drm/i915: ILK cdclk seems to be 450MHz
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116 int min, max;
117 } intel_range_t;
118
119 typedef struct {
120 int dot_limit;
121 int p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
128 };
129
130 int
131 intel_pch_rawclk(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151 .dot = { .min = 25000, .max = 350000 },
152 .vco = { .min = 908000, .max = 1512000 },
153 .n = { .min = 2, .max = 16 },
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
165 .vco = { .min = 908000, .max = 1512000 },
166 .n = { .min = 2, .max = 16 },
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177 .dot = { .min = 25000, .max = 350000 },
178 .vco = { .min = 908000, .max = 1512000 },
179 .n = { .min = 2, .max = 16 },
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
228 },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
255 },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
269 },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
275 /* Pineview's Ncounter is a ring counter */
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 /* Pineview only has one combined m divider, which we treat as m2. */
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
366 .p1 = { .min = 2, .max = 6 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
395 .vco = { .min = 4800000, .max = 6480000 },
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418 struct drm_device *dev = crtc->base.dev;
419 struct intel_encoder *encoder;
420
421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422 if (encoder->type == type)
423 return true;
424
425 return false;
426 }
427
428 /**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
434 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
435 int type)
436 {
437 struct drm_atomic_state *state = crtc_state->base.state;
438 struct drm_connector_state *connector_state;
439 struct intel_encoder *encoder;
440 int i, num_connectors = 0;
441
442 for (i = 0; i < state->num_connector; i++) {
443 if (!state->connectors[i])
444 continue;
445
446 connector_state = state->connector_states[i];
447 if (connector_state->crtc != crtc_state->base.crtc)
448 continue;
449
450 num_connectors++;
451
452 encoder = to_intel_encoder(connector_state->best_encoder);
453 if (encoder->type == type)
454 return true;
455 }
456
457 WARN_ON(num_connectors == 0);
458
459 return false;
460 }
461
462 static const intel_limit_t *
463 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
464 {
465 struct drm_device *dev = crtc_state->base.crtc->dev;
466 const intel_limit_t *limit;
467
468 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
469 if (intel_is_dual_link_lvds(dev)) {
470 if (refclk == 100000)
471 limit = &intel_limits_ironlake_dual_lvds_100m;
472 else
473 limit = &intel_limits_ironlake_dual_lvds;
474 } else {
475 if (refclk == 100000)
476 limit = &intel_limits_ironlake_single_lvds_100m;
477 else
478 limit = &intel_limits_ironlake_single_lvds;
479 }
480 } else
481 limit = &intel_limits_ironlake_dac;
482
483 return limit;
484 }
485
486 static const intel_limit_t *
487 intel_g4x_limit(struct intel_crtc_state *crtc_state)
488 {
489 struct drm_device *dev = crtc_state->base.crtc->dev;
490 const intel_limit_t *limit;
491
492 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
493 if (intel_is_dual_link_lvds(dev))
494 limit = &intel_limits_g4x_dual_channel_lvds;
495 else
496 limit = &intel_limits_g4x_single_channel_lvds;
497 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
498 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
499 limit = &intel_limits_g4x_hdmi;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
501 limit = &intel_limits_g4x_sdvo;
502 } else /* The option is for other outputs */
503 limit = &intel_limits_i9xx_sdvo;
504
505 return limit;
506 }
507
508 static const intel_limit_t *
509 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
510 {
511 struct drm_device *dev = crtc_state->base.crtc->dev;
512 const intel_limit_t *limit;
513
514 if (HAS_PCH_SPLIT(dev))
515 limit = intel_ironlake_limit(crtc_state, refclk);
516 else if (IS_G4X(dev)) {
517 limit = intel_g4x_limit(crtc_state);
518 } else if (IS_PINEVIEW(dev)) {
519 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
520 limit = &intel_limits_pineview_lvds;
521 else
522 limit = &intel_limits_pineview_sdvo;
523 } else if (IS_CHERRYVIEW(dev)) {
524 limit = &intel_limits_chv;
525 } else if (IS_VALLEYVIEW(dev)) {
526 limit = &intel_limits_vlv;
527 } else if (!IS_GEN2(dev)) {
528 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
529 limit = &intel_limits_i9xx_lvds;
530 else
531 limit = &intel_limits_i9xx_sdvo;
532 } else {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i8xx_lvds;
535 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
536 limit = &intel_limits_i8xx_dvo;
537 else
538 limit = &intel_limits_i8xx_dac;
539 }
540 return limit;
541 }
542
543 /* m1 is reserved as 0 in Pineview, n is a ring counter */
544 static void pineview_clock(int refclk, intel_clock_t *clock)
545 {
546 clock->m = clock->m2 + 2;
547 clock->p = clock->p1 * clock->p2;
548 if (WARN_ON(clock->n == 0 || clock->p == 0))
549 return;
550 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
551 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static void i9xx_clock(int refclk, intel_clock_t *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567 }
568
569 static void chv_clock(int refclk, intel_clock_t *clock)
570 {
571 clock->m = clock->m1 * clock->m2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
576 clock->n << 22);
577 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578 }
579
580 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
581 /**
582 * Returns whether the given set of divisors are valid for a given refclk with
583 * the given connectors.
584 */
585
586 static bool intel_PLL_is_valid(struct drm_device *dev,
587 const intel_limit_t *limit,
588 const intel_clock_t *clock)
589 {
590 if (clock->n < limit->n.min || limit->n.max < clock->n)
591 INTELPllInvalid("n out of range\n");
592 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
593 INTELPllInvalid("p1 out of range\n");
594 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
595 INTELPllInvalid("m2 out of range\n");
596 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
597 INTELPllInvalid("m1 out of range\n");
598
599 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
600 if (clock->m1 <= clock->m2)
601 INTELPllInvalid("m1 <= m2\n");
602
603 if (!IS_VALLEYVIEW(dev)) {
604 if (clock->p < limit->p.min || limit->p.max < clock->p)
605 INTELPllInvalid("p out of range\n");
606 if (clock->m < limit->m.min || limit->m.max < clock->m)
607 INTELPllInvalid("m out of range\n");
608 }
609
610 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611 INTELPllInvalid("vco out of range\n");
612 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613 * connector, etc., rather than just a single range.
614 */
615 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616 INTELPllInvalid("dot out of range\n");
617
618 return true;
619 }
620
621 static bool
622 i9xx_find_best_dpll(const intel_limit_t *limit,
623 struct intel_crtc_state *crtc_state,
624 int target, int refclk, intel_clock_t *match_clock,
625 intel_clock_t *best_clock)
626 {
627 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
628 struct drm_device *dev = crtc->base.dev;
629 intel_clock_t clock;
630 int err = target;
631
632 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
633 /*
634 * For LVDS just rely on its current settings for dual-channel.
635 * We haven't figured out how to reliably set up different
636 * single/dual channel state, if we even can.
637 */
638 if (intel_is_dual_link_lvds(dev))
639 clock.p2 = limit->p2.p2_fast;
640 else
641 clock.p2 = limit->p2.p2_slow;
642 } else {
643 if (target < limit->p2.dot_limit)
644 clock.p2 = limit->p2.p2_slow;
645 else
646 clock.p2 = limit->p2.p2_fast;
647 }
648
649 memset(best_clock, 0, sizeof(*best_clock));
650
651 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
652 clock.m1++) {
653 for (clock.m2 = limit->m2.min;
654 clock.m2 <= limit->m2.max; clock.m2++) {
655 if (clock.m2 >= clock.m1)
656 break;
657 for (clock.n = limit->n.min;
658 clock.n <= limit->n.max; clock.n++) {
659 for (clock.p1 = limit->p1.min;
660 clock.p1 <= limit->p1.max; clock.p1++) {
661 int this_err;
662
663 i9xx_clock(refclk, &clock);
664 if (!intel_PLL_is_valid(dev, limit,
665 &clock))
666 continue;
667 if (match_clock &&
668 clock.p != match_clock->p)
669 continue;
670
671 this_err = abs(clock.dot - target);
672 if (this_err < err) {
673 *best_clock = clock;
674 err = this_err;
675 }
676 }
677 }
678 }
679 }
680
681 return (err != target);
682 }
683
684 static bool
685 pnv_find_best_dpll(const intel_limit_t *limit,
686 struct intel_crtc_state *crtc_state,
687 int target, int refclk, intel_clock_t *match_clock,
688 intel_clock_t *best_clock)
689 {
690 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
691 struct drm_device *dev = crtc->base.dev;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
696 /*
697 * For LVDS just rely on its current settings for dual-channel.
698 * We haven't figured out how to reliably set up different
699 * single/dual channel state, if we even can.
700 */
701 if (intel_is_dual_link_lvds(dev))
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
712 memset(best_clock, 0, sizeof(*best_clock));
713
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
718 for (clock.n = limit->n.min;
719 clock.n <= limit->n.max; clock.n++) {
720 for (clock.p1 = limit->p1.min;
721 clock.p1 <= limit->p1.max; clock.p1++) {
722 int this_err;
723
724 pineview_clock(refclk, &clock);
725 if (!intel_PLL_is_valid(dev, limit,
726 &clock))
727 continue;
728 if (match_clock &&
729 clock.p != match_clock->p)
730 continue;
731
732 this_err = abs(clock.dot - target);
733 if (this_err < err) {
734 *best_clock = clock;
735 err = this_err;
736 }
737 }
738 }
739 }
740 }
741
742 return (err != target);
743 }
744
745 static bool
746 g4x_find_best_dpll(const intel_limit_t *limit,
747 struct intel_crtc_state *crtc_state,
748 int target, int refclk, intel_clock_t *match_clock,
749 intel_clock_t *best_clock)
750 {
751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
752 struct drm_device *dev = crtc->base.dev;
753 intel_clock_t clock;
754 int max_n;
755 bool found;
756 /* approximately equals target * 0.00585 */
757 int err_most = (target >> 8) + (target >> 9);
758 found = false;
759
760 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
761 if (intel_is_dual_link_lvds(dev))
762 clock.p2 = limit->p2.p2_fast;
763 else
764 clock.p2 = limit->p2.p2_slow;
765 } else {
766 if (target < limit->p2.dot_limit)
767 clock.p2 = limit->p2.p2_slow;
768 else
769 clock.p2 = limit->p2.p2_fast;
770 }
771
772 memset(best_clock, 0, sizeof(*best_clock));
773 max_n = limit->n.max;
774 /* based on hardware requirement, prefer smaller n to precision */
775 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
776 /* based on hardware requirement, prefere larger m1,m2 */
777 for (clock.m1 = limit->m1.max;
778 clock.m1 >= limit->m1.min; clock.m1--) {
779 for (clock.m2 = limit->m2.max;
780 clock.m2 >= limit->m2.min; clock.m2--) {
781 for (clock.p1 = limit->p1.max;
782 clock.p1 >= limit->p1.min; clock.p1--) {
783 int this_err;
784
785 i9xx_clock(refclk, &clock);
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
788 continue;
789
790 this_err = abs(clock.dot - target);
791 if (this_err < err_most) {
792 *best_clock = clock;
793 err_most = this_err;
794 max_n = clock.n;
795 found = true;
796 }
797 }
798 }
799 }
800 }
801 return found;
802 }
803
804 /*
805 * Check if the calculated PLL configuration is more optimal compared to the
806 * best configuration and error found so far. Return the calculated error.
807 */
808 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
809 const intel_clock_t *calculated_clock,
810 const intel_clock_t *best_clock,
811 unsigned int best_error_ppm,
812 unsigned int *error_ppm)
813 {
814 /*
815 * For CHV ignore the error and consider only the P value.
816 * Prefer a bigger P value based on HW requirements.
817 */
818 if (IS_CHERRYVIEW(dev)) {
819 *error_ppm = 0;
820
821 return calculated_clock->p > best_clock->p;
822 }
823
824 if (WARN_ON_ONCE(!target_freq))
825 return false;
826
827 *error_ppm = div_u64(1000000ULL *
828 abs(target_freq - calculated_clock->dot),
829 target_freq);
830 /*
831 * Prefer a better P value over a better (smaller) error if the error
832 * is small. Ensure this preference for future configurations too by
833 * setting the error to 0.
834 */
835 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
836 *error_ppm = 0;
837
838 return true;
839 }
840
841 return *error_ppm + 10 < best_error_ppm;
842 }
843
844 static bool
845 vlv_find_best_dpll(const intel_limit_t *limit,
846 struct intel_crtc_state *crtc_state,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
851 struct drm_device *dev = crtc->base.dev;
852 intel_clock_t clock;
853 unsigned int bestppm = 1000000;
854 /* min update 19.2 MHz */
855 int max_n = min(limit->n.max, refclk / 19200);
856 bool found = false;
857
858 target *= 5; /* fast clock */
859
860 memset(best_clock, 0, sizeof(*best_clock));
861
862 /* based on hardware requirement, prefer smaller n to precision */
863 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
864 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
865 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
866 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
867 clock.p = clock.p1 * clock.p2;
868 /* based on hardware requirement, prefer bigger m1,m2 values */
869 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
870 unsigned int ppm;
871
872 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
873 refclk * clock.m1);
874
875 vlv_clock(refclk, &clock);
876
877 if (!intel_PLL_is_valid(dev, limit,
878 &clock))
879 continue;
880
881 if (!vlv_PLL_is_optimal(dev, target,
882 &clock,
883 best_clock,
884 bestppm, &ppm))
885 continue;
886
887 *best_clock = clock;
888 bestppm = ppm;
889 found = true;
890 }
891 }
892 }
893 }
894
895 return found;
896 }
897
898 static bool
899 chv_find_best_dpll(const intel_limit_t *limit,
900 struct intel_crtc_state *crtc_state,
901 int target, int refclk, intel_clock_t *match_clock,
902 intel_clock_t *best_clock)
903 {
904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
905 struct drm_device *dev = crtc->base.dev;
906 unsigned int best_error_ppm;
907 intel_clock_t clock;
908 uint64_t m2;
909 int found = false;
910
911 memset(best_clock, 0, sizeof(*best_clock));
912 best_error_ppm = 1000000;
913
914 /*
915 * Based on hardware doc, the n always set to 1, and m1 always
916 * set to 2. If requires to support 200Mhz refclk, we need to
917 * revisit this because n may not 1 anymore.
918 */
919 clock.n = 1, clock.m1 = 2;
920 target *= 5; /* fast clock */
921
922 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
923 for (clock.p2 = limit->p2.p2_fast;
924 clock.p2 >= limit->p2.p2_slow;
925 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
926 unsigned int error_ppm;
927
928 clock.p = clock.p1 * clock.p2;
929
930 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
931 clock.n) << 22, refclk * clock.m1);
932
933 if (m2 > INT_MAX/clock.m1)
934 continue;
935
936 clock.m2 = m2;
937
938 chv_clock(refclk, &clock);
939
940 if (!intel_PLL_is_valid(dev, limit, &clock))
941 continue;
942
943 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
944 best_error_ppm, &error_ppm))
945 continue;
946
947 *best_clock = clock;
948 best_error_ppm = error_ppm;
949 found = true;
950 }
951 }
952
953 return found;
954 }
955
956 bool intel_crtc_active(struct drm_crtc *crtc)
957 {
958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
959
960 /* Be paranoid as we can arrive here with only partial
961 * state retrieved from the hardware during setup.
962 *
963 * We can ditch the adjusted_mode.crtc_clock check as soon
964 * as Haswell has gained clock readout/fastboot support.
965 *
966 * We can ditch the crtc->primary->fb check as soon as we can
967 * properly reconstruct framebuffers.
968 *
969 * FIXME: The intel_crtc->active here should be switched to
970 * crtc->state->active once we have proper CRTC states wired up
971 * for atomic.
972 */
973 return intel_crtc->active && crtc->primary->state->fb &&
974 intel_crtc->config->base.adjusted_mode.crtc_clock;
975 }
976
977 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
978 enum pipe pipe)
979 {
980 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
982
983 return intel_crtc->config->cpu_transcoder;
984 }
985
986 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
987 {
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 reg = PIPEDSL(pipe);
990 u32 line1, line2;
991 u32 line_mask;
992
993 if (IS_GEN2(dev))
994 line_mask = DSL_LINEMASK_GEN2;
995 else
996 line_mask = DSL_LINEMASK_GEN3;
997
998 line1 = I915_READ(reg) & line_mask;
999 mdelay(5);
1000 line2 = I915_READ(reg) & line_mask;
1001
1002 return line1 == line2;
1003 }
1004
1005 /*
1006 * intel_wait_for_pipe_off - wait for pipe to turn off
1007 * @crtc: crtc whose pipe to wait for
1008 *
1009 * After disabling a pipe, we can't wait for vblank in the usual way,
1010 * spinning on the vblank interrupt status bit, since we won't actually
1011 * see an interrupt when the pipe is disabled.
1012 *
1013 * On Gen4 and above:
1014 * wait for the pipe register state bit to turn off
1015 *
1016 * Otherwise:
1017 * wait for the display line value to settle (it usually
1018 * ends up stopping at the start of the next frame).
1019 *
1020 */
1021 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1022 {
1023 struct drm_device *dev = crtc->base.dev;
1024 struct drm_i915_private *dev_priv = dev->dev_private;
1025 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1026 enum pipe pipe = crtc->pipe;
1027
1028 if (INTEL_INFO(dev)->gen >= 4) {
1029 int reg = PIPECONF(cpu_transcoder);
1030
1031 /* Wait for the Pipe State to go off */
1032 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1033 100))
1034 WARN(1, "pipe_off wait timed out\n");
1035 } else {
1036 /* Wait for the display line to settle */
1037 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1038 WARN(1, "pipe_off wait timed out\n");
1039 }
1040 }
1041
1042 /*
1043 * ibx_digital_port_connected - is the specified port connected?
1044 * @dev_priv: i915 private structure
1045 * @port: the port to test
1046 *
1047 * Returns true if @port is connected, false otherwise.
1048 */
1049 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1050 struct intel_digital_port *port)
1051 {
1052 u32 bit;
1053
1054 if (HAS_PCH_IBX(dev_priv->dev)) {
1055 switch (port->port) {
1056 case PORT_B:
1057 bit = SDE_PORTB_HOTPLUG;
1058 break;
1059 case PORT_C:
1060 bit = SDE_PORTC_HOTPLUG;
1061 break;
1062 case PORT_D:
1063 bit = SDE_PORTD_HOTPLUG;
1064 break;
1065 default:
1066 return true;
1067 }
1068 } else {
1069 switch (port->port) {
1070 case PORT_B:
1071 bit = SDE_PORTB_HOTPLUG_CPT;
1072 break;
1073 case PORT_C:
1074 bit = SDE_PORTC_HOTPLUG_CPT;
1075 break;
1076 case PORT_D:
1077 bit = SDE_PORTD_HOTPLUG_CPT;
1078 break;
1079 default:
1080 return true;
1081 }
1082 }
1083
1084 return I915_READ(SDEISR) & bit;
1085 }
1086
1087 static const char *state_string(bool enabled)
1088 {
1089 return enabled ? "on" : "off";
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 int reg;
1097 u32 val;
1098 bool cur_state;
1099
1100 reg = DPLL(pipe);
1101 val = I915_READ(reg);
1102 cur_state = !!(val & DPLL_VCO_ENABLE);
1103 I915_STATE_WARN(cur_state != state,
1104 "PLL state assertion failure (expected %s, current %s)\n",
1105 state_string(state), state_string(cur_state));
1106 }
1107
1108 /* XXX: the dsi pll is shared between MIPI DSI ports */
1109 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110 {
1111 u32 val;
1112 bool cur_state;
1113
1114 mutex_lock(&dev_priv->dpio_lock);
1115 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1116 mutex_unlock(&dev_priv->dpio_lock);
1117
1118 cur_state = val & DSI_PLL_VCO_EN;
1119 I915_STATE_WARN(cur_state != state,
1120 "DSI PLL state assertion failure (expected %s, current %s)\n",
1121 state_string(state), state_string(cur_state));
1122 }
1123 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1124 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1125
1126 struct intel_shared_dpll *
1127 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1128 {
1129 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1130
1131 if (crtc->config->shared_dpll < 0)
1132 return NULL;
1133
1134 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1135 }
1136
1137 /* For ILK+ */
1138 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1139 struct intel_shared_dpll *pll,
1140 bool state)
1141 {
1142 bool cur_state;
1143 struct intel_dpll_hw_state hw_state;
1144
1145 if (WARN (!pll,
1146 "asserting DPLL %s with no DPLL\n", state_string(state)))
1147 return;
1148
1149 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1150 I915_STATE_WARN(cur_state != state,
1151 "%s assertion failure (expected %s, current %s)\n",
1152 pll->name, state_string(state), state_string(cur_state));
1153 }
1154
1155 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1156 enum pipe pipe, bool state)
1157 {
1158 int reg;
1159 u32 val;
1160 bool cur_state;
1161 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1162 pipe);
1163
1164 if (HAS_DDI(dev_priv->dev)) {
1165 /* DDI does not have a specific FDI_TX register */
1166 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1167 val = I915_READ(reg);
1168 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1169 } else {
1170 reg = FDI_TX_CTL(pipe);
1171 val = I915_READ(reg);
1172 cur_state = !!(val & FDI_TX_ENABLE);
1173 }
1174 I915_STATE_WARN(cur_state != state,
1175 "FDI TX state assertion failure (expected %s, current %s)\n",
1176 state_string(state), state_string(cur_state));
1177 }
1178 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1179 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1180
1181 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, bool state)
1183 {
1184 int reg;
1185 u32 val;
1186 bool cur_state;
1187
1188 reg = FDI_RX_CTL(pipe);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & FDI_RX_ENABLE);
1191 I915_STATE_WARN(cur_state != state,
1192 "FDI RX state assertion failure (expected %s, current %s)\n",
1193 state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
1198 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199 enum pipe pipe)
1200 {
1201 int reg;
1202 u32 val;
1203
1204 /* ILK FDI PLL is always enabled */
1205 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1206 return;
1207
1208 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1209 if (HAS_DDI(dev_priv->dev))
1210 return;
1211
1212 reg = FDI_TX_CTL(pipe);
1213 val = I915_READ(reg);
1214 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223
1224 reg = FDI_RX_CTL(pipe);
1225 val = I915_READ(reg);
1226 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1227 I915_STATE_WARN(cur_state != state,
1228 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1229 state_string(state), state_string(cur_state));
1230 }
1231
1232 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 struct drm_device *dev = dev_priv->dev;
1236 int pp_reg;
1237 u32 val;
1238 enum pipe panel_pipe = PIPE_A;
1239 bool locked = true;
1240
1241 if (WARN_ON(HAS_DDI(dev)))
1242 return;
1243
1244 if (HAS_PCH_SPLIT(dev)) {
1245 u32 port_sel;
1246
1247 pp_reg = PCH_PP_CONTROL;
1248 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1249
1250 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1251 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1252 panel_pipe = PIPE_B;
1253 /* XXX: else fix for eDP */
1254 } else if (IS_VALLEYVIEW(dev)) {
1255 /* presumably write lock depends on pipe, not port select */
1256 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1257 panel_pipe = pipe;
1258 } else {
1259 pp_reg = PP_CONTROL;
1260 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1261 panel_pipe = PIPE_B;
1262 }
1263
1264 val = I915_READ(pp_reg);
1265 if (!(val & PANEL_POWER_ON) ||
1266 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1267 locked = false;
1268
1269 I915_STATE_WARN(panel_pipe == pipe && locked,
1270 "panel assertion failure, pipe %c regs locked\n",
1271 pipe_name(pipe));
1272 }
1273
1274 static void assert_cursor(struct drm_i915_private *dev_priv,
1275 enum pipe pipe, bool state)
1276 {
1277 struct drm_device *dev = dev_priv->dev;
1278 bool cur_state;
1279
1280 if (IS_845G(dev) || IS_I865G(dev))
1281 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1282 else
1283 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1284
1285 I915_STATE_WARN(cur_state != state,
1286 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1287 pipe_name(pipe), state_string(state), state_string(cur_state));
1288 }
1289 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1290 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1291
1292 void assert_pipe(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, bool state)
1294 {
1295 int reg;
1296 u32 val;
1297 bool cur_state;
1298 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299 pipe);
1300
1301 /* if we need the pipe quirk it must be always on */
1302 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1304 state = true;
1305
1306 if (!intel_display_power_is_enabled(dev_priv,
1307 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1308 cur_state = false;
1309 } else {
1310 reg = PIPECONF(cpu_transcoder);
1311 val = I915_READ(reg);
1312 cur_state = !!(val & PIPECONF_ENABLE);
1313 }
1314
1315 I915_STATE_WARN(cur_state != state,
1316 "pipe %c assertion failure (expected %s, current %s)\n",
1317 pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319
1320 static void assert_plane(struct drm_i915_private *dev_priv,
1321 enum plane plane, bool state)
1322 {
1323 int reg;
1324 u32 val;
1325 bool cur_state;
1326
1327 reg = DSPCNTR(plane);
1328 val = I915_READ(reg);
1329 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1330 I915_STATE_WARN(cur_state != state,
1331 "plane %c assertion failure (expected %s, current %s)\n",
1332 plane_name(plane), state_string(state), state_string(cur_state));
1333 }
1334
1335 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
1338 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe)
1340 {
1341 struct drm_device *dev = dev_priv->dev;
1342 int reg, i;
1343 u32 val;
1344 int cur_pipe;
1345
1346 /* Primary planes are fixed to pipes on gen4+ */
1347 if (INTEL_INFO(dev)->gen >= 4) {
1348 reg = DSPCNTR(pipe);
1349 val = I915_READ(reg);
1350 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1351 "plane %c assertion failure, should be disabled but not\n",
1352 plane_name(pipe));
1353 return;
1354 }
1355
1356 /* Need to check both planes against the pipe */
1357 for_each_pipe(dev_priv, i) {
1358 reg = DSPCNTR(i);
1359 val = I915_READ(reg);
1360 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1361 DISPPLANE_SEL_PIPE_SHIFT;
1362 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1363 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1364 plane_name(i), pipe_name(pipe));
1365 }
1366 }
1367
1368 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1369 enum pipe pipe)
1370 {
1371 struct drm_device *dev = dev_priv->dev;
1372 int reg, sprite;
1373 u32 val;
1374
1375 if (INTEL_INFO(dev)->gen >= 9) {
1376 for_each_sprite(dev_priv, pipe, sprite) {
1377 val = I915_READ(PLANE_CTL(pipe, sprite));
1378 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1379 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1380 sprite, pipe_name(pipe));
1381 }
1382 } else if (IS_VALLEYVIEW(dev)) {
1383 for_each_sprite(dev_priv, pipe, sprite) {
1384 reg = SPCNTR(pipe, sprite);
1385 val = I915_READ(reg);
1386 I915_STATE_WARN(val & SP_ENABLE,
1387 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388 sprite_name(pipe, sprite), pipe_name(pipe));
1389 }
1390 } else if (INTEL_INFO(dev)->gen >= 7) {
1391 reg = SPRCTL(pipe);
1392 val = I915_READ(reg);
1393 I915_STATE_WARN(val & SPRITE_ENABLE,
1394 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1395 plane_name(pipe), pipe_name(pipe));
1396 } else if (INTEL_INFO(dev)->gen >= 5) {
1397 reg = DVSCNTR(pipe);
1398 val = I915_READ(reg);
1399 I915_STATE_WARN(val & DVS_ENABLE,
1400 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1401 plane_name(pipe), pipe_name(pipe));
1402 }
1403 }
1404
1405 static void assert_vblank_disabled(struct drm_crtc *crtc)
1406 {
1407 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1408 drm_crtc_vblank_put(crtc);
1409 }
1410
1411 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1412 {
1413 u32 val;
1414 bool enabled;
1415
1416 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1417
1418 val = I915_READ(PCH_DREF_CONTROL);
1419 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1420 DREF_SUPERSPREAD_SOURCE_MASK));
1421 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1422 }
1423
1424 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1425 enum pipe pipe)
1426 {
1427 int reg;
1428 u32 val;
1429 bool enabled;
1430
1431 reg = PCH_TRANSCONF(pipe);
1432 val = I915_READ(reg);
1433 enabled = !!(val & TRANS_ENABLE);
1434 I915_STATE_WARN(enabled,
1435 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1436 pipe_name(pipe));
1437 }
1438
1439 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1440 enum pipe pipe, u32 port_sel, u32 val)
1441 {
1442 if ((val & DP_PORT_EN) == 0)
1443 return false;
1444
1445 if (HAS_PCH_CPT(dev_priv->dev)) {
1446 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1447 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1448 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1449 return false;
1450 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1451 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1452 return false;
1453 } else {
1454 if ((val & DP_PIPE_MASK) != (pipe << 30))
1455 return false;
1456 }
1457 return true;
1458 }
1459
1460 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe, u32 val)
1462 {
1463 if ((val & SDVO_ENABLE) == 0)
1464 return false;
1465
1466 if (HAS_PCH_CPT(dev_priv->dev)) {
1467 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1468 return false;
1469 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1470 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1471 return false;
1472 } else {
1473 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1474 return false;
1475 }
1476 return true;
1477 }
1478
1479 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, u32 val)
1481 {
1482 if ((val & LVDS_PORT_EN) == 0)
1483 return false;
1484
1485 if (HAS_PCH_CPT(dev_priv->dev)) {
1486 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1487 return false;
1488 } else {
1489 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497 {
1498 if ((val & ADPA_DAC_ENABLE) == 0)
1499 return false;
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1502 return false;
1503 } else {
1504 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1505 return false;
1506 }
1507 return true;
1508 }
1509
1510 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1511 enum pipe pipe, int reg, u32 port_sel)
1512 {
1513 u32 val = I915_READ(reg);
1514 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1515 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1516 reg, pipe_name(pipe));
1517
1518 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1519 && (val & DP_PIPEB_SELECT),
1520 "IBX PCH dp port still using transcoder B\n");
1521 }
1522
1523 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1524 enum pipe pipe, int reg)
1525 {
1526 u32 val = I915_READ(reg);
1527 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1528 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1529 reg, pipe_name(pipe));
1530
1531 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1532 && (val & SDVO_PIPE_B_SELECT),
1533 "IBX PCH hdmi port still using transcoder B\n");
1534 }
1535
1536 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1537 enum pipe pipe)
1538 {
1539 int reg;
1540 u32 val;
1541
1542 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1543 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1544 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1545
1546 reg = PCH_ADPA;
1547 val = I915_READ(reg);
1548 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1549 "PCH VGA enabled on transcoder %c, should be disabled\n",
1550 pipe_name(pipe));
1551
1552 reg = PCH_LVDS;
1553 val = I915_READ(reg);
1554 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1555 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1556 pipe_name(pipe));
1557
1558 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1559 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1560 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1561 }
1562
1563 static void intel_init_dpio(struct drm_device *dev)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566
1567 if (!IS_VALLEYVIEW(dev))
1568 return;
1569
1570 /*
1571 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1572 * CHV x1 PHY (DP/HDMI D)
1573 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1574 */
1575 if (IS_CHERRYVIEW(dev)) {
1576 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1577 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1578 } else {
1579 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1580 }
1581 }
1582
1583 static void vlv_enable_pll(struct intel_crtc *crtc,
1584 const struct intel_crtc_state *pipe_config)
1585 {
1586 struct drm_device *dev = crtc->base.dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int reg = DPLL(crtc->pipe);
1589 u32 dpll = pipe_config->dpll_hw_state.dpll;
1590
1591 assert_pipe_disabled(dev_priv, crtc->pipe);
1592
1593 /* No really, not for ILK+ */
1594 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1595
1596 /* PLL is protected by panel, make sure we can write it */
1597 if (IS_MOBILE(dev_priv->dev))
1598 assert_panel_unlocked(dev_priv, crtc->pipe);
1599
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150);
1603
1604 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1605 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1606
1607 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1608 POSTING_READ(DPLL_MD(crtc->pipe));
1609
1610 /* We do this three times for luck */
1611 I915_WRITE(reg, dpll);
1612 POSTING_READ(reg);
1613 udelay(150); /* wait for warmup */
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150); /* wait for warmup */
1617 I915_WRITE(reg, dpll);
1618 POSTING_READ(reg);
1619 udelay(150); /* wait for warmup */
1620 }
1621
1622 static void chv_enable_pll(struct intel_crtc *crtc,
1623 const struct intel_crtc_state *pipe_config)
1624 {
1625 struct drm_device *dev = crtc->base.dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 int pipe = crtc->pipe;
1628 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1629 u32 tmp;
1630
1631 assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1634
1635 mutex_lock(&dev_priv->dpio_lock);
1636
1637 /* Enable back the 10bit clock to display controller */
1638 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1639 tmp |= DPIO_DCLKP_EN;
1640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1641
1642 /*
1643 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1644 */
1645 udelay(1);
1646
1647 /* Enable PLL */
1648 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1649
1650 /* Check PLL is locked */
1651 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1652 DRM_ERROR("PLL %d failed to lock\n", pipe);
1653
1654 /* not sure when this should be written */
1655 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1656 POSTING_READ(DPLL_MD(pipe));
1657
1658 mutex_unlock(&dev_priv->dpio_lock);
1659 }
1660
1661 static int intel_num_dvo_pipes(struct drm_device *dev)
1662 {
1663 struct intel_crtc *crtc;
1664 int count = 0;
1665
1666 for_each_intel_crtc(dev, crtc)
1667 count += crtc->active &&
1668 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1669
1670 return count;
1671 }
1672
1673 static void i9xx_enable_pll(struct intel_crtc *crtc)
1674 {
1675 struct drm_device *dev = crtc->base.dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 int reg = DPLL(crtc->pipe);
1678 u32 dpll = crtc->config->dpll_hw_state.dpll;
1679
1680 assert_pipe_disabled(dev_priv, crtc->pipe);
1681
1682 /* No really, not for ILK+ */
1683 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1684
1685 /* PLL is protected by panel, make sure we can write it */
1686 if (IS_MOBILE(dev) && !IS_I830(dev))
1687 assert_panel_unlocked(dev_priv, crtc->pipe);
1688
1689 /* Enable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1691 /*
1692 * It appears to be important that we don't enable this
1693 * for the current pipe before otherwise configuring the
1694 * PLL. No idea how this should be handled if multiple
1695 * DVO outputs are enabled simultaneosly.
1696 */
1697 dpll |= DPLL_DVO_2X_MODE;
1698 I915_WRITE(DPLL(!crtc->pipe),
1699 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1700 }
1701
1702 /* Wait for the clocks to stabilize. */
1703 POSTING_READ(reg);
1704 udelay(150);
1705
1706 if (INTEL_INFO(dev)->gen >= 4) {
1707 I915_WRITE(DPLL_MD(crtc->pipe),
1708 crtc->config->dpll_hw_state.dpll_md);
1709 } else {
1710 /* The pixel multiplier can only be updated once the
1711 * DPLL is enabled and the clocks are stable.
1712 *
1713 * So write it again.
1714 */
1715 I915_WRITE(reg, dpll);
1716 }
1717
1718 /* We do this three times for luck */
1719 I915_WRITE(reg, dpll);
1720 POSTING_READ(reg);
1721 udelay(150); /* wait for warmup */
1722 I915_WRITE(reg, dpll);
1723 POSTING_READ(reg);
1724 udelay(150); /* wait for warmup */
1725 I915_WRITE(reg, dpll);
1726 POSTING_READ(reg);
1727 udelay(150); /* wait for warmup */
1728 }
1729
1730 /**
1731 * i9xx_disable_pll - disable a PLL
1732 * @dev_priv: i915 private structure
1733 * @pipe: pipe PLL to disable
1734 *
1735 * Disable the PLL for @pipe, making sure the pipe is off first.
1736 *
1737 * Note! This is for pre-ILK only.
1738 */
1739 static void i9xx_disable_pll(struct intel_crtc *crtc)
1740 {
1741 struct drm_device *dev = crtc->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 enum pipe pipe = crtc->pipe;
1744
1745 /* Disable DVO 2x clock on both PLLs if necessary */
1746 if (IS_I830(dev) &&
1747 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1748 intel_num_dvo_pipes(dev) == 1) {
1749 I915_WRITE(DPLL(PIPE_B),
1750 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1751 I915_WRITE(DPLL(PIPE_A),
1752 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1753 }
1754
1755 /* Don't disable pipe or pipe PLLs if needed */
1756 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1757 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1758 return;
1759
1760 /* Make sure the pipe isn't still relying on us */
1761 assert_pipe_disabled(dev_priv, pipe);
1762
1763 I915_WRITE(DPLL(pipe), 0);
1764 POSTING_READ(DPLL(pipe));
1765 }
1766
1767 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1768 {
1769 u32 val = 0;
1770
1771 /* Make sure the pipe isn't still relying on us */
1772 assert_pipe_disabled(dev_priv, pipe);
1773
1774 /*
1775 * Leave integrated clock source and reference clock enabled for pipe B.
1776 * The latter is needed for VGA hotplug / manual detection.
1777 */
1778 if (pipe == PIPE_B)
1779 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1780 I915_WRITE(DPLL(pipe), val);
1781 POSTING_READ(DPLL(pipe));
1782
1783 }
1784
1785 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1786 {
1787 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1788 u32 val;
1789
1790 /* Make sure the pipe isn't still relying on us */
1791 assert_pipe_disabled(dev_priv, pipe);
1792
1793 /* Set PLL en = 0 */
1794 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1795 if (pipe != PIPE_A)
1796 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1797 I915_WRITE(DPLL(pipe), val);
1798 POSTING_READ(DPLL(pipe));
1799
1800 mutex_lock(&dev_priv->dpio_lock);
1801
1802 /* Disable 10bit clock to display controller */
1803 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1804 val &= ~DPIO_DCLKP_EN;
1805 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1806
1807 /* disable left/right clock distribution */
1808 if (pipe != PIPE_B) {
1809 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1810 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1811 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1812 } else {
1813 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1814 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1815 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1816 }
1817
1818 mutex_unlock(&dev_priv->dpio_lock);
1819 }
1820
1821 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1822 struct intel_digital_port *dport)
1823 {
1824 u32 port_mask;
1825 int dpll_reg;
1826
1827 switch (dport->port) {
1828 case PORT_B:
1829 port_mask = DPLL_PORTB_READY_MASK;
1830 dpll_reg = DPLL(0);
1831 break;
1832 case PORT_C:
1833 port_mask = DPLL_PORTC_READY_MASK;
1834 dpll_reg = DPLL(0);
1835 break;
1836 case PORT_D:
1837 port_mask = DPLL_PORTD_READY_MASK;
1838 dpll_reg = DPIO_PHY_STATUS;
1839 break;
1840 default:
1841 BUG();
1842 }
1843
1844 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1845 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1846 port_name(dport->port), I915_READ(dpll_reg));
1847 }
1848
1849 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1850 {
1851 struct drm_device *dev = crtc->base.dev;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1854
1855 if (WARN_ON(pll == NULL))
1856 return;
1857
1858 WARN_ON(!pll->config.crtc_mask);
1859 if (pll->active == 0) {
1860 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1861 WARN_ON(pll->on);
1862 assert_shared_dpll_disabled(dev_priv, pll);
1863
1864 pll->mode_set(dev_priv, pll);
1865 }
1866 }
1867
1868 /**
1869 * intel_enable_shared_dpll - enable PCH PLL
1870 * @dev_priv: i915 private structure
1871 * @pipe: pipe PLL to enable
1872 *
1873 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1874 * drives the transcoder clock.
1875 */
1876 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1877 {
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882 if (WARN_ON(pll == NULL))
1883 return;
1884
1885 if (WARN_ON(pll->config.crtc_mask == 0))
1886 return;
1887
1888 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1889 pll->name, pll->active, pll->on,
1890 crtc->base.base.id);
1891
1892 if (pll->active++) {
1893 WARN_ON(!pll->on);
1894 assert_shared_dpll_enabled(dev_priv, pll);
1895 return;
1896 }
1897 WARN_ON(pll->on);
1898
1899 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1900
1901 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1902 pll->enable(dev_priv, pll);
1903 pll->on = true;
1904 }
1905
1906 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1907 {
1908 struct drm_device *dev = crtc->base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1911
1912 /* PCH only available on ILK+ */
1913 BUG_ON(INTEL_INFO(dev)->gen < 5);
1914 if (WARN_ON(pll == NULL))
1915 return;
1916
1917 if (WARN_ON(pll->config.crtc_mask == 0))
1918 return;
1919
1920 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1921 pll->name, pll->active, pll->on,
1922 crtc->base.base.id);
1923
1924 if (WARN_ON(pll->active == 0)) {
1925 assert_shared_dpll_disabled(dev_priv, pll);
1926 return;
1927 }
1928
1929 assert_shared_dpll_enabled(dev_priv, pll);
1930 WARN_ON(!pll->on);
1931 if (--pll->active)
1932 return;
1933
1934 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1935 pll->disable(dev_priv, pll);
1936 pll->on = false;
1937
1938 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1939 }
1940
1941 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
1943 {
1944 struct drm_device *dev = dev_priv->dev;
1945 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1947 uint32_t reg, val, pipeconf_val;
1948
1949 /* PCH only available on ILK+ */
1950 BUG_ON(!HAS_PCH_SPLIT(dev));
1951
1952 /* Make sure PCH DPLL is enabled */
1953 assert_shared_dpll_enabled(dev_priv,
1954 intel_crtc_to_shared_dpll(intel_crtc));
1955
1956 /* FDI must be feeding us bits for PCH ports */
1957 assert_fdi_tx_enabled(dev_priv, pipe);
1958 assert_fdi_rx_enabled(dev_priv, pipe);
1959
1960 if (HAS_PCH_CPT(dev)) {
1961 /* Workaround: Set the timing override bit before enabling the
1962 * pch transcoder. */
1963 reg = TRANS_CHICKEN2(pipe);
1964 val = I915_READ(reg);
1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966 I915_WRITE(reg, val);
1967 }
1968
1969 reg = PCH_TRANSCONF(pipe);
1970 val = I915_READ(reg);
1971 pipeconf_val = I915_READ(PIPECONF(pipe));
1972
1973 if (HAS_PCH_IBX(dev_priv->dev)) {
1974 /*
1975 * make the BPC in transcoder be consistent with
1976 * that in pipeconf reg.
1977 */
1978 val &= ~PIPECONF_BPC_MASK;
1979 val |= pipeconf_val & PIPECONF_BPC_MASK;
1980 }
1981
1982 val &= ~TRANS_INTERLACE_MASK;
1983 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1984 if (HAS_PCH_IBX(dev_priv->dev) &&
1985 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1986 val |= TRANS_LEGACY_INTERLACED_ILK;
1987 else
1988 val |= TRANS_INTERLACED;
1989 else
1990 val |= TRANS_PROGRESSIVE;
1991
1992 I915_WRITE(reg, val | TRANS_ENABLE);
1993 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1994 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1995 }
1996
1997 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1998 enum transcoder cpu_transcoder)
1999 {
2000 u32 val, pipeconf_val;
2001
2002 /* PCH only available on ILK+ */
2003 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2004
2005 /* FDI must be feeding us bits for PCH ports */
2006 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2007 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2008
2009 /* Workaround: set timing override bit. */
2010 val = I915_READ(_TRANSA_CHICKEN2);
2011 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2012 I915_WRITE(_TRANSA_CHICKEN2, val);
2013
2014 val = TRANS_ENABLE;
2015 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2016
2017 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2018 PIPECONF_INTERLACED_ILK)
2019 val |= TRANS_INTERLACED;
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
2023 I915_WRITE(LPT_TRANSCONF, val);
2024 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2025 DRM_ERROR("Failed to enable PCH transcoder\n");
2026 }
2027
2028 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2029 enum pipe pipe)
2030 {
2031 struct drm_device *dev = dev_priv->dev;
2032 uint32_t reg, val;
2033
2034 /* FDI relies on the transcoder */
2035 assert_fdi_tx_disabled(dev_priv, pipe);
2036 assert_fdi_rx_disabled(dev_priv, pipe);
2037
2038 /* Ports must be off as well */
2039 assert_pch_ports_disabled(dev_priv, pipe);
2040
2041 reg = PCH_TRANSCONF(pipe);
2042 val = I915_READ(reg);
2043 val &= ~TRANS_ENABLE;
2044 I915_WRITE(reg, val);
2045 /* wait for PCH transcoder off, transcoder state */
2046 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2047 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2048
2049 if (!HAS_PCH_IBX(dev)) {
2050 /* Workaround: Clear the timing override chicken bit again. */
2051 reg = TRANS_CHICKEN2(pipe);
2052 val = I915_READ(reg);
2053 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2054 I915_WRITE(reg, val);
2055 }
2056 }
2057
2058 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2059 {
2060 u32 val;
2061
2062 val = I915_READ(LPT_TRANSCONF);
2063 val &= ~TRANS_ENABLE;
2064 I915_WRITE(LPT_TRANSCONF, val);
2065 /* wait for PCH transcoder off, transcoder state */
2066 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2067 DRM_ERROR("Failed to disable PCH transcoder\n");
2068
2069 /* Workaround: clear timing override bit. */
2070 val = I915_READ(_TRANSA_CHICKEN2);
2071 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072 I915_WRITE(_TRANSA_CHICKEN2, val);
2073 }
2074
2075 /**
2076 * intel_enable_pipe - enable a pipe, asserting requirements
2077 * @crtc: crtc responsible for the pipe
2078 *
2079 * Enable @crtc's pipe, making sure that various hardware specific requirements
2080 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2081 */
2082 static void intel_enable_pipe(struct intel_crtc *crtc)
2083 {
2084 struct drm_device *dev = crtc->base.dev;
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 enum pipe pipe = crtc->pipe;
2087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2088 pipe);
2089 enum pipe pch_transcoder;
2090 int reg;
2091 u32 val;
2092
2093 assert_planes_disabled(dev_priv, pipe);
2094 assert_cursor_disabled(dev_priv, pipe);
2095 assert_sprites_disabled(dev_priv, pipe);
2096
2097 if (HAS_PCH_LPT(dev_priv->dev))
2098 pch_transcoder = TRANSCODER_A;
2099 else
2100 pch_transcoder = pipe;
2101
2102 /*
2103 * A pipe without a PLL won't actually be able to drive bits from
2104 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2105 * need the check.
2106 */
2107 if (!HAS_PCH_SPLIT(dev_priv->dev))
2108 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2109 assert_dsi_pll_enabled(dev_priv);
2110 else
2111 assert_pll_enabled(dev_priv, pipe);
2112 else {
2113 if (crtc->config->has_pch_encoder) {
2114 /* if driving the PCH, we need FDI enabled */
2115 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2116 assert_fdi_tx_pll_enabled(dev_priv,
2117 (enum pipe) cpu_transcoder);
2118 }
2119 /* FIXME: assert CPU port conditions for SNB+ */
2120 }
2121
2122 reg = PIPECONF(cpu_transcoder);
2123 val = I915_READ(reg);
2124 if (val & PIPECONF_ENABLE) {
2125 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2126 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2127 return;
2128 }
2129
2130 I915_WRITE(reg, val | PIPECONF_ENABLE);
2131 POSTING_READ(reg);
2132 }
2133
2134 /**
2135 * intel_disable_pipe - disable a pipe, asserting requirements
2136 * @crtc: crtc whose pipes is to be disabled
2137 *
2138 * Disable the pipe of @crtc, making sure that various hardware
2139 * specific requirements are met, if applicable, e.g. plane
2140 * disabled, panel fitter off, etc.
2141 *
2142 * Will wait until the pipe has shut down before returning.
2143 */
2144 static void intel_disable_pipe(struct intel_crtc *crtc)
2145 {
2146 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2147 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2148 enum pipe pipe = crtc->pipe;
2149 int reg;
2150 u32 val;
2151
2152 /*
2153 * Make sure planes won't keep trying to pump pixels to us,
2154 * or we might hang the display.
2155 */
2156 assert_planes_disabled(dev_priv, pipe);
2157 assert_cursor_disabled(dev_priv, pipe);
2158 assert_sprites_disabled(dev_priv, pipe);
2159
2160 reg = PIPECONF(cpu_transcoder);
2161 val = I915_READ(reg);
2162 if ((val & PIPECONF_ENABLE) == 0)
2163 return;
2164
2165 /*
2166 * Double wide has implications for planes
2167 * so best keep it disabled when not needed.
2168 */
2169 if (crtc->config->double_wide)
2170 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172 /* Don't disable pipe or pipe PLLs if needed */
2173 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175 val &= ~PIPECONF_ENABLE;
2176
2177 I915_WRITE(reg, val);
2178 if ((val & PIPECONF_ENABLE) == 0)
2179 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 /*
2183 * Plane regs are double buffered, going from enabled->disabled needs a
2184 * trigger in order to latch. The display address reg provides this.
2185 */
2186 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2187 enum plane plane)
2188 {
2189 struct drm_device *dev = dev_priv->dev;
2190 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2191
2192 I915_WRITE(reg, I915_READ(reg));
2193 POSTING_READ(reg);
2194 }
2195
2196 /**
2197 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2198 * @plane: plane to be enabled
2199 * @crtc: crtc for the plane
2200 *
2201 * Enable @plane on @crtc, making sure that the pipe is running first.
2202 */
2203 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2204 struct drm_crtc *crtc)
2205 {
2206 struct drm_device *dev = plane->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2211 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2212
2213 if (intel_crtc->primary_enabled)
2214 return;
2215
2216 intel_crtc->primary_enabled = true;
2217
2218 dev_priv->display.update_primary_plane(crtc, plane->fb,
2219 crtc->x, crtc->y);
2220
2221 /*
2222 * BDW signals flip done immediately if the plane
2223 * is disabled, even if the plane enable is already
2224 * armed to occur at the next vblank :(
2225 */
2226 if (IS_BROADWELL(dev))
2227 intel_wait_for_vblank(dev, intel_crtc->pipe);
2228 }
2229
2230 /**
2231 * intel_disable_primary_hw_plane - disable the primary hardware plane
2232 * @plane: plane to be disabled
2233 * @crtc: crtc for the plane
2234 *
2235 * Disable @plane on @crtc, making sure that the pipe is running first.
2236 */
2237 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2238 struct drm_crtc *crtc)
2239 {
2240 struct drm_device *dev = plane->dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2243
2244 if (WARN_ON(!intel_crtc->active))
2245 return;
2246
2247 if (!intel_crtc->primary_enabled)
2248 return;
2249
2250 intel_crtc->primary_enabled = false;
2251
2252 dev_priv->display.update_primary_plane(crtc, plane->fb,
2253 crtc->x, crtc->y);
2254 }
2255
2256 static bool need_vtd_wa(struct drm_device *dev)
2257 {
2258 #ifdef CONFIG_INTEL_IOMMU
2259 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2260 return true;
2261 #endif
2262 return false;
2263 }
2264
2265 unsigned int
2266 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2267 uint64_t fb_format_modifier)
2268 {
2269 unsigned int tile_height;
2270 uint32_t pixel_bytes;
2271
2272 switch (fb_format_modifier) {
2273 case DRM_FORMAT_MOD_NONE:
2274 tile_height = 1;
2275 break;
2276 case I915_FORMAT_MOD_X_TILED:
2277 tile_height = IS_GEN2(dev) ? 16 : 8;
2278 break;
2279 case I915_FORMAT_MOD_Y_TILED:
2280 tile_height = 32;
2281 break;
2282 case I915_FORMAT_MOD_Yf_TILED:
2283 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2284 switch (pixel_bytes) {
2285 default:
2286 case 1:
2287 tile_height = 64;
2288 break;
2289 case 2:
2290 case 4:
2291 tile_height = 32;
2292 break;
2293 case 8:
2294 tile_height = 16;
2295 break;
2296 case 16:
2297 WARN_ONCE(1,
2298 "128-bit pixels are not supported for display!");
2299 tile_height = 16;
2300 break;
2301 }
2302 break;
2303 default:
2304 MISSING_CASE(fb_format_modifier);
2305 tile_height = 1;
2306 break;
2307 }
2308
2309 return tile_height;
2310 }
2311
2312 unsigned int
2313 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2314 uint32_t pixel_format, uint64_t fb_format_modifier)
2315 {
2316 return ALIGN(height, intel_tile_height(dev, pixel_format,
2317 fb_format_modifier));
2318 }
2319
2320 static int
2321 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2322 const struct drm_plane_state *plane_state)
2323 {
2324 struct intel_rotation_info *info = &view->rotation_info;
2325
2326 *view = i915_ggtt_view_normal;
2327
2328 if (!plane_state)
2329 return 0;
2330
2331 if (!intel_rotation_90_or_270(plane_state->rotation))
2332 return 0;
2333
2334 *view = i915_ggtt_view_rotated;
2335
2336 info->height = fb->height;
2337 info->pixel_format = fb->pixel_format;
2338 info->pitch = fb->pitches[0];
2339 info->fb_modifier = fb->modifier[0];
2340
2341 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2342 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2343 DRM_DEBUG_KMS(
2344 "Y or Yf tiling is needed for 90/270 rotation!\n");
2345 return -EINVAL;
2346 }
2347
2348 return 0;
2349 }
2350
2351 int
2352 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2353 struct drm_framebuffer *fb,
2354 const struct drm_plane_state *plane_state,
2355 struct intel_engine_cs *pipelined)
2356 {
2357 struct drm_device *dev = fb->dev;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2360 struct i915_ggtt_view view;
2361 u32 alignment;
2362 int ret;
2363
2364 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2365
2366 switch (fb->modifier[0]) {
2367 case DRM_FORMAT_MOD_NONE:
2368 if (INTEL_INFO(dev)->gen >= 9)
2369 alignment = 256 * 1024;
2370 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2371 alignment = 128 * 1024;
2372 else if (INTEL_INFO(dev)->gen >= 4)
2373 alignment = 4 * 1024;
2374 else
2375 alignment = 64 * 1024;
2376 break;
2377 case I915_FORMAT_MOD_X_TILED:
2378 if (INTEL_INFO(dev)->gen >= 9)
2379 alignment = 256 * 1024;
2380 else {
2381 /* pin() will align the object as required by fence */
2382 alignment = 0;
2383 }
2384 break;
2385 case I915_FORMAT_MOD_Y_TILED:
2386 case I915_FORMAT_MOD_Yf_TILED:
2387 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2388 "Y tiling bo slipped through, driver bug!\n"))
2389 return -EINVAL;
2390 alignment = 1 * 1024 * 1024;
2391 break;
2392 default:
2393 MISSING_CASE(fb->modifier[0]);
2394 return -EINVAL;
2395 }
2396
2397 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2398 if (ret)
2399 return ret;
2400
2401 /* Note that the w/a also requires 64 PTE of padding following the
2402 * bo. We currently fill all unused PTE with the shadow page and so
2403 * we should always have valid PTE following the scanout preventing
2404 * the VT-d warning.
2405 */
2406 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2407 alignment = 256 * 1024;
2408
2409 /*
2410 * Global gtt pte registers are special registers which actually forward
2411 * writes to a chunk of system memory. Which means that there is no risk
2412 * that the register values disappear as soon as we call
2413 * intel_runtime_pm_put(), so it is correct to wrap only the
2414 * pin/unpin/fence and not more.
2415 */
2416 intel_runtime_pm_get(dev_priv);
2417
2418 dev_priv->mm.interruptible = false;
2419 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2420 &view);
2421 if (ret)
2422 goto err_interruptible;
2423
2424 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2425 * fence, whereas 965+ only requires a fence if using
2426 * framebuffer compression. For simplicity, we always install
2427 * a fence as the cost is not that onerous.
2428 */
2429 ret = i915_gem_object_get_fence(obj);
2430 if (ret)
2431 goto err_unpin;
2432
2433 i915_gem_object_pin_fence(obj);
2434
2435 dev_priv->mm.interruptible = true;
2436 intel_runtime_pm_put(dev_priv);
2437 return 0;
2438
2439 err_unpin:
2440 i915_gem_object_unpin_from_display_plane(obj, &view);
2441 err_interruptible:
2442 dev_priv->mm.interruptible = true;
2443 intel_runtime_pm_put(dev_priv);
2444 return ret;
2445 }
2446
2447 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2448 const struct drm_plane_state *plane_state)
2449 {
2450 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2451 struct i915_ggtt_view view;
2452 int ret;
2453
2454 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2455
2456 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2457 WARN_ONCE(ret, "Couldn't get view from plane state!");
2458
2459 i915_gem_object_unpin_fence(obj);
2460 i915_gem_object_unpin_from_display_plane(obj, &view);
2461 }
2462
2463 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2464 * is assumed to be a power-of-two. */
2465 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2466 unsigned int tiling_mode,
2467 unsigned int cpp,
2468 unsigned int pitch)
2469 {
2470 if (tiling_mode != I915_TILING_NONE) {
2471 unsigned int tile_rows, tiles;
2472
2473 tile_rows = *y / 8;
2474 *y %= 8;
2475
2476 tiles = *x / (512/cpp);
2477 *x %= 512/cpp;
2478
2479 return tile_rows * pitch * 8 + tiles * 4096;
2480 } else {
2481 unsigned int offset;
2482
2483 offset = *y * pitch + *x * cpp;
2484 *y = 0;
2485 *x = (offset & 4095) / cpp;
2486 return offset & -4096;
2487 }
2488 }
2489
2490 static int i9xx_format_to_fourcc(int format)
2491 {
2492 switch (format) {
2493 case DISPPLANE_8BPP:
2494 return DRM_FORMAT_C8;
2495 case DISPPLANE_BGRX555:
2496 return DRM_FORMAT_XRGB1555;
2497 case DISPPLANE_BGRX565:
2498 return DRM_FORMAT_RGB565;
2499 default:
2500 case DISPPLANE_BGRX888:
2501 return DRM_FORMAT_XRGB8888;
2502 case DISPPLANE_RGBX888:
2503 return DRM_FORMAT_XBGR8888;
2504 case DISPPLANE_BGRX101010:
2505 return DRM_FORMAT_XRGB2101010;
2506 case DISPPLANE_RGBX101010:
2507 return DRM_FORMAT_XBGR2101010;
2508 }
2509 }
2510
2511 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2512 {
2513 switch (format) {
2514 case PLANE_CTL_FORMAT_RGB_565:
2515 return DRM_FORMAT_RGB565;
2516 default:
2517 case PLANE_CTL_FORMAT_XRGB_8888:
2518 if (rgb_order) {
2519 if (alpha)
2520 return DRM_FORMAT_ABGR8888;
2521 else
2522 return DRM_FORMAT_XBGR8888;
2523 } else {
2524 if (alpha)
2525 return DRM_FORMAT_ARGB8888;
2526 else
2527 return DRM_FORMAT_XRGB8888;
2528 }
2529 case PLANE_CTL_FORMAT_XRGB_2101010:
2530 if (rgb_order)
2531 return DRM_FORMAT_XBGR2101010;
2532 else
2533 return DRM_FORMAT_XRGB2101010;
2534 }
2535 }
2536
2537 static bool
2538 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2539 struct intel_initial_plane_config *plane_config)
2540 {
2541 struct drm_device *dev = crtc->base.dev;
2542 struct drm_i915_gem_object *obj = NULL;
2543 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2544 struct drm_framebuffer *fb = &plane_config->fb->base;
2545 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2546 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2547 PAGE_SIZE);
2548
2549 size_aligned -= base_aligned;
2550
2551 if (plane_config->size == 0)
2552 return false;
2553
2554 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555 base_aligned,
2556 base_aligned,
2557 size_aligned);
2558 if (!obj)
2559 return false;
2560
2561 obj->tiling_mode = plane_config->tiling;
2562 if (obj->tiling_mode == I915_TILING_X)
2563 obj->stride = fb->pitches[0];
2564
2565 mode_cmd.pixel_format = fb->pixel_format;
2566 mode_cmd.width = fb->width;
2567 mode_cmd.height = fb->height;
2568 mode_cmd.pitches[0] = fb->pitches[0];
2569 mode_cmd.modifier[0] = fb->modifier[0];
2570 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2571
2572 mutex_lock(&dev->struct_mutex);
2573 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2574 &mode_cmd, obj)) {
2575 DRM_DEBUG_KMS("intel fb init failed\n");
2576 goto out_unref_obj;
2577 }
2578 mutex_unlock(&dev->struct_mutex);
2579
2580 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2581 return true;
2582
2583 out_unref_obj:
2584 drm_gem_object_unreference(&obj->base);
2585 mutex_unlock(&dev->struct_mutex);
2586 return false;
2587 }
2588
2589 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2590 static void
2591 update_state_fb(struct drm_plane *plane)
2592 {
2593 if (plane->fb == plane->state->fb)
2594 return;
2595
2596 if (plane->state->fb)
2597 drm_framebuffer_unreference(plane->state->fb);
2598 plane->state->fb = plane->fb;
2599 if (plane->state->fb)
2600 drm_framebuffer_reference(plane->state->fb);
2601 }
2602
2603 static void
2604 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605 struct intel_initial_plane_config *plane_config)
2606 {
2607 struct drm_device *dev = intel_crtc->base.dev;
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct drm_crtc *c;
2610 struct intel_crtc *i;
2611 struct drm_i915_gem_object *obj;
2612 struct drm_plane *primary = intel_crtc->base.primary;
2613 struct drm_framebuffer *fb;
2614
2615 if (!plane_config->fb)
2616 return;
2617
2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
2621 }
2622
2623 kfree(plane_config->fb);
2624
2625 /*
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2628 */
2629 for_each_crtc(dev, c) {
2630 i = to_intel_crtc(c);
2631
2632 if (c == &intel_crtc->base)
2633 continue;
2634
2635 if (!i->active)
2636 continue;
2637
2638 fb = c->primary->fb;
2639 if (!fb)
2640 continue;
2641
2642 obj = intel_fb_obj(fb);
2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
2646 }
2647 }
2648
2649 return;
2650
2651 valid_fb:
2652 obj = intel_fb_obj(fb);
2653 if (obj->tiling_mode != I915_TILING_NONE)
2654 dev_priv->preserve_bios_swizzle = true;
2655
2656 primary->fb = fb;
2657 primary->state->crtc = &intel_crtc->base;
2658 primary->crtc = &intel_crtc->base;
2659 update_state_fb(primary);
2660 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2661 }
2662
2663 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2664 struct drm_framebuffer *fb,
2665 int x, int y)
2666 {
2667 struct drm_device *dev = crtc->dev;
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2670 struct drm_i915_gem_object *obj;
2671 int plane = intel_crtc->plane;
2672 unsigned long linear_offset;
2673 u32 dspcntr;
2674 u32 reg = DSPCNTR(plane);
2675 int pixel_size;
2676
2677 if (!intel_crtc->primary_enabled) {
2678 I915_WRITE(reg, 0);
2679 if (INTEL_INFO(dev)->gen >= 4)
2680 I915_WRITE(DSPSURF(plane), 0);
2681 else
2682 I915_WRITE(DSPADDR(plane), 0);
2683 POSTING_READ(reg);
2684 return;
2685 }
2686
2687 obj = intel_fb_obj(fb);
2688 if (WARN_ON(obj == NULL))
2689 return;
2690
2691 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2692
2693 dspcntr = DISPPLANE_GAMMA_ENABLE;
2694
2695 dspcntr |= DISPLAY_PLANE_ENABLE;
2696
2697 if (INTEL_INFO(dev)->gen < 4) {
2698 if (intel_crtc->pipe == PIPE_B)
2699 dspcntr |= DISPPLANE_SEL_PIPE_B;
2700
2701 /* pipesrc and dspsize control the size that is scaled from,
2702 * which should always be the user's requested size.
2703 */
2704 I915_WRITE(DSPSIZE(plane),
2705 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2706 (intel_crtc->config->pipe_src_w - 1));
2707 I915_WRITE(DSPPOS(plane), 0);
2708 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2709 I915_WRITE(PRIMSIZE(plane),
2710 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2711 (intel_crtc->config->pipe_src_w - 1));
2712 I915_WRITE(PRIMPOS(plane), 0);
2713 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2714 }
2715
2716 switch (fb->pixel_format) {
2717 case DRM_FORMAT_C8:
2718 dspcntr |= DISPPLANE_8BPP;
2719 break;
2720 case DRM_FORMAT_XRGB1555:
2721 case DRM_FORMAT_ARGB1555:
2722 dspcntr |= DISPPLANE_BGRX555;
2723 break;
2724 case DRM_FORMAT_RGB565:
2725 dspcntr |= DISPPLANE_BGRX565;
2726 break;
2727 case DRM_FORMAT_XRGB8888:
2728 case DRM_FORMAT_ARGB8888:
2729 dspcntr |= DISPPLANE_BGRX888;
2730 break;
2731 case DRM_FORMAT_XBGR8888:
2732 case DRM_FORMAT_ABGR8888:
2733 dspcntr |= DISPPLANE_RGBX888;
2734 break;
2735 case DRM_FORMAT_XRGB2101010:
2736 case DRM_FORMAT_ARGB2101010:
2737 dspcntr |= DISPPLANE_BGRX101010;
2738 break;
2739 case DRM_FORMAT_XBGR2101010:
2740 case DRM_FORMAT_ABGR2101010:
2741 dspcntr |= DISPPLANE_RGBX101010;
2742 break;
2743 default:
2744 BUG();
2745 }
2746
2747 if (INTEL_INFO(dev)->gen >= 4 &&
2748 obj->tiling_mode != I915_TILING_NONE)
2749 dspcntr |= DISPPLANE_TILED;
2750
2751 if (IS_G4X(dev))
2752 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2753
2754 linear_offset = y * fb->pitches[0] + x * pixel_size;
2755
2756 if (INTEL_INFO(dev)->gen >= 4) {
2757 intel_crtc->dspaddr_offset =
2758 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2759 pixel_size,
2760 fb->pitches[0]);
2761 linear_offset -= intel_crtc->dspaddr_offset;
2762 } else {
2763 intel_crtc->dspaddr_offset = linear_offset;
2764 }
2765
2766 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2767 dspcntr |= DISPPLANE_ROTATE_180;
2768
2769 x += (intel_crtc->config->pipe_src_w - 1);
2770 y += (intel_crtc->config->pipe_src_h - 1);
2771
2772 /* Finding the last pixel of the last line of the display
2773 data and adding to linear_offset*/
2774 linear_offset +=
2775 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2776 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2777 }
2778
2779 I915_WRITE(reg, dspcntr);
2780
2781 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2782 if (INTEL_INFO(dev)->gen >= 4) {
2783 I915_WRITE(DSPSURF(plane),
2784 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2785 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2786 I915_WRITE(DSPLINOFF(plane), linear_offset);
2787 } else
2788 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2789 POSTING_READ(reg);
2790 }
2791
2792 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793 struct drm_framebuffer *fb,
2794 int x, int y)
2795 {
2796 struct drm_device *dev = crtc->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2799 struct drm_i915_gem_object *obj;
2800 int plane = intel_crtc->plane;
2801 unsigned long linear_offset;
2802 u32 dspcntr;
2803 u32 reg = DSPCNTR(plane);
2804 int pixel_size;
2805
2806 if (!intel_crtc->primary_enabled) {
2807 I915_WRITE(reg, 0);
2808 I915_WRITE(DSPSURF(plane), 0);
2809 POSTING_READ(reg);
2810 return;
2811 }
2812
2813 obj = intel_fb_obj(fb);
2814 if (WARN_ON(obj == NULL))
2815 return;
2816
2817 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
2819 dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
2821 dspcntr |= DISPLAY_PLANE_ENABLE;
2822
2823 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825
2826 switch (fb->pixel_format) {
2827 case DRM_FORMAT_C8:
2828 dspcntr |= DISPPLANE_8BPP;
2829 break;
2830 case DRM_FORMAT_RGB565:
2831 dspcntr |= DISPPLANE_BGRX565;
2832 break;
2833 case DRM_FORMAT_XRGB8888:
2834 case DRM_FORMAT_ARGB8888:
2835 dspcntr |= DISPPLANE_BGRX888;
2836 break;
2837 case DRM_FORMAT_XBGR8888:
2838 case DRM_FORMAT_ABGR8888:
2839 dspcntr |= DISPPLANE_RGBX888;
2840 break;
2841 case DRM_FORMAT_XRGB2101010:
2842 case DRM_FORMAT_ARGB2101010:
2843 dspcntr |= DISPPLANE_BGRX101010;
2844 break;
2845 case DRM_FORMAT_XBGR2101010:
2846 case DRM_FORMAT_ABGR2101010:
2847 dspcntr |= DISPPLANE_RGBX101010;
2848 break;
2849 default:
2850 BUG();
2851 }
2852
2853 if (obj->tiling_mode != I915_TILING_NONE)
2854 dspcntr |= DISPPLANE_TILED;
2855
2856 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2857 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2858
2859 linear_offset = y * fb->pitches[0] + x * pixel_size;
2860 intel_crtc->dspaddr_offset =
2861 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2862 pixel_size,
2863 fb->pitches[0]);
2864 linear_offset -= intel_crtc->dspaddr_offset;
2865 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2866 dspcntr |= DISPPLANE_ROTATE_180;
2867
2868 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2869 x += (intel_crtc->config->pipe_src_w - 1);
2870 y += (intel_crtc->config->pipe_src_h - 1);
2871
2872 /* Finding the last pixel of the last line of the display
2873 data and adding to linear_offset*/
2874 linear_offset +=
2875 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2876 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2877 }
2878 }
2879
2880 I915_WRITE(reg, dspcntr);
2881
2882 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2883 I915_WRITE(DSPSURF(plane),
2884 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2885 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2886 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887 } else {
2888 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890 }
2891 POSTING_READ(reg);
2892 }
2893
2894 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895 uint32_t pixel_format)
2896 {
2897 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899 /*
2900 * The stride is either expressed as a multiple of 64 bytes
2901 * chunks for linear buffers or in number of tiles for tiled
2902 * buffers.
2903 */
2904 switch (fb_modifier) {
2905 case DRM_FORMAT_MOD_NONE:
2906 return 64;
2907 case I915_FORMAT_MOD_X_TILED:
2908 if (INTEL_INFO(dev)->gen == 2)
2909 return 128;
2910 return 512;
2911 case I915_FORMAT_MOD_Y_TILED:
2912 /* No need to check for old gens and Y tiling since this is
2913 * about the display engine and those will be blocked before
2914 * we get here.
2915 */
2916 return 128;
2917 case I915_FORMAT_MOD_Yf_TILED:
2918 if (bits_per_pixel == 8)
2919 return 64;
2920 else
2921 return 128;
2922 default:
2923 MISSING_CASE(fb_modifier);
2924 return 64;
2925 }
2926 }
2927
2928 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2929 struct drm_i915_gem_object *obj)
2930 {
2931 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2932
2933 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2934 view = &i915_ggtt_view_rotated;
2935
2936 return i915_gem_obj_ggtt_offset_view(obj, view);
2937 }
2938
2939 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2940 struct drm_framebuffer *fb,
2941 int x, int y)
2942 {
2943 struct drm_device *dev = crtc->dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2946 struct drm_i915_gem_object *obj;
2947 int pipe = intel_crtc->pipe;
2948 u32 plane_ctl, stride_div;
2949 unsigned long surf_addr;
2950
2951 if (!intel_crtc->primary_enabled) {
2952 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2953 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2954 POSTING_READ(PLANE_CTL(pipe, 0));
2955 return;
2956 }
2957
2958 plane_ctl = PLANE_CTL_ENABLE |
2959 PLANE_CTL_PIPE_GAMMA_ENABLE |
2960 PLANE_CTL_PIPE_CSC_ENABLE;
2961
2962 switch (fb->pixel_format) {
2963 case DRM_FORMAT_RGB565:
2964 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2965 break;
2966 case DRM_FORMAT_XRGB8888:
2967 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2968 break;
2969 case DRM_FORMAT_ARGB8888:
2970 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2971 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2972 break;
2973 case DRM_FORMAT_XBGR8888:
2974 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2975 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2976 break;
2977 case DRM_FORMAT_ABGR8888:
2978 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2979 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2980 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2981 break;
2982 case DRM_FORMAT_XRGB2101010:
2983 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2984 break;
2985 case DRM_FORMAT_XBGR2101010:
2986 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2987 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2988 break;
2989 default:
2990 BUG();
2991 }
2992
2993 switch (fb->modifier[0]) {
2994 case DRM_FORMAT_MOD_NONE:
2995 break;
2996 case I915_FORMAT_MOD_X_TILED:
2997 plane_ctl |= PLANE_CTL_TILED_X;
2998 break;
2999 case I915_FORMAT_MOD_Y_TILED:
3000 plane_ctl |= PLANE_CTL_TILED_Y;
3001 break;
3002 case I915_FORMAT_MOD_Yf_TILED:
3003 plane_ctl |= PLANE_CTL_TILED_YF;
3004 break;
3005 default:
3006 MISSING_CASE(fb->modifier[0]);
3007 }
3008
3009 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3010 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
3011 plane_ctl |= PLANE_CTL_ROTATE_180;
3012
3013 obj = intel_fb_obj(fb);
3014 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3015 fb->pixel_format);
3016 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
3017
3018 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3019 I915_WRITE(PLANE_POS(pipe, 0), 0);
3020 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
3021 I915_WRITE(PLANE_SIZE(pipe, 0),
3022 (intel_crtc->config->pipe_src_h - 1) << 16 |
3023 (intel_crtc->config->pipe_src_w - 1));
3024 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
3025 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3026
3027 POSTING_READ(PLANE_SURF(pipe, 0));
3028 }
3029
3030 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3031 static int
3032 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3033 int x, int y, enum mode_set_atomic state)
3034 {
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037
3038 if (dev_priv->display.disable_fbc)
3039 dev_priv->display.disable_fbc(dev);
3040
3041 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3042
3043 return 0;
3044 }
3045
3046 static void intel_complete_page_flips(struct drm_device *dev)
3047 {
3048 struct drm_crtc *crtc;
3049
3050 for_each_crtc(dev, crtc) {
3051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3052 enum plane plane = intel_crtc->plane;
3053
3054 intel_prepare_page_flip(dev, plane);
3055 intel_finish_page_flip_plane(dev, plane);
3056 }
3057 }
3058
3059 static void intel_update_primary_planes(struct drm_device *dev)
3060 {
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct drm_crtc *crtc;
3063
3064 for_each_crtc(dev, crtc) {
3065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066
3067 drm_modeset_lock(&crtc->mutex, NULL);
3068 /*
3069 * FIXME: Once we have proper support for primary planes (and
3070 * disabling them without disabling the entire crtc) allow again
3071 * a NULL crtc->primary->fb.
3072 */
3073 if (intel_crtc->active && crtc->primary->fb)
3074 dev_priv->display.update_primary_plane(crtc,
3075 crtc->primary->fb,
3076 crtc->x,
3077 crtc->y);
3078 drm_modeset_unlock(&crtc->mutex);
3079 }
3080 }
3081
3082 void intel_prepare_reset(struct drm_device *dev)
3083 {
3084 struct drm_i915_private *dev_priv = to_i915(dev);
3085 struct intel_crtc *crtc;
3086
3087 /* no reset support for gen2 */
3088 if (IS_GEN2(dev))
3089 return;
3090
3091 /* reset doesn't touch the display */
3092 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3093 return;
3094
3095 drm_modeset_lock_all(dev);
3096
3097 /*
3098 * Disabling the crtcs gracefully seems nicer. Also the
3099 * g33 docs say we should at least disable all the planes.
3100 */
3101 for_each_intel_crtc(dev, crtc) {
3102 if (crtc->active)
3103 dev_priv->display.crtc_disable(&crtc->base);
3104 }
3105 }
3106
3107 void intel_finish_reset(struct drm_device *dev)
3108 {
3109 struct drm_i915_private *dev_priv = to_i915(dev);
3110
3111 /*
3112 * Flips in the rings will be nuked by the reset,
3113 * so complete all pending flips so that user space
3114 * will get its events and not get stuck.
3115 */
3116 intel_complete_page_flips(dev);
3117
3118 /* no reset support for gen2 */
3119 if (IS_GEN2(dev))
3120 return;
3121
3122 /* reset doesn't touch the display */
3123 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3124 /*
3125 * Flips in the rings have been nuked by the reset,
3126 * so update the base address of all primary
3127 * planes to the the last fb to make sure we're
3128 * showing the correct fb after a reset.
3129 */
3130 intel_update_primary_planes(dev);
3131 return;
3132 }
3133
3134 /*
3135 * The display has been reset as well,
3136 * so need a full re-initialization.
3137 */
3138 intel_runtime_pm_disable_interrupts(dev_priv);
3139 intel_runtime_pm_enable_interrupts(dev_priv);
3140
3141 intel_modeset_init_hw(dev);
3142
3143 spin_lock_irq(&dev_priv->irq_lock);
3144 if (dev_priv->display.hpd_irq_setup)
3145 dev_priv->display.hpd_irq_setup(dev);
3146 spin_unlock_irq(&dev_priv->irq_lock);
3147
3148 intel_modeset_setup_hw_state(dev, true);
3149
3150 intel_hpd_init(dev_priv);
3151
3152 drm_modeset_unlock_all(dev);
3153 }
3154
3155 static int
3156 intel_finish_fb(struct drm_framebuffer *old_fb)
3157 {
3158 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3159 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3160 bool was_interruptible = dev_priv->mm.interruptible;
3161 int ret;
3162
3163 /* Big Hammer, we also need to ensure that any pending
3164 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3165 * current scanout is retired before unpinning the old
3166 * framebuffer.
3167 *
3168 * This should only fail upon a hung GPU, in which case we
3169 * can safely continue.
3170 */
3171 dev_priv->mm.interruptible = false;
3172 ret = i915_gem_object_finish_gpu(obj);
3173 dev_priv->mm.interruptible = was_interruptible;
3174
3175 return ret;
3176 }
3177
3178 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3179 {
3180 struct drm_device *dev = crtc->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3183 bool pending;
3184
3185 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3186 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3187 return false;
3188
3189 spin_lock_irq(&dev->event_lock);
3190 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3191 spin_unlock_irq(&dev->event_lock);
3192
3193 return pending;
3194 }
3195
3196 static void intel_update_pipe_size(struct intel_crtc *crtc)
3197 {
3198 struct drm_device *dev = crtc->base.dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 const struct drm_display_mode *adjusted_mode;
3201
3202 if (!i915.fastboot)
3203 return;
3204
3205 /*
3206 * Update pipe size and adjust fitter if needed: the reason for this is
3207 * that in compute_mode_changes we check the native mode (not the pfit
3208 * mode) to see if we can flip rather than do a full mode set. In the
3209 * fastboot case, we'll flip, but if we don't update the pipesrc and
3210 * pfit state, we'll end up with a big fb scanned out into the wrong
3211 * sized surface.
3212 *
3213 * To fix this properly, we need to hoist the checks up into
3214 * compute_mode_changes (or above), check the actual pfit state and
3215 * whether the platform allows pfit disable with pipe active, and only
3216 * then update the pipesrc and pfit state, even on the flip path.
3217 */
3218
3219 adjusted_mode = &crtc->config->base.adjusted_mode;
3220
3221 I915_WRITE(PIPESRC(crtc->pipe),
3222 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3223 (adjusted_mode->crtc_vdisplay - 1));
3224 if (!crtc->config->pch_pfit.enabled &&
3225 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3226 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3227 I915_WRITE(PF_CTL(crtc->pipe), 0);
3228 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3229 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3230 }
3231 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3232 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3233 }
3234
3235 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3236 {
3237 struct drm_device *dev = crtc->dev;
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240 int pipe = intel_crtc->pipe;
3241 u32 reg, temp;
3242
3243 /* enable normal train */
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
3246 if (IS_IVYBRIDGE(dev)) {
3247 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3248 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3249 } else {
3250 temp &= ~FDI_LINK_TRAIN_NONE;
3251 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3252 }
3253 I915_WRITE(reg, temp);
3254
3255 reg = FDI_RX_CTL(pipe);
3256 temp = I915_READ(reg);
3257 if (HAS_PCH_CPT(dev)) {
3258 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3259 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3260 } else {
3261 temp &= ~FDI_LINK_TRAIN_NONE;
3262 temp |= FDI_LINK_TRAIN_NONE;
3263 }
3264 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3265
3266 /* wait one idle pattern time */
3267 POSTING_READ(reg);
3268 udelay(1000);
3269
3270 /* IVB wants error correction enabled */
3271 if (IS_IVYBRIDGE(dev))
3272 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3273 FDI_FE_ERRC_ENABLE);
3274 }
3275
3276 /* The FDI link training functions for ILK/Ibexpeak. */
3277 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3278 {
3279 struct drm_device *dev = crtc->dev;
3280 struct drm_i915_private *dev_priv = dev->dev_private;
3281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282 int pipe = intel_crtc->pipe;
3283 u32 reg, temp, tries;
3284
3285 /* FDI needs bits from pipe first */
3286 assert_pipe_enabled(dev_priv, pipe);
3287
3288 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3289 for train result */
3290 reg = FDI_RX_IMR(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~FDI_RX_SYMBOL_LOCK;
3293 temp &= ~FDI_RX_BIT_LOCK;
3294 I915_WRITE(reg, temp);
3295 I915_READ(reg);
3296 udelay(150);
3297
3298 /* enable CPU FDI TX and PCH FDI RX */
3299 reg = FDI_TX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3302 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3303 temp &= ~FDI_LINK_TRAIN_NONE;
3304 temp |= FDI_LINK_TRAIN_PATTERN_1;
3305 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3306
3307 reg = FDI_RX_CTL(pipe);
3308 temp = I915_READ(reg);
3309 temp &= ~FDI_LINK_TRAIN_NONE;
3310 temp |= FDI_LINK_TRAIN_PATTERN_1;
3311 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3312
3313 POSTING_READ(reg);
3314 udelay(150);
3315
3316 /* Ironlake workaround, enable clock pointer after FDI enable*/
3317 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3318 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3319 FDI_RX_PHASE_SYNC_POINTER_EN);
3320
3321 reg = FDI_RX_IIR(pipe);
3322 for (tries = 0; tries < 5; tries++) {
3323 temp = I915_READ(reg);
3324 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3325
3326 if ((temp & FDI_RX_BIT_LOCK)) {
3327 DRM_DEBUG_KMS("FDI train 1 done.\n");
3328 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3329 break;
3330 }
3331 }
3332 if (tries == 5)
3333 DRM_ERROR("FDI train 1 fail!\n");
3334
3335 /* Train 2 */
3336 reg = FDI_TX_CTL(pipe);
3337 temp = I915_READ(reg);
3338 temp &= ~FDI_LINK_TRAIN_NONE;
3339 temp |= FDI_LINK_TRAIN_PATTERN_2;
3340 I915_WRITE(reg, temp);
3341
3342 reg = FDI_RX_CTL(pipe);
3343 temp = I915_READ(reg);
3344 temp &= ~FDI_LINK_TRAIN_NONE;
3345 temp |= FDI_LINK_TRAIN_PATTERN_2;
3346 I915_WRITE(reg, temp);
3347
3348 POSTING_READ(reg);
3349 udelay(150);
3350
3351 reg = FDI_RX_IIR(pipe);
3352 for (tries = 0; tries < 5; tries++) {
3353 temp = I915_READ(reg);
3354 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3355
3356 if (temp & FDI_RX_SYMBOL_LOCK) {
3357 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3358 DRM_DEBUG_KMS("FDI train 2 done.\n");
3359 break;
3360 }
3361 }
3362 if (tries == 5)
3363 DRM_ERROR("FDI train 2 fail!\n");
3364
3365 DRM_DEBUG_KMS("FDI train done\n");
3366
3367 }
3368
3369 static const int snb_b_fdi_train_param[] = {
3370 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3371 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3372 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3373 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3374 };
3375
3376 /* The FDI link training functions for SNB/Cougarpoint. */
3377 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3378 {
3379 struct drm_device *dev = crtc->dev;
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382 int pipe = intel_crtc->pipe;
3383 u32 reg, temp, i, retry;
3384
3385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3386 for train result */
3387 reg = FDI_RX_IMR(pipe);
3388 temp = I915_READ(reg);
3389 temp &= ~FDI_RX_SYMBOL_LOCK;
3390 temp &= ~FDI_RX_BIT_LOCK;
3391 I915_WRITE(reg, temp);
3392
3393 POSTING_READ(reg);
3394 udelay(150);
3395
3396 /* enable CPU FDI TX and PCH FDI RX */
3397 reg = FDI_TX_CTL(pipe);
3398 temp = I915_READ(reg);
3399 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3400 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3401 temp &= ~FDI_LINK_TRAIN_NONE;
3402 temp |= FDI_LINK_TRAIN_PATTERN_1;
3403 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3404 /* SNB-B */
3405 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3406 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408 I915_WRITE(FDI_RX_MISC(pipe),
3409 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3410
3411 reg = FDI_RX_CTL(pipe);
3412 temp = I915_READ(reg);
3413 if (HAS_PCH_CPT(dev)) {
3414 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3415 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3416 } else {
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 }
3420 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3421
3422 POSTING_READ(reg);
3423 udelay(150);
3424
3425 for (i = 0; i < 4; i++) {
3426 reg = FDI_TX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3429 temp |= snb_b_fdi_train_param[i];
3430 I915_WRITE(reg, temp);
3431
3432 POSTING_READ(reg);
3433 udelay(500);
3434
3435 for (retry = 0; retry < 5; retry++) {
3436 reg = FDI_RX_IIR(pipe);
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439 if (temp & FDI_RX_BIT_LOCK) {
3440 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 break;
3443 }
3444 udelay(50);
3445 }
3446 if (retry < 5)
3447 break;
3448 }
3449 if (i == 4)
3450 DRM_ERROR("FDI train 1 fail!\n");
3451
3452 /* Train 2 */
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 if (IS_GEN6(dev)) {
3458 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3459 /* SNB-B */
3460 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3461 }
3462 I915_WRITE(reg, temp);
3463
3464 reg = FDI_RX_CTL(pipe);
3465 temp = I915_READ(reg);
3466 if (HAS_PCH_CPT(dev)) {
3467 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3468 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3469 } else {
3470 temp &= ~FDI_LINK_TRAIN_NONE;
3471 temp |= FDI_LINK_TRAIN_PATTERN_2;
3472 }
3473 I915_WRITE(reg, temp);
3474
3475 POSTING_READ(reg);
3476 udelay(150);
3477
3478 for (i = 0; i < 4; i++) {
3479 reg = FDI_TX_CTL(pipe);
3480 temp = I915_READ(reg);
3481 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3482 temp |= snb_b_fdi_train_param[i];
3483 I915_WRITE(reg, temp);
3484
3485 POSTING_READ(reg);
3486 udelay(500);
3487
3488 for (retry = 0; retry < 5; retry++) {
3489 reg = FDI_RX_IIR(pipe);
3490 temp = I915_READ(reg);
3491 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3492 if (temp & FDI_RX_SYMBOL_LOCK) {
3493 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3494 DRM_DEBUG_KMS("FDI train 2 done.\n");
3495 break;
3496 }
3497 udelay(50);
3498 }
3499 if (retry < 5)
3500 break;
3501 }
3502 if (i == 4)
3503 DRM_ERROR("FDI train 2 fail!\n");
3504
3505 DRM_DEBUG_KMS("FDI train done.\n");
3506 }
3507
3508 /* Manual link training for Ivy Bridge A0 parts */
3509 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3510 {
3511 struct drm_device *dev = crtc->dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514 int pipe = intel_crtc->pipe;
3515 u32 reg, temp, i, j;
3516
3517 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3518 for train result */
3519 reg = FDI_RX_IMR(pipe);
3520 temp = I915_READ(reg);
3521 temp &= ~FDI_RX_SYMBOL_LOCK;
3522 temp &= ~FDI_RX_BIT_LOCK;
3523 I915_WRITE(reg, temp);
3524
3525 POSTING_READ(reg);
3526 udelay(150);
3527
3528 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3529 I915_READ(FDI_RX_IIR(pipe)));
3530
3531 /* Try each vswing and preemphasis setting twice before moving on */
3532 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3533 /* disable first in case we need to retry */
3534 reg = FDI_TX_CTL(pipe);
3535 temp = I915_READ(reg);
3536 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3537 temp &= ~FDI_TX_ENABLE;
3538 I915_WRITE(reg, temp);
3539
3540 reg = FDI_RX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_AUTO;
3543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3544 temp &= ~FDI_RX_ENABLE;
3545 I915_WRITE(reg, temp);
3546
3547 /* enable CPU FDI TX and PCH FDI RX */
3548 reg = FDI_TX_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3551 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3552 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3554 temp |= snb_b_fdi_train_param[j/2];
3555 temp |= FDI_COMPOSITE_SYNC;
3556 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3557
3558 I915_WRITE(FDI_RX_MISC(pipe),
3559 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3560
3561 reg = FDI_RX_CTL(pipe);
3562 temp = I915_READ(reg);
3563 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564 temp |= FDI_COMPOSITE_SYNC;
3565 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3566
3567 POSTING_READ(reg);
3568 udelay(1); /* should be 0.5us */
3569
3570 for (i = 0; i < 4; i++) {
3571 reg = FDI_RX_IIR(pipe);
3572 temp = I915_READ(reg);
3573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3574
3575 if (temp & FDI_RX_BIT_LOCK ||
3576 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3578 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3579 i);
3580 break;
3581 }
3582 udelay(1); /* should be 0.5us */
3583 }
3584 if (i == 4) {
3585 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3586 continue;
3587 }
3588
3589 /* Train 2 */
3590 reg = FDI_TX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3593 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3594 I915_WRITE(reg, temp);
3595
3596 reg = FDI_RX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3599 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3600 I915_WRITE(reg, temp);
3601
3602 POSTING_READ(reg);
3603 udelay(2); /* should be 1.5us */
3604
3605 for (i = 0; i < 4; i++) {
3606 reg = FDI_RX_IIR(pipe);
3607 temp = I915_READ(reg);
3608 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3609
3610 if (temp & FDI_RX_SYMBOL_LOCK ||
3611 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3612 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3613 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3614 i);
3615 goto train_done;
3616 }
3617 udelay(2); /* should be 1.5us */
3618 }
3619 if (i == 4)
3620 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3621 }
3622
3623 train_done:
3624 DRM_DEBUG_KMS("FDI train done.\n");
3625 }
3626
3627 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3628 {
3629 struct drm_device *dev = intel_crtc->base.dev;
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 int pipe = intel_crtc->pipe;
3632 u32 reg, temp;
3633
3634
3635 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3636 reg = FDI_RX_CTL(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3639 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3640 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3641 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3642
3643 POSTING_READ(reg);
3644 udelay(200);
3645
3646 /* Switch from Rawclk to PCDclk */
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp | FDI_PCDCLK);
3649
3650 POSTING_READ(reg);
3651 udelay(200);
3652
3653 /* Enable CPU FDI TX PLL, always on for Ironlake */
3654 reg = FDI_TX_CTL(pipe);
3655 temp = I915_READ(reg);
3656 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3657 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3658
3659 POSTING_READ(reg);
3660 udelay(100);
3661 }
3662 }
3663
3664 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3665 {
3666 struct drm_device *dev = intel_crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 int pipe = intel_crtc->pipe;
3669 u32 reg, temp;
3670
3671 /* Switch from PCDclk to Rawclk */
3672 reg = FDI_RX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3675
3676 /* Disable CPU FDI TX PLL */
3677 reg = FDI_TX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3680
3681 POSTING_READ(reg);
3682 udelay(100);
3683
3684 reg = FDI_RX_CTL(pipe);
3685 temp = I915_READ(reg);
3686 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3687
3688 /* Wait for the clocks to turn off. */
3689 POSTING_READ(reg);
3690 udelay(100);
3691 }
3692
3693 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3694 {
3695 struct drm_device *dev = crtc->dev;
3696 struct drm_i915_private *dev_priv = dev->dev_private;
3697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698 int pipe = intel_crtc->pipe;
3699 u32 reg, temp;
3700
3701 /* disable CPU FDI tx and PCH FDI rx */
3702 reg = FDI_TX_CTL(pipe);
3703 temp = I915_READ(reg);
3704 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3705 POSTING_READ(reg);
3706
3707 reg = FDI_RX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~(0x7 << 16);
3710 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3711 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3712
3713 POSTING_READ(reg);
3714 udelay(100);
3715
3716 /* Ironlake workaround, disable clock pointer after downing FDI */
3717 if (HAS_PCH_IBX(dev))
3718 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3719
3720 /* still set train pattern 1 */
3721 reg = FDI_TX_CTL(pipe);
3722 temp = I915_READ(reg);
3723 temp &= ~FDI_LINK_TRAIN_NONE;
3724 temp |= FDI_LINK_TRAIN_PATTERN_1;
3725 I915_WRITE(reg, temp);
3726
3727 reg = FDI_RX_CTL(pipe);
3728 temp = I915_READ(reg);
3729 if (HAS_PCH_CPT(dev)) {
3730 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3731 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3732 } else {
3733 temp &= ~FDI_LINK_TRAIN_NONE;
3734 temp |= FDI_LINK_TRAIN_PATTERN_1;
3735 }
3736 /* BPC in FDI rx is consistent with that in PIPECONF */
3737 temp &= ~(0x07 << 16);
3738 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3739 I915_WRITE(reg, temp);
3740
3741 POSTING_READ(reg);
3742 udelay(100);
3743 }
3744
3745 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3746 {
3747 struct intel_crtc *crtc;
3748
3749 /* Note that we don't need to be called with mode_config.lock here
3750 * as our list of CRTC objects is static for the lifetime of the
3751 * device and so cannot disappear as we iterate. Similarly, we can
3752 * happily treat the predicates as racy, atomic checks as userspace
3753 * cannot claim and pin a new fb without at least acquring the
3754 * struct_mutex and so serialising with us.
3755 */
3756 for_each_intel_crtc(dev, crtc) {
3757 if (atomic_read(&crtc->unpin_work_count) == 0)
3758 continue;
3759
3760 if (crtc->unpin_work)
3761 intel_wait_for_vblank(dev, crtc->pipe);
3762
3763 return true;
3764 }
3765
3766 return false;
3767 }
3768
3769 static void page_flip_completed(struct intel_crtc *intel_crtc)
3770 {
3771 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3772 struct intel_unpin_work *work = intel_crtc->unpin_work;
3773
3774 /* ensure that the unpin work is consistent wrt ->pending. */
3775 smp_rmb();
3776 intel_crtc->unpin_work = NULL;
3777
3778 if (work->event)
3779 drm_send_vblank_event(intel_crtc->base.dev,
3780 intel_crtc->pipe,
3781 work->event);
3782
3783 drm_crtc_vblank_put(&intel_crtc->base);
3784
3785 wake_up_all(&dev_priv->pending_flip_queue);
3786 queue_work(dev_priv->wq, &work->work);
3787
3788 trace_i915_flip_complete(intel_crtc->plane,
3789 work->pending_flip_obj);
3790 }
3791
3792 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3793 {
3794 struct drm_device *dev = crtc->dev;
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796
3797 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3798 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3799 !intel_crtc_has_pending_flip(crtc),
3800 60*HZ) == 0)) {
3801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802
3803 spin_lock_irq(&dev->event_lock);
3804 if (intel_crtc->unpin_work) {
3805 WARN_ONCE(1, "Removing stuck page flip\n");
3806 page_flip_completed(intel_crtc);
3807 }
3808 spin_unlock_irq(&dev->event_lock);
3809 }
3810
3811 if (crtc->primary->fb) {
3812 mutex_lock(&dev->struct_mutex);
3813 intel_finish_fb(crtc->primary->fb);
3814 mutex_unlock(&dev->struct_mutex);
3815 }
3816 }
3817
3818 /* Program iCLKIP clock to the desired frequency */
3819 static void lpt_program_iclkip(struct drm_crtc *crtc)
3820 {
3821 struct drm_device *dev = crtc->dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3824 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3825 u32 temp;
3826
3827 mutex_lock(&dev_priv->dpio_lock);
3828
3829 /* It is necessary to ungate the pixclk gate prior to programming
3830 * the divisors, and gate it back when it is done.
3831 */
3832 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834 /* Disable SSCCTL */
3835 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3836 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3837 SBI_SSCCTL_DISABLE,
3838 SBI_ICLK);
3839
3840 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3841 if (clock == 20000) {
3842 auxdiv = 1;
3843 divsel = 0x41;
3844 phaseinc = 0x20;
3845 } else {
3846 /* The iCLK virtual clock root frequency is in MHz,
3847 * but the adjusted_mode->crtc_clock in in KHz. To get the
3848 * divisors, it is necessary to divide one by another, so we
3849 * convert the virtual clock precision to KHz here for higher
3850 * precision.
3851 */
3852 u32 iclk_virtual_root_freq = 172800 * 1000;
3853 u32 iclk_pi_range = 64;
3854 u32 desired_divisor, msb_divisor_value, pi_value;
3855
3856 desired_divisor = (iclk_virtual_root_freq / clock);
3857 msb_divisor_value = desired_divisor / iclk_pi_range;
3858 pi_value = desired_divisor % iclk_pi_range;
3859
3860 auxdiv = 0;
3861 divsel = msb_divisor_value - 2;
3862 phaseinc = pi_value;
3863 }
3864
3865 /* This should not happen with any sane values */
3866 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3867 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3868 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3869 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3870
3871 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3872 clock,
3873 auxdiv,
3874 divsel,
3875 phasedir,
3876 phaseinc);
3877
3878 /* Program SSCDIVINTPHASE6 */
3879 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3880 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3881 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3882 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3883 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3884 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3885 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3886 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3887
3888 /* Program SSCAUXDIV */
3889 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3890 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3891 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3892 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3893
3894 /* Enable modulator and associated divider */
3895 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3896 temp &= ~SBI_SSCCTL_DISABLE;
3897 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3898
3899 /* Wait for initialization time */
3900 udelay(24);
3901
3902 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3903
3904 mutex_unlock(&dev_priv->dpio_lock);
3905 }
3906
3907 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3908 enum pipe pch_transcoder)
3909 {
3910 struct drm_device *dev = crtc->base.dev;
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3913
3914 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3915 I915_READ(HTOTAL(cpu_transcoder)));
3916 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3917 I915_READ(HBLANK(cpu_transcoder)));
3918 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3919 I915_READ(HSYNC(cpu_transcoder)));
3920
3921 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3922 I915_READ(VTOTAL(cpu_transcoder)));
3923 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3924 I915_READ(VBLANK(cpu_transcoder)));
3925 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3926 I915_READ(VSYNC(cpu_transcoder)));
3927 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3928 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3929 }
3930
3931 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3932 {
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 uint32_t temp;
3935
3936 temp = I915_READ(SOUTH_CHICKEN1);
3937 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3938 return;
3939
3940 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3941 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3942
3943 temp &= ~FDI_BC_BIFURCATION_SELECT;
3944 if (enable)
3945 temp |= FDI_BC_BIFURCATION_SELECT;
3946
3947 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3948 I915_WRITE(SOUTH_CHICKEN1, temp);
3949 POSTING_READ(SOUTH_CHICKEN1);
3950 }
3951
3952 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3953 {
3954 struct drm_device *dev = intel_crtc->base.dev;
3955
3956 switch (intel_crtc->pipe) {
3957 case PIPE_A:
3958 break;
3959 case PIPE_B:
3960 if (intel_crtc->config->fdi_lanes > 2)
3961 cpt_set_fdi_bc_bifurcation(dev, false);
3962 else
3963 cpt_set_fdi_bc_bifurcation(dev, true);
3964
3965 break;
3966 case PIPE_C:
3967 cpt_set_fdi_bc_bifurcation(dev, true);
3968
3969 break;
3970 default:
3971 BUG();
3972 }
3973 }
3974
3975 /*
3976 * Enable PCH resources required for PCH ports:
3977 * - PCH PLLs
3978 * - FDI training & RX/TX
3979 * - update transcoder timings
3980 * - DP transcoding bits
3981 * - transcoder
3982 */
3983 static void ironlake_pch_enable(struct drm_crtc *crtc)
3984 {
3985 struct drm_device *dev = crtc->dev;
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988 int pipe = intel_crtc->pipe;
3989 u32 reg, temp;
3990
3991 assert_pch_transcoder_disabled(dev_priv, pipe);
3992
3993 if (IS_IVYBRIDGE(dev))
3994 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3995
3996 /* Write the TU size bits before fdi link training, so that error
3997 * detection works. */
3998 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3999 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4000
4001 /* For PCH output, training FDI link */
4002 dev_priv->display.fdi_link_train(crtc);
4003
4004 /* We need to program the right clock selection before writing the pixel
4005 * mutliplier into the DPLL. */
4006 if (HAS_PCH_CPT(dev)) {
4007 u32 sel;
4008
4009 temp = I915_READ(PCH_DPLL_SEL);
4010 temp |= TRANS_DPLL_ENABLE(pipe);
4011 sel = TRANS_DPLLB_SEL(pipe);
4012 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4013 temp |= sel;
4014 else
4015 temp &= ~sel;
4016 I915_WRITE(PCH_DPLL_SEL, temp);
4017 }
4018
4019 /* XXX: pch pll's can be enabled any time before we enable the PCH
4020 * transcoder, and we actually should do this to not upset any PCH
4021 * transcoder that already use the clock when we share it.
4022 *
4023 * Note that enable_shared_dpll tries to do the right thing, but
4024 * get_shared_dpll unconditionally resets the pll - we need that to have
4025 * the right LVDS enable sequence. */
4026 intel_enable_shared_dpll(intel_crtc);
4027
4028 /* set transcoder timing, panel must allow it */
4029 assert_panel_unlocked(dev_priv, pipe);
4030 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4031
4032 intel_fdi_normal_train(crtc);
4033
4034 /* For PCH DP, enable TRANS_DP_CTL */
4035 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4036 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4037 reg = TRANS_DP_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4040 TRANS_DP_SYNC_MASK |
4041 TRANS_DP_BPC_MASK);
4042 temp |= (TRANS_DP_OUTPUT_ENABLE |
4043 TRANS_DP_ENH_FRAMING);
4044 temp |= bpc << 9; /* same format but at 11:9 */
4045
4046 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4047 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4048 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4049 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4050
4051 switch (intel_trans_dp_port_sel(crtc)) {
4052 case PCH_DP_B:
4053 temp |= TRANS_DP_PORT_SEL_B;
4054 break;
4055 case PCH_DP_C:
4056 temp |= TRANS_DP_PORT_SEL_C;
4057 break;
4058 case PCH_DP_D:
4059 temp |= TRANS_DP_PORT_SEL_D;
4060 break;
4061 default:
4062 BUG();
4063 }
4064
4065 I915_WRITE(reg, temp);
4066 }
4067
4068 ironlake_enable_pch_transcoder(dev_priv, pipe);
4069 }
4070
4071 static void lpt_pch_enable(struct drm_crtc *crtc)
4072 {
4073 struct drm_device *dev = crtc->dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4076 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4077
4078 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4079
4080 lpt_program_iclkip(crtc);
4081
4082 /* Set transcoder timing. */
4083 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4084
4085 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4086 }
4087
4088 void intel_put_shared_dpll(struct intel_crtc *crtc)
4089 {
4090 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4091
4092 if (pll == NULL)
4093 return;
4094
4095 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4096 WARN(1, "bad %s crtc mask\n", pll->name);
4097 return;
4098 }
4099
4100 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4101 if (pll->config.crtc_mask == 0) {
4102 WARN_ON(pll->on);
4103 WARN_ON(pll->active);
4104 }
4105
4106 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4107 }
4108
4109 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4110 struct intel_crtc_state *crtc_state)
4111 {
4112 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4113 struct intel_shared_dpll *pll;
4114 enum intel_dpll_id i;
4115
4116 if (HAS_PCH_IBX(dev_priv->dev)) {
4117 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4118 i = (enum intel_dpll_id) crtc->pipe;
4119 pll = &dev_priv->shared_dplls[i];
4120
4121 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4122 crtc->base.base.id, pll->name);
4123
4124 WARN_ON(pll->new_config->crtc_mask);
4125
4126 goto found;
4127 }
4128
4129 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4130 pll = &dev_priv->shared_dplls[i];
4131
4132 /* Only want to check enabled timings first */
4133 if (pll->new_config->crtc_mask == 0)
4134 continue;
4135
4136 if (memcmp(&crtc_state->dpll_hw_state,
4137 &pll->new_config->hw_state,
4138 sizeof(pll->new_config->hw_state)) == 0) {
4139 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4140 crtc->base.base.id, pll->name,
4141 pll->new_config->crtc_mask,
4142 pll->active);
4143 goto found;
4144 }
4145 }
4146
4147 /* Ok no matching timings, maybe there's a free one? */
4148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4149 pll = &dev_priv->shared_dplls[i];
4150 if (pll->new_config->crtc_mask == 0) {
4151 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4152 crtc->base.base.id, pll->name);
4153 goto found;
4154 }
4155 }
4156
4157 return NULL;
4158
4159 found:
4160 if (pll->new_config->crtc_mask == 0)
4161 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4162
4163 crtc_state->shared_dpll = i;
4164 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4165 pipe_name(crtc->pipe));
4166
4167 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4168
4169 return pll;
4170 }
4171
4172 /**
4173 * intel_shared_dpll_start_config - start a new PLL staged config
4174 * @dev_priv: DRM device
4175 * @clear_pipes: mask of pipes that will have their PLLs freed
4176 *
4177 * Starts a new PLL staged config, copying the current config but
4178 * releasing the references of pipes specified in clear_pipes.
4179 */
4180 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4181 unsigned clear_pipes)
4182 {
4183 struct intel_shared_dpll *pll;
4184 enum intel_dpll_id i;
4185
4186 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4187 pll = &dev_priv->shared_dplls[i];
4188
4189 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4190 GFP_KERNEL);
4191 if (!pll->new_config)
4192 goto cleanup;
4193
4194 pll->new_config->crtc_mask &= ~clear_pipes;
4195 }
4196
4197 return 0;
4198
4199 cleanup:
4200 while (--i >= 0) {
4201 pll = &dev_priv->shared_dplls[i];
4202 kfree(pll->new_config);
4203 pll->new_config = NULL;
4204 }
4205
4206 return -ENOMEM;
4207 }
4208
4209 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4210 {
4211 struct intel_shared_dpll *pll;
4212 enum intel_dpll_id i;
4213
4214 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4215 pll = &dev_priv->shared_dplls[i];
4216
4217 WARN_ON(pll->new_config == &pll->config);
4218
4219 pll->config = *pll->new_config;
4220 kfree(pll->new_config);
4221 pll->new_config = NULL;
4222 }
4223 }
4224
4225 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4226 {
4227 struct intel_shared_dpll *pll;
4228 enum intel_dpll_id i;
4229
4230 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4231 pll = &dev_priv->shared_dplls[i];
4232
4233 WARN_ON(pll->new_config == &pll->config);
4234
4235 kfree(pll->new_config);
4236 pll->new_config = NULL;
4237 }
4238 }
4239
4240 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4241 {
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 int dslreg = PIPEDSL(pipe);
4244 u32 temp;
4245
4246 temp = I915_READ(dslreg);
4247 udelay(500);
4248 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4249 if (wait_for(I915_READ(dslreg) != temp, 5))
4250 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4251 }
4252 }
4253
4254 static void skylake_pfit_enable(struct intel_crtc *crtc)
4255 {
4256 struct drm_device *dev = crtc->base.dev;
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258 int pipe = crtc->pipe;
4259
4260 if (crtc->config->pch_pfit.enabled) {
4261 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4262 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4263 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4264 }
4265 }
4266
4267 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4268 {
4269 struct drm_device *dev = crtc->base.dev;
4270 struct drm_i915_private *dev_priv = dev->dev_private;
4271 int pipe = crtc->pipe;
4272
4273 if (crtc->config->pch_pfit.enabled) {
4274 /* Force use of hard-coded filter coefficients
4275 * as some pre-programmed values are broken,
4276 * e.g. x201.
4277 */
4278 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4279 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4280 PF_PIPE_SEL_IVB(pipe));
4281 else
4282 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4283 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4284 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4285 }
4286 }
4287
4288 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4289 {
4290 struct drm_device *dev = crtc->dev;
4291 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4292 struct drm_plane *plane;
4293 struct intel_plane *intel_plane;
4294
4295 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4296 intel_plane = to_intel_plane(plane);
4297 if (intel_plane->pipe == pipe)
4298 intel_plane_restore(&intel_plane->base);
4299 }
4300 }
4301
4302 /*
4303 * Disable a plane internally without actually modifying the plane's state.
4304 * This will allow us to easily restore the plane later by just reprogramming
4305 * its state.
4306 */
4307 static void disable_plane_internal(struct drm_plane *plane)
4308 {
4309 struct intel_plane *intel_plane = to_intel_plane(plane);
4310 struct drm_plane_state *state =
4311 plane->funcs->atomic_duplicate_state(plane);
4312 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4313
4314 intel_state->visible = false;
4315 intel_plane->commit_plane(plane, intel_state);
4316
4317 intel_plane_destroy_state(plane, state);
4318 }
4319
4320 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4321 {
4322 struct drm_device *dev = crtc->dev;
4323 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4324 struct drm_plane *plane;
4325 struct intel_plane *intel_plane;
4326
4327 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4328 intel_plane = to_intel_plane(plane);
4329 if (plane->fb && intel_plane->pipe == pipe)
4330 disable_plane_internal(plane);
4331 }
4332 }
4333
4334 void hsw_enable_ips(struct intel_crtc *crtc)
4335 {
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = dev->dev_private;
4338
4339 if (!crtc->config->ips_enabled)
4340 return;
4341
4342 /* We can only enable IPS after we enable a plane and wait for a vblank */
4343 intel_wait_for_vblank(dev, crtc->pipe);
4344
4345 assert_plane_enabled(dev_priv, crtc->plane);
4346 if (IS_BROADWELL(dev)) {
4347 mutex_lock(&dev_priv->rps.hw_lock);
4348 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4349 mutex_unlock(&dev_priv->rps.hw_lock);
4350 /* Quoting Art Runyan: "its not safe to expect any particular
4351 * value in IPS_CTL bit 31 after enabling IPS through the
4352 * mailbox." Moreover, the mailbox may return a bogus state,
4353 * so we need to just enable it and continue on.
4354 */
4355 } else {
4356 I915_WRITE(IPS_CTL, IPS_ENABLE);
4357 /* The bit only becomes 1 in the next vblank, so this wait here
4358 * is essentially intel_wait_for_vblank. If we don't have this
4359 * and don't wait for vblanks until the end of crtc_enable, then
4360 * the HW state readout code will complain that the expected
4361 * IPS_CTL value is not the one we read. */
4362 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4363 DRM_ERROR("Timed out waiting for IPS enable\n");
4364 }
4365 }
4366
4367 void hsw_disable_ips(struct intel_crtc *crtc)
4368 {
4369 struct drm_device *dev = crtc->base.dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371
4372 if (!crtc->config->ips_enabled)
4373 return;
4374
4375 assert_plane_enabled(dev_priv, crtc->plane);
4376 if (IS_BROADWELL(dev)) {
4377 mutex_lock(&dev_priv->rps.hw_lock);
4378 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4379 mutex_unlock(&dev_priv->rps.hw_lock);
4380 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4381 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4382 DRM_ERROR("Timed out waiting for IPS disable\n");
4383 } else {
4384 I915_WRITE(IPS_CTL, 0);
4385 POSTING_READ(IPS_CTL);
4386 }
4387
4388 /* We need to wait for a vblank before we can disable the plane. */
4389 intel_wait_for_vblank(dev, crtc->pipe);
4390 }
4391
4392 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4393 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4394 {
4395 struct drm_device *dev = crtc->dev;
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398 enum pipe pipe = intel_crtc->pipe;
4399 int palreg = PALETTE(pipe);
4400 int i;
4401 bool reenable_ips = false;
4402
4403 /* The clocks have to be on to load the palette. */
4404 if (!crtc->state->enable || !intel_crtc->active)
4405 return;
4406
4407 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4408 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4409 assert_dsi_pll_enabled(dev_priv);
4410 else
4411 assert_pll_enabled(dev_priv, pipe);
4412 }
4413
4414 /* use legacy palette for Ironlake */
4415 if (!HAS_GMCH_DISPLAY(dev))
4416 palreg = LGC_PALETTE(pipe);
4417
4418 /* Workaround : Do not read or write the pipe palette/gamma data while
4419 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4420 */
4421 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4422 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4423 GAMMA_MODE_MODE_SPLIT)) {
4424 hsw_disable_ips(intel_crtc);
4425 reenable_ips = true;
4426 }
4427
4428 for (i = 0; i < 256; i++) {
4429 I915_WRITE(palreg + 4 * i,
4430 (intel_crtc->lut_r[i] << 16) |
4431 (intel_crtc->lut_g[i] << 8) |
4432 intel_crtc->lut_b[i]);
4433 }
4434
4435 if (reenable_ips)
4436 hsw_enable_ips(intel_crtc);
4437 }
4438
4439 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4440 {
4441 if (!enable && intel_crtc->overlay) {
4442 struct drm_device *dev = intel_crtc->base.dev;
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445 mutex_lock(&dev->struct_mutex);
4446 dev_priv->mm.interruptible = false;
4447 (void) intel_overlay_switch_off(intel_crtc->overlay);
4448 dev_priv->mm.interruptible = true;
4449 mutex_unlock(&dev->struct_mutex);
4450 }
4451
4452 /* Let userspace switch the overlay on again. In most cases userspace
4453 * has to recompute where to put it anyway.
4454 */
4455 }
4456
4457 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4458 {
4459 struct drm_device *dev = crtc->dev;
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
4462
4463 intel_enable_primary_hw_plane(crtc->primary, crtc);
4464 intel_enable_sprite_planes(crtc);
4465 intel_crtc_update_cursor(crtc, true);
4466 intel_crtc_dpms_overlay(intel_crtc, true);
4467
4468 hsw_enable_ips(intel_crtc);
4469
4470 mutex_lock(&dev->struct_mutex);
4471 intel_fbc_update(dev);
4472 mutex_unlock(&dev->struct_mutex);
4473
4474 /*
4475 * FIXME: Once we grow proper nuclear flip support out of this we need
4476 * to compute the mask of flip planes precisely. For the time being
4477 * consider this a flip from a NULL plane.
4478 */
4479 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4480 }
4481
4482 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4483 {
4484 struct drm_device *dev = crtc->dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487 int pipe = intel_crtc->pipe;
4488
4489 intel_crtc_wait_for_pending_flips(crtc);
4490
4491 if (dev_priv->fbc.crtc == intel_crtc)
4492 intel_fbc_disable(dev);
4493
4494 hsw_disable_ips(intel_crtc);
4495
4496 intel_crtc_dpms_overlay(intel_crtc, false);
4497 intel_crtc_update_cursor(crtc, false);
4498 intel_disable_sprite_planes(crtc);
4499 intel_disable_primary_hw_plane(crtc->primary, crtc);
4500
4501 /*
4502 * FIXME: Once we grow proper nuclear flip support out of this we need
4503 * to compute the mask of flip planes precisely. For the time being
4504 * consider this a flip to a NULL plane.
4505 */
4506 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4507 }
4508
4509 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4510 {
4511 struct drm_device *dev = crtc->dev;
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514 struct intel_encoder *encoder;
4515 int pipe = intel_crtc->pipe;
4516
4517 WARN_ON(!crtc->state->enable);
4518
4519 if (intel_crtc->active)
4520 return;
4521
4522 if (intel_crtc->config->has_pch_encoder)
4523 intel_prepare_shared_dpll(intel_crtc);
4524
4525 if (intel_crtc->config->has_dp_encoder)
4526 intel_dp_set_m_n(intel_crtc, M1_N1);
4527
4528 intel_set_pipe_timings(intel_crtc);
4529
4530 if (intel_crtc->config->has_pch_encoder) {
4531 intel_cpu_transcoder_set_m_n(intel_crtc,
4532 &intel_crtc->config->fdi_m_n, NULL);
4533 }
4534
4535 ironlake_set_pipeconf(crtc);
4536
4537 intel_crtc->active = true;
4538
4539 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4540 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4541
4542 for_each_encoder_on_crtc(dev, crtc, encoder)
4543 if (encoder->pre_enable)
4544 encoder->pre_enable(encoder);
4545
4546 if (intel_crtc->config->has_pch_encoder) {
4547 /* Note: FDI PLL enabling _must_ be done before we enable the
4548 * cpu pipes, hence this is separate from all the other fdi/pch
4549 * enabling. */
4550 ironlake_fdi_pll_enable(intel_crtc);
4551 } else {
4552 assert_fdi_tx_disabled(dev_priv, pipe);
4553 assert_fdi_rx_disabled(dev_priv, pipe);
4554 }
4555
4556 ironlake_pfit_enable(intel_crtc);
4557
4558 /*
4559 * On ILK+ LUT must be loaded before the pipe is running but with
4560 * clocks enabled
4561 */
4562 intel_crtc_load_lut(crtc);
4563
4564 intel_update_watermarks(crtc);
4565 intel_enable_pipe(intel_crtc);
4566
4567 if (intel_crtc->config->has_pch_encoder)
4568 ironlake_pch_enable(crtc);
4569
4570 assert_vblank_disabled(crtc);
4571 drm_crtc_vblank_on(crtc);
4572
4573 for_each_encoder_on_crtc(dev, crtc, encoder)
4574 encoder->enable(encoder);
4575
4576 if (HAS_PCH_CPT(dev))
4577 cpt_verify_modeset(dev, intel_crtc->pipe);
4578
4579 intel_crtc_enable_planes(crtc);
4580 }
4581
4582 /* IPS only exists on ULT machines and is tied to pipe A. */
4583 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4584 {
4585 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4586 }
4587
4588 /*
4589 * This implements the workaround described in the "notes" section of the mode
4590 * set sequence documentation. When going from no pipes or single pipe to
4591 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4592 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4593 */
4594 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4595 {
4596 struct drm_device *dev = crtc->base.dev;
4597 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4598
4599 /* We want to get the other_active_crtc only if there's only 1 other
4600 * active crtc. */
4601 for_each_intel_crtc(dev, crtc_it) {
4602 if (!crtc_it->active || crtc_it == crtc)
4603 continue;
4604
4605 if (other_active_crtc)
4606 return;
4607
4608 other_active_crtc = crtc_it;
4609 }
4610 if (!other_active_crtc)
4611 return;
4612
4613 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4614 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4615 }
4616
4617 static void haswell_crtc_enable(struct drm_crtc *crtc)
4618 {
4619 struct drm_device *dev = crtc->dev;
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622 struct intel_encoder *encoder;
4623 int pipe = intel_crtc->pipe;
4624
4625 WARN_ON(!crtc->state->enable);
4626
4627 if (intel_crtc->active)
4628 return;
4629
4630 if (intel_crtc_to_shared_dpll(intel_crtc))
4631 intel_enable_shared_dpll(intel_crtc);
4632
4633 if (intel_crtc->config->has_dp_encoder)
4634 intel_dp_set_m_n(intel_crtc, M1_N1);
4635
4636 intel_set_pipe_timings(intel_crtc);
4637
4638 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4639 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4640 intel_crtc->config->pixel_multiplier - 1);
4641 }
4642
4643 if (intel_crtc->config->has_pch_encoder) {
4644 intel_cpu_transcoder_set_m_n(intel_crtc,
4645 &intel_crtc->config->fdi_m_n, NULL);
4646 }
4647
4648 haswell_set_pipeconf(crtc);
4649
4650 intel_set_pipe_csc(crtc);
4651
4652 intel_crtc->active = true;
4653
4654 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4655 for_each_encoder_on_crtc(dev, crtc, encoder)
4656 if (encoder->pre_enable)
4657 encoder->pre_enable(encoder);
4658
4659 if (intel_crtc->config->has_pch_encoder) {
4660 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4661 true);
4662 dev_priv->display.fdi_link_train(crtc);
4663 }
4664
4665 intel_ddi_enable_pipe_clock(intel_crtc);
4666
4667 if (IS_SKYLAKE(dev))
4668 skylake_pfit_enable(intel_crtc);
4669 else
4670 ironlake_pfit_enable(intel_crtc);
4671
4672 /*
4673 * On ILK+ LUT must be loaded before the pipe is running but with
4674 * clocks enabled
4675 */
4676 intel_crtc_load_lut(crtc);
4677
4678 intel_ddi_set_pipe_settings(crtc);
4679 intel_ddi_enable_transcoder_func(crtc);
4680
4681 intel_update_watermarks(crtc);
4682 intel_enable_pipe(intel_crtc);
4683
4684 if (intel_crtc->config->has_pch_encoder)
4685 lpt_pch_enable(crtc);
4686
4687 if (intel_crtc->config->dp_encoder_is_mst)
4688 intel_ddi_set_vc_payload_alloc(crtc, true);
4689
4690 assert_vblank_disabled(crtc);
4691 drm_crtc_vblank_on(crtc);
4692
4693 for_each_encoder_on_crtc(dev, crtc, encoder) {
4694 encoder->enable(encoder);
4695 intel_opregion_notify_encoder(encoder, true);
4696 }
4697
4698 /* If we change the relative order between pipe/planes enabling, we need
4699 * to change the workaround. */
4700 haswell_mode_set_planes_workaround(intel_crtc);
4701 intel_crtc_enable_planes(crtc);
4702 }
4703
4704 static void skylake_pfit_disable(struct intel_crtc *crtc)
4705 {
4706 struct drm_device *dev = crtc->base.dev;
4707 struct drm_i915_private *dev_priv = dev->dev_private;
4708 int pipe = crtc->pipe;
4709
4710 /* To avoid upsetting the power well on haswell only disable the pfit if
4711 * it's in use. The hw state code will make sure we get this right. */
4712 if (crtc->config->pch_pfit.enabled) {
4713 I915_WRITE(PS_CTL(pipe), 0);
4714 I915_WRITE(PS_WIN_POS(pipe), 0);
4715 I915_WRITE(PS_WIN_SZ(pipe), 0);
4716 }
4717 }
4718
4719 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4720 {
4721 struct drm_device *dev = crtc->base.dev;
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 int pipe = crtc->pipe;
4724
4725 /* To avoid upsetting the power well on haswell only disable the pfit if
4726 * it's in use. The hw state code will make sure we get this right. */
4727 if (crtc->config->pch_pfit.enabled) {
4728 I915_WRITE(PF_CTL(pipe), 0);
4729 I915_WRITE(PF_WIN_POS(pipe), 0);
4730 I915_WRITE(PF_WIN_SZ(pipe), 0);
4731 }
4732 }
4733
4734 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4735 {
4736 struct drm_device *dev = crtc->dev;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739 struct intel_encoder *encoder;
4740 int pipe = intel_crtc->pipe;
4741 u32 reg, temp;
4742
4743 if (!intel_crtc->active)
4744 return;
4745
4746 intel_crtc_disable_planes(crtc);
4747
4748 for_each_encoder_on_crtc(dev, crtc, encoder)
4749 encoder->disable(encoder);
4750
4751 drm_crtc_vblank_off(crtc);
4752 assert_vblank_disabled(crtc);
4753
4754 if (intel_crtc->config->has_pch_encoder)
4755 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757 intel_disable_pipe(intel_crtc);
4758
4759 ironlake_pfit_disable(intel_crtc);
4760
4761 for_each_encoder_on_crtc(dev, crtc, encoder)
4762 if (encoder->post_disable)
4763 encoder->post_disable(encoder);
4764
4765 if (intel_crtc->config->has_pch_encoder) {
4766 ironlake_fdi_disable(crtc);
4767
4768 ironlake_disable_pch_transcoder(dev_priv, pipe);
4769
4770 if (HAS_PCH_CPT(dev)) {
4771 /* disable TRANS_DP_CTL */
4772 reg = TRANS_DP_CTL(pipe);
4773 temp = I915_READ(reg);
4774 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4775 TRANS_DP_PORT_SEL_MASK);
4776 temp |= TRANS_DP_PORT_SEL_NONE;
4777 I915_WRITE(reg, temp);
4778
4779 /* disable DPLL_SEL */
4780 temp = I915_READ(PCH_DPLL_SEL);
4781 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4782 I915_WRITE(PCH_DPLL_SEL, temp);
4783 }
4784
4785 /* disable PCH DPLL */
4786 intel_disable_shared_dpll(intel_crtc);
4787
4788 ironlake_fdi_pll_disable(intel_crtc);
4789 }
4790
4791 intel_crtc->active = false;
4792 intel_update_watermarks(crtc);
4793
4794 mutex_lock(&dev->struct_mutex);
4795 intel_fbc_update(dev);
4796 mutex_unlock(&dev->struct_mutex);
4797 }
4798
4799 static void haswell_crtc_disable(struct drm_crtc *crtc)
4800 {
4801 struct drm_device *dev = crtc->dev;
4802 struct drm_i915_private *dev_priv = dev->dev_private;
4803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804 struct intel_encoder *encoder;
4805 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4806
4807 if (!intel_crtc->active)
4808 return;
4809
4810 intel_crtc_disable_planes(crtc);
4811
4812 for_each_encoder_on_crtc(dev, crtc, encoder) {
4813 intel_opregion_notify_encoder(encoder, false);
4814 encoder->disable(encoder);
4815 }
4816
4817 drm_crtc_vblank_off(crtc);
4818 assert_vblank_disabled(crtc);
4819
4820 if (intel_crtc->config->has_pch_encoder)
4821 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4822 false);
4823 intel_disable_pipe(intel_crtc);
4824
4825 if (intel_crtc->config->dp_encoder_is_mst)
4826 intel_ddi_set_vc_payload_alloc(crtc, false);
4827
4828 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4829
4830 if (IS_SKYLAKE(dev))
4831 skylake_pfit_disable(intel_crtc);
4832 else
4833 ironlake_pfit_disable(intel_crtc);
4834
4835 intel_ddi_disable_pipe_clock(intel_crtc);
4836
4837 if (intel_crtc->config->has_pch_encoder) {
4838 lpt_disable_pch_transcoder(dev_priv);
4839 intel_ddi_fdi_disable(crtc);
4840 }
4841
4842 for_each_encoder_on_crtc(dev, crtc, encoder)
4843 if (encoder->post_disable)
4844 encoder->post_disable(encoder);
4845
4846 intel_crtc->active = false;
4847 intel_update_watermarks(crtc);
4848
4849 mutex_lock(&dev->struct_mutex);
4850 intel_fbc_update(dev);
4851 mutex_unlock(&dev->struct_mutex);
4852
4853 if (intel_crtc_to_shared_dpll(intel_crtc))
4854 intel_disable_shared_dpll(intel_crtc);
4855 }
4856
4857 static void ironlake_crtc_off(struct drm_crtc *crtc)
4858 {
4859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860 intel_put_shared_dpll(intel_crtc);
4861 }
4862
4863
4864 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4865 {
4866 struct drm_device *dev = crtc->base.dev;
4867 struct drm_i915_private *dev_priv = dev->dev_private;
4868 struct intel_crtc_state *pipe_config = crtc->config;
4869
4870 if (!pipe_config->gmch_pfit.control)
4871 return;
4872
4873 /*
4874 * The panel fitter should only be adjusted whilst the pipe is disabled,
4875 * according to register description and PRM.
4876 */
4877 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4878 assert_pipe_disabled(dev_priv, crtc->pipe);
4879
4880 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4881 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4882
4883 /* Border color in case we don't scale up to the full screen. Black by
4884 * default, change to something else for debugging. */
4885 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4886 }
4887
4888 static enum intel_display_power_domain port_to_power_domain(enum port port)
4889 {
4890 switch (port) {
4891 case PORT_A:
4892 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4893 case PORT_B:
4894 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4895 case PORT_C:
4896 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4897 case PORT_D:
4898 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4899 default:
4900 WARN_ON_ONCE(1);
4901 return POWER_DOMAIN_PORT_OTHER;
4902 }
4903 }
4904
4905 #define for_each_power_domain(domain, mask) \
4906 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4907 if ((1 << (domain)) & (mask))
4908
4909 enum intel_display_power_domain
4910 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4911 {
4912 struct drm_device *dev = intel_encoder->base.dev;
4913 struct intel_digital_port *intel_dig_port;
4914
4915 switch (intel_encoder->type) {
4916 case INTEL_OUTPUT_UNKNOWN:
4917 /* Only DDI platforms should ever use this output type */
4918 WARN_ON_ONCE(!HAS_DDI(dev));
4919 case INTEL_OUTPUT_DISPLAYPORT:
4920 case INTEL_OUTPUT_HDMI:
4921 case INTEL_OUTPUT_EDP:
4922 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4923 return port_to_power_domain(intel_dig_port->port);
4924 case INTEL_OUTPUT_DP_MST:
4925 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4926 return port_to_power_domain(intel_dig_port->port);
4927 case INTEL_OUTPUT_ANALOG:
4928 return POWER_DOMAIN_PORT_CRT;
4929 case INTEL_OUTPUT_DSI:
4930 return POWER_DOMAIN_PORT_DSI;
4931 default:
4932 return POWER_DOMAIN_PORT_OTHER;
4933 }
4934 }
4935
4936 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4937 {
4938 struct drm_device *dev = crtc->dev;
4939 struct intel_encoder *intel_encoder;
4940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941 enum pipe pipe = intel_crtc->pipe;
4942 unsigned long mask;
4943 enum transcoder transcoder;
4944
4945 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4946
4947 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4948 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4949 if (intel_crtc->config->pch_pfit.enabled ||
4950 intel_crtc->config->pch_pfit.force_thru)
4951 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4952
4953 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4954 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4955
4956 return mask;
4957 }
4958
4959 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
4960 {
4961 struct drm_device *dev = state->dev;
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4964 struct intel_crtc *crtc;
4965
4966 /*
4967 * First get all needed power domains, then put all unneeded, to avoid
4968 * any unnecessary toggling of the power wells.
4969 */
4970 for_each_intel_crtc(dev, crtc) {
4971 enum intel_display_power_domain domain;
4972
4973 if (!crtc->base.state->enable)
4974 continue;
4975
4976 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4977
4978 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4979 intel_display_power_get(dev_priv, domain);
4980 }
4981
4982 if (dev_priv->display.modeset_global_resources)
4983 dev_priv->display.modeset_global_resources(state);
4984
4985 for_each_intel_crtc(dev, crtc) {
4986 enum intel_display_power_domain domain;
4987
4988 for_each_power_domain(domain, crtc->enabled_power_domains)
4989 intel_display_power_put(dev_priv, domain);
4990
4991 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4992 }
4993
4994 intel_display_set_init_power(dev_priv, false);
4995 }
4996
4997 /* returns HPLL frequency in kHz */
4998 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4999 {
5000 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5001
5002 /* Obtain SKU information */
5003 mutex_lock(&dev_priv->dpio_lock);
5004 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5005 CCK_FUSE_HPLL_FREQ_MASK;
5006 mutex_unlock(&dev_priv->dpio_lock);
5007
5008 return vco_freq[hpll_freq] * 1000;
5009 }
5010
5011 static void vlv_update_cdclk(struct drm_device *dev)
5012 {
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5016 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5017 dev_priv->vlv_cdclk_freq);
5018
5019 /*
5020 * Program the gmbus_freq based on the cdclk frequency.
5021 * BSpec erroneously claims we should aim for 4MHz, but
5022 * in fact 1MHz is the correct frequency.
5023 */
5024 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
5025 }
5026
5027 /* Adjust CDclk dividers to allow high res or save power if possible */
5028 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5029 {
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 u32 val, cmd;
5032
5033 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5034
5035 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5036 cmd = 2;
5037 else if (cdclk == 266667)
5038 cmd = 1;
5039 else
5040 cmd = 0;
5041
5042 mutex_lock(&dev_priv->rps.hw_lock);
5043 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5044 val &= ~DSPFREQGUAR_MASK;
5045 val |= (cmd << DSPFREQGUAR_SHIFT);
5046 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5047 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5048 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5049 50)) {
5050 DRM_ERROR("timed out waiting for CDclk change\n");
5051 }
5052 mutex_unlock(&dev_priv->rps.hw_lock);
5053
5054 if (cdclk == 400000) {
5055 u32 divider;
5056
5057 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5058
5059 mutex_lock(&dev_priv->dpio_lock);
5060 /* adjust cdclk divider */
5061 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5062 val &= ~DISPLAY_FREQUENCY_VALUES;
5063 val |= divider;
5064 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5065
5066 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5067 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5068 50))
5069 DRM_ERROR("timed out waiting for CDclk change\n");
5070 mutex_unlock(&dev_priv->dpio_lock);
5071 }
5072
5073 mutex_lock(&dev_priv->dpio_lock);
5074 /* adjust self-refresh exit latency value */
5075 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5076 val &= ~0x7f;
5077
5078 /*
5079 * For high bandwidth configs, we set a higher latency in the bunit
5080 * so that the core display fetch happens in time to avoid underruns.
5081 */
5082 if (cdclk == 400000)
5083 val |= 4500 / 250; /* 4.5 usec */
5084 else
5085 val |= 3000 / 250; /* 3.0 usec */
5086 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5087 mutex_unlock(&dev_priv->dpio_lock);
5088
5089 vlv_update_cdclk(dev);
5090 }
5091
5092 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5093 {
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 u32 val, cmd;
5096
5097 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5098
5099 switch (cdclk) {
5100 case 333333:
5101 case 320000:
5102 case 266667:
5103 case 200000:
5104 break;
5105 default:
5106 MISSING_CASE(cdclk);
5107 return;
5108 }
5109
5110 /*
5111 * Specs are full of misinformation, but testing on actual
5112 * hardware has shown that we just need to write the desired
5113 * CCK divider into the Punit register.
5114 */
5115 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5116
5117 mutex_lock(&dev_priv->rps.hw_lock);
5118 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5119 val &= ~DSPFREQGUAR_MASK_CHV;
5120 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5121 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5122 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5123 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5124 50)) {
5125 DRM_ERROR("timed out waiting for CDclk change\n");
5126 }
5127 mutex_unlock(&dev_priv->rps.hw_lock);
5128
5129 vlv_update_cdclk(dev);
5130 }
5131
5132 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5133 int max_pixclk)
5134 {
5135 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5136 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5137
5138 /*
5139 * Really only a few cases to deal with, as only 4 CDclks are supported:
5140 * 200MHz
5141 * 267MHz
5142 * 320/333MHz (depends on HPLL freq)
5143 * 400MHz (VLV only)
5144 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5145 * of the lower bin and adjust if needed.
5146 *
5147 * We seem to get an unstable or solid color picture at 200MHz.
5148 * Not sure what's wrong. For now use 200MHz only when all pipes
5149 * are off.
5150 */
5151 if (!IS_CHERRYVIEW(dev_priv) &&
5152 max_pixclk > freq_320*limit/100)
5153 return 400000;
5154 else if (max_pixclk > 266667*limit/100)
5155 return freq_320;
5156 else if (max_pixclk > 0)
5157 return 266667;
5158 else
5159 return 200000;
5160 }
5161
5162 /* compute the max pixel clock for new configuration */
5163 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5164 {
5165 struct drm_device *dev = dev_priv->dev;
5166 struct intel_crtc *intel_crtc;
5167 int max_pixclk = 0;
5168
5169 for_each_intel_crtc(dev, intel_crtc) {
5170 if (intel_crtc->new_enabled)
5171 max_pixclk = max(max_pixclk,
5172 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5173 }
5174
5175 return max_pixclk;
5176 }
5177
5178 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5179 unsigned *prepare_pipes)
5180 {
5181 struct drm_i915_private *dev_priv = dev->dev_private;
5182 struct intel_crtc *intel_crtc;
5183 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5184
5185 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5186 dev_priv->vlv_cdclk_freq)
5187 return;
5188
5189 /* disable/enable all currently active pipes while we change cdclk */
5190 for_each_intel_crtc(dev, intel_crtc)
5191 if (intel_crtc->base.state->enable)
5192 *prepare_pipes |= (1 << intel_crtc->pipe);
5193 }
5194
5195 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5196 {
5197 unsigned int credits, default_credits;
5198
5199 if (IS_CHERRYVIEW(dev_priv))
5200 default_credits = PFI_CREDIT(12);
5201 else
5202 default_credits = PFI_CREDIT(8);
5203
5204 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5205 /* CHV suggested value is 31 or 63 */
5206 if (IS_CHERRYVIEW(dev_priv))
5207 credits = PFI_CREDIT_31;
5208 else
5209 credits = PFI_CREDIT(15);
5210 } else {
5211 credits = default_credits;
5212 }
5213
5214 /*
5215 * WA - write default credits before re-programming
5216 * FIXME: should we also set the resend bit here?
5217 */
5218 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5219 default_credits);
5220
5221 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5222 credits | PFI_CREDIT_RESEND);
5223
5224 /*
5225 * FIXME is this guaranteed to clear
5226 * immediately or should we poll for it?
5227 */
5228 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5229 }
5230
5231 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5232 {
5233 struct drm_device *dev = state->dev;
5234 struct drm_i915_private *dev_priv = dev->dev_private;
5235 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5236 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5237
5238 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5239 /*
5240 * FIXME: We can end up here with all power domains off, yet
5241 * with a CDCLK frequency other than the minimum. To account
5242 * for this take the PIPE-A power domain, which covers the HW
5243 * blocks needed for the following programming. This can be
5244 * removed once it's guaranteed that we get here either with
5245 * the minimum CDCLK set, or the required power domains
5246 * enabled.
5247 */
5248 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5249
5250 if (IS_CHERRYVIEW(dev))
5251 cherryview_set_cdclk(dev, req_cdclk);
5252 else
5253 valleyview_set_cdclk(dev, req_cdclk);
5254
5255 vlv_program_pfi_credits(dev_priv);
5256
5257 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5258 }
5259 }
5260
5261 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5262 {
5263 struct drm_device *dev = crtc->dev;
5264 struct drm_i915_private *dev_priv = to_i915(dev);
5265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266 struct intel_encoder *encoder;
5267 int pipe = intel_crtc->pipe;
5268 bool is_dsi;
5269
5270 WARN_ON(!crtc->state->enable);
5271
5272 if (intel_crtc->active)
5273 return;
5274
5275 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5276
5277 if (!is_dsi) {
5278 if (IS_CHERRYVIEW(dev))
5279 chv_prepare_pll(intel_crtc, intel_crtc->config);
5280 else
5281 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5282 }
5283
5284 if (intel_crtc->config->has_dp_encoder)
5285 intel_dp_set_m_n(intel_crtc, M1_N1);
5286
5287 intel_set_pipe_timings(intel_crtc);
5288
5289 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5293 I915_WRITE(CHV_CANVAS(pipe), 0);
5294 }
5295
5296 i9xx_set_pipeconf(intel_crtc);
5297
5298 intel_crtc->active = true;
5299
5300 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5301
5302 for_each_encoder_on_crtc(dev, crtc, encoder)
5303 if (encoder->pre_pll_enable)
5304 encoder->pre_pll_enable(encoder);
5305
5306 if (!is_dsi) {
5307 if (IS_CHERRYVIEW(dev))
5308 chv_enable_pll(intel_crtc, intel_crtc->config);
5309 else
5310 vlv_enable_pll(intel_crtc, intel_crtc->config);
5311 }
5312
5313 for_each_encoder_on_crtc(dev, crtc, encoder)
5314 if (encoder->pre_enable)
5315 encoder->pre_enable(encoder);
5316
5317 i9xx_pfit_enable(intel_crtc);
5318
5319 intel_crtc_load_lut(crtc);
5320
5321 intel_update_watermarks(crtc);
5322 intel_enable_pipe(intel_crtc);
5323
5324 assert_vblank_disabled(crtc);
5325 drm_crtc_vblank_on(crtc);
5326
5327 for_each_encoder_on_crtc(dev, crtc, encoder)
5328 encoder->enable(encoder);
5329
5330 intel_crtc_enable_planes(crtc);
5331
5332 /* Underruns don't raise interrupts, so check manually. */
5333 i9xx_check_fifo_underruns(dev_priv);
5334 }
5335
5336 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5337 {
5338 struct drm_device *dev = crtc->base.dev;
5339 struct drm_i915_private *dev_priv = dev->dev_private;
5340
5341 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5342 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5343 }
5344
5345 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5346 {
5347 struct drm_device *dev = crtc->dev;
5348 struct drm_i915_private *dev_priv = to_i915(dev);
5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350 struct intel_encoder *encoder;
5351 int pipe = intel_crtc->pipe;
5352
5353 WARN_ON(!crtc->state->enable);
5354
5355 if (intel_crtc->active)
5356 return;
5357
5358 i9xx_set_pll_dividers(intel_crtc);
5359
5360 if (intel_crtc->config->has_dp_encoder)
5361 intel_dp_set_m_n(intel_crtc, M1_N1);
5362
5363 intel_set_pipe_timings(intel_crtc);
5364
5365 i9xx_set_pipeconf(intel_crtc);
5366
5367 intel_crtc->active = true;
5368
5369 if (!IS_GEN2(dev))
5370 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5371
5372 for_each_encoder_on_crtc(dev, crtc, encoder)
5373 if (encoder->pre_enable)
5374 encoder->pre_enable(encoder);
5375
5376 i9xx_enable_pll(intel_crtc);
5377
5378 i9xx_pfit_enable(intel_crtc);
5379
5380 intel_crtc_load_lut(crtc);
5381
5382 intel_update_watermarks(crtc);
5383 intel_enable_pipe(intel_crtc);
5384
5385 assert_vblank_disabled(crtc);
5386 drm_crtc_vblank_on(crtc);
5387
5388 for_each_encoder_on_crtc(dev, crtc, encoder)
5389 encoder->enable(encoder);
5390
5391 intel_crtc_enable_planes(crtc);
5392
5393 /*
5394 * Gen2 reports pipe underruns whenever all planes are disabled.
5395 * So don't enable underrun reporting before at least some planes
5396 * are enabled.
5397 * FIXME: Need to fix the logic to work when we turn off all planes
5398 * but leave the pipe running.
5399 */
5400 if (IS_GEN2(dev))
5401 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5402
5403 /* Underruns don't raise interrupts, so check manually. */
5404 i9xx_check_fifo_underruns(dev_priv);
5405 }
5406
5407 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5408 {
5409 struct drm_device *dev = crtc->base.dev;
5410 struct drm_i915_private *dev_priv = dev->dev_private;
5411
5412 if (!crtc->config->gmch_pfit.control)
5413 return;
5414
5415 assert_pipe_disabled(dev_priv, crtc->pipe);
5416
5417 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5418 I915_READ(PFIT_CONTROL));
5419 I915_WRITE(PFIT_CONTROL, 0);
5420 }
5421
5422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5423 {
5424 struct drm_device *dev = crtc->dev;
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5427 struct intel_encoder *encoder;
5428 int pipe = intel_crtc->pipe;
5429
5430 if (!intel_crtc->active)
5431 return;
5432
5433 /*
5434 * Gen2 reports pipe underruns whenever all planes are disabled.
5435 * So diasble underrun reporting before all the planes get disabled.
5436 * FIXME: Need to fix the logic to work when we turn off all planes
5437 * but leave the pipe running.
5438 */
5439 if (IS_GEN2(dev))
5440 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5441
5442 /*
5443 * Vblank time updates from the shadow to live plane control register
5444 * are blocked if the memory self-refresh mode is active at that
5445 * moment. So to make sure the plane gets truly disabled, disable
5446 * first the self-refresh mode. The self-refresh enable bit in turn
5447 * will be checked/applied by the HW only at the next frame start
5448 * event which is after the vblank start event, so we need to have a
5449 * wait-for-vblank between disabling the plane and the pipe.
5450 */
5451 intel_set_memory_cxsr(dev_priv, false);
5452 intel_crtc_disable_planes(crtc);
5453
5454 /*
5455 * On gen2 planes are double buffered but the pipe isn't, so we must
5456 * wait for planes to fully turn off before disabling the pipe.
5457 * We also need to wait on all gmch platforms because of the
5458 * self-refresh mode constraint explained above.
5459 */
5460 intel_wait_for_vblank(dev, pipe);
5461
5462 for_each_encoder_on_crtc(dev, crtc, encoder)
5463 encoder->disable(encoder);
5464
5465 drm_crtc_vblank_off(crtc);
5466 assert_vblank_disabled(crtc);
5467
5468 intel_disable_pipe(intel_crtc);
5469
5470 i9xx_pfit_disable(intel_crtc);
5471
5472 for_each_encoder_on_crtc(dev, crtc, encoder)
5473 if (encoder->post_disable)
5474 encoder->post_disable(encoder);
5475
5476 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5477 if (IS_CHERRYVIEW(dev))
5478 chv_disable_pll(dev_priv, pipe);
5479 else if (IS_VALLEYVIEW(dev))
5480 vlv_disable_pll(dev_priv, pipe);
5481 else
5482 i9xx_disable_pll(intel_crtc);
5483 }
5484
5485 if (!IS_GEN2(dev))
5486 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5487
5488 intel_crtc->active = false;
5489 intel_update_watermarks(crtc);
5490
5491 mutex_lock(&dev->struct_mutex);
5492 intel_fbc_update(dev);
5493 mutex_unlock(&dev->struct_mutex);
5494 }
5495
5496 static void i9xx_crtc_off(struct drm_crtc *crtc)
5497 {
5498 }
5499
5500 /* Master function to enable/disable CRTC and corresponding power wells */
5501 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5502 {
5503 struct drm_device *dev = crtc->dev;
5504 struct drm_i915_private *dev_priv = dev->dev_private;
5505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506 enum intel_display_power_domain domain;
5507 unsigned long domains;
5508
5509 if (enable) {
5510 if (!intel_crtc->active) {
5511 domains = get_crtc_power_domains(crtc);
5512 for_each_power_domain(domain, domains)
5513 intel_display_power_get(dev_priv, domain);
5514 intel_crtc->enabled_power_domains = domains;
5515
5516 dev_priv->display.crtc_enable(crtc);
5517 }
5518 } else {
5519 if (intel_crtc->active) {
5520 dev_priv->display.crtc_disable(crtc);
5521
5522 domains = intel_crtc->enabled_power_domains;
5523 for_each_power_domain(domain, domains)
5524 intel_display_power_put(dev_priv, domain);
5525 intel_crtc->enabled_power_domains = 0;
5526 }
5527 }
5528 }
5529
5530 /**
5531 * Sets the power management mode of the pipe and plane.
5532 */
5533 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5534 {
5535 struct drm_device *dev = crtc->dev;
5536 struct intel_encoder *intel_encoder;
5537 bool enable = false;
5538
5539 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5540 enable |= intel_encoder->connectors_active;
5541
5542 intel_crtc_control(crtc, enable);
5543 }
5544
5545 static void intel_crtc_disable(struct drm_crtc *crtc)
5546 {
5547 struct drm_device *dev = crtc->dev;
5548 struct drm_connector *connector;
5549 struct drm_i915_private *dev_priv = dev->dev_private;
5550
5551 /* crtc should still be enabled when we disable it. */
5552 WARN_ON(!crtc->state->enable);
5553
5554 dev_priv->display.crtc_disable(crtc);
5555 dev_priv->display.off(crtc);
5556
5557 crtc->primary->funcs->disable_plane(crtc->primary);
5558
5559 /* Update computed state. */
5560 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5561 if (!connector->encoder || !connector->encoder->crtc)
5562 continue;
5563
5564 if (connector->encoder->crtc != crtc)
5565 continue;
5566
5567 connector->dpms = DRM_MODE_DPMS_OFF;
5568 to_intel_encoder(connector->encoder)->connectors_active = false;
5569 }
5570 }
5571
5572 void intel_encoder_destroy(struct drm_encoder *encoder)
5573 {
5574 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5575
5576 drm_encoder_cleanup(encoder);
5577 kfree(intel_encoder);
5578 }
5579
5580 /* Simple dpms helper for encoders with just one connector, no cloning and only
5581 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5582 * state of the entire output pipe. */
5583 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5584 {
5585 if (mode == DRM_MODE_DPMS_ON) {
5586 encoder->connectors_active = true;
5587
5588 intel_crtc_update_dpms(encoder->base.crtc);
5589 } else {
5590 encoder->connectors_active = false;
5591
5592 intel_crtc_update_dpms(encoder->base.crtc);
5593 }
5594 }
5595
5596 /* Cross check the actual hw state with our own modeset state tracking (and it's
5597 * internal consistency). */
5598 static void intel_connector_check_state(struct intel_connector *connector)
5599 {
5600 if (connector->get_hw_state(connector)) {
5601 struct intel_encoder *encoder = connector->encoder;
5602 struct drm_crtc *crtc;
5603 bool encoder_enabled;
5604 enum pipe pipe;
5605
5606 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5607 connector->base.base.id,
5608 connector->base.name);
5609
5610 /* there is no real hw state for MST connectors */
5611 if (connector->mst_port)
5612 return;
5613
5614 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5615 "wrong connector dpms state\n");
5616 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5617 "active connector not linked to encoder\n");
5618
5619 if (encoder) {
5620 I915_STATE_WARN(!encoder->connectors_active,
5621 "encoder->connectors_active not set\n");
5622
5623 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5624 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5625 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5626 return;
5627
5628 crtc = encoder->base.crtc;
5629
5630 I915_STATE_WARN(!crtc->state->enable,
5631 "crtc not enabled\n");
5632 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5633 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5634 "encoder active on the wrong pipe\n");
5635 }
5636 }
5637 }
5638
5639 /* Even simpler default implementation, if there's really no special case to
5640 * consider. */
5641 void intel_connector_dpms(struct drm_connector *connector, int mode)
5642 {
5643 /* All the simple cases only support two dpms states. */
5644 if (mode != DRM_MODE_DPMS_ON)
5645 mode = DRM_MODE_DPMS_OFF;
5646
5647 if (mode == connector->dpms)
5648 return;
5649
5650 connector->dpms = mode;
5651
5652 /* Only need to change hw state when actually enabled */
5653 if (connector->encoder)
5654 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5655
5656 intel_modeset_check_state(connector->dev);
5657 }
5658
5659 /* Simple connector->get_hw_state implementation for encoders that support only
5660 * one connector and no cloning and hence the encoder state determines the state
5661 * of the connector. */
5662 bool intel_connector_get_hw_state(struct intel_connector *connector)
5663 {
5664 enum pipe pipe = 0;
5665 struct intel_encoder *encoder = connector->encoder;
5666
5667 return encoder->get_hw_state(encoder, &pipe);
5668 }
5669
5670 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
5671 {
5672 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
5673 return crtc_state->fdi_lanes;
5674
5675 return 0;
5676 }
5677
5678 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5679 struct intel_crtc_state *pipe_config)
5680 {
5681 struct drm_atomic_state *state = pipe_config->base.state;
5682 struct intel_crtc *other_crtc;
5683 struct intel_crtc_state *other_crtc_state;
5684
5685 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5686 pipe_name(pipe), pipe_config->fdi_lanes);
5687 if (pipe_config->fdi_lanes > 4) {
5688 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5689 pipe_name(pipe), pipe_config->fdi_lanes);
5690 return -EINVAL;
5691 }
5692
5693 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5694 if (pipe_config->fdi_lanes > 2) {
5695 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5696 pipe_config->fdi_lanes);
5697 return -EINVAL;
5698 } else {
5699 return 0;
5700 }
5701 }
5702
5703 if (INTEL_INFO(dev)->num_pipes == 2)
5704 return 0;
5705
5706 /* Ivybridge 3 pipe is really complicated */
5707 switch (pipe) {
5708 case PIPE_A:
5709 return 0;
5710 case PIPE_B:
5711 if (pipe_config->fdi_lanes <= 2)
5712 return 0;
5713
5714 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
5715 other_crtc_state =
5716 intel_atomic_get_crtc_state(state, other_crtc);
5717 if (IS_ERR(other_crtc_state))
5718 return PTR_ERR(other_crtc_state);
5719
5720 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
5721 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5722 pipe_name(pipe), pipe_config->fdi_lanes);
5723 return -EINVAL;
5724 }
5725 return 0;
5726 case PIPE_C:
5727 if (pipe_config->fdi_lanes > 2) {
5728 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5729 pipe_name(pipe), pipe_config->fdi_lanes);
5730 return -EINVAL;
5731 }
5732
5733 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
5734 other_crtc_state =
5735 intel_atomic_get_crtc_state(state, other_crtc);
5736 if (IS_ERR(other_crtc_state))
5737 return PTR_ERR(other_crtc_state);
5738
5739 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
5740 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5741 return -EINVAL;
5742 }
5743 return 0;
5744 default:
5745 BUG();
5746 }
5747 }
5748
5749 #define RETRY 1
5750 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5751 struct intel_crtc_state *pipe_config)
5752 {
5753 struct drm_device *dev = intel_crtc->base.dev;
5754 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5755 int lane, link_bw, fdi_dotclock, ret;
5756 bool needs_recompute = false;
5757
5758 retry:
5759 /* FDI is a binary signal running at ~2.7GHz, encoding
5760 * each output octet as 10 bits. The actual frequency
5761 * is stored as a divider into a 100MHz clock, and the
5762 * mode pixel clock is stored in units of 1KHz.
5763 * Hence the bw of each lane in terms of the mode signal
5764 * is:
5765 */
5766 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5767
5768 fdi_dotclock = adjusted_mode->crtc_clock;
5769
5770 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5771 pipe_config->pipe_bpp);
5772
5773 pipe_config->fdi_lanes = lane;
5774
5775 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5776 link_bw, &pipe_config->fdi_m_n);
5777
5778 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5779 intel_crtc->pipe, pipe_config);
5780 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
5781 pipe_config->pipe_bpp -= 2*3;
5782 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5783 pipe_config->pipe_bpp);
5784 needs_recompute = true;
5785 pipe_config->bw_constrained = true;
5786
5787 goto retry;
5788 }
5789
5790 if (needs_recompute)
5791 return RETRY;
5792
5793 return ret;
5794 }
5795
5796 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5797 struct intel_crtc_state *pipe_config)
5798 {
5799 pipe_config->ips_enabled = i915.enable_ips &&
5800 hsw_crtc_supports_ips(crtc) &&
5801 pipe_config->pipe_bpp <= 24;
5802 }
5803
5804 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5805 struct intel_crtc_state *pipe_config)
5806 {
5807 struct drm_device *dev = crtc->base.dev;
5808 struct drm_i915_private *dev_priv = dev->dev_private;
5809 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5810
5811 /* FIXME should check pixel clock limits on all platforms */
5812 if (INTEL_INFO(dev)->gen < 4) {
5813 int clock_limit =
5814 dev_priv->display.get_display_clock_speed(dev);
5815
5816 /*
5817 * Enable pixel doubling when the dot clock
5818 * is > 90% of the (display) core speed.
5819 *
5820 * GDG double wide on either pipe,
5821 * otherwise pipe A only.
5822 */
5823 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5824 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5825 clock_limit *= 2;
5826 pipe_config->double_wide = true;
5827 }
5828
5829 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5830 return -EINVAL;
5831 }
5832
5833 /*
5834 * Pipe horizontal size must be even in:
5835 * - DVO ganged mode
5836 * - LVDS dual channel mode
5837 * - Double wide pipe
5838 */
5839 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
5840 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5841 pipe_config->pipe_src_w &= ~1;
5842
5843 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5844 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5845 */
5846 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5847 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5848 return -EINVAL;
5849
5850 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5851 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5852 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5853 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5854 * for lvds. */
5855 pipe_config->pipe_bpp = 8*3;
5856 }
5857
5858 if (HAS_IPS(dev))
5859 hsw_compute_ips_config(crtc, pipe_config);
5860
5861 if (pipe_config->has_pch_encoder)
5862 return ironlake_fdi_compute_config(crtc, pipe_config);
5863
5864 return 0;
5865 }
5866
5867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5868 {
5869 struct drm_i915_private *dev_priv = dev->dev_private;
5870 u32 val;
5871 int divider;
5872
5873 if (dev_priv->hpll_freq == 0)
5874 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5875
5876 mutex_lock(&dev_priv->dpio_lock);
5877 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5878 mutex_unlock(&dev_priv->dpio_lock);
5879
5880 divider = val & DISPLAY_FREQUENCY_VALUES;
5881
5882 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5883 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5884 "cdclk change in progress\n");
5885
5886 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5887 }
5888
5889 static int ilk_get_display_clock_speed(struct drm_device *dev)
5890 {
5891 return 450000;
5892 }
5893
5894 static int i945_get_display_clock_speed(struct drm_device *dev)
5895 {
5896 return 400000;
5897 }
5898
5899 static int i915_get_display_clock_speed(struct drm_device *dev)
5900 {
5901 return 333333;
5902 }
5903
5904 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5905 {
5906 return 200000;
5907 }
5908
5909 static int pnv_get_display_clock_speed(struct drm_device *dev)
5910 {
5911 u16 gcfgc = 0;
5912
5913 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5914
5915 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5916 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5917 return 266667;
5918 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5919 return 333333;
5920 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5921 return 444444;
5922 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5923 return 200000;
5924 default:
5925 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5926 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5927 return 133333;
5928 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5929 return 166667;
5930 }
5931 }
5932
5933 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5934 {
5935 u16 gcfgc = 0;
5936
5937 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5938
5939 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5940 return 133333;
5941 else {
5942 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5943 case GC_DISPLAY_CLOCK_333_MHZ:
5944 return 333333;
5945 default:
5946 case GC_DISPLAY_CLOCK_190_200_MHZ:
5947 return 190000;
5948 }
5949 }
5950 }
5951
5952 static int i865_get_display_clock_speed(struct drm_device *dev)
5953 {
5954 return 266667;
5955 }
5956
5957 static int i855_get_display_clock_speed(struct drm_device *dev)
5958 {
5959 u16 hpllcc = 0;
5960 /* Assume that the hardware is in the high speed state. This
5961 * should be the default.
5962 */
5963 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5964 case GC_CLOCK_133_200:
5965 case GC_CLOCK_100_200:
5966 return 200000;
5967 case GC_CLOCK_166_250:
5968 return 250000;
5969 case GC_CLOCK_100_133:
5970 return 133333;
5971 }
5972
5973 /* Shouldn't happen */
5974 return 0;
5975 }
5976
5977 static int i830_get_display_clock_speed(struct drm_device *dev)
5978 {
5979 return 133333;
5980 }
5981
5982 static void
5983 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5984 {
5985 while (*num > DATA_LINK_M_N_MASK ||
5986 *den > DATA_LINK_M_N_MASK) {
5987 *num >>= 1;
5988 *den >>= 1;
5989 }
5990 }
5991
5992 static void compute_m_n(unsigned int m, unsigned int n,
5993 uint32_t *ret_m, uint32_t *ret_n)
5994 {
5995 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5996 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5997 intel_reduce_m_n_ratio(ret_m, ret_n);
5998 }
5999
6000 void
6001 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6002 int pixel_clock, int link_clock,
6003 struct intel_link_m_n *m_n)
6004 {
6005 m_n->tu = 64;
6006
6007 compute_m_n(bits_per_pixel * pixel_clock,
6008 link_clock * nlanes * 8,
6009 &m_n->gmch_m, &m_n->gmch_n);
6010
6011 compute_m_n(pixel_clock, link_clock,
6012 &m_n->link_m, &m_n->link_n);
6013 }
6014
6015 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6016 {
6017 if (i915.panel_use_ssc >= 0)
6018 return i915.panel_use_ssc != 0;
6019 return dev_priv->vbt.lvds_use_ssc
6020 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6021 }
6022
6023 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6024 int num_connectors)
6025 {
6026 struct drm_device *dev = crtc_state->base.crtc->dev;
6027 struct drm_i915_private *dev_priv = dev->dev_private;
6028 int refclk;
6029
6030 WARN_ON(!crtc_state->base.state);
6031
6032 if (IS_VALLEYVIEW(dev)) {
6033 refclk = 100000;
6034 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6035 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6036 refclk = dev_priv->vbt.lvds_ssc_freq;
6037 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6038 } else if (!IS_GEN2(dev)) {
6039 refclk = 96000;
6040 } else {
6041 refclk = 48000;
6042 }
6043
6044 return refclk;
6045 }
6046
6047 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6048 {
6049 return (1 << dpll->n) << 16 | dpll->m2;
6050 }
6051
6052 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6053 {
6054 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6055 }
6056
6057 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6058 struct intel_crtc_state *crtc_state,
6059 intel_clock_t *reduced_clock)
6060 {
6061 struct drm_device *dev = crtc->base.dev;
6062 u32 fp, fp2 = 0;
6063
6064 if (IS_PINEVIEW(dev)) {
6065 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6066 if (reduced_clock)
6067 fp2 = pnv_dpll_compute_fp(reduced_clock);
6068 } else {
6069 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6070 if (reduced_clock)
6071 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6072 }
6073
6074 crtc_state->dpll_hw_state.fp0 = fp;
6075
6076 crtc->lowfreq_avail = false;
6077 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6078 reduced_clock) {
6079 crtc_state->dpll_hw_state.fp1 = fp2;
6080 crtc->lowfreq_avail = true;
6081 } else {
6082 crtc_state->dpll_hw_state.fp1 = fp;
6083 }
6084 }
6085
6086 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6087 pipe)
6088 {
6089 u32 reg_val;
6090
6091 /*
6092 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6093 * and set it to a reasonable value instead.
6094 */
6095 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6096 reg_val &= 0xffffff00;
6097 reg_val |= 0x00000030;
6098 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6099
6100 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6101 reg_val &= 0x8cffffff;
6102 reg_val = 0x8c000000;
6103 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6104
6105 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6106 reg_val &= 0xffffff00;
6107 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6108
6109 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6110 reg_val &= 0x00ffffff;
6111 reg_val |= 0xb0000000;
6112 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6113 }
6114
6115 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6116 struct intel_link_m_n *m_n)
6117 {
6118 struct drm_device *dev = crtc->base.dev;
6119 struct drm_i915_private *dev_priv = dev->dev_private;
6120 int pipe = crtc->pipe;
6121
6122 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6123 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6124 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6125 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6126 }
6127
6128 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6129 struct intel_link_m_n *m_n,
6130 struct intel_link_m_n *m2_n2)
6131 {
6132 struct drm_device *dev = crtc->base.dev;
6133 struct drm_i915_private *dev_priv = dev->dev_private;
6134 int pipe = crtc->pipe;
6135 enum transcoder transcoder = crtc->config->cpu_transcoder;
6136
6137 if (INTEL_INFO(dev)->gen >= 5) {
6138 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6139 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6140 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6141 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6142 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6143 * for gen < 8) and if DRRS is supported (to make sure the
6144 * registers are not unnecessarily accessed).
6145 */
6146 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6147 crtc->config->has_drrs) {
6148 I915_WRITE(PIPE_DATA_M2(transcoder),
6149 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6150 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6151 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6152 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6153 }
6154 } else {
6155 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6156 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6157 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6158 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6159 }
6160 }
6161
6162 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6163 {
6164 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6165
6166 if (m_n == M1_N1) {
6167 dp_m_n = &crtc->config->dp_m_n;
6168 dp_m2_n2 = &crtc->config->dp_m2_n2;
6169 } else if (m_n == M2_N2) {
6170
6171 /*
6172 * M2_N2 registers are not supported. Hence m2_n2 divider value
6173 * needs to be programmed into M1_N1.
6174 */
6175 dp_m_n = &crtc->config->dp_m2_n2;
6176 } else {
6177 DRM_ERROR("Unsupported divider value\n");
6178 return;
6179 }
6180
6181 if (crtc->config->has_pch_encoder)
6182 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6183 else
6184 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6185 }
6186
6187 static void vlv_update_pll(struct intel_crtc *crtc,
6188 struct intel_crtc_state *pipe_config)
6189 {
6190 u32 dpll, dpll_md;
6191
6192 /*
6193 * Enable DPIO clock input. We should never disable the reference
6194 * clock for pipe B, since VGA hotplug / manual detection depends
6195 * on it.
6196 */
6197 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6198 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6199 /* We should never disable this, set it here for state tracking */
6200 if (crtc->pipe == PIPE_B)
6201 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6202 dpll |= DPLL_VCO_ENABLE;
6203 pipe_config->dpll_hw_state.dpll = dpll;
6204
6205 dpll_md = (pipe_config->pixel_multiplier - 1)
6206 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6207 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6208 }
6209
6210 static void vlv_prepare_pll(struct intel_crtc *crtc,
6211 const struct intel_crtc_state *pipe_config)
6212 {
6213 struct drm_device *dev = crtc->base.dev;
6214 struct drm_i915_private *dev_priv = dev->dev_private;
6215 int pipe = crtc->pipe;
6216 u32 mdiv;
6217 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6218 u32 coreclk, reg_val;
6219
6220 mutex_lock(&dev_priv->dpio_lock);
6221
6222 bestn = pipe_config->dpll.n;
6223 bestm1 = pipe_config->dpll.m1;
6224 bestm2 = pipe_config->dpll.m2;
6225 bestp1 = pipe_config->dpll.p1;
6226 bestp2 = pipe_config->dpll.p2;
6227
6228 /* See eDP HDMI DPIO driver vbios notes doc */
6229
6230 /* PLL B needs special handling */
6231 if (pipe == PIPE_B)
6232 vlv_pllb_recal_opamp(dev_priv, pipe);
6233
6234 /* Set up Tx target for periodic Rcomp update */
6235 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6236
6237 /* Disable target IRef on PLL */
6238 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6239 reg_val &= 0x00ffffff;
6240 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6241
6242 /* Disable fast lock */
6243 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6244
6245 /* Set idtafcrecal before PLL is enabled */
6246 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6247 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6248 mdiv |= ((bestn << DPIO_N_SHIFT));
6249 mdiv |= (1 << DPIO_K_SHIFT);
6250
6251 /*
6252 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6253 * but we don't support that).
6254 * Note: don't use the DAC post divider as it seems unstable.
6255 */
6256 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6257 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6258
6259 mdiv |= DPIO_ENABLE_CALIBRATION;
6260 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6261
6262 /* Set HBR and RBR LPF coefficients */
6263 if (pipe_config->port_clock == 162000 ||
6264 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6265 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6266 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6267 0x009f0003);
6268 else
6269 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6270 0x00d0000f);
6271
6272 if (pipe_config->has_dp_encoder) {
6273 /* Use SSC source */
6274 if (pipe == PIPE_A)
6275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6276 0x0df40000);
6277 else
6278 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6279 0x0df70000);
6280 } else { /* HDMI or VGA */
6281 /* Use bend source */
6282 if (pipe == PIPE_A)
6283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6284 0x0df70000);
6285 else
6286 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6287 0x0df40000);
6288 }
6289
6290 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6291 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6292 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6293 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6294 coreclk |= 0x01000000;
6295 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6296
6297 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6298 mutex_unlock(&dev_priv->dpio_lock);
6299 }
6300
6301 static void chv_update_pll(struct intel_crtc *crtc,
6302 struct intel_crtc_state *pipe_config)
6303 {
6304 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6305 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6306 DPLL_VCO_ENABLE;
6307 if (crtc->pipe != PIPE_A)
6308 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6309
6310 pipe_config->dpll_hw_state.dpll_md =
6311 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6312 }
6313
6314 static void chv_prepare_pll(struct intel_crtc *crtc,
6315 const struct intel_crtc_state *pipe_config)
6316 {
6317 struct drm_device *dev = crtc->base.dev;
6318 struct drm_i915_private *dev_priv = dev->dev_private;
6319 int pipe = crtc->pipe;
6320 int dpll_reg = DPLL(crtc->pipe);
6321 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6322 u32 loopfilter, tribuf_calcntr;
6323 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6324 u32 dpio_val;
6325 int vco;
6326
6327 bestn = pipe_config->dpll.n;
6328 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6329 bestm1 = pipe_config->dpll.m1;
6330 bestm2 = pipe_config->dpll.m2 >> 22;
6331 bestp1 = pipe_config->dpll.p1;
6332 bestp2 = pipe_config->dpll.p2;
6333 vco = pipe_config->dpll.vco;
6334 dpio_val = 0;
6335 loopfilter = 0;
6336
6337 /*
6338 * Enable Refclk and SSC
6339 */
6340 I915_WRITE(dpll_reg,
6341 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6342
6343 mutex_lock(&dev_priv->dpio_lock);
6344
6345 /* p1 and p2 divider */
6346 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6347 5 << DPIO_CHV_S1_DIV_SHIFT |
6348 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6349 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6350 1 << DPIO_CHV_K_DIV_SHIFT);
6351
6352 /* Feedback post-divider - m2 */
6353 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6354
6355 /* Feedback refclk divider - n and m1 */
6356 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6357 DPIO_CHV_M1_DIV_BY_2 |
6358 1 << DPIO_CHV_N_DIV_SHIFT);
6359
6360 /* M2 fraction division */
6361 if (bestm2_frac)
6362 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6363
6364 /* M2 fraction division enable */
6365 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6366 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6367 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6368 if (bestm2_frac)
6369 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6370 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6371
6372 /* Program digital lock detect threshold */
6373 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6374 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6375 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6376 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6377 if (!bestm2_frac)
6378 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6379 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6380
6381 /* Loop filter */
6382 if (vco == 5400000) {
6383 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6384 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6385 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6386 tribuf_calcntr = 0x9;
6387 } else if (vco <= 6200000) {
6388 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6389 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6390 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6391 tribuf_calcntr = 0x9;
6392 } else if (vco <= 6480000) {
6393 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6394 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6395 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6396 tribuf_calcntr = 0x8;
6397 } else {
6398 /* Not supported. Apply the same limits as in the max case */
6399 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6400 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6401 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6402 tribuf_calcntr = 0;
6403 }
6404 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6405
6406 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6407 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6408 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6409 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6410
6411 /* AFC Recal */
6412 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6413 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6414 DPIO_AFC_RECAL);
6415
6416 mutex_unlock(&dev_priv->dpio_lock);
6417 }
6418
6419 /**
6420 * vlv_force_pll_on - forcibly enable just the PLL
6421 * @dev_priv: i915 private structure
6422 * @pipe: pipe PLL to enable
6423 * @dpll: PLL configuration
6424 *
6425 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6426 * in cases where we need the PLL enabled even when @pipe is not going to
6427 * be enabled.
6428 */
6429 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6430 const struct dpll *dpll)
6431 {
6432 struct intel_crtc *crtc =
6433 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6434 struct intel_crtc_state pipe_config = {
6435 .base.crtc = &crtc->base,
6436 .pixel_multiplier = 1,
6437 .dpll = *dpll,
6438 };
6439
6440 if (IS_CHERRYVIEW(dev)) {
6441 chv_update_pll(crtc, &pipe_config);
6442 chv_prepare_pll(crtc, &pipe_config);
6443 chv_enable_pll(crtc, &pipe_config);
6444 } else {
6445 vlv_update_pll(crtc, &pipe_config);
6446 vlv_prepare_pll(crtc, &pipe_config);
6447 vlv_enable_pll(crtc, &pipe_config);
6448 }
6449 }
6450
6451 /**
6452 * vlv_force_pll_off - forcibly disable just the PLL
6453 * @dev_priv: i915 private structure
6454 * @pipe: pipe PLL to disable
6455 *
6456 * Disable the PLL for @pipe. To be used in cases where we need
6457 * the PLL enabled even when @pipe is not going to be enabled.
6458 */
6459 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6460 {
6461 if (IS_CHERRYVIEW(dev))
6462 chv_disable_pll(to_i915(dev), pipe);
6463 else
6464 vlv_disable_pll(to_i915(dev), pipe);
6465 }
6466
6467 static void i9xx_update_pll(struct intel_crtc *crtc,
6468 struct intel_crtc_state *crtc_state,
6469 intel_clock_t *reduced_clock,
6470 int num_connectors)
6471 {
6472 struct drm_device *dev = crtc->base.dev;
6473 struct drm_i915_private *dev_priv = dev->dev_private;
6474 u32 dpll;
6475 bool is_sdvo;
6476 struct dpll *clock = &crtc_state->dpll;
6477
6478 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6479
6480 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6481 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
6482
6483 dpll = DPLL_VGA_MODE_DIS;
6484
6485 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
6486 dpll |= DPLLB_MODE_LVDS;
6487 else
6488 dpll |= DPLLB_MODE_DAC_SERIAL;
6489
6490 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6491 dpll |= (crtc_state->pixel_multiplier - 1)
6492 << SDVO_MULTIPLIER_SHIFT_HIRES;
6493 }
6494
6495 if (is_sdvo)
6496 dpll |= DPLL_SDVO_HIGH_SPEED;
6497
6498 if (crtc_state->has_dp_encoder)
6499 dpll |= DPLL_SDVO_HIGH_SPEED;
6500
6501 /* compute bitmask from p1 value */
6502 if (IS_PINEVIEW(dev))
6503 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6504 else {
6505 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6506 if (IS_G4X(dev) && reduced_clock)
6507 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6508 }
6509 switch (clock->p2) {
6510 case 5:
6511 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6512 break;
6513 case 7:
6514 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6515 break;
6516 case 10:
6517 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6518 break;
6519 case 14:
6520 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6521 break;
6522 }
6523 if (INTEL_INFO(dev)->gen >= 4)
6524 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6525
6526 if (crtc_state->sdvo_tv_clock)
6527 dpll |= PLL_REF_INPUT_TVCLKINBC;
6528 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6529 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6530 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6531 else
6532 dpll |= PLL_REF_INPUT_DREFCLK;
6533
6534 dpll |= DPLL_VCO_ENABLE;
6535 crtc_state->dpll_hw_state.dpll = dpll;
6536
6537 if (INTEL_INFO(dev)->gen >= 4) {
6538 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6539 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6540 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6541 }
6542 }
6543
6544 static void i8xx_update_pll(struct intel_crtc *crtc,
6545 struct intel_crtc_state *crtc_state,
6546 intel_clock_t *reduced_clock,
6547 int num_connectors)
6548 {
6549 struct drm_device *dev = crtc->base.dev;
6550 struct drm_i915_private *dev_priv = dev->dev_private;
6551 u32 dpll;
6552 struct dpll *clock = &crtc_state->dpll;
6553
6554 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6555
6556 dpll = DPLL_VGA_MODE_DIS;
6557
6558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6559 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6560 } else {
6561 if (clock->p1 == 2)
6562 dpll |= PLL_P1_DIVIDE_BY_TWO;
6563 else
6564 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6565 if (clock->p2 == 4)
6566 dpll |= PLL_P2_DIVIDE_BY_4;
6567 }
6568
6569 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
6570 dpll |= DPLL_DVO_2X_MODE;
6571
6572 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6573 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6574 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6575 else
6576 dpll |= PLL_REF_INPUT_DREFCLK;
6577
6578 dpll |= DPLL_VCO_ENABLE;
6579 crtc_state->dpll_hw_state.dpll = dpll;
6580 }
6581
6582 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6583 {
6584 struct drm_device *dev = intel_crtc->base.dev;
6585 struct drm_i915_private *dev_priv = dev->dev_private;
6586 enum pipe pipe = intel_crtc->pipe;
6587 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6588 struct drm_display_mode *adjusted_mode =
6589 &intel_crtc->config->base.adjusted_mode;
6590 uint32_t crtc_vtotal, crtc_vblank_end;
6591 int vsyncshift = 0;
6592
6593 /* We need to be careful not to changed the adjusted mode, for otherwise
6594 * the hw state checker will get angry at the mismatch. */
6595 crtc_vtotal = adjusted_mode->crtc_vtotal;
6596 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6597
6598 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6599 /* the chip adds 2 halflines automatically */
6600 crtc_vtotal -= 1;
6601 crtc_vblank_end -= 1;
6602
6603 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6604 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6605 else
6606 vsyncshift = adjusted_mode->crtc_hsync_start -
6607 adjusted_mode->crtc_htotal / 2;
6608 if (vsyncshift < 0)
6609 vsyncshift += adjusted_mode->crtc_htotal;
6610 }
6611
6612 if (INTEL_INFO(dev)->gen > 3)
6613 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6614
6615 I915_WRITE(HTOTAL(cpu_transcoder),
6616 (adjusted_mode->crtc_hdisplay - 1) |
6617 ((adjusted_mode->crtc_htotal - 1) << 16));
6618 I915_WRITE(HBLANK(cpu_transcoder),
6619 (adjusted_mode->crtc_hblank_start - 1) |
6620 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6621 I915_WRITE(HSYNC(cpu_transcoder),
6622 (adjusted_mode->crtc_hsync_start - 1) |
6623 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6624
6625 I915_WRITE(VTOTAL(cpu_transcoder),
6626 (adjusted_mode->crtc_vdisplay - 1) |
6627 ((crtc_vtotal - 1) << 16));
6628 I915_WRITE(VBLANK(cpu_transcoder),
6629 (adjusted_mode->crtc_vblank_start - 1) |
6630 ((crtc_vblank_end - 1) << 16));
6631 I915_WRITE(VSYNC(cpu_transcoder),
6632 (adjusted_mode->crtc_vsync_start - 1) |
6633 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6634
6635 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6636 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6637 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6638 * bits. */
6639 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6640 (pipe == PIPE_B || pipe == PIPE_C))
6641 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6642
6643 /* pipesrc controls the size that is scaled from, which should
6644 * always be the user's requested size.
6645 */
6646 I915_WRITE(PIPESRC(pipe),
6647 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6648 (intel_crtc->config->pipe_src_h - 1));
6649 }
6650
6651 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6652 struct intel_crtc_state *pipe_config)
6653 {
6654 struct drm_device *dev = crtc->base.dev;
6655 struct drm_i915_private *dev_priv = dev->dev_private;
6656 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6657 uint32_t tmp;
6658
6659 tmp = I915_READ(HTOTAL(cpu_transcoder));
6660 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6661 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6662 tmp = I915_READ(HBLANK(cpu_transcoder));
6663 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6664 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6665 tmp = I915_READ(HSYNC(cpu_transcoder));
6666 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6667 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6668
6669 tmp = I915_READ(VTOTAL(cpu_transcoder));
6670 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6671 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6672 tmp = I915_READ(VBLANK(cpu_transcoder));
6673 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6674 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6675 tmp = I915_READ(VSYNC(cpu_transcoder));
6676 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6677 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6678
6679 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6680 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6681 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6682 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6683 }
6684
6685 tmp = I915_READ(PIPESRC(crtc->pipe));
6686 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6687 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6688
6689 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6690 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6691 }
6692
6693 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6694 struct intel_crtc_state *pipe_config)
6695 {
6696 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6697 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6698 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6699 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6700
6701 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6702 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6703 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6704 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6705
6706 mode->flags = pipe_config->base.adjusted_mode.flags;
6707
6708 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6709 mode->flags |= pipe_config->base.adjusted_mode.flags;
6710 }
6711
6712 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6713 {
6714 struct drm_device *dev = intel_crtc->base.dev;
6715 struct drm_i915_private *dev_priv = dev->dev_private;
6716 uint32_t pipeconf;
6717
6718 pipeconf = 0;
6719
6720 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6721 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6722 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6723
6724 if (intel_crtc->config->double_wide)
6725 pipeconf |= PIPECONF_DOUBLE_WIDE;
6726
6727 /* only g4x and later have fancy bpc/dither controls */
6728 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6729 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6730 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6731 pipeconf |= PIPECONF_DITHER_EN |
6732 PIPECONF_DITHER_TYPE_SP;
6733
6734 switch (intel_crtc->config->pipe_bpp) {
6735 case 18:
6736 pipeconf |= PIPECONF_6BPC;
6737 break;
6738 case 24:
6739 pipeconf |= PIPECONF_8BPC;
6740 break;
6741 case 30:
6742 pipeconf |= PIPECONF_10BPC;
6743 break;
6744 default:
6745 /* Case prevented by intel_choose_pipe_bpp_dither. */
6746 BUG();
6747 }
6748 }
6749
6750 if (HAS_PIPE_CXSR(dev)) {
6751 if (intel_crtc->lowfreq_avail) {
6752 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6753 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6754 } else {
6755 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6756 }
6757 }
6758
6759 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6760 if (INTEL_INFO(dev)->gen < 4 ||
6761 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6762 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6763 else
6764 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6765 } else
6766 pipeconf |= PIPECONF_PROGRESSIVE;
6767
6768 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6769 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6770
6771 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6772 POSTING_READ(PIPECONF(intel_crtc->pipe));
6773 }
6774
6775 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6776 struct intel_crtc_state *crtc_state)
6777 {
6778 struct drm_device *dev = crtc->base.dev;
6779 struct drm_i915_private *dev_priv = dev->dev_private;
6780 int refclk, num_connectors = 0;
6781 intel_clock_t clock, reduced_clock;
6782 bool ok, has_reduced_clock = false;
6783 bool is_lvds = false, is_dsi = false;
6784 struct intel_encoder *encoder;
6785 const intel_limit_t *limit;
6786 struct drm_atomic_state *state = crtc_state->base.state;
6787 struct drm_connector_state *connector_state;
6788 int i;
6789
6790 for (i = 0; i < state->num_connector; i++) {
6791 if (!state->connectors[i])
6792 continue;
6793
6794 connector_state = state->connector_states[i];
6795 if (connector_state->crtc != &crtc->base)
6796 continue;
6797
6798 encoder = to_intel_encoder(connector_state->best_encoder);
6799
6800 switch (encoder->type) {
6801 case INTEL_OUTPUT_LVDS:
6802 is_lvds = true;
6803 break;
6804 case INTEL_OUTPUT_DSI:
6805 is_dsi = true;
6806 break;
6807 default:
6808 break;
6809 }
6810
6811 num_connectors++;
6812 }
6813
6814 if (is_dsi)
6815 return 0;
6816
6817 if (!crtc_state->clock_set) {
6818 refclk = i9xx_get_refclk(crtc_state, num_connectors);
6819
6820 /*
6821 * Returns a set of divisors for the desired target clock with
6822 * the given refclk, or FALSE. The returned values represent
6823 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6824 * 2) / p1 / p2.
6825 */
6826 limit = intel_limit(crtc_state, refclk);
6827 ok = dev_priv->display.find_dpll(limit, crtc_state,
6828 crtc_state->port_clock,
6829 refclk, NULL, &clock);
6830 if (!ok) {
6831 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6832 return -EINVAL;
6833 }
6834
6835 if (is_lvds && dev_priv->lvds_downclock_avail) {
6836 /*
6837 * Ensure we match the reduced clock's P to the target
6838 * clock. If the clocks don't match, we can't switch
6839 * the display clock by using the FP0/FP1. In such case
6840 * we will disable the LVDS downclock feature.
6841 */
6842 has_reduced_clock =
6843 dev_priv->display.find_dpll(limit, crtc_state,
6844 dev_priv->lvds_downclock,
6845 refclk, &clock,
6846 &reduced_clock);
6847 }
6848 /* Compat-code for transition, will disappear. */
6849 crtc_state->dpll.n = clock.n;
6850 crtc_state->dpll.m1 = clock.m1;
6851 crtc_state->dpll.m2 = clock.m2;
6852 crtc_state->dpll.p1 = clock.p1;
6853 crtc_state->dpll.p2 = clock.p2;
6854 }
6855
6856 if (IS_GEN2(dev)) {
6857 i8xx_update_pll(crtc, crtc_state,
6858 has_reduced_clock ? &reduced_clock : NULL,
6859 num_connectors);
6860 } else if (IS_CHERRYVIEW(dev)) {
6861 chv_update_pll(crtc, crtc_state);
6862 } else if (IS_VALLEYVIEW(dev)) {
6863 vlv_update_pll(crtc, crtc_state);
6864 } else {
6865 i9xx_update_pll(crtc, crtc_state,
6866 has_reduced_clock ? &reduced_clock : NULL,
6867 num_connectors);
6868 }
6869
6870 return 0;
6871 }
6872
6873 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6874 struct intel_crtc_state *pipe_config)
6875 {
6876 struct drm_device *dev = crtc->base.dev;
6877 struct drm_i915_private *dev_priv = dev->dev_private;
6878 uint32_t tmp;
6879
6880 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6881 return;
6882
6883 tmp = I915_READ(PFIT_CONTROL);
6884 if (!(tmp & PFIT_ENABLE))
6885 return;
6886
6887 /* Check whether the pfit is attached to our pipe. */
6888 if (INTEL_INFO(dev)->gen < 4) {
6889 if (crtc->pipe != PIPE_B)
6890 return;
6891 } else {
6892 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6893 return;
6894 }
6895
6896 pipe_config->gmch_pfit.control = tmp;
6897 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6898 if (INTEL_INFO(dev)->gen < 5)
6899 pipe_config->gmch_pfit.lvds_border_bits =
6900 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6901 }
6902
6903 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6904 struct intel_crtc_state *pipe_config)
6905 {
6906 struct drm_device *dev = crtc->base.dev;
6907 struct drm_i915_private *dev_priv = dev->dev_private;
6908 int pipe = pipe_config->cpu_transcoder;
6909 intel_clock_t clock;
6910 u32 mdiv;
6911 int refclk = 100000;
6912
6913 /* In case of MIPI DPLL will not even be used */
6914 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6915 return;
6916
6917 mutex_lock(&dev_priv->dpio_lock);
6918 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6919 mutex_unlock(&dev_priv->dpio_lock);
6920
6921 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6922 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6923 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6924 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6925 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6926
6927 vlv_clock(refclk, &clock);
6928
6929 /* clock.dot is the fast clock */
6930 pipe_config->port_clock = clock.dot / 5;
6931 }
6932
6933 static void
6934 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6935 struct intel_initial_plane_config *plane_config)
6936 {
6937 struct drm_device *dev = crtc->base.dev;
6938 struct drm_i915_private *dev_priv = dev->dev_private;
6939 u32 val, base, offset;
6940 int pipe = crtc->pipe, plane = crtc->plane;
6941 int fourcc, pixel_format;
6942 unsigned int aligned_height;
6943 struct drm_framebuffer *fb;
6944 struct intel_framebuffer *intel_fb;
6945
6946 val = I915_READ(DSPCNTR(plane));
6947 if (!(val & DISPLAY_PLANE_ENABLE))
6948 return;
6949
6950 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6951 if (!intel_fb) {
6952 DRM_DEBUG_KMS("failed to alloc fb\n");
6953 return;
6954 }
6955
6956 fb = &intel_fb->base;
6957
6958 if (INTEL_INFO(dev)->gen >= 4) {
6959 if (val & DISPPLANE_TILED) {
6960 plane_config->tiling = I915_TILING_X;
6961 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6962 }
6963 }
6964
6965 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6966 fourcc = i9xx_format_to_fourcc(pixel_format);
6967 fb->pixel_format = fourcc;
6968 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6969
6970 if (INTEL_INFO(dev)->gen >= 4) {
6971 if (plane_config->tiling)
6972 offset = I915_READ(DSPTILEOFF(plane));
6973 else
6974 offset = I915_READ(DSPLINOFF(plane));
6975 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6976 } else {
6977 base = I915_READ(DSPADDR(plane));
6978 }
6979 plane_config->base = base;
6980
6981 val = I915_READ(PIPESRC(pipe));
6982 fb->width = ((val >> 16) & 0xfff) + 1;
6983 fb->height = ((val >> 0) & 0xfff) + 1;
6984
6985 val = I915_READ(DSPSTRIDE(pipe));
6986 fb->pitches[0] = val & 0xffffffc0;
6987
6988 aligned_height = intel_fb_align_height(dev, fb->height,
6989 fb->pixel_format,
6990 fb->modifier[0]);
6991
6992 plane_config->size = fb->pitches[0] * aligned_height;
6993
6994 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6995 pipe_name(pipe), plane, fb->width, fb->height,
6996 fb->bits_per_pixel, base, fb->pitches[0],
6997 plane_config->size);
6998
6999 plane_config->fb = intel_fb;
7000 }
7001
7002 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7003 struct intel_crtc_state *pipe_config)
7004 {
7005 struct drm_device *dev = crtc->base.dev;
7006 struct drm_i915_private *dev_priv = dev->dev_private;
7007 int pipe = pipe_config->cpu_transcoder;
7008 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7009 intel_clock_t clock;
7010 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7011 int refclk = 100000;
7012
7013 mutex_lock(&dev_priv->dpio_lock);
7014 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7015 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7016 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7017 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7018 mutex_unlock(&dev_priv->dpio_lock);
7019
7020 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7021 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7022 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7023 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7024 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7025
7026 chv_clock(refclk, &clock);
7027
7028 /* clock.dot is the fast clock */
7029 pipe_config->port_clock = clock.dot / 5;
7030 }
7031
7032 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7033 struct intel_crtc_state *pipe_config)
7034 {
7035 struct drm_device *dev = crtc->base.dev;
7036 struct drm_i915_private *dev_priv = dev->dev_private;
7037 uint32_t tmp;
7038
7039 if (!intel_display_power_is_enabled(dev_priv,
7040 POWER_DOMAIN_PIPE(crtc->pipe)))
7041 return false;
7042
7043 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7044 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7045
7046 tmp = I915_READ(PIPECONF(crtc->pipe));
7047 if (!(tmp & PIPECONF_ENABLE))
7048 return false;
7049
7050 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7051 switch (tmp & PIPECONF_BPC_MASK) {
7052 case PIPECONF_6BPC:
7053 pipe_config->pipe_bpp = 18;
7054 break;
7055 case PIPECONF_8BPC:
7056 pipe_config->pipe_bpp = 24;
7057 break;
7058 case PIPECONF_10BPC:
7059 pipe_config->pipe_bpp = 30;
7060 break;
7061 default:
7062 break;
7063 }
7064 }
7065
7066 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7067 pipe_config->limited_color_range = true;
7068
7069 if (INTEL_INFO(dev)->gen < 4)
7070 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7071
7072 intel_get_pipe_timings(crtc, pipe_config);
7073
7074 i9xx_get_pfit_config(crtc, pipe_config);
7075
7076 if (INTEL_INFO(dev)->gen >= 4) {
7077 tmp = I915_READ(DPLL_MD(crtc->pipe));
7078 pipe_config->pixel_multiplier =
7079 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7080 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7081 pipe_config->dpll_hw_state.dpll_md = tmp;
7082 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7083 tmp = I915_READ(DPLL(crtc->pipe));
7084 pipe_config->pixel_multiplier =
7085 ((tmp & SDVO_MULTIPLIER_MASK)
7086 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7087 } else {
7088 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7089 * port and will be fixed up in the encoder->get_config
7090 * function. */
7091 pipe_config->pixel_multiplier = 1;
7092 }
7093 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7094 if (!IS_VALLEYVIEW(dev)) {
7095 /*
7096 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7097 * on 830. Filter it out here so that we don't
7098 * report errors due to that.
7099 */
7100 if (IS_I830(dev))
7101 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7102
7103 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7104 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7105 } else {
7106 /* Mask out read-only status bits. */
7107 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7108 DPLL_PORTC_READY_MASK |
7109 DPLL_PORTB_READY_MASK);
7110 }
7111
7112 if (IS_CHERRYVIEW(dev))
7113 chv_crtc_clock_get(crtc, pipe_config);
7114 else if (IS_VALLEYVIEW(dev))
7115 vlv_crtc_clock_get(crtc, pipe_config);
7116 else
7117 i9xx_crtc_clock_get(crtc, pipe_config);
7118
7119 return true;
7120 }
7121
7122 static void ironlake_init_pch_refclk(struct drm_device *dev)
7123 {
7124 struct drm_i915_private *dev_priv = dev->dev_private;
7125 struct intel_encoder *encoder;
7126 u32 val, final;
7127 bool has_lvds = false;
7128 bool has_cpu_edp = false;
7129 bool has_panel = false;
7130 bool has_ck505 = false;
7131 bool can_ssc = false;
7132
7133 /* We need to take the global config into account */
7134 for_each_intel_encoder(dev, encoder) {
7135 switch (encoder->type) {
7136 case INTEL_OUTPUT_LVDS:
7137 has_panel = true;
7138 has_lvds = true;
7139 break;
7140 case INTEL_OUTPUT_EDP:
7141 has_panel = true;
7142 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7143 has_cpu_edp = true;
7144 break;
7145 default:
7146 break;
7147 }
7148 }
7149
7150 if (HAS_PCH_IBX(dev)) {
7151 has_ck505 = dev_priv->vbt.display_clock_mode;
7152 can_ssc = has_ck505;
7153 } else {
7154 has_ck505 = false;
7155 can_ssc = true;
7156 }
7157
7158 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7159 has_panel, has_lvds, has_ck505);
7160
7161 /* Ironlake: try to setup display ref clock before DPLL
7162 * enabling. This is only under driver's control after
7163 * PCH B stepping, previous chipset stepping should be
7164 * ignoring this setting.
7165 */
7166 val = I915_READ(PCH_DREF_CONTROL);
7167
7168 /* As we must carefully and slowly disable/enable each source in turn,
7169 * compute the final state we want first and check if we need to
7170 * make any changes at all.
7171 */
7172 final = val;
7173 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7174 if (has_ck505)
7175 final |= DREF_NONSPREAD_CK505_ENABLE;
7176 else
7177 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7178
7179 final &= ~DREF_SSC_SOURCE_MASK;
7180 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7181 final &= ~DREF_SSC1_ENABLE;
7182
7183 if (has_panel) {
7184 final |= DREF_SSC_SOURCE_ENABLE;
7185
7186 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7187 final |= DREF_SSC1_ENABLE;
7188
7189 if (has_cpu_edp) {
7190 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7191 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7192 else
7193 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7194 } else
7195 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7196 } else {
7197 final |= DREF_SSC_SOURCE_DISABLE;
7198 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7199 }
7200
7201 if (final == val)
7202 return;
7203
7204 /* Always enable nonspread source */
7205 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7206
7207 if (has_ck505)
7208 val |= DREF_NONSPREAD_CK505_ENABLE;
7209 else
7210 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7211
7212 if (has_panel) {
7213 val &= ~DREF_SSC_SOURCE_MASK;
7214 val |= DREF_SSC_SOURCE_ENABLE;
7215
7216 /* SSC must be turned on before enabling the CPU output */
7217 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7218 DRM_DEBUG_KMS("Using SSC on panel\n");
7219 val |= DREF_SSC1_ENABLE;
7220 } else
7221 val &= ~DREF_SSC1_ENABLE;
7222
7223 /* Get SSC going before enabling the outputs */
7224 I915_WRITE(PCH_DREF_CONTROL, val);
7225 POSTING_READ(PCH_DREF_CONTROL);
7226 udelay(200);
7227
7228 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7229
7230 /* Enable CPU source on CPU attached eDP */
7231 if (has_cpu_edp) {
7232 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7233 DRM_DEBUG_KMS("Using SSC on eDP\n");
7234 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7235 } else
7236 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7237 } else
7238 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7239
7240 I915_WRITE(PCH_DREF_CONTROL, val);
7241 POSTING_READ(PCH_DREF_CONTROL);
7242 udelay(200);
7243 } else {
7244 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7245
7246 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7247
7248 /* Turn off CPU output */
7249 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7250
7251 I915_WRITE(PCH_DREF_CONTROL, val);
7252 POSTING_READ(PCH_DREF_CONTROL);
7253 udelay(200);
7254
7255 /* Turn off the SSC source */
7256 val &= ~DREF_SSC_SOURCE_MASK;
7257 val |= DREF_SSC_SOURCE_DISABLE;
7258
7259 /* Turn off SSC1 */
7260 val &= ~DREF_SSC1_ENABLE;
7261
7262 I915_WRITE(PCH_DREF_CONTROL, val);
7263 POSTING_READ(PCH_DREF_CONTROL);
7264 udelay(200);
7265 }
7266
7267 BUG_ON(val != final);
7268 }
7269
7270 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7271 {
7272 uint32_t tmp;
7273
7274 tmp = I915_READ(SOUTH_CHICKEN2);
7275 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7276 I915_WRITE(SOUTH_CHICKEN2, tmp);
7277
7278 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7279 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7280 DRM_ERROR("FDI mPHY reset assert timeout\n");
7281
7282 tmp = I915_READ(SOUTH_CHICKEN2);
7283 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7284 I915_WRITE(SOUTH_CHICKEN2, tmp);
7285
7286 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7287 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7288 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7289 }
7290
7291 /* WaMPhyProgramming:hsw */
7292 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7293 {
7294 uint32_t tmp;
7295
7296 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7297 tmp &= ~(0xFF << 24);
7298 tmp |= (0x12 << 24);
7299 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7300
7301 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7302 tmp |= (1 << 11);
7303 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7304
7305 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7306 tmp |= (1 << 11);
7307 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7308
7309 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7310 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7311 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7312
7313 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7314 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7315 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7316
7317 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7318 tmp &= ~(7 << 13);
7319 tmp |= (5 << 13);
7320 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7321
7322 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7323 tmp &= ~(7 << 13);
7324 tmp |= (5 << 13);
7325 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7326
7327 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7328 tmp &= ~0xFF;
7329 tmp |= 0x1C;
7330 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7331
7332 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7333 tmp &= ~0xFF;
7334 tmp |= 0x1C;
7335 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7336
7337 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7338 tmp &= ~(0xFF << 16);
7339 tmp |= (0x1C << 16);
7340 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7341
7342 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7343 tmp &= ~(0xFF << 16);
7344 tmp |= (0x1C << 16);
7345 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7346
7347 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7348 tmp |= (1 << 27);
7349 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7350
7351 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7352 tmp |= (1 << 27);
7353 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7354
7355 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7356 tmp &= ~(0xF << 28);
7357 tmp |= (4 << 28);
7358 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7359
7360 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7361 tmp &= ~(0xF << 28);
7362 tmp |= (4 << 28);
7363 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7364 }
7365
7366 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7367 * Programming" based on the parameters passed:
7368 * - Sequence to enable CLKOUT_DP
7369 * - Sequence to enable CLKOUT_DP without spread
7370 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7371 */
7372 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7373 bool with_fdi)
7374 {
7375 struct drm_i915_private *dev_priv = dev->dev_private;
7376 uint32_t reg, tmp;
7377
7378 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7379 with_spread = true;
7380 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7381 with_fdi, "LP PCH doesn't have FDI\n"))
7382 with_fdi = false;
7383
7384 mutex_lock(&dev_priv->dpio_lock);
7385
7386 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7387 tmp &= ~SBI_SSCCTL_DISABLE;
7388 tmp |= SBI_SSCCTL_PATHALT;
7389 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7390
7391 udelay(24);
7392
7393 if (with_spread) {
7394 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7395 tmp &= ~SBI_SSCCTL_PATHALT;
7396 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7397
7398 if (with_fdi) {
7399 lpt_reset_fdi_mphy(dev_priv);
7400 lpt_program_fdi_mphy(dev_priv);
7401 }
7402 }
7403
7404 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7405 SBI_GEN0 : SBI_DBUFF0;
7406 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7407 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7408 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7409
7410 mutex_unlock(&dev_priv->dpio_lock);
7411 }
7412
7413 /* Sequence to disable CLKOUT_DP */
7414 static void lpt_disable_clkout_dp(struct drm_device *dev)
7415 {
7416 struct drm_i915_private *dev_priv = dev->dev_private;
7417 uint32_t reg, tmp;
7418
7419 mutex_lock(&dev_priv->dpio_lock);
7420
7421 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7422 SBI_GEN0 : SBI_DBUFF0;
7423 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7424 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7425 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7426
7427 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7428 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7429 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7430 tmp |= SBI_SSCCTL_PATHALT;
7431 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7432 udelay(32);
7433 }
7434 tmp |= SBI_SSCCTL_DISABLE;
7435 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7436 }
7437
7438 mutex_unlock(&dev_priv->dpio_lock);
7439 }
7440
7441 static void lpt_init_pch_refclk(struct drm_device *dev)
7442 {
7443 struct intel_encoder *encoder;
7444 bool has_vga = false;
7445
7446 for_each_intel_encoder(dev, encoder) {
7447 switch (encoder->type) {
7448 case INTEL_OUTPUT_ANALOG:
7449 has_vga = true;
7450 break;
7451 default:
7452 break;
7453 }
7454 }
7455
7456 if (has_vga)
7457 lpt_enable_clkout_dp(dev, true, true);
7458 else
7459 lpt_disable_clkout_dp(dev);
7460 }
7461
7462 /*
7463 * Initialize reference clocks when the driver loads
7464 */
7465 void intel_init_pch_refclk(struct drm_device *dev)
7466 {
7467 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7468 ironlake_init_pch_refclk(dev);
7469 else if (HAS_PCH_LPT(dev))
7470 lpt_init_pch_refclk(dev);
7471 }
7472
7473 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
7474 {
7475 struct drm_device *dev = crtc_state->base.crtc->dev;
7476 struct drm_i915_private *dev_priv = dev->dev_private;
7477 struct drm_atomic_state *state = crtc_state->base.state;
7478 struct drm_connector_state *connector_state;
7479 struct intel_encoder *encoder;
7480 int num_connectors = 0, i;
7481 bool is_lvds = false;
7482
7483 for (i = 0; i < state->num_connector; i++) {
7484 if (!state->connectors[i])
7485 continue;
7486
7487 connector_state = state->connector_states[i];
7488 if (connector_state->crtc != crtc_state->base.crtc)
7489 continue;
7490
7491 encoder = to_intel_encoder(connector_state->best_encoder);
7492
7493 switch (encoder->type) {
7494 case INTEL_OUTPUT_LVDS:
7495 is_lvds = true;
7496 break;
7497 default:
7498 break;
7499 }
7500 num_connectors++;
7501 }
7502
7503 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7504 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7505 dev_priv->vbt.lvds_ssc_freq);
7506 return dev_priv->vbt.lvds_ssc_freq;
7507 }
7508
7509 return 120000;
7510 }
7511
7512 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7513 {
7514 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7516 int pipe = intel_crtc->pipe;
7517 uint32_t val;
7518
7519 val = 0;
7520
7521 switch (intel_crtc->config->pipe_bpp) {
7522 case 18:
7523 val |= PIPECONF_6BPC;
7524 break;
7525 case 24:
7526 val |= PIPECONF_8BPC;
7527 break;
7528 case 30:
7529 val |= PIPECONF_10BPC;
7530 break;
7531 case 36:
7532 val |= PIPECONF_12BPC;
7533 break;
7534 default:
7535 /* Case prevented by intel_choose_pipe_bpp_dither. */
7536 BUG();
7537 }
7538
7539 if (intel_crtc->config->dither)
7540 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7541
7542 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7543 val |= PIPECONF_INTERLACED_ILK;
7544 else
7545 val |= PIPECONF_PROGRESSIVE;
7546
7547 if (intel_crtc->config->limited_color_range)
7548 val |= PIPECONF_COLOR_RANGE_SELECT;
7549
7550 I915_WRITE(PIPECONF(pipe), val);
7551 POSTING_READ(PIPECONF(pipe));
7552 }
7553
7554 /*
7555 * Set up the pipe CSC unit.
7556 *
7557 * Currently only full range RGB to limited range RGB conversion
7558 * is supported, but eventually this should handle various
7559 * RGB<->YCbCr scenarios as well.
7560 */
7561 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7562 {
7563 struct drm_device *dev = crtc->dev;
7564 struct drm_i915_private *dev_priv = dev->dev_private;
7565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7566 int pipe = intel_crtc->pipe;
7567 uint16_t coeff = 0x7800; /* 1.0 */
7568
7569 /*
7570 * TODO: Check what kind of values actually come out of the pipe
7571 * with these coeff/postoff values and adjust to get the best
7572 * accuracy. Perhaps we even need to take the bpc value into
7573 * consideration.
7574 */
7575
7576 if (intel_crtc->config->limited_color_range)
7577 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7578
7579 /*
7580 * GY/GU and RY/RU should be the other way around according
7581 * to BSpec, but reality doesn't agree. Just set them up in
7582 * a way that results in the correct picture.
7583 */
7584 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7585 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7586
7587 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7588 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7589
7590 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7591 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7592
7593 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7594 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7595 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7596
7597 if (INTEL_INFO(dev)->gen > 6) {
7598 uint16_t postoff = 0;
7599
7600 if (intel_crtc->config->limited_color_range)
7601 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7602
7603 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7604 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7605 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7606
7607 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7608 } else {
7609 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7610
7611 if (intel_crtc->config->limited_color_range)
7612 mode |= CSC_BLACK_SCREEN_OFFSET;
7613
7614 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7615 }
7616 }
7617
7618 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7619 {
7620 struct drm_device *dev = crtc->dev;
7621 struct drm_i915_private *dev_priv = dev->dev_private;
7622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7623 enum pipe pipe = intel_crtc->pipe;
7624 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7625 uint32_t val;
7626
7627 val = 0;
7628
7629 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7630 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7631
7632 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7633 val |= PIPECONF_INTERLACED_ILK;
7634 else
7635 val |= PIPECONF_PROGRESSIVE;
7636
7637 I915_WRITE(PIPECONF(cpu_transcoder), val);
7638 POSTING_READ(PIPECONF(cpu_transcoder));
7639
7640 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7641 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7642
7643 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7644 val = 0;
7645
7646 switch (intel_crtc->config->pipe_bpp) {
7647 case 18:
7648 val |= PIPEMISC_DITHER_6_BPC;
7649 break;
7650 case 24:
7651 val |= PIPEMISC_DITHER_8_BPC;
7652 break;
7653 case 30:
7654 val |= PIPEMISC_DITHER_10_BPC;
7655 break;
7656 case 36:
7657 val |= PIPEMISC_DITHER_12_BPC;
7658 break;
7659 default:
7660 /* Case prevented by pipe_config_set_bpp. */
7661 BUG();
7662 }
7663
7664 if (intel_crtc->config->dither)
7665 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7666
7667 I915_WRITE(PIPEMISC(pipe), val);
7668 }
7669 }
7670
7671 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7672 struct intel_crtc_state *crtc_state,
7673 intel_clock_t *clock,
7674 bool *has_reduced_clock,
7675 intel_clock_t *reduced_clock)
7676 {
7677 struct drm_device *dev = crtc->dev;
7678 struct drm_i915_private *dev_priv = dev->dev_private;
7679 int refclk;
7680 const intel_limit_t *limit;
7681 bool ret, is_lvds = false;
7682
7683 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
7684
7685 refclk = ironlake_get_refclk(crtc_state);
7686
7687 /*
7688 * Returns a set of divisors for the desired target clock with the given
7689 * refclk, or FALSE. The returned values represent the clock equation:
7690 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7691 */
7692 limit = intel_limit(crtc_state, refclk);
7693 ret = dev_priv->display.find_dpll(limit, crtc_state,
7694 crtc_state->port_clock,
7695 refclk, NULL, clock);
7696 if (!ret)
7697 return false;
7698
7699 if (is_lvds && dev_priv->lvds_downclock_avail) {
7700 /*
7701 * Ensure we match the reduced clock's P to the target clock.
7702 * If the clocks don't match, we can't switch the display clock
7703 * by using the FP0/FP1. In such case we will disable the LVDS
7704 * downclock feature.
7705 */
7706 *has_reduced_clock =
7707 dev_priv->display.find_dpll(limit, crtc_state,
7708 dev_priv->lvds_downclock,
7709 refclk, clock,
7710 reduced_clock);
7711 }
7712
7713 return true;
7714 }
7715
7716 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7717 {
7718 /*
7719 * Account for spread spectrum to avoid
7720 * oversubscribing the link. Max center spread
7721 * is 2.5%; use 5% for safety's sake.
7722 */
7723 u32 bps = target_clock * bpp * 21 / 20;
7724 return DIV_ROUND_UP(bps, link_bw * 8);
7725 }
7726
7727 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7728 {
7729 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7730 }
7731
7732 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7733 struct intel_crtc_state *crtc_state,
7734 u32 *fp,
7735 intel_clock_t *reduced_clock, u32 *fp2)
7736 {
7737 struct drm_crtc *crtc = &intel_crtc->base;
7738 struct drm_device *dev = crtc->dev;
7739 struct drm_i915_private *dev_priv = dev->dev_private;
7740 struct drm_atomic_state *state = crtc_state->base.state;
7741 struct drm_connector_state *connector_state;
7742 struct intel_encoder *encoder;
7743 uint32_t dpll;
7744 int factor, num_connectors = 0, i;
7745 bool is_lvds = false, is_sdvo = false;
7746
7747 for (i = 0; i < state->num_connector; i++) {
7748 if (!state->connectors[i])
7749 continue;
7750
7751 connector_state = state->connector_states[i];
7752 if (connector_state->crtc != crtc_state->base.crtc)
7753 continue;
7754
7755 encoder = to_intel_encoder(connector_state->best_encoder);
7756
7757 switch (encoder->type) {
7758 case INTEL_OUTPUT_LVDS:
7759 is_lvds = true;
7760 break;
7761 case INTEL_OUTPUT_SDVO:
7762 case INTEL_OUTPUT_HDMI:
7763 is_sdvo = true;
7764 break;
7765 default:
7766 break;
7767 }
7768
7769 num_connectors++;
7770 }
7771
7772 /* Enable autotuning of the PLL clock (if permissible) */
7773 factor = 21;
7774 if (is_lvds) {
7775 if ((intel_panel_use_ssc(dev_priv) &&
7776 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7777 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7778 factor = 25;
7779 } else if (crtc_state->sdvo_tv_clock)
7780 factor = 20;
7781
7782 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7783 *fp |= FP_CB_TUNE;
7784
7785 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7786 *fp2 |= FP_CB_TUNE;
7787
7788 dpll = 0;
7789
7790 if (is_lvds)
7791 dpll |= DPLLB_MODE_LVDS;
7792 else
7793 dpll |= DPLLB_MODE_DAC_SERIAL;
7794
7795 dpll |= (crtc_state->pixel_multiplier - 1)
7796 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7797
7798 if (is_sdvo)
7799 dpll |= DPLL_SDVO_HIGH_SPEED;
7800 if (crtc_state->has_dp_encoder)
7801 dpll |= DPLL_SDVO_HIGH_SPEED;
7802
7803 /* compute bitmask from p1 value */
7804 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7805 /* also FPA1 */
7806 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7807
7808 switch (crtc_state->dpll.p2) {
7809 case 5:
7810 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7811 break;
7812 case 7:
7813 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7814 break;
7815 case 10:
7816 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7817 break;
7818 case 14:
7819 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7820 break;
7821 }
7822
7823 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7824 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7825 else
7826 dpll |= PLL_REF_INPUT_DREFCLK;
7827
7828 return dpll | DPLL_VCO_ENABLE;
7829 }
7830
7831 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7832 struct intel_crtc_state *crtc_state)
7833 {
7834 struct drm_device *dev = crtc->base.dev;
7835 intel_clock_t clock, reduced_clock;
7836 u32 dpll = 0, fp = 0, fp2 = 0;
7837 bool ok, has_reduced_clock = false;
7838 bool is_lvds = false;
7839 struct intel_shared_dpll *pll;
7840
7841 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7842
7843 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7844 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7845
7846 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7847 &has_reduced_clock, &reduced_clock);
7848 if (!ok && !crtc_state->clock_set) {
7849 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7850 return -EINVAL;
7851 }
7852 /* Compat-code for transition, will disappear. */
7853 if (!crtc_state->clock_set) {
7854 crtc_state->dpll.n = clock.n;
7855 crtc_state->dpll.m1 = clock.m1;
7856 crtc_state->dpll.m2 = clock.m2;
7857 crtc_state->dpll.p1 = clock.p1;
7858 crtc_state->dpll.p2 = clock.p2;
7859 }
7860
7861 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7862 if (crtc_state->has_pch_encoder) {
7863 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7864 if (has_reduced_clock)
7865 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7866
7867 dpll = ironlake_compute_dpll(crtc, crtc_state,
7868 &fp, &reduced_clock,
7869 has_reduced_clock ? &fp2 : NULL);
7870
7871 crtc_state->dpll_hw_state.dpll = dpll;
7872 crtc_state->dpll_hw_state.fp0 = fp;
7873 if (has_reduced_clock)
7874 crtc_state->dpll_hw_state.fp1 = fp2;
7875 else
7876 crtc_state->dpll_hw_state.fp1 = fp;
7877
7878 pll = intel_get_shared_dpll(crtc, crtc_state);
7879 if (pll == NULL) {
7880 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7881 pipe_name(crtc->pipe));
7882 return -EINVAL;
7883 }
7884 }
7885
7886 if (is_lvds && has_reduced_clock)
7887 crtc->lowfreq_avail = true;
7888 else
7889 crtc->lowfreq_avail = false;
7890
7891 return 0;
7892 }
7893
7894 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7895 struct intel_link_m_n *m_n)
7896 {
7897 struct drm_device *dev = crtc->base.dev;
7898 struct drm_i915_private *dev_priv = dev->dev_private;
7899 enum pipe pipe = crtc->pipe;
7900
7901 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7902 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7903 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7904 & ~TU_SIZE_MASK;
7905 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7906 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7907 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7908 }
7909
7910 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7911 enum transcoder transcoder,
7912 struct intel_link_m_n *m_n,
7913 struct intel_link_m_n *m2_n2)
7914 {
7915 struct drm_device *dev = crtc->base.dev;
7916 struct drm_i915_private *dev_priv = dev->dev_private;
7917 enum pipe pipe = crtc->pipe;
7918
7919 if (INTEL_INFO(dev)->gen >= 5) {
7920 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7921 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7922 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7923 & ~TU_SIZE_MASK;
7924 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7925 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7926 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7927 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7928 * gen < 8) and if DRRS is supported (to make sure the
7929 * registers are not unnecessarily read).
7930 */
7931 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7932 crtc->config->has_drrs) {
7933 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7934 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7935 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7936 & ~TU_SIZE_MASK;
7937 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7938 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7939 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7940 }
7941 } else {
7942 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7943 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7944 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7945 & ~TU_SIZE_MASK;
7946 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7947 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7948 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7949 }
7950 }
7951
7952 void intel_dp_get_m_n(struct intel_crtc *crtc,
7953 struct intel_crtc_state *pipe_config)
7954 {
7955 if (pipe_config->has_pch_encoder)
7956 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7957 else
7958 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7959 &pipe_config->dp_m_n,
7960 &pipe_config->dp_m2_n2);
7961 }
7962
7963 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7964 struct intel_crtc_state *pipe_config)
7965 {
7966 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7967 &pipe_config->fdi_m_n, NULL);
7968 }
7969
7970 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7971 struct intel_crtc_state *pipe_config)
7972 {
7973 struct drm_device *dev = crtc->base.dev;
7974 struct drm_i915_private *dev_priv = dev->dev_private;
7975 uint32_t tmp;
7976
7977 tmp = I915_READ(PS_CTL(crtc->pipe));
7978
7979 if (tmp & PS_ENABLE) {
7980 pipe_config->pch_pfit.enabled = true;
7981 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7982 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7983 }
7984 }
7985
7986 static void
7987 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7988 struct intel_initial_plane_config *plane_config)
7989 {
7990 struct drm_device *dev = crtc->base.dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 u32 val, base, offset, stride_mult, tiling;
7993 int pipe = crtc->pipe;
7994 int fourcc, pixel_format;
7995 unsigned int aligned_height;
7996 struct drm_framebuffer *fb;
7997 struct intel_framebuffer *intel_fb;
7998
7999 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8000 if (!intel_fb) {
8001 DRM_DEBUG_KMS("failed to alloc fb\n");
8002 return;
8003 }
8004
8005 fb = &intel_fb->base;
8006
8007 val = I915_READ(PLANE_CTL(pipe, 0));
8008 if (!(val & PLANE_CTL_ENABLE))
8009 goto error;
8010
8011 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8012 fourcc = skl_format_to_fourcc(pixel_format,
8013 val & PLANE_CTL_ORDER_RGBX,
8014 val & PLANE_CTL_ALPHA_MASK);
8015 fb->pixel_format = fourcc;
8016 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8017
8018 tiling = val & PLANE_CTL_TILED_MASK;
8019 switch (tiling) {
8020 case PLANE_CTL_TILED_LINEAR:
8021 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8022 break;
8023 case PLANE_CTL_TILED_X:
8024 plane_config->tiling = I915_TILING_X;
8025 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8026 break;
8027 case PLANE_CTL_TILED_Y:
8028 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8029 break;
8030 case PLANE_CTL_TILED_YF:
8031 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8032 break;
8033 default:
8034 MISSING_CASE(tiling);
8035 goto error;
8036 }
8037
8038 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8039 plane_config->base = base;
8040
8041 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8042
8043 val = I915_READ(PLANE_SIZE(pipe, 0));
8044 fb->height = ((val >> 16) & 0xfff) + 1;
8045 fb->width = ((val >> 0) & 0x1fff) + 1;
8046
8047 val = I915_READ(PLANE_STRIDE(pipe, 0));
8048 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8049 fb->pixel_format);
8050 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8051
8052 aligned_height = intel_fb_align_height(dev, fb->height,
8053 fb->pixel_format,
8054 fb->modifier[0]);
8055
8056 plane_config->size = fb->pitches[0] * aligned_height;
8057
8058 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8059 pipe_name(pipe), fb->width, fb->height,
8060 fb->bits_per_pixel, base, fb->pitches[0],
8061 plane_config->size);
8062
8063 plane_config->fb = intel_fb;
8064 return;
8065
8066 error:
8067 kfree(fb);
8068 }
8069
8070 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8071 struct intel_crtc_state *pipe_config)
8072 {
8073 struct drm_device *dev = crtc->base.dev;
8074 struct drm_i915_private *dev_priv = dev->dev_private;
8075 uint32_t tmp;
8076
8077 tmp = I915_READ(PF_CTL(crtc->pipe));
8078
8079 if (tmp & PF_ENABLE) {
8080 pipe_config->pch_pfit.enabled = true;
8081 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8082 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8083
8084 /* We currently do not free assignements of panel fitters on
8085 * ivb/hsw (since we don't use the higher upscaling modes which
8086 * differentiates them) so just WARN about this case for now. */
8087 if (IS_GEN7(dev)) {
8088 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8089 PF_PIPE_SEL_IVB(crtc->pipe));
8090 }
8091 }
8092 }
8093
8094 static void
8095 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8096 struct intel_initial_plane_config *plane_config)
8097 {
8098 struct drm_device *dev = crtc->base.dev;
8099 struct drm_i915_private *dev_priv = dev->dev_private;
8100 u32 val, base, offset;
8101 int pipe = crtc->pipe;
8102 int fourcc, pixel_format;
8103 unsigned int aligned_height;
8104 struct drm_framebuffer *fb;
8105 struct intel_framebuffer *intel_fb;
8106
8107 val = I915_READ(DSPCNTR(pipe));
8108 if (!(val & DISPLAY_PLANE_ENABLE))
8109 return;
8110
8111 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8112 if (!intel_fb) {
8113 DRM_DEBUG_KMS("failed to alloc fb\n");
8114 return;
8115 }
8116
8117 fb = &intel_fb->base;
8118
8119 if (INTEL_INFO(dev)->gen >= 4) {
8120 if (val & DISPPLANE_TILED) {
8121 plane_config->tiling = I915_TILING_X;
8122 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8123 }
8124 }
8125
8126 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8127 fourcc = i9xx_format_to_fourcc(pixel_format);
8128 fb->pixel_format = fourcc;
8129 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8130
8131 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8132 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8133 offset = I915_READ(DSPOFFSET(pipe));
8134 } else {
8135 if (plane_config->tiling)
8136 offset = I915_READ(DSPTILEOFF(pipe));
8137 else
8138 offset = I915_READ(DSPLINOFF(pipe));
8139 }
8140 plane_config->base = base;
8141
8142 val = I915_READ(PIPESRC(pipe));
8143 fb->width = ((val >> 16) & 0xfff) + 1;
8144 fb->height = ((val >> 0) & 0xfff) + 1;
8145
8146 val = I915_READ(DSPSTRIDE(pipe));
8147 fb->pitches[0] = val & 0xffffffc0;
8148
8149 aligned_height = intel_fb_align_height(dev, fb->height,
8150 fb->pixel_format,
8151 fb->modifier[0]);
8152
8153 plane_config->size = fb->pitches[0] * aligned_height;
8154
8155 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8156 pipe_name(pipe), fb->width, fb->height,
8157 fb->bits_per_pixel, base, fb->pitches[0],
8158 plane_config->size);
8159
8160 plane_config->fb = intel_fb;
8161 }
8162
8163 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8164 struct intel_crtc_state *pipe_config)
8165 {
8166 struct drm_device *dev = crtc->base.dev;
8167 struct drm_i915_private *dev_priv = dev->dev_private;
8168 uint32_t tmp;
8169
8170 if (!intel_display_power_is_enabled(dev_priv,
8171 POWER_DOMAIN_PIPE(crtc->pipe)))
8172 return false;
8173
8174 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8175 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8176
8177 tmp = I915_READ(PIPECONF(crtc->pipe));
8178 if (!(tmp & PIPECONF_ENABLE))
8179 return false;
8180
8181 switch (tmp & PIPECONF_BPC_MASK) {
8182 case PIPECONF_6BPC:
8183 pipe_config->pipe_bpp = 18;
8184 break;
8185 case PIPECONF_8BPC:
8186 pipe_config->pipe_bpp = 24;
8187 break;
8188 case PIPECONF_10BPC:
8189 pipe_config->pipe_bpp = 30;
8190 break;
8191 case PIPECONF_12BPC:
8192 pipe_config->pipe_bpp = 36;
8193 break;
8194 default:
8195 break;
8196 }
8197
8198 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8199 pipe_config->limited_color_range = true;
8200
8201 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8202 struct intel_shared_dpll *pll;
8203
8204 pipe_config->has_pch_encoder = true;
8205
8206 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8207 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8208 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8209
8210 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8211
8212 if (HAS_PCH_IBX(dev_priv->dev)) {
8213 pipe_config->shared_dpll =
8214 (enum intel_dpll_id) crtc->pipe;
8215 } else {
8216 tmp = I915_READ(PCH_DPLL_SEL);
8217 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8218 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8219 else
8220 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8221 }
8222
8223 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8224
8225 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8226 &pipe_config->dpll_hw_state));
8227
8228 tmp = pipe_config->dpll_hw_state.dpll;
8229 pipe_config->pixel_multiplier =
8230 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8231 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8232
8233 ironlake_pch_clock_get(crtc, pipe_config);
8234 } else {
8235 pipe_config->pixel_multiplier = 1;
8236 }
8237
8238 intel_get_pipe_timings(crtc, pipe_config);
8239
8240 ironlake_get_pfit_config(crtc, pipe_config);
8241
8242 return true;
8243 }
8244
8245 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8246 {
8247 struct drm_device *dev = dev_priv->dev;
8248 struct intel_crtc *crtc;
8249
8250 for_each_intel_crtc(dev, crtc)
8251 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8252 pipe_name(crtc->pipe));
8253
8254 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8255 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8256 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8257 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8258 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8259 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8260 "CPU PWM1 enabled\n");
8261 if (IS_HASWELL(dev))
8262 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8263 "CPU PWM2 enabled\n");
8264 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8265 "PCH PWM1 enabled\n");
8266 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8267 "Utility pin enabled\n");
8268 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8269
8270 /*
8271 * In theory we can still leave IRQs enabled, as long as only the HPD
8272 * interrupts remain enabled. We used to check for that, but since it's
8273 * gen-specific and since we only disable LCPLL after we fully disable
8274 * the interrupts, the check below should be enough.
8275 */
8276 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8277 }
8278
8279 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8280 {
8281 struct drm_device *dev = dev_priv->dev;
8282
8283 if (IS_HASWELL(dev))
8284 return I915_READ(D_COMP_HSW);
8285 else
8286 return I915_READ(D_COMP_BDW);
8287 }
8288
8289 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8290 {
8291 struct drm_device *dev = dev_priv->dev;
8292
8293 if (IS_HASWELL(dev)) {
8294 mutex_lock(&dev_priv->rps.hw_lock);
8295 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8296 val))
8297 DRM_ERROR("Failed to write to D_COMP\n");
8298 mutex_unlock(&dev_priv->rps.hw_lock);
8299 } else {
8300 I915_WRITE(D_COMP_BDW, val);
8301 POSTING_READ(D_COMP_BDW);
8302 }
8303 }
8304
8305 /*
8306 * This function implements pieces of two sequences from BSpec:
8307 * - Sequence for display software to disable LCPLL
8308 * - Sequence for display software to allow package C8+
8309 * The steps implemented here are just the steps that actually touch the LCPLL
8310 * register. Callers should take care of disabling all the display engine
8311 * functions, doing the mode unset, fixing interrupts, etc.
8312 */
8313 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8314 bool switch_to_fclk, bool allow_power_down)
8315 {
8316 uint32_t val;
8317
8318 assert_can_disable_lcpll(dev_priv);
8319
8320 val = I915_READ(LCPLL_CTL);
8321
8322 if (switch_to_fclk) {
8323 val |= LCPLL_CD_SOURCE_FCLK;
8324 I915_WRITE(LCPLL_CTL, val);
8325
8326 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8327 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8328 DRM_ERROR("Switching to FCLK failed\n");
8329
8330 val = I915_READ(LCPLL_CTL);
8331 }
8332
8333 val |= LCPLL_PLL_DISABLE;
8334 I915_WRITE(LCPLL_CTL, val);
8335 POSTING_READ(LCPLL_CTL);
8336
8337 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8338 DRM_ERROR("LCPLL still locked\n");
8339
8340 val = hsw_read_dcomp(dev_priv);
8341 val |= D_COMP_COMP_DISABLE;
8342 hsw_write_dcomp(dev_priv, val);
8343 ndelay(100);
8344
8345 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8346 1))
8347 DRM_ERROR("D_COMP RCOMP still in progress\n");
8348
8349 if (allow_power_down) {
8350 val = I915_READ(LCPLL_CTL);
8351 val |= LCPLL_POWER_DOWN_ALLOW;
8352 I915_WRITE(LCPLL_CTL, val);
8353 POSTING_READ(LCPLL_CTL);
8354 }
8355 }
8356
8357 /*
8358 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8359 * source.
8360 */
8361 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8362 {
8363 uint32_t val;
8364
8365 val = I915_READ(LCPLL_CTL);
8366
8367 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8368 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8369 return;
8370
8371 /*
8372 * Make sure we're not on PC8 state before disabling PC8, otherwise
8373 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8374 */
8375 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8376
8377 if (val & LCPLL_POWER_DOWN_ALLOW) {
8378 val &= ~LCPLL_POWER_DOWN_ALLOW;
8379 I915_WRITE(LCPLL_CTL, val);
8380 POSTING_READ(LCPLL_CTL);
8381 }
8382
8383 val = hsw_read_dcomp(dev_priv);
8384 val |= D_COMP_COMP_FORCE;
8385 val &= ~D_COMP_COMP_DISABLE;
8386 hsw_write_dcomp(dev_priv, val);
8387
8388 val = I915_READ(LCPLL_CTL);
8389 val &= ~LCPLL_PLL_DISABLE;
8390 I915_WRITE(LCPLL_CTL, val);
8391
8392 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8393 DRM_ERROR("LCPLL not locked yet\n");
8394
8395 if (val & LCPLL_CD_SOURCE_FCLK) {
8396 val = I915_READ(LCPLL_CTL);
8397 val &= ~LCPLL_CD_SOURCE_FCLK;
8398 I915_WRITE(LCPLL_CTL, val);
8399
8400 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8401 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8402 DRM_ERROR("Switching back to LCPLL failed\n");
8403 }
8404
8405 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8406 }
8407
8408 /*
8409 * Package states C8 and deeper are really deep PC states that can only be
8410 * reached when all the devices on the system allow it, so even if the graphics
8411 * device allows PC8+, it doesn't mean the system will actually get to these
8412 * states. Our driver only allows PC8+ when going into runtime PM.
8413 *
8414 * The requirements for PC8+ are that all the outputs are disabled, the power
8415 * well is disabled and most interrupts are disabled, and these are also
8416 * requirements for runtime PM. When these conditions are met, we manually do
8417 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8418 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8419 * hang the machine.
8420 *
8421 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8422 * the state of some registers, so when we come back from PC8+ we need to
8423 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8424 * need to take care of the registers kept by RC6. Notice that this happens even
8425 * if we don't put the device in PCI D3 state (which is what currently happens
8426 * because of the runtime PM support).
8427 *
8428 * For more, read "Display Sequences for Package C8" on the hardware
8429 * documentation.
8430 */
8431 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8432 {
8433 struct drm_device *dev = dev_priv->dev;
8434 uint32_t val;
8435
8436 DRM_DEBUG_KMS("Enabling package C8+\n");
8437
8438 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8439 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8440 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8441 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8442 }
8443
8444 lpt_disable_clkout_dp(dev);
8445 hsw_disable_lcpll(dev_priv, true, true);
8446 }
8447
8448 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8449 {
8450 struct drm_device *dev = dev_priv->dev;
8451 uint32_t val;
8452
8453 DRM_DEBUG_KMS("Disabling package C8+\n");
8454
8455 hsw_restore_lcpll(dev_priv);
8456 lpt_init_pch_refclk(dev);
8457
8458 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8459 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8460 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8461 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8462 }
8463
8464 intel_prepare_ddi(dev);
8465 }
8466
8467 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8468 struct intel_crtc_state *crtc_state)
8469 {
8470 if (!intel_ddi_pll_select(crtc, crtc_state))
8471 return -EINVAL;
8472
8473 crtc->lowfreq_avail = false;
8474
8475 return 0;
8476 }
8477
8478 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8479 enum port port,
8480 struct intel_crtc_state *pipe_config)
8481 {
8482 u32 temp, dpll_ctl1;
8483
8484 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8485 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8486
8487 switch (pipe_config->ddi_pll_sel) {
8488 case SKL_DPLL0:
8489 /*
8490 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8491 * of the shared DPLL framework and thus needs to be read out
8492 * separately
8493 */
8494 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8495 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8496 break;
8497 case SKL_DPLL1:
8498 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8499 break;
8500 case SKL_DPLL2:
8501 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8502 break;
8503 case SKL_DPLL3:
8504 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8505 break;
8506 }
8507 }
8508
8509 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8510 enum port port,
8511 struct intel_crtc_state *pipe_config)
8512 {
8513 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8514
8515 switch (pipe_config->ddi_pll_sel) {
8516 case PORT_CLK_SEL_WRPLL1:
8517 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8518 break;
8519 case PORT_CLK_SEL_WRPLL2:
8520 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8521 break;
8522 }
8523 }
8524
8525 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8526 struct intel_crtc_state *pipe_config)
8527 {
8528 struct drm_device *dev = crtc->base.dev;
8529 struct drm_i915_private *dev_priv = dev->dev_private;
8530 struct intel_shared_dpll *pll;
8531 enum port port;
8532 uint32_t tmp;
8533
8534 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8535
8536 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8537
8538 if (IS_SKYLAKE(dev))
8539 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8540 else
8541 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8542
8543 if (pipe_config->shared_dpll >= 0) {
8544 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8545
8546 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8547 &pipe_config->dpll_hw_state));
8548 }
8549
8550 /*
8551 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8552 * DDI E. So just check whether this pipe is wired to DDI E and whether
8553 * the PCH transcoder is on.
8554 */
8555 if (INTEL_INFO(dev)->gen < 9 &&
8556 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8557 pipe_config->has_pch_encoder = true;
8558
8559 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8560 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8561 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8562
8563 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8564 }
8565 }
8566
8567 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8568 struct intel_crtc_state *pipe_config)
8569 {
8570 struct drm_device *dev = crtc->base.dev;
8571 struct drm_i915_private *dev_priv = dev->dev_private;
8572 enum intel_display_power_domain pfit_domain;
8573 uint32_t tmp;
8574
8575 if (!intel_display_power_is_enabled(dev_priv,
8576 POWER_DOMAIN_PIPE(crtc->pipe)))
8577 return false;
8578
8579 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8580 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8581
8582 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8583 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8584 enum pipe trans_edp_pipe;
8585 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8586 default:
8587 WARN(1, "unknown pipe linked to edp transcoder\n");
8588 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8589 case TRANS_DDI_EDP_INPUT_A_ON:
8590 trans_edp_pipe = PIPE_A;
8591 break;
8592 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8593 trans_edp_pipe = PIPE_B;
8594 break;
8595 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8596 trans_edp_pipe = PIPE_C;
8597 break;
8598 }
8599
8600 if (trans_edp_pipe == crtc->pipe)
8601 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8602 }
8603
8604 if (!intel_display_power_is_enabled(dev_priv,
8605 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8606 return false;
8607
8608 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8609 if (!(tmp & PIPECONF_ENABLE))
8610 return false;
8611
8612 haswell_get_ddi_port_state(crtc, pipe_config);
8613
8614 intel_get_pipe_timings(crtc, pipe_config);
8615
8616 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8617 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8618 if (IS_SKYLAKE(dev))
8619 skylake_get_pfit_config(crtc, pipe_config);
8620 else
8621 ironlake_get_pfit_config(crtc, pipe_config);
8622 }
8623
8624 if (IS_HASWELL(dev))
8625 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8626 (I915_READ(IPS_CTL) & IPS_ENABLE);
8627
8628 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8629 pipe_config->pixel_multiplier =
8630 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8631 } else {
8632 pipe_config->pixel_multiplier = 1;
8633 }
8634
8635 return true;
8636 }
8637
8638 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8639 {
8640 struct drm_device *dev = crtc->dev;
8641 struct drm_i915_private *dev_priv = dev->dev_private;
8642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8643 uint32_t cntl = 0, size = 0;
8644
8645 if (base) {
8646 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8647 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8648 unsigned int stride = roundup_pow_of_two(width) * 4;
8649
8650 switch (stride) {
8651 default:
8652 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8653 width, stride);
8654 stride = 256;
8655 /* fallthrough */
8656 case 256:
8657 case 512:
8658 case 1024:
8659 case 2048:
8660 break;
8661 }
8662
8663 cntl |= CURSOR_ENABLE |
8664 CURSOR_GAMMA_ENABLE |
8665 CURSOR_FORMAT_ARGB |
8666 CURSOR_STRIDE(stride);
8667
8668 size = (height << 12) | width;
8669 }
8670
8671 if (intel_crtc->cursor_cntl != 0 &&
8672 (intel_crtc->cursor_base != base ||
8673 intel_crtc->cursor_size != size ||
8674 intel_crtc->cursor_cntl != cntl)) {
8675 /* On these chipsets we can only modify the base/size/stride
8676 * whilst the cursor is disabled.
8677 */
8678 I915_WRITE(_CURACNTR, 0);
8679 POSTING_READ(_CURACNTR);
8680 intel_crtc->cursor_cntl = 0;
8681 }
8682
8683 if (intel_crtc->cursor_base != base) {
8684 I915_WRITE(_CURABASE, base);
8685 intel_crtc->cursor_base = base;
8686 }
8687
8688 if (intel_crtc->cursor_size != size) {
8689 I915_WRITE(CURSIZE, size);
8690 intel_crtc->cursor_size = size;
8691 }
8692
8693 if (intel_crtc->cursor_cntl != cntl) {
8694 I915_WRITE(_CURACNTR, cntl);
8695 POSTING_READ(_CURACNTR);
8696 intel_crtc->cursor_cntl = cntl;
8697 }
8698 }
8699
8700 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8701 {
8702 struct drm_device *dev = crtc->dev;
8703 struct drm_i915_private *dev_priv = dev->dev_private;
8704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8705 int pipe = intel_crtc->pipe;
8706 uint32_t cntl;
8707
8708 cntl = 0;
8709 if (base) {
8710 cntl = MCURSOR_GAMMA_ENABLE;
8711 switch (intel_crtc->base.cursor->state->crtc_w) {
8712 case 64:
8713 cntl |= CURSOR_MODE_64_ARGB_AX;
8714 break;
8715 case 128:
8716 cntl |= CURSOR_MODE_128_ARGB_AX;
8717 break;
8718 case 256:
8719 cntl |= CURSOR_MODE_256_ARGB_AX;
8720 break;
8721 default:
8722 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8723 return;
8724 }
8725 cntl |= pipe << 28; /* Connect to correct pipe */
8726
8727 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8728 cntl |= CURSOR_PIPE_CSC_ENABLE;
8729 }
8730
8731 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8732 cntl |= CURSOR_ROTATE_180;
8733
8734 if (intel_crtc->cursor_cntl != cntl) {
8735 I915_WRITE(CURCNTR(pipe), cntl);
8736 POSTING_READ(CURCNTR(pipe));
8737 intel_crtc->cursor_cntl = cntl;
8738 }
8739
8740 /* and commit changes on next vblank */
8741 I915_WRITE(CURBASE(pipe), base);
8742 POSTING_READ(CURBASE(pipe));
8743
8744 intel_crtc->cursor_base = base;
8745 }
8746
8747 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8748 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8749 bool on)
8750 {
8751 struct drm_device *dev = crtc->dev;
8752 struct drm_i915_private *dev_priv = dev->dev_private;
8753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8754 int pipe = intel_crtc->pipe;
8755 int x = crtc->cursor_x;
8756 int y = crtc->cursor_y;
8757 u32 base = 0, pos = 0;
8758
8759 if (on)
8760 base = intel_crtc->cursor_addr;
8761
8762 if (x >= intel_crtc->config->pipe_src_w)
8763 base = 0;
8764
8765 if (y >= intel_crtc->config->pipe_src_h)
8766 base = 0;
8767
8768 if (x < 0) {
8769 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8770 base = 0;
8771
8772 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8773 x = -x;
8774 }
8775 pos |= x << CURSOR_X_SHIFT;
8776
8777 if (y < 0) {
8778 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8779 base = 0;
8780
8781 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8782 y = -y;
8783 }
8784 pos |= y << CURSOR_Y_SHIFT;
8785
8786 if (base == 0 && intel_crtc->cursor_base == 0)
8787 return;
8788
8789 I915_WRITE(CURPOS(pipe), pos);
8790
8791 /* ILK+ do this automagically */
8792 if (HAS_GMCH_DISPLAY(dev) &&
8793 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8794 base += (intel_crtc->base.cursor->state->crtc_h *
8795 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8796 }
8797
8798 if (IS_845G(dev) || IS_I865G(dev))
8799 i845_update_cursor(crtc, base);
8800 else
8801 i9xx_update_cursor(crtc, base);
8802 }
8803
8804 static bool cursor_size_ok(struct drm_device *dev,
8805 uint32_t width, uint32_t height)
8806 {
8807 if (width == 0 || height == 0)
8808 return false;
8809
8810 /*
8811 * 845g/865g are special in that they are only limited by
8812 * the width of their cursors, the height is arbitrary up to
8813 * the precision of the register. Everything else requires
8814 * square cursors, limited to a few power-of-two sizes.
8815 */
8816 if (IS_845G(dev) || IS_I865G(dev)) {
8817 if ((width & 63) != 0)
8818 return false;
8819
8820 if (width > (IS_845G(dev) ? 64 : 512))
8821 return false;
8822
8823 if (height > 1023)
8824 return false;
8825 } else {
8826 switch (width | height) {
8827 case 256:
8828 case 128:
8829 if (IS_GEN2(dev))
8830 return false;
8831 case 64:
8832 break;
8833 default:
8834 return false;
8835 }
8836 }
8837
8838 return true;
8839 }
8840
8841 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8842 u16 *blue, uint32_t start, uint32_t size)
8843 {
8844 int end = (start + size > 256) ? 256 : start + size, i;
8845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8846
8847 for (i = start; i < end; i++) {
8848 intel_crtc->lut_r[i] = red[i] >> 8;
8849 intel_crtc->lut_g[i] = green[i] >> 8;
8850 intel_crtc->lut_b[i] = blue[i] >> 8;
8851 }
8852
8853 intel_crtc_load_lut(crtc);
8854 }
8855
8856 /* VESA 640x480x72Hz mode to set on the pipe */
8857 static struct drm_display_mode load_detect_mode = {
8858 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8859 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8860 };
8861
8862 struct drm_framebuffer *
8863 __intel_framebuffer_create(struct drm_device *dev,
8864 struct drm_mode_fb_cmd2 *mode_cmd,
8865 struct drm_i915_gem_object *obj)
8866 {
8867 struct intel_framebuffer *intel_fb;
8868 int ret;
8869
8870 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8871 if (!intel_fb) {
8872 drm_gem_object_unreference(&obj->base);
8873 return ERR_PTR(-ENOMEM);
8874 }
8875
8876 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8877 if (ret)
8878 goto err;
8879
8880 return &intel_fb->base;
8881 err:
8882 drm_gem_object_unreference(&obj->base);
8883 kfree(intel_fb);
8884
8885 return ERR_PTR(ret);
8886 }
8887
8888 static struct drm_framebuffer *
8889 intel_framebuffer_create(struct drm_device *dev,
8890 struct drm_mode_fb_cmd2 *mode_cmd,
8891 struct drm_i915_gem_object *obj)
8892 {
8893 struct drm_framebuffer *fb;
8894 int ret;
8895
8896 ret = i915_mutex_lock_interruptible(dev);
8897 if (ret)
8898 return ERR_PTR(ret);
8899 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8900 mutex_unlock(&dev->struct_mutex);
8901
8902 return fb;
8903 }
8904
8905 static u32
8906 intel_framebuffer_pitch_for_width(int width, int bpp)
8907 {
8908 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8909 return ALIGN(pitch, 64);
8910 }
8911
8912 static u32
8913 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8914 {
8915 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8916 return PAGE_ALIGN(pitch * mode->vdisplay);
8917 }
8918
8919 static struct drm_framebuffer *
8920 intel_framebuffer_create_for_mode(struct drm_device *dev,
8921 struct drm_display_mode *mode,
8922 int depth, int bpp)
8923 {
8924 struct drm_i915_gem_object *obj;
8925 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8926
8927 obj = i915_gem_alloc_object(dev,
8928 intel_framebuffer_size_for_mode(mode, bpp));
8929 if (obj == NULL)
8930 return ERR_PTR(-ENOMEM);
8931
8932 mode_cmd.width = mode->hdisplay;
8933 mode_cmd.height = mode->vdisplay;
8934 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8935 bpp);
8936 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8937
8938 return intel_framebuffer_create(dev, &mode_cmd, obj);
8939 }
8940
8941 static struct drm_framebuffer *
8942 mode_fits_in_fbdev(struct drm_device *dev,
8943 struct drm_display_mode *mode)
8944 {
8945 #ifdef CONFIG_DRM_I915_FBDEV
8946 struct drm_i915_private *dev_priv = dev->dev_private;
8947 struct drm_i915_gem_object *obj;
8948 struct drm_framebuffer *fb;
8949
8950 if (!dev_priv->fbdev)
8951 return NULL;
8952
8953 if (!dev_priv->fbdev->fb)
8954 return NULL;
8955
8956 obj = dev_priv->fbdev->fb->obj;
8957 BUG_ON(!obj);
8958
8959 fb = &dev_priv->fbdev->fb->base;
8960 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8961 fb->bits_per_pixel))
8962 return NULL;
8963
8964 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8965 return NULL;
8966
8967 return fb;
8968 #else
8969 return NULL;
8970 #endif
8971 }
8972
8973 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8974 struct drm_display_mode *mode,
8975 struct intel_load_detect_pipe *old,
8976 struct drm_modeset_acquire_ctx *ctx)
8977 {
8978 struct intel_crtc *intel_crtc;
8979 struct intel_encoder *intel_encoder =
8980 intel_attached_encoder(connector);
8981 struct drm_crtc *possible_crtc;
8982 struct drm_encoder *encoder = &intel_encoder->base;
8983 struct drm_crtc *crtc = NULL;
8984 struct drm_device *dev = encoder->dev;
8985 struct drm_framebuffer *fb;
8986 struct drm_mode_config *config = &dev->mode_config;
8987 struct drm_atomic_state *state = NULL;
8988 struct drm_connector_state *connector_state;
8989 int ret, i = -1;
8990
8991 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8992 connector->base.id, connector->name,
8993 encoder->base.id, encoder->name);
8994
8995 retry:
8996 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8997 if (ret)
8998 goto fail_unlock;
8999
9000 /*
9001 * Algorithm gets a little messy:
9002 *
9003 * - if the connector already has an assigned crtc, use it (but make
9004 * sure it's on first)
9005 *
9006 * - try to find the first unused crtc that can drive this connector,
9007 * and use that if we find one
9008 */
9009
9010 /* See if we already have a CRTC for this connector */
9011 if (encoder->crtc) {
9012 crtc = encoder->crtc;
9013
9014 ret = drm_modeset_lock(&crtc->mutex, ctx);
9015 if (ret)
9016 goto fail_unlock;
9017 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9018 if (ret)
9019 goto fail_unlock;
9020
9021 old->dpms_mode = connector->dpms;
9022 old->load_detect_temp = false;
9023
9024 /* Make sure the crtc and connector are running */
9025 if (connector->dpms != DRM_MODE_DPMS_ON)
9026 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9027
9028 return true;
9029 }
9030
9031 /* Find an unused one (if possible) */
9032 for_each_crtc(dev, possible_crtc) {
9033 i++;
9034 if (!(encoder->possible_crtcs & (1 << i)))
9035 continue;
9036 if (possible_crtc->state->enable)
9037 continue;
9038 /* This can occur when applying the pipe A quirk on resume. */
9039 if (to_intel_crtc(possible_crtc)->new_enabled)
9040 continue;
9041
9042 crtc = possible_crtc;
9043 break;
9044 }
9045
9046 /*
9047 * If we didn't find an unused CRTC, don't use any.
9048 */
9049 if (!crtc) {
9050 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9051 goto fail_unlock;
9052 }
9053
9054 ret = drm_modeset_lock(&crtc->mutex, ctx);
9055 if (ret)
9056 goto fail_unlock;
9057 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9058 if (ret)
9059 goto fail_unlock;
9060 intel_encoder->new_crtc = to_intel_crtc(crtc);
9061 to_intel_connector(connector)->new_encoder = intel_encoder;
9062
9063 intel_crtc = to_intel_crtc(crtc);
9064 intel_crtc->new_enabled = true;
9065 intel_crtc->new_config = intel_crtc->config;
9066 old->dpms_mode = connector->dpms;
9067 old->load_detect_temp = true;
9068 old->release_fb = NULL;
9069
9070 state = drm_atomic_state_alloc(dev);
9071 if (!state)
9072 return false;
9073
9074 state->acquire_ctx = ctx;
9075
9076 connector_state = drm_atomic_get_connector_state(state, connector);
9077 if (IS_ERR(connector_state)) {
9078 ret = PTR_ERR(connector_state);
9079 goto fail;
9080 }
9081
9082 connector_state->crtc = crtc;
9083 connector_state->best_encoder = &intel_encoder->base;
9084
9085 if (!mode)
9086 mode = &load_detect_mode;
9087
9088 /* We need a framebuffer large enough to accommodate all accesses
9089 * that the plane may generate whilst we perform load detection.
9090 * We can not rely on the fbcon either being present (we get called
9091 * during its initialisation to detect all boot displays, or it may
9092 * not even exist) or that it is large enough to satisfy the
9093 * requested mode.
9094 */
9095 fb = mode_fits_in_fbdev(dev, mode);
9096 if (fb == NULL) {
9097 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9098 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9099 old->release_fb = fb;
9100 } else
9101 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9102 if (IS_ERR(fb)) {
9103 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9104 goto fail;
9105 }
9106
9107 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9108 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9109 if (old->release_fb)
9110 old->release_fb->funcs->destroy(old->release_fb);
9111 goto fail;
9112 }
9113 crtc->primary->crtc = crtc;
9114
9115 /* let the connector get through one full cycle before testing */
9116 intel_wait_for_vblank(dev, intel_crtc->pipe);
9117 return true;
9118
9119 fail:
9120 intel_crtc->new_enabled = crtc->state->enable;
9121 if (intel_crtc->new_enabled)
9122 intel_crtc->new_config = intel_crtc->config;
9123 else
9124 intel_crtc->new_config = NULL;
9125 fail_unlock:
9126 if (state) {
9127 drm_atomic_state_free(state);
9128 state = NULL;
9129 }
9130
9131 if (ret == -EDEADLK) {
9132 drm_modeset_backoff(ctx);
9133 goto retry;
9134 }
9135
9136 return false;
9137 }
9138
9139 void intel_release_load_detect_pipe(struct drm_connector *connector,
9140 struct intel_load_detect_pipe *old,
9141 struct drm_modeset_acquire_ctx *ctx)
9142 {
9143 struct drm_device *dev = connector->dev;
9144 struct intel_encoder *intel_encoder =
9145 intel_attached_encoder(connector);
9146 struct drm_encoder *encoder = &intel_encoder->base;
9147 struct drm_crtc *crtc = encoder->crtc;
9148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9149 struct drm_atomic_state *state;
9150 struct drm_connector_state *connector_state;
9151
9152 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9153 connector->base.id, connector->name,
9154 encoder->base.id, encoder->name);
9155
9156 if (old->load_detect_temp) {
9157 state = drm_atomic_state_alloc(dev);
9158 if (!state)
9159 goto fail;
9160
9161 state->acquire_ctx = ctx;
9162
9163 connector_state = drm_atomic_get_connector_state(state, connector);
9164 if (IS_ERR(connector_state))
9165 goto fail;
9166
9167 to_intel_connector(connector)->new_encoder = NULL;
9168 intel_encoder->new_crtc = NULL;
9169 intel_crtc->new_enabled = false;
9170 intel_crtc->new_config = NULL;
9171
9172 connector_state->best_encoder = NULL;
9173 connector_state->crtc = NULL;
9174
9175 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9176
9177 drm_atomic_state_free(state);
9178
9179 if (old->release_fb) {
9180 drm_framebuffer_unregister_private(old->release_fb);
9181 drm_framebuffer_unreference(old->release_fb);
9182 }
9183
9184 return;
9185 }
9186
9187 /* Switch crtc and encoder back off if necessary */
9188 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9189 connector->funcs->dpms(connector, old->dpms_mode);
9190
9191 return;
9192 fail:
9193 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9194 drm_atomic_state_free(state);
9195 }
9196
9197 static int i9xx_pll_refclk(struct drm_device *dev,
9198 const struct intel_crtc_state *pipe_config)
9199 {
9200 struct drm_i915_private *dev_priv = dev->dev_private;
9201 u32 dpll = pipe_config->dpll_hw_state.dpll;
9202
9203 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9204 return dev_priv->vbt.lvds_ssc_freq;
9205 else if (HAS_PCH_SPLIT(dev))
9206 return 120000;
9207 else if (!IS_GEN2(dev))
9208 return 96000;
9209 else
9210 return 48000;
9211 }
9212
9213 /* Returns the clock of the currently programmed mode of the given pipe. */
9214 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9215 struct intel_crtc_state *pipe_config)
9216 {
9217 struct drm_device *dev = crtc->base.dev;
9218 struct drm_i915_private *dev_priv = dev->dev_private;
9219 int pipe = pipe_config->cpu_transcoder;
9220 u32 dpll = pipe_config->dpll_hw_state.dpll;
9221 u32 fp;
9222 intel_clock_t clock;
9223 int refclk = i9xx_pll_refclk(dev, pipe_config);
9224
9225 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9226 fp = pipe_config->dpll_hw_state.fp0;
9227 else
9228 fp = pipe_config->dpll_hw_state.fp1;
9229
9230 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9231 if (IS_PINEVIEW(dev)) {
9232 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9233 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9234 } else {
9235 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9236 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9237 }
9238
9239 if (!IS_GEN2(dev)) {
9240 if (IS_PINEVIEW(dev))
9241 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9242 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9243 else
9244 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9245 DPLL_FPA01_P1_POST_DIV_SHIFT);
9246
9247 switch (dpll & DPLL_MODE_MASK) {
9248 case DPLLB_MODE_DAC_SERIAL:
9249 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9250 5 : 10;
9251 break;
9252 case DPLLB_MODE_LVDS:
9253 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9254 7 : 14;
9255 break;
9256 default:
9257 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9258 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9259 return;
9260 }
9261
9262 if (IS_PINEVIEW(dev))
9263 pineview_clock(refclk, &clock);
9264 else
9265 i9xx_clock(refclk, &clock);
9266 } else {
9267 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9268 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9269
9270 if (is_lvds) {
9271 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9272 DPLL_FPA01_P1_POST_DIV_SHIFT);
9273
9274 if (lvds & LVDS_CLKB_POWER_UP)
9275 clock.p2 = 7;
9276 else
9277 clock.p2 = 14;
9278 } else {
9279 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9280 clock.p1 = 2;
9281 else {
9282 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9283 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9284 }
9285 if (dpll & PLL_P2_DIVIDE_BY_4)
9286 clock.p2 = 4;
9287 else
9288 clock.p2 = 2;
9289 }
9290
9291 i9xx_clock(refclk, &clock);
9292 }
9293
9294 /*
9295 * This value includes pixel_multiplier. We will use
9296 * port_clock to compute adjusted_mode.crtc_clock in the
9297 * encoder's get_config() function.
9298 */
9299 pipe_config->port_clock = clock.dot;
9300 }
9301
9302 int intel_dotclock_calculate(int link_freq,
9303 const struct intel_link_m_n *m_n)
9304 {
9305 /*
9306 * The calculation for the data clock is:
9307 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9308 * But we want to avoid losing precison if possible, so:
9309 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9310 *
9311 * and the link clock is simpler:
9312 * link_clock = (m * link_clock) / n
9313 */
9314
9315 if (!m_n->link_n)
9316 return 0;
9317
9318 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9319 }
9320
9321 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9322 struct intel_crtc_state *pipe_config)
9323 {
9324 struct drm_device *dev = crtc->base.dev;
9325
9326 /* read out port_clock from the DPLL */
9327 i9xx_crtc_clock_get(crtc, pipe_config);
9328
9329 /*
9330 * This value does not include pixel_multiplier.
9331 * We will check that port_clock and adjusted_mode.crtc_clock
9332 * agree once we know their relationship in the encoder's
9333 * get_config() function.
9334 */
9335 pipe_config->base.adjusted_mode.crtc_clock =
9336 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9337 &pipe_config->fdi_m_n);
9338 }
9339
9340 /** Returns the currently programmed mode of the given pipe. */
9341 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9342 struct drm_crtc *crtc)
9343 {
9344 struct drm_i915_private *dev_priv = dev->dev_private;
9345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9346 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9347 struct drm_display_mode *mode;
9348 struct intel_crtc_state pipe_config;
9349 int htot = I915_READ(HTOTAL(cpu_transcoder));
9350 int hsync = I915_READ(HSYNC(cpu_transcoder));
9351 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9352 int vsync = I915_READ(VSYNC(cpu_transcoder));
9353 enum pipe pipe = intel_crtc->pipe;
9354
9355 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9356 if (!mode)
9357 return NULL;
9358
9359 /*
9360 * Construct a pipe_config sufficient for getting the clock info
9361 * back out of crtc_clock_get.
9362 *
9363 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9364 * to use a real value here instead.
9365 */
9366 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9367 pipe_config.pixel_multiplier = 1;
9368 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9369 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9370 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9371 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9372
9373 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9374 mode->hdisplay = (htot & 0xffff) + 1;
9375 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9376 mode->hsync_start = (hsync & 0xffff) + 1;
9377 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9378 mode->vdisplay = (vtot & 0xffff) + 1;
9379 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9380 mode->vsync_start = (vsync & 0xffff) + 1;
9381 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9382
9383 drm_mode_set_name(mode);
9384
9385 return mode;
9386 }
9387
9388 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9389 {
9390 struct drm_device *dev = crtc->dev;
9391 struct drm_i915_private *dev_priv = dev->dev_private;
9392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9393
9394 if (!HAS_GMCH_DISPLAY(dev))
9395 return;
9396
9397 if (!dev_priv->lvds_downclock_avail)
9398 return;
9399
9400 /*
9401 * Since this is called by a timer, we should never get here in
9402 * the manual case.
9403 */
9404 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9405 int pipe = intel_crtc->pipe;
9406 int dpll_reg = DPLL(pipe);
9407 int dpll;
9408
9409 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9410
9411 assert_panel_unlocked(dev_priv, pipe);
9412
9413 dpll = I915_READ(dpll_reg);
9414 dpll |= DISPLAY_RATE_SELECT_FPA1;
9415 I915_WRITE(dpll_reg, dpll);
9416 intel_wait_for_vblank(dev, pipe);
9417 dpll = I915_READ(dpll_reg);
9418 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9419 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9420 }
9421
9422 }
9423
9424 void intel_mark_busy(struct drm_device *dev)
9425 {
9426 struct drm_i915_private *dev_priv = dev->dev_private;
9427
9428 if (dev_priv->mm.busy)
9429 return;
9430
9431 intel_runtime_pm_get(dev_priv);
9432 i915_update_gfx_val(dev_priv);
9433 if (INTEL_INFO(dev)->gen >= 6)
9434 gen6_rps_busy(dev_priv);
9435 dev_priv->mm.busy = true;
9436 }
9437
9438 void intel_mark_idle(struct drm_device *dev)
9439 {
9440 struct drm_i915_private *dev_priv = dev->dev_private;
9441 struct drm_crtc *crtc;
9442
9443 if (!dev_priv->mm.busy)
9444 return;
9445
9446 dev_priv->mm.busy = false;
9447
9448 for_each_crtc(dev, crtc) {
9449 if (!crtc->primary->fb)
9450 continue;
9451
9452 intel_decrease_pllclock(crtc);
9453 }
9454
9455 if (INTEL_INFO(dev)->gen >= 6)
9456 gen6_rps_idle(dev->dev_private);
9457
9458 intel_runtime_pm_put(dev_priv);
9459 }
9460
9461 static void intel_crtc_set_state(struct intel_crtc *crtc,
9462 struct intel_crtc_state *crtc_state)
9463 {
9464 kfree(crtc->config);
9465 crtc->config = crtc_state;
9466 crtc->base.state = &crtc_state->base;
9467 }
9468
9469 static void intel_crtc_destroy(struct drm_crtc *crtc)
9470 {
9471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9472 struct drm_device *dev = crtc->dev;
9473 struct intel_unpin_work *work;
9474
9475 spin_lock_irq(&dev->event_lock);
9476 work = intel_crtc->unpin_work;
9477 intel_crtc->unpin_work = NULL;
9478 spin_unlock_irq(&dev->event_lock);
9479
9480 if (work) {
9481 cancel_work_sync(&work->work);
9482 kfree(work);
9483 }
9484
9485 intel_crtc_set_state(intel_crtc, NULL);
9486 drm_crtc_cleanup(crtc);
9487
9488 kfree(intel_crtc);
9489 }
9490
9491 static void intel_unpin_work_fn(struct work_struct *__work)
9492 {
9493 struct intel_unpin_work *work =
9494 container_of(__work, struct intel_unpin_work, work);
9495 struct drm_device *dev = work->crtc->dev;
9496 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9497
9498 mutex_lock(&dev->struct_mutex);
9499 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9500 drm_gem_object_unreference(&work->pending_flip_obj->base);
9501
9502 intel_fbc_update(dev);
9503
9504 if (work->flip_queued_req)
9505 i915_gem_request_assign(&work->flip_queued_req, NULL);
9506 mutex_unlock(&dev->struct_mutex);
9507
9508 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9509 drm_framebuffer_unreference(work->old_fb);
9510
9511 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9512 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9513
9514 kfree(work);
9515 }
9516
9517 static void do_intel_finish_page_flip(struct drm_device *dev,
9518 struct drm_crtc *crtc)
9519 {
9520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9521 struct intel_unpin_work *work;
9522 unsigned long flags;
9523
9524 /* Ignore early vblank irqs */
9525 if (intel_crtc == NULL)
9526 return;
9527
9528 /*
9529 * This is called both by irq handlers and the reset code (to complete
9530 * lost pageflips) so needs the full irqsave spinlocks.
9531 */
9532 spin_lock_irqsave(&dev->event_lock, flags);
9533 work = intel_crtc->unpin_work;
9534
9535 /* Ensure we don't miss a work->pending update ... */
9536 smp_rmb();
9537
9538 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9539 spin_unlock_irqrestore(&dev->event_lock, flags);
9540 return;
9541 }
9542
9543 page_flip_completed(intel_crtc);
9544
9545 spin_unlock_irqrestore(&dev->event_lock, flags);
9546 }
9547
9548 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9549 {
9550 struct drm_i915_private *dev_priv = dev->dev_private;
9551 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9552
9553 do_intel_finish_page_flip(dev, crtc);
9554 }
9555
9556 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9557 {
9558 struct drm_i915_private *dev_priv = dev->dev_private;
9559 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9560
9561 do_intel_finish_page_flip(dev, crtc);
9562 }
9563
9564 /* Is 'a' after or equal to 'b'? */
9565 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9566 {
9567 return !((a - b) & 0x80000000);
9568 }
9569
9570 static bool page_flip_finished(struct intel_crtc *crtc)
9571 {
9572 struct drm_device *dev = crtc->base.dev;
9573 struct drm_i915_private *dev_priv = dev->dev_private;
9574
9575 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9576 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9577 return true;
9578
9579 /*
9580 * The relevant registers doen't exist on pre-ctg.
9581 * As the flip done interrupt doesn't trigger for mmio
9582 * flips on gmch platforms, a flip count check isn't
9583 * really needed there. But since ctg has the registers,
9584 * include it in the check anyway.
9585 */
9586 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9587 return true;
9588
9589 /*
9590 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9591 * used the same base address. In that case the mmio flip might
9592 * have completed, but the CS hasn't even executed the flip yet.
9593 *
9594 * A flip count check isn't enough as the CS might have updated
9595 * the base address just after start of vblank, but before we
9596 * managed to process the interrupt. This means we'd complete the
9597 * CS flip too soon.
9598 *
9599 * Combining both checks should get us a good enough result. It may
9600 * still happen that the CS flip has been executed, but has not
9601 * yet actually completed. But in case the base address is the same
9602 * anyway, we don't really care.
9603 */
9604 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9605 crtc->unpin_work->gtt_offset &&
9606 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9607 crtc->unpin_work->flip_count);
9608 }
9609
9610 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9611 {
9612 struct drm_i915_private *dev_priv = dev->dev_private;
9613 struct intel_crtc *intel_crtc =
9614 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9615 unsigned long flags;
9616
9617
9618 /*
9619 * This is called both by irq handlers and the reset code (to complete
9620 * lost pageflips) so needs the full irqsave spinlocks.
9621 *
9622 * NB: An MMIO update of the plane base pointer will also
9623 * generate a page-flip completion irq, i.e. every modeset
9624 * is also accompanied by a spurious intel_prepare_page_flip().
9625 */
9626 spin_lock_irqsave(&dev->event_lock, flags);
9627 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9628 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9629 spin_unlock_irqrestore(&dev->event_lock, flags);
9630 }
9631
9632 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9633 {
9634 /* Ensure that the work item is consistent when activating it ... */
9635 smp_wmb();
9636 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9637 /* and that it is marked active as soon as the irq could fire. */
9638 smp_wmb();
9639 }
9640
9641 static int intel_gen2_queue_flip(struct drm_device *dev,
9642 struct drm_crtc *crtc,
9643 struct drm_framebuffer *fb,
9644 struct drm_i915_gem_object *obj,
9645 struct intel_engine_cs *ring,
9646 uint32_t flags)
9647 {
9648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9649 u32 flip_mask;
9650 int ret;
9651
9652 ret = intel_ring_begin(ring, 6);
9653 if (ret)
9654 return ret;
9655
9656 /* Can't queue multiple flips, so wait for the previous
9657 * one to finish before executing the next.
9658 */
9659 if (intel_crtc->plane)
9660 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9661 else
9662 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9663 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9664 intel_ring_emit(ring, MI_NOOP);
9665 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9666 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9667 intel_ring_emit(ring, fb->pitches[0]);
9668 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9669 intel_ring_emit(ring, 0); /* aux display base address, unused */
9670
9671 intel_mark_page_flip_active(intel_crtc);
9672 __intel_ring_advance(ring);
9673 return 0;
9674 }
9675
9676 static int intel_gen3_queue_flip(struct drm_device *dev,
9677 struct drm_crtc *crtc,
9678 struct drm_framebuffer *fb,
9679 struct drm_i915_gem_object *obj,
9680 struct intel_engine_cs *ring,
9681 uint32_t flags)
9682 {
9683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9684 u32 flip_mask;
9685 int ret;
9686
9687 ret = intel_ring_begin(ring, 6);
9688 if (ret)
9689 return ret;
9690
9691 if (intel_crtc->plane)
9692 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9693 else
9694 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9695 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9696 intel_ring_emit(ring, MI_NOOP);
9697 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9698 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9699 intel_ring_emit(ring, fb->pitches[0]);
9700 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9701 intel_ring_emit(ring, MI_NOOP);
9702
9703 intel_mark_page_flip_active(intel_crtc);
9704 __intel_ring_advance(ring);
9705 return 0;
9706 }
9707
9708 static int intel_gen4_queue_flip(struct drm_device *dev,
9709 struct drm_crtc *crtc,
9710 struct drm_framebuffer *fb,
9711 struct drm_i915_gem_object *obj,
9712 struct intel_engine_cs *ring,
9713 uint32_t flags)
9714 {
9715 struct drm_i915_private *dev_priv = dev->dev_private;
9716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9717 uint32_t pf, pipesrc;
9718 int ret;
9719
9720 ret = intel_ring_begin(ring, 4);
9721 if (ret)
9722 return ret;
9723
9724 /* i965+ uses the linear or tiled offsets from the
9725 * Display Registers (which do not change across a page-flip)
9726 * so we need only reprogram the base address.
9727 */
9728 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9729 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9730 intel_ring_emit(ring, fb->pitches[0]);
9731 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9732 obj->tiling_mode);
9733
9734 /* XXX Enabling the panel-fitter across page-flip is so far
9735 * untested on non-native modes, so ignore it for now.
9736 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9737 */
9738 pf = 0;
9739 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9740 intel_ring_emit(ring, pf | pipesrc);
9741
9742 intel_mark_page_flip_active(intel_crtc);
9743 __intel_ring_advance(ring);
9744 return 0;
9745 }
9746
9747 static int intel_gen6_queue_flip(struct drm_device *dev,
9748 struct drm_crtc *crtc,
9749 struct drm_framebuffer *fb,
9750 struct drm_i915_gem_object *obj,
9751 struct intel_engine_cs *ring,
9752 uint32_t flags)
9753 {
9754 struct drm_i915_private *dev_priv = dev->dev_private;
9755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9756 uint32_t pf, pipesrc;
9757 int ret;
9758
9759 ret = intel_ring_begin(ring, 4);
9760 if (ret)
9761 return ret;
9762
9763 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9764 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9765 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9766 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9767
9768 /* Contrary to the suggestions in the documentation,
9769 * "Enable Panel Fitter" does not seem to be required when page
9770 * flipping with a non-native mode, and worse causes a normal
9771 * modeset to fail.
9772 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9773 */
9774 pf = 0;
9775 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9776 intel_ring_emit(ring, pf | pipesrc);
9777
9778 intel_mark_page_flip_active(intel_crtc);
9779 __intel_ring_advance(ring);
9780 return 0;
9781 }
9782
9783 static int intel_gen7_queue_flip(struct drm_device *dev,
9784 struct drm_crtc *crtc,
9785 struct drm_framebuffer *fb,
9786 struct drm_i915_gem_object *obj,
9787 struct intel_engine_cs *ring,
9788 uint32_t flags)
9789 {
9790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9791 uint32_t plane_bit = 0;
9792 int len, ret;
9793
9794 switch (intel_crtc->plane) {
9795 case PLANE_A:
9796 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9797 break;
9798 case PLANE_B:
9799 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9800 break;
9801 case PLANE_C:
9802 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9803 break;
9804 default:
9805 WARN_ONCE(1, "unknown plane in flip command\n");
9806 return -ENODEV;
9807 }
9808
9809 len = 4;
9810 if (ring->id == RCS) {
9811 len += 6;
9812 /*
9813 * On Gen 8, SRM is now taking an extra dword to accommodate
9814 * 48bits addresses, and we need a NOOP for the batch size to
9815 * stay even.
9816 */
9817 if (IS_GEN8(dev))
9818 len += 2;
9819 }
9820
9821 /*
9822 * BSpec MI_DISPLAY_FLIP for IVB:
9823 * "The full packet must be contained within the same cache line."
9824 *
9825 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9826 * cacheline, if we ever start emitting more commands before
9827 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9828 * then do the cacheline alignment, and finally emit the
9829 * MI_DISPLAY_FLIP.
9830 */
9831 ret = intel_ring_cacheline_align(ring);
9832 if (ret)
9833 return ret;
9834
9835 ret = intel_ring_begin(ring, len);
9836 if (ret)
9837 return ret;
9838
9839 /* Unmask the flip-done completion message. Note that the bspec says that
9840 * we should do this for both the BCS and RCS, and that we must not unmask
9841 * more than one flip event at any time (or ensure that one flip message
9842 * can be sent by waiting for flip-done prior to queueing new flips).
9843 * Experimentation says that BCS works despite DERRMR masking all
9844 * flip-done completion events and that unmasking all planes at once
9845 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9846 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9847 */
9848 if (ring->id == RCS) {
9849 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9850 intel_ring_emit(ring, DERRMR);
9851 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9852 DERRMR_PIPEB_PRI_FLIP_DONE |
9853 DERRMR_PIPEC_PRI_FLIP_DONE));
9854 if (IS_GEN8(dev))
9855 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9856 MI_SRM_LRM_GLOBAL_GTT);
9857 else
9858 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9859 MI_SRM_LRM_GLOBAL_GTT);
9860 intel_ring_emit(ring, DERRMR);
9861 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9862 if (IS_GEN8(dev)) {
9863 intel_ring_emit(ring, 0);
9864 intel_ring_emit(ring, MI_NOOP);
9865 }
9866 }
9867
9868 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9869 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9870 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9871 intel_ring_emit(ring, (MI_NOOP));
9872
9873 intel_mark_page_flip_active(intel_crtc);
9874 __intel_ring_advance(ring);
9875 return 0;
9876 }
9877
9878 static bool use_mmio_flip(struct intel_engine_cs *ring,
9879 struct drm_i915_gem_object *obj)
9880 {
9881 /*
9882 * This is not being used for older platforms, because
9883 * non-availability of flip done interrupt forces us to use
9884 * CS flips. Older platforms derive flip done using some clever
9885 * tricks involving the flip_pending status bits and vblank irqs.
9886 * So using MMIO flips there would disrupt this mechanism.
9887 */
9888
9889 if (ring == NULL)
9890 return true;
9891
9892 if (INTEL_INFO(ring->dev)->gen < 5)
9893 return false;
9894
9895 if (i915.use_mmio_flip < 0)
9896 return false;
9897 else if (i915.use_mmio_flip > 0)
9898 return true;
9899 else if (i915.enable_execlists)
9900 return true;
9901 else
9902 return ring != i915_gem_request_get_ring(obj->last_read_req);
9903 }
9904
9905 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9906 {
9907 struct drm_device *dev = intel_crtc->base.dev;
9908 struct drm_i915_private *dev_priv = dev->dev_private;
9909 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9910 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9911 struct drm_i915_gem_object *obj = intel_fb->obj;
9912 const enum pipe pipe = intel_crtc->pipe;
9913 u32 ctl, stride;
9914
9915 ctl = I915_READ(PLANE_CTL(pipe, 0));
9916 ctl &= ~PLANE_CTL_TILED_MASK;
9917 if (obj->tiling_mode == I915_TILING_X)
9918 ctl |= PLANE_CTL_TILED_X;
9919
9920 /*
9921 * The stride is either expressed as a multiple of 64 bytes chunks for
9922 * linear buffers or in number of tiles for tiled buffers.
9923 */
9924 stride = fb->pitches[0] >> 6;
9925 if (obj->tiling_mode == I915_TILING_X)
9926 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9927
9928 /*
9929 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9930 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9931 */
9932 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9933 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9934
9935 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9936 POSTING_READ(PLANE_SURF(pipe, 0));
9937 }
9938
9939 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9940 {
9941 struct drm_device *dev = intel_crtc->base.dev;
9942 struct drm_i915_private *dev_priv = dev->dev_private;
9943 struct intel_framebuffer *intel_fb =
9944 to_intel_framebuffer(intel_crtc->base.primary->fb);
9945 struct drm_i915_gem_object *obj = intel_fb->obj;
9946 u32 dspcntr;
9947 u32 reg;
9948
9949 reg = DSPCNTR(intel_crtc->plane);
9950 dspcntr = I915_READ(reg);
9951
9952 if (obj->tiling_mode != I915_TILING_NONE)
9953 dspcntr |= DISPPLANE_TILED;
9954 else
9955 dspcntr &= ~DISPPLANE_TILED;
9956
9957 I915_WRITE(reg, dspcntr);
9958
9959 I915_WRITE(DSPSURF(intel_crtc->plane),
9960 intel_crtc->unpin_work->gtt_offset);
9961 POSTING_READ(DSPSURF(intel_crtc->plane));
9962
9963 }
9964
9965 /*
9966 * XXX: This is the temporary way to update the plane registers until we get
9967 * around to using the usual plane update functions for MMIO flips
9968 */
9969 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9970 {
9971 struct drm_device *dev = intel_crtc->base.dev;
9972 bool atomic_update;
9973 u32 start_vbl_count;
9974
9975 intel_mark_page_flip_active(intel_crtc);
9976
9977 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9978
9979 if (INTEL_INFO(dev)->gen >= 9)
9980 skl_do_mmio_flip(intel_crtc);
9981 else
9982 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9983 ilk_do_mmio_flip(intel_crtc);
9984
9985 if (atomic_update)
9986 intel_pipe_update_end(intel_crtc, start_vbl_count);
9987 }
9988
9989 static void intel_mmio_flip_work_func(struct work_struct *work)
9990 {
9991 struct intel_crtc *crtc =
9992 container_of(work, struct intel_crtc, mmio_flip.work);
9993 struct intel_mmio_flip *mmio_flip;
9994
9995 mmio_flip = &crtc->mmio_flip;
9996 if (mmio_flip->req)
9997 WARN_ON(__i915_wait_request(mmio_flip->req,
9998 crtc->reset_counter,
9999 false, NULL, NULL) != 0);
10000
10001 intel_do_mmio_flip(crtc);
10002 if (mmio_flip->req) {
10003 mutex_lock(&crtc->base.dev->struct_mutex);
10004 i915_gem_request_assign(&mmio_flip->req, NULL);
10005 mutex_unlock(&crtc->base.dev->struct_mutex);
10006 }
10007 }
10008
10009 static int intel_queue_mmio_flip(struct drm_device *dev,
10010 struct drm_crtc *crtc,
10011 struct drm_framebuffer *fb,
10012 struct drm_i915_gem_object *obj,
10013 struct intel_engine_cs *ring,
10014 uint32_t flags)
10015 {
10016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10017
10018 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10019 obj->last_write_req);
10020
10021 schedule_work(&intel_crtc->mmio_flip.work);
10022
10023 return 0;
10024 }
10025
10026 static int intel_default_queue_flip(struct drm_device *dev,
10027 struct drm_crtc *crtc,
10028 struct drm_framebuffer *fb,
10029 struct drm_i915_gem_object *obj,
10030 struct intel_engine_cs *ring,
10031 uint32_t flags)
10032 {
10033 return -ENODEV;
10034 }
10035
10036 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10037 struct drm_crtc *crtc)
10038 {
10039 struct drm_i915_private *dev_priv = dev->dev_private;
10040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10041 struct intel_unpin_work *work = intel_crtc->unpin_work;
10042 u32 addr;
10043
10044 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10045 return true;
10046
10047 if (!work->enable_stall_check)
10048 return false;
10049
10050 if (work->flip_ready_vblank == 0) {
10051 if (work->flip_queued_req &&
10052 !i915_gem_request_completed(work->flip_queued_req, true))
10053 return false;
10054
10055 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10056 }
10057
10058 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10059 return false;
10060
10061 /* Potential stall - if we see that the flip has happened,
10062 * assume a missed interrupt. */
10063 if (INTEL_INFO(dev)->gen >= 4)
10064 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10065 else
10066 addr = I915_READ(DSPADDR(intel_crtc->plane));
10067
10068 /* There is a potential issue here with a false positive after a flip
10069 * to the same address. We could address this by checking for a
10070 * non-incrementing frame counter.
10071 */
10072 return addr == work->gtt_offset;
10073 }
10074
10075 void intel_check_page_flip(struct drm_device *dev, int pipe)
10076 {
10077 struct drm_i915_private *dev_priv = dev->dev_private;
10078 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10080
10081 WARN_ON(!in_interrupt());
10082
10083 if (crtc == NULL)
10084 return;
10085
10086 spin_lock(&dev->event_lock);
10087 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10088 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10089 intel_crtc->unpin_work->flip_queued_vblank,
10090 drm_vblank_count(dev, pipe));
10091 page_flip_completed(intel_crtc);
10092 }
10093 spin_unlock(&dev->event_lock);
10094 }
10095
10096 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10097 struct drm_framebuffer *fb,
10098 struct drm_pending_vblank_event *event,
10099 uint32_t page_flip_flags)
10100 {
10101 struct drm_device *dev = crtc->dev;
10102 struct drm_i915_private *dev_priv = dev->dev_private;
10103 struct drm_framebuffer *old_fb = crtc->primary->fb;
10104 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10106 struct drm_plane *primary = crtc->primary;
10107 enum pipe pipe = intel_crtc->pipe;
10108 struct intel_unpin_work *work;
10109 struct intel_engine_cs *ring;
10110 int ret;
10111
10112 /*
10113 * drm_mode_page_flip_ioctl() should already catch this, but double
10114 * check to be safe. In the future we may enable pageflipping from
10115 * a disabled primary plane.
10116 */
10117 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10118 return -EBUSY;
10119
10120 /* Can't change pixel format via MI display flips. */
10121 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10122 return -EINVAL;
10123
10124 /*
10125 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10126 * Note that pitch changes could also affect these register.
10127 */
10128 if (INTEL_INFO(dev)->gen > 3 &&
10129 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10130 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10131 return -EINVAL;
10132
10133 if (i915_terminally_wedged(&dev_priv->gpu_error))
10134 goto out_hang;
10135
10136 work = kzalloc(sizeof(*work), GFP_KERNEL);
10137 if (work == NULL)
10138 return -ENOMEM;
10139
10140 work->event = event;
10141 work->crtc = crtc;
10142 work->old_fb = old_fb;
10143 INIT_WORK(&work->work, intel_unpin_work_fn);
10144
10145 ret = drm_crtc_vblank_get(crtc);
10146 if (ret)
10147 goto free_work;
10148
10149 /* We borrow the event spin lock for protecting unpin_work */
10150 spin_lock_irq(&dev->event_lock);
10151 if (intel_crtc->unpin_work) {
10152 /* Before declaring the flip queue wedged, check if
10153 * the hardware completed the operation behind our backs.
10154 */
10155 if (__intel_pageflip_stall_check(dev, crtc)) {
10156 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10157 page_flip_completed(intel_crtc);
10158 } else {
10159 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10160 spin_unlock_irq(&dev->event_lock);
10161
10162 drm_crtc_vblank_put(crtc);
10163 kfree(work);
10164 return -EBUSY;
10165 }
10166 }
10167 intel_crtc->unpin_work = work;
10168 spin_unlock_irq(&dev->event_lock);
10169
10170 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10171 flush_workqueue(dev_priv->wq);
10172
10173 /* Reference the objects for the scheduled work. */
10174 drm_framebuffer_reference(work->old_fb);
10175 drm_gem_object_reference(&obj->base);
10176
10177 crtc->primary->fb = fb;
10178 update_state_fb(crtc->primary);
10179
10180 work->pending_flip_obj = obj;
10181
10182 ret = i915_mutex_lock_interruptible(dev);
10183 if (ret)
10184 goto cleanup;
10185
10186 atomic_inc(&intel_crtc->unpin_work_count);
10187 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10188
10189 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10190 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10191
10192 if (IS_VALLEYVIEW(dev)) {
10193 ring = &dev_priv->ring[BCS];
10194 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10195 /* vlv: DISPLAY_FLIP fails to change tiling */
10196 ring = NULL;
10197 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10198 ring = &dev_priv->ring[BCS];
10199 } else if (INTEL_INFO(dev)->gen >= 7) {
10200 ring = i915_gem_request_get_ring(obj->last_read_req);
10201 if (ring == NULL || ring->id != RCS)
10202 ring = &dev_priv->ring[BCS];
10203 } else {
10204 ring = &dev_priv->ring[RCS];
10205 }
10206
10207 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10208 crtc->primary->state, ring);
10209 if (ret)
10210 goto cleanup_pending;
10211
10212 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10213 + intel_crtc->dspaddr_offset;
10214
10215 if (use_mmio_flip(ring, obj)) {
10216 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10217 page_flip_flags);
10218 if (ret)
10219 goto cleanup_unpin;
10220
10221 i915_gem_request_assign(&work->flip_queued_req,
10222 obj->last_write_req);
10223 } else {
10224 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10225 page_flip_flags);
10226 if (ret)
10227 goto cleanup_unpin;
10228
10229 i915_gem_request_assign(&work->flip_queued_req,
10230 intel_ring_get_request(ring));
10231 }
10232
10233 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10234 work->enable_stall_check = true;
10235
10236 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10237 INTEL_FRONTBUFFER_PRIMARY(pipe));
10238
10239 intel_fbc_disable(dev);
10240 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10241 mutex_unlock(&dev->struct_mutex);
10242
10243 trace_i915_flip_request(intel_crtc->plane, obj);
10244
10245 return 0;
10246
10247 cleanup_unpin:
10248 intel_unpin_fb_obj(fb, crtc->primary->state);
10249 cleanup_pending:
10250 atomic_dec(&intel_crtc->unpin_work_count);
10251 mutex_unlock(&dev->struct_mutex);
10252 cleanup:
10253 crtc->primary->fb = old_fb;
10254 update_state_fb(crtc->primary);
10255
10256 drm_gem_object_unreference_unlocked(&obj->base);
10257 drm_framebuffer_unreference(work->old_fb);
10258
10259 spin_lock_irq(&dev->event_lock);
10260 intel_crtc->unpin_work = NULL;
10261 spin_unlock_irq(&dev->event_lock);
10262
10263 drm_crtc_vblank_put(crtc);
10264 free_work:
10265 kfree(work);
10266
10267 if (ret == -EIO) {
10268 out_hang:
10269 ret = intel_plane_restore(primary);
10270 if (ret == 0 && event) {
10271 spin_lock_irq(&dev->event_lock);
10272 drm_send_vblank_event(dev, pipe, event);
10273 spin_unlock_irq(&dev->event_lock);
10274 }
10275 }
10276 return ret;
10277 }
10278
10279 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10280 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10281 .load_lut = intel_crtc_load_lut,
10282 .atomic_begin = intel_begin_crtc_commit,
10283 .atomic_flush = intel_finish_crtc_commit,
10284 };
10285
10286 /**
10287 * intel_modeset_update_staged_output_state
10288 *
10289 * Updates the staged output configuration state, e.g. after we've read out the
10290 * current hw state.
10291 */
10292 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10293 {
10294 struct intel_crtc *crtc;
10295 struct intel_encoder *encoder;
10296 struct intel_connector *connector;
10297
10298 for_each_intel_connector(dev, connector) {
10299 connector->new_encoder =
10300 to_intel_encoder(connector->base.encoder);
10301 }
10302
10303 for_each_intel_encoder(dev, encoder) {
10304 encoder->new_crtc =
10305 to_intel_crtc(encoder->base.crtc);
10306 }
10307
10308 for_each_intel_crtc(dev, crtc) {
10309 crtc->new_enabled = crtc->base.state->enable;
10310
10311 if (crtc->new_enabled)
10312 crtc->new_config = crtc->config;
10313 else
10314 crtc->new_config = NULL;
10315 }
10316 }
10317
10318 /* Transitional helper to copy current connector/encoder state to
10319 * connector->state. This is needed so that code that is partially
10320 * converted to atomic does the right thing.
10321 */
10322 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10323 {
10324 struct intel_connector *connector;
10325
10326 for_each_intel_connector(dev, connector) {
10327 if (connector->base.encoder) {
10328 connector->base.state->best_encoder =
10329 connector->base.encoder;
10330 connector->base.state->crtc =
10331 connector->base.encoder->crtc;
10332 } else {
10333 connector->base.state->best_encoder = NULL;
10334 connector->base.state->crtc = NULL;
10335 }
10336 }
10337 }
10338
10339 /**
10340 * intel_modeset_commit_output_state
10341 *
10342 * This function copies the stage display pipe configuration to the real one.
10343 */
10344 static void intel_modeset_commit_output_state(struct drm_device *dev)
10345 {
10346 struct intel_crtc *crtc;
10347 struct intel_encoder *encoder;
10348 struct intel_connector *connector;
10349
10350 for_each_intel_connector(dev, connector) {
10351 connector->base.encoder = &connector->new_encoder->base;
10352 }
10353
10354 for_each_intel_encoder(dev, encoder) {
10355 encoder->base.crtc = &encoder->new_crtc->base;
10356 }
10357
10358 for_each_intel_crtc(dev, crtc) {
10359 crtc->base.state->enable = crtc->new_enabled;
10360 crtc->base.enabled = crtc->new_enabled;
10361 }
10362
10363 intel_modeset_update_connector_atomic_state(dev);
10364 }
10365
10366 static void
10367 connected_sink_compute_bpp(struct intel_connector *connector,
10368 struct intel_crtc_state *pipe_config)
10369 {
10370 int bpp = pipe_config->pipe_bpp;
10371
10372 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10373 connector->base.base.id,
10374 connector->base.name);
10375
10376 /* Don't use an invalid EDID bpc value */
10377 if (connector->base.display_info.bpc &&
10378 connector->base.display_info.bpc * 3 < bpp) {
10379 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10380 bpp, connector->base.display_info.bpc*3);
10381 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10382 }
10383
10384 /* Clamp bpp to 8 on screens without EDID 1.4 */
10385 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10386 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10387 bpp);
10388 pipe_config->pipe_bpp = 24;
10389 }
10390 }
10391
10392 static int
10393 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10394 struct drm_framebuffer *fb,
10395 struct intel_crtc_state *pipe_config)
10396 {
10397 struct drm_device *dev = crtc->base.dev;
10398 struct drm_atomic_state *state;
10399 struct intel_connector *connector;
10400 int bpp, i;
10401
10402 switch (fb->pixel_format) {
10403 case DRM_FORMAT_C8:
10404 bpp = 8*3; /* since we go through a colormap */
10405 break;
10406 case DRM_FORMAT_XRGB1555:
10407 case DRM_FORMAT_ARGB1555:
10408 /* checked in intel_framebuffer_init already */
10409 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10410 return -EINVAL;
10411 case DRM_FORMAT_RGB565:
10412 bpp = 6*3; /* min is 18bpp */
10413 break;
10414 case DRM_FORMAT_XBGR8888:
10415 case DRM_FORMAT_ABGR8888:
10416 /* checked in intel_framebuffer_init already */
10417 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10418 return -EINVAL;
10419 case DRM_FORMAT_XRGB8888:
10420 case DRM_FORMAT_ARGB8888:
10421 bpp = 8*3;
10422 break;
10423 case DRM_FORMAT_XRGB2101010:
10424 case DRM_FORMAT_ARGB2101010:
10425 case DRM_FORMAT_XBGR2101010:
10426 case DRM_FORMAT_ABGR2101010:
10427 /* checked in intel_framebuffer_init already */
10428 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10429 return -EINVAL;
10430 bpp = 10*3;
10431 break;
10432 /* TODO: gen4+ supports 16 bpc floating point, too. */
10433 default:
10434 DRM_DEBUG_KMS("unsupported depth\n");
10435 return -EINVAL;
10436 }
10437
10438 pipe_config->pipe_bpp = bpp;
10439
10440 state = pipe_config->base.state;
10441
10442 /* Clamp display bpp to EDID value */
10443 for (i = 0; i < state->num_connector; i++) {
10444 if (!state->connectors[i])
10445 continue;
10446
10447 connector = to_intel_connector(state->connectors[i]);
10448 if (state->connector_states[i]->crtc != &crtc->base)
10449 continue;
10450
10451 connected_sink_compute_bpp(connector, pipe_config);
10452 }
10453
10454 return bpp;
10455 }
10456
10457 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10458 {
10459 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10460 "type: 0x%x flags: 0x%x\n",
10461 mode->crtc_clock,
10462 mode->crtc_hdisplay, mode->crtc_hsync_start,
10463 mode->crtc_hsync_end, mode->crtc_htotal,
10464 mode->crtc_vdisplay, mode->crtc_vsync_start,
10465 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10466 }
10467
10468 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10469 struct intel_crtc_state *pipe_config,
10470 const char *context)
10471 {
10472 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10473 context, pipe_name(crtc->pipe));
10474
10475 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10476 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10477 pipe_config->pipe_bpp, pipe_config->dither);
10478 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10479 pipe_config->has_pch_encoder,
10480 pipe_config->fdi_lanes,
10481 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10482 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10483 pipe_config->fdi_m_n.tu);
10484 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10485 pipe_config->has_dp_encoder,
10486 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10487 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10488 pipe_config->dp_m_n.tu);
10489
10490 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10491 pipe_config->has_dp_encoder,
10492 pipe_config->dp_m2_n2.gmch_m,
10493 pipe_config->dp_m2_n2.gmch_n,
10494 pipe_config->dp_m2_n2.link_m,
10495 pipe_config->dp_m2_n2.link_n,
10496 pipe_config->dp_m2_n2.tu);
10497
10498 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10499 pipe_config->has_audio,
10500 pipe_config->has_infoframe);
10501
10502 DRM_DEBUG_KMS("requested mode:\n");
10503 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10504 DRM_DEBUG_KMS("adjusted mode:\n");
10505 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10506 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10507 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10508 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10509 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10510 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10511 pipe_config->gmch_pfit.control,
10512 pipe_config->gmch_pfit.pgm_ratios,
10513 pipe_config->gmch_pfit.lvds_border_bits);
10514 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10515 pipe_config->pch_pfit.pos,
10516 pipe_config->pch_pfit.size,
10517 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10518 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10519 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10520 }
10521
10522 static bool encoders_cloneable(const struct intel_encoder *a,
10523 const struct intel_encoder *b)
10524 {
10525 /* masks could be asymmetric, so check both ways */
10526 return a == b || (a->cloneable & (1 << b->type) &&
10527 b->cloneable & (1 << a->type));
10528 }
10529
10530 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10531 struct intel_encoder *encoder)
10532 {
10533 struct drm_device *dev = crtc->base.dev;
10534 struct intel_encoder *source_encoder;
10535
10536 for_each_intel_encoder(dev, source_encoder) {
10537 if (source_encoder->new_crtc != crtc)
10538 continue;
10539
10540 if (!encoders_cloneable(encoder, source_encoder))
10541 return false;
10542 }
10543
10544 return true;
10545 }
10546
10547 static bool check_encoder_cloning(struct intel_crtc *crtc)
10548 {
10549 struct drm_device *dev = crtc->base.dev;
10550 struct intel_encoder *encoder;
10551
10552 for_each_intel_encoder(dev, encoder) {
10553 if (encoder->new_crtc != crtc)
10554 continue;
10555
10556 if (!check_single_encoder_cloning(crtc, encoder))
10557 return false;
10558 }
10559
10560 return true;
10561 }
10562
10563 static bool check_digital_port_conflicts(struct drm_device *dev)
10564 {
10565 struct intel_connector *connector;
10566 unsigned int used_ports = 0;
10567
10568 /*
10569 * Walk the connector list instead of the encoder
10570 * list to detect the problem on ddi platforms
10571 * where there's just one encoder per digital port.
10572 */
10573 for_each_intel_connector(dev, connector) {
10574 struct intel_encoder *encoder = connector->new_encoder;
10575
10576 if (!encoder)
10577 continue;
10578
10579 WARN_ON(!encoder->new_crtc);
10580
10581 switch (encoder->type) {
10582 unsigned int port_mask;
10583 case INTEL_OUTPUT_UNKNOWN:
10584 if (WARN_ON(!HAS_DDI(dev)))
10585 break;
10586 case INTEL_OUTPUT_DISPLAYPORT:
10587 case INTEL_OUTPUT_HDMI:
10588 case INTEL_OUTPUT_EDP:
10589 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10590
10591 /* the same port mustn't appear more than once */
10592 if (used_ports & port_mask)
10593 return false;
10594
10595 used_ports |= port_mask;
10596 default:
10597 break;
10598 }
10599 }
10600
10601 return true;
10602 }
10603
10604 static void
10605 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10606 {
10607 struct drm_crtc_state tmp_state;
10608
10609 /* Clear only the intel specific part of the crtc state */
10610 tmp_state = crtc_state->base;
10611 memset(crtc_state, 0, sizeof *crtc_state);
10612 crtc_state->base = tmp_state;
10613 }
10614
10615 static struct intel_crtc_state *
10616 intel_modeset_pipe_config(struct drm_crtc *crtc,
10617 struct drm_framebuffer *fb,
10618 struct drm_display_mode *mode,
10619 struct drm_atomic_state *state)
10620 {
10621 struct drm_device *dev = crtc->dev;
10622 struct intel_encoder *encoder;
10623 struct intel_connector *connector;
10624 struct drm_connector_state *connector_state;
10625 struct intel_crtc_state *pipe_config;
10626 int plane_bpp, ret = -EINVAL;
10627 int i;
10628 bool retry = true;
10629
10630 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10631 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10632 return ERR_PTR(-EINVAL);
10633 }
10634
10635 if (!check_digital_port_conflicts(dev)) {
10636 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10637 return ERR_PTR(-EINVAL);
10638 }
10639
10640 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10641 if (IS_ERR(pipe_config))
10642 return pipe_config;
10643
10644 clear_intel_crtc_state(pipe_config);
10645
10646 pipe_config->base.crtc = crtc;
10647 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10648 drm_mode_copy(&pipe_config->base.mode, mode);
10649
10650 pipe_config->cpu_transcoder =
10651 (enum transcoder) to_intel_crtc(crtc)->pipe;
10652 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10653
10654 /*
10655 * Sanitize sync polarity flags based on requested ones. If neither
10656 * positive or negative polarity is requested, treat this as meaning
10657 * negative polarity.
10658 */
10659 if (!(pipe_config->base.adjusted_mode.flags &
10660 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10661 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10662
10663 if (!(pipe_config->base.adjusted_mode.flags &
10664 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10665 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10666
10667 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10668 * plane pixel format and any sink constraints into account. Returns the
10669 * source plane bpp so that dithering can be selected on mismatches
10670 * after encoders and crtc also have had their say. */
10671 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10672 fb, pipe_config);
10673 if (plane_bpp < 0)
10674 goto fail;
10675
10676 /*
10677 * Determine the real pipe dimensions. Note that stereo modes can
10678 * increase the actual pipe size due to the frame doubling and
10679 * insertion of additional space for blanks between the frame. This
10680 * is stored in the crtc timings. We use the requested mode to do this
10681 * computation to clearly distinguish it from the adjusted mode, which
10682 * can be changed by the connectors in the below retry loop.
10683 */
10684 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10685 &pipe_config->pipe_src_w,
10686 &pipe_config->pipe_src_h);
10687
10688 encoder_retry:
10689 /* Ensure the port clock defaults are reset when retrying. */
10690 pipe_config->port_clock = 0;
10691 pipe_config->pixel_multiplier = 1;
10692
10693 /* Fill in default crtc timings, allow encoders to overwrite them. */
10694 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10695 CRTC_STEREO_DOUBLE);
10696
10697 /* Pass our mode to the connectors and the CRTC to give them a chance to
10698 * adjust it according to limitations or connector properties, and also
10699 * a chance to reject the mode entirely.
10700 */
10701 for (i = 0; i < state->num_connector; i++) {
10702 connector = to_intel_connector(state->connectors[i]);
10703 if (!connector)
10704 continue;
10705
10706 connector_state = state->connector_states[i];
10707 if (connector_state->crtc != crtc)
10708 continue;
10709
10710 encoder = to_intel_encoder(connector_state->best_encoder);
10711
10712 if (!(encoder->compute_config(encoder, pipe_config))) {
10713 DRM_DEBUG_KMS("Encoder config failure\n");
10714 goto fail;
10715 }
10716 }
10717
10718 /* Set default port clock if not overwritten by the encoder. Needs to be
10719 * done afterwards in case the encoder adjusts the mode. */
10720 if (!pipe_config->port_clock)
10721 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10722 * pipe_config->pixel_multiplier;
10723
10724 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10725 if (ret < 0) {
10726 DRM_DEBUG_KMS("CRTC fixup failed\n");
10727 goto fail;
10728 }
10729
10730 if (ret == RETRY) {
10731 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10732 ret = -EINVAL;
10733 goto fail;
10734 }
10735
10736 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10737 retry = false;
10738 goto encoder_retry;
10739 }
10740
10741 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10742 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10743 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10744
10745 return pipe_config;
10746 fail:
10747 return ERR_PTR(ret);
10748 }
10749
10750 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10751 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10752 static void
10753 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10754 unsigned *prepare_pipes, unsigned *disable_pipes)
10755 {
10756 struct intel_crtc *intel_crtc;
10757 struct drm_device *dev = crtc->dev;
10758 struct intel_encoder *encoder;
10759 struct intel_connector *connector;
10760 struct drm_crtc *tmp_crtc;
10761
10762 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10763
10764 /* Check which crtcs have changed outputs connected to them, these need
10765 * to be part of the prepare_pipes mask. We don't (yet) support global
10766 * modeset across multiple crtcs, so modeset_pipes will only have one
10767 * bit set at most. */
10768 for_each_intel_connector(dev, connector) {
10769 if (connector->base.encoder == &connector->new_encoder->base)
10770 continue;
10771
10772 if (connector->base.encoder) {
10773 tmp_crtc = connector->base.encoder->crtc;
10774
10775 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10776 }
10777
10778 if (connector->new_encoder)
10779 *prepare_pipes |=
10780 1 << connector->new_encoder->new_crtc->pipe;
10781 }
10782
10783 for_each_intel_encoder(dev, encoder) {
10784 if (encoder->base.crtc == &encoder->new_crtc->base)
10785 continue;
10786
10787 if (encoder->base.crtc) {
10788 tmp_crtc = encoder->base.crtc;
10789
10790 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10791 }
10792
10793 if (encoder->new_crtc)
10794 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10795 }
10796
10797 /* Check for pipes that will be enabled/disabled ... */
10798 for_each_intel_crtc(dev, intel_crtc) {
10799 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10800 continue;
10801
10802 if (!intel_crtc->new_enabled)
10803 *disable_pipes |= 1 << intel_crtc->pipe;
10804 else
10805 *prepare_pipes |= 1 << intel_crtc->pipe;
10806 }
10807
10808
10809 /* set_mode is also used to update properties on life display pipes. */
10810 intel_crtc = to_intel_crtc(crtc);
10811 if (intel_crtc->new_enabled)
10812 *prepare_pipes |= 1 << intel_crtc->pipe;
10813
10814 /*
10815 * For simplicity do a full modeset on any pipe where the output routing
10816 * changed. We could be more clever, but that would require us to be
10817 * more careful with calling the relevant encoder->mode_set functions.
10818 */
10819 if (*prepare_pipes)
10820 *modeset_pipes = *prepare_pipes;
10821
10822 /* ... and mask these out. */
10823 *modeset_pipes &= ~(*disable_pipes);
10824 *prepare_pipes &= ~(*disable_pipes);
10825
10826 /*
10827 * HACK: We don't (yet) fully support global modesets. intel_set_config
10828 * obies this rule, but the modeset restore mode of
10829 * intel_modeset_setup_hw_state does not.
10830 */
10831 *modeset_pipes &= 1 << intel_crtc->pipe;
10832 *prepare_pipes &= 1 << intel_crtc->pipe;
10833
10834 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10835 *modeset_pipes, *prepare_pipes, *disable_pipes);
10836 }
10837
10838 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10839 {
10840 struct drm_encoder *encoder;
10841 struct drm_device *dev = crtc->dev;
10842
10843 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10844 if (encoder->crtc == crtc)
10845 return true;
10846
10847 return false;
10848 }
10849
10850 static void
10851 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10852 {
10853 struct drm_i915_private *dev_priv = dev->dev_private;
10854 struct intel_encoder *intel_encoder;
10855 struct intel_crtc *intel_crtc;
10856 struct drm_connector *connector;
10857
10858 intel_shared_dpll_commit(dev_priv);
10859
10860 for_each_intel_encoder(dev, intel_encoder) {
10861 if (!intel_encoder->base.crtc)
10862 continue;
10863
10864 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10865
10866 if (prepare_pipes & (1 << intel_crtc->pipe))
10867 intel_encoder->connectors_active = false;
10868 }
10869
10870 intel_modeset_commit_output_state(dev);
10871
10872 /* Double check state. */
10873 for_each_intel_crtc(dev, intel_crtc) {
10874 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10875 WARN_ON(intel_crtc->new_config &&
10876 intel_crtc->new_config != intel_crtc->config);
10877 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10878 }
10879
10880 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10881 if (!connector->encoder || !connector->encoder->crtc)
10882 continue;
10883
10884 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10885
10886 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10887 struct drm_property *dpms_property =
10888 dev->mode_config.dpms_property;
10889
10890 connector->dpms = DRM_MODE_DPMS_ON;
10891 drm_object_property_set_value(&connector->base,
10892 dpms_property,
10893 DRM_MODE_DPMS_ON);
10894
10895 intel_encoder = to_intel_encoder(connector->encoder);
10896 intel_encoder->connectors_active = true;
10897 }
10898 }
10899
10900 }
10901
10902 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10903 {
10904 int diff;
10905
10906 if (clock1 == clock2)
10907 return true;
10908
10909 if (!clock1 || !clock2)
10910 return false;
10911
10912 diff = abs(clock1 - clock2);
10913
10914 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10915 return true;
10916
10917 return false;
10918 }
10919
10920 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10921 list_for_each_entry((intel_crtc), \
10922 &(dev)->mode_config.crtc_list, \
10923 base.head) \
10924 if (mask & (1 <<(intel_crtc)->pipe))
10925
10926 static bool
10927 intel_pipe_config_compare(struct drm_device *dev,
10928 struct intel_crtc_state *current_config,
10929 struct intel_crtc_state *pipe_config)
10930 {
10931 #define PIPE_CONF_CHECK_X(name) \
10932 if (current_config->name != pipe_config->name) { \
10933 DRM_ERROR("mismatch in " #name " " \
10934 "(expected 0x%08x, found 0x%08x)\n", \
10935 current_config->name, \
10936 pipe_config->name); \
10937 return false; \
10938 }
10939
10940 #define PIPE_CONF_CHECK_I(name) \
10941 if (current_config->name != pipe_config->name) { \
10942 DRM_ERROR("mismatch in " #name " " \
10943 "(expected %i, found %i)\n", \
10944 current_config->name, \
10945 pipe_config->name); \
10946 return false; \
10947 }
10948
10949 /* This is required for BDW+ where there is only one set of registers for
10950 * switching between high and low RR.
10951 * This macro can be used whenever a comparison has to be made between one
10952 * hw state and multiple sw state variables.
10953 */
10954 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10955 if ((current_config->name != pipe_config->name) && \
10956 (current_config->alt_name != pipe_config->name)) { \
10957 DRM_ERROR("mismatch in " #name " " \
10958 "(expected %i or %i, found %i)\n", \
10959 current_config->name, \
10960 current_config->alt_name, \
10961 pipe_config->name); \
10962 return false; \
10963 }
10964
10965 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10966 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10967 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10968 "(expected %i, found %i)\n", \
10969 current_config->name & (mask), \
10970 pipe_config->name & (mask)); \
10971 return false; \
10972 }
10973
10974 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10975 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10976 DRM_ERROR("mismatch in " #name " " \
10977 "(expected %i, found %i)\n", \
10978 current_config->name, \
10979 pipe_config->name); \
10980 return false; \
10981 }
10982
10983 #define PIPE_CONF_QUIRK(quirk) \
10984 ((current_config->quirks | pipe_config->quirks) & (quirk))
10985
10986 PIPE_CONF_CHECK_I(cpu_transcoder);
10987
10988 PIPE_CONF_CHECK_I(has_pch_encoder);
10989 PIPE_CONF_CHECK_I(fdi_lanes);
10990 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10991 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10992 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10993 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10994 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10995
10996 PIPE_CONF_CHECK_I(has_dp_encoder);
10997
10998 if (INTEL_INFO(dev)->gen < 8) {
10999 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11000 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11001 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11002 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11003 PIPE_CONF_CHECK_I(dp_m_n.tu);
11004
11005 if (current_config->has_drrs) {
11006 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11007 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11008 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11009 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11010 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11011 }
11012 } else {
11013 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11014 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11015 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11016 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11017 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11018 }
11019
11020 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11021 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11022 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11023 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11024 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11025 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11026
11027 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11028 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11029 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11030 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11031 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11032 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11033
11034 PIPE_CONF_CHECK_I(pixel_multiplier);
11035 PIPE_CONF_CHECK_I(has_hdmi_sink);
11036 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11037 IS_VALLEYVIEW(dev))
11038 PIPE_CONF_CHECK_I(limited_color_range);
11039 PIPE_CONF_CHECK_I(has_infoframe);
11040
11041 PIPE_CONF_CHECK_I(has_audio);
11042
11043 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11044 DRM_MODE_FLAG_INTERLACE);
11045
11046 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11047 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11048 DRM_MODE_FLAG_PHSYNC);
11049 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11050 DRM_MODE_FLAG_NHSYNC);
11051 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11052 DRM_MODE_FLAG_PVSYNC);
11053 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11054 DRM_MODE_FLAG_NVSYNC);
11055 }
11056
11057 PIPE_CONF_CHECK_I(pipe_src_w);
11058 PIPE_CONF_CHECK_I(pipe_src_h);
11059
11060 /*
11061 * FIXME: BIOS likes to set up a cloned config with lvds+external
11062 * screen. Since we don't yet re-compute the pipe config when moving
11063 * just the lvds port away to another pipe the sw tracking won't match.
11064 *
11065 * Proper atomic modesets with recomputed global state will fix this.
11066 * Until then just don't check gmch state for inherited modes.
11067 */
11068 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11069 PIPE_CONF_CHECK_I(gmch_pfit.control);
11070 /* pfit ratios are autocomputed by the hw on gen4+ */
11071 if (INTEL_INFO(dev)->gen < 4)
11072 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11073 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11074 }
11075
11076 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11077 if (current_config->pch_pfit.enabled) {
11078 PIPE_CONF_CHECK_I(pch_pfit.pos);
11079 PIPE_CONF_CHECK_I(pch_pfit.size);
11080 }
11081
11082 /* BDW+ don't expose a synchronous way to read the state */
11083 if (IS_HASWELL(dev))
11084 PIPE_CONF_CHECK_I(ips_enabled);
11085
11086 PIPE_CONF_CHECK_I(double_wide);
11087
11088 PIPE_CONF_CHECK_X(ddi_pll_sel);
11089
11090 PIPE_CONF_CHECK_I(shared_dpll);
11091 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11092 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11093 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11094 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11095 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11096 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11097 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11098 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11099
11100 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11101 PIPE_CONF_CHECK_I(pipe_bpp);
11102
11103 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11104 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11105
11106 #undef PIPE_CONF_CHECK_X
11107 #undef PIPE_CONF_CHECK_I
11108 #undef PIPE_CONF_CHECK_I_ALT
11109 #undef PIPE_CONF_CHECK_FLAGS
11110 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11111 #undef PIPE_CONF_QUIRK
11112
11113 return true;
11114 }
11115
11116 static void check_wm_state(struct drm_device *dev)
11117 {
11118 struct drm_i915_private *dev_priv = dev->dev_private;
11119 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11120 struct intel_crtc *intel_crtc;
11121 int plane;
11122
11123 if (INTEL_INFO(dev)->gen < 9)
11124 return;
11125
11126 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11127 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11128
11129 for_each_intel_crtc(dev, intel_crtc) {
11130 struct skl_ddb_entry *hw_entry, *sw_entry;
11131 const enum pipe pipe = intel_crtc->pipe;
11132
11133 if (!intel_crtc->active)
11134 continue;
11135
11136 /* planes */
11137 for_each_plane(dev_priv, pipe, plane) {
11138 hw_entry = &hw_ddb.plane[pipe][plane];
11139 sw_entry = &sw_ddb->plane[pipe][plane];
11140
11141 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11142 continue;
11143
11144 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11145 "(expected (%u,%u), found (%u,%u))\n",
11146 pipe_name(pipe), plane + 1,
11147 sw_entry->start, sw_entry->end,
11148 hw_entry->start, hw_entry->end);
11149 }
11150
11151 /* cursor */
11152 hw_entry = &hw_ddb.cursor[pipe];
11153 sw_entry = &sw_ddb->cursor[pipe];
11154
11155 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11156 continue;
11157
11158 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11159 "(expected (%u,%u), found (%u,%u))\n",
11160 pipe_name(pipe),
11161 sw_entry->start, sw_entry->end,
11162 hw_entry->start, hw_entry->end);
11163 }
11164 }
11165
11166 static void
11167 check_connector_state(struct drm_device *dev)
11168 {
11169 struct intel_connector *connector;
11170
11171 for_each_intel_connector(dev, connector) {
11172 /* This also checks the encoder/connector hw state with the
11173 * ->get_hw_state callbacks. */
11174 intel_connector_check_state(connector);
11175
11176 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11177 "connector's staged encoder doesn't match current encoder\n");
11178 }
11179 }
11180
11181 static void
11182 check_encoder_state(struct drm_device *dev)
11183 {
11184 struct intel_encoder *encoder;
11185 struct intel_connector *connector;
11186
11187 for_each_intel_encoder(dev, encoder) {
11188 bool enabled = false;
11189 bool active = false;
11190 enum pipe pipe, tracked_pipe;
11191
11192 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11193 encoder->base.base.id,
11194 encoder->base.name);
11195
11196 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11197 "encoder's stage crtc doesn't match current crtc\n");
11198 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11199 "encoder's active_connectors set, but no crtc\n");
11200
11201 for_each_intel_connector(dev, connector) {
11202 if (connector->base.encoder != &encoder->base)
11203 continue;
11204 enabled = true;
11205 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11206 active = true;
11207 }
11208 /*
11209 * for MST connectors if we unplug the connector is gone
11210 * away but the encoder is still connected to a crtc
11211 * until a modeset happens in response to the hotplug.
11212 */
11213 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11214 continue;
11215
11216 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11217 "encoder's enabled state mismatch "
11218 "(expected %i, found %i)\n",
11219 !!encoder->base.crtc, enabled);
11220 I915_STATE_WARN(active && !encoder->base.crtc,
11221 "active encoder with no crtc\n");
11222
11223 I915_STATE_WARN(encoder->connectors_active != active,
11224 "encoder's computed active state doesn't match tracked active state "
11225 "(expected %i, found %i)\n", active, encoder->connectors_active);
11226
11227 active = encoder->get_hw_state(encoder, &pipe);
11228 I915_STATE_WARN(active != encoder->connectors_active,
11229 "encoder's hw state doesn't match sw tracking "
11230 "(expected %i, found %i)\n",
11231 encoder->connectors_active, active);
11232
11233 if (!encoder->base.crtc)
11234 continue;
11235
11236 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11237 I915_STATE_WARN(active && pipe != tracked_pipe,
11238 "active encoder's pipe doesn't match"
11239 "(expected %i, found %i)\n",
11240 tracked_pipe, pipe);
11241
11242 }
11243 }
11244
11245 static void
11246 check_crtc_state(struct drm_device *dev)
11247 {
11248 struct drm_i915_private *dev_priv = dev->dev_private;
11249 struct intel_crtc *crtc;
11250 struct intel_encoder *encoder;
11251 struct intel_crtc_state pipe_config;
11252
11253 for_each_intel_crtc(dev, crtc) {
11254 bool enabled = false;
11255 bool active = false;
11256
11257 memset(&pipe_config, 0, sizeof(pipe_config));
11258
11259 DRM_DEBUG_KMS("[CRTC:%d]\n",
11260 crtc->base.base.id);
11261
11262 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11263 "active crtc, but not enabled in sw tracking\n");
11264
11265 for_each_intel_encoder(dev, encoder) {
11266 if (encoder->base.crtc != &crtc->base)
11267 continue;
11268 enabled = true;
11269 if (encoder->connectors_active)
11270 active = true;
11271 }
11272
11273 I915_STATE_WARN(active != crtc->active,
11274 "crtc's computed active state doesn't match tracked active state "
11275 "(expected %i, found %i)\n", active, crtc->active);
11276 I915_STATE_WARN(enabled != crtc->base.state->enable,
11277 "crtc's computed enabled state doesn't match tracked enabled state "
11278 "(expected %i, found %i)\n", enabled,
11279 crtc->base.state->enable);
11280
11281 active = dev_priv->display.get_pipe_config(crtc,
11282 &pipe_config);
11283
11284 /* hw state is inconsistent with the pipe quirk */
11285 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11286 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11287 active = crtc->active;
11288
11289 for_each_intel_encoder(dev, encoder) {
11290 enum pipe pipe;
11291 if (encoder->base.crtc != &crtc->base)
11292 continue;
11293 if (encoder->get_hw_state(encoder, &pipe))
11294 encoder->get_config(encoder, &pipe_config);
11295 }
11296
11297 I915_STATE_WARN(crtc->active != active,
11298 "crtc active state doesn't match with hw state "
11299 "(expected %i, found %i)\n", crtc->active, active);
11300
11301 if (active &&
11302 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11303 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11304 intel_dump_pipe_config(crtc, &pipe_config,
11305 "[hw state]");
11306 intel_dump_pipe_config(crtc, crtc->config,
11307 "[sw state]");
11308 }
11309 }
11310 }
11311
11312 static void
11313 check_shared_dpll_state(struct drm_device *dev)
11314 {
11315 struct drm_i915_private *dev_priv = dev->dev_private;
11316 struct intel_crtc *crtc;
11317 struct intel_dpll_hw_state dpll_hw_state;
11318 int i;
11319
11320 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11321 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11322 int enabled_crtcs = 0, active_crtcs = 0;
11323 bool active;
11324
11325 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11326
11327 DRM_DEBUG_KMS("%s\n", pll->name);
11328
11329 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11330
11331 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11332 "more active pll users than references: %i vs %i\n",
11333 pll->active, hweight32(pll->config.crtc_mask));
11334 I915_STATE_WARN(pll->active && !pll->on,
11335 "pll in active use but not on in sw tracking\n");
11336 I915_STATE_WARN(pll->on && !pll->active,
11337 "pll in on but not on in use in sw tracking\n");
11338 I915_STATE_WARN(pll->on != active,
11339 "pll on state mismatch (expected %i, found %i)\n",
11340 pll->on, active);
11341
11342 for_each_intel_crtc(dev, crtc) {
11343 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11344 enabled_crtcs++;
11345 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11346 active_crtcs++;
11347 }
11348 I915_STATE_WARN(pll->active != active_crtcs,
11349 "pll active crtcs mismatch (expected %i, found %i)\n",
11350 pll->active, active_crtcs);
11351 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11352 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11353 hweight32(pll->config.crtc_mask), enabled_crtcs);
11354
11355 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11356 sizeof(dpll_hw_state)),
11357 "pll hw state mismatch\n");
11358 }
11359 }
11360
11361 void
11362 intel_modeset_check_state(struct drm_device *dev)
11363 {
11364 check_wm_state(dev);
11365 check_connector_state(dev);
11366 check_encoder_state(dev);
11367 check_crtc_state(dev);
11368 check_shared_dpll_state(dev);
11369 }
11370
11371 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11372 int dotclock)
11373 {
11374 /*
11375 * FDI already provided one idea for the dotclock.
11376 * Yell if the encoder disagrees.
11377 */
11378 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11379 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11380 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11381 }
11382
11383 static void update_scanline_offset(struct intel_crtc *crtc)
11384 {
11385 struct drm_device *dev = crtc->base.dev;
11386
11387 /*
11388 * The scanline counter increments at the leading edge of hsync.
11389 *
11390 * On most platforms it starts counting from vtotal-1 on the
11391 * first active line. That means the scanline counter value is
11392 * always one less than what we would expect. Ie. just after
11393 * start of vblank, which also occurs at start of hsync (on the
11394 * last active line), the scanline counter will read vblank_start-1.
11395 *
11396 * On gen2 the scanline counter starts counting from 1 instead
11397 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11398 * to keep the value positive), instead of adding one.
11399 *
11400 * On HSW+ the behaviour of the scanline counter depends on the output
11401 * type. For DP ports it behaves like most other platforms, but on HDMI
11402 * there's an extra 1 line difference. So we need to add two instead of
11403 * one to the value.
11404 */
11405 if (IS_GEN2(dev)) {
11406 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11407 int vtotal;
11408
11409 vtotal = mode->crtc_vtotal;
11410 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11411 vtotal /= 2;
11412
11413 crtc->scanline_offset = vtotal - 1;
11414 } else if (HAS_DDI(dev) &&
11415 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11416 crtc->scanline_offset = 2;
11417 } else
11418 crtc->scanline_offset = 1;
11419 }
11420
11421 static struct intel_crtc_state *
11422 intel_modeset_compute_config(struct drm_crtc *crtc,
11423 struct drm_display_mode *mode,
11424 struct drm_framebuffer *fb,
11425 struct drm_atomic_state *state,
11426 unsigned *modeset_pipes,
11427 unsigned *prepare_pipes,
11428 unsigned *disable_pipes)
11429 {
11430 struct drm_device *dev = crtc->dev;
11431 struct intel_crtc_state *pipe_config = NULL;
11432 struct intel_crtc *intel_crtc;
11433 int ret = 0;
11434
11435 ret = drm_atomic_add_affected_connectors(state, crtc);
11436 if (ret)
11437 return ERR_PTR(ret);
11438
11439 intel_modeset_affected_pipes(crtc, modeset_pipes,
11440 prepare_pipes, disable_pipes);
11441
11442 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11443 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11444 if (IS_ERR(pipe_config))
11445 return pipe_config;
11446
11447 pipe_config->base.enable = false;
11448 }
11449
11450 /*
11451 * Note this needs changes when we start tracking multiple modes
11452 * and crtcs. At that point we'll need to compute the whole config
11453 * (i.e. one pipe_config for each crtc) rather than just the one
11454 * for this crtc.
11455 */
11456 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11457 /* FIXME: For now we still expect modeset_pipes has at most
11458 * one bit set. */
11459 if (WARN_ON(&intel_crtc->base != crtc))
11460 continue;
11461
11462 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11463 if (IS_ERR(pipe_config))
11464 return pipe_config;
11465
11466 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11467 "[modeset]");
11468 }
11469
11470 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11471 }
11472
11473 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11474 unsigned modeset_pipes,
11475 unsigned disable_pipes)
11476 {
11477 struct drm_i915_private *dev_priv = to_i915(dev);
11478 unsigned clear_pipes = modeset_pipes | disable_pipes;
11479 struct intel_crtc *intel_crtc;
11480 int ret = 0;
11481
11482 if (!dev_priv->display.crtc_compute_clock)
11483 return 0;
11484
11485 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11486 if (ret)
11487 goto done;
11488
11489 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11490 struct intel_crtc_state *state = intel_crtc->new_config;
11491 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11492 state);
11493 if (ret) {
11494 intel_shared_dpll_abort_config(dev_priv);
11495 goto done;
11496 }
11497 }
11498
11499 done:
11500 return ret;
11501 }
11502
11503 static int __intel_set_mode(struct drm_crtc *crtc,
11504 struct drm_display_mode *mode,
11505 int x, int y, struct drm_framebuffer *fb,
11506 struct intel_crtc_state *pipe_config,
11507 unsigned modeset_pipes,
11508 unsigned prepare_pipes,
11509 unsigned disable_pipes)
11510 {
11511 struct drm_device *dev = crtc->dev;
11512 struct drm_i915_private *dev_priv = dev->dev_private;
11513 struct drm_display_mode *saved_mode;
11514 struct intel_crtc_state *crtc_state_copy = NULL;
11515 struct intel_crtc *intel_crtc;
11516 int ret = 0;
11517
11518 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11519 if (!saved_mode)
11520 return -ENOMEM;
11521
11522 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11523 if (!crtc_state_copy) {
11524 ret = -ENOMEM;
11525 goto done;
11526 }
11527
11528 *saved_mode = crtc->mode;
11529
11530 if (modeset_pipes)
11531 to_intel_crtc(crtc)->new_config = pipe_config;
11532
11533 /*
11534 * See if the config requires any additional preparation, e.g.
11535 * to adjust global state with pipes off. We need to do this
11536 * here so we can get the modeset_pipe updated config for the new
11537 * mode set on this crtc. For other crtcs we need to use the
11538 * adjusted_mode bits in the crtc directly.
11539 */
11540 if (IS_VALLEYVIEW(dev)) {
11541 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11542
11543 /* may have added more to prepare_pipes than we should */
11544 prepare_pipes &= ~disable_pipes;
11545 }
11546
11547 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11548 if (ret)
11549 goto done;
11550
11551 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11552 intel_crtc_disable(&intel_crtc->base);
11553
11554 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11555 if (intel_crtc->base.state->enable)
11556 dev_priv->display.crtc_disable(&intel_crtc->base);
11557 }
11558
11559 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11560 * to set it here already despite that we pass it down the callchain.
11561 *
11562 * Note we'll need to fix this up when we start tracking multiple
11563 * pipes; here we assume a single modeset_pipe and only track the
11564 * single crtc and mode.
11565 */
11566 if (modeset_pipes) {
11567 crtc->mode = *mode;
11568 /* mode_set/enable/disable functions rely on a correct pipe
11569 * config. */
11570 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11571
11572 /*
11573 * Calculate and store various constants which
11574 * are later needed by vblank and swap-completion
11575 * timestamping. They are derived from true hwmode.
11576 */
11577 drm_calc_timestamping_constants(crtc,
11578 &pipe_config->base.adjusted_mode);
11579 }
11580
11581 /* Only after disabling all output pipelines that will be changed can we
11582 * update the the output configuration. */
11583 intel_modeset_update_state(dev, prepare_pipes);
11584
11585 modeset_update_crtc_power_domains(pipe_config->base.state);
11586
11587 /* Set up the DPLL and any encoders state that needs to adjust or depend
11588 * on the DPLL.
11589 */
11590 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11591 struct drm_plane *primary = intel_crtc->base.primary;
11592 int vdisplay, hdisplay;
11593
11594 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11595 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11596 fb, 0, 0,
11597 hdisplay, vdisplay,
11598 x << 16, y << 16,
11599 hdisplay << 16, vdisplay << 16);
11600 }
11601
11602 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11603 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11604 update_scanline_offset(intel_crtc);
11605
11606 dev_priv->display.crtc_enable(&intel_crtc->base);
11607 }
11608
11609 /* FIXME: add subpixel order */
11610 done:
11611 if (ret && crtc->state->enable)
11612 crtc->mode = *saved_mode;
11613
11614 if (ret == 0 && pipe_config) {
11615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11616
11617 /* The pipe_config will be freed with the atomic state, so
11618 * make a copy. */
11619 memcpy(crtc_state_copy, intel_crtc->config,
11620 sizeof *crtc_state_copy);
11621 intel_crtc->config = crtc_state_copy;
11622 intel_crtc->base.state = &crtc_state_copy->base;
11623
11624 if (modeset_pipes)
11625 intel_crtc->new_config = intel_crtc->config;
11626 } else {
11627 kfree(crtc_state_copy);
11628 }
11629
11630 kfree(saved_mode);
11631 return ret;
11632 }
11633
11634 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11635 struct drm_display_mode *mode,
11636 int x, int y, struct drm_framebuffer *fb,
11637 struct intel_crtc_state *pipe_config,
11638 unsigned modeset_pipes,
11639 unsigned prepare_pipes,
11640 unsigned disable_pipes)
11641 {
11642 int ret;
11643
11644 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11645 prepare_pipes, disable_pipes);
11646
11647 if (ret == 0)
11648 intel_modeset_check_state(crtc->dev);
11649
11650 return ret;
11651 }
11652
11653 static int intel_set_mode(struct drm_crtc *crtc,
11654 struct drm_display_mode *mode,
11655 int x, int y, struct drm_framebuffer *fb,
11656 struct drm_atomic_state *state)
11657 {
11658 struct intel_crtc_state *pipe_config;
11659 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11660 int ret = 0;
11661
11662 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11663 &modeset_pipes,
11664 &prepare_pipes,
11665 &disable_pipes);
11666
11667 if (IS_ERR(pipe_config)) {
11668 ret = PTR_ERR(pipe_config);
11669 goto out;
11670 }
11671
11672 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11673 modeset_pipes, prepare_pipes,
11674 disable_pipes);
11675 if (ret)
11676 goto out;
11677
11678 out:
11679 return ret;
11680 }
11681
11682 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11683 {
11684 struct drm_device *dev = crtc->dev;
11685 struct drm_atomic_state *state;
11686 struct intel_encoder *encoder;
11687 struct intel_connector *connector;
11688 struct drm_connector_state *connector_state;
11689
11690 state = drm_atomic_state_alloc(dev);
11691 if (!state) {
11692 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11693 crtc->base.id);
11694 return;
11695 }
11696
11697 state->acquire_ctx = dev->mode_config.acquire_ctx;
11698
11699 /* The force restore path in the HW readout code relies on the staged
11700 * config still keeping the user requested config while the actual
11701 * state has been overwritten by the configuration read from HW. We
11702 * need to copy the staged config to the atomic state, otherwise the
11703 * mode set will just reapply the state the HW is already in. */
11704 for_each_intel_encoder(dev, encoder) {
11705 if (&encoder->new_crtc->base != crtc)
11706 continue;
11707
11708 for_each_intel_connector(dev, connector) {
11709 if (connector->new_encoder != encoder)
11710 continue;
11711
11712 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11713 if (IS_ERR(connector_state)) {
11714 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11715 connector->base.base.id,
11716 connector->base.name,
11717 PTR_ERR(connector_state));
11718 continue;
11719 }
11720
11721 connector_state->crtc = crtc;
11722 connector_state->best_encoder = &encoder->base;
11723 }
11724 }
11725
11726 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11727 state);
11728
11729 drm_atomic_state_free(state);
11730 }
11731
11732 #undef for_each_intel_crtc_masked
11733
11734 static void intel_set_config_free(struct intel_set_config *config)
11735 {
11736 if (!config)
11737 return;
11738
11739 kfree(config->save_connector_encoders);
11740 kfree(config->save_encoder_crtcs);
11741 kfree(config->save_crtc_enabled);
11742 kfree(config);
11743 }
11744
11745 static int intel_set_config_save_state(struct drm_device *dev,
11746 struct intel_set_config *config)
11747 {
11748 struct drm_crtc *crtc;
11749 struct drm_encoder *encoder;
11750 struct drm_connector *connector;
11751 int count;
11752
11753 config->save_crtc_enabled =
11754 kcalloc(dev->mode_config.num_crtc,
11755 sizeof(bool), GFP_KERNEL);
11756 if (!config->save_crtc_enabled)
11757 return -ENOMEM;
11758
11759 config->save_encoder_crtcs =
11760 kcalloc(dev->mode_config.num_encoder,
11761 sizeof(struct drm_crtc *), GFP_KERNEL);
11762 if (!config->save_encoder_crtcs)
11763 return -ENOMEM;
11764
11765 config->save_connector_encoders =
11766 kcalloc(dev->mode_config.num_connector,
11767 sizeof(struct drm_encoder *), GFP_KERNEL);
11768 if (!config->save_connector_encoders)
11769 return -ENOMEM;
11770
11771 /* Copy data. Note that driver private data is not affected.
11772 * Should anything bad happen only the expected state is
11773 * restored, not the drivers personal bookkeeping.
11774 */
11775 count = 0;
11776 for_each_crtc(dev, crtc) {
11777 config->save_crtc_enabled[count++] = crtc->state->enable;
11778 }
11779
11780 count = 0;
11781 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11782 config->save_encoder_crtcs[count++] = encoder->crtc;
11783 }
11784
11785 count = 0;
11786 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11787 config->save_connector_encoders[count++] = connector->encoder;
11788 }
11789
11790 return 0;
11791 }
11792
11793 static void intel_set_config_restore_state(struct drm_device *dev,
11794 struct intel_set_config *config)
11795 {
11796 struct intel_crtc *crtc;
11797 struct intel_encoder *encoder;
11798 struct intel_connector *connector;
11799 int count;
11800
11801 count = 0;
11802 for_each_intel_crtc(dev, crtc) {
11803 crtc->new_enabled = config->save_crtc_enabled[count++];
11804
11805 if (crtc->new_enabled)
11806 crtc->new_config = crtc->config;
11807 else
11808 crtc->new_config = NULL;
11809 }
11810
11811 count = 0;
11812 for_each_intel_encoder(dev, encoder) {
11813 encoder->new_crtc =
11814 to_intel_crtc(config->save_encoder_crtcs[count++]);
11815 }
11816
11817 count = 0;
11818 for_each_intel_connector(dev, connector) {
11819 connector->new_encoder =
11820 to_intel_encoder(config->save_connector_encoders[count++]);
11821 }
11822 }
11823
11824 static bool
11825 is_crtc_connector_off(struct drm_mode_set *set)
11826 {
11827 int i;
11828
11829 if (set->num_connectors == 0)
11830 return false;
11831
11832 if (WARN_ON(set->connectors == NULL))
11833 return false;
11834
11835 for (i = 0; i < set->num_connectors; i++)
11836 if (set->connectors[i]->encoder &&
11837 set->connectors[i]->encoder->crtc == set->crtc &&
11838 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11839 return true;
11840
11841 return false;
11842 }
11843
11844 static void
11845 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11846 struct intel_set_config *config)
11847 {
11848
11849 /* We should be able to check here if the fb has the same properties
11850 * and then just flip_or_move it */
11851 if (is_crtc_connector_off(set)) {
11852 config->mode_changed = true;
11853 } else if (set->crtc->primary->fb != set->fb) {
11854 /*
11855 * If we have no fb, we can only flip as long as the crtc is
11856 * active, otherwise we need a full mode set. The crtc may
11857 * be active if we've only disabled the primary plane, or
11858 * in fastboot situations.
11859 */
11860 if (set->crtc->primary->fb == NULL) {
11861 struct intel_crtc *intel_crtc =
11862 to_intel_crtc(set->crtc);
11863
11864 if (intel_crtc->active) {
11865 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11866 config->fb_changed = true;
11867 } else {
11868 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11869 config->mode_changed = true;
11870 }
11871 } else if (set->fb == NULL) {
11872 config->mode_changed = true;
11873 } else if (set->fb->pixel_format !=
11874 set->crtc->primary->fb->pixel_format) {
11875 config->mode_changed = true;
11876 } else {
11877 config->fb_changed = true;
11878 }
11879 }
11880
11881 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11882 config->fb_changed = true;
11883
11884 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11885 DRM_DEBUG_KMS("modes are different, full mode set\n");
11886 drm_mode_debug_printmodeline(&set->crtc->mode);
11887 drm_mode_debug_printmodeline(set->mode);
11888 config->mode_changed = true;
11889 }
11890
11891 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11892 set->crtc->base.id, config->mode_changed, config->fb_changed);
11893 }
11894
11895 static int
11896 intel_modeset_stage_output_state(struct drm_device *dev,
11897 struct drm_mode_set *set,
11898 struct intel_set_config *config,
11899 struct drm_atomic_state *state)
11900 {
11901 struct intel_connector *connector;
11902 struct drm_connector_state *connector_state;
11903 struct intel_encoder *encoder;
11904 struct intel_crtc *crtc;
11905 int ro;
11906
11907 /* The upper layers ensure that we either disable a crtc or have a list
11908 * of connectors. For paranoia, double-check this. */
11909 WARN_ON(!set->fb && (set->num_connectors != 0));
11910 WARN_ON(set->fb && (set->num_connectors == 0));
11911
11912 for_each_intel_connector(dev, connector) {
11913 /* Otherwise traverse passed in connector list and get encoders
11914 * for them. */
11915 for (ro = 0; ro < set->num_connectors; ro++) {
11916 if (set->connectors[ro] == &connector->base) {
11917 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11918 break;
11919 }
11920 }
11921
11922 /* If we disable the crtc, disable all its connectors. Also, if
11923 * the connector is on the changing crtc but not on the new
11924 * connector list, disable it. */
11925 if ((!set->fb || ro == set->num_connectors) &&
11926 connector->base.encoder &&
11927 connector->base.encoder->crtc == set->crtc) {
11928 connector->new_encoder = NULL;
11929
11930 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11931 connector->base.base.id,
11932 connector->base.name);
11933 }
11934
11935
11936 if (&connector->new_encoder->base != connector->base.encoder) {
11937 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11938 connector->base.base.id,
11939 connector->base.name);
11940 config->mode_changed = true;
11941 }
11942 }
11943 /* connector->new_encoder is now updated for all connectors. */
11944
11945 /* Update crtc of enabled connectors. */
11946 for_each_intel_connector(dev, connector) {
11947 struct drm_crtc *new_crtc;
11948
11949 if (!connector->new_encoder)
11950 continue;
11951
11952 new_crtc = connector->new_encoder->base.crtc;
11953
11954 for (ro = 0; ro < set->num_connectors; ro++) {
11955 if (set->connectors[ro] == &connector->base)
11956 new_crtc = set->crtc;
11957 }
11958
11959 /* Make sure the new CRTC will work with the encoder */
11960 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11961 new_crtc)) {
11962 return -EINVAL;
11963 }
11964 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11965
11966 connector_state =
11967 drm_atomic_get_connector_state(state, &connector->base);
11968 if (IS_ERR(connector_state))
11969 return PTR_ERR(connector_state);
11970
11971 connector_state->crtc = new_crtc;
11972 connector_state->best_encoder = &connector->new_encoder->base;
11973
11974 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11975 connector->base.base.id,
11976 connector->base.name,
11977 new_crtc->base.id);
11978 }
11979
11980 /* Check for any encoders that needs to be disabled. */
11981 for_each_intel_encoder(dev, encoder) {
11982 int num_connectors = 0;
11983 for_each_intel_connector(dev, connector) {
11984 if (connector->new_encoder == encoder) {
11985 WARN_ON(!connector->new_encoder->new_crtc);
11986 num_connectors++;
11987 }
11988 }
11989
11990 if (num_connectors == 0)
11991 encoder->new_crtc = NULL;
11992 else if (num_connectors > 1)
11993 return -EINVAL;
11994
11995 /* Only now check for crtc changes so we don't miss encoders
11996 * that will be disabled. */
11997 if (&encoder->new_crtc->base != encoder->base.crtc) {
11998 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11999 encoder->base.base.id,
12000 encoder->base.name);
12001 config->mode_changed = true;
12002 }
12003 }
12004 /* Now we've also updated encoder->new_crtc for all encoders. */
12005 for_each_intel_connector(dev, connector) {
12006 connector_state =
12007 drm_atomic_get_connector_state(state, &connector->base);
12008 if (IS_ERR(connector_state))
12009 return PTR_ERR(connector_state);
12010
12011 if (connector->new_encoder) {
12012 if (connector->new_encoder != connector->encoder)
12013 connector->encoder = connector->new_encoder;
12014 } else {
12015 connector_state->crtc = NULL;
12016 }
12017 }
12018 for_each_intel_crtc(dev, crtc) {
12019 crtc->new_enabled = false;
12020
12021 for_each_intel_encoder(dev, encoder) {
12022 if (encoder->new_crtc == crtc) {
12023 crtc->new_enabled = true;
12024 break;
12025 }
12026 }
12027
12028 if (crtc->new_enabled != crtc->base.state->enable) {
12029 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12030 crtc->base.base.id,
12031 crtc->new_enabled ? "en" : "dis");
12032 config->mode_changed = true;
12033 }
12034
12035 if (crtc->new_enabled)
12036 crtc->new_config = crtc->config;
12037 else
12038 crtc->new_config = NULL;
12039 }
12040
12041 return 0;
12042 }
12043
12044 static void disable_crtc_nofb(struct intel_crtc *crtc)
12045 {
12046 struct drm_device *dev = crtc->base.dev;
12047 struct intel_encoder *encoder;
12048 struct intel_connector *connector;
12049
12050 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12051 pipe_name(crtc->pipe));
12052
12053 for_each_intel_connector(dev, connector) {
12054 if (connector->new_encoder &&
12055 connector->new_encoder->new_crtc == crtc)
12056 connector->new_encoder = NULL;
12057 }
12058
12059 for_each_intel_encoder(dev, encoder) {
12060 if (encoder->new_crtc == crtc)
12061 encoder->new_crtc = NULL;
12062 }
12063
12064 crtc->new_enabled = false;
12065 crtc->new_config = NULL;
12066 }
12067
12068 static int intel_crtc_set_config(struct drm_mode_set *set)
12069 {
12070 struct drm_device *dev;
12071 struct drm_mode_set save_set;
12072 struct drm_atomic_state *state = NULL;
12073 struct intel_set_config *config;
12074 struct intel_crtc_state *pipe_config;
12075 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12076 int ret;
12077
12078 BUG_ON(!set);
12079 BUG_ON(!set->crtc);
12080 BUG_ON(!set->crtc->helper_private);
12081
12082 /* Enforce sane interface api - has been abused by the fb helper. */
12083 BUG_ON(!set->mode && set->fb);
12084 BUG_ON(set->fb && set->num_connectors == 0);
12085
12086 if (set->fb) {
12087 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12088 set->crtc->base.id, set->fb->base.id,
12089 (int)set->num_connectors, set->x, set->y);
12090 } else {
12091 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12092 }
12093
12094 dev = set->crtc->dev;
12095
12096 ret = -ENOMEM;
12097 config = kzalloc(sizeof(*config), GFP_KERNEL);
12098 if (!config)
12099 goto out_config;
12100
12101 ret = intel_set_config_save_state(dev, config);
12102 if (ret)
12103 goto out_config;
12104
12105 save_set.crtc = set->crtc;
12106 save_set.mode = &set->crtc->mode;
12107 save_set.x = set->crtc->x;
12108 save_set.y = set->crtc->y;
12109 save_set.fb = set->crtc->primary->fb;
12110
12111 /* Compute whether we need a full modeset, only an fb base update or no
12112 * change at all. In the future we might also check whether only the
12113 * mode changed, e.g. for LVDS where we only change the panel fitter in
12114 * such cases. */
12115 intel_set_config_compute_mode_changes(set, config);
12116
12117 state = drm_atomic_state_alloc(dev);
12118 if (!state) {
12119 ret = -ENOMEM;
12120 goto out_config;
12121 }
12122
12123 state->acquire_ctx = dev->mode_config.acquire_ctx;
12124
12125 ret = intel_modeset_stage_output_state(dev, set, config, state);
12126 if (ret)
12127 goto fail;
12128
12129 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12130 set->fb, state,
12131 &modeset_pipes,
12132 &prepare_pipes,
12133 &disable_pipes);
12134 if (IS_ERR(pipe_config)) {
12135 ret = PTR_ERR(pipe_config);
12136 goto fail;
12137 } else if (pipe_config) {
12138 if (pipe_config->has_audio !=
12139 to_intel_crtc(set->crtc)->config->has_audio)
12140 config->mode_changed = true;
12141
12142 /*
12143 * Note we have an issue here with infoframes: current code
12144 * only updates them on the full mode set path per hw
12145 * requirements. So here we should be checking for any
12146 * required changes and forcing a mode set.
12147 */
12148 }
12149
12150 intel_update_pipe_size(to_intel_crtc(set->crtc));
12151
12152 if (config->mode_changed) {
12153 ret = intel_set_mode_pipes(set->crtc, set->mode,
12154 set->x, set->y, set->fb, pipe_config,
12155 modeset_pipes, prepare_pipes,
12156 disable_pipes);
12157 } else if (config->fb_changed) {
12158 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12159 struct drm_plane *primary = set->crtc->primary;
12160 int vdisplay, hdisplay;
12161
12162 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12163 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12164 0, 0, hdisplay, vdisplay,
12165 set->x << 16, set->y << 16,
12166 hdisplay << 16, vdisplay << 16);
12167
12168 /*
12169 * We need to make sure the primary plane is re-enabled if it
12170 * has previously been turned off.
12171 */
12172 if (!intel_crtc->primary_enabled && ret == 0) {
12173 WARN_ON(!intel_crtc->active);
12174 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12175 }
12176
12177 /*
12178 * In the fastboot case this may be our only check of the
12179 * state after boot. It would be better to only do it on
12180 * the first update, but we don't have a nice way of doing that
12181 * (and really, set_config isn't used much for high freq page
12182 * flipping, so increasing its cost here shouldn't be a big
12183 * deal).
12184 */
12185 if (i915.fastboot && ret == 0)
12186 intel_modeset_check_state(set->crtc->dev);
12187 }
12188
12189 if (ret) {
12190 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12191 set->crtc->base.id, ret);
12192 fail:
12193 intel_set_config_restore_state(dev, config);
12194
12195 drm_atomic_state_clear(state);
12196
12197 /*
12198 * HACK: if the pipe was on, but we didn't have a framebuffer,
12199 * force the pipe off to avoid oopsing in the modeset code
12200 * due to fb==NULL. This should only happen during boot since
12201 * we don't yet reconstruct the FB from the hardware state.
12202 */
12203 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12204 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12205
12206 /* Try to restore the config */
12207 if (config->mode_changed &&
12208 intel_set_mode(save_set.crtc, save_set.mode,
12209 save_set.x, save_set.y, save_set.fb,
12210 state))
12211 DRM_ERROR("failed to restore config after modeset failure\n");
12212 }
12213
12214 out_config:
12215 if (state)
12216 drm_atomic_state_free(state);
12217
12218 intel_set_config_free(config);
12219 return ret;
12220 }
12221
12222 static const struct drm_crtc_funcs intel_crtc_funcs = {
12223 .gamma_set = intel_crtc_gamma_set,
12224 .set_config = intel_crtc_set_config,
12225 .destroy = intel_crtc_destroy,
12226 .page_flip = intel_crtc_page_flip,
12227 .atomic_duplicate_state = intel_crtc_duplicate_state,
12228 .atomic_destroy_state = intel_crtc_destroy_state,
12229 };
12230
12231 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12232 struct intel_shared_dpll *pll,
12233 struct intel_dpll_hw_state *hw_state)
12234 {
12235 uint32_t val;
12236
12237 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12238 return false;
12239
12240 val = I915_READ(PCH_DPLL(pll->id));
12241 hw_state->dpll = val;
12242 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12243 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12244
12245 return val & DPLL_VCO_ENABLE;
12246 }
12247
12248 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12249 struct intel_shared_dpll *pll)
12250 {
12251 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12252 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12253 }
12254
12255 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12256 struct intel_shared_dpll *pll)
12257 {
12258 /* PCH refclock must be enabled first */
12259 ibx_assert_pch_refclk_enabled(dev_priv);
12260
12261 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12262
12263 /* Wait for the clocks to stabilize. */
12264 POSTING_READ(PCH_DPLL(pll->id));
12265 udelay(150);
12266
12267 /* The pixel multiplier can only be updated once the
12268 * DPLL is enabled and the clocks are stable.
12269 *
12270 * So write it again.
12271 */
12272 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12273 POSTING_READ(PCH_DPLL(pll->id));
12274 udelay(200);
12275 }
12276
12277 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12278 struct intel_shared_dpll *pll)
12279 {
12280 struct drm_device *dev = dev_priv->dev;
12281 struct intel_crtc *crtc;
12282
12283 /* Make sure no transcoder isn't still depending on us. */
12284 for_each_intel_crtc(dev, crtc) {
12285 if (intel_crtc_to_shared_dpll(crtc) == pll)
12286 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12287 }
12288
12289 I915_WRITE(PCH_DPLL(pll->id), 0);
12290 POSTING_READ(PCH_DPLL(pll->id));
12291 udelay(200);
12292 }
12293
12294 static char *ibx_pch_dpll_names[] = {
12295 "PCH DPLL A",
12296 "PCH DPLL B",
12297 };
12298
12299 static void ibx_pch_dpll_init(struct drm_device *dev)
12300 {
12301 struct drm_i915_private *dev_priv = dev->dev_private;
12302 int i;
12303
12304 dev_priv->num_shared_dpll = 2;
12305
12306 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12307 dev_priv->shared_dplls[i].id = i;
12308 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12309 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12310 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12311 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12312 dev_priv->shared_dplls[i].get_hw_state =
12313 ibx_pch_dpll_get_hw_state;
12314 }
12315 }
12316
12317 static void intel_shared_dpll_init(struct drm_device *dev)
12318 {
12319 struct drm_i915_private *dev_priv = dev->dev_private;
12320
12321 if (HAS_DDI(dev))
12322 intel_ddi_pll_init(dev);
12323 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12324 ibx_pch_dpll_init(dev);
12325 else
12326 dev_priv->num_shared_dpll = 0;
12327
12328 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12329 }
12330
12331 /**
12332 * intel_wm_need_update - Check whether watermarks need updating
12333 * @plane: drm plane
12334 * @state: new plane state
12335 *
12336 * Check current plane state versus the new one to determine whether
12337 * watermarks need to be recalculated.
12338 *
12339 * Returns true or false.
12340 */
12341 bool intel_wm_need_update(struct drm_plane *plane,
12342 struct drm_plane_state *state)
12343 {
12344 /* Update watermarks on tiling changes. */
12345 if (!plane->state->fb || !state->fb ||
12346 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12347 plane->state->rotation != state->rotation)
12348 return true;
12349
12350 return false;
12351 }
12352
12353 /**
12354 * intel_prepare_plane_fb - Prepare fb for usage on plane
12355 * @plane: drm plane to prepare for
12356 * @fb: framebuffer to prepare for presentation
12357 *
12358 * Prepares a framebuffer for usage on a display plane. Generally this
12359 * involves pinning the underlying object and updating the frontbuffer tracking
12360 * bits. Some older platforms need special physical address handling for
12361 * cursor planes.
12362 *
12363 * Returns 0 on success, negative error code on failure.
12364 */
12365 int
12366 intel_prepare_plane_fb(struct drm_plane *plane,
12367 struct drm_framebuffer *fb,
12368 const struct drm_plane_state *new_state)
12369 {
12370 struct drm_device *dev = plane->dev;
12371 struct intel_plane *intel_plane = to_intel_plane(plane);
12372 enum pipe pipe = intel_plane->pipe;
12373 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12374 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12375 unsigned frontbuffer_bits = 0;
12376 int ret = 0;
12377
12378 if (!obj)
12379 return 0;
12380
12381 switch (plane->type) {
12382 case DRM_PLANE_TYPE_PRIMARY:
12383 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12384 break;
12385 case DRM_PLANE_TYPE_CURSOR:
12386 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12387 break;
12388 case DRM_PLANE_TYPE_OVERLAY:
12389 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12390 break;
12391 }
12392
12393 mutex_lock(&dev->struct_mutex);
12394
12395 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12396 INTEL_INFO(dev)->cursor_needs_physical) {
12397 int align = IS_I830(dev) ? 16 * 1024 : 256;
12398 ret = i915_gem_object_attach_phys(obj, align);
12399 if (ret)
12400 DRM_DEBUG_KMS("failed to attach phys object\n");
12401 } else {
12402 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12403 }
12404
12405 if (ret == 0)
12406 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12407
12408 mutex_unlock(&dev->struct_mutex);
12409
12410 return ret;
12411 }
12412
12413 /**
12414 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12415 * @plane: drm plane to clean up for
12416 * @fb: old framebuffer that was on plane
12417 *
12418 * Cleans up a framebuffer that has just been removed from a plane.
12419 */
12420 void
12421 intel_cleanup_plane_fb(struct drm_plane *plane,
12422 struct drm_framebuffer *fb,
12423 const struct drm_plane_state *old_state)
12424 {
12425 struct drm_device *dev = plane->dev;
12426 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12427
12428 if (WARN_ON(!obj))
12429 return;
12430
12431 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12432 !INTEL_INFO(dev)->cursor_needs_physical) {
12433 mutex_lock(&dev->struct_mutex);
12434 intel_unpin_fb_obj(fb, old_state);
12435 mutex_unlock(&dev->struct_mutex);
12436 }
12437 }
12438
12439 static int
12440 intel_check_primary_plane(struct drm_plane *plane,
12441 struct intel_plane_state *state)
12442 {
12443 struct drm_device *dev = plane->dev;
12444 struct drm_i915_private *dev_priv = dev->dev_private;
12445 struct drm_crtc *crtc = state->base.crtc;
12446 struct intel_crtc *intel_crtc;
12447 struct drm_framebuffer *fb = state->base.fb;
12448 struct drm_rect *dest = &state->dst;
12449 struct drm_rect *src = &state->src;
12450 const struct drm_rect *clip = &state->clip;
12451 int ret;
12452
12453 crtc = crtc ? crtc : plane->crtc;
12454 intel_crtc = to_intel_crtc(crtc);
12455
12456 ret = drm_plane_helper_check_update(plane, crtc, fb,
12457 src, dest, clip,
12458 DRM_PLANE_HELPER_NO_SCALING,
12459 DRM_PLANE_HELPER_NO_SCALING,
12460 false, true, &state->visible);
12461 if (ret)
12462 return ret;
12463
12464 if (intel_crtc->active) {
12465 intel_crtc->atomic.wait_for_flips = true;
12466
12467 /*
12468 * FBC does not work on some platforms for rotated
12469 * planes, so disable it when rotation is not 0 and
12470 * update it when rotation is set back to 0.
12471 *
12472 * FIXME: This is redundant with the fbc update done in
12473 * the primary plane enable function except that that
12474 * one is done too late. We eventually need to unify
12475 * this.
12476 */
12477 if (intel_crtc->primary_enabled &&
12478 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12479 dev_priv->fbc.crtc == intel_crtc &&
12480 state->base.rotation != BIT(DRM_ROTATE_0)) {
12481 intel_crtc->atomic.disable_fbc = true;
12482 }
12483
12484 if (state->visible) {
12485 /*
12486 * BDW signals flip done immediately if the plane
12487 * is disabled, even if the plane enable is already
12488 * armed to occur at the next vblank :(
12489 */
12490 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12491 intel_crtc->atomic.wait_vblank = true;
12492 }
12493
12494 intel_crtc->atomic.fb_bits |=
12495 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12496
12497 intel_crtc->atomic.update_fbc = true;
12498
12499 if (intel_wm_need_update(plane, &state->base))
12500 intel_crtc->atomic.update_wm = true;
12501 }
12502
12503 return 0;
12504 }
12505
12506 static void
12507 intel_commit_primary_plane(struct drm_plane *plane,
12508 struct intel_plane_state *state)
12509 {
12510 struct drm_crtc *crtc = state->base.crtc;
12511 struct drm_framebuffer *fb = state->base.fb;
12512 struct drm_device *dev = plane->dev;
12513 struct drm_i915_private *dev_priv = dev->dev_private;
12514 struct intel_crtc *intel_crtc;
12515 struct drm_rect *src = &state->src;
12516
12517 crtc = crtc ? crtc : plane->crtc;
12518 intel_crtc = to_intel_crtc(crtc);
12519
12520 plane->fb = fb;
12521 crtc->x = src->x1 >> 16;
12522 crtc->y = src->y1 >> 16;
12523
12524 if (intel_crtc->active) {
12525 if (state->visible) {
12526 /* FIXME: kill this fastboot hack */
12527 intel_update_pipe_size(intel_crtc);
12528
12529 intel_crtc->primary_enabled = true;
12530
12531 dev_priv->display.update_primary_plane(crtc, plane->fb,
12532 crtc->x, crtc->y);
12533 } else {
12534 /*
12535 * If clipping results in a non-visible primary plane,
12536 * we'll disable the primary plane. Note that this is
12537 * a bit different than what happens if userspace
12538 * explicitly disables the plane by passing fb=0
12539 * because plane->fb still gets set and pinned.
12540 */
12541 intel_disable_primary_hw_plane(plane, crtc);
12542 }
12543 }
12544 }
12545
12546 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12547 {
12548 struct drm_device *dev = crtc->dev;
12549 struct drm_i915_private *dev_priv = dev->dev_private;
12550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12551 struct intel_plane *intel_plane;
12552 struct drm_plane *p;
12553 unsigned fb_bits = 0;
12554
12555 /* Track fb's for any planes being disabled */
12556 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12557 intel_plane = to_intel_plane(p);
12558
12559 if (intel_crtc->atomic.disabled_planes &
12560 (1 << drm_plane_index(p))) {
12561 switch (p->type) {
12562 case DRM_PLANE_TYPE_PRIMARY:
12563 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12564 break;
12565 case DRM_PLANE_TYPE_CURSOR:
12566 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12567 break;
12568 case DRM_PLANE_TYPE_OVERLAY:
12569 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12570 break;
12571 }
12572
12573 mutex_lock(&dev->struct_mutex);
12574 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12575 mutex_unlock(&dev->struct_mutex);
12576 }
12577 }
12578
12579 if (intel_crtc->atomic.wait_for_flips)
12580 intel_crtc_wait_for_pending_flips(crtc);
12581
12582 if (intel_crtc->atomic.disable_fbc)
12583 intel_fbc_disable(dev);
12584
12585 if (intel_crtc->atomic.pre_disable_primary)
12586 intel_pre_disable_primary(crtc);
12587
12588 if (intel_crtc->atomic.update_wm)
12589 intel_update_watermarks(crtc);
12590
12591 intel_runtime_pm_get(dev_priv);
12592
12593 /* Perform vblank evasion around commit operation */
12594 if (intel_crtc->active)
12595 intel_crtc->atomic.evade =
12596 intel_pipe_update_start(intel_crtc,
12597 &intel_crtc->atomic.start_vbl_count);
12598 }
12599
12600 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12601 {
12602 struct drm_device *dev = crtc->dev;
12603 struct drm_i915_private *dev_priv = dev->dev_private;
12604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12605 struct drm_plane *p;
12606
12607 if (intel_crtc->atomic.evade)
12608 intel_pipe_update_end(intel_crtc,
12609 intel_crtc->atomic.start_vbl_count);
12610
12611 intel_runtime_pm_put(dev_priv);
12612
12613 if (intel_crtc->atomic.wait_vblank)
12614 intel_wait_for_vblank(dev, intel_crtc->pipe);
12615
12616 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12617
12618 if (intel_crtc->atomic.update_fbc) {
12619 mutex_lock(&dev->struct_mutex);
12620 intel_fbc_update(dev);
12621 mutex_unlock(&dev->struct_mutex);
12622 }
12623
12624 if (intel_crtc->atomic.post_enable_primary)
12625 intel_post_enable_primary(crtc);
12626
12627 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12628 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12629 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12630 false, false);
12631
12632 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12633 }
12634
12635 /**
12636 * intel_plane_destroy - destroy a plane
12637 * @plane: plane to destroy
12638 *
12639 * Common destruction function for all types of planes (primary, cursor,
12640 * sprite).
12641 */
12642 void intel_plane_destroy(struct drm_plane *plane)
12643 {
12644 struct intel_plane *intel_plane = to_intel_plane(plane);
12645 drm_plane_cleanup(plane);
12646 kfree(intel_plane);
12647 }
12648
12649 const struct drm_plane_funcs intel_plane_funcs = {
12650 .update_plane = drm_plane_helper_update,
12651 .disable_plane = drm_plane_helper_disable,
12652 .destroy = intel_plane_destroy,
12653 .set_property = drm_atomic_helper_plane_set_property,
12654 .atomic_get_property = intel_plane_atomic_get_property,
12655 .atomic_set_property = intel_plane_atomic_set_property,
12656 .atomic_duplicate_state = intel_plane_duplicate_state,
12657 .atomic_destroy_state = intel_plane_destroy_state,
12658
12659 };
12660
12661 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12662 int pipe)
12663 {
12664 struct intel_plane *primary;
12665 struct intel_plane_state *state;
12666 const uint32_t *intel_primary_formats;
12667 int num_formats;
12668
12669 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12670 if (primary == NULL)
12671 return NULL;
12672
12673 state = intel_create_plane_state(&primary->base);
12674 if (!state) {
12675 kfree(primary);
12676 return NULL;
12677 }
12678 primary->base.state = &state->base;
12679
12680 primary->can_scale = false;
12681 primary->max_downscale = 1;
12682 primary->pipe = pipe;
12683 primary->plane = pipe;
12684 primary->check_plane = intel_check_primary_plane;
12685 primary->commit_plane = intel_commit_primary_plane;
12686 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12687 primary->plane = !pipe;
12688
12689 if (INTEL_INFO(dev)->gen <= 3) {
12690 intel_primary_formats = intel_primary_formats_gen2;
12691 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12692 } else {
12693 intel_primary_formats = intel_primary_formats_gen4;
12694 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12695 }
12696
12697 drm_universal_plane_init(dev, &primary->base, 0,
12698 &intel_plane_funcs,
12699 intel_primary_formats, num_formats,
12700 DRM_PLANE_TYPE_PRIMARY);
12701
12702 if (INTEL_INFO(dev)->gen >= 4) {
12703 if (!dev->mode_config.rotation_property)
12704 dev->mode_config.rotation_property =
12705 drm_mode_create_rotation_property(dev,
12706 BIT(DRM_ROTATE_0) |
12707 BIT(DRM_ROTATE_180));
12708 if (dev->mode_config.rotation_property)
12709 drm_object_attach_property(&primary->base.base,
12710 dev->mode_config.rotation_property,
12711 state->base.rotation);
12712 }
12713
12714 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12715
12716 return &primary->base;
12717 }
12718
12719 static int
12720 intel_check_cursor_plane(struct drm_plane *plane,
12721 struct intel_plane_state *state)
12722 {
12723 struct drm_crtc *crtc = state->base.crtc;
12724 struct drm_device *dev = plane->dev;
12725 struct drm_framebuffer *fb = state->base.fb;
12726 struct drm_rect *dest = &state->dst;
12727 struct drm_rect *src = &state->src;
12728 const struct drm_rect *clip = &state->clip;
12729 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12730 struct intel_crtc *intel_crtc;
12731 unsigned stride;
12732 int ret;
12733
12734 crtc = crtc ? crtc : plane->crtc;
12735 intel_crtc = to_intel_crtc(crtc);
12736
12737 ret = drm_plane_helper_check_update(plane, crtc, fb,
12738 src, dest, clip,
12739 DRM_PLANE_HELPER_NO_SCALING,
12740 DRM_PLANE_HELPER_NO_SCALING,
12741 true, true, &state->visible);
12742 if (ret)
12743 return ret;
12744
12745
12746 /* if we want to turn off the cursor ignore width and height */
12747 if (!obj)
12748 goto finish;
12749
12750 /* Check for which cursor types we support */
12751 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12752 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12753 state->base.crtc_w, state->base.crtc_h);
12754 return -EINVAL;
12755 }
12756
12757 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12758 if (obj->base.size < stride * state->base.crtc_h) {
12759 DRM_DEBUG_KMS("buffer is too small\n");
12760 return -ENOMEM;
12761 }
12762
12763 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12764 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12765 ret = -EINVAL;
12766 }
12767
12768 finish:
12769 if (intel_crtc->active) {
12770 if (plane->state->crtc_w != state->base.crtc_w)
12771 intel_crtc->atomic.update_wm = true;
12772
12773 intel_crtc->atomic.fb_bits |=
12774 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12775 }
12776
12777 return ret;
12778 }
12779
12780 static void
12781 intel_commit_cursor_plane(struct drm_plane *plane,
12782 struct intel_plane_state *state)
12783 {
12784 struct drm_crtc *crtc = state->base.crtc;
12785 struct drm_device *dev = plane->dev;
12786 struct intel_crtc *intel_crtc;
12787 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12788 uint32_t addr;
12789
12790 crtc = crtc ? crtc : plane->crtc;
12791 intel_crtc = to_intel_crtc(crtc);
12792
12793 plane->fb = state->base.fb;
12794 crtc->cursor_x = state->base.crtc_x;
12795 crtc->cursor_y = state->base.crtc_y;
12796
12797 if (intel_crtc->cursor_bo == obj)
12798 goto update;
12799
12800 if (!obj)
12801 addr = 0;
12802 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12803 addr = i915_gem_obj_ggtt_offset(obj);
12804 else
12805 addr = obj->phys_handle->busaddr;
12806
12807 intel_crtc->cursor_addr = addr;
12808 intel_crtc->cursor_bo = obj;
12809 update:
12810
12811 if (intel_crtc->active)
12812 intel_crtc_update_cursor(crtc, state->visible);
12813 }
12814
12815 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12816 int pipe)
12817 {
12818 struct intel_plane *cursor;
12819 struct intel_plane_state *state;
12820
12821 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12822 if (cursor == NULL)
12823 return NULL;
12824
12825 state = intel_create_plane_state(&cursor->base);
12826 if (!state) {
12827 kfree(cursor);
12828 return NULL;
12829 }
12830 cursor->base.state = &state->base;
12831
12832 cursor->can_scale = false;
12833 cursor->max_downscale = 1;
12834 cursor->pipe = pipe;
12835 cursor->plane = pipe;
12836 cursor->check_plane = intel_check_cursor_plane;
12837 cursor->commit_plane = intel_commit_cursor_plane;
12838
12839 drm_universal_plane_init(dev, &cursor->base, 0,
12840 &intel_plane_funcs,
12841 intel_cursor_formats,
12842 ARRAY_SIZE(intel_cursor_formats),
12843 DRM_PLANE_TYPE_CURSOR);
12844
12845 if (INTEL_INFO(dev)->gen >= 4) {
12846 if (!dev->mode_config.rotation_property)
12847 dev->mode_config.rotation_property =
12848 drm_mode_create_rotation_property(dev,
12849 BIT(DRM_ROTATE_0) |
12850 BIT(DRM_ROTATE_180));
12851 if (dev->mode_config.rotation_property)
12852 drm_object_attach_property(&cursor->base.base,
12853 dev->mode_config.rotation_property,
12854 state->base.rotation);
12855 }
12856
12857 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12858
12859 return &cursor->base;
12860 }
12861
12862 static void intel_crtc_init(struct drm_device *dev, int pipe)
12863 {
12864 struct drm_i915_private *dev_priv = dev->dev_private;
12865 struct intel_crtc *intel_crtc;
12866 struct intel_crtc_state *crtc_state = NULL;
12867 struct drm_plane *primary = NULL;
12868 struct drm_plane *cursor = NULL;
12869 int i, ret;
12870
12871 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12872 if (intel_crtc == NULL)
12873 return;
12874
12875 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12876 if (!crtc_state)
12877 goto fail;
12878 intel_crtc_set_state(intel_crtc, crtc_state);
12879 crtc_state->base.crtc = &intel_crtc->base;
12880
12881 primary = intel_primary_plane_create(dev, pipe);
12882 if (!primary)
12883 goto fail;
12884
12885 cursor = intel_cursor_plane_create(dev, pipe);
12886 if (!cursor)
12887 goto fail;
12888
12889 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12890 cursor, &intel_crtc_funcs);
12891 if (ret)
12892 goto fail;
12893
12894 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12895 for (i = 0; i < 256; i++) {
12896 intel_crtc->lut_r[i] = i;
12897 intel_crtc->lut_g[i] = i;
12898 intel_crtc->lut_b[i] = i;
12899 }
12900
12901 /*
12902 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12903 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12904 */
12905 intel_crtc->pipe = pipe;
12906 intel_crtc->plane = pipe;
12907 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12908 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12909 intel_crtc->plane = !pipe;
12910 }
12911
12912 intel_crtc->cursor_base = ~0;
12913 intel_crtc->cursor_cntl = ~0;
12914 intel_crtc->cursor_size = ~0;
12915
12916 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12917 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12918 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12919 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12920
12921 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12922
12923 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12924
12925 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12926 return;
12927
12928 fail:
12929 if (primary)
12930 drm_plane_cleanup(primary);
12931 if (cursor)
12932 drm_plane_cleanup(cursor);
12933 kfree(crtc_state);
12934 kfree(intel_crtc);
12935 }
12936
12937 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12938 {
12939 struct drm_encoder *encoder = connector->base.encoder;
12940 struct drm_device *dev = connector->base.dev;
12941
12942 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12943
12944 if (!encoder || WARN_ON(!encoder->crtc))
12945 return INVALID_PIPE;
12946
12947 return to_intel_crtc(encoder->crtc)->pipe;
12948 }
12949
12950 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12951 struct drm_file *file)
12952 {
12953 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12954 struct drm_crtc *drmmode_crtc;
12955 struct intel_crtc *crtc;
12956
12957 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12958
12959 if (!drmmode_crtc) {
12960 DRM_ERROR("no such CRTC id\n");
12961 return -ENOENT;
12962 }
12963
12964 crtc = to_intel_crtc(drmmode_crtc);
12965 pipe_from_crtc_id->pipe = crtc->pipe;
12966
12967 return 0;
12968 }
12969
12970 static int intel_encoder_clones(struct intel_encoder *encoder)
12971 {
12972 struct drm_device *dev = encoder->base.dev;
12973 struct intel_encoder *source_encoder;
12974 int index_mask = 0;
12975 int entry = 0;
12976
12977 for_each_intel_encoder(dev, source_encoder) {
12978 if (encoders_cloneable(encoder, source_encoder))
12979 index_mask |= (1 << entry);
12980
12981 entry++;
12982 }
12983
12984 return index_mask;
12985 }
12986
12987 static bool has_edp_a(struct drm_device *dev)
12988 {
12989 struct drm_i915_private *dev_priv = dev->dev_private;
12990
12991 if (!IS_MOBILE(dev))
12992 return false;
12993
12994 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12995 return false;
12996
12997 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12998 return false;
12999
13000 return true;
13001 }
13002
13003 static bool intel_crt_present(struct drm_device *dev)
13004 {
13005 struct drm_i915_private *dev_priv = dev->dev_private;
13006
13007 if (INTEL_INFO(dev)->gen >= 9)
13008 return false;
13009
13010 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13011 return false;
13012
13013 if (IS_CHERRYVIEW(dev))
13014 return false;
13015
13016 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13017 return false;
13018
13019 return true;
13020 }
13021
13022 static void intel_setup_outputs(struct drm_device *dev)
13023 {
13024 struct drm_i915_private *dev_priv = dev->dev_private;
13025 struct intel_encoder *encoder;
13026 struct drm_connector *connector;
13027 bool dpd_is_edp = false;
13028
13029 intel_lvds_init(dev);
13030
13031 if (intel_crt_present(dev))
13032 intel_crt_init(dev);
13033
13034 if (HAS_DDI(dev)) {
13035 int found;
13036
13037 /*
13038 * Haswell uses DDI functions to detect digital outputs.
13039 * On SKL pre-D0 the strap isn't connected, so we assume
13040 * it's there.
13041 */
13042 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13043 /* WaIgnoreDDIAStrap: skl */
13044 if (found ||
13045 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13046 intel_ddi_init(dev, PORT_A);
13047
13048 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13049 * register */
13050 found = I915_READ(SFUSE_STRAP);
13051
13052 if (found & SFUSE_STRAP_DDIB_DETECTED)
13053 intel_ddi_init(dev, PORT_B);
13054 if (found & SFUSE_STRAP_DDIC_DETECTED)
13055 intel_ddi_init(dev, PORT_C);
13056 if (found & SFUSE_STRAP_DDID_DETECTED)
13057 intel_ddi_init(dev, PORT_D);
13058 } else if (HAS_PCH_SPLIT(dev)) {
13059 int found;
13060 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13061
13062 if (has_edp_a(dev))
13063 intel_dp_init(dev, DP_A, PORT_A);
13064
13065 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13066 /* PCH SDVOB multiplex with HDMIB */
13067 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13068 if (!found)
13069 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13070 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13071 intel_dp_init(dev, PCH_DP_B, PORT_B);
13072 }
13073
13074 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13075 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13076
13077 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13078 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13079
13080 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13081 intel_dp_init(dev, PCH_DP_C, PORT_C);
13082
13083 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13084 intel_dp_init(dev, PCH_DP_D, PORT_D);
13085 } else if (IS_VALLEYVIEW(dev)) {
13086 /*
13087 * The DP_DETECTED bit is the latched state of the DDC
13088 * SDA pin at boot. However since eDP doesn't require DDC
13089 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13090 * eDP ports may have been muxed to an alternate function.
13091 * Thus we can't rely on the DP_DETECTED bit alone to detect
13092 * eDP ports. Consult the VBT as well as DP_DETECTED to
13093 * detect eDP ports.
13094 */
13095 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13096 !intel_dp_is_edp(dev, PORT_B))
13097 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13098 PORT_B);
13099 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13100 intel_dp_is_edp(dev, PORT_B))
13101 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13102
13103 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13104 !intel_dp_is_edp(dev, PORT_C))
13105 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13106 PORT_C);
13107 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13108 intel_dp_is_edp(dev, PORT_C))
13109 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13110
13111 if (IS_CHERRYVIEW(dev)) {
13112 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13113 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13114 PORT_D);
13115 /* eDP not supported on port D, so don't check VBT */
13116 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13117 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13118 }
13119
13120 intel_dsi_init(dev);
13121 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13122 bool found = false;
13123
13124 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13125 DRM_DEBUG_KMS("probing SDVOB\n");
13126 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13127 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13128 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13129 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13130 }
13131
13132 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13133 intel_dp_init(dev, DP_B, PORT_B);
13134 }
13135
13136 /* Before G4X SDVOC doesn't have its own detect register */
13137
13138 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13139 DRM_DEBUG_KMS("probing SDVOC\n");
13140 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13141 }
13142
13143 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13144
13145 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13146 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13147 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13148 }
13149 if (SUPPORTS_INTEGRATED_DP(dev))
13150 intel_dp_init(dev, DP_C, PORT_C);
13151 }
13152
13153 if (SUPPORTS_INTEGRATED_DP(dev) &&
13154 (I915_READ(DP_D) & DP_DETECTED))
13155 intel_dp_init(dev, DP_D, PORT_D);
13156 } else if (IS_GEN2(dev))
13157 intel_dvo_init(dev);
13158
13159 if (SUPPORTS_TV(dev))
13160 intel_tv_init(dev);
13161
13162 /*
13163 * FIXME: We don't have full atomic support yet, but we want to be
13164 * able to enable/test plane updates via the atomic interface in the
13165 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
13166 * will take some atomic codepaths to lookup properties during
13167 * drmModeGetConnector() that unconditionally dereference
13168 * connector->state.
13169 *
13170 * We create a dummy connector state here for each connector to ensure
13171 * the DRM core doesn't try to dereference a NULL connector->state.
13172 * The actual connector properties will never be updated or contain
13173 * useful information, but since we're doing this specifically for
13174 * testing/debug of the plane operations (and only when a specific
13175 * kernel module option is given), that shouldn't really matter.
13176 *
13177 * We are also relying on these states to convert the legacy mode set
13178 * to use a drm_atomic_state struct. The states are kept consistent
13179 * with actual state, so that it is safe to rely on that instead of
13180 * the staged config.
13181 *
13182 * Once atomic support for crtc's + connectors lands, this loop should
13183 * be removed since we'll be setting up real connector state, which
13184 * will contain Intel-specific properties.
13185 */
13186 list_for_each_entry(connector,
13187 &dev->mode_config.connector_list,
13188 head) {
13189 if (!WARN_ON(connector->state)) {
13190 connector->state = kzalloc(sizeof(*connector->state),
13191 GFP_KERNEL);
13192 }
13193 }
13194
13195 intel_psr_init(dev);
13196
13197 for_each_intel_encoder(dev, encoder) {
13198 encoder->base.possible_crtcs = encoder->crtc_mask;
13199 encoder->base.possible_clones =
13200 intel_encoder_clones(encoder);
13201 }
13202
13203 intel_init_pch_refclk(dev);
13204
13205 drm_helper_move_panel_connectors_to_head(dev);
13206 }
13207
13208 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13209 {
13210 struct drm_device *dev = fb->dev;
13211 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13212
13213 drm_framebuffer_cleanup(fb);
13214 mutex_lock(&dev->struct_mutex);
13215 WARN_ON(!intel_fb->obj->framebuffer_references--);
13216 drm_gem_object_unreference(&intel_fb->obj->base);
13217 mutex_unlock(&dev->struct_mutex);
13218 kfree(intel_fb);
13219 }
13220
13221 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13222 struct drm_file *file,
13223 unsigned int *handle)
13224 {
13225 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13226 struct drm_i915_gem_object *obj = intel_fb->obj;
13227
13228 return drm_gem_handle_create(file, &obj->base, handle);
13229 }
13230
13231 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13232 .destroy = intel_user_framebuffer_destroy,
13233 .create_handle = intel_user_framebuffer_create_handle,
13234 };
13235
13236 static
13237 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13238 uint32_t pixel_format)
13239 {
13240 u32 gen = INTEL_INFO(dev)->gen;
13241
13242 if (gen >= 9) {
13243 /* "The stride in bytes must not exceed the of the size of 8K
13244 * pixels and 32K bytes."
13245 */
13246 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13247 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13248 return 32*1024;
13249 } else if (gen >= 4) {
13250 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13251 return 16*1024;
13252 else
13253 return 32*1024;
13254 } else if (gen >= 3) {
13255 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13256 return 8*1024;
13257 else
13258 return 16*1024;
13259 } else {
13260 /* XXX DSPC is limited to 4k tiled */
13261 return 8*1024;
13262 }
13263 }
13264
13265 static int intel_framebuffer_init(struct drm_device *dev,
13266 struct intel_framebuffer *intel_fb,
13267 struct drm_mode_fb_cmd2 *mode_cmd,
13268 struct drm_i915_gem_object *obj)
13269 {
13270 unsigned int aligned_height;
13271 int ret;
13272 u32 pitch_limit, stride_alignment;
13273
13274 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13275
13276 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13277 /* Enforce that fb modifier and tiling mode match, but only for
13278 * X-tiled. This is needed for FBC. */
13279 if (!!(obj->tiling_mode == I915_TILING_X) !=
13280 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13281 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13282 return -EINVAL;
13283 }
13284 } else {
13285 if (obj->tiling_mode == I915_TILING_X)
13286 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13287 else if (obj->tiling_mode == I915_TILING_Y) {
13288 DRM_DEBUG("No Y tiling for legacy addfb\n");
13289 return -EINVAL;
13290 }
13291 }
13292
13293 /* Passed in modifier sanity checking. */
13294 switch (mode_cmd->modifier[0]) {
13295 case I915_FORMAT_MOD_Y_TILED:
13296 case I915_FORMAT_MOD_Yf_TILED:
13297 if (INTEL_INFO(dev)->gen < 9) {
13298 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13299 mode_cmd->modifier[0]);
13300 return -EINVAL;
13301 }
13302 case DRM_FORMAT_MOD_NONE:
13303 case I915_FORMAT_MOD_X_TILED:
13304 break;
13305 default:
13306 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13307 mode_cmd->modifier[0]);
13308 return -EINVAL;
13309 }
13310
13311 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13312 mode_cmd->pixel_format);
13313 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13314 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13315 mode_cmd->pitches[0], stride_alignment);
13316 return -EINVAL;
13317 }
13318
13319 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13320 mode_cmd->pixel_format);
13321 if (mode_cmd->pitches[0] > pitch_limit) {
13322 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13323 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13324 "tiled" : "linear",
13325 mode_cmd->pitches[0], pitch_limit);
13326 return -EINVAL;
13327 }
13328
13329 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13330 mode_cmd->pitches[0] != obj->stride) {
13331 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13332 mode_cmd->pitches[0], obj->stride);
13333 return -EINVAL;
13334 }
13335
13336 /* Reject formats not supported by any plane early. */
13337 switch (mode_cmd->pixel_format) {
13338 case DRM_FORMAT_C8:
13339 case DRM_FORMAT_RGB565:
13340 case DRM_FORMAT_XRGB8888:
13341 case DRM_FORMAT_ARGB8888:
13342 break;
13343 case DRM_FORMAT_XRGB1555:
13344 case DRM_FORMAT_ARGB1555:
13345 if (INTEL_INFO(dev)->gen > 3) {
13346 DRM_DEBUG("unsupported pixel format: %s\n",
13347 drm_get_format_name(mode_cmd->pixel_format));
13348 return -EINVAL;
13349 }
13350 break;
13351 case DRM_FORMAT_XBGR8888:
13352 case DRM_FORMAT_ABGR8888:
13353 case DRM_FORMAT_XRGB2101010:
13354 case DRM_FORMAT_ARGB2101010:
13355 case DRM_FORMAT_XBGR2101010:
13356 case DRM_FORMAT_ABGR2101010:
13357 if (INTEL_INFO(dev)->gen < 4) {
13358 DRM_DEBUG("unsupported pixel format: %s\n",
13359 drm_get_format_name(mode_cmd->pixel_format));
13360 return -EINVAL;
13361 }
13362 break;
13363 case DRM_FORMAT_YUYV:
13364 case DRM_FORMAT_UYVY:
13365 case DRM_FORMAT_YVYU:
13366 case DRM_FORMAT_VYUY:
13367 if (INTEL_INFO(dev)->gen < 5) {
13368 DRM_DEBUG("unsupported pixel format: %s\n",
13369 drm_get_format_name(mode_cmd->pixel_format));
13370 return -EINVAL;
13371 }
13372 break;
13373 default:
13374 DRM_DEBUG("unsupported pixel format: %s\n",
13375 drm_get_format_name(mode_cmd->pixel_format));
13376 return -EINVAL;
13377 }
13378
13379 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13380 if (mode_cmd->offsets[0] != 0)
13381 return -EINVAL;
13382
13383 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13384 mode_cmd->pixel_format,
13385 mode_cmd->modifier[0]);
13386 /* FIXME drm helper for size checks (especially planar formats)? */
13387 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13388 return -EINVAL;
13389
13390 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13391 intel_fb->obj = obj;
13392 intel_fb->obj->framebuffer_references++;
13393
13394 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13395 if (ret) {
13396 DRM_ERROR("framebuffer init failed %d\n", ret);
13397 return ret;
13398 }
13399
13400 return 0;
13401 }
13402
13403 static struct drm_framebuffer *
13404 intel_user_framebuffer_create(struct drm_device *dev,
13405 struct drm_file *filp,
13406 struct drm_mode_fb_cmd2 *mode_cmd)
13407 {
13408 struct drm_i915_gem_object *obj;
13409
13410 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13411 mode_cmd->handles[0]));
13412 if (&obj->base == NULL)
13413 return ERR_PTR(-ENOENT);
13414
13415 return intel_framebuffer_create(dev, mode_cmd, obj);
13416 }
13417
13418 #ifndef CONFIG_DRM_I915_FBDEV
13419 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13420 {
13421 }
13422 #endif
13423
13424 static const struct drm_mode_config_funcs intel_mode_funcs = {
13425 .fb_create = intel_user_framebuffer_create,
13426 .output_poll_changed = intel_fbdev_output_poll_changed,
13427 .atomic_check = intel_atomic_check,
13428 .atomic_commit = intel_atomic_commit,
13429 };
13430
13431 /* Set up chip specific display functions */
13432 static void intel_init_display(struct drm_device *dev)
13433 {
13434 struct drm_i915_private *dev_priv = dev->dev_private;
13435
13436 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13437 dev_priv->display.find_dpll = g4x_find_best_dpll;
13438 else if (IS_CHERRYVIEW(dev))
13439 dev_priv->display.find_dpll = chv_find_best_dpll;
13440 else if (IS_VALLEYVIEW(dev))
13441 dev_priv->display.find_dpll = vlv_find_best_dpll;
13442 else if (IS_PINEVIEW(dev))
13443 dev_priv->display.find_dpll = pnv_find_best_dpll;
13444 else
13445 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13446
13447 if (INTEL_INFO(dev)->gen >= 9) {
13448 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13449 dev_priv->display.get_initial_plane_config =
13450 skylake_get_initial_plane_config;
13451 dev_priv->display.crtc_compute_clock =
13452 haswell_crtc_compute_clock;
13453 dev_priv->display.crtc_enable = haswell_crtc_enable;
13454 dev_priv->display.crtc_disable = haswell_crtc_disable;
13455 dev_priv->display.off = ironlake_crtc_off;
13456 dev_priv->display.update_primary_plane =
13457 skylake_update_primary_plane;
13458 } else if (HAS_DDI(dev)) {
13459 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13460 dev_priv->display.get_initial_plane_config =
13461 ironlake_get_initial_plane_config;
13462 dev_priv->display.crtc_compute_clock =
13463 haswell_crtc_compute_clock;
13464 dev_priv->display.crtc_enable = haswell_crtc_enable;
13465 dev_priv->display.crtc_disable = haswell_crtc_disable;
13466 dev_priv->display.off = ironlake_crtc_off;
13467 dev_priv->display.update_primary_plane =
13468 ironlake_update_primary_plane;
13469 } else if (HAS_PCH_SPLIT(dev)) {
13470 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13471 dev_priv->display.get_initial_plane_config =
13472 ironlake_get_initial_plane_config;
13473 dev_priv->display.crtc_compute_clock =
13474 ironlake_crtc_compute_clock;
13475 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13476 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13477 dev_priv->display.off = ironlake_crtc_off;
13478 dev_priv->display.update_primary_plane =
13479 ironlake_update_primary_plane;
13480 } else if (IS_VALLEYVIEW(dev)) {
13481 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13482 dev_priv->display.get_initial_plane_config =
13483 i9xx_get_initial_plane_config;
13484 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13485 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13486 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13487 dev_priv->display.off = i9xx_crtc_off;
13488 dev_priv->display.update_primary_plane =
13489 i9xx_update_primary_plane;
13490 } else {
13491 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13492 dev_priv->display.get_initial_plane_config =
13493 i9xx_get_initial_plane_config;
13494 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13495 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13496 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13497 dev_priv->display.off = i9xx_crtc_off;
13498 dev_priv->display.update_primary_plane =
13499 i9xx_update_primary_plane;
13500 }
13501
13502 /* Returns the core display clock speed */
13503 if (IS_VALLEYVIEW(dev))
13504 dev_priv->display.get_display_clock_speed =
13505 valleyview_get_display_clock_speed;
13506 else if (IS_GEN5(dev))
13507 dev_priv->display.get_display_clock_speed =
13508 ilk_get_display_clock_speed;
13509 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13510 dev_priv->display.get_display_clock_speed =
13511 i945_get_display_clock_speed;
13512 else if (IS_I915G(dev))
13513 dev_priv->display.get_display_clock_speed =
13514 i915_get_display_clock_speed;
13515 else if (IS_I945GM(dev) || IS_845G(dev))
13516 dev_priv->display.get_display_clock_speed =
13517 i9xx_misc_get_display_clock_speed;
13518 else if (IS_PINEVIEW(dev))
13519 dev_priv->display.get_display_clock_speed =
13520 pnv_get_display_clock_speed;
13521 else if (IS_I915GM(dev))
13522 dev_priv->display.get_display_clock_speed =
13523 i915gm_get_display_clock_speed;
13524 else if (IS_I865G(dev))
13525 dev_priv->display.get_display_clock_speed =
13526 i865_get_display_clock_speed;
13527 else if (IS_I85X(dev))
13528 dev_priv->display.get_display_clock_speed =
13529 i855_get_display_clock_speed;
13530 else /* 852, 830 */
13531 dev_priv->display.get_display_clock_speed =
13532 i830_get_display_clock_speed;
13533
13534 if (IS_GEN5(dev)) {
13535 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13536 } else if (IS_GEN6(dev)) {
13537 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13538 } else if (IS_IVYBRIDGE(dev)) {
13539 /* FIXME: detect B0+ stepping and use auto training */
13540 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13541 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13542 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13543 } else if (IS_VALLEYVIEW(dev)) {
13544 dev_priv->display.modeset_global_resources =
13545 valleyview_modeset_global_resources;
13546 }
13547
13548 switch (INTEL_INFO(dev)->gen) {
13549 case 2:
13550 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13551 break;
13552
13553 case 3:
13554 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13555 break;
13556
13557 case 4:
13558 case 5:
13559 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13560 break;
13561
13562 case 6:
13563 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13564 break;
13565 case 7:
13566 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13567 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13568 break;
13569 case 9:
13570 /* Drop through - unsupported since execlist only. */
13571 default:
13572 /* Default just returns -ENODEV to indicate unsupported */
13573 dev_priv->display.queue_flip = intel_default_queue_flip;
13574 }
13575
13576 intel_panel_init_backlight_funcs(dev);
13577
13578 mutex_init(&dev_priv->pps_mutex);
13579 }
13580
13581 /*
13582 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13583 * resume, or other times. This quirk makes sure that's the case for
13584 * affected systems.
13585 */
13586 static void quirk_pipea_force(struct drm_device *dev)
13587 {
13588 struct drm_i915_private *dev_priv = dev->dev_private;
13589
13590 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13591 DRM_INFO("applying pipe a force quirk\n");
13592 }
13593
13594 static void quirk_pipeb_force(struct drm_device *dev)
13595 {
13596 struct drm_i915_private *dev_priv = dev->dev_private;
13597
13598 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13599 DRM_INFO("applying pipe b force quirk\n");
13600 }
13601
13602 /*
13603 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13604 */
13605 static void quirk_ssc_force_disable(struct drm_device *dev)
13606 {
13607 struct drm_i915_private *dev_priv = dev->dev_private;
13608 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13609 DRM_INFO("applying lvds SSC disable quirk\n");
13610 }
13611
13612 /*
13613 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13614 * brightness value
13615 */
13616 static void quirk_invert_brightness(struct drm_device *dev)
13617 {
13618 struct drm_i915_private *dev_priv = dev->dev_private;
13619 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13620 DRM_INFO("applying inverted panel brightness quirk\n");
13621 }
13622
13623 /* Some VBT's incorrectly indicate no backlight is present */
13624 static void quirk_backlight_present(struct drm_device *dev)
13625 {
13626 struct drm_i915_private *dev_priv = dev->dev_private;
13627 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13628 DRM_INFO("applying backlight present quirk\n");
13629 }
13630
13631 struct intel_quirk {
13632 int device;
13633 int subsystem_vendor;
13634 int subsystem_device;
13635 void (*hook)(struct drm_device *dev);
13636 };
13637
13638 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13639 struct intel_dmi_quirk {
13640 void (*hook)(struct drm_device *dev);
13641 const struct dmi_system_id (*dmi_id_list)[];
13642 };
13643
13644 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13645 {
13646 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13647 return 1;
13648 }
13649
13650 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13651 {
13652 .dmi_id_list = &(const struct dmi_system_id[]) {
13653 {
13654 .callback = intel_dmi_reverse_brightness,
13655 .ident = "NCR Corporation",
13656 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13657 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13658 },
13659 },
13660 { } /* terminating entry */
13661 },
13662 .hook = quirk_invert_brightness,
13663 },
13664 };
13665
13666 static struct intel_quirk intel_quirks[] = {
13667 /* HP Mini needs pipe A force quirk (LP: #322104) */
13668 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13669
13670 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13671 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13672
13673 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13674 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13675
13676 /* 830 needs to leave pipe A & dpll A up */
13677 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13678
13679 /* 830 needs to leave pipe B & dpll B up */
13680 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13681
13682 /* Lenovo U160 cannot use SSC on LVDS */
13683 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13684
13685 /* Sony Vaio Y cannot use SSC on LVDS */
13686 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13687
13688 /* Acer Aspire 5734Z must invert backlight brightness */
13689 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13690
13691 /* Acer/eMachines G725 */
13692 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13693
13694 /* Acer/eMachines e725 */
13695 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13696
13697 /* Acer/Packard Bell NCL20 */
13698 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13699
13700 /* Acer Aspire 4736Z */
13701 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13702
13703 /* Acer Aspire 5336 */
13704 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13705
13706 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13707 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13708
13709 /* Acer C720 Chromebook (Core i3 4005U) */
13710 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13711
13712 /* Apple Macbook 2,1 (Core 2 T7400) */
13713 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13714
13715 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13716 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13717
13718 /* HP Chromebook 14 (Celeron 2955U) */
13719 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13720
13721 /* Dell Chromebook 11 */
13722 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13723 };
13724
13725 static void intel_init_quirks(struct drm_device *dev)
13726 {
13727 struct pci_dev *d = dev->pdev;
13728 int i;
13729
13730 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13731 struct intel_quirk *q = &intel_quirks[i];
13732
13733 if (d->device == q->device &&
13734 (d->subsystem_vendor == q->subsystem_vendor ||
13735 q->subsystem_vendor == PCI_ANY_ID) &&
13736 (d->subsystem_device == q->subsystem_device ||
13737 q->subsystem_device == PCI_ANY_ID))
13738 q->hook(dev);
13739 }
13740 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13741 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13742 intel_dmi_quirks[i].hook(dev);
13743 }
13744 }
13745
13746 /* Disable the VGA plane that we never use */
13747 static void i915_disable_vga(struct drm_device *dev)
13748 {
13749 struct drm_i915_private *dev_priv = dev->dev_private;
13750 u8 sr1;
13751 u32 vga_reg = i915_vgacntrl_reg(dev);
13752
13753 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13754 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13755 outb(SR01, VGA_SR_INDEX);
13756 sr1 = inb(VGA_SR_DATA);
13757 outb(sr1 | 1<<5, VGA_SR_DATA);
13758 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13759 udelay(300);
13760
13761 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13762 POSTING_READ(vga_reg);
13763 }
13764
13765 void intel_modeset_init_hw(struct drm_device *dev)
13766 {
13767 intel_prepare_ddi(dev);
13768
13769 if (IS_VALLEYVIEW(dev))
13770 vlv_update_cdclk(dev);
13771
13772 intel_init_clock_gating(dev);
13773
13774 intel_enable_gt_powersave(dev);
13775 }
13776
13777 void intel_modeset_init(struct drm_device *dev)
13778 {
13779 struct drm_i915_private *dev_priv = dev->dev_private;
13780 int sprite, ret;
13781 enum pipe pipe;
13782 struct intel_crtc *crtc;
13783
13784 drm_mode_config_init(dev);
13785
13786 dev->mode_config.min_width = 0;
13787 dev->mode_config.min_height = 0;
13788
13789 dev->mode_config.preferred_depth = 24;
13790 dev->mode_config.prefer_shadow = 1;
13791
13792 dev->mode_config.allow_fb_modifiers = true;
13793
13794 dev->mode_config.funcs = &intel_mode_funcs;
13795
13796 intel_init_quirks(dev);
13797
13798 intel_init_pm(dev);
13799
13800 if (INTEL_INFO(dev)->num_pipes == 0)
13801 return;
13802
13803 intel_init_display(dev);
13804 intel_init_audio(dev);
13805
13806 if (IS_GEN2(dev)) {
13807 dev->mode_config.max_width = 2048;
13808 dev->mode_config.max_height = 2048;
13809 } else if (IS_GEN3(dev)) {
13810 dev->mode_config.max_width = 4096;
13811 dev->mode_config.max_height = 4096;
13812 } else {
13813 dev->mode_config.max_width = 8192;
13814 dev->mode_config.max_height = 8192;
13815 }
13816
13817 if (IS_845G(dev) || IS_I865G(dev)) {
13818 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13819 dev->mode_config.cursor_height = 1023;
13820 } else if (IS_GEN2(dev)) {
13821 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13822 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13823 } else {
13824 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13825 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13826 }
13827
13828 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13829
13830 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13831 INTEL_INFO(dev)->num_pipes,
13832 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13833
13834 for_each_pipe(dev_priv, pipe) {
13835 intel_crtc_init(dev, pipe);
13836 for_each_sprite(dev_priv, pipe, sprite) {
13837 ret = intel_plane_init(dev, pipe, sprite);
13838 if (ret)
13839 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13840 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13841 }
13842 }
13843
13844 intel_init_dpio(dev);
13845
13846 intel_shared_dpll_init(dev);
13847
13848 /* Just disable it once at startup */
13849 i915_disable_vga(dev);
13850 intel_setup_outputs(dev);
13851
13852 /* Just in case the BIOS is doing something questionable. */
13853 intel_fbc_disable(dev);
13854
13855 drm_modeset_lock_all(dev);
13856 intel_modeset_setup_hw_state(dev, false);
13857 drm_modeset_unlock_all(dev);
13858
13859 for_each_intel_crtc(dev, crtc) {
13860 if (!crtc->active)
13861 continue;
13862
13863 /*
13864 * Note that reserving the BIOS fb up front prevents us
13865 * from stuffing other stolen allocations like the ring
13866 * on top. This prevents some ugliness at boot time, and
13867 * can even allow for smooth boot transitions if the BIOS
13868 * fb is large enough for the active pipe configuration.
13869 */
13870 if (dev_priv->display.get_initial_plane_config) {
13871 dev_priv->display.get_initial_plane_config(crtc,
13872 &crtc->plane_config);
13873 /*
13874 * If the fb is shared between multiple heads, we'll
13875 * just get the first one.
13876 */
13877 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13878 }
13879 }
13880 }
13881
13882 static void intel_enable_pipe_a(struct drm_device *dev)
13883 {
13884 struct intel_connector *connector;
13885 struct drm_connector *crt = NULL;
13886 struct intel_load_detect_pipe load_detect_temp;
13887 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13888
13889 /* We can't just switch on the pipe A, we need to set things up with a
13890 * proper mode and output configuration. As a gross hack, enable pipe A
13891 * by enabling the load detect pipe once. */
13892 for_each_intel_connector(dev, connector) {
13893 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13894 crt = &connector->base;
13895 break;
13896 }
13897 }
13898
13899 if (!crt)
13900 return;
13901
13902 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13903 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13904 }
13905
13906 static bool
13907 intel_check_plane_mapping(struct intel_crtc *crtc)
13908 {
13909 struct drm_device *dev = crtc->base.dev;
13910 struct drm_i915_private *dev_priv = dev->dev_private;
13911 u32 reg, val;
13912
13913 if (INTEL_INFO(dev)->num_pipes == 1)
13914 return true;
13915
13916 reg = DSPCNTR(!crtc->plane);
13917 val = I915_READ(reg);
13918
13919 if ((val & DISPLAY_PLANE_ENABLE) &&
13920 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13921 return false;
13922
13923 return true;
13924 }
13925
13926 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13927 {
13928 struct drm_device *dev = crtc->base.dev;
13929 struct drm_i915_private *dev_priv = dev->dev_private;
13930 u32 reg;
13931
13932 /* Clear any frame start delays used for debugging left by the BIOS */
13933 reg = PIPECONF(crtc->config->cpu_transcoder);
13934 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13935
13936 /* restore vblank interrupts to correct state */
13937 drm_crtc_vblank_reset(&crtc->base);
13938 if (crtc->active) {
13939 update_scanline_offset(crtc);
13940 drm_crtc_vblank_on(&crtc->base);
13941 }
13942
13943 /* We need to sanitize the plane -> pipe mapping first because this will
13944 * disable the crtc (and hence change the state) if it is wrong. Note
13945 * that gen4+ has a fixed plane -> pipe mapping. */
13946 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13947 struct intel_connector *connector;
13948 bool plane;
13949
13950 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13951 crtc->base.base.id);
13952
13953 /* Pipe has the wrong plane attached and the plane is active.
13954 * Temporarily change the plane mapping and disable everything
13955 * ... */
13956 plane = crtc->plane;
13957 crtc->plane = !plane;
13958 crtc->primary_enabled = true;
13959 dev_priv->display.crtc_disable(&crtc->base);
13960 crtc->plane = plane;
13961
13962 /* ... and break all links. */
13963 for_each_intel_connector(dev, connector) {
13964 if (connector->encoder->base.crtc != &crtc->base)
13965 continue;
13966
13967 connector->base.dpms = DRM_MODE_DPMS_OFF;
13968 connector->base.encoder = NULL;
13969 }
13970 /* multiple connectors may have the same encoder:
13971 * handle them and break crtc link separately */
13972 for_each_intel_connector(dev, connector)
13973 if (connector->encoder->base.crtc == &crtc->base) {
13974 connector->encoder->base.crtc = NULL;
13975 connector->encoder->connectors_active = false;
13976 }
13977
13978 WARN_ON(crtc->active);
13979 crtc->base.state->enable = false;
13980 crtc->base.enabled = false;
13981 }
13982
13983 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13984 crtc->pipe == PIPE_A && !crtc->active) {
13985 /* BIOS forgot to enable pipe A, this mostly happens after
13986 * resume. Force-enable the pipe to fix this, the update_dpms
13987 * call below we restore the pipe to the right state, but leave
13988 * the required bits on. */
13989 intel_enable_pipe_a(dev);
13990 }
13991
13992 /* Adjust the state of the output pipe according to whether we
13993 * have active connectors/encoders. */
13994 intel_crtc_update_dpms(&crtc->base);
13995
13996 if (crtc->active != crtc->base.state->enable) {
13997 struct intel_encoder *encoder;
13998
13999 /* This can happen either due to bugs in the get_hw_state
14000 * functions or because the pipe is force-enabled due to the
14001 * pipe A quirk. */
14002 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14003 crtc->base.base.id,
14004 crtc->base.state->enable ? "enabled" : "disabled",
14005 crtc->active ? "enabled" : "disabled");
14006
14007 crtc->base.state->enable = crtc->active;
14008 crtc->base.enabled = crtc->active;
14009
14010 /* Because we only establish the connector -> encoder ->
14011 * crtc links if something is active, this means the
14012 * crtc is now deactivated. Break the links. connector
14013 * -> encoder links are only establish when things are
14014 * actually up, hence no need to break them. */
14015 WARN_ON(crtc->active);
14016
14017 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14018 WARN_ON(encoder->connectors_active);
14019 encoder->base.crtc = NULL;
14020 }
14021 }
14022
14023 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14024 /*
14025 * We start out with underrun reporting disabled to avoid races.
14026 * For correct bookkeeping mark this on active crtcs.
14027 *
14028 * Also on gmch platforms we dont have any hardware bits to
14029 * disable the underrun reporting. Which means we need to start
14030 * out with underrun reporting disabled also on inactive pipes,
14031 * since otherwise we'll complain about the garbage we read when
14032 * e.g. coming up after runtime pm.
14033 *
14034 * No protection against concurrent access is required - at
14035 * worst a fifo underrun happens which also sets this to false.
14036 */
14037 crtc->cpu_fifo_underrun_disabled = true;
14038 crtc->pch_fifo_underrun_disabled = true;
14039 }
14040 }
14041
14042 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14043 {
14044 struct intel_connector *connector;
14045 struct drm_device *dev = encoder->base.dev;
14046
14047 /* We need to check both for a crtc link (meaning that the
14048 * encoder is active and trying to read from a pipe) and the
14049 * pipe itself being active. */
14050 bool has_active_crtc = encoder->base.crtc &&
14051 to_intel_crtc(encoder->base.crtc)->active;
14052
14053 if (encoder->connectors_active && !has_active_crtc) {
14054 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14055 encoder->base.base.id,
14056 encoder->base.name);
14057
14058 /* Connector is active, but has no active pipe. This is
14059 * fallout from our resume register restoring. Disable
14060 * the encoder manually again. */
14061 if (encoder->base.crtc) {
14062 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14063 encoder->base.base.id,
14064 encoder->base.name);
14065 encoder->disable(encoder);
14066 if (encoder->post_disable)
14067 encoder->post_disable(encoder);
14068 }
14069 encoder->base.crtc = NULL;
14070 encoder->connectors_active = false;
14071
14072 /* Inconsistent output/port/pipe state happens presumably due to
14073 * a bug in one of the get_hw_state functions. Or someplace else
14074 * in our code, like the register restore mess on resume. Clamp
14075 * things to off as a safer default. */
14076 for_each_intel_connector(dev, connector) {
14077 if (connector->encoder != encoder)
14078 continue;
14079 connector->base.dpms = DRM_MODE_DPMS_OFF;
14080 connector->base.encoder = NULL;
14081 }
14082 }
14083 /* Enabled encoders without active connectors will be fixed in
14084 * the crtc fixup. */
14085 }
14086
14087 void i915_redisable_vga_power_on(struct drm_device *dev)
14088 {
14089 struct drm_i915_private *dev_priv = dev->dev_private;
14090 u32 vga_reg = i915_vgacntrl_reg(dev);
14091
14092 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14093 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14094 i915_disable_vga(dev);
14095 }
14096 }
14097
14098 void i915_redisable_vga(struct drm_device *dev)
14099 {
14100 struct drm_i915_private *dev_priv = dev->dev_private;
14101
14102 /* This function can be called both from intel_modeset_setup_hw_state or
14103 * at a very early point in our resume sequence, where the power well
14104 * structures are not yet restored. Since this function is at a very
14105 * paranoid "someone might have enabled VGA while we were not looking"
14106 * level, just check if the power well is enabled instead of trying to
14107 * follow the "don't touch the power well if we don't need it" policy
14108 * the rest of the driver uses. */
14109 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14110 return;
14111
14112 i915_redisable_vga_power_on(dev);
14113 }
14114
14115 static bool primary_get_hw_state(struct intel_crtc *crtc)
14116 {
14117 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14118
14119 if (!crtc->active)
14120 return false;
14121
14122 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14123 }
14124
14125 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14126 {
14127 struct drm_i915_private *dev_priv = dev->dev_private;
14128 enum pipe pipe;
14129 struct intel_crtc *crtc;
14130 struct intel_encoder *encoder;
14131 struct intel_connector *connector;
14132 int i;
14133
14134 for_each_intel_crtc(dev, crtc) {
14135 memset(crtc->config, 0, sizeof(*crtc->config));
14136
14137 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14138
14139 crtc->active = dev_priv->display.get_pipe_config(crtc,
14140 crtc->config);
14141
14142 crtc->base.state->enable = crtc->active;
14143 crtc->base.enabled = crtc->active;
14144 crtc->primary_enabled = primary_get_hw_state(crtc);
14145
14146 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14147 crtc->base.base.id,
14148 crtc->active ? "enabled" : "disabled");
14149 }
14150
14151 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14152 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14153
14154 pll->on = pll->get_hw_state(dev_priv, pll,
14155 &pll->config.hw_state);
14156 pll->active = 0;
14157 pll->config.crtc_mask = 0;
14158 for_each_intel_crtc(dev, crtc) {
14159 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14160 pll->active++;
14161 pll->config.crtc_mask |= 1 << crtc->pipe;
14162 }
14163 }
14164
14165 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14166 pll->name, pll->config.crtc_mask, pll->on);
14167
14168 if (pll->config.crtc_mask)
14169 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14170 }
14171
14172 for_each_intel_encoder(dev, encoder) {
14173 pipe = 0;
14174
14175 if (encoder->get_hw_state(encoder, &pipe)) {
14176 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14177 encoder->base.crtc = &crtc->base;
14178 encoder->get_config(encoder, crtc->config);
14179 } else {
14180 encoder->base.crtc = NULL;
14181 }
14182
14183 encoder->connectors_active = false;
14184 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14185 encoder->base.base.id,
14186 encoder->base.name,
14187 encoder->base.crtc ? "enabled" : "disabled",
14188 pipe_name(pipe));
14189 }
14190
14191 for_each_intel_connector(dev, connector) {
14192 if (connector->get_hw_state(connector)) {
14193 connector->base.dpms = DRM_MODE_DPMS_ON;
14194 connector->encoder->connectors_active = true;
14195 connector->base.encoder = &connector->encoder->base;
14196 } else {
14197 connector->base.dpms = DRM_MODE_DPMS_OFF;
14198 connector->base.encoder = NULL;
14199 }
14200 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14201 connector->base.base.id,
14202 connector->base.name,
14203 connector->base.encoder ? "enabled" : "disabled");
14204 }
14205 }
14206
14207 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14208 * and i915 state tracking structures. */
14209 void intel_modeset_setup_hw_state(struct drm_device *dev,
14210 bool force_restore)
14211 {
14212 struct drm_i915_private *dev_priv = dev->dev_private;
14213 enum pipe pipe;
14214 struct intel_crtc *crtc;
14215 struct intel_encoder *encoder;
14216 int i;
14217
14218 intel_modeset_readout_hw_state(dev);
14219
14220 /*
14221 * Now that we have the config, copy it to each CRTC struct
14222 * Note that this could go away if we move to using crtc_config
14223 * checking everywhere.
14224 */
14225 for_each_intel_crtc(dev, crtc) {
14226 if (crtc->active && i915.fastboot) {
14227 intel_mode_from_pipe_config(&crtc->base.mode,
14228 crtc->config);
14229 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14230 crtc->base.base.id);
14231 drm_mode_debug_printmodeline(&crtc->base.mode);
14232 }
14233 }
14234
14235 /* HW state is read out, now we need to sanitize this mess. */
14236 for_each_intel_encoder(dev, encoder) {
14237 intel_sanitize_encoder(encoder);
14238 }
14239
14240 for_each_pipe(dev_priv, pipe) {
14241 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14242 intel_sanitize_crtc(crtc);
14243 intel_dump_pipe_config(crtc, crtc->config,
14244 "[setup_hw_state]");
14245 }
14246
14247 intel_modeset_update_connector_atomic_state(dev);
14248
14249 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14250 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14251
14252 if (!pll->on || pll->active)
14253 continue;
14254
14255 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14256
14257 pll->disable(dev_priv, pll);
14258 pll->on = false;
14259 }
14260
14261 if (IS_GEN9(dev))
14262 skl_wm_get_hw_state(dev);
14263 else if (HAS_PCH_SPLIT(dev))
14264 ilk_wm_get_hw_state(dev);
14265
14266 if (force_restore) {
14267 i915_redisable_vga(dev);
14268
14269 /*
14270 * We need to use raw interfaces for restoring state to avoid
14271 * checking (bogus) intermediate states.
14272 */
14273 for_each_pipe(dev_priv, pipe) {
14274 struct drm_crtc *crtc =
14275 dev_priv->pipe_to_crtc_mapping[pipe];
14276
14277 intel_crtc_restore_mode(crtc);
14278 }
14279 } else {
14280 intel_modeset_update_staged_output_state(dev);
14281 }
14282
14283 intel_modeset_check_state(dev);
14284 }
14285
14286 void intel_modeset_gem_init(struct drm_device *dev)
14287 {
14288 struct drm_i915_private *dev_priv = dev->dev_private;
14289 struct drm_crtc *c;
14290 struct drm_i915_gem_object *obj;
14291
14292 mutex_lock(&dev->struct_mutex);
14293 intel_init_gt_powersave(dev);
14294 mutex_unlock(&dev->struct_mutex);
14295
14296 /*
14297 * There may be no VBT; and if the BIOS enabled SSC we can
14298 * just keep using it to avoid unnecessary flicker. Whereas if the
14299 * BIOS isn't using it, don't assume it will work even if the VBT
14300 * indicates as much.
14301 */
14302 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14303 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14304 DREF_SSC1_ENABLE);
14305
14306 intel_modeset_init_hw(dev);
14307
14308 intel_setup_overlay(dev);
14309
14310 /*
14311 * Make sure any fbs we allocated at startup are properly
14312 * pinned & fenced. When we do the allocation it's too early
14313 * for this.
14314 */
14315 mutex_lock(&dev->struct_mutex);
14316 for_each_crtc(dev, c) {
14317 obj = intel_fb_obj(c->primary->fb);
14318 if (obj == NULL)
14319 continue;
14320
14321 if (intel_pin_and_fence_fb_obj(c->primary,
14322 c->primary->fb,
14323 c->primary->state,
14324 NULL)) {
14325 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14326 to_intel_crtc(c)->pipe);
14327 drm_framebuffer_unreference(c->primary->fb);
14328 c->primary->fb = NULL;
14329 update_state_fb(c->primary);
14330 }
14331 }
14332 mutex_unlock(&dev->struct_mutex);
14333
14334 intel_backlight_register(dev);
14335 }
14336
14337 void intel_connector_unregister(struct intel_connector *intel_connector)
14338 {
14339 struct drm_connector *connector = &intel_connector->base;
14340
14341 intel_panel_destroy_backlight(connector);
14342 drm_connector_unregister(connector);
14343 }
14344
14345 void intel_modeset_cleanup(struct drm_device *dev)
14346 {
14347 struct drm_i915_private *dev_priv = dev->dev_private;
14348 struct drm_connector *connector;
14349
14350 intel_disable_gt_powersave(dev);
14351
14352 intel_backlight_unregister(dev);
14353
14354 /*
14355 * Interrupts and polling as the first thing to avoid creating havoc.
14356 * Too much stuff here (turning of connectors, ...) would
14357 * experience fancy races otherwise.
14358 */
14359 intel_irq_uninstall(dev_priv);
14360
14361 /*
14362 * Due to the hpd irq storm handling the hotplug work can re-arm the
14363 * poll handlers. Hence disable polling after hpd handling is shut down.
14364 */
14365 drm_kms_helper_poll_fini(dev);
14366
14367 mutex_lock(&dev->struct_mutex);
14368
14369 intel_unregister_dsm_handler();
14370
14371 intel_fbc_disable(dev);
14372
14373 mutex_unlock(&dev->struct_mutex);
14374
14375 /* flush any delayed tasks or pending work */
14376 flush_scheduled_work();
14377
14378 /* destroy the backlight and sysfs files before encoders/connectors */
14379 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14380 struct intel_connector *intel_connector;
14381
14382 intel_connector = to_intel_connector(connector);
14383 intel_connector->unregister(intel_connector);
14384 }
14385
14386 drm_mode_config_cleanup(dev);
14387
14388 intel_cleanup_overlay(dev);
14389
14390 mutex_lock(&dev->struct_mutex);
14391 intel_cleanup_gt_powersave(dev);
14392 mutex_unlock(&dev->struct_mutex);
14393 }
14394
14395 /*
14396 * Return which encoder is currently attached for connector.
14397 */
14398 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14399 {
14400 return &intel_attached_encoder(connector)->base;
14401 }
14402
14403 void intel_connector_attach_encoder(struct intel_connector *connector,
14404 struct intel_encoder *encoder)
14405 {
14406 connector->encoder = encoder;
14407 drm_mode_connector_attach_encoder(&connector->base,
14408 &encoder->base);
14409 }
14410
14411 /*
14412 * set vga decode state - true == enable VGA decode
14413 */
14414 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14415 {
14416 struct drm_i915_private *dev_priv = dev->dev_private;
14417 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14418 u16 gmch_ctrl;
14419
14420 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14421 DRM_ERROR("failed to read control word\n");
14422 return -EIO;
14423 }
14424
14425 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14426 return 0;
14427
14428 if (state)
14429 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14430 else
14431 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14432
14433 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14434 DRM_ERROR("failed to write control word\n");
14435 return -EIO;
14436 }
14437
14438 return 0;
14439 }
14440
14441 struct intel_display_error_state {
14442
14443 u32 power_well_driver;
14444
14445 int num_transcoders;
14446
14447 struct intel_cursor_error_state {
14448 u32 control;
14449 u32 position;
14450 u32 base;
14451 u32 size;
14452 } cursor[I915_MAX_PIPES];
14453
14454 struct intel_pipe_error_state {
14455 bool power_domain_on;
14456 u32 source;
14457 u32 stat;
14458 } pipe[I915_MAX_PIPES];
14459
14460 struct intel_plane_error_state {
14461 u32 control;
14462 u32 stride;
14463 u32 size;
14464 u32 pos;
14465 u32 addr;
14466 u32 surface;
14467 u32 tile_offset;
14468 } plane[I915_MAX_PIPES];
14469
14470 struct intel_transcoder_error_state {
14471 bool power_domain_on;
14472 enum transcoder cpu_transcoder;
14473
14474 u32 conf;
14475
14476 u32 htotal;
14477 u32 hblank;
14478 u32 hsync;
14479 u32 vtotal;
14480 u32 vblank;
14481 u32 vsync;
14482 } transcoder[4];
14483 };
14484
14485 struct intel_display_error_state *
14486 intel_display_capture_error_state(struct drm_device *dev)
14487 {
14488 struct drm_i915_private *dev_priv = dev->dev_private;
14489 struct intel_display_error_state *error;
14490 int transcoders[] = {
14491 TRANSCODER_A,
14492 TRANSCODER_B,
14493 TRANSCODER_C,
14494 TRANSCODER_EDP,
14495 };
14496 int i;
14497
14498 if (INTEL_INFO(dev)->num_pipes == 0)
14499 return NULL;
14500
14501 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14502 if (error == NULL)
14503 return NULL;
14504
14505 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14506 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14507
14508 for_each_pipe(dev_priv, i) {
14509 error->pipe[i].power_domain_on =
14510 __intel_display_power_is_enabled(dev_priv,
14511 POWER_DOMAIN_PIPE(i));
14512 if (!error->pipe[i].power_domain_on)
14513 continue;
14514
14515 error->cursor[i].control = I915_READ(CURCNTR(i));
14516 error->cursor[i].position = I915_READ(CURPOS(i));
14517 error->cursor[i].base = I915_READ(CURBASE(i));
14518
14519 error->plane[i].control = I915_READ(DSPCNTR(i));
14520 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14521 if (INTEL_INFO(dev)->gen <= 3) {
14522 error->plane[i].size = I915_READ(DSPSIZE(i));
14523 error->plane[i].pos = I915_READ(DSPPOS(i));
14524 }
14525 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14526 error->plane[i].addr = I915_READ(DSPADDR(i));
14527 if (INTEL_INFO(dev)->gen >= 4) {
14528 error->plane[i].surface = I915_READ(DSPSURF(i));
14529 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14530 }
14531
14532 error->pipe[i].source = I915_READ(PIPESRC(i));
14533
14534 if (HAS_GMCH_DISPLAY(dev))
14535 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14536 }
14537
14538 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14539 if (HAS_DDI(dev_priv->dev))
14540 error->num_transcoders++; /* Account for eDP. */
14541
14542 for (i = 0; i < error->num_transcoders; i++) {
14543 enum transcoder cpu_transcoder = transcoders[i];
14544
14545 error->transcoder[i].power_domain_on =
14546 __intel_display_power_is_enabled(dev_priv,
14547 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14548 if (!error->transcoder[i].power_domain_on)
14549 continue;
14550
14551 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14552
14553 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14554 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14555 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14556 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14557 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14558 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14559 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14560 }
14561
14562 return error;
14563 }
14564
14565 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14566
14567 void
14568 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14569 struct drm_device *dev,
14570 struct intel_display_error_state *error)
14571 {
14572 struct drm_i915_private *dev_priv = dev->dev_private;
14573 int i;
14574
14575 if (!error)
14576 return;
14577
14578 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14579 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14580 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14581 error->power_well_driver);
14582 for_each_pipe(dev_priv, i) {
14583 err_printf(m, "Pipe [%d]:\n", i);
14584 err_printf(m, " Power: %s\n",
14585 error->pipe[i].power_domain_on ? "on" : "off");
14586 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14587 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14588
14589 err_printf(m, "Plane [%d]:\n", i);
14590 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14591 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14592 if (INTEL_INFO(dev)->gen <= 3) {
14593 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14594 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14595 }
14596 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14597 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14598 if (INTEL_INFO(dev)->gen >= 4) {
14599 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14600 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14601 }
14602
14603 err_printf(m, "Cursor [%d]:\n", i);
14604 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14605 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14606 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14607 }
14608
14609 for (i = 0; i < error->num_transcoders; i++) {
14610 err_printf(m, "CPU transcoder: %c\n",
14611 transcoder_name(error->transcoder[i].cpu_transcoder));
14612 err_printf(m, " Power: %s\n",
14613 error->transcoder[i].power_domain_on ? "on" : "off");
14614 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14615 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14616 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14617 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14618 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14619 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14620 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14621 }
14622 }
14623
14624 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14625 {
14626 struct intel_crtc *crtc;
14627
14628 for_each_intel_crtc(dev, crtc) {
14629 struct intel_unpin_work *work;
14630
14631 spin_lock_irq(&dev->event_lock);
14632
14633 work = crtc->unpin_work;
14634
14635 if (work && work->event &&
14636 work->event->base.file_priv == file) {
14637 kfree(work->event);
14638 work->event = NULL;
14639 }
14640
14641 spin_unlock_irq(&dev->event_lock);
14642 }
14643 }
This page took 0.47929 seconds and 6 git commands to generate.