaneosly.
1730 */
1731 dpll |= DPLL_DVO_2X_MODE;
1732 I915_WRITE(DPLL(!crtc->pipe),
1733 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1734 }
1735
1736 /* Wait for the clocks to stabilize. */
1737 POSTING_READ(reg);
1738 udelay(150);
1739
1740 if (INTEL_INFO(dev)->gen >= 4) {
1741 I915_WRITE(DPLL_MD(crtc->pipe),
1742 crtc->config->dpll_hw_state.dpll_md);
1743 } else {
1744 /* The pixel multiplier can only be updated once the
1745 * DPLL is enabled and the clocks are stable.
1746 *
1747 * So write it again.
1748 */
1749 I915_WRITE(reg, dpll);
1750 }
1751
1752 /* We do this three times for luck */
1753 I915_WRITE(reg, dpll);
1754 POSTING_READ(reg);
1755 udelay(150); /* wait for warmup */
1756 I915_WRITE(reg, dpll);
1757 POSTING_READ(reg);
1758 udelay(150); /* wait for warmup */
1759 I915_WRITE(reg, dpll);
1760 POSTING_READ(reg);
1761 udelay(150); /* wait for warmup */
1762 }
1763
1764 /**
1765 * i9xx_disable_pll - disable a PLL
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe PLL to disable
1768 *
1769 * Disable the PLL for @pipe, making sure the pipe is off first.
1770 *
1771 * Note! This is for pre-ILK only.
1772 */
1773 static void i9xx_disable_pll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 enum pipe pipe = crtc->pipe;
1778
1779 /* Disable DVO 2x clock on both PLLs if necessary */
1780 if (IS_I830(dev) &&
1781 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1782 !intel_num_dvo_pipes(dev)) {
1783 I915_WRITE(DPLL(PIPE_B),
1784 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1785 I915_WRITE(DPLL(PIPE_A),
1786 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1787 }
1788
1789 /* Don't disable pipe or pipe PLLs if needed */
1790 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1791 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1792 return;
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
1797 I915_WRITE(DPLL(pipe), 0);
1798 POSTING_READ(DPLL(pipe));
1799 }
1800
1801 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1802 {
1803 u32 val = 0;
1804
1805 /* Make sure the pipe isn't still relying on us */
1806 assert_pipe_disabled(dev_priv, pipe);
1807
1808 /*
1809 * Leave integrated clock source and reference clock enabled for pipe B.
1810 * The latter is needed for VGA hotplug / manual detection.
1811 */
1812 if (pipe == PIPE_B)
1813 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1814 I915_WRITE(DPLL(pipe), val);
1815 POSTING_READ(DPLL(pipe));
1816
1817 }
1818
1819 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1820 {
1821 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1822 u32 val;
1823
1824 /* Make sure the pipe isn't still relying on us */
1825 assert_pipe_disabled(dev_priv, pipe);
1826
1827 /* Set PLL en = 0 */
1828 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1829 if (pipe != PIPE_A)
1830 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1831 I915_WRITE(DPLL(pipe), val);
1832 POSTING_READ(DPLL(pipe));
1833
1834 mutex_lock(&dev_priv->sb_lock);
1835
1836 /* Disable 10bit clock to display controller */
1837 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1838 val &= ~DPIO_DCLKP_EN;
1839 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1840
1841 /* disable left/right clock distribution */
1842 if (pipe != PIPE_B) {
1843 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1844 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1845 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1846 } else {
1847 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1848 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1849 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1850 }
1851
1852 mutex_unlock(&dev_priv->sb_lock);
1853 }
1854
1855 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1856 struct intel_digital_port *dport,
1857 unsigned int expected_mask)
1858 {
1859 u32 port_mask;
1860 int dpll_reg;
1861
1862 switch (dport->port) {
1863 case PORT_B:
1864 port_mask = DPLL_PORTB_READY_MASK;
1865 dpll_reg = DPLL(0);
1866 break;
1867 case PORT_C:
1868 port_mask = DPLL_PORTC_READY_MASK;
1869 dpll_reg = DPLL(0);
1870 expected_mask <<= 4;
1871 break;
1872 case PORT_D:
1873 port_mask = DPLL_PORTD_READY_MASK;
1874 dpll_reg = DPIO_PHY_STATUS;
1875 break;
1876 default:
1877 BUG();
1878 }
1879
1880 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1881 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1882 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1883 }
1884
1885 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1886 {
1887 struct drm_device *dev = crtc->base.dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1890
1891 if (WARN_ON(pll == NULL))
1892 return;
1893
1894 WARN_ON(!pll->config.crtc_mask);
1895 if (pll->active == 0) {
1896 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1897 WARN_ON(pll->on);
1898 assert_shared_dpll_disabled(dev_priv, pll);
1899
1900 pll->mode_set(dev_priv, pll);
1901 }
1902 }
1903
1904 /**
1905 * intel_enable_shared_dpll - enable PCH PLL
1906 * @dev_priv: i915 private structure
1907 * @pipe: pipe PLL to enable
1908 *
1909 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1910 * drives the transcoder clock.
1911 */
1912 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1913 {
1914 struct drm_device *dev = crtc->base.dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1917
1918 if (WARN_ON(pll == NULL))
1919 return;
1920
1921 if (WARN_ON(pll->config.crtc_mask == 0))
1922 return;
1923
1924 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1925 pll->name, pll->active, pll->on,
1926 crtc->base.base.id);
1927
1928 if (pll->active++) {
1929 WARN_ON(!pll->on);
1930 assert_shared_dpll_enabled(dev_priv, pll);
1931 return;
1932 }
1933 WARN_ON(pll->on);
1934
1935 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1936
1937 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1938 pll->enable(dev_priv, pll);
1939 pll->on = true;
1940 }
1941
1942 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1943 {
1944 struct drm_device *dev = crtc->base.dev;
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1947
1948 /* PCH only available on ILK+ */
1949 BUG_ON(INTEL_INFO(dev)->gen < 5);
1950 if (WARN_ON(pll == NULL))
1951 return;
1952
1953 if (WARN_ON(pll->config.crtc_mask == 0))
1954 return;
1955
1956 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1957 pll->name, pll->active, pll->on,
1958 crtc->base.base.id);
1959
1960 if (WARN_ON(pll->active == 0)) {
1961 assert_shared_dpll_disabled(dev_priv, pll);
1962 return;
1963 }
1964
1965 assert_shared_dpll_enabled(dev_priv, pll);
1966 WARN_ON(!pll->on);
1967 if (--pll->active)
1968 return;
1969
1970 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1971 pll->disable(dev_priv, pll);
1972 pll->on = false;
1973
1974 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1975 }
1976
1977 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1978 enum pipe pipe)
1979 {
1980 struct drm_device *dev = dev_priv->dev;
1981 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 uint32_t reg, val, pipeconf_val;
1984
1985 /* PCH only available on ILK+ */
1986 BUG_ON(!HAS_PCH_SPLIT(dev));
1987
1988 /* Make sure PCH DPLL is enabled */
1989 assert_shared_dpll_enabled(dev_priv,
1990 intel_crtc_to_shared_dpll(intel_crtc));
1991
1992 /* FDI must be feeding us bits for PCH ports */
1993 assert_fdi_tx_enabled(dev_priv, pipe);
1994 assert_fdi_rx_enabled(dev_priv, pipe);
1995
1996 if (HAS_PCH_CPT(dev)) {
1997 /* Workaround: Set the timing override bit before enabling the
1998 * pch transcoder. */
1999 reg = TRANS_CHICKEN2(pipe);
2000 val = I915_READ(reg);
2001 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2002 I915_WRITE(reg, val);
2003 }
2004
2005 reg = PCH_TRANSCONF(pipe);
2006 val = I915_READ(reg);
2007 pipeconf_val = I915_READ(PIPECONF(pipe));
2008
2009 if (HAS_PCH_IBX(dev_priv->dev)) {
2010 /*
2011 * Make the BPC in transcoder be consistent with
2012 * that in pipeconf reg. For HDMI we must use 8bpc
2013 * here for both 8bpc and 12bpc.
2014 */
2015 val &= ~PIPECONF_BPC_MASK;
2016 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2017 val |= PIPECONF_8BPC;
2018 else
2019 val |= pipeconf_val & PIPECONF_BPC_MASK;
2020 }
2021
2022 val &= ~TRANS_INTERLACE_MASK;
2023 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2024 if (HAS_PCH_IBX(dev_priv->dev) &&
2025 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2026 val |= TRANS_LEGACY_INTERLACED_ILK;
2027 else
2028 val |= TRANS_INTERLACED;
2029 else
2030 val |= TRANS_PROGRESSIVE;
2031
2032 I915_WRITE(reg, val | TRANS_ENABLE);
2033 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2034 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2035 }
2036
2037 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2038 enum transcoder cpu_transcoder)
2039 {
2040 u32 val, pipeconf_val;
2041
2042 /* PCH only available on ILK+ */
2043 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2044
2045 /* FDI must be feeding us bits for PCH ports */
2046 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2047 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2048
2049 /* Workaround: set timing override bit. */
2050 val = I915_READ(_TRANSA_CHICKEN2);
2051 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2052 I915_WRITE(_TRANSA_CHICKEN2, val);
2053
2054 val = TRANS_ENABLE;
2055 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2056
2057 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2058 PIPECONF_INTERLACED_ILK)
2059 val |= TRANS_INTERLACED;
2060 else
2061 val |= TRANS_PROGRESSIVE;
2062
2063 I915_WRITE(LPT_TRANSCONF, val);
2064 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2065 DRM_ERROR("Failed to enable PCH transcoder\n");
2066 }
2067
2068 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2069 enum pipe pipe)
2070 {
2071 struct drm_device *dev = dev_priv->dev;
2072 uint32_t reg, val;
2073
2074 /* FDI relies on the transcoder */
2075 assert_fdi_tx_disabled(dev_priv, pipe);
2076 assert_fdi_rx_disabled(dev_priv, pipe);
2077
2078 /* Ports must be off as well */
2079 assert_pch_ports_disabled(dev_priv, pipe);
2080
2081 reg = PCH_TRANSCONF(pipe);
2082 val = I915_READ(reg);
2083 val &= ~TRANS_ENABLE;
2084 I915_WRITE(reg, val);
2085 /* wait for PCH transcoder off, transcoder state */
2086 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2087 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2088
2089 if (!HAS_PCH_IBX(dev)) {
2090 /* Workaround: Clear the timing override chicken bit again. */
2091 reg = TRANS_CHICKEN2(pipe);
2092 val = I915_READ(reg);
2093 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094 I915_WRITE(reg, val);
2095 }
2096 }
2097
2098 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2099 {
2100 u32 val;
2101
2102 val = I915_READ(LPT_TRANSCONF);
2103 val &= ~TRANS_ENABLE;
2104 I915_WRITE(LPT_TRANSCONF, val);
2105 /* wait for PCH transcoder off, transcoder state */
2106 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2107 DRM_ERROR("Failed to disable PCH transcoder\n");
2108
2109 /* Workaround: clear timing override bit. */
2110 val = I915_READ(_TRANSA_CHICKEN2);
2111 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2112 I915_WRITE(_TRANSA_CHICKEN2, val);
2113 }
2114
2115 /**
2116 * intel_enable_pipe - enable a pipe, asserting requirements
2117 * @crtc: crtc responsible for the pipe
2118 *
2119 * Enable @crtc's pipe, making sure that various hardware specific requirements
2120 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2121 */
2122 static void intel_enable_pipe(struct intel_crtc *crtc)
2123 {
2124 struct drm_device *dev = crtc->base.dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 enum pipe pipe = crtc->pipe;
2127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2128 pipe);
2129 enum pipe pch_transcoder;
2130 int reg;
2131 u32 val;
2132
2133 assert_planes_disabled(dev_priv, pipe);
2134 assert_cursor_disabled(dev_priv, pipe);
2135 assert_sprites_disabled(dev_priv, pipe);
2136
2137 if (HAS_PCH_LPT(dev_priv->dev))
2138 pch_transcoder = TRANSCODER_A;
2139 else
2140 pch_transcoder = pipe;
2141
2142 /*
2143 * A pipe without a PLL won't actually be able to drive bits from
2144 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2145 * need the check.
2146 */
2147 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2148 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2149 assert_dsi_pll_enabled(dev_priv);
2150 else
2151 assert_pll_enabled(dev_priv, pipe);
2152 else {
2153 if (crtc->config->has_pch_encoder) {
2154 /* if driving the PCH, we need FDI enabled */
2155 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2156 assert_fdi_tx_pll_enabled(dev_priv,
2157 (enum pipe) cpu_transcoder);
2158 }
2159 /* FIXME: assert CPU port conditions for SNB+ */
2160 }
2161
2162 reg = PIPECONF(cpu_transcoder);
2163 val = I915_READ(reg);
2164 if (val & PIPECONF_ENABLE) {
2165 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2166 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2167 return;
2168 }
2169
2170 I915_WRITE(reg, val | PIPECONF_ENABLE);
2171 POSTING_READ(reg);
2172 }
2173
2174 /**
2175 * intel_disable_pipe - disable a pipe, asserting requirements
2176 * @crtc: crtc whose pipes is to be disabled
2177 *
2178 * Disable the pipe of @crtc, making sure that various hardware
2179 * specific requirements are met, if applicable, e.g. plane
2180 * disabled, panel fitter off, etc.
2181 *
2182 * Will wait until the pipe has shut down before returning.
2183 */
2184 static void intel_disable_pipe(struct intel_crtc *crtc)
2185 {
2186 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2187 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2188 enum pipe pipe = crtc->pipe;
2189 int reg;
2190 u32 val;
2191
2192 /*
2193 * Make sure planes won't keep trying to pump pixels to us,
2194 * or we might hang the display.
2195 */
2196 assert_planes_disabled(dev_priv, pipe);
2197 assert_cursor_disabled(dev_priv, pipe);
2198 assert_sprites_disabled(dev_priv, pipe);
2199
2200 reg = PIPECONF(cpu_transcoder);
2201 val = I915_READ(reg);
2202 if ((val & PIPECONF_ENABLE) == 0)
2203 return;
2204
2205 /*
2206 * Double wide has implications for planes
2207 * so best keep it disabled when not needed.
2208 */
2209 if (crtc->config->double_wide)
2210 val &= ~PIPECONF_DOUBLE_WIDE;
2211
2212 /* Don't disable pipe or pipe PLLs if needed */
2213 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2214 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2215 val &= ~PIPECONF_ENABLE;
2216
2217 I915_WRITE(reg, val);
2218 if ((val & PIPECONF_ENABLE) == 0)
2219 intel_wait_for_pipe_off(crtc);
2220 }
2221
2222 /**
2223 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2224 * @plane: plane to be enabled
2225 * @crtc: crtc for the plane
2226 *
2227 * Enable @plane on @crtc, making sure that the pipe is running first.
2228 */
2229 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2230 struct drm_crtc *crtc)
2231 {
2232 struct drm_device *dev = plane->dev;
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2235
2236 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2237 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2238 to_intel_plane_state(plane->state)->visible = true;
2239
2240 dev_priv->display.update_primary_plane(crtc, plane->fb,
2241 crtc->x, crtc->y);
2242 }
2243
2244 static bool need_vtd_wa(struct drm_device *dev)
2245 {
2246 #ifdef CONFIG_INTEL_IOMMU
2247 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2248 return true;
2249 #endif
2250 return false;
2251 }
2252
2253 unsigned int
2254 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2255 uint64_t fb_format_modifier)
2256 {
2257 unsigned int tile_height;
2258 uint32_t pixel_bytes;
2259
2260 switch (fb_format_modifier) {
2261 case DRM_FORMAT_MOD_NONE:
2262 tile_height = 1;
2263 break;
2264 case I915_FORMAT_MOD_X_TILED:
2265 tile_height = IS_GEN2(dev) ? 16 : 8;
2266 break;
2267 case I915_FORMAT_MOD_Y_TILED:
2268 tile_height = 32;
2269 break;
2270 case I915_FORMAT_MOD_Yf_TILED:
2271 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2272 switch (pixel_bytes) {
2273 default:
2274 case 1:
2275 tile_height = 64;
2276 break;
2277 case 2:
2278 case 4:
2279 tile_height = 32;
2280 break;
2281 case 8:
2282 tile_height = 16;
2283 break;
2284 case 16:
2285 WARN_ONCE(1,
2286 "128-bit pixels are not supported for display!");
2287 tile_height = 16;
2288 break;
2289 }
2290 break;
2291 default:
2292 MISSING_CASE(fb_format_modifier);
2293 tile_height = 1;
2294 break;
2295 }
2296
2297 return tile_height;
2298 }
2299
2300 unsigned int
2301 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2302 uint32_t pixel_format, uint64_t fb_format_modifier)
2303 {
2304 return ALIGN(height, intel_tile_height(dev, pixel_format,
2305 fb_format_modifier));
2306 }
2307
2308 static int
2309 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2310 const struct drm_plane_state *plane_state)
2311 {
2312 struct intel_rotation_info *info = &view->rotation_info;
2313
2314 *view = i915_ggtt_view_normal;
2315
2316 if (!plane_state)
2317 return 0;
2318
2319 if (!intel_rotation_90_or_270(plane_state->rotation))
2320 return 0;
2321
2322 *view = i915_ggtt_view_rotated;
2323
2324 info->height = fb->height;
2325 info->pixel_format = fb->pixel_format;
2326 info->pitch = fb->pitches[0];
2327 info->fb_modifier = fb->modifier[0];
2328
2329 return 0;
2330 }
2331
2332 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2333 {
2334 if (INTEL_INFO(dev_priv)->gen >= 9)
2335 return 256 * 1024;
2336 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2337 IS_VALLEYVIEW(dev_priv))
2338 return 128 * 1024;
2339 else if (INTEL_INFO(dev_priv)->gen >= 4)
2340 return 4 * 1024;
2341 else
2342 return 0;
2343 }
2344
2345 int
2346 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2347 struct drm_framebuffer *fb,
2348 const struct drm_plane_state *plane_state,
2349 struct intel_engine_cs *pipelined)
2350 {
2351 struct drm_device *dev = fb->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2354 struct i915_ggtt_view view;
2355 u32 alignment;
2356 int ret;
2357
2358 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2359
2360 switch (fb->modifier[0]) {
2361 case DRM_FORMAT_MOD_NONE:
2362 alignment = intel_linear_alignment(dev_priv);
2363 break;
2364 case I915_FORMAT_MOD_X_TILED:
2365 if (INTEL_INFO(dev)->gen >= 9)
2366 alignment = 256 * 1024;
2367 else {
2368 /* pin() will align the object as required by fence */
2369 alignment = 0;
2370 }
2371 break;
2372 case I915_FORMAT_MOD_Y_TILED:
2373 case I915_FORMAT_MOD_Yf_TILED:
2374 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2375 "Y tiling bo slipped through, driver bug!\n"))
2376 return -EINVAL;
2377 alignment = 1 * 1024 * 1024;
2378 break;
2379 default:
2380 MISSING_CASE(fb->modifier[0]);
2381 return -EINVAL;
2382 }
2383
2384 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2385 if (ret)
2386 return ret;
2387
2388 /* Note that the w/a also requires 64 PTE of padding following the
2389 * bo. We currently fill all unused PTE with the shadow page and so
2390 * we should always have valid PTE following the scanout preventing
2391 * the VT-d warning.
2392 */
2393 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2394 alignment = 256 * 1024;
2395
2396 /*
2397 * Global gtt pte registers are special registers which actually forward
2398 * writes to a chunk of system memory. Which means that there is no risk
2399 * that the register values disappear as soon as we call
2400 * intel_runtime_pm_put(), so it is correct to wrap only the
2401 * pin/unpin/fence and not more.
2402 */
2403 intel_runtime_pm_get(dev_priv);
2404
2405 dev_priv->mm.interruptible = false;
2406 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2407 &view);
2408 if (ret)
2409 goto err_interruptible;
2410
2411 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2412 * fence, whereas 965+ only requires a fence if using
2413 * framebuffer compression. For simplicity, we always install
2414 * a fence as the cost is not that onerous.
2415 */
2416 ret = i915_gem_object_get_fence(obj);
2417 if (ret)
2418 goto err_unpin;
2419
2420 i915_gem_object_pin_fence(obj);
2421
2422 dev_priv->mm.interruptible = true;
2423 intel_runtime_pm_put(dev_priv);
2424 return 0;
2425
2426 err_unpin:
2427 i915_gem_object_unpin_from_display_plane(obj, &view);
2428 err_interruptible:
2429 dev_priv->mm.interruptible = true;
2430 intel_runtime_pm_put(dev_priv);
2431 return ret;
2432 }
2433
2434 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2435 const struct drm_plane_state *plane_state)
2436 {
2437 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2438 struct i915_ggtt_view view;
2439 int ret;
2440
2441 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2442
2443 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2444 WARN_ONCE(ret, "Couldn't get view from plane state!");
2445
2446 i915_gem_object_unpin_fence(obj);
2447 i915_gem_object_unpin_from_display_plane(obj, &view);
2448 }
2449
2450 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451 * is assumed to be a power-of-two. */
2452 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453 int *x, int *y,
2454 unsigned int tiling_mode,
2455 unsigned int cpp,
2456 unsigned int pitch)
2457 {
2458 if (tiling_mode != I915_TILING_NONE) {
2459 unsigned int tile_rows, tiles;
2460
2461 tile_rows = *y / 8;
2462 *y %= 8;
2463
2464 tiles = *x / (512/cpp);
2465 *x %= 512/cpp;
2466
2467 return tile_rows * pitch * 8 + tiles * 4096;
2468 } else {
2469 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2470 unsigned int offset;
2471
2472 offset = *y * pitch + *x * cpp;
2473 *y = (offset & alignment) / pitch;
2474 *x = ((offset & alignment) - *y * pitch) / cpp;
2475 return offset & ~alignment;
2476 }
2477 }
2478
2479 static int i9xx_format_to_fourcc(int format)
2480 {
2481 switch (format) {
2482 case DISPPLANE_8BPP:
2483 return DRM_FORMAT_C8;
2484 case DISPPLANE_BGRX555:
2485 return DRM_FORMAT_XRGB1555;
2486 case DISPPLANE_BGRX565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case DISPPLANE_BGRX888:
2490 return DRM_FORMAT_XRGB8888;
2491 case DISPPLANE_RGBX888:
2492 return DRM_FORMAT_XBGR8888;
2493 case DISPPLANE_BGRX101010:
2494 return DRM_FORMAT_XRGB2101010;
2495 case DISPPLANE_RGBX101010:
2496 return DRM_FORMAT_XBGR2101010;
2497 }
2498 }
2499
2500 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501 {
2502 switch (format) {
2503 case PLANE_CTL_FORMAT_RGB_565:
2504 return DRM_FORMAT_RGB565;
2505 default:
2506 case PLANE_CTL_FORMAT_XRGB_8888:
2507 if (rgb_order) {
2508 if (alpha)
2509 return DRM_FORMAT_ABGR8888;
2510 else
2511 return DRM_FORMAT_XBGR8888;
2512 } else {
2513 if (alpha)
2514 return DRM_FORMAT_ARGB8888;
2515 else
2516 return DRM_FORMAT_XRGB8888;
2517 }
2518 case PLANE_CTL_FORMAT_XRGB_2101010:
2519 if (rgb_order)
2520 return DRM_FORMAT_XBGR2101010;
2521 else
2522 return DRM_FORMAT_XRGB2101010;
2523 }
2524 }
2525
2526 static bool
2527 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528 struct intel_initial_plane_config *plane_config)
2529 {
2530 struct drm_device *dev = crtc->base.dev;
2531 struct drm_i915_gem_object *obj = NULL;
2532 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2533 struct drm_framebuffer *fb = &plane_config->fb->base;
2534 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2535 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2536 PAGE_SIZE);
2537
2538 size_aligned -= base_aligned;
2539
2540 if (plane_config->size == 0)
2541 return false;
2542
2543 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2544 base_aligned,
2545 base_aligned,
2546 size_aligned);
2547 if (!obj)
2548 return false;
2549
2550 obj->tiling_mode = plane_config->tiling;
2551 if (obj->tiling_mode == I915_TILING_X)
2552 obj->stride = fb->pitches[0];
2553
2554 mode_cmd.pixel_format = fb->pixel_format;
2555 mode_cmd.width = fb->width;
2556 mode_cmd.height = fb->height;
2557 mode_cmd.pitches[0] = fb->pitches[0];
2558 mode_cmd.modifier[0] = fb->modifier[0];
2559 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2560
2561 mutex_lock(&dev->struct_mutex);
2562 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2563 &mode_cmd, obj)) {
2564 DRM_DEBUG_KMS("intel fb init failed\n");
2565 goto out_unref_obj;
2566 }
2567 mutex_unlock(&dev->struct_mutex);
2568
2569 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2570 return true;
2571
2572 out_unref_obj:
2573 drm_gem_object_unreference(&obj->base);
2574 mutex_unlock(&dev->struct_mutex);
2575 return false;
2576 }
2577
2578 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2579 static void
2580 update_state_fb(struct drm_plane *plane)
2581 {
2582 if (plane->fb == plane->state->fb)
2583 return;
2584
2585 if (plane->state->fb)
2586 drm_framebuffer_unreference(plane->state->fb);
2587 plane->state->fb = plane->fb;
2588 if (plane->state->fb)
2589 drm_framebuffer_reference(plane->state->fb);
2590 }
2591
2592 static void
2593 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2594 struct intel_initial_plane_config *plane_config)
2595 {
2596 struct drm_device *dev = intel_crtc->base.dev;
2597 struct drm_i915_private *dev_priv = dev->dev_private;
2598 struct drm_crtc *c;
2599 struct intel_crtc *i;
2600 struct drm_i915_gem_object *obj;
2601 struct drm_plane *primary = intel_crtc->base.primary;
2602 struct drm_framebuffer *fb;
2603
2604 if (!plane_config->fb)
2605 return;
2606
2607 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2608 fb = &plane_config->fb->base;
2609 goto valid_fb;
2610 }
2611
2612 kfree(plane_config->fb);
2613
2614 /*
2615 * Failed to alloc the obj, check to see if we should share
2616 * an fb with another CRTC instead
2617 */
2618 for_each_crtc(dev, c) {
2619 i = to_intel_crtc(c);
2620
2621 if (c == &intel_crtc->base)
2622 continue;
2623
2624 if (!i->active)
2625 continue;
2626
2627 fb = c->primary->fb;
2628 if (!fb)
2629 continue;
2630
2631 obj = intel_fb_obj(fb);
2632 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2633 drm_framebuffer_reference(fb);
2634 goto valid_fb;
2635 }
2636 }
2637
2638 return;
2639
2640 valid_fb:
2641 obj = intel_fb_obj(fb);
2642 if (obj->tiling_mode != I915_TILING_NONE)
2643 dev_priv->preserve_bios_swizzle = true;
2644
2645 primary->fb = fb;
2646 primary->crtc = primary->state->crtc = &intel_crtc->base;
2647 update_state_fb(primary);
2648 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2649 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2650 }
2651
2652 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2653 struct drm_framebuffer *fb,
2654 int x, int y)
2655 {
2656 struct drm_device *dev = crtc->dev;
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2659 struct drm_plane *primary = crtc->primary;
2660 bool visible = to_intel_plane_state(primary->state)->visible;
2661 struct drm_i915_gem_object *obj;
2662 int plane = intel_crtc->plane;
2663 unsigned long linear_offset;
2664 u32 dspcntr;
2665 u32 reg = DSPCNTR(plane);
2666 int pixel_size;
2667
2668 if (!visible || !fb) {
2669 I915_WRITE(reg, 0);
2670 if (INTEL_INFO(dev)->gen >= 4)
2671 I915_WRITE(DSPSURF(plane), 0);
2672 else
2673 I915_WRITE(DSPADDR(plane), 0);
2674 POSTING_READ(reg);
2675 return;
2676 }
2677
2678 obj = intel_fb_obj(fb);
2679 if (WARN_ON(obj == NULL))
2680 return;
2681
2682 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2683
2684 dspcntr = DISPPLANE_GAMMA_ENABLE;
2685
2686 dspcntr |= DISPLAY_PLANE_ENABLE;
2687
2688 if (INTEL_INFO(dev)->gen < 4) {
2689 if (intel_crtc->pipe == PIPE_B)
2690 dspcntr |= DISPPLANE_SEL_PIPE_B;
2691
2692 /* pipesrc and dspsize control the size that is scaled from,
2693 * which should always be the user's requested size.
2694 */
2695 I915_WRITE(DSPSIZE(plane),
2696 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2697 (intel_crtc->config->pipe_src_w - 1));
2698 I915_WRITE(DSPPOS(plane), 0);
2699 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2700 I915_WRITE(PRIMSIZE(plane),
2701 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2702 (intel_crtc->config->pipe_src_w - 1));
2703 I915_WRITE(PRIMPOS(plane), 0);
2704 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2705 }
2706
2707 switch (fb->pixel_format) {
2708 case DRM_FORMAT_C8:
2709 dspcntr |= DISPPLANE_8BPP;
2710 break;
2711 case DRM_FORMAT_XRGB1555:
2712 dspcntr |= DISPPLANE_BGRX555;
2713 break;
2714 case DRM_FORMAT_RGB565:
2715 dspcntr |= DISPPLANE_BGRX565;
2716 break;
2717 case DRM_FORMAT_XRGB8888:
2718 dspcntr |= DISPPLANE_BGRX888;
2719 break;
2720 case DRM_FORMAT_XBGR8888:
2721 dspcntr |= DISPPLANE_RGBX888;
2722 break;
2723 case DRM_FORMAT_XRGB2101010:
2724 dspcntr |= DISPPLANE_BGRX101010;
2725 break;
2726 case DRM_FORMAT_XBGR2101010:
2727 dspcntr |= DISPPLANE_RGBX101010;
2728 break;
2729 default:
2730 BUG();
2731 }
2732
2733 if (INTEL_INFO(dev)->gen >= 4 &&
2734 obj->tiling_mode != I915_TILING_NONE)
2735 dspcntr |= DISPPLANE_TILED;
2736
2737 if (IS_G4X(dev))
2738 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2739
2740 linear_offset = y * fb->pitches[0] + x * pixel_size;
2741
2742 if (INTEL_INFO(dev)->gen >= 4) {
2743 intel_crtc->dspaddr_offset =
2744 intel_gen4_compute_page_offset(dev_priv,
2745 &x, &y, obj->tiling_mode,
2746 pixel_size,
2747 fb->pitches[0]);
2748 linear_offset -= intel_crtc->dspaddr_offset;
2749 } else {
2750 intel_crtc->dspaddr_offset = linear_offset;
2751 }
2752
2753 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2754 dspcntr |= DISPPLANE_ROTATE_180;
2755
2756 x += (intel_crtc->config->pipe_src_w - 1);
2757 y += (intel_crtc->config->pipe_src_h - 1);
2758
2759 /* Finding the last pixel of the last line of the display
2760 data and adding to linear_offset*/
2761 linear_offset +=
2762 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2763 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2764 }
2765
2766 I915_WRITE(reg, dspcntr);
2767
2768 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2769 if (INTEL_INFO(dev)->gen >= 4) {
2770 I915_WRITE(DSPSURF(plane),
2771 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2772 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2773 I915_WRITE(DSPLINOFF(plane), linear_offset);
2774 } else
2775 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2776 POSTING_READ(reg);
2777 }
2778
2779 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2780 struct drm_framebuffer *fb,
2781 int x, int y)
2782 {
2783 struct drm_device *dev = crtc->dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786 struct drm_plane *primary = crtc->primary;
2787 bool visible = to_intel_plane_state(primary->state)->visible;
2788 struct drm_i915_gem_object *obj;
2789 int plane = intel_crtc->plane;
2790 unsigned long linear_offset;
2791 u32 dspcntr;
2792 u32 reg = DSPCNTR(plane);
2793 int pixel_size;
2794
2795 if (!visible || !fb) {
2796 I915_WRITE(reg, 0);
2797 I915_WRITE(DSPSURF(plane), 0);
2798 POSTING_READ(reg);
2799 return;
2800 }
2801
2802 obj = intel_fb_obj(fb);
2803 if (WARN_ON(obj == NULL))
2804 return;
2805
2806 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2807
2808 dspcntr = DISPPLANE_GAMMA_ENABLE;
2809
2810 dspcntr |= DISPLAY_PLANE_ENABLE;
2811
2812 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2813 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2814
2815 switch (fb->pixel_format) {
2816 case DRM_FORMAT_C8:
2817 dspcntr |= DISPPLANE_8BPP;
2818 break;
2819 case DRM_FORMAT_RGB565:
2820 dspcntr |= DISPPLANE_BGRX565;
2821 break;
2822 case DRM_FORMAT_XRGB8888:
2823 dspcntr |= DISPPLANE_BGRX888;
2824 break;
2825 case DRM_FORMAT_XBGR8888:
2826 dspcntr |= DISPPLANE_RGBX888;
2827 break;
2828 case DRM_FORMAT_XRGB2101010:
2829 dspcntr |= DISPPLANE_BGRX101010;
2830 break;
2831 case DRM_FORMAT_XBGR2101010:
2832 dspcntr |= DISPPLANE_RGBX101010;
2833 break;
2834 default:
2835 BUG();
2836 }
2837
2838 if (obj->tiling_mode != I915_TILING_NONE)
2839 dspcntr |= DISPPLANE_TILED;
2840
2841 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2842 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2843
2844 linear_offset = y * fb->pitches[0] + x * pixel_size;
2845 intel_crtc->dspaddr_offset =
2846 intel_gen4_compute_page_offset(dev_priv,
2847 &x, &y, obj->tiling_mode,
2848 pixel_size,
2849 fb->pitches[0]);
2850 linear_offset -= intel_crtc->dspaddr_offset;
2851 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2852 dspcntr |= DISPPLANE_ROTATE_180;
2853
2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2855 x += (intel_crtc->config->pipe_src_w - 1);
2856 y += (intel_crtc->config->pipe_src_h - 1);
2857
2858 /* Finding the last pixel of the last line of the display
2859 data and adding to linear_offset*/
2860 linear_offset +=
2861 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2862 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2863 }
2864 }
2865
2866 I915_WRITE(reg, dspcntr);
2867
2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
2877 POSTING_READ(reg);
2878 }
2879
2880 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2881 uint32_t pixel_format)
2882 {
2883 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2884
2885 /*
2886 * The stride is either expressed as a multiple of 64 bytes
2887 * chunks for linear buffers or in number of tiles for tiled
2888 * buffers.
2889 */
2890 switch (fb_modifier) {
2891 case DRM_FORMAT_MOD_NONE:
2892 return 64;
2893 case I915_FORMAT_MOD_X_TILED:
2894 if (INTEL_INFO(dev)->gen == 2)
2895 return 128;
2896 return 512;
2897 case I915_FORMAT_MOD_Y_TILED:
2898 /* No need to check for old gens and Y tiling since this is
2899 * about the display engine and those will be blocked before
2900 * we get here.
2901 */
2902 return 128;
2903 case I915_FORMAT_MOD_Yf_TILED:
2904 if (bits_per_pixel == 8)
2905 return 64;
2906 else
2907 return 128;
2908 default:
2909 MISSING_CASE(fb_modifier);
2910 return 64;
2911 }
2912 }
2913
2914 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2915 struct drm_i915_gem_object *obj)
2916 {
2917 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2918
2919 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2920 view = &i915_ggtt_view_rotated;
2921
2922 return i915_gem_obj_ggtt_offset_view(obj, view);
2923 }
2924
2925 /*
2926 * This function detaches (aka. unbinds) unused scalers in hardware
2927 */
2928 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2929 {
2930 struct drm_device *dev;
2931 struct drm_i915_private *dev_priv;
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 if (!intel_crtc || !intel_crtc->config)
2936 return;
2937
2938 dev = intel_crtc->base.dev;
2939 dev_priv = dev->dev_private;
2940 scaler_state = &intel_crtc->config->scaler_state;
2941
2942 /* loop through and disable scalers that aren't in use */
2943 for (i = 0; i < intel_crtc->num_scalers; i++) {
2944 if (!scaler_state->scalers[i].in_use) {
2945 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2946 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2947 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2948 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949 intel_crtc->base.base.id, intel_crtc->pipe, i);
2950 }
2951 }
2952 }
2953
2954 u32 skl_plane_ctl_format(uint32_t pixel_format)
2955 {
2956 switch (pixel_format) {
2957 case DRM_FORMAT_C8:
2958 return PLANE_CTL_FORMAT_INDEXED;
2959 case DRM_FORMAT_RGB565:
2960 return PLANE_CTL_FORMAT_RGB_565;
2961 case DRM_FORMAT_XBGR8888:
2962 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2963 case DRM_FORMAT_XRGB8888:
2964 return PLANE_CTL_FORMAT_XRGB_8888;
2965 /*
2966 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2967 * to be already pre-multiplied. We need to add a knob (or a different
2968 * DRM_FORMAT) for user-space to configure that.
2969 */
2970 case DRM_FORMAT_ABGR8888:
2971 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2972 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2973 case DRM_FORMAT_ARGB8888:
2974 return PLANE_CTL_FORMAT_XRGB_8888 |
2975 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2976 case DRM_FORMAT_XRGB2101010:
2977 return PLANE_CTL_FORMAT_XRGB_2101010;
2978 case DRM_FORMAT_XBGR2101010:
2979 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2980 case DRM_FORMAT_YUYV:
2981 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2982 case DRM_FORMAT_YVYU:
2983 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2984 case DRM_FORMAT_UYVY:
2985 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2986 case DRM_FORMAT_VYUY:
2987 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2988 default:
2989 MISSING_CASE(pixel_format);
2990 }
2991
2992 return 0;
2993 }
2994
2995 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2996 {
2997 switch (fb_modifier) {
2998 case DRM_FORMAT_MOD_NONE:
2999 break;
3000 case I915_FORMAT_MOD_X_TILED:
3001 return PLANE_CTL_TILED_X;
3002 case I915_FORMAT_MOD_Y_TILED:
3003 return PLANE_CTL_TILED_Y;
3004 case I915_FORMAT_MOD_Yf_TILED:
3005 return PLANE_CTL_TILED_YF;
3006 default:
3007 MISSING_CASE(fb_modifier);
3008 }
3009
3010 return 0;
3011 }
3012
3013 u32 skl_plane_ctl_rotation(unsigned int rotation)
3014 {
3015 switch (rotation) {
3016 case BIT(DRM_ROTATE_0):
3017 break;
3018 /*
3019 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3020 * while i915 HW rotation is clockwise, thats why this swapping.
3021 */
3022 case BIT(DRM_ROTATE_90):
3023 return PLANE_CTL_ROTATE_270;
3024 case BIT(DRM_ROTATE_180):
3025 return PLANE_CTL_ROTATE_180;
3026 case BIT(DRM_ROTATE_270):
3027 return PLANE_CTL_ROTATE_90;
3028 default:
3029 MISSING_CASE(rotation);
3030 }
3031
3032 return 0;
3033 }
3034
3035 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3036 struct drm_framebuffer *fb,
3037 int x, int y)
3038 {
3039 struct drm_device *dev = crtc->dev;
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3042 struct drm_plane *plane = crtc->primary;
3043 bool visible = to_intel_plane_state(plane->state)->visible;
3044 struct drm_i915_gem_object *obj;
3045 int pipe = intel_crtc->pipe;
3046 u32 plane_ctl, stride_div, stride;
3047 u32 tile_height, plane_offset, plane_size;
3048 unsigned int rotation;
3049 int x_offset, y_offset;
3050 unsigned long surf_addr;
3051 struct intel_crtc_state *crtc_state = intel_crtc->config;
3052 struct intel_plane_state *plane_state;
3053 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3054 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3055 int scaler_id = -1;
3056
3057 plane_state = to_intel_plane_state(plane->state);
3058
3059 if (!visible || !fb) {
3060 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3061 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3062 POSTING_READ(PLANE_CTL(pipe, 0));
3063 return;
3064 }
3065
3066 plane_ctl = PLANE_CTL_ENABLE |
3067 PLANE_CTL_PIPE_GAMMA_ENABLE |
3068 PLANE_CTL_PIPE_CSC_ENABLE;
3069
3070 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3071 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3072 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3073
3074 rotation = plane->state->rotation;
3075 plane_ctl |= skl_plane_ctl_rotation(rotation);
3076
3077 obj = intel_fb_obj(fb);
3078 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3079 fb->pixel_format);
3080 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3081
3082 /*
3083 * FIXME: intel_plane_state->src, dst aren't set when transitional
3084 * update_plane helpers are called from legacy paths.
3085 * Once full atomic crtc is available, below check can be avoided.
3086 */
3087 if (drm_rect_width(&plane_state->src)) {
3088 scaler_id = plane_state->scaler_id;
3089 src_x = plane_state->src.x1 >> 16;
3090 src_y = plane_state->src.y1 >> 16;
3091 src_w = drm_rect_width(&plane_state->src) >> 16;
3092 src_h = drm_rect_height(&plane_state->src) >> 16;
3093 dst_x = plane_state->dst.x1;
3094 dst_y = plane_state->dst.y1;
3095 dst_w = drm_rect_width(&plane_state->dst);
3096 dst_h = drm_rect_height(&plane_state->dst);
3097
3098 WARN_ON(x != src_x || y != src_y);
3099 } else {
3100 src_w = intel_crtc->config->pipe_src_w;
3101 src_h = intel_crtc->config->pipe_src_h;
3102 }
3103
3104 if (intel_rotation_90_or_270(rotation)) {
3105 /* stride = Surface height in tiles */
3106 tile_height = intel_tile_height(dev, fb->pixel_format,
3107 fb->modifier[0]);
3108 stride = DIV_ROUND_UP(fb->height, tile_height);
3109 x_offset = stride * tile_height - y - src_h;
3110 y_offset = x;
3111 plane_size = (src_w - 1) << 16 | (src_h - 1);
3112 } else {
3113 stride = fb->pitches[0] / stride_div;
3114 x_offset = x;
3115 y_offset = y;
3116 plane_size = (src_h - 1) << 16 | (src_w - 1);
3117 }
3118 plane_offset = y_offset << 16 | x_offset;
3119
3120 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3121 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3122 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3123 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3124
3125 if (scaler_id >= 0) {
3126 uint32_t ps_ctrl = 0;
3127
3128 WARN_ON(!dst_w || !dst_h);
3129 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3130 crtc_state->scaler_state.scalers[scaler_id].mode;
3131 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3132 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3133 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3134 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3135 I915_WRITE(PLANE_POS(pipe, 0), 0);
3136 } else {
3137 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3138 }
3139
3140 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3141
3142 POSTING_READ(PLANE_SURF(pipe, 0));
3143 }
3144
3145 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3146 static int
3147 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3148 int x, int y, enum mode_set_atomic state)
3149 {
3150 struct drm_device *dev = crtc->dev;
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152
3153 if (dev_priv->display.disable_fbc)
3154 dev_priv->display.disable_fbc(dev);
3155
3156 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3157
3158 return 0;
3159 }
3160
3161 static void intel_complete_page_flips(struct drm_device *dev)
3162 {
3163 struct drm_crtc *crtc;
3164
3165 for_each_crtc(dev, crtc) {
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167 enum plane plane = intel_crtc->plane;
3168
3169 intel_prepare_page_flip(dev, plane);
3170 intel_finish_page_flip_plane(dev, plane);
3171 }
3172 }
3173
3174 static void intel_update_primary_planes(struct drm_device *dev)
3175 {
3176 struct drm_i915_private *dev_priv = dev->dev_private;
3177 struct drm_crtc *crtc;
3178
3179 for_each_crtc(dev, crtc) {
3180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181
3182 drm_modeset_lock(&crtc->mutex, NULL);
3183 /*
3184 * FIXME: Once we have proper support for primary planes (and
3185 * disabling them without disabling the entire crtc) allow again
3186 * a NULL crtc->primary->fb.
3187 */
3188 if (intel_crtc->active && crtc->primary->fb)
3189 dev_priv->display.update_primary_plane(crtc,
3190 crtc->primary->fb,
3191 crtc->x,
3192 crtc->y);
3193 drm_modeset_unlock(&crtc->mutex);
3194 }
3195 }
3196
3197 void intel_prepare_reset(struct drm_device *dev)
3198 {
3199 /* no reset support for gen2 */
3200 if (IS_GEN2(dev))
3201 return;
3202
3203 /* reset doesn't touch the display */
3204 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3205 return;
3206
3207 drm_modeset_lock_all(dev);
3208 /*
3209 * Disabling the crtcs gracefully seems nicer. Also the
3210 * g33 docs say we should at least disable all the planes.
3211 */
3212 intel_display_suspend(dev);
3213 }
3214
3215 void intel_finish_reset(struct drm_device *dev)
3216 {
3217 struct drm_i915_private *dev_priv = to_i915(dev);
3218
3219 /*
3220 * Flips in the rings will be nuked by the reset,
3221 * so complete all pending flips so that user space
3222 * will get its events and not get stuck.
3223 */
3224 intel_complete_page_flips(dev);
3225
3226 /* no reset support for gen2 */
3227 if (IS_GEN2(dev))
3228 return;
3229
3230 /* reset doesn't touch the display */
3231 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3232 /*
3233 * Flips in the rings have been nuked by the reset,
3234 * so update the base address of all primary
3235 * planes to the the last fb to make sure we're
3236 * showing the correct fb after a reset.
3237 */
3238 intel_update_primary_planes(dev);
3239 return;
3240 }
3241
3242 /*
3243 * The display has been reset as well,
3244 * so need a full re-initialization.
3245 */
3246 intel_runtime_pm_disable_interrupts(dev_priv);
3247 intel_runtime_pm_enable_interrupts(dev_priv);
3248
3249 intel_modeset_init_hw(dev);
3250
3251 spin_lock_irq(&dev_priv->irq_lock);
3252 if (dev_priv->display.hpd_irq_setup)
3253 dev_priv->display.hpd_irq_setup(dev);
3254 spin_unlock_irq(&dev_priv->irq_lock);
3255
3256 intel_modeset_setup_hw_state(dev, true);
3257
3258 intel_hpd_init(dev_priv);
3259
3260 drm_modeset_unlock_all(dev);
3261 }
3262
3263 static void
3264 intel_finish_fb(struct drm_framebuffer *old_fb)
3265 {
3266 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3268 bool was_interruptible = dev_priv->mm.interruptible;
3269 int ret;
3270
3271 /* Big Hammer, we also need to ensure that any pending
3272 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3273 * current scanout is retired before unpinning the old
3274 * framebuffer. Note that we rely on userspace rendering
3275 * into the buffer attached to the pipe they are waiting
3276 * on. If not, userspace generates a GPU hang with IPEHR
3277 * point to the MI_WAIT_FOR_EVENT.
3278 *
3279 * This should only fail upon a hung GPU, in which case we
3280 * can safely continue.
3281 */
3282 dev_priv->mm.interruptible = false;
3283 ret = i915_gem_object_wait_rendering(obj, true);
3284 dev_priv->mm.interruptible = was_interruptible;
3285
3286 WARN_ON(ret);
3287 }
3288
3289 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3290 {
3291 struct drm_device *dev = crtc->dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294 bool pending;
3295
3296 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3297 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3298 return false;
3299
3300 spin_lock_irq(&dev->event_lock);
3301 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3302 spin_unlock_irq(&dev->event_lock);
3303
3304 return pending;
3305 }
3306
3307 static void intel_update_pipe_size(struct intel_crtc *crtc)
3308 {
3309 struct drm_device *dev = crtc->base.dev;
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 const struct drm_display_mode *adjusted_mode;
3312
3313 if (!i915.fastboot)
3314 return;
3315
3316 /*
3317 * Update pipe size and adjust fitter if needed: the reason for this is
3318 * that in compute_mode_changes we check the native mode (not the pfit
3319 * mode) to see if we can flip rather than do a full mode set. In the
3320 * fastboot case, we'll flip, but if we don't update the pipesrc and
3321 * pfit state, we'll end up with a big fb scanned out into the wrong
3322 * sized surface.
3323 *
3324 * To fix this properly, we need to hoist the checks up into
3325 * compute_mode_changes (or above), check the actual pfit state and
3326 * whether the platform allows pfit disable with pipe active, and only
3327 * then update the pipesrc and pfit state, even on the flip path.
3328 */
3329
3330 adjusted_mode = &crtc->config->base.adjusted_mode;
3331
3332 I915_WRITE(PIPESRC(crtc->pipe),
3333 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3334 (adjusted_mode->crtc_vdisplay - 1));
3335 if (!crtc->config->pch_pfit.enabled &&
3336 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3337 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3338 I915_WRITE(PF_CTL(crtc->pipe), 0);
3339 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3340 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3341 }
3342 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3343 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3344 }
3345
3346 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3347 {
3348 struct drm_device *dev = crtc->dev;
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351 int pipe = intel_crtc->pipe;
3352 u32 reg, temp;
3353
3354 /* enable normal train */
3355 reg = FDI_TX_CTL(pipe);
3356 temp = I915_READ(reg);
3357 if (IS_IVYBRIDGE(dev)) {
3358 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3359 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3360 } else {
3361 temp &= ~FDI_LINK_TRAIN_NONE;
3362 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3363 }
3364 I915_WRITE(reg, temp);
3365
3366 reg = FDI_RX_CTL(pipe);
3367 temp = I915_READ(reg);
3368 if (HAS_PCH_CPT(dev)) {
3369 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3370 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3371 } else {
3372 temp &= ~FDI_LINK_TRAIN_NONE;
3373 temp |= FDI_LINK_TRAIN_NONE;
3374 }
3375 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3376
3377 /* wait one idle pattern time */
3378 POSTING_READ(reg);
3379 udelay(1000);
3380
3381 /* IVB wants error correction enabled */
3382 if (IS_IVYBRIDGE(dev))
3383 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3384 FDI_FE_ERRC_ENABLE);
3385 }
3386
3387 /* The FDI link training functions for ILK/Ibexpeak. */
3388 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3389 {
3390 struct drm_device *dev = crtc->dev;
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3393 int pipe = intel_crtc->pipe;
3394 u32 reg, temp, tries;
3395
3396 /* FDI needs bits from pipe first */
3397 assert_pipe_enabled(dev_priv, pipe);
3398
3399 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3400 for train result */
3401 reg = FDI_RX_IMR(pipe);
3402 temp = I915_READ(reg);
3403 temp &= ~FDI_RX_SYMBOL_LOCK;
3404 temp &= ~FDI_RX_BIT_LOCK;
3405 I915_WRITE(reg, temp);
3406 I915_READ(reg);
3407 udelay(150);
3408
3409 /* enable CPU FDI TX and PCH FDI RX */
3410 reg = FDI_TX_CTL(pipe);
3411 temp = I915_READ(reg);
3412 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3413 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3414 temp &= ~FDI_LINK_TRAIN_NONE;
3415 temp |= FDI_LINK_TRAIN_PATTERN_1;
3416 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3417
3418 reg = FDI_RX_CTL(pipe);
3419 temp = I915_READ(reg);
3420 temp &= ~FDI_LINK_TRAIN_NONE;
3421 temp |= FDI_LINK_TRAIN_PATTERN_1;
3422 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3423
3424 POSTING_READ(reg);
3425 udelay(150);
3426
3427 /* Ironlake workaround, enable clock pointer after FDI enable*/
3428 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3429 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3430 FDI_RX_PHASE_SYNC_POINTER_EN);
3431
3432 reg = FDI_RX_IIR(pipe);
3433 for (tries = 0; tries < 5; tries++) {
3434 temp = I915_READ(reg);
3435 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3436
3437 if ((temp & FDI_RX_BIT_LOCK)) {
3438 DRM_DEBUG_KMS("FDI train 1 done.\n");
3439 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3440 break;
3441 }
3442 }
3443 if (tries == 5)
3444 DRM_ERROR("FDI train 1 fail!\n");
3445
3446 /* Train 2 */
3447 reg = FDI_TX_CTL(pipe);
3448 temp = I915_READ(reg);
3449 temp &= ~FDI_LINK_TRAIN_NONE;
3450 temp |= FDI_LINK_TRAIN_PATTERN_2;
3451 I915_WRITE(reg, temp);
3452
3453 reg = FDI_RX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 I915_WRITE(reg, temp);
3458
3459 POSTING_READ(reg);
3460 udelay(150);
3461
3462 reg = FDI_RX_IIR(pipe);
3463 for (tries = 0; tries < 5; tries++) {
3464 temp = I915_READ(reg);
3465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466
3467 if (temp & FDI_RX_SYMBOL_LOCK) {
3468 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3469 DRM_DEBUG_KMS("FDI train 2 done.\n");
3470 break;
3471 }
3472 }
3473 if (tries == 5)
3474 DRM_ERROR("FDI train 2 fail!\n");
3475
3476 DRM_DEBUG_KMS("FDI train done\n");
3477
3478 }
3479
3480 static const int snb_b_fdi_train_param[] = {
3481 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3482 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3483 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3484 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3485 };
3486
3487 /* The FDI link training functions for SNB/Cougarpoint. */
3488 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3489 {
3490 struct drm_device *dev = crtc->dev;
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493 int pipe = intel_crtc->pipe;
3494 u32 reg, temp, i, retry;
3495
3496 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3497 for train result */
3498 reg = FDI_RX_IMR(pipe);
3499 temp = I915_READ(reg);
3500 temp &= ~FDI_RX_SYMBOL_LOCK;
3501 temp &= ~FDI_RX_BIT_LOCK;
3502 I915_WRITE(reg, temp);
3503
3504 POSTING_READ(reg);
3505 udelay(150);
3506
3507 /* enable CPU FDI TX and PCH FDI RX */
3508 reg = FDI_TX_CTL(pipe);
3509 temp = I915_READ(reg);
3510 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3511 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3512 temp &= ~FDI_LINK_TRAIN_NONE;
3513 temp |= FDI_LINK_TRAIN_PATTERN_1;
3514 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3515 /* SNB-B */
3516 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3517 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3518
3519 I915_WRITE(FDI_RX_MISC(pipe),
3520 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3521
3522 reg = FDI_RX_CTL(pipe);
3523 temp = I915_READ(reg);
3524 if (HAS_PCH_CPT(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3526 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3527 } else {
3528 temp &= ~FDI_LINK_TRAIN_NONE;
3529 temp |= FDI_LINK_TRAIN_PATTERN_1;
3530 }
3531 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3532
3533 POSTING_READ(reg);
3534 udelay(150);
3535
3536 for (i = 0; i < 4; i++) {
3537 reg = FDI_TX_CTL(pipe);
3538 temp = I915_READ(reg);
3539 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3540 temp |= snb_b_fdi_train_param[i];
3541 I915_WRITE(reg, temp);
3542
3543 POSTING_READ(reg);
3544 udelay(500);
3545
3546 for (retry = 0; retry < 5; retry++) {
3547 reg = FDI_RX_IIR(pipe);
3548 temp = I915_READ(reg);
3549 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3550 if (temp & FDI_RX_BIT_LOCK) {
3551 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552 DRM_DEBUG_KMS("FDI train 1 done.\n");
3553 break;
3554 }
3555 udelay(50);
3556 }
3557 if (retry < 5)
3558 break;
3559 }
3560 if (i == 4)
3561 DRM_ERROR("FDI train 1 fail!\n");
3562
3563 /* Train 2 */
3564 reg = FDI_TX_CTL(pipe);
3565 temp = I915_READ(reg);
3566 temp &= ~FDI_LINK_TRAIN_NONE;
3567 temp |= FDI_LINK_TRAIN_PATTERN_2;
3568 if (IS_GEN6(dev)) {
3569 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3570 /* SNB-B */
3571 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3572 }
3573 I915_WRITE(reg, temp);
3574
3575 reg = FDI_RX_CTL(pipe);
3576 temp = I915_READ(reg);
3577 if (HAS_PCH_CPT(dev)) {
3578 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3579 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3580 } else {
3581 temp &= ~FDI_LINK_TRAIN_NONE;
3582 temp |= FDI_LINK_TRAIN_PATTERN_2;
3583 }
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
3587 udelay(150);
3588
3589 for (i = 0; i < 4; i++) {
3590 reg = FDI_TX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3593 temp |= snb_b_fdi_train_param[i];
3594 I915_WRITE(reg, temp);
3595
3596 POSTING_READ(reg);
3597 udelay(500);
3598
3599 for (retry = 0; retry < 5; retry++) {
3600 reg = FDI_RX_IIR(pipe);
3601 temp = I915_READ(reg);
3602 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3603 if (temp & FDI_RX_SYMBOL_LOCK) {
3604 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3605 DRM_DEBUG_KMS("FDI train 2 done.\n");
3606 break;
3607 }
3608 udelay(50);
3609 }
3610 if (retry < 5)
3611 break;
3612 }
3613 if (i == 4)
3614 DRM_ERROR("FDI train 2 fail!\n");
3615
3616 DRM_DEBUG_KMS("FDI train done.\n");
3617 }
3618
3619 /* Manual link training for Ivy Bridge A0 parts */
3620 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3621 {
3622 struct drm_device *dev = crtc->dev;
3623 struct drm_i915_private *dev_priv = dev->dev_private;
3624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3625 int pipe = intel_crtc->pipe;
3626 u32 reg, temp, i, j;
3627
3628 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3629 for train result */
3630 reg = FDI_RX_IMR(pipe);
3631 temp = I915_READ(reg);
3632 temp &= ~FDI_RX_SYMBOL_LOCK;
3633 temp &= ~FDI_RX_BIT_LOCK;
3634 I915_WRITE(reg, temp);
3635
3636 POSTING_READ(reg);
3637 udelay(150);
3638
3639 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3640 I915_READ(FDI_RX_IIR(pipe)));
3641
3642 /* Try each vswing and preemphasis setting twice before moving on */
3643 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3644 /* disable first in case we need to retry */
3645 reg = FDI_TX_CTL(pipe);
3646 temp = I915_READ(reg);
3647 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3648 temp &= ~FDI_TX_ENABLE;
3649 I915_WRITE(reg, temp);
3650
3651 reg = FDI_RX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 temp &= ~FDI_LINK_TRAIN_AUTO;
3654 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3655 temp &= ~FDI_RX_ENABLE;
3656 I915_WRITE(reg, temp);
3657
3658 /* enable CPU FDI TX and PCH FDI RX */
3659 reg = FDI_TX_CTL(pipe);
3660 temp = I915_READ(reg);
3661 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3662 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3663 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3664 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3665 temp |= snb_b_fdi_train_param[j/2];
3666 temp |= FDI_COMPOSITE_SYNC;
3667 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3668
3669 I915_WRITE(FDI_RX_MISC(pipe),
3670 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3671
3672 reg = FDI_RX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3675 temp |= FDI_COMPOSITE_SYNC;
3676 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3677
3678 POSTING_READ(reg);
3679 udelay(1); /* should be 0.5us */
3680
3681 for (i = 0; i < 4; i++) {
3682 reg = FDI_RX_IIR(pipe);
3683 temp = I915_READ(reg);
3684 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3685
3686 if (temp & FDI_RX_BIT_LOCK ||
3687 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3688 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3689 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3690 i);
3691 break;
3692 }
3693 udelay(1); /* should be 0.5us */
3694 }
3695 if (i == 4) {
3696 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3697 continue;
3698 }
3699
3700 /* Train 2 */
3701 reg = FDI_TX_CTL(pipe);
3702 temp = I915_READ(reg);
3703 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3704 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3705 I915_WRITE(reg, temp);
3706
3707 reg = FDI_RX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3710 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3711 I915_WRITE(reg, temp);
3712
3713 POSTING_READ(reg);
3714 udelay(2); /* should be 1.5us */
3715
3716 for (i = 0; i < 4; i++) {
3717 reg = FDI_RX_IIR(pipe);
3718 temp = I915_READ(reg);
3719 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3720
3721 if (temp & FDI_RX_SYMBOL_LOCK ||
3722 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3723 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3724 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3725 i);
3726 goto train_done;
3727 }
3728 udelay(2); /* should be 1.5us */
3729 }
3730 if (i == 4)
3731 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3732 }
3733
3734 train_done:
3735 DRM_DEBUG_KMS("FDI train done.\n");
3736 }
3737
3738 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3739 {
3740 struct drm_device *dev = intel_crtc->base.dev;
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 int pipe = intel_crtc->pipe;
3743 u32 reg, temp;
3744
3745
3746 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3747 reg = FDI_RX_CTL(pipe);
3748 temp = I915_READ(reg);
3749 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3750 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3751 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3752 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3753
3754 POSTING_READ(reg);
3755 udelay(200);
3756
3757 /* Switch from Rawclk to PCDclk */
3758 temp = I915_READ(reg);
3759 I915_WRITE(reg, temp | FDI_PCDCLK);
3760
3761 POSTING_READ(reg);
3762 udelay(200);
3763
3764 /* Enable CPU FDI TX PLL, always on for Ironlake */
3765 reg = FDI_TX_CTL(pipe);
3766 temp = I915_READ(reg);
3767 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3768 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3769
3770 POSTING_READ(reg);
3771 udelay(100);
3772 }
3773 }
3774
3775 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3776 {
3777 struct drm_device *dev = intel_crtc->base.dev;
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779 int pipe = intel_crtc->pipe;
3780 u32 reg, temp;
3781
3782 /* Switch from PCDclk to Rawclk */
3783 reg = FDI_RX_CTL(pipe);
3784 temp = I915_READ(reg);
3785 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3786
3787 /* Disable CPU FDI TX PLL */
3788 reg = FDI_TX_CTL(pipe);
3789 temp = I915_READ(reg);
3790 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3791
3792 POSTING_READ(reg);
3793 udelay(100);
3794
3795 reg = FDI_RX_CTL(pipe);
3796 temp = I915_READ(reg);
3797 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3798
3799 /* Wait for the clocks to turn off. */
3800 POSTING_READ(reg);
3801 udelay(100);
3802 }
3803
3804 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3805 {
3806 struct drm_device *dev = crtc->dev;
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3809 int pipe = intel_crtc->pipe;
3810 u32 reg, temp;
3811
3812 /* disable CPU FDI tx and PCH FDI rx */
3813 reg = FDI_TX_CTL(pipe);
3814 temp = I915_READ(reg);
3815 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3816 POSTING_READ(reg);
3817
3818 reg = FDI_RX_CTL(pipe);
3819 temp = I915_READ(reg);
3820 temp &= ~(0x7 << 16);
3821 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3823
3824 POSTING_READ(reg);
3825 udelay(100);
3826
3827 /* Ironlake workaround, disable clock pointer after downing FDI */
3828 if (HAS_PCH_IBX(dev))
3829 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3830
3831 /* still set train pattern 1 */
3832 reg = FDI_TX_CTL(pipe);
3833 temp = I915_READ(reg);
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 I915_WRITE(reg, temp);
3837
3838 reg = FDI_RX_CTL(pipe);
3839 temp = I915_READ(reg);
3840 if (HAS_PCH_CPT(dev)) {
3841 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3842 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3843 } else {
3844 temp &= ~FDI_LINK_TRAIN_NONE;
3845 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846 }
3847 /* BPC in FDI rx is consistent with that in PIPECONF */
3848 temp &= ~(0x07 << 16);
3849 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3850 I915_WRITE(reg, temp);
3851
3852 POSTING_READ(reg);
3853 udelay(100);
3854 }
3855
3856 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3857 {
3858 struct intel_crtc *crtc;
3859
3860 /* Note that we don't need to be called with mode_config.lock here
3861 * as our list of CRTC objects is static for the lifetime of the
3862 * device and so cannot disappear as we iterate. Similarly, we can
3863 * happily treat the predicates as racy, atomic checks as userspace
3864 * cannot claim and pin a new fb without at least acquring the
3865 * struct_mutex and so serialising with us.
3866 */
3867 for_each_intel_crtc(dev, crtc) {
3868 if (atomic_read(&crtc->unpin_work_count) == 0)
3869 continue;
3870
3871 if (crtc->unpin_work)
3872 intel_wait_for_vblank(dev, crtc->pipe);
3873
3874 return true;
3875 }
3876
3877 return false;
3878 }
3879
3880 static void page_flip_completed(struct intel_crtc *intel_crtc)
3881 {
3882 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3883 struct intel_unpin_work *work = intel_crtc->unpin_work;
3884
3885 /* ensure that the unpin work is consistent wrt ->pending. */
3886 smp_rmb();
3887 intel_crtc->unpin_work = NULL;
3888
3889 if (work->event)
3890 drm_send_vblank_event(intel_crtc->base.dev,
3891 intel_crtc->pipe,
3892 work->event);
3893
3894 drm_crtc_vblank_put(&intel_crtc->base);
3895
3896 wake_up_all(&dev_priv->pending_flip_queue);
3897 queue_work(dev_priv->wq, &work->work);
3898
3899 trace_i915_flip_complete(intel_crtc->plane,
3900 work->pending_flip_obj);
3901 }
3902
3903 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3904 {
3905 struct drm_device *dev = crtc->dev;
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3909 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3910 !intel_crtc_has_pending_flip(crtc),
3911 60*HZ) == 0)) {
3912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3913
3914 spin_lock_irq(&dev->event_lock);
3915 if (intel_crtc->unpin_work) {
3916 WARN_ONCE(1, "Removing stuck page flip\n");
3917 page_flip_completed(intel_crtc);
3918 }
3919 spin_unlock_irq(&dev->event_lock);
3920 }
3921
3922 if (crtc->primary->fb) {
3923 mutex_lock(&dev->struct_mutex);
3924 intel_finish_fb(crtc->primary->fb);
3925 mutex_unlock(&dev->struct_mutex);
3926 }
3927 }
3928
3929 /* Program iCLKIP clock to the desired frequency */
3930 static void lpt_program_iclkip(struct drm_crtc *crtc)
3931 {
3932 struct drm_device *dev = crtc->dev;
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3935 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3936 u32 temp;
3937
3938 mutex_lock(&dev_priv->sb_lock);
3939
3940 /* It is necessary to ungate the pixclk gate prior to programming
3941 * the divisors, and gate it back when it is done.
3942 */
3943 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3944
3945 /* Disable SSCCTL */
3946 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3947 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3948 SBI_SSCCTL_DISABLE,
3949 SBI_ICLK);
3950
3951 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3952 if (clock == 20000) {
3953 auxdiv = 1;
3954 divsel = 0x41;
3955 phaseinc = 0x20;
3956 } else {
3957 /* The iCLK virtual clock root frequency is in MHz,
3958 * but the adjusted_mode->crtc_clock in in KHz. To get the
3959 * divisors, it is necessary to divide one by another, so we
3960 * convert the virtual clock precision to KHz here for higher
3961 * precision.
3962 */
3963 u32 iclk_virtual_root_freq = 172800 * 1000;
3964 u32 iclk_pi_range = 64;
3965 u32 desired_divisor, msb_divisor_value, pi_value;
3966
3967 desired_divisor = (iclk_virtual_root_freq / clock);
3968 msb_divisor_value = desired_divisor / iclk_pi_range;
3969 pi_value = desired_divisor % iclk_pi_range;
3970
3971 auxdiv = 0;
3972 divsel = msb_divisor_value - 2;
3973 phaseinc = pi_value;
3974 }
3975
3976 /* This should not happen with any sane values */
3977 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3978 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3979 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3980 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3981
3982 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3983 clock,
3984 auxdiv,
3985 divsel,
3986 phasedir,
3987 phaseinc);
3988
3989 /* Program SSCDIVINTPHASE6 */
3990 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3991 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3992 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3993 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3994 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3995 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3996 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3997 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3998
3999 /* Program SSCAUXDIV */
4000 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4001 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4002 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4003 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4004
4005 /* Enable modulator and associated divider */
4006 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4007 temp &= ~SBI_SSCCTL_DISABLE;
4008 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4009
4010 /* Wait for initialization time */
4011 udelay(24);
4012
4013 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4014
4015 mutex_unlock(&dev_priv->sb_lock);
4016 }
4017
4018 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4019 enum pipe pch_transcoder)
4020 {
4021 struct drm_device *dev = crtc->base.dev;
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4024
4025 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4026 I915_READ(HTOTAL(cpu_transcoder)));
4027 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4028 I915_READ(HBLANK(cpu_transcoder)));
4029 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4030 I915_READ(HSYNC(cpu_transcoder)));
4031
4032 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4033 I915_READ(VTOTAL(cpu_transcoder)));
4034 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4035 I915_READ(VBLANK(cpu_transcoder)));
4036 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4037 I915_READ(VSYNC(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4039 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4040 }
4041
4042 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4043 {
4044 struct drm_i915_private *dev_priv = dev->dev_private;
4045 uint32_t temp;
4046
4047 temp = I915_READ(SOUTH_CHICKEN1);
4048 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4049 return;
4050
4051 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4052 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4053
4054 temp &= ~FDI_BC_BIFURCATION_SELECT;
4055 if (enable)
4056 temp |= FDI_BC_BIFURCATION_SELECT;
4057
4058 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4059 I915_WRITE(SOUTH_CHICKEN1, temp);
4060 POSTING_READ(SOUTH_CHICKEN1);
4061 }
4062
4063 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4064 {
4065 struct drm_device *dev = intel_crtc->base.dev;
4066
4067 switch (intel_crtc->pipe) {
4068 case PIPE_A:
4069 break;
4070 case PIPE_B:
4071 if (intel_crtc->config->fdi_lanes > 2)
4072 cpt_set_fdi_bc_bifurcation(dev, false);
4073 else
4074 cpt_set_fdi_bc_bifurcation(dev, true);
4075
4076 break;
4077 case PIPE_C:
4078 cpt_set_fdi_bc_bifurcation(dev, true);
4079
4080 break;
4081 default:
4082 BUG();
4083 }
4084 }
4085
4086 /*
4087 * Enable PCH resources required for PCH ports:
4088 * - PCH PLLs
4089 * - FDI training & RX/TX
4090 * - update transcoder timings
4091 * - DP transcoding bits
4092 * - transcoder
4093 */
4094 static void ironlake_pch_enable(struct drm_crtc *crtc)
4095 {
4096 struct drm_device *dev = crtc->dev;
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4099 int pipe = intel_crtc->pipe;
4100 u32 reg, temp;
4101
4102 assert_pch_transcoder_disabled(dev_priv, pipe);
4103
4104 if (IS_IVYBRIDGE(dev))
4105 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4106
4107 /* Write the TU size bits before fdi link training, so that error
4108 * detection works. */
4109 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4110 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4111
4112 /* For PCH output, training FDI link */
4113 dev_priv->display.fdi_link_train(crtc);
4114
4115 /* We need to program the right clock selection before writing the pixel
4116 * mutliplier into the DPLL. */
4117 if (HAS_PCH_CPT(dev)) {
4118 u32 sel;
4119
4120 temp = I915_READ(PCH_DPLL_SEL);
4121 temp |= TRANS_DPLL_ENABLE(pipe);
4122 sel = TRANS_DPLLB_SEL(pipe);
4123 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4124 temp |= sel;
4125 else
4126 temp &= ~sel;
4127 I915_WRITE(PCH_DPLL_SEL, temp);
4128 }
4129
4130 /* XXX: pch pll's can be enabled any time before we enable the PCH
4131 * transcoder, and we actually should do this to not upset any PCH
4132 * transcoder that already use the clock when we share it.
4133 *
4134 * Note that enable_shared_dpll tries to do the right thing, but
4135 * get_shared_dpll unconditionally resets the pll - we need that to have
4136 * the right LVDS enable sequence. */
4137 intel_enable_shared_dpll(intel_crtc);
4138
4139 /* set transcoder timing, panel must allow it */
4140 assert_panel_unlocked(dev_priv, pipe);
4141 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4142
4143 intel_fdi_normal_train(crtc);
4144
4145 /* For PCH DP, enable TRANS_DP_CTL */
4146 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4147 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4148 reg = TRANS_DP_CTL(pipe);
4149 temp = I915_READ(reg);
4150 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4151 TRANS_DP_SYNC_MASK |
4152 TRANS_DP_BPC_MASK);
4153 temp |= TRANS_DP_OUTPUT_ENABLE;
4154 temp |= bpc << 9; /* same format but at 11:9 */
4155
4156 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4157 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4158 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4159 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4160
4161 switch (intel_trans_dp_port_sel(crtc)) {
4162 case PCH_DP_B:
4163 temp |= TRANS_DP_PORT_SEL_B;
4164 break;
4165 case PCH_DP_C:
4166 temp |= TRANS_DP_PORT_SEL_C;
4167 break;
4168 case PCH_DP_D:
4169 temp |= TRANS_DP_PORT_SEL_D;
4170 break;
4171 default:
4172 BUG();
4173 }
4174
4175 I915_WRITE(reg, temp);
4176 }
4177
4178 ironlake_enable_pch_transcoder(dev_priv, pipe);
4179 }
4180
4181 static void lpt_pch_enable(struct drm_crtc *crtc)
4182 {
4183 struct drm_device *dev = crtc->dev;
4184 struct drm_i915_private *dev_priv = dev->dev_private;
4185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4187
4188 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4189
4190 lpt_program_iclkip(crtc);
4191
4192 /* Set transcoder timing. */
4193 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4194
4195 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4196 }
4197
4198 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4199 struct intel_crtc_state *crtc_state)
4200 {
4201 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4202 struct intel_shared_dpll *pll;
4203 struct intel_shared_dpll_config *shared_dpll;
4204 enum intel_dpll_id i;
4205
4206 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4207
4208 if (HAS_PCH_IBX(dev_priv->dev)) {
4209 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4210 i = (enum intel_dpll_id) crtc->pipe;
4211 pll = &dev_priv->shared_dplls[i];
4212
4213 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4214 crtc->base.base.id, pll->name);
4215
4216 WARN_ON(shared_dpll[i].crtc_mask);
4217
4218 goto found;
4219 }
4220
4221 if (IS_BROXTON(dev_priv->dev)) {
4222 /* PLL is attached to port in bxt */
4223 struct intel_encoder *encoder;
4224 struct intel_digital_port *intel_dig_port;
4225
4226 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4227 if (WARN_ON(!encoder))
4228 return NULL;
4229
4230 intel_dig_port = enc_to_dig_port(&encoder->base);
4231 /* 1:1 mapping between ports and PLLs */
4232 i = (enum intel_dpll_id)intel_dig_port->port;
4233 pll = &dev_priv->shared_dplls[i];
4234 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4235 crtc->base.base.id, pll->name);
4236 WARN_ON(shared_dpll[i].crtc_mask);
4237
4238 goto found;
4239 }
4240
4241 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4242 pll = &dev_priv->shared_dplls[i];
4243
4244 /* Only want to check enabled timings first */
4245 if (shared_dpll[i].crtc_mask == 0)
4246 continue;
4247
4248 if (memcmp(&crtc_state->dpll_hw_state,
4249 &shared_dpll[i].hw_state,
4250 sizeof(crtc_state->dpll_hw_state)) == 0) {
4251 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4252 crtc->base.base.id, pll->name,
4253 shared_dpll[i].crtc_mask,
4254 pll->active);
4255 goto found;
4256 }
4257 }
4258
4259 /* Ok no matching timings, maybe there's a free one? */
4260 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4261 pll = &dev_priv->shared_dplls[i];
4262 if (shared_dpll[i].crtc_mask == 0) {
4263 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4264 crtc->base.base.id, pll->name);
4265 goto found;
4266 }
4267 }
4268
4269 return NULL;
4270
4271 found:
4272 if (shared_dpll[i].crtc_mask == 0)
4273 shared_dpll[i].hw_state =
4274 crtc_state->dpll_hw_state;
4275
4276 crtc_state->shared_dpll = i;
4277 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4278 pipe_name(crtc->pipe));
4279
4280 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4281
4282 return pll;
4283 }
4284
4285 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4286 {
4287 struct drm_i915_private *dev_priv = to_i915(state->dev);
4288 struct intel_shared_dpll_config *shared_dpll;
4289 struct intel_shared_dpll *pll;
4290 enum intel_dpll_id i;
4291
4292 if (!to_intel_atomic_state(state)->dpll_set)
4293 return;
4294
4295 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4296 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4297 pll = &dev_priv->shared_dplls[i];
4298 pll->config = shared_dpll[i];
4299 }
4300 }
4301
4302 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4303 {
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 int dslreg = PIPEDSL(pipe);
4306 u32 temp;
4307
4308 temp = I915_READ(dslreg);
4309 udelay(500);
4310 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4311 if (wait_for(I915_READ(dslreg) != temp, 5))
4312 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4313 }
4314 }
4315
4316 /**
4317 * skl_update_scaler_users - Stages update to crtc's scaler state
4318 * @intel_crtc: crtc
4319 * @crtc_state: crtc_state
4320 * @plane: plane (NULL indicates crtc is requesting update)
4321 * @plane_state: plane's state
4322 * @force_detach: request unconditional detachment of scaler
4323 *
4324 * This function updates scaler state for requested plane or crtc.
4325 * To request scaler usage update for a plane, caller shall pass plane pointer.
4326 * To request scaler usage update for crtc, caller shall pass plane pointer
4327 * as NULL.
4328 *
4329 * Return
4330 * 0 - scaler_usage updated successfully
4331 * error - requested scaling cannot be supported or other error condition
4332 */
4333 int
4334 skl_update_scaler_users(
4335 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4336 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4337 int force_detach)
4338 {
4339 int need_scaling;
4340 int idx;
4341 int src_w, src_h, dst_w, dst_h;
4342 int *scaler_id;
4343 struct drm_framebuffer *fb;
4344 struct intel_crtc_scaler_state *scaler_state;
4345 unsigned int rotation;
4346
4347 if (!intel_crtc || !crtc_state)
4348 return 0;
4349
4350 scaler_state = &crtc_state->scaler_state;
4351
4352 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4353 fb = intel_plane ? plane_state->base.fb : NULL;
4354
4355 if (intel_plane) {
4356 src_w = drm_rect_width(&plane_state->src) >> 16;
4357 src_h = drm_rect_height(&plane_state->src) >> 16;
4358 dst_w = drm_rect_width(&plane_state->dst);
4359 dst_h = drm_rect_height(&plane_state->dst);
4360 scaler_id = &plane_state->scaler_id;
4361 rotation = plane_state->base.rotation;
4362 } else {
4363 struct drm_display_mode *adjusted_mode =
4364 &crtc_state->base.adjusted_mode;
4365 src_w = crtc_state->pipe_src_w;
4366 src_h = crtc_state->pipe_src_h;
4367 dst_w = adjusted_mode->hdisplay;
4368 dst_h = adjusted_mode->vdisplay;
4369 scaler_id = &scaler_state->scaler_id;
4370 rotation = DRM_ROTATE_0;
4371 }
4372
4373 need_scaling = intel_rotation_90_or_270(rotation) ?
4374 (src_h != dst_w || src_w != dst_h):
4375 (src_w != dst_w || src_h != dst_h);
4376
4377 /*
4378 * if plane is being disabled or scaler is no more required or force detach
4379 * - free scaler binded to this plane/crtc
4380 * - in order to do this, update crtc->scaler_usage
4381 *
4382 * Here scaler state in crtc_state is set free so that
4383 * scaler can be assigned to other user. Actual register
4384 * update to free the scaler is done in plane/panel-fit programming.
4385 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4386 */
4387 if (force_detach || !need_scaling || (intel_plane &&
4388 (!fb || !plane_state->visible))) {
4389 if (*scaler_id >= 0) {
4390 scaler_state->scaler_users &= ~(1 << idx);
4391 scaler_state->scalers[*scaler_id].in_use = 0;
4392
4393 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4394 "crtc_state = %p scaler_users = 0x%x\n",
4395 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4396 intel_plane ? intel_plane->base.base.id :
4397 intel_crtc->base.base.id, crtc_state,
4398 scaler_state->scaler_users);
4399 *scaler_id = -1;
4400 }
4401 return 0;
4402 }
4403
4404 /* range checks */
4405 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4406 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4407
4408 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4409 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4410 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4411 "size is out of scaler range\n",
4412 intel_plane ? "PLANE" : "CRTC",
4413 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4414 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4415 return -EINVAL;
4416 }
4417
4418 /* check colorkey */
4419 if (WARN_ON(intel_plane &&
4420 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4421 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4422 intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4423 return -EINVAL;
4424 }
4425
4426 /* Check src format */
4427 if (intel_plane) {
4428 switch (fb->pixel_format) {
4429 case DRM_FORMAT_RGB565:
4430 case DRM_FORMAT_XBGR8888:
4431 case DRM_FORMAT_XRGB8888:
4432 case DRM_FORMAT_ABGR8888:
4433 case DRM_FORMAT_ARGB8888:
4434 case DRM_FORMAT_XRGB2101010:
4435 case DRM_FORMAT_XBGR2101010:
4436 case DRM_FORMAT_YUYV:
4437 case DRM_FORMAT_YVYU:
4438 case DRM_FORMAT_UYVY:
4439 case DRM_FORMAT_VYUY:
4440 break;
4441 default:
4442 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4443 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4444 return -EINVAL;
4445 }
4446 }
4447
4448 /* mark this plane as a scaler user in crtc_state */
4449 scaler_state->scaler_users |= (1 << idx);
4450 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4451 "crtc_state = %p scaler_users = 0x%x\n",
4452 intel_plane ? "PLANE" : "CRTC",
4453 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4454 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4455 return 0;
4456 }
4457
4458 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4459 {
4460 struct drm_device *dev = crtc->base.dev;
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462 int pipe = crtc->pipe;
4463 struct intel_crtc_scaler_state *scaler_state =
4464 &crtc->config->scaler_state;
4465
4466 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4467
4468 /* To update pfit, first update scaler state */
4469 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4470 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4471 skl_detach_scalers(crtc);
4472 if (!enable)
4473 return;
4474
4475 if (crtc->config->pch_pfit.enabled) {
4476 int id;
4477
4478 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4479 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4480 return;
4481 }
4482
4483 id = scaler_state->scaler_id;
4484 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4485 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4486 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4487 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4488
4489 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4490 }
4491 }
4492
4493 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4494 {
4495 struct drm_device *dev = crtc->base.dev;
4496 struct drm_i915_private *dev_priv = dev->dev_private;
4497 int pipe = crtc->pipe;
4498
4499 if (crtc->config->pch_pfit.enabled) {
4500 /* Force use of hard-coded filter coefficients
4501 * as some pre-programmed values are broken,
4502 * e.g. x201.
4503 */
4504 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4505 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4506 PF_PIPE_SEL_IVB(pipe));
4507 else
4508 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4509 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4510 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4511 }
4512 }
4513
4514 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4515 {
4516 struct drm_device *dev = crtc->dev;
4517 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4518 struct drm_plane *plane;
4519 struct intel_plane *intel_plane;
4520
4521 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4522 intel_plane = to_intel_plane(plane);
4523 if (intel_plane->pipe == pipe)
4524 intel_plane_restore(&intel_plane->base);
4525 }
4526 }
4527
4528 void hsw_enable_ips(struct intel_crtc *crtc)
4529 {
4530 struct drm_device *dev = crtc->base.dev;
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4532
4533 if (!crtc->config->ips_enabled)
4534 return;
4535
4536 /* We can only enable IPS after we enable a plane and wait for a vblank */
4537 intel_wait_for_vblank(dev, crtc->pipe);
4538
4539 assert_plane_enabled(dev_priv, crtc->plane);
4540 if (IS_BROADWELL(dev)) {
4541 mutex_lock(&dev_priv->rps.hw_lock);
4542 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4543 mutex_unlock(&dev_priv->rps.hw_lock);
4544 /* Quoting Art Runyan: "its not safe to expect any particular
4545 * value in IPS_CTL bit 31 after enabling IPS through the
4546 * mailbox." Moreover, the mailbox may return a bogus state,
4547 * so we need to just enable it and continue on.
4548 */
4549 } else {
4550 I915_WRITE(IPS_CTL, IPS_ENABLE);
4551 /* The bit only becomes 1 in the next vblank, so this wait here
4552 * is essentially intel_wait_for_vblank. If we don't have this
4553 * and don't wait for vblanks until the end of crtc_enable, then
4554 * the HW state readout code will complain that the expected
4555 * IPS_CTL value is not the one we read. */
4556 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4557 DRM_ERROR("Timed out waiting for IPS enable\n");
4558 }
4559 }
4560
4561 void hsw_disable_ips(struct intel_crtc *crtc)
4562 {
4563 struct drm_device *dev = crtc->base.dev;
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565
4566 if (!crtc->config->ips_enabled)
4567 return;
4568
4569 assert_plane_enabled(dev_priv, crtc->plane);
4570 if (IS_BROADWELL(dev)) {
4571 mutex_lock(&dev_priv->rps.hw_lock);
4572 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4573 mutex_unlock(&dev_priv->rps.hw_lock);
4574 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4575 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4576 DRM_ERROR("Timed out waiting for IPS disable\n");
4577 } else {
4578 I915_WRITE(IPS_CTL, 0);
4579 POSTING_READ(IPS_CTL);
4580 }
4581
4582 /* We need to wait for a vblank before we can disable the plane. */
4583 intel_wait_for_vblank(dev, crtc->pipe);
4584 }
4585
4586 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4587 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4588 {
4589 struct drm_device *dev = crtc->dev;
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4592 enum pipe pipe = intel_crtc->pipe;
4593 int palreg = PALETTE(pipe);
4594 int i;
4595 bool reenable_ips = false;
4596
4597 /* The clocks have to be on to load the palette. */
4598 if (!crtc->state->active)
4599 return;
4600
4601 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4602 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4603 assert_dsi_pll_enabled(dev_priv);
4604 else
4605 assert_pll_enabled(dev_priv, pipe);
4606 }
4607
4608 /* use legacy palette for Ironlake */
4609 if (!HAS_GMCH_DISPLAY(dev))
4610 palreg = LGC_PALETTE(pipe);
4611
4612 /* Workaround : Do not read or write the pipe palette/gamma data while
4613 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4614 */
4615 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4616 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4617 GAMMA_MODE_MODE_SPLIT)) {
4618 hsw_disable_ips(intel_crtc);
4619 reenable_ips = true;
4620 }
4621
4622 for (i = 0; i < 256; i++) {
4623 I915_WRITE(palreg + 4 * i,
4624 (intel_crtc->lut_r[i] << 16) |
4625 (intel_crtc->lut_g[i] << 8) |
4626 intel_crtc->lut_b[i]);
4627 }
4628
4629 if (reenable_ips)
4630 hsw_enable_ips(intel_crtc);
4631 }
4632
4633 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4634 {
4635 if (intel_crtc->overlay) {
4636 struct drm_device *dev = intel_crtc->base.dev;
4637 struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639 mutex_lock(&dev->struct_mutex);
4640 dev_priv->mm.interruptible = false;
4641 (void) intel_overlay_switch_off(intel_crtc->overlay);
4642 dev_priv->mm.interruptible = true;
4643 mutex_unlock(&dev->struct_mutex);
4644 }
4645
4646 /* Let userspace switch the overlay on again. In most cases userspace
4647 * has to recompute where to put it anyway.
4648 */
4649 }
4650
4651 /**
4652 * intel_post_enable_primary - Perform operations after enabling primary plane
4653 * @crtc: the CRTC whose primary plane was just enabled
4654 *
4655 * Performs potentially sleeping operations that must be done after the primary
4656 * plane is enabled, such as updating FBC and IPS. Note that this may be
4657 * called due to an explicit primary plane update, or due to an implicit
4658 * re-enable that is caused when a sprite plane is updated to no longer
4659 * completely hide the primary plane.
4660 */
4661 static void
4662 intel_post_enable_primary(struct drm_crtc *crtc)
4663 {
4664 struct drm_device *dev = crtc->dev;
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4667 int pipe = intel_crtc->pipe;
4668
4669 /*
4670 * BDW signals flip done immediately if the plane
4671 * is disabled, even if the plane enable is already
4672 * armed to occur at the next vblank :(
4673 */
4674 if (IS_BROADWELL(dev))
4675 intel_wait_for_vblank(dev, pipe);
4676
4677 /*
4678 * FIXME IPS should be fine as long as one plane is
4679 * enabled, but in practice it seems to have problems
4680 * when going from primary only to sprite only and vice
4681 * versa.
4682 */
4683 hsw_enable_ips(intel_crtc);
4684
4685 mutex_lock(&dev->struct_mutex);
4686 intel_fbc_update(dev);
4687 mutex_unlock(&dev->struct_mutex);
4688
4689 /*
4690 * Gen2 reports pipe underruns whenever all planes are disabled.
4691 * So don't enable underrun reporting before at least some planes
4692 * are enabled.
4693 * FIXME: Need to fix the logic to work when we turn off all planes
4694 * but leave the pipe running.
4695 */
4696 if (IS_GEN2(dev))
4697 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4698
4699 /* Underruns don't raise interrupts, so check manually. */
4700 if (HAS_GMCH_DISPLAY(dev))
4701 i9xx_check_fifo_underruns(dev_priv);
4702 }
4703
4704 /**
4705 * intel_pre_disable_primary - Perform operations before disabling primary plane
4706 * @crtc: the CRTC whose primary plane is to be disabled
4707 *
4708 * Performs potentially sleeping operations that must be done before the
4709 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4710 * be called due to an explicit primary plane update, or due to an implicit
4711 * disable that is caused when a sprite plane completely hides the primary
4712 * plane.
4713 */
4714 static void
4715 intel_pre_disable_primary(struct drm_crtc *crtc)
4716 {
4717 struct drm_device *dev = crtc->dev;
4718 struct drm_i915_private *dev_priv = dev->dev_private;
4719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4720 int pipe = intel_crtc->pipe;
4721
4722 /*
4723 * Gen2 reports pipe underruns whenever all planes are disabled.
4724 * So diasble underrun reporting before all the planes get disabled.
4725 * FIXME: Need to fix the logic to work when we turn off all planes
4726 * but leave the pipe running.
4727 */
4728 if (IS_GEN2(dev))
4729 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4730
4731 /*
4732 * Vblank time updates from the shadow to live plane control register
4733 * are blocked if the memory self-refresh mode is active at that
4734 * moment. So to make sure the plane gets truly disabled, disable
4735 * first the self-refresh mode. The self-refresh enable bit in turn
4736 * will be checked/applied by the HW only at the next frame start
4737 * event which is after the vblank start event, so we need to have a
4738 * wait-for-vblank between disabling the plane and the pipe.
4739 */
4740 if (HAS_GMCH_DISPLAY(dev))
4741 intel_set_memory_cxsr(dev_priv, false);
4742
4743 mutex_lock(&dev->struct_mutex);
4744 if (dev_priv->fbc.crtc == intel_crtc)
4745 intel_fbc_disable(dev);
4746 mutex_unlock(&dev->struct_mutex);
4747
4748 /*
4749 * FIXME IPS should be fine as long as one plane is
4750 * enabled, but in practice it seems to have problems
4751 * when going from primary only to sprite only and vice
4752 * versa.
4753 */
4754 hsw_disable_ips(intel_crtc);
4755 }
4756
4757 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4758 {
4759 struct drm_device *dev = crtc->dev;
4760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4761 int pipe = intel_crtc->pipe;
4762
4763 intel_enable_primary_hw_plane(crtc->primary, crtc);
4764 intel_enable_sprite_planes(crtc);
4765 if (to_intel_plane_state(crtc->cursor->state)->visible)
4766 intel_crtc_update_cursor(crtc, true);
4767
4768 intel_post_enable_primary(crtc);
4769
4770 /*
4771 * FIXME: Once we grow proper nuclear flip support out of this we need
4772 * to compute the mask of flip planes precisely. For the time being
4773 * consider this a flip to a NULL plane.
4774 */
4775 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4776 }
4777
4778 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4779 {
4780 struct drm_device *dev = crtc->dev;
4781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782 struct intel_plane *intel_plane;
4783 int pipe = intel_crtc->pipe;
4784
4785 intel_crtc_wait_for_pending_flips(crtc);
4786
4787 intel_pre_disable_primary(crtc);
4788
4789 intel_crtc_dpms_overlay_disable(intel_crtc);
4790 for_each_intel_plane(dev, intel_plane) {
4791 if (intel_plane->pipe == pipe) {
4792 struct drm_crtc *from = intel_plane->base.crtc;
4793
4794 intel_plane->disable_plane(&intel_plane->base,
4795 from ?: crtc, true);
4796 }
4797 }
4798
4799 /*
4800 * FIXME: Once we grow proper nuclear flip support out of this we need
4801 * to compute the mask of flip planes precisely. For the time being
4802 * consider this a flip to a NULL plane.
4803 */
4804 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4805 }
4806
4807 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4808 {
4809 struct drm_device *dev = crtc->dev;
4810 struct drm_i915_private *dev_priv = dev->dev_private;
4811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4812 struct intel_encoder *encoder;
4813 int pipe = intel_crtc->pipe;
4814
4815 if (WARN_ON(intel_crtc->active))
4816 return;
4817
4818 if (intel_crtc->config->has_pch_encoder)
4819 intel_prepare_shared_dpll(intel_crtc);
4820
4821 if (intel_crtc->config->has_dp_encoder)
4822 intel_dp_set_m_n(intel_crtc, M1_N1);
4823
4824 intel_set_pipe_timings(intel_crtc);
4825
4826 if (intel_crtc->config->has_pch_encoder) {
4827 intel_cpu_transcoder_set_m_n(intel_crtc,
4828 &intel_crtc->config->fdi_m_n, NULL);
4829 }
4830
4831 ironlake_set_pipeconf(crtc);
4832
4833 intel_crtc->active = true;
4834
4835 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4836 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4837
4838 for_each_encoder_on_crtc(dev, crtc, encoder)
4839 if (encoder->pre_enable)
4840 encoder->pre_enable(encoder);
4841
4842 if (intel_crtc->config->has_pch_encoder) {
4843 /* Note: FDI PLL enabling _must_ be done before we enable the
4844 * cpu pipes, hence this is separate from all the other fdi/pch
4845 * enabling. */
4846 ironlake_fdi_pll_enable(intel_crtc);
4847 } else {
4848 assert_fdi_tx_disabled(dev_priv, pipe);
4849 assert_fdi_rx_disabled(dev_priv, pipe);
4850 }
4851
4852 ironlake_pfit_enable(intel_crtc);
4853
4854 /*
4855 * On ILK+ LUT must be loaded before the pipe is running but with
4856 * clocks enabled
4857 */
4858 intel_crtc_load_lut(crtc);
4859
4860 intel_update_watermarks(crtc);
4861 intel_enable_pipe(intel_crtc);
4862
4863 if (intel_crtc->config->has_pch_encoder)
4864 ironlake_pch_enable(crtc);
4865
4866 assert_vblank_disabled(crtc);
4867 drm_crtc_vblank_on(crtc);
4868
4869 for_each_encoder_on_crtc(dev, crtc, encoder)
4870 encoder->enable(encoder);
4871
4872 if (HAS_PCH_CPT(dev))
4873 cpt_verify_modeset(dev, intel_crtc->pipe);
4874 }
4875
4876 /* IPS only exists on ULT machines and is tied to pipe A. */
4877 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4878 {
4879 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4880 }
4881
4882 static void haswell_crtc_enable(struct drm_crtc *crtc)
4883 {
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4887 struct intel_encoder *encoder;
4888 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4889 struct intel_crtc_state *pipe_config =
4890 to_intel_crtc_state(crtc->state);
4891
4892 if (WARN_ON(intel_crtc->active))
4893 return;
4894
4895 if (intel_crtc_to_shared_dpll(intel_crtc))
4896 intel_enable_shared_dpll(intel_crtc);
4897
4898 if (intel_crtc->config->has_dp_encoder)
4899 intel_dp_set_m_n(intel_crtc, M1_N1);
4900
4901 intel_set_pipe_timings(intel_crtc);
4902
4903 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4904 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4905 intel_crtc->config->pixel_multiplier - 1);
4906 }
4907
4908 if (intel_crtc->config->has_pch_encoder) {
4909 intel_cpu_transcoder_set_m_n(intel_crtc,
4910 &intel_crtc->config->fdi_m_n, NULL);
4911 }
4912
4913 haswell_set_pipeconf(crtc);
4914
4915 intel_set_pipe_csc(crtc);
4916
4917 intel_crtc->active = true;
4918
4919 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4920 for_each_encoder_on_crtc(dev, crtc, encoder)
4921 if (encoder->pre_enable)
4922 encoder->pre_enable(encoder);
4923
4924 if (intel_crtc->config->has_pch_encoder) {
4925 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4926 true);
4927 dev_priv->display.fdi_link_train(crtc);
4928 }
4929
4930 intel_ddi_enable_pipe_clock(intel_crtc);
4931
4932 if (INTEL_INFO(dev)->gen == 9)
4933 skylake_pfit_update(intel_crtc, 1);
4934 else if (INTEL_INFO(dev)->gen < 9)
4935 ironlake_pfit_enable(intel_crtc);
4936 else
4937 MISSING_CASE(INTEL_INFO(dev)->gen);
4938
4939 /*
4940 * On ILK+ LUT must be loaded before the pipe is running but with
4941 * clocks enabled
4942 */
4943 intel_crtc_load_lut(crtc);
4944
4945 intel_ddi_set_pipe_settings(crtc);
4946 intel_ddi_enable_transcoder_func(crtc);
4947
4948 intel_update_watermarks(crtc);
4949 intel_enable_pipe(intel_crtc);
4950
4951 if (intel_crtc->config->has_pch_encoder)
4952 lpt_pch_enable(crtc);
4953
4954 if (intel_crtc->config->dp_encoder_is_mst)
4955 intel_ddi_set_vc_payload_alloc(crtc, true);
4956
4957 assert_vblank_disabled(crtc);
4958 drm_crtc_vblank_on(crtc);
4959
4960 for_each_encoder_on_crtc(dev, crtc, encoder) {
4961 encoder->enable(encoder);
4962 intel_opregion_notify_encoder(encoder, true);
4963 }
4964
4965 /* If we change the relative order between pipe/planes enabling, we need
4966 * to change the workaround. */
4967 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4968 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4969 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4970 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4971 }
4972 }
4973
4974 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4975 {
4976 struct drm_device *dev = crtc->base.dev;
4977 struct drm_i915_private *dev_priv = dev->dev_private;
4978 int pipe = crtc->pipe;
4979
4980 /* To avoid upsetting the power well on haswell only disable the pfit if
4981 * it's in use. The hw state code will make sure we get this right. */
4982 if (crtc->config->pch_pfit.enabled) {
4983 I915_WRITE(PF_CTL(pipe), 0);
4984 I915_WRITE(PF_WIN_POS(pipe), 0);
4985 I915_WRITE(PF_WIN_SZ(pipe), 0);
4986 }
4987 }
4988
4989 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4990 {
4991 struct drm_device *dev = crtc->dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4994 struct intel_encoder *encoder;
4995 int pipe = intel_crtc->pipe;
4996 u32 reg, temp;
4997
4998 if (WARN_ON(!intel_crtc->active))
4999 return;
5000
5001 for_each_encoder_on_crtc(dev, crtc, encoder)
5002 encoder->disable(encoder);
5003
5004 drm_crtc_vblank_off(crtc);
5005 assert_vblank_disabled(crtc);
5006
5007 if (intel_crtc->config->has_pch_encoder)
5008 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5009
5010 intel_disable_pipe(intel_crtc);
5011
5012 ironlake_pfit_disable(intel_crtc);
5013
5014 if (intel_crtc->config->has_pch_encoder)
5015 ironlake_fdi_disable(crtc);
5016
5017 for_each_encoder_on_crtc(dev, crtc, encoder)
5018 if (encoder->post_disable)
5019 encoder->post_disable(encoder);
5020
5021 if (intel_crtc->config->has_pch_encoder) {
5022 ironlake_disable_pch_transcoder(dev_priv, pipe);
5023
5024 if (HAS_PCH_CPT(dev)) {
5025 /* disable TRANS_DP_CTL */
5026 reg = TRANS_DP_CTL(pipe);
5027 temp = I915_READ(reg);
5028 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5029 TRANS_DP_PORT_SEL_MASK);
5030 temp |= TRANS_DP_PORT_SEL_NONE;
5031 I915_WRITE(reg, temp);
5032
5033 /* disable DPLL_SEL */
5034 temp = I915_READ(PCH_DPLL_SEL);
5035 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5036 I915_WRITE(PCH_DPLL_SEL, temp);
5037 }
5038
5039 /* disable PCH DPLL */
5040 intel_disable_shared_dpll(intel_crtc);
5041
5042 ironlake_fdi_pll_disable(intel_crtc);
5043 }
5044
5045 intel_crtc->active = false;
5046 intel_update_watermarks(crtc);
5047
5048 mutex_lock(&dev->struct_mutex);
5049 intel_fbc_update(dev);
5050 mutex_unlock(&dev->struct_mutex);
5051 }
5052
5053 static void haswell_crtc_disable(struct drm_crtc *crtc)
5054 {
5055 struct drm_device *dev = crtc->dev;
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5058 struct intel_encoder *encoder;
5059 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5060
5061 if (WARN_ON(!intel_crtc->active))
5062 return;
5063
5064 for_each_encoder_on_crtc(dev, crtc, encoder) {
5065 intel_opregion_notify_encoder(encoder, false);
5066 encoder->disable(encoder);
5067 }
5068
5069 drm_crtc_vblank_off(crtc);
5070 assert_vblank_disabled(crtc);
5071
5072 if (intel_crtc->config->has_pch_encoder)
5073 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5074 false);
5075 intel_disable_pipe(intel_crtc);
5076
5077 if (intel_crtc->config->dp_encoder_is_mst)
5078 intel_ddi_set_vc_payload_alloc(crtc, false);
5079
5080 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5081
5082 if (INTEL_INFO(dev)->gen == 9)
5083 skylake_pfit_update(intel_crtc, 0);
5084 else if (INTEL_INFO(dev)->gen < 9)
5085 ironlake_pfit_disable(intel_crtc);
5086 else
5087 MISSING_CASE(INTEL_INFO(dev)->gen);
5088
5089 intel_ddi_disable_pipe_clock(intel_crtc);
5090
5091 if (intel_crtc->config->has_pch_encoder) {
5092 lpt_disable_pch_transcoder(dev_priv);
5093 intel_ddi_fdi_disable(crtc);
5094 }
5095
5096 for_each_encoder_on_crtc(dev, crtc, encoder)
5097 if (encoder->post_disable)
5098 encoder->post_disable(encoder);
5099
5100 intel_crtc->active = false;
5101 intel_update_watermarks(crtc);
5102
5103 mutex_lock(&dev->struct_mutex);
5104 intel_fbc_update(dev);
5105 mutex_unlock(&dev->struct_mutex);
5106
5107 if (intel_crtc_to_shared_dpll(intel_crtc))
5108 intel_disable_shared_dpll(intel_crtc);
5109 }
5110
5111 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5112 {
5113 struct drm_device *dev = crtc->base.dev;
5114 struct drm_i915_private *dev_priv = dev->dev_private;
5115 struct intel_crtc_state *pipe_config = crtc->config;
5116
5117 if (!pipe_config->gmch_pfit.control)
5118 return;
5119
5120 /*
5121 * The panel fitter should only be adjusted whilst the pipe is disabled,
5122 * according to register description and PRM.
5123 */
5124 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5125 assert_pipe_disabled(dev_priv, crtc->pipe);
5126
5127 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5128 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5129
5130 /* Border color in case we don't scale up to the full screen. Black by
5131 * default, change to something else for debugging. */
5132 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5133 }
5134
5135 static enum intel_display_power_domain port_to_power_domain(enum port port)
5136 {
5137 switch (port) {
5138 case PORT_A:
5139 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5140 case PORT_B:
5141 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5142 case PORT_C:
5143 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5144 case PORT_D:
5145 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5146 default:
5147 WARN_ON_ONCE(1);
5148 return POWER_DOMAIN_PORT_OTHER;
5149 }
5150 }
5151
5152 #define for_each_power_domain(domain, mask) \
5153 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5154 if ((1 << (domain)) & (mask))
5155
5156 enum intel_display_power_domain
5157 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5158 {
5159 struct drm_device *dev = intel_encoder->base.dev;
5160 struct intel_digital_port *intel_dig_port;
5161
5162 switch (intel_encoder->type) {
5163 case INTEL_OUTPUT_UNKNOWN:
5164 /* Only DDI platforms should ever use this output type */
5165 WARN_ON_ONCE(!HAS_DDI(dev));
5166 case INTEL_OUTPUT_DISPLAYPORT:
5167 case INTEL_OUTPUT_HDMI:
5168 case INTEL_OUTPUT_EDP:
5169 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5170 return port_to_power_domain(intel_dig_port->port);
5171 case INTEL_OUTPUT_DP_MST:
5172 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5173 return port_to_power_domain(intel_dig_port->port);
5174 case INTEL_OUTPUT_ANALOG:
5175 return POWER_DOMAIN_PORT_CRT;
5176 case INTEL_OUTPUT_DSI:
5177 return POWER_DOMAIN_PORT_DSI;
5178 default:
5179 return POWER_DOMAIN_PORT_OTHER;
5180 }
5181 }
5182
5183 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5184 {
5185 struct drm_device *dev = crtc->dev;
5186 struct intel_encoder *intel_encoder;
5187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188 enum pipe pipe = intel_crtc->pipe;
5189 unsigned long mask;
5190 enum transcoder transcoder;
5191
5192 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5193
5194 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5195 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5196 if (intel_crtc->config->pch_pfit.enabled ||
5197 intel_crtc->config->pch_pfit.force_thru)
5198 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5199
5200 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5201 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5202
5203 return mask;
5204 }
5205
5206 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5207 {
5208 struct drm_device *dev = state->dev;
5209 struct drm_i915_private *dev_priv = dev->dev_private;
5210 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5211 struct intel_crtc *crtc;
5212
5213 /*
5214 * First get all needed power domains, then put all unneeded, to avoid
5215 * any unnecessary toggling of the power wells.
5216 */
5217 for_each_intel_crtc(dev, crtc) {
5218 enum intel_display_power_domain domain;
5219
5220 if (!crtc->base.state->enable)
5221 continue;
5222
5223 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5224
5225 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5226 intel_display_power_get(dev_priv, domain);
5227 }
5228
5229 if (dev_priv->display.modeset_global_resources)
5230 dev_priv->display.modeset_global_resources(state);
5231
5232 for_each_intel_crtc(dev, crtc) {
5233 enum intel_display_power_domain domain;
5234
5235 for_each_power_domain(domain, crtc->enabled_power_domains)
5236 intel_display_power_put(dev_priv, domain);
5237
5238 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5239 }
5240
5241 intel_display_set_init_power(dev_priv, false);
5242 }
5243
5244 static void intel_update_max_cdclk(struct drm_device *dev)
5245 {
5246 struct drm_i915_private *dev_priv = dev->dev_private;
5247
5248 if (IS_SKYLAKE(dev)) {
5249 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5250
5251 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5252 dev_priv->max_cdclk_freq = 675000;
5253 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5254 dev_priv->max_cdclk_freq = 540000;
5255 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5256 dev_priv->max_cdclk_freq = 450000;
5257 else
5258 dev_priv->max_cdclk_freq = 337500;
5259 } else if (IS_BROADWELL(dev)) {
5260 /*
5261 * FIXME with extra cooling we can allow
5262 * 540 MHz for ULX and 675 Mhz for ULT.
5263 * How can we know if extra cooling is
5264 * available? PCI ID, VTB, something else?
5265 */
5266 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5267 dev_priv->max_cdclk_freq = 450000;
5268 else if (IS_BDW_ULX(dev))
5269 dev_priv->max_cdclk_freq = 450000;
5270 else if (IS_BDW_ULT(dev))
5271 dev_priv->max_cdclk_freq = 540000;
5272 else
5273 dev_priv->max_cdclk_freq = 675000;
5274 } else if (IS_CHERRYVIEW(dev)) {
5275 dev_priv->max_cdclk_freq = 320000;
5276 } else if (IS_VALLEYVIEW(dev)) {
5277 dev_priv->max_cdclk_freq = 400000;
5278 } else {
5279 /* otherwise assume cdclk is fixed */
5280 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5281 }
5282
5283 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5284 dev_priv->max_cdclk_freq);
5285 }
5286
5287 static void intel_update_cdclk(struct drm_device *dev)
5288 {
5289 struct drm_i915_private *dev_priv = dev->dev_private;
5290
5291 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5292 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5293 dev_priv->cdclk_freq);
5294
5295 /*
5296 * Program the gmbus_freq based on the cdclk frequency.
5297 * BSpec erroneously claims we should aim for 4MHz, but
5298 * in fact 1MHz is the correct frequency.
5299 */
5300 if (IS_VALLEYVIEW(dev)) {
5301 /*
5302 * Program the gmbus_freq based on the cdclk frequency.
5303 * BSpec erroneously claims we should aim for 4MHz, but
5304 * in fact 1MHz is the correct frequency.
5305 */
5306 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5307 }
5308
5309 if (dev_priv->max_cdclk_freq == 0)
5310 intel_update_max_cdclk(dev);
5311 }
5312
5313 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5314 {
5315 struct drm_i915_private *dev_priv = dev->dev_private;
5316 uint32_t divider;
5317 uint32_t ratio;
5318 uint32_t current_freq;
5319 int ret;
5320
5321 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5322 switch (frequency) {
5323 case 144000:
5324 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5325 ratio = BXT_DE_PLL_RATIO(60);
5326 break;
5327 case 288000:
5328 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5329 ratio = BXT_DE_PLL_RATIO(60);
5330 break;
5331 case 384000:
5332 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5333 ratio = BXT_DE_PLL_RATIO(60);
5334 break;
5335 case 576000:
5336 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5337 ratio = BXT_DE_PLL_RATIO(60);
5338 break;
5339 case 624000:
5340 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5341 ratio = BXT_DE_PLL_RATIO(65);
5342 break;
5343 case 19200:
5344 /*
5345 * Bypass frequency with DE PLL disabled. Init ratio, divider
5346 * to suppress GCC warning.
5347 */
5348 ratio = 0;
5349 divider = 0;
5350 break;
5351 default:
5352 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5353
5354 return;
5355 }
5356
5357 mutex_lock(&dev_priv->rps.hw_lock);
5358 /* Inform power controller of upcoming frequency change */
5359 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5360 0x80000000);
5361 mutex_unlock(&dev_priv->rps.hw_lock);
5362
5363 if (ret) {
5364 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5365 ret, frequency);
5366 return;
5367 }
5368
5369 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5370 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5371 current_freq = current_freq * 500 + 1000;
5372
5373 /*
5374 * DE PLL has to be disabled when
5375 * - setting to 19.2MHz (bypass, PLL isn't used)
5376 * - before setting to 624MHz (PLL needs toggling)
5377 * - before setting to any frequency from 624MHz (PLL needs toggling)
5378 */
5379 if (frequency == 19200 || frequency == 624000 ||
5380 current_freq == 624000) {
5381 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5382 /* Timeout 200us */
5383 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5384 1))
5385 DRM_ERROR("timout waiting for DE PLL unlock\n");
5386 }
5387
5388 if (frequency != 19200) {
5389 uint32_t val;
5390
5391 val = I915_READ(BXT_DE_PLL_CTL);
5392 val &= ~BXT_DE_PLL_RATIO_MASK;
5393 val |= ratio;
5394 I915_WRITE(BXT_DE_PLL_CTL, val);
5395
5396 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5397 /* Timeout 200us */
5398 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5399 DRM_ERROR("timeout waiting for DE PLL lock\n");
5400
5401 val = I915_READ(CDCLK_CTL);
5402 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5403 val |= divider;
5404 /*
5405 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5406 * enable otherwise.
5407 */
5408 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5409 if (frequency >= 500000)
5410 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5411
5412 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5413 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5414 val |= (frequency - 1000) / 500;
5415 I915_WRITE(CDCLK_CTL, val);
5416 }
5417
5418 mutex_lock(&dev_priv->rps.hw_lock);
5419 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5420 DIV_ROUND_UP(frequency, 25000));
5421 mutex_unlock(&dev_priv->rps.hw_lock);
5422
5423 if (ret) {
5424 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5425 ret, frequency);
5426 return;
5427 }
5428
5429 intel_update_cdclk(dev);
5430 }
5431
5432 void broxton_init_cdclk(struct drm_device *dev)
5433 {
5434 struct drm_i915_private *dev_priv = dev->dev_private;
5435 uint32_t val;
5436
5437 /*
5438 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5439 * or else the reset will hang because there is no PCH to respond.
5440 * Move the handshake programming to initialization sequence.
5441 * Previously was left up to BIOS.
5442 */
5443 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5444 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5445 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5446
5447 /* Enable PG1 for cdclk */
5448 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5449
5450 /* check if cd clock is enabled */
5451 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5452 DRM_DEBUG_KMS("Display already initialized\n");
5453 return;
5454 }
5455
5456 /*
5457 * FIXME:
5458 * - The initial CDCLK needs to be read from VBT.
5459 * Need to make this change after VBT has changes for BXT.
5460 * - check if setting the max (or any) cdclk freq is really necessary
5461 * here, it belongs to modeset time
5462 */
5463 broxton_set_cdclk(dev, 624000);
5464
5465 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5466 POSTING_READ(DBUF_CTL);
5467
5468 udelay(10);
5469
5470 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5471 DRM_ERROR("DBuf power enable timeout!\n");
5472 }
5473
5474 void broxton_uninit_cdclk(struct drm_device *dev)
5475 {
5476 struct drm_i915_private *dev_priv = dev->dev_private;
5477
5478 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5479 POSTING_READ(DBUF_CTL);
5480
5481 udelay(10);
5482
5483 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5484 DRM_ERROR("DBuf power disable timeout!\n");
5485
5486 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5487 broxton_set_cdclk(dev, 19200);
5488
5489 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5490 }
5491
5492 static const struct skl_cdclk_entry {
5493 unsigned int freq;
5494 unsigned int vco;
5495 } skl_cdclk_frequencies[] = {
5496 { .freq = 308570, .vco = 8640 },
5497 { .freq = 337500, .vco = 8100 },
5498 { .freq = 432000, .vco = 8640 },
5499 { .freq = 450000, .vco = 8100 },
5500 { .freq = 540000, .vco = 8100 },
5501 { .freq = 617140, .vco = 8640 },
5502 { .freq = 675000, .vco = 8100 },
5503 };
5504
5505 static unsigned int skl_cdclk_decimal(unsigned int freq)
5506 {
5507 return (freq - 1000) / 500;
5508 }
5509
5510 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5511 {
5512 unsigned int i;
5513
5514 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5515 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5516
5517 if (e->freq == freq)
5518 return e->vco;
5519 }
5520
5521 return 8100;
5522 }
5523
5524 static void
5525 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5526 {
5527 unsigned int min_freq;
5528 u32 val;
5529
5530 /* select the minimum CDCLK before enabling DPLL 0 */
5531 val = I915_READ(CDCLK_CTL);
5532 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5533 val |= CDCLK_FREQ_337_308;
5534
5535 if (required_vco == 8640)
5536 min_freq = 308570;
5537 else
5538 min_freq = 337500;
5539
5540 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5541
5542 I915_WRITE(CDCLK_CTL, val);
5543 POSTING_READ(CDCLK_CTL);
5544
5545 /*
5546 * We always enable DPLL0 with the lowest link rate possible, but still
5547 * taking into account the VCO required to operate the eDP panel at the
5548 * desired frequency. The usual DP link rates operate with a VCO of
5549 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5550 * The modeset code is responsible for the selection of the exact link
5551 * rate later on, with the constraint of choosing a frequency that
5552 * works with required_vco.
5553 */
5554 val = I915_READ(DPLL_CTRL1);
5555
5556 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5557 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5558 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5559 if (required_vco == 8640)
5560 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5561 SKL_DPLL0);
5562 else
5563 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5564 SKL_DPLL0);
5565
5566 I915_WRITE(DPLL_CTRL1, val);
5567 POSTING_READ(DPLL_CTRL1);
5568
5569 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5570
5571 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5572 DRM_ERROR("DPLL0 not locked\n");
5573 }
5574
5575 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5576 {
5577 int ret;
5578 u32 val;
5579
5580 /* inform PCU we want to change CDCLK */
5581 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5582 mutex_lock(&dev_priv->rps.hw_lock);
5583 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5584 mutex_unlock(&dev_priv->rps.hw_lock);
5585
5586 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5587 }
5588
5589 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5590 {
5591 unsigned int i;
5592
5593 for (i = 0; i < 15; i++) {
5594 if (skl_cdclk_pcu_ready(dev_priv))
5595 return true;
5596 udelay(10);
5597 }
5598
5599 return false;
5600 }
5601
5602 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5603 {
5604 struct drm_device *dev = dev_priv->dev;
5605 u32 freq_select, pcu_ack;
5606
5607 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5608
5609 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5610 DRM_ERROR("failed to inform PCU about cdclk change\n");
5611 return;
5612 }
5613
5614 /* set CDCLK_CTL */
5615 switch(freq) {
5616 case 450000:
5617 case 432000:
5618 freq_select = CDCLK_FREQ_450_432;
5619 pcu_ack = 1;
5620 break;
5621 case 540000:
5622 freq_select = CDCLK_FREQ_540;
5623 pcu_ack = 2;
5624 break;
5625 case 308570:
5626 case 337500:
5627 default:
5628 freq_select = CDCLK_FREQ_337_308;
5629 pcu_ack = 0;
5630 break;
5631 case 617140:
5632 case 675000:
5633 freq_select = CDCLK_FREQ_675_617;
5634 pcu_ack = 3;
5635 break;
5636 }
5637
5638 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5639 POSTING_READ(CDCLK_CTL);
5640
5641 /* inform PCU of the change */
5642 mutex_lock(&dev_priv->rps.hw_lock);
5643 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5644 mutex_unlock(&dev_priv->rps.hw_lock);
5645
5646 intel_update_cdclk(dev);
5647 }
5648
5649 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5650 {
5651 /* disable DBUF power */
5652 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5653 POSTING_READ(DBUF_CTL);
5654
5655 udelay(10);
5656
5657 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5658 DRM_ERROR("DBuf power disable timeout\n");
5659
5660 /* disable DPLL0 */
5661 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5662 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5663 DRM_ERROR("Couldn't disable DPLL0\n");
5664
5665 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5666 }
5667
5668 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5669 {
5670 u32 val;
5671 unsigned int required_vco;
5672
5673 /* enable PCH reset handshake */
5674 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5675 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5676
5677 /* enable PG1 and Misc I/O */
5678 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5679
5680 /* DPLL0 already enabed !? */
5681 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5682 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5683 return;
5684 }
5685
5686 /* enable DPLL0 */
5687 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5688 skl_dpll0_enable(dev_priv, required_vco);
5689
5690 /* set CDCLK to the frequency the BIOS chose */
5691 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5692
5693 /* enable DBUF power */
5694 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5695 POSTING_READ(DBUF_CTL);
5696
5697 udelay(10);
5698
5699 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5700 DRM_ERROR("DBuf power enable timeout\n");
5701 }
5702
5703 /* returns HPLL frequency in kHz */
5704 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5705 {
5706 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5707
5708 /* Obtain SKU information */
5709 mutex_lock(&dev_priv->sb_lock);
5710 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5711 CCK_FUSE_HPLL_FREQ_MASK;
5712 mutex_unlock(&dev_priv->sb_lock);
5713
5714 return vco_freq[hpll_freq] * 1000;
5715 }
5716
5717 /* Adjust CDclk dividers to allow high res or save power if possible */
5718 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5719 {
5720 struct drm_i915_private *dev_priv = dev->dev_private;
5721 u32 val, cmd;
5722
5723 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5724 != dev_priv->cdclk_freq);
5725
5726 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5727 cmd = 2;
5728 else if (cdclk == 266667)
5729 cmd = 1;
5730 else
5731 cmd = 0;
5732
5733 mutex_lock(&dev_priv->rps.hw_lock);
5734 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5735 val &= ~DSPFREQGUAR_MASK;
5736 val |= (cmd << DSPFREQGUAR_SHIFT);
5737 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5738 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5739 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5740 50)) {
5741 DRM_ERROR("timed out waiting for CDclk change\n");
5742 }
5743 mutex_unlock(&dev_priv->rps.hw_lock);
5744
5745 mutex_lock(&dev_priv->sb_lock);
5746
5747 if (cdclk == 400000) {
5748 u32 divider;
5749
5750 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5751
5752 /* adjust cdclk divider */
5753 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5754 val &= ~DISPLAY_FREQUENCY_VALUES;
5755 val |= divider;
5756 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5757
5758 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5759 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5760 50))
5761 DRM_ERROR("timed out waiting for CDclk change\n");
5762 }
5763
5764 /* adjust self-refresh exit latency value */
5765 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5766 val &= ~0x7f;
5767
5768 /*
5769 * For high bandwidth configs, we set a higher latency in the bunit
5770 * so that the core display fetch happens in time to avoid underruns.
5771 */
5772 if (cdclk == 400000)
5773 val |= 4500 / 250; /* 4.5 usec */
5774 else
5775 val |= 3000 / 250; /* 3.0 usec */
5776 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5777
5778 mutex_unlock(&dev_priv->sb_lock);
5779
5780 intel_update_cdclk(dev);
5781 }
5782
5783 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5784 {
5785 struct drm_i915_private *dev_priv = dev->dev_private;
5786 u32 val, cmd;
5787
5788 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5789 != dev_priv->cdclk_freq);
5790
5791 switch (cdclk) {
5792 case 333333:
5793 case 320000:
5794 case 266667:
5795 case 200000:
5796 break;
5797 default:
5798 MISSING_CASE(cdclk);
5799 return;
5800 }
5801
5802 /*
5803 * Specs are full of misinformation, but testing on actual
5804 * hardware has shown that we just need to write the desired
5805 * CCK divider into the Punit register.
5806 */
5807 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5808
5809 mutex_lock(&dev_priv->rps.hw_lock);
5810 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5811 val &= ~DSPFREQGUAR_MASK_CHV;
5812 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5813 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5814 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5815 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5816 50)) {
5817 DRM_ERROR("timed out waiting for CDclk change\n");
5818 }
5819 mutex_unlock(&dev_priv->rps.hw_lock);
5820
5821 intel_update_cdclk(dev);
5822 }
5823
5824 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5825 int max_pixclk)
5826 {
5827 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5828 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5829
5830 /*
5831 * Really only a few cases to deal with, as only 4 CDclks are supported:
5832 * 200MHz
5833 * 267MHz
5834 * 320/333MHz (depends on HPLL freq)
5835 * 400MHz (VLV only)
5836 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5837 * of the lower bin and adjust if needed.
5838 *
5839 * We seem to get an unstable or solid color picture at 200MHz.
5840 * Not sure what's wrong. For now use 200MHz only when all pipes
5841 * are off.
5842 */
5843 if (!IS_CHERRYVIEW(dev_priv) &&
5844 max_pixclk > freq_320*limit/100)
5845 return 400000;
5846 else if (max_pixclk > 266667*limit/100)
5847 return freq_320;
5848 else if (max_pixclk > 0)
5849 return 266667;
5850 else
5851 return 200000;
5852 }
5853
5854 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5855 int max_pixclk)
5856 {
5857 /*
5858 * FIXME:
5859 * - remove the guardband, it's not needed on BXT
5860 * - set 19.2MHz bypass frequency if there are no active pipes
5861 */
5862 if (max_pixclk > 576000*9/10)
5863 return 624000;
5864 else if (max_pixclk > 384000*9/10)
5865 return 576000;
5866 else if (max_pixclk > 288000*9/10)
5867 return 384000;
5868 else if (max_pixclk > 144000*9/10)
5869 return 288000;
5870 else
5871 return 144000;
5872 }
5873
5874 /* Compute the max pixel clock for new configuration. Uses atomic state if
5875 * that's non-NULL, look at current state otherwise. */
5876 static int intel_mode_max_pixclk(struct drm_device *dev,
5877 struct drm_atomic_state *state)
5878 {
5879 struct intel_crtc *intel_crtc;
5880 struct intel_crtc_state *crtc_state;
5881 int max_pixclk = 0;
5882
5883 for_each_intel_crtc(dev, intel_crtc) {
5884 if (state)
5885 crtc_state =
5886 intel_atomic_get_crtc_state(state, intel_crtc);
5887 else
5888 crtc_state = intel_crtc->config;
5889 if (IS_ERR(crtc_state))
5890 return PTR_ERR(crtc_state);
5891
5892 if (!crtc_state->base.enable)
5893 continue;
5894
5895 max_pixclk = max(max_pixclk,
5896 crtc_state->base.adjusted_mode.crtc_clock);
5897 }
5898
5899 return max_pixclk;
5900 }
5901
5902 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5903 {
5904 struct drm_i915_private *dev_priv = to_i915(state->dev);
5905 struct drm_crtc *crtc;
5906 struct drm_crtc_state *crtc_state;
5907 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5908 int cdclk, ret = 0;
5909
5910 if (max_pixclk < 0)
5911 return max_pixclk;
5912
5913 if (IS_VALLEYVIEW(dev_priv))
5914 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5915 else
5916 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5917
5918 if (cdclk == dev_priv->cdclk_freq)
5919 return 0;
5920
5921 /* add all active pipes to the state */
5922 for_each_crtc(state->dev, crtc) {
5923 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5924 if (IS_ERR(crtc_state))
5925 return PTR_ERR(crtc_state);
5926
5927 if (!crtc_state->active || needs_modeset(crtc_state))
5928 continue;
5929
5930 crtc_state->mode_changed = true;
5931
5932 ret = drm_atomic_add_affected_connectors(state, crtc);
5933 if (ret)
5934 break;
5935
5936 ret = drm_atomic_add_affected_planes(state, crtc);
5937 if (ret)
5938 break;
5939 }
5940
5941 return ret;
5942 }
5943
5944 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5945 {
5946 unsigned int credits, default_credits;
5947
5948 if (IS_CHERRYVIEW(dev_priv))
5949 default_credits = PFI_CREDIT(12);
5950 else
5951 default_credits = PFI_CREDIT(8);
5952
5953 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5954 /* CHV suggested value is 31 or 63 */
5955 if (IS_CHERRYVIEW(dev_priv))
5956 credits = PFI_CREDIT_63;
5957 else
5958 credits = PFI_CREDIT(15);
5959 } else {
5960 credits = default_credits;
5961 }
5962
5963 /*
5964 * WA - write default credits before re-programming
5965 * FIXME: should we also set the resend bit here?
5966 */
5967 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5968 default_credits);
5969
5970 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5971 credits | PFI_CREDIT_RESEND);
5972
5973 /*
5974 * FIXME is this guaranteed to clear
5975 * immediately or should we poll for it?
5976 */
5977 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5978 }
5979
5980 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
5981 {
5982 struct drm_device *dev = old_state->dev;
5983 struct drm_i915_private *dev_priv = dev->dev_private;
5984 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
5985 int req_cdclk;
5986
5987 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
5988 * never fail. */
5989 if (WARN_ON(max_pixclk < 0))
5990 return;
5991
5992 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5993
5994 if (req_cdclk != dev_priv->cdclk_freq) {
5995 /*
5996 * FIXME: We can end up here with all power domains off, yet
5997 * with a CDCLK frequency other than the minimum. To account
5998 * for this take the PIPE-A power domain, which covers the HW
5999 * blocks needed for the following programming. This can be
6000 * removed once it's guaranteed that we get here either with
6001 * the minimum CDCLK set, or the required power domains
6002 * enabled.
6003 */
6004 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6005
6006 if (IS_CHERRYVIEW(dev))
6007 cherryview_set_cdclk(dev, req_cdclk);
6008 else
6009 valleyview_set_cdclk(dev, req_cdclk);
6010
6011 vlv_program_pfi_credits(dev_priv);
6012
6013 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6014 }
6015 }
6016
6017 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6018 {
6019 struct drm_device *dev = crtc->dev;
6020 struct drm_i915_private *dev_priv = to_i915(dev);
6021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6022 struct intel_encoder *encoder;
6023 int pipe = intel_crtc->pipe;
6024 bool is_dsi;
6025
6026 if (WARN_ON(intel_crtc->active))
6027 return;
6028
6029 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6030
6031 if (!is_dsi) {
6032 if (IS_CHERRYVIEW(dev))
6033 chv_prepare_pll(intel_crtc, intel_crtc->config);
6034 else
6035 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6036 }
6037
6038 if (intel_crtc->config->has_dp_encoder)
6039 intel_dp_set_m_n(intel_crtc, M1_N1);
6040
6041 intel_set_pipe_timings(intel_crtc);
6042
6043 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6044 struct drm_i915_private *dev_priv = dev->dev_private;
6045
6046 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6047 I915_WRITE(CHV_CANVAS(pipe), 0);
6048 }
6049
6050 i9xx_set_pipeconf(intel_crtc);
6051
6052 intel_crtc->active = true;
6053
6054 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6055
6056 for_each_encoder_on_crtc(dev, crtc, encoder)
6057 if (encoder->pre_pll_enable)
6058 encoder->pre_pll_enable(encoder);
6059
6060 if (!is_dsi) {
6061 if (IS_CHERRYVIEW(dev))
6062 chv_enable_pll(intel_crtc, intel_crtc->config);
6063 else
6064 vlv_enable_pll(intel_crtc, intel_crtc->config);
6065 }
6066
6067 for_each_encoder_on_crtc(dev, crtc, encoder)
6068 if (encoder->pre_enable)
6069 encoder->pre_enable(encoder);
6070
6071 i9xx_pfit_enable(intel_crtc);
6072
6073 intel_crtc_load_lut(crtc);
6074
6075 intel_update_watermarks(crtc);
6076 intel_enable_pipe(intel_crtc);
6077
6078 assert_vblank_disabled(crtc);
6079 drm_crtc_vblank_on(crtc);
6080
6081 for_each_encoder_on_crtc(dev, crtc, encoder)
6082 encoder->enable(encoder);
6083 }
6084
6085 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6086 {
6087 struct drm_device *dev = crtc->base.dev;
6088 struct drm_i915_private *dev_priv = dev->dev_private;
6089
6090 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6091 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6092 }
6093
6094 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6095 {
6096 struct drm_device *dev = crtc->dev;
6097 struct drm_i915_private *dev_priv = to_i915(dev);
6098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6099 struct intel_encoder *encoder;
6100 int pipe = intel_crtc->pipe;
6101
6102 if (WARN_ON(intel_crtc->active))
6103 return;
6104
6105 i9xx_set_pll_dividers(intel_crtc);
6106
6107 if (intel_crtc->config->has_dp_encoder)
6108 intel_dp_set_m_n(intel_crtc, M1_N1);
6109
6110 intel_set_pipe_timings(intel_crtc);
6111
6112 i9xx_set_pipeconf(intel_crtc);
6113
6114 intel_crtc->active = true;
6115
6116 if (!IS_GEN2(dev))
6117 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6118
6119 for_each_encoder_on_crtc(dev, crtc, encoder)
6120 if (encoder->pre_enable)
6121 encoder->pre_enable(encoder);
6122
6123 i9xx_enable_pll(intel_crtc);
6124
6125 i9xx_pfit_enable(intel_crtc);
6126
6127 intel_crtc_load_lut(crtc);
6128
6129 intel_update_watermarks(crtc);
6130 intel_enable_pipe(intel_crtc);
6131
6132 assert_vblank_disabled(crtc);
6133 drm_crtc_vblank_on(crtc);
6134
6135 for_each_encoder_on_crtc(dev, crtc, encoder)
6136 encoder->enable(encoder);
6137 }
6138
6139 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6140 {
6141 struct drm_device *dev = crtc->base.dev;
6142 struct drm_i915_private *dev_priv = dev->dev_private;
6143
6144 if (!crtc->config->gmch_pfit.control)
6145 return;
6146
6147 assert_pipe_disabled(dev_priv, crtc->pipe);
6148
6149 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6150 I915_READ(PFIT_CONTROL));
6151 I915_WRITE(PFIT_CONTROL, 0);
6152 }
6153
6154 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6155 {
6156 struct drm_device *dev = crtc->dev;
6157 struct drm_i915_private *dev_priv = dev->dev_private;
6158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6159 struct intel_encoder *encoder;
6160 int pipe = intel_crtc->pipe;
6161
6162 if (WARN_ON(!intel_crtc->active))
6163 return;
6164
6165 /*
6166 * On gen2 planes are double buffered but the pipe isn't, so we must
6167 * wait for planes to fully turn off before disabling the pipe.
6168 * We also need to wait on all gmch platforms because of the
6169 * self-refresh mode constraint explained above.
6170 */
6171 intel_wait_for_vblank(dev, pipe);
6172
6173 for_each_encoder_on_crtc(dev, crtc, encoder)
6174 encoder->disable(encoder);
6175
6176 drm_crtc_vblank_off(crtc);
6177 assert_vblank_disabled(crtc);
6178
6179 intel_disable_pipe(intel_crtc);
6180
6181 i9xx_pfit_disable(intel_crtc);
6182
6183 for_each_encoder_on_crtc(dev, crtc, encoder)
6184 if (encoder->post_disable)
6185 encoder->post_disable(encoder);
6186
6187 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6188 if (IS_CHERRYVIEW(dev))
6189 chv_disable_pll(dev_priv, pipe);
6190 else if (IS_VALLEYVIEW(dev))
6191 vlv_disable_pll(dev_priv, pipe);
6192 else
6193 i9xx_disable_pll(intel_crtc);
6194 }
6195
6196 if (!IS_GEN2(dev))
6197 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6198
6199 intel_crtc->active = false;
6200 intel_update_watermarks(crtc);
6201
6202 mutex_lock(&dev->struct_mutex);
6203 intel_fbc_update(dev);
6204 mutex_unlock(&dev->struct_mutex);
6205 }
6206
6207 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6208 {
6209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6210 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6211 enum intel_display_power_domain domain;
6212 unsigned long domains;
6213
6214 if (!intel_crtc->active)
6215 return;
6216
6217 intel_crtc_disable_planes(crtc);
6218 dev_priv->display.crtc_disable(crtc);
6219
6220 domains = intel_crtc->enabled_power_domains;
6221 for_each_power_domain(domain, domains)
6222 intel_display_power_put(dev_priv, domain);
6223 intel_crtc->enabled_power_domains = 0;
6224 }
6225
6226 /*
6227 * turn all crtc's off, but do not adjust state
6228 * This has to be paired with a call to intel_modeset_setup_hw_state.
6229 */
6230 void intel_display_suspend(struct drm_device *dev)
6231 {
6232 struct drm_crtc *crtc;
6233
6234 for_each_crtc(dev, crtc)
6235 intel_crtc_disable_noatomic(crtc);
6236 }
6237
6238 /* Master function to enable/disable CRTC and corresponding power wells */
6239 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6240 {
6241 struct drm_device *dev = crtc->dev;
6242 struct drm_mode_config *config = &dev->mode_config;
6243 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245 struct intel_crtc_state *pipe_config;
6246 struct drm_atomic_state *state;
6247 int ret;
6248
6249 if (enable == intel_crtc->active)
6250 return 0;
6251
6252 if (enable && !crtc->state->enable)
6253 return 0;
6254
6255 /* this function should be called with drm_modeset_lock_all for now */
6256 if (WARN_ON(!ctx))
6257 return -EIO;
6258 lockdep_assert_held(&ctx->ww_ctx);
6259
6260 state = drm_atomic_state_alloc(dev);
6261 if (WARN_ON(!state))
6262 return -ENOMEM;
6263
6264 state->acquire_ctx = ctx;
6265 state->allow_modeset = true;
6266
6267 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6268 if (IS_ERR(pipe_config)) {
6269 ret = PTR_ERR(pipe_config);
6270 goto err;
6271 }
6272 pipe_config->base.active = enable;
6273
6274 ret = intel_set_mode(state);
6275 if (!ret)
6276 return ret;
6277
6278 err:
6279 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6280 drm_atomic_state_free(state);
6281 return ret;
6282 }
6283
6284 /**
6285 * Sets the power management mode of the pipe and plane.
6286 */
6287 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6288 {
6289 struct drm_device *dev = crtc->dev;
6290 struct intel_encoder *intel_encoder;
6291 bool enable = false;
6292
6293 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6294 enable |= intel_encoder->connectors_active;
6295
6296 intel_crtc_control(crtc, enable);
6297 }
6298
6299 void intel_encoder_destroy(struct drm_encoder *encoder)
6300 {
6301 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6302
6303 drm_encoder_cleanup(encoder);
6304 kfree(intel_encoder);
6305 }
6306
6307 /* Simple dpms helper for encoders with just one connector, no cloning and only
6308 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6309 * state of the entire output pipe. */
6310 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6311 {
6312 if (mode == DRM_MODE_DPMS_ON) {
6313 encoder->connectors_active = true;
6314
6315 intel_crtc_update_dpms(encoder->base.crtc);
6316 } else {
6317 encoder->connectors_active = false;
6318
6319 intel_crtc_update_dpms(encoder->base.crtc);
6320 }
6321 }
6322
6323 /* Cross check the actual hw state with our own modeset state tracking (and it's
6324 * internal consistency). */
6325 static void intel_connector_check_state(struct intel_connector *connector)
6326 {
6327 if (connector->get_hw_state(connector)) {
6328 struct intel_encoder *encoder = connector->encoder;
6329 struct drm_crtc *crtc;
6330 bool encoder_enabled;
6331 enum pipe pipe;
6332
6333 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6334 connector->base.base.id,
6335 connector->base.name);
6336
6337 /* there is no real hw state for MST connectors */
6338 if (connector->mst_port)
6339 return;
6340
6341 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6342 "wrong connector dpms state\n");
6343 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6344 "active connector not linked to encoder\n");
6345
6346 if (encoder) {
6347 I915_STATE_WARN(!encoder->connectors_active,
6348 "encoder->connectors_active not set\n");
6349
6350 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6351 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6352 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6353 return;
6354
6355 crtc = encoder->base.crtc;
6356
6357 I915_STATE_WARN(!crtc->state->enable,
6358 "crtc not enabled\n");
6359 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6360 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6361 "encoder active on the wrong pipe\n");
6362 }
6363 }
6364 }
6365
6366 int intel_connector_init(struct intel_connector *connector)
6367 {
6368 struct drm_connector_state *connector_state;
6369
6370 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6371 if (!connector_state)
6372 return -ENOMEM;
6373
6374 connector->base.state = connector_state;
6375 return 0;
6376 }
6377
6378 struct intel_connector *intel_connector_alloc(void)
6379 {
6380 struct intel_connector *connector;
6381
6382 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6383 if (!connector)
6384 return NULL;
6385
6386 if (intel_connector_init(connector) < 0) {
6387 kfree(connector);
6388 return NULL;
6389 }
6390
6391 return connector;
6392 }
6393
6394 /* Even simpler default implementation, if there's really no special case to
6395 * consider. */
6396 void intel_connector_dpms(struct drm_connector *connector, int mode)
6397 {
6398 /* All the simple cases only support two dpms states. */
6399 if (mode != DRM_MODE_DPMS_ON)
6400 mode = DRM_MODE_DPMS_OFF;
6401
6402 if (mode == connector->dpms)
6403 return;
6404
6405 connector->dpms = mode;
6406
6407 /* Only need to change hw state when actually enabled */
6408 if (connector->encoder)
6409 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6410
6411 intel_modeset_check_state(connector->dev);
6412 }
6413
6414 /* Simple connector->get_hw_state implementation for encoders that support only
6415 * one connector and no cloning and hence the encoder state determines the state
6416 * of the connector. */
6417 bool intel_connector_get_hw_state(struct intel_connector *connector)
6418 {
6419 enum pipe pipe = 0;
6420 struct intel_encoder *encoder = connector->encoder;
6421
6422 return encoder->get_hw_state(encoder, &pipe);
6423 }
6424
6425 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6426 {
6427 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6428 return crtc_state->fdi_lanes;
6429
6430 return 0;
6431 }
6432
6433 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6434 struct intel_crtc_state *pipe_config)
6435 {
6436 struct drm_atomic_state *state = pipe_config->base.state;
6437 struct intel_crtc *other_crtc;
6438 struct intel_crtc_state *other_crtc_state;
6439
6440 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6441 pipe_name(pipe), pipe_config->fdi_lanes);
6442 if (pipe_config->fdi_lanes > 4) {
6443 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6444 pipe_name(pipe), pipe_config->fdi_lanes);
6445 return -EINVAL;
6446 }
6447
6448 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6449 if (pipe_config->fdi_lanes > 2) {
6450 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6451 pipe_config->fdi_lanes);
6452 return -EINVAL;
6453 } else {
6454 return 0;
6455 }
6456 }
6457
6458 if (INTEL_INFO(dev)->num_pipes == 2)
6459 return 0;
6460
6461 /* Ivybridge 3 pipe is really complicated */
6462 switch (pipe) {
6463 case PIPE_A:
6464 return 0;
6465 case PIPE_B:
6466 if (pipe_config->fdi_lanes <= 2)
6467 return 0;
6468
6469 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6470 other_crtc_state =
6471 intel_atomic_get_crtc_state(state, other_crtc);
6472 if (IS_ERR(other_crtc_state))
6473 return PTR_ERR(other_crtc_state);
6474
6475 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6476 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6477 pipe_name(pipe), pipe_config->fdi_lanes);
6478 return -EINVAL;
6479 }
6480 return 0;
6481 case PIPE_C:
6482 if (pipe_config->fdi_lanes > 2) {
6483 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6484 pipe_name(pipe), pipe_config->fdi_lanes);
6485 return -EINVAL;
6486 }
6487
6488 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6489 other_crtc_state =
6490 intel_atomic_get_crtc_state(state, other_crtc);
6491 if (IS_ERR(other_crtc_state))
6492 return PTR_ERR(other_crtc_state);
6493
6494 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6495 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6496 return -EINVAL;
6497 }
6498 return 0;
6499 default:
6500 BUG();
6501 }
6502 }
6503
6504 #define RETRY 1
6505 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6506 struct intel_crtc_state *pipe_config)
6507 {
6508 struct drm_device *dev = intel_crtc->base.dev;
6509 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6510 int lane, link_bw, fdi_dotclock, ret;
6511 bool needs_recompute = false;
6512
6513 retry:
6514 /* FDI is a binary signal running at ~2.7GHz, encoding
6515 * each output octet as 10 bits. The actual frequency
6516 * is stored as a divider into a 100MHz clock, and the
6517 * mode pixel clock is stored in units of 1KHz.
6518 * Hence the bw of each lane in terms of the mode signal
6519 * is:
6520 */
6521 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6522
6523 fdi_dotclock = adjusted_mode->crtc_clock;
6524
6525 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6526 pipe_config->pipe_bpp);
6527
6528 pipe_config->fdi_lanes = lane;
6529
6530 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6531 link_bw, &pipe_config->fdi_m_n);
6532
6533 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6534 intel_crtc->pipe, pipe_config);
6535 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6536 pipe_config->pipe_bpp -= 2*3;
6537 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6538 pipe_config->pipe_bpp);
6539 needs_recompute = true;
6540 pipe_config->bw_constrained = true;
6541
6542 goto retry;
6543 }
6544
6545 if (needs_recompute)
6546 return RETRY;
6547
6548 return ret;
6549 }
6550
6551 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6552 struct intel_crtc_state *pipe_config)
6553 {
6554 if (pipe_config->pipe_bpp > 24)
6555 return false;
6556
6557 /* HSW can handle pixel rate up to cdclk? */
6558 if (IS_HASWELL(dev_priv->dev))
6559 return true;
6560
6561 /*
6562 * We compare against max which means we must take
6563 * the increased cdclk requirement into account when
6564 * calculating the new cdclk.
6565 *
6566 * Should measure whether using a lower cdclk w/o IPS
6567 */
6568 return ilk_pipe_pixel_rate(pipe_config) <=
6569 dev_priv->max_cdclk_freq * 95 / 100;
6570 }
6571
6572 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6573 struct intel_crtc_state *pipe_config)
6574 {
6575 struct drm_device *dev = crtc->base.dev;
6576 struct drm_i915_private *dev_priv = dev->dev_private;
6577
6578 pipe_config->ips_enabled = i915.enable_ips &&
6579 hsw_crtc_supports_ips(crtc) &&
6580 pipe_config_supports_ips(dev_priv, pipe_config);
6581 }
6582
6583 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6584 struct intel_crtc_state *pipe_config)
6585 {
6586 struct drm_device *dev = crtc->base.dev;
6587 struct drm_i915_private *dev_priv = dev->dev_private;
6588 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6589 int ret;
6590
6591 /* FIXME should check pixel clock limits on all platforms */
6592 if (INTEL_INFO(dev)->gen < 4) {
6593 int clock_limit = dev_priv->max_cdclk_freq;
6594
6595 /*
6596 * Enable pixel doubling when the dot clock
6597 * is > 90% of the (display) core speed.
6598 *
6599 * GDG double wide on either pipe,
6600 * otherwise pipe A only.
6601 */
6602 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6603 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6604 clock_limit *= 2;
6605 pipe_config->double_wide = true;
6606 }
6607
6608 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6609 return -EINVAL;
6610 }
6611
6612 /*
6613 * Pipe horizontal size must be even in:
6614 * - DVO ganged mode
6615 * - LVDS dual channel mode
6616 * - Double wide pipe
6617 */
6618 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6619 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6620 pipe_config->pipe_src_w &= ~1;
6621
6622 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6623 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6624 */
6625 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6626 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6627 return -EINVAL;
6628
6629 if (HAS_IPS(dev))
6630 hsw_compute_ips_config(crtc, pipe_config);
6631
6632 if (pipe_config->has_pch_encoder)
6633 return ironlake_fdi_compute_config(crtc, pipe_config);
6634
6635 /* FIXME: remove below call once atomic mode set is place and all crtc
6636 * related checks called from atomic_crtc_check function */
6637 ret = 0;
6638 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6639 crtc, pipe_config->base.state);
6640 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6641
6642 return ret;
6643 }
6644
6645 static int skylake_get_display_clock_speed(struct drm_device *dev)
6646 {
6647 struct drm_i915_private *dev_priv = to_i915(dev);
6648 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6649 uint32_t cdctl = I915_READ(CDCLK_CTL);
6650 uint32_t linkrate;
6651
6652 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6653 return 24000; /* 24MHz is the cd freq with NSSC ref */
6654
6655 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6656 return 540000;
6657
6658 linkrate = (I915_READ(DPLL_CTRL1) &
6659 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6660
6661 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6662 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6663 /* vco 8640 */
6664 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6665 case CDCLK_FREQ_450_432:
6666 return 432000;
6667 case CDCLK_FREQ_337_308:
6668 return 308570;
6669 case CDCLK_FREQ_675_617:
6670 return 617140;
6671 default:
6672 WARN(1, "Unknown cd freq selection\n");
6673 }
6674 } else {
6675 /* vco 8100 */
6676 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6677 case CDCLK_FREQ_450_432:
6678 return 450000;
6679 case CDCLK_FREQ_337_308:
6680 return 337500;
6681 case CDCLK_FREQ_675_617:
6682 return 675000;
6683 default:
6684 WARN(1, "Unknown cd freq selection\n");
6685 }
6686 }
6687
6688 /* error case, do as if DPLL0 isn't enabled */
6689 return 24000;
6690 }
6691
6692 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6693 {
6694 struct drm_i915_private *dev_priv = dev->dev_private;
6695 uint32_t lcpll = I915_READ(LCPLL_CTL);
6696 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6697
6698 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6699 return 800000;
6700 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6701 return 450000;
6702 else if (freq == LCPLL_CLK_FREQ_450)
6703 return 450000;
6704 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6705 return 540000;
6706 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6707 return 337500;
6708 else
6709 return 675000;
6710 }
6711
6712 static int haswell_get_display_clock_speed(struct drm_device *dev)
6713 {
6714 struct drm_i915_private *dev_priv = dev->dev_private;
6715 uint32_t lcpll = I915_READ(LCPLL_CTL);
6716 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6717
6718 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6719 return 800000;
6720 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6721 return 450000;
6722 else if (freq == LCPLL_CLK_FREQ_450)
6723 return 450000;
6724 else if (IS_HSW_ULT(dev))
6725 return 337500;
6726 else
6727 return 540000;
6728 }
6729
6730 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6731 {
6732 struct drm_i915_private *dev_priv = dev->dev_private;
6733 u32 val;
6734 int divider;
6735
6736 if (dev_priv->hpll_freq == 0)
6737 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6738
6739 mutex_lock(&dev_priv->sb_lock);
6740 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6741 mutex_unlock(&dev_priv->sb_lock);
6742
6743 divider = val & DISPLAY_FREQUENCY_VALUES;
6744
6745 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6746 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6747 "cdclk change in progress\n");
6748
6749 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6750 }
6751
6752 static int ilk_get_display_clock_speed(struct drm_device *dev)
6753 {
6754 return 450000;
6755 }
6756
6757 static int i945_get_display_clock_speed(struct drm_device *dev)
6758 {
6759 return 400000;
6760 }
6761
6762 static int i915_get_display_clock_speed(struct drm_device *dev)
6763 {
6764 return 333333;
6765 }
6766
6767 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6768 {
6769 return 200000;
6770 }
6771
6772 static int pnv_get_display_clock_speed(struct drm_device *dev)
6773 {
6774 u16 gcfgc = 0;
6775
6776 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6777
6778 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6779 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6780 return 266667;
6781 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6782 return 333333;
6783 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6784 return 444444;
6785 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6786 return 200000;
6787 default:
6788 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6789 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6790 return 133333;
6791 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6792 return 166667;
6793 }
6794 }
6795
6796 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6797 {
6798 u16 gcfgc = 0;
6799
6800 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6801
6802 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6803 return 133333;
6804 else {
6805 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6806 case GC_DISPLAY_CLOCK_333_MHZ:
6807 return 333333;
6808 default:
6809 case GC_DISPLAY_CLOCK_190_200_MHZ:
6810 return 190000;
6811 }
6812 }
6813 }
6814
6815 static int i865_get_display_clock_speed(struct drm_device *dev)
6816 {
6817 return 266667;
6818 }
6819
6820 static int i85x_get_display_clock_speed(struct drm_device *dev)
6821 {
6822 u16 hpllcc = 0;
6823
6824 /*
6825 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6826 * encoding is different :(
6827 * FIXME is this the right way to detect 852GM/852GMV?
6828 */
6829 if (dev->pdev->revision == 0x1)
6830 return 133333;
6831
6832 pci_bus_read_config_word(dev->pdev->bus,
6833 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6834
6835 /* Assume that the hardware is in the high speed state. This
6836 * should be the default.
6837 */
6838 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6839 case GC_CLOCK_133_200:
6840 case GC_CLOCK_133_200_2:
6841 case GC_CLOCK_100_200:
6842 return 200000;
6843 case GC_CLOCK_166_250:
6844 return 250000;
6845 case GC_CLOCK_100_133:
6846 return 133333;
6847 case GC_CLOCK_133_266:
6848 case GC_CLOCK_133_266_2:
6849 case GC_CLOCK_166_266:
6850 return 266667;
6851 }
6852
6853 /* Shouldn't happen */
6854 return 0;
6855 }
6856
6857 static int i830_get_display_clock_speed(struct drm_device *dev)
6858 {
6859 return 133333;
6860 }
6861
6862 static unsigned int intel_hpll_vco(struct drm_device *dev)
6863 {
6864 struct drm_i915_private *dev_priv = dev->dev_private;
6865 static const unsigned int blb_vco[8] = {
6866 [0] = 3200000,
6867 [1] = 4000000,
6868 [2] = 5333333,
6869 [3] = 4800000,
6870 [4] = 6400000,
6871 };
6872 static const unsigned int pnv_vco[8] = {
6873 [0] = 3200000,
6874 [1] = 4000000,
6875 [2] = 5333333,
6876 [3] = 4800000,
6877 [4] = 2666667,
6878 };
6879 static const unsigned int cl_vco[8] = {
6880 [0] = 3200000,
6881 [1] = 4000000,
6882 [2] = 5333333,
6883 [3] = 6400000,
6884 [4] = 3333333,
6885 [5] = 3566667,
6886 [6] = 4266667,
6887 };
6888 static const unsigned int elk_vco[8] = {
6889 [0] = 3200000,
6890 [1] = 4000000,
6891 [2] = 5333333,
6892 [3] = 4800000,
6893 };
6894 static const unsigned int ctg_vco[8] = {
6895 [0] = 3200000,
6896 [1] = 4000000,
6897 [2] = 5333333,
6898 [3] = 6400000,
6899 [4] = 2666667,
6900 [5] = 4266667,
6901 };
6902 const unsigned int *vco_table;
6903 unsigned int vco;
6904 uint8_t tmp = 0;
6905
6906 /* FIXME other chipsets? */
6907 if (IS_GM45(dev))
6908 vco_table = ctg_vco;
6909 else if (IS_G4X(dev))
6910 vco_table = elk_vco;
6911 else if (IS_CRESTLINE(dev))
6912 vco_table = cl_vco;
6913 else if (IS_PINEVIEW(dev))
6914 vco_table = pnv_vco;
6915 else if (IS_G33(dev))
6916 vco_table = blb_vco;
6917 else
6918 return 0;
6919
6920 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6921
6922 vco = vco_table[tmp & 0x7];
6923 if (vco == 0)
6924 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6925 else
6926 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6927
6928 return vco;
6929 }
6930
6931 static int gm45_get_display_clock_speed(struct drm_device *dev)
6932 {
6933 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6934 uint16_t tmp = 0;
6935
6936 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6937
6938 cdclk_sel = (tmp >> 12) & 0x1;
6939
6940 switch (vco) {
6941 case 2666667:
6942 case 4000000:
6943 case 5333333:
6944 return cdclk_sel ? 333333 : 222222;
6945 case 3200000:
6946 return cdclk_sel ? 320000 : 228571;
6947 default:
6948 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6949 return 222222;
6950 }
6951 }
6952
6953 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6954 {
6955 static const uint8_t div_3200[] = { 16, 10, 8 };
6956 static const uint8_t div_4000[] = { 20, 12, 10 };
6957 static const uint8_t div_5333[] = { 24, 16, 14 };
6958 const uint8_t *div_table;
6959 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6960 uint16_t tmp = 0;
6961
6962 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6963
6964 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6965
6966 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6967 goto fail;
6968
6969 switch (vco) {
6970 case 3200000:
6971 div_table = div_3200;
6972 break;
6973 case 4000000:
6974 div_table = div_4000;
6975 break;
6976 case 5333333:
6977 div_table = div_5333;
6978 break;
6979 default:
6980 goto fail;
6981 }
6982
6983 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6984
6985 fail:
6986 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6987 return 200000;
6988 }
6989
6990 static int g33_get_display_clock_speed(struct drm_device *dev)
6991 {
6992 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6993 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6994 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6995 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6996 const uint8_t *div_table;
6997 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6998 uint16_t tmp = 0;
6999
7000 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7001
7002 cdclk_sel = (tmp >> 4) & 0x7;
7003
7004 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7005 goto fail;
7006
7007 switch (vco) {
7008 case 3200000:
7009 div_table = div_3200;
7010 break;
7011 case 4000000:
7012 div_table = div_4000;
7013 break;
7014 case 4800000:
7015 div_table = div_4800;
7016 break;
7017 case 5333333:
7018 div_table = div_5333;
7019 break;
7020 default:
7021 goto fail;
7022 }
7023
7024 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7025
7026 fail:
7027 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7028 return 190476;
7029 }
7030
7031 static void
7032 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7033 {
7034 while (*num > DATA_LINK_M_N_MASK ||
7035 *den > DATA_LINK_M_N_MASK) {
7036 *num >>= 1;
7037 *den >>= 1;
7038 }
7039 }
7040
7041 static void compute_m_n(unsigned int m, unsigned int n,
7042 uint32_t *ret_m, uint32_t *ret_n)
7043 {
7044 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7045 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7046 intel_reduce_m_n_ratio(ret_m, ret_n);
7047 }
7048
7049 void
7050 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7051 int pixel_clock, int link_clock,
7052 struct intel_link_m_n *m_n)
7053 {
7054 m_n->tu = 64;
7055
7056 compute_m_n(bits_per_pixel * pixel_clock,
7057 link_clock * nlanes * 8,
7058 &m_n->gmch_m, &m_n->gmch_n);
7059
7060 compute_m_n(pixel_clock, link_clock,
7061 &m_n->link_m, &m_n->link_n);
7062 }
7063
7064 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7065 {
7066 if (i915.panel_use_ssc >= 0)
7067 return i915.panel_use_ssc != 0;
7068 return dev_priv->vbt.lvds_use_ssc
7069 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7070 }
7071
7072 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7073 int num_connectors)
7074 {
7075 struct drm_device *dev = crtc_state->base.crtc->dev;
7076 struct drm_i915_private *dev_priv = dev->dev_private;
7077 int refclk;
7078
7079 WARN_ON(!crtc_state->base.state);
7080
7081 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7082 refclk = 100000;
7083 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7084 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7085 refclk = dev_priv->vbt.lvds_ssc_freq;
7086 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7087 } else if (!IS_GEN2(dev)) {
7088 refclk = 96000;
7089 } else {
7090 refclk = 48000;
7091 }
7092
7093 return refclk;
7094 }
7095
7096 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7097 {
7098 return (1 << dpll->n) << 16 | dpll->m2;
7099 }
7100
7101 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7102 {
7103 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7104 }
7105
7106 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7107 struct intel_crtc_state *crtc_state,
7108 intel_clock_t *reduced_clock)
7109 {
7110 struct drm_device *dev = crtc->base.dev;
7111 u32 fp, fp2 = 0;
7112
7113 if (IS_PINEVIEW(dev)) {
7114 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7115 if (reduced_clock)
7116 fp2 = pnv_dpll_compute_fp(reduced_clock);
7117 } else {
7118 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7119 if (reduced_clock)
7120 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7121 }
7122
7123 crtc_state->dpll_hw_state.fp0 = fp;
7124
7125 crtc->lowfreq_avail = false;
7126 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7127 reduced_clock) {
7128 crtc_state->dpll_hw_state.fp1 = fp2;
7129 crtc->lowfreq_avail = true;
7130 } else {
7131 crtc_state->dpll_hw_state.fp1 = fp;
7132 }
7133 }
7134
7135 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7136 pipe)
7137 {
7138 u32 reg_val;
7139
7140 /*
7141 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7142 * and set it to a reasonable value instead.
7143 */
7144 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7145 reg_val &= 0xffffff00;
7146 reg_val |= 0x00000030;
7147 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7148
7149 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7150 reg_val &= 0x8cffffff;
7151 reg_val = 0x8c000000;
7152 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7153
7154 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7155 reg_val &= 0xffffff00;
7156 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7157
7158 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7159 reg_val &= 0x00ffffff;
7160 reg_val |= 0xb0000000;
7161 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7162 }
7163
7164 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7165 struct intel_link_m_n *m_n)
7166 {
7167 struct drm_device *dev = crtc->base.dev;
7168 struct drm_i915_private *dev_priv = dev->dev_private;
7169 int pipe = crtc->pipe;
7170
7171 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7172 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7173 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7174 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7175 }
7176
7177 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7178 struct intel_link_m_n *m_n,
7179 struct intel_link_m_n *m2_n2)
7180 {
7181 struct drm_device *dev = crtc->base.dev;
7182 struct drm_i915_private *dev_priv = dev->dev_private;
7183 int pipe = crtc->pipe;
7184 enum transcoder transcoder = crtc->config->cpu_transcoder;
7185
7186 if (INTEL_INFO(dev)->gen >= 5) {
7187 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7188 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7189 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7190 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7191 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7192 * for gen < 8) and if DRRS is supported (to make sure the
7193 * registers are not unnecessarily accessed).
7194 */
7195 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7196 crtc->config->has_drrs) {
7197 I915_WRITE(PIPE_DATA_M2(transcoder),
7198 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7199 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7200 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7201 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7202 }
7203 } else {
7204 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7205 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7206 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7207 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7208 }
7209 }
7210
7211 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7212 {
7213 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7214
7215 if (m_n == M1_N1) {
7216 dp_m_n = &crtc->config->dp_m_n;
7217 dp_m2_n2 = &crtc->config->dp_m2_n2;
7218 } else if (m_n == M2_N2) {
7219
7220 /*
7221 * M2_N2 registers are not supported. Hence m2_n2 divider value
7222 * needs to be programmed into M1_N1.
7223 */
7224 dp_m_n = &crtc->config->dp_m2_n2;
7225 } else {
7226 DRM_ERROR("Unsupported divider value\n");
7227 return;
7228 }
7229
7230 if (crtc->config->has_pch_encoder)
7231 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7232 else
7233 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7234 }
7235
7236 static void vlv_update_pll(struct intel_crtc *crtc,
7237 struct intel_crtc_state *pipe_config)
7238 {
7239 u32 dpll, dpll_md;
7240
7241 /*
7242 * Enable DPIO clock input. We should never disable the reference
7243 * clock for pipe B, since VGA hotplug / manual detection depends
7244 * on it.
7245 */
7246 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7247 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7248 /* We should never disable this, set it here for state tracking */
7249 if (crtc->pipe == PIPE_B)
7250 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7251 dpll |= DPLL_VCO_ENABLE;
7252 pipe_config->dpll_hw_state.dpll = dpll;
7253
7254 dpll_md = (pipe_config->pixel_multiplier - 1)
7255 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7256 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7257 }
7258
7259 static void vlv_prepare_pll(struct intel_crtc *crtc,
7260 const struct intel_crtc_state *pipe_config)
7261 {
7262 struct drm_device *dev = crtc->base.dev;
7263 struct drm_i915_private *dev_priv = dev->dev_private;
7264 int pipe = crtc->pipe;
7265 u32 mdiv;
7266 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7267 u32 coreclk, reg_val;
7268
7269 mutex_lock(&dev_priv->sb_lock);
7270
7271 bestn = pipe_config->dpll.n;
7272 bestm1 = pipe_config->dpll.m1;
7273 bestm2 = pipe_config->dpll.m2;
7274 bestp1 = pipe_config->dpll.p1;
7275 bestp2 = pipe_config->dpll.p2;
7276
7277 /* See eDP HDMI DPIO driver vbios notes doc */
7278
7279 /* PLL B needs special handling */
7280 if (pipe == PIPE_B)
7281 vlv_pllb_recal_opamp(dev_priv, pipe);
7282
7283 /* Set up Tx target for periodic Rcomp update */
7284 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7285
7286 /* Disable target IRef on PLL */
7287 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7288 reg_val &= 0x00ffffff;
7289 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7290
7291 /* Disable fast lock */
7292 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7293
7294 /* Set idtafcrecal before PLL is enabled */
7295 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7296 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7297 mdiv |= ((bestn << DPIO_N_SHIFT));
7298 mdiv |= (1 << DPIO_K_SHIFT);
7299
7300 /*
7301 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7302 * but we don't support that).
7303 * Note: don't use the DAC post divider as it seems unstable.
7304 */
7305 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7306 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7307
7308 mdiv |= DPIO_ENABLE_CALIBRATION;
7309 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7310
7311 /* Set HBR and RBR LPF coefficients */
7312 if (pipe_config->port_clock == 162000 ||
7313 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7314 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7315 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7316 0x009f0003);
7317 else
7318 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7319 0x00d0000f);
7320
7321 if (pipe_config->has_dp_encoder) {
7322 /* Use SSC source */
7323 if (pipe == PIPE_A)
7324 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7325 0x0df40000);
7326 else
7327 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7328 0x0df70000);
7329 } else { /* HDMI or VGA */
7330 /* Use bend source */
7331 if (pipe == PIPE_A)
7332 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7333 0x0df70000);
7334 else
7335 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7336 0x0df40000);
7337 }
7338
7339 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7340 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7341 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7342 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7343 coreclk |= 0x01000000;
7344 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7345
7346 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7347 mutex_unlock(&dev_priv->sb_lock);
7348 }
7349
7350 static void chv_update_pll(struct intel_crtc *crtc,
7351 struct intel_crtc_state *pipe_config)
7352 {
7353 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7354 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7355 DPLL_VCO_ENABLE;
7356 if (crtc->pipe != PIPE_A)
7357 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7358
7359 pipe_config->dpll_hw_state.dpll_md =
7360 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7361 }
7362
7363 static void chv_prepare_pll(struct intel_crtc *crtc,
7364 const struct intel_crtc_state *pipe_config)
7365 {
7366 struct drm_device *dev = crtc->base.dev;
7367 struct drm_i915_private *dev_priv = dev->dev_private;
7368 int pipe = crtc->pipe;
7369 int dpll_reg = DPLL(crtc->pipe);
7370 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7371 u32 loopfilter, tribuf_calcntr;
7372 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7373 u32 dpio_val;
7374 int vco;
7375
7376 bestn = pipe_config->dpll.n;
7377 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7378 bestm1 = pipe_config->dpll.m1;
7379 bestm2 = pipe_config->dpll.m2 >> 22;
7380 bestp1 = pipe_config->dpll.p1;
7381 bestp2 = pipe_config->dpll.p2;
7382 vco = pipe_config->dpll.vco;
7383 dpio_val = 0;
7384 loopfilter = 0;
7385
7386 /*
7387 * Enable Refclk and SSC
7388 */
7389 I915_WRITE(dpll_reg,
7390 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7391
7392 mutex_lock(&dev_priv->sb_lock);
7393
7394 /* p1 and p2 divider */
7395 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7396 5 << DPIO_CHV_S1_DIV_SHIFT |
7397 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7398 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7399 1 << DPIO_CHV_K_DIV_SHIFT);
7400
7401 /* Feedback post-divider - m2 */
7402 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7403
7404 /* Feedback refclk divider - n and m1 */
7405 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7406 DPIO_CHV_M1_DIV_BY_2 |
7407 1 << DPIO_CHV_N_DIV_SHIFT);
7408
7409 /* M2 fraction division */
7410 if (bestm2_frac)
7411 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7412
7413 /* M2 fraction division enable */
7414 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7415 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7416 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7417 if (bestm2_frac)
7418 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7419 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7420
7421 /* Program digital lock detect threshold */
7422 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7423 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7424 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7425 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7426 if (!bestm2_frac)
7427 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7428 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7429
7430 /* Loop filter */
7431 if (vco == 5400000) {
7432 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7433 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7434 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7435 tribuf_calcntr = 0x9;
7436 } else if (vco <= 6200000) {
7437 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7438 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7439 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7440 tribuf_calcntr = 0x9;
7441 } else if (vco <= 6480000) {
7442 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7443 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7444 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7445 tribuf_calcntr = 0x8;
7446 } else {
7447 /* Not supported. Apply the same limits as in the max case */
7448 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7449 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7450 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7451 tribuf_calcntr = 0;
7452 }
7453 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7454
7455 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7456 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7457 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7458 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7459
7460 /* AFC Recal */
7461 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7462 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7463 DPIO_AFC_RECAL);
7464
7465 mutex_unlock(&dev_priv->sb_lock);
7466 }
7467
7468 /**
7469 * vlv_force_pll_on - forcibly enable just the PLL
7470 * @dev_priv: i915 private structure
7471 * @pipe: pipe PLL to enable
7472 * @dpll: PLL configuration
7473 *
7474 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7475 * in cases where we need the PLL enabled even when @pipe is not going to
7476 * be enabled.
7477 */
7478 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7479 const struct dpll *dpll)
7480 {
7481 struct intel_crtc *crtc =
7482 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7483 struct intel_crtc_state pipe_config = {
7484 .base.crtc = &crtc->base,
7485 .pixel_multiplier = 1,
7486 .dpll = *dpll,
7487 };
7488
7489 if (IS_CHERRYVIEW(dev)) {
7490 chv_update_pll(crtc, &pipe_config);
7491 chv_prepare_pll(crtc, &pipe_config);
7492 chv_enable_pll(crtc, &pipe_config);
7493 } else {
7494 vlv_update_pll(crtc, &pipe_config);
7495 vlv_prepare_pll(crtc, &pipe_config);
7496 vlv_enable_pll(crtc, &pipe_config);
7497 }
7498 }
7499
7500 /**
7501 * vlv_force_pll_off - forcibly disable just the PLL
7502 * @dev_priv: i915 private structure
7503 * @pipe: pipe PLL to disable
7504 *
7505 * Disable the PLL for @pipe. To be used in cases where we need
7506 * the PLL enabled even when @pipe is not going to be enabled.
7507 */
7508 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7509 {
7510 if (IS_CHERRYVIEW(dev))
7511 chv_disable_pll(to_i915(dev), pipe);
7512 else
7513 vlv_disable_pll(to_i915(dev), pipe);
7514 }
7515
7516 static void i9xx_update_pll(struct intel_crtc *crtc,
7517 struct intel_crtc_state *crtc_state,
7518 intel_clock_t *reduced_clock,
7519 int num_connectors)
7520 {
7521 struct drm_device *dev = crtc->base.dev;
7522 struct drm_i915_private *dev_priv = dev->dev_private;
7523 u32 dpll;
7524 bool is_sdvo;
7525 struct dpll *clock = &crtc_state->dpll;
7526
7527 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7528
7529 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7530 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7531
7532 dpll = DPLL_VGA_MODE_DIS;
7533
7534 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7535 dpll |= DPLLB_MODE_LVDS;
7536 else
7537 dpll |= DPLLB_MODE_DAC_SERIAL;
7538
7539 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7540 dpll |= (crtc_state->pixel_multiplier - 1)
7541 << SDVO_MULTIPLIER_SHIFT_HIRES;
7542 }
7543
7544 if (is_sdvo)
7545 dpll |= DPLL_SDVO_HIGH_SPEED;
7546
7547 if (crtc_state->has_dp_encoder)
7548 dpll |= DPLL_SDVO_HIGH_SPEED;
7549
7550 /* compute bitmask from p1 value */
7551 if (IS_PINEVIEW(dev))
7552 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7553 else {
7554 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7555 if (IS_G4X(dev) && reduced_clock)
7556 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7557 }
7558 switch (clock->p2) {
7559 case 5:
7560 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7561 break;
7562 case 7:
7563 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7564 break;
7565 case 10:
7566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7567 break;
7568 case 14:
7569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7570 break;
7571 }
7572 if (INTEL_INFO(dev)->gen >= 4)
7573 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7574
7575 if (crtc_state->sdvo_tv_clock)
7576 dpll |= PLL_REF_INPUT_TVCLKINBC;
7577 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7578 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7579 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7580 else
7581 dpll |= PLL_REF_INPUT_DREFCLK;
7582
7583 dpll |= DPLL_VCO_ENABLE;
7584 crtc_state->dpll_hw_state.dpll = dpll;
7585
7586 if (INTEL_INFO(dev)->gen >= 4) {
7587 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7588 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7589 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7590 }
7591 }
7592
7593 static void i8xx_update_pll(struct intel_crtc *crtc,
7594 struct intel_crtc_state *crtc_state,
7595 intel_clock_t *reduced_clock,
7596 int num_connectors)
7597 {
7598 struct drm_device *dev = crtc->base.dev;
7599 struct drm_i915_private *dev_priv = dev->dev_private;
7600 u32 dpll;
7601 struct dpll *clock = &crtc_state->dpll;
7602
7603 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7604
7605 dpll = DPLL_VGA_MODE_DIS;
7606
7607 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7608 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7609 } else {
7610 if (clock->p1 == 2)
7611 dpll |= PLL_P1_DIVIDE_BY_TWO;
7612 else
7613 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7614 if (clock->p2 == 4)
7615 dpll |= PLL_P2_DIVIDE_BY_4;
7616 }
7617
7618 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7619 dpll |= DPLL_DVO_2X_MODE;
7620
7621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7622 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7623 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7624 else
7625 dpll |= PLL_REF_INPUT_DREFCLK;
7626
7627 dpll |= DPLL_VCO_ENABLE;
7628 crtc_state->dpll_hw_state.dpll = dpll;
7629 }
7630
7631 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7632 {
7633 struct drm_device *dev = intel_crtc->base.dev;
7634 struct drm_i915_private *dev_priv = dev->dev_private;
7635 enum pipe pipe = intel_crtc->pipe;
7636 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7637 struct drm_display_mode *adjusted_mode =
7638 &intel_crtc->config->base.adjusted_mode;
7639 uint32_t crtc_vtotal, crtc_vblank_end;
7640 int vsyncshift = 0;
7641
7642 /* We need to be careful not to changed the adjusted mode, for otherwise
7643 * the hw state checker will get angry at the mismatch. */
7644 crtc_vtotal = adjusted_mode->crtc_vtotal;
7645 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7646
7647 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7648 /* the chip adds 2 halflines automatically */
7649 crtc_vtotal -= 1;
7650 crtc_vblank_end -= 1;
7651
7652 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7653 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7654 else
7655 vsyncshift = adjusted_mode->crtc_hsync_start -
7656 adjusted_mode->crtc_htotal / 2;
7657 if (vsyncshift < 0)
7658 vsyncshift += adjusted_mode->crtc_htotal;
7659 }
7660
7661 if (INTEL_INFO(dev)->gen > 3)
7662 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7663
7664 I915_WRITE(HTOTAL(cpu_transcoder),
7665 (adjusted_mode->crtc_hdisplay - 1) |
7666 ((adjusted_mode->crtc_htotal - 1) << 16));
7667 I915_WRITE(HBLANK(cpu_transcoder),
7668 (adjusted_mode->crtc_hblank_start - 1) |
7669 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7670 I915_WRITE(HSYNC(cpu_transcoder),
7671 (adjusted_mode->crtc_hsync_start - 1) |
7672 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7673
7674 I915_WRITE(VTOTAL(cpu_transcoder),
7675 (adjusted_mode->crtc_vdisplay - 1) |
7676 ((crtc_vtotal - 1) << 16));
7677 I915_WRITE(VBLANK(cpu_transcoder),
7678 (adjusted_mode->crtc_vblank_start - 1) |
7679 ((crtc_vblank_end - 1) << 16));
7680 I915_WRITE(VSYNC(cpu_transcoder),
7681 (adjusted_mode->crtc_vsync_start - 1) |
7682 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7683
7684 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7685 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7686 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7687 * bits. */
7688 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7689 (pipe == PIPE_B || pipe == PIPE_C))
7690 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7691
7692 /* pipesrc controls the size that is scaled from, which should
7693 * always be the user's requested size.
7694 */
7695 I915_WRITE(PIPESRC(pipe),
7696 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7697 (intel_crtc->config->pipe_src_h - 1));
7698 }
7699
7700 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7701 struct intel_crtc_state *pipe_config)
7702 {
7703 struct drm_device *dev = crtc->base.dev;
7704 struct drm_i915_private *dev_priv = dev->dev_private;
7705 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7706 uint32_t tmp;
7707
7708 tmp = I915_READ(HTOTAL(cpu_transcoder));
7709 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7710 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7711 tmp = I915_READ(HBLANK(cpu_transcoder));
7712 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7713 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7714 tmp = I915_READ(HSYNC(cpu_transcoder));
7715 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7716 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7717
7718 tmp = I915_READ(VTOTAL(cpu_transcoder));
7719 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7720 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7721 tmp = I915_READ(VBLANK(cpu_transcoder));
7722 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7723 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7724 tmp = I915_READ(VSYNC(cpu_transcoder));
7725 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7726 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7727
7728 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7729 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7730 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7731 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7732 }
7733
7734 tmp = I915_READ(PIPESRC(crtc->pipe));
7735 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7736 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7737
7738 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7739 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7740 }
7741
7742 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7743 struct intel_crtc_state *pipe_config)
7744 {
7745 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7746 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7747 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7748 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7749
7750 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7751 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7752 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7753 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7754
7755 mode->flags = pipe_config->base.adjusted_mode.flags;
7756
7757 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7758 mode->flags |= pipe_config->base.adjusted_mode.flags;
7759 }
7760
7761 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7762 {
7763 struct drm_device *dev = intel_crtc->base.dev;
7764 struct drm_i915_private *dev_priv = dev->dev_private;
7765 uint32_t pipeconf;
7766
7767 pipeconf = 0;
7768
7769 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7770 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7771 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7772
7773 if (intel_crtc->config->double_wide)
7774 pipeconf |= PIPECONF_DOUBLE_WIDE;
7775
7776 /* only g4x and later have fancy bpc/dither controls */
7777 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7778 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7779 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7780 pipeconf |= PIPECONF_DITHER_EN |
7781 PIPECONF_DITHER_TYPE_SP;
7782
7783 switch (intel_crtc->config->pipe_bpp) {
7784 case 18:
7785 pipeconf |= PIPECONF_6BPC;
7786 break;
7787 case 24:
7788 pipeconf |= PIPECONF_8BPC;
7789 break;
7790 case 30:
7791 pipeconf |= PIPECONF_10BPC;
7792 break;
7793 default:
7794 /* Case prevented by intel_choose_pipe_bpp_dither. */
7795 BUG();
7796 }
7797 }
7798
7799 if (HAS_PIPE_CXSR(dev)) {
7800 if (intel_crtc->lowfreq_avail) {
7801 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7802 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7803 } else {
7804 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7805 }
7806 }
7807
7808 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7809 if (INTEL_INFO(dev)->gen < 4 ||
7810 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7811 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7812 else
7813 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7814 } else
7815 pipeconf |= PIPECONF_PROGRESSIVE;
7816
7817 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7818 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7819
7820 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7821 POSTING_READ(PIPECONF(intel_crtc->pipe));
7822 }
7823
7824 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7825 struct intel_crtc_state *crtc_state)
7826 {
7827 struct drm_device *dev = crtc->base.dev;
7828 struct drm_i915_private *dev_priv = dev->dev_private;
7829 int refclk, num_connectors = 0;
7830 intel_clock_t clock, reduced_clock;
7831 bool ok, has_reduced_clock = false;
7832 bool is_lvds = false, is_dsi = false;
7833 struct intel_encoder *encoder;
7834 const intel_limit_t *limit;
7835 struct drm_atomic_state *state = crtc_state->base.state;
7836 struct drm_connector *connector;
7837 struct drm_connector_state *connector_state;
7838 int i;
7839
7840 memset(&crtc_state->dpll_hw_state, 0,
7841 sizeof(crtc_state->dpll_hw_state));
7842
7843 for_each_connector_in_state(state, connector, connector_state, i) {
7844 if (connector_state->crtc != &crtc->base)
7845 continue;
7846
7847 encoder = to_intel_encoder(connector_state->best_encoder);
7848
7849 switch (encoder->type) {
7850 case INTEL_OUTPUT_LVDS:
7851 is_lvds = true;
7852 break;
7853 case INTEL_OUTPUT_DSI:
7854 is_dsi = true;
7855 break;
7856 default:
7857 break;
7858 }
7859
7860 num_connectors++;
7861 }
7862
7863 if (is_dsi)
7864 return 0;
7865
7866 if (!crtc_state->clock_set) {
7867 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7868
7869 /*
7870 * Returns a set of divisors for the desired target clock with
7871 * the given refclk, or FALSE. The returned values represent
7872 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7873 * 2) / p1 / p2.
7874 */
7875 limit = intel_limit(crtc_state, refclk);
7876 ok = dev_priv->display.find_dpll(limit, crtc_state,
7877 crtc_state->port_clock,
7878 refclk, NULL, &clock);
7879 if (!ok) {
7880 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7881 return -EINVAL;
7882 }
7883
7884 if (is_lvds && dev_priv->lvds_downclock_avail) {
7885 /*
7886 * Ensure we match the reduced clock's P to the target
7887 * clock. If the clocks don't match, we can't switch
7888 * the display clock by using the FP0/FP1. In such case
7889 * we will disable the LVDS downclock feature.
7890 */
7891 has_reduced_clock =
7892 dev_priv->display.find_dpll(limit, crtc_state,
7893 dev_priv->lvds_downclock,
7894 refclk, &clock,
7895 &reduced_clock);
7896 }
7897 /* Compat-code for transition, will disappear. */
7898 crtc_state->dpll.n = clock.n;
7899 crtc_state->dpll.m1 = clock.m1;
7900 crtc_state->dpll.m2 = clock.m2;
7901 crtc_state->dpll.p1 = clock.p1;
7902 crtc_state->dpll.p2 = clock.p2;
7903 }
7904
7905 if (IS_GEN2(dev)) {
7906 i8xx_update_pll(crtc, crtc_state,
7907 has_reduced_clock ? &reduced_clock : NULL,
7908 num_connectors);
7909 } else if (IS_CHERRYVIEW(dev)) {
7910 chv_update_pll(crtc, crtc_state);
7911 } else if (IS_VALLEYVIEW(dev)) {
7912 vlv_update_pll(crtc, crtc_state);
7913 } else {
7914 i9xx_update_pll(crtc, crtc_state,
7915 has_reduced_clock ? &reduced_clock : NULL,
7916 num_connectors);
7917 }
7918
7919 return 0;
7920 }
7921
7922 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7923 struct intel_crtc_state *pipe_config)
7924 {
7925 struct drm_device *dev = crtc->base.dev;
7926 struct drm_i915_private *dev_priv = dev->dev_private;
7927 uint32_t tmp;
7928
7929 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7930 return;
7931
7932 tmp = I915_READ(PFIT_CONTROL);
7933 if (!(tmp & PFIT_ENABLE))
7934 return;
7935
7936 /* Check whether the pfit is attached to our pipe. */
7937 if (INTEL_INFO(dev)->gen < 4) {
7938 if (crtc->pipe != PIPE_B)
7939 return;
7940 } else {
7941 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7942 return;
7943 }
7944
7945 pipe_config->gmch_pfit.control = tmp;
7946 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7947 if (INTEL_INFO(dev)->gen < 5)
7948 pipe_config->gmch_pfit.lvds_border_bits =
7949 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7950 }
7951
7952 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7953 struct intel_crtc_state *pipe_config)
7954 {
7955 struct drm_device *dev = crtc->base.dev;
7956 struct drm_i915_private *dev_priv = dev->dev_private;
7957 int pipe = pipe_config->cpu_transcoder;
7958 intel_clock_t clock;
7959 u32 mdiv;
7960 int refclk = 100000;
7961
7962 /* In case of MIPI DPLL will not even be used */
7963 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7964 return;
7965
7966 mutex_lock(&dev_priv->sb_lock);
7967 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7968 mutex_unlock(&dev_priv->sb_lock);
7969
7970 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7971 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7972 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7973 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7974 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7975
7976 vlv_clock(refclk, &clock);
7977
7978 /* clock.dot is the fast clock */
7979 pipe_config->port_clock = clock.dot / 5;
7980 }
7981
7982 static void
7983 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7984 struct intel_initial_plane_config *plane_config)
7985 {
7986 struct drm_device *dev = crtc->base.dev;
7987 struct drm_i915_private *dev_priv = dev->dev_private;
7988 u32 val, base, offset;
7989 int pipe = crtc->pipe, plane = crtc->plane;
7990 int fourcc, pixel_format;
7991 unsigned int aligned_height;
7992 struct drm_framebuffer *fb;
7993 struct intel_framebuffer *intel_fb;
7994
7995 val = I915_READ(DSPCNTR(plane));
7996 if (!(val & DISPLAY_PLANE_ENABLE))
7997 return;
7998
7999 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8000 if (!intel_fb) {
8001 DRM_DEBUG_KMS("failed to alloc fb\n");
8002 return;
8003 }
8004
8005 fb = &intel_fb->base;
8006
8007 if (INTEL_INFO(dev)->gen >= 4) {
8008 if (val & DISPPLANE_TILED) {
8009 plane_config->tiling = I915_TILING_X;
8010 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8011 }
8012 }
8013
8014 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8015 fourcc = i9xx_format_to_fourcc(pixel_format);
8016 fb->pixel_format = fourcc;
8017 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8018
8019 if (INTEL_INFO(dev)->gen >= 4) {
8020 if (plane_config->tiling)
8021 offset = I915_READ(DSPTILEOFF(plane));
8022 else
8023 offset = I915_READ(DSPLINOFF(plane));
8024 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8025 } else {
8026 base = I915_READ(DSPADDR(plane));
8027 }
8028 plane_config->base = base;
8029
8030 val = I915_READ(PIPESRC(pipe));
8031 fb->width = ((val >> 16) & 0xfff) + 1;
8032 fb->height = ((val >> 0) & 0xfff) + 1;
8033
8034 val = I915_READ(DSPSTRIDE(pipe));
8035 fb->pitches[0] = val & 0xffffffc0;
8036
8037 aligned_height = intel_fb_align_height(dev, fb->height,
8038 fb->pixel_format,
8039 fb->modifier[0]);
8040
8041 plane_config->size = fb->pitches[0] * aligned_height;
8042
8043 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8044 pipe_name(pipe), plane, fb->width, fb->height,
8045 fb->bits_per_pixel, base, fb->pitches[0],
8046 plane_config->size);
8047
8048 plane_config->fb = intel_fb;
8049 }
8050
8051 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8052 struct intel_crtc_state *pipe_config)
8053 {
8054 struct drm_device *dev = crtc->base.dev;
8055 struct drm_i915_private *dev_priv = dev->dev_private;
8056 int pipe = pipe_config->cpu_transcoder;
8057 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8058 intel_clock_t clock;
8059 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8060 int refclk = 100000;
8061
8062 mutex_lock(&dev_priv->sb_lock);
8063 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8064 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8065 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8066 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8067 mutex_unlock(&dev_priv->sb_lock);
8068
8069 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8070 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8071 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8072 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8073 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8074
8075 chv_clock(refclk, &clock);
8076
8077 /* clock.dot is the fast clock */
8078 pipe_config->port_clock = clock.dot / 5;
8079 }
8080
8081 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8082 struct intel_crtc_state *pipe_config)
8083 {
8084 struct drm_device *dev = crtc->base.dev;
8085 struct drm_i915_private *dev_priv = dev->dev_private;
8086 uint32_t tmp;
8087
8088 if (!intel_display_power_is_enabled(dev_priv,
8089 POWER_DOMAIN_PIPE(crtc->pipe)))
8090 return false;
8091
8092 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8093 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8094
8095 tmp = I915_READ(PIPECONF(crtc->pipe));
8096 if (!(tmp & PIPECONF_ENABLE))
8097 return false;
8098
8099 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8100 switch (tmp & PIPECONF_BPC_MASK) {
8101 case PIPECONF_6BPC:
8102 pipe_config->pipe_bpp = 18;
8103 break;
8104 case PIPECONF_8BPC:
8105 pipe_config->pipe_bpp = 24;
8106 break;
8107 case PIPECONF_10BPC:
8108 pipe_config->pipe_bpp = 30;
8109 break;
8110 default:
8111 break;
8112 }
8113 }
8114
8115 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8116 pipe_config->limited_color_range = true;
8117
8118 if (INTEL_INFO(dev)->gen < 4)
8119 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8120
8121 intel_get_pipe_timings(crtc, pipe_config);
8122
8123 i9xx_get_pfit_config(crtc, pipe_config);
8124
8125 if (INTEL_INFO(dev)->gen >= 4) {
8126 tmp = I915_READ(DPLL_MD(crtc->pipe));
8127 pipe_config->pixel_multiplier =
8128 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8129 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8130 pipe_config->dpll_hw_state.dpll_md = tmp;
8131 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8132 tmp = I915_READ(DPLL(crtc->pipe));
8133 pipe_config->pixel_multiplier =
8134 ((tmp & SDVO_MULTIPLIER_MASK)
8135 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8136 } else {
8137 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8138 * port and will be fixed up in the encoder->get_config
8139 * function. */
8140 pipe_config->pixel_multiplier = 1;
8141 }
8142 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8143 if (!IS_VALLEYVIEW(dev)) {
8144 /*
8145 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8146 * on 830. Filter it out here so that we don't
8147 * report errors due to that.
8148 */
8149 if (IS_I830(dev))
8150 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8151
8152 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8153 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8154 } else {
8155 /* Mask out read-only status bits. */
8156 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8157 DPLL_PORTC_READY_MASK |
8158 DPLL_PORTB_READY_MASK);
8159 }
8160
8161 if (IS_CHERRYVIEW(dev))
8162 chv_crtc_clock_get(crtc, pipe_config);
8163 else if (IS_VALLEYVIEW(dev))
8164 vlv_crtc_clock_get(crtc, pipe_config);
8165 else
8166 i9xx_crtc_clock_get(crtc, pipe_config);
8167
8168 return true;
8169 }
8170
8171 static void ironlake_init_pch_refclk(struct drm_device *dev)
8172 {
8173 struct drm_i915_private *dev_priv = dev->dev_private;
8174 struct intel_encoder *encoder;
8175 u32 val, final;
8176 bool has_lvds = false;
8177 bool has_cpu_edp = false;
8178 bool has_panel = false;
8179 bool has_ck505 = false;
8180 bool can_ssc = false;
8181
8182 /* We need to take the global config into account */
8183 for_each_intel_encoder(dev, encoder) {
8184 switch (encoder->type) {
8185 case INTEL_OUTPUT_LVDS:
8186 has_panel = true;
8187 has_lvds = true;
8188 break;
8189 case INTEL_OUTPUT_EDP:
8190 has_panel = true;
8191 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8192 has_cpu_edp = true;
8193 break;
8194 default:
8195 break;
8196 }
8197 }
8198
8199 if (HAS_PCH_IBX(dev)) {
8200 has_ck505 = dev_priv->vbt.display_clock_mode;
8201 can_ssc = has_ck505;
8202 } else {
8203 has_ck505 = false;
8204 can_ssc = true;
8205 }
8206
8207 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8208 has_panel, has_lvds, has_ck505);
8209
8210 /* Ironlake: try to setup display ref clock before DPLL
8211 * enabling. This is only under driver's control after
8212 * PCH B stepping, previous chipset stepping should be
8213 * ignoring this setting.
8214 */
8215 val = I915_READ(PCH_DREF_CONTROL);
8216
8217 /* As we must carefully and slowly disable/enable each source in turn,
8218 * compute the final state we want first and check if we need to
8219 * make any changes at all.
8220 */
8221 final = val;
8222 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8223 if (has_ck505)
8224 final |= DREF_NONSPREAD_CK505_ENABLE;
8225 else
8226 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8227
8228 final &= ~DREF_SSC_SOURCE_MASK;
8229 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8230 final &= ~DREF_SSC1_ENABLE;
8231
8232 if (has_panel) {
8233 final |= DREF_SSC_SOURCE_ENABLE;
8234
8235 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8236 final |= DREF_SSC1_ENABLE;
8237
8238 if (has_cpu_edp) {
8239 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8240 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8241 else
8242 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8243 } else
8244 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8245 } else {
8246 final |= DREF_SSC_SOURCE_DISABLE;
8247 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8248 }
8249
8250 if (final == val)
8251 return;
8252
8253 /* Always enable nonspread source */
8254 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8255
8256 if (has_ck505)
8257 val |= DREF_NONSPREAD_CK505_ENABLE;
8258 else
8259 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8260
8261 if (has_panel) {
8262 val &= ~DREF_SSC_SOURCE_MASK;
8263 val |= DREF_SSC_SOURCE_ENABLE;
8264
8265 /* SSC must be turned on before enabling the CPU output */
8266 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8267 DRM_DEBUG_KMS("Using SSC on panel\n");
8268 val |= DREF_SSC1_ENABLE;
8269 } else
8270 val &= ~DREF_SSC1_ENABLE;
8271
8272 /* Get SSC going before enabling the outputs */
8273 I915_WRITE(PCH_DREF_CONTROL, val);
8274 POSTING_READ(PCH_DREF_CONTROL);
8275 udelay(200);
8276
8277 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8278
8279 /* Enable CPU source on CPU attached eDP */
8280 if (has_cpu_edp) {
8281 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8282 DRM_DEBUG_KMS("Using SSC on eDP\n");
8283 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8284 } else
8285 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8286 } else
8287 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8288
8289 I915_WRITE(PCH_DREF_CONTROL, val);
8290 POSTING_READ(PCH_DREF_CONTROL);
8291 udelay(200);
8292 } else {
8293 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8294
8295 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8296
8297 /* Turn off CPU output */
8298 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8299
8300 I915_WRITE(PCH_DREF_CONTROL, val);
8301 POSTING_READ(PCH_DREF_CONTROL);
8302 udelay(200);
8303
8304 /* Turn off the SSC source */
8305 val &= ~DREF_SSC_SOURCE_MASK;
8306 val |= DREF_SSC_SOURCE_DISABLE;
8307
8308 /* Turn off SSC1 */
8309 val &= ~DREF_SSC1_ENABLE;
8310
8311 I915_WRITE(PCH_DREF_CONTROL, val);
8312 POSTING_READ(PCH_DREF_CONTROL);
8313 udelay(200);
8314 }
8315
8316 BUG_ON(val != final);
8317 }
8318
8319 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8320 {
8321 uint32_t tmp;
8322
8323 tmp = I915_READ(SOUTH_CHICKEN2);
8324 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8325 I915_WRITE(SOUTH_CHICKEN2, tmp);
8326
8327 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8328 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8329 DRM_ERROR("FDI mPHY reset assert timeout\n");
8330
8331 tmp = I915_READ(SOUTH_CHICKEN2);
8332 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8333 I915_WRITE(SOUTH_CHICKEN2, tmp);
8334
8335 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8336 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8337 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8338 }
8339
8340 /* WaMPhyProgramming:hsw */
8341 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8342 {
8343 uint32_t tmp;
8344
8345 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8346 tmp &= ~(0xFF << 24);
8347 tmp |= (0x12 << 24);
8348 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8349
8350 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8351 tmp |= (1 << 11);
8352 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8353
8354 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8355 tmp |= (1 << 11);
8356 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8357
8358 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8359 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8360 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8361
8362 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8363 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8364 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8365
8366 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8367 tmp &= ~(7 << 13);
8368 tmp |= (5 << 13);
8369 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8370
8371 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8372 tmp &= ~(7 << 13);
8373 tmp |= (5 << 13);
8374 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8375
8376 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8377 tmp &= ~0xFF;
8378 tmp |= 0x1C;
8379 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8380
8381 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8382 tmp &= ~0xFF;
8383 tmp |= 0x1C;
8384 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8385
8386 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8387 tmp &= ~(0xFF << 16);
8388 tmp |= (0x1C << 16);
8389 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8390
8391 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8392 tmp &= ~(0xFF << 16);
8393 tmp |= (0x1C << 16);
8394 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8395
8396 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8397 tmp |= (1 << 27);
8398 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8399
8400 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8401 tmp |= (1 << 27);
8402 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8403
8404 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8405 tmp &= ~(0xF << 28);
8406 tmp |= (4 << 28);
8407 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8408
8409 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8410 tmp &= ~(0xF << 28);
8411 tmp |= (4 << 28);
8412 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8413 }
8414
8415 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8416 * Programming" based on the parameters passed:
8417 * - Sequence to enable CLKOUT_DP
8418 * - Sequence to enable CLKOUT_DP without spread
8419 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8420 */
8421 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8422 bool with_fdi)
8423 {
8424 struct drm_i915_private *dev_priv = dev->dev_private;
8425 uint32_t reg, tmp;
8426
8427 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8428 with_spread = true;
8429 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8430 with_fdi, "LP PCH doesn't have FDI\n"))
8431 with_fdi = false;
8432
8433 mutex_lock(&dev_priv->sb_lock);
8434
8435 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8436 tmp &= ~SBI_SSCCTL_DISABLE;
8437 tmp |= SBI_SSCCTL_PATHALT;
8438 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8439
8440 udelay(24);
8441
8442 if (with_spread) {
8443 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8444 tmp &= ~SBI_SSCCTL_PATHALT;
8445 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8446
8447 if (with_fdi) {
8448 lpt_reset_fdi_mphy(dev_priv);
8449 lpt_program_fdi_mphy(dev_priv);
8450 }
8451 }
8452
8453 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8454 SBI_GEN0 : SBI_DBUFF0;
8455 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8456 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8457 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8458
8459 mutex_unlock(&dev_priv->sb_lock);
8460 }
8461
8462 /* Sequence to disable CLKOUT_DP */
8463 static void lpt_disable_clkout_dp(struct drm_device *dev)
8464 {
8465 struct drm_i915_private *dev_priv = dev->dev_private;
8466 uint32_t reg, tmp;
8467
8468 mutex_lock(&dev_priv->sb_lock);
8469
8470 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8471 SBI_GEN0 : SBI_DBUFF0;
8472 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8473 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8474 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8475
8476 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8477 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8478 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8479 tmp |= SBI_SSCCTL_PATHALT;
8480 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8481 udelay(32);
8482 }
8483 tmp |= SBI_SSCCTL_DISABLE;
8484 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8485 }
8486
8487 mutex_unlock(&dev_priv->sb_lock);
8488 }
8489
8490 static void lpt_init_pch_refclk(struct drm_device *dev)
8491 {
8492 struct intel_encoder *encoder;
8493 bool has_vga = false;
8494
8495 for_each_intel_encoder(dev, encoder) {
8496 switch (encoder->type) {
8497 case INTEL_OUTPUT_ANALOG:
8498 has_vga = true;
8499 break;
8500 default:
8501 break;
8502 }
8503 }
8504
8505 if (has_vga)
8506 lpt_enable_clkout_dp(dev, true, true);
8507 else
8508 lpt_disable_clkout_dp(dev);
8509 }
8510
8511 /*
8512 * Initialize reference clocks when the driver loads
8513 */
8514 void intel_init_pch_refclk(struct drm_device *dev)
8515 {
8516 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8517 ironlake_init_pch_refclk(dev);
8518 else if (HAS_PCH_LPT(dev))
8519 lpt_init_pch_refclk(dev);
8520 }
8521
8522 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8523 {
8524 struct drm_device *dev = crtc_state->base.crtc->dev;
8525 struct drm_i915_private *dev_priv = dev->dev_private;
8526 struct drm_atomic_state *state = crtc_state->base.state;
8527 struct drm_connector *connector;
8528 struct drm_connector_state *connector_state;
8529 struct intel_encoder *encoder;
8530 int num_connectors = 0, i;
8531 bool is_lvds = false;
8532
8533 for_each_connector_in_state(state, connector, connector_state, i) {
8534 if (connector_state->crtc != crtc_state->base.crtc)
8535 continue;
8536
8537 encoder = to_intel_encoder(connector_state->best_encoder);
8538
8539 switch (encoder->type) {
8540 case INTEL_OUTPUT_LVDS:
8541 is_lvds = true;
8542 break;
8543 default:
8544 break;
8545 }
8546 num_connectors++;
8547 }
8548
8549 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8550 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8551 dev_priv->vbt.lvds_ssc_freq);
8552 return dev_priv->vbt.lvds_ssc_freq;
8553 }
8554
8555 return 120000;
8556 }
8557
8558 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8559 {
8560 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8561 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8562 int pipe = intel_crtc->pipe;
8563 uint32_t val;
8564
8565 val = 0;
8566
8567 switch (intel_crtc->config->pipe_bpp) {
8568 case 18:
8569 val |= PIPECONF_6BPC;
8570 break;
8571 case 24:
8572 val |= PIPECONF_8BPC;
8573 break;
8574 case 30:
8575 val |= PIPECONF_10BPC;
8576 break;
8577 case 36:
8578 val |= PIPECONF_12BPC;
8579 break;
8580 default:
8581 /* Case prevented by intel_choose_pipe_bpp_dither. */
8582 BUG();
8583 }
8584
8585 if (intel_crtc->config->dither)
8586 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8587
8588 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8589 val |= PIPECONF_INTERLACED_ILK;
8590 else
8591 val |= PIPECONF_PROGRESSIVE;
8592
8593 if (intel_crtc->config->limited_color_range)
8594 val |= PIPECONF_COLOR_RANGE_SELECT;
8595
8596 I915_WRITE(PIPECONF(pipe), val);
8597 POSTING_READ(PIPECONF(pipe));
8598 }
8599
8600 /*
8601 * Set up the pipe CSC unit.
8602 *
8603 * Currently only full range RGB to limited range RGB conversion
8604 * is supported, but eventually this should handle various
8605 * RGB<->YCbCr scenarios as well.
8606 */
8607 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8608 {
8609 struct drm_device *dev = crtc->dev;
8610 struct drm_i915_private *dev_priv = dev->dev_private;
8611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8612 int pipe = intel_crtc->pipe;
8613 uint16_t coeff = 0x7800; /* 1.0 */
8614
8615 /*
8616 * TODO: Check what kind of values actually come out of the pipe
8617 * with these coeff/postoff values and adjust to get the best
8618 * accuracy. Perhaps we even need to take the bpc value into
8619 * consideration.
8620 */
8621
8622 if (intel_crtc->config->limited_color_range)
8623 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8624
8625 /*
8626 * GY/GU and RY/RU should be the other way around according
8627 * to BSpec, but reality doesn't agree. Just set them up in
8628 * a way that results in the correct picture.
8629 */
8630 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8631 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8632
8633 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8634 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8635
8636 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8637 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8638
8639 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8640 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8641 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8642
8643 if (INTEL_INFO(dev)->gen > 6) {
8644 uint16_t postoff = 0;
8645
8646 if (intel_crtc->config->limited_color_range)
8647 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8648
8649 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8650 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8651 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8652
8653 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8654 } else {
8655 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8656
8657 if (intel_crtc->config->limited_color_range)
8658 mode |= CSC_BLACK_SCREEN_OFFSET;
8659
8660 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8661 }
8662 }
8663
8664 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8665 {
8666 struct drm_device *dev = crtc->dev;
8667 struct drm_i915_private *dev_priv = dev->dev_private;
8668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8669 enum pipe pipe = intel_crtc->pipe;
8670 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8671 uint32_t val;
8672
8673 val = 0;
8674
8675 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8676 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8677
8678 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8679 val |= PIPECONF_INTERLACED_ILK;
8680 else
8681 val |= PIPECONF_PROGRESSIVE;
8682
8683 I915_WRITE(PIPECONF(cpu_transcoder), val);
8684 POSTING_READ(PIPECONF(cpu_transcoder));
8685
8686 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8687 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8688
8689 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8690 val = 0;
8691
8692 switch (intel_crtc->config->pipe_bpp) {
8693 case 18:
8694 val |= PIPEMISC_DITHER_6_BPC;
8695 break;
8696 case 24:
8697 val |= PIPEMISC_DITHER_8_BPC;
8698 break;
8699 case 30:
8700 val |= PIPEMISC_DITHER_10_BPC;
8701 break;
8702 case 36:
8703 val |= PIPEMISC_DITHER_12_BPC;
8704 break;
8705 default:
8706 /* Case prevented by pipe_config_set_bpp. */
8707 BUG();
8708 }
8709
8710 if (intel_crtc->config->dither)
8711 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8712
8713 I915_WRITE(PIPEMISC(pipe), val);
8714 }
8715 }
8716
8717 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8718 struct intel_crtc_state *crtc_state,
8719 intel_clock_t *clock,
8720 bool *has_reduced_clock,
8721 intel_clock_t *reduced_clock)
8722 {
8723 struct drm_device *dev = crtc->dev;
8724 struct drm_i915_private *dev_priv = dev->dev_private;
8725 int refclk;
8726 const intel_limit_t *limit;
8727 bool ret, is_lvds = false;
8728
8729 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8730
8731 refclk = ironlake_get_refclk(crtc_state);
8732
8733 /*
8734 * Returns a set of divisors for the desired target clock with the given
8735 * refclk, or FALSE. The returned values represent the clock equation:
8736 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8737 */
8738 limit = intel_limit(crtc_state, refclk);
8739 ret = dev_priv->display.find_dpll(limit, crtc_state,
8740 crtc_state->port_clock,
8741 refclk, NULL, clock);
8742 if (!ret)
8743 return false;
8744
8745 if (is_lvds && dev_priv->lvds_downclock_avail) {
8746 /*
8747 * Ensure we match the reduced clock's P to the target clock.
8748 * If the clocks don't match, we can't switch the display clock
8749 * by using the FP0/FP1. In such case we will disable the LVDS
8750 * downclock feature.
8751 */
8752 *has_reduced_clock =
8753 dev_priv->display.find_dpll(limit, crtc_state,
8754 dev_priv->lvds_downclock,
8755 refclk, clock,
8756 reduced_clock);
8757 }
8758
8759 return true;
8760 }
8761
8762 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8763 {
8764 /*
8765 * Account for spread spectrum to avoid
8766 * oversubscribing the link. Max center spread
8767 * is 2.5%; use 5% for safety's sake.
8768 */
8769 u32 bps = target_clock * bpp * 21 / 20;
8770 return DIV_ROUND_UP(bps, link_bw * 8);
8771 }
8772
8773 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8774 {
8775 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8776 }
8777
8778 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8779 struct intel_crtc_state *crtc_state,
8780 u32 *fp,
8781 intel_clock_t *reduced_clock, u32 *fp2)
8782 {
8783 struct drm_crtc *crtc = &intel_crtc->base;
8784 struct drm_device *dev = crtc->dev;
8785 struct drm_i915_private *dev_priv = dev->dev_private;
8786 struct drm_atomic_state *state = crtc_state->base.state;
8787 struct drm_connector *connector;
8788 struct drm_connector_state *connector_state;
8789 struct intel_encoder *encoder;
8790 uint32_t dpll;
8791 int factor, num_connectors = 0, i;
8792 bool is_lvds = false, is_sdvo = false;
8793
8794 for_each_connector_in_state(state, connector, connector_state, i) {
8795 if (connector_state->crtc != crtc_state->base.crtc)
8796 continue;
8797
8798 encoder = to_intel_encoder(connector_state->best_encoder);
8799
8800 switch (encoder->type) {
8801 case INTEL_OUTPUT_LVDS:
8802 is_lvds = true;
8803 break;
8804 case INTEL_OUTPUT_SDVO:
8805 case INTEL_OUTPUT_HDMI:
8806 is_sdvo = true;
8807 break;
8808 default:
8809 break;
8810 }
8811
8812 num_connectors++;
8813 }
8814
8815 /* Enable autotuning of the PLL clock (if permissible) */
8816 factor = 21;
8817 if (is_lvds) {
8818 if ((intel_panel_use_ssc(dev_priv) &&
8819 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8820 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8821 factor = 25;
8822 } else if (crtc_state->sdvo_tv_clock)
8823 factor = 20;
8824
8825 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8826 *fp |= FP_CB_TUNE;
8827
8828 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8829 *fp2 |= FP_CB_TUNE;
8830
8831 dpll = 0;
8832
8833 if (is_lvds)
8834 dpll |= DPLLB_MODE_LVDS;
8835 else
8836 dpll |= DPLLB_MODE_DAC_SERIAL;
8837
8838 dpll |= (crtc_state->pixel_multiplier - 1)
8839 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8840
8841 if (is_sdvo)
8842 dpll |= DPLL_SDVO_HIGH_SPEED;
8843 if (crtc_state->has_dp_encoder)
8844 dpll |= DPLL_SDVO_HIGH_SPEED;
8845
8846 /* compute bitmask from p1 value */
8847 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8848 /* also FPA1 */
8849 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8850
8851 switch (crtc_state->dpll.p2) {
8852 case 5:
8853 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8854 break;
8855 case 7:
8856 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8857 break;
8858 case 10:
8859 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8860 break;
8861 case 14:
8862 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8863 break;
8864 }
8865
8866 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8867 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8868 else
8869 dpll |= PLL_REF_INPUT_DREFCLK;
8870
8871 return dpll | DPLL_VCO_ENABLE;
8872 }
8873
8874 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8875 struct intel_crtc_state *crtc_state)
8876 {
8877 struct drm_device *dev = crtc->base.dev;
8878 intel_clock_t clock, reduced_clock;
8879 u32 dpll = 0, fp = 0, fp2 = 0;
8880 bool ok, has_reduced_clock = false;
8881 bool is_lvds = false;
8882 struct intel_shared_dpll *pll;
8883
8884 memset(&crtc_state->dpll_hw_state, 0,
8885 sizeof(crtc_state->dpll_hw_state));
8886
8887 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8888
8889 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8890 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8891
8892 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8893 &has_reduced_clock, &reduced_clock);
8894 if (!ok && !crtc_state->clock_set) {
8895 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8896 return -EINVAL;
8897 }
8898 /* Compat-code for transition, will disappear. */
8899 if (!crtc_state->clock_set) {
8900 crtc_state->dpll.n = clock.n;
8901 crtc_state->dpll.m1 = clock.m1;
8902 crtc_state->dpll.m2 = clock.m2;
8903 crtc_state->dpll.p1 = clock.p1;
8904 crtc_state->dpll.p2 = clock.p2;
8905 }
8906
8907 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8908 if (crtc_state->has_pch_encoder) {
8909 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8910 if (has_reduced_clock)
8911 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8912
8913 dpll = ironlake_compute_dpll(crtc, crtc_state,
8914 &fp, &reduced_clock,
8915 has_reduced_clock ? &fp2 : NULL);
8916
8917 crtc_state->dpll_hw_state.dpll = dpll;
8918 crtc_state->dpll_hw_state.fp0 = fp;
8919 if (has_reduced_clock)
8920 crtc_state->dpll_hw_state.fp1 = fp2;
8921 else
8922 crtc_state->dpll_hw_state.fp1 = fp;
8923
8924 pll = intel_get_shared_dpll(crtc, crtc_state);
8925 if (pll == NULL) {
8926 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8927 pipe_name(crtc->pipe));
8928 return -EINVAL;
8929 }
8930 }
8931
8932 if (is_lvds && has_reduced_clock)
8933 crtc->lowfreq_avail = true;
8934 else
8935 crtc->lowfreq_avail = false;
8936
8937 return 0;
8938 }
8939
8940 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8941 struct intel_link_m_n *m_n)
8942 {
8943 struct drm_device *dev = crtc->base.dev;
8944 struct drm_i915_private *dev_priv = dev->dev_private;
8945 enum pipe pipe = crtc->pipe;
8946
8947 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8948 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8949 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8950 & ~TU_SIZE_MASK;
8951 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8952 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8953 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8954 }
8955
8956 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8957 enum transcoder transcoder,
8958 struct intel_link_m_n *m_n,
8959 struct intel_link_m_n *m2_n2)
8960 {
8961 struct drm_device *dev = crtc->base.dev;
8962 struct drm_i915_private *dev_priv = dev->dev_private;
8963 enum pipe pipe = crtc->pipe;
8964
8965 if (INTEL_INFO(dev)->gen >= 5) {
8966 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8967 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8968 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8969 & ~TU_SIZE_MASK;
8970 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8971 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8972 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8973 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8974 * gen < 8) and if DRRS is supported (to make sure the
8975 * registers are not unnecessarily read).
8976 */
8977 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8978 crtc->config->has_drrs) {
8979 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8980 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8981 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8982 & ~TU_SIZE_MASK;
8983 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8984 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8985 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8986 }
8987 } else {
8988 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8989 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8990 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8991 & ~TU_SIZE_MASK;
8992 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8993 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8994 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8995 }
8996 }
8997
8998 void intel_dp_get_m_n(struct intel_crtc *crtc,
8999 struct intel_crtc_state *pipe_config)
9000 {
9001 if (pipe_config->has_pch_encoder)
9002 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9003 else
9004 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9005 &pipe_config->dp_m_n,
9006 &pipe_config->dp_m2_n2);
9007 }
9008
9009 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9010 struct intel_crtc_state *pipe_config)
9011 {
9012 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9013 &pipe_config->fdi_m_n, NULL);
9014 }
9015
9016 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9017 struct intel_crtc_state *pipe_config)
9018 {
9019 struct drm_device *dev = crtc->base.dev;
9020 struct drm_i915_private *dev_priv = dev->dev_private;
9021 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9022 uint32_t ps_ctrl = 0;
9023 int id = -1;
9024 int i;
9025
9026 /* find scaler attached to this pipe */
9027 for (i = 0; i < crtc->num_scalers; i++) {
9028 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9029 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9030 id = i;
9031 pipe_config->pch_pfit.enabled = true;
9032 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9033 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9034 break;
9035 }
9036 }
9037
9038 scaler_state->scaler_id = id;
9039 if (id >= 0) {
9040 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9041 } else {
9042 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9043 }
9044 }
9045
9046 static void
9047 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9048 struct intel_initial_plane_config *plane_config)
9049 {
9050 struct drm_device *dev = crtc->base.dev;
9051 struct drm_i915_private *dev_priv = dev->dev_private;
9052 u32 val, base, offset, stride_mult, tiling;
9053 int pipe = crtc->pipe;
9054 int fourcc, pixel_format;
9055 unsigned int aligned_height;
9056 struct drm_framebuffer *fb;
9057 struct intel_framebuffer *intel_fb;
9058
9059 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9060 if (!intel_fb) {
9061 DRM_DEBUG_KMS("failed to alloc fb\n");
9062 return;
9063 }
9064
9065 fb = &intel_fb->base;
9066
9067 val = I915_READ(PLANE_CTL(pipe, 0));
9068 if (!(val & PLANE_CTL_ENABLE))
9069 goto error;
9070
9071 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9072 fourcc = skl_format_to_fourcc(pixel_format,
9073 val & PLANE_CTL_ORDER_RGBX,
9074 val & PLANE_CTL_ALPHA_MASK);
9075 fb->pixel_format = fourcc;
9076 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9077
9078 tiling = val & PLANE_CTL_TILED_MASK;
9079 switch (tiling) {
9080 case PLANE_CTL_TILED_LINEAR:
9081 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9082 break;
9083 case PLANE_CTL_TILED_X:
9084 plane_config->tiling = I915_TILING_X;
9085 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9086 break;
9087 case PLANE_CTL_TILED_Y:
9088 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9089 break;
9090 case PLANE_CTL_TILED_YF:
9091 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9092 break;
9093 default:
9094 MISSING_CASE(tiling);
9095 goto error;
9096 }
9097
9098 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9099 plane_config->base = base;
9100
9101 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9102
9103 val = I915_READ(PLANE_SIZE(pipe, 0));
9104 fb->height = ((val >> 16) & 0xfff) + 1;
9105 fb->width = ((val >> 0) & 0x1fff) + 1;
9106
9107 val = I915_READ(PLANE_STRIDE(pipe, 0));
9108 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9109 fb->pixel_format);
9110 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9111
9112 aligned_height = intel_fb_align_height(dev, fb->height,
9113 fb->pixel_format,
9114 fb->modifier[0]);
9115
9116 plane_config->size = fb->pitches[0] * aligned_height;
9117
9118 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9119 pipe_name(pipe), fb->width, fb->height,
9120 fb->bits_per_pixel, base, fb->pitches[0],
9121 plane_config->size);
9122
9123 plane_config->fb = intel_fb;
9124 return;
9125
9126 error:
9127 kfree(fb);
9128 }
9129
9130 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9131 struct intel_crtc_state *pipe_config)
9132 {
9133 struct drm_device *dev = crtc->base.dev;
9134 struct drm_i915_private *dev_priv = dev->dev_private;
9135 uint32_t tmp;
9136
9137 tmp = I915_READ(PF_CTL(crtc->pipe));
9138
9139 if (tmp & PF_ENABLE) {
9140 pipe_config->pch_pfit.enabled = true;
9141 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9142 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9143
9144 /* We currently do not free assignements of panel fitters on
9145 * ivb/hsw (since we don't use the higher upscaling modes which
9146 * differentiates them) so just WARN about this case for now. */
9147 if (IS_GEN7(dev)) {
9148 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9149 PF_PIPE_SEL_IVB(crtc->pipe));
9150 }
9151 }
9152 }
9153
9154 static void
9155 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9156 struct intel_initial_plane_config *plane_config)
9157 {
9158 struct drm_device *dev = crtc->base.dev;
9159 struct drm_i915_private *dev_priv = dev->dev_private;
9160 u32 val, base, offset;
9161 int pipe = crtc->pipe;
9162 int fourcc, pixel_format;
9163 unsigned int aligned_height;
9164 struct drm_framebuffer *fb;
9165 struct intel_framebuffer *intel_fb;
9166
9167 val = I915_READ(DSPCNTR(pipe));
9168 if (!(val & DISPLAY_PLANE_ENABLE))
9169 return;
9170
9171 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9172 if (!intel_fb) {
9173 DRM_DEBUG_KMS("failed to alloc fb\n");
9174 return;
9175 }
9176
9177 fb = &intel_fb->base;
9178
9179 if (INTEL_INFO(dev)->gen >= 4) {
9180 if (val & DISPPLANE_TILED) {
9181 plane_config->tiling = I915_TILING_X;
9182 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9183 }
9184 }
9185
9186 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9187 fourcc = i9xx_format_to_fourcc(pixel_format);
9188 fb->pixel_format = fourcc;
9189 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9190
9191 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9192 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9193 offset = I915_READ(DSPOFFSET(pipe));
9194 } else {
9195 if (plane_config->tiling)
9196 offset = I915_READ(DSPTILEOFF(pipe));
9197 else
9198 offset = I915_READ(DSPLINOFF(pipe));
9199 }
9200 plane_config->base = base;
9201
9202 val = I915_READ(PIPESRC(pipe));
9203 fb->width = ((val >> 16) & 0xfff) + 1;
9204 fb->height = ((val >> 0) & 0xfff) + 1;
9205
9206 val = I915_READ(DSPSTRIDE(pipe));
9207 fb->pitches[0] = val & 0xffffffc0;
9208
9209 aligned_height = intel_fb_align_height(dev, fb->height,
9210 fb->pixel_format,
9211 fb->modifier[0]);
9212
9213 plane_config->size = fb->pitches[0] * aligned_height;
9214
9215 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9216 pipe_name(pipe), fb->width, fb->height,
9217 fb->bits_per_pixel, base, fb->pitches[0],
9218 plane_config->size);
9219
9220 plane_config->fb = intel_fb;
9221 }
9222
9223 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9224 struct intel_crtc_state *pipe_config)
9225 {
9226 struct drm_device *dev = crtc->base.dev;
9227 struct drm_i915_private *dev_priv = dev->dev_private;
9228 uint32_t tmp;
9229
9230 if (!intel_display_power_is_enabled(dev_priv,
9231 POWER_DOMAIN_PIPE(crtc->pipe)))
9232 return false;
9233
9234 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9235 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9236
9237 tmp = I915_READ(PIPECONF(crtc->pipe));
9238 if (!(tmp & PIPECONF_ENABLE))
9239 return false;
9240
9241 switch (tmp & PIPECONF_BPC_MASK) {
9242 case PIPECONF_6BPC:
9243 pipe_config->pipe_bpp = 18;
9244 break;
9245 case PIPECONF_8BPC:
9246 pipe_config->pipe_bpp = 24;
9247 break;
9248 case PIPECONF_10BPC:
9249 pipe_config->pipe_bpp = 30;
9250 break;
9251 case PIPECONF_12BPC:
9252 pipe_config->pipe_bpp = 36;
9253 break;
9254 default:
9255 break;
9256 }
9257
9258 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9259 pipe_config->limited_color_range = true;
9260
9261 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9262 struct intel_shared_dpll *pll;
9263
9264 pipe_config->has_pch_encoder = true;
9265
9266 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9267 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9268 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9269
9270 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9271
9272 if (HAS_PCH_IBX(dev_priv->dev)) {
9273 pipe_config->shared_dpll =
9274 (enum intel_dpll_id) crtc->pipe;
9275 } else {
9276 tmp = I915_READ(PCH_DPLL_SEL);
9277 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9278 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9279 else
9280 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9281 }
9282
9283 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9284
9285 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9286 &pipe_config->dpll_hw_state));
9287
9288 tmp = pipe_config->dpll_hw_state.dpll;
9289 pipe_config->pixel_multiplier =
9290 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9291 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9292
9293 ironlake_pch_clock_get(crtc, pipe_config);
9294 } else {
9295 pipe_config->pixel_multiplier = 1;
9296 }
9297
9298 intel_get_pipe_timings(crtc, pipe_config);
9299
9300 ironlake_get_pfit_config(crtc, pipe_config);
9301
9302 return true;
9303 }
9304
9305 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9306 {
9307 struct drm_device *dev = dev_priv->dev;
9308 struct intel_crtc *crtc;
9309
9310 for_each_intel_crtc(dev, crtc)
9311 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9312 pipe_name(crtc->pipe));
9313
9314 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9315 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9316 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9317 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9318 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9319 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9320 "CPU PWM1 enabled\n");
9321 if (IS_HASWELL(dev))
9322 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9323 "CPU PWM2 enabled\n");
9324 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9325 "PCH PWM1 enabled\n");
9326 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9327 "Utility pin enabled\n");
9328 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9329
9330 /*
9331 * In theory we can still leave IRQs enabled, as long as only the HPD
9332 * interrupts remain enabled. We used to check for that, but since it's
9333 * gen-specific and since we only disable LCPLL after we fully disable
9334 * the interrupts, the check below should be enough.
9335 */
9336 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9337 }
9338
9339 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9340 {
9341 struct drm_device *dev = dev_priv->dev;
9342
9343 if (IS_HASWELL(dev))
9344 return I915_READ(D_COMP_HSW);
9345 else
9346 return I915_READ(D_COMP_BDW);
9347 }
9348
9349 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9350 {
9351 struct drm_device *dev = dev_priv->dev;
9352
9353 if (IS_HASWELL(dev)) {
9354 mutex_lock(&dev_priv->rps.hw_lock);
9355 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9356 val))
9357 DRM_ERROR("Failed to write to D_COMP\n");
9358 mutex_unlock(&dev_priv->rps.hw_lock);
9359 } else {
9360 I915_WRITE(D_COMP_BDW, val);
9361 POSTING_READ(D_COMP_BDW);
9362 }
9363 }
9364
9365 /*
9366 * This function implements pieces of two sequences from BSpec:
9367 * - Sequence for display software to disable LCPLL
9368 * - Sequence for display software to allow package C8+
9369 * The steps implemented here are just the steps that actually touch the LCPLL
9370 * register. Callers should take care of disabling all the display engine
9371 * functions, doing the mode unset, fixing interrupts, etc.
9372 */
9373 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9374 bool switch_to_fclk, bool allow_power_down)
9375 {
9376 uint32_t val;
9377
9378 assert_can_disable_lcpll(dev_priv);
9379
9380 val = I915_READ(LCPLL_CTL);
9381
9382 if (switch_to_fclk) {
9383 val |= LCPLL_CD_SOURCE_FCLK;
9384 I915_WRITE(LCPLL_CTL, val);
9385
9386 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9387 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9388 DRM_ERROR("Switching to FCLK failed\n");
9389
9390 val = I915_READ(LCPLL_CTL);
9391 }
9392
9393 val |= LCPLL_PLL_DISABLE;
9394 I915_WRITE(LCPLL_CTL, val);
9395 POSTING_READ(LCPLL_CTL);
9396
9397 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9398 DRM_ERROR("LCPLL still locked\n");
9399
9400 val = hsw_read_dcomp(dev_priv);
9401 val |= D_COMP_COMP_DISABLE;
9402 hsw_write_dcomp(dev_priv, val);
9403 ndelay(100);
9404
9405 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9406 1))
9407 DRM_ERROR("D_COMP RCOMP still in progress\n");
9408
9409 if (allow_power_down) {
9410 val = I915_READ(LCPLL_CTL);
9411 val |= LCPLL_POWER_DOWN_ALLOW;
9412 I915_WRITE(LCPLL_CTL, val);
9413 POSTING_READ(LCPLL_CTL);
9414 }
9415 }
9416
9417 /*
9418 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9419 * source.
9420 */
9421 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9422 {
9423 uint32_t val;
9424
9425 val = I915_READ(LCPLL_CTL);
9426
9427 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9428 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9429 return;
9430
9431 /*
9432 * Make sure we're not on PC8 state before disabling PC8, otherwise
9433 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9434 */
9435 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9436
9437 if (val & LCPLL_POWER_DOWN_ALLOW) {
9438 val &= ~LCPLL_POWER_DOWN_ALLOW;
9439 I915_WRITE(LCPLL_CTL, val);
9440 POSTING_READ(LCPLL_CTL);
9441 }
9442
9443 val = hsw_read_dcomp(dev_priv);
9444 val |= D_COMP_COMP_FORCE;
9445 val &= ~D_COMP_COMP_DISABLE;
9446 hsw_write_dcomp(dev_priv, val);
9447
9448 val = I915_READ(LCPLL_CTL);
9449 val &= ~LCPLL_PLL_DISABLE;
9450 I915_WRITE(LCPLL_CTL, val);
9451
9452 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9453 DRM_ERROR("LCPLL not locked yet\n");
9454
9455 if (val & LCPLL_CD_SOURCE_FCLK) {
9456 val = I915_READ(LCPLL_CTL);
9457 val &= ~LCPLL_CD_SOURCE_FCLK;
9458 I915_WRITE(LCPLL_CTL, val);
9459
9460 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9461 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9462 DRM_ERROR("Switching back to LCPLL failed\n");
9463 }
9464
9465 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9466 intel_update_cdclk(dev_priv->dev);
9467 }
9468
9469 /*
9470 * Package states C8 and deeper are really deep PC states that can only be
9471 * reached when all the devices on the system allow it, so even if the graphics
9472 * device allows PC8+, it doesn't mean the system will actually get to these
9473 * states. Our driver only allows PC8+ when going into runtime PM.
9474 *
9475 * The requirements for PC8+ are that all the outputs are disabled, the power
9476 * well is disabled and most interrupts are disabled, and these are also
9477 * requirements for runtime PM. When these conditions are met, we manually do
9478 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9479 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9480 * hang the machine.
9481 *
9482 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9483 * the state of some registers, so when we come back from PC8+ we need to
9484 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9485 * need to take care of the registers kept by RC6. Notice that this happens even
9486 * if we don't put the device in PCI D3 state (which is what currently happens
9487 * because of the runtime PM support).
9488 *
9489 * For more, read "Display Sequences for Package C8" on the hardware
9490 * documentation.
9491 */
9492 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9493 {
9494 struct drm_device *dev = dev_priv->dev;
9495 uint32_t val;
9496
9497 DRM_DEBUG_KMS("Enabling package C8+\n");
9498
9499 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9500 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9501 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9502 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9503 }
9504
9505 lpt_disable_clkout_dp(dev);
9506 hsw_disable_lcpll(dev_priv, true, true);
9507 }
9508
9509 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9510 {
9511 struct drm_device *dev = dev_priv->dev;
9512 uint32_t val;
9513
9514 DRM_DEBUG_KMS("Disabling package C8+\n");
9515
9516 hsw_restore_lcpll(dev_priv);
9517 lpt_init_pch_refclk(dev);
9518
9519 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9520 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9521 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9522 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9523 }
9524
9525 intel_prepare_ddi(dev);
9526 }
9527
9528 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9529 {
9530 struct drm_device *dev = old_state->dev;
9531 struct drm_i915_private *dev_priv = dev->dev_private;
9532 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9533 int req_cdclk;
9534
9535 /* see the comment in valleyview_modeset_global_resources */
9536 if (WARN_ON(max_pixclk < 0))
9537 return;
9538
9539 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9540
9541 if (req_cdclk != dev_priv->cdclk_freq)
9542 broxton_set_cdclk(dev, req_cdclk);
9543 }
9544
9545 /* compute the max rate for new configuration */
9546 static int ilk_max_pixel_rate(struct drm_i915_private *dev_priv)
9547 {
9548 struct drm_device *dev = dev_priv->dev;
9549 struct intel_crtc *intel_crtc;
9550 struct drm_crtc *crtc;
9551 int max_pixel_rate = 0;
9552 int pixel_rate;
9553
9554 for_each_crtc(dev, crtc) {
9555 if (!crtc->state->enable)
9556 continue;
9557
9558 intel_crtc = to_intel_crtc(crtc);
9559 pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
9560
9561 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9562 if (IS_BROADWELL(dev) && intel_crtc->config->ips_enabled)
9563 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9564
9565 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9566 }
9567
9568 return max_pixel_rate;
9569 }
9570
9571 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9572 {
9573 struct drm_i915_private *dev_priv = dev->dev_private;
9574 uint32_t val, data;
9575 int ret;
9576
9577 if (WARN((I915_READ(LCPLL_CTL) &
9578 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9579 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9580 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9581 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9582 "trying to change cdclk frequency with cdclk not enabled\n"))
9583 return;
9584
9585 mutex_lock(&dev_priv->rps.hw_lock);
9586 ret = sandybridge_pcode_write(dev_priv,
9587 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9588 mutex_unlock(&dev_priv->rps.hw_lock);
9589 if (ret) {
9590 DRM_ERROR("failed to inform pcode about cdclk change\n");
9591 return;
9592 }
9593
9594 val = I915_READ(LCPLL_CTL);
9595 val |= LCPLL_CD_SOURCE_FCLK;
9596 I915_WRITE(LCPLL_CTL, val);
9597
9598 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9599 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9600 DRM_ERROR("Switching to FCLK failed\n");
9601
9602 val = I915_READ(LCPLL_CTL);
9603 val &= ~LCPLL_CLK_FREQ_MASK;
9604
9605 switch (cdclk) {
9606 case 450000:
9607 val |= LCPLL_CLK_FREQ_450;
9608 data = 0;
9609 break;
9610 case 540000:
9611 val |= LCPLL_CLK_FREQ_54O_BDW;
9612 data = 1;
9613 break;
9614 case 337500:
9615 val |= LCPLL_CLK_FREQ_337_5_BDW;
9616 data = 2;
9617 break;
9618 case 675000:
9619 val |= LCPLL_CLK_FREQ_675_BDW;
9620 data = 3;
9621 break;
9622 default:
9623 WARN(1, "invalid cdclk frequency\n");
9624 return;
9625 }
9626
9627 I915_WRITE(LCPLL_CTL, val);
9628
9629 val = I915_READ(LCPLL_CTL);
9630 val &= ~LCPLL_CD_SOURCE_FCLK;
9631 I915_WRITE(LCPLL_CTL, val);
9632
9633 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9634 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9635 DRM_ERROR("Switching back to LCPLL failed\n");
9636
9637 mutex_lock(&dev_priv->rps.hw_lock);
9638 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9639 mutex_unlock(&dev_priv->rps.hw_lock);
9640
9641 intel_update_cdclk(dev);
9642
9643 WARN(cdclk != dev_priv->cdclk_freq,
9644 "cdclk requested %d kHz but got %d kHz\n",
9645 cdclk, dev_priv->cdclk_freq);
9646 }
9647
9648 static int broadwell_calc_cdclk(struct drm_i915_private *dev_priv,
9649 int max_pixel_rate)
9650 {
9651 int cdclk;
9652
9653 /*
9654 * FIXME should also account for plane ratio
9655 * once 64bpp pixel formats are supported.
9656 */
9657 if (max_pixel_rate > 540000)
9658 cdclk = 675000;
9659 else if (max_pixel_rate > 450000)
9660 cdclk = 540000;
9661 else if (max_pixel_rate > 337500)
9662 cdclk = 450000;
9663 else
9664 cdclk = 337500;
9665
9666 /*
9667 * FIXME move the cdclk caclulation to
9668 * compute_config() so we can fail gracegully.
9669 */
9670 if (cdclk > dev_priv->max_cdclk_freq) {
9671 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9672 cdclk, dev_priv->max_cdclk_freq);
9673 cdclk = dev_priv->max_cdclk_freq;
9674 }
9675
9676 return cdclk;
9677 }
9678
9679 static int broadwell_modeset_global_pipes(struct drm_atomic_state *state)
9680 {
9681 struct drm_i915_private *dev_priv = to_i915(state->dev);
9682 struct drm_crtc *crtc;
9683 struct drm_crtc_state *crtc_state;
9684 int max_pixclk = ilk_max_pixel_rate(dev_priv);
9685 int cdclk, i;
9686
9687 cdclk = broadwell_calc_cdclk(dev_priv, max_pixclk);
9688
9689 if (cdclk == dev_priv->cdclk_freq)
9690 return 0;
9691
9692 /* add all active pipes to the state */
9693 for_each_crtc(state->dev, crtc) {
9694 if (!crtc->state->enable)
9695 continue;
9696
9697 crtc_state = drm_atomic_get_crtc_state(state, crtc);
9698 if (IS_ERR(crtc_state))
9699 return PTR_ERR(crtc_state);
9700 }
9701
9702 /* disable/enable all currently active pipes while we change cdclk */
9703 for_each_crtc_in_state(state, crtc, crtc_state, i)
9704 if (crtc_state->enable)
9705 crtc_state->mode_changed = true;
9706
9707 return 0;
9708 }
9709
9710 static void broadwell_modeset_global_resources(struct drm_atomic_state *state)
9711 {
9712 struct drm_device *dev = state->dev;
9713 struct drm_i915_private *dev_priv = dev->dev_private;
9714 int max_pixel_rate = ilk_max_pixel_rate(dev_priv);
9715 int req_cdclk = broadwell_calc_cdclk(dev_priv, max_pixel_rate);
9716
9717 if (req_cdclk != dev_priv->cdclk_freq)
9718 broadwell_set_cdclk(dev, req_cdclk);
9719 }
9720
9721 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9722 struct intel_crtc_state *crtc_state)
9723 {
9724 if (!intel_ddi_pll_select(crtc, crtc_state))
9725 return -EINVAL;
9726
9727 crtc->lowfreq_avail = false;
9728
9729 return 0;
9730 }
9731
9732 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9733 enum port port,
9734 struct intel_crtc_state *pipe_config)
9735 {
9736 switch (port) {
9737 case PORT_A:
9738 pipe_config->ddi_pll_sel = SKL_DPLL0;
9739 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9740 break;
9741 case PORT_B:
9742 pipe_config->ddi_pll_sel = SKL_DPLL1;
9743 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9744 break;
9745 case PORT_C:
9746 pipe_config->ddi_pll_sel = SKL_DPLL2;
9747 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9748 break;
9749 default:
9750 DRM_ERROR("Incorrect port type\n");
9751 }
9752 }
9753
9754 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9755 enum port port,
9756 struct intel_crtc_state *pipe_config)
9757 {
9758 u32 temp, dpll_ctl1;
9759
9760 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9761 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9762
9763 switch (pipe_config->ddi_pll_sel) {
9764 case SKL_DPLL0:
9765 /*
9766 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767 * of the shared DPLL framework and thus needs to be read out
9768 * separately
9769 */
9770 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9771 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9772 break;
9773 case SKL_DPLL1:
9774 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9775 break;
9776 case SKL_DPLL2:
9777 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9778 break;
9779 case SKL_DPLL3:
9780 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9781 break;
9782 }
9783 }
9784
9785 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9786 enum port port,
9787 struct intel_crtc_state *pipe_config)
9788 {
9789 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9790
9791 switch (pipe_config->ddi_pll_sel) {
9792 case PORT_CLK_SEL_WRPLL1:
9793 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9794 break;
9795 case PORT_CLK_SEL_WRPLL2:
9796 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9797 break;
9798 }
9799 }
9800
9801 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9802 struct intel_crtc_state *pipe_config)
9803 {
9804 struct drm_device *dev = crtc->base.dev;
9805 struct drm_i915_private *dev_priv = dev->dev_private;
9806 struct intel_shared_dpll *pll;
9807 enum port port;
9808 uint32_t tmp;
9809
9810 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9811
9812 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9813
9814 if (IS_SKYLAKE(dev))
9815 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9816 else if (IS_BROXTON(dev))
9817 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9818 else
9819 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9820
9821 if (pipe_config->shared_dpll >= 0) {
9822 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9823
9824 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9825 &pipe_config->dpll_hw_state));
9826 }
9827
9828 /*
9829 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9830 * DDI E. So just check whether this pipe is wired to DDI E and whether
9831 * the PCH transcoder is on.
9832 */
9833 if (INTEL_INFO(dev)->gen < 9 &&
9834 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9835 pipe_config->has_pch_encoder = true;
9836
9837 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9838 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9839 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9840
9841 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9842 }
9843 }
9844
9845 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9846 struct intel_crtc_state *pipe_config)
9847 {
9848 struct drm_device *dev = crtc->base.dev;
9849 struct drm_i915_private *dev_priv = dev->dev_private;
9850 enum intel_display_power_domain pfit_domain;
9851 uint32_t tmp;
9852
9853 if (!intel_display_power_is_enabled(dev_priv,
9854 POWER_DOMAIN_PIPE(crtc->pipe)))
9855 return false;
9856
9857 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9858 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9859
9860 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9861 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9862 enum pipe trans_edp_pipe;
9863 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9864 default:
9865 WARN(1, "unknown pipe linked to edp transcoder\n");
9866 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9867 case TRANS_DDI_EDP_INPUT_A_ON:
9868 trans_edp_pipe = PIPE_A;
9869 break;
9870 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9871 trans_edp_pipe = PIPE_B;
9872 break;
9873 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9874 trans_edp_pipe = PIPE_C;
9875 break;
9876 }
9877
9878 if (trans_edp_pipe == crtc->pipe)
9879 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9880 }
9881
9882 if (!intel_display_power_is_enabled(dev_priv,
9883 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9884 return false;
9885
9886 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9887 if (!(tmp & PIPECONF_ENABLE))
9888 return false;
9889
9890 haswell_get_ddi_port_state(crtc, pipe_config);
9891
9892 intel_get_pipe_timings(crtc, pipe_config);
9893
9894 if (INTEL_INFO(dev)->gen >= 9) {
9895 skl_init_scalers(dev, crtc, pipe_config);
9896 }
9897
9898 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9899
9900 if (INTEL_INFO(dev)->gen >= 9) {
9901 pipe_config->scaler_state.scaler_id = -1;
9902 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9903 }
9904
9905 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9906 if (INTEL_INFO(dev)->gen == 9)
9907 skylake_get_pfit_config(crtc, pipe_config);
9908 else if (INTEL_INFO(dev)->gen < 9)
9909 ironlake_get_pfit_config(crtc, pipe_config);
9910 else
9911 MISSING_CASE(INTEL_INFO(dev)->gen);
9912 }
9913
9914 if (IS_HASWELL(dev))
9915 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9916 (I915_READ(IPS_CTL) & IPS_ENABLE);
9917
9918 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9919 pipe_config->pixel_multiplier =
9920 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9921 } else {
9922 pipe_config->pixel_multiplier = 1;
9923 }
9924
9925 return true;
9926 }
9927
9928 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9929 {
9930 struct drm_device *dev = crtc->dev;
9931 struct drm_i915_private *dev_priv = dev->dev_private;
9932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933 uint32_t cntl = 0, size = 0;
9934
9935 if (base) {
9936 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9937 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9938 unsigned int stride = roundup_pow_of_two(width) * 4;
9939
9940 switch (stride) {
9941 default:
9942 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9943 width, stride);
9944 stride = 256;
9945 /* fallthrough */
9946 case 256:
9947 case 512:
9948 case 1024:
9949 case 2048:
9950 break;
9951 }
9952
9953 cntl |= CURSOR_ENABLE |
9954 CURSOR_GAMMA_ENABLE |
9955 CURSOR_FORMAT_ARGB |
9956 CURSOR_STRIDE(stride);
9957
9958 size = (height << 12) | width;
9959 }
9960
9961 if (intel_crtc->cursor_cntl != 0 &&
9962 (intel_crtc->cursor_base != base ||
9963 intel_crtc->cursor_size != size ||
9964 intel_crtc->cursor_cntl != cntl)) {
9965 /* On these chipsets we can only modify the base/size/stride
9966 * whilst the cursor is disabled.
9967 */
9968 I915_WRITE(_CURACNTR, 0);
9969 POSTING_READ(_CURACNTR);
9970 intel_crtc->cursor_cntl = 0;
9971 }
9972
9973 if (intel_crtc->cursor_base != base) {
9974 I915_WRITE(_CURABASE, base);
9975 intel_crtc->cursor_base = base;
9976 }
9977
9978 if (intel_crtc->cursor_size != size) {
9979 I915_WRITE(CURSIZE, size);
9980 intel_crtc->cursor_size = size;
9981 }
9982
9983 if (intel_crtc->cursor_cntl != cntl) {
9984 I915_WRITE(_CURACNTR, cntl);
9985 POSTING_READ(_CURACNTR);
9986 intel_crtc->cursor_cntl = cntl;
9987 }
9988 }
9989
9990 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9991 {
9992 struct drm_device *dev = crtc->dev;
9993 struct drm_i915_private *dev_priv = dev->dev_private;
9994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995 int pipe = intel_crtc->pipe;
9996 uint32_t cntl;
9997
9998 cntl = 0;
9999 if (base) {
10000 cntl = MCURSOR_GAMMA_ENABLE;
10001 switch (intel_crtc->base.cursor->state->crtc_w) {
10002 case 64:
10003 cntl |= CURSOR_MODE_64_ARGB_AX;
10004 break;
10005 case 128:
10006 cntl |= CURSOR_MODE_128_ARGB_AX;
10007 break;
10008 case 256:
10009 cntl |= CURSOR_MODE_256_ARGB_AX;
10010 break;
10011 default:
10012 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10013 return;
10014 }
10015 cntl |= pipe << 28; /* Connect to correct pipe */
10016
10017 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10018 cntl |= CURSOR_PIPE_CSC_ENABLE;
10019 }
10020
10021 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10022 cntl |= CURSOR_ROTATE_180;
10023
10024 if (intel_crtc->cursor_cntl != cntl) {
10025 I915_WRITE(CURCNTR(pipe), cntl);
10026 POSTING_READ(CURCNTR(pipe));
10027 intel_crtc->cursor_cntl = cntl;
10028 }
10029
10030 /* and commit changes on next vblank */
10031 I915_WRITE(CURBASE(pipe), base);
10032 POSTING_READ(CURBASE(pipe));
10033
10034 intel_crtc->cursor_base = base;
10035 }
10036
10037 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10038 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10039 bool on)
10040 {
10041 struct drm_device *dev = crtc->dev;
10042 struct drm_i915_private *dev_priv = dev->dev_private;
10043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10044 int pipe = intel_crtc->pipe;
10045 int x = crtc->cursor_x;
10046 int y = crtc->cursor_y;
10047 u32 base = 0, pos = 0;
10048
10049 if (on)
10050 base = intel_crtc->cursor_addr;
10051
10052 if (x >= intel_crtc->config->pipe_src_w)
10053 base = 0;
10054
10055 if (y >= intel_crtc->config->pipe_src_h)
10056 base = 0;
10057
10058 if (x < 0) {
10059 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10060 base = 0;
10061
10062 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10063 x = -x;
10064 }
10065 pos |= x << CURSOR_X_SHIFT;
10066
10067 if (y < 0) {
10068 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10069 base = 0;
10070
10071 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10072 y = -y;
10073 }
10074 pos |= y << CURSOR_Y_SHIFT;
10075
10076 if (base == 0 && intel_crtc->cursor_base == 0)
10077 return;
10078
10079 I915_WRITE(CURPOS(pipe), pos);
10080
10081 /* ILK+ do this automagically */
10082 if (HAS_GMCH_DISPLAY(dev) &&
10083 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10084 base += (intel_crtc->base.cursor->state->crtc_h *
10085 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10086 }
10087
10088 if (IS_845G(dev) || IS_I865G(dev))
10089 i845_update_cursor(crtc, base);
10090 else
10091 i9xx_update_cursor(crtc, base);
10092 }
10093
10094 static bool cursor_size_ok(struct drm_device *dev,
10095 uint32_t width, uint32_t height)
10096 {
10097 if (width == 0 || height == 0)
10098 return false;
10099
10100 /*
10101 * 845g/865g are special in that they are only limited by
10102 * the width of their cursors, the height is arbitrary up to
10103 * the precision of the register. Everything else requires
10104 * square cursors, limited to a few power-of-two sizes.
10105 */
10106 if (IS_845G(dev) || IS_I865G(dev)) {
10107 if ((width & 63) != 0)
10108 return false;
10109
10110 if (width > (IS_845G(dev) ? 64 : 512))
10111 return false;
10112
10113 if (height > 1023)
10114 return false;
10115 } else {
10116 switch (width | height) {
10117 case 256:
10118 case 128:
10119 if (IS_GEN2(dev))
10120 return false;
10121 case 64:
10122 break;
10123 default:
10124 return false;
10125 }
10126 }
10127
10128 return true;
10129 }
10130
10131 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10132 u16 *blue, uint32_t start, uint32_t size)
10133 {
10134 int end = (start + size > 256) ? 256 : start + size, i;
10135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10136
10137 for (i = start; i < end; i++) {
10138 intel_crtc->lut_r[i] = red[i] >> 8;
10139 intel_crtc->lut_g[i] = green[i] >> 8;
10140 intel_crtc->lut_b[i] = blue[i] >> 8;
10141 }
10142
10143 intel_crtc_load_lut(crtc);
10144 }
10145
10146 /* VESA 640x480x72Hz mode to set on the pipe */
10147 static struct drm_display_mode load_detect_mode = {
10148 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10149 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10150 };
10151
10152 struct drm_framebuffer *
10153 __intel_framebuffer_create(struct drm_device *dev,
10154 struct drm_mode_fb_cmd2 *mode_cmd,
10155 struct drm_i915_gem_object *obj)
10156 {
10157 struct intel_framebuffer *intel_fb;
10158 int ret;
10159
10160 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10161 if (!intel_fb) {
10162 drm_gem_object_unreference(&obj->base);
10163 return ERR_PTR(-ENOMEM);
10164 }
10165
10166 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10167 if (ret)
10168 goto err;
10169
10170 return &intel_fb->base;
10171 err:
10172 drm_gem_object_unreference(&obj->base);
10173 kfree(intel_fb);
10174
10175 return ERR_PTR(ret);
10176 }
10177
10178 static struct drm_framebuffer *
10179 intel_framebuffer_create(struct drm_device *dev,
10180 struct drm_mode_fb_cmd2 *mode_cmd,
10181 struct drm_i915_gem_object *obj)
10182 {
10183 struct drm_framebuffer *fb;
10184 int ret;
10185
10186 ret = i915_mutex_lock_interruptible(dev);
10187 if (ret)
10188 return ERR_PTR(ret);
10189 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10190 mutex_unlock(&dev->struct_mutex);
10191
10192 return fb;
10193 }
10194
10195 static u32
10196 intel_framebuffer_pitch_for_width(int width, int bpp)
10197 {
10198 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10199 return ALIGN(pitch, 64);
10200 }
10201
10202 static u32
10203 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10204 {
10205 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10206 return PAGE_ALIGN(pitch * mode->vdisplay);
10207 }
10208
10209 static struct drm_framebuffer *
10210 intel_framebuffer_create_for_mode(struct drm_device *dev,
10211 struct drm_display_mode *mode,
10212 int depth, int bpp)
10213 {
10214 struct drm_i915_gem_object *obj;
10215 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10216
10217 obj = i915_gem_alloc_object(dev,
10218 intel_framebuffer_size_for_mode(mode, bpp));
10219 if (obj == NULL)
10220 return ERR_PTR(-ENOMEM);
10221
10222 mode_cmd.width = mode->hdisplay;
10223 mode_cmd.height = mode->vdisplay;
10224 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10225 bpp);
10226 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10227
10228 return intel_framebuffer_create(dev, &mode_cmd, obj);
10229 }
10230
10231 static struct drm_framebuffer *
10232 mode_fits_in_fbdev(struct drm_device *dev,
10233 struct drm_display_mode *mode)
10234 {
10235 #ifdef CONFIG_DRM_I915_FBDEV
10236 struct drm_i915_private *dev_priv = dev->dev_private;
10237 struct drm_i915_gem_object *obj;
10238 struct drm_framebuffer *fb;
10239
10240 if (!dev_priv->fbdev)
10241 return NULL;
10242
10243 if (!dev_priv->fbdev->fb)
10244 return NULL;
10245
10246 obj = dev_priv->fbdev->fb->obj;
10247 BUG_ON(!obj);
10248
10249 fb = &dev_priv->fbdev->fb->base;
10250 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10251 fb->bits_per_pixel))
10252 return NULL;
10253
10254 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10255 return NULL;
10256
10257 return fb;
10258 #else
10259 return NULL;
10260 #endif
10261 }
10262
10263 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10264 struct drm_crtc *crtc,
10265 struct drm_display_mode *mode,
10266 struct drm_framebuffer *fb,
10267 int x, int y)
10268 {
10269 struct drm_plane_state *plane_state;
10270 int hdisplay, vdisplay;
10271 int ret;
10272
10273 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10274 if (IS_ERR(plane_state))
10275 return PTR_ERR(plane_state);
10276
10277 if (mode)
10278 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10279 else
10280 hdisplay = vdisplay = 0;
10281
10282 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10283 if (ret)
10284 return ret;
10285 drm_atomic_set_fb_for_plane(plane_state, fb);
10286 plane_state->crtc_x = 0;
10287 plane_state->crtc_y = 0;
10288 plane_state->crtc_w = hdisplay;
10289 plane_state->crtc_h = vdisplay;
10290 plane_state->src_x = x << 16;
10291 plane_state->src_y = y << 16;
10292 plane_state->src_w = hdisplay << 16;
10293 plane_state->src_h = vdisplay << 16;
10294
10295 return 0;
10296 }
10297
10298 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10299 struct drm_display_mode *mode,
10300 struct intel_load_detect_pipe *old,
10301 struct drm_modeset_acquire_ctx *ctx)
10302 {
10303 struct intel_crtc *intel_crtc;
10304 struct intel_encoder *intel_encoder =
10305 intel_attached_encoder(connector);
10306 struct drm_crtc *possible_crtc;
10307 struct drm_encoder *encoder = &intel_encoder->base;
10308 struct drm_crtc *crtc = NULL;
10309 struct drm_device *dev = encoder->dev;
10310 struct drm_framebuffer *fb;
10311 struct drm_mode_config *config = &dev->mode_config;
10312 struct drm_atomic_state *state = NULL;
10313 struct drm_connector_state *connector_state;
10314 struct intel_crtc_state *crtc_state;
10315 int ret, i = -1;
10316
10317 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10318 connector->base.id, connector->name,
10319 encoder->base.id, encoder->name);
10320
10321 retry:
10322 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10323 if (ret)
10324 goto fail_unlock;
10325
10326 /*
10327 * Algorithm gets a little messy:
10328 *
10329 * - if the connector already has an assigned crtc, use it (but make
10330 * sure it's on first)
10331 *
10332 * - try to find the first unused crtc that can drive this connector,
10333 * and use that if we find one
10334 */
10335
10336 /* See if we already have a CRTC for this connector */
10337 if (encoder->crtc) {
10338 crtc = encoder->crtc;
10339
10340 ret = drm_modeset_lock(&crtc->mutex, ctx);
10341 if (ret)
10342 goto fail_unlock;
10343 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10344 if (ret)
10345 goto fail_unlock;
10346
10347 old->dpms_mode = connector->dpms;
10348 old->load_detect_temp = false;
10349
10350 /* Make sure the crtc and connector are running */
10351 if (connector->dpms != DRM_MODE_DPMS_ON)
10352 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10353
10354 return true;
10355 }
10356
10357 /* Find an unused one (if possible) */
10358 for_each_crtc(dev, possible_crtc) {
10359 i++;
10360 if (!(encoder->possible_crtcs & (1 << i)))
10361 continue;
10362 if (possible_crtc->state->enable)
10363 continue;
10364 /* This can occur when applying the pipe A quirk on resume. */
10365 if (to_intel_crtc(possible_crtc)->new_enabled)
10366 continue;
10367
10368 crtc = possible_crtc;
10369 break;
10370 }
10371
10372 /*
10373 * If we didn't find an unused CRTC, don't use any.
10374 */
10375 if (!crtc) {
10376 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10377 goto fail_unlock;
10378 }
10379
10380 ret = drm_modeset_lock(&crtc->mutex, ctx);
10381 if (ret)
10382 goto fail_unlock;
10383 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10384 if (ret)
10385 goto fail_unlock;
10386 intel_encoder->new_crtc = to_intel_crtc(crtc);
10387 to_intel_connector(connector)->new_encoder = intel_encoder;
10388
10389 intel_crtc = to_intel_crtc(crtc);
10390 intel_crtc->new_enabled = true;
10391 old->dpms_mode = connector->dpms;
10392 old->load_detect_temp = true;
10393 old->release_fb = NULL;
10394
10395 state = drm_atomic_state_alloc(dev);
10396 if (!state)
10397 return false;
10398
10399 state->acquire_ctx = ctx;
10400
10401 connector_state = drm_atomic_get_connector_state(state, connector);
10402 if (IS_ERR(connector_state)) {
10403 ret = PTR_ERR(connector_state);
10404 goto fail;
10405 }
10406
10407 connector_state->crtc = crtc;
10408 connector_state->best_encoder = &intel_encoder->base;
10409
10410 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10411 if (IS_ERR(crtc_state)) {
10412 ret = PTR_ERR(crtc_state);
10413 goto fail;
10414 }
10415
10416 crtc_state->base.active = crtc_state->base.enable = true;
10417
10418 if (!mode)
10419 mode = &load_detect_mode;
10420
10421 /* We need a framebuffer large enough to accommodate all accesses
10422 * that the plane may generate whilst we perform load detection.
10423 * We can not rely on the fbcon either being present (we get called
10424 * during its initialisation to detect all boot displays, or it may
10425 * not even exist) or that it is large enough to satisfy the
10426 * requested mode.
10427 */
10428 fb = mode_fits_in_fbdev(dev, mode);
10429 if (fb == NULL) {
10430 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10431 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10432 old->release_fb = fb;
10433 } else
10434 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10435 if (IS_ERR(fb)) {
10436 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10437 goto fail;
10438 }
10439
10440 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10441 if (ret)
10442 goto fail;
10443
10444 drm_mode_copy(&crtc_state->base.mode, mode);
10445
10446 if (intel_set_mode(state)) {
10447 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10448 if (old->release_fb)
10449 old->release_fb->funcs->destroy(old->release_fb);
10450 goto fail;
10451 }
10452 crtc->primary->crtc = crtc;
10453
10454 /* let the connector get through one full cycle before testing */
10455 intel_wait_for_vblank(dev, intel_crtc->pipe);
10456 return true;
10457
10458 fail:
10459 intel_crtc->new_enabled = crtc->state->enable;
10460 fail_unlock:
10461 drm_atomic_state_free(state);
10462 state = NULL;
10463
10464 if (ret == -EDEADLK) {
10465 drm_modeset_backoff(ctx);
10466 goto retry;
10467 }
10468
10469 return false;
10470 }
10471
10472 void intel_release_load_detect_pipe(struct drm_connector *connector,
10473 struct intel_load_detect_pipe *old,
10474 struct drm_modeset_acquire_ctx *ctx)
10475 {
10476 struct drm_device *dev = connector->dev;
10477 struct intel_encoder *intel_encoder =
10478 intel_attached_encoder(connector);
10479 struct drm_encoder *encoder = &intel_encoder->base;
10480 struct drm_crtc *crtc = encoder->crtc;
10481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10482 struct drm_atomic_state *state;
10483 struct drm_connector_state *connector_state;
10484 struct intel_crtc_state *crtc_state;
10485 int ret;
10486
10487 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10488 connector->base.id, connector->name,
10489 encoder->base.id, encoder->name);
10490
10491 if (old->load_detect_temp) {
10492 state = drm_atomic_state_alloc(dev);
10493 if (!state)
10494 goto fail;
10495
10496 state->acquire_ctx = ctx;
10497
10498 connector_state = drm_atomic_get_connector_state(state, connector);
10499 if (IS_ERR(connector_state))
10500 goto fail;
10501
10502 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10503 if (IS_ERR(crtc_state))
10504 goto fail;
10505
10506 to_intel_connector(connector)->new_encoder = NULL;
10507 intel_encoder->new_crtc = NULL;
10508 intel_crtc->new_enabled = false;
10509
10510 connector_state->best_encoder = NULL;
10511 connector_state->crtc = NULL;
10512
10513 crtc_state->base.enable = crtc_state->base.active = false;
10514
10515 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10516 0, 0);
10517 if (ret)
10518 goto fail;
10519
10520 ret = intel_set_mode(state);
10521 if (ret)
10522 goto fail;
10523
10524 if (old->release_fb) {
10525 drm_framebuffer_unregister_private(old->release_fb);
10526 drm_framebuffer_unreference(old->release_fb);
10527 }
10528
10529 return;
10530 }
10531
10532 /* Switch crtc and encoder back off if necessary */
10533 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10534 connector->funcs->dpms(connector, old->dpms_mode);
10535
10536 return;
10537 fail:
10538 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10539 drm_atomic_state_free(state);
10540 }
10541
10542 static int i9xx_pll_refclk(struct drm_device *dev,
10543 const struct intel_crtc_state *pipe_config)
10544 {
10545 struct drm_i915_private *dev_priv = dev->dev_private;
10546 u32 dpll = pipe_config->dpll_hw_state.dpll;
10547
10548 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10549 return dev_priv->vbt.lvds_ssc_freq;
10550 else if (HAS_PCH_SPLIT(dev))
10551 return 120000;
10552 else if (!IS_GEN2(dev))
10553 return 96000;
10554 else
10555 return 48000;
10556 }
10557
10558 /* Returns the clock of the currently programmed mode of the given pipe. */
10559 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10560 struct intel_crtc_state *pipe_config)
10561 {
10562 struct drm_device *dev = crtc->base.dev;
10563 struct drm_i915_private *dev_priv = dev->dev_private;
10564 int pipe = pipe_config->cpu_transcoder;
10565 u32 dpll = pipe_config->dpll_hw_state.dpll;
10566 u32 fp;
10567 intel_clock_t clock;
10568 int refclk = i9xx_pll_refclk(dev, pipe_config);
10569
10570 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10571 fp = pipe_config->dpll_hw_state.fp0;
10572 else
10573 fp = pipe_config->dpll_hw_state.fp1;
10574
10575 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10576 if (IS_PINEVIEW(dev)) {
10577 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10578 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10579 } else {
10580 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10581 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10582 }
10583
10584 if (!IS_GEN2(dev)) {
10585 if (IS_PINEVIEW(dev))
10586 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10587 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10588 else
10589 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10590 DPLL_FPA01_P1_POST_DIV_SHIFT);
10591
10592 switch (dpll & DPLL_MODE_MASK) {
10593 case DPLLB_MODE_DAC_SERIAL:
10594 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10595 5 : 10;
10596 break;
10597 case DPLLB_MODE_LVDS:
10598 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10599 7 : 14;
10600 break;
10601 default:
10602 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10603 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10604 return;
10605 }
10606
10607 if (IS_PINEVIEW(dev))
10608 pineview_clock(refclk, &clock);
10609 else
10610 i9xx_clock(refclk, &clock);
10611 } else {
10612 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10613 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10614
10615 if (is_lvds) {
10616 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10617 DPLL_FPA01_P1_POST_DIV_SHIFT);
10618
10619 if (lvds & LVDS_CLKB_POWER_UP)
10620 clock.p2 = 7;
10621 else
10622 clock.p2 = 14;
10623 } else {
10624 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10625 clock.p1 = 2;
10626 else {
10627 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10628 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10629 }
10630 if (dpll & PLL_P2_DIVIDE_BY_4)
10631 clock.p2 = 4;
10632 else
10633 clock.p2 = 2;
10634 }
10635
10636 i9xx_clock(refclk, &clock);
10637 }
10638
10639 /*
10640 * This value includes pixel_multiplier. We will use
10641 * port_clock to compute adjusted_mode.crtc_clock in the
10642 * encoder's get_config() function.
10643 */
10644 pipe_config->port_clock = clock.dot;
10645 }
10646
10647 int intel_dotclock_calculate(int link_freq,
10648 const struct intel_link_m_n *m_n)
10649 {
10650 /*
10651 * The calculation for the data clock is:
10652 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10653 * But we want to avoid losing precison if possible, so:
10654 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10655 *
10656 * and the link clock is simpler:
10657 * link_clock = (m * link_clock) / n
10658 */
10659
10660 if (!m_n->link_n)
10661 return 0;
10662
10663 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10664 }
10665
10666 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10667 struct intel_crtc_state *pipe_config)
10668 {
10669 struct drm_device *dev = crtc->base.dev;
10670
10671 /* read out port_clock from the DPLL */
10672 i9xx_crtc_clock_get(crtc, pipe_config);
10673
10674 /*
10675 * This value does not include pixel_multiplier.
10676 * We will check that port_clock and adjusted_mode.crtc_clock
10677 * agree once we know their relationship in the encoder's
10678 * get_config() function.
10679 */
10680 pipe_config->base.adjusted_mode.crtc_clock =
10681 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10682 &pipe_config->fdi_m_n);
10683 }
10684
10685 /** Returns the currently programmed mode of the given pipe. */
10686 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10687 struct drm_crtc *crtc)
10688 {
10689 struct drm_i915_private *dev_priv = dev->dev_private;
10690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10691 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10692 struct drm_display_mode *mode;
10693 struct intel_crtc_state pipe_config;
10694 int htot = I915_READ(HTOTAL(cpu_transcoder));
10695 int hsync = I915_READ(HSYNC(cpu_transcoder));
10696 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10697 int vsync = I915_READ(VSYNC(cpu_transcoder));
10698 enum pipe pipe = intel_crtc->pipe;
10699
10700 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10701 if (!mode)
10702 return NULL;
10703
10704 /*
10705 * Construct a pipe_config sufficient for getting the clock info
10706 * back out of crtc_clock_get.
10707 *
10708 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10709 * to use a real value here instead.
10710 */
10711 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10712 pipe_config.pixel_multiplier = 1;
10713 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10714 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10715 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10716 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10717
10718 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10719 mode->hdisplay = (htot & 0xffff) + 1;
10720 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10721 mode->hsync_start = (hsync & 0xffff) + 1;
10722 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10723 mode->vdisplay = (vtot & 0xffff) + 1;
10724 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10725 mode->vsync_start = (vsync & 0xffff) + 1;
10726 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10727
10728 drm_mode_set_name(mode);
10729
10730 return mode;
10731 }
10732
10733 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10734 {
10735 struct drm_device *dev = crtc->dev;
10736 struct drm_i915_private *dev_priv = dev->dev_private;
10737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10738
10739 if (!HAS_GMCH_DISPLAY(dev))
10740 return;
10741
10742 if (!dev_priv->lvds_downclock_avail)
10743 return;
10744
10745 /*
10746 * Since this is called by a timer, we should never get here in
10747 * the manual case.
10748 */
10749 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10750 int pipe = intel_crtc->pipe;
10751 int dpll_reg = DPLL(pipe);
10752 int dpll;
10753
10754 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10755
10756 assert_panel_unlocked(dev_priv, pipe);
10757
10758 dpll = I915_READ(dpll_reg);
10759 dpll |= DISPLAY_RATE_SELECT_FPA1;
10760 I915_WRITE(dpll_reg, dpll);
10761 intel_wait_for_vblank(dev, pipe);
10762 dpll = I915_READ(dpll_reg);
10763 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10764 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10765 }
10766
10767 }
10768
10769 void intel_mark_busy(struct drm_device *dev)
10770 {
10771 struct drm_i915_private *dev_priv = dev->dev_private;
10772
10773 if (dev_priv->mm.busy)
10774 return;
10775
10776 intel_runtime_pm_get(dev_priv);
10777 i915_update_gfx_val(dev_priv);
10778 if (INTEL_INFO(dev)->gen >= 6)
10779 gen6_rps_busy(dev_priv);
10780 dev_priv->mm.busy = true;
10781 }
10782
10783 void intel_mark_idle(struct drm_device *dev)
10784 {
10785 struct drm_i915_private *dev_priv = dev->dev_private;
10786 struct drm_crtc *crtc;
10787
10788 if (!dev_priv->mm.busy)
10789 return;
10790
10791 dev_priv->mm.busy = false;
10792
10793 for_each_crtc(dev, crtc) {
10794 if (!crtc->primary->fb)
10795 continue;
10796
10797 intel_decrease_pllclock(crtc);
10798 }
10799
10800 if (INTEL_INFO(dev)->gen >= 6)
10801 gen6_rps_idle(dev->dev_private);
10802
10803 intel_runtime_pm_put(dev_priv);
10804 }
10805
10806 static void intel_crtc_destroy(struct drm_crtc *crtc)
10807 {
10808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10809 struct drm_device *dev = crtc->dev;
10810 struct intel_unpin_work *work;
10811
10812 spin_lock_irq(&dev->event_lock);
10813 work = intel_crtc->unpin_work;
10814 intel_crtc->unpin_work = NULL;
10815 spin_unlock_irq(&dev->event_lock);
10816
10817 if (work) {
10818 cancel_work_sync(&work->work);
10819 kfree(work);
10820 }
10821
10822 drm_crtc_cleanup(crtc);
10823
10824 kfree(intel_crtc);
10825 }
10826
10827 static void intel_unpin_work_fn(struct work_struct *__work)
10828 {
10829 struct intel_unpin_work *work =
10830 container_of(__work, struct intel_unpin_work, work);
10831 struct drm_device *dev = work->crtc->dev;
10832 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10833
10834 mutex_lock(&dev->struct_mutex);
10835 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10836 drm_gem_object_unreference(&work->pending_flip_obj->base);
10837
10838 intel_fbc_update(dev);
10839
10840 if (work->flip_queued_req)
10841 i915_gem_request_assign(&work->flip_queued_req, NULL);
10842 mutex_unlock(&dev->struct_mutex);
10843
10844 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10845 drm_framebuffer_unreference(work->old_fb);
10846
10847 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10848 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10849
10850 kfree(work);
10851 }
10852
10853 static void do_intel_finish_page_flip(struct drm_device *dev,
10854 struct drm_crtc *crtc)
10855 {
10856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10857 struct intel_unpin_work *work;
10858 unsigned long flags;
10859
10860 /* Ignore early vblank irqs */
10861 if (intel_crtc == NULL)
10862 return;
10863
10864 /*
10865 * This is called both by irq handlers and the reset code (to complete
10866 * lost pageflips) so needs the full irqsave spinlocks.
10867 */
10868 spin_lock_irqsave(&dev->event_lock, flags);
10869 work = intel_crtc->unpin_work;
10870
10871 /* Ensure we don't miss a work->pending update ... */
10872 smp_rmb();
10873
10874 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10875 spin_unlock_irqrestore(&dev->event_lock, flags);
10876 return;
10877 }
10878
10879 page_flip_completed(intel_crtc);
10880
10881 spin_unlock_irqrestore(&dev->event_lock, flags);
10882 }
10883
10884 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10885 {
10886 struct drm_i915_private *dev_priv = dev->dev_private;
10887 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10888
10889 do_intel_finish_page_flip(dev, crtc);
10890 }
10891
10892 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10893 {
10894 struct drm_i915_private *dev_priv = dev->dev_private;
10895 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10896
10897 do_intel_finish_page_flip(dev, crtc);
10898 }
10899
10900 /* Is 'a' after or equal to 'b'? */
10901 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10902 {
10903 return !((a - b) & 0x80000000);
10904 }
10905
10906 static bool page_flip_finished(struct intel_crtc *crtc)
10907 {
10908 struct drm_device *dev = crtc->base.dev;
10909 struct drm_i915_private *dev_priv = dev->dev_private;
10910
10911 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10912 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10913 return true;
10914
10915 /*
10916 * The relevant registers doen't exist on pre-ctg.
10917 * As the flip done interrupt doesn't trigger for mmio
10918 * flips on gmch platforms, a flip count check isn't
10919 * really needed there. But since ctg has the registers,
10920 * include it in the check anyway.
10921 */
10922 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10923 return true;
10924
10925 /*
10926 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10927 * used the same base address. In that case the mmio flip might
10928 * have completed, but the CS hasn't even executed the flip yet.
10929 *
10930 * A flip count check isn't enough as the CS might have updated
10931 * the base address just after start of vblank, but before we
10932 * managed to process the interrupt. This means we'd complete the
10933 * CS flip too soon.
10934 *
10935 * Combining both checks should get us a good enough result. It may
10936 * still happen that the CS flip has been executed, but has not
10937 * yet actually completed. But in case the base address is the same
10938 * anyway, we don't really care.
10939 */
10940 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10941 crtc->unpin_work->gtt_offset &&
10942 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10943 crtc->unpin_work->flip_count);
10944 }
10945
10946 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10947 {
10948 struct drm_i915_private *dev_priv = dev->dev_private;
10949 struct intel_crtc *intel_crtc =
10950 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10951 unsigned long flags;
10952
10953
10954 /*
10955 * This is called both by irq handlers and the reset code (to complete
10956 * lost pageflips) so needs the full irqsave spinlocks.
10957 *
10958 * NB: An MMIO update of the plane base pointer will also
10959 * generate a page-flip completion irq, i.e. every modeset
10960 * is also accompanied by a spurious intel_prepare_page_flip().
10961 */
10962 spin_lock_irqsave(&dev->event_lock, flags);
10963 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10964 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10965 spin_unlock_irqrestore(&dev->event_lock, flags);
10966 }
10967
10968 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10969 {
10970 /* Ensure that the work item is consistent when activating it ... */
10971 smp_wmb();
10972 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10973 /* and that it is marked active as soon as the irq could fire. */
10974 smp_wmb();
10975 }
10976
10977 static int intel_gen2_queue_flip(struct drm_device *dev,
10978 struct drm_crtc *crtc,
10979 struct drm_framebuffer *fb,
10980 struct drm_i915_gem_object *obj,
10981 struct intel_engine_cs *ring,
10982 uint32_t flags)
10983 {
10984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10985 u32 flip_mask;
10986 int ret;
10987
10988 ret = intel_ring_begin(ring, 6);
10989 if (ret)
10990 return ret;
10991
10992 /* Can't queue multiple flips, so wait for the previous
10993 * one to finish before executing the next.
10994 */
10995 if (intel_crtc->plane)
10996 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10997 else
10998 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10999 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11000 intel_ring_emit(ring, MI_NOOP);
11001 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11002 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11003 intel_ring_emit(ring, fb->pitches[0]);
11004 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11005 intel_ring_emit(ring, 0); /* aux display base address, unused */
11006
11007 intel_mark_page_flip_active(intel_crtc);
11008 __intel_ring_advance(ring);
11009 return 0;
11010 }
11011
11012 static int intel_gen3_queue_flip(struct drm_device *dev,
11013 struct drm_crtc *crtc,
11014 struct drm_framebuffer *fb,
11015 struct drm_i915_gem_object *obj,
11016 struct intel_engine_cs *ring,
11017 uint32_t flags)
11018 {
11019 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11020 u32 flip_mask;
11021 int ret;
11022
11023 ret = intel_ring_begin(ring, 6);
11024 if (ret)
11025 return ret;
11026
11027 if (intel_crtc->plane)
11028 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11029 else
11030 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11031 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11032 intel_ring_emit(ring, MI_NOOP);
11033 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11034 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11035 intel_ring_emit(ring, fb->pitches[0]);
11036 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11037 intel_ring_emit(ring, MI_NOOP);
11038
11039 intel_mark_page_flip_active(intel_crtc);
11040 __intel_ring_advance(ring);
11041 return 0;
11042 }
11043
11044 static int intel_gen4_queue_flip(struct drm_device *dev,
11045 struct drm_crtc *crtc,
11046 struct drm_framebuffer *fb,
11047 struct drm_i915_gem_object *obj,
11048 struct intel_engine_cs *ring,
11049 uint32_t flags)
11050 {
11051 struct drm_i915_private *dev_priv = dev->dev_private;
11052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11053 uint32_t pf, pipesrc;
11054 int ret;
11055
11056 ret = intel_ring_begin(ring, 4);
11057 if (ret)
11058 return ret;
11059
11060 /* i965+ uses the linear or tiled offsets from the
11061 * Display Registers (which do not change across a page-flip)
11062 * so we need only reprogram the base address.
11063 */
11064 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11065 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11066 intel_ring_emit(ring, fb->pitches[0]);
11067 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11068 obj->tiling_mode);
11069
11070 /* XXX Enabling the panel-fitter across page-flip is so far
11071 * untested on non-native modes, so ignore it for now.
11072 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11073 */
11074 pf = 0;
11075 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11076 intel_ring_emit(ring, pf | pipesrc);
11077
11078 intel_mark_page_flip_active(intel_crtc);
11079 __intel_ring_advance(ring);
11080 return 0;
11081 }
11082
11083 static int intel_gen6_queue_flip(struct drm_device *dev,
11084 struct drm_crtc *crtc,
11085 struct drm_framebuffer *fb,
11086 struct drm_i915_gem_object *obj,
11087 struct intel_engine_cs *ring,
11088 uint32_t flags)
11089 {
11090 struct drm_i915_private *dev_priv = dev->dev_private;
11091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11092 uint32_t pf, pipesrc;
11093 int ret;
11094
11095 ret = intel_ring_begin(ring, 4);
11096 if (ret)
11097 return ret;
11098
11099 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11100 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11101 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11102 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11103
11104 /* Contrary to the suggestions in the documentation,
11105 * "Enable Panel Fitter" does not seem to be required when page
11106 * flipping with a non-native mode, and worse causes a normal
11107 * modeset to fail.
11108 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11109 */
11110 pf = 0;
11111 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11112 intel_ring_emit(ring, pf | pipesrc);
11113
11114 intel_mark_page_flip_active(intel_crtc);
11115 __intel_ring_advance(ring);
11116 return 0;
11117 }
11118
11119 static int intel_gen7_queue_flip(struct drm_device *dev,
11120 struct drm_crtc *crtc,
11121 struct drm_framebuffer *fb,
11122 struct drm_i915_gem_object *obj,
11123 struct intel_engine_cs *ring,
11124 uint32_t flags)
11125 {
11126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11127 uint32_t plane_bit = 0;
11128 int len, ret;
11129
11130 switch (intel_crtc->plane) {
11131 case PLANE_A:
11132 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11133 break;
11134 case PLANE_B:
11135 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11136 break;
11137 case PLANE_C:
11138 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11139 break;
11140 default:
11141 WARN_ONCE(1, "unknown plane in flip command\n");
11142 return -ENODEV;
11143 }
11144
11145 len = 4;
11146 if (ring->id == RCS) {
11147 len += 6;
11148 /*
11149 * On Gen 8, SRM is now taking an extra dword to accommodate
11150 * 48bits addresses, and we need a NOOP for the batch size to
11151 * stay even.
11152 */
11153 if (IS_GEN8(dev))
11154 len += 2;
11155 }
11156
11157 /*
11158 * BSpec MI_DISPLAY_FLIP for IVB:
11159 * "The full packet must be contained within the same cache line."
11160 *
11161 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11162 * cacheline, if we ever start emitting more commands before
11163 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11164 * then do the cacheline alignment, and finally emit the
11165 * MI_DISPLAY_FLIP.
11166 */
11167 ret = intel_ring_cacheline_align(ring);
11168 if (ret)
11169 return ret;
11170
11171 ret = intel_ring_begin(ring, len);
11172 if (ret)
11173 return ret;
11174
11175 /* Unmask the flip-done completion message. Note that the bspec says that
11176 * we should do this for both the BCS and RCS, and that we must not unmask
11177 * more than one flip event at any time (or ensure that one flip message
11178 * can be sent by waiting for flip-done prior to queueing new flips).
11179 * Experimentation says that BCS works despite DERRMR masking all
11180 * flip-done completion events and that unmasking all planes at once
11181 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11182 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11183 */
11184 if (ring->id == RCS) {
11185 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11186 intel_ring_emit(ring, DERRMR);
11187 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11188 DERRMR_PIPEB_PRI_FLIP_DONE |
11189 DERRMR_PIPEC_PRI_FLIP_DONE));
11190 if (IS_GEN8(dev))
11191 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11192 MI_SRM_LRM_GLOBAL_GTT);
11193 else
11194 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11195 MI_SRM_LRM_GLOBAL_GTT);
11196 intel_ring_emit(ring, DERRMR);
11197 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11198 if (IS_GEN8(dev)) {
11199 intel_ring_emit(ring, 0);
11200 intel_ring_emit(ring, MI_NOOP);
11201 }
11202 }
11203
11204 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11205 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11206 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11207 intel_ring_emit(ring, (MI_NOOP));
11208
11209 intel_mark_page_flip_active(intel_crtc);
11210 __intel_ring_advance(ring);
11211 return 0;
11212 }
11213
11214 static bool use_mmio_flip(struct intel_engine_cs *ring,
11215 struct drm_i915_gem_object *obj)
11216 {
11217 /*
11218 * This is not being used for older platforms, because
11219 * non-availability of flip done interrupt forces us to use
11220 * CS flips. Older platforms derive flip done using some clever
11221 * tricks involving the flip_pending status bits and vblank irqs.
11222 * So using MMIO flips there would disrupt this mechanism.
11223 */
11224
11225 if (ring == NULL)
11226 return true;
11227
11228 if (INTEL_INFO(ring->dev)->gen < 5)
11229 return false;
11230
11231 if (i915.use_mmio_flip < 0)
11232 return false;
11233 else if (i915.use_mmio_flip > 0)
11234 return true;
11235 else if (i915.enable_execlists)
11236 return true;
11237 else
11238 return ring != i915_gem_request_get_ring(obj->last_write_req);
11239 }
11240
11241 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11242 {
11243 struct drm_device *dev = intel_crtc->base.dev;
11244 struct drm_i915_private *dev_priv = dev->dev_private;
11245 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11246 const enum pipe pipe = intel_crtc->pipe;
11247 u32 ctl, stride;
11248
11249 ctl = I915_READ(PLANE_CTL(pipe, 0));
11250 ctl &= ~PLANE_CTL_TILED_MASK;
11251 switch (fb->modifier[0]) {
11252 case DRM_FORMAT_MOD_NONE:
11253 break;
11254 case I915_FORMAT_MOD_X_TILED:
11255 ctl |= PLANE_CTL_TILED_X;
11256 break;
11257 case I915_FORMAT_MOD_Y_TILED:
11258 ctl |= PLANE_CTL_TILED_Y;
11259 break;
11260 case I915_FORMAT_MOD_Yf_TILED:
11261 ctl |= PLANE_CTL_TILED_YF;
11262 break;
11263 default:
11264 MISSING_CASE(fb->modifier[0]);
11265 }
11266
11267 /*
11268 * The stride is either expressed as a multiple of 64 bytes chunks for
11269 * linear buffers or in number of tiles for tiled buffers.
11270 */
11271 stride = fb->pitches[0] /
11272 intel_fb_stride_alignment(dev, fb->modifier[0],
11273 fb->pixel_format);
11274
11275 /*
11276 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11277 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11278 */
11279 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11280 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11281
11282 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11283 POSTING_READ(PLANE_SURF(pipe, 0));
11284 }
11285
11286 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11287 {
11288 struct drm_device *dev = intel_crtc->base.dev;
11289 struct drm_i915_private *dev_priv = dev->dev_private;
11290 struct intel_framebuffer *intel_fb =
11291 to_intel_framebuffer(intel_crtc->base.primary->fb);
11292 struct drm_i915_gem_object *obj = intel_fb->obj;
11293 u32 dspcntr;
11294 u32 reg;
11295
11296 reg = DSPCNTR(intel_crtc->plane);
11297 dspcntr = I915_READ(reg);
11298
11299 if (obj->tiling_mode != I915_TILING_NONE)
11300 dspcntr |= DISPPLANE_TILED;
11301 else
11302 dspcntr &= ~DISPPLANE_TILED;
11303
11304 I915_WRITE(reg, dspcntr);
11305
11306 I915_WRITE(DSPSURF(intel_crtc->plane),
11307 intel_crtc->unpin_work->gtt_offset);
11308 POSTING_READ(DSPSURF(intel_crtc->plane));
11309
11310 }
11311
11312 /*
11313 * XXX: This is the temporary way to update the plane registers until we get
11314 * around to using the usual plane update functions for MMIO flips
11315 */
11316 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11317 {
11318 struct drm_device *dev = intel_crtc->base.dev;
11319 bool atomic_update;
11320 u32 start_vbl_count;
11321
11322 intel_mark_page_flip_active(intel_crtc);
11323
11324 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11325
11326 if (INTEL_INFO(dev)->gen >= 9)
11327 skl_do_mmio_flip(intel_crtc);
11328 else
11329 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11330 ilk_do_mmio_flip(intel_crtc);
11331
11332 if (atomic_update)
11333 intel_pipe_update_end(intel_crtc, start_vbl_count);
11334 }
11335
11336 static void intel_mmio_flip_work_func(struct work_struct *work)
11337 {
11338 struct intel_mmio_flip *mmio_flip =
11339 container_of(work, struct intel_mmio_flip, work);
11340
11341 if (mmio_flip->req)
11342 WARN_ON(__i915_wait_request(mmio_flip->req,
11343 mmio_flip->crtc->reset_counter,
11344 false, NULL,
11345 &mmio_flip->i915->rps.mmioflips));
11346
11347 intel_do_mmio_flip(mmio_flip->crtc);
11348
11349 i915_gem_request_unreference__unlocked(mmio_flip->req);
11350 kfree(mmio_flip);
11351 }
11352
11353 static int intel_queue_mmio_flip(struct drm_device *dev,
11354 struct drm_crtc *crtc,
11355 struct drm_framebuffer *fb,
11356 struct drm_i915_gem_object *obj,
11357 struct intel_engine_cs *ring,
11358 uint32_t flags)
11359 {
11360 struct intel_mmio_flip *mmio_flip;
11361
11362 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11363 if (mmio_flip == NULL)
11364 return -ENOMEM;
11365
11366 mmio_flip->i915 = to_i915(dev);
11367 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11368 mmio_flip->crtc = to_intel_crtc(crtc);
11369
11370 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11371 schedule_work(&mmio_flip->work);
11372
11373 return 0;
11374 }
11375
11376 static int intel_default_queue_flip(struct drm_device *dev,
11377 struct drm_crtc *crtc,
11378 struct drm_framebuffer *fb,
11379 struct drm_i915_gem_object *obj,
11380 struct intel_engine_cs *ring,
11381 uint32_t flags)
11382 {
11383 return -ENODEV;
11384 }
11385
11386 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11387 struct drm_crtc *crtc)
11388 {
11389 struct drm_i915_private *dev_priv = dev->dev_private;
11390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11391 struct intel_unpin_work *work = intel_crtc->unpin_work;
11392 u32 addr;
11393
11394 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11395 return true;
11396
11397 if (!work->enable_stall_check)
11398 return false;
11399
11400 if (work->flip_ready_vblank == 0) {
11401 if (work->flip_queued_req &&
11402 !i915_gem_request_completed(work->flip_queued_req, true))
11403 return false;
11404
11405 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11406 }
11407
11408 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11409 return false;
11410
11411 /* Potential stall - if we see that the flip has happened,
11412 * assume a missed interrupt. */
11413 if (INTEL_INFO(dev)->gen >= 4)
11414 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11415 else
11416 addr = I915_READ(DSPADDR(intel_crtc->plane));
11417
11418 /* There is a potential issue here with a false positive after a flip
11419 * to the same address. We could address this by checking for a
11420 * non-incrementing frame counter.
11421 */
11422 return addr == work->gtt_offset;
11423 }
11424
11425 void intel_check_page_flip(struct drm_device *dev, int pipe)
11426 {
11427 struct drm_i915_private *dev_priv = dev->dev_private;
11428 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11430 struct intel_unpin_work *work;
11431
11432 WARN_ON(!in_interrupt());
11433
11434 if (crtc == NULL)
11435 return;
11436
11437 spin_lock(&dev->event_lock);
11438 work = intel_crtc->unpin_work;
11439 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11440 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11441 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11442 page_flip_completed(intel_crtc);
11443 work = NULL;
11444 }
11445 if (work != NULL &&
11446 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11447 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11448 spin_unlock(&dev->event_lock);
11449 }
11450
11451 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11452 struct drm_framebuffer *fb,
11453 struct drm_pending_vblank_event *event,
11454 uint32_t page_flip_flags)
11455 {
11456 struct drm_device *dev = crtc->dev;
11457 struct drm_i915_private *dev_priv = dev->dev_private;
11458 struct drm_framebuffer *old_fb = crtc->primary->fb;
11459 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11461 struct drm_plane *primary = crtc->primary;
11462 enum pipe pipe = intel_crtc->pipe;
11463 struct intel_unpin_work *work;
11464 struct intel_engine_cs *ring;
11465 bool mmio_flip;
11466 int ret;
11467
11468 /*
11469 * drm_mode_page_flip_ioctl() should already catch this, but double
11470 * check to be safe. In the future we may enable pageflipping from
11471 * a disabled primary plane.
11472 */
11473 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11474 return -EBUSY;
11475
11476 /* Can't change pixel format via MI display flips. */
11477 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11478 return -EINVAL;
11479
11480 /*
11481 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11482 * Note that pitch changes could also affect these register.
11483 */
11484 if (INTEL_INFO(dev)->gen > 3 &&
11485 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11486 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11487 return -EINVAL;
11488
11489 if (i915_terminally_wedged(&dev_priv->gpu_error))
11490 goto out_hang;
11491
11492 work = kzalloc(sizeof(*work), GFP_KERNEL);
11493 if (work == NULL)
11494 return -ENOMEM;
11495
11496 work->event = event;
11497 work->crtc = crtc;
11498 work->old_fb = old_fb;
11499 INIT_WORK(&work->work, intel_unpin_work_fn);
11500
11501 ret = drm_crtc_vblank_get(crtc);
11502 if (ret)
11503 goto free_work;
11504
11505 /* We borrow the event spin lock for protecting unpin_work */
11506 spin_lock_irq(&dev->event_lock);
11507 if (intel_crtc->unpin_work) {
11508 /* Before declaring the flip queue wedged, check if
11509 * the hardware completed the operation behind our backs.
11510 */
11511 if (__intel_pageflip_stall_check(dev, crtc)) {
11512 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11513 page_flip_completed(intel_crtc);
11514 } else {
11515 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11516 spin_unlock_irq(&dev->event_lock);
11517
11518 drm_crtc_vblank_put(crtc);
11519 kfree(work);
11520 return -EBUSY;
11521 }
11522 }
11523 intel_crtc->unpin_work = work;
11524 spin_unlock_irq(&dev->event_lock);
11525
11526 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11527 flush_workqueue(dev_priv->wq);
11528
11529 /* Reference the objects for the scheduled work. */
11530 drm_framebuffer_reference(work->old_fb);
11531 drm_gem_object_reference(&obj->base);
11532
11533 crtc->primary->fb = fb;
11534 update_state_fb(crtc->primary);
11535
11536 work->pending_flip_obj = obj;
11537
11538 ret = i915_mutex_lock_interruptible(dev);
11539 if (ret)
11540 goto cleanup;
11541
11542 atomic_inc(&intel_crtc->unpin_work_count);
11543 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11544
11545 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11546 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11547
11548 if (IS_VALLEYVIEW(dev)) {
11549 ring = &dev_priv->ring[BCS];
11550 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11551 /* vlv: DISPLAY_FLIP fails to change tiling */
11552 ring = NULL;
11553 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11554 ring = &dev_priv->ring[BCS];
11555 } else if (INTEL_INFO(dev)->gen >= 7) {
11556 ring = i915_gem_request_get_ring(obj->last_write_req);
11557 if (ring == NULL || ring->id != RCS)
11558 ring = &dev_priv->ring[BCS];
11559 } else {
11560 ring = &dev_priv->ring[RCS];
11561 }
11562
11563 mmio_flip = use_mmio_flip(ring, obj);
11564
11565 /* When using CS flips, we want to emit semaphores between rings.
11566 * However, when using mmio flips we will create a task to do the
11567 * synchronisation, so all we want here is to pin the framebuffer
11568 * into the display plane and skip any waits.
11569 */
11570 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11571 crtc->primary->state,
11572 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11573 if (ret)
11574 goto cleanup_pending;
11575
11576 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11577 + intel_crtc->dspaddr_offset;
11578
11579 if (mmio_flip) {
11580 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11581 page_flip_flags);
11582 if (ret)
11583 goto cleanup_unpin;
11584
11585 i915_gem_request_assign(&work->flip_queued_req,
11586 obj->last_write_req);
11587 } else {
11588 if (obj->last_write_req) {
11589 ret = i915_gem_check_olr(obj->last_write_req);
11590 if (ret)
11591 goto cleanup_unpin;
11592 }
11593
11594 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11595 page_flip_flags);
11596 if (ret)
11597 goto cleanup_unpin;
11598
11599 i915_gem_request_assign(&work->flip_queued_req,
11600 intel_ring_get_request(ring));
11601 }
11602
11603 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11604 work->enable_stall_check = true;
11605
11606 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11607 INTEL_FRONTBUFFER_PRIMARY(pipe));
11608
11609 intel_fbc_disable(dev);
11610 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11611 mutex_unlock(&dev->struct_mutex);
11612
11613 trace_i915_flip_request(intel_crtc->plane, obj);
11614
11615 return 0;
11616
11617 cleanup_unpin:
11618 intel_unpin_fb_obj(fb, crtc->primary->state);
11619 cleanup_pending:
11620 atomic_dec(&intel_crtc->unpin_work_count);
11621 mutex_unlock(&dev->struct_mutex);
11622 cleanup:
11623 crtc->primary->fb = old_fb;
11624 update_state_fb(crtc->primary);
11625
11626 drm_gem_object_unreference_unlocked(&obj->base);
11627 drm_framebuffer_unreference(work->old_fb);
11628
11629 spin_lock_irq(&dev->event_lock);
11630 intel_crtc->unpin_work = NULL;
11631 spin_unlock_irq(&dev->event_lock);
11632
11633 drm_crtc_vblank_put(crtc);
11634 free_work:
11635 kfree(work);
11636
11637 if (ret == -EIO) {
11638 struct drm_atomic_state *state;
11639 struct drm_plane_state *plane_state;
11640
11641 out_hang:
11642 state = drm_atomic_state_alloc(dev);
11643 if (!state)
11644 return -ENOMEM;
11645 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11646
11647 retry:
11648 plane_state = drm_atomic_get_plane_state(state, primary);
11649 ret = PTR_ERR_OR_ZERO(plane_state);
11650 if (!ret) {
11651 drm_atomic_set_fb_for_plane(plane_state, fb);
11652
11653 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11654 if (!ret)
11655 ret = drm_atomic_commit(state);
11656 }
11657
11658 if (ret == -EDEADLK) {
11659 drm_modeset_backoff(state->acquire_ctx);
11660 drm_atomic_state_clear(state);
11661 goto retry;
11662 }
11663
11664 if (ret)
11665 drm_atomic_state_free(state);
11666
11667 if (ret == 0 && event) {
11668 spin_lock_irq(&dev->event_lock);
11669 drm_send_vblank_event(dev, pipe, event);
11670 spin_unlock_irq(&dev->event_lock);
11671 }
11672 }
11673 return ret;
11674 }
11675
11676 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11677 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11678 .load_lut = intel_crtc_load_lut,
11679 .atomic_begin = intel_begin_crtc_commit,
11680 .atomic_flush = intel_finish_crtc_commit,
11681 };
11682
11683 /**
11684 * intel_modeset_update_staged_output_state
11685 *
11686 * Updates the staged output configuration state, e.g. after we've read out the
11687 * current hw state.
11688 */
11689 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11690 {
11691 struct intel_crtc *crtc;
11692 struct intel_encoder *encoder;
11693 struct intel_connector *connector;
11694
11695 for_each_intel_connector(dev, connector) {
11696 connector->new_encoder =
11697 to_intel_encoder(connector->base.encoder);
11698 }
11699
11700 for_each_intel_encoder(dev, encoder) {
11701 encoder->new_crtc =
11702 to_intel_crtc(encoder->base.crtc);
11703 }
11704
11705 for_each_intel_crtc(dev, crtc) {
11706 crtc->new_enabled = crtc->base.state->enable;
11707 }
11708 }
11709
11710 /* Transitional helper to copy current connector/encoder state to
11711 * connector->state. This is needed so that code that is partially
11712 * converted to atomic does the right thing.
11713 */
11714 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11715 {
11716 struct intel_connector *connector;
11717
11718 for_each_intel_connector(dev, connector) {
11719 if (connector->base.encoder) {
11720 connector->base.state->best_encoder =
11721 connector->base.encoder;
11722 connector->base.state->crtc =
11723 connector->base.encoder->crtc;
11724 } else {
11725 connector->base.state->best_encoder = NULL;
11726 connector->base.state->crtc = NULL;
11727 }
11728 }
11729 }
11730
11731 static void
11732 connected_sink_compute_bpp(struct intel_connector *connector,
11733 struct intel_crtc_state *pipe_config)
11734 {
11735 int bpp = pipe_config->pipe_bpp;
11736
11737 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11738 connector->base.base.id,
11739 connector->base.name);
11740
11741 /* Don't use an invalid EDID bpc value */
11742 if (connector->base.display_info.bpc &&
11743 connector->base.display_info.bpc * 3 < bpp) {
11744 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11745 bpp, connector->base.display_info.bpc*3);
11746 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11747 }
11748
11749 /* Clamp bpp to 8 on screens without EDID 1.4 */
11750 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11751 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11752 bpp);
11753 pipe_config->pipe_bpp = 24;
11754 }
11755 }
11756
11757 static int
11758 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11759 struct intel_crtc_state *pipe_config)
11760 {
11761 struct drm_device *dev = crtc->base.dev;
11762 struct drm_atomic_state *state;
11763 struct drm_connector *connector;
11764 struct drm_connector_state *connector_state;
11765 int bpp, i;
11766
11767 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11768 bpp = 10*3;
11769 else if (INTEL_INFO(dev)->gen >= 5)
11770 bpp = 12*3;
11771 else
11772 bpp = 8*3;
11773
11774
11775 pipe_config->pipe_bpp = bpp;
11776
11777 state = pipe_config->base.state;
11778
11779 /* Clamp display bpp to EDID value */
11780 for_each_connector_in_state(state, connector, connector_state, i) {
11781 if (connector_state->crtc != &crtc->base)
11782 continue;
11783
11784 connected_sink_compute_bpp(to_intel_connector(connector),
11785 pipe_config);
11786 }
11787
11788 return bpp;
11789 }
11790
11791 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11792 {
11793 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11794 "type: 0x%x flags: 0x%x\n",
11795 mode->crtc_clock,
11796 mode->crtc_hdisplay, mode->crtc_hsync_start,
11797 mode->crtc_hsync_end, mode->crtc_htotal,
11798 mode->crtc_vdisplay, mode->crtc_vsync_start,
11799 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11800 }
11801
11802 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11803 struct intel_crtc_state *pipe_config,
11804 const char *context)
11805 {
11806 struct drm_device *dev = crtc->base.dev;
11807 struct drm_plane *plane;
11808 struct intel_plane *intel_plane;
11809 struct intel_plane_state *state;
11810 struct drm_framebuffer *fb;
11811
11812 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11813 context, pipe_config, pipe_name(crtc->pipe));
11814
11815 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11816 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11817 pipe_config->pipe_bpp, pipe_config->dither);
11818 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11819 pipe_config->has_pch_encoder,
11820 pipe_config->fdi_lanes,
11821 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11822 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11823 pipe_config->fdi_m_n.tu);
11824 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11825 pipe_config->has_dp_encoder,
11826 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11827 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11828 pipe_config->dp_m_n.tu);
11829
11830 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11831 pipe_config->has_dp_encoder,
11832 pipe_config->dp_m2_n2.gmch_m,
11833 pipe_config->dp_m2_n2.gmch_n,
11834 pipe_config->dp_m2_n2.link_m,
11835 pipe_config->dp_m2_n2.link_n,
11836 pipe_config->dp_m2_n2.tu);
11837
11838 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11839 pipe_config->has_audio,
11840 pipe_config->has_infoframe);
11841
11842 DRM_DEBUG_KMS("requested mode:\n");
11843 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11844 DRM_DEBUG_KMS("adjusted mode:\n");
11845 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11846 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11847 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11848 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11849 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11850 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11851 crtc->num_scalers,
11852 pipe_config->scaler_state.scaler_users,
11853 pipe_config->scaler_state.scaler_id);
11854 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11855 pipe_config->gmch_pfit.control,
11856 pipe_config->gmch_pfit.pgm_ratios,
11857 pipe_config->gmch_pfit.lvds_border_bits);
11858 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11859 pipe_config->pch_pfit.pos,
11860 pipe_config->pch_pfit.size,
11861 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11862 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11863 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11864
11865 if (IS_BROXTON(dev)) {
11866 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11867 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11868 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11869 pipe_config->ddi_pll_sel,
11870 pipe_config->dpll_hw_state.ebb0,
11871 pipe_config->dpll_hw_state.pll0,
11872 pipe_config->dpll_hw_state.pll1,
11873 pipe_config->dpll_hw_state.pll2,
11874 pipe_config->dpll_hw_state.pll3,
11875 pipe_config->dpll_hw_state.pll6,
11876 pipe_config->dpll_hw_state.pll8,
11877 pipe_config->dpll_hw_state.pcsdw12);
11878 } else if (IS_SKYLAKE(dev)) {
11879 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11880 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11881 pipe_config->ddi_pll_sel,
11882 pipe_config->dpll_hw_state.ctrl1,
11883 pipe_config->dpll_hw_state.cfgcr1,
11884 pipe_config->dpll_hw_state.cfgcr2);
11885 } else if (HAS_DDI(dev)) {
11886 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11887 pipe_config->ddi_pll_sel,
11888 pipe_config->dpll_hw_state.wrpll);
11889 } else {
11890 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11891 "fp0: 0x%x, fp1: 0x%x\n",
11892 pipe_config->dpll_hw_state.dpll,
11893 pipe_config->dpll_hw_state.dpll_md,
11894 pipe_config->dpll_hw_state.fp0,
11895 pipe_config->dpll_hw_state.fp1);
11896 }
11897
11898 DRM_DEBUG_KMS("planes on this crtc\n");
11899 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11900 intel_plane = to_intel_plane(plane);
11901 if (intel_plane->pipe != crtc->pipe)
11902 continue;
11903
11904 state = to_intel_plane_state(plane->state);
11905 fb = state->base.fb;
11906 if (!fb) {
11907 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11908 "disabled, scaler_id = %d\n",
11909 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11910 plane->base.id, intel_plane->pipe,
11911 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11912 drm_plane_index(plane), state->scaler_id);
11913 continue;
11914 }
11915
11916 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11917 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11918 plane->base.id, intel_plane->pipe,
11919 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11920 drm_plane_index(plane));
11921 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11922 fb->base.id, fb->width, fb->height, fb->pixel_format);
11923 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11924 state->scaler_id,
11925 state->src.x1 >> 16, state->src.y1 >> 16,
11926 drm_rect_width(&state->src) >> 16,
11927 drm_rect_height(&state->src) >> 16,
11928 state->dst.x1, state->dst.y1,
11929 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11930 }
11931 }
11932
11933 static bool encoders_cloneable(const struct intel_encoder *a,
11934 const struct intel_encoder *b)
11935 {
11936 /* masks could be asymmetric, so check both ways */
11937 return a == b || (a->cloneable & (1 << b->type) &&
11938 b->cloneable & (1 << a->type));
11939 }
11940
11941 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11942 struct intel_crtc *crtc,
11943 struct intel_encoder *encoder)
11944 {
11945 struct intel_encoder *source_encoder;
11946 struct drm_connector *connector;
11947 struct drm_connector_state *connector_state;
11948 int i;
11949
11950 for_each_connector_in_state(state, connector, connector_state, i) {
11951 if (connector_state->crtc != &crtc->base)
11952 continue;
11953
11954 source_encoder =
11955 to_intel_encoder(connector_state->best_encoder);
11956 if (!encoders_cloneable(encoder, source_encoder))
11957 return false;
11958 }
11959
11960 return true;
11961 }
11962
11963 static bool check_encoder_cloning(struct drm_atomic_state *state,
11964 struct intel_crtc *crtc)
11965 {
11966 struct intel_encoder *encoder;
11967 struct drm_connector *connector;
11968 struct drm_connector_state *connector_state;
11969 int i;
11970
11971 for_each_connector_in_state(state, connector, connector_state, i) {
11972 if (connector_state->crtc != &crtc->base)
11973 continue;
11974
11975 encoder = to_intel_encoder(connector_state->best_encoder);
11976 if (!check_single_encoder_cloning(state, crtc, encoder))
11977 return false;
11978 }
11979
11980 return true;
11981 }
11982
11983 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11984 {
11985 struct drm_device *dev = state->dev;
11986 struct intel_encoder *encoder;
11987 struct drm_connector *connector;
11988 struct drm_connector_state *connector_state;
11989 unsigned int used_ports = 0;
11990 int i;
11991
11992 /*
11993 * Walk the connector list instead of the encoder
11994 * list to detect the problem on ddi platforms
11995 * where there's just one encoder per digital port.
11996 */
11997 for_each_connector_in_state(state, connector, connector_state, i) {
11998 if (!connector_state->best_encoder)
11999 continue;
12000
12001 encoder = to_intel_encoder(connector_state->best_encoder);
12002
12003 WARN_ON(!connector_state->crtc);
12004
12005 switch (encoder->type) {
12006 unsigned int port_mask;
12007 case INTEL_OUTPUT_UNKNOWN:
12008 if (WARN_ON(!HAS_DDI(dev)))
12009 break;
12010 case INTEL_OUTPUT_DISPLAYPORT:
12011 case INTEL_OUTPUT_HDMI:
12012 case INTEL_OUTPUT_EDP:
12013 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12014
12015 /* the same port mustn't appear more than once */
12016 if (used_ports & port_mask)
12017 return false;
12018
12019 used_ports |= port_mask;
12020 default:
12021 break;
12022 }
12023 }
12024
12025 return true;
12026 }
12027
12028 static void
12029 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12030 {
12031 struct drm_crtc_state tmp_state;
12032 struct intel_crtc_scaler_state scaler_state;
12033 struct intel_dpll_hw_state dpll_hw_state;
12034 enum intel_dpll_id shared_dpll;
12035 uint32_t ddi_pll_sel;
12036
12037 /* FIXME: before the switch to atomic started, a new pipe_config was
12038 * kzalloc'd. Code that depends on any field being zero should be
12039 * fixed, so that the crtc_state can be safely duplicated. For now,
12040 * only fields that are know to not cause problems are preserved. */
12041
12042 tmp_state = crtc_state->base;
12043 scaler_state = crtc_state->scaler_state;
12044 shared_dpll = crtc_state->shared_dpll;
12045 dpll_hw_state = crtc_state->dpll_hw_state;
12046 ddi_pll_sel = crtc_state->ddi_pll_sel;
12047
12048 memset(crtc_state, 0, sizeof *crtc_state);
12049
12050 crtc_state->base = tmp_state;
12051 crtc_state->scaler_state = scaler_state;
12052 crtc_state->shared_dpll = shared_dpll;
12053 crtc_state->dpll_hw_state = dpll_hw_state;
12054 crtc_state->ddi_pll_sel = ddi_pll_sel;
12055 }
12056
12057 static int
12058 intel_modeset_pipe_config(struct drm_crtc *crtc,
12059 struct intel_crtc_state *pipe_config)
12060 {
12061 struct drm_atomic_state *state = pipe_config->base.state;
12062 struct intel_encoder *encoder;
12063 struct drm_connector *connector;
12064 struct drm_connector_state *connector_state;
12065 int base_bpp, ret = -EINVAL;
12066 int i;
12067 bool retry = true;
12068
12069 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
12070 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12071 return -EINVAL;
12072 }
12073
12074 clear_intel_crtc_state(pipe_config);
12075
12076 pipe_config->cpu_transcoder =
12077 (enum transcoder) to_intel_crtc(crtc)->pipe;
12078
12079 /*
12080 * Sanitize sync polarity flags based on requested ones. If neither
12081 * positive or negative polarity is requested, treat this as meaning
12082 * negative polarity.
12083 */
12084 if (!(pipe_config->base.adjusted_mode.flags &
12085 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12086 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12087
12088 if (!(pipe_config->base.adjusted_mode.flags &
12089 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12090 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12091
12092 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12093 * plane pixel format and any sink constraints into account. Returns the
12094 * source plane bpp so that dithering can be selected on mismatches
12095 * after encoders and crtc also have had their say. */
12096 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12097 pipe_config);
12098 if (base_bpp < 0)
12099 goto fail;
12100
12101 /*
12102 * Determine the real pipe dimensions. Note that stereo modes can
12103 * increase the actual pipe size due to the frame doubling and
12104 * insertion of additional space for blanks between the frame. This
12105 * is stored in the crtc timings. We use the requested mode to do this
12106 * computation to clearly distinguish it from the adjusted mode, which
12107 * can be changed by the connectors in the below retry loop.
12108 */
12109 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12110 &pipe_config->pipe_src_w,
12111 &pipe_config->pipe_src_h);
12112
12113 encoder_retry:
12114 /* Ensure the port clock defaults are reset when retrying. */
12115 pipe_config->port_clock = 0;
12116 pipe_config->pixel_multiplier = 1;
12117
12118 /* Fill in default crtc timings, allow encoders to overwrite them. */
12119 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12120 CRTC_STEREO_DOUBLE);
12121
12122 /* Pass our mode to the connectors and the CRTC to give them a chance to
12123 * adjust it according to limitations or connector properties, and also
12124 * a chance to reject the mode entirely.
12125 */
12126 for_each_connector_in_state(state, connector, connector_state, i) {
12127 if (connector_state->crtc != crtc)
12128 continue;
12129
12130 encoder = to_intel_encoder(connector_state->best_encoder);
12131
12132 if (!(encoder->compute_config(encoder, pipe_config))) {
12133 DRM_DEBUG_KMS("Encoder config failure\n");
12134 goto fail;
12135 }
12136 }
12137
12138 /* Set default port clock if not overwritten by the encoder. Needs to be
12139 * done afterwards in case the encoder adjusts the mode. */
12140 if (!pipe_config->port_clock)
12141 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12142 * pipe_config->pixel_multiplier;
12143
12144 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12145 if (ret < 0) {
12146 DRM_DEBUG_KMS("CRTC fixup failed\n");
12147 goto fail;
12148 }
12149
12150 if (ret == RETRY) {
12151 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12152 ret = -EINVAL;
12153 goto fail;
12154 }
12155
12156 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12157 retry = false;
12158 goto encoder_retry;
12159 }
12160
12161 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12162 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12163 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12164
12165 /* Check if we need to force a modeset */
12166 if (pipe_config->has_audio !=
12167 to_intel_crtc_state(crtc->state)->has_audio) {
12168 pipe_config->base.mode_changed = true;
12169 ret = drm_atomic_add_affected_planes(state, crtc);
12170 }
12171
12172 /*
12173 * Note we have an issue here with infoframes: current code
12174 * only updates them on the full mode set path per hw
12175 * requirements. So here we should be checking for any
12176 * required changes and forcing a mode set.
12177 */
12178 fail:
12179 return ret;
12180 }
12181
12182 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12183 {
12184 struct drm_encoder *encoder;
12185 struct drm_device *dev = crtc->dev;
12186
12187 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12188 if (encoder->crtc == crtc)
12189 return true;
12190
12191 return false;
12192 }
12193
12194 static void
12195 intel_modeset_update_state(struct drm_atomic_state *state)
12196 {
12197 struct drm_device *dev = state->dev;
12198 struct intel_encoder *intel_encoder;
12199 struct drm_crtc *crtc;
12200 struct drm_crtc_state *crtc_state;
12201 struct drm_connector *connector;
12202
12203 intel_shared_dpll_commit(state);
12204
12205 for_each_intel_encoder(dev, intel_encoder) {
12206 if (!intel_encoder->base.crtc)
12207 continue;
12208
12209 crtc = intel_encoder->base.crtc;
12210 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12211 if (!crtc_state || !needs_modeset(crtc->state))
12212 continue;
12213
12214 intel_encoder->connectors_active = false;
12215 }
12216
12217 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12218 intel_modeset_update_staged_output_state(state->dev);
12219
12220 /* Double check state. */
12221 for_each_crtc(dev, crtc) {
12222 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12223
12224 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12225
12226 /* Update hwmode for vblank functions */
12227 if (crtc->state->active)
12228 crtc->hwmode = crtc->state->adjusted_mode;
12229 else
12230 crtc->hwmode.crtc_clock = 0;
12231 }
12232
12233 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12234 if (!connector->encoder || !connector->encoder->crtc)
12235 continue;
12236
12237 crtc = connector->encoder->crtc;
12238 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12239 if (!crtc_state || !needs_modeset(crtc->state))
12240 continue;
12241
12242 if (crtc->state->active) {
12243 struct drm_property *dpms_property =
12244 dev->mode_config.dpms_property;
12245
12246 connector->dpms = DRM_MODE_DPMS_ON;
12247 drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12248
12249 intel_encoder = to_intel_encoder(connector->encoder);
12250 intel_encoder->connectors_active = true;
12251 } else
12252 connector->dpms = DRM_MODE_DPMS_OFF;
12253 }
12254 }
12255
12256 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12257 {
12258 int diff;
12259
12260 if (clock1 == clock2)
12261 return true;
12262
12263 if (!clock1 || !clock2)
12264 return false;
12265
12266 diff = abs(clock1 - clock2);
12267
12268 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12269 return true;
12270
12271 return false;
12272 }
12273
12274 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12275 list_for_each_entry((intel_crtc), \
12276 &(dev)->mode_config.crtc_list, \
12277 base.head) \
12278 if (mask & (1 <<(intel_crtc)->pipe))
12279
12280 static bool
12281 intel_pipe_config_compare(struct drm_device *dev,
12282 struct intel_crtc_state *current_config,
12283 struct intel_crtc_state *pipe_config)
12284 {
12285 #define PIPE_CONF_CHECK_X(name) \
12286 if (current_config->name != pipe_config->name) { \
12287 DRM_ERROR("mismatch in " #name " " \
12288 "(expected 0x%08x, found 0x%08x)\n", \
12289 current_config->name, \
12290 pipe_config->name); \
12291 return false; \
12292 }
12293
12294 #define PIPE_CONF_CHECK_I(name) \
12295 if (current_config->name != pipe_config->name) { \
12296 DRM_ERROR("mismatch in " #name " " \
12297 "(expected %i, found %i)\n", \
12298 current_config->name, \
12299 pipe_config->name); \
12300 return false; \
12301 }
12302
12303 /* This is required for BDW+ where there is only one set of registers for
12304 * switching between high and low RR.
12305 * This macro can be used whenever a comparison has to be made between one
12306 * hw state and multiple sw state variables.
12307 */
12308 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12309 if ((current_config->name != pipe_config->name) && \
12310 (current_config->alt_name != pipe_config->name)) { \
12311 DRM_ERROR("mismatch in " #name " " \
12312 "(expected %i or %i, found %i)\n", \
12313 current_config->name, \
12314 current_config->alt_name, \
12315 pipe_config->name); \
12316 return false; \
12317 }
12318
12319 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12320 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12321 DRM_ERROR("mismatch in " #name "(" #mask ") " \
12322 "(expected %i, found %i)\n", \
12323 current_config->name & (mask), \
12324 pipe_config->name & (mask)); \
12325 return false; \
12326 }
12327
12328 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12329 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12330 DRM_ERROR("mismatch in " #name " " \
12331 "(expected %i, found %i)\n", \
12332 current_config->name, \
12333 pipe_config->name); \
12334 return false; \
12335 }
12336
12337 #define PIPE_CONF_QUIRK(quirk) \
12338 ((current_config->quirks | pipe_config->quirks) & (quirk))
12339
12340 PIPE_CONF_CHECK_I(cpu_transcoder);
12341
12342 PIPE_CONF_CHECK_I(has_pch_encoder);
12343 PIPE_CONF_CHECK_I(fdi_lanes);
12344 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12345 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12346 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12347 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12348 PIPE_CONF_CHECK_I(fdi_m_n.tu);
12349
12350 PIPE_CONF_CHECK_I(has_dp_encoder);
12351
12352 if (INTEL_INFO(dev)->gen < 8) {
12353 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12354 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12355 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12356 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12357 PIPE_CONF_CHECK_I(dp_m_n.tu);
12358
12359 if (current_config->has_drrs) {
12360 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12361 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12362 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12363 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12364 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12365 }
12366 } else {
12367 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12368 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12369 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12370 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12371 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12372 }
12373
12374 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12375 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12376 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12377 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12378 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12379 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12380
12381 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12382 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12383 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12384 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12385 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12386 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12387
12388 PIPE_CONF_CHECK_I(pixel_multiplier);
12389 PIPE_CONF_CHECK_I(has_hdmi_sink);
12390 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12391 IS_VALLEYVIEW(dev))
12392 PIPE_CONF_CHECK_I(limited_color_range);
12393 PIPE_CONF_CHECK_I(has_infoframe);
12394
12395 PIPE_CONF_CHECK_I(has_audio);
12396
12397 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12398 DRM_MODE_FLAG_INTERLACE);
12399
12400 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12401 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12402 DRM_MODE_FLAG_PHSYNC);
12403 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12404 DRM_MODE_FLAG_NHSYNC);
12405 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12406 DRM_MODE_FLAG_PVSYNC);
12407 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12408 DRM_MODE_FLAG_NVSYNC);
12409 }
12410
12411 PIPE_CONF_CHECK_I(pipe_src_w);
12412 PIPE_CONF_CHECK_I(pipe_src_h);
12413
12414 /*
12415 * FIXME: BIOS likes to set up a cloned config with lvds+external
12416 * screen. Since we don't yet re-compute the pipe config when moving
12417 * just the lvds port away to another pipe the sw tracking won't match.
12418 *
12419 * Proper atomic modesets with recomputed global state will fix this.
12420 * Until then just don't check gmch state for inherited modes.
12421 */
12422 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12423 PIPE_CONF_CHECK_I(gmch_pfit.control);
12424 /* pfit ratios are autocomputed by the hw on gen4+ */
12425 if (INTEL_INFO(dev)->gen < 4)
12426 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12427 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12428 }
12429
12430 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12431 if (current_config->pch_pfit.enabled) {
12432 PIPE_CONF_CHECK_I(pch_pfit.pos);
12433 PIPE_CONF_CHECK_I(pch_pfit.size);
12434 }
12435
12436 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12437
12438 /* BDW+ don't expose a synchronous way to read the state */
12439 if (IS_HASWELL(dev))
12440 PIPE_CONF_CHECK_I(ips_enabled);
12441
12442 PIPE_CONF_CHECK_I(double_wide);
12443
12444 PIPE_CONF_CHECK_X(ddi_pll_sel);
12445
12446 PIPE_CONF_CHECK_I(shared_dpll);
12447 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12448 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12449 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12450 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12451 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12452 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12453 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12454 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12455
12456 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12457 PIPE_CONF_CHECK_I(pipe_bpp);
12458
12459 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12460 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12461
12462 #undef PIPE_CONF_CHECK_X
12463 #undef PIPE_CONF_CHECK_I
12464 #undef PIPE_CONF_CHECK_I_ALT
12465 #undef PIPE_CONF_CHECK_FLAGS
12466 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12467 #undef PIPE_CONF_QUIRK
12468
12469 return true;
12470 }
12471
12472 static void check_wm_state(struct drm_device *dev)
12473 {
12474 struct drm_i915_private *dev_priv = dev->dev_private;
12475 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12476 struct intel_crtc *intel_crtc;
12477 int plane;
12478
12479 if (INTEL_INFO(dev)->gen < 9)
12480 return;
12481
12482 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12483 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12484
12485 for_each_intel_crtc(dev, intel_crtc) {
12486 struct skl_ddb_entry *hw_entry, *sw_entry;
12487 const enum pipe pipe = intel_crtc->pipe;
12488
12489 if (!intel_crtc->active)
12490 continue;
12491
12492 /* planes */
12493 for_each_plane(dev_priv, pipe, plane) {
12494 hw_entry = &hw_ddb.plane[pipe][plane];
12495 sw_entry = &sw_ddb->plane[pipe][plane];
12496
12497 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12498 continue;
12499
12500 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12501 "(expected (%u,%u), found (%u,%u))\n",
12502 pipe_name(pipe), plane + 1,
12503 sw_entry->start, sw_entry->end,
12504 hw_entry->start, hw_entry->end);
12505 }
12506
12507 /* cursor */
12508 hw_entry = &hw_ddb.cursor[pipe];
12509 sw_entry = &sw_ddb->cursor[pipe];
12510
12511 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12512 continue;
12513
12514 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12515 "(expected (%u,%u), found (%u,%u))\n",
12516 pipe_name(pipe),
12517 sw_entry->start, sw_entry->end,
12518 hw_entry->start, hw_entry->end);
12519 }
12520 }
12521
12522 static void
12523 check_connector_state(struct drm_device *dev)
12524 {
12525 struct intel_connector *connector;
12526
12527 for_each_intel_connector(dev, connector) {
12528 /* This also checks the encoder/connector hw state with the
12529 * ->get_hw_state callbacks. */
12530 intel_connector_check_state(connector);
12531
12532 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12533 "connector's staged encoder doesn't match current encoder\n");
12534 }
12535 }
12536
12537 static void
12538 check_encoder_state(struct drm_device *dev)
12539 {
12540 struct intel_encoder *encoder;
12541 struct intel_connector *connector;
12542
12543 for_each_intel_encoder(dev, encoder) {
12544 bool enabled = false;
12545 bool active = false;
12546 enum pipe pipe, tracked_pipe;
12547
12548 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12549 encoder->base.base.id,
12550 encoder->base.name);
12551
12552 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12553 "encoder's stage crtc doesn't match current crtc\n");
12554 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12555 "encoder's active_connectors set, but no crtc\n");
12556
12557 for_each_intel_connector(dev, connector) {
12558 if (connector->base.encoder != &encoder->base)
12559 continue;
12560 enabled = true;
12561 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12562 active = true;
12563 }
12564 /*
12565 * for MST connectors if we unplug the connector is gone
12566 * away but the encoder is still connected to a crtc
12567 * until a modeset happens in response to the hotplug.
12568 */
12569 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12570 continue;
12571
12572 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12573 "encoder's enabled state mismatch "
12574 "(expected %i, found %i)\n",
12575 !!encoder->base.crtc, enabled);
12576 I915_STATE_WARN(active && !encoder->base.crtc,
12577 "active encoder with no crtc\n");
12578
12579 I915_STATE_WARN(encoder->connectors_active != active,
12580 "encoder's computed active state doesn't match tracked active state "
12581 "(expected %i, found %i)\n", active, encoder->connectors_active);
12582
12583 active = encoder->get_hw_state(encoder, &pipe);
12584 I915_STATE_WARN(active != encoder->connectors_active,
12585 "encoder's hw state doesn't match sw tracking "
12586 "(expected %i, found %i)\n",
12587 encoder->connectors_active, active);
12588
12589 if (!encoder->base.crtc)
12590 continue;
12591
12592 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12593 I915_STATE_WARN(active && pipe != tracked_pipe,
12594 "active encoder's pipe doesn't match"
12595 "(expected %i, found %i)\n",
12596 tracked_pipe, pipe);
12597
12598 }
12599 }
12600
12601 static void
12602 check_crtc_state(struct drm_device *dev)
12603 {
12604 struct drm_i915_private *dev_priv = dev->dev_private;
12605 struct intel_crtc *crtc;
12606 struct intel_encoder *encoder;
12607 struct intel_crtc_state pipe_config;
12608
12609 for_each_intel_crtc(dev, crtc) {
12610 bool enabled = false;
12611 bool active = false;
12612
12613 memset(&pipe_config, 0, sizeof(pipe_config));
12614
12615 DRM_DEBUG_KMS("[CRTC:%d]\n",
12616 crtc->base.base.id);
12617
12618 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12619 "active crtc, but not enabled in sw tracking\n");
12620
12621 for_each_intel_encoder(dev, encoder) {
12622 if (encoder->base.crtc != &crtc->base)
12623 continue;
12624 enabled = true;
12625 if (encoder->connectors_active)
12626 active = true;
12627 }
12628
12629 I915_STATE_WARN(active != crtc->active,
12630 "crtc's computed active state doesn't match tracked active state "
12631 "(expected %i, found %i)\n", active, crtc->active);
12632 I915_STATE_WARN(enabled != crtc->base.state->enable,
12633 "crtc's computed enabled state doesn't match tracked enabled state "
12634 "(expected %i, found %i)\n", enabled,
12635 crtc->base.state->enable);
12636
12637 active = dev_priv->display.get_pipe_config(crtc,
12638 &pipe_config);
12639
12640 /* hw state is inconsistent with the pipe quirk */
12641 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12642 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12643 active = crtc->active;
12644
12645 for_each_intel_encoder(dev, encoder) {
12646 enum pipe pipe;
12647 if (encoder->base.crtc != &crtc->base)
12648 continue;
12649 if (encoder->get_hw_state(encoder, &pipe))
12650 encoder->get_config(encoder, &pipe_config);
12651 }
12652
12653 I915_STATE_WARN(crtc->active != active,
12654 "crtc active state doesn't match with hw state "
12655 "(expected %i, found %i)\n", crtc->active, active);
12656
12657 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12658 "transitional active state does not match atomic hw state "
12659 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12660
12661 if (active &&
12662 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12663 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12664 intel_dump_pipe_config(crtc, &pipe_config,
12665 "[hw state]");
12666 intel_dump_pipe_config(crtc, crtc->config,
12667 "[sw state]");
12668 }
12669 }
12670 }
12671
12672 static void
12673 check_shared_dpll_state(struct drm_device *dev)
12674 {
12675 struct drm_i915_private *dev_priv = dev->dev_private;
12676 struct intel_crtc *crtc;
12677 struct intel_dpll_hw_state dpll_hw_state;
12678 int i;
12679
12680 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12681 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12682 int enabled_crtcs = 0, active_crtcs = 0;
12683 bool active;
12684
12685 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12686
12687 DRM_DEBUG_KMS("%s\n", pll->name);
12688
12689 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12690
12691 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12692 "more active pll users than references: %i vs %i\n",
12693 pll->active, hweight32(pll->config.crtc_mask));
12694 I915_STATE_WARN(pll->active && !pll->on,
12695 "pll in active use but not on in sw tracking\n");
12696 I915_STATE_WARN(pll->on && !pll->active,
12697 "pll in on but not on in use in sw tracking\n");
12698 I915_STATE_WARN(pll->on != active,
12699 "pll on state mismatch (expected %i, found %i)\n",
12700 pll->on, active);
12701
12702 for_each_intel_crtc(dev, crtc) {
12703 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12704 enabled_crtcs++;
12705 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12706 active_crtcs++;
12707 }
12708 I915_STATE_WARN(pll->active != active_crtcs,
12709 "pll active crtcs mismatch (expected %i, found %i)\n",
12710 pll->active, active_crtcs);
12711 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12712 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12713 hweight32(pll->config.crtc_mask), enabled_crtcs);
12714
12715 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12716 sizeof(dpll_hw_state)),
12717 "pll hw state mismatch\n");
12718 }
12719 }
12720
12721 void
12722 intel_modeset_check_state(struct drm_device *dev)
12723 {
12724 check_wm_state(dev);
12725 check_connector_state(dev);
12726 check_encoder_state(dev);
12727 check_crtc_state(dev);
12728 check_shared_dpll_state(dev);
12729 }
12730
12731 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12732 int dotclock)
12733 {
12734 /*
12735 * FDI already provided one idea for the dotclock.
12736 * Yell if the encoder disagrees.
12737 */
12738 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12739 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12740 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12741 }
12742
12743 static void update_scanline_offset(struct intel_crtc *crtc)
12744 {
12745 struct drm_device *dev = crtc->base.dev;
12746
12747 /*
12748 * The scanline counter increments at the leading edge of hsync.
12749 *
12750 * On most platforms it starts counting from vtotal-1 on the
12751 * first active line. That means the scanline counter value is
12752 * always one less than what we would expect. Ie. just after
12753 * start of vblank, which also occurs at start of hsync (on the
12754 * last active line), the scanline counter will read vblank_start-1.
12755 *
12756 * On gen2 the scanline counter starts counting from 1 instead
12757 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12758 * to keep the value positive), instead of adding one.
12759 *
12760 * On HSW+ the behaviour of the scanline counter depends on the output
12761 * type. For DP ports it behaves like most other platforms, but on HDMI
12762 * there's an extra 1 line difference. So we need to add two instead of
12763 * one to the value.
12764 */
12765 if (IS_GEN2(dev)) {
12766 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12767 int vtotal;
12768
12769 vtotal = mode->crtc_vtotal;
12770 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12771 vtotal /= 2;
12772
12773 crtc->scanline_offset = vtotal - 1;
12774 } else if (HAS_DDI(dev) &&
12775 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12776 crtc->scanline_offset = 2;
12777 } else
12778 crtc->scanline_offset = 1;
12779 }
12780
12781 static int intel_modeset_setup_plls(struct drm_atomic_state *state)
12782 {
12783 struct drm_device *dev = state->dev;
12784 struct drm_i915_private *dev_priv = to_i915(dev);
12785 unsigned clear_pipes = 0;
12786 struct intel_crtc *intel_crtc;
12787 struct intel_crtc_state *intel_crtc_state;
12788 struct drm_crtc *crtc;
12789 struct drm_crtc_state *crtc_state;
12790 int ret = 0;
12791 int i;
12792
12793 if (!dev_priv->display.crtc_compute_clock)
12794 return 0;
12795
12796 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12797 intel_crtc = to_intel_crtc(crtc);
12798 intel_crtc_state = to_intel_crtc_state(crtc_state);
12799
12800 if (needs_modeset(crtc_state)) {
12801 clear_pipes |= 1 << intel_crtc->pipe;
12802 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12803 }
12804 }
12805
12806 if (clear_pipes) {
12807 struct intel_shared_dpll_config *shared_dpll =
12808 intel_atomic_get_shared_dpll_state(state);
12809
12810 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12811 shared_dpll[i].crtc_mask &= ~clear_pipes;
12812 }
12813
12814 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12815 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12816 continue;
12817
12818 intel_crtc = to_intel_crtc(crtc);
12819 intel_crtc_state = to_intel_crtc_state(crtc_state);
12820
12821 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12822 intel_crtc_state);
12823 if (ret)
12824 return ret;
12825 }
12826
12827 return ret;
12828 }
12829
12830 /*
12831 * This implements the workaround described in the "notes" section of the mode
12832 * set sequence documentation. When going from no pipes or single pipe to
12833 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12834 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12835 */
12836 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12837 {
12838 struct drm_crtc_state *crtc_state;
12839 struct intel_crtc *intel_crtc;
12840 struct drm_crtc *crtc;
12841 struct intel_crtc_state *first_crtc_state = NULL;
12842 struct intel_crtc_state *other_crtc_state = NULL;
12843 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12844 int i;
12845
12846 /* look at all crtc's that are going to be enabled in during modeset */
12847 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12848 intel_crtc = to_intel_crtc(crtc);
12849
12850 if (!crtc_state->active || !needs_modeset(crtc_state))
12851 continue;
12852
12853 if (first_crtc_state) {
12854 other_crtc_state = to_intel_crtc_state(crtc_state);
12855 break;
12856 } else {
12857 first_crtc_state = to_intel_crtc_state(crtc_state);
12858 first_pipe = intel_crtc->pipe;
12859 }
12860 }
12861
12862 /* No workaround needed? */
12863 if (!first_crtc_state)
12864 return 0;
12865
12866 /* w/a possibly needed, check how many crtc's are already enabled. */
12867 for_each_intel_crtc(state->dev, intel_crtc) {
12868 struct intel_crtc_state *pipe_config;
12869
12870 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12871 if (IS_ERR(pipe_config))
12872 return PTR_ERR(pipe_config);
12873
12874 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12875
12876 if (!pipe_config->base.active ||
12877 needs_modeset(&pipe_config->base))
12878 continue;
12879
12880 /* 2 or more enabled crtcs means no need for w/a */
12881 if (enabled_pipe != INVALID_PIPE)
12882 return 0;
12883
12884 enabled_pipe = intel_crtc->pipe;
12885 }
12886
12887 if (enabled_pipe != INVALID_PIPE)
12888 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12889 else if (other_crtc_state)
12890 other_crtc_state->hsw_workaround_pipe = first_pipe;
12891
12892 return 0;
12893 }
12894
12895 /* Code that should eventually be part of atomic_check() */
12896 static int intel_modeset_checks(struct drm_atomic_state *state)
12897 {
12898 struct drm_device *dev = state->dev;
12899 int ret;
12900
12901 if (!check_digital_port_conflicts(state)) {
12902 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12903 return -EINVAL;
12904 }
12905
12906 /*
12907 * See if the config requires any additional preparation, e.g.
12908 * to adjust global state with pipes off. We need to do this
12909 * here so we can get the modeset_pipe updated config for the new
12910 * mode set on this crtc. For other crtcs we need to use the
12911 * adjusted_mode bits in the crtc directly.
12912 */
12913 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev) || IS_BROADWELL(dev)) {
12914 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev))
12915 ret = valleyview_modeset_global_pipes(state);
12916 else
12917 ret = broadwell_modeset_global_pipes(state);
12918
12919 if (ret)
12920 return ret;
12921 }
12922
12923 ret = intel_modeset_setup_plls(state);
12924 if (ret)
12925 return ret;
12926
12927 if (IS_HASWELL(dev))
12928 ret = haswell_mode_set_planes_workaround(state);
12929
12930 return ret;
12931 }
12932
12933 static int
12934 intel_modeset_compute_config(struct drm_atomic_state *state)
12935 {
12936 struct drm_crtc *crtc;
12937 struct drm_crtc_state *crtc_state;
12938 int ret, i;
12939
12940 ret = drm_atomic_helper_check_modeset(state->dev, state);
12941 if (ret)
12942 return ret;
12943
12944 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12945 if (!crtc_state->enable &&
12946 WARN_ON(crtc_state->active))
12947 crtc_state->active = false;
12948
12949 if (!crtc_state->enable)
12950 continue;
12951
12952 if (!needs_modeset(crtc_state)) {
12953 ret = drm_atomic_add_affected_connectors(state, crtc);
12954 if (ret)
12955 return ret;
12956 }
12957
12958 ret = intel_modeset_pipe_config(crtc,
12959 to_intel_crtc_state(crtc_state));
12960 if (ret)
12961 return ret;
12962
12963 intel_dump_pipe_config(to_intel_crtc(crtc),
12964 to_intel_crtc_state(crtc_state),
12965 "[modeset]");
12966 }
12967
12968 ret = intel_modeset_checks(state);
12969 if (ret)
12970 return ret;
12971
12972 return drm_atomic_helper_check_planes(state->dev, state);
12973 }
12974
12975 static int __intel_set_mode(struct drm_atomic_state *state)
12976 {
12977 struct drm_device *dev = state->dev;
12978 struct drm_i915_private *dev_priv = dev->dev_private;
12979 struct drm_crtc *crtc;
12980 struct drm_crtc_state *crtc_state;
12981 int ret = 0;
12982 int i;
12983
12984 ret = drm_atomic_helper_prepare_planes(dev, state);
12985 if (ret)
12986 return ret;
12987
12988 drm_atomic_helper_swap_state(dev, state);
12989
12990 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12991 if (!needs_modeset(crtc->state) || !crtc_state->active)
12992 continue;
12993
12994 intel_crtc_disable_planes(crtc);
12995 dev_priv->display.crtc_disable(crtc);
12996 }
12997
12998 /* Only after disabling all output pipelines that will be changed can we
12999 * update the the output configuration. */
13000 intel_modeset_update_state(state);
13001
13002 /* The state has been swaped above, so state actually contains the
13003 * old state now. */
13004
13005 modeset_update_crtc_power_domains(state);
13006
13007 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13008 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13009 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13010
13011 if (!needs_modeset(crtc->state) || !crtc->state->active)
13012 continue;
13013
13014 update_scanline_offset(to_intel_crtc(crtc));
13015
13016 dev_priv->display.crtc_enable(crtc);
13017 intel_crtc_enable_planes(crtc);
13018 }
13019
13020 /* FIXME: add subpixel order */
13021
13022 drm_atomic_helper_cleanup_planes(dev, state);
13023
13024 drm_atomic_state_free(state);
13025
13026 return 0;
13027 }
13028
13029 static int intel_set_mode_checked(struct drm_atomic_state *state)
13030 {
13031 struct drm_device *dev = state->dev;
13032 int ret;
13033
13034 ret = __intel_set_mode(state);
13035 if (ret == 0)
13036 intel_modeset_check_state(dev);
13037
13038 return ret;
13039 }
13040
13041 static int intel_set_mode(struct drm_atomic_state *state)
13042 {
13043 int ret;
13044
13045 ret = intel_modeset_compute_config(state);
13046 if (ret)
13047 return ret;
13048
13049 return intel_set_mode_checked(state);
13050 }
13051
13052 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13053 {
13054 struct drm_device *dev = crtc->dev;
13055 struct drm_atomic_state *state;
13056 struct intel_crtc *intel_crtc;
13057 struct intel_encoder *encoder;
13058 struct intel_connector *connector;
13059 struct drm_connector_state *connector_state;
13060 struct intel_crtc_state *crtc_state;
13061 int ret;
13062
13063 state = drm_atomic_state_alloc(dev);
13064 if (!state) {
13065 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13066 crtc->base.id);
13067 return;
13068 }
13069
13070 state->acquire_ctx = dev->mode_config.acquire_ctx;
13071
13072 /* The force restore path in the HW readout code relies on the staged
13073 * config still keeping the user requested config while the actual
13074 * state has been overwritten by the configuration read from HW. We
13075 * need to copy the staged config to the atomic state, otherwise the
13076 * mode set will just reapply the state the HW is already in. */
13077 for_each_intel_encoder(dev, encoder) {
13078 if (&encoder->new_crtc->base != crtc)
13079 continue;
13080
13081 for_each_intel_connector(dev, connector) {
13082 if (connector->new_encoder != encoder)
13083 continue;
13084
13085 connector_state = drm_atomic_get_connector_state(state, &connector->base);
13086 if (IS_ERR(connector_state)) {
13087 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13088 connector->base.base.id,
13089 connector->base.name,
13090 PTR_ERR(connector_state));
13091 continue;
13092 }
13093
13094 connector_state->crtc = crtc;
13095 connector_state->best_encoder = &encoder->base;
13096 }
13097 }
13098
13099 for_each_intel_crtc(dev, intel_crtc) {
13100 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
13101 continue;
13102
13103 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
13104 if (IS_ERR(crtc_state)) {
13105 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13106 intel_crtc->base.base.id,
13107 PTR_ERR(crtc_state));
13108 continue;
13109 }
13110
13111 crtc_state->base.active = crtc_state->base.enable =
13112 intel_crtc->new_enabled;
13113
13114 if (&intel_crtc->base == crtc)
13115 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13116 }
13117
13118 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13119 crtc->primary->fb, crtc->x, crtc->y);
13120
13121 ret = intel_set_mode(state);
13122 if (ret)
13123 drm_atomic_state_free(state);
13124 }
13125
13126 #undef for_each_intel_crtc_masked
13127
13128 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13129 struct drm_mode_set *set)
13130 {
13131 int ro;
13132
13133 for (ro = 0; ro < set->num_connectors; ro++)
13134 if (set->connectors[ro] == &connector->base)
13135 return true;
13136
13137 return false;
13138 }
13139
13140 static int
13141 intel_modeset_stage_output_state(struct drm_device *dev,
13142 struct drm_mode_set *set,
13143 struct drm_atomic_state *state)
13144 {
13145 struct intel_connector *connector;
13146 struct drm_connector *drm_connector;
13147 struct drm_connector_state *connector_state;
13148 struct drm_crtc *crtc;
13149 struct drm_crtc_state *crtc_state;
13150 int i, ret;
13151
13152 /* The upper layers ensure that we either disable a crtc or have a list
13153 * of connectors. For paranoia, double-check this. */
13154 WARN_ON(!set->fb && (set->num_connectors != 0));
13155 WARN_ON(set->fb && (set->num_connectors == 0));
13156
13157 for_each_intel_connector(dev, connector) {
13158 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13159
13160 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13161 continue;
13162
13163 connector_state =
13164 drm_atomic_get_connector_state(state, &connector->base);
13165 if (IS_ERR(connector_state))
13166 return PTR_ERR(connector_state);
13167
13168 if (in_mode_set) {
13169 int pipe = to_intel_crtc(set->crtc)->pipe;
13170 connector_state->best_encoder =
13171 &intel_find_encoder(connector, pipe)->base;
13172 }
13173
13174 if (connector->base.state->crtc != set->crtc)
13175 continue;
13176
13177 /* If we disable the crtc, disable all its connectors. Also, if
13178 * the connector is on the changing crtc but not on the new
13179 * connector list, disable it. */
13180 if (!set->fb || !in_mode_set) {
13181 connector_state->best_encoder = NULL;
13182
13183 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13184 connector->base.base.id,
13185 connector->base.name);
13186 }
13187 }
13188 /* connector->new_encoder is now updated for all connectors. */
13189
13190 for_each_connector_in_state(state, drm_connector, connector_state, i) {
13191 connector = to_intel_connector(drm_connector);
13192
13193 if (!connector_state->best_encoder) {
13194 ret = drm_atomic_set_crtc_for_connector(connector_state,
13195 NULL);
13196 if (ret)
13197 return ret;
13198
13199 continue;
13200 }
13201
13202 if (intel_connector_in_mode_set(connector, set)) {
13203 struct drm_crtc *crtc = connector->base.state->crtc;
13204
13205 /* If this connector was in a previous crtc, add it
13206 * to the state. We might need to disable it. */
13207 if (crtc) {
13208 crtc_state =
13209 drm_atomic_get_crtc_state(state, crtc);
13210 if (IS_ERR(crtc_state))
13211 return PTR_ERR(crtc_state);
13212 }
13213
13214 ret = drm_atomic_set_crtc_for_connector(connector_state,
13215 set->crtc);
13216 if (ret)
13217 return ret;
13218 }
13219
13220 /* Make sure the new CRTC will work with the encoder */
13221 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13222 connector_state->crtc)) {
13223 return -EINVAL;
13224 }
13225
13226 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13227 connector->base.base.id,
13228 connector->base.name,
13229 connector_state->crtc->base.id);
13230
13231 if (connector_state->best_encoder != &connector->encoder->base)
13232 connector->encoder =
13233 to_intel_encoder(connector_state->best_encoder);
13234 }
13235
13236 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13237 bool has_connectors;
13238
13239 ret = drm_atomic_add_affected_connectors(state, crtc);
13240 if (ret)
13241 return ret;
13242
13243 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13244 if (has_connectors != crtc_state->enable)
13245 crtc_state->enable =
13246 crtc_state->active = has_connectors;
13247 }
13248
13249 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13250 set->fb, set->x, set->y);
13251 if (ret)
13252 return ret;
13253
13254 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13255 if (IS_ERR(crtc_state))
13256 return PTR_ERR(crtc_state);
13257
13258 ret = drm_atomic_set_mode_for_crtc(crtc_state, set->mode);
13259 if (ret)
13260 return ret;
13261
13262 if (set->num_connectors)
13263 crtc_state->active = true;
13264
13265 return 0;
13266 }
13267
13268 static int intel_crtc_set_config(struct drm_mode_set *set)
13269 {
13270 struct drm_device *dev;
13271 struct drm_atomic_state *state = NULL;
13272 int ret;
13273
13274 BUG_ON(!set);
13275 BUG_ON(!set->crtc);
13276 BUG_ON(!set->crtc->helper_private);
13277
13278 /* Enforce sane interface api - has been abused by the fb helper. */
13279 BUG_ON(!set->mode && set->fb);
13280 BUG_ON(set->fb && set->num_connectors == 0);
13281
13282 if (set->fb) {
13283 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13284 set->crtc->base.id, set->fb->base.id,
13285 (int)set->num_connectors, set->x, set->y);
13286 } else {
13287 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13288 }
13289
13290 dev = set->crtc->dev;
13291
13292 state = drm_atomic_state_alloc(dev);
13293 if (!state)
13294 return -ENOMEM;
13295
13296 state->acquire_ctx = dev->mode_config.acquire_ctx;
13297
13298 ret = intel_modeset_stage_output_state(dev, set, state);
13299 if (ret)
13300 goto out;
13301
13302 ret = intel_modeset_compute_config(state);
13303 if (ret)
13304 goto out;
13305
13306 intel_update_pipe_size(to_intel_crtc(set->crtc));
13307
13308 ret = intel_set_mode_checked(state);
13309 if (ret) {
13310 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13311 set->crtc->base.id, ret);
13312 }
13313
13314 out:
13315 if (ret)
13316 drm_atomic_state_free(state);
13317 return ret;
13318 }
13319
13320 static const struct drm_crtc_funcs intel_crtc_funcs = {
13321 .gamma_set = intel_crtc_gamma_set,
13322 .set_config = intel_crtc_set_config,
13323 .destroy = intel_crtc_destroy,
13324 .page_flip = intel_crtc_page_flip,
13325 .atomic_duplicate_state = intel_crtc_duplicate_state,
13326 .atomic_destroy_state = intel_crtc_destroy_state,
13327 };
13328
13329 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13330 struct intel_shared_dpll *pll,
13331 struct intel_dpll_hw_state *hw_state)
13332 {
13333 uint32_t val;
13334
13335 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13336 return false;
13337
13338 val = I915_READ(PCH_DPLL(pll->id));
13339 hw_state->dpll = val;
13340 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13341 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13342
13343 return val & DPLL_VCO_ENABLE;
13344 }
13345
13346 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13347 struct intel_shared_dpll *pll)
13348 {
13349 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13350 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13351 }
13352
13353 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13354 struct intel_shared_dpll *pll)
13355 {
13356 /* PCH refclock must be enabled first */
13357 ibx_assert_pch_refclk_enabled(dev_priv);
13358
13359 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13360
13361 /* Wait for the clocks to stabilize. */
13362 POSTING_READ(PCH_DPLL(pll->id));
13363 udelay(150);
13364
13365 /* The pixel multiplier can only be updated once the
13366 * DPLL is enabled and the clocks are stable.
13367 *
13368 * So write it again.
13369 */
13370 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13371 POSTING_READ(PCH_DPLL(pll->id));
13372 udelay(200);
13373 }
13374
13375 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13376 struct intel_shared_dpll *pll)
13377 {
13378 struct drm_device *dev = dev_priv->dev;
13379 struct intel_crtc *crtc;
13380
13381 /* Make sure no transcoder isn't still depending on us. */
13382 for_each_intel_crtc(dev, crtc) {
13383 if (intel_crtc_to_shared_dpll(crtc) == pll)
13384 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13385 }
13386
13387 I915_WRITE(PCH_DPLL(pll->id), 0);
13388 POSTING_READ(PCH_DPLL(pll->id));
13389 udelay(200);
13390 }
13391
13392 static char *ibx_pch_dpll_names[] = {
13393 "PCH DPLL A",
13394 "PCH DPLL B",
13395 };
13396
13397 static void ibx_pch_dpll_init(struct drm_device *dev)
13398 {
13399 struct drm_i915_private *dev_priv = dev->dev_private;
13400 int i;
13401
13402 dev_priv->num_shared_dpll = 2;
13403
13404 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13405 dev_priv->shared_dplls[i].id = i;
13406 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13407 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13408 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13409 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13410 dev_priv->shared_dplls[i].get_hw_state =
13411 ibx_pch_dpll_get_hw_state;
13412 }
13413 }
13414
13415 static void intel_shared_dpll_init(struct drm_device *dev)
13416 {
13417 struct drm_i915_private *dev_priv = dev->dev_private;
13418
13419 intel_update_cdclk(dev);
13420
13421 if (HAS_DDI(dev))
13422 intel_ddi_pll_init(dev);
13423 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13424 ibx_pch_dpll_init(dev);
13425 else
13426 dev_priv->num_shared_dpll = 0;
13427
13428 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13429 }
13430
13431 /**
13432 * intel_wm_need_update - Check whether watermarks need updating
13433 * @plane: drm plane
13434 * @state: new plane state
13435 *
13436 * Check current plane state versus the new one to determine whether
13437 * watermarks need to be recalculated.
13438 *
13439 * Returns true or false.
13440 */
13441 bool intel_wm_need_update(struct drm_plane *plane,
13442 struct drm_plane_state *state)
13443 {
13444 /* Update watermarks on tiling changes. */
13445 if (!plane->state->fb || !state->fb ||
13446 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13447 plane->state->rotation != state->rotation)
13448 return true;
13449
13450 return false;
13451 }
13452
13453 /**
13454 * intel_prepare_plane_fb - Prepare fb for usage on plane
13455 * @plane: drm plane to prepare for
13456 * @fb: framebuffer to prepare for presentation
13457 *
13458 * Prepares a framebuffer for usage on a display plane. Generally this
13459 * involves pinning the underlying object and updating the frontbuffer tracking
13460 * bits. Some older platforms need special physical address handling for
13461 * cursor planes.
13462 *
13463 * Returns 0 on success, negative error code on failure.
13464 */
13465 int
13466 intel_prepare_plane_fb(struct drm_plane *plane,
13467 struct drm_framebuffer *fb,
13468 const struct drm_plane_state *new_state)
13469 {
13470 struct drm_device *dev = plane->dev;
13471 struct intel_plane *intel_plane = to_intel_plane(plane);
13472 enum pipe pipe = intel_plane->pipe;
13473 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13474 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13475 unsigned frontbuffer_bits = 0;
13476 int ret = 0;
13477
13478 if (!obj)
13479 return 0;
13480
13481 switch (plane->type) {
13482 case DRM_PLANE_TYPE_PRIMARY:
13483 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13484 break;
13485 case DRM_PLANE_TYPE_CURSOR:
13486 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13487 break;
13488 case DRM_PLANE_TYPE_OVERLAY:
13489 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13490 break;
13491 }
13492
13493 mutex_lock(&dev->struct_mutex);
13494
13495 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13496 INTEL_INFO(dev)->cursor_needs_physical) {
13497 int align = IS_I830(dev) ? 16 * 1024 : 256;
13498 ret = i915_gem_object_attach_phys(obj, align);
13499 if (ret)
13500 DRM_DEBUG_KMS("failed to attach phys object\n");
13501 } else {
13502 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13503 }
13504
13505 if (ret == 0)
13506 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13507
13508 mutex_unlock(&dev->struct_mutex);
13509
13510 return ret;
13511 }
13512
13513 /**
13514 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13515 * @plane: drm plane to clean up for
13516 * @fb: old framebuffer that was on plane
13517 *
13518 * Cleans up a framebuffer that has just been removed from a plane.
13519 */
13520 void
13521 intel_cleanup_plane_fb(struct drm_plane *plane,
13522 struct drm_framebuffer *fb,
13523 const struct drm_plane_state *old_state)
13524 {
13525 struct drm_device *dev = plane->dev;
13526 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13527
13528 if (WARN_ON(!obj))
13529 return;
13530
13531 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13532 !INTEL_INFO(dev)->cursor_needs_physical) {
13533 mutex_lock(&dev->struct_mutex);
13534 intel_unpin_fb_obj(fb, old_state);
13535 mutex_unlock(&dev->struct_mutex);
13536 }
13537 }
13538
13539 int
13540 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13541 {
13542 int max_scale;
13543 struct drm_device *dev;
13544 struct drm_i915_private *dev_priv;
13545 int crtc_clock, cdclk;
13546
13547 if (!intel_crtc || !crtc_state)
13548 return DRM_PLANE_HELPER_NO_SCALING;
13549
13550 dev = intel_crtc->base.dev;
13551 dev_priv = dev->dev_private;
13552 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13553 cdclk = dev_priv->display.get_display_clock_speed(dev);
13554
13555 if (!crtc_clock || !cdclk)
13556 return DRM_PLANE_HELPER_NO_SCALING;
13557
13558 /*
13559 * skl max scale is lower of:
13560 * close to 3 but not 3, -1 is for that purpose
13561 * or
13562 * cdclk/crtc_clock
13563 */
13564 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13565
13566 return max_scale;
13567 }
13568
13569 static int
13570 intel_check_primary_plane(struct drm_plane *plane,
13571 struct intel_plane_state *state)
13572 {
13573 struct drm_device *dev = plane->dev;
13574 struct drm_i915_private *dev_priv = dev->dev_private;
13575 struct drm_crtc *crtc = state->base.crtc;
13576 struct intel_crtc *intel_crtc;
13577 struct intel_crtc_state *crtc_state;
13578 struct drm_framebuffer *fb = state->base.fb;
13579 struct drm_rect *dest = &state->dst;
13580 struct drm_rect *src = &state->src;
13581 const struct drm_rect *clip = &state->clip;
13582 bool can_position = false;
13583 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13584 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13585 int ret;
13586
13587 crtc = crtc ? crtc : plane->crtc;
13588 intel_crtc = to_intel_crtc(crtc);
13589 crtc_state = state->base.state ?
13590 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13591
13592 if (INTEL_INFO(dev)->gen >= 9) {
13593 /* use scaler when colorkey is not required */
13594 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13595 min_scale = 1;
13596 max_scale = skl_max_scale(intel_crtc, crtc_state);
13597 }
13598 can_position = true;
13599 }
13600
13601 ret = drm_plane_helper_check_update(plane, crtc, fb,
13602 src, dest, clip,
13603 min_scale,
13604 max_scale,
13605 can_position, true,
13606 &state->visible);
13607 if (ret)
13608 return ret;
13609
13610 if (intel_crtc->active) {
13611 struct intel_plane_state *old_state =
13612 to_intel_plane_state(plane->state);
13613
13614 intel_crtc->atomic.wait_for_flips = true;
13615
13616 /*
13617 * FBC does not work on some platforms for rotated
13618 * planes, so disable it when rotation is not 0 and
13619 * update it when rotation is set back to 0.
13620 *
13621 * FIXME: This is redundant with the fbc update done in
13622 * the primary plane enable function except that that
13623 * one is done too late. We eventually need to unify
13624 * this.
13625 */
13626 if (state->visible &&
13627 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13628 dev_priv->fbc.crtc == intel_crtc &&
13629 state->base.rotation != BIT(DRM_ROTATE_0)) {
13630 intel_crtc->atomic.disable_fbc = true;
13631 }
13632
13633 if (state->visible && !old_state->visible) {
13634 /*
13635 * BDW signals flip done immediately if the plane
13636 * is disabled, even if the plane enable is already
13637 * armed to occur at the next vblank :(
13638 */
13639 if (IS_BROADWELL(dev))
13640 intel_crtc->atomic.wait_vblank = true;
13641
13642 if (crtc_state && !needs_modeset(&crtc_state->base))
13643 intel_crtc->atomic.post_enable_primary = true;
13644 }
13645
13646 if (!state->visible && old_state->visible &&
13647 crtc_state && !needs_modeset(&crtc_state->base))
13648 intel_crtc->atomic.pre_disable_primary = true;
13649
13650 intel_crtc->atomic.fb_bits |=
13651 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13652
13653 intel_crtc->atomic.update_fbc = true;
13654
13655 if (intel_wm_need_update(plane, &state->base))
13656 intel_crtc->atomic.update_wm = true;
13657 }
13658
13659 if (INTEL_INFO(dev)->gen >= 9) {
13660 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13661 to_intel_plane(plane), state, 0);
13662 if (ret)
13663 return ret;
13664 }
13665
13666 return 0;
13667 }
13668
13669 static void
13670 intel_commit_primary_plane(struct drm_plane *plane,
13671 struct intel_plane_state *state)
13672 {
13673 struct drm_crtc *crtc = state->base.crtc;
13674 struct drm_framebuffer *fb = state->base.fb;
13675 struct drm_device *dev = plane->dev;
13676 struct drm_i915_private *dev_priv = dev->dev_private;
13677 struct intel_crtc *intel_crtc;
13678 struct drm_rect *src = &state->src;
13679
13680 crtc = crtc ? crtc : plane->crtc;
13681 intel_crtc = to_intel_crtc(crtc);
13682
13683 plane->fb = fb;
13684 crtc->x = src->x1 >> 16;
13685 crtc->y = src->y1 >> 16;
13686
13687 if (intel_crtc->active) {
13688 if (state->visible)
13689 /* FIXME: kill this fastboot hack */
13690 intel_update_pipe_size(intel_crtc);
13691
13692 dev_priv->display.update_primary_plane(crtc, plane->fb,
13693 crtc->x, crtc->y);
13694 }
13695 }
13696
13697 static void
13698 intel_disable_primary_plane(struct drm_plane *plane,
13699 struct drm_crtc *crtc,
13700 bool force)
13701 {
13702 struct drm_device *dev = plane->dev;
13703 struct drm_i915_private *dev_priv = dev->dev_private;
13704
13705 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13706 }
13707
13708 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13709 {
13710 struct drm_device *dev = crtc->dev;
13711 struct drm_i915_private *dev_priv = dev->dev_private;
13712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13713 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
13714 struct intel_plane *intel_plane;
13715 struct drm_plane *p;
13716 unsigned fb_bits = 0;
13717
13718 /* Track fb's for any planes being disabled */
13719 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13720 intel_plane = to_intel_plane(p);
13721
13722 if (intel_crtc->atomic.disabled_planes &
13723 (1 << drm_plane_index(p))) {
13724 switch (p->type) {
13725 case DRM_PLANE_TYPE_PRIMARY:
13726 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13727 break;
13728 case DRM_PLANE_TYPE_CURSOR:
13729 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13730 break;
13731 case DRM_PLANE_TYPE_OVERLAY:
13732 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13733 break;
13734 }
13735
13736 mutex_lock(&dev->struct_mutex);
13737 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13738 mutex_unlock(&dev->struct_mutex);
13739 }
13740 }
13741
13742 if (intel_crtc->atomic.wait_for_flips)
13743 intel_crtc_wait_for_pending_flips(crtc);
13744
13745 if (intel_crtc->atomic.disable_fbc)
13746 intel_fbc_disable(dev);
13747
13748 if (intel_crtc->atomic.pre_disable_primary)
13749 intel_pre_disable_primary(crtc);
13750
13751 if (intel_crtc->atomic.update_wm)
13752 intel_update_watermarks(crtc);
13753
13754 intel_runtime_pm_get(dev_priv);
13755
13756 /* Perform vblank evasion around commit operation */
13757 if (crtc_state->active && !needs_modeset(crtc_state))
13758 intel_crtc->atomic.evade =
13759 intel_pipe_update_start(intel_crtc,
13760 &intel_crtc->atomic.start_vbl_count);
13761 }
13762
13763 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13764 {
13765 struct drm_device *dev = crtc->dev;
13766 struct drm_i915_private *dev_priv = dev->dev_private;
13767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13768 struct drm_plane *p;
13769
13770 if (intel_crtc->atomic.evade)
13771 intel_pipe_update_end(intel_crtc,
13772 intel_crtc->atomic.start_vbl_count);
13773
13774 intel_runtime_pm_put(dev_priv);
13775
13776 if (intel_crtc->atomic.wait_vblank && intel_crtc->active)
13777 intel_wait_for_vblank(dev, intel_crtc->pipe);
13778
13779 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13780
13781 if (intel_crtc->atomic.update_fbc) {
13782 mutex_lock(&dev->struct_mutex);
13783 intel_fbc_update(dev);
13784 mutex_unlock(&dev->struct_mutex);
13785 }
13786
13787 if (intel_crtc->atomic.post_enable_primary)
13788 intel_post_enable_primary(crtc);
13789
13790 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13791 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13792 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13793 false, false);
13794
13795 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13796 }
13797
13798 /**
13799 * intel_plane_destroy - destroy a plane
13800 * @plane: plane to destroy
13801 *
13802 * Common destruction function for all types of planes (primary, cursor,
13803 * sprite).
13804 */
13805 void intel_plane_destroy(struct drm_plane *plane)
13806 {
13807 struct intel_plane *intel_plane = to_intel_plane(plane);
13808 drm_plane_cleanup(plane);
13809 kfree(intel_plane);
13810 }
13811
13812 const struct drm_plane_funcs intel_plane_funcs = {
13813 .update_plane = drm_atomic_helper_update_plane,
13814 .disable_plane = drm_atomic_helper_disable_plane,
13815 .destroy = intel_plane_destroy,
13816 .set_property = drm_atomic_helper_plane_set_property,
13817 .atomic_get_property = intel_plane_atomic_get_property,
13818 .atomic_set_property = intel_plane_atomic_set_property,
13819 .atomic_duplicate_state = intel_plane_duplicate_state,
13820 .atomic_destroy_state = intel_plane_destroy_state,
13821
13822 };
13823
13824 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13825 int pipe)
13826 {
13827 struct intel_plane *primary;
13828 struct intel_plane_state *state;
13829 const uint32_t *intel_primary_formats;
13830 int num_formats;
13831
13832 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13833 if (primary == NULL)
13834 return NULL;
13835
13836 state = intel_create_plane_state(&primary->base);
13837 if (!state) {
13838 kfree(primary);
13839 return NULL;
13840 }
13841 primary->base.state = &state->base;
13842
13843 primary->can_scale = false;
13844 primary->max_downscale = 1;
13845 if (INTEL_INFO(dev)->gen >= 9) {
13846 primary->can_scale = true;
13847 state->scaler_id = -1;
13848 }
13849 primary->pipe = pipe;
13850 primary->plane = pipe;
13851 primary->check_plane = intel_check_primary_plane;
13852 primary->commit_plane = intel_commit_primary_plane;
13853 primary->disable_plane = intel_disable_primary_plane;
13854 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13855 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13856 primary->plane = !pipe;
13857
13858 if (INTEL_INFO(dev)->gen >= 9) {
13859 intel_primary_formats = skl_primary_formats;
13860 num_formats = ARRAY_SIZE(skl_primary_formats);
13861 } else if (INTEL_INFO(dev)->gen >= 4) {
13862 intel_primary_formats = i965_primary_formats;
13863 num_formats = ARRAY_SIZE(i965_primary_formats);
13864 } else {
13865 intel_primary_formats = i8xx_primary_formats;
13866 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13867 }
13868
13869 drm_universal_plane_init(dev, &primary->base, 0,
13870 &intel_plane_funcs,
13871 intel_primary_formats, num_formats,
13872 DRM_PLANE_TYPE_PRIMARY);
13873
13874 if (INTEL_INFO(dev)->gen >= 4)
13875 intel_create_rotation_property(dev, primary);
13876
13877 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13878
13879 return &primary->base;
13880 }
13881
13882 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13883 {
13884 if (!dev->mode_config.rotation_property) {
13885 unsigned long flags = BIT(DRM_ROTATE_0) |
13886 BIT(DRM_ROTATE_180);
13887
13888 if (INTEL_INFO(dev)->gen >= 9)
13889 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13890
13891 dev->mode_config.rotation_property =
13892 drm_mode_create_rotation_property(dev, flags);
13893 }
13894 if (dev->mode_config.rotation_property)
13895 drm_object_attach_property(&plane->base.base,
13896 dev->mode_config.rotation_property,
13897 plane->base.state->rotation);
13898 }
13899
13900 static int
13901 intel_check_cursor_plane(struct drm_plane *plane,
13902 struct intel_plane_state *state)
13903 {
13904 struct drm_crtc *crtc = state->base.crtc;
13905 struct drm_device *dev = plane->dev;
13906 struct drm_framebuffer *fb = state->base.fb;
13907 struct drm_rect *dest = &state->dst;
13908 struct drm_rect *src = &state->src;
13909 const struct drm_rect *clip = &state->clip;
13910 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13911 struct intel_crtc *intel_crtc;
13912 unsigned stride;
13913 int ret;
13914
13915 crtc = crtc ? crtc : plane->crtc;
13916 intel_crtc = to_intel_crtc(crtc);
13917
13918 ret = drm_plane_helper_check_update(plane, crtc, fb,
13919 src, dest, clip,
13920 DRM_PLANE_HELPER_NO_SCALING,
13921 DRM_PLANE_HELPER_NO_SCALING,
13922 true, true, &state->visible);
13923 if (ret)
13924 return ret;
13925
13926
13927 /* if we want to turn off the cursor ignore width and height */
13928 if (!obj)
13929 goto finish;
13930
13931 /* Check for which cursor types we support */
13932 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13933 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13934 state->base.crtc_w, state->base.crtc_h);
13935 return -EINVAL;
13936 }
13937
13938 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13939 if (obj->base.size < stride * state->base.crtc_h) {
13940 DRM_DEBUG_KMS("buffer is too small\n");
13941 return -ENOMEM;
13942 }
13943
13944 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13945 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13946 ret = -EINVAL;
13947 }
13948
13949 finish:
13950 if (intel_crtc->active) {
13951 if (plane->state->crtc_w != state->base.crtc_w)
13952 intel_crtc->atomic.update_wm = true;
13953
13954 intel_crtc->atomic.fb_bits |=
13955 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13956 }
13957
13958 return ret;
13959 }
13960
13961 static void
13962 intel_disable_cursor_plane(struct drm_plane *plane,
13963 struct drm_crtc *crtc,
13964 bool force)
13965 {
13966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13967
13968 if (!force) {
13969 plane->fb = NULL;
13970 intel_crtc->cursor_bo = NULL;
13971 intel_crtc->cursor_addr = 0;
13972 }
13973
13974 intel_crtc_update_cursor(crtc, false);
13975 }
13976
13977 static void
13978 intel_commit_cursor_plane(struct drm_plane *plane,
13979 struct intel_plane_state *state)
13980 {
13981 struct drm_crtc *crtc = state->base.crtc;
13982 struct drm_device *dev = plane->dev;
13983 struct intel_crtc *intel_crtc;
13984 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13985 uint32_t addr;
13986
13987 crtc = crtc ? crtc : plane->crtc;
13988 intel_crtc = to_intel_crtc(crtc);
13989
13990 plane->fb = state->base.fb;
13991 crtc->cursor_x = state->base.crtc_x;
13992 crtc->cursor_y = state->base.crtc_y;
13993
13994 if (intel_crtc->cursor_bo == obj)
13995 goto update;
13996
13997 if (!obj)
13998 addr = 0;
13999 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14000 addr = i915_gem_obj_ggtt_offset(obj);
14001 else
14002 addr = obj->phys_handle->busaddr;
14003
14004 intel_crtc->cursor_addr = addr;
14005 intel_crtc->cursor_bo = obj;
14006 update:
14007
14008 if (intel_crtc->active)
14009 intel_crtc_update_cursor(crtc, state->visible);
14010 }
14011
14012 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14013 int pipe)
14014 {
14015 struct intel_plane *cursor;
14016 struct intel_plane_state *state;
14017
14018 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14019 if (cursor == NULL)
14020 return NULL;
14021
14022 state = intel_create_plane_state(&cursor->base);
14023 if (!state) {
14024 kfree(cursor);
14025 return NULL;
14026 }
14027 cursor->base.state = &state->base;
14028
14029 cursor->can_scale = false;
14030 cursor->max_downscale = 1;
14031 cursor->pipe = pipe;
14032 cursor->plane = pipe;
14033 cursor->check_plane = intel_check_cursor_plane;
14034 cursor->commit_plane = intel_commit_cursor_plane;
14035 cursor->disable_plane = intel_disable_cursor_plane;
14036
14037 drm_universal_plane_init(dev, &cursor->base, 0,
14038 &intel_plane_funcs,
14039 intel_cursor_formats,
14040 ARRAY_SIZE(intel_cursor_formats),
14041 DRM_PLANE_TYPE_CURSOR);
14042
14043 if (INTEL_INFO(dev)->gen >= 4) {
14044 if (!dev->mode_config.rotation_property)
14045 dev->mode_config.rotation_property =
14046 drm_mode_create_rotation_property(dev,
14047 BIT(DRM_ROTATE_0) |
14048 BIT(DRM_ROTATE_180));
14049 if (dev->mode_config.rotation_property)
14050 drm_object_attach_property(&cursor->base.base,
14051 dev->mode_config.rotation_property,
14052 state->base.rotation);
14053 }
14054
14055 if (INTEL_INFO(dev)->gen >=9)
14056 state->scaler_id = -1;
14057
14058 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14059
14060 return &cursor->base;
14061 }
14062
14063 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14064 struct intel_crtc_state *crtc_state)
14065 {
14066 int i;
14067 struct intel_scaler *intel_scaler;
14068 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14069
14070 for (i = 0; i < intel_crtc->num_scalers; i++) {
14071 intel_scaler = &scaler_state->scalers[i];
14072 intel_scaler->in_use = 0;
14073 intel_scaler->id = i;
14074
14075 intel_scaler->mode = PS_SCALER_MODE_DYN;
14076 }
14077
14078 scaler_state->scaler_id = -1;
14079 }
14080
14081 static void intel_crtc_init(struct drm_device *dev, int pipe)
14082 {
14083 struct drm_i915_private *dev_priv = dev->dev_private;
14084 struct intel_crtc *intel_crtc;
14085 struct intel_crtc_state *crtc_state = NULL;
14086 struct drm_plane *primary = NULL;
14087 struct drm_plane *cursor = NULL;
14088 int i, ret;
14089
14090 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14091 if (intel_crtc == NULL)
14092 return;
14093
14094 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14095 if (!crtc_state)
14096 goto fail;
14097 intel_crtc->config = crtc_state;
14098 intel_crtc->base.state = &crtc_state->base;
14099 crtc_state->base.crtc = &intel_crtc->base;
14100
14101 /* initialize shared scalers */
14102 if (INTEL_INFO(dev)->gen >= 9) {
14103 if (pipe == PIPE_C)
14104 intel_crtc->num_scalers = 1;
14105 else
14106 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14107
14108 skl_init_scalers(dev, intel_crtc, crtc_state);
14109 }
14110
14111 primary = intel_primary_plane_create(dev, pipe);
14112 if (!primary)
14113 goto fail;
14114
14115 cursor = intel_cursor_plane_create(dev, pipe);
14116 if (!cursor)
14117 goto fail;
14118
14119 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14120 cursor, &intel_crtc_funcs);
14121 if (ret)
14122 goto fail;
14123
14124 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14125 for (i = 0; i < 256; i++) {
14126 intel_crtc->lut_r[i] = i;
14127 intel_crtc->lut_g[i] = i;
14128 intel_crtc->lut_b[i] = i;
14129 }
14130
14131 /*
14132 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14133 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14134 */
14135 intel_crtc->pipe = pipe;
14136 intel_crtc->plane = pipe;
14137 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14138 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14139 intel_crtc->plane = !pipe;
14140 }
14141
14142 intel_crtc->cursor_base = ~0;
14143 intel_crtc->cursor_cntl = ~0;
14144 intel_crtc->cursor_size = ~0;
14145
14146 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14147 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14148 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14149 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14150
14151 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14152
14153 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14154 return;
14155
14156 fail:
14157 if (primary)
14158 drm_plane_cleanup(primary);
14159 if (cursor)
14160 drm_plane_cleanup(cursor);
14161 kfree(crtc_state);
14162 kfree(intel_crtc);
14163 }
14164
14165 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14166 {
14167 struct drm_encoder *encoder = connector->base.encoder;
14168 struct drm_device *dev = connector->base.dev;
14169
14170 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14171
14172 if (!encoder || WARN_ON(!encoder->crtc))
14173 return INVALID_PIPE;
14174
14175 return to_intel_crtc(encoder->crtc)->pipe;
14176 }
14177
14178 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14179 struct drm_file *file)
14180 {
14181 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14182 struct drm_crtc *drmmode_crtc;
14183 struct intel_crtc *crtc;
14184
14185 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14186
14187 if (!drmmode_crtc) {
14188 DRM_ERROR("no such CRTC id\n");
14189 return -ENOENT;
14190 }
14191
14192 crtc = to_intel_crtc(drmmode_crtc);
14193 pipe_from_crtc_id->pipe = crtc->pipe;
14194
14195 return 0;
14196 }
14197
14198 static int intel_encoder_clones(struct intel_encoder *encoder)
14199 {
14200 struct drm_device *dev = encoder->base.dev;
14201 struct intel_encoder *source_encoder;
14202 int index_mask = 0;
14203 int entry = 0;
14204
14205 for_each_intel_encoder(dev, source_encoder) {
14206 if (encoders_cloneable(encoder, source_encoder))
14207 index_mask |= (1 << entry);
14208
14209 entry++;
14210 }
14211
14212 return index_mask;
14213 }
14214
14215 static bool has_edp_a(struct drm_device *dev)
14216 {
14217 struct drm_i915_private *dev_priv = dev->dev_private;
14218
14219 if (!IS_MOBILE(dev))
14220 return false;
14221
14222 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14223 return false;
14224
14225 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14226 return false;
14227
14228 return true;
14229 }
14230
14231 static bool intel_crt_present(struct drm_device *dev)
14232 {
14233 struct drm_i915_private *dev_priv = dev->dev_private;
14234
14235 if (INTEL_INFO(dev)->gen >= 9)
14236 return false;
14237
14238 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14239 return false;
14240
14241 if (IS_CHERRYVIEW(dev))
14242 return false;
14243
14244 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14245 return false;
14246
14247 return true;
14248 }
14249
14250 static void intel_setup_outputs(struct drm_device *dev)
14251 {
14252 struct drm_i915_private *dev_priv = dev->dev_private;
14253 struct intel_encoder *encoder;
14254 bool dpd_is_edp = false;
14255
14256 intel_lvds_init(dev);
14257
14258 if (intel_crt_present(dev))
14259 intel_crt_init(dev);
14260
14261 if (IS_BROXTON(dev)) {
14262 /*
14263 * FIXME: Broxton doesn't support port detection via the
14264 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14265 * detect the ports.
14266 */
14267 intel_ddi_init(dev, PORT_A);
14268 intel_ddi_init(dev, PORT_B);
14269 intel_ddi_init(dev, PORT_C);
14270 } else if (HAS_DDI(dev)) {
14271 int found;
14272
14273 /*
14274 * Haswell uses DDI functions to detect digital outputs.
14275 * On SKL pre-D0 the strap isn't connected, so we assume
14276 * it's there.
14277 */
14278 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14279 /* WaIgnoreDDIAStrap: skl */
14280 if (found ||
14281 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14282 intel_ddi_init(dev, PORT_A);
14283
14284 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14285 * register */
14286 found = I915_READ(SFUSE_STRAP);
14287
14288 if (found & SFUSE_STRAP_DDIB_DETECTED)
14289 intel_ddi_init(dev, PORT_B);
14290 if (found & SFUSE_STRAP_DDIC_DETECTED)
14291 intel_ddi_init(dev, PORT_C);
14292 if (found & SFUSE_STRAP_DDID_DETECTED)
14293 intel_ddi_init(dev, PORT_D);
14294 } else if (HAS_PCH_SPLIT(dev)) {
14295 int found;
14296 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14297
14298 if (has_edp_a(dev))
14299 intel_dp_init(dev, DP_A, PORT_A);
14300
14301 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14302 /* PCH SDVOB multiplex with HDMIB */
14303 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14304 if (!found)
14305 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14306 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14307 intel_dp_init(dev, PCH_DP_B, PORT_B);
14308 }
14309
14310 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14311 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14312
14313 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14314 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14315
14316 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14317 intel_dp_init(dev, PCH_DP_C, PORT_C);
14318
14319 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14320 intel_dp_init(dev, PCH_DP_D, PORT_D);
14321 } else if (IS_VALLEYVIEW(dev)) {
14322 /*
14323 * The DP_DETECTED bit is the latched state of the DDC
14324 * SDA pin at boot. However since eDP doesn't require DDC
14325 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14326 * eDP ports may have been muxed to an alternate function.
14327 * Thus we can't rely on the DP_DETECTED bit alone to detect
14328 * eDP ports. Consult the VBT as well as DP_DETECTED to
14329 * detect eDP ports.
14330 */
14331 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14332 !intel_dp_is_edp(dev, PORT_B))
14333 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14334 PORT_B);
14335 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14336 intel_dp_is_edp(dev, PORT_B))
14337 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14338
14339 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14340 !intel_dp_is_edp(dev, PORT_C))
14341 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14342 PORT_C);
14343 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14344 intel_dp_is_edp(dev, PORT_C))
14345 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14346
14347 if (IS_CHERRYVIEW(dev)) {
14348 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14349 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14350 PORT_D);
14351 /* eDP not supported on port D, so don't check VBT */
14352 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14353 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14354 }
14355
14356 intel_dsi_init(dev);
14357 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14358 bool found = false;
14359
14360 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14361 DRM_DEBUG_KMS("probing SDVOB\n");
14362 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14363 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14364 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14365 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14366 }
14367
14368 if (!found && SUPPORTS_INTEGRATED_DP(dev))
14369 intel_dp_init(dev, DP_B, PORT_B);
14370 }
14371
14372 /* Before G4X SDVOC doesn't have its own detect register */
14373
14374 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14375 DRM_DEBUG_KMS("probing SDVOC\n");
14376 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14377 }
14378
14379 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14380
14381 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14382 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14383 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14384 }
14385 if (SUPPORTS_INTEGRATED_DP(dev))
14386 intel_dp_init(dev, DP_C, PORT_C);
14387 }
14388
14389 if (SUPPORTS_INTEGRATED_DP(dev) &&
14390 (I915_READ(DP_D) & DP_DETECTED))
14391 intel_dp_init(dev, DP_D, PORT_D);
14392 } else if (IS_GEN2(dev))
14393 intel_dvo_init(dev);
14394
14395 if (SUPPORTS_TV(dev))
14396 intel_tv_init(dev);
14397
14398 intel_psr_init(dev);
14399
14400 for_each_intel_encoder(dev, encoder) {
14401 encoder->base.possible_crtcs = encoder->crtc_mask;
14402 encoder->base.possible_clones =
14403 intel_encoder_clones(encoder);
14404 }
14405
14406 intel_init_pch_refclk(dev);
14407
14408 drm_helper_move_panel_connectors_to_head(dev);
14409 }
14410
14411 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14412 {
14413 struct drm_device *dev = fb->dev;
14414 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14415
14416 drm_framebuffer_cleanup(fb);
14417 mutex_lock(&dev->struct_mutex);
14418 WARN_ON(!intel_fb->obj->framebuffer_references--);
14419 drm_gem_object_unreference(&intel_fb->obj->base);
14420 mutex_unlock(&dev->struct_mutex);
14421 kfree(intel_fb);
14422 }
14423
14424 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14425 struct drm_file *file,
14426 unsigned int *handle)
14427 {
14428 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14429 struct drm_i915_gem_object *obj = intel_fb->obj;
14430
14431 return drm_gem_handle_create(file, &obj->base, handle);
14432 }
14433
14434 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14435 .destroy = intel_user_framebuffer_destroy,
14436 .create_handle = intel_user_framebuffer_create_handle,
14437 };
14438
14439 static
14440 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14441 uint32_t pixel_format)
14442 {
14443 u32 gen = INTEL_INFO(dev)->gen;
14444
14445 if (gen >= 9) {
14446 /* "The stride in bytes must not exceed the of the size of 8K
14447 * pixels and 32K bytes."
14448 */
14449 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14450 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14451 return 32*1024;
14452 } else if (gen >= 4) {
14453 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14454 return 16*1024;
14455 else
14456 return 32*1024;
14457 } else if (gen >= 3) {
14458 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14459 return 8*1024;
14460 else
14461 return 16*1024;
14462 } else {
14463 /* XXX DSPC is limited to 4k tiled */
14464 return 8*1024;
14465 }
14466 }
14467
14468 static int intel_framebuffer_init(struct drm_device *dev,
14469 struct intel_framebuffer *intel_fb,
14470 struct drm_mode_fb_cmd2 *mode_cmd,
14471 struct drm_i915_gem_object *obj)
14472 {
14473 unsigned int aligned_height;
14474 int ret;
14475 u32 pitch_limit, stride_alignment;
14476
14477 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14478
14479 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14480 /* Enforce that fb modifier and tiling mode match, but only for
14481 * X-tiled. This is needed for FBC. */
14482 if (!!(obj->tiling_mode == I915_TILING_X) !=
14483 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14484 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14485 return -EINVAL;
14486 }
14487 } else {
14488 if (obj->tiling_mode == I915_TILING_X)
14489 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14490 else if (obj->tiling_mode == I915_TILING_Y) {
14491 DRM_DEBUG("No Y tiling for legacy addfb\n");
14492 return -EINVAL;
14493 }
14494 }
14495
14496 /* Passed in modifier sanity checking. */
14497 switch (mode_cmd->modifier[0]) {
14498 case I915_FORMAT_MOD_Y_TILED:
14499 case I915_FORMAT_MOD_Yf_TILED:
14500 if (INTEL_INFO(dev)->gen < 9) {
14501 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14502 mode_cmd->modifier[0]);
14503 return -EINVAL;
14504 }
14505 case DRM_FORMAT_MOD_NONE:
14506 case I915_FORMAT_MOD_X_TILED:
14507 break;
14508 default:
14509 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14510 mode_cmd->modifier[0]);
14511 return -EINVAL;
14512 }
14513
14514 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14515 mode_cmd->pixel_format);
14516 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14517 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14518 mode_cmd->pitches[0], stride_alignment);
14519 return -EINVAL;
14520 }
14521
14522 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14523 mode_cmd->pixel_format);
14524 if (mode_cmd->pitches[0] > pitch_limit) {
14525 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14526 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14527 "tiled" : "linear",
14528 mode_cmd->pitches[0], pitch_limit);
14529 return -EINVAL;
14530 }
14531
14532 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14533 mode_cmd->pitches[0] != obj->stride) {
14534 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14535 mode_cmd->pitches[0], obj->stride);
14536 return -EINVAL;
14537 }
14538
14539 /* Reject formats not supported by any plane early. */
14540 switch (mode_cmd->pixel_format) {
14541 case DRM_FORMAT_C8:
14542 case DRM_FORMAT_RGB565:
14543 case DRM_FORMAT_XRGB8888:
14544 case DRM_FORMAT_ARGB8888:
14545 break;
14546 case DRM_FORMAT_XRGB1555:
14547 if (INTEL_INFO(dev)->gen > 3) {
14548 DRM_DEBUG("unsupported pixel format: %s\n",
14549 drm_get_format_name(mode_cmd->pixel_format));
14550 return -EINVAL;
14551 }
14552 break;
14553 case DRM_FORMAT_ABGR8888:
14554 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14555 DRM_DEBUG("unsupported pixel format: %s\n",
14556 drm_get_format_name(mode_cmd->pixel_format));
14557 return -EINVAL;
14558 }
14559 break;
14560 case DRM_FORMAT_XBGR8888:
14561 case DRM_FORMAT_XRGB2101010:
14562 case DRM_FORMAT_XBGR2101010:
14563 if (INTEL_INFO(dev)->gen < 4) {
14564 DRM_DEBUG("unsupported pixel format: %s\n",
14565 drm_get_format_name(mode_cmd->pixel_format));
14566 return -EINVAL;
14567 }
14568 break;
14569 case DRM_FORMAT_ABGR2101010:
14570 if (!IS_VALLEYVIEW(dev)) {
14571 DRM_DEBUG("unsupported pixel format: %s\n",
14572 drm_get_format_name(mode_cmd->pixel_format));
14573 return -EINVAL;
14574 }
14575 break;
14576 case DRM_FORMAT_YUYV:
14577 case DRM_FORMAT_UYVY:
14578 case DRM_FORMAT_YVYU:
14579 case DRM_FORMAT_VYUY:
14580 if (INTEL_INFO(dev)->gen < 5) {
14581 DRM_DEBUG("unsupported pixel format: %s\n",
14582 drm_get_format_name(mode_cmd->pixel_format));
14583 return -EINVAL;
14584 }
14585 break;
14586 default:
14587 DRM_DEBUG("unsupported pixel format: %s\n",
14588 drm_get_format_name(mode_cmd->pixel_format));
14589 return -EINVAL;
14590 }
14591
14592 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14593 if (mode_cmd->offsets[0] != 0)
14594 return -EINVAL;
14595
14596 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14597 mode_cmd->pixel_format,
14598 mode_cmd->modifier[0]);
14599 /* FIXME drm helper for size checks (especially planar formats)? */
14600 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14601 return -EINVAL;
14602
14603 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14604 intel_fb->obj = obj;
14605 intel_fb->obj->framebuffer_references++;
14606
14607 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14608 if (ret) {
14609 DRM_ERROR("framebuffer init failed %d\n", ret);
14610 return ret;
14611 }
14612
14613 return 0;
14614 }
14615
14616 static struct drm_framebuffer *
14617 intel_user_framebuffer_create(struct drm_device *dev,
14618 struct drm_file *filp,
14619 struct drm_mode_fb_cmd2 *mode_cmd)
14620 {
14621 struct drm_i915_gem_object *obj;
14622
14623 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14624 mode_cmd->handles[0]));
14625 if (&obj->base == NULL)
14626 return ERR_PTR(-ENOENT);
14627
14628 return intel_framebuffer_create(dev, mode_cmd, obj);
14629 }
14630
14631 #ifndef CONFIG_DRM_I915_FBDEV
14632 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14633 {
14634 }
14635 #endif
14636
14637 static const struct drm_mode_config_funcs intel_mode_funcs = {
14638 .fb_create = intel_user_framebuffer_create,
14639 .output_poll_changed = intel_fbdev_output_poll_changed,
14640 .atomic_check = intel_atomic_check,
14641 .atomic_commit = intel_atomic_commit,
14642 .atomic_state_alloc = intel_atomic_state_alloc,
14643 .atomic_state_clear = intel_atomic_state_clear,
14644 };
14645
14646 /* Set up chip specific display functions */
14647 static void intel_init_display(struct drm_device *dev)
14648 {
14649 struct drm_i915_private *dev_priv = dev->dev_private;
14650
14651 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14652 dev_priv->display.find_dpll = g4x_find_best_dpll;
14653 else if (IS_CHERRYVIEW(dev))
14654 dev_priv->display.find_dpll = chv_find_best_dpll;
14655 else if (IS_VALLEYVIEW(dev))
14656 dev_priv->display.find_dpll = vlv_find_best_dpll;
14657 else if (IS_PINEVIEW(dev))
14658 dev_priv->display.find_dpll = pnv_find_best_dpll;
14659 else
14660 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14661
14662 if (INTEL_INFO(dev)->gen >= 9) {
14663 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14664 dev_priv->display.get_initial_plane_config =
14665 skylake_get_initial_plane_config;
14666 dev_priv->display.crtc_compute_clock =
14667 haswell_crtc_compute_clock;
14668 dev_priv->display.crtc_enable = haswell_crtc_enable;
14669 dev_priv->display.crtc_disable = haswell_crtc_disable;
14670 dev_priv->display.update_primary_plane =
14671 skylake_update_primary_plane;
14672 } else if (HAS_DDI(dev)) {
14673 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14674 dev_priv->display.get_initial_plane_config =
14675 ironlake_get_initial_plane_config;
14676 dev_priv->display.crtc_compute_clock =
14677 haswell_crtc_compute_clock;
14678 dev_priv->display.crtc_enable = haswell_crtc_enable;
14679 dev_priv->display.crtc_disable = haswell_crtc_disable;
14680 dev_priv->display.update_primary_plane =
14681 ironlake_update_primary_plane;
14682 } else if (HAS_PCH_SPLIT(dev)) {
14683 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14684 dev_priv->display.get_initial_plane_config =
14685 ironlake_get_initial_plane_config;
14686 dev_priv->display.crtc_compute_clock =
14687 ironlake_crtc_compute_clock;
14688 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14689 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14690 dev_priv->display.update_primary_plane =
14691 ironlake_update_primary_plane;
14692 } else if (IS_VALLEYVIEW(dev)) {
14693 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14694 dev_priv->display.get_initial_plane_config =
14695 i9xx_get_initial_plane_config;
14696 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14697 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14698 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14699 dev_priv->display.update_primary_plane =
14700 i9xx_update_primary_plane;
14701 } else {
14702 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14703 dev_priv->display.get_initial_plane_config =
14704 i9xx_get_initial_plane_config;
14705 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14706 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14707 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14708 dev_priv->display.update_primary_plane =
14709 i9xx_update_primary_plane;
14710 }
14711
14712 /* Returns the core display clock speed */
14713 if (IS_SKYLAKE(dev))
14714 dev_priv->display.get_display_clock_speed =
14715 skylake_get_display_clock_speed;
14716 else if (IS_BROADWELL(dev))
14717 dev_priv->display.get_display_clock_speed =
14718 broadwell_get_display_clock_speed;
14719 else if (IS_HASWELL(dev))
14720 dev_priv->display.get_display_clock_speed =
14721 haswell_get_display_clock_speed;
14722 else if (IS_VALLEYVIEW(dev))
14723 dev_priv->display.get_display_clock_speed =
14724 valleyview_get_display_clock_speed;
14725 else if (IS_GEN5(dev))
14726 dev_priv->display.get_display_clock_speed =
14727 ilk_get_display_clock_speed;
14728 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14729 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14730 dev_priv->display.get_display_clock_speed =
14731 i945_get_display_clock_speed;
14732 else if (IS_GM45(dev))
14733 dev_priv->display.get_display_clock_speed =
14734 gm45_get_display_clock_speed;
14735 else if (IS_CRESTLINE(dev))
14736 dev_priv->display.get_display_clock_speed =
14737 i965gm_get_display_clock_speed;
14738 else if (IS_PINEVIEW(dev))
14739 dev_priv->display.get_display_clock_speed =
14740 pnv_get_display_clock_speed;
14741 else if (IS_G33(dev) || IS_G4X(dev))
14742 dev_priv->display.get_display_clock_speed =
14743 g33_get_display_clock_speed;
14744 else if (IS_I915G(dev))
14745 dev_priv->display.get_display_clock_speed =
14746 i915_get_display_clock_speed;
14747 else if (IS_I945GM(dev) || IS_845G(dev))
14748 dev_priv->display.get_display_clock_speed =
14749 i9xx_misc_get_display_clock_speed;
14750 else if (IS_PINEVIEW(dev))
14751 dev_priv->display.get_display_clock_speed =
14752 pnv_get_display_clock_speed;
14753 else if (IS_I915GM(dev))
14754 dev_priv->display.get_display_clock_speed =
14755 i915gm_get_display_clock_speed;
14756 else if (IS_I865G(dev))
14757 dev_priv->display.get_display_clock_speed =
14758 i865_get_display_clock_speed;
14759 else if (IS_I85X(dev))
14760 dev_priv->display.get_display_clock_speed =
14761 i85x_get_display_clock_speed;
14762 else { /* 830 */
14763 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14764 dev_priv->display.get_display_clock_speed =
14765 i830_get_display_clock_speed;
14766 }
14767
14768 if (IS_GEN5(dev)) {
14769 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14770 } else if (IS_GEN6(dev)) {
14771 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14772 } else if (IS_IVYBRIDGE(dev)) {
14773 /* FIXME: detect B0+ stepping and use auto training */
14774 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14775 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14776 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14777 if (IS_BROADWELL(dev))
14778 dev_priv->display.modeset_global_resources =
14779 broadwell_modeset_global_resources;
14780 } else if (IS_VALLEYVIEW(dev)) {
14781 dev_priv->display.modeset_global_resources =
14782 valleyview_modeset_global_resources;
14783 } else if (IS_BROXTON(dev)) {
14784 dev_priv->display.modeset_global_resources =
14785 broxton_modeset_global_resources;
14786 }
14787
14788 switch (INTEL_INFO(dev)->gen) {
14789 case 2:
14790 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14791 break;
14792
14793 case 3:
14794 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14795 break;
14796
14797 case 4:
14798 case 5:
14799 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14800 break;
14801
14802 case 6:
14803 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14804 break;
14805 case 7:
14806 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14807 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14808 break;
14809 case 9:
14810 /* Drop through - unsupported since execlist only. */
14811 default:
14812 /* Default just returns -ENODEV to indicate unsupported */
14813 dev_priv->display.queue_flip = intel_default_queue_flip;
14814 }
14815
14816 intel_panel_init_backlight_funcs(dev);
14817
14818 mutex_init(&dev_priv->pps_mutex);
14819 }
14820
14821 /*
14822 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14823 * resume, or other times. This quirk makes sure that's the case for
14824 * affected systems.
14825 */
14826 static void quirk_pipea_force(struct drm_device *dev)
14827 {
14828 struct drm_i915_private *dev_priv = dev->dev_private;
14829
14830 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14831 DRM_INFO("applying pipe a force quirk\n");
14832 }
14833
14834 static void quirk_pipeb_force(struct drm_device *dev)
14835 {
14836 struct drm_i915_private *dev_priv = dev->dev_private;
14837
14838 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14839 DRM_INFO("applying pipe b force quirk\n");
14840 }
14841
14842 /*
14843 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14844 */
14845 static void quirk_ssc_force_disable(struct drm_device *dev)
14846 {
14847 struct drm_i915_private *dev_priv = dev->dev_private;
14848 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14849 DRM_INFO("applying lvds SSC disable quirk\n");
14850 }
14851
14852 /*
14853 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14854 * brightness value
14855 */
14856 static void quirk_invert_brightness(struct drm_device *dev)
14857 {
14858 struct drm_i915_private *dev_priv = dev->dev_private;
14859 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14860 DRM_INFO("applying inverted panel brightness quirk\n");
14861 }
14862
14863 /* Some VBT's incorrectly indicate no backlight is present */
14864 static void quirk_backlight_present(struct drm_device *dev)
14865 {
14866 struct drm_i915_private *dev_priv = dev->dev_private;
14867 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14868 DRM_INFO("applying backlight present quirk\n");
14869 }
14870
14871 struct intel_quirk {
14872 int device;
14873 int subsystem_vendor;
14874 int subsystem_device;
14875 void (*hook)(struct drm_device *dev);
14876 };
14877
14878 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14879 struct intel_dmi_quirk {
14880 void (*hook)(struct drm_device *dev);
14881 const struct dmi_system_id (*dmi_id_list)[];
14882 };
14883
14884 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14885 {
14886 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14887 return 1;
14888 }
14889
14890 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14891 {
14892 .dmi_id_list = &(const struct dmi_system_id[]) {
14893 {
14894 .callback = intel_dmi_reverse_brightness,
14895 .ident = "NCR Corporation",
14896 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14897 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14898 },
14899 },
14900 { } /* terminating entry */
14901 },
14902 .hook = quirk_invert_brightness,
14903 },
14904 };
14905
14906 static struct intel_quirk intel_quirks[] = {
14907 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14908 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14909
14910 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14911 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14912
14913 /* 830 needs to leave pipe A & dpll A up */
14914 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14915
14916 /* 830 needs to leave pipe B & dpll B up */
14917 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14918
14919 /* Lenovo U160 cannot use SSC on LVDS */
14920 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14921
14922 /* Sony Vaio Y cannot use SSC on LVDS */
14923 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14924
14925 /* Acer Aspire 5734Z must invert backlight brightness */
14926 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14927
14928 /* Acer/eMachines G725 */
14929 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14930
14931 /* Acer/eMachines e725 */
14932 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14933
14934 /* Acer/Packard Bell NCL20 */
14935 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14936
14937 /* Acer Aspire 4736Z */
14938 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14939
14940 /* Acer Aspire 5336 */
14941 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14942
14943 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14944 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14945
14946 /* Acer C720 Chromebook (Core i3 4005U) */
14947 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14948
14949 /* Apple Macbook 2,1 (Core 2 T7400) */
14950 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14951
14952 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14953 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14954
14955 /* HP Chromebook 14 (Celeron 2955U) */
14956 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14957
14958 /* Dell Chromebook 11 */
14959 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14960 };
14961
14962 static void intel_init_quirks(struct drm_device *dev)
14963 {
14964 struct pci_dev *d = dev->pdev;
14965 int i;
14966
14967 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14968 struct intel_quirk *q = &intel_quirks[i];
14969
14970 if (d->device == q->device &&
14971 (d->subsystem_vendor == q->subsystem_vendor ||
14972 q->subsystem_vendor == PCI_ANY_ID) &&
14973 (d->subsystem_device == q->subsystem_device ||
14974 q->subsystem_device == PCI_ANY_ID))
14975 q->hook(dev);
14976 }
14977 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14978 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14979 intel_dmi_quirks[i].hook(dev);
14980 }
14981 }
14982
14983 /* Disable the VGA plane that we never use */
14984 static void i915_disable_vga(struct drm_device *dev)
14985 {
14986 struct drm_i915_private *dev_priv = dev->dev_private;
14987 u8 sr1;
14988 u32 vga_reg = i915_vgacntrl_reg(dev);
14989
14990 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14991 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14992 outb(SR01, VGA_SR_INDEX);
14993 sr1 = inb(VGA_SR_DATA);
14994 outb(sr1 | 1<<5, VGA_SR_DATA);
14995 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14996 udelay(300);
14997
14998 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14999 POSTING_READ(vga_reg);
15000 }
15001
15002 void intel_modeset_init_hw(struct drm_device *dev)
15003 {
15004 intel_update_cdclk(dev);
15005 intel_prepare_ddi(dev);
15006 intel_init_clock_gating(dev);
15007 intel_enable_gt_powersave(dev);
15008 }
15009
15010 void intel_modeset_init(struct drm_device *dev)
15011 {
15012 struct drm_i915_private *dev_priv = dev->dev_private;
15013 int sprite, ret;
15014 enum pipe pipe;
15015 struct intel_crtc *crtc;
15016
15017 drm_mode_config_init(dev);
15018
15019 dev->mode_config.min_width = 0;
15020 dev->mode_config.min_height = 0;
15021
15022 dev->mode_config.preferred_depth = 24;
15023 dev->mode_config.prefer_shadow = 1;
15024
15025 dev->mode_config.allow_fb_modifiers = true;
15026
15027 dev->mode_config.funcs = &intel_mode_funcs;
15028
15029 intel_init_quirks(dev);
15030
15031 intel_init_pm(dev);
15032
15033 if (INTEL_INFO(dev)->num_pipes == 0)
15034 return;
15035
15036 intel_init_display(dev);
15037 intel_init_audio(dev);
15038
15039 if (IS_GEN2(dev)) {
15040 dev->mode_config.max_width = 2048;
15041 dev->mode_config.max_height = 2048;
15042 } else if (IS_GEN3(dev)) {
15043 dev->mode_config.max_width = 4096;
15044 dev->mode_config.max_height = 4096;
15045 } else {
15046 dev->mode_config.max_width = 8192;
15047 dev->mode_config.max_height = 8192;
15048 }
15049
15050 if (IS_845G(dev) || IS_I865G(dev)) {
15051 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15052 dev->mode_config.cursor_height = 1023;
15053 } else if (IS_GEN2(dev)) {
15054 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15055 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15056 } else {
15057 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15058 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15059 }
15060
15061 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15062
15063 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15064 INTEL_INFO(dev)->num_pipes,
15065 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15066
15067 for_each_pipe(dev_priv, pipe) {
15068 intel_crtc_init(dev, pipe);
15069 for_each_sprite(dev_priv, pipe, sprite) {
15070 ret = intel_plane_init(dev, pipe, sprite);
15071 if (ret)
15072 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15073 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15074 }
15075 }
15076
15077 intel_init_dpio(dev);
15078
15079 intel_shared_dpll_init(dev);
15080
15081 /* Just disable it once at startup */
15082 i915_disable_vga(dev);
15083 intel_setup_outputs(dev);
15084
15085 /* Just in case the BIOS is doing something questionable. */
15086 intel_fbc_disable(dev);
15087
15088 drm_modeset_lock_all(dev);
15089 intel_modeset_setup_hw_state(dev, false);
15090 drm_modeset_unlock_all(dev);
15091
15092 for_each_intel_crtc(dev, crtc) {
15093 if (!crtc->active)
15094 continue;
15095
15096 /*
15097 * Note that reserving the BIOS fb up front prevents us
15098 * from stuffing other stolen allocations like the ring
15099 * on top. This prevents some ugliness at boot time, and
15100 * can even allow for smooth boot transitions if the BIOS
15101 * fb is large enough for the active pipe configuration.
15102 */
15103 if (dev_priv->display.get_initial_plane_config) {
15104 dev_priv->display.get_initial_plane_config(crtc,
15105 &crtc->plane_config);
15106 /*
15107 * If the fb is shared between multiple heads, we'll
15108 * just get the first one.
15109 */
15110 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15111 }
15112 }
15113 }
15114
15115 static void intel_enable_pipe_a(struct drm_device *dev)
15116 {
15117 struct intel_connector *connector;
15118 struct drm_connector *crt = NULL;
15119 struct intel_load_detect_pipe load_detect_temp;
15120 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15121
15122 /* We can't just switch on the pipe A, we need to set things up with a
15123 * proper mode and output configuration. As a gross hack, enable pipe A
15124 * by enabling the load detect pipe once. */
15125 for_each_intel_connector(dev, connector) {
15126 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15127 crt = &connector->base;
15128 break;
15129 }
15130 }
15131
15132 if (!crt)
15133 return;
15134
15135 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15136 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15137 }
15138
15139 static bool
15140 intel_check_plane_mapping(struct intel_crtc *crtc)
15141 {
15142 struct drm_device *dev = crtc->base.dev;
15143 struct drm_i915_private *dev_priv = dev->dev_private;
15144 u32 reg, val;
15145
15146 if (INTEL_INFO(dev)->num_pipes == 1)
15147 return true;
15148
15149 reg = DSPCNTR(!crtc->plane);
15150 val = I915_READ(reg);
15151
15152 if ((val & DISPLAY_PLANE_ENABLE) &&
15153 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15154 return false;
15155
15156 return true;
15157 }
15158
15159 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15160 {
15161 struct drm_device *dev = crtc->base.dev;
15162 struct drm_i915_private *dev_priv = dev->dev_private;
15163 struct intel_encoder *encoder;
15164 u32 reg;
15165 bool enable;
15166
15167 /* Clear any frame start delays used for debugging left by the BIOS */
15168 reg = PIPECONF(crtc->config->cpu_transcoder);
15169 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15170
15171 /* restore vblank interrupts to correct state */
15172 drm_crtc_vblank_reset(&crtc->base);
15173 if (crtc->active) {
15174 update_scanline_offset(crtc);
15175 drm_crtc_vblank_on(&crtc->base);
15176 }
15177
15178 /* We need to sanitize the plane -> pipe mapping first because this will
15179 * disable the crtc (and hence change the state) if it is wrong. Note
15180 * that gen4+ has a fixed plane -> pipe mapping. */
15181 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15182 bool plane;
15183
15184 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15185 crtc->base.base.id);
15186
15187 /* Pipe has the wrong plane attached and the plane is active.
15188 * Temporarily change the plane mapping and disable everything
15189 * ... */
15190 plane = crtc->plane;
15191 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15192 crtc->plane = !plane;
15193 intel_crtc_disable_noatomic(&crtc->base);
15194 crtc->plane = plane;
15195 }
15196
15197 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15198 crtc->pipe == PIPE_A && !crtc->active) {
15199 /* BIOS forgot to enable pipe A, this mostly happens after
15200 * resume. Force-enable the pipe to fix this, the update_dpms
15201 * call below we restore the pipe to the right state, but leave
15202 * the required bits on. */
15203 intel_enable_pipe_a(dev);
15204 }
15205
15206 /* Adjust the state of the output pipe according to whether we
15207 * have active connectors/encoders. */
15208 enable = false;
15209 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15210 enable |= encoder->connectors_active;
15211
15212 if (!enable)
15213 intel_crtc_disable_noatomic(&crtc->base);
15214
15215 if (crtc->active != crtc->base.state->active) {
15216
15217 /* This can happen either due to bugs in the get_hw_state
15218 * functions or because of calls to intel_crtc_disable_noatomic,
15219 * or because the pipe is force-enabled due to the
15220 * pipe A quirk. */
15221 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15222 crtc->base.base.id,
15223 crtc->base.state->enable ? "enabled" : "disabled",
15224 crtc->active ? "enabled" : "disabled");
15225
15226 crtc->base.state->enable = crtc->active;
15227 crtc->base.state->active = crtc->active;
15228 crtc->base.enabled = crtc->active;
15229
15230 /* Because we only establish the connector -> encoder ->
15231 * crtc links if something is active, this means the
15232 * crtc is now deactivated. Break the links. connector
15233 * -> encoder links are only establish when things are
15234 * actually up, hence no need to break them. */
15235 WARN_ON(crtc->active);
15236
15237 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15238 WARN_ON(encoder->connectors_active);
15239 encoder->base.crtc = NULL;
15240 }
15241 }
15242
15243 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15244 /*
15245 * We start out with underrun reporting disabled to avoid races.
15246 * For correct bookkeeping mark this on active crtcs.
15247 *
15248 * Also on gmch platforms we dont have any hardware bits to
15249 * disable the underrun reporting. Which means we need to start
15250 * out with underrun reporting disabled also on inactive pipes,
15251 * since otherwise we'll complain about the garbage we read when
15252 * e.g. coming up after runtime pm.
15253 *
15254 * No protection against concurrent access is required - at
15255 * worst a fifo underrun happens which also sets this to false.
15256 */
15257 crtc->cpu_fifo_underrun_disabled = true;
15258 crtc->pch_fifo_underrun_disabled = true;
15259 }
15260 }
15261
15262 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15263 {
15264 struct intel_connector *connector;
15265 struct drm_device *dev = encoder->base.dev;
15266
15267 /* We need to check both for a crtc link (meaning that the
15268 * encoder is active and trying to read from a pipe) and the
15269 * pipe itself being active. */
15270 bool has_active_crtc = encoder->base.crtc &&
15271 to_intel_crtc(encoder->base.crtc)->active;
15272
15273 if (encoder->connectors_active && !has_active_crtc) {
15274 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15275 encoder->base.base.id,
15276 encoder->base.name);
15277
15278 /* Connector is active, but has no active pipe. This is
15279 * fallout from our resume register restoring. Disable
15280 * the encoder manually again. */
15281 if (encoder->base.crtc) {
15282 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15283 encoder->base.base.id,
15284 encoder->base.name);
15285 encoder->disable(encoder);
15286 if (encoder->post_disable)
15287 encoder->post_disable(encoder);
15288 }
15289 encoder->base.crtc = NULL;
15290 encoder->connectors_active = false;
15291
15292 /* Inconsistent output/port/pipe state happens presumably due to
15293 * a bug in one of the get_hw_state functions. Or someplace else
15294 * in our code, like the register restore mess on resume. Clamp
15295 * things to off as a safer default. */
15296 for_each_intel_connector(dev, connector) {
15297 if (connector->encoder != encoder)
15298 continue;
15299 connector->base.dpms = DRM_MODE_DPMS_OFF;
15300 connector->base.encoder = NULL;
15301 }
15302 }
15303 /* Enabled encoders without active connectors will be fixed in
15304 * the crtc fixup. */
15305 }
15306
15307 void i915_redisable_vga_power_on(struct drm_device *dev)
15308 {
15309 struct drm_i915_private *dev_priv = dev->dev_private;
15310 u32 vga_reg = i915_vgacntrl_reg(dev);
15311
15312 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15313 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15314 i915_disable_vga(dev);
15315 }
15316 }
15317
15318 void i915_redisable_vga(struct drm_device *dev)
15319 {
15320 struct drm_i915_private *dev_priv = dev->dev_private;
15321
15322 /* This function can be called both from intel_modeset_setup_hw_state or
15323 * at a very early point in our resume sequence, where the power well
15324 * structures are not yet restored. Since this function is at a very
15325 * paranoid "someone might have enabled VGA while we were not looking"
15326 * level, just check if the power well is enabled instead of trying to
15327 * follow the "don't touch the power well if we don't need it" policy
15328 * the rest of the driver uses. */
15329 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15330 return;
15331
15332 i915_redisable_vga_power_on(dev);
15333 }
15334
15335 static bool primary_get_hw_state(struct intel_crtc *crtc)
15336 {
15337 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15338
15339 if (!crtc->active)
15340 return false;
15341
15342 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15343 }
15344
15345 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15346 {
15347 struct drm_i915_private *dev_priv = dev->dev_private;
15348 enum pipe pipe;
15349 struct intel_crtc *crtc;
15350 struct intel_encoder *encoder;
15351 struct intel_connector *connector;
15352 int i;
15353
15354 for_each_intel_crtc(dev, crtc) {
15355 struct drm_plane *primary = crtc->base.primary;
15356 struct intel_plane_state *plane_state;
15357
15358 memset(crtc->config, 0, sizeof(*crtc->config));
15359 crtc->config->base.crtc = &crtc->base;
15360
15361 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15362
15363 crtc->active = dev_priv->display.get_pipe_config(crtc,
15364 crtc->config);
15365
15366 crtc->base.state->enable = crtc->active;
15367 crtc->base.state->active = crtc->active;
15368 crtc->base.enabled = crtc->active;
15369 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15370
15371 plane_state = to_intel_plane_state(primary->state);
15372 plane_state->visible = primary_get_hw_state(crtc);
15373
15374 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15375 crtc->base.base.id,
15376 crtc->active ? "enabled" : "disabled");
15377 }
15378
15379 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15380 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15381
15382 pll->on = pll->get_hw_state(dev_priv, pll,
15383 &pll->config.hw_state);
15384 pll->active = 0;
15385 pll->config.crtc_mask = 0;
15386 for_each_intel_crtc(dev, crtc) {
15387 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15388 pll->active++;
15389 pll->config.crtc_mask |= 1 << crtc->pipe;
15390 }
15391 }
15392
15393 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15394 pll->name, pll->config.crtc_mask, pll->on);
15395
15396 if (pll->config.crtc_mask)
15397 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15398 }
15399
15400 for_each_intel_encoder(dev, encoder) {
15401 pipe = 0;
15402
15403 if (encoder->get_hw_state(encoder, &pipe)) {
15404 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15405 encoder->base.crtc = &crtc->base;
15406 encoder->get_config(encoder, crtc->config);
15407 } else {
15408 encoder->base.crtc = NULL;
15409 }
15410
15411 encoder->connectors_active = false;
15412 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15413 encoder->base.base.id,
15414 encoder->base.name,
15415 encoder->base.crtc ? "enabled" : "disabled",
15416 pipe_name(pipe));
15417 }
15418
15419 for_each_intel_connector(dev, connector) {
15420 if (connector->get_hw_state(connector)) {
15421 connector->base.dpms = DRM_MODE_DPMS_ON;
15422 connector->encoder->connectors_active = true;
15423 connector->base.encoder = &connector->encoder->base;
15424 } else {
15425 connector->base.dpms = DRM_MODE_DPMS_OFF;
15426 connector->base.encoder = NULL;
15427 }
15428 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15429 connector->base.base.id,
15430 connector->base.name,
15431 connector->base.encoder ? "enabled" : "disabled");
15432 }
15433 }
15434
15435 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15436 * and i915 state tracking structures. */
15437 void intel_modeset_setup_hw_state(struct drm_device *dev,
15438 bool force_restore)
15439 {
15440 struct drm_i915_private *dev_priv = dev->dev_private;
15441 enum pipe pipe;
15442 struct intel_crtc *crtc;
15443 struct intel_encoder *encoder;
15444 int i;
15445
15446 intel_modeset_readout_hw_state(dev);
15447
15448 /*
15449 * Now that we have the config, copy it to each CRTC struct
15450 * Note that this could go away if we move to using crtc_config
15451 * checking everywhere.
15452 */
15453 for_each_intel_crtc(dev, crtc) {
15454 if (crtc->active && i915.fastboot) {
15455 intel_mode_from_pipe_config(&crtc->base.mode,
15456 crtc->config);
15457 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15458 crtc->base.base.id);
15459 drm_mode_debug_printmodeline(&crtc->base.mode);
15460 }
15461 }
15462
15463 /* HW state is read out, now we need to sanitize this mess. */
15464 for_each_intel_encoder(dev, encoder) {
15465 intel_sanitize_encoder(encoder);
15466 }
15467
15468 for_each_pipe(dev_priv, pipe) {
15469 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15470 intel_sanitize_crtc(crtc);
15471 intel_dump_pipe_config(crtc, crtc->config,
15472 "[setup_hw_state]");
15473 }
15474
15475 intel_modeset_update_connector_atomic_state(dev);
15476
15477 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15478 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15479
15480 if (!pll->on || pll->active)
15481 continue;
15482
15483 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15484
15485 pll->disable(dev_priv, pll);
15486 pll->on = false;
15487 }
15488
15489 if (IS_GEN9(dev))
15490 skl_wm_get_hw_state(dev);
15491 else if (HAS_PCH_SPLIT(dev))
15492 ilk_wm_get_hw_state(dev);
15493
15494 if (force_restore) {
15495 i915_redisable_vga(dev);
15496
15497 /*
15498 * We need to use raw interfaces for restoring state to avoid
15499 * checking (bogus) intermediate states.
15500 */
15501 for_each_pipe(dev_priv, pipe) {
15502 struct drm_crtc *crtc =
15503 dev_priv->pipe_to_crtc_mapping[pipe];
15504
15505 intel_crtc_restore_mode(crtc);
15506 }
15507 } else {
15508 intel_modeset_update_staged_output_state(dev);
15509 }
15510
15511 intel_modeset_check_state(dev);
15512 }
15513
15514 void intel_modeset_gem_init(struct drm_device *dev)
15515 {
15516 struct drm_i915_private *dev_priv = dev->dev_private;
15517 struct drm_crtc *c;
15518 struct drm_i915_gem_object *obj;
15519 int ret;
15520
15521 mutex_lock(&dev->struct_mutex);
15522 intel_init_gt_powersave(dev);
15523 mutex_unlock(&dev->struct_mutex);
15524
15525 /*
15526 * There may be no VBT; and if the BIOS enabled SSC we can
15527 * just keep using it to avoid unnecessary flicker. Whereas if the
15528 * BIOS isn't using it, don't assume it will work even if the VBT
15529 * indicates as much.
15530 */
15531 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15532 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15533 DREF_SSC1_ENABLE);
15534
15535 intel_modeset_init_hw(dev);
15536
15537 intel_setup_overlay(dev);
15538
15539 /*
15540 * Make sure any fbs we allocated at startup are properly
15541 * pinned & fenced. When we do the allocation it's too early
15542 * for this.
15543 */
15544 for_each_crtc(dev, c) {
15545 obj = intel_fb_obj(c->primary->fb);
15546 if (obj == NULL)
15547 continue;
15548
15549 mutex_lock(&dev->struct_mutex);
15550 ret = intel_pin_and_fence_fb_obj(c->primary,
15551 c->primary->fb,
15552 c->primary->state,
15553 NULL);
15554 mutex_unlock(&dev->struct_mutex);
15555 if (ret) {
15556 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15557 to_intel_crtc(c)->pipe);
15558 drm_framebuffer_unreference(c->primary->fb);
15559 c->primary->fb = NULL;
15560 c->primary->crtc = c->primary->state->crtc = NULL;
15561 update_state_fb(c->primary);
15562 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15563 }
15564 }
15565
15566 intel_backlight_register(dev);
15567 }
15568
15569 void intel_connector_unregister(struct intel_connector *intel_connector)
15570 {
15571 struct drm_connector *connector = &intel_connector->base;
15572
15573 intel_panel_destroy_backlight(connector);
15574 drm_connector_unregister(connector);
15575 }
15576
15577 void intel_modeset_cleanup(struct drm_device *dev)
15578 {
15579 struct drm_i915_private *dev_priv = dev->dev_private;
15580 struct drm_connector *connector;
15581
15582 intel_disable_gt_powersave(dev);
15583
15584 intel_backlight_unregister(dev);
15585
15586 /*
15587 * Interrupts and polling as the first thing to avoid creating havoc.
15588 * Too much stuff here (turning of connectors, ...) would
15589 * experience fancy races otherwise.
15590 */
15591 intel_irq_uninstall(dev_priv);
15592
15593 /*
15594 * Due to the hpd irq storm handling the hotplug work can re-arm the
15595 * poll handlers. Hence disable polling after hpd handling is shut down.
15596 */
15597 drm_kms_helper_poll_fini(dev);
15598
15599 mutex_lock(&dev->struct_mutex);
15600
15601 intel_unregister_dsm_handler();
15602
15603 intel_fbc_disable(dev);
15604
15605 mutex_unlock(&dev->struct_mutex);
15606
15607 /* flush any delayed tasks or pending work */
15608 flush_scheduled_work();
15609
15610 /* destroy the backlight and sysfs files before encoders/connectors */
15611 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15612 struct intel_connector *intel_connector;
15613
15614 intel_connector = to_intel_connector(connector);
15615 intel_connector->unregister(intel_connector);
15616 }
15617
15618 drm_mode_config_cleanup(dev);
15619
15620 intel_cleanup_overlay(dev);
15621
15622 mutex_lock(&dev->struct_mutex);
15623 intel_cleanup_gt_powersave(dev);
15624 mutex_unlock(&dev->struct_mutex);
15625 }
15626
15627 /*
15628 * Return which encoder is currently attached for connector.
15629 */
15630 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15631 {
15632 return &intel_attached_encoder(connector)->base;
15633 }
15634
15635 void intel_connector_attach_encoder(struct intel_connector *connector,
15636 struct intel_encoder *encoder)
15637 {
15638 connector->encoder = encoder;
15639 drm_mode_connector_attach_encoder(&connector->base,
15640 &encoder->base);
15641 }
15642
15643 /*
15644 * set vga decode state - true == enable VGA decode
15645 */
15646 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15647 {
15648 struct drm_i915_private *dev_priv = dev->dev_private;
15649 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15650 u16 gmch_ctrl;
15651
15652 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15653 DRM_ERROR("failed to read control word\n");
15654 return -EIO;
15655 }
15656
15657 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15658 return 0;
15659
15660 if (state)
15661 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15662 else
15663 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15664
15665 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15666 DRM_ERROR("failed to write control word\n");
15667 return -EIO;
15668 }
15669
15670 return 0;
15671 }
15672
15673 struct intel_display_error_state {
15674
15675 u32 power_well_driver;
15676
15677 int num_transcoders;
15678
15679 struct intel_cursor_error_state {
15680 u32 control;
15681 u32 position;
15682 u32 base;
15683 u32 size;
15684 } cursor[I915_MAX_PIPES];
15685
15686 struct intel_pipe_error_state {
15687 bool power_domain_on;
15688 u32 source;
15689 u32 stat;
15690 } pipe[I915_MAX_PIPES];
15691
15692 struct intel_plane_error_state {
15693 u32 control;
15694 u32 stride;
15695 u32 size;
15696 u32 pos;
15697 u32 addr;
15698 u32 surface;
15699 u32 tile_offset;
15700 } plane[I915_MAX_PIPES];
15701
15702 struct intel_transcoder_error_state {
15703 bool power_domain_on;
15704 enum transcoder cpu_transcoder;
15705
15706 u32 conf;
15707
15708 u32 htotal;
15709 u32 hblank;
15710 u32 hsync;
15711 u32 vtotal;
15712 u32 vblank;
15713 u32 vsync;
15714 } transcoder[4];
15715 };
15716
15717 struct intel_display_error_state *
15718 intel_display_capture_error_state(struct drm_device *dev)
15719 {
15720 struct drm_i915_private *dev_priv = dev->dev_private;
15721 struct intel_display_error_state *error;
15722 int transcoders[] = {
15723 TRANSCODER_A,
15724 TRANSCODER_B,
15725 TRANSCODER_C,
15726 TRANSCODER_EDP,
15727 };
15728 int i;
15729
15730 if (INTEL_INFO(dev)->num_pipes == 0)
15731 return NULL;
15732
15733 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15734 if (error == NULL)
15735 return NULL;
15736
15737 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15738 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15739
15740 for_each_pipe(dev_priv, i) {
15741 error->pipe[i].power_domain_on =
15742 __intel_display_power_is_enabled(dev_priv,
15743 POWER_DOMAIN_PIPE(i));
15744 if (!error->pipe[i].power_domain_on)
15745 continue;
15746
15747 error->cursor[i].control = I915_READ(CURCNTR(i));
15748 error->cursor[i].position = I915_READ(CURPOS(i));
15749 error->cursor[i].base = I915_READ(CURBASE(i));
15750
15751 error->plane[i].control = I915_READ(DSPCNTR(i));
15752 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15753 if (INTEL_INFO(dev)->gen <= 3) {
15754 error->plane[i].size = I915_READ(DSPSIZE(i));
15755 error->plane[i].pos = I915_READ(DSPPOS(i));
15756 }
15757 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15758 error->plane[i].addr = I915_READ(DSPADDR(i));
15759 if (INTEL_INFO(dev)->gen >= 4) {
15760 error->plane[i].surface = I915_READ(DSPSURF(i));
15761 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15762 }
15763
15764 error->pipe[i].source = I915_READ(PIPESRC(i));
15765
15766 if (HAS_GMCH_DISPLAY(dev))
15767 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15768 }
15769
15770 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15771 if (HAS_DDI(dev_priv->dev))
15772 error->num_transcoders++; /* Account for eDP. */
15773
15774 for (i = 0; i < error->num_transcoders; i++) {
15775 enum transcoder cpu_transcoder = transcoders[i];
15776
15777 error->transcoder[i].power_domain_on =
15778 __intel_display_power_is_enabled(dev_priv,
15779 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15780 if (!error->transcoder[i].power_domain_on)
15781 continue;
15782
15783 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15784
15785 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15786 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15787 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15788 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15789 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15790 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15791 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15792 }
15793
15794 return error;
15795 }
15796
15797 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15798
15799 void
15800 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15801 struct drm_device *dev,
15802 struct intel_display_error_state *error)
15803 {
15804 struct drm_i915_private *dev_priv = dev->dev_private;
15805 int i;
15806
15807 if (!error)
15808 return;
15809
15810 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15811 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15812 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15813 error->power_well_driver);
15814 for_each_pipe(dev_priv, i) {
15815 err_printf(m, "Pipe [%d]:\n", i);
15816 err_printf(m, " Power: %s\n",
15817 error->pipe[i].power_domain_on ? "on" : "off");
15818 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15819 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15820
15821 err_printf(m, "Plane [%d]:\n", i);
15822 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15823 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15824 if (INTEL_INFO(dev)->gen <= 3) {
15825 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15826 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15827 }
15828 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15829 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15830 if (INTEL_INFO(dev)->gen >= 4) {
15831 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15832 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15833 }
15834
15835 err_printf(m, "Cursor [%d]:\n", i);
15836 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15837 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15838 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15839 }
15840
15841 for (i = 0; i < error->num_transcoders; i++) {
15842 err_printf(m, "CPU transcoder: %c\n",
15843 transcoder_name(error->transcoder[i].cpu_transcoder));
15844 err_printf(m, " Power: %s\n",
15845 error->transcoder[i].power_domain_on ? "on" : "off");
15846 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15847 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15848 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15849 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15850 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15851 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15852 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15853 }
15854 }
15855
15856 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15857 {
15858 struct intel_crtc *crtc;
15859
15860 for_each_intel_crtc(dev, crtc) {
15861 struct intel_unpin_work *work;
15862
15863 spin_lock_irq(&dev->event_lock);
15864
15865 work = crtc->unpin_work;
15866
15867 if (work && work->event &&
15868 work->event->base.file_priv == file) {
15869 kfree(work->event);
15870 work->event = NULL;
15871 }
15872
15873 spin_unlock_irq(&dev->event_lock);
15874 }
15875 }
This page took 0.558787 seconds and 6 git commands to generate.