Merge tag 'drm-intel-fixes-2015-07-15' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90 struct intel_framebuffer *ifb,
91 struct drm_mode_fb_cmd2 *mode_cmd,
92 struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96 struct intel_link_m_n *m_n,
97 struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
106 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108 struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110 int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4800000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402 /* FIXME: find real dot limits */
403 .dot = { .min = 0, .max = INT_MAX },
404 .vco = { .min = 4800000, .max = 6700000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 /* FIXME: find real m2 limits */
408 .m2 = { .min = 2 << 22, .max = 255 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416 return state->mode_changed || state->active_changed;
417 }
418
419 /**
420 * Returns whether any output on the specified pipe is of the specified type
421 */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424 struct drm_device *dev = crtc->base.dev;
425 struct intel_encoder *encoder;
426
427 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428 if (encoder->type == type)
429 return true;
430
431 return false;
432 }
433
434 /**
435 * Returns whether any output on the specified pipe will have the specified
436 * type after a staged modeset is complete, i.e., the same as
437 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438 * encoder->crtc.
439 */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441 int type)
442 {
443 struct drm_atomic_state *state = crtc_state->base.state;
444 struct drm_connector *connector;
445 struct drm_connector_state *connector_state;
446 struct intel_encoder *encoder;
447 int i, num_connectors = 0;
448
449 for_each_connector_in_state(state, connector, connector_state, i) {
450 if (connector_state->crtc != crtc_state->base.crtc)
451 continue;
452
453 num_connectors++;
454
455 encoder = to_intel_encoder(connector_state->best_encoder);
456 if (encoder->type == type)
457 return true;
458 }
459
460 WARN_ON(num_connectors == 0);
461
462 return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468 struct drm_device *dev = crtc_state->base.crtc->dev;
469 const intel_limit_t *limit;
470
471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472 if (intel_is_dual_link_lvds(dev)) {
473 if (refclk == 100000)
474 limit = &intel_limits_ironlake_dual_lvds_100m;
475 else
476 limit = &intel_limits_ironlake_dual_lvds;
477 } else {
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_single_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_single_lvds;
482 }
483 } else
484 limit = &intel_limits_ironlake_dac;
485
486 return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492 struct drm_device *dev = crtc_state->base.crtc->dev;
493 const intel_limit_t *limit;
494
495 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496 if (intel_is_dual_link_lvds(dev))
497 limit = &intel_limits_g4x_dual_channel_lvds;
498 else
499 limit = &intel_limits_g4x_single_channel_lvds;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502 limit = &intel_limits_g4x_hdmi;
503 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504 limit = &intel_limits_g4x_sdvo;
505 } else /* The option is for other outputs */
506 limit = &intel_limits_i9xx_sdvo;
507
508 return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514 struct drm_device *dev = crtc_state->base.crtc->dev;
515 const intel_limit_t *limit;
516
517 if (IS_BROXTON(dev))
518 limit = &intel_limits_bxt;
519 else if (HAS_PCH_SPLIT(dev))
520 limit = intel_ironlake_limit(crtc_state, refclk);
521 else if (IS_G4X(dev)) {
522 limit = intel_g4x_limit(crtc_state);
523 } else if (IS_PINEVIEW(dev)) {
524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525 limit = &intel_limits_pineview_lvds;
526 else
527 limit = &intel_limits_pineview_sdvo;
528 } else if (IS_CHERRYVIEW(dev)) {
529 limit = &intel_limits_chv;
530 } else if (IS_VALLEYVIEW(dev)) {
531 limit = &intel_limits_vlv;
532 } else if (!IS_GEN2(dev)) {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i9xx_lvds;
535 else
536 limit = &intel_limits_i9xx_sdvo;
537 } else {
538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i8xx_lvds;
540 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541 limit = &intel_limits_i8xx_dvo;
542 else
543 limit = &intel_limits_i8xx_dac;
544 }
545 return limit;
546 }
547
548 /*
549 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552 * The helpers' return value is the rate of the clock that is fed to the
553 * display engine's pipe which can be the above fast dot clock rate or a
554 * divided-down version of it.
555 */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559 clock->m = clock->m2 + 2;
560 clock->p = clock->p1 * clock->p2;
561 if (WARN_ON(clock->n == 0 || clock->p == 0))
562 return 0;
563 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566 return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576 clock->m = i9xx_dpll_compute_m(clock);
577 clock->p = clock->p1 * clock->p2;
578 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579 return 0;
580 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583 return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
591 return 0;
592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595 return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600 clock->m = clock->m1 * clock->m2;
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n == 0 || clock->p == 0))
603 return 0;
604 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605 clock->n << 22);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608 return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613 * Returns whether the given set of divisors are valid for a given refclk with
614 * the given connectors.
615 */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618 const intel_limit_t *limit,
619 const intel_clock_t *clock)
620 {
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
624 INTELPllInvalid("p1 out of range\n");
625 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
626 INTELPllInvalid("m2 out of range\n");
627 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
628 INTELPllInvalid("m1 out of range\n");
629
630 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631 if (clock->m1 <= clock->m2)
632 INTELPllInvalid("m1 <= m2\n");
633
634 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635 if (clock->p < limit->p.min || limit->p.max < clock->p)
636 INTELPllInvalid("p out of range\n");
637 if (clock->m < limit->m.min || limit->m.max < clock->m)
638 INTELPllInvalid("m out of range\n");
639 }
640
641 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642 INTELPllInvalid("vco out of range\n");
643 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644 * connector, etc., rather than just a single range.
645 */
646 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647 INTELPllInvalid("dot out of range\n");
648
649 return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654 const struct intel_crtc_state *crtc_state,
655 int target)
656 {
657 struct drm_device *dev = crtc_state->base.crtc->dev;
658
659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660 /*
661 * For LVDS just rely on its current settings for dual-channel.
662 * We haven't figured out how to reliably set up different
663 * single/dual channel state, if we even can.
664 */
665 if (intel_is_dual_link_lvds(dev))
666 return limit->p2.p2_fast;
667 else
668 return limit->p2.p2_slow;
669 } else {
670 if (target < limit->p2.dot_limit)
671 return limit->p2.p2_slow;
672 else
673 return limit->p2.p2_fast;
674 }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679 struct intel_crtc_state *crtc_state,
680 int target, int refclk, intel_clock_t *match_clock,
681 intel_clock_t *best_clock)
682 {
683 struct drm_device *dev = crtc_state->base.crtc->dev;
684 intel_clock_t clock;
685 int err = target;
686
687 memset(best_clock, 0, sizeof(*best_clock));
688
689 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
695 if (clock.m2 >= clock.m1)
696 break;
697 for (clock.n = limit->n.min;
698 clock.n <= limit->n.max; clock.n++) {
699 for (clock.p1 = limit->p1.min;
700 clock.p1 <= limit->p1.max; clock.p1++) {
701 int this_err;
702
703 i9xx_calc_dpll_params(refclk, &clock);
704 if (!intel_PLL_is_valid(dev, limit,
705 &clock))
706 continue;
707 if (match_clock &&
708 clock.p != match_clock->p)
709 continue;
710
711 this_err = abs(clock.dot - target);
712 if (this_err < err) {
713 *best_clock = clock;
714 err = this_err;
715 }
716 }
717 }
718 }
719 }
720
721 return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726 struct intel_crtc_state *crtc_state,
727 int target, int refclk, intel_clock_t *match_clock,
728 intel_clock_t *best_clock)
729 {
730 struct drm_device *dev = crtc_state->base.crtc->dev;
731 intel_clock_t clock;
732 int err = target;
733
734 memset(best_clock, 0, sizeof(*best_clock));
735
736 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739 clock.m1++) {
740 for (clock.m2 = limit->m2.min;
741 clock.m2 <= limit->m2.max; clock.m2++) {
742 for (clock.n = limit->n.min;
743 clock.n <= limit->n.max; clock.n++) {
744 for (clock.p1 = limit->p1.min;
745 clock.p1 <= limit->p1.max; clock.p1++) {
746 int this_err;
747
748 pnv_calc_dpll_params(refclk, &clock);
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
751 continue;
752 if (match_clock &&
753 clock.p != match_clock->p)
754 continue;
755
756 this_err = abs(clock.dot - target);
757 if (this_err < err) {
758 *best_clock = clock;
759 err = this_err;
760 }
761 }
762 }
763 }
764 }
765
766 return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
774 {
775 struct drm_device *dev = crtc_state->base.crtc->dev;
776 intel_clock_t clock;
777 int max_n;
778 bool found = false;
779 /* approximately equals target * 0.00585 */
780 int err_most = (target >> 8) + (target >> 9);
781
782 memset(best_clock, 0, sizeof(*best_clock));
783
784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786 max_n = limit->n.max;
787 /* based on hardware requirement, prefer smaller n to precision */
788 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789 /* based on hardware requirement, prefere larger m1,m2 */
790 for (clock.m1 = limit->m1.max;
791 clock.m1 >= limit->m1.min; clock.m1--) {
792 for (clock.m2 = limit->m2.max;
793 clock.m2 >= limit->m2.min; clock.m2--) {
794 for (clock.p1 = limit->p1.max;
795 clock.p1 >= limit->p1.min; clock.p1--) {
796 int this_err;
797
798 i9xx_calc_dpll_params(refclk, &clock);
799 if (!intel_PLL_is_valid(dev, limit,
800 &clock))
801 continue;
802
803 this_err = abs(clock.dot - target);
804 if (this_err < err_most) {
805 *best_clock = clock;
806 err_most = this_err;
807 max_n = clock.n;
808 found = true;
809 }
810 }
811 }
812 }
813 }
814 return found;
815 }
816
817 /*
818 * Check if the calculated PLL configuration is more optimal compared to the
819 * best configuration and error found so far. Return the calculated error.
820 */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822 const intel_clock_t *calculated_clock,
823 const intel_clock_t *best_clock,
824 unsigned int best_error_ppm,
825 unsigned int *error_ppm)
826 {
827 /*
828 * For CHV ignore the error and consider only the P value.
829 * Prefer a bigger P value based on HW requirements.
830 */
831 if (IS_CHERRYVIEW(dev)) {
832 *error_ppm = 0;
833
834 return calculated_clock->p > best_clock->p;
835 }
836
837 if (WARN_ON_ONCE(!target_freq))
838 return false;
839
840 *error_ppm = div_u64(1000000ULL *
841 abs(target_freq - calculated_clock->dot),
842 target_freq);
843 /*
844 * Prefer a better P value over a better (smaller) error if the error
845 * is small. Ensure this preference for future configurations too by
846 * setting the error to 0.
847 */
848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849 *error_ppm = 0;
850
851 return true;
852 }
853
854 return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864 struct drm_device *dev = crtc->base.dev;
865 intel_clock_t clock;
866 unsigned int bestppm = 1000000;
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
869 bool found = false;
870
871 target *= 5; /* fast clock */
872
873 memset(best_clock, 0, sizeof(*best_clock));
874
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880 clock.p = clock.p1 * clock.p2;
881 /* based on hardware requirement, prefer bigger m1,m2 values */
882 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883 unsigned int ppm;
884
885 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886 refclk * clock.m1);
887
888 vlv_calc_dpll_params(refclk, &clock);
889
890 if (!intel_PLL_is_valid(dev, limit,
891 &clock))
892 continue;
893
894 if (!vlv_PLL_is_optimal(dev, target,
895 &clock,
896 best_clock,
897 bestppm, &ppm))
898 continue;
899
900 *best_clock = clock;
901 bestppm = ppm;
902 found = true;
903 }
904 }
905 }
906 }
907
908 return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913 struct intel_crtc_state *crtc_state,
914 int target, int refclk, intel_clock_t *match_clock,
915 intel_clock_t *best_clock)
916 {
917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918 struct drm_device *dev = crtc->base.dev;
919 unsigned int best_error_ppm;
920 intel_clock_t clock;
921 uint64_t m2;
922 int found = false;
923
924 memset(best_clock, 0, sizeof(*best_clock));
925 best_error_ppm = 1000000;
926
927 /*
928 * Based on hardware doc, the n always set to 1, and m1 always
929 * set to 2. If requires to support 200Mhz refclk, we need to
930 * revisit this because n may not 1 anymore.
931 */
932 clock.n = 1, clock.m1 = 2;
933 target *= 5; /* fast clock */
934
935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936 for (clock.p2 = limit->p2.p2_fast;
937 clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 unsigned int error_ppm;
940
941 clock.p = clock.p1 * clock.p2;
942
943 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944 clock.n) << 22, refclk * clock.m1);
945
946 if (m2 > INT_MAX/clock.m1)
947 continue;
948
949 clock.m2 = m2;
950
951 chv_calc_dpll_params(refclk, &clock);
952
953 if (!intel_PLL_is_valid(dev, limit, &clock))
954 continue;
955
956 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957 best_error_ppm, &error_ppm))
958 continue;
959
960 *best_clock = clock;
961 best_error_ppm = error_ppm;
962 found = true;
963 }
964 }
965
966 return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970 intel_clock_t *best_clock)
971 {
972 int refclk = i9xx_get_refclk(crtc_state, 0);
973
974 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975 target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982 /* Be paranoid as we can arrive here with only partial
983 * state retrieved from the hardware during setup.
984 *
985 * We can ditch the adjusted_mode.crtc_clock check as soon
986 * as Haswell has gained clock readout/fastboot support.
987 *
988 * We can ditch the crtc->primary->fb check as soon as we can
989 * properly reconstruct framebuffers.
990 *
991 * FIXME: The intel_crtc->active here should be switched to
992 * crtc->state->active once we have proper CRTC states wired up
993 * for atomic.
994 */
995 return intel_crtc->active && crtc->primary->state->fb &&
996 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000 enum pipe pipe)
1001 {
1002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005 return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 reg = PIPEDSL(pipe);
1012 u32 line1, line2;
1013 u32 line_mask;
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 line1 = I915_READ(reg) & line_mask;
1021 msleep(5);
1022 line2 = I915_READ(reg) & line_mask;
1023
1024 return line1 == line2;
1025 }
1026
1027 /*
1028 * intel_wait_for_pipe_off - wait for pipe to turn off
1029 * @crtc: crtc whose pipe to wait for
1030 *
1031 * After disabling a pipe, we can't wait for vblank in the usual way,
1032 * spinning on the vblank interrupt status bit, since we won't actually
1033 * see an interrupt when the pipe is disabled.
1034 *
1035 * On Gen4 and above:
1036 * wait for the pipe register state bit to turn off
1037 *
1038 * Otherwise:
1039 * wait for the display line value to settle (it usually
1040 * ends up stopping at the start of the next frame).
1041 *
1042 */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045 struct drm_device *dev = crtc->base.dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048 enum pipe pipe = crtc->pipe;
1049
1050 if (INTEL_INFO(dev)->gen >= 4) {
1051 int reg = PIPECONF(cpu_transcoder);
1052
1053 /* Wait for the Pipe State to go off */
1054 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055 100))
1056 WARN(1, "pipe_off wait timed out\n");
1057 } else {
1058 /* Wait for the display line to settle */
1059 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060 WARN(1, "pipe_off wait timed out\n");
1061 }
1062 }
1063
1064 /*
1065 * ibx_digital_port_connected - is the specified port connected?
1066 * @dev_priv: i915 private structure
1067 * @port: the port to test
1068 *
1069 * Returns true if @port is connected, false otherwise.
1070 */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072 struct intel_digital_port *port)
1073 {
1074 u32 bit;
1075
1076 if (HAS_PCH_IBX(dev_priv->dev)) {
1077 switch (port->port) {
1078 case PORT_B:
1079 bit = SDE_PORTB_HOTPLUG;
1080 break;
1081 case PORT_C:
1082 bit = SDE_PORTC_HOTPLUG;
1083 break;
1084 case PORT_D:
1085 bit = SDE_PORTD_HOTPLUG;
1086 break;
1087 default:
1088 return true;
1089 }
1090 } else {
1091 switch (port->port) {
1092 case PORT_B:
1093 bit = SDE_PORTB_HOTPLUG_CPT;
1094 break;
1095 case PORT_C:
1096 bit = SDE_PORTC_HOTPLUG_CPT;
1097 break;
1098 case PORT_D:
1099 bit = SDE_PORTD_HOTPLUG_CPT;
1100 break;
1101 default:
1102 return true;
1103 }
1104 }
1105
1106 return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111 return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121
1122 reg = DPLL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & DPLL_VCO_ENABLE);
1125 I915_STATE_WARN(cur_state != state,
1126 "PLL state assertion failure (expected %s, current %s)\n",
1127 state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133 u32 val;
1134 bool cur_state;
1135
1136 mutex_lock(&dev_priv->sb_lock);
1137 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138 mutex_unlock(&dev_priv->sb_lock);
1139
1140 cur_state = val & DSI_PLL_VCO_EN;
1141 I915_STATE_WARN(cur_state != state,
1142 "DSI PLL state assertion failure (expected %s, current %s)\n",
1143 state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153 if (crtc->config->shared_dpll < 0)
1154 return NULL;
1155
1156 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161 struct intel_shared_dpll *pll,
1162 bool state)
1163 {
1164 bool cur_state;
1165 struct intel_dpll_hw_state hw_state;
1166
1167 if (WARN (!pll,
1168 "asserting DPLL %s with no DPLL\n", state_string(state)))
1169 return;
1170
1171 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172 I915_STATE_WARN(cur_state != state,
1173 "%s assertion failure (expected %s, current %s)\n",
1174 pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 int reg;
1181 u32 val;
1182 bool cur_state;
1183 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184 pipe);
1185
1186 if (HAS_DDI(dev_priv->dev)) {
1187 /* DDI does not have a specific FDI_TX register */
1188 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191 } else {
1192 reg = FDI_TX_CTL(pipe);
1193 val = I915_READ(reg);
1194 cur_state = !!(val & FDI_TX_ENABLE);
1195 }
1196 I915_STATE_WARN(cur_state != state,
1197 "FDI TX state assertion failure (expected %s, current %s)\n",
1198 state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204 enum pipe pipe, bool state)
1205 {
1206 int reg;
1207 u32 val;
1208 bool cur_state;
1209
1210 reg = FDI_RX_CTL(pipe);
1211 val = I915_READ(reg);
1212 cur_state = !!(val & FDI_RX_ENABLE);
1213 I915_STATE_WARN(cur_state != state,
1214 "FDI RX state assertion failure (expected %s, current %s)\n",
1215 state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe)
1222 {
1223 int reg;
1224 u32 val;
1225
1226 /* ILK FDI PLL is always enabled */
1227 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228 return;
1229
1230 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231 if (HAS_DDI(dev_priv->dev))
1232 return;
1233
1234 reg = FDI_TX_CTL(pipe);
1235 val = I915_READ(reg);
1236 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 int reg;
1243 u32 val;
1244 bool cur_state;
1245
1246 reg = FDI_RX_CTL(pipe);
1247 val = I915_READ(reg);
1248 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249 I915_STATE_WARN(cur_state != state,
1250 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 struct drm_device *dev = dev_priv->dev;
1258 int pp_reg;
1259 u32 val;
1260 enum pipe panel_pipe = PIPE_A;
1261 bool locked = true;
1262
1263 if (WARN_ON(HAS_DDI(dev)))
1264 return;
1265
1266 if (HAS_PCH_SPLIT(dev)) {
1267 u32 port_sel;
1268
1269 pp_reg = PCH_PP_CONTROL;
1270 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274 panel_pipe = PIPE_B;
1275 /* XXX: else fix for eDP */
1276 } else if (IS_VALLEYVIEW(dev)) {
1277 /* presumably write lock depends on pipe, not port select */
1278 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279 panel_pipe = pipe;
1280 } else {
1281 pp_reg = PP_CONTROL;
1282 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283 panel_pipe = PIPE_B;
1284 }
1285
1286 val = I915_READ(pp_reg);
1287 if (!(val & PANEL_POWER_ON) ||
1288 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289 locked = false;
1290
1291 I915_STATE_WARN(panel_pipe == pipe && locked,
1292 "panel assertion failure, pipe %c regs locked\n",
1293 pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297 enum pipe pipe, bool state)
1298 {
1299 struct drm_device *dev = dev_priv->dev;
1300 bool cur_state;
1301
1302 if (IS_845G(dev) || IS_I865G(dev))
1303 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304 else
1305 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307 I915_STATE_WARN(cur_state != state,
1308 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309 pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315 enum pipe pipe, bool state)
1316 {
1317 int reg;
1318 u32 val;
1319 bool cur_state;
1320 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321 pipe);
1322
1323 /* if we need the pipe quirk it must be always on */
1324 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326 state = true;
1327
1328 if (!intel_display_power_is_enabled(dev_priv,
1329 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330 cur_state = false;
1331 } else {
1332 reg = PIPECONF(cpu_transcoder);
1333 val = I915_READ(reg);
1334 cur_state = !!(val & PIPECONF_ENABLE);
1335 }
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343 enum plane plane, bool state)
1344 {
1345 int reg;
1346 u32 val;
1347 bool cur_state;
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
1351 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352 I915_STATE_WARN(cur_state != state,
1353 "plane %c assertion failure (expected %s, current %s)\n",
1354 plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361 enum pipe pipe)
1362 {
1363 struct drm_device *dev = dev_priv->dev;
1364 int reg, i;
1365 u32 val;
1366 int cur_pipe;
1367
1368 /* Primary planes are fixed to pipes on gen4+ */
1369 if (INTEL_INFO(dev)->gen >= 4) {
1370 reg = DSPCNTR(pipe);
1371 val = I915_READ(reg);
1372 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373 "plane %c assertion failure, should be disabled but not\n",
1374 plane_name(pipe));
1375 return;
1376 }
1377
1378 /* Need to check both planes against the pipe */
1379 for_each_pipe(dev_priv, i) {
1380 reg = DSPCNTR(i);
1381 val = I915_READ(reg);
1382 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383 DISPPLANE_SEL_PIPE_SHIFT;
1384 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386 plane_name(i), pipe_name(pipe));
1387 }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 struct drm_device *dev = dev_priv->dev;
1394 int reg, sprite;
1395 u32 val;
1396
1397 if (INTEL_INFO(dev)->gen >= 9) {
1398 for_each_sprite(dev_priv, pipe, sprite) {
1399 val = I915_READ(PLANE_CTL(pipe, sprite));
1400 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402 sprite, pipe_name(pipe));
1403 }
1404 } else if (IS_VALLEYVIEW(dev)) {
1405 for_each_sprite(dev_priv, pipe, sprite) {
1406 reg = SPCNTR(pipe, sprite);
1407 val = I915_READ(reg);
1408 I915_STATE_WARN(val & SP_ENABLE,
1409 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410 sprite_name(pipe, sprite), pipe_name(pipe));
1411 }
1412 } else if (INTEL_INFO(dev)->gen >= 7) {
1413 reg = SPRCTL(pipe);
1414 val = I915_READ(reg);
1415 I915_STATE_WARN(val & SPRITE_ENABLE,
1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417 plane_name(pipe), pipe_name(pipe));
1418 } else if (INTEL_INFO(dev)->gen >= 5) {
1419 reg = DVSCNTR(pipe);
1420 val = I915_READ(reg);
1421 I915_STATE_WARN(val & DVS_ENABLE,
1422 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423 plane_name(pipe), pipe_name(pipe));
1424 }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435 u32 val;
1436 bool enabled;
1437
1438 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440 val = I915_READ(PCH_DREF_CONTROL);
1441 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442 DREF_SUPERSPREAD_SOURCE_MASK));
1443 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447 enum pipe pipe)
1448 {
1449 int reg;
1450 u32 val;
1451 bool enabled;
1452
1453 reg = PCH_TRANSCONF(pipe);
1454 val = I915_READ(reg);
1455 enabled = !!(val & TRANS_ENABLE);
1456 I915_STATE_WARN(enabled,
1457 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458 pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464 if ((val & DP_PORT_EN) == 0)
1465 return false;
1466
1467 if (HAS_PCH_CPT(dev_priv->dev)) {
1468 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471 return false;
1472 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474 return false;
1475 } else {
1476 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477 return false;
1478 }
1479 return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483 enum pipe pipe, u32 val)
1484 {
1485 if ((val & SDVO_ENABLE) == 0)
1486 return false;
1487
1488 if (HAS_PCH_CPT(dev_priv->dev)) {
1489 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490 return false;
1491 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493 return false;
1494 } else {
1495 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496 return false;
1497 }
1498 return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502 enum pipe pipe, u32 val)
1503 {
1504 if ((val & LVDS_PORT_EN) == 0)
1505 return false;
1506
1507 if (HAS_PCH_CPT(dev_priv->dev)) {
1508 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509 return false;
1510 } else {
1511 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512 return false;
1513 }
1514 return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519 {
1520 if ((val & ADPA_DAC_ENABLE) == 0)
1521 return false;
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527 return false;
1528 }
1529 return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533 enum pipe pipe, int reg, u32 port_sel)
1534 {
1535 u32 val = I915_READ(reg);
1536 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538 reg, pipe_name(pipe));
1539
1540 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541 && (val & DP_PIPEB_SELECT),
1542 "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, int reg)
1547 {
1548 u32 val = I915_READ(reg);
1549 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551 reg, pipe_name(pipe));
1552
1553 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554 && (val & SDVO_PIPE_B_SELECT),
1555 "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559 enum pipe pipe)
1560 {
1561 int reg;
1562 u32 val;
1563
1564 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568 reg = PCH_ADPA;
1569 val = I915_READ(reg);
1570 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571 "PCH VGA enabled on transcoder %c, should be disabled\n",
1572 pipe_name(pipe));
1573
1574 reg = PCH_LVDS;
1575 val = I915_READ(reg);
1576 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578 pipe_name(pipe));
1579
1580 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 if (!IS_VALLEYVIEW(dev))
1590 return;
1591
1592 /*
1593 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594 * CHV x1 PHY (DP/HDMI D)
1595 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596 */
1597 if (IS_CHERRYVIEW(dev)) {
1598 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600 } else {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602 }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606 const struct intel_crtc_state *pipe_config)
1607 {
1608 struct drm_device *dev = crtc->base.dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 int reg = DPLL(crtc->pipe);
1611 u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* No really, not for ILK+ */
1616 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618 /* PLL is protected by panel, make sure we can write it */
1619 if (IS_MOBILE(dev_priv->dev))
1620 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622 I915_WRITE(reg, dpll);
1623 POSTING_READ(reg);
1624 udelay(150);
1625
1626 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630 POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632 /* We do this three times for luck */
1633 I915_WRITE(reg, dpll);
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636 I915_WRITE(reg, dpll);
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639 I915_WRITE(reg, dpll);
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645 const struct intel_crtc_state *pipe_config)
1646 {
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int pipe = crtc->pipe;
1650 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651 u32 tmp;
1652
1653 assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657 mutex_lock(&dev_priv->sb_lock);
1658
1659 /* Enable back the 10bit clock to display controller */
1660 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661 tmp |= DPIO_DCLKP_EN;
1662 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664 mutex_unlock(&dev_priv->sb_lock);
1665
1666 /*
1667 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668 */
1669 udelay(1);
1670
1671 /* Enable PLL */
1672 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674 /* Check PLL is locked */
1675 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678 /* not sure when this should be written */
1679 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680 POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685 struct intel_crtc *crtc;
1686 int count = 0;
1687
1688 for_each_intel_crtc(dev, crtc)
1689 count += crtc->base.state->active &&
1690 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692 return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697 struct drm_device *dev = crtc->base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 int reg = DPLL(crtc->pipe);
1700 u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702 assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704 /* No really, not for ILK+ */
1705 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707 /* PLL is protected by panel, make sure we can write it */
1708 if (IS_MOBILE(dev) && !IS_I830(dev))
1709 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711 /* Enable DVO 2x clock on both PLLs if necessary */
1712 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713 /*
1714 * It appears to be important that we don't enable this
1715 * for the current pipe before otherwise configuring the
1716 * PLL. No idea how this should be handled if multiple
1717 * DVO outputs are enabled simultaneosly.
1718 */
1719 dpll |= DPLL_DVO_2X_MODE;
1720 I915_WRITE(DPLL(!crtc->pipe),
1721 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722 }
1723
1724 /* Wait for the clocks to stabilize. */
1725 POSTING_READ(reg);
1726 udelay(150);
1727
1728 if (INTEL_INFO(dev)->gen >= 4) {
1729 I915_WRITE(DPLL_MD(crtc->pipe),
1730 crtc->config->dpll_hw_state.dpll_md);
1731 } else {
1732 /* The pixel multiplier can only be updated once the
1733 * DPLL is enabled and the clocks are stable.
1734 *
1735 * So write it again.
1736 */
1737 I915_WRITE(reg, dpll);
1738 }
1739
1740 /* We do this three times for luck */
1741 I915_WRITE(reg, dpll);
1742 POSTING_READ(reg);
1743 udelay(150); /* wait for warmup */
1744 I915_WRITE(reg, dpll);
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
1747 I915_WRITE(reg, dpll);
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753 * i9xx_disable_pll - disable a PLL
1754 * @dev_priv: i915 private structure
1755 * @pipe: pipe PLL to disable
1756 *
1757 * Disable the PLL for @pipe, making sure the pipe is off first.
1758 *
1759 * Note! This is for pre-ILK only.
1760 */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763 struct drm_device *dev = crtc->base.dev;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 enum pipe pipe = crtc->pipe;
1766
1767 /* Disable DVO 2x clock on both PLLs if necessary */
1768 if (IS_I830(dev) &&
1769 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770 !intel_num_dvo_pipes(dev)) {
1771 I915_WRITE(DPLL(PIPE_B),
1772 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773 I915_WRITE(DPLL(PIPE_A),
1774 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775 }
1776
1777 /* Don't disable pipe or pipe PLLs if needed */
1778 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780 return;
1781
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
1784
1785 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786 POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791 u32 val;
1792
1793 /* Make sure the pipe isn't still relying on us */
1794 assert_pipe_disabled(dev_priv, pipe);
1795
1796 /*
1797 * Leave integrated clock source and reference clock enabled for pipe B.
1798 * The latter is needed for VGA hotplug / manual detection.
1799 */
1800 val = DPLL_VGA_MODE_DIS;
1801 if (pipe == PIPE_B)
1802 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803 I915_WRITE(DPLL(pipe), val);
1804 POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811 u32 val;
1812
1813 /* Make sure the pipe isn't still relying on us */
1814 assert_pipe_disabled(dev_priv, pipe);
1815
1816 /* Set PLL en = 0 */
1817 val = DPLL_SSC_REF_CLK_CHV |
1818 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819 if (pipe != PIPE_A)
1820 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821 I915_WRITE(DPLL(pipe), val);
1822 POSTING_READ(DPLL(pipe));
1823
1824 mutex_lock(&dev_priv->sb_lock);
1825
1826 /* Disable 10bit clock to display controller */
1827 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828 val &= ~DPIO_DCLKP_EN;
1829 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831 /* disable left/right clock distribution */
1832 if (pipe != PIPE_B) {
1833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836 } else {
1837 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840 }
1841
1842 mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846 struct intel_digital_port *dport,
1847 unsigned int expected_mask)
1848 {
1849 u32 port_mask;
1850 int dpll_reg;
1851
1852 switch (dport->port) {
1853 case PORT_B:
1854 port_mask = DPLL_PORTB_READY_MASK;
1855 dpll_reg = DPLL(0);
1856 break;
1857 case PORT_C:
1858 port_mask = DPLL_PORTC_READY_MASK;
1859 dpll_reg = DPLL(0);
1860 expected_mask <<= 4;
1861 break;
1862 case PORT_D:
1863 port_mask = DPLL_PORTD_READY_MASK;
1864 dpll_reg = DPIO_PHY_STATUS;
1865 break;
1866 default:
1867 BUG();
1868 }
1869
1870 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881 if (WARN_ON(pll == NULL))
1882 return;
1883
1884 WARN_ON(!pll->config.crtc_mask);
1885 if (pll->active == 0) {
1886 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887 WARN_ON(pll->on);
1888 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890 pll->mode_set(dev_priv, pll);
1891 }
1892 }
1893
1894 /**
1895 * intel_enable_shared_dpll - enable PCH PLL
1896 * @dev_priv: i915 private structure
1897 * @pipe: pipe PLL to enable
1898 *
1899 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900 * drives the transcoder clock.
1901 */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904 struct drm_device *dev = crtc->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908 if (WARN_ON(pll == NULL))
1909 return;
1910
1911 if (WARN_ON(pll->config.crtc_mask == 0))
1912 return;
1913
1914 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915 pll->name, pll->active, pll->on,
1916 crtc->base.base.id);
1917
1918 if (pll->active++) {
1919 WARN_ON(!pll->on);
1920 assert_shared_dpll_enabled(dev_priv, pll);
1921 return;
1922 }
1923 WARN_ON(pll->on);
1924
1925 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928 pll->enable(dev_priv, pll);
1929 pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934 struct drm_device *dev = crtc->base.dev;
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938 /* PCH only available on ILK+ */
1939 BUG_ON(INTEL_INFO(dev)->gen < 5);
1940 if (pll == NULL)
1941 return;
1942
1943 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1944 return;
1945
1946 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1947 pll->name, pll->active, pll->on,
1948 crtc->base.base.id);
1949
1950 if (WARN_ON(pll->active == 0)) {
1951 assert_shared_dpll_disabled(dev_priv, pll);
1952 return;
1953 }
1954
1955 assert_shared_dpll_enabled(dev_priv, pll);
1956 WARN_ON(!pll->on);
1957 if (--pll->active)
1958 return;
1959
1960 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1961 pll->disable(dev_priv, pll);
1962 pll->on = false;
1963
1964 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1965 }
1966
1967 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1968 enum pipe pipe)
1969 {
1970 struct drm_device *dev = dev_priv->dev;
1971 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1973 uint32_t reg, val, pipeconf_val;
1974
1975 /* PCH only available on ILK+ */
1976 BUG_ON(!HAS_PCH_SPLIT(dev));
1977
1978 /* Make sure PCH DPLL is enabled */
1979 assert_shared_dpll_enabled(dev_priv,
1980 intel_crtc_to_shared_dpll(intel_crtc));
1981
1982 /* FDI must be feeding us bits for PCH ports */
1983 assert_fdi_tx_enabled(dev_priv, pipe);
1984 assert_fdi_rx_enabled(dev_priv, pipe);
1985
1986 if (HAS_PCH_CPT(dev)) {
1987 /* Workaround: Set the timing override bit before enabling the
1988 * pch transcoder. */
1989 reg = TRANS_CHICKEN2(pipe);
1990 val = I915_READ(reg);
1991 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1992 I915_WRITE(reg, val);
1993 }
1994
1995 reg = PCH_TRANSCONF(pipe);
1996 val = I915_READ(reg);
1997 pipeconf_val = I915_READ(PIPECONF(pipe));
1998
1999 if (HAS_PCH_IBX(dev_priv->dev)) {
2000 /*
2001 * Make the BPC in transcoder be consistent with
2002 * that in pipeconf reg. For HDMI we must use 8bpc
2003 * here for both 8bpc and 12bpc.
2004 */
2005 val &= ~PIPECONF_BPC_MASK;
2006 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2007 val |= PIPECONF_8BPC;
2008 else
2009 val |= pipeconf_val & PIPECONF_BPC_MASK;
2010 }
2011
2012 val &= ~TRANS_INTERLACE_MASK;
2013 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2014 if (HAS_PCH_IBX(dev_priv->dev) &&
2015 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2016 val |= TRANS_LEGACY_INTERLACED_ILK;
2017 else
2018 val |= TRANS_INTERLACED;
2019 else
2020 val |= TRANS_PROGRESSIVE;
2021
2022 I915_WRITE(reg, val | TRANS_ENABLE);
2023 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2024 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2025 }
2026
2027 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2028 enum transcoder cpu_transcoder)
2029 {
2030 u32 val, pipeconf_val;
2031
2032 /* PCH only available on ILK+ */
2033 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2034
2035 /* FDI must be feeding us bits for PCH ports */
2036 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2037 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2038
2039 /* Workaround: set timing override bit. */
2040 val = I915_READ(_TRANSA_CHICKEN2);
2041 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2042 I915_WRITE(_TRANSA_CHICKEN2, val);
2043
2044 val = TRANS_ENABLE;
2045 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2046
2047 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2048 PIPECONF_INTERLACED_ILK)
2049 val |= TRANS_INTERLACED;
2050 else
2051 val |= TRANS_PROGRESSIVE;
2052
2053 I915_WRITE(LPT_TRANSCONF, val);
2054 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2055 DRM_ERROR("Failed to enable PCH transcoder\n");
2056 }
2057
2058 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2059 enum pipe pipe)
2060 {
2061 struct drm_device *dev = dev_priv->dev;
2062 uint32_t reg, val;
2063
2064 /* FDI relies on the transcoder */
2065 assert_fdi_tx_disabled(dev_priv, pipe);
2066 assert_fdi_rx_disabled(dev_priv, pipe);
2067
2068 /* Ports must be off as well */
2069 assert_pch_ports_disabled(dev_priv, pipe);
2070
2071 reg = PCH_TRANSCONF(pipe);
2072 val = I915_READ(reg);
2073 val &= ~TRANS_ENABLE;
2074 I915_WRITE(reg, val);
2075 /* wait for PCH transcoder off, transcoder state */
2076 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2077 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2078
2079 if (!HAS_PCH_IBX(dev)) {
2080 /* Workaround: Clear the timing override chicken bit again. */
2081 reg = TRANS_CHICKEN2(pipe);
2082 val = I915_READ(reg);
2083 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2084 I915_WRITE(reg, val);
2085 }
2086 }
2087
2088 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2089 {
2090 u32 val;
2091
2092 val = I915_READ(LPT_TRANSCONF);
2093 val &= ~TRANS_ENABLE;
2094 I915_WRITE(LPT_TRANSCONF, val);
2095 /* wait for PCH transcoder off, transcoder state */
2096 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2097 DRM_ERROR("Failed to disable PCH transcoder\n");
2098
2099 /* Workaround: clear timing override bit. */
2100 val = I915_READ(_TRANSA_CHICKEN2);
2101 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2102 I915_WRITE(_TRANSA_CHICKEN2, val);
2103 }
2104
2105 /**
2106 * intel_enable_pipe - enable a pipe, asserting requirements
2107 * @crtc: crtc responsible for the pipe
2108 *
2109 * Enable @crtc's pipe, making sure that various hardware specific requirements
2110 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2111 */
2112 static void intel_enable_pipe(struct intel_crtc *crtc)
2113 {
2114 struct drm_device *dev = crtc->base.dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 enum pipe pipe = crtc->pipe;
2117 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2118 pipe);
2119 enum pipe pch_transcoder;
2120 int reg;
2121 u32 val;
2122
2123 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2124
2125 assert_planes_disabled(dev_priv, pipe);
2126 assert_cursor_disabled(dev_priv, pipe);
2127 assert_sprites_disabled(dev_priv, pipe);
2128
2129 if (HAS_PCH_LPT(dev_priv->dev))
2130 pch_transcoder = TRANSCODER_A;
2131 else
2132 pch_transcoder = pipe;
2133
2134 /*
2135 * A pipe without a PLL won't actually be able to drive bits from
2136 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2137 * need the check.
2138 */
2139 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141 assert_dsi_pll_enabled(dev_priv);
2142 else
2143 assert_pll_enabled(dev_priv, pipe);
2144 else {
2145 if (crtc->config->has_pch_encoder) {
2146 /* if driving the PCH, we need FDI enabled */
2147 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148 assert_fdi_tx_pll_enabled(dev_priv,
2149 (enum pipe) cpu_transcoder);
2150 }
2151 /* FIXME: assert CPU port conditions for SNB+ */
2152 }
2153
2154 reg = PIPECONF(cpu_transcoder);
2155 val = I915_READ(reg);
2156 if (val & PIPECONF_ENABLE) {
2157 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159 return;
2160 }
2161
2162 I915_WRITE(reg, val | PIPECONF_ENABLE);
2163 POSTING_READ(reg);
2164 }
2165
2166 /**
2167 * intel_disable_pipe - disable a pipe, asserting requirements
2168 * @crtc: crtc whose pipes is to be disabled
2169 *
2170 * Disable the pipe of @crtc, making sure that various hardware
2171 * specific requirements are met, if applicable, e.g. plane
2172 * disabled, panel fitter off, etc.
2173 *
2174 * Will wait until the pipe has shut down before returning.
2175 */
2176 static void intel_disable_pipe(struct intel_crtc *crtc)
2177 {
2178 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180 enum pipe pipe = crtc->pipe;
2181 int reg;
2182 u32 val;
2183
2184 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2185
2186 /*
2187 * Make sure planes won't keep trying to pump pixels to us,
2188 * or we might hang the display.
2189 */
2190 assert_planes_disabled(dev_priv, pipe);
2191 assert_cursor_disabled(dev_priv, pipe);
2192 assert_sprites_disabled(dev_priv, pipe);
2193
2194 reg = PIPECONF(cpu_transcoder);
2195 val = I915_READ(reg);
2196 if ((val & PIPECONF_ENABLE) == 0)
2197 return;
2198
2199 /*
2200 * Double wide has implications for planes
2201 * so best keep it disabled when not needed.
2202 */
2203 if (crtc->config->double_wide)
2204 val &= ~PIPECONF_DOUBLE_WIDE;
2205
2206 /* Don't disable pipe or pipe PLLs if needed */
2207 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2208 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2209 val &= ~PIPECONF_ENABLE;
2210
2211 I915_WRITE(reg, val);
2212 if ((val & PIPECONF_ENABLE) == 0)
2213 intel_wait_for_pipe_off(crtc);
2214 }
2215
2216 static bool need_vtd_wa(struct drm_device *dev)
2217 {
2218 #ifdef CONFIG_INTEL_IOMMU
2219 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2220 return true;
2221 #endif
2222 return false;
2223 }
2224
2225 unsigned int
2226 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2227 uint64_t fb_format_modifier)
2228 {
2229 unsigned int tile_height;
2230 uint32_t pixel_bytes;
2231
2232 switch (fb_format_modifier) {
2233 case DRM_FORMAT_MOD_NONE:
2234 tile_height = 1;
2235 break;
2236 case I915_FORMAT_MOD_X_TILED:
2237 tile_height = IS_GEN2(dev) ? 16 : 8;
2238 break;
2239 case I915_FORMAT_MOD_Y_TILED:
2240 tile_height = 32;
2241 break;
2242 case I915_FORMAT_MOD_Yf_TILED:
2243 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2244 switch (pixel_bytes) {
2245 default:
2246 case 1:
2247 tile_height = 64;
2248 break;
2249 case 2:
2250 case 4:
2251 tile_height = 32;
2252 break;
2253 case 8:
2254 tile_height = 16;
2255 break;
2256 case 16:
2257 WARN_ONCE(1,
2258 "128-bit pixels are not supported for display!");
2259 tile_height = 16;
2260 break;
2261 }
2262 break;
2263 default:
2264 MISSING_CASE(fb_format_modifier);
2265 tile_height = 1;
2266 break;
2267 }
2268
2269 return tile_height;
2270 }
2271
2272 unsigned int
2273 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2274 uint32_t pixel_format, uint64_t fb_format_modifier)
2275 {
2276 return ALIGN(height, intel_tile_height(dev, pixel_format,
2277 fb_format_modifier));
2278 }
2279
2280 static int
2281 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2282 const struct drm_plane_state *plane_state)
2283 {
2284 struct intel_rotation_info *info = &view->rotation_info;
2285 unsigned int tile_height, tile_pitch;
2286
2287 *view = i915_ggtt_view_normal;
2288
2289 if (!plane_state)
2290 return 0;
2291
2292 if (!intel_rotation_90_or_270(plane_state->rotation))
2293 return 0;
2294
2295 *view = i915_ggtt_view_rotated;
2296
2297 info->height = fb->height;
2298 info->pixel_format = fb->pixel_format;
2299 info->pitch = fb->pitches[0];
2300 info->fb_modifier = fb->modifier[0];
2301
2302 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2303 fb->modifier[0]);
2304 tile_pitch = PAGE_SIZE / tile_height;
2305 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2306 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2307 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2308
2309 return 0;
2310 }
2311
2312 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2313 {
2314 if (INTEL_INFO(dev_priv)->gen >= 9)
2315 return 256 * 1024;
2316 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2317 IS_VALLEYVIEW(dev_priv))
2318 return 128 * 1024;
2319 else if (INTEL_INFO(dev_priv)->gen >= 4)
2320 return 4 * 1024;
2321 else
2322 return 0;
2323 }
2324
2325 int
2326 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327 struct drm_framebuffer *fb,
2328 const struct drm_plane_state *plane_state,
2329 struct intel_engine_cs *pipelined,
2330 struct drm_i915_gem_request **pipelined_request)
2331 {
2332 struct drm_device *dev = fb->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2335 struct i915_ggtt_view view;
2336 u32 alignment;
2337 int ret;
2338
2339 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2340
2341 switch (fb->modifier[0]) {
2342 case DRM_FORMAT_MOD_NONE:
2343 alignment = intel_linear_alignment(dev_priv);
2344 break;
2345 case I915_FORMAT_MOD_X_TILED:
2346 if (INTEL_INFO(dev)->gen >= 9)
2347 alignment = 256 * 1024;
2348 else {
2349 /* pin() will align the object as required by fence */
2350 alignment = 0;
2351 }
2352 break;
2353 case I915_FORMAT_MOD_Y_TILED:
2354 case I915_FORMAT_MOD_Yf_TILED:
2355 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2356 "Y tiling bo slipped through, driver bug!\n"))
2357 return -EINVAL;
2358 alignment = 1 * 1024 * 1024;
2359 break;
2360 default:
2361 MISSING_CASE(fb->modifier[0]);
2362 return -EINVAL;
2363 }
2364
2365 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2366 if (ret)
2367 return ret;
2368
2369 /* Note that the w/a also requires 64 PTE of padding following the
2370 * bo. We currently fill all unused PTE with the shadow page and so
2371 * we should always have valid PTE following the scanout preventing
2372 * the VT-d warning.
2373 */
2374 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2375 alignment = 256 * 1024;
2376
2377 /*
2378 * Global gtt pte registers are special registers which actually forward
2379 * writes to a chunk of system memory. Which means that there is no risk
2380 * that the register values disappear as soon as we call
2381 * intel_runtime_pm_put(), so it is correct to wrap only the
2382 * pin/unpin/fence and not more.
2383 */
2384 intel_runtime_pm_get(dev_priv);
2385
2386 dev_priv->mm.interruptible = false;
2387 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2388 pipelined_request, &view);
2389 if (ret)
2390 goto err_interruptible;
2391
2392 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393 * fence, whereas 965+ only requires a fence if using
2394 * framebuffer compression. For simplicity, we always install
2395 * a fence as the cost is not that onerous.
2396 */
2397 ret = i915_gem_object_get_fence(obj);
2398 if (ret)
2399 goto err_unpin;
2400
2401 i915_gem_object_pin_fence(obj);
2402
2403 dev_priv->mm.interruptible = true;
2404 intel_runtime_pm_put(dev_priv);
2405 return 0;
2406
2407 err_unpin:
2408 i915_gem_object_unpin_from_display_plane(obj, &view);
2409 err_interruptible:
2410 dev_priv->mm.interruptible = true;
2411 intel_runtime_pm_put(dev_priv);
2412 return ret;
2413 }
2414
2415 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2416 const struct drm_plane_state *plane_state)
2417 {
2418 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2419 struct i915_ggtt_view view;
2420 int ret;
2421
2422 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2423
2424 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2425 WARN_ONCE(ret, "Couldn't get view from plane state!");
2426
2427 i915_gem_object_unpin_fence(obj);
2428 i915_gem_object_unpin_from_display_plane(obj, &view);
2429 }
2430
2431 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2432 * is assumed to be a power-of-two. */
2433 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2434 int *x, int *y,
2435 unsigned int tiling_mode,
2436 unsigned int cpp,
2437 unsigned int pitch)
2438 {
2439 if (tiling_mode != I915_TILING_NONE) {
2440 unsigned int tile_rows, tiles;
2441
2442 tile_rows = *y / 8;
2443 *y %= 8;
2444
2445 tiles = *x / (512/cpp);
2446 *x %= 512/cpp;
2447
2448 return tile_rows * pitch * 8 + tiles * 4096;
2449 } else {
2450 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2451 unsigned int offset;
2452
2453 offset = *y * pitch + *x * cpp;
2454 *y = (offset & alignment) / pitch;
2455 *x = ((offset & alignment) - *y * pitch) / cpp;
2456 return offset & ~alignment;
2457 }
2458 }
2459
2460 static int i9xx_format_to_fourcc(int format)
2461 {
2462 switch (format) {
2463 case DISPPLANE_8BPP:
2464 return DRM_FORMAT_C8;
2465 case DISPPLANE_BGRX555:
2466 return DRM_FORMAT_XRGB1555;
2467 case DISPPLANE_BGRX565:
2468 return DRM_FORMAT_RGB565;
2469 default:
2470 case DISPPLANE_BGRX888:
2471 return DRM_FORMAT_XRGB8888;
2472 case DISPPLANE_RGBX888:
2473 return DRM_FORMAT_XBGR8888;
2474 case DISPPLANE_BGRX101010:
2475 return DRM_FORMAT_XRGB2101010;
2476 case DISPPLANE_RGBX101010:
2477 return DRM_FORMAT_XBGR2101010;
2478 }
2479 }
2480
2481 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2482 {
2483 switch (format) {
2484 case PLANE_CTL_FORMAT_RGB_565:
2485 return DRM_FORMAT_RGB565;
2486 default:
2487 case PLANE_CTL_FORMAT_XRGB_8888:
2488 if (rgb_order) {
2489 if (alpha)
2490 return DRM_FORMAT_ABGR8888;
2491 else
2492 return DRM_FORMAT_XBGR8888;
2493 } else {
2494 if (alpha)
2495 return DRM_FORMAT_ARGB8888;
2496 else
2497 return DRM_FORMAT_XRGB8888;
2498 }
2499 case PLANE_CTL_FORMAT_XRGB_2101010:
2500 if (rgb_order)
2501 return DRM_FORMAT_XBGR2101010;
2502 else
2503 return DRM_FORMAT_XRGB2101010;
2504 }
2505 }
2506
2507 static bool
2508 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2509 struct intel_initial_plane_config *plane_config)
2510 {
2511 struct drm_device *dev = crtc->base.dev;
2512 struct drm_i915_gem_object *obj = NULL;
2513 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2514 struct drm_framebuffer *fb = &plane_config->fb->base;
2515 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2516 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2517 PAGE_SIZE);
2518
2519 size_aligned -= base_aligned;
2520
2521 if (plane_config->size == 0)
2522 return false;
2523
2524 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2525 base_aligned,
2526 base_aligned,
2527 size_aligned);
2528 if (!obj)
2529 return false;
2530
2531 obj->tiling_mode = plane_config->tiling;
2532 if (obj->tiling_mode == I915_TILING_X)
2533 obj->stride = fb->pitches[0];
2534
2535 mode_cmd.pixel_format = fb->pixel_format;
2536 mode_cmd.width = fb->width;
2537 mode_cmd.height = fb->height;
2538 mode_cmd.pitches[0] = fb->pitches[0];
2539 mode_cmd.modifier[0] = fb->modifier[0];
2540 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2541
2542 mutex_lock(&dev->struct_mutex);
2543 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2544 &mode_cmd, obj)) {
2545 DRM_DEBUG_KMS("intel fb init failed\n");
2546 goto out_unref_obj;
2547 }
2548 mutex_unlock(&dev->struct_mutex);
2549
2550 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2551 return true;
2552
2553 out_unref_obj:
2554 drm_gem_object_unreference(&obj->base);
2555 mutex_unlock(&dev->struct_mutex);
2556 return false;
2557 }
2558
2559 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2560 static void
2561 update_state_fb(struct drm_plane *plane)
2562 {
2563 if (plane->fb == plane->state->fb)
2564 return;
2565
2566 if (plane->state->fb)
2567 drm_framebuffer_unreference(plane->state->fb);
2568 plane->state->fb = plane->fb;
2569 if (plane->state->fb)
2570 drm_framebuffer_reference(plane->state->fb);
2571 }
2572
2573 static void
2574 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2575 struct intel_initial_plane_config *plane_config)
2576 {
2577 struct drm_device *dev = intel_crtc->base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct drm_crtc *c;
2580 struct intel_crtc *i;
2581 struct drm_i915_gem_object *obj;
2582 struct drm_plane *primary = intel_crtc->base.primary;
2583 struct drm_plane_state *plane_state = primary->state;
2584 struct drm_framebuffer *fb;
2585
2586 if (!plane_config->fb)
2587 return;
2588
2589 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2590 fb = &plane_config->fb->base;
2591 goto valid_fb;
2592 }
2593
2594 kfree(plane_config->fb);
2595
2596 /*
2597 * Failed to alloc the obj, check to see if we should share
2598 * an fb with another CRTC instead
2599 */
2600 for_each_crtc(dev, c) {
2601 i = to_intel_crtc(c);
2602
2603 if (c == &intel_crtc->base)
2604 continue;
2605
2606 if (!i->active)
2607 continue;
2608
2609 fb = c->primary->fb;
2610 if (!fb)
2611 continue;
2612
2613 obj = intel_fb_obj(fb);
2614 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2615 drm_framebuffer_reference(fb);
2616 goto valid_fb;
2617 }
2618 }
2619
2620 return;
2621
2622 valid_fb:
2623 plane_state->src_x = plane_state->src_y = 0;
2624 plane_state->src_w = fb->width << 16;
2625 plane_state->src_h = fb->height << 16;
2626
2627 plane_state->crtc_x = plane_state->src_y = 0;
2628 plane_state->crtc_w = fb->width;
2629 plane_state->crtc_h = fb->height;
2630
2631 obj = intel_fb_obj(fb);
2632 if (obj->tiling_mode != I915_TILING_NONE)
2633 dev_priv->preserve_bios_swizzle = true;
2634
2635 drm_framebuffer_reference(fb);
2636 primary->fb = primary->state->fb = fb;
2637 primary->crtc = primary->state->crtc = &intel_crtc->base;
2638 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2639 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2640 }
2641
2642 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2643 struct drm_framebuffer *fb,
2644 int x, int y)
2645 {
2646 struct drm_device *dev = crtc->dev;
2647 struct drm_i915_private *dev_priv = dev->dev_private;
2648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2649 struct drm_plane *primary = crtc->primary;
2650 bool visible = to_intel_plane_state(primary->state)->visible;
2651 struct drm_i915_gem_object *obj;
2652 int plane = intel_crtc->plane;
2653 unsigned long linear_offset;
2654 u32 dspcntr;
2655 u32 reg = DSPCNTR(plane);
2656 int pixel_size;
2657
2658 if (!visible || !fb) {
2659 I915_WRITE(reg, 0);
2660 if (INTEL_INFO(dev)->gen >= 4)
2661 I915_WRITE(DSPSURF(plane), 0);
2662 else
2663 I915_WRITE(DSPADDR(plane), 0);
2664 POSTING_READ(reg);
2665 return;
2666 }
2667
2668 obj = intel_fb_obj(fb);
2669 if (WARN_ON(obj == NULL))
2670 return;
2671
2672 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2673
2674 dspcntr = DISPPLANE_GAMMA_ENABLE;
2675
2676 dspcntr |= DISPLAY_PLANE_ENABLE;
2677
2678 if (INTEL_INFO(dev)->gen < 4) {
2679 if (intel_crtc->pipe == PIPE_B)
2680 dspcntr |= DISPPLANE_SEL_PIPE_B;
2681
2682 /* pipesrc and dspsize control the size that is scaled from,
2683 * which should always be the user's requested size.
2684 */
2685 I915_WRITE(DSPSIZE(plane),
2686 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2687 (intel_crtc->config->pipe_src_w - 1));
2688 I915_WRITE(DSPPOS(plane), 0);
2689 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2690 I915_WRITE(PRIMSIZE(plane),
2691 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2692 (intel_crtc->config->pipe_src_w - 1));
2693 I915_WRITE(PRIMPOS(plane), 0);
2694 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2695 }
2696
2697 switch (fb->pixel_format) {
2698 case DRM_FORMAT_C8:
2699 dspcntr |= DISPPLANE_8BPP;
2700 break;
2701 case DRM_FORMAT_XRGB1555:
2702 dspcntr |= DISPPLANE_BGRX555;
2703 break;
2704 case DRM_FORMAT_RGB565:
2705 dspcntr |= DISPPLANE_BGRX565;
2706 break;
2707 case DRM_FORMAT_XRGB8888:
2708 dspcntr |= DISPPLANE_BGRX888;
2709 break;
2710 case DRM_FORMAT_XBGR8888:
2711 dspcntr |= DISPPLANE_RGBX888;
2712 break;
2713 case DRM_FORMAT_XRGB2101010:
2714 dspcntr |= DISPPLANE_BGRX101010;
2715 break;
2716 case DRM_FORMAT_XBGR2101010:
2717 dspcntr |= DISPPLANE_RGBX101010;
2718 break;
2719 default:
2720 BUG();
2721 }
2722
2723 if (INTEL_INFO(dev)->gen >= 4 &&
2724 obj->tiling_mode != I915_TILING_NONE)
2725 dspcntr |= DISPPLANE_TILED;
2726
2727 if (IS_G4X(dev))
2728 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2729
2730 linear_offset = y * fb->pitches[0] + x * pixel_size;
2731
2732 if (INTEL_INFO(dev)->gen >= 4) {
2733 intel_crtc->dspaddr_offset =
2734 intel_gen4_compute_page_offset(dev_priv,
2735 &x, &y, obj->tiling_mode,
2736 pixel_size,
2737 fb->pitches[0]);
2738 linear_offset -= intel_crtc->dspaddr_offset;
2739 } else {
2740 intel_crtc->dspaddr_offset = linear_offset;
2741 }
2742
2743 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2744 dspcntr |= DISPPLANE_ROTATE_180;
2745
2746 x += (intel_crtc->config->pipe_src_w - 1);
2747 y += (intel_crtc->config->pipe_src_h - 1);
2748
2749 /* Finding the last pixel of the last line of the display
2750 data and adding to linear_offset*/
2751 linear_offset +=
2752 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2753 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2754 }
2755
2756 I915_WRITE(reg, dspcntr);
2757
2758 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2759 if (INTEL_INFO(dev)->gen >= 4) {
2760 I915_WRITE(DSPSURF(plane),
2761 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2762 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2763 I915_WRITE(DSPLINOFF(plane), linear_offset);
2764 } else
2765 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2766 POSTING_READ(reg);
2767 }
2768
2769 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2770 struct drm_framebuffer *fb,
2771 int x, int y)
2772 {
2773 struct drm_device *dev = crtc->dev;
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2776 struct drm_plane *primary = crtc->primary;
2777 bool visible = to_intel_plane_state(primary->state)->visible;
2778 struct drm_i915_gem_object *obj;
2779 int plane = intel_crtc->plane;
2780 unsigned long linear_offset;
2781 u32 dspcntr;
2782 u32 reg = DSPCNTR(plane);
2783 int pixel_size;
2784
2785 if (!visible || !fb) {
2786 I915_WRITE(reg, 0);
2787 I915_WRITE(DSPSURF(plane), 0);
2788 POSTING_READ(reg);
2789 return;
2790 }
2791
2792 obj = intel_fb_obj(fb);
2793 if (WARN_ON(obj == NULL))
2794 return;
2795
2796 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2797
2798 dspcntr = DISPPLANE_GAMMA_ENABLE;
2799
2800 dspcntr |= DISPLAY_PLANE_ENABLE;
2801
2802 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2803 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2804
2805 switch (fb->pixel_format) {
2806 case DRM_FORMAT_C8:
2807 dspcntr |= DISPPLANE_8BPP;
2808 break;
2809 case DRM_FORMAT_RGB565:
2810 dspcntr |= DISPPLANE_BGRX565;
2811 break;
2812 case DRM_FORMAT_XRGB8888:
2813 dspcntr |= DISPPLANE_BGRX888;
2814 break;
2815 case DRM_FORMAT_XBGR8888:
2816 dspcntr |= DISPPLANE_RGBX888;
2817 break;
2818 case DRM_FORMAT_XRGB2101010:
2819 dspcntr |= DISPPLANE_BGRX101010;
2820 break;
2821 case DRM_FORMAT_XBGR2101010:
2822 dspcntr |= DISPPLANE_RGBX101010;
2823 break;
2824 default:
2825 BUG();
2826 }
2827
2828 if (obj->tiling_mode != I915_TILING_NONE)
2829 dspcntr |= DISPPLANE_TILED;
2830
2831 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2832 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2833
2834 linear_offset = y * fb->pitches[0] + x * pixel_size;
2835 intel_crtc->dspaddr_offset =
2836 intel_gen4_compute_page_offset(dev_priv,
2837 &x, &y, obj->tiling_mode,
2838 pixel_size,
2839 fb->pitches[0]);
2840 linear_offset -= intel_crtc->dspaddr_offset;
2841 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2842 dspcntr |= DISPPLANE_ROTATE_180;
2843
2844 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2845 x += (intel_crtc->config->pipe_src_w - 1);
2846 y += (intel_crtc->config->pipe_src_h - 1);
2847
2848 /* Finding the last pixel of the last line of the display
2849 data and adding to linear_offset*/
2850 linear_offset +=
2851 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2852 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2853 }
2854 }
2855
2856 I915_WRITE(reg, dspcntr);
2857
2858 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2859 I915_WRITE(DSPSURF(plane),
2860 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2861 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2862 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2863 } else {
2864 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2865 I915_WRITE(DSPLINOFF(plane), linear_offset);
2866 }
2867 POSTING_READ(reg);
2868 }
2869
2870 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2871 uint32_t pixel_format)
2872 {
2873 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2874
2875 /*
2876 * The stride is either expressed as a multiple of 64 bytes
2877 * chunks for linear buffers or in number of tiles for tiled
2878 * buffers.
2879 */
2880 switch (fb_modifier) {
2881 case DRM_FORMAT_MOD_NONE:
2882 return 64;
2883 case I915_FORMAT_MOD_X_TILED:
2884 if (INTEL_INFO(dev)->gen == 2)
2885 return 128;
2886 return 512;
2887 case I915_FORMAT_MOD_Y_TILED:
2888 /* No need to check for old gens and Y tiling since this is
2889 * about the display engine and those will be blocked before
2890 * we get here.
2891 */
2892 return 128;
2893 case I915_FORMAT_MOD_Yf_TILED:
2894 if (bits_per_pixel == 8)
2895 return 64;
2896 else
2897 return 128;
2898 default:
2899 MISSING_CASE(fb_modifier);
2900 return 64;
2901 }
2902 }
2903
2904 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2905 struct drm_i915_gem_object *obj)
2906 {
2907 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2908
2909 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2910 view = &i915_ggtt_view_rotated;
2911
2912 return i915_gem_obj_ggtt_offset_view(obj, view);
2913 }
2914
2915 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2916 {
2917 struct drm_device *dev = intel_crtc->base.dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919
2920 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2921 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2922 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2923 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2924 intel_crtc->base.base.id, intel_crtc->pipe, id);
2925 }
2926
2927 /*
2928 * This function detaches (aka. unbinds) unused scalers in hardware
2929 */
2930 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2931 {
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 scaler_state = &intel_crtc->config->scaler_state;
2936
2937 /* loop through and disable scalers that aren't in use */
2938 for (i = 0; i < intel_crtc->num_scalers; i++) {
2939 if (!scaler_state->scalers[i].in_use)
2940 skl_detach_scaler(intel_crtc, i);
2941 }
2942 }
2943
2944 u32 skl_plane_ctl_format(uint32_t pixel_format)
2945 {
2946 switch (pixel_format) {
2947 case DRM_FORMAT_C8:
2948 return PLANE_CTL_FORMAT_INDEXED;
2949 case DRM_FORMAT_RGB565:
2950 return PLANE_CTL_FORMAT_RGB_565;
2951 case DRM_FORMAT_XBGR8888:
2952 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2953 case DRM_FORMAT_XRGB8888:
2954 return PLANE_CTL_FORMAT_XRGB_8888;
2955 /*
2956 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2957 * to be already pre-multiplied. We need to add a knob (or a different
2958 * DRM_FORMAT) for user-space to configure that.
2959 */
2960 case DRM_FORMAT_ABGR8888:
2961 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2962 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2963 case DRM_FORMAT_ARGB8888:
2964 return PLANE_CTL_FORMAT_XRGB_8888 |
2965 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2966 case DRM_FORMAT_XRGB2101010:
2967 return PLANE_CTL_FORMAT_XRGB_2101010;
2968 case DRM_FORMAT_XBGR2101010:
2969 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2970 case DRM_FORMAT_YUYV:
2971 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2972 case DRM_FORMAT_YVYU:
2973 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2974 case DRM_FORMAT_UYVY:
2975 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2976 case DRM_FORMAT_VYUY:
2977 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2978 default:
2979 MISSING_CASE(pixel_format);
2980 }
2981
2982 return 0;
2983 }
2984
2985 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2986 {
2987 switch (fb_modifier) {
2988 case DRM_FORMAT_MOD_NONE:
2989 break;
2990 case I915_FORMAT_MOD_X_TILED:
2991 return PLANE_CTL_TILED_X;
2992 case I915_FORMAT_MOD_Y_TILED:
2993 return PLANE_CTL_TILED_Y;
2994 case I915_FORMAT_MOD_Yf_TILED:
2995 return PLANE_CTL_TILED_YF;
2996 default:
2997 MISSING_CASE(fb_modifier);
2998 }
2999
3000 return 0;
3001 }
3002
3003 u32 skl_plane_ctl_rotation(unsigned int rotation)
3004 {
3005 switch (rotation) {
3006 case BIT(DRM_ROTATE_0):
3007 break;
3008 /*
3009 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3010 * while i915 HW rotation is clockwise, thats why this swapping.
3011 */
3012 case BIT(DRM_ROTATE_90):
3013 return PLANE_CTL_ROTATE_270;
3014 case BIT(DRM_ROTATE_180):
3015 return PLANE_CTL_ROTATE_180;
3016 case BIT(DRM_ROTATE_270):
3017 return PLANE_CTL_ROTATE_90;
3018 default:
3019 MISSING_CASE(rotation);
3020 }
3021
3022 return 0;
3023 }
3024
3025 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3026 struct drm_framebuffer *fb,
3027 int x, int y)
3028 {
3029 struct drm_device *dev = crtc->dev;
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3032 struct drm_plane *plane = crtc->primary;
3033 bool visible = to_intel_plane_state(plane->state)->visible;
3034 struct drm_i915_gem_object *obj;
3035 int pipe = intel_crtc->pipe;
3036 u32 plane_ctl, stride_div, stride;
3037 u32 tile_height, plane_offset, plane_size;
3038 unsigned int rotation;
3039 int x_offset, y_offset;
3040 unsigned long surf_addr;
3041 struct intel_crtc_state *crtc_state = intel_crtc->config;
3042 struct intel_plane_state *plane_state;
3043 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3044 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3045 int scaler_id = -1;
3046
3047 plane_state = to_intel_plane_state(plane->state);
3048
3049 if (!visible || !fb) {
3050 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3051 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3052 POSTING_READ(PLANE_CTL(pipe, 0));
3053 return;
3054 }
3055
3056 plane_ctl = PLANE_CTL_ENABLE |
3057 PLANE_CTL_PIPE_GAMMA_ENABLE |
3058 PLANE_CTL_PIPE_CSC_ENABLE;
3059
3060 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3061 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3062 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3063
3064 rotation = plane->state->rotation;
3065 plane_ctl |= skl_plane_ctl_rotation(rotation);
3066
3067 obj = intel_fb_obj(fb);
3068 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3069 fb->pixel_format);
3070 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3071
3072 /*
3073 * FIXME: intel_plane_state->src, dst aren't set when transitional
3074 * update_plane helpers are called from legacy paths.
3075 * Once full atomic crtc is available, below check can be avoided.
3076 */
3077 if (drm_rect_width(&plane_state->src)) {
3078 scaler_id = plane_state->scaler_id;
3079 src_x = plane_state->src.x1 >> 16;
3080 src_y = plane_state->src.y1 >> 16;
3081 src_w = drm_rect_width(&plane_state->src) >> 16;
3082 src_h = drm_rect_height(&plane_state->src) >> 16;
3083 dst_x = plane_state->dst.x1;
3084 dst_y = plane_state->dst.y1;
3085 dst_w = drm_rect_width(&plane_state->dst);
3086 dst_h = drm_rect_height(&plane_state->dst);
3087
3088 WARN_ON(x != src_x || y != src_y);
3089 } else {
3090 src_w = intel_crtc->config->pipe_src_w;
3091 src_h = intel_crtc->config->pipe_src_h;
3092 }
3093
3094 if (intel_rotation_90_or_270(rotation)) {
3095 /* stride = Surface height in tiles */
3096 tile_height = intel_tile_height(dev, fb->pixel_format,
3097 fb->modifier[0]);
3098 stride = DIV_ROUND_UP(fb->height, tile_height);
3099 x_offset = stride * tile_height - y - src_h;
3100 y_offset = x;
3101 plane_size = (src_w - 1) << 16 | (src_h - 1);
3102 } else {
3103 stride = fb->pitches[0] / stride_div;
3104 x_offset = x;
3105 y_offset = y;
3106 plane_size = (src_h - 1) << 16 | (src_w - 1);
3107 }
3108 plane_offset = y_offset << 16 | x_offset;
3109
3110 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3111 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3112 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3113 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3114
3115 if (scaler_id >= 0) {
3116 uint32_t ps_ctrl = 0;
3117
3118 WARN_ON(!dst_w || !dst_h);
3119 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3120 crtc_state->scaler_state.scalers[scaler_id].mode;
3121 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3122 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3123 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3124 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3125 I915_WRITE(PLANE_POS(pipe, 0), 0);
3126 } else {
3127 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3128 }
3129
3130 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3131
3132 POSTING_READ(PLANE_SURF(pipe, 0));
3133 }
3134
3135 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3136 static int
3137 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3138 int x, int y, enum mode_set_atomic state)
3139 {
3140 struct drm_device *dev = crtc->dev;
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3142
3143 if (dev_priv->fbc.disable_fbc)
3144 dev_priv->fbc.disable_fbc(dev_priv);
3145
3146 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3147
3148 return 0;
3149 }
3150
3151 static void intel_complete_page_flips(struct drm_device *dev)
3152 {
3153 struct drm_crtc *crtc;
3154
3155 for_each_crtc(dev, crtc) {
3156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157 enum plane plane = intel_crtc->plane;
3158
3159 intel_prepare_page_flip(dev, plane);
3160 intel_finish_page_flip_plane(dev, plane);
3161 }
3162 }
3163
3164 static void intel_update_primary_planes(struct drm_device *dev)
3165 {
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct drm_crtc *crtc;
3168
3169 for_each_crtc(dev, crtc) {
3170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3171
3172 drm_modeset_lock(&crtc->mutex, NULL);
3173 /*
3174 * FIXME: Once we have proper support for primary planes (and
3175 * disabling them without disabling the entire crtc) allow again
3176 * a NULL crtc->primary->fb.
3177 */
3178 if (intel_crtc->active && crtc->primary->fb)
3179 dev_priv->display.update_primary_plane(crtc,
3180 crtc->primary->fb,
3181 crtc->x,
3182 crtc->y);
3183 drm_modeset_unlock(&crtc->mutex);
3184 }
3185 }
3186
3187 void intel_prepare_reset(struct drm_device *dev)
3188 {
3189 /* no reset support for gen2 */
3190 if (IS_GEN2(dev))
3191 return;
3192
3193 /* reset doesn't touch the display */
3194 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3195 return;
3196
3197 drm_modeset_lock_all(dev);
3198 /*
3199 * Disabling the crtcs gracefully seems nicer. Also the
3200 * g33 docs say we should at least disable all the planes.
3201 */
3202 intel_display_suspend(dev);
3203 }
3204
3205 void intel_finish_reset(struct drm_device *dev)
3206 {
3207 struct drm_i915_private *dev_priv = to_i915(dev);
3208
3209 /*
3210 * Flips in the rings will be nuked by the reset,
3211 * so complete all pending flips so that user space
3212 * will get its events and not get stuck.
3213 */
3214 intel_complete_page_flips(dev);
3215
3216 /* no reset support for gen2 */
3217 if (IS_GEN2(dev))
3218 return;
3219
3220 /* reset doesn't touch the display */
3221 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3222 /*
3223 * Flips in the rings have been nuked by the reset,
3224 * so update the base address of all primary
3225 * planes to the the last fb to make sure we're
3226 * showing the correct fb after a reset.
3227 */
3228 intel_update_primary_planes(dev);
3229 return;
3230 }
3231
3232 /*
3233 * The display has been reset as well,
3234 * so need a full re-initialization.
3235 */
3236 intel_runtime_pm_disable_interrupts(dev_priv);
3237 intel_runtime_pm_enable_interrupts(dev_priv);
3238
3239 intel_modeset_init_hw(dev);
3240
3241 spin_lock_irq(&dev_priv->irq_lock);
3242 if (dev_priv->display.hpd_irq_setup)
3243 dev_priv->display.hpd_irq_setup(dev);
3244 spin_unlock_irq(&dev_priv->irq_lock);
3245
3246 intel_display_resume(dev);
3247
3248 intel_hpd_init(dev_priv);
3249
3250 drm_modeset_unlock_all(dev);
3251 }
3252
3253 static void
3254 intel_finish_fb(struct drm_framebuffer *old_fb)
3255 {
3256 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3257 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3258 bool was_interruptible = dev_priv->mm.interruptible;
3259 int ret;
3260
3261 /* Big Hammer, we also need to ensure that any pending
3262 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3263 * current scanout is retired before unpinning the old
3264 * framebuffer. Note that we rely on userspace rendering
3265 * into the buffer attached to the pipe they are waiting
3266 * on. If not, userspace generates a GPU hang with IPEHR
3267 * point to the MI_WAIT_FOR_EVENT.
3268 *
3269 * This should only fail upon a hung GPU, in which case we
3270 * can safely continue.
3271 */
3272 dev_priv->mm.interruptible = false;
3273 ret = i915_gem_object_wait_rendering(obj, true);
3274 dev_priv->mm.interruptible = was_interruptible;
3275
3276 WARN_ON(ret);
3277 }
3278
3279 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3280 {
3281 struct drm_device *dev = crtc->dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 bool pending;
3285
3286 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3287 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3288 return false;
3289
3290 spin_lock_irq(&dev->event_lock);
3291 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3292 spin_unlock_irq(&dev->event_lock);
3293
3294 return pending;
3295 }
3296
3297 static void intel_update_pipe_size(struct intel_crtc *crtc)
3298 {
3299 struct drm_device *dev = crtc->base.dev;
3300 struct drm_i915_private *dev_priv = dev->dev_private;
3301 const struct drm_display_mode *adjusted_mode;
3302
3303 if (!i915.fastboot)
3304 return;
3305
3306 /*
3307 * Update pipe size and adjust fitter if needed: the reason for this is
3308 * that in compute_mode_changes we check the native mode (not the pfit
3309 * mode) to see if we can flip rather than do a full mode set. In the
3310 * fastboot case, we'll flip, but if we don't update the pipesrc and
3311 * pfit state, we'll end up with a big fb scanned out into the wrong
3312 * sized surface.
3313 *
3314 * To fix this properly, we need to hoist the checks up into
3315 * compute_mode_changes (or above), check the actual pfit state and
3316 * whether the platform allows pfit disable with pipe active, and only
3317 * then update the pipesrc and pfit state, even on the flip path.
3318 */
3319
3320 adjusted_mode = &crtc->config->base.adjusted_mode;
3321
3322 I915_WRITE(PIPESRC(crtc->pipe),
3323 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3324 (adjusted_mode->crtc_vdisplay - 1));
3325 if (!crtc->config->pch_pfit.enabled &&
3326 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3327 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3328 I915_WRITE(PF_CTL(crtc->pipe), 0);
3329 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3330 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3331 }
3332 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3333 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3334 }
3335
3336 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3337 {
3338 struct drm_device *dev = crtc->dev;
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3341 int pipe = intel_crtc->pipe;
3342 u32 reg, temp;
3343
3344 /* enable normal train */
3345 reg = FDI_TX_CTL(pipe);
3346 temp = I915_READ(reg);
3347 if (IS_IVYBRIDGE(dev)) {
3348 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3350 } else {
3351 temp &= ~FDI_LINK_TRAIN_NONE;
3352 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3353 }
3354 I915_WRITE(reg, temp);
3355
3356 reg = FDI_RX_CTL(pipe);
3357 temp = I915_READ(reg);
3358 if (HAS_PCH_CPT(dev)) {
3359 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3360 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3361 } else {
3362 temp &= ~FDI_LINK_TRAIN_NONE;
3363 temp |= FDI_LINK_TRAIN_NONE;
3364 }
3365 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3366
3367 /* wait one idle pattern time */
3368 POSTING_READ(reg);
3369 udelay(1000);
3370
3371 /* IVB wants error correction enabled */
3372 if (IS_IVYBRIDGE(dev))
3373 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3374 FDI_FE_ERRC_ENABLE);
3375 }
3376
3377 /* The FDI link training functions for ILK/Ibexpeak. */
3378 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3379 {
3380 struct drm_device *dev = crtc->dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383 int pipe = intel_crtc->pipe;
3384 u32 reg, temp, tries;
3385
3386 /* FDI needs bits from pipe first */
3387 assert_pipe_enabled(dev_priv, pipe);
3388
3389 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3390 for train result */
3391 reg = FDI_RX_IMR(pipe);
3392 temp = I915_READ(reg);
3393 temp &= ~FDI_RX_SYMBOL_LOCK;
3394 temp &= ~FDI_RX_BIT_LOCK;
3395 I915_WRITE(reg, temp);
3396 I915_READ(reg);
3397 udelay(150);
3398
3399 /* enable CPU FDI TX and PCH FDI RX */
3400 reg = FDI_TX_CTL(pipe);
3401 temp = I915_READ(reg);
3402 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3403 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3404 temp &= ~FDI_LINK_TRAIN_NONE;
3405 temp |= FDI_LINK_TRAIN_PATTERN_1;
3406 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 temp &= ~FDI_LINK_TRAIN_NONE;
3411 temp |= FDI_LINK_TRAIN_PATTERN_1;
3412 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3413
3414 POSTING_READ(reg);
3415 udelay(150);
3416
3417 /* Ironlake workaround, enable clock pointer after FDI enable*/
3418 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3419 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3420 FDI_RX_PHASE_SYNC_POINTER_EN);
3421
3422 reg = FDI_RX_IIR(pipe);
3423 for (tries = 0; tries < 5; tries++) {
3424 temp = I915_READ(reg);
3425 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3426
3427 if ((temp & FDI_RX_BIT_LOCK)) {
3428 DRM_DEBUG_KMS("FDI train 1 done.\n");
3429 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3430 break;
3431 }
3432 }
3433 if (tries == 5)
3434 DRM_ERROR("FDI train 1 fail!\n");
3435
3436 /* Train 2 */
3437 reg = FDI_TX_CTL(pipe);
3438 temp = I915_READ(reg);
3439 temp &= ~FDI_LINK_TRAIN_NONE;
3440 temp |= FDI_LINK_TRAIN_PATTERN_2;
3441 I915_WRITE(reg, temp);
3442
3443 reg = FDI_RX_CTL(pipe);
3444 temp = I915_READ(reg);
3445 temp &= ~FDI_LINK_TRAIN_NONE;
3446 temp |= FDI_LINK_TRAIN_PATTERN_2;
3447 I915_WRITE(reg, temp);
3448
3449 POSTING_READ(reg);
3450 udelay(150);
3451
3452 reg = FDI_RX_IIR(pipe);
3453 for (tries = 0; tries < 5; tries++) {
3454 temp = I915_READ(reg);
3455 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3456
3457 if (temp & FDI_RX_SYMBOL_LOCK) {
3458 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3459 DRM_DEBUG_KMS("FDI train 2 done.\n");
3460 break;
3461 }
3462 }
3463 if (tries == 5)
3464 DRM_ERROR("FDI train 2 fail!\n");
3465
3466 DRM_DEBUG_KMS("FDI train done\n");
3467
3468 }
3469
3470 static const int snb_b_fdi_train_param[] = {
3471 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3472 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3473 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3474 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3475 };
3476
3477 /* The FDI link training functions for SNB/Cougarpoint. */
3478 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3479 {
3480 struct drm_device *dev = crtc->dev;
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483 int pipe = intel_crtc->pipe;
3484 u32 reg, temp, i, retry;
3485
3486 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3487 for train result */
3488 reg = FDI_RX_IMR(pipe);
3489 temp = I915_READ(reg);
3490 temp &= ~FDI_RX_SYMBOL_LOCK;
3491 temp &= ~FDI_RX_BIT_LOCK;
3492 I915_WRITE(reg, temp);
3493
3494 POSTING_READ(reg);
3495 udelay(150);
3496
3497 /* enable CPU FDI TX and PCH FDI RX */
3498 reg = FDI_TX_CTL(pipe);
3499 temp = I915_READ(reg);
3500 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3501 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3502 temp &= ~FDI_LINK_TRAIN_NONE;
3503 temp |= FDI_LINK_TRAIN_PATTERN_1;
3504 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3505 /* SNB-B */
3506 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3507 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3508
3509 I915_WRITE(FDI_RX_MISC(pipe),
3510 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3511
3512 reg = FDI_RX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 if (HAS_PCH_CPT(dev)) {
3515 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3516 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3517 } else {
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 }
3521 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3522
3523 POSTING_READ(reg);
3524 udelay(150);
3525
3526 for (i = 0; i < 4; i++) {
3527 reg = FDI_TX_CTL(pipe);
3528 temp = I915_READ(reg);
3529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3530 temp |= snb_b_fdi_train_param[i];
3531 I915_WRITE(reg, temp);
3532
3533 POSTING_READ(reg);
3534 udelay(500);
3535
3536 for (retry = 0; retry < 5; retry++) {
3537 reg = FDI_RX_IIR(pipe);
3538 temp = I915_READ(reg);
3539 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3540 if (temp & FDI_RX_BIT_LOCK) {
3541 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3542 DRM_DEBUG_KMS("FDI train 1 done.\n");
3543 break;
3544 }
3545 udelay(50);
3546 }
3547 if (retry < 5)
3548 break;
3549 }
3550 if (i == 4)
3551 DRM_ERROR("FDI train 1 fail!\n");
3552
3553 /* Train 2 */
3554 reg = FDI_TX_CTL(pipe);
3555 temp = I915_READ(reg);
3556 temp &= ~FDI_LINK_TRAIN_NONE;
3557 temp |= FDI_LINK_TRAIN_PATTERN_2;
3558 if (IS_GEN6(dev)) {
3559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 /* SNB-B */
3561 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3562 }
3563 I915_WRITE(reg, temp);
3564
3565 reg = FDI_RX_CTL(pipe);
3566 temp = I915_READ(reg);
3567 if (HAS_PCH_CPT(dev)) {
3568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3569 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3570 } else {
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573 }
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
3577 udelay(150);
3578
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_TX_CTL(pipe);
3581 temp = I915_READ(reg);
3582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3583 temp |= snb_b_fdi_train_param[i];
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
3587 udelay(500);
3588
3589 for (retry = 0; retry < 5; retry++) {
3590 reg = FDI_RX_IIR(pipe);
3591 temp = I915_READ(reg);
3592 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3593 if (temp & FDI_RX_SYMBOL_LOCK) {
3594 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3595 DRM_DEBUG_KMS("FDI train 2 done.\n");
3596 break;
3597 }
3598 udelay(50);
3599 }
3600 if (retry < 5)
3601 break;
3602 }
3603 if (i == 4)
3604 DRM_ERROR("FDI train 2 fail!\n");
3605
3606 DRM_DEBUG_KMS("FDI train done.\n");
3607 }
3608
3609 /* Manual link training for Ivy Bridge A0 parts */
3610 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3611 {
3612 struct drm_device *dev = crtc->dev;
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 int pipe = intel_crtc->pipe;
3616 u32 reg, temp, i, j;
3617
3618 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3619 for train result */
3620 reg = FDI_RX_IMR(pipe);
3621 temp = I915_READ(reg);
3622 temp &= ~FDI_RX_SYMBOL_LOCK;
3623 temp &= ~FDI_RX_BIT_LOCK;
3624 I915_WRITE(reg, temp);
3625
3626 POSTING_READ(reg);
3627 udelay(150);
3628
3629 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3630 I915_READ(FDI_RX_IIR(pipe)));
3631
3632 /* Try each vswing and preemphasis setting twice before moving on */
3633 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3634 /* disable first in case we need to retry */
3635 reg = FDI_TX_CTL(pipe);
3636 temp = I915_READ(reg);
3637 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3638 temp &= ~FDI_TX_ENABLE;
3639 I915_WRITE(reg, temp);
3640
3641 reg = FDI_RX_CTL(pipe);
3642 temp = I915_READ(reg);
3643 temp &= ~FDI_LINK_TRAIN_AUTO;
3644 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3645 temp &= ~FDI_RX_ENABLE;
3646 I915_WRITE(reg, temp);
3647
3648 /* enable CPU FDI TX and PCH FDI RX */
3649 reg = FDI_TX_CTL(pipe);
3650 temp = I915_READ(reg);
3651 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3652 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3653 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3654 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3655 temp |= snb_b_fdi_train_param[j/2];
3656 temp |= FDI_COMPOSITE_SYNC;
3657 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3658
3659 I915_WRITE(FDI_RX_MISC(pipe),
3660 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3661
3662 reg = FDI_RX_CTL(pipe);
3663 temp = I915_READ(reg);
3664 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3665 temp |= FDI_COMPOSITE_SYNC;
3666 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3667
3668 POSTING_READ(reg);
3669 udelay(1); /* should be 0.5us */
3670
3671 for (i = 0; i < 4; i++) {
3672 reg = FDI_RX_IIR(pipe);
3673 temp = I915_READ(reg);
3674 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3675
3676 if (temp & FDI_RX_BIT_LOCK ||
3677 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3678 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3679 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3680 i);
3681 break;
3682 }
3683 udelay(1); /* should be 0.5us */
3684 }
3685 if (i == 4) {
3686 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3687 continue;
3688 }
3689
3690 /* Train 2 */
3691 reg = FDI_TX_CTL(pipe);
3692 temp = I915_READ(reg);
3693 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3694 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3695 I915_WRITE(reg, temp);
3696
3697 reg = FDI_RX_CTL(pipe);
3698 temp = I915_READ(reg);
3699 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3700 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3701 I915_WRITE(reg, temp);
3702
3703 POSTING_READ(reg);
3704 udelay(2); /* should be 1.5us */
3705
3706 for (i = 0; i < 4; i++) {
3707 reg = FDI_RX_IIR(pipe);
3708 temp = I915_READ(reg);
3709 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3710
3711 if (temp & FDI_RX_SYMBOL_LOCK ||
3712 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3713 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3714 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3715 i);
3716 goto train_done;
3717 }
3718 udelay(2); /* should be 1.5us */
3719 }
3720 if (i == 4)
3721 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3722 }
3723
3724 train_done:
3725 DRM_DEBUG_KMS("FDI train done.\n");
3726 }
3727
3728 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3729 {
3730 struct drm_device *dev = intel_crtc->base.dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732 int pipe = intel_crtc->pipe;
3733 u32 reg, temp;
3734
3735
3736 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3737 reg = FDI_RX_CTL(pipe);
3738 temp = I915_READ(reg);
3739 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3740 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3741 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3742 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3743
3744 POSTING_READ(reg);
3745 udelay(200);
3746
3747 /* Switch from Rawclk to PCDclk */
3748 temp = I915_READ(reg);
3749 I915_WRITE(reg, temp | FDI_PCDCLK);
3750
3751 POSTING_READ(reg);
3752 udelay(200);
3753
3754 /* Enable CPU FDI TX PLL, always on for Ironlake */
3755 reg = FDI_TX_CTL(pipe);
3756 temp = I915_READ(reg);
3757 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3758 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3759
3760 POSTING_READ(reg);
3761 udelay(100);
3762 }
3763 }
3764
3765 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3766 {
3767 struct drm_device *dev = intel_crtc->base.dev;
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769 int pipe = intel_crtc->pipe;
3770 u32 reg, temp;
3771
3772 /* Switch from PCDclk to Rawclk */
3773 reg = FDI_RX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3776
3777 /* Disable CPU FDI TX PLL */
3778 reg = FDI_TX_CTL(pipe);
3779 temp = I915_READ(reg);
3780 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3781
3782 POSTING_READ(reg);
3783 udelay(100);
3784
3785 reg = FDI_RX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3788
3789 /* Wait for the clocks to turn off. */
3790 POSTING_READ(reg);
3791 udelay(100);
3792 }
3793
3794 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3795 {
3796 struct drm_device *dev = crtc->dev;
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3799 int pipe = intel_crtc->pipe;
3800 u32 reg, temp;
3801
3802 /* disable CPU FDI tx and PCH FDI rx */
3803 reg = FDI_TX_CTL(pipe);
3804 temp = I915_READ(reg);
3805 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3806 POSTING_READ(reg);
3807
3808 reg = FDI_RX_CTL(pipe);
3809 temp = I915_READ(reg);
3810 temp &= ~(0x7 << 16);
3811 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3812 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3813
3814 POSTING_READ(reg);
3815 udelay(100);
3816
3817 /* Ironlake workaround, disable clock pointer after downing FDI */
3818 if (HAS_PCH_IBX(dev))
3819 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3820
3821 /* still set train pattern 1 */
3822 reg = FDI_TX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~FDI_LINK_TRAIN_NONE;
3825 temp |= FDI_LINK_TRAIN_PATTERN_1;
3826 I915_WRITE(reg, temp);
3827
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 if (HAS_PCH_CPT(dev)) {
3831 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3832 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3833 } else {
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 }
3837 /* BPC in FDI rx is consistent with that in PIPECONF */
3838 temp &= ~(0x07 << 16);
3839 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3840 I915_WRITE(reg, temp);
3841
3842 POSTING_READ(reg);
3843 udelay(100);
3844 }
3845
3846 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3847 {
3848 struct intel_crtc *crtc;
3849
3850 /* Note that we don't need to be called with mode_config.lock here
3851 * as our list of CRTC objects is static for the lifetime of the
3852 * device and so cannot disappear as we iterate. Similarly, we can
3853 * happily treat the predicates as racy, atomic checks as userspace
3854 * cannot claim and pin a new fb without at least acquring the
3855 * struct_mutex and so serialising with us.
3856 */
3857 for_each_intel_crtc(dev, crtc) {
3858 if (atomic_read(&crtc->unpin_work_count) == 0)
3859 continue;
3860
3861 if (crtc->unpin_work)
3862 intel_wait_for_vblank(dev, crtc->pipe);
3863
3864 return true;
3865 }
3866
3867 return false;
3868 }
3869
3870 static void page_flip_completed(struct intel_crtc *intel_crtc)
3871 {
3872 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3873 struct intel_unpin_work *work = intel_crtc->unpin_work;
3874
3875 /* ensure that the unpin work is consistent wrt ->pending. */
3876 smp_rmb();
3877 intel_crtc->unpin_work = NULL;
3878
3879 if (work->event)
3880 drm_send_vblank_event(intel_crtc->base.dev,
3881 intel_crtc->pipe,
3882 work->event);
3883
3884 drm_crtc_vblank_put(&intel_crtc->base);
3885
3886 wake_up_all(&dev_priv->pending_flip_queue);
3887 queue_work(dev_priv->wq, &work->work);
3888
3889 trace_i915_flip_complete(intel_crtc->plane,
3890 work->pending_flip_obj);
3891 }
3892
3893 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3894 {
3895 struct drm_device *dev = crtc->dev;
3896 struct drm_i915_private *dev_priv = dev->dev_private;
3897
3898 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3899 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3900 !intel_crtc_has_pending_flip(crtc),
3901 60*HZ) == 0)) {
3902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3903
3904 spin_lock_irq(&dev->event_lock);
3905 if (intel_crtc->unpin_work) {
3906 WARN_ONCE(1, "Removing stuck page flip\n");
3907 page_flip_completed(intel_crtc);
3908 }
3909 spin_unlock_irq(&dev->event_lock);
3910 }
3911
3912 if (crtc->primary->fb) {
3913 mutex_lock(&dev->struct_mutex);
3914 intel_finish_fb(crtc->primary->fb);
3915 mutex_unlock(&dev->struct_mutex);
3916 }
3917 }
3918
3919 /* Program iCLKIP clock to the desired frequency */
3920 static void lpt_program_iclkip(struct drm_crtc *crtc)
3921 {
3922 struct drm_device *dev = crtc->dev;
3923 struct drm_i915_private *dev_priv = dev->dev_private;
3924 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3925 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3926 u32 temp;
3927
3928 mutex_lock(&dev_priv->sb_lock);
3929
3930 /* It is necessary to ungate the pixclk gate prior to programming
3931 * the divisors, and gate it back when it is done.
3932 */
3933 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3934
3935 /* Disable SSCCTL */
3936 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3937 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3938 SBI_SSCCTL_DISABLE,
3939 SBI_ICLK);
3940
3941 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3942 if (clock == 20000) {
3943 auxdiv = 1;
3944 divsel = 0x41;
3945 phaseinc = 0x20;
3946 } else {
3947 /* The iCLK virtual clock root frequency is in MHz,
3948 * but the adjusted_mode->crtc_clock in in KHz. To get the
3949 * divisors, it is necessary to divide one by another, so we
3950 * convert the virtual clock precision to KHz here for higher
3951 * precision.
3952 */
3953 u32 iclk_virtual_root_freq = 172800 * 1000;
3954 u32 iclk_pi_range = 64;
3955 u32 desired_divisor, msb_divisor_value, pi_value;
3956
3957 desired_divisor = (iclk_virtual_root_freq / clock);
3958 msb_divisor_value = desired_divisor / iclk_pi_range;
3959 pi_value = desired_divisor % iclk_pi_range;
3960
3961 auxdiv = 0;
3962 divsel = msb_divisor_value - 2;
3963 phaseinc = pi_value;
3964 }
3965
3966 /* This should not happen with any sane values */
3967 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3968 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3969 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3970 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3971
3972 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3973 clock,
3974 auxdiv,
3975 divsel,
3976 phasedir,
3977 phaseinc);
3978
3979 /* Program SSCDIVINTPHASE6 */
3980 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3981 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3982 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3983 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3984 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3985 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3986 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3987 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3988
3989 /* Program SSCAUXDIV */
3990 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3991 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3992 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3993 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3994
3995 /* Enable modulator and associated divider */
3996 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3997 temp &= ~SBI_SSCCTL_DISABLE;
3998 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3999
4000 /* Wait for initialization time */
4001 udelay(24);
4002
4003 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4004
4005 mutex_unlock(&dev_priv->sb_lock);
4006 }
4007
4008 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4009 enum pipe pch_transcoder)
4010 {
4011 struct drm_device *dev = crtc->base.dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4014
4015 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4016 I915_READ(HTOTAL(cpu_transcoder)));
4017 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4018 I915_READ(HBLANK(cpu_transcoder)));
4019 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4020 I915_READ(HSYNC(cpu_transcoder)));
4021
4022 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4023 I915_READ(VTOTAL(cpu_transcoder)));
4024 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4025 I915_READ(VBLANK(cpu_transcoder)));
4026 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4027 I915_READ(VSYNC(cpu_transcoder)));
4028 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4029 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4030 }
4031
4032 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4033 {
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 uint32_t temp;
4036
4037 temp = I915_READ(SOUTH_CHICKEN1);
4038 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4039 return;
4040
4041 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4042 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4043
4044 temp &= ~FDI_BC_BIFURCATION_SELECT;
4045 if (enable)
4046 temp |= FDI_BC_BIFURCATION_SELECT;
4047
4048 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4049 I915_WRITE(SOUTH_CHICKEN1, temp);
4050 POSTING_READ(SOUTH_CHICKEN1);
4051 }
4052
4053 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4054 {
4055 struct drm_device *dev = intel_crtc->base.dev;
4056
4057 switch (intel_crtc->pipe) {
4058 case PIPE_A:
4059 break;
4060 case PIPE_B:
4061 if (intel_crtc->config->fdi_lanes > 2)
4062 cpt_set_fdi_bc_bifurcation(dev, false);
4063 else
4064 cpt_set_fdi_bc_bifurcation(dev, true);
4065
4066 break;
4067 case PIPE_C:
4068 cpt_set_fdi_bc_bifurcation(dev, true);
4069
4070 break;
4071 default:
4072 BUG();
4073 }
4074 }
4075
4076 /*
4077 * Enable PCH resources required for PCH ports:
4078 * - PCH PLLs
4079 * - FDI training & RX/TX
4080 * - update transcoder timings
4081 * - DP transcoding bits
4082 * - transcoder
4083 */
4084 static void ironlake_pch_enable(struct drm_crtc *crtc)
4085 {
4086 struct drm_device *dev = crtc->dev;
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089 int pipe = intel_crtc->pipe;
4090 u32 reg, temp;
4091
4092 assert_pch_transcoder_disabled(dev_priv, pipe);
4093
4094 if (IS_IVYBRIDGE(dev))
4095 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4096
4097 /* Write the TU size bits before fdi link training, so that error
4098 * detection works. */
4099 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4100 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4101
4102 /* For PCH output, training FDI link */
4103 dev_priv->display.fdi_link_train(crtc);
4104
4105 /* We need to program the right clock selection before writing the pixel
4106 * mutliplier into the DPLL. */
4107 if (HAS_PCH_CPT(dev)) {
4108 u32 sel;
4109
4110 temp = I915_READ(PCH_DPLL_SEL);
4111 temp |= TRANS_DPLL_ENABLE(pipe);
4112 sel = TRANS_DPLLB_SEL(pipe);
4113 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4114 temp |= sel;
4115 else
4116 temp &= ~sel;
4117 I915_WRITE(PCH_DPLL_SEL, temp);
4118 }
4119
4120 /* XXX: pch pll's can be enabled any time before we enable the PCH
4121 * transcoder, and we actually should do this to not upset any PCH
4122 * transcoder that already use the clock when we share it.
4123 *
4124 * Note that enable_shared_dpll tries to do the right thing, but
4125 * get_shared_dpll unconditionally resets the pll - we need that to have
4126 * the right LVDS enable sequence. */
4127 intel_enable_shared_dpll(intel_crtc);
4128
4129 /* set transcoder timing, panel must allow it */
4130 assert_panel_unlocked(dev_priv, pipe);
4131 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4132
4133 intel_fdi_normal_train(crtc);
4134
4135 /* For PCH DP, enable TRANS_DP_CTL */
4136 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4137 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4138 reg = TRANS_DP_CTL(pipe);
4139 temp = I915_READ(reg);
4140 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4141 TRANS_DP_SYNC_MASK |
4142 TRANS_DP_BPC_MASK);
4143 temp |= TRANS_DP_OUTPUT_ENABLE;
4144 temp |= bpc << 9; /* same format but at 11:9 */
4145
4146 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4147 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4148 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4149 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4150
4151 switch (intel_trans_dp_port_sel(crtc)) {
4152 case PCH_DP_B:
4153 temp |= TRANS_DP_PORT_SEL_B;
4154 break;
4155 case PCH_DP_C:
4156 temp |= TRANS_DP_PORT_SEL_C;
4157 break;
4158 case PCH_DP_D:
4159 temp |= TRANS_DP_PORT_SEL_D;
4160 break;
4161 default:
4162 BUG();
4163 }
4164
4165 I915_WRITE(reg, temp);
4166 }
4167
4168 ironlake_enable_pch_transcoder(dev_priv, pipe);
4169 }
4170
4171 static void lpt_pch_enable(struct drm_crtc *crtc)
4172 {
4173 struct drm_device *dev = crtc->dev;
4174 struct drm_i915_private *dev_priv = dev->dev_private;
4175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4176 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4177
4178 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4179
4180 lpt_program_iclkip(crtc);
4181
4182 /* Set transcoder timing. */
4183 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4184
4185 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4186 }
4187
4188 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4189 struct intel_crtc_state *crtc_state)
4190 {
4191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4192 struct intel_shared_dpll *pll;
4193 struct intel_shared_dpll_config *shared_dpll;
4194 enum intel_dpll_id i;
4195
4196 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4197
4198 if (HAS_PCH_IBX(dev_priv->dev)) {
4199 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4200 i = (enum intel_dpll_id) crtc->pipe;
4201 pll = &dev_priv->shared_dplls[i];
4202
4203 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4204 crtc->base.base.id, pll->name);
4205
4206 WARN_ON(shared_dpll[i].crtc_mask);
4207
4208 goto found;
4209 }
4210
4211 if (IS_BROXTON(dev_priv->dev)) {
4212 /* PLL is attached to port in bxt */
4213 struct intel_encoder *encoder;
4214 struct intel_digital_port *intel_dig_port;
4215
4216 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4217 if (WARN_ON(!encoder))
4218 return NULL;
4219
4220 intel_dig_port = enc_to_dig_port(&encoder->base);
4221 /* 1:1 mapping between ports and PLLs */
4222 i = (enum intel_dpll_id)intel_dig_port->port;
4223 pll = &dev_priv->shared_dplls[i];
4224 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4225 crtc->base.base.id, pll->name);
4226 WARN_ON(shared_dpll[i].crtc_mask);
4227
4228 goto found;
4229 }
4230
4231 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4232 pll = &dev_priv->shared_dplls[i];
4233
4234 /* Only want to check enabled timings first */
4235 if (shared_dpll[i].crtc_mask == 0)
4236 continue;
4237
4238 if (memcmp(&crtc_state->dpll_hw_state,
4239 &shared_dpll[i].hw_state,
4240 sizeof(crtc_state->dpll_hw_state)) == 0) {
4241 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4242 crtc->base.base.id, pll->name,
4243 shared_dpll[i].crtc_mask,
4244 pll->active);
4245 goto found;
4246 }
4247 }
4248
4249 /* Ok no matching timings, maybe there's a free one? */
4250 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4251 pll = &dev_priv->shared_dplls[i];
4252 if (shared_dpll[i].crtc_mask == 0) {
4253 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4254 crtc->base.base.id, pll->name);
4255 goto found;
4256 }
4257 }
4258
4259 return NULL;
4260
4261 found:
4262 if (shared_dpll[i].crtc_mask == 0)
4263 shared_dpll[i].hw_state =
4264 crtc_state->dpll_hw_state;
4265
4266 crtc_state->shared_dpll = i;
4267 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4268 pipe_name(crtc->pipe));
4269
4270 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4271
4272 return pll;
4273 }
4274
4275 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4276 {
4277 struct drm_i915_private *dev_priv = to_i915(state->dev);
4278 struct intel_shared_dpll_config *shared_dpll;
4279 struct intel_shared_dpll *pll;
4280 enum intel_dpll_id i;
4281
4282 if (!to_intel_atomic_state(state)->dpll_set)
4283 return;
4284
4285 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4286 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4287 pll = &dev_priv->shared_dplls[i];
4288 pll->config = shared_dpll[i];
4289 }
4290 }
4291
4292 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4293 {
4294 struct drm_i915_private *dev_priv = dev->dev_private;
4295 int dslreg = PIPEDSL(pipe);
4296 u32 temp;
4297
4298 temp = I915_READ(dslreg);
4299 udelay(500);
4300 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4301 if (wait_for(I915_READ(dslreg) != temp, 5))
4302 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4303 }
4304 }
4305
4306 static int
4307 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4308 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4309 int src_w, int src_h, int dst_w, int dst_h)
4310 {
4311 struct intel_crtc_scaler_state *scaler_state =
4312 &crtc_state->scaler_state;
4313 struct intel_crtc *intel_crtc =
4314 to_intel_crtc(crtc_state->base.crtc);
4315 int need_scaling;
4316
4317 need_scaling = intel_rotation_90_or_270(rotation) ?
4318 (src_h != dst_w || src_w != dst_h):
4319 (src_w != dst_w || src_h != dst_h);
4320
4321 /*
4322 * if plane is being disabled or scaler is no more required or force detach
4323 * - free scaler binded to this plane/crtc
4324 * - in order to do this, update crtc->scaler_usage
4325 *
4326 * Here scaler state in crtc_state is set free so that
4327 * scaler can be assigned to other user. Actual register
4328 * update to free the scaler is done in plane/panel-fit programming.
4329 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4330 */
4331 if (force_detach || !need_scaling) {
4332 if (*scaler_id >= 0) {
4333 scaler_state->scaler_users &= ~(1 << scaler_user);
4334 scaler_state->scalers[*scaler_id].in_use = 0;
4335
4336 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4337 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4338 intel_crtc->pipe, scaler_user, *scaler_id,
4339 scaler_state->scaler_users);
4340 *scaler_id = -1;
4341 }
4342 return 0;
4343 }
4344
4345 /* range checks */
4346 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4347 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4348
4349 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4350 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4351 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4352 "size is out of scaler range\n",
4353 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4354 return -EINVAL;
4355 }
4356
4357 /* mark this plane as a scaler user in crtc_state */
4358 scaler_state->scaler_users |= (1 << scaler_user);
4359 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4360 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4361 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4362 scaler_state->scaler_users);
4363
4364 return 0;
4365 }
4366
4367 /**
4368 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4369 *
4370 * @state: crtc's scaler state
4371 *
4372 * Return
4373 * 0 - scaler_usage updated successfully
4374 * error - requested scaling cannot be supported or other error condition
4375 */
4376 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4377 {
4378 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4379 struct drm_display_mode *adjusted_mode =
4380 &state->base.adjusted_mode;
4381
4382 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4383 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4384
4385 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4386 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4387 state->pipe_src_w, state->pipe_src_h,
4388 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4389 }
4390
4391 /**
4392 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4393 *
4394 * @state: crtc's scaler state
4395 * @plane_state: atomic plane state to update
4396 *
4397 * Return
4398 * 0 - scaler_usage updated successfully
4399 * error - requested scaling cannot be supported or other error condition
4400 */
4401 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4402 struct intel_plane_state *plane_state)
4403 {
4404
4405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4406 struct intel_plane *intel_plane =
4407 to_intel_plane(plane_state->base.plane);
4408 struct drm_framebuffer *fb = plane_state->base.fb;
4409 int ret;
4410
4411 bool force_detach = !fb || !plane_state->visible;
4412
4413 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4414 intel_plane->base.base.id, intel_crtc->pipe,
4415 drm_plane_index(&intel_plane->base));
4416
4417 ret = skl_update_scaler(crtc_state, force_detach,
4418 drm_plane_index(&intel_plane->base),
4419 &plane_state->scaler_id,
4420 plane_state->base.rotation,
4421 drm_rect_width(&plane_state->src) >> 16,
4422 drm_rect_height(&plane_state->src) >> 16,
4423 drm_rect_width(&plane_state->dst),
4424 drm_rect_height(&plane_state->dst));
4425
4426 if (ret || plane_state->scaler_id < 0)
4427 return ret;
4428
4429 /* check colorkey */
4430 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4431 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4432 intel_plane->base.base.id);
4433 return -EINVAL;
4434 }
4435
4436 /* Check src format */
4437 switch (fb->pixel_format) {
4438 case DRM_FORMAT_RGB565:
4439 case DRM_FORMAT_XBGR8888:
4440 case DRM_FORMAT_XRGB8888:
4441 case DRM_FORMAT_ABGR8888:
4442 case DRM_FORMAT_ARGB8888:
4443 case DRM_FORMAT_XRGB2101010:
4444 case DRM_FORMAT_XBGR2101010:
4445 case DRM_FORMAT_YUYV:
4446 case DRM_FORMAT_YVYU:
4447 case DRM_FORMAT_UYVY:
4448 case DRM_FORMAT_VYUY:
4449 break;
4450 default:
4451 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4452 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4453 return -EINVAL;
4454 }
4455
4456 return 0;
4457 }
4458
4459 static void skylake_scaler_disable(struct intel_crtc *crtc)
4460 {
4461 int i;
4462
4463 for (i = 0; i < crtc->num_scalers; i++)
4464 skl_detach_scaler(crtc, i);
4465 }
4466
4467 static void skylake_pfit_enable(struct intel_crtc *crtc)
4468 {
4469 struct drm_device *dev = crtc->base.dev;
4470 struct drm_i915_private *dev_priv = dev->dev_private;
4471 int pipe = crtc->pipe;
4472 struct intel_crtc_scaler_state *scaler_state =
4473 &crtc->config->scaler_state;
4474
4475 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4476
4477 if (crtc->config->pch_pfit.enabled) {
4478 int id;
4479
4480 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4481 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4482 return;
4483 }
4484
4485 id = scaler_state->scaler_id;
4486 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4487 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4488 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4489 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4490
4491 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4492 }
4493 }
4494
4495 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4496 {
4497 struct drm_device *dev = crtc->base.dev;
4498 struct drm_i915_private *dev_priv = dev->dev_private;
4499 int pipe = crtc->pipe;
4500
4501 if (crtc->config->pch_pfit.enabled) {
4502 /* Force use of hard-coded filter coefficients
4503 * as some pre-programmed values are broken,
4504 * e.g. x201.
4505 */
4506 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4507 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4508 PF_PIPE_SEL_IVB(pipe));
4509 else
4510 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4511 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4512 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4513 }
4514 }
4515
4516 void hsw_enable_ips(struct intel_crtc *crtc)
4517 {
4518 struct drm_device *dev = crtc->base.dev;
4519 struct drm_i915_private *dev_priv = dev->dev_private;
4520
4521 if (!crtc->config->ips_enabled)
4522 return;
4523
4524 /* We can only enable IPS after we enable a plane and wait for a vblank */
4525 intel_wait_for_vblank(dev, crtc->pipe);
4526
4527 assert_plane_enabled(dev_priv, crtc->plane);
4528 if (IS_BROADWELL(dev)) {
4529 mutex_lock(&dev_priv->rps.hw_lock);
4530 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4531 mutex_unlock(&dev_priv->rps.hw_lock);
4532 /* Quoting Art Runyan: "its not safe to expect any particular
4533 * value in IPS_CTL bit 31 after enabling IPS through the
4534 * mailbox." Moreover, the mailbox may return a bogus state,
4535 * so we need to just enable it and continue on.
4536 */
4537 } else {
4538 I915_WRITE(IPS_CTL, IPS_ENABLE);
4539 /* The bit only becomes 1 in the next vblank, so this wait here
4540 * is essentially intel_wait_for_vblank. If we don't have this
4541 * and don't wait for vblanks until the end of crtc_enable, then
4542 * the HW state readout code will complain that the expected
4543 * IPS_CTL value is not the one we read. */
4544 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4545 DRM_ERROR("Timed out waiting for IPS enable\n");
4546 }
4547 }
4548
4549 void hsw_disable_ips(struct intel_crtc *crtc)
4550 {
4551 struct drm_device *dev = crtc->base.dev;
4552 struct drm_i915_private *dev_priv = dev->dev_private;
4553
4554 if (!crtc->config->ips_enabled)
4555 return;
4556
4557 assert_plane_enabled(dev_priv, crtc->plane);
4558 if (IS_BROADWELL(dev)) {
4559 mutex_lock(&dev_priv->rps.hw_lock);
4560 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4561 mutex_unlock(&dev_priv->rps.hw_lock);
4562 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4563 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4564 DRM_ERROR("Timed out waiting for IPS disable\n");
4565 } else {
4566 I915_WRITE(IPS_CTL, 0);
4567 POSTING_READ(IPS_CTL);
4568 }
4569
4570 /* We need to wait for a vblank before we can disable the plane. */
4571 intel_wait_for_vblank(dev, crtc->pipe);
4572 }
4573
4574 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4575 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4576 {
4577 struct drm_device *dev = crtc->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580 enum pipe pipe = intel_crtc->pipe;
4581 int palreg = PALETTE(pipe);
4582 int i;
4583 bool reenable_ips = false;
4584
4585 /* The clocks have to be on to load the palette. */
4586 if (!crtc->state->active)
4587 return;
4588
4589 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4590 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4591 assert_dsi_pll_enabled(dev_priv);
4592 else
4593 assert_pll_enabled(dev_priv, pipe);
4594 }
4595
4596 /* use legacy palette for Ironlake */
4597 if (!HAS_GMCH_DISPLAY(dev))
4598 palreg = LGC_PALETTE(pipe);
4599
4600 /* Workaround : Do not read or write the pipe palette/gamma data while
4601 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4602 */
4603 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4604 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4605 GAMMA_MODE_MODE_SPLIT)) {
4606 hsw_disable_ips(intel_crtc);
4607 reenable_ips = true;
4608 }
4609
4610 for (i = 0; i < 256; i++) {
4611 I915_WRITE(palreg + 4 * i,
4612 (intel_crtc->lut_r[i] << 16) |
4613 (intel_crtc->lut_g[i] << 8) |
4614 intel_crtc->lut_b[i]);
4615 }
4616
4617 if (reenable_ips)
4618 hsw_enable_ips(intel_crtc);
4619 }
4620
4621 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4622 {
4623 if (intel_crtc->overlay) {
4624 struct drm_device *dev = intel_crtc->base.dev;
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 mutex_lock(&dev->struct_mutex);
4628 dev_priv->mm.interruptible = false;
4629 (void) intel_overlay_switch_off(intel_crtc->overlay);
4630 dev_priv->mm.interruptible = true;
4631 mutex_unlock(&dev->struct_mutex);
4632 }
4633
4634 /* Let userspace switch the overlay on again. In most cases userspace
4635 * has to recompute where to put it anyway.
4636 */
4637 }
4638
4639 /**
4640 * intel_post_enable_primary - Perform operations after enabling primary plane
4641 * @crtc: the CRTC whose primary plane was just enabled
4642 *
4643 * Performs potentially sleeping operations that must be done after the primary
4644 * plane is enabled, such as updating FBC and IPS. Note that this may be
4645 * called due to an explicit primary plane update, or due to an implicit
4646 * re-enable that is caused when a sprite plane is updated to no longer
4647 * completely hide the primary plane.
4648 */
4649 static void
4650 intel_post_enable_primary(struct drm_crtc *crtc)
4651 {
4652 struct drm_device *dev = crtc->dev;
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4655 int pipe = intel_crtc->pipe;
4656
4657 /*
4658 * BDW signals flip done immediately if the plane
4659 * is disabled, even if the plane enable is already
4660 * armed to occur at the next vblank :(
4661 */
4662 if (IS_BROADWELL(dev))
4663 intel_wait_for_vblank(dev, pipe);
4664
4665 /*
4666 * FIXME IPS should be fine as long as one plane is
4667 * enabled, but in practice it seems to have problems
4668 * when going from primary only to sprite only and vice
4669 * versa.
4670 */
4671 hsw_enable_ips(intel_crtc);
4672
4673 /*
4674 * Gen2 reports pipe underruns whenever all planes are disabled.
4675 * So don't enable underrun reporting before at least some planes
4676 * are enabled.
4677 * FIXME: Need to fix the logic to work when we turn off all planes
4678 * but leave the pipe running.
4679 */
4680 if (IS_GEN2(dev))
4681 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4682
4683 /* Underruns don't raise interrupts, so check manually. */
4684 if (HAS_GMCH_DISPLAY(dev))
4685 i9xx_check_fifo_underruns(dev_priv);
4686 }
4687
4688 /**
4689 * intel_pre_disable_primary - Perform operations before disabling primary plane
4690 * @crtc: the CRTC whose primary plane is to be disabled
4691 *
4692 * Performs potentially sleeping operations that must be done before the
4693 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4694 * be called due to an explicit primary plane update, or due to an implicit
4695 * disable that is caused when a sprite plane completely hides the primary
4696 * plane.
4697 */
4698 static void
4699 intel_pre_disable_primary(struct drm_crtc *crtc)
4700 {
4701 struct drm_device *dev = crtc->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704 int pipe = intel_crtc->pipe;
4705
4706 /*
4707 * Gen2 reports pipe underruns whenever all planes are disabled.
4708 * So diasble underrun reporting before all the planes get disabled.
4709 * FIXME: Need to fix the logic to work when we turn off all planes
4710 * but leave the pipe running.
4711 */
4712 if (IS_GEN2(dev))
4713 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4714
4715 /*
4716 * Vblank time updates from the shadow to live plane control register
4717 * are blocked if the memory self-refresh mode is active at that
4718 * moment. So to make sure the plane gets truly disabled, disable
4719 * first the self-refresh mode. The self-refresh enable bit in turn
4720 * will be checked/applied by the HW only at the next frame start
4721 * event which is after the vblank start event, so we need to have a
4722 * wait-for-vblank between disabling the plane and the pipe.
4723 */
4724 if (HAS_GMCH_DISPLAY(dev)) {
4725 intel_set_memory_cxsr(dev_priv, false);
4726 dev_priv->wm.vlv.cxsr = false;
4727 intel_wait_for_vblank(dev, pipe);
4728 }
4729
4730 /*
4731 * FIXME IPS should be fine as long as one plane is
4732 * enabled, but in practice it seems to have problems
4733 * when going from primary only to sprite only and vice
4734 * versa.
4735 */
4736 hsw_disable_ips(intel_crtc);
4737 }
4738
4739 static void intel_post_plane_update(struct intel_crtc *crtc)
4740 {
4741 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4742 struct drm_device *dev = crtc->base.dev;
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 struct drm_plane *plane;
4745
4746 if (atomic->wait_vblank)
4747 intel_wait_for_vblank(dev, crtc->pipe);
4748
4749 intel_frontbuffer_flip(dev, atomic->fb_bits);
4750
4751 if (atomic->disable_cxsr)
4752 crtc->wm.cxsr_allowed = true;
4753
4754 if (crtc->atomic.update_wm_post)
4755 intel_update_watermarks(&crtc->base);
4756
4757 if (atomic->update_fbc)
4758 intel_fbc_update(dev_priv);
4759
4760 if (atomic->post_enable_primary)
4761 intel_post_enable_primary(&crtc->base);
4762
4763 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4764 intel_update_sprite_watermarks(plane, &crtc->base,
4765 0, 0, 0, false, false);
4766
4767 memset(atomic, 0, sizeof(*atomic));
4768 }
4769
4770 static void intel_pre_plane_update(struct intel_crtc *crtc)
4771 {
4772 struct drm_device *dev = crtc->base.dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4775 struct drm_plane *p;
4776
4777 /* Track fb's for any planes being disabled */
4778 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4779 struct intel_plane *plane = to_intel_plane(p);
4780
4781 mutex_lock(&dev->struct_mutex);
4782 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4783 plane->frontbuffer_bit);
4784 mutex_unlock(&dev->struct_mutex);
4785 }
4786
4787 if (atomic->wait_for_flips)
4788 intel_crtc_wait_for_pending_flips(&crtc->base);
4789
4790 if (atomic->disable_fbc)
4791 intel_fbc_disable_crtc(crtc);
4792
4793 if (crtc->atomic.disable_ips)
4794 hsw_disable_ips(crtc);
4795
4796 if (atomic->pre_disable_primary)
4797 intel_pre_disable_primary(&crtc->base);
4798
4799 if (atomic->disable_cxsr) {
4800 crtc->wm.cxsr_allowed = false;
4801 intel_set_memory_cxsr(dev_priv, false);
4802 }
4803 }
4804
4805 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4806 {
4807 struct drm_device *dev = crtc->dev;
4808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4809 struct drm_plane *p;
4810 int pipe = intel_crtc->pipe;
4811
4812 intel_crtc_dpms_overlay_disable(intel_crtc);
4813
4814 drm_for_each_plane_mask(p, dev, plane_mask)
4815 to_intel_plane(p)->disable_plane(p, crtc);
4816
4817 /*
4818 * FIXME: Once we grow proper nuclear flip support out of this we need
4819 * to compute the mask of flip planes precisely. For the time being
4820 * consider this a flip to a NULL plane.
4821 */
4822 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4823 }
4824
4825 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4826 {
4827 struct drm_device *dev = crtc->dev;
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830 struct intel_encoder *encoder;
4831 int pipe = intel_crtc->pipe;
4832
4833 if (WARN_ON(intel_crtc->active))
4834 return;
4835
4836 if (intel_crtc->config->has_pch_encoder)
4837 intel_prepare_shared_dpll(intel_crtc);
4838
4839 if (intel_crtc->config->has_dp_encoder)
4840 intel_dp_set_m_n(intel_crtc, M1_N1);
4841
4842 intel_set_pipe_timings(intel_crtc);
4843
4844 if (intel_crtc->config->has_pch_encoder) {
4845 intel_cpu_transcoder_set_m_n(intel_crtc,
4846 &intel_crtc->config->fdi_m_n, NULL);
4847 }
4848
4849 ironlake_set_pipeconf(crtc);
4850
4851 intel_crtc->active = true;
4852
4853 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4854 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4855
4856 for_each_encoder_on_crtc(dev, crtc, encoder)
4857 if (encoder->pre_enable)
4858 encoder->pre_enable(encoder);
4859
4860 if (intel_crtc->config->has_pch_encoder) {
4861 /* Note: FDI PLL enabling _must_ be done before we enable the
4862 * cpu pipes, hence this is separate from all the other fdi/pch
4863 * enabling. */
4864 ironlake_fdi_pll_enable(intel_crtc);
4865 } else {
4866 assert_fdi_tx_disabled(dev_priv, pipe);
4867 assert_fdi_rx_disabled(dev_priv, pipe);
4868 }
4869
4870 ironlake_pfit_enable(intel_crtc);
4871
4872 /*
4873 * On ILK+ LUT must be loaded before the pipe is running but with
4874 * clocks enabled
4875 */
4876 intel_crtc_load_lut(crtc);
4877
4878 intel_update_watermarks(crtc);
4879 intel_enable_pipe(intel_crtc);
4880
4881 if (intel_crtc->config->has_pch_encoder)
4882 ironlake_pch_enable(crtc);
4883
4884 assert_vblank_disabled(crtc);
4885 drm_crtc_vblank_on(crtc);
4886
4887 for_each_encoder_on_crtc(dev, crtc, encoder)
4888 encoder->enable(encoder);
4889
4890 if (HAS_PCH_CPT(dev))
4891 cpt_verify_modeset(dev, intel_crtc->pipe);
4892 }
4893
4894 /* IPS only exists on ULT machines and is tied to pipe A. */
4895 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4896 {
4897 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4898 }
4899
4900 static void haswell_crtc_enable(struct drm_crtc *crtc)
4901 {
4902 struct drm_device *dev = crtc->dev;
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4905 struct intel_encoder *encoder;
4906 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4907 struct intel_crtc_state *pipe_config =
4908 to_intel_crtc_state(crtc->state);
4909
4910 if (WARN_ON(intel_crtc->active))
4911 return;
4912
4913 if (intel_crtc_to_shared_dpll(intel_crtc))
4914 intel_enable_shared_dpll(intel_crtc);
4915
4916 if (intel_crtc->config->has_dp_encoder)
4917 intel_dp_set_m_n(intel_crtc, M1_N1);
4918
4919 intel_set_pipe_timings(intel_crtc);
4920
4921 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4922 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4923 intel_crtc->config->pixel_multiplier - 1);
4924 }
4925
4926 if (intel_crtc->config->has_pch_encoder) {
4927 intel_cpu_transcoder_set_m_n(intel_crtc,
4928 &intel_crtc->config->fdi_m_n, NULL);
4929 }
4930
4931 haswell_set_pipeconf(crtc);
4932
4933 intel_set_pipe_csc(crtc);
4934
4935 intel_crtc->active = true;
4936
4937 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4938 for_each_encoder_on_crtc(dev, crtc, encoder)
4939 if (encoder->pre_enable)
4940 encoder->pre_enable(encoder);
4941
4942 if (intel_crtc->config->has_pch_encoder) {
4943 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4944 true);
4945 dev_priv->display.fdi_link_train(crtc);
4946 }
4947
4948 intel_ddi_enable_pipe_clock(intel_crtc);
4949
4950 if (INTEL_INFO(dev)->gen == 9)
4951 skylake_pfit_enable(intel_crtc);
4952 else if (INTEL_INFO(dev)->gen < 9)
4953 ironlake_pfit_enable(intel_crtc);
4954 else
4955 MISSING_CASE(INTEL_INFO(dev)->gen);
4956
4957 /*
4958 * On ILK+ LUT must be loaded before the pipe is running but with
4959 * clocks enabled
4960 */
4961 intel_crtc_load_lut(crtc);
4962
4963 intel_ddi_set_pipe_settings(crtc);
4964 intel_ddi_enable_transcoder_func(crtc);
4965
4966 intel_update_watermarks(crtc);
4967 intel_enable_pipe(intel_crtc);
4968
4969 if (intel_crtc->config->has_pch_encoder)
4970 lpt_pch_enable(crtc);
4971
4972 if (intel_crtc->config->dp_encoder_is_mst)
4973 intel_ddi_set_vc_payload_alloc(crtc, true);
4974
4975 assert_vblank_disabled(crtc);
4976 drm_crtc_vblank_on(crtc);
4977
4978 for_each_encoder_on_crtc(dev, crtc, encoder) {
4979 encoder->enable(encoder);
4980 intel_opregion_notify_encoder(encoder, true);
4981 }
4982
4983 /* If we change the relative order between pipe/planes enabling, we need
4984 * to change the workaround. */
4985 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4986 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4987 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4988 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4989 }
4990 }
4991
4992 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4993 {
4994 struct drm_device *dev = crtc->base.dev;
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996 int pipe = crtc->pipe;
4997
4998 /* To avoid upsetting the power well on haswell only disable the pfit if
4999 * it's in use. The hw state code will make sure we get this right. */
5000 if (crtc->config->pch_pfit.enabled) {
5001 I915_WRITE(PF_CTL(pipe), 0);
5002 I915_WRITE(PF_WIN_POS(pipe), 0);
5003 I915_WRITE(PF_WIN_SZ(pipe), 0);
5004 }
5005 }
5006
5007 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5008 {
5009 struct drm_device *dev = crtc->dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5012 struct intel_encoder *encoder;
5013 int pipe = intel_crtc->pipe;
5014 u32 reg, temp;
5015
5016 for_each_encoder_on_crtc(dev, crtc, encoder)
5017 encoder->disable(encoder);
5018
5019 drm_crtc_vblank_off(crtc);
5020 assert_vblank_disabled(crtc);
5021
5022 if (intel_crtc->config->has_pch_encoder)
5023 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5024
5025 intel_disable_pipe(intel_crtc);
5026
5027 ironlake_pfit_disable(intel_crtc);
5028
5029 if (intel_crtc->config->has_pch_encoder)
5030 ironlake_fdi_disable(crtc);
5031
5032 for_each_encoder_on_crtc(dev, crtc, encoder)
5033 if (encoder->post_disable)
5034 encoder->post_disable(encoder);
5035
5036 if (intel_crtc->config->has_pch_encoder) {
5037 ironlake_disable_pch_transcoder(dev_priv, pipe);
5038
5039 if (HAS_PCH_CPT(dev)) {
5040 /* disable TRANS_DP_CTL */
5041 reg = TRANS_DP_CTL(pipe);
5042 temp = I915_READ(reg);
5043 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5044 TRANS_DP_PORT_SEL_MASK);
5045 temp |= TRANS_DP_PORT_SEL_NONE;
5046 I915_WRITE(reg, temp);
5047
5048 /* disable DPLL_SEL */
5049 temp = I915_READ(PCH_DPLL_SEL);
5050 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5051 I915_WRITE(PCH_DPLL_SEL, temp);
5052 }
5053
5054 ironlake_fdi_pll_disable(intel_crtc);
5055 }
5056
5057 intel_crtc->active = false;
5058 intel_update_watermarks(crtc);
5059 }
5060
5061 static void haswell_crtc_disable(struct drm_crtc *crtc)
5062 {
5063 struct drm_device *dev = crtc->dev;
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5066 struct intel_encoder *encoder;
5067 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5068
5069 for_each_encoder_on_crtc(dev, crtc, encoder) {
5070 intel_opregion_notify_encoder(encoder, false);
5071 encoder->disable(encoder);
5072 }
5073
5074 drm_crtc_vblank_off(crtc);
5075 assert_vblank_disabled(crtc);
5076
5077 if (intel_crtc->config->has_pch_encoder)
5078 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5079 false);
5080 intel_disable_pipe(intel_crtc);
5081
5082 if (intel_crtc->config->dp_encoder_is_mst)
5083 intel_ddi_set_vc_payload_alloc(crtc, false);
5084
5085 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5086
5087 if (INTEL_INFO(dev)->gen == 9)
5088 skylake_scaler_disable(intel_crtc);
5089 else if (INTEL_INFO(dev)->gen < 9)
5090 ironlake_pfit_disable(intel_crtc);
5091 else
5092 MISSING_CASE(INTEL_INFO(dev)->gen);
5093
5094 intel_ddi_disable_pipe_clock(intel_crtc);
5095
5096 if (intel_crtc->config->has_pch_encoder) {
5097 lpt_disable_pch_transcoder(dev_priv);
5098 intel_ddi_fdi_disable(crtc);
5099 }
5100
5101 for_each_encoder_on_crtc(dev, crtc, encoder)
5102 if (encoder->post_disable)
5103 encoder->post_disable(encoder);
5104
5105 intel_crtc->active = false;
5106 intel_update_watermarks(crtc);
5107 }
5108
5109 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5110 {
5111 struct drm_device *dev = crtc->base.dev;
5112 struct drm_i915_private *dev_priv = dev->dev_private;
5113 struct intel_crtc_state *pipe_config = crtc->config;
5114
5115 if (!pipe_config->gmch_pfit.control)
5116 return;
5117
5118 /*
5119 * The panel fitter should only be adjusted whilst the pipe is disabled,
5120 * according to register description and PRM.
5121 */
5122 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5123 assert_pipe_disabled(dev_priv, crtc->pipe);
5124
5125 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5126 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5127
5128 /* Border color in case we don't scale up to the full screen. Black by
5129 * default, change to something else for debugging. */
5130 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5131 }
5132
5133 static enum intel_display_power_domain port_to_power_domain(enum port port)
5134 {
5135 switch (port) {
5136 case PORT_A:
5137 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5138 case PORT_B:
5139 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5140 case PORT_C:
5141 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5142 case PORT_D:
5143 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5144 default:
5145 WARN_ON_ONCE(1);
5146 return POWER_DOMAIN_PORT_OTHER;
5147 }
5148 }
5149
5150 #define for_each_power_domain(domain, mask) \
5151 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5152 if ((1 << (domain)) & (mask))
5153
5154 enum intel_display_power_domain
5155 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5156 {
5157 struct drm_device *dev = intel_encoder->base.dev;
5158 struct intel_digital_port *intel_dig_port;
5159
5160 switch (intel_encoder->type) {
5161 case INTEL_OUTPUT_UNKNOWN:
5162 /* Only DDI platforms should ever use this output type */
5163 WARN_ON_ONCE(!HAS_DDI(dev));
5164 case INTEL_OUTPUT_DISPLAYPORT:
5165 case INTEL_OUTPUT_HDMI:
5166 case INTEL_OUTPUT_EDP:
5167 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5168 return port_to_power_domain(intel_dig_port->port);
5169 case INTEL_OUTPUT_DP_MST:
5170 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5171 return port_to_power_domain(intel_dig_port->port);
5172 case INTEL_OUTPUT_ANALOG:
5173 return POWER_DOMAIN_PORT_CRT;
5174 case INTEL_OUTPUT_DSI:
5175 return POWER_DOMAIN_PORT_DSI;
5176 default:
5177 return POWER_DOMAIN_PORT_OTHER;
5178 }
5179 }
5180
5181 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5182 {
5183 struct drm_device *dev = crtc->dev;
5184 struct intel_encoder *intel_encoder;
5185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5186 enum pipe pipe = intel_crtc->pipe;
5187 unsigned long mask;
5188 enum transcoder transcoder;
5189
5190 if (!crtc->state->active)
5191 return 0;
5192
5193 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5194
5195 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5196 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5197 if (intel_crtc->config->pch_pfit.enabled ||
5198 intel_crtc->config->pch_pfit.force_thru)
5199 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5200
5201 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5202 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5203
5204 return mask;
5205 }
5206
5207 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5208 {
5209 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5211 enum intel_display_power_domain domain;
5212 unsigned long domains, new_domains, old_domains;
5213
5214 old_domains = intel_crtc->enabled_power_domains;
5215 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5216
5217 domains = new_domains & ~old_domains;
5218
5219 for_each_power_domain(domain, domains)
5220 intel_display_power_get(dev_priv, domain);
5221
5222 return old_domains & ~new_domains;
5223 }
5224
5225 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5226 unsigned long domains)
5227 {
5228 enum intel_display_power_domain domain;
5229
5230 for_each_power_domain(domain, domains)
5231 intel_display_power_put(dev_priv, domain);
5232 }
5233
5234 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5235 {
5236 struct drm_device *dev = state->dev;
5237 struct drm_i915_private *dev_priv = dev->dev_private;
5238 unsigned long put_domains[I915_MAX_PIPES] = {};
5239 struct drm_crtc_state *crtc_state;
5240 struct drm_crtc *crtc;
5241 int i;
5242
5243 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5244 if (needs_modeset(crtc->state))
5245 put_domains[to_intel_crtc(crtc)->pipe] =
5246 modeset_get_crtc_power_domains(crtc);
5247 }
5248
5249 if (dev_priv->display.modeset_commit_cdclk) {
5250 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5251
5252 if (cdclk != dev_priv->cdclk_freq &&
5253 !WARN_ON(!state->allow_modeset))
5254 dev_priv->display.modeset_commit_cdclk(state);
5255 }
5256
5257 for (i = 0; i < I915_MAX_PIPES; i++)
5258 if (put_domains[i])
5259 modeset_put_power_domains(dev_priv, put_domains[i]);
5260 }
5261
5262 static void intel_update_max_cdclk(struct drm_device *dev)
5263 {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 if (IS_SKYLAKE(dev)) {
5267 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5268
5269 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5270 dev_priv->max_cdclk_freq = 675000;
5271 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5272 dev_priv->max_cdclk_freq = 540000;
5273 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5274 dev_priv->max_cdclk_freq = 450000;
5275 else
5276 dev_priv->max_cdclk_freq = 337500;
5277 } else if (IS_BROADWELL(dev)) {
5278 /*
5279 * FIXME with extra cooling we can allow
5280 * 540 MHz for ULX and 675 Mhz for ULT.
5281 * How can we know if extra cooling is
5282 * available? PCI ID, VTB, something else?
5283 */
5284 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5285 dev_priv->max_cdclk_freq = 450000;
5286 else if (IS_BDW_ULX(dev))
5287 dev_priv->max_cdclk_freq = 450000;
5288 else if (IS_BDW_ULT(dev))
5289 dev_priv->max_cdclk_freq = 540000;
5290 else
5291 dev_priv->max_cdclk_freq = 675000;
5292 } else if (IS_CHERRYVIEW(dev)) {
5293 dev_priv->max_cdclk_freq = 320000;
5294 } else if (IS_VALLEYVIEW(dev)) {
5295 dev_priv->max_cdclk_freq = 400000;
5296 } else {
5297 /* otherwise assume cdclk is fixed */
5298 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5299 }
5300
5301 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302 dev_priv->max_cdclk_freq);
5303 }
5304
5305 static void intel_update_cdclk(struct drm_device *dev)
5306 {
5307 struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5310 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5311 dev_priv->cdclk_freq);
5312
5313 /*
5314 * Program the gmbus_freq based on the cdclk frequency.
5315 * BSpec erroneously claims we should aim for 4MHz, but
5316 * in fact 1MHz is the correct frequency.
5317 */
5318 if (IS_VALLEYVIEW(dev)) {
5319 /*
5320 * Program the gmbus_freq based on the cdclk frequency.
5321 * BSpec erroneously claims we should aim for 4MHz, but
5322 * in fact 1MHz is the correct frequency.
5323 */
5324 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5325 }
5326
5327 if (dev_priv->max_cdclk_freq == 0)
5328 intel_update_max_cdclk(dev);
5329 }
5330
5331 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5332 {
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 uint32_t divider;
5335 uint32_t ratio;
5336 uint32_t current_freq;
5337 int ret;
5338
5339 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5340 switch (frequency) {
5341 case 144000:
5342 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5343 ratio = BXT_DE_PLL_RATIO(60);
5344 break;
5345 case 288000:
5346 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5347 ratio = BXT_DE_PLL_RATIO(60);
5348 break;
5349 case 384000:
5350 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5351 ratio = BXT_DE_PLL_RATIO(60);
5352 break;
5353 case 576000:
5354 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5355 ratio = BXT_DE_PLL_RATIO(60);
5356 break;
5357 case 624000:
5358 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5359 ratio = BXT_DE_PLL_RATIO(65);
5360 break;
5361 case 19200:
5362 /*
5363 * Bypass frequency with DE PLL disabled. Init ratio, divider
5364 * to suppress GCC warning.
5365 */
5366 ratio = 0;
5367 divider = 0;
5368 break;
5369 default:
5370 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5371
5372 return;
5373 }
5374
5375 mutex_lock(&dev_priv->rps.hw_lock);
5376 /* Inform power controller of upcoming frequency change */
5377 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5378 0x80000000);
5379 mutex_unlock(&dev_priv->rps.hw_lock);
5380
5381 if (ret) {
5382 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5383 ret, frequency);
5384 return;
5385 }
5386
5387 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5388 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5389 current_freq = current_freq * 500 + 1000;
5390
5391 /*
5392 * DE PLL has to be disabled when
5393 * - setting to 19.2MHz (bypass, PLL isn't used)
5394 * - before setting to 624MHz (PLL needs toggling)
5395 * - before setting to any frequency from 624MHz (PLL needs toggling)
5396 */
5397 if (frequency == 19200 || frequency == 624000 ||
5398 current_freq == 624000) {
5399 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5400 /* Timeout 200us */
5401 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5402 1))
5403 DRM_ERROR("timout waiting for DE PLL unlock\n");
5404 }
5405
5406 if (frequency != 19200) {
5407 uint32_t val;
5408
5409 val = I915_READ(BXT_DE_PLL_CTL);
5410 val &= ~BXT_DE_PLL_RATIO_MASK;
5411 val |= ratio;
5412 I915_WRITE(BXT_DE_PLL_CTL, val);
5413
5414 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5415 /* Timeout 200us */
5416 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5417 DRM_ERROR("timeout waiting for DE PLL lock\n");
5418
5419 val = I915_READ(CDCLK_CTL);
5420 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5421 val |= divider;
5422 /*
5423 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5424 * enable otherwise.
5425 */
5426 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5427 if (frequency >= 500000)
5428 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429
5430 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5431 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5432 val |= (frequency - 1000) / 500;
5433 I915_WRITE(CDCLK_CTL, val);
5434 }
5435
5436 mutex_lock(&dev_priv->rps.hw_lock);
5437 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5438 DIV_ROUND_UP(frequency, 25000));
5439 mutex_unlock(&dev_priv->rps.hw_lock);
5440
5441 if (ret) {
5442 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5443 ret, frequency);
5444 return;
5445 }
5446
5447 intel_update_cdclk(dev);
5448 }
5449
5450 void broxton_init_cdclk(struct drm_device *dev)
5451 {
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453 uint32_t val;
5454
5455 /*
5456 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5457 * or else the reset will hang because there is no PCH to respond.
5458 * Move the handshake programming to initialization sequence.
5459 * Previously was left up to BIOS.
5460 */
5461 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5462 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5463 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5464
5465 /* Enable PG1 for cdclk */
5466 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5467
5468 /* check if cd clock is enabled */
5469 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5470 DRM_DEBUG_KMS("Display already initialized\n");
5471 return;
5472 }
5473
5474 /*
5475 * FIXME:
5476 * - The initial CDCLK needs to be read from VBT.
5477 * Need to make this change after VBT has changes for BXT.
5478 * - check if setting the max (or any) cdclk freq is really necessary
5479 * here, it belongs to modeset time
5480 */
5481 broxton_set_cdclk(dev, 624000);
5482
5483 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5484 POSTING_READ(DBUF_CTL);
5485
5486 udelay(10);
5487
5488 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5489 DRM_ERROR("DBuf power enable timeout!\n");
5490 }
5491
5492 void broxton_uninit_cdclk(struct drm_device *dev)
5493 {
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495
5496 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5497 POSTING_READ(DBUF_CTL);
5498
5499 udelay(10);
5500
5501 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5502 DRM_ERROR("DBuf power disable timeout!\n");
5503
5504 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5505 broxton_set_cdclk(dev, 19200);
5506
5507 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5508 }
5509
5510 static const struct skl_cdclk_entry {
5511 unsigned int freq;
5512 unsigned int vco;
5513 } skl_cdclk_frequencies[] = {
5514 { .freq = 308570, .vco = 8640 },
5515 { .freq = 337500, .vco = 8100 },
5516 { .freq = 432000, .vco = 8640 },
5517 { .freq = 450000, .vco = 8100 },
5518 { .freq = 540000, .vco = 8100 },
5519 { .freq = 617140, .vco = 8640 },
5520 { .freq = 675000, .vco = 8100 },
5521 };
5522
5523 static unsigned int skl_cdclk_decimal(unsigned int freq)
5524 {
5525 return (freq - 1000) / 500;
5526 }
5527
5528 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5529 {
5530 unsigned int i;
5531
5532 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5533 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5534
5535 if (e->freq == freq)
5536 return e->vco;
5537 }
5538
5539 return 8100;
5540 }
5541
5542 static void
5543 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5544 {
5545 unsigned int min_freq;
5546 u32 val;
5547
5548 /* select the minimum CDCLK before enabling DPLL 0 */
5549 val = I915_READ(CDCLK_CTL);
5550 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5551 val |= CDCLK_FREQ_337_308;
5552
5553 if (required_vco == 8640)
5554 min_freq = 308570;
5555 else
5556 min_freq = 337500;
5557
5558 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5559
5560 I915_WRITE(CDCLK_CTL, val);
5561 POSTING_READ(CDCLK_CTL);
5562
5563 /*
5564 * We always enable DPLL0 with the lowest link rate possible, but still
5565 * taking into account the VCO required to operate the eDP panel at the
5566 * desired frequency. The usual DP link rates operate with a VCO of
5567 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5568 * The modeset code is responsible for the selection of the exact link
5569 * rate later on, with the constraint of choosing a frequency that
5570 * works with required_vco.
5571 */
5572 val = I915_READ(DPLL_CTRL1);
5573
5574 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5575 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5576 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5577 if (required_vco == 8640)
5578 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5579 SKL_DPLL0);
5580 else
5581 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5582 SKL_DPLL0);
5583
5584 I915_WRITE(DPLL_CTRL1, val);
5585 POSTING_READ(DPLL_CTRL1);
5586
5587 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5588
5589 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5590 DRM_ERROR("DPLL0 not locked\n");
5591 }
5592
5593 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5594 {
5595 int ret;
5596 u32 val;
5597
5598 /* inform PCU we want to change CDCLK */
5599 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5600 mutex_lock(&dev_priv->rps.hw_lock);
5601 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5602 mutex_unlock(&dev_priv->rps.hw_lock);
5603
5604 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5605 }
5606
5607 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5608 {
5609 unsigned int i;
5610
5611 for (i = 0; i < 15; i++) {
5612 if (skl_cdclk_pcu_ready(dev_priv))
5613 return true;
5614 udelay(10);
5615 }
5616
5617 return false;
5618 }
5619
5620 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5621 {
5622 struct drm_device *dev = dev_priv->dev;
5623 u32 freq_select, pcu_ack;
5624
5625 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5626
5627 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5628 DRM_ERROR("failed to inform PCU about cdclk change\n");
5629 return;
5630 }
5631
5632 /* set CDCLK_CTL */
5633 switch(freq) {
5634 case 450000:
5635 case 432000:
5636 freq_select = CDCLK_FREQ_450_432;
5637 pcu_ack = 1;
5638 break;
5639 case 540000:
5640 freq_select = CDCLK_FREQ_540;
5641 pcu_ack = 2;
5642 break;
5643 case 308570:
5644 case 337500:
5645 default:
5646 freq_select = CDCLK_FREQ_337_308;
5647 pcu_ack = 0;
5648 break;
5649 case 617140:
5650 case 675000:
5651 freq_select = CDCLK_FREQ_675_617;
5652 pcu_ack = 3;
5653 break;
5654 }
5655
5656 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5657 POSTING_READ(CDCLK_CTL);
5658
5659 /* inform PCU of the change */
5660 mutex_lock(&dev_priv->rps.hw_lock);
5661 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5662 mutex_unlock(&dev_priv->rps.hw_lock);
5663
5664 intel_update_cdclk(dev);
5665 }
5666
5667 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5668 {
5669 /* disable DBUF power */
5670 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5671 POSTING_READ(DBUF_CTL);
5672
5673 udelay(10);
5674
5675 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5676 DRM_ERROR("DBuf power disable timeout\n");
5677
5678 /* disable DPLL0 */
5679 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5680 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5681 DRM_ERROR("Couldn't disable DPLL0\n");
5682
5683 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5684 }
5685
5686 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5687 {
5688 u32 val;
5689 unsigned int required_vco;
5690
5691 /* enable PCH reset handshake */
5692 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5693 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5694
5695 /* enable PG1 and Misc I/O */
5696 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5697
5698 /* DPLL0 already enabed !? */
5699 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5700 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5701 return;
5702 }
5703
5704 /* enable DPLL0 */
5705 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5706 skl_dpll0_enable(dev_priv, required_vco);
5707
5708 /* set CDCLK to the frequency the BIOS chose */
5709 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5710
5711 /* enable DBUF power */
5712 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5713 POSTING_READ(DBUF_CTL);
5714
5715 udelay(10);
5716
5717 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5718 DRM_ERROR("DBuf power enable timeout\n");
5719 }
5720
5721 /* returns HPLL frequency in kHz */
5722 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5723 {
5724 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5725
5726 /* Obtain SKU information */
5727 mutex_lock(&dev_priv->sb_lock);
5728 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5729 CCK_FUSE_HPLL_FREQ_MASK;
5730 mutex_unlock(&dev_priv->sb_lock);
5731
5732 return vco_freq[hpll_freq] * 1000;
5733 }
5734
5735 /* Adjust CDclk dividers to allow high res or save power if possible */
5736 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5737 {
5738 struct drm_i915_private *dev_priv = dev->dev_private;
5739 u32 val, cmd;
5740
5741 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5742 != dev_priv->cdclk_freq);
5743
5744 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5745 cmd = 2;
5746 else if (cdclk == 266667)
5747 cmd = 1;
5748 else
5749 cmd = 0;
5750
5751 mutex_lock(&dev_priv->rps.hw_lock);
5752 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5753 val &= ~DSPFREQGUAR_MASK;
5754 val |= (cmd << DSPFREQGUAR_SHIFT);
5755 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5756 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5757 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5758 50)) {
5759 DRM_ERROR("timed out waiting for CDclk change\n");
5760 }
5761 mutex_unlock(&dev_priv->rps.hw_lock);
5762
5763 mutex_lock(&dev_priv->sb_lock);
5764
5765 if (cdclk == 400000) {
5766 u32 divider;
5767
5768 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5769
5770 /* adjust cdclk divider */
5771 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5772 val &= ~DISPLAY_FREQUENCY_VALUES;
5773 val |= divider;
5774 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5775
5776 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5777 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5778 50))
5779 DRM_ERROR("timed out waiting for CDclk change\n");
5780 }
5781
5782 /* adjust self-refresh exit latency value */
5783 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5784 val &= ~0x7f;
5785
5786 /*
5787 * For high bandwidth configs, we set a higher latency in the bunit
5788 * so that the core display fetch happens in time to avoid underruns.
5789 */
5790 if (cdclk == 400000)
5791 val |= 4500 / 250; /* 4.5 usec */
5792 else
5793 val |= 3000 / 250; /* 3.0 usec */
5794 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5795
5796 mutex_unlock(&dev_priv->sb_lock);
5797
5798 intel_update_cdclk(dev);
5799 }
5800
5801 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5802 {
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804 u32 val, cmd;
5805
5806 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5807 != dev_priv->cdclk_freq);
5808
5809 switch (cdclk) {
5810 case 333333:
5811 case 320000:
5812 case 266667:
5813 case 200000:
5814 break;
5815 default:
5816 MISSING_CASE(cdclk);
5817 return;
5818 }
5819
5820 /*
5821 * Specs are full of misinformation, but testing on actual
5822 * hardware has shown that we just need to write the desired
5823 * CCK divider into the Punit register.
5824 */
5825 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5826
5827 mutex_lock(&dev_priv->rps.hw_lock);
5828 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5829 val &= ~DSPFREQGUAR_MASK_CHV;
5830 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5831 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5832 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5833 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5834 50)) {
5835 DRM_ERROR("timed out waiting for CDclk change\n");
5836 }
5837 mutex_unlock(&dev_priv->rps.hw_lock);
5838
5839 intel_update_cdclk(dev);
5840 }
5841
5842 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5843 int max_pixclk)
5844 {
5845 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5846 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5847
5848 /*
5849 * Really only a few cases to deal with, as only 4 CDclks are supported:
5850 * 200MHz
5851 * 267MHz
5852 * 320/333MHz (depends on HPLL freq)
5853 * 400MHz (VLV only)
5854 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5855 * of the lower bin and adjust if needed.
5856 *
5857 * We seem to get an unstable or solid color picture at 200MHz.
5858 * Not sure what's wrong. For now use 200MHz only when all pipes
5859 * are off.
5860 */
5861 if (!IS_CHERRYVIEW(dev_priv) &&
5862 max_pixclk > freq_320*limit/100)
5863 return 400000;
5864 else if (max_pixclk > 266667*limit/100)
5865 return freq_320;
5866 else if (max_pixclk > 0)
5867 return 266667;
5868 else
5869 return 200000;
5870 }
5871
5872 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5873 int max_pixclk)
5874 {
5875 /*
5876 * FIXME:
5877 * - remove the guardband, it's not needed on BXT
5878 * - set 19.2MHz bypass frequency if there are no active pipes
5879 */
5880 if (max_pixclk > 576000*9/10)
5881 return 624000;
5882 else if (max_pixclk > 384000*9/10)
5883 return 576000;
5884 else if (max_pixclk > 288000*9/10)
5885 return 384000;
5886 else if (max_pixclk > 144000*9/10)
5887 return 288000;
5888 else
5889 return 144000;
5890 }
5891
5892 /* Compute the max pixel clock for new configuration. Uses atomic state if
5893 * that's non-NULL, look at current state otherwise. */
5894 static int intel_mode_max_pixclk(struct drm_device *dev,
5895 struct drm_atomic_state *state)
5896 {
5897 struct intel_crtc *intel_crtc;
5898 struct intel_crtc_state *crtc_state;
5899 int max_pixclk = 0;
5900
5901 for_each_intel_crtc(dev, intel_crtc) {
5902 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5903 if (IS_ERR(crtc_state))
5904 return PTR_ERR(crtc_state);
5905
5906 if (!crtc_state->base.enable)
5907 continue;
5908
5909 max_pixclk = max(max_pixclk,
5910 crtc_state->base.adjusted_mode.crtc_clock);
5911 }
5912
5913 return max_pixclk;
5914 }
5915
5916 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5917 {
5918 struct drm_device *dev = state->dev;
5919 struct drm_i915_private *dev_priv = dev->dev_private;
5920 int max_pixclk = intel_mode_max_pixclk(dev, state);
5921
5922 if (max_pixclk < 0)
5923 return max_pixclk;
5924
5925 to_intel_atomic_state(state)->cdclk =
5926 valleyview_calc_cdclk(dev_priv, max_pixclk);
5927
5928 return 0;
5929 }
5930
5931 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5932 {
5933 struct drm_device *dev = state->dev;
5934 struct drm_i915_private *dev_priv = dev->dev_private;
5935 int max_pixclk = intel_mode_max_pixclk(dev, state);
5936
5937 if (max_pixclk < 0)
5938 return max_pixclk;
5939
5940 to_intel_atomic_state(state)->cdclk =
5941 broxton_calc_cdclk(dev_priv, max_pixclk);
5942
5943 return 0;
5944 }
5945
5946 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5947 {
5948 unsigned int credits, default_credits;
5949
5950 if (IS_CHERRYVIEW(dev_priv))
5951 default_credits = PFI_CREDIT(12);
5952 else
5953 default_credits = PFI_CREDIT(8);
5954
5955 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5956 /* CHV suggested value is 31 or 63 */
5957 if (IS_CHERRYVIEW(dev_priv))
5958 credits = PFI_CREDIT_63;
5959 else
5960 credits = PFI_CREDIT(15);
5961 } else {
5962 credits = default_credits;
5963 }
5964
5965 /*
5966 * WA - write default credits before re-programming
5967 * FIXME: should we also set the resend bit here?
5968 */
5969 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5970 default_credits);
5971
5972 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5973 credits | PFI_CREDIT_RESEND);
5974
5975 /*
5976 * FIXME is this guaranteed to clear
5977 * immediately or should we poll for it?
5978 */
5979 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5980 }
5981
5982 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5983 {
5984 struct drm_device *dev = old_state->dev;
5985 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5986 struct drm_i915_private *dev_priv = dev->dev_private;
5987
5988 /*
5989 * FIXME: We can end up here with all power domains off, yet
5990 * with a CDCLK frequency other than the minimum. To account
5991 * for this take the PIPE-A power domain, which covers the HW
5992 * blocks needed for the following programming. This can be
5993 * removed once it's guaranteed that we get here either with
5994 * the minimum CDCLK set, or the required power domains
5995 * enabled.
5996 */
5997 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5998
5999 if (IS_CHERRYVIEW(dev))
6000 cherryview_set_cdclk(dev, req_cdclk);
6001 else
6002 valleyview_set_cdclk(dev, req_cdclk);
6003
6004 vlv_program_pfi_credits(dev_priv);
6005
6006 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6007 }
6008
6009 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6010 {
6011 struct drm_device *dev = crtc->dev;
6012 struct drm_i915_private *dev_priv = to_i915(dev);
6013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6014 struct intel_encoder *encoder;
6015 int pipe = intel_crtc->pipe;
6016 bool is_dsi;
6017
6018 if (WARN_ON(intel_crtc->active))
6019 return;
6020
6021 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6022
6023 if (!is_dsi) {
6024 if (IS_CHERRYVIEW(dev))
6025 chv_prepare_pll(intel_crtc, intel_crtc->config);
6026 else
6027 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6028 }
6029
6030 if (intel_crtc->config->has_dp_encoder)
6031 intel_dp_set_m_n(intel_crtc, M1_N1);
6032
6033 intel_set_pipe_timings(intel_crtc);
6034
6035 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037
6038 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6039 I915_WRITE(CHV_CANVAS(pipe), 0);
6040 }
6041
6042 i9xx_set_pipeconf(intel_crtc);
6043
6044 intel_crtc->active = true;
6045
6046 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6047
6048 for_each_encoder_on_crtc(dev, crtc, encoder)
6049 if (encoder->pre_pll_enable)
6050 encoder->pre_pll_enable(encoder);
6051
6052 if (!is_dsi) {
6053 if (IS_CHERRYVIEW(dev))
6054 chv_enable_pll(intel_crtc, intel_crtc->config);
6055 else
6056 vlv_enable_pll(intel_crtc, intel_crtc->config);
6057 }
6058
6059 for_each_encoder_on_crtc(dev, crtc, encoder)
6060 if (encoder->pre_enable)
6061 encoder->pre_enable(encoder);
6062
6063 i9xx_pfit_enable(intel_crtc);
6064
6065 intel_crtc_load_lut(crtc);
6066
6067 intel_enable_pipe(intel_crtc);
6068
6069 assert_vblank_disabled(crtc);
6070 drm_crtc_vblank_on(crtc);
6071
6072 for_each_encoder_on_crtc(dev, crtc, encoder)
6073 encoder->enable(encoder);
6074 }
6075
6076 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6077 {
6078 struct drm_device *dev = crtc->base.dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6082 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6083 }
6084
6085 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6086 {
6087 struct drm_device *dev = crtc->dev;
6088 struct drm_i915_private *dev_priv = to_i915(dev);
6089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090 struct intel_encoder *encoder;
6091 int pipe = intel_crtc->pipe;
6092
6093 if (WARN_ON(intel_crtc->active))
6094 return;
6095
6096 i9xx_set_pll_dividers(intel_crtc);
6097
6098 if (intel_crtc->config->has_dp_encoder)
6099 intel_dp_set_m_n(intel_crtc, M1_N1);
6100
6101 intel_set_pipe_timings(intel_crtc);
6102
6103 i9xx_set_pipeconf(intel_crtc);
6104
6105 intel_crtc->active = true;
6106
6107 if (!IS_GEN2(dev))
6108 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6109
6110 for_each_encoder_on_crtc(dev, crtc, encoder)
6111 if (encoder->pre_enable)
6112 encoder->pre_enable(encoder);
6113
6114 i9xx_enable_pll(intel_crtc);
6115
6116 i9xx_pfit_enable(intel_crtc);
6117
6118 intel_crtc_load_lut(crtc);
6119
6120 intel_update_watermarks(crtc);
6121 intel_enable_pipe(intel_crtc);
6122
6123 assert_vblank_disabled(crtc);
6124 drm_crtc_vblank_on(crtc);
6125
6126 for_each_encoder_on_crtc(dev, crtc, encoder)
6127 encoder->enable(encoder);
6128 }
6129
6130 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6131 {
6132 struct drm_device *dev = crtc->base.dev;
6133 struct drm_i915_private *dev_priv = dev->dev_private;
6134
6135 if (!crtc->config->gmch_pfit.control)
6136 return;
6137
6138 assert_pipe_disabled(dev_priv, crtc->pipe);
6139
6140 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6141 I915_READ(PFIT_CONTROL));
6142 I915_WRITE(PFIT_CONTROL, 0);
6143 }
6144
6145 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6146 {
6147 struct drm_device *dev = crtc->dev;
6148 struct drm_i915_private *dev_priv = dev->dev_private;
6149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6150 struct intel_encoder *encoder;
6151 int pipe = intel_crtc->pipe;
6152
6153 /*
6154 * On gen2 planes are double buffered but the pipe isn't, so we must
6155 * wait for planes to fully turn off before disabling the pipe.
6156 * We also need to wait on all gmch platforms because of the
6157 * self-refresh mode constraint explained above.
6158 */
6159 intel_wait_for_vblank(dev, pipe);
6160
6161 for_each_encoder_on_crtc(dev, crtc, encoder)
6162 encoder->disable(encoder);
6163
6164 drm_crtc_vblank_off(crtc);
6165 assert_vblank_disabled(crtc);
6166
6167 intel_disable_pipe(intel_crtc);
6168
6169 i9xx_pfit_disable(intel_crtc);
6170
6171 for_each_encoder_on_crtc(dev, crtc, encoder)
6172 if (encoder->post_disable)
6173 encoder->post_disable(encoder);
6174
6175 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6176 if (IS_CHERRYVIEW(dev))
6177 chv_disable_pll(dev_priv, pipe);
6178 else if (IS_VALLEYVIEW(dev))
6179 vlv_disable_pll(dev_priv, pipe);
6180 else
6181 i9xx_disable_pll(intel_crtc);
6182 }
6183
6184 if (!IS_GEN2(dev))
6185 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6186
6187 intel_crtc->active = false;
6188 intel_update_watermarks(crtc);
6189 }
6190
6191 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6192 {
6193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6194 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6195 enum intel_display_power_domain domain;
6196 unsigned long domains;
6197
6198 if (!intel_crtc->active)
6199 return;
6200
6201 if (to_intel_plane_state(crtc->primary->state)->visible) {
6202 intel_crtc_wait_for_pending_flips(crtc);
6203 intel_pre_disable_primary(crtc);
6204 }
6205
6206 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6207 dev_priv->display.crtc_disable(crtc);
6208 intel_disable_shared_dpll(intel_crtc);
6209
6210 domains = intel_crtc->enabled_power_domains;
6211 for_each_power_domain(domain, domains)
6212 intel_display_power_put(dev_priv, domain);
6213 intel_crtc->enabled_power_domains = 0;
6214 }
6215
6216 /*
6217 * turn all crtc's off, but do not adjust state
6218 * This has to be paired with a call to intel_modeset_setup_hw_state.
6219 */
6220 int intel_display_suspend(struct drm_device *dev)
6221 {
6222 struct drm_mode_config *config = &dev->mode_config;
6223 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6224 struct drm_atomic_state *state;
6225 struct drm_crtc *crtc;
6226 unsigned crtc_mask = 0;
6227 int ret = 0;
6228
6229 if (WARN_ON(!ctx))
6230 return 0;
6231
6232 lockdep_assert_held(&ctx->ww_ctx);
6233 state = drm_atomic_state_alloc(dev);
6234 if (WARN_ON(!state))
6235 return -ENOMEM;
6236
6237 state->acquire_ctx = ctx;
6238 state->allow_modeset = true;
6239
6240 for_each_crtc(dev, crtc) {
6241 struct drm_crtc_state *crtc_state =
6242 drm_atomic_get_crtc_state(state, crtc);
6243
6244 ret = PTR_ERR_OR_ZERO(crtc_state);
6245 if (ret)
6246 goto free;
6247
6248 if (!crtc_state->active)
6249 continue;
6250
6251 crtc_state->active = false;
6252 crtc_mask |= 1 << drm_crtc_index(crtc);
6253 }
6254
6255 if (crtc_mask) {
6256 ret = drm_atomic_commit(state);
6257
6258 if (!ret) {
6259 for_each_crtc(dev, crtc)
6260 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6261 crtc->state->active = true;
6262
6263 return ret;
6264 }
6265 }
6266
6267 free:
6268 if (ret)
6269 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6270 drm_atomic_state_free(state);
6271 return ret;
6272 }
6273
6274 /* Master function to enable/disable CRTC and corresponding power wells */
6275 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6276 {
6277 struct drm_device *dev = crtc->dev;
6278 struct drm_mode_config *config = &dev->mode_config;
6279 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281 struct intel_crtc_state *pipe_config;
6282 struct drm_atomic_state *state;
6283 int ret;
6284
6285 if (enable == intel_crtc->active)
6286 return 0;
6287
6288 if (enable && !crtc->state->enable)
6289 return 0;
6290
6291 /* this function should be called with drm_modeset_lock_all for now */
6292 if (WARN_ON(!ctx))
6293 return -EIO;
6294 lockdep_assert_held(&ctx->ww_ctx);
6295
6296 state = drm_atomic_state_alloc(dev);
6297 if (WARN_ON(!state))
6298 return -ENOMEM;
6299
6300 state->acquire_ctx = ctx;
6301 state->allow_modeset = true;
6302
6303 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6304 if (IS_ERR(pipe_config)) {
6305 ret = PTR_ERR(pipe_config);
6306 goto err;
6307 }
6308 pipe_config->base.active = enable;
6309
6310 ret = drm_atomic_commit(state);
6311 if (!ret)
6312 return ret;
6313
6314 err:
6315 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6316 drm_atomic_state_free(state);
6317 return ret;
6318 }
6319
6320 /**
6321 * Sets the power management mode of the pipe and plane.
6322 */
6323 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6324 {
6325 struct drm_device *dev = crtc->dev;
6326 struct intel_encoder *intel_encoder;
6327 bool enable = false;
6328
6329 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6330 enable |= intel_encoder->connectors_active;
6331
6332 intel_crtc_control(crtc, enable);
6333 }
6334
6335 void intel_encoder_destroy(struct drm_encoder *encoder)
6336 {
6337 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6338
6339 drm_encoder_cleanup(encoder);
6340 kfree(intel_encoder);
6341 }
6342
6343 /* Simple dpms helper for encoders with just one connector, no cloning and only
6344 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6345 * state of the entire output pipe. */
6346 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6347 {
6348 if (mode == DRM_MODE_DPMS_ON) {
6349 encoder->connectors_active = true;
6350
6351 intel_crtc_update_dpms(encoder->base.crtc);
6352 } else {
6353 encoder->connectors_active = false;
6354
6355 intel_crtc_update_dpms(encoder->base.crtc);
6356 }
6357 }
6358
6359 /* Cross check the actual hw state with our own modeset state tracking (and it's
6360 * internal consistency). */
6361 static void intel_connector_check_state(struct intel_connector *connector)
6362 {
6363 if (connector->get_hw_state(connector)) {
6364 struct intel_encoder *encoder = connector->encoder;
6365 struct drm_crtc *crtc;
6366 bool encoder_enabled;
6367 enum pipe pipe;
6368
6369 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6370 connector->base.base.id,
6371 connector->base.name);
6372
6373 /* there is no real hw state for MST connectors */
6374 if (connector->mst_port)
6375 return;
6376
6377 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6378 "wrong connector dpms state\n");
6379 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6380 "active connector not linked to encoder\n");
6381
6382 if (encoder) {
6383 I915_STATE_WARN(!encoder->connectors_active,
6384 "encoder->connectors_active not set\n");
6385
6386 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6387 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6388 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6389 return;
6390
6391 crtc = encoder->base.crtc;
6392
6393 I915_STATE_WARN(!crtc->state->enable,
6394 "crtc not enabled\n");
6395 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6396 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6397 "encoder active on the wrong pipe\n");
6398 }
6399 }
6400 }
6401
6402 int intel_connector_init(struct intel_connector *connector)
6403 {
6404 struct drm_connector_state *connector_state;
6405
6406 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6407 if (!connector_state)
6408 return -ENOMEM;
6409
6410 connector->base.state = connector_state;
6411 return 0;
6412 }
6413
6414 struct intel_connector *intel_connector_alloc(void)
6415 {
6416 struct intel_connector *connector;
6417
6418 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6419 if (!connector)
6420 return NULL;
6421
6422 if (intel_connector_init(connector) < 0) {
6423 kfree(connector);
6424 return NULL;
6425 }
6426
6427 return connector;
6428 }
6429
6430 /* Even simpler default implementation, if there's really no special case to
6431 * consider. */
6432 void intel_connector_dpms(struct drm_connector *connector, int mode)
6433 {
6434 /* All the simple cases only support two dpms states. */
6435 if (mode != DRM_MODE_DPMS_ON)
6436 mode = DRM_MODE_DPMS_OFF;
6437
6438 if (mode == connector->dpms)
6439 return;
6440
6441 connector->dpms = mode;
6442
6443 /* Only need to change hw state when actually enabled */
6444 if (connector->encoder)
6445 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6446
6447 intel_modeset_check_state(connector->dev);
6448 }
6449
6450 /* Simple connector->get_hw_state implementation for encoders that support only
6451 * one connector and no cloning and hence the encoder state determines the state
6452 * of the connector. */
6453 bool intel_connector_get_hw_state(struct intel_connector *connector)
6454 {
6455 enum pipe pipe = 0;
6456 struct intel_encoder *encoder = connector->encoder;
6457
6458 return encoder->get_hw_state(encoder, &pipe);
6459 }
6460
6461 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6462 {
6463 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6464 return crtc_state->fdi_lanes;
6465
6466 return 0;
6467 }
6468
6469 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6470 struct intel_crtc_state *pipe_config)
6471 {
6472 struct drm_atomic_state *state = pipe_config->base.state;
6473 struct intel_crtc *other_crtc;
6474 struct intel_crtc_state *other_crtc_state;
6475
6476 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6477 pipe_name(pipe), pipe_config->fdi_lanes);
6478 if (pipe_config->fdi_lanes > 4) {
6479 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6480 pipe_name(pipe), pipe_config->fdi_lanes);
6481 return -EINVAL;
6482 }
6483
6484 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6485 if (pipe_config->fdi_lanes > 2) {
6486 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6487 pipe_config->fdi_lanes);
6488 return -EINVAL;
6489 } else {
6490 return 0;
6491 }
6492 }
6493
6494 if (INTEL_INFO(dev)->num_pipes == 2)
6495 return 0;
6496
6497 /* Ivybridge 3 pipe is really complicated */
6498 switch (pipe) {
6499 case PIPE_A:
6500 return 0;
6501 case PIPE_B:
6502 if (pipe_config->fdi_lanes <= 2)
6503 return 0;
6504
6505 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6506 other_crtc_state =
6507 intel_atomic_get_crtc_state(state, other_crtc);
6508 if (IS_ERR(other_crtc_state))
6509 return PTR_ERR(other_crtc_state);
6510
6511 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6512 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6513 pipe_name(pipe), pipe_config->fdi_lanes);
6514 return -EINVAL;
6515 }
6516 return 0;
6517 case PIPE_C:
6518 if (pipe_config->fdi_lanes > 2) {
6519 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6520 pipe_name(pipe), pipe_config->fdi_lanes);
6521 return -EINVAL;
6522 }
6523
6524 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6525 other_crtc_state =
6526 intel_atomic_get_crtc_state(state, other_crtc);
6527 if (IS_ERR(other_crtc_state))
6528 return PTR_ERR(other_crtc_state);
6529
6530 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6531 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6532 return -EINVAL;
6533 }
6534 return 0;
6535 default:
6536 BUG();
6537 }
6538 }
6539
6540 #define RETRY 1
6541 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6542 struct intel_crtc_state *pipe_config)
6543 {
6544 struct drm_device *dev = intel_crtc->base.dev;
6545 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6546 int lane, link_bw, fdi_dotclock, ret;
6547 bool needs_recompute = false;
6548
6549 retry:
6550 /* FDI is a binary signal running at ~2.7GHz, encoding
6551 * each output octet as 10 bits. The actual frequency
6552 * is stored as a divider into a 100MHz clock, and the
6553 * mode pixel clock is stored in units of 1KHz.
6554 * Hence the bw of each lane in terms of the mode signal
6555 * is:
6556 */
6557 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6558
6559 fdi_dotclock = adjusted_mode->crtc_clock;
6560
6561 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6562 pipe_config->pipe_bpp);
6563
6564 pipe_config->fdi_lanes = lane;
6565
6566 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6567 link_bw, &pipe_config->fdi_m_n);
6568
6569 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6570 intel_crtc->pipe, pipe_config);
6571 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6572 pipe_config->pipe_bpp -= 2*3;
6573 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6574 pipe_config->pipe_bpp);
6575 needs_recompute = true;
6576 pipe_config->bw_constrained = true;
6577
6578 goto retry;
6579 }
6580
6581 if (needs_recompute)
6582 return RETRY;
6583
6584 return ret;
6585 }
6586
6587 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6588 struct intel_crtc_state *pipe_config)
6589 {
6590 if (pipe_config->pipe_bpp > 24)
6591 return false;
6592
6593 /* HSW can handle pixel rate up to cdclk? */
6594 if (IS_HASWELL(dev_priv->dev))
6595 return true;
6596
6597 /*
6598 * We compare against max which means we must take
6599 * the increased cdclk requirement into account when
6600 * calculating the new cdclk.
6601 *
6602 * Should measure whether using a lower cdclk w/o IPS
6603 */
6604 return ilk_pipe_pixel_rate(pipe_config) <=
6605 dev_priv->max_cdclk_freq * 95 / 100;
6606 }
6607
6608 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6609 struct intel_crtc_state *pipe_config)
6610 {
6611 struct drm_device *dev = crtc->base.dev;
6612 struct drm_i915_private *dev_priv = dev->dev_private;
6613
6614 pipe_config->ips_enabled = i915.enable_ips &&
6615 hsw_crtc_supports_ips(crtc) &&
6616 pipe_config_supports_ips(dev_priv, pipe_config);
6617 }
6618
6619 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6620 struct intel_crtc_state *pipe_config)
6621 {
6622 struct drm_device *dev = crtc->base.dev;
6623 struct drm_i915_private *dev_priv = dev->dev_private;
6624 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6625
6626 /* FIXME should check pixel clock limits on all platforms */
6627 if (INTEL_INFO(dev)->gen < 4) {
6628 int clock_limit = dev_priv->max_cdclk_freq;
6629
6630 /*
6631 * Enable pixel doubling when the dot clock
6632 * is > 90% of the (display) core speed.
6633 *
6634 * GDG double wide on either pipe,
6635 * otherwise pipe A only.
6636 */
6637 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6638 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6639 clock_limit *= 2;
6640 pipe_config->double_wide = true;
6641 }
6642
6643 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6644 return -EINVAL;
6645 }
6646
6647 /*
6648 * Pipe horizontal size must be even in:
6649 * - DVO ganged mode
6650 * - LVDS dual channel mode
6651 * - Double wide pipe
6652 */
6653 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6654 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6655 pipe_config->pipe_src_w &= ~1;
6656
6657 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6658 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6659 */
6660 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6661 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6662 return -EINVAL;
6663
6664 if (HAS_IPS(dev))
6665 hsw_compute_ips_config(crtc, pipe_config);
6666
6667 if (pipe_config->has_pch_encoder)
6668 return ironlake_fdi_compute_config(crtc, pipe_config);
6669
6670 return 0;
6671 }
6672
6673 static int skylake_get_display_clock_speed(struct drm_device *dev)
6674 {
6675 struct drm_i915_private *dev_priv = to_i915(dev);
6676 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6677 uint32_t cdctl = I915_READ(CDCLK_CTL);
6678 uint32_t linkrate;
6679
6680 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6681 return 24000; /* 24MHz is the cd freq with NSSC ref */
6682
6683 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6684 return 540000;
6685
6686 linkrate = (I915_READ(DPLL_CTRL1) &
6687 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6688
6689 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6690 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6691 /* vco 8640 */
6692 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6693 case CDCLK_FREQ_450_432:
6694 return 432000;
6695 case CDCLK_FREQ_337_308:
6696 return 308570;
6697 case CDCLK_FREQ_675_617:
6698 return 617140;
6699 default:
6700 WARN(1, "Unknown cd freq selection\n");
6701 }
6702 } else {
6703 /* vco 8100 */
6704 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6705 case CDCLK_FREQ_450_432:
6706 return 450000;
6707 case CDCLK_FREQ_337_308:
6708 return 337500;
6709 case CDCLK_FREQ_675_617:
6710 return 675000;
6711 default:
6712 WARN(1, "Unknown cd freq selection\n");
6713 }
6714 }
6715
6716 /* error case, do as if DPLL0 isn't enabled */
6717 return 24000;
6718 }
6719
6720 static int broxton_get_display_clock_speed(struct drm_device *dev)
6721 {
6722 struct drm_i915_private *dev_priv = to_i915(dev);
6723 uint32_t cdctl = I915_READ(CDCLK_CTL);
6724 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6725 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6726 int cdclk;
6727
6728 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6729 return 19200;
6730
6731 cdclk = 19200 * pll_ratio / 2;
6732
6733 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6734 case BXT_CDCLK_CD2X_DIV_SEL_1:
6735 return cdclk; /* 576MHz or 624MHz */
6736 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6737 return cdclk * 2 / 3; /* 384MHz */
6738 case BXT_CDCLK_CD2X_DIV_SEL_2:
6739 return cdclk / 2; /* 288MHz */
6740 case BXT_CDCLK_CD2X_DIV_SEL_4:
6741 return cdclk / 4; /* 144MHz */
6742 }
6743
6744 /* error case, do as if DE PLL isn't enabled */
6745 return 19200;
6746 }
6747
6748 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6749 {
6750 struct drm_i915_private *dev_priv = dev->dev_private;
6751 uint32_t lcpll = I915_READ(LCPLL_CTL);
6752 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6753
6754 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6755 return 800000;
6756 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6757 return 450000;
6758 else if (freq == LCPLL_CLK_FREQ_450)
6759 return 450000;
6760 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6761 return 540000;
6762 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6763 return 337500;
6764 else
6765 return 675000;
6766 }
6767
6768 static int haswell_get_display_clock_speed(struct drm_device *dev)
6769 {
6770 struct drm_i915_private *dev_priv = dev->dev_private;
6771 uint32_t lcpll = I915_READ(LCPLL_CTL);
6772 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6773
6774 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6775 return 800000;
6776 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6777 return 450000;
6778 else if (freq == LCPLL_CLK_FREQ_450)
6779 return 450000;
6780 else if (IS_HSW_ULT(dev))
6781 return 337500;
6782 else
6783 return 540000;
6784 }
6785
6786 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6787 {
6788 struct drm_i915_private *dev_priv = dev->dev_private;
6789 u32 val;
6790 int divider;
6791
6792 if (dev_priv->hpll_freq == 0)
6793 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6794
6795 mutex_lock(&dev_priv->sb_lock);
6796 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6797 mutex_unlock(&dev_priv->sb_lock);
6798
6799 divider = val & DISPLAY_FREQUENCY_VALUES;
6800
6801 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6802 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6803 "cdclk change in progress\n");
6804
6805 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6806 }
6807
6808 static int ilk_get_display_clock_speed(struct drm_device *dev)
6809 {
6810 return 450000;
6811 }
6812
6813 static int i945_get_display_clock_speed(struct drm_device *dev)
6814 {
6815 return 400000;
6816 }
6817
6818 static int i915_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 return 333333;
6821 }
6822
6823 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 return 200000;
6826 }
6827
6828 static int pnv_get_display_clock_speed(struct drm_device *dev)
6829 {
6830 u16 gcfgc = 0;
6831
6832 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6833
6834 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6835 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6836 return 266667;
6837 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6838 return 333333;
6839 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6840 return 444444;
6841 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6842 return 200000;
6843 default:
6844 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6845 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6846 return 133333;
6847 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6848 return 166667;
6849 }
6850 }
6851
6852 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6853 {
6854 u16 gcfgc = 0;
6855
6856 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6857
6858 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6859 return 133333;
6860 else {
6861 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6862 case GC_DISPLAY_CLOCK_333_MHZ:
6863 return 333333;
6864 default:
6865 case GC_DISPLAY_CLOCK_190_200_MHZ:
6866 return 190000;
6867 }
6868 }
6869 }
6870
6871 static int i865_get_display_clock_speed(struct drm_device *dev)
6872 {
6873 return 266667;
6874 }
6875
6876 static int i85x_get_display_clock_speed(struct drm_device *dev)
6877 {
6878 u16 hpllcc = 0;
6879
6880 /*
6881 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6882 * encoding is different :(
6883 * FIXME is this the right way to detect 852GM/852GMV?
6884 */
6885 if (dev->pdev->revision == 0x1)
6886 return 133333;
6887
6888 pci_bus_read_config_word(dev->pdev->bus,
6889 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6890
6891 /* Assume that the hardware is in the high speed state. This
6892 * should be the default.
6893 */
6894 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6895 case GC_CLOCK_133_200:
6896 case GC_CLOCK_133_200_2:
6897 case GC_CLOCK_100_200:
6898 return 200000;
6899 case GC_CLOCK_166_250:
6900 return 250000;
6901 case GC_CLOCK_100_133:
6902 return 133333;
6903 case GC_CLOCK_133_266:
6904 case GC_CLOCK_133_266_2:
6905 case GC_CLOCK_166_266:
6906 return 266667;
6907 }
6908
6909 /* Shouldn't happen */
6910 return 0;
6911 }
6912
6913 static int i830_get_display_clock_speed(struct drm_device *dev)
6914 {
6915 return 133333;
6916 }
6917
6918 static unsigned int intel_hpll_vco(struct drm_device *dev)
6919 {
6920 struct drm_i915_private *dev_priv = dev->dev_private;
6921 static const unsigned int blb_vco[8] = {
6922 [0] = 3200000,
6923 [1] = 4000000,
6924 [2] = 5333333,
6925 [3] = 4800000,
6926 [4] = 6400000,
6927 };
6928 static const unsigned int pnv_vco[8] = {
6929 [0] = 3200000,
6930 [1] = 4000000,
6931 [2] = 5333333,
6932 [3] = 4800000,
6933 [4] = 2666667,
6934 };
6935 static const unsigned int cl_vco[8] = {
6936 [0] = 3200000,
6937 [1] = 4000000,
6938 [2] = 5333333,
6939 [3] = 6400000,
6940 [4] = 3333333,
6941 [5] = 3566667,
6942 [6] = 4266667,
6943 };
6944 static const unsigned int elk_vco[8] = {
6945 [0] = 3200000,
6946 [1] = 4000000,
6947 [2] = 5333333,
6948 [3] = 4800000,
6949 };
6950 static const unsigned int ctg_vco[8] = {
6951 [0] = 3200000,
6952 [1] = 4000000,
6953 [2] = 5333333,
6954 [3] = 6400000,
6955 [4] = 2666667,
6956 [5] = 4266667,
6957 };
6958 const unsigned int *vco_table;
6959 unsigned int vco;
6960 uint8_t tmp = 0;
6961
6962 /* FIXME other chipsets? */
6963 if (IS_GM45(dev))
6964 vco_table = ctg_vco;
6965 else if (IS_G4X(dev))
6966 vco_table = elk_vco;
6967 else if (IS_CRESTLINE(dev))
6968 vco_table = cl_vco;
6969 else if (IS_PINEVIEW(dev))
6970 vco_table = pnv_vco;
6971 else if (IS_G33(dev))
6972 vco_table = blb_vco;
6973 else
6974 return 0;
6975
6976 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6977
6978 vco = vco_table[tmp & 0x7];
6979 if (vco == 0)
6980 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6981 else
6982 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6983
6984 return vco;
6985 }
6986
6987 static int gm45_get_display_clock_speed(struct drm_device *dev)
6988 {
6989 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6990 uint16_t tmp = 0;
6991
6992 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6993
6994 cdclk_sel = (tmp >> 12) & 0x1;
6995
6996 switch (vco) {
6997 case 2666667:
6998 case 4000000:
6999 case 5333333:
7000 return cdclk_sel ? 333333 : 222222;
7001 case 3200000:
7002 return cdclk_sel ? 320000 : 228571;
7003 default:
7004 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7005 return 222222;
7006 }
7007 }
7008
7009 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7010 {
7011 static const uint8_t div_3200[] = { 16, 10, 8 };
7012 static const uint8_t div_4000[] = { 20, 12, 10 };
7013 static const uint8_t div_5333[] = { 24, 16, 14 };
7014 const uint8_t *div_table;
7015 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7016 uint16_t tmp = 0;
7017
7018 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7019
7020 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7021
7022 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7023 goto fail;
7024
7025 switch (vco) {
7026 case 3200000:
7027 div_table = div_3200;
7028 break;
7029 case 4000000:
7030 div_table = div_4000;
7031 break;
7032 case 5333333:
7033 div_table = div_5333;
7034 break;
7035 default:
7036 goto fail;
7037 }
7038
7039 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7040
7041 fail:
7042 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7043 return 200000;
7044 }
7045
7046 static int g33_get_display_clock_speed(struct drm_device *dev)
7047 {
7048 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7049 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7050 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7051 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7052 const uint8_t *div_table;
7053 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7054 uint16_t tmp = 0;
7055
7056 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7057
7058 cdclk_sel = (tmp >> 4) & 0x7;
7059
7060 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7061 goto fail;
7062
7063 switch (vco) {
7064 case 3200000:
7065 div_table = div_3200;
7066 break;
7067 case 4000000:
7068 div_table = div_4000;
7069 break;
7070 case 4800000:
7071 div_table = div_4800;
7072 break;
7073 case 5333333:
7074 div_table = div_5333;
7075 break;
7076 default:
7077 goto fail;
7078 }
7079
7080 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7081
7082 fail:
7083 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7084 return 190476;
7085 }
7086
7087 static void
7088 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7089 {
7090 while (*num > DATA_LINK_M_N_MASK ||
7091 *den > DATA_LINK_M_N_MASK) {
7092 *num >>= 1;
7093 *den >>= 1;
7094 }
7095 }
7096
7097 static void compute_m_n(unsigned int m, unsigned int n,
7098 uint32_t *ret_m, uint32_t *ret_n)
7099 {
7100 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7101 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7102 intel_reduce_m_n_ratio(ret_m, ret_n);
7103 }
7104
7105 void
7106 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7107 int pixel_clock, int link_clock,
7108 struct intel_link_m_n *m_n)
7109 {
7110 m_n->tu = 64;
7111
7112 compute_m_n(bits_per_pixel * pixel_clock,
7113 link_clock * nlanes * 8,
7114 &m_n->gmch_m, &m_n->gmch_n);
7115
7116 compute_m_n(pixel_clock, link_clock,
7117 &m_n->link_m, &m_n->link_n);
7118 }
7119
7120 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7121 {
7122 if (i915.panel_use_ssc >= 0)
7123 return i915.panel_use_ssc != 0;
7124 return dev_priv->vbt.lvds_use_ssc
7125 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7126 }
7127
7128 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7129 int num_connectors)
7130 {
7131 struct drm_device *dev = crtc_state->base.crtc->dev;
7132 struct drm_i915_private *dev_priv = dev->dev_private;
7133 int refclk;
7134
7135 WARN_ON(!crtc_state->base.state);
7136
7137 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7138 refclk = 100000;
7139 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7140 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7141 refclk = dev_priv->vbt.lvds_ssc_freq;
7142 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7143 } else if (!IS_GEN2(dev)) {
7144 refclk = 96000;
7145 } else {
7146 refclk = 48000;
7147 }
7148
7149 return refclk;
7150 }
7151
7152 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7153 {
7154 return (1 << dpll->n) << 16 | dpll->m2;
7155 }
7156
7157 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7158 {
7159 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7160 }
7161
7162 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7163 struct intel_crtc_state *crtc_state,
7164 intel_clock_t *reduced_clock)
7165 {
7166 struct drm_device *dev = crtc->base.dev;
7167 u32 fp, fp2 = 0;
7168
7169 if (IS_PINEVIEW(dev)) {
7170 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7171 if (reduced_clock)
7172 fp2 = pnv_dpll_compute_fp(reduced_clock);
7173 } else {
7174 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7175 if (reduced_clock)
7176 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7177 }
7178
7179 crtc_state->dpll_hw_state.fp0 = fp;
7180
7181 crtc->lowfreq_avail = false;
7182 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7183 reduced_clock) {
7184 crtc_state->dpll_hw_state.fp1 = fp2;
7185 crtc->lowfreq_avail = true;
7186 } else {
7187 crtc_state->dpll_hw_state.fp1 = fp;
7188 }
7189 }
7190
7191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7192 pipe)
7193 {
7194 u32 reg_val;
7195
7196 /*
7197 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7198 * and set it to a reasonable value instead.
7199 */
7200 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7201 reg_val &= 0xffffff00;
7202 reg_val |= 0x00000030;
7203 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7204
7205 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7206 reg_val &= 0x8cffffff;
7207 reg_val = 0x8c000000;
7208 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7209
7210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7211 reg_val &= 0xffffff00;
7212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7213
7214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7215 reg_val &= 0x00ffffff;
7216 reg_val |= 0xb0000000;
7217 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7218 }
7219
7220 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7221 struct intel_link_m_n *m_n)
7222 {
7223 struct drm_device *dev = crtc->base.dev;
7224 struct drm_i915_private *dev_priv = dev->dev_private;
7225 int pipe = crtc->pipe;
7226
7227 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7228 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7229 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7230 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7231 }
7232
7233 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7234 struct intel_link_m_n *m_n,
7235 struct intel_link_m_n *m2_n2)
7236 {
7237 struct drm_device *dev = crtc->base.dev;
7238 struct drm_i915_private *dev_priv = dev->dev_private;
7239 int pipe = crtc->pipe;
7240 enum transcoder transcoder = crtc->config->cpu_transcoder;
7241
7242 if (INTEL_INFO(dev)->gen >= 5) {
7243 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7244 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7245 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7246 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7247 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7248 * for gen < 8) and if DRRS is supported (to make sure the
7249 * registers are not unnecessarily accessed).
7250 */
7251 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7252 crtc->config->has_drrs) {
7253 I915_WRITE(PIPE_DATA_M2(transcoder),
7254 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7255 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7256 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7257 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7258 }
7259 } else {
7260 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7261 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7262 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7263 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7264 }
7265 }
7266
7267 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7268 {
7269 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7270
7271 if (m_n == M1_N1) {
7272 dp_m_n = &crtc->config->dp_m_n;
7273 dp_m2_n2 = &crtc->config->dp_m2_n2;
7274 } else if (m_n == M2_N2) {
7275
7276 /*
7277 * M2_N2 registers are not supported. Hence m2_n2 divider value
7278 * needs to be programmed into M1_N1.
7279 */
7280 dp_m_n = &crtc->config->dp_m2_n2;
7281 } else {
7282 DRM_ERROR("Unsupported divider value\n");
7283 return;
7284 }
7285
7286 if (crtc->config->has_pch_encoder)
7287 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7288 else
7289 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7290 }
7291
7292 static void vlv_compute_dpll(struct intel_crtc *crtc,
7293 struct intel_crtc_state *pipe_config)
7294 {
7295 u32 dpll, dpll_md;
7296
7297 /*
7298 * Enable DPIO clock input. We should never disable the reference
7299 * clock for pipe B, since VGA hotplug / manual detection depends
7300 * on it.
7301 */
7302 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7303 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7304 /* We should never disable this, set it here for state tracking */
7305 if (crtc->pipe == PIPE_B)
7306 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7307 dpll |= DPLL_VCO_ENABLE;
7308 pipe_config->dpll_hw_state.dpll = dpll;
7309
7310 dpll_md = (pipe_config->pixel_multiplier - 1)
7311 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7312 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7313 }
7314
7315 static void vlv_prepare_pll(struct intel_crtc *crtc,
7316 const struct intel_crtc_state *pipe_config)
7317 {
7318 struct drm_device *dev = crtc->base.dev;
7319 struct drm_i915_private *dev_priv = dev->dev_private;
7320 int pipe = crtc->pipe;
7321 u32 mdiv;
7322 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7323 u32 coreclk, reg_val;
7324
7325 mutex_lock(&dev_priv->sb_lock);
7326
7327 bestn = pipe_config->dpll.n;
7328 bestm1 = pipe_config->dpll.m1;
7329 bestm2 = pipe_config->dpll.m2;
7330 bestp1 = pipe_config->dpll.p1;
7331 bestp2 = pipe_config->dpll.p2;
7332
7333 /* See eDP HDMI DPIO driver vbios notes doc */
7334
7335 /* PLL B needs special handling */
7336 if (pipe == PIPE_B)
7337 vlv_pllb_recal_opamp(dev_priv, pipe);
7338
7339 /* Set up Tx target for periodic Rcomp update */
7340 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7341
7342 /* Disable target IRef on PLL */
7343 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7344 reg_val &= 0x00ffffff;
7345 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7346
7347 /* Disable fast lock */
7348 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7349
7350 /* Set idtafcrecal before PLL is enabled */
7351 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7352 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7353 mdiv |= ((bestn << DPIO_N_SHIFT));
7354 mdiv |= (1 << DPIO_K_SHIFT);
7355
7356 /*
7357 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7358 * but we don't support that).
7359 * Note: don't use the DAC post divider as it seems unstable.
7360 */
7361 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7362 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7363
7364 mdiv |= DPIO_ENABLE_CALIBRATION;
7365 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7366
7367 /* Set HBR and RBR LPF coefficients */
7368 if (pipe_config->port_clock == 162000 ||
7369 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7370 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7371 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7372 0x009f0003);
7373 else
7374 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7375 0x00d0000f);
7376
7377 if (pipe_config->has_dp_encoder) {
7378 /* Use SSC source */
7379 if (pipe == PIPE_A)
7380 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7381 0x0df40000);
7382 else
7383 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7384 0x0df70000);
7385 } else { /* HDMI or VGA */
7386 /* Use bend source */
7387 if (pipe == PIPE_A)
7388 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389 0x0df70000);
7390 else
7391 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392 0x0df40000);
7393 }
7394
7395 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7396 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7397 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7398 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7399 coreclk |= 0x01000000;
7400 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7401
7402 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7403 mutex_unlock(&dev_priv->sb_lock);
7404 }
7405
7406 static void chv_compute_dpll(struct intel_crtc *crtc,
7407 struct intel_crtc_state *pipe_config)
7408 {
7409 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7410 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7411 DPLL_VCO_ENABLE;
7412 if (crtc->pipe != PIPE_A)
7413 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7414
7415 pipe_config->dpll_hw_state.dpll_md =
7416 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7417 }
7418
7419 static void chv_prepare_pll(struct intel_crtc *crtc,
7420 const struct intel_crtc_state *pipe_config)
7421 {
7422 struct drm_device *dev = crtc->base.dev;
7423 struct drm_i915_private *dev_priv = dev->dev_private;
7424 int pipe = crtc->pipe;
7425 int dpll_reg = DPLL(crtc->pipe);
7426 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7427 u32 loopfilter, tribuf_calcntr;
7428 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7429 u32 dpio_val;
7430 int vco;
7431
7432 bestn = pipe_config->dpll.n;
7433 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7434 bestm1 = pipe_config->dpll.m1;
7435 bestm2 = pipe_config->dpll.m2 >> 22;
7436 bestp1 = pipe_config->dpll.p1;
7437 bestp2 = pipe_config->dpll.p2;
7438 vco = pipe_config->dpll.vco;
7439 dpio_val = 0;
7440 loopfilter = 0;
7441
7442 /*
7443 * Enable Refclk and SSC
7444 */
7445 I915_WRITE(dpll_reg,
7446 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7447
7448 mutex_lock(&dev_priv->sb_lock);
7449
7450 /* p1 and p2 divider */
7451 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7452 5 << DPIO_CHV_S1_DIV_SHIFT |
7453 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7454 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7455 1 << DPIO_CHV_K_DIV_SHIFT);
7456
7457 /* Feedback post-divider - m2 */
7458 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7459
7460 /* Feedback refclk divider - n and m1 */
7461 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7462 DPIO_CHV_M1_DIV_BY_2 |
7463 1 << DPIO_CHV_N_DIV_SHIFT);
7464
7465 /* M2 fraction division */
7466 if (bestm2_frac)
7467 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7468
7469 /* M2 fraction division enable */
7470 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7471 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7472 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7473 if (bestm2_frac)
7474 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7475 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7476
7477 /* Program digital lock detect threshold */
7478 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7479 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7480 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7481 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7482 if (!bestm2_frac)
7483 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7484 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7485
7486 /* Loop filter */
7487 if (vco == 5400000) {
7488 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7489 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7490 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7491 tribuf_calcntr = 0x9;
7492 } else if (vco <= 6200000) {
7493 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7494 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7495 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7496 tribuf_calcntr = 0x9;
7497 } else if (vco <= 6480000) {
7498 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7499 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7500 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7501 tribuf_calcntr = 0x8;
7502 } else {
7503 /* Not supported. Apply the same limits as in the max case */
7504 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7505 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7506 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7507 tribuf_calcntr = 0;
7508 }
7509 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7510
7511 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7512 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7513 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7514 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7515
7516 /* AFC Recal */
7517 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7518 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7519 DPIO_AFC_RECAL);
7520
7521 mutex_unlock(&dev_priv->sb_lock);
7522 }
7523
7524 /**
7525 * vlv_force_pll_on - forcibly enable just the PLL
7526 * @dev_priv: i915 private structure
7527 * @pipe: pipe PLL to enable
7528 * @dpll: PLL configuration
7529 *
7530 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7531 * in cases where we need the PLL enabled even when @pipe is not going to
7532 * be enabled.
7533 */
7534 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7535 const struct dpll *dpll)
7536 {
7537 struct intel_crtc *crtc =
7538 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7539 struct intel_crtc_state pipe_config = {
7540 .base.crtc = &crtc->base,
7541 .pixel_multiplier = 1,
7542 .dpll = *dpll,
7543 };
7544
7545 if (IS_CHERRYVIEW(dev)) {
7546 chv_compute_dpll(crtc, &pipe_config);
7547 chv_prepare_pll(crtc, &pipe_config);
7548 chv_enable_pll(crtc, &pipe_config);
7549 } else {
7550 vlv_compute_dpll(crtc, &pipe_config);
7551 vlv_prepare_pll(crtc, &pipe_config);
7552 vlv_enable_pll(crtc, &pipe_config);
7553 }
7554 }
7555
7556 /**
7557 * vlv_force_pll_off - forcibly disable just the PLL
7558 * @dev_priv: i915 private structure
7559 * @pipe: pipe PLL to disable
7560 *
7561 * Disable the PLL for @pipe. To be used in cases where we need
7562 * the PLL enabled even when @pipe is not going to be enabled.
7563 */
7564 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7565 {
7566 if (IS_CHERRYVIEW(dev))
7567 chv_disable_pll(to_i915(dev), pipe);
7568 else
7569 vlv_disable_pll(to_i915(dev), pipe);
7570 }
7571
7572 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7573 struct intel_crtc_state *crtc_state,
7574 intel_clock_t *reduced_clock,
7575 int num_connectors)
7576 {
7577 struct drm_device *dev = crtc->base.dev;
7578 struct drm_i915_private *dev_priv = dev->dev_private;
7579 u32 dpll;
7580 bool is_sdvo;
7581 struct dpll *clock = &crtc_state->dpll;
7582
7583 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7584
7585 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7586 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7587
7588 dpll = DPLL_VGA_MODE_DIS;
7589
7590 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7591 dpll |= DPLLB_MODE_LVDS;
7592 else
7593 dpll |= DPLLB_MODE_DAC_SERIAL;
7594
7595 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7596 dpll |= (crtc_state->pixel_multiplier - 1)
7597 << SDVO_MULTIPLIER_SHIFT_HIRES;
7598 }
7599
7600 if (is_sdvo)
7601 dpll |= DPLL_SDVO_HIGH_SPEED;
7602
7603 if (crtc_state->has_dp_encoder)
7604 dpll |= DPLL_SDVO_HIGH_SPEED;
7605
7606 /* compute bitmask from p1 value */
7607 if (IS_PINEVIEW(dev))
7608 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7609 else {
7610 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7611 if (IS_G4X(dev) && reduced_clock)
7612 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7613 }
7614 switch (clock->p2) {
7615 case 5:
7616 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7617 break;
7618 case 7:
7619 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7620 break;
7621 case 10:
7622 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7623 break;
7624 case 14:
7625 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7626 break;
7627 }
7628 if (INTEL_INFO(dev)->gen >= 4)
7629 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7630
7631 if (crtc_state->sdvo_tv_clock)
7632 dpll |= PLL_REF_INPUT_TVCLKINBC;
7633 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7634 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7635 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7636 else
7637 dpll |= PLL_REF_INPUT_DREFCLK;
7638
7639 dpll |= DPLL_VCO_ENABLE;
7640 crtc_state->dpll_hw_state.dpll = dpll;
7641
7642 if (INTEL_INFO(dev)->gen >= 4) {
7643 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7644 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7645 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7646 }
7647 }
7648
7649 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7650 struct intel_crtc_state *crtc_state,
7651 intel_clock_t *reduced_clock,
7652 int num_connectors)
7653 {
7654 struct drm_device *dev = crtc->base.dev;
7655 struct drm_i915_private *dev_priv = dev->dev_private;
7656 u32 dpll;
7657 struct dpll *clock = &crtc_state->dpll;
7658
7659 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7660
7661 dpll = DPLL_VGA_MODE_DIS;
7662
7663 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7664 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7665 } else {
7666 if (clock->p1 == 2)
7667 dpll |= PLL_P1_DIVIDE_BY_TWO;
7668 else
7669 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7670 if (clock->p2 == 4)
7671 dpll |= PLL_P2_DIVIDE_BY_4;
7672 }
7673
7674 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7675 dpll |= DPLL_DVO_2X_MODE;
7676
7677 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7678 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7679 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7680 else
7681 dpll |= PLL_REF_INPUT_DREFCLK;
7682
7683 dpll |= DPLL_VCO_ENABLE;
7684 crtc_state->dpll_hw_state.dpll = dpll;
7685 }
7686
7687 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7688 {
7689 struct drm_device *dev = intel_crtc->base.dev;
7690 struct drm_i915_private *dev_priv = dev->dev_private;
7691 enum pipe pipe = intel_crtc->pipe;
7692 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7693 struct drm_display_mode *adjusted_mode =
7694 &intel_crtc->config->base.adjusted_mode;
7695 uint32_t crtc_vtotal, crtc_vblank_end;
7696 int vsyncshift = 0;
7697
7698 /* We need to be careful not to changed the adjusted mode, for otherwise
7699 * the hw state checker will get angry at the mismatch. */
7700 crtc_vtotal = adjusted_mode->crtc_vtotal;
7701 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7702
7703 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7704 /* the chip adds 2 halflines automatically */
7705 crtc_vtotal -= 1;
7706 crtc_vblank_end -= 1;
7707
7708 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7709 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7710 else
7711 vsyncshift = adjusted_mode->crtc_hsync_start -
7712 adjusted_mode->crtc_htotal / 2;
7713 if (vsyncshift < 0)
7714 vsyncshift += adjusted_mode->crtc_htotal;
7715 }
7716
7717 if (INTEL_INFO(dev)->gen > 3)
7718 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7719
7720 I915_WRITE(HTOTAL(cpu_transcoder),
7721 (adjusted_mode->crtc_hdisplay - 1) |
7722 ((adjusted_mode->crtc_htotal - 1) << 16));
7723 I915_WRITE(HBLANK(cpu_transcoder),
7724 (adjusted_mode->crtc_hblank_start - 1) |
7725 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7726 I915_WRITE(HSYNC(cpu_transcoder),
7727 (adjusted_mode->crtc_hsync_start - 1) |
7728 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7729
7730 I915_WRITE(VTOTAL(cpu_transcoder),
7731 (adjusted_mode->crtc_vdisplay - 1) |
7732 ((crtc_vtotal - 1) << 16));
7733 I915_WRITE(VBLANK(cpu_transcoder),
7734 (adjusted_mode->crtc_vblank_start - 1) |
7735 ((crtc_vblank_end - 1) << 16));
7736 I915_WRITE(VSYNC(cpu_transcoder),
7737 (adjusted_mode->crtc_vsync_start - 1) |
7738 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7739
7740 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7741 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7742 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7743 * bits. */
7744 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7745 (pipe == PIPE_B || pipe == PIPE_C))
7746 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7747
7748 /* pipesrc controls the size that is scaled from, which should
7749 * always be the user's requested size.
7750 */
7751 I915_WRITE(PIPESRC(pipe),
7752 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7753 (intel_crtc->config->pipe_src_h - 1));
7754 }
7755
7756 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7757 struct intel_crtc_state *pipe_config)
7758 {
7759 struct drm_device *dev = crtc->base.dev;
7760 struct drm_i915_private *dev_priv = dev->dev_private;
7761 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7762 uint32_t tmp;
7763
7764 tmp = I915_READ(HTOTAL(cpu_transcoder));
7765 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7766 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7767 tmp = I915_READ(HBLANK(cpu_transcoder));
7768 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7769 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7770 tmp = I915_READ(HSYNC(cpu_transcoder));
7771 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7772 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7773
7774 tmp = I915_READ(VTOTAL(cpu_transcoder));
7775 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7776 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7777 tmp = I915_READ(VBLANK(cpu_transcoder));
7778 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7779 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7780 tmp = I915_READ(VSYNC(cpu_transcoder));
7781 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7782 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7783
7784 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7785 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7786 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7787 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7788 }
7789
7790 tmp = I915_READ(PIPESRC(crtc->pipe));
7791 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7792 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7793
7794 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7795 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7796 }
7797
7798 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7799 struct intel_crtc_state *pipe_config)
7800 {
7801 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7802 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7803 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7804 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7805
7806 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7807 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7808 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7809 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7810
7811 mode->flags = pipe_config->base.adjusted_mode.flags;
7812 mode->type = DRM_MODE_TYPE_DRIVER;
7813
7814 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7815 mode->flags |= pipe_config->base.adjusted_mode.flags;
7816
7817 mode->hsync = drm_mode_hsync(mode);
7818 mode->vrefresh = drm_mode_vrefresh(mode);
7819 drm_mode_set_name(mode);
7820 }
7821
7822 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7823 {
7824 struct drm_device *dev = intel_crtc->base.dev;
7825 struct drm_i915_private *dev_priv = dev->dev_private;
7826 uint32_t pipeconf;
7827
7828 pipeconf = 0;
7829
7830 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7831 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7832 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7833
7834 if (intel_crtc->config->double_wide)
7835 pipeconf |= PIPECONF_DOUBLE_WIDE;
7836
7837 /* only g4x and later have fancy bpc/dither controls */
7838 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7839 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7840 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7841 pipeconf |= PIPECONF_DITHER_EN |
7842 PIPECONF_DITHER_TYPE_SP;
7843
7844 switch (intel_crtc->config->pipe_bpp) {
7845 case 18:
7846 pipeconf |= PIPECONF_6BPC;
7847 break;
7848 case 24:
7849 pipeconf |= PIPECONF_8BPC;
7850 break;
7851 case 30:
7852 pipeconf |= PIPECONF_10BPC;
7853 break;
7854 default:
7855 /* Case prevented by intel_choose_pipe_bpp_dither. */
7856 BUG();
7857 }
7858 }
7859
7860 if (HAS_PIPE_CXSR(dev)) {
7861 if (intel_crtc->lowfreq_avail) {
7862 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7863 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7864 } else {
7865 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7866 }
7867 }
7868
7869 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7870 if (INTEL_INFO(dev)->gen < 4 ||
7871 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7872 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7873 else
7874 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7875 } else
7876 pipeconf |= PIPECONF_PROGRESSIVE;
7877
7878 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7879 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7880
7881 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7882 POSTING_READ(PIPECONF(intel_crtc->pipe));
7883 }
7884
7885 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7886 struct intel_crtc_state *crtc_state)
7887 {
7888 struct drm_device *dev = crtc->base.dev;
7889 struct drm_i915_private *dev_priv = dev->dev_private;
7890 int refclk, num_connectors = 0;
7891 intel_clock_t clock;
7892 bool ok;
7893 bool is_dsi = false;
7894 struct intel_encoder *encoder;
7895 const intel_limit_t *limit;
7896 struct drm_atomic_state *state = crtc_state->base.state;
7897 struct drm_connector *connector;
7898 struct drm_connector_state *connector_state;
7899 int i;
7900
7901 memset(&crtc_state->dpll_hw_state, 0,
7902 sizeof(crtc_state->dpll_hw_state));
7903
7904 for_each_connector_in_state(state, connector, connector_state, i) {
7905 if (connector_state->crtc != &crtc->base)
7906 continue;
7907
7908 encoder = to_intel_encoder(connector_state->best_encoder);
7909
7910 switch (encoder->type) {
7911 case INTEL_OUTPUT_DSI:
7912 is_dsi = true;
7913 break;
7914 default:
7915 break;
7916 }
7917
7918 num_connectors++;
7919 }
7920
7921 if (is_dsi)
7922 return 0;
7923
7924 if (!crtc_state->clock_set) {
7925 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7926
7927 /*
7928 * Returns a set of divisors for the desired target clock with
7929 * the given refclk, or FALSE. The returned values represent
7930 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7931 * 2) / p1 / p2.
7932 */
7933 limit = intel_limit(crtc_state, refclk);
7934 ok = dev_priv->display.find_dpll(limit, crtc_state,
7935 crtc_state->port_clock,
7936 refclk, NULL, &clock);
7937 if (!ok) {
7938 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7939 return -EINVAL;
7940 }
7941
7942 /* Compat-code for transition, will disappear. */
7943 crtc_state->dpll.n = clock.n;
7944 crtc_state->dpll.m1 = clock.m1;
7945 crtc_state->dpll.m2 = clock.m2;
7946 crtc_state->dpll.p1 = clock.p1;
7947 crtc_state->dpll.p2 = clock.p2;
7948 }
7949
7950 if (IS_GEN2(dev)) {
7951 i8xx_compute_dpll(crtc, crtc_state, NULL,
7952 num_connectors);
7953 } else if (IS_CHERRYVIEW(dev)) {
7954 chv_compute_dpll(crtc, crtc_state);
7955 } else if (IS_VALLEYVIEW(dev)) {
7956 vlv_compute_dpll(crtc, crtc_state);
7957 } else {
7958 i9xx_compute_dpll(crtc, crtc_state, NULL,
7959 num_connectors);
7960 }
7961
7962 return 0;
7963 }
7964
7965 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7966 struct intel_crtc_state *pipe_config)
7967 {
7968 struct drm_device *dev = crtc->base.dev;
7969 struct drm_i915_private *dev_priv = dev->dev_private;
7970 uint32_t tmp;
7971
7972 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7973 return;
7974
7975 tmp = I915_READ(PFIT_CONTROL);
7976 if (!(tmp & PFIT_ENABLE))
7977 return;
7978
7979 /* Check whether the pfit is attached to our pipe. */
7980 if (INTEL_INFO(dev)->gen < 4) {
7981 if (crtc->pipe != PIPE_B)
7982 return;
7983 } else {
7984 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7985 return;
7986 }
7987
7988 pipe_config->gmch_pfit.control = tmp;
7989 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7990 if (INTEL_INFO(dev)->gen < 5)
7991 pipe_config->gmch_pfit.lvds_border_bits =
7992 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7993 }
7994
7995 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7996 struct intel_crtc_state *pipe_config)
7997 {
7998 struct drm_device *dev = crtc->base.dev;
7999 struct drm_i915_private *dev_priv = dev->dev_private;
8000 int pipe = pipe_config->cpu_transcoder;
8001 intel_clock_t clock;
8002 u32 mdiv;
8003 int refclk = 100000;
8004
8005 /* In case of MIPI DPLL will not even be used */
8006 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8007 return;
8008
8009 mutex_lock(&dev_priv->sb_lock);
8010 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8011 mutex_unlock(&dev_priv->sb_lock);
8012
8013 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8014 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8015 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8016 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8017 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8018
8019 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8020 }
8021
8022 static void
8023 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8024 struct intel_initial_plane_config *plane_config)
8025 {
8026 struct drm_device *dev = crtc->base.dev;
8027 struct drm_i915_private *dev_priv = dev->dev_private;
8028 u32 val, base, offset;
8029 int pipe = crtc->pipe, plane = crtc->plane;
8030 int fourcc, pixel_format;
8031 unsigned int aligned_height;
8032 struct drm_framebuffer *fb;
8033 struct intel_framebuffer *intel_fb;
8034
8035 val = I915_READ(DSPCNTR(plane));
8036 if (!(val & DISPLAY_PLANE_ENABLE))
8037 return;
8038
8039 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8040 if (!intel_fb) {
8041 DRM_DEBUG_KMS("failed to alloc fb\n");
8042 return;
8043 }
8044
8045 fb = &intel_fb->base;
8046
8047 if (INTEL_INFO(dev)->gen >= 4) {
8048 if (val & DISPPLANE_TILED) {
8049 plane_config->tiling = I915_TILING_X;
8050 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8051 }
8052 }
8053
8054 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8055 fourcc = i9xx_format_to_fourcc(pixel_format);
8056 fb->pixel_format = fourcc;
8057 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8058
8059 if (INTEL_INFO(dev)->gen >= 4) {
8060 if (plane_config->tiling)
8061 offset = I915_READ(DSPTILEOFF(plane));
8062 else
8063 offset = I915_READ(DSPLINOFF(plane));
8064 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8065 } else {
8066 base = I915_READ(DSPADDR(plane));
8067 }
8068 plane_config->base = base;
8069
8070 val = I915_READ(PIPESRC(pipe));
8071 fb->width = ((val >> 16) & 0xfff) + 1;
8072 fb->height = ((val >> 0) & 0xfff) + 1;
8073
8074 val = I915_READ(DSPSTRIDE(pipe));
8075 fb->pitches[0] = val & 0xffffffc0;
8076
8077 aligned_height = intel_fb_align_height(dev, fb->height,
8078 fb->pixel_format,
8079 fb->modifier[0]);
8080
8081 plane_config->size = fb->pitches[0] * aligned_height;
8082
8083 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8084 pipe_name(pipe), plane, fb->width, fb->height,
8085 fb->bits_per_pixel, base, fb->pitches[0],
8086 plane_config->size);
8087
8088 plane_config->fb = intel_fb;
8089 }
8090
8091 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8092 struct intel_crtc_state *pipe_config)
8093 {
8094 struct drm_device *dev = crtc->base.dev;
8095 struct drm_i915_private *dev_priv = dev->dev_private;
8096 int pipe = pipe_config->cpu_transcoder;
8097 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8098 intel_clock_t clock;
8099 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8100 int refclk = 100000;
8101
8102 mutex_lock(&dev_priv->sb_lock);
8103 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8104 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8105 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8106 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8107 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8108 mutex_unlock(&dev_priv->sb_lock);
8109
8110 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8111 clock.m2 = (pll_dw0 & 0xff) << 22;
8112 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8113 clock.m2 |= pll_dw2 & 0x3fffff;
8114 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8115 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8116 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8117
8118 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8119 }
8120
8121 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8122 struct intel_crtc_state *pipe_config)
8123 {
8124 struct drm_device *dev = crtc->base.dev;
8125 struct drm_i915_private *dev_priv = dev->dev_private;
8126 uint32_t tmp;
8127
8128 if (!intel_display_power_is_enabled(dev_priv,
8129 POWER_DOMAIN_PIPE(crtc->pipe)))
8130 return false;
8131
8132 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8133 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8134
8135 tmp = I915_READ(PIPECONF(crtc->pipe));
8136 if (!(tmp & PIPECONF_ENABLE))
8137 return false;
8138
8139 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8140 switch (tmp & PIPECONF_BPC_MASK) {
8141 case PIPECONF_6BPC:
8142 pipe_config->pipe_bpp = 18;
8143 break;
8144 case PIPECONF_8BPC:
8145 pipe_config->pipe_bpp = 24;
8146 break;
8147 case PIPECONF_10BPC:
8148 pipe_config->pipe_bpp = 30;
8149 break;
8150 default:
8151 break;
8152 }
8153 }
8154
8155 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8156 pipe_config->limited_color_range = true;
8157
8158 if (INTEL_INFO(dev)->gen < 4)
8159 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8160
8161 intel_get_pipe_timings(crtc, pipe_config);
8162
8163 i9xx_get_pfit_config(crtc, pipe_config);
8164
8165 if (INTEL_INFO(dev)->gen >= 4) {
8166 tmp = I915_READ(DPLL_MD(crtc->pipe));
8167 pipe_config->pixel_multiplier =
8168 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8169 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8170 pipe_config->dpll_hw_state.dpll_md = tmp;
8171 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8172 tmp = I915_READ(DPLL(crtc->pipe));
8173 pipe_config->pixel_multiplier =
8174 ((tmp & SDVO_MULTIPLIER_MASK)
8175 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8176 } else {
8177 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8178 * port and will be fixed up in the encoder->get_config
8179 * function. */
8180 pipe_config->pixel_multiplier = 1;
8181 }
8182 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8183 if (!IS_VALLEYVIEW(dev)) {
8184 /*
8185 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8186 * on 830. Filter it out here so that we don't
8187 * report errors due to that.
8188 */
8189 if (IS_I830(dev))
8190 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8191
8192 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8193 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8194 } else {
8195 /* Mask out read-only status bits. */
8196 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8197 DPLL_PORTC_READY_MASK |
8198 DPLL_PORTB_READY_MASK);
8199 }
8200
8201 if (IS_CHERRYVIEW(dev))
8202 chv_crtc_clock_get(crtc, pipe_config);
8203 else if (IS_VALLEYVIEW(dev))
8204 vlv_crtc_clock_get(crtc, pipe_config);
8205 else
8206 i9xx_crtc_clock_get(crtc, pipe_config);
8207
8208 return true;
8209 }
8210
8211 static void ironlake_init_pch_refclk(struct drm_device *dev)
8212 {
8213 struct drm_i915_private *dev_priv = dev->dev_private;
8214 struct intel_encoder *encoder;
8215 u32 val, final;
8216 bool has_lvds = false;
8217 bool has_cpu_edp = false;
8218 bool has_panel = false;
8219 bool has_ck505 = false;
8220 bool can_ssc = false;
8221
8222 /* We need to take the global config into account */
8223 for_each_intel_encoder(dev, encoder) {
8224 switch (encoder->type) {
8225 case INTEL_OUTPUT_LVDS:
8226 has_panel = true;
8227 has_lvds = true;
8228 break;
8229 case INTEL_OUTPUT_EDP:
8230 has_panel = true;
8231 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8232 has_cpu_edp = true;
8233 break;
8234 default:
8235 break;
8236 }
8237 }
8238
8239 if (HAS_PCH_IBX(dev)) {
8240 has_ck505 = dev_priv->vbt.display_clock_mode;
8241 can_ssc = has_ck505;
8242 } else {
8243 has_ck505 = false;
8244 can_ssc = true;
8245 }
8246
8247 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8248 has_panel, has_lvds, has_ck505);
8249
8250 /* Ironlake: try to setup display ref clock before DPLL
8251 * enabling. This is only under driver's control after
8252 * PCH B stepping, previous chipset stepping should be
8253 * ignoring this setting.
8254 */
8255 val = I915_READ(PCH_DREF_CONTROL);
8256
8257 /* As we must carefully and slowly disable/enable each source in turn,
8258 * compute the final state we want first and check if we need to
8259 * make any changes at all.
8260 */
8261 final = val;
8262 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8263 if (has_ck505)
8264 final |= DREF_NONSPREAD_CK505_ENABLE;
8265 else
8266 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8267
8268 final &= ~DREF_SSC_SOURCE_MASK;
8269 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8270 final &= ~DREF_SSC1_ENABLE;
8271
8272 if (has_panel) {
8273 final |= DREF_SSC_SOURCE_ENABLE;
8274
8275 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8276 final |= DREF_SSC1_ENABLE;
8277
8278 if (has_cpu_edp) {
8279 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8280 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8281 else
8282 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8283 } else
8284 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8285 } else {
8286 final |= DREF_SSC_SOURCE_DISABLE;
8287 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8288 }
8289
8290 if (final == val)
8291 return;
8292
8293 /* Always enable nonspread source */
8294 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8295
8296 if (has_ck505)
8297 val |= DREF_NONSPREAD_CK505_ENABLE;
8298 else
8299 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8300
8301 if (has_panel) {
8302 val &= ~DREF_SSC_SOURCE_MASK;
8303 val |= DREF_SSC_SOURCE_ENABLE;
8304
8305 /* SSC must be turned on before enabling the CPU output */
8306 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8307 DRM_DEBUG_KMS("Using SSC on panel\n");
8308 val |= DREF_SSC1_ENABLE;
8309 } else
8310 val &= ~DREF_SSC1_ENABLE;
8311
8312 /* Get SSC going before enabling the outputs */
8313 I915_WRITE(PCH_DREF_CONTROL, val);
8314 POSTING_READ(PCH_DREF_CONTROL);
8315 udelay(200);
8316
8317 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8318
8319 /* Enable CPU source on CPU attached eDP */
8320 if (has_cpu_edp) {
8321 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8322 DRM_DEBUG_KMS("Using SSC on eDP\n");
8323 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8324 } else
8325 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8326 } else
8327 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8328
8329 I915_WRITE(PCH_DREF_CONTROL, val);
8330 POSTING_READ(PCH_DREF_CONTROL);
8331 udelay(200);
8332 } else {
8333 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8334
8335 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8336
8337 /* Turn off CPU output */
8338 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8339
8340 I915_WRITE(PCH_DREF_CONTROL, val);
8341 POSTING_READ(PCH_DREF_CONTROL);
8342 udelay(200);
8343
8344 /* Turn off the SSC source */
8345 val &= ~DREF_SSC_SOURCE_MASK;
8346 val |= DREF_SSC_SOURCE_DISABLE;
8347
8348 /* Turn off SSC1 */
8349 val &= ~DREF_SSC1_ENABLE;
8350
8351 I915_WRITE(PCH_DREF_CONTROL, val);
8352 POSTING_READ(PCH_DREF_CONTROL);
8353 udelay(200);
8354 }
8355
8356 BUG_ON(val != final);
8357 }
8358
8359 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8360 {
8361 uint32_t tmp;
8362
8363 tmp = I915_READ(SOUTH_CHICKEN2);
8364 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8365 I915_WRITE(SOUTH_CHICKEN2, tmp);
8366
8367 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8368 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8369 DRM_ERROR("FDI mPHY reset assert timeout\n");
8370
8371 tmp = I915_READ(SOUTH_CHICKEN2);
8372 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8373 I915_WRITE(SOUTH_CHICKEN2, tmp);
8374
8375 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8376 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8377 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8378 }
8379
8380 /* WaMPhyProgramming:hsw */
8381 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8382 {
8383 uint32_t tmp;
8384
8385 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8386 tmp &= ~(0xFF << 24);
8387 tmp |= (0x12 << 24);
8388 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8389
8390 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8391 tmp |= (1 << 11);
8392 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8393
8394 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8395 tmp |= (1 << 11);
8396 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8397
8398 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8399 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8400 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8401
8402 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8403 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8404 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8405
8406 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8407 tmp &= ~(7 << 13);
8408 tmp |= (5 << 13);
8409 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8410
8411 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8412 tmp &= ~(7 << 13);
8413 tmp |= (5 << 13);
8414 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8415
8416 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8417 tmp &= ~0xFF;
8418 tmp |= 0x1C;
8419 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8420
8421 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8422 tmp &= ~0xFF;
8423 tmp |= 0x1C;
8424 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8425
8426 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8427 tmp &= ~(0xFF << 16);
8428 tmp |= (0x1C << 16);
8429 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8430
8431 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8432 tmp &= ~(0xFF << 16);
8433 tmp |= (0x1C << 16);
8434 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8435
8436 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8437 tmp |= (1 << 27);
8438 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8441 tmp |= (1 << 27);
8442 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8443
8444 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8445 tmp &= ~(0xF << 28);
8446 tmp |= (4 << 28);
8447 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8448
8449 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8450 tmp &= ~(0xF << 28);
8451 tmp |= (4 << 28);
8452 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8453 }
8454
8455 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8456 * Programming" based on the parameters passed:
8457 * - Sequence to enable CLKOUT_DP
8458 * - Sequence to enable CLKOUT_DP without spread
8459 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8460 */
8461 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8462 bool with_fdi)
8463 {
8464 struct drm_i915_private *dev_priv = dev->dev_private;
8465 uint32_t reg, tmp;
8466
8467 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8468 with_spread = true;
8469 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8470 with_fdi, "LP PCH doesn't have FDI\n"))
8471 with_fdi = false;
8472
8473 mutex_lock(&dev_priv->sb_lock);
8474
8475 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8476 tmp &= ~SBI_SSCCTL_DISABLE;
8477 tmp |= SBI_SSCCTL_PATHALT;
8478 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8479
8480 udelay(24);
8481
8482 if (with_spread) {
8483 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8484 tmp &= ~SBI_SSCCTL_PATHALT;
8485 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8486
8487 if (with_fdi) {
8488 lpt_reset_fdi_mphy(dev_priv);
8489 lpt_program_fdi_mphy(dev_priv);
8490 }
8491 }
8492
8493 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8494 SBI_GEN0 : SBI_DBUFF0;
8495 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8496 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8497 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8498
8499 mutex_unlock(&dev_priv->sb_lock);
8500 }
8501
8502 /* Sequence to disable CLKOUT_DP */
8503 static void lpt_disable_clkout_dp(struct drm_device *dev)
8504 {
8505 struct drm_i915_private *dev_priv = dev->dev_private;
8506 uint32_t reg, tmp;
8507
8508 mutex_lock(&dev_priv->sb_lock);
8509
8510 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8511 SBI_GEN0 : SBI_DBUFF0;
8512 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8513 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8514 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8515
8516 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8517 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8518 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8519 tmp |= SBI_SSCCTL_PATHALT;
8520 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8521 udelay(32);
8522 }
8523 tmp |= SBI_SSCCTL_DISABLE;
8524 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8525 }
8526
8527 mutex_unlock(&dev_priv->sb_lock);
8528 }
8529
8530 static void lpt_init_pch_refclk(struct drm_device *dev)
8531 {
8532 struct intel_encoder *encoder;
8533 bool has_vga = false;
8534
8535 for_each_intel_encoder(dev, encoder) {
8536 switch (encoder->type) {
8537 case INTEL_OUTPUT_ANALOG:
8538 has_vga = true;
8539 break;
8540 default:
8541 break;
8542 }
8543 }
8544
8545 if (has_vga)
8546 lpt_enable_clkout_dp(dev, true, true);
8547 else
8548 lpt_disable_clkout_dp(dev);
8549 }
8550
8551 /*
8552 * Initialize reference clocks when the driver loads
8553 */
8554 void intel_init_pch_refclk(struct drm_device *dev)
8555 {
8556 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8557 ironlake_init_pch_refclk(dev);
8558 else if (HAS_PCH_LPT(dev))
8559 lpt_init_pch_refclk(dev);
8560 }
8561
8562 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8563 {
8564 struct drm_device *dev = crtc_state->base.crtc->dev;
8565 struct drm_i915_private *dev_priv = dev->dev_private;
8566 struct drm_atomic_state *state = crtc_state->base.state;
8567 struct drm_connector *connector;
8568 struct drm_connector_state *connector_state;
8569 struct intel_encoder *encoder;
8570 int num_connectors = 0, i;
8571 bool is_lvds = false;
8572
8573 for_each_connector_in_state(state, connector, connector_state, i) {
8574 if (connector_state->crtc != crtc_state->base.crtc)
8575 continue;
8576
8577 encoder = to_intel_encoder(connector_state->best_encoder);
8578
8579 switch (encoder->type) {
8580 case INTEL_OUTPUT_LVDS:
8581 is_lvds = true;
8582 break;
8583 default:
8584 break;
8585 }
8586 num_connectors++;
8587 }
8588
8589 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8590 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8591 dev_priv->vbt.lvds_ssc_freq);
8592 return dev_priv->vbt.lvds_ssc_freq;
8593 }
8594
8595 return 120000;
8596 }
8597
8598 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8599 {
8600 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8602 int pipe = intel_crtc->pipe;
8603 uint32_t val;
8604
8605 val = 0;
8606
8607 switch (intel_crtc->config->pipe_bpp) {
8608 case 18:
8609 val |= PIPECONF_6BPC;
8610 break;
8611 case 24:
8612 val |= PIPECONF_8BPC;
8613 break;
8614 case 30:
8615 val |= PIPECONF_10BPC;
8616 break;
8617 case 36:
8618 val |= PIPECONF_12BPC;
8619 break;
8620 default:
8621 /* Case prevented by intel_choose_pipe_bpp_dither. */
8622 BUG();
8623 }
8624
8625 if (intel_crtc->config->dither)
8626 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8627
8628 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8629 val |= PIPECONF_INTERLACED_ILK;
8630 else
8631 val |= PIPECONF_PROGRESSIVE;
8632
8633 if (intel_crtc->config->limited_color_range)
8634 val |= PIPECONF_COLOR_RANGE_SELECT;
8635
8636 I915_WRITE(PIPECONF(pipe), val);
8637 POSTING_READ(PIPECONF(pipe));
8638 }
8639
8640 /*
8641 * Set up the pipe CSC unit.
8642 *
8643 * Currently only full range RGB to limited range RGB conversion
8644 * is supported, but eventually this should handle various
8645 * RGB<->YCbCr scenarios as well.
8646 */
8647 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8648 {
8649 struct drm_device *dev = crtc->dev;
8650 struct drm_i915_private *dev_priv = dev->dev_private;
8651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8652 int pipe = intel_crtc->pipe;
8653 uint16_t coeff = 0x7800; /* 1.0 */
8654
8655 /*
8656 * TODO: Check what kind of values actually come out of the pipe
8657 * with these coeff/postoff values and adjust to get the best
8658 * accuracy. Perhaps we even need to take the bpc value into
8659 * consideration.
8660 */
8661
8662 if (intel_crtc->config->limited_color_range)
8663 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8664
8665 /*
8666 * GY/GU and RY/RU should be the other way around according
8667 * to BSpec, but reality doesn't agree. Just set them up in
8668 * a way that results in the correct picture.
8669 */
8670 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8671 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8672
8673 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8674 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8675
8676 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8677 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8678
8679 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8680 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8681 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8682
8683 if (INTEL_INFO(dev)->gen > 6) {
8684 uint16_t postoff = 0;
8685
8686 if (intel_crtc->config->limited_color_range)
8687 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8688
8689 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8690 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8691 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8692
8693 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8694 } else {
8695 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8696
8697 if (intel_crtc->config->limited_color_range)
8698 mode |= CSC_BLACK_SCREEN_OFFSET;
8699
8700 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8701 }
8702 }
8703
8704 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8705 {
8706 struct drm_device *dev = crtc->dev;
8707 struct drm_i915_private *dev_priv = dev->dev_private;
8708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8709 enum pipe pipe = intel_crtc->pipe;
8710 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8711 uint32_t val;
8712
8713 val = 0;
8714
8715 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8716 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8717
8718 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8719 val |= PIPECONF_INTERLACED_ILK;
8720 else
8721 val |= PIPECONF_PROGRESSIVE;
8722
8723 I915_WRITE(PIPECONF(cpu_transcoder), val);
8724 POSTING_READ(PIPECONF(cpu_transcoder));
8725
8726 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8727 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8728
8729 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8730 val = 0;
8731
8732 switch (intel_crtc->config->pipe_bpp) {
8733 case 18:
8734 val |= PIPEMISC_DITHER_6_BPC;
8735 break;
8736 case 24:
8737 val |= PIPEMISC_DITHER_8_BPC;
8738 break;
8739 case 30:
8740 val |= PIPEMISC_DITHER_10_BPC;
8741 break;
8742 case 36:
8743 val |= PIPEMISC_DITHER_12_BPC;
8744 break;
8745 default:
8746 /* Case prevented by pipe_config_set_bpp. */
8747 BUG();
8748 }
8749
8750 if (intel_crtc->config->dither)
8751 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8752
8753 I915_WRITE(PIPEMISC(pipe), val);
8754 }
8755 }
8756
8757 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8758 struct intel_crtc_state *crtc_state,
8759 intel_clock_t *clock,
8760 bool *has_reduced_clock,
8761 intel_clock_t *reduced_clock)
8762 {
8763 struct drm_device *dev = crtc->dev;
8764 struct drm_i915_private *dev_priv = dev->dev_private;
8765 int refclk;
8766 const intel_limit_t *limit;
8767 bool ret;
8768
8769 refclk = ironlake_get_refclk(crtc_state);
8770
8771 /*
8772 * Returns a set of divisors for the desired target clock with the given
8773 * refclk, or FALSE. The returned values represent the clock equation:
8774 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8775 */
8776 limit = intel_limit(crtc_state, refclk);
8777 ret = dev_priv->display.find_dpll(limit, crtc_state,
8778 crtc_state->port_clock,
8779 refclk, NULL, clock);
8780 if (!ret)
8781 return false;
8782
8783 return true;
8784 }
8785
8786 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8787 {
8788 /*
8789 * Account for spread spectrum to avoid
8790 * oversubscribing the link. Max center spread
8791 * is 2.5%; use 5% for safety's sake.
8792 */
8793 u32 bps = target_clock * bpp * 21 / 20;
8794 return DIV_ROUND_UP(bps, link_bw * 8);
8795 }
8796
8797 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8798 {
8799 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8800 }
8801
8802 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8803 struct intel_crtc_state *crtc_state,
8804 u32 *fp,
8805 intel_clock_t *reduced_clock, u32 *fp2)
8806 {
8807 struct drm_crtc *crtc = &intel_crtc->base;
8808 struct drm_device *dev = crtc->dev;
8809 struct drm_i915_private *dev_priv = dev->dev_private;
8810 struct drm_atomic_state *state = crtc_state->base.state;
8811 struct drm_connector *connector;
8812 struct drm_connector_state *connector_state;
8813 struct intel_encoder *encoder;
8814 uint32_t dpll;
8815 int factor, num_connectors = 0, i;
8816 bool is_lvds = false, is_sdvo = false;
8817
8818 for_each_connector_in_state(state, connector, connector_state, i) {
8819 if (connector_state->crtc != crtc_state->base.crtc)
8820 continue;
8821
8822 encoder = to_intel_encoder(connector_state->best_encoder);
8823
8824 switch (encoder->type) {
8825 case INTEL_OUTPUT_LVDS:
8826 is_lvds = true;
8827 break;
8828 case INTEL_OUTPUT_SDVO:
8829 case INTEL_OUTPUT_HDMI:
8830 is_sdvo = true;
8831 break;
8832 default:
8833 break;
8834 }
8835
8836 num_connectors++;
8837 }
8838
8839 /* Enable autotuning of the PLL clock (if permissible) */
8840 factor = 21;
8841 if (is_lvds) {
8842 if ((intel_panel_use_ssc(dev_priv) &&
8843 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8844 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8845 factor = 25;
8846 } else if (crtc_state->sdvo_tv_clock)
8847 factor = 20;
8848
8849 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8850 *fp |= FP_CB_TUNE;
8851
8852 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8853 *fp2 |= FP_CB_TUNE;
8854
8855 dpll = 0;
8856
8857 if (is_lvds)
8858 dpll |= DPLLB_MODE_LVDS;
8859 else
8860 dpll |= DPLLB_MODE_DAC_SERIAL;
8861
8862 dpll |= (crtc_state->pixel_multiplier - 1)
8863 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8864
8865 if (is_sdvo)
8866 dpll |= DPLL_SDVO_HIGH_SPEED;
8867 if (crtc_state->has_dp_encoder)
8868 dpll |= DPLL_SDVO_HIGH_SPEED;
8869
8870 /* compute bitmask from p1 value */
8871 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8872 /* also FPA1 */
8873 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8874
8875 switch (crtc_state->dpll.p2) {
8876 case 5:
8877 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8878 break;
8879 case 7:
8880 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8881 break;
8882 case 10:
8883 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8884 break;
8885 case 14:
8886 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8887 break;
8888 }
8889
8890 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8891 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8892 else
8893 dpll |= PLL_REF_INPUT_DREFCLK;
8894
8895 return dpll | DPLL_VCO_ENABLE;
8896 }
8897
8898 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8899 struct intel_crtc_state *crtc_state)
8900 {
8901 struct drm_device *dev = crtc->base.dev;
8902 intel_clock_t clock, reduced_clock;
8903 u32 dpll = 0, fp = 0, fp2 = 0;
8904 bool ok, has_reduced_clock = false;
8905 bool is_lvds = false;
8906 struct intel_shared_dpll *pll;
8907
8908 memset(&crtc_state->dpll_hw_state, 0,
8909 sizeof(crtc_state->dpll_hw_state));
8910
8911 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8912
8913 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8914 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8915
8916 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8917 &has_reduced_clock, &reduced_clock);
8918 if (!ok && !crtc_state->clock_set) {
8919 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8920 return -EINVAL;
8921 }
8922 /* Compat-code for transition, will disappear. */
8923 if (!crtc_state->clock_set) {
8924 crtc_state->dpll.n = clock.n;
8925 crtc_state->dpll.m1 = clock.m1;
8926 crtc_state->dpll.m2 = clock.m2;
8927 crtc_state->dpll.p1 = clock.p1;
8928 crtc_state->dpll.p2 = clock.p2;
8929 }
8930
8931 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8932 if (crtc_state->has_pch_encoder) {
8933 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8934 if (has_reduced_clock)
8935 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8936
8937 dpll = ironlake_compute_dpll(crtc, crtc_state,
8938 &fp, &reduced_clock,
8939 has_reduced_clock ? &fp2 : NULL);
8940
8941 crtc_state->dpll_hw_state.dpll = dpll;
8942 crtc_state->dpll_hw_state.fp0 = fp;
8943 if (has_reduced_clock)
8944 crtc_state->dpll_hw_state.fp1 = fp2;
8945 else
8946 crtc_state->dpll_hw_state.fp1 = fp;
8947
8948 pll = intel_get_shared_dpll(crtc, crtc_state);
8949 if (pll == NULL) {
8950 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8951 pipe_name(crtc->pipe));
8952 return -EINVAL;
8953 }
8954 }
8955
8956 if (is_lvds && has_reduced_clock)
8957 crtc->lowfreq_avail = true;
8958 else
8959 crtc->lowfreq_avail = false;
8960
8961 return 0;
8962 }
8963
8964 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8965 struct intel_link_m_n *m_n)
8966 {
8967 struct drm_device *dev = crtc->base.dev;
8968 struct drm_i915_private *dev_priv = dev->dev_private;
8969 enum pipe pipe = crtc->pipe;
8970
8971 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8972 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8973 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8974 & ~TU_SIZE_MASK;
8975 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8976 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8977 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8978 }
8979
8980 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8981 enum transcoder transcoder,
8982 struct intel_link_m_n *m_n,
8983 struct intel_link_m_n *m2_n2)
8984 {
8985 struct drm_device *dev = crtc->base.dev;
8986 struct drm_i915_private *dev_priv = dev->dev_private;
8987 enum pipe pipe = crtc->pipe;
8988
8989 if (INTEL_INFO(dev)->gen >= 5) {
8990 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8991 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8992 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8993 & ~TU_SIZE_MASK;
8994 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8995 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8996 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8997 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8998 * gen < 8) and if DRRS is supported (to make sure the
8999 * registers are not unnecessarily read).
9000 */
9001 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9002 crtc->config->has_drrs) {
9003 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9004 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9005 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9006 & ~TU_SIZE_MASK;
9007 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9008 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9009 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9010 }
9011 } else {
9012 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9013 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9014 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9015 & ~TU_SIZE_MASK;
9016 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9017 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9018 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9019 }
9020 }
9021
9022 void intel_dp_get_m_n(struct intel_crtc *crtc,
9023 struct intel_crtc_state *pipe_config)
9024 {
9025 if (pipe_config->has_pch_encoder)
9026 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9027 else
9028 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9029 &pipe_config->dp_m_n,
9030 &pipe_config->dp_m2_n2);
9031 }
9032
9033 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9034 struct intel_crtc_state *pipe_config)
9035 {
9036 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9037 &pipe_config->fdi_m_n, NULL);
9038 }
9039
9040 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9041 struct intel_crtc_state *pipe_config)
9042 {
9043 struct drm_device *dev = crtc->base.dev;
9044 struct drm_i915_private *dev_priv = dev->dev_private;
9045 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9046 uint32_t ps_ctrl = 0;
9047 int id = -1;
9048 int i;
9049
9050 /* find scaler attached to this pipe */
9051 for (i = 0; i < crtc->num_scalers; i++) {
9052 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9053 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9054 id = i;
9055 pipe_config->pch_pfit.enabled = true;
9056 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9057 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9058 break;
9059 }
9060 }
9061
9062 scaler_state->scaler_id = id;
9063 if (id >= 0) {
9064 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9065 } else {
9066 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9067 }
9068 }
9069
9070 static void
9071 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9072 struct intel_initial_plane_config *plane_config)
9073 {
9074 struct drm_device *dev = crtc->base.dev;
9075 struct drm_i915_private *dev_priv = dev->dev_private;
9076 u32 val, base, offset, stride_mult, tiling;
9077 int pipe = crtc->pipe;
9078 int fourcc, pixel_format;
9079 unsigned int aligned_height;
9080 struct drm_framebuffer *fb;
9081 struct intel_framebuffer *intel_fb;
9082
9083 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9084 if (!intel_fb) {
9085 DRM_DEBUG_KMS("failed to alloc fb\n");
9086 return;
9087 }
9088
9089 fb = &intel_fb->base;
9090
9091 val = I915_READ(PLANE_CTL(pipe, 0));
9092 if (!(val & PLANE_CTL_ENABLE))
9093 goto error;
9094
9095 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9096 fourcc = skl_format_to_fourcc(pixel_format,
9097 val & PLANE_CTL_ORDER_RGBX,
9098 val & PLANE_CTL_ALPHA_MASK);
9099 fb->pixel_format = fourcc;
9100 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9101
9102 tiling = val & PLANE_CTL_TILED_MASK;
9103 switch (tiling) {
9104 case PLANE_CTL_TILED_LINEAR:
9105 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9106 break;
9107 case PLANE_CTL_TILED_X:
9108 plane_config->tiling = I915_TILING_X;
9109 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9110 break;
9111 case PLANE_CTL_TILED_Y:
9112 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9113 break;
9114 case PLANE_CTL_TILED_YF:
9115 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9116 break;
9117 default:
9118 MISSING_CASE(tiling);
9119 goto error;
9120 }
9121
9122 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9123 plane_config->base = base;
9124
9125 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9126
9127 val = I915_READ(PLANE_SIZE(pipe, 0));
9128 fb->height = ((val >> 16) & 0xfff) + 1;
9129 fb->width = ((val >> 0) & 0x1fff) + 1;
9130
9131 val = I915_READ(PLANE_STRIDE(pipe, 0));
9132 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9133 fb->pixel_format);
9134 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9135
9136 aligned_height = intel_fb_align_height(dev, fb->height,
9137 fb->pixel_format,
9138 fb->modifier[0]);
9139
9140 plane_config->size = fb->pitches[0] * aligned_height;
9141
9142 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9143 pipe_name(pipe), fb->width, fb->height,
9144 fb->bits_per_pixel, base, fb->pitches[0],
9145 plane_config->size);
9146
9147 plane_config->fb = intel_fb;
9148 return;
9149
9150 error:
9151 kfree(fb);
9152 }
9153
9154 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9155 struct intel_crtc_state *pipe_config)
9156 {
9157 struct drm_device *dev = crtc->base.dev;
9158 struct drm_i915_private *dev_priv = dev->dev_private;
9159 uint32_t tmp;
9160
9161 tmp = I915_READ(PF_CTL(crtc->pipe));
9162
9163 if (tmp & PF_ENABLE) {
9164 pipe_config->pch_pfit.enabled = true;
9165 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9166 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9167
9168 /* We currently do not free assignements of panel fitters on
9169 * ivb/hsw (since we don't use the higher upscaling modes which
9170 * differentiates them) so just WARN about this case for now. */
9171 if (IS_GEN7(dev)) {
9172 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9173 PF_PIPE_SEL_IVB(crtc->pipe));
9174 }
9175 }
9176 }
9177
9178 static void
9179 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9180 struct intel_initial_plane_config *plane_config)
9181 {
9182 struct drm_device *dev = crtc->base.dev;
9183 struct drm_i915_private *dev_priv = dev->dev_private;
9184 u32 val, base, offset;
9185 int pipe = crtc->pipe;
9186 int fourcc, pixel_format;
9187 unsigned int aligned_height;
9188 struct drm_framebuffer *fb;
9189 struct intel_framebuffer *intel_fb;
9190
9191 val = I915_READ(DSPCNTR(pipe));
9192 if (!(val & DISPLAY_PLANE_ENABLE))
9193 return;
9194
9195 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9196 if (!intel_fb) {
9197 DRM_DEBUG_KMS("failed to alloc fb\n");
9198 return;
9199 }
9200
9201 fb = &intel_fb->base;
9202
9203 if (INTEL_INFO(dev)->gen >= 4) {
9204 if (val & DISPPLANE_TILED) {
9205 plane_config->tiling = I915_TILING_X;
9206 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9207 }
9208 }
9209
9210 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9211 fourcc = i9xx_format_to_fourcc(pixel_format);
9212 fb->pixel_format = fourcc;
9213 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9214
9215 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9216 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9217 offset = I915_READ(DSPOFFSET(pipe));
9218 } else {
9219 if (plane_config->tiling)
9220 offset = I915_READ(DSPTILEOFF(pipe));
9221 else
9222 offset = I915_READ(DSPLINOFF(pipe));
9223 }
9224 plane_config->base = base;
9225
9226 val = I915_READ(PIPESRC(pipe));
9227 fb->width = ((val >> 16) & 0xfff) + 1;
9228 fb->height = ((val >> 0) & 0xfff) + 1;
9229
9230 val = I915_READ(DSPSTRIDE(pipe));
9231 fb->pitches[0] = val & 0xffffffc0;
9232
9233 aligned_height = intel_fb_align_height(dev, fb->height,
9234 fb->pixel_format,
9235 fb->modifier[0]);
9236
9237 plane_config->size = fb->pitches[0] * aligned_height;
9238
9239 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9240 pipe_name(pipe), fb->width, fb->height,
9241 fb->bits_per_pixel, base, fb->pitches[0],
9242 plane_config->size);
9243
9244 plane_config->fb = intel_fb;
9245 }
9246
9247 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9248 struct intel_crtc_state *pipe_config)
9249 {
9250 struct drm_device *dev = crtc->base.dev;
9251 struct drm_i915_private *dev_priv = dev->dev_private;
9252 uint32_t tmp;
9253
9254 if (!intel_display_power_is_enabled(dev_priv,
9255 POWER_DOMAIN_PIPE(crtc->pipe)))
9256 return false;
9257
9258 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9259 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9260
9261 tmp = I915_READ(PIPECONF(crtc->pipe));
9262 if (!(tmp & PIPECONF_ENABLE))
9263 return false;
9264
9265 switch (tmp & PIPECONF_BPC_MASK) {
9266 case PIPECONF_6BPC:
9267 pipe_config->pipe_bpp = 18;
9268 break;
9269 case PIPECONF_8BPC:
9270 pipe_config->pipe_bpp = 24;
9271 break;
9272 case PIPECONF_10BPC:
9273 pipe_config->pipe_bpp = 30;
9274 break;
9275 case PIPECONF_12BPC:
9276 pipe_config->pipe_bpp = 36;
9277 break;
9278 default:
9279 break;
9280 }
9281
9282 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9283 pipe_config->limited_color_range = true;
9284
9285 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9286 struct intel_shared_dpll *pll;
9287
9288 pipe_config->has_pch_encoder = true;
9289
9290 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9291 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9292 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9293
9294 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9295
9296 if (HAS_PCH_IBX(dev_priv->dev)) {
9297 pipe_config->shared_dpll =
9298 (enum intel_dpll_id) crtc->pipe;
9299 } else {
9300 tmp = I915_READ(PCH_DPLL_SEL);
9301 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9302 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9303 else
9304 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9305 }
9306
9307 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9308
9309 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9310 &pipe_config->dpll_hw_state));
9311
9312 tmp = pipe_config->dpll_hw_state.dpll;
9313 pipe_config->pixel_multiplier =
9314 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9315 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9316
9317 ironlake_pch_clock_get(crtc, pipe_config);
9318 } else {
9319 pipe_config->pixel_multiplier = 1;
9320 }
9321
9322 intel_get_pipe_timings(crtc, pipe_config);
9323
9324 ironlake_get_pfit_config(crtc, pipe_config);
9325
9326 return true;
9327 }
9328
9329 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9330 {
9331 struct drm_device *dev = dev_priv->dev;
9332 struct intel_crtc *crtc;
9333
9334 for_each_intel_crtc(dev, crtc)
9335 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9336 pipe_name(crtc->pipe));
9337
9338 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9339 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9340 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9341 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9342 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9343 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9344 "CPU PWM1 enabled\n");
9345 if (IS_HASWELL(dev))
9346 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9347 "CPU PWM2 enabled\n");
9348 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9349 "PCH PWM1 enabled\n");
9350 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9351 "Utility pin enabled\n");
9352 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9353
9354 /*
9355 * In theory we can still leave IRQs enabled, as long as only the HPD
9356 * interrupts remain enabled. We used to check for that, but since it's
9357 * gen-specific and since we only disable LCPLL after we fully disable
9358 * the interrupts, the check below should be enough.
9359 */
9360 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9361 }
9362
9363 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9364 {
9365 struct drm_device *dev = dev_priv->dev;
9366
9367 if (IS_HASWELL(dev))
9368 return I915_READ(D_COMP_HSW);
9369 else
9370 return I915_READ(D_COMP_BDW);
9371 }
9372
9373 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9374 {
9375 struct drm_device *dev = dev_priv->dev;
9376
9377 if (IS_HASWELL(dev)) {
9378 mutex_lock(&dev_priv->rps.hw_lock);
9379 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9380 val))
9381 DRM_ERROR("Failed to write to D_COMP\n");
9382 mutex_unlock(&dev_priv->rps.hw_lock);
9383 } else {
9384 I915_WRITE(D_COMP_BDW, val);
9385 POSTING_READ(D_COMP_BDW);
9386 }
9387 }
9388
9389 /*
9390 * This function implements pieces of two sequences from BSpec:
9391 * - Sequence for display software to disable LCPLL
9392 * - Sequence for display software to allow package C8+
9393 * The steps implemented here are just the steps that actually touch the LCPLL
9394 * register. Callers should take care of disabling all the display engine
9395 * functions, doing the mode unset, fixing interrupts, etc.
9396 */
9397 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9398 bool switch_to_fclk, bool allow_power_down)
9399 {
9400 uint32_t val;
9401
9402 assert_can_disable_lcpll(dev_priv);
9403
9404 val = I915_READ(LCPLL_CTL);
9405
9406 if (switch_to_fclk) {
9407 val |= LCPLL_CD_SOURCE_FCLK;
9408 I915_WRITE(LCPLL_CTL, val);
9409
9410 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9411 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9412 DRM_ERROR("Switching to FCLK failed\n");
9413
9414 val = I915_READ(LCPLL_CTL);
9415 }
9416
9417 val |= LCPLL_PLL_DISABLE;
9418 I915_WRITE(LCPLL_CTL, val);
9419 POSTING_READ(LCPLL_CTL);
9420
9421 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9422 DRM_ERROR("LCPLL still locked\n");
9423
9424 val = hsw_read_dcomp(dev_priv);
9425 val |= D_COMP_COMP_DISABLE;
9426 hsw_write_dcomp(dev_priv, val);
9427 ndelay(100);
9428
9429 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9430 1))
9431 DRM_ERROR("D_COMP RCOMP still in progress\n");
9432
9433 if (allow_power_down) {
9434 val = I915_READ(LCPLL_CTL);
9435 val |= LCPLL_POWER_DOWN_ALLOW;
9436 I915_WRITE(LCPLL_CTL, val);
9437 POSTING_READ(LCPLL_CTL);
9438 }
9439 }
9440
9441 /*
9442 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9443 * source.
9444 */
9445 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9446 {
9447 uint32_t val;
9448
9449 val = I915_READ(LCPLL_CTL);
9450
9451 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9452 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9453 return;
9454
9455 /*
9456 * Make sure we're not on PC8 state before disabling PC8, otherwise
9457 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9458 */
9459 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9460
9461 if (val & LCPLL_POWER_DOWN_ALLOW) {
9462 val &= ~LCPLL_POWER_DOWN_ALLOW;
9463 I915_WRITE(LCPLL_CTL, val);
9464 POSTING_READ(LCPLL_CTL);
9465 }
9466
9467 val = hsw_read_dcomp(dev_priv);
9468 val |= D_COMP_COMP_FORCE;
9469 val &= ~D_COMP_COMP_DISABLE;
9470 hsw_write_dcomp(dev_priv, val);
9471
9472 val = I915_READ(LCPLL_CTL);
9473 val &= ~LCPLL_PLL_DISABLE;
9474 I915_WRITE(LCPLL_CTL, val);
9475
9476 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9477 DRM_ERROR("LCPLL not locked yet\n");
9478
9479 if (val & LCPLL_CD_SOURCE_FCLK) {
9480 val = I915_READ(LCPLL_CTL);
9481 val &= ~LCPLL_CD_SOURCE_FCLK;
9482 I915_WRITE(LCPLL_CTL, val);
9483
9484 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9485 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9486 DRM_ERROR("Switching back to LCPLL failed\n");
9487 }
9488
9489 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9490 intel_update_cdclk(dev_priv->dev);
9491 }
9492
9493 /*
9494 * Package states C8 and deeper are really deep PC states that can only be
9495 * reached when all the devices on the system allow it, so even if the graphics
9496 * device allows PC8+, it doesn't mean the system will actually get to these
9497 * states. Our driver only allows PC8+ when going into runtime PM.
9498 *
9499 * The requirements for PC8+ are that all the outputs are disabled, the power
9500 * well is disabled and most interrupts are disabled, and these are also
9501 * requirements for runtime PM. When these conditions are met, we manually do
9502 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9503 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9504 * hang the machine.
9505 *
9506 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9507 * the state of some registers, so when we come back from PC8+ we need to
9508 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9509 * need to take care of the registers kept by RC6. Notice that this happens even
9510 * if we don't put the device in PCI D3 state (which is what currently happens
9511 * because of the runtime PM support).
9512 *
9513 * For more, read "Display Sequences for Package C8" on the hardware
9514 * documentation.
9515 */
9516 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9517 {
9518 struct drm_device *dev = dev_priv->dev;
9519 uint32_t val;
9520
9521 DRM_DEBUG_KMS("Enabling package C8+\n");
9522
9523 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9524 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9525 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9526 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9527 }
9528
9529 lpt_disable_clkout_dp(dev);
9530 hsw_disable_lcpll(dev_priv, true, true);
9531 }
9532
9533 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9534 {
9535 struct drm_device *dev = dev_priv->dev;
9536 uint32_t val;
9537
9538 DRM_DEBUG_KMS("Disabling package C8+\n");
9539
9540 hsw_restore_lcpll(dev_priv);
9541 lpt_init_pch_refclk(dev);
9542
9543 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9544 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9545 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9546 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9547 }
9548
9549 intel_prepare_ddi(dev);
9550 }
9551
9552 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9553 {
9554 struct drm_device *dev = old_state->dev;
9555 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9556
9557 broxton_set_cdclk(dev, req_cdclk);
9558 }
9559
9560 /* compute the max rate for new configuration */
9561 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9562 {
9563 struct intel_crtc *intel_crtc;
9564 struct intel_crtc_state *crtc_state;
9565 int max_pixel_rate = 0;
9566
9567 for_each_intel_crtc(state->dev, intel_crtc) {
9568 int pixel_rate;
9569
9570 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9571 if (IS_ERR(crtc_state))
9572 return PTR_ERR(crtc_state);
9573
9574 if (!crtc_state->base.enable)
9575 continue;
9576
9577 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9578
9579 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9580 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9581 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9582
9583 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9584 }
9585
9586 return max_pixel_rate;
9587 }
9588
9589 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9590 {
9591 struct drm_i915_private *dev_priv = dev->dev_private;
9592 uint32_t val, data;
9593 int ret;
9594
9595 if (WARN((I915_READ(LCPLL_CTL) &
9596 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9597 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9598 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9599 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9600 "trying to change cdclk frequency with cdclk not enabled\n"))
9601 return;
9602
9603 mutex_lock(&dev_priv->rps.hw_lock);
9604 ret = sandybridge_pcode_write(dev_priv,
9605 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9606 mutex_unlock(&dev_priv->rps.hw_lock);
9607 if (ret) {
9608 DRM_ERROR("failed to inform pcode about cdclk change\n");
9609 return;
9610 }
9611
9612 val = I915_READ(LCPLL_CTL);
9613 val |= LCPLL_CD_SOURCE_FCLK;
9614 I915_WRITE(LCPLL_CTL, val);
9615
9616 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9617 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9618 DRM_ERROR("Switching to FCLK failed\n");
9619
9620 val = I915_READ(LCPLL_CTL);
9621 val &= ~LCPLL_CLK_FREQ_MASK;
9622
9623 switch (cdclk) {
9624 case 450000:
9625 val |= LCPLL_CLK_FREQ_450;
9626 data = 0;
9627 break;
9628 case 540000:
9629 val |= LCPLL_CLK_FREQ_54O_BDW;
9630 data = 1;
9631 break;
9632 case 337500:
9633 val |= LCPLL_CLK_FREQ_337_5_BDW;
9634 data = 2;
9635 break;
9636 case 675000:
9637 val |= LCPLL_CLK_FREQ_675_BDW;
9638 data = 3;
9639 break;
9640 default:
9641 WARN(1, "invalid cdclk frequency\n");
9642 return;
9643 }
9644
9645 I915_WRITE(LCPLL_CTL, val);
9646
9647 val = I915_READ(LCPLL_CTL);
9648 val &= ~LCPLL_CD_SOURCE_FCLK;
9649 I915_WRITE(LCPLL_CTL, val);
9650
9651 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9652 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9653 DRM_ERROR("Switching back to LCPLL failed\n");
9654
9655 mutex_lock(&dev_priv->rps.hw_lock);
9656 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9657 mutex_unlock(&dev_priv->rps.hw_lock);
9658
9659 intel_update_cdclk(dev);
9660
9661 WARN(cdclk != dev_priv->cdclk_freq,
9662 "cdclk requested %d kHz but got %d kHz\n",
9663 cdclk, dev_priv->cdclk_freq);
9664 }
9665
9666 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9667 {
9668 struct drm_i915_private *dev_priv = to_i915(state->dev);
9669 int max_pixclk = ilk_max_pixel_rate(state);
9670 int cdclk;
9671
9672 /*
9673 * FIXME should also account for plane ratio
9674 * once 64bpp pixel formats are supported.
9675 */
9676 if (max_pixclk > 540000)
9677 cdclk = 675000;
9678 else if (max_pixclk > 450000)
9679 cdclk = 540000;
9680 else if (max_pixclk > 337500)
9681 cdclk = 450000;
9682 else
9683 cdclk = 337500;
9684
9685 /*
9686 * FIXME move the cdclk caclulation to
9687 * compute_config() so we can fail gracegully.
9688 */
9689 if (cdclk > dev_priv->max_cdclk_freq) {
9690 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9691 cdclk, dev_priv->max_cdclk_freq);
9692 cdclk = dev_priv->max_cdclk_freq;
9693 }
9694
9695 to_intel_atomic_state(state)->cdclk = cdclk;
9696
9697 return 0;
9698 }
9699
9700 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9701 {
9702 struct drm_device *dev = old_state->dev;
9703 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9704
9705 broadwell_set_cdclk(dev, req_cdclk);
9706 }
9707
9708 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9709 struct intel_crtc_state *crtc_state)
9710 {
9711 if (!intel_ddi_pll_select(crtc, crtc_state))
9712 return -EINVAL;
9713
9714 crtc->lowfreq_avail = false;
9715
9716 return 0;
9717 }
9718
9719 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9720 enum port port,
9721 struct intel_crtc_state *pipe_config)
9722 {
9723 switch (port) {
9724 case PORT_A:
9725 pipe_config->ddi_pll_sel = SKL_DPLL0;
9726 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9727 break;
9728 case PORT_B:
9729 pipe_config->ddi_pll_sel = SKL_DPLL1;
9730 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9731 break;
9732 case PORT_C:
9733 pipe_config->ddi_pll_sel = SKL_DPLL2;
9734 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9735 break;
9736 default:
9737 DRM_ERROR("Incorrect port type\n");
9738 }
9739 }
9740
9741 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9742 enum port port,
9743 struct intel_crtc_state *pipe_config)
9744 {
9745 u32 temp, dpll_ctl1;
9746
9747 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9748 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9749
9750 switch (pipe_config->ddi_pll_sel) {
9751 case SKL_DPLL0:
9752 /*
9753 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9754 * of the shared DPLL framework and thus needs to be read out
9755 * separately
9756 */
9757 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9758 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9759 break;
9760 case SKL_DPLL1:
9761 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9762 break;
9763 case SKL_DPLL2:
9764 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9765 break;
9766 case SKL_DPLL3:
9767 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9768 break;
9769 }
9770 }
9771
9772 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9773 enum port port,
9774 struct intel_crtc_state *pipe_config)
9775 {
9776 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9777
9778 switch (pipe_config->ddi_pll_sel) {
9779 case PORT_CLK_SEL_WRPLL1:
9780 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9781 break;
9782 case PORT_CLK_SEL_WRPLL2:
9783 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9784 break;
9785 }
9786 }
9787
9788 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9789 struct intel_crtc_state *pipe_config)
9790 {
9791 struct drm_device *dev = crtc->base.dev;
9792 struct drm_i915_private *dev_priv = dev->dev_private;
9793 struct intel_shared_dpll *pll;
9794 enum port port;
9795 uint32_t tmp;
9796
9797 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9798
9799 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9800
9801 if (IS_SKYLAKE(dev))
9802 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9803 else if (IS_BROXTON(dev))
9804 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9805 else
9806 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9807
9808 if (pipe_config->shared_dpll >= 0) {
9809 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9810
9811 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9812 &pipe_config->dpll_hw_state));
9813 }
9814
9815 /*
9816 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9817 * DDI E. So just check whether this pipe is wired to DDI E and whether
9818 * the PCH transcoder is on.
9819 */
9820 if (INTEL_INFO(dev)->gen < 9 &&
9821 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9822 pipe_config->has_pch_encoder = true;
9823
9824 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9825 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9826 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9827
9828 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9829 }
9830 }
9831
9832 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9833 struct intel_crtc_state *pipe_config)
9834 {
9835 struct drm_device *dev = crtc->base.dev;
9836 struct drm_i915_private *dev_priv = dev->dev_private;
9837 enum intel_display_power_domain pfit_domain;
9838 uint32_t tmp;
9839
9840 if (!intel_display_power_is_enabled(dev_priv,
9841 POWER_DOMAIN_PIPE(crtc->pipe)))
9842 return false;
9843
9844 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9845 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9846
9847 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9848 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9849 enum pipe trans_edp_pipe;
9850 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9851 default:
9852 WARN(1, "unknown pipe linked to edp transcoder\n");
9853 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9854 case TRANS_DDI_EDP_INPUT_A_ON:
9855 trans_edp_pipe = PIPE_A;
9856 break;
9857 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9858 trans_edp_pipe = PIPE_B;
9859 break;
9860 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9861 trans_edp_pipe = PIPE_C;
9862 break;
9863 }
9864
9865 if (trans_edp_pipe == crtc->pipe)
9866 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9867 }
9868
9869 if (!intel_display_power_is_enabled(dev_priv,
9870 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9871 return false;
9872
9873 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9874 if (!(tmp & PIPECONF_ENABLE))
9875 return false;
9876
9877 haswell_get_ddi_port_state(crtc, pipe_config);
9878
9879 intel_get_pipe_timings(crtc, pipe_config);
9880
9881 if (INTEL_INFO(dev)->gen >= 9) {
9882 skl_init_scalers(dev, crtc, pipe_config);
9883 }
9884
9885 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9886
9887 if (INTEL_INFO(dev)->gen >= 9) {
9888 pipe_config->scaler_state.scaler_id = -1;
9889 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9890 }
9891
9892 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9893 if (INTEL_INFO(dev)->gen == 9)
9894 skylake_get_pfit_config(crtc, pipe_config);
9895 else if (INTEL_INFO(dev)->gen < 9)
9896 ironlake_get_pfit_config(crtc, pipe_config);
9897 else
9898 MISSING_CASE(INTEL_INFO(dev)->gen);
9899 }
9900
9901 if (IS_HASWELL(dev))
9902 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9903 (I915_READ(IPS_CTL) & IPS_ENABLE);
9904
9905 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9906 pipe_config->pixel_multiplier =
9907 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9908 } else {
9909 pipe_config->pixel_multiplier = 1;
9910 }
9911
9912 return true;
9913 }
9914
9915 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9916 {
9917 struct drm_device *dev = crtc->dev;
9918 struct drm_i915_private *dev_priv = dev->dev_private;
9919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9920 uint32_t cntl = 0, size = 0;
9921
9922 if (base) {
9923 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9924 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9925 unsigned int stride = roundup_pow_of_two(width) * 4;
9926
9927 switch (stride) {
9928 default:
9929 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9930 width, stride);
9931 stride = 256;
9932 /* fallthrough */
9933 case 256:
9934 case 512:
9935 case 1024:
9936 case 2048:
9937 break;
9938 }
9939
9940 cntl |= CURSOR_ENABLE |
9941 CURSOR_GAMMA_ENABLE |
9942 CURSOR_FORMAT_ARGB |
9943 CURSOR_STRIDE(stride);
9944
9945 size = (height << 12) | width;
9946 }
9947
9948 if (intel_crtc->cursor_cntl != 0 &&
9949 (intel_crtc->cursor_base != base ||
9950 intel_crtc->cursor_size != size ||
9951 intel_crtc->cursor_cntl != cntl)) {
9952 /* On these chipsets we can only modify the base/size/stride
9953 * whilst the cursor is disabled.
9954 */
9955 I915_WRITE(_CURACNTR, 0);
9956 POSTING_READ(_CURACNTR);
9957 intel_crtc->cursor_cntl = 0;
9958 }
9959
9960 if (intel_crtc->cursor_base != base) {
9961 I915_WRITE(_CURABASE, base);
9962 intel_crtc->cursor_base = base;
9963 }
9964
9965 if (intel_crtc->cursor_size != size) {
9966 I915_WRITE(CURSIZE, size);
9967 intel_crtc->cursor_size = size;
9968 }
9969
9970 if (intel_crtc->cursor_cntl != cntl) {
9971 I915_WRITE(_CURACNTR, cntl);
9972 POSTING_READ(_CURACNTR);
9973 intel_crtc->cursor_cntl = cntl;
9974 }
9975 }
9976
9977 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9978 {
9979 struct drm_device *dev = crtc->dev;
9980 struct drm_i915_private *dev_priv = dev->dev_private;
9981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9982 int pipe = intel_crtc->pipe;
9983 uint32_t cntl;
9984
9985 cntl = 0;
9986 if (base) {
9987 cntl = MCURSOR_GAMMA_ENABLE;
9988 switch (intel_crtc->base.cursor->state->crtc_w) {
9989 case 64:
9990 cntl |= CURSOR_MODE_64_ARGB_AX;
9991 break;
9992 case 128:
9993 cntl |= CURSOR_MODE_128_ARGB_AX;
9994 break;
9995 case 256:
9996 cntl |= CURSOR_MODE_256_ARGB_AX;
9997 break;
9998 default:
9999 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10000 return;
10001 }
10002 cntl |= pipe << 28; /* Connect to correct pipe */
10003
10004 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10005 cntl |= CURSOR_PIPE_CSC_ENABLE;
10006 }
10007
10008 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10009 cntl |= CURSOR_ROTATE_180;
10010
10011 if (intel_crtc->cursor_cntl != cntl) {
10012 I915_WRITE(CURCNTR(pipe), cntl);
10013 POSTING_READ(CURCNTR(pipe));
10014 intel_crtc->cursor_cntl = cntl;
10015 }
10016
10017 /* and commit changes on next vblank */
10018 I915_WRITE(CURBASE(pipe), base);
10019 POSTING_READ(CURBASE(pipe));
10020
10021 intel_crtc->cursor_base = base;
10022 }
10023
10024 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10025 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10026 bool on)
10027 {
10028 struct drm_device *dev = crtc->dev;
10029 struct drm_i915_private *dev_priv = dev->dev_private;
10030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10031 int pipe = intel_crtc->pipe;
10032 int x = crtc->cursor_x;
10033 int y = crtc->cursor_y;
10034 u32 base = 0, pos = 0;
10035
10036 if (on)
10037 base = intel_crtc->cursor_addr;
10038
10039 if (x >= intel_crtc->config->pipe_src_w)
10040 base = 0;
10041
10042 if (y >= intel_crtc->config->pipe_src_h)
10043 base = 0;
10044
10045 if (x < 0) {
10046 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10047 base = 0;
10048
10049 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10050 x = -x;
10051 }
10052 pos |= x << CURSOR_X_SHIFT;
10053
10054 if (y < 0) {
10055 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10056 base = 0;
10057
10058 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10059 y = -y;
10060 }
10061 pos |= y << CURSOR_Y_SHIFT;
10062
10063 if (base == 0 && intel_crtc->cursor_base == 0)
10064 return;
10065
10066 I915_WRITE(CURPOS(pipe), pos);
10067
10068 /* ILK+ do this automagically */
10069 if (HAS_GMCH_DISPLAY(dev) &&
10070 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10071 base += (intel_crtc->base.cursor->state->crtc_h *
10072 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10073 }
10074
10075 if (IS_845G(dev) || IS_I865G(dev))
10076 i845_update_cursor(crtc, base);
10077 else
10078 i9xx_update_cursor(crtc, base);
10079 }
10080
10081 static bool cursor_size_ok(struct drm_device *dev,
10082 uint32_t width, uint32_t height)
10083 {
10084 if (width == 0 || height == 0)
10085 return false;
10086
10087 /*
10088 * 845g/865g are special in that they are only limited by
10089 * the width of their cursors, the height is arbitrary up to
10090 * the precision of the register. Everything else requires
10091 * square cursors, limited to a few power-of-two sizes.
10092 */
10093 if (IS_845G(dev) || IS_I865G(dev)) {
10094 if ((width & 63) != 0)
10095 return false;
10096
10097 if (width > (IS_845G(dev) ? 64 : 512))
10098 return false;
10099
10100 if (height > 1023)
10101 return false;
10102 } else {
10103 switch (width | height) {
10104 case 256:
10105 case 128:
10106 if (IS_GEN2(dev))
10107 return false;
10108 case 64:
10109 break;
10110 default:
10111 return false;
10112 }
10113 }
10114
10115 return true;
10116 }
10117
10118 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10119 u16 *blue, uint32_t start, uint32_t size)
10120 {
10121 int end = (start + size > 256) ? 256 : start + size, i;
10122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10123
10124 for (i = start; i < end; i++) {
10125 intel_crtc->lut_r[i] = red[i] >> 8;
10126 intel_crtc->lut_g[i] = green[i] >> 8;
10127 intel_crtc->lut_b[i] = blue[i] >> 8;
10128 }
10129
10130 intel_crtc_load_lut(crtc);
10131 }
10132
10133 /* VESA 640x480x72Hz mode to set on the pipe */
10134 static struct drm_display_mode load_detect_mode = {
10135 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10136 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10137 };
10138
10139 struct drm_framebuffer *
10140 __intel_framebuffer_create(struct drm_device *dev,
10141 struct drm_mode_fb_cmd2 *mode_cmd,
10142 struct drm_i915_gem_object *obj)
10143 {
10144 struct intel_framebuffer *intel_fb;
10145 int ret;
10146
10147 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10148 if (!intel_fb) {
10149 drm_gem_object_unreference(&obj->base);
10150 return ERR_PTR(-ENOMEM);
10151 }
10152
10153 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10154 if (ret)
10155 goto err;
10156
10157 return &intel_fb->base;
10158 err:
10159 drm_gem_object_unreference(&obj->base);
10160 kfree(intel_fb);
10161
10162 return ERR_PTR(ret);
10163 }
10164
10165 static struct drm_framebuffer *
10166 intel_framebuffer_create(struct drm_device *dev,
10167 struct drm_mode_fb_cmd2 *mode_cmd,
10168 struct drm_i915_gem_object *obj)
10169 {
10170 struct drm_framebuffer *fb;
10171 int ret;
10172
10173 ret = i915_mutex_lock_interruptible(dev);
10174 if (ret)
10175 return ERR_PTR(ret);
10176 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10177 mutex_unlock(&dev->struct_mutex);
10178
10179 return fb;
10180 }
10181
10182 static u32
10183 intel_framebuffer_pitch_for_width(int width, int bpp)
10184 {
10185 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10186 return ALIGN(pitch, 64);
10187 }
10188
10189 static u32
10190 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10191 {
10192 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10193 return PAGE_ALIGN(pitch * mode->vdisplay);
10194 }
10195
10196 static struct drm_framebuffer *
10197 intel_framebuffer_create_for_mode(struct drm_device *dev,
10198 struct drm_display_mode *mode,
10199 int depth, int bpp)
10200 {
10201 struct drm_i915_gem_object *obj;
10202 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10203
10204 obj = i915_gem_alloc_object(dev,
10205 intel_framebuffer_size_for_mode(mode, bpp));
10206 if (obj == NULL)
10207 return ERR_PTR(-ENOMEM);
10208
10209 mode_cmd.width = mode->hdisplay;
10210 mode_cmd.height = mode->vdisplay;
10211 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10212 bpp);
10213 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10214
10215 return intel_framebuffer_create(dev, &mode_cmd, obj);
10216 }
10217
10218 static struct drm_framebuffer *
10219 mode_fits_in_fbdev(struct drm_device *dev,
10220 struct drm_display_mode *mode)
10221 {
10222 #ifdef CONFIG_DRM_I915_FBDEV
10223 struct drm_i915_private *dev_priv = dev->dev_private;
10224 struct drm_i915_gem_object *obj;
10225 struct drm_framebuffer *fb;
10226
10227 if (!dev_priv->fbdev)
10228 return NULL;
10229
10230 if (!dev_priv->fbdev->fb)
10231 return NULL;
10232
10233 obj = dev_priv->fbdev->fb->obj;
10234 BUG_ON(!obj);
10235
10236 fb = &dev_priv->fbdev->fb->base;
10237 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10238 fb->bits_per_pixel))
10239 return NULL;
10240
10241 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10242 return NULL;
10243
10244 return fb;
10245 #else
10246 return NULL;
10247 #endif
10248 }
10249
10250 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10251 struct drm_crtc *crtc,
10252 struct drm_display_mode *mode,
10253 struct drm_framebuffer *fb,
10254 int x, int y)
10255 {
10256 struct drm_plane_state *plane_state;
10257 int hdisplay, vdisplay;
10258 int ret;
10259
10260 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10261 if (IS_ERR(plane_state))
10262 return PTR_ERR(plane_state);
10263
10264 if (mode)
10265 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10266 else
10267 hdisplay = vdisplay = 0;
10268
10269 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10270 if (ret)
10271 return ret;
10272 drm_atomic_set_fb_for_plane(plane_state, fb);
10273 plane_state->crtc_x = 0;
10274 plane_state->crtc_y = 0;
10275 plane_state->crtc_w = hdisplay;
10276 plane_state->crtc_h = vdisplay;
10277 plane_state->src_x = x << 16;
10278 plane_state->src_y = y << 16;
10279 plane_state->src_w = hdisplay << 16;
10280 plane_state->src_h = vdisplay << 16;
10281
10282 return 0;
10283 }
10284
10285 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10286 struct drm_display_mode *mode,
10287 struct intel_load_detect_pipe *old,
10288 struct drm_modeset_acquire_ctx *ctx)
10289 {
10290 struct intel_crtc *intel_crtc;
10291 struct intel_encoder *intel_encoder =
10292 intel_attached_encoder(connector);
10293 struct drm_crtc *possible_crtc;
10294 struct drm_encoder *encoder = &intel_encoder->base;
10295 struct drm_crtc *crtc = NULL;
10296 struct drm_device *dev = encoder->dev;
10297 struct drm_framebuffer *fb;
10298 struct drm_mode_config *config = &dev->mode_config;
10299 struct drm_atomic_state *state = NULL;
10300 struct drm_connector_state *connector_state;
10301 struct intel_crtc_state *crtc_state;
10302 int ret, i = -1;
10303
10304 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10305 connector->base.id, connector->name,
10306 encoder->base.id, encoder->name);
10307
10308 retry:
10309 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10310 if (ret)
10311 goto fail;
10312
10313 /*
10314 * Algorithm gets a little messy:
10315 *
10316 * - if the connector already has an assigned crtc, use it (but make
10317 * sure it's on first)
10318 *
10319 * - try to find the first unused crtc that can drive this connector,
10320 * and use that if we find one
10321 */
10322
10323 /* See if we already have a CRTC for this connector */
10324 if (encoder->crtc) {
10325 crtc = encoder->crtc;
10326
10327 ret = drm_modeset_lock(&crtc->mutex, ctx);
10328 if (ret)
10329 goto fail;
10330 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10331 if (ret)
10332 goto fail;
10333
10334 old->dpms_mode = connector->dpms;
10335 old->load_detect_temp = false;
10336
10337 /* Make sure the crtc and connector are running */
10338 if (connector->dpms != DRM_MODE_DPMS_ON)
10339 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10340
10341 return true;
10342 }
10343
10344 /* Find an unused one (if possible) */
10345 for_each_crtc(dev, possible_crtc) {
10346 i++;
10347 if (!(encoder->possible_crtcs & (1 << i)))
10348 continue;
10349 if (possible_crtc->state->enable)
10350 continue;
10351
10352 crtc = possible_crtc;
10353 break;
10354 }
10355
10356 /*
10357 * If we didn't find an unused CRTC, don't use any.
10358 */
10359 if (!crtc) {
10360 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10361 goto fail;
10362 }
10363
10364 ret = drm_modeset_lock(&crtc->mutex, ctx);
10365 if (ret)
10366 goto fail;
10367 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10368 if (ret)
10369 goto fail;
10370
10371 intel_crtc = to_intel_crtc(crtc);
10372 old->dpms_mode = connector->dpms;
10373 old->load_detect_temp = true;
10374 old->release_fb = NULL;
10375
10376 state = drm_atomic_state_alloc(dev);
10377 if (!state)
10378 return false;
10379
10380 state->acquire_ctx = ctx;
10381
10382 connector_state = drm_atomic_get_connector_state(state, connector);
10383 if (IS_ERR(connector_state)) {
10384 ret = PTR_ERR(connector_state);
10385 goto fail;
10386 }
10387
10388 connector_state->crtc = crtc;
10389 connector_state->best_encoder = &intel_encoder->base;
10390
10391 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10392 if (IS_ERR(crtc_state)) {
10393 ret = PTR_ERR(crtc_state);
10394 goto fail;
10395 }
10396
10397 crtc_state->base.active = crtc_state->base.enable = true;
10398
10399 if (!mode)
10400 mode = &load_detect_mode;
10401
10402 /* We need a framebuffer large enough to accommodate all accesses
10403 * that the plane may generate whilst we perform load detection.
10404 * We can not rely on the fbcon either being present (we get called
10405 * during its initialisation to detect all boot displays, or it may
10406 * not even exist) or that it is large enough to satisfy the
10407 * requested mode.
10408 */
10409 fb = mode_fits_in_fbdev(dev, mode);
10410 if (fb == NULL) {
10411 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10412 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10413 old->release_fb = fb;
10414 } else
10415 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10416 if (IS_ERR(fb)) {
10417 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10418 goto fail;
10419 }
10420
10421 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10422 if (ret)
10423 goto fail;
10424
10425 drm_mode_copy(&crtc_state->base.mode, mode);
10426
10427 if (drm_atomic_commit(state)) {
10428 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10429 if (old->release_fb)
10430 old->release_fb->funcs->destroy(old->release_fb);
10431 goto fail;
10432 }
10433 crtc->primary->crtc = crtc;
10434
10435 /* let the connector get through one full cycle before testing */
10436 intel_wait_for_vblank(dev, intel_crtc->pipe);
10437 return true;
10438
10439 fail:
10440 drm_atomic_state_free(state);
10441 state = NULL;
10442
10443 if (ret == -EDEADLK) {
10444 drm_modeset_backoff(ctx);
10445 goto retry;
10446 }
10447
10448 return false;
10449 }
10450
10451 void intel_release_load_detect_pipe(struct drm_connector *connector,
10452 struct intel_load_detect_pipe *old,
10453 struct drm_modeset_acquire_ctx *ctx)
10454 {
10455 struct drm_device *dev = connector->dev;
10456 struct intel_encoder *intel_encoder =
10457 intel_attached_encoder(connector);
10458 struct drm_encoder *encoder = &intel_encoder->base;
10459 struct drm_crtc *crtc = encoder->crtc;
10460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10461 struct drm_atomic_state *state;
10462 struct drm_connector_state *connector_state;
10463 struct intel_crtc_state *crtc_state;
10464 int ret;
10465
10466 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10467 connector->base.id, connector->name,
10468 encoder->base.id, encoder->name);
10469
10470 if (old->load_detect_temp) {
10471 state = drm_atomic_state_alloc(dev);
10472 if (!state)
10473 goto fail;
10474
10475 state->acquire_ctx = ctx;
10476
10477 connector_state = drm_atomic_get_connector_state(state, connector);
10478 if (IS_ERR(connector_state))
10479 goto fail;
10480
10481 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10482 if (IS_ERR(crtc_state))
10483 goto fail;
10484
10485 connector_state->best_encoder = NULL;
10486 connector_state->crtc = NULL;
10487
10488 crtc_state->base.enable = crtc_state->base.active = false;
10489
10490 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10491 0, 0);
10492 if (ret)
10493 goto fail;
10494
10495 ret = drm_atomic_commit(state);
10496 if (ret)
10497 goto fail;
10498
10499 if (old->release_fb) {
10500 drm_framebuffer_unregister_private(old->release_fb);
10501 drm_framebuffer_unreference(old->release_fb);
10502 }
10503
10504 return;
10505 }
10506
10507 /* Switch crtc and encoder back off if necessary */
10508 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10509 connector->funcs->dpms(connector, old->dpms_mode);
10510
10511 return;
10512 fail:
10513 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10514 drm_atomic_state_free(state);
10515 }
10516
10517 static int i9xx_pll_refclk(struct drm_device *dev,
10518 const struct intel_crtc_state *pipe_config)
10519 {
10520 struct drm_i915_private *dev_priv = dev->dev_private;
10521 u32 dpll = pipe_config->dpll_hw_state.dpll;
10522
10523 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10524 return dev_priv->vbt.lvds_ssc_freq;
10525 else if (HAS_PCH_SPLIT(dev))
10526 return 120000;
10527 else if (!IS_GEN2(dev))
10528 return 96000;
10529 else
10530 return 48000;
10531 }
10532
10533 /* Returns the clock of the currently programmed mode of the given pipe. */
10534 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10535 struct intel_crtc_state *pipe_config)
10536 {
10537 struct drm_device *dev = crtc->base.dev;
10538 struct drm_i915_private *dev_priv = dev->dev_private;
10539 int pipe = pipe_config->cpu_transcoder;
10540 u32 dpll = pipe_config->dpll_hw_state.dpll;
10541 u32 fp;
10542 intel_clock_t clock;
10543 int port_clock;
10544 int refclk = i9xx_pll_refclk(dev, pipe_config);
10545
10546 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10547 fp = pipe_config->dpll_hw_state.fp0;
10548 else
10549 fp = pipe_config->dpll_hw_state.fp1;
10550
10551 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10552 if (IS_PINEVIEW(dev)) {
10553 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10554 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10555 } else {
10556 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10557 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10558 }
10559
10560 if (!IS_GEN2(dev)) {
10561 if (IS_PINEVIEW(dev))
10562 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10563 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10564 else
10565 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10566 DPLL_FPA01_P1_POST_DIV_SHIFT);
10567
10568 switch (dpll & DPLL_MODE_MASK) {
10569 case DPLLB_MODE_DAC_SERIAL:
10570 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10571 5 : 10;
10572 break;
10573 case DPLLB_MODE_LVDS:
10574 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10575 7 : 14;
10576 break;
10577 default:
10578 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10579 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10580 return;
10581 }
10582
10583 if (IS_PINEVIEW(dev))
10584 port_clock = pnv_calc_dpll_params(refclk, &clock);
10585 else
10586 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10587 } else {
10588 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10589 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10590
10591 if (is_lvds) {
10592 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10593 DPLL_FPA01_P1_POST_DIV_SHIFT);
10594
10595 if (lvds & LVDS_CLKB_POWER_UP)
10596 clock.p2 = 7;
10597 else
10598 clock.p2 = 14;
10599 } else {
10600 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10601 clock.p1 = 2;
10602 else {
10603 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10604 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10605 }
10606 if (dpll & PLL_P2_DIVIDE_BY_4)
10607 clock.p2 = 4;
10608 else
10609 clock.p2 = 2;
10610 }
10611
10612 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10613 }
10614
10615 /*
10616 * This value includes pixel_multiplier. We will use
10617 * port_clock to compute adjusted_mode.crtc_clock in the
10618 * encoder's get_config() function.
10619 */
10620 pipe_config->port_clock = port_clock;
10621 }
10622
10623 int intel_dotclock_calculate(int link_freq,
10624 const struct intel_link_m_n *m_n)
10625 {
10626 /*
10627 * The calculation for the data clock is:
10628 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10629 * But we want to avoid losing precison if possible, so:
10630 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10631 *
10632 * and the link clock is simpler:
10633 * link_clock = (m * link_clock) / n
10634 */
10635
10636 if (!m_n->link_n)
10637 return 0;
10638
10639 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10640 }
10641
10642 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10643 struct intel_crtc_state *pipe_config)
10644 {
10645 struct drm_device *dev = crtc->base.dev;
10646
10647 /* read out port_clock from the DPLL */
10648 i9xx_crtc_clock_get(crtc, pipe_config);
10649
10650 /*
10651 * This value does not include pixel_multiplier.
10652 * We will check that port_clock and adjusted_mode.crtc_clock
10653 * agree once we know their relationship in the encoder's
10654 * get_config() function.
10655 */
10656 pipe_config->base.adjusted_mode.crtc_clock =
10657 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10658 &pipe_config->fdi_m_n);
10659 }
10660
10661 /** Returns the currently programmed mode of the given pipe. */
10662 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10663 struct drm_crtc *crtc)
10664 {
10665 struct drm_i915_private *dev_priv = dev->dev_private;
10666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10667 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10668 struct drm_display_mode *mode;
10669 struct intel_crtc_state pipe_config;
10670 int htot = I915_READ(HTOTAL(cpu_transcoder));
10671 int hsync = I915_READ(HSYNC(cpu_transcoder));
10672 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10673 int vsync = I915_READ(VSYNC(cpu_transcoder));
10674 enum pipe pipe = intel_crtc->pipe;
10675
10676 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10677 if (!mode)
10678 return NULL;
10679
10680 /*
10681 * Construct a pipe_config sufficient for getting the clock info
10682 * back out of crtc_clock_get.
10683 *
10684 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10685 * to use a real value here instead.
10686 */
10687 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10688 pipe_config.pixel_multiplier = 1;
10689 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10690 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10691 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10692 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10693
10694 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10695 mode->hdisplay = (htot & 0xffff) + 1;
10696 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10697 mode->hsync_start = (hsync & 0xffff) + 1;
10698 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10699 mode->vdisplay = (vtot & 0xffff) + 1;
10700 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10701 mode->vsync_start = (vsync & 0xffff) + 1;
10702 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10703
10704 drm_mode_set_name(mode);
10705
10706 return mode;
10707 }
10708
10709 void intel_mark_busy(struct drm_device *dev)
10710 {
10711 struct drm_i915_private *dev_priv = dev->dev_private;
10712
10713 if (dev_priv->mm.busy)
10714 return;
10715
10716 intel_runtime_pm_get(dev_priv);
10717 i915_update_gfx_val(dev_priv);
10718 if (INTEL_INFO(dev)->gen >= 6)
10719 gen6_rps_busy(dev_priv);
10720 dev_priv->mm.busy = true;
10721 }
10722
10723 void intel_mark_idle(struct drm_device *dev)
10724 {
10725 struct drm_i915_private *dev_priv = dev->dev_private;
10726
10727 if (!dev_priv->mm.busy)
10728 return;
10729
10730 dev_priv->mm.busy = false;
10731
10732 if (INTEL_INFO(dev)->gen >= 6)
10733 gen6_rps_idle(dev->dev_private);
10734
10735 intel_runtime_pm_put(dev_priv);
10736 }
10737
10738 static void intel_crtc_destroy(struct drm_crtc *crtc)
10739 {
10740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10741 struct drm_device *dev = crtc->dev;
10742 struct intel_unpin_work *work;
10743
10744 spin_lock_irq(&dev->event_lock);
10745 work = intel_crtc->unpin_work;
10746 intel_crtc->unpin_work = NULL;
10747 spin_unlock_irq(&dev->event_lock);
10748
10749 if (work) {
10750 cancel_work_sync(&work->work);
10751 kfree(work);
10752 }
10753
10754 drm_crtc_cleanup(crtc);
10755
10756 kfree(intel_crtc);
10757 }
10758
10759 static void intel_unpin_work_fn(struct work_struct *__work)
10760 {
10761 struct intel_unpin_work *work =
10762 container_of(__work, struct intel_unpin_work, work);
10763 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10764 struct drm_device *dev = crtc->base.dev;
10765 struct drm_i915_private *dev_priv = dev->dev_private;
10766 struct drm_plane *primary = crtc->base.primary;
10767
10768 mutex_lock(&dev->struct_mutex);
10769 intel_unpin_fb_obj(work->old_fb, primary->state);
10770 drm_gem_object_unreference(&work->pending_flip_obj->base);
10771
10772 intel_fbc_update(dev_priv);
10773
10774 if (work->flip_queued_req)
10775 i915_gem_request_assign(&work->flip_queued_req, NULL);
10776 mutex_unlock(&dev->struct_mutex);
10777
10778 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10779 drm_framebuffer_unreference(work->old_fb);
10780
10781 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10782 atomic_dec(&crtc->unpin_work_count);
10783
10784 kfree(work);
10785 }
10786
10787 static void do_intel_finish_page_flip(struct drm_device *dev,
10788 struct drm_crtc *crtc)
10789 {
10790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10791 struct intel_unpin_work *work;
10792 unsigned long flags;
10793
10794 /* Ignore early vblank irqs */
10795 if (intel_crtc == NULL)
10796 return;
10797
10798 /*
10799 * This is called both by irq handlers and the reset code (to complete
10800 * lost pageflips) so needs the full irqsave spinlocks.
10801 */
10802 spin_lock_irqsave(&dev->event_lock, flags);
10803 work = intel_crtc->unpin_work;
10804
10805 /* Ensure we don't miss a work->pending update ... */
10806 smp_rmb();
10807
10808 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10809 spin_unlock_irqrestore(&dev->event_lock, flags);
10810 return;
10811 }
10812
10813 page_flip_completed(intel_crtc);
10814
10815 spin_unlock_irqrestore(&dev->event_lock, flags);
10816 }
10817
10818 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10819 {
10820 struct drm_i915_private *dev_priv = dev->dev_private;
10821 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10822
10823 do_intel_finish_page_flip(dev, crtc);
10824 }
10825
10826 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10827 {
10828 struct drm_i915_private *dev_priv = dev->dev_private;
10829 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10830
10831 do_intel_finish_page_flip(dev, crtc);
10832 }
10833
10834 /* Is 'a' after or equal to 'b'? */
10835 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10836 {
10837 return !((a - b) & 0x80000000);
10838 }
10839
10840 static bool page_flip_finished(struct intel_crtc *crtc)
10841 {
10842 struct drm_device *dev = crtc->base.dev;
10843 struct drm_i915_private *dev_priv = dev->dev_private;
10844
10845 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10846 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10847 return true;
10848
10849 /*
10850 * The relevant registers doen't exist on pre-ctg.
10851 * As the flip done interrupt doesn't trigger for mmio
10852 * flips on gmch platforms, a flip count check isn't
10853 * really needed there. But since ctg has the registers,
10854 * include it in the check anyway.
10855 */
10856 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10857 return true;
10858
10859 /*
10860 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10861 * used the same base address. In that case the mmio flip might
10862 * have completed, but the CS hasn't even executed the flip yet.
10863 *
10864 * A flip count check isn't enough as the CS might have updated
10865 * the base address just after start of vblank, but before we
10866 * managed to process the interrupt. This means we'd complete the
10867 * CS flip too soon.
10868 *
10869 * Combining both checks should get us a good enough result. It may
10870 * still happen that the CS flip has been executed, but has not
10871 * yet actually completed. But in case the base address is the same
10872 * anyway, we don't really care.
10873 */
10874 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10875 crtc->unpin_work->gtt_offset &&
10876 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10877 crtc->unpin_work->flip_count);
10878 }
10879
10880 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10881 {
10882 struct drm_i915_private *dev_priv = dev->dev_private;
10883 struct intel_crtc *intel_crtc =
10884 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10885 unsigned long flags;
10886
10887
10888 /*
10889 * This is called both by irq handlers and the reset code (to complete
10890 * lost pageflips) so needs the full irqsave spinlocks.
10891 *
10892 * NB: An MMIO update of the plane base pointer will also
10893 * generate a page-flip completion irq, i.e. every modeset
10894 * is also accompanied by a spurious intel_prepare_page_flip().
10895 */
10896 spin_lock_irqsave(&dev->event_lock, flags);
10897 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10898 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10899 spin_unlock_irqrestore(&dev->event_lock, flags);
10900 }
10901
10902 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10903 {
10904 /* Ensure that the work item is consistent when activating it ... */
10905 smp_wmb();
10906 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10907 /* and that it is marked active as soon as the irq could fire. */
10908 smp_wmb();
10909 }
10910
10911 static int intel_gen2_queue_flip(struct drm_device *dev,
10912 struct drm_crtc *crtc,
10913 struct drm_framebuffer *fb,
10914 struct drm_i915_gem_object *obj,
10915 struct drm_i915_gem_request *req,
10916 uint32_t flags)
10917 {
10918 struct intel_engine_cs *ring = req->ring;
10919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10920 u32 flip_mask;
10921 int ret;
10922
10923 ret = intel_ring_begin(req, 6);
10924 if (ret)
10925 return ret;
10926
10927 /* Can't queue multiple flips, so wait for the previous
10928 * one to finish before executing the next.
10929 */
10930 if (intel_crtc->plane)
10931 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10932 else
10933 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10934 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10935 intel_ring_emit(ring, MI_NOOP);
10936 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10937 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10938 intel_ring_emit(ring, fb->pitches[0]);
10939 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10940 intel_ring_emit(ring, 0); /* aux display base address, unused */
10941
10942 intel_mark_page_flip_active(intel_crtc);
10943 return 0;
10944 }
10945
10946 static int intel_gen3_queue_flip(struct drm_device *dev,
10947 struct drm_crtc *crtc,
10948 struct drm_framebuffer *fb,
10949 struct drm_i915_gem_object *obj,
10950 struct drm_i915_gem_request *req,
10951 uint32_t flags)
10952 {
10953 struct intel_engine_cs *ring = req->ring;
10954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10955 u32 flip_mask;
10956 int ret;
10957
10958 ret = intel_ring_begin(req, 6);
10959 if (ret)
10960 return ret;
10961
10962 if (intel_crtc->plane)
10963 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10964 else
10965 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10966 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10967 intel_ring_emit(ring, MI_NOOP);
10968 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10969 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10970 intel_ring_emit(ring, fb->pitches[0]);
10971 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10972 intel_ring_emit(ring, MI_NOOP);
10973
10974 intel_mark_page_flip_active(intel_crtc);
10975 return 0;
10976 }
10977
10978 static int intel_gen4_queue_flip(struct drm_device *dev,
10979 struct drm_crtc *crtc,
10980 struct drm_framebuffer *fb,
10981 struct drm_i915_gem_object *obj,
10982 struct drm_i915_gem_request *req,
10983 uint32_t flags)
10984 {
10985 struct intel_engine_cs *ring = req->ring;
10986 struct drm_i915_private *dev_priv = dev->dev_private;
10987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10988 uint32_t pf, pipesrc;
10989 int ret;
10990
10991 ret = intel_ring_begin(req, 4);
10992 if (ret)
10993 return ret;
10994
10995 /* i965+ uses the linear or tiled offsets from the
10996 * Display Registers (which do not change across a page-flip)
10997 * so we need only reprogram the base address.
10998 */
10999 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11000 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11001 intel_ring_emit(ring, fb->pitches[0]);
11002 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11003 obj->tiling_mode);
11004
11005 /* XXX Enabling the panel-fitter across page-flip is so far
11006 * untested on non-native modes, so ignore it for now.
11007 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11008 */
11009 pf = 0;
11010 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11011 intel_ring_emit(ring, pf | pipesrc);
11012
11013 intel_mark_page_flip_active(intel_crtc);
11014 return 0;
11015 }
11016
11017 static int intel_gen6_queue_flip(struct drm_device *dev,
11018 struct drm_crtc *crtc,
11019 struct drm_framebuffer *fb,
11020 struct drm_i915_gem_object *obj,
11021 struct drm_i915_gem_request *req,
11022 uint32_t flags)
11023 {
11024 struct intel_engine_cs *ring = req->ring;
11025 struct drm_i915_private *dev_priv = dev->dev_private;
11026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11027 uint32_t pf, pipesrc;
11028 int ret;
11029
11030 ret = intel_ring_begin(req, 4);
11031 if (ret)
11032 return ret;
11033
11034 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11035 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11036 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11037 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11038
11039 /* Contrary to the suggestions in the documentation,
11040 * "Enable Panel Fitter" does not seem to be required when page
11041 * flipping with a non-native mode, and worse causes a normal
11042 * modeset to fail.
11043 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11044 */
11045 pf = 0;
11046 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11047 intel_ring_emit(ring, pf | pipesrc);
11048
11049 intel_mark_page_flip_active(intel_crtc);
11050 return 0;
11051 }
11052
11053 static int intel_gen7_queue_flip(struct drm_device *dev,
11054 struct drm_crtc *crtc,
11055 struct drm_framebuffer *fb,
11056 struct drm_i915_gem_object *obj,
11057 struct drm_i915_gem_request *req,
11058 uint32_t flags)
11059 {
11060 struct intel_engine_cs *ring = req->ring;
11061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11062 uint32_t plane_bit = 0;
11063 int len, ret;
11064
11065 switch (intel_crtc->plane) {
11066 case PLANE_A:
11067 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11068 break;
11069 case PLANE_B:
11070 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11071 break;
11072 case PLANE_C:
11073 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11074 break;
11075 default:
11076 WARN_ONCE(1, "unknown plane in flip command\n");
11077 return -ENODEV;
11078 }
11079
11080 len = 4;
11081 if (ring->id == RCS) {
11082 len += 6;
11083 /*
11084 * On Gen 8, SRM is now taking an extra dword to accommodate
11085 * 48bits addresses, and we need a NOOP for the batch size to
11086 * stay even.
11087 */
11088 if (IS_GEN8(dev))
11089 len += 2;
11090 }
11091
11092 /*
11093 * BSpec MI_DISPLAY_FLIP for IVB:
11094 * "The full packet must be contained within the same cache line."
11095 *
11096 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11097 * cacheline, if we ever start emitting more commands before
11098 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11099 * then do the cacheline alignment, and finally emit the
11100 * MI_DISPLAY_FLIP.
11101 */
11102 ret = intel_ring_cacheline_align(req);
11103 if (ret)
11104 return ret;
11105
11106 ret = intel_ring_begin(req, len);
11107 if (ret)
11108 return ret;
11109
11110 /* Unmask the flip-done completion message. Note that the bspec says that
11111 * we should do this for both the BCS and RCS, and that we must not unmask
11112 * more than one flip event at any time (or ensure that one flip message
11113 * can be sent by waiting for flip-done prior to queueing new flips).
11114 * Experimentation says that BCS works despite DERRMR masking all
11115 * flip-done completion events and that unmasking all planes at once
11116 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11117 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11118 */
11119 if (ring->id == RCS) {
11120 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11121 intel_ring_emit(ring, DERRMR);
11122 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11123 DERRMR_PIPEB_PRI_FLIP_DONE |
11124 DERRMR_PIPEC_PRI_FLIP_DONE));
11125 if (IS_GEN8(dev))
11126 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11127 MI_SRM_LRM_GLOBAL_GTT);
11128 else
11129 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11130 MI_SRM_LRM_GLOBAL_GTT);
11131 intel_ring_emit(ring, DERRMR);
11132 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11133 if (IS_GEN8(dev)) {
11134 intel_ring_emit(ring, 0);
11135 intel_ring_emit(ring, MI_NOOP);
11136 }
11137 }
11138
11139 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11140 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11141 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11142 intel_ring_emit(ring, (MI_NOOP));
11143
11144 intel_mark_page_flip_active(intel_crtc);
11145 return 0;
11146 }
11147
11148 static bool use_mmio_flip(struct intel_engine_cs *ring,
11149 struct drm_i915_gem_object *obj)
11150 {
11151 /*
11152 * This is not being used for older platforms, because
11153 * non-availability of flip done interrupt forces us to use
11154 * CS flips. Older platforms derive flip done using some clever
11155 * tricks involving the flip_pending status bits and vblank irqs.
11156 * So using MMIO flips there would disrupt this mechanism.
11157 */
11158
11159 if (ring == NULL)
11160 return true;
11161
11162 if (INTEL_INFO(ring->dev)->gen < 5)
11163 return false;
11164
11165 if (i915.use_mmio_flip < 0)
11166 return false;
11167 else if (i915.use_mmio_flip > 0)
11168 return true;
11169 else if (i915.enable_execlists)
11170 return true;
11171 else
11172 return ring != i915_gem_request_get_ring(obj->last_write_req);
11173 }
11174
11175 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11176 {
11177 struct drm_device *dev = intel_crtc->base.dev;
11178 struct drm_i915_private *dev_priv = dev->dev_private;
11179 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11180 const enum pipe pipe = intel_crtc->pipe;
11181 u32 ctl, stride;
11182
11183 ctl = I915_READ(PLANE_CTL(pipe, 0));
11184 ctl &= ~PLANE_CTL_TILED_MASK;
11185 switch (fb->modifier[0]) {
11186 case DRM_FORMAT_MOD_NONE:
11187 break;
11188 case I915_FORMAT_MOD_X_TILED:
11189 ctl |= PLANE_CTL_TILED_X;
11190 break;
11191 case I915_FORMAT_MOD_Y_TILED:
11192 ctl |= PLANE_CTL_TILED_Y;
11193 break;
11194 case I915_FORMAT_MOD_Yf_TILED:
11195 ctl |= PLANE_CTL_TILED_YF;
11196 break;
11197 default:
11198 MISSING_CASE(fb->modifier[0]);
11199 }
11200
11201 /*
11202 * The stride is either expressed as a multiple of 64 bytes chunks for
11203 * linear buffers or in number of tiles for tiled buffers.
11204 */
11205 stride = fb->pitches[0] /
11206 intel_fb_stride_alignment(dev, fb->modifier[0],
11207 fb->pixel_format);
11208
11209 /*
11210 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11211 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11212 */
11213 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11214 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11215
11216 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11217 POSTING_READ(PLANE_SURF(pipe, 0));
11218 }
11219
11220 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11221 {
11222 struct drm_device *dev = intel_crtc->base.dev;
11223 struct drm_i915_private *dev_priv = dev->dev_private;
11224 struct intel_framebuffer *intel_fb =
11225 to_intel_framebuffer(intel_crtc->base.primary->fb);
11226 struct drm_i915_gem_object *obj = intel_fb->obj;
11227 u32 dspcntr;
11228 u32 reg;
11229
11230 reg = DSPCNTR(intel_crtc->plane);
11231 dspcntr = I915_READ(reg);
11232
11233 if (obj->tiling_mode != I915_TILING_NONE)
11234 dspcntr |= DISPPLANE_TILED;
11235 else
11236 dspcntr &= ~DISPPLANE_TILED;
11237
11238 I915_WRITE(reg, dspcntr);
11239
11240 I915_WRITE(DSPSURF(intel_crtc->plane),
11241 intel_crtc->unpin_work->gtt_offset);
11242 POSTING_READ(DSPSURF(intel_crtc->plane));
11243
11244 }
11245
11246 /*
11247 * XXX: This is the temporary way to update the plane registers until we get
11248 * around to using the usual plane update functions for MMIO flips
11249 */
11250 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11251 {
11252 struct drm_device *dev = intel_crtc->base.dev;
11253 u32 start_vbl_count;
11254
11255 intel_mark_page_flip_active(intel_crtc);
11256
11257 intel_pipe_update_start(intel_crtc, &start_vbl_count);
11258
11259 if (INTEL_INFO(dev)->gen >= 9)
11260 skl_do_mmio_flip(intel_crtc);
11261 else
11262 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11263 ilk_do_mmio_flip(intel_crtc);
11264
11265 intel_pipe_update_end(intel_crtc, start_vbl_count);
11266 }
11267
11268 static void intel_mmio_flip_work_func(struct work_struct *work)
11269 {
11270 struct intel_mmio_flip *mmio_flip =
11271 container_of(work, struct intel_mmio_flip, work);
11272
11273 if (mmio_flip->req)
11274 WARN_ON(__i915_wait_request(mmio_flip->req,
11275 mmio_flip->crtc->reset_counter,
11276 false, NULL,
11277 &mmio_flip->i915->rps.mmioflips));
11278
11279 intel_do_mmio_flip(mmio_flip->crtc);
11280
11281 i915_gem_request_unreference__unlocked(mmio_flip->req);
11282 kfree(mmio_flip);
11283 }
11284
11285 static int intel_queue_mmio_flip(struct drm_device *dev,
11286 struct drm_crtc *crtc,
11287 struct drm_framebuffer *fb,
11288 struct drm_i915_gem_object *obj,
11289 struct intel_engine_cs *ring,
11290 uint32_t flags)
11291 {
11292 struct intel_mmio_flip *mmio_flip;
11293
11294 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11295 if (mmio_flip == NULL)
11296 return -ENOMEM;
11297
11298 mmio_flip->i915 = to_i915(dev);
11299 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11300 mmio_flip->crtc = to_intel_crtc(crtc);
11301
11302 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11303 schedule_work(&mmio_flip->work);
11304
11305 return 0;
11306 }
11307
11308 static int intel_default_queue_flip(struct drm_device *dev,
11309 struct drm_crtc *crtc,
11310 struct drm_framebuffer *fb,
11311 struct drm_i915_gem_object *obj,
11312 struct drm_i915_gem_request *req,
11313 uint32_t flags)
11314 {
11315 return -ENODEV;
11316 }
11317
11318 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11319 struct drm_crtc *crtc)
11320 {
11321 struct drm_i915_private *dev_priv = dev->dev_private;
11322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11323 struct intel_unpin_work *work = intel_crtc->unpin_work;
11324 u32 addr;
11325
11326 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11327 return true;
11328
11329 if (!work->enable_stall_check)
11330 return false;
11331
11332 if (work->flip_ready_vblank == 0) {
11333 if (work->flip_queued_req &&
11334 !i915_gem_request_completed(work->flip_queued_req, true))
11335 return false;
11336
11337 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11338 }
11339
11340 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11341 return false;
11342
11343 /* Potential stall - if we see that the flip has happened,
11344 * assume a missed interrupt. */
11345 if (INTEL_INFO(dev)->gen >= 4)
11346 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11347 else
11348 addr = I915_READ(DSPADDR(intel_crtc->plane));
11349
11350 /* There is a potential issue here with a false positive after a flip
11351 * to the same address. We could address this by checking for a
11352 * non-incrementing frame counter.
11353 */
11354 return addr == work->gtt_offset;
11355 }
11356
11357 void intel_check_page_flip(struct drm_device *dev, int pipe)
11358 {
11359 struct drm_i915_private *dev_priv = dev->dev_private;
11360 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11362 struct intel_unpin_work *work;
11363
11364 WARN_ON(!in_interrupt());
11365
11366 if (crtc == NULL)
11367 return;
11368
11369 spin_lock(&dev->event_lock);
11370 work = intel_crtc->unpin_work;
11371 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11372 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11373 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11374 page_flip_completed(intel_crtc);
11375 work = NULL;
11376 }
11377 if (work != NULL &&
11378 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11379 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11380 spin_unlock(&dev->event_lock);
11381 }
11382
11383 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11384 struct drm_framebuffer *fb,
11385 struct drm_pending_vblank_event *event,
11386 uint32_t page_flip_flags)
11387 {
11388 struct drm_device *dev = crtc->dev;
11389 struct drm_i915_private *dev_priv = dev->dev_private;
11390 struct drm_framebuffer *old_fb = crtc->primary->fb;
11391 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11393 struct drm_plane *primary = crtc->primary;
11394 enum pipe pipe = intel_crtc->pipe;
11395 struct intel_unpin_work *work;
11396 struct intel_engine_cs *ring;
11397 bool mmio_flip;
11398 struct drm_i915_gem_request *request = NULL;
11399 int ret;
11400
11401 /*
11402 * drm_mode_page_flip_ioctl() should already catch this, but double
11403 * check to be safe. In the future we may enable pageflipping from
11404 * a disabled primary plane.
11405 */
11406 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11407 return -EBUSY;
11408
11409 /* Can't change pixel format via MI display flips. */
11410 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11411 return -EINVAL;
11412
11413 /*
11414 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11415 * Note that pitch changes could also affect these register.
11416 */
11417 if (INTEL_INFO(dev)->gen > 3 &&
11418 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11419 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11420 return -EINVAL;
11421
11422 if (i915_terminally_wedged(&dev_priv->gpu_error))
11423 goto out_hang;
11424
11425 work = kzalloc(sizeof(*work), GFP_KERNEL);
11426 if (work == NULL)
11427 return -ENOMEM;
11428
11429 work->event = event;
11430 work->crtc = crtc;
11431 work->old_fb = old_fb;
11432 INIT_WORK(&work->work, intel_unpin_work_fn);
11433
11434 ret = drm_crtc_vblank_get(crtc);
11435 if (ret)
11436 goto free_work;
11437
11438 /* We borrow the event spin lock for protecting unpin_work */
11439 spin_lock_irq(&dev->event_lock);
11440 if (intel_crtc->unpin_work) {
11441 /* Before declaring the flip queue wedged, check if
11442 * the hardware completed the operation behind our backs.
11443 */
11444 if (__intel_pageflip_stall_check(dev, crtc)) {
11445 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11446 page_flip_completed(intel_crtc);
11447 } else {
11448 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11449 spin_unlock_irq(&dev->event_lock);
11450
11451 drm_crtc_vblank_put(crtc);
11452 kfree(work);
11453 return -EBUSY;
11454 }
11455 }
11456 intel_crtc->unpin_work = work;
11457 spin_unlock_irq(&dev->event_lock);
11458
11459 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11460 flush_workqueue(dev_priv->wq);
11461
11462 /* Reference the objects for the scheduled work. */
11463 drm_framebuffer_reference(work->old_fb);
11464 drm_gem_object_reference(&obj->base);
11465
11466 crtc->primary->fb = fb;
11467 update_state_fb(crtc->primary);
11468
11469 work->pending_flip_obj = obj;
11470
11471 ret = i915_mutex_lock_interruptible(dev);
11472 if (ret)
11473 goto cleanup;
11474
11475 atomic_inc(&intel_crtc->unpin_work_count);
11476 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11477
11478 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11479 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11480
11481 if (IS_VALLEYVIEW(dev)) {
11482 ring = &dev_priv->ring[BCS];
11483 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11484 /* vlv: DISPLAY_FLIP fails to change tiling */
11485 ring = NULL;
11486 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11487 ring = &dev_priv->ring[BCS];
11488 } else if (INTEL_INFO(dev)->gen >= 7) {
11489 ring = i915_gem_request_get_ring(obj->last_write_req);
11490 if (ring == NULL || ring->id != RCS)
11491 ring = &dev_priv->ring[BCS];
11492 } else {
11493 ring = &dev_priv->ring[RCS];
11494 }
11495
11496 mmio_flip = use_mmio_flip(ring, obj);
11497
11498 /* When using CS flips, we want to emit semaphores between rings.
11499 * However, when using mmio flips we will create a task to do the
11500 * synchronisation, so all we want here is to pin the framebuffer
11501 * into the display plane and skip any waits.
11502 */
11503 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11504 crtc->primary->state,
11505 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11506 if (ret)
11507 goto cleanup_pending;
11508
11509 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11510 + intel_crtc->dspaddr_offset;
11511
11512 if (mmio_flip) {
11513 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11514 page_flip_flags);
11515 if (ret)
11516 goto cleanup_unpin;
11517
11518 i915_gem_request_assign(&work->flip_queued_req,
11519 obj->last_write_req);
11520 } else {
11521 if (!request) {
11522 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11523 if (ret)
11524 goto cleanup_unpin;
11525 }
11526
11527 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11528 page_flip_flags);
11529 if (ret)
11530 goto cleanup_unpin;
11531
11532 i915_gem_request_assign(&work->flip_queued_req, request);
11533 }
11534
11535 if (request)
11536 i915_add_request_no_flush(request);
11537
11538 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11539 work->enable_stall_check = true;
11540
11541 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11542 to_intel_plane(primary)->frontbuffer_bit);
11543 mutex_unlock(&dev->struct_mutex);
11544
11545 intel_fbc_disable(dev_priv);
11546 intel_frontbuffer_flip_prepare(dev,
11547 to_intel_plane(primary)->frontbuffer_bit);
11548
11549 trace_i915_flip_request(intel_crtc->plane, obj);
11550
11551 return 0;
11552
11553 cleanup_unpin:
11554 intel_unpin_fb_obj(fb, crtc->primary->state);
11555 cleanup_pending:
11556 if (request)
11557 i915_gem_request_cancel(request);
11558 atomic_dec(&intel_crtc->unpin_work_count);
11559 mutex_unlock(&dev->struct_mutex);
11560 cleanup:
11561 crtc->primary->fb = old_fb;
11562 update_state_fb(crtc->primary);
11563
11564 drm_gem_object_unreference_unlocked(&obj->base);
11565 drm_framebuffer_unreference(work->old_fb);
11566
11567 spin_lock_irq(&dev->event_lock);
11568 intel_crtc->unpin_work = NULL;
11569 spin_unlock_irq(&dev->event_lock);
11570
11571 drm_crtc_vblank_put(crtc);
11572 free_work:
11573 kfree(work);
11574
11575 if (ret == -EIO) {
11576 struct drm_atomic_state *state;
11577 struct drm_plane_state *plane_state;
11578
11579 out_hang:
11580 state = drm_atomic_state_alloc(dev);
11581 if (!state)
11582 return -ENOMEM;
11583 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11584
11585 retry:
11586 plane_state = drm_atomic_get_plane_state(state, primary);
11587 ret = PTR_ERR_OR_ZERO(plane_state);
11588 if (!ret) {
11589 drm_atomic_set_fb_for_plane(plane_state, fb);
11590
11591 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11592 if (!ret)
11593 ret = drm_atomic_commit(state);
11594 }
11595
11596 if (ret == -EDEADLK) {
11597 drm_modeset_backoff(state->acquire_ctx);
11598 drm_atomic_state_clear(state);
11599 goto retry;
11600 }
11601
11602 if (ret)
11603 drm_atomic_state_free(state);
11604
11605 if (ret == 0 && event) {
11606 spin_lock_irq(&dev->event_lock);
11607 drm_send_vblank_event(dev, pipe, event);
11608 spin_unlock_irq(&dev->event_lock);
11609 }
11610 }
11611 return ret;
11612 }
11613
11614
11615 /**
11616 * intel_wm_need_update - Check whether watermarks need updating
11617 * @plane: drm plane
11618 * @state: new plane state
11619 *
11620 * Check current plane state versus the new one to determine whether
11621 * watermarks need to be recalculated.
11622 *
11623 * Returns true or false.
11624 */
11625 static bool intel_wm_need_update(struct drm_plane *plane,
11626 struct drm_plane_state *state)
11627 {
11628 /* Update watermarks on tiling changes. */
11629 if (!plane->state->fb || !state->fb ||
11630 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11631 plane->state->rotation != state->rotation)
11632 return true;
11633
11634 if (plane->state->crtc_w != state->crtc_w)
11635 return true;
11636
11637 return false;
11638 }
11639
11640 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11641 struct drm_plane_state *plane_state)
11642 {
11643 struct drm_crtc *crtc = crtc_state->crtc;
11644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11645 struct drm_plane *plane = plane_state->plane;
11646 struct drm_device *dev = crtc->dev;
11647 struct drm_i915_private *dev_priv = dev->dev_private;
11648 struct intel_plane_state *old_plane_state =
11649 to_intel_plane_state(plane->state);
11650 int idx = intel_crtc->base.base.id, ret;
11651 int i = drm_plane_index(plane);
11652 bool mode_changed = needs_modeset(crtc_state);
11653 bool was_crtc_enabled = crtc->state->active;
11654 bool is_crtc_enabled = crtc_state->active;
11655
11656 bool turn_off, turn_on, visible, was_visible;
11657 struct drm_framebuffer *fb = plane_state->fb;
11658
11659 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11660 plane->type != DRM_PLANE_TYPE_CURSOR) {
11661 ret = skl_update_scaler_plane(
11662 to_intel_crtc_state(crtc_state),
11663 to_intel_plane_state(plane_state));
11664 if (ret)
11665 return ret;
11666 }
11667
11668 /*
11669 * Disabling a plane is always okay; we just need to update
11670 * fb tracking in a special way since cleanup_fb() won't
11671 * get called by the plane helpers.
11672 */
11673 if (old_plane_state->base.fb && !fb)
11674 intel_crtc->atomic.disabled_planes |= 1 << i;
11675
11676 was_visible = old_plane_state->visible;
11677 visible = to_intel_plane_state(plane_state)->visible;
11678
11679 if (!was_crtc_enabled && WARN_ON(was_visible))
11680 was_visible = false;
11681
11682 if (!is_crtc_enabled && WARN_ON(visible))
11683 visible = false;
11684
11685 if (!was_visible && !visible)
11686 return 0;
11687
11688 turn_off = was_visible && (!visible || mode_changed);
11689 turn_on = visible && (!was_visible || mode_changed);
11690
11691 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11692 plane->base.id, fb ? fb->base.id : -1);
11693
11694 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11695 plane->base.id, was_visible, visible,
11696 turn_off, turn_on, mode_changed);
11697
11698 if (turn_on) {
11699 intel_crtc->atomic.update_wm_pre = true;
11700 /* must disable cxsr around plane enable/disable */
11701 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11702 intel_crtc->atomic.disable_cxsr = true;
11703 /* to potentially re-enable cxsr */
11704 intel_crtc->atomic.wait_vblank = true;
11705 intel_crtc->atomic.update_wm_post = true;
11706 }
11707 } else if (turn_off) {
11708 intel_crtc->atomic.update_wm_post = true;
11709 /* must disable cxsr around plane enable/disable */
11710 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11711 if (is_crtc_enabled)
11712 intel_crtc->atomic.wait_vblank = true;
11713 intel_crtc->atomic.disable_cxsr = true;
11714 }
11715 } else if (intel_wm_need_update(plane, plane_state)) {
11716 intel_crtc->atomic.update_wm_pre = true;
11717 }
11718
11719 if (visible)
11720 intel_crtc->atomic.fb_bits |=
11721 to_intel_plane(plane)->frontbuffer_bit;
11722
11723 switch (plane->type) {
11724 case DRM_PLANE_TYPE_PRIMARY:
11725 intel_crtc->atomic.wait_for_flips = true;
11726 intel_crtc->atomic.pre_disable_primary = turn_off;
11727 intel_crtc->atomic.post_enable_primary = turn_on;
11728
11729 if (turn_off) {
11730 /*
11731 * FIXME: Actually if we will still have any other
11732 * plane enabled on the pipe we could let IPS enabled
11733 * still, but for now lets consider that when we make
11734 * primary invisible by setting DSPCNTR to 0 on
11735 * update_primary_plane function IPS needs to be
11736 * disable.
11737 */
11738 intel_crtc->atomic.disable_ips = true;
11739
11740 intel_crtc->atomic.disable_fbc = true;
11741 }
11742
11743 /*
11744 * FBC does not work on some platforms for rotated
11745 * planes, so disable it when rotation is not 0 and
11746 * update it when rotation is set back to 0.
11747 *
11748 * FIXME: This is redundant with the fbc update done in
11749 * the primary plane enable function except that that
11750 * one is done too late. We eventually need to unify
11751 * this.
11752 */
11753
11754 if (visible &&
11755 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11756 dev_priv->fbc.crtc == intel_crtc &&
11757 plane_state->rotation != BIT(DRM_ROTATE_0))
11758 intel_crtc->atomic.disable_fbc = true;
11759
11760 /*
11761 * BDW signals flip done immediately if the plane
11762 * is disabled, even if the plane enable is already
11763 * armed to occur at the next vblank :(
11764 */
11765 if (turn_on && IS_BROADWELL(dev))
11766 intel_crtc->atomic.wait_vblank = true;
11767
11768 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11769 break;
11770 case DRM_PLANE_TYPE_CURSOR:
11771 break;
11772 case DRM_PLANE_TYPE_OVERLAY:
11773 if (turn_off && !mode_changed) {
11774 intel_crtc->atomic.wait_vblank = true;
11775 intel_crtc->atomic.update_sprite_watermarks |=
11776 1 << i;
11777 }
11778 }
11779 return 0;
11780 }
11781
11782 static bool encoders_cloneable(const struct intel_encoder *a,
11783 const struct intel_encoder *b)
11784 {
11785 /* masks could be asymmetric, so check both ways */
11786 return a == b || (a->cloneable & (1 << b->type) &&
11787 b->cloneable & (1 << a->type));
11788 }
11789
11790 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11791 struct intel_crtc *crtc,
11792 struct intel_encoder *encoder)
11793 {
11794 struct intel_encoder *source_encoder;
11795 struct drm_connector *connector;
11796 struct drm_connector_state *connector_state;
11797 int i;
11798
11799 for_each_connector_in_state(state, connector, connector_state, i) {
11800 if (connector_state->crtc != &crtc->base)
11801 continue;
11802
11803 source_encoder =
11804 to_intel_encoder(connector_state->best_encoder);
11805 if (!encoders_cloneable(encoder, source_encoder))
11806 return false;
11807 }
11808
11809 return true;
11810 }
11811
11812 static bool check_encoder_cloning(struct drm_atomic_state *state,
11813 struct intel_crtc *crtc)
11814 {
11815 struct intel_encoder *encoder;
11816 struct drm_connector *connector;
11817 struct drm_connector_state *connector_state;
11818 int i;
11819
11820 for_each_connector_in_state(state, connector, connector_state, i) {
11821 if (connector_state->crtc != &crtc->base)
11822 continue;
11823
11824 encoder = to_intel_encoder(connector_state->best_encoder);
11825 if (!check_single_encoder_cloning(state, crtc, encoder))
11826 return false;
11827 }
11828
11829 return true;
11830 }
11831
11832 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11833 struct drm_crtc_state *crtc_state)
11834 {
11835 struct drm_device *dev = crtc->dev;
11836 struct drm_i915_private *dev_priv = dev->dev_private;
11837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11838 struct intel_crtc_state *pipe_config =
11839 to_intel_crtc_state(crtc_state);
11840 struct drm_atomic_state *state = crtc_state->state;
11841 int ret, idx = crtc->base.id;
11842 bool mode_changed = needs_modeset(crtc_state);
11843
11844 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11845 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11846 return -EINVAL;
11847 }
11848
11849 I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11850 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11851 idx, crtc->state->active, intel_crtc->active);
11852
11853 if (mode_changed && !crtc_state->active)
11854 intel_crtc->atomic.update_wm_post = true;
11855
11856 if (mode_changed && crtc_state->enable &&
11857 dev_priv->display.crtc_compute_clock &&
11858 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11859 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11860 pipe_config);
11861 if (ret)
11862 return ret;
11863 }
11864
11865 ret = 0;
11866 if (INTEL_INFO(dev)->gen >= 9) {
11867 if (mode_changed)
11868 ret = skl_update_scaler_crtc(pipe_config);
11869
11870 if (!ret)
11871 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11872 pipe_config);
11873 }
11874
11875 return ret;
11876 }
11877
11878 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11879 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11880 .load_lut = intel_crtc_load_lut,
11881 .atomic_begin = intel_begin_crtc_commit,
11882 .atomic_flush = intel_finish_crtc_commit,
11883 .atomic_check = intel_crtc_atomic_check,
11884 };
11885
11886 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11887 {
11888 struct intel_connector *connector;
11889
11890 for_each_intel_connector(dev, connector) {
11891 if (connector->base.encoder) {
11892 connector->base.state->best_encoder =
11893 connector->base.encoder;
11894 connector->base.state->crtc =
11895 connector->base.encoder->crtc;
11896 } else {
11897 connector->base.state->best_encoder = NULL;
11898 connector->base.state->crtc = NULL;
11899 }
11900 }
11901 }
11902
11903 static void
11904 connected_sink_compute_bpp(struct intel_connector *connector,
11905 struct intel_crtc_state *pipe_config)
11906 {
11907 int bpp = pipe_config->pipe_bpp;
11908
11909 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11910 connector->base.base.id,
11911 connector->base.name);
11912
11913 /* Don't use an invalid EDID bpc value */
11914 if (connector->base.display_info.bpc &&
11915 connector->base.display_info.bpc * 3 < bpp) {
11916 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11917 bpp, connector->base.display_info.bpc*3);
11918 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11919 }
11920
11921 /* Clamp bpp to 8 on screens without EDID 1.4 */
11922 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11923 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11924 bpp);
11925 pipe_config->pipe_bpp = 24;
11926 }
11927 }
11928
11929 static int
11930 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11931 struct intel_crtc_state *pipe_config)
11932 {
11933 struct drm_device *dev = crtc->base.dev;
11934 struct drm_atomic_state *state;
11935 struct drm_connector *connector;
11936 struct drm_connector_state *connector_state;
11937 int bpp, i;
11938
11939 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11940 bpp = 10*3;
11941 else if (INTEL_INFO(dev)->gen >= 5)
11942 bpp = 12*3;
11943 else
11944 bpp = 8*3;
11945
11946
11947 pipe_config->pipe_bpp = bpp;
11948
11949 state = pipe_config->base.state;
11950
11951 /* Clamp display bpp to EDID value */
11952 for_each_connector_in_state(state, connector, connector_state, i) {
11953 if (connector_state->crtc != &crtc->base)
11954 continue;
11955
11956 connected_sink_compute_bpp(to_intel_connector(connector),
11957 pipe_config);
11958 }
11959
11960 return bpp;
11961 }
11962
11963 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11964 {
11965 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11966 "type: 0x%x flags: 0x%x\n",
11967 mode->crtc_clock,
11968 mode->crtc_hdisplay, mode->crtc_hsync_start,
11969 mode->crtc_hsync_end, mode->crtc_htotal,
11970 mode->crtc_vdisplay, mode->crtc_vsync_start,
11971 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11972 }
11973
11974 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11975 struct intel_crtc_state *pipe_config,
11976 const char *context)
11977 {
11978 struct drm_device *dev = crtc->base.dev;
11979 struct drm_plane *plane;
11980 struct intel_plane *intel_plane;
11981 struct intel_plane_state *state;
11982 struct drm_framebuffer *fb;
11983
11984 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11985 context, pipe_config, pipe_name(crtc->pipe));
11986
11987 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11988 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11989 pipe_config->pipe_bpp, pipe_config->dither);
11990 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11991 pipe_config->has_pch_encoder,
11992 pipe_config->fdi_lanes,
11993 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11994 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11995 pipe_config->fdi_m_n.tu);
11996 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11997 pipe_config->has_dp_encoder,
11998 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11999 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12000 pipe_config->dp_m_n.tu);
12001
12002 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12003 pipe_config->has_dp_encoder,
12004 pipe_config->dp_m2_n2.gmch_m,
12005 pipe_config->dp_m2_n2.gmch_n,
12006 pipe_config->dp_m2_n2.link_m,
12007 pipe_config->dp_m2_n2.link_n,
12008 pipe_config->dp_m2_n2.tu);
12009
12010 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12011 pipe_config->has_audio,
12012 pipe_config->has_infoframe);
12013
12014 DRM_DEBUG_KMS("requested mode:\n");
12015 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12016 DRM_DEBUG_KMS("adjusted mode:\n");
12017 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12018 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12019 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12020 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12021 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12022 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12023 crtc->num_scalers,
12024 pipe_config->scaler_state.scaler_users,
12025 pipe_config->scaler_state.scaler_id);
12026 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12027 pipe_config->gmch_pfit.control,
12028 pipe_config->gmch_pfit.pgm_ratios,
12029 pipe_config->gmch_pfit.lvds_border_bits);
12030 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12031 pipe_config->pch_pfit.pos,
12032 pipe_config->pch_pfit.size,
12033 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12034 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12035 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12036
12037 if (IS_BROXTON(dev)) {
12038 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12039 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12040 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12041 pipe_config->ddi_pll_sel,
12042 pipe_config->dpll_hw_state.ebb0,
12043 pipe_config->dpll_hw_state.ebb4,
12044 pipe_config->dpll_hw_state.pll0,
12045 pipe_config->dpll_hw_state.pll1,
12046 pipe_config->dpll_hw_state.pll2,
12047 pipe_config->dpll_hw_state.pll3,
12048 pipe_config->dpll_hw_state.pll6,
12049 pipe_config->dpll_hw_state.pll8,
12050 pipe_config->dpll_hw_state.pll9,
12051 pipe_config->dpll_hw_state.pll10,
12052 pipe_config->dpll_hw_state.pcsdw12);
12053 } else if (IS_SKYLAKE(dev)) {
12054 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12055 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12056 pipe_config->ddi_pll_sel,
12057 pipe_config->dpll_hw_state.ctrl1,
12058 pipe_config->dpll_hw_state.cfgcr1,
12059 pipe_config->dpll_hw_state.cfgcr2);
12060 } else if (HAS_DDI(dev)) {
12061 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12062 pipe_config->ddi_pll_sel,
12063 pipe_config->dpll_hw_state.wrpll);
12064 } else {
12065 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12066 "fp0: 0x%x, fp1: 0x%x\n",
12067 pipe_config->dpll_hw_state.dpll,
12068 pipe_config->dpll_hw_state.dpll_md,
12069 pipe_config->dpll_hw_state.fp0,
12070 pipe_config->dpll_hw_state.fp1);
12071 }
12072
12073 DRM_DEBUG_KMS("planes on this crtc\n");
12074 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12075 intel_plane = to_intel_plane(plane);
12076 if (intel_plane->pipe != crtc->pipe)
12077 continue;
12078
12079 state = to_intel_plane_state(plane->state);
12080 fb = state->base.fb;
12081 if (!fb) {
12082 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12083 "disabled, scaler_id = %d\n",
12084 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12085 plane->base.id, intel_plane->pipe,
12086 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12087 drm_plane_index(plane), state->scaler_id);
12088 continue;
12089 }
12090
12091 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12092 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12093 plane->base.id, intel_plane->pipe,
12094 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12095 drm_plane_index(plane));
12096 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12097 fb->base.id, fb->width, fb->height, fb->pixel_format);
12098 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12099 state->scaler_id,
12100 state->src.x1 >> 16, state->src.y1 >> 16,
12101 drm_rect_width(&state->src) >> 16,
12102 drm_rect_height(&state->src) >> 16,
12103 state->dst.x1, state->dst.y1,
12104 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12105 }
12106 }
12107
12108 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12109 {
12110 struct drm_device *dev = state->dev;
12111 struct intel_encoder *encoder;
12112 struct drm_connector *connector;
12113 struct drm_connector_state *connector_state;
12114 unsigned int used_ports = 0;
12115 int i;
12116
12117 /*
12118 * Walk the connector list instead of the encoder
12119 * list to detect the problem on ddi platforms
12120 * where there's just one encoder per digital port.
12121 */
12122 for_each_connector_in_state(state, connector, connector_state, i) {
12123 if (!connector_state->best_encoder)
12124 continue;
12125
12126 encoder = to_intel_encoder(connector_state->best_encoder);
12127
12128 WARN_ON(!connector_state->crtc);
12129
12130 switch (encoder->type) {
12131 unsigned int port_mask;
12132 case INTEL_OUTPUT_UNKNOWN:
12133 if (WARN_ON(!HAS_DDI(dev)))
12134 break;
12135 case INTEL_OUTPUT_DISPLAYPORT:
12136 case INTEL_OUTPUT_HDMI:
12137 case INTEL_OUTPUT_EDP:
12138 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12139
12140 /* the same port mustn't appear more than once */
12141 if (used_ports & port_mask)
12142 return false;
12143
12144 used_ports |= port_mask;
12145 default:
12146 break;
12147 }
12148 }
12149
12150 return true;
12151 }
12152
12153 static void
12154 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12155 {
12156 struct drm_crtc_state tmp_state;
12157 struct intel_crtc_scaler_state scaler_state;
12158 struct intel_dpll_hw_state dpll_hw_state;
12159 enum intel_dpll_id shared_dpll;
12160 uint32_t ddi_pll_sel;
12161
12162 /* FIXME: before the switch to atomic started, a new pipe_config was
12163 * kzalloc'd. Code that depends on any field being zero should be
12164 * fixed, so that the crtc_state can be safely duplicated. For now,
12165 * only fields that are know to not cause problems are preserved. */
12166
12167 tmp_state = crtc_state->base;
12168 scaler_state = crtc_state->scaler_state;
12169 shared_dpll = crtc_state->shared_dpll;
12170 dpll_hw_state = crtc_state->dpll_hw_state;
12171 ddi_pll_sel = crtc_state->ddi_pll_sel;
12172
12173 memset(crtc_state, 0, sizeof *crtc_state);
12174
12175 crtc_state->base = tmp_state;
12176 crtc_state->scaler_state = scaler_state;
12177 crtc_state->shared_dpll = shared_dpll;
12178 crtc_state->dpll_hw_state = dpll_hw_state;
12179 crtc_state->ddi_pll_sel = ddi_pll_sel;
12180 }
12181
12182 static int
12183 intel_modeset_pipe_config(struct drm_crtc *crtc,
12184 struct intel_crtc_state *pipe_config)
12185 {
12186 struct drm_atomic_state *state = pipe_config->base.state;
12187 struct intel_encoder *encoder;
12188 struct drm_connector *connector;
12189 struct drm_connector_state *connector_state;
12190 int base_bpp, ret = -EINVAL;
12191 int i;
12192 bool retry = true;
12193
12194 clear_intel_crtc_state(pipe_config);
12195
12196 pipe_config->cpu_transcoder =
12197 (enum transcoder) to_intel_crtc(crtc)->pipe;
12198
12199 /*
12200 * Sanitize sync polarity flags based on requested ones. If neither
12201 * positive or negative polarity is requested, treat this as meaning
12202 * negative polarity.
12203 */
12204 if (!(pipe_config->base.adjusted_mode.flags &
12205 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12206 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12207
12208 if (!(pipe_config->base.adjusted_mode.flags &
12209 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12210 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12211
12212 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12213 * plane pixel format and any sink constraints into account. Returns the
12214 * source plane bpp so that dithering can be selected on mismatches
12215 * after encoders and crtc also have had their say. */
12216 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12217 pipe_config);
12218 if (base_bpp < 0)
12219 goto fail;
12220
12221 /*
12222 * Determine the real pipe dimensions. Note that stereo modes can
12223 * increase the actual pipe size due to the frame doubling and
12224 * insertion of additional space for blanks between the frame. This
12225 * is stored in the crtc timings. We use the requested mode to do this
12226 * computation to clearly distinguish it from the adjusted mode, which
12227 * can be changed by the connectors in the below retry loop.
12228 */
12229 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12230 &pipe_config->pipe_src_w,
12231 &pipe_config->pipe_src_h);
12232
12233 encoder_retry:
12234 /* Ensure the port clock defaults are reset when retrying. */
12235 pipe_config->port_clock = 0;
12236 pipe_config->pixel_multiplier = 1;
12237
12238 /* Fill in default crtc timings, allow encoders to overwrite them. */
12239 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12240 CRTC_STEREO_DOUBLE);
12241
12242 /* Pass our mode to the connectors and the CRTC to give them a chance to
12243 * adjust it according to limitations or connector properties, and also
12244 * a chance to reject the mode entirely.
12245 */
12246 for_each_connector_in_state(state, connector, connector_state, i) {
12247 if (connector_state->crtc != crtc)
12248 continue;
12249
12250 encoder = to_intel_encoder(connector_state->best_encoder);
12251
12252 if (!(encoder->compute_config(encoder, pipe_config))) {
12253 DRM_DEBUG_KMS("Encoder config failure\n");
12254 goto fail;
12255 }
12256 }
12257
12258 /* Set default port clock if not overwritten by the encoder. Needs to be
12259 * done afterwards in case the encoder adjusts the mode. */
12260 if (!pipe_config->port_clock)
12261 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12262 * pipe_config->pixel_multiplier;
12263
12264 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12265 if (ret < 0) {
12266 DRM_DEBUG_KMS("CRTC fixup failed\n");
12267 goto fail;
12268 }
12269
12270 if (ret == RETRY) {
12271 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12272 ret = -EINVAL;
12273 goto fail;
12274 }
12275
12276 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12277 retry = false;
12278 goto encoder_retry;
12279 }
12280
12281 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12282 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12283 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12284
12285 fail:
12286 return ret;
12287 }
12288
12289 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12290 {
12291 struct drm_encoder *encoder;
12292 struct drm_device *dev = crtc->dev;
12293
12294 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12295 if (encoder->crtc == crtc)
12296 return true;
12297
12298 return false;
12299 }
12300
12301 static void
12302 intel_modeset_update_state(struct drm_atomic_state *state)
12303 {
12304 struct drm_device *dev = state->dev;
12305 struct intel_encoder *intel_encoder;
12306 struct drm_crtc *crtc;
12307 struct drm_crtc_state *crtc_state;
12308 struct drm_connector *connector;
12309 int i;
12310
12311 intel_shared_dpll_commit(state);
12312
12313 for_each_intel_encoder(dev, intel_encoder) {
12314 if (!intel_encoder->base.crtc)
12315 continue;
12316
12317 crtc = intel_encoder->base.crtc;
12318 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12319 if (!crtc_state || !needs_modeset(crtc->state))
12320 continue;
12321
12322 intel_encoder->connectors_active = false;
12323 }
12324
12325 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12326
12327 /* Double check state. */
12328 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12329 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12330
12331 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12332
12333 /* Update hwmode for vblank functions */
12334 if (crtc->state->active)
12335 crtc->hwmode = crtc->state->adjusted_mode;
12336 else
12337 crtc->hwmode.crtc_clock = 0;
12338 }
12339
12340 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12341 if (!connector->encoder || !connector->encoder->crtc)
12342 continue;
12343
12344 crtc = connector->encoder->crtc;
12345 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12346 if (!crtc_state || !needs_modeset(crtc->state))
12347 continue;
12348
12349 if (crtc->state->active) {
12350 struct drm_property *dpms_property =
12351 dev->mode_config.dpms_property;
12352
12353 connector->dpms = DRM_MODE_DPMS_ON;
12354 drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12355
12356 intel_encoder = to_intel_encoder(connector->encoder);
12357 intel_encoder->connectors_active = true;
12358 } else
12359 connector->dpms = DRM_MODE_DPMS_OFF;
12360 }
12361 }
12362
12363 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12364 {
12365 int diff;
12366
12367 if (clock1 == clock2)
12368 return true;
12369
12370 if (!clock1 || !clock2)
12371 return false;
12372
12373 diff = abs(clock1 - clock2);
12374
12375 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12376 return true;
12377
12378 return false;
12379 }
12380
12381 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12382 list_for_each_entry((intel_crtc), \
12383 &(dev)->mode_config.crtc_list, \
12384 base.head) \
12385 if (mask & (1 <<(intel_crtc)->pipe))
12386
12387
12388 static bool
12389 intel_compare_m_n(unsigned int m, unsigned int n,
12390 unsigned int m2, unsigned int n2,
12391 bool exact)
12392 {
12393 if (m == m2 && n == n2)
12394 return true;
12395
12396 if (exact || !m || !n || !m2 || !n2)
12397 return false;
12398
12399 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12400
12401 if (m > m2) {
12402 while (m > m2) {
12403 m2 <<= 1;
12404 n2 <<= 1;
12405 }
12406 } else if (m < m2) {
12407 while (m < m2) {
12408 m <<= 1;
12409 n <<= 1;
12410 }
12411 }
12412
12413 return m == m2 && n == n2;
12414 }
12415
12416 static bool
12417 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12418 struct intel_link_m_n *m2_n2,
12419 bool adjust)
12420 {
12421 if (m_n->tu == m2_n2->tu &&
12422 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12423 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12424 intel_compare_m_n(m_n->link_m, m_n->link_n,
12425 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12426 if (adjust)
12427 *m2_n2 = *m_n;
12428
12429 return true;
12430 }
12431
12432 return false;
12433 }
12434
12435 static bool
12436 intel_pipe_config_compare(struct drm_device *dev,
12437 struct intel_crtc_state *current_config,
12438 struct intel_crtc_state *pipe_config,
12439 bool adjust)
12440 {
12441 bool ret = true;
12442
12443 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12444 do { \
12445 if (!adjust) \
12446 DRM_ERROR(fmt, ##__VA_ARGS__); \
12447 else \
12448 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12449 } while (0)
12450
12451 #define PIPE_CONF_CHECK_X(name) \
12452 if (current_config->name != pipe_config->name) { \
12453 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12454 "(expected 0x%08x, found 0x%08x)\n", \
12455 current_config->name, \
12456 pipe_config->name); \
12457 ret = false; \
12458 }
12459
12460 #define PIPE_CONF_CHECK_I(name) \
12461 if (current_config->name != pipe_config->name) { \
12462 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12463 "(expected %i, found %i)\n", \
12464 current_config->name, \
12465 pipe_config->name); \
12466 ret = false; \
12467 }
12468
12469 #define PIPE_CONF_CHECK_M_N(name) \
12470 if (!intel_compare_link_m_n(&current_config->name, \
12471 &pipe_config->name,\
12472 adjust)) { \
12473 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12474 "(expected tu %i gmch %i/%i link %i/%i, " \
12475 "found tu %i, gmch %i/%i link %i/%i)\n", \
12476 current_config->name.tu, \
12477 current_config->name.gmch_m, \
12478 current_config->name.gmch_n, \
12479 current_config->name.link_m, \
12480 current_config->name.link_n, \
12481 pipe_config->name.tu, \
12482 pipe_config->name.gmch_m, \
12483 pipe_config->name.gmch_n, \
12484 pipe_config->name.link_m, \
12485 pipe_config->name.link_n); \
12486 ret = false; \
12487 }
12488
12489 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12490 if (!intel_compare_link_m_n(&current_config->name, \
12491 &pipe_config->name, adjust) && \
12492 !intel_compare_link_m_n(&current_config->alt_name, \
12493 &pipe_config->name, adjust)) { \
12494 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12495 "(expected tu %i gmch %i/%i link %i/%i, " \
12496 "or tu %i gmch %i/%i link %i/%i, " \
12497 "found tu %i, gmch %i/%i link %i/%i)\n", \
12498 current_config->name.tu, \
12499 current_config->name.gmch_m, \
12500 current_config->name.gmch_n, \
12501 current_config->name.link_m, \
12502 current_config->name.link_n, \
12503 current_config->alt_name.tu, \
12504 current_config->alt_name.gmch_m, \
12505 current_config->alt_name.gmch_n, \
12506 current_config->alt_name.link_m, \
12507 current_config->alt_name.link_n, \
12508 pipe_config->name.tu, \
12509 pipe_config->name.gmch_m, \
12510 pipe_config->name.gmch_n, \
12511 pipe_config->name.link_m, \
12512 pipe_config->name.link_n); \
12513 ret = false; \
12514 }
12515
12516 /* This is required for BDW+ where there is only one set of registers for
12517 * switching between high and low RR.
12518 * This macro can be used whenever a comparison has to be made between one
12519 * hw state and multiple sw state variables.
12520 */
12521 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12522 if ((current_config->name != pipe_config->name) && \
12523 (current_config->alt_name != pipe_config->name)) { \
12524 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12525 "(expected %i or %i, found %i)\n", \
12526 current_config->name, \
12527 current_config->alt_name, \
12528 pipe_config->name); \
12529 ret = false; \
12530 }
12531
12532 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12533 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12534 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12535 "(expected %i, found %i)\n", \
12536 current_config->name & (mask), \
12537 pipe_config->name & (mask)); \
12538 ret = false; \
12539 }
12540
12541 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12542 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12543 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12544 "(expected %i, found %i)\n", \
12545 current_config->name, \
12546 pipe_config->name); \
12547 ret = false; \
12548 }
12549
12550 #define PIPE_CONF_QUIRK(quirk) \
12551 ((current_config->quirks | pipe_config->quirks) & (quirk))
12552
12553 PIPE_CONF_CHECK_I(cpu_transcoder);
12554
12555 PIPE_CONF_CHECK_I(has_pch_encoder);
12556 PIPE_CONF_CHECK_I(fdi_lanes);
12557 PIPE_CONF_CHECK_M_N(fdi_m_n);
12558
12559 PIPE_CONF_CHECK_I(has_dp_encoder);
12560
12561 if (INTEL_INFO(dev)->gen < 8) {
12562 PIPE_CONF_CHECK_M_N(dp_m_n);
12563
12564 PIPE_CONF_CHECK_I(has_drrs);
12565 if (current_config->has_drrs)
12566 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12567 } else
12568 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12569
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12572 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12573 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12574 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12575 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12576
12577 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12578 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12580 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12581 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12582 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12583
12584 PIPE_CONF_CHECK_I(pixel_multiplier);
12585 PIPE_CONF_CHECK_I(has_hdmi_sink);
12586 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12587 IS_VALLEYVIEW(dev))
12588 PIPE_CONF_CHECK_I(limited_color_range);
12589 PIPE_CONF_CHECK_I(has_infoframe);
12590
12591 PIPE_CONF_CHECK_I(has_audio);
12592
12593 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12594 DRM_MODE_FLAG_INTERLACE);
12595
12596 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12597 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12598 DRM_MODE_FLAG_PHSYNC);
12599 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12600 DRM_MODE_FLAG_NHSYNC);
12601 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12602 DRM_MODE_FLAG_PVSYNC);
12603 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12604 DRM_MODE_FLAG_NVSYNC);
12605 }
12606
12607 PIPE_CONF_CHECK_I(pipe_src_w);
12608 PIPE_CONF_CHECK_I(pipe_src_h);
12609
12610 /*
12611 * FIXME: BIOS likes to set up a cloned config with lvds+external
12612 * screen. Since we don't yet re-compute the pipe config when moving
12613 * just the lvds port away to another pipe the sw tracking won't match.
12614 *
12615 * Proper atomic modesets with recomputed global state will fix this.
12616 * Until then just don't check gmch state for inherited modes.
12617 */
12618 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12619 PIPE_CONF_CHECK_I(gmch_pfit.control);
12620 /* pfit ratios are autocomputed by the hw on gen4+ */
12621 if (INTEL_INFO(dev)->gen < 4)
12622 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12623 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12624 }
12625
12626 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12627 if (current_config->pch_pfit.enabled) {
12628 PIPE_CONF_CHECK_I(pch_pfit.pos);
12629 PIPE_CONF_CHECK_I(pch_pfit.size);
12630 }
12631
12632 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12633
12634 /* BDW+ don't expose a synchronous way to read the state */
12635 if (IS_HASWELL(dev))
12636 PIPE_CONF_CHECK_I(ips_enabled);
12637
12638 PIPE_CONF_CHECK_I(double_wide);
12639
12640 PIPE_CONF_CHECK_X(ddi_pll_sel);
12641
12642 PIPE_CONF_CHECK_I(shared_dpll);
12643 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12644 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12645 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12646 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12647 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12648 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12649 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12650 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12651
12652 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12653 PIPE_CONF_CHECK_I(pipe_bpp);
12654
12655 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12656 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12657
12658 #undef PIPE_CONF_CHECK_X
12659 #undef PIPE_CONF_CHECK_I
12660 #undef PIPE_CONF_CHECK_I_ALT
12661 #undef PIPE_CONF_CHECK_FLAGS
12662 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12663 #undef PIPE_CONF_QUIRK
12664 #undef INTEL_ERR_OR_DBG_KMS
12665
12666 return ret;
12667 }
12668
12669 static void check_wm_state(struct drm_device *dev)
12670 {
12671 struct drm_i915_private *dev_priv = dev->dev_private;
12672 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12673 struct intel_crtc *intel_crtc;
12674 int plane;
12675
12676 if (INTEL_INFO(dev)->gen < 9)
12677 return;
12678
12679 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12680 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12681
12682 for_each_intel_crtc(dev, intel_crtc) {
12683 struct skl_ddb_entry *hw_entry, *sw_entry;
12684 const enum pipe pipe = intel_crtc->pipe;
12685
12686 if (!intel_crtc->active)
12687 continue;
12688
12689 /* planes */
12690 for_each_plane(dev_priv, pipe, plane) {
12691 hw_entry = &hw_ddb.plane[pipe][plane];
12692 sw_entry = &sw_ddb->plane[pipe][plane];
12693
12694 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12695 continue;
12696
12697 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12698 "(expected (%u,%u), found (%u,%u))\n",
12699 pipe_name(pipe), plane + 1,
12700 sw_entry->start, sw_entry->end,
12701 hw_entry->start, hw_entry->end);
12702 }
12703
12704 /* cursor */
12705 hw_entry = &hw_ddb.cursor[pipe];
12706 sw_entry = &sw_ddb->cursor[pipe];
12707
12708 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12709 continue;
12710
12711 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12712 "(expected (%u,%u), found (%u,%u))\n",
12713 pipe_name(pipe),
12714 sw_entry->start, sw_entry->end,
12715 hw_entry->start, hw_entry->end);
12716 }
12717 }
12718
12719 static void
12720 check_connector_state(struct drm_device *dev)
12721 {
12722 struct intel_connector *connector;
12723
12724 for_each_intel_connector(dev, connector) {
12725 struct drm_encoder *encoder = connector->base.encoder;
12726 struct drm_connector_state *state = connector->base.state;
12727
12728 /* This also checks the encoder/connector hw state with the
12729 * ->get_hw_state callbacks. */
12730 intel_connector_check_state(connector);
12731
12732 I915_STATE_WARN(state->best_encoder != encoder,
12733 "connector's staged encoder doesn't match current encoder\n");
12734 }
12735 }
12736
12737 static void
12738 check_encoder_state(struct drm_device *dev)
12739 {
12740 struct intel_encoder *encoder;
12741 struct intel_connector *connector;
12742
12743 for_each_intel_encoder(dev, encoder) {
12744 bool enabled = false;
12745 bool active = false;
12746 enum pipe pipe, tracked_pipe;
12747
12748 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12749 encoder->base.base.id,
12750 encoder->base.name);
12751
12752 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12753 "encoder's active_connectors set, but no crtc\n");
12754
12755 for_each_intel_connector(dev, connector) {
12756 if (connector->base.encoder != &encoder->base)
12757 continue;
12758 enabled = true;
12759 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12760 active = true;
12761
12762 I915_STATE_WARN(connector->base.state->crtc !=
12763 encoder->base.crtc,
12764 "connector's crtc doesn't match encoder crtc\n");
12765 }
12766 /*
12767 * for MST connectors if we unplug the connector is gone
12768 * away but the encoder is still connected to a crtc
12769 * until a modeset happens in response to the hotplug.
12770 */
12771 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12772 continue;
12773
12774 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12775 "encoder's enabled state mismatch "
12776 "(expected %i, found %i)\n",
12777 !!encoder->base.crtc, enabled);
12778 I915_STATE_WARN(active && !encoder->base.crtc,
12779 "active encoder with no crtc\n");
12780
12781 I915_STATE_WARN(encoder->connectors_active != active,
12782 "encoder's computed active state doesn't match tracked active state "
12783 "(expected %i, found %i)\n", active, encoder->connectors_active);
12784
12785 active = encoder->get_hw_state(encoder, &pipe);
12786 I915_STATE_WARN(active != encoder->connectors_active,
12787 "encoder's hw state doesn't match sw tracking "
12788 "(expected %i, found %i)\n",
12789 encoder->connectors_active, active);
12790
12791 if (!encoder->base.crtc)
12792 continue;
12793
12794 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12795 I915_STATE_WARN(active && pipe != tracked_pipe,
12796 "active encoder's pipe doesn't match"
12797 "(expected %i, found %i)\n",
12798 tracked_pipe, pipe);
12799
12800 }
12801 }
12802
12803 static void
12804 check_crtc_state(struct drm_device *dev)
12805 {
12806 struct drm_i915_private *dev_priv = dev->dev_private;
12807 struct intel_crtc *crtc;
12808 struct intel_encoder *encoder;
12809 struct intel_crtc_state pipe_config;
12810
12811 for_each_intel_crtc(dev, crtc) {
12812 bool enabled = false;
12813 bool active = false;
12814
12815 memset(&pipe_config, 0, sizeof(pipe_config));
12816
12817 DRM_DEBUG_KMS("[CRTC:%d]\n",
12818 crtc->base.base.id);
12819
12820 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12821 "active crtc, but not enabled in sw tracking\n");
12822
12823 for_each_intel_encoder(dev, encoder) {
12824 if (encoder->base.crtc != &crtc->base)
12825 continue;
12826 enabled = true;
12827 if (encoder->connectors_active)
12828 active = true;
12829 }
12830
12831 I915_STATE_WARN(active != crtc->active,
12832 "crtc's computed active state doesn't match tracked active state "
12833 "(expected %i, found %i)\n", active, crtc->active);
12834 I915_STATE_WARN(enabled != crtc->base.state->enable,
12835 "crtc's computed enabled state doesn't match tracked enabled state "
12836 "(expected %i, found %i)\n", enabled,
12837 crtc->base.state->enable);
12838
12839 active = dev_priv->display.get_pipe_config(crtc,
12840 &pipe_config);
12841
12842 /* hw state is inconsistent with the pipe quirk */
12843 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12844 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12845 active = crtc->active;
12846
12847 for_each_intel_encoder(dev, encoder) {
12848 enum pipe pipe;
12849 if (encoder->base.crtc != &crtc->base)
12850 continue;
12851 if (encoder->get_hw_state(encoder, &pipe))
12852 encoder->get_config(encoder, &pipe_config);
12853 }
12854
12855 I915_STATE_WARN(crtc->active != active,
12856 "crtc active state doesn't match with hw state "
12857 "(expected %i, found %i)\n", crtc->active, active);
12858
12859 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12860 "transitional active state does not match atomic hw state "
12861 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12862
12863 if (!active)
12864 continue;
12865
12866 if (!intel_pipe_config_compare(dev, crtc->config,
12867 &pipe_config, false)) {
12868 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12869 intel_dump_pipe_config(crtc, &pipe_config,
12870 "[hw state]");
12871 intel_dump_pipe_config(crtc, crtc->config,
12872 "[sw state]");
12873 }
12874 }
12875 }
12876
12877 static void
12878 check_shared_dpll_state(struct drm_device *dev)
12879 {
12880 struct drm_i915_private *dev_priv = dev->dev_private;
12881 struct intel_crtc *crtc;
12882 struct intel_dpll_hw_state dpll_hw_state;
12883 int i;
12884
12885 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12886 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12887 int enabled_crtcs = 0, active_crtcs = 0;
12888 bool active;
12889
12890 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12891
12892 DRM_DEBUG_KMS("%s\n", pll->name);
12893
12894 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12895
12896 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12897 "more active pll users than references: %i vs %i\n",
12898 pll->active, hweight32(pll->config.crtc_mask));
12899 I915_STATE_WARN(pll->active && !pll->on,
12900 "pll in active use but not on in sw tracking\n");
12901 I915_STATE_WARN(pll->on && !pll->active,
12902 "pll in on but not on in use in sw tracking\n");
12903 I915_STATE_WARN(pll->on != active,
12904 "pll on state mismatch (expected %i, found %i)\n",
12905 pll->on, active);
12906
12907 for_each_intel_crtc(dev, crtc) {
12908 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12909 enabled_crtcs++;
12910 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12911 active_crtcs++;
12912 }
12913 I915_STATE_WARN(pll->active != active_crtcs,
12914 "pll active crtcs mismatch (expected %i, found %i)\n",
12915 pll->active, active_crtcs);
12916 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12917 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12918 hweight32(pll->config.crtc_mask), enabled_crtcs);
12919
12920 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12921 sizeof(dpll_hw_state)),
12922 "pll hw state mismatch\n");
12923 }
12924 }
12925
12926 void
12927 intel_modeset_check_state(struct drm_device *dev)
12928 {
12929 check_wm_state(dev);
12930 check_connector_state(dev);
12931 check_encoder_state(dev);
12932 check_crtc_state(dev);
12933 check_shared_dpll_state(dev);
12934 }
12935
12936 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12937 int dotclock)
12938 {
12939 /*
12940 * FDI already provided one idea for the dotclock.
12941 * Yell if the encoder disagrees.
12942 */
12943 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12944 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12945 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12946 }
12947
12948 static void update_scanline_offset(struct intel_crtc *crtc)
12949 {
12950 struct drm_device *dev = crtc->base.dev;
12951
12952 /*
12953 * The scanline counter increments at the leading edge of hsync.
12954 *
12955 * On most platforms it starts counting from vtotal-1 on the
12956 * first active line. That means the scanline counter value is
12957 * always one less than what we would expect. Ie. just after
12958 * start of vblank, which also occurs at start of hsync (on the
12959 * last active line), the scanline counter will read vblank_start-1.
12960 *
12961 * On gen2 the scanline counter starts counting from 1 instead
12962 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12963 * to keep the value positive), instead of adding one.
12964 *
12965 * On HSW+ the behaviour of the scanline counter depends on the output
12966 * type. For DP ports it behaves like most other platforms, but on HDMI
12967 * there's an extra 1 line difference. So we need to add two instead of
12968 * one to the value.
12969 */
12970 if (IS_GEN2(dev)) {
12971 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12972 int vtotal;
12973
12974 vtotal = mode->crtc_vtotal;
12975 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12976 vtotal /= 2;
12977
12978 crtc->scanline_offset = vtotal - 1;
12979 } else if (HAS_DDI(dev) &&
12980 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12981 crtc->scanline_offset = 2;
12982 } else
12983 crtc->scanline_offset = 1;
12984 }
12985
12986 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12987 {
12988 struct drm_device *dev = state->dev;
12989 struct drm_i915_private *dev_priv = to_i915(dev);
12990 struct intel_shared_dpll_config *shared_dpll = NULL;
12991 struct intel_crtc *intel_crtc;
12992 struct intel_crtc_state *intel_crtc_state;
12993 struct drm_crtc *crtc;
12994 struct drm_crtc_state *crtc_state;
12995 int i;
12996
12997 if (!dev_priv->display.crtc_compute_clock)
12998 return;
12999
13000 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13001 int dpll;
13002
13003 intel_crtc = to_intel_crtc(crtc);
13004 intel_crtc_state = to_intel_crtc_state(crtc_state);
13005 dpll = intel_crtc_state->shared_dpll;
13006
13007 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13008 continue;
13009
13010 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13011
13012 if (!shared_dpll)
13013 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13014
13015 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13016 }
13017 }
13018
13019 /*
13020 * This implements the workaround described in the "notes" section of the mode
13021 * set sequence documentation. When going from no pipes or single pipe to
13022 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13023 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13024 */
13025 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13026 {
13027 struct drm_crtc_state *crtc_state;
13028 struct intel_crtc *intel_crtc;
13029 struct drm_crtc *crtc;
13030 struct intel_crtc_state *first_crtc_state = NULL;
13031 struct intel_crtc_state *other_crtc_state = NULL;
13032 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13033 int i;
13034
13035 /* look at all crtc's that are going to be enabled in during modeset */
13036 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13037 intel_crtc = to_intel_crtc(crtc);
13038
13039 if (!crtc_state->active || !needs_modeset(crtc_state))
13040 continue;
13041
13042 if (first_crtc_state) {
13043 other_crtc_state = to_intel_crtc_state(crtc_state);
13044 break;
13045 } else {
13046 first_crtc_state = to_intel_crtc_state(crtc_state);
13047 first_pipe = intel_crtc->pipe;
13048 }
13049 }
13050
13051 /* No workaround needed? */
13052 if (!first_crtc_state)
13053 return 0;
13054
13055 /* w/a possibly needed, check how many crtc's are already enabled. */
13056 for_each_intel_crtc(state->dev, intel_crtc) {
13057 struct intel_crtc_state *pipe_config;
13058
13059 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13060 if (IS_ERR(pipe_config))
13061 return PTR_ERR(pipe_config);
13062
13063 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13064
13065 if (!pipe_config->base.active ||
13066 needs_modeset(&pipe_config->base))
13067 continue;
13068
13069 /* 2 or more enabled crtcs means no need for w/a */
13070 if (enabled_pipe != INVALID_PIPE)
13071 return 0;
13072
13073 enabled_pipe = intel_crtc->pipe;
13074 }
13075
13076 if (enabled_pipe != INVALID_PIPE)
13077 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13078 else if (other_crtc_state)
13079 other_crtc_state->hsw_workaround_pipe = first_pipe;
13080
13081 return 0;
13082 }
13083
13084 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13085 {
13086 struct drm_crtc *crtc;
13087 struct drm_crtc_state *crtc_state;
13088 int ret = 0;
13089
13090 /* add all active pipes to the state */
13091 for_each_crtc(state->dev, crtc) {
13092 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13093 if (IS_ERR(crtc_state))
13094 return PTR_ERR(crtc_state);
13095
13096 if (!crtc_state->active || needs_modeset(crtc_state))
13097 continue;
13098
13099 crtc_state->mode_changed = true;
13100
13101 ret = drm_atomic_add_affected_connectors(state, crtc);
13102 if (ret)
13103 break;
13104
13105 ret = drm_atomic_add_affected_planes(state, crtc);
13106 if (ret)
13107 break;
13108 }
13109
13110 return ret;
13111 }
13112
13113
13114 static int intel_modeset_checks(struct drm_atomic_state *state)
13115 {
13116 struct drm_device *dev = state->dev;
13117 struct drm_i915_private *dev_priv = dev->dev_private;
13118 int ret;
13119
13120 if (!check_digital_port_conflicts(state)) {
13121 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13122 return -EINVAL;
13123 }
13124
13125 /*
13126 * See if the config requires any additional preparation, e.g.
13127 * to adjust global state with pipes off. We need to do this
13128 * here so we can get the modeset_pipe updated config for the new
13129 * mode set on this crtc. For other crtcs we need to use the
13130 * adjusted_mode bits in the crtc directly.
13131 */
13132 if (dev_priv->display.modeset_calc_cdclk) {
13133 unsigned int cdclk;
13134
13135 ret = dev_priv->display.modeset_calc_cdclk(state);
13136
13137 cdclk = to_intel_atomic_state(state)->cdclk;
13138 if (!ret && cdclk != dev_priv->cdclk_freq)
13139 ret = intel_modeset_all_pipes(state);
13140
13141 if (ret < 0)
13142 return ret;
13143 } else
13144 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13145
13146 intel_modeset_clear_plls(state);
13147
13148 if (IS_HASWELL(dev))
13149 return haswell_mode_set_planes_workaround(state);
13150
13151 return 0;
13152 }
13153
13154 /**
13155 * intel_atomic_check - validate state object
13156 * @dev: drm device
13157 * @state: state to validate
13158 */
13159 static int intel_atomic_check(struct drm_device *dev,
13160 struct drm_atomic_state *state)
13161 {
13162 struct drm_crtc *crtc;
13163 struct drm_crtc_state *crtc_state;
13164 int ret, i;
13165 bool any_ms = false;
13166
13167 ret = drm_atomic_helper_check_modeset(dev, state);
13168 if (ret)
13169 return ret;
13170
13171 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13172 struct intel_crtc_state *pipe_config =
13173 to_intel_crtc_state(crtc_state);
13174 bool modeset, recalc = false;
13175
13176 if (!crtc_state->enable) {
13177 if (needs_modeset(crtc_state))
13178 any_ms = true;
13179 continue;
13180 }
13181
13182 modeset = needs_modeset(crtc_state);
13183 /* see comment in intel_modeset_readout_hw_state */
13184 if (!modeset && crtc_state->mode_blob != crtc->state->mode_blob &&
13185 pipe_config->quirks & PIPE_CONFIG_QUIRK_INHERITED_MODE)
13186 recalc = true;
13187
13188 if (!modeset && !recalc)
13189 continue;
13190
13191 if (recalc) {
13192 ret = drm_atomic_add_affected_connectors(state, crtc);
13193 if (ret)
13194 return ret;
13195 }
13196
13197 ret = intel_modeset_pipe_config(crtc, pipe_config);
13198 if (ret)
13199 return ret;
13200
13201 if (recalc && (!i915.fastboot ||
13202 !intel_pipe_config_compare(state->dev,
13203 to_intel_crtc_state(crtc->state),
13204 pipe_config, true))) {
13205 modeset = crtc_state->mode_changed = true;
13206
13207 ret = drm_atomic_add_affected_planes(state, crtc);
13208 if (ret)
13209 return ret;
13210 }
13211
13212 any_ms = modeset;
13213 intel_dump_pipe_config(to_intel_crtc(crtc),
13214 pipe_config,
13215 modeset ? "[modeset]" : "[fastboot]");
13216 }
13217
13218 if (any_ms) {
13219 ret = intel_modeset_checks(state);
13220
13221 if (ret)
13222 return ret;
13223 } else
13224 to_intel_atomic_state(state)->cdclk =
13225 to_i915(state->dev)->cdclk_freq;
13226
13227 return drm_atomic_helper_check_planes(state->dev, state);
13228 }
13229
13230 /**
13231 * intel_atomic_commit - commit validated state object
13232 * @dev: DRM device
13233 * @state: the top-level driver state object
13234 * @async: asynchronous commit
13235 *
13236 * This function commits a top-level state object that has been validated
13237 * with drm_atomic_helper_check().
13238 *
13239 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13240 * we can only handle plane-related operations and do not yet support
13241 * asynchronous commit.
13242 *
13243 * RETURNS
13244 * Zero for success or -errno.
13245 */
13246 static int intel_atomic_commit(struct drm_device *dev,
13247 struct drm_atomic_state *state,
13248 bool async)
13249 {
13250 struct drm_i915_private *dev_priv = dev->dev_private;
13251 struct drm_crtc *crtc;
13252 struct drm_crtc_state *crtc_state;
13253 int ret = 0;
13254 int i;
13255 bool any_ms = false;
13256
13257 if (async) {
13258 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13259 return -EINVAL;
13260 }
13261
13262 ret = drm_atomic_helper_prepare_planes(dev, state);
13263 if (ret)
13264 return ret;
13265
13266 drm_atomic_helper_swap_state(dev, state);
13267
13268 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13270
13271 if (!needs_modeset(crtc->state))
13272 continue;
13273
13274 any_ms = true;
13275 intel_pre_plane_update(intel_crtc);
13276
13277 if (crtc_state->active) {
13278 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13279 dev_priv->display.crtc_disable(crtc);
13280 intel_crtc->active = false;
13281 intel_disable_shared_dpll(intel_crtc);
13282 }
13283 }
13284
13285 /* Only after disabling all output pipelines that will be changed can we
13286 * update the the output configuration. */
13287 intel_modeset_update_state(state);
13288
13289 /* The state has been swaped above, so state actually contains the
13290 * old state now. */
13291 if (any_ms)
13292 modeset_update_crtc_power_domains(state);
13293
13294 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13295 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13297 bool modeset = needs_modeset(crtc->state);
13298
13299 if (modeset && crtc->state->active) {
13300 update_scanline_offset(to_intel_crtc(crtc));
13301 dev_priv->display.crtc_enable(crtc);
13302 }
13303
13304 if (!modeset)
13305 intel_pre_plane_update(intel_crtc);
13306
13307 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13308 intel_post_plane_update(intel_crtc);
13309 }
13310
13311 /* FIXME: add subpixel order */
13312
13313 drm_atomic_helper_wait_for_vblanks(dev, state);
13314 drm_atomic_helper_cleanup_planes(dev, state);
13315 drm_atomic_state_free(state);
13316
13317 if (any_ms)
13318 intel_modeset_check_state(dev);
13319
13320 return 0;
13321 }
13322
13323 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13324 {
13325 struct drm_device *dev = crtc->dev;
13326 struct drm_atomic_state *state;
13327 struct drm_crtc_state *crtc_state;
13328 int ret;
13329
13330 state = drm_atomic_state_alloc(dev);
13331 if (!state) {
13332 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13333 crtc->base.id);
13334 return;
13335 }
13336
13337 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13338
13339 retry:
13340 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13341 ret = PTR_ERR_OR_ZERO(crtc_state);
13342 if (!ret) {
13343 if (!crtc_state->active)
13344 goto out;
13345
13346 crtc_state->mode_changed = true;
13347 ret = drm_atomic_commit(state);
13348 }
13349
13350 if (ret == -EDEADLK) {
13351 drm_atomic_state_clear(state);
13352 drm_modeset_backoff(state->acquire_ctx);
13353 goto retry;
13354 }
13355
13356 if (ret)
13357 out:
13358 drm_atomic_state_free(state);
13359 }
13360
13361 #undef for_each_intel_crtc_masked
13362
13363 static const struct drm_crtc_funcs intel_crtc_funcs = {
13364 .gamma_set = intel_crtc_gamma_set,
13365 .set_config = drm_atomic_helper_set_config,
13366 .destroy = intel_crtc_destroy,
13367 .page_flip = intel_crtc_page_flip,
13368 .atomic_duplicate_state = intel_crtc_duplicate_state,
13369 .atomic_destroy_state = intel_crtc_destroy_state,
13370 };
13371
13372 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13373 struct intel_shared_dpll *pll,
13374 struct intel_dpll_hw_state *hw_state)
13375 {
13376 uint32_t val;
13377
13378 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13379 return false;
13380
13381 val = I915_READ(PCH_DPLL(pll->id));
13382 hw_state->dpll = val;
13383 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13384 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13385
13386 return val & DPLL_VCO_ENABLE;
13387 }
13388
13389 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13390 struct intel_shared_dpll *pll)
13391 {
13392 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13393 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13394 }
13395
13396 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13397 struct intel_shared_dpll *pll)
13398 {
13399 /* PCH refclock must be enabled first */
13400 ibx_assert_pch_refclk_enabled(dev_priv);
13401
13402 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13403
13404 /* Wait for the clocks to stabilize. */
13405 POSTING_READ(PCH_DPLL(pll->id));
13406 udelay(150);
13407
13408 /* The pixel multiplier can only be updated once the
13409 * DPLL is enabled and the clocks are stable.
13410 *
13411 * So write it again.
13412 */
13413 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13414 POSTING_READ(PCH_DPLL(pll->id));
13415 udelay(200);
13416 }
13417
13418 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13419 struct intel_shared_dpll *pll)
13420 {
13421 struct drm_device *dev = dev_priv->dev;
13422 struct intel_crtc *crtc;
13423
13424 /* Make sure no transcoder isn't still depending on us. */
13425 for_each_intel_crtc(dev, crtc) {
13426 if (intel_crtc_to_shared_dpll(crtc) == pll)
13427 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13428 }
13429
13430 I915_WRITE(PCH_DPLL(pll->id), 0);
13431 POSTING_READ(PCH_DPLL(pll->id));
13432 udelay(200);
13433 }
13434
13435 static char *ibx_pch_dpll_names[] = {
13436 "PCH DPLL A",
13437 "PCH DPLL B",
13438 };
13439
13440 static void ibx_pch_dpll_init(struct drm_device *dev)
13441 {
13442 struct drm_i915_private *dev_priv = dev->dev_private;
13443 int i;
13444
13445 dev_priv->num_shared_dpll = 2;
13446
13447 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13448 dev_priv->shared_dplls[i].id = i;
13449 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13450 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13451 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13452 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13453 dev_priv->shared_dplls[i].get_hw_state =
13454 ibx_pch_dpll_get_hw_state;
13455 }
13456 }
13457
13458 static void intel_shared_dpll_init(struct drm_device *dev)
13459 {
13460 struct drm_i915_private *dev_priv = dev->dev_private;
13461
13462 intel_update_cdclk(dev);
13463
13464 if (HAS_DDI(dev))
13465 intel_ddi_pll_init(dev);
13466 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13467 ibx_pch_dpll_init(dev);
13468 else
13469 dev_priv->num_shared_dpll = 0;
13470
13471 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13472 }
13473
13474 /**
13475 * intel_prepare_plane_fb - Prepare fb for usage on plane
13476 * @plane: drm plane to prepare for
13477 * @fb: framebuffer to prepare for presentation
13478 *
13479 * Prepares a framebuffer for usage on a display plane. Generally this
13480 * involves pinning the underlying object and updating the frontbuffer tracking
13481 * bits. Some older platforms need special physical address handling for
13482 * cursor planes.
13483 *
13484 * Returns 0 on success, negative error code on failure.
13485 */
13486 int
13487 intel_prepare_plane_fb(struct drm_plane *plane,
13488 struct drm_framebuffer *fb,
13489 const struct drm_plane_state *new_state)
13490 {
13491 struct drm_device *dev = plane->dev;
13492 struct intel_plane *intel_plane = to_intel_plane(plane);
13493 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13494 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13495 int ret = 0;
13496
13497 if (!obj)
13498 return 0;
13499
13500 mutex_lock(&dev->struct_mutex);
13501
13502 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13503 INTEL_INFO(dev)->cursor_needs_physical) {
13504 int align = IS_I830(dev) ? 16 * 1024 : 256;
13505 ret = i915_gem_object_attach_phys(obj, align);
13506 if (ret)
13507 DRM_DEBUG_KMS("failed to attach phys object\n");
13508 } else {
13509 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13510 }
13511
13512 if (ret == 0)
13513 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13514
13515 mutex_unlock(&dev->struct_mutex);
13516
13517 return ret;
13518 }
13519
13520 /**
13521 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13522 * @plane: drm plane to clean up for
13523 * @fb: old framebuffer that was on plane
13524 *
13525 * Cleans up a framebuffer that has just been removed from a plane.
13526 */
13527 void
13528 intel_cleanup_plane_fb(struct drm_plane *plane,
13529 struct drm_framebuffer *fb,
13530 const struct drm_plane_state *old_state)
13531 {
13532 struct drm_device *dev = plane->dev;
13533 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13534
13535 if (WARN_ON(!obj))
13536 return;
13537
13538 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13539 !INTEL_INFO(dev)->cursor_needs_physical) {
13540 mutex_lock(&dev->struct_mutex);
13541 intel_unpin_fb_obj(fb, old_state);
13542 mutex_unlock(&dev->struct_mutex);
13543 }
13544 }
13545
13546 int
13547 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13548 {
13549 int max_scale;
13550 struct drm_device *dev;
13551 struct drm_i915_private *dev_priv;
13552 int crtc_clock, cdclk;
13553
13554 if (!intel_crtc || !crtc_state)
13555 return DRM_PLANE_HELPER_NO_SCALING;
13556
13557 dev = intel_crtc->base.dev;
13558 dev_priv = dev->dev_private;
13559 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13560 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13561
13562 if (!crtc_clock || !cdclk)
13563 return DRM_PLANE_HELPER_NO_SCALING;
13564
13565 /*
13566 * skl max scale is lower of:
13567 * close to 3 but not 3, -1 is for that purpose
13568 * or
13569 * cdclk/crtc_clock
13570 */
13571 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13572
13573 return max_scale;
13574 }
13575
13576 static int
13577 intel_check_primary_plane(struct drm_plane *plane,
13578 struct intel_crtc_state *crtc_state,
13579 struct intel_plane_state *state)
13580 {
13581 struct drm_crtc *crtc = state->base.crtc;
13582 struct drm_framebuffer *fb = state->base.fb;
13583 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13584 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13585 bool can_position = false;
13586
13587 /* use scaler when colorkey is not required */
13588 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13589 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13590 min_scale = 1;
13591 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13592 can_position = true;
13593 }
13594
13595 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13596 &state->dst, &state->clip,
13597 min_scale, max_scale,
13598 can_position, true,
13599 &state->visible);
13600 }
13601
13602 static void
13603 intel_commit_primary_plane(struct drm_plane *plane,
13604 struct intel_plane_state *state)
13605 {
13606 struct drm_crtc *crtc = state->base.crtc;
13607 struct drm_framebuffer *fb = state->base.fb;
13608 struct drm_device *dev = plane->dev;
13609 struct drm_i915_private *dev_priv = dev->dev_private;
13610 struct intel_crtc *intel_crtc;
13611 struct drm_rect *src = &state->src;
13612
13613 crtc = crtc ? crtc : plane->crtc;
13614 intel_crtc = to_intel_crtc(crtc);
13615
13616 plane->fb = fb;
13617 crtc->x = src->x1 >> 16;
13618 crtc->y = src->y1 >> 16;
13619
13620 if (!crtc->state->active)
13621 return;
13622
13623 if (state->visible)
13624 /* FIXME: kill this fastboot hack */
13625 intel_update_pipe_size(intel_crtc);
13626
13627 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13628 }
13629
13630 static void
13631 intel_disable_primary_plane(struct drm_plane *plane,
13632 struct drm_crtc *crtc)
13633 {
13634 struct drm_device *dev = plane->dev;
13635 struct drm_i915_private *dev_priv = dev->dev_private;
13636
13637 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13638 }
13639
13640 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13641 {
13642 struct drm_device *dev = crtc->dev;
13643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13644
13645 if (intel_crtc->atomic.update_wm_pre)
13646 intel_update_watermarks(crtc);
13647
13648 /* Perform vblank evasion around commit operation */
13649 if (crtc->state->active)
13650 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13651
13652 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13653 skl_detach_scalers(intel_crtc);
13654 }
13655
13656 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13657 {
13658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13659
13660 if (crtc->state->active)
13661 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13662 }
13663
13664 /**
13665 * intel_plane_destroy - destroy a plane
13666 * @plane: plane to destroy
13667 *
13668 * Common destruction function for all types of planes (primary, cursor,
13669 * sprite).
13670 */
13671 void intel_plane_destroy(struct drm_plane *plane)
13672 {
13673 struct intel_plane *intel_plane = to_intel_plane(plane);
13674 drm_plane_cleanup(plane);
13675 kfree(intel_plane);
13676 }
13677
13678 const struct drm_plane_funcs intel_plane_funcs = {
13679 .update_plane = drm_atomic_helper_update_plane,
13680 .disable_plane = drm_atomic_helper_disable_plane,
13681 .destroy = intel_plane_destroy,
13682 .set_property = drm_atomic_helper_plane_set_property,
13683 .atomic_get_property = intel_plane_atomic_get_property,
13684 .atomic_set_property = intel_plane_atomic_set_property,
13685 .atomic_duplicate_state = intel_plane_duplicate_state,
13686 .atomic_destroy_state = intel_plane_destroy_state,
13687
13688 };
13689
13690 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13691 int pipe)
13692 {
13693 struct intel_plane *primary;
13694 struct intel_plane_state *state;
13695 const uint32_t *intel_primary_formats;
13696 int num_formats;
13697
13698 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13699 if (primary == NULL)
13700 return NULL;
13701
13702 state = intel_create_plane_state(&primary->base);
13703 if (!state) {
13704 kfree(primary);
13705 return NULL;
13706 }
13707 primary->base.state = &state->base;
13708
13709 primary->can_scale = false;
13710 primary->max_downscale = 1;
13711 if (INTEL_INFO(dev)->gen >= 9) {
13712 primary->can_scale = true;
13713 state->scaler_id = -1;
13714 }
13715 primary->pipe = pipe;
13716 primary->plane = pipe;
13717 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13718 primary->check_plane = intel_check_primary_plane;
13719 primary->commit_plane = intel_commit_primary_plane;
13720 primary->disable_plane = intel_disable_primary_plane;
13721 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13722 primary->plane = !pipe;
13723
13724 if (INTEL_INFO(dev)->gen >= 9) {
13725 intel_primary_formats = skl_primary_formats;
13726 num_formats = ARRAY_SIZE(skl_primary_formats);
13727 } else if (INTEL_INFO(dev)->gen >= 4) {
13728 intel_primary_formats = i965_primary_formats;
13729 num_formats = ARRAY_SIZE(i965_primary_formats);
13730 } else {
13731 intel_primary_formats = i8xx_primary_formats;
13732 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13733 }
13734
13735 drm_universal_plane_init(dev, &primary->base, 0,
13736 &intel_plane_funcs,
13737 intel_primary_formats, num_formats,
13738 DRM_PLANE_TYPE_PRIMARY);
13739
13740 if (INTEL_INFO(dev)->gen >= 4)
13741 intel_create_rotation_property(dev, primary);
13742
13743 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13744
13745 return &primary->base;
13746 }
13747
13748 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13749 {
13750 if (!dev->mode_config.rotation_property) {
13751 unsigned long flags = BIT(DRM_ROTATE_0) |
13752 BIT(DRM_ROTATE_180);
13753
13754 if (INTEL_INFO(dev)->gen >= 9)
13755 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13756
13757 dev->mode_config.rotation_property =
13758 drm_mode_create_rotation_property(dev, flags);
13759 }
13760 if (dev->mode_config.rotation_property)
13761 drm_object_attach_property(&plane->base.base,
13762 dev->mode_config.rotation_property,
13763 plane->base.state->rotation);
13764 }
13765
13766 static int
13767 intel_check_cursor_plane(struct drm_plane *plane,
13768 struct intel_crtc_state *crtc_state,
13769 struct intel_plane_state *state)
13770 {
13771 struct drm_crtc *crtc = crtc_state->base.crtc;
13772 struct drm_framebuffer *fb = state->base.fb;
13773 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13774 unsigned stride;
13775 int ret;
13776
13777 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13778 &state->dst, &state->clip,
13779 DRM_PLANE_HELPER_NO_SCALING,
13780 DRM_PLANE_HELPER_NO_SCALING,
13781 true, true, &state->visible);
13782 if (ret)
13783 return ret;
13784
13785 /* if we want to turn off the cursor ignore width and height */
13786 if (!obj)
13787 return 0;
13788
13789 /* Check for which cursor types we support */
13790 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13791 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13792 state->base.crtc_w, state->base.crtc_h);
13793 return -EINVAL;
13794 }
13795
13796 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13797 if (obj->base.size < stride * state->base.crtc_h) {
13798 DRM_DEBUG_KMS("buffer is too small\n");
13799 return -ENOMEM;
13800 }
13801
13802 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13803 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13804 return -EINVAL;
13805 }
13806
13807 return 0;
13808 }
13809
13810 static void
13811 intel_disable_cursor_plane(struct drm_plane *plane,
13812 struct drm_crtc *crtc)
13813 {
13814 intel_crtc_update_cursor(crtc, false);
13815 }
13816
13817 static void
13818 intel_commit_cursor_plane(struct drm_plane *plane,
13819 struct intel_plane_state *state)
13820 {
13821 struct drm_crtc *crtc = state->base.crtc;
13822 struct drm_device *dev = plane->dev;
13823 struct intel_crtc *intel_crtc;
13824 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13825 uint32_t addr;
13826
13827 crtc = crtc ? crtc : plane->crtc;
13828 intel_crtc = to_intel_crtc(crtc);
13829
13830 plane->fb = state->base.fb;
13831 crtc->cursor_x = state->base.crtc_x;
13832 crtc->cursor_y = state->base.crtc_y;
13833
13834 if (intel_crtc->cursor_bo == obj)
13835 goto update;
13836
13837 if (!obj)
13838 addr = 0;
13839 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13840 addr = i915_gem_obj_ggtt_offset(obj);
13841 else
13842 addr = obj->phys_handle->busaddr;
13843
13844 intel_crtc->cursor_addr = addr;
13845 intel_crtc->cursor_bo = obj;
13846
13847 update:
13848 if (crtc->state->active)
13849 intel_crtc_update_cursor(crtc, state->visible);
13850 }
13851
13852 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13853 int pipe)
13854 {
13855 struct intel_plane *cursor;
13856 struct intel_plane_state *state;
13857
13858 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13859 if (cursor == NULL)
13860 return NULL;
13861
13862 state = intel_create_plane_state(&cursor->base);
13863 if (!state) {
13864 kfree(cursor);
13865 return NULL;
13866 }
13867 cursor->base.state = &state->base;
13868
13869 cursor->can_scale = false;
13870 cursor->max_downscale = 1;
13871 cursor->pipe = pipe;
13872 cursor->plane = pipe;
13873 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13874 cursor->check_plane = intel_check_cursor_plane;
13875 cursor->commit_plane = intel_commit_cursor_plane;
13876 cursor->disable_plane = intel_disable_cursor_plane;
13877
13878 drm_universal_plane_init(dev, &cursor->base, 0,
13879 &intel_plane_funcs,
13880 intel_cursor_formats,
13881 ARRAY_SIZE(intel_cursor_formats),
13882 DRM_PLANE_TYPE_CURSOR);
13883
13884 if (INTEL_INFO(dev)->gen >= 4) {
13885 if (!dev->mode_config.rotation_property)
13886 dev->mode_config.rotation_property =
13887 drm_mode_create_rotation_property(dev,
13888 BIT(DRM_ROTATE_0) |
13889 BIT(DRM_ROTATE_180));
13890 if (dev->mode_config.rotation_property)
13891 drm_object_attach_property(&cursor->base.base,
13892 dev->mode_config.rotation_property,
13893 state->base.rotation);
13894 }
13895
13896 if (INTEL_INFO(dev)->gen >=9)
13897 state->scaler_id = -1;
13898
13899 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13900
13901 return &cursor->base;
13902 }
13903
13904 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13905 struct intel_crtc_state *crtc_state)
13906 {
13907 int i;
13908 struct intel_scaler *intel_scaler;
13909 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13910
13911 for (i = 0; i < intel_crtc->num_scalers; i++) {
13912 intel_scaler = &scaler_state->scalers[i];
13913 intel_scaler->in_use = 0;
13914 intel_scaler->mode = PS_SCALER_MODE_DYN;
13915 }
13916
13917 scaler_state->scaler_id = -1;
13918 }
13919
13920 static void intel_crtc_init(struct drm_device *dev, int pipe)
13921 {
13922 struct drm_i915_private *dev_priv = dev->dev_private;
13923 struct intel_crtc *intel_crtc;
13924 struct intel_crtc_state *crtc_state = NULL;
13925 struct drm_plane *primary = NULL;
13926 struct drm_plane *cursor = NULL;
13927 int i, ret;
13928
13929 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13930 if (intel_crtc == NULL)
13931 return;
13932
13933 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13934 if (!crtc_state)
13935 goto fail;
13936 intel_crtc->config = crtc_state;
13937 intel_crtc->base.state = &crtc_state->base;
13938 crtc_state->base.crtc = &intel_crtc->base;
13939
13940 /* initialize shared scalers */
13941 if (INTEL_INFO(dev)->gen >= 9) {
13942 if (pipe == PIPE_C)
13943 intel_crtc->num_scalers = 1;
13944 else
13945 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13946
13947 skl_init_scalers(dev, intel_crtc, crtc_state);
13948 }
13949
13950 primary = intel_primary_plane_create(dev, pipe);
13951 if (!primary)
13952 goto fail;
13953
13954 cursor = intel_cursor_plane_create(dev, pipe);
13955 if (!cursor)
13956 goto fail;
13957
13958 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13959 cursor, &intel_crtc_funcs);
13960 if (ret)
13961 goto fail;
13962
13963 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13964 for (i = 0; i < 256; i++) {
13965 intel_crtc->lut_r[i] = i;
13966 intel_crtc->lut_g[i] = i;
13967 intel_crtc->lut_b[i] = i;
13968 }
13969
13970 /*
13971 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13972 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13973 */
13974 intel_crtc->pipe = pipe;
13975 intel_crtc->plane = pipe;
13976 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13977 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13978 intel_crtc->plane = !pipe;
13979 }
13980
13981 intel_crtc->cursor_base = ~0;
13982 intel_crtc->cursor_cntl = ~0;
13983 intel_crtc->cursor_size = ~0;
13984
13985 intel_crtc->wm.cxsr_allowed = true;
13986
13987 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13988 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13989 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13990 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13991
13992 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13993
13994 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13995 return;
13996
13997 fail:
13998 if (primary)
13999 drm_plane_cleanup(primary);
14000 if (cursor)
14001 drm_plane_cleanup(cursor);
14002 kfree(crtc_state);
14003 kfree(intel_crtc);
14004 }
14005
14006 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14007 {
14008 struct drm_encoder *encoder = connector->base.encoder;
14009 struct drm_device *dev = connector->base.dev;
14010
14011 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14012
14013 if (!encoder || WARN_ON(!encoder->crtc))
14014 return INVALID_PIPE;
14015
14016 return to_intel_crtc(encoder->crtc)->pipe;
14017 }
14018
14019 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14020 struct drm_file *file)
14021 {
14022 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14023 struct drm_crtc *drmmode_crtc;
14024 struct intel_crtc *crtc;
14025
14026 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14027
14028 if (!drmmode_crtc) {
14029 DRM_ERROR("no such CRTC id\n");
14030 return -ENOENT;
14031 }
14032
14033 crtc = to_intel_crtc(drmmode_crtc);
14034 pipe_from_crtc_id->pipe = crtc->pipe;
14035
14036 return 0;
14037 }
14038
14039 static int intel_encoder_clones(struct intel_encoder *encoder)
14040 {
14041 struct drm_device *dev = encoder->base.dev;
14042 struct intel_encoder *source_encoder;
14043 int index_mask = 0;
14044 int entry = 0;
14045
14046 for_each_intel_encoder(dev, source_encoder) {
14047 if (encoders_cloneable(encoder, source_encoder))
14048 index_mask |= (1 << entry);
14049
14050 entry++;
14051 }
14052
14053 return index_mask;
14054 }
14055
14056 static bool has_edp_a(struct drm_device *dev)
14057 {
14058 struct drm_i915_private *dev_priv = dev->dev_private;
14059
14060 if (!IS_MOBILE(dev))
14061 return false;
14062
14063 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14064 return false;
14065
14066 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14067 return false;
14068
14069 return true;
14070 }
14071
14072 static bool intel_crt_present(struct drm_device *dev)
14073 {
14074 struct drm_i915_private *dev_priv = dev->dev_private;
14075
14076 if (INTEL_INFO(dev)->gen >= 9)
14077 return false;
14078
14079 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14080 return false;
14081
14082 if (IS_CHERRYVIEW(dev))
14083 return false;
14084
14085 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14086 return false;
14087
14088 return true;
14089 }
14090
14091 static void intel_setup_outputs(struct drm_device *dev)
14092 {
14093 struct drm_i915_private *dev_priv = dev->dev_private;
14094 struct intel_encoder *encoder;
14095 bool dpd_is_edp = false;
14096
14097 intel_lvds_init(dev);
14098
14099 if (intel_crt_present(dev))
14100 intel_crt_init(dev);
14101
14102 if (IS_BROXTON(dev)) {
14103 /*
14104 * FIXME: Broxton doesn't support port detection via the
14105 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14106 * detect the ports.
14107 */
14108 intel_ddi_init(dev, PORT_A);
14109 intel_ddi_init(dev, PORT_B);
14110 intel_ddi_init(dev, PORT_C);
14111 } else if (HAS_DDI(dev)) {
14112 int found;
14113
14114 /*
14115 * Haswell uses DDI functions to detect digital outputs.
14116 * On SKL pre-D0 the strap isn't connected, so we assume
14117 * it's there.
14118 */
14119 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14120 /* WaIgnoreDDIAStrap: skl */
14121 if (found ||
14122 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14123 intel_ddi_init(dev, PORT_A);
14124
14125 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14126 * register */
14127 found = I915_READ(SFUSE_STRAP);
14128
14129 if (found & SFUSE_STRAP_DDIB_DETECTED)
14130 intel_ddi_init(dev, PORT_B);
14131 if (found & SFUSE_STRAP_DDIC_DETECTED)
14132 intel_ddi_init(dev, PORT_C);
14133 if (found & SFUSE_STRAP_DDID_DETECTED)
14134 intel_ddi_init(dev, PORT_D);
14135 } else if (HAS_PCH_SPLIT(dev)) {
14136 int found;
14137 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14138
14139 if (has_edp_a(dev))
14140 intel_dp_init(dev, DP_A, PORT_A);
14141
14142 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14143 /* PCH SDVOB multiplex with HDMIB */
14144 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14145 if (!found)
14146 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14147 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14148 intel_dp_init(dev, PCH_DP_B, PORT_B);
14149 }
14150
14151 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14152 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14153
14154 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14155 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14156
14157 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14158 intel_dp_init(dev, PCH_DP_C, PORT_C);
14159
14160 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14161 intel_dp_init(dev, PCH_DP_D, PORT_D);
14162 } else if (IS_VALLEYVIEW(dev)) {
14163 /*
14164 * The DP_DETECTED bit is the latched state of the DDC
14165 * SDA pin at boot. However since eDP doesn't require DDC
14166 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14167 * eDP ports may have been muxed to an alternate function.
14168 * Thus we can't rely on the DP_DETECTED bit alone to detect
14169 * eDP ports. Consult the VBT as well as DP_DETECTED to
14170 * detect eDP ports.
14171 */
14172 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14173 !intel_dp_is_edp(dev, PORT_B))
14174 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14175 PORT_B);
14176 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14177 intel_dp_is_edp(dev, PORT_B))
14178 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14179
14180 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14181 !intel_dp_is_edp(dev, PORT_C))
14182 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14183 PORT_C);
14184 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14185 intel_dp_is_edp(dev, PORT_C))
14186 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14187
14188 if (IS_CHERRYVIEW(dev)) {
14189 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14190 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14191 PORT_D);
14192 /* eDP not supported on port D, so don't check VBT */
14193 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14194 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14195 }
14196
14197 intel_dsi_init(dev);
14198 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14199 bool found = false;
14200
14201 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14202 DRM_DEBUG_KMS("probing SDVOB\n");
14203 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14204 if (!found && IS_G4X(dev)) {
14205 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14206 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14207 }
14208
14209 if (!found && IS_G4X(dev))
14210 intel_dp_init(dev, DP_B, PORT_B);
14211 }
14212
14213 /* Before G4X SDVOC doesn't have its own detect register */
14214
14215 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14216 DRM_DEBUG_KMS("probing SDVOC\n");
14217 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14218 }
14219
14220 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14221
14222 if (IS_G4X(dev)) {
14223 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14224 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14225 }
14226 if (IS_G4X(dev))
14227 intel_dp_init(dev, DP_C, PORT_C);
14228 }
14229
14230 if (IS_G4X(dev) &&
14231 (I915_READ(DP_D) & DP_DETECTED))
14232 intel_dp_init(dev, DP_D, PORT_D);
14233 } else if (IS_GEN2(dev))
14234 intel_dvo_init(dev);
14235
14236 if (SUPPORTS_TV(dev))
14237 intel_tv_init(dev);
14238
14239 intel_psr_init(dev);
14240
14241 for_each_intel_encoder(dev, encoder) {
14242 encoder->base.possible_crtcs = encoder->crtc_mask;
14243 encoder->base.possible_clones =
14244 intel_encoder_clones(encoder);
14245 }
14246
14247 intel_init_pch_refclk(dev);
14248
14249 drm_helper_move_panel_connectors_to_head(dev);
14250 }
14251
14252 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14253 {
14254 struct drm_device *dev = fb->dev;
14255 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14256
14257 drm_framebuffer_cleanup(fb);
14258 mutex_lock(&dev->struct_mutex);
14259 WARN_ON(!intel_fb->obj->framebuffer_references--);
14260 drm_gem_object_unreference(&intel_fb->obj->base);
14261 mutex_unlock(&dev->struct_mutex);
14262 kfree(intel_fb);
14263 }
14264
14265 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14266 struct drm_file *file,
14267 unsigned int *handle)
14268 {
14269 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14270 struct drm_i915_gem_object *obj = intel_fb->obj;
14271
14272 return drm_gem_handle_create(file, &obj->base, handle);
14273 }
14274
14275 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14276 struct drm_file *file,
14277 unsigned flags, unsigned color,
14278 struct drm_clip_rect *clips,
14279 unsigned num_clips)
14280 {
14281 struct drm_device *dev = fb->dev;
14282 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14283 struct drm_i915_gem_object *obj = intel_fb->obj;
14284
14285 mutex_lock(&dev->struct_mutex);
14286 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
14287 mutex_unlock(&dev->struct_mutex);
14288
14289 return 0;
14290 }
14291
14292 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14293 .destroy = intel_user_framebuffer_destroy,
14294 .create_handle = intel_user_framebuffer_create_handle,
14295 .dirty = intel_user_framebuffer_dirty,
14296 };
14297
14298 static
14299 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14300 uint32_t pixel_format)
14301 {
14302 u32 gen = INTEL_INFO(dev)->gen;
14303
14304 if (gen >= 9) {
14305 /* "The stride in bytes must not exceed the of the size of 8K
14306 * pixels and 32K bytes."
14307 */
14308 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14309 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14310 return 32*1024;
14311 } else if (gen >= 4) {
14312 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14313 return 16*1024;
14314 else
14315 return 32*1024;
14316 } else if (gen >= 3) {
14317 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14318 return 8*1024;
14319 else
14320 return 16*1024;
14321 } else {
14322 /* XXX DSPC is limited to 4k tiled */
14323 return 8*1024;
14324 }
14325 }
14326
14327 static int intel_framebuffer_init(struct drm_device *dev,
14328 struct intel_framebuffer *intel_fb,
14329 struct drm_mode_fb_cmd2 *mode_cmd,
14330 struct drm_i915_gem_object *obj)
14331 {
14332 unsigned int aligned_height;
14333 int ret;
14334 u32 pitch_limit, stride_alignment;
14335
14336 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14337
14338 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14339 /* Enforce that fb modifier and tiling mode match, but only for
14340 * X-tiled. This is needed for FBC. */
14341 if (!!(obj->tiling_mode == I915_TILING_X) !=
14342 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14343 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14344 return -EINVAL;
14345 }
14346 } else {
14347 if (obj->tiling_mode == I915_TILING_X)
14348 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14349 else if (obj->tiling_mode == I915_TILING_Y) {
14350 DRM_DEBUG("No Y tiling for legacy addfb\n");
14351 return -EINVAL;
14352 }
14353 }
14354
14355 /* Passed in modifier sanity checking. */
14356 switch (mode_cmd->modifier[0]) {
14357 case I915_FORMAT_MOD_Y_TILED:
14358 case I915_FORMAT_MOD_Yf_TILED:
14359 if (INTEL_INFO(dev)->gen < 9) {
14360 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14361 mode_cmd->modifier[0]);
14362 return -EINVAL;
14363 }
14364 case DRM_FORMAT_MOD_NONE:
14365 case I915_FORMAT_MOD_X_TILED:
14366 break;
14367 default:
14368 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14369 mode_cmd->modifier[0]);
14370 return -EINVAL;
14371 }
14372
14373 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14374 mode_cmd->pixel_format);
14375 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14376 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14377 mode_cmd->pitches[0], stride_alignment);
14378 return -EINVAL;
14379 }
14380
14381 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14382 mode_cmd->pixel_format);
14383 if (mode_cmd->pitches[0] > pitch_limit) {
14384 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14385 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14386 "tiled" : "linear",
14387 mode_cmd->pitches[0], pitch_limit);
14388 return -EINVAL;
14389 }
14390
14391 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14392 mode_cmd->pitches[0] != obj->stride) {
14393 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14394 mode_cmd->pitches[0], obj->stride);
14395 return -EINVAL;
14396 }
14397
14398 /* Reject formats not supported by any plane early. */
14399 switch (mode_cmd->pixel_format) {
14400 case DRM_FORMAT_C8:
14401 case DRM_FORMAT_RGB565:
14402 case DRM_FORMAT_XRGB8888:
14403 case DRM_FORMAT_ARGB8888:
14404 break;
14405 case DRM_FORMAT_XRGB1555:
14406 if (INTEL_INFO(dev)->gen > 3) {
14407 DRM_DEBUG("unsupported pixel format: %s\n",
14408 drm_get_format_name(mode_cmd->pixel_format));
14409 return -EINVAL;
14410 }
14411 break;
14412 case DRM_FORMAT_ABGR8888:
14413 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14414 DRM_DEBUG("unsupported pixel format: %s\n",
14415 drm_get_format_name(mode_cmd->pixel_format));
14416 return -EINVAL;
14417 }
14418 break;
14419 case DRM_FORMAT_XBGR8888:
14420 case DRM_FORMAT_XRGB2101010:
14421 case DRM_FORMAT_XBGR2101010:
14422 if (INTEL_INFO(dev)->gen < 4) {
14423 DRM_DEBUG("unsupported pixel format: %s\n",
14424 drm_get_format_name(mode_cmd->pixel_format));
14425 return -EINVAL;
14426 }
14427 break;
14428 case DRM_FORMAT_ABGR2101010:
14429 if (!IS_VALLEYVIEW(dev)) {
14430 DRM_DEBUG("unsupported pixel format: %s\n",
14431 drm_get_format_name(mode_cmd->pixel_format));
14432 return -EINVAL;
14433 }
14434 break;
14435 case DRM_FORMAT_YUYV:
14436 case DRM_FORMAT_UYVY:
14437 case DRM_FORMAT_YVYU:
14438 case DRM_FORMAT_VYUY:
14439 if (INTEL_INFO(dev)->gen < 5) {
14440 DRM_DEBUG("unsupported pixel format: %s\n",
14441 drm_get_format_name(mode_cmd->pixel_format));
14442 return -EINVAL;
14443 }
14444 break;
14445 default:
14446 DRM_DEBUG("unsupported pixel format: %s\n",
14447 drm_get_format_name(mode_cmd->pixel_format));
14448 return -EINVAL;
14449 }
14450
14451 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14452 if (mode_cmd->offsets[0] != 0)
14453 return -EINVAL;
14454
14455 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14456 mode_cmd->pixel_format,
14457 mode_cmd->modifier[0]);
14458 /* FIXME drm helper for size checks (especially planar formats)? */
14459 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14460 return -EINVAL;
14461
14462 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14463 intel_fb->obj = obj;
14464 intel_fb->obj->framebuffer_references++;
14465
14466 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14467 if (ret) {
14468 DRM_ERROR("framebuffer init failed %d\n", ret);
14469 return ret;
14470 }
14471
14472 return 0;
14473 }
14474
14475 static struct drm_framebuffer *
14476 intel_user_framebuffer_create(struct drm_device *dev,
14477 struct drm_file *filp,
14478 struct drm_mode_fb_cmd2 *mode_cmd)
14479 {
14480 struct drm_i915_gem_object *obj;
14481
14482 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14483 mode_cmd->handles[0]));
14484 if (&obj->base == NULL)
14485 return ERR_PTR(-ENOENT);
14486
14487 return intel_framebuffer_create(dev, mode_cmd, obj);
14488 }
14489
14490 #ifndef CONFIG_DRM_I915_FBDEV
14491 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14492 {
14493 }
14494 #endif
14495
14496 static const struct drm_mode_config_funcs intel_mode_funcs = {
14497 .fb_create = intel_user_framebuffer_create,
14498 .output_poll_changed = intel_fbdev_output_poll_changed,
14499 .atomic_check = intel_atomic_check,
14500 .atomic_commit = intel_atomic_commit,
14501 .atomic_state_alloc = intel_atomic_state_alloc,
14502 .atomic_state_clear = intel_atomic_state_clear,
14503 };
14504
14505 /* Set up chip specific display functions */
14506 static void intel_init_display(struct drm_device *dev)
14507 {
14508 struct drm_i915_private *dev_priv = dev->dev_private;
14509
14510 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14511 dev_priv->display.find_dpll = g4x_find_best_dpll;
14512 else if (IS_CHERRYVIEW(dev))
14513 dev_priv->display.find_dpll = chv_find_best_dpll;
14514 else if (IS_VALLEYVIEW(dev))
14515 dev_priv->display.find_dpll = vlv_find_best_dpll;
14516 else if (IS_PINEVIEW(dev))
14517 dev_priv->display.find_dpll = pnv_find_best_dpll;
14518 else
14519 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14520
14521 if (INTEL_INFO(dev)->gen >= 9) {
14522 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14523 dev_priv->display.get_initial_plane_config =
14524 skylake_get_initial_plane_config;
14525 dev_priv->display.crtc_compute_clock =
14526 haswell_crtc_compute_clock;
14527 dev_priv->display.crtc_enable = haswell_crtc_enable;
14528 dev_priv->display.crtc_disable = haswell_crtc_disable;
14529 dev_priv->display.update_primary_plane =
14530 skylake_update_primary_plane;
14531 } else if (HAS_DDI(dev)) {
14532 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14533 dev_priv->display.get_initial_plane_config =
14534 ironlake_get_initial_plane_config;
14535 dev_priv->display.crtc_compute_clock =
14536 haswell_crtc_compute_clock;
14537 dev_priv->display.crtc_enable = haswell_crtc_enable;
14538 dev_priv->display.crtc_disable = haswell_crtc_disable;
14539 dev_priv->display.update_primary_plane =
14540 ironlake_update_primary_plane;
14541 } else if (HAS_PCH_SPLIT(dev)) {
14542 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14543 dev_priv->display.get_initial_plane_config =
14544 ironlake_get_initial_plane_config;
14545 dev_priv->display.crtc_compute_clock =
14546 ironlake_crtc_compute_clock;
14547 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14548 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14549 dev_priv->display.update_primary_plane =
14550 ironlake_update_primary_plane;
14551 } else if (IS_VALLEYVIEW(dev)) {
14552 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14553 dev_priv->display.get_initial_plane_config =
14554 i9xx_get_initial_plane_config;
14555 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14556 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14557 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14558 dev_priv->display.update_primary_plane =
14559 i9xx_update_primary_plane;
14560 } else {
14561 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14562 dev_priv->display.get_initial_plane_config =
14563 i9xx_get_initial_plane_config;
14564 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14565 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14566 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14567 dev_priv->display.update_primary_plane =
14568 i9xx_update_primary_plane;
14569 }
14570
14571 /* Returns the core display clock speed */
14572 if (IS_SKYLAKE(dev))
14573 dev_priv->display.get_display_clock_speed =
14574 skylake_get_display_clock_speed;
14575 else if (IS_BROXTON(dev))
14576 dev_priv->display.get_display_clock_speed =
14577 broxton_get_display_clock_speed;
14578 else if (IS_BROADWELL(dev))
14579 dev_priv->display.get_display_clock_speed =
14580 broadwell_get_display_clock_speed;
14581 else if (IS_HASWELL(dev))
14582 dev_priv->display.get_display_clock_speed =
14583 haswell_get_display_clock_speed;
14584 else if (IS_VALLEYVIEW(dev))
14585 dev_priv->display.get_display_clock_speed =
14586 valleyview_get_display_clock_speed;
14587 else if (IS_GEN5(dev))
14588 dev_priv->display.get_display_clock_speed =
14589 ilk_get_display_clock_speed;
14590 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14591 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14592 dev_priv->display.get_display_clock_speed =
14593 i945_get_display_clock_speed;
14594 else if (IS_GM45(dev))
14595 dev_priv->display.get_display_clock_speed =
14596 gm45_get_display_clock_speed;
14597 else if (IS_CRESTLINE(dev))
14598 dev_priv->display.get_display_clock_speed =
14599 i965gm_get_display_clock_speed;
14600 else if (IS_PINEVIEW(dev))
14601 dev_priv->display.get_display_clock_speed =
14602 pnv_get_display_clock_speed;
14603 else if (IS_G33(dev) || IS_G4X(dev))
14604 dev_priv->display.get_display_clock_speed =
14605 g33_get_display_clock_speed;
14606 else if (IS_I915G(dev))
14607 dev_priv->display.get_display_clock_speed =
14608 i915_get_display_clock_speed;
14609 else if (IS_I945GM(dev) || IS_845G(dev))
14610 dev_priv->display.get_display_clock_speed =
14611 i9xx_misc_get_display_clock_speed;
14612 else if (IS_PINEVIEW(dev))
14613 dev_priv->display.get_display_clock_speed =
14614 pnv_get_display_clock_speed;
14615 else if (IS_I915GM(dev))
14616 dev_priv->display.get_display_clock_speed =
14617 i915gm_get_display_clock_speed;
14618 else if (IS_I865G(dev))
14619 dev_priv->display.get_display_clock_speed =
14620 i865_get_display_clock_speed;
14621 else if (IS_I85X(dev))
14622 dev_priv->display.get_display_clock_speed =
14623 i85x_get_display_clock_speed;
14624 else { /* 830 */
14625 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14626 dev_priv->display.get_display_clock_speed =
14627 i830_get_display_clock_speed;
14628 }
14629
14630 if (IS_GEN5(dev)) {
14631 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14632 } else if (IS_GEN6(dev)) {
14633 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14634 } else if (IS_IVYBRIDGE(dev)) {
14635 /* FIXME: detect B0+ stepping and use auto training */
14636 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14637 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14638 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14639 if (IS_BROADWELL(dev)) {
14640 dev_priv->display.modeset_commit_cdclk =
14641 broadwell_modeset_commit_cdclk;
14642 dev_priv->display.modeset_calc_cdclk =
14643 broadwell_modeset_calc_cdclk;
14644 }
14645 } else if (IS_VALLEYVIEW(dev)) {
14646 dev_priv->display.modeset_commit_cdclk =
14647 valleyview_modeset_commit_cdclk;
14648 dev_priv->display.modeset_calc_cdclk =
14649 valleyview_modeset_calc_cdclk;
14650 } else if (IS_BROXTON(dev)) {
14651 dev_priv->display.modeset_commit_cdclk =
14652 broxton_modeset_commit_cdclk;
14653 dev_priv->display.modeset_calc_cdclk =
14654 broxton_modeset_calc_cdclk;
14655 }
14656
14657 switch (INTEL_INFO(dev)->gen) {
14658 case 2:
14659 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14660 break;
14661
14662 case 3:
14663 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14664 break;
14665
14666 case 4:
14667 case 5:
14668 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14669 break;
14670
14671 case 6:
14672 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14673 break;
14674 case 7:
14675 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14676 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14677 break;
14678 case 9:
14679 /* Drop through - unsupported since execlist only. */
14680 default:
14681 /* Default just returns -ENODEV to indicate unsupported */
14682 dev_priv->display.queue_flip = intel_default_queue_flip;
14683 }
14684
14685 intel_panel_init_backlight_funcs(dev);
14686
14687 mutex_init(&dev_priv->pps_mutex);
14688 }
14689
14690 /*
14691 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14692 * resume, or other times. This quirk makes sure that's the case for
14693 * affected systems.
14694 */
14695 static void quirk_pipea_force(struct drm_device *dev)
14696 {
14697 struct drm_i915_private *dev_priv = dev->dev_private;
14698
14699 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14700 DRM_INFO("applying pipe a force quirk\n");
14701 }
14702
14703 static void quirk_pipeb_force(struct drm_device *dev)
14704 {
14705 struct drm_i915_private *dev_priv = dev->dev_private;
14706
14707 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14708 DRM_INFO("applying pipe b force quirk\n");
14709 }
14710
14711 /*
14712 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14713 */
14714 static void quirk_ssc_force_disable(struct drm_device *dev)
14715 {
14716 struct drm_i915_private *dev_priv = dev->dev_private;
14717 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14718 DRM_INFO("applying lvds SSC disable quirk\n");
14719 }
14720
14721 /*
14722 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14723 * brightness value
14724 */
14725 static void quirk_invert_brightness(struct drm_device *dev)
14726 {
14727 struct drm_i915_private *dev_priv = dev->dev_private;
14728 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14729 DRM_INFO("applying inverted panel brightness quirk\n");
14730 }
14731
14732 /* Some VBT's incorrectly indicate no backlight is present */
14733 static void quirk_backlight_present(struct drm_device *dev)
14734 {
14735 struct drm_i915_private *dev_priv = dev->dev_private;
14736 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14737 DRM_INFO("applying backlight present quirk\n");
14738 }
14739
14740 struct intel_quirk {
14741 int device;
14742 int subsystem_vendor;
14743 int subsystem_device;
14744 void (*hook)(struct drm_device *dev);
14745 };
14746
14747 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14748 struct intel_dmi_quirk {
14749 void (*hook)(struct drm_device *dev);
14750 const struct dmi_system_id (*dmi_id_list)[];
14751 };
14752
14753 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14754 {
14755 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14756 return 1;
14757 }
14758
14759 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14760 {
14761 .dmi_id_list = &(const struct dmi_system_id[]) {
14762 {
14763 .callback = intel_dmi_reverse_brightness,
14764 .ident = "NCR Corporation",
14765 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14766 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14767 },
14768 },
14769 { } /* terminating entry */
14770 },
14771 .hook = quirk_invert_brightness,
14772 },
14773 };
14774
14775 static struct intel_quirk intel_quirks[] = {
14776 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14777 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14778
14779 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14780 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14781
14782 /* 830 needs to leave pipe A & dpll A up */
14783 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14784
14785 /* 830 needs to leave pipe B & dpll B up */
14786 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14787
14788 /* Lenovo U160 cannot use SSC on LVDS */
14789 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14790
14791 /* Sony Vaio Y cannot use SSC on LVDS */
14792 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14793
14794 /* Acer Aspire 5734Z must invert backlight brightness */
14795 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14796
14797 /* Acer/eMachines G725 */
14798 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14799
14800 /* Acer/eMachines e725 */
14801 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14802
14803 /* Acer/Packard Bell NCL20 */
14804 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14805
14806 /* Acer Aspire 4736Z */
14807 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14808
14809 /* Acer Aspire 5336 */
14810 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14811
14812 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14813 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14814
14815 /* Acer C720 Chromebook (Core i3 4005U) */
14816 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14817
14818 /* Apple Macbook 2,1 (Core 2 T7400) */
14819 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14820
14821 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14822 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14823
14824 /* HP Chromebook 14 (Celeron 2955U) */
14825 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14826
14827 /* Dell Chromebook 11 */
14828 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14829 };
14830
14831 static void intel_init_quirks(struct drm_device *dev)
14832 {
14833 struct pci_dev *d = dev->pdev;
14834 int i;
14835
14836 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14837 struct intel_quirk *q = &intel_quirks[i];
14838
14839 if (d->device == q->device &&
14840 (d->subsystem_vendor == q->subsystem_vendor ||
14841 q->subsystem_vendor == PCI_ANY_ID) &&
14842 (d->subsystem_device == q->subsystem_device ||
14843 q->subsystem_device == PCI_ANY_ID))
14844 q->hook(dev);
14845 }
14846 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14847 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14848 intel_dmi_quirks[i].hook(dev);
14849 }
14850 }
14851
14852 /* Disable the VGA plane that we never use */
14853 static void i915_disable_vga(struct drm_device *dev)
14854 {
14855 struct drm_i915_private *dev_priv = dev->dev_private;
14856 u8 sr1;
14857 u32 vga_reg = i915_vgacntrl_reg(dev);
14858
14859 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14860 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14861 outb(SR01, VGA_SR_INDEX);
14862 sr1 = inb(VGA_SR_DATA);
14863 outb(sr1 | 1<<5, VGA_SR_DATA);
14864 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14865 udelay(300);
14866
14867 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14868 POSTING_READ(vga_reg);
14869 }
14870
14871 void intel_modeset_init_hw(struct drm_device *dev)
14872 {
14873 intel_update_cdclk(dev);
14874 intel_prepare_ddi(dev);
14875 intel_init_clock_gating(dev);
14876 intel_enable_gt_powersave(dev);
14877 }
14878
14879 void intel_modeset_init(struct drm_device *dev)
14880 {
14881 struct drm_i915_private *dev_priv = dev->dev_private;
14882 int sprite, ret;
14883 enum pipe pipe;
14884 struct intel_crtc *crtc;
14885
14886 drm_mode_config_init(dev);
14887
14888 dev->mode_config.min_width = 0;
14889 dev->mode_config.min_height = 0;
14890
14891 dev->mode_config.preferred_depth = 24;
14892 dev->mode_config.prefer_shadow = 1;
14893
14894 dev->mode_config.allow_fb_modifiers = true;
14895
14896 dev->mode_config.funcs = &intel_mode_funcs;
14897
14898 intel_init_quirks(dev);
14899
14900 intel_init_pm(dev);
14901
14902 if (INTEL_INFO(dev)->num_pipes == 0)
14903 return;
14904
14905 intel_init_display(dev);
14906 intel_init_audio(dev);
14907
14908 if (IS_GEN2(dev)) {
14909 dev->mode_config.max_width = 2048;
14910 dev->mode_config.max_height = 2048;
14911 } else if (IS_GEN3(dev)) {
14912 dev->mode_config.max_width = 4096;
14913 dev->mode_config.max_height = 4096;
14914 } else {
14915 dev->mode_config.max_width = 8192;
14916 dev->mode_config.max_height = 8192;
14917 }
14918
14919 if (IS_845G(dev) || IS_I865G(dev)) {
14920 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14921 dev->mode_config.cursor_height = 1023;
14922 } else if (IS_GEN2(dev)) {
14923 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14924 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14925 } else {
14926 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14927 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14928 }
14929
14930 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14931
14932 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14933 INTEL_INFO(dev)->num_pipes,
14934 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14935
14936 for_each_pipe(dev_priv, pipe) {
14937 intel_crtc_init(dev, pipe);
14938 for_each_sprite(dev_priv, pipe, sprite) {
14939 ret = intel_plane_init(dev, pipe, sprite);
14940 if (ret)
14941 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14942 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14943 }
14944 }
14945
14946 intel_init_dpio(dev);
14947
14948 intel_shared_dpll_init(dev);
14949
14950 /* Just disable it once at startup */
14951 i915_disable_vga(dev);
14952 intel_setup_outputs(dev);
14953
14954 /* Just in case the BIOS is doing something questionable. */
14955 intel_fbc_disable(dev_priv);
14956
14957 drm_modeset_lock_all(dev);
14958 intel_modeset_setup_hw_state(dev);
14959 drm_modeset_unlock_all(dev);
14960
14961 for_each_intel_crtc(dev, crtc) {
14962 struct intel_initial_plane_config plane_config = {};
14963
14964 if (!crtc->active)
14965 continue;
14966
14967 /*
14968 * Note that reserving the BIOS fb up front prevents us
14969 * from stuffing other stolen allocations like the ring
14970 * on top. This prevents some ugliness at boot time, and
14971 * can even allow for smooth boot transitions if the BIOS
14972 * fb is large enough for the active pipe configuration.
14973 */
14974 dev_priv->display.get_initial_plane_config(crtc,
14975 &plane_config);
14976
14977 /*
14978 * If the fb is shared between multiple heads, we'll
14979 * just get the first one.
14980 */
14981 intel_find_initial_plane_obj(crtc, &plane_config);
14982 }
14983 }
14984
14985 static void intel_enable_pipe_a(struct drm_device *dev)
14986 {
14987 struct intel_connector *connector;
14988 struct drm_connector *crt = NULL;
14989 struct intel_load_detect_pipe load_detect_temp;
14990 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14991
14992 /* We can't just switch on the pipe A, we need to set things up with a
14993 * proper mode and output configuration. As a gross hack, enable pipe A
14994 * by enabling the load detect pipe once. */
14995 for_each_intel_connector(dev, connector) {
14996 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14997 crt = &connector->base;
14998 break;
14999 }
15000 }
15001
15002 if (!crt)
15003 return;
15004
15005 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15006 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15007 }
15008
15009 static bool
15010 intel_check_plane_mapping(struct intel_crtc *crtc)
15011 {
15012 struct drm_device *dev = crtc->base.dev;
15013 struct drm_i915_private *dev_priv = dev->dev_private;
15014 u32 reg, val;
15015
15016 if (INTEL_INFO(dev)->num_pipes == 1)
15017 return true;
15018
15019 reg = DSPCNTR(!crtc->plane);
15020 val = I915_READ(reg);
15021
15022 if ((val & DISPLAY_PLANE_ENABLE) &&
15023 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15024 return false;
15025
15026 return true;
15027 }
15028
15029 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15030 {
15031 struct drm_device *dev = crtc->base.dev;
15032 struct drm_i915_private *dev_priv = dev->dev_private;
15033 struct intel_encoder *encoder;
15034 u32 reg;
15035 bool enable;
15036
15037 /* Clear any frame start delays used for debugging left by the BIOS */
15038 reg = PIPECONF(crtc->config->cpu_transcoder);
15039 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15040
15041 /* restore vblank interrupts to correct state */
15042 drm_crtc_vblank_reset(&crtc->base);
15043 if (crtc->active) {
15044 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15045 update_scanline_offset(crtc);
15046 drm_crtc_vblank_on(&crtc->base);
15047 }
15048
15049 /* We need to sanitize the plane -> pipe mapping first because this will
15050 * disable the crtc (and hence change the state) if it is wrong. Note
15051 * that gen4+ has a fixed plane -> pipe mapping. */
15052 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15053 bool plane;
15054
15055 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15056 crtc->base.base.id);
15057
15058 /* Pipe has the wrong plane attached and the plane is active.
15059 * Temporarily change the plane mapping and disable everything
15060 * ... */
15061 plane = crtc->plane;
15062 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15063 crtc->plane = !plane;
15064 intel_crtc_disable_noatomic(&crtc->base);
15065 crtc->plane = plane;
15066 }
15067
15068 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15069 crtc->pipe == PIPE_A && !crtc->active) {
15070 /* BIOS forgot to enable pipe A, this mostly happens after
15071 * resume. Force-enable the pipe to fix this, the update_dpms
15072 * call below we restore the pipe to the right state, but leave
15073 * the required bits on. */
15074 intel_enable_pipe_a(dev);
15075 }
15076
15077 /* Adjust the state of the output pipe according to whether we
15078 * have active connectors/encoders. */
15079 enable = false;
15080 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15081 enable |= encoder->connectors_active;
15082
15083 if (!enable)
15084 intel_crtc_disable_noatomic(&crtc->base);
15085
15086 if (crtc->active != crtc->base.state->active) {
15087
15088 /* This can happen either due to bugs in the get_hw_state
15089 * functions or because of calls to intel_crtc_disable_noatomic,
15090 * or because the pipe is force-enabled due to the
15091 * pipe A quirk. */
15092 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15093 crtc->base.base.id,
15094 crtc->base.state->enable ? "enabled" : "disabled",
15095 crtc->active ? "enabled" : "disabled");
15096
15097 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15098 crtc->base.state->active = crtc->active;
15099 crtc->base.enabled = crtc->active;
15100
15101 /* Because we only establish the connector -> encoder ->
15102 * crtc links if something is active, this means the
15103 * crtc is now deactivated. Break the links. connector
15104 * -> encoder links are only establish when things are
15105 * actually up, hence no need to break them. */
15106 WARN_ON(crtc->active);
15107
15108 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15109 WARN_ON(encoder->connectors_active);
15110 encoder->base.crtc = NULL;
15111 }
15112 }
15113
15114 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15115 /*
15116 * We start out with underrun reporting disabled to avoid races.
15117 * For correct bookkeeping mark this on active crtcs.
15118 *
15119 * Also on gmch platforms we dont have any hardware bits to
15120 * disable the underrun reporting. Which means we need to start
15121 * out with underrun reporting disabled also on inactive pipes,
15122 * since otherwise we'll complain about the garbage we read when
15123 * e.g. coming up after runtime pm.
15124 *
15125 * No protection against concurrent access is required - at
15126 * worst a fifo underrun happens which also sets this to false.
15127 */
15128 crtc->cpu_fifo_underrun_disabled = true;
15129 crtc->pch_fifo_underrun_disabled = true;
15130 }
15131 }
15132
15133 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15134 {
15135 struct intel_connector *connector;
15136 struct drm_device *dev = encoder->base.dev;
15137
15138 /* We need to check both for a crtc link (meaning that the
15139 * encoder is active and trying to read from a pipe) and the
15140 * pipe itself being active. */
15141 bool has_active_crtc = encoder->base.crtc &&
15142 to_intel_crtc(encoder->base.crtc)->active;
15143
15144 if (encoder->connectors_active && !has_active_crtc) {
15145 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15146 encoder->base.base.id,
15147 encoder->base.name);
15148
15149 /* Connector is active, but has no active pipe. This is
15150 * fallout from our resume register restoring. Disable
15151 * the encoder manually again. */
15152 if (encoder->base.crtc) {
15153 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15154 encoder->base.base.id,
15155 encoder->base.name);
15156 encoder->disable(encoder);
15157 if (encoder->post_disable)
15158 encoder->post_disable(encoder);
15159 }
15160 encoder->base.crtc = NULL;
15161 encoder->connectors_active = false;
15162
15163 /* Inconsistent output/port/pipe state happens presumably due to
15164 * a bug in one of the get_hw_state functions. Or someplace else
15165 * in our code, like the register restore mess on resume. Clamp
15166 * things to off as a safer default. */
15167 for_each_intel_connector(dev, connector) {
15168 if (connector->encoder != encoder)
15169 continue;
15170 connector->base.dpms = DRM_MODE_DPMS_OFF;
15171 connector->base.encoder = NULL;
15172 }
15173 }
15174 /* Enabled encoders without active connectors will be fixed in
15175 * the crtc fixup. */
15176 }
15177
15178 void i915_redisable_vga_power_on(struct drm_device *dev)
15179 {
15180 struct drm_i915_private *dev_priv = dev->dev_private;
15181 u32 vga_reg = i915_vgacntrl_reg(dev);
15182
15183 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15184 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15185 i915_disable_vga(dev);
15186 }
15187 }
15188
15189 void i915_redisable_vga(struct drm_device *dev)
15190 {
15191 struct drm_i915_private *dev_priv = dev->dev_private;
15192
15193 /* This function can be called both from intel_modeset_setup_hw_state or
15194 * at a very early point in our resume sequence, where the power well
15195 * structures are not yet restored. Since this function is at a very
15196 * paranoid "someone might have enabled VGA while we were not looking"
15197 * level, just check if the power well is enabled instead of trying to
15198 * follow the "don't touch the power well if we don't need it" policy
15199 * the rest of the driver uses. */
15200 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15201 return;
15202
15203 i915_redisable_vga_power_on(dev);
15204 }
15205
15206 static bool primary_get_hw_state(struct intel_crtc *crtc)
15207 {
15208 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15209
15210 return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15211 }
15212
15213 static void readout_plane_state(struct intel_crtc *crtc,
15214 struct intel_crtc_state *crtc_state)
15215 {
15216 struct intel_plane *p;
15217 struct intel_plane_state *plane_state;
15218 bool active = crtc_state->base.active;
15219
15220 for_each_intel_plane(crtc->base.dev, p) {
15221 if (crtc->pipe != p->pipe)
15222 continue;
15223
15224 plane_state = to_intel_plane_state(p->base.state);
15225
15226 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15227 plane_state->visible = primary_get_hw_state(crtc);
15228 else {
15229 if (active)
15230 p->disable_plane(&p->base, &crtc->base);
15231
15232 plane_state->visible = false;
15233 }
15234 }
15235 }
15236
15237 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15238 {
15239 struct drm_i915_private *dev_priv = dev->dev_private;
15240 enum pipe pipe;
15241 struct intel_crtc *crtc;
15242 struct intel_encoder *encoder;
15243 struct intel_connector *connector;
15244 int i;
15245
15246 for_each_intel_crtc(dev, crtc) {
15247 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15248 memset(crtc->config, 0, sizeof(*crtc->config));
15249 crtc->config->base.crtc = &crtc->base;
15250
15251 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15252
15253 crtc->active = dev_priv->display.get_pipe_config(crtc,
15254 crtc->config);
15255
15256 crtc->base.state->active = crtc->active;
15257 crtc->base.enabled = crtc->active;
15258
15259 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15260 if (crtc->base.state->active) {
15261 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15262 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15263 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15264
15265 /*
15266 * The initial mode needs to be set in order to keep
15267 * the atomic core happy. It wants a valid mode if the
15268 * crtc's enabled, so we do the above call.
15269 *
15270 * At this point some state updated by the connectors
15271 * in their ->detect() callback has not run yet, so
15272 * no recalculation can be done yet.
15273 *
15274 * Even if we could do a recalculation and modeset
15275 * right now it would cause a double modeset if
15276 * fbdev or userspace chooses a different initial mode.
15277 *
15278 * So to prevent the double modeset, fail the memcmp
15279 * test in drm_atomic_set_mode_for_crtc to get a new
15280 * mode blob, and compare if the mode blob changed
15281 * when the PIPE_CONFIG_QUIRK_INHERITED_MODE quirk is
15282 * set.
15283 *
15284 * If that happens, someone indicated they wanted a
15285 * mode change, which means it's safe to do a full
15286 * recalculation.
15287 */
15288 crtc->base.state->mode.private_flags = ~0;
15289 }
15290
15291 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15292 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15293
15294 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15295 crtc->base.base.id,
15296 crtc->active ? "enabled" : "disabled");
15297 }
15298
15299 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15300 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15301
15302 pll->on = pll->get_hw_state(dev_priv, pll,
15303 &pll->config.hw_state);
15304 pll->active = 0;
15305 pll->config.crtc_mask = 0;
15306 for_each_intel_crtc(dev, crtc) {
15307 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15308 pll->active++;
15309 pll->config.crtc_mask |= 1 << crtc->pipe;
15310 }
15311 }
15312
15313 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15314 pll->name, pll->config.crtc_mask, pll->on);
15315
15316 if (pll->config.crtc_mask)
15317 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15318 }
15319
15320 for_each_intel_encoder(dev, encoder) {
15321 pipe = 0;
15322
15323 if (encoder->get_hw_state(encoder, &pipe)) {
15324 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15325 encoder->base.crtc = &crtc->base;
15326 encoder->get_config(encoder, crtc->config);
15327 } else {
15328 encoder->base.crtc = NULL;
15329 }
15330
15331 encoder->connectors_active = false;
15332 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15333 encoder->base.base.id,
15334 encoder->base.name,
15335 encoder->base.crtc ? "enabled" : "disabled",
15336 pipe_name(pipe));
15337 }
15338
15339 for_each_intel_connector(dev, connector) {
15340 if (connector->get_hw_state(connector)) {
15341 connector->base.dpms = DRM_MODE_DPMS_ON;
15342 connector->encoder->connectors_active = true;
15343 connector->base.encoder = &connector->encoder->base;
15344 } else {
15345 connector->base.dpms = DRM_MODE_DPMS_OFF;
15346 connector->base.encoder = NULL;
15347 }
15348 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15349 connector->base.base.id,
15350 connector->base.name,
15351 connector->base.encoder ? "enabled" : "disabled");
15352 }
15353 }
15354
15355 /* Scan out the current hw modeset state,
15356 * and sanitizes it to the current state
15357 */
15358 static void
15359 intel_modeset_setup_hw_state(struct drm_device *dev)
15360 {
15361 struct drm_i915_private *dev_priv = dev->dev_private;
15362 enum pipe pipe;
15363 struct intel_crtc *crtc;
15364 struct intel_encoder *encoder;
15365 int i;
15366
15367 intel_modeset_readout_hw_state(dev);
15368
15369 /* HW state is read out, now we need to sanitize this mess. */
15370 for_each_intel_encoder(dev, encoder) {
15371 intel_sanitize_encoder(encoder);
15372 }
15373
15374 for_each_pipe(dev_priv, pipe) {
15375 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15376 intel_sanitize_crtc(crtc);
15377 intel_dump_pipe_config(crtc, crtc->config,
15378 "[setup_hw_state]");
15379 }
15380
15381 intel_modeset_update_connector_atomic_state(dev);
15382
15383 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15384 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15385
15386 if (!pll->on || pll->active)
15387 continue;
15388
15389 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15390
15391 pll->disable(dev_priv, pll);
15392 pll->on = false;
15393 }
15394
15395 if (IS_VALLEYVIEW(dev))
15396 vlv_wm_get_hw_state(dev);
15397 else if (IS_GEN9(dev))
15398 skl_wm_get_hw_state(dev);
15399 else if (HAS_PCH_SPLIT(dev))
15400 ilk_wm_get_hw_state(dev);
15401
15402 for_each_intel_crtc(dev, crtc) {
15403 unsigned long put_domains;
15404
15405 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15406 if (WARN_ON(put_domains))
15407 modeset_put_power_domains(dev_priv, put_domains);
15408 }
15409 intel_display_set_init_power(dev_priv, false);
15410 }
15411
15412 void intel_display_resume(struct drm_device *dev)
15413 {
15414 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15415 struct intel_connector *conn;
15416 struct intel_plane *plane;
15417 struct drm_crtc *crtc;
15418 int ret;
15419
15420 if (!state)
15421 return;
15422
15423 state->acquire_ctx = dev->mode_config.acquire_ctx;
15424
15425 /* preserve complete old state, including dpll */
15426 intel_atomic_get_shared_dpll_state(state);
15427
15428 for_each_crtc(dev, crtc) {
15429 struct drm_crtc_state *crtc_state =
15430 drm_atomic_get_crtc_state(state, crtc);
15431
15432 ret = PTR_ERR_OR_ZERO(crtc_state);
15433 if (ret)
15434 goto err;
15435
15436 /* force a restore */
15437 crtc_state->mode_changed = true;
15438 }
15439
15440 for_each_intel_plane(dev, plane) {
15441 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15442 if (ret)
15443 goto err;
15444 }
15445
15446 for_each_intel_connector(dev, conn) {
15447 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15448 if (ret)
15449 goto err;
15450 }
15451
15452 intel_modeset_setup_hw_state(dev);
15453
15454 i915_redisable_vga(dev);
15455 ret = drm_atomic_commit(state);
15456 if (!ret)
15457 return;
15458
15459 err:
15460 DRM_ERROR("Restoring old state failed with %i\n", ret);
15461 drm_atomic_state_free(state);
15462 }
15463
15464 void intel_modeset_gem_init(struct drm_device *dev)
15465 {
15466 struct drm_i915_private *dev_priv = dev->dev_private;
15467 struct drm_crtc *c;
15468 struct drm_i915_gem_object *obj;
15469 int ret;
15470
15471 mutex_lock(&dev->struct_mutex);
15472 intel_init_gt_powersave(dev);
15473 mutex_unlock(&dev->struct_mutex);
15474
15475 /*
15476 * There may be no VBT; and if the BIOS enabled SSC we can
15477 * just keep using it to avoid unnecessary flicker. Whereas if the
15478 * BIOS isn't using it, don't assume it will work even if the VBT
15479 * indicates as much.
15480 */
15481 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15482 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15483 DREF_SSC1_ENABLE);
15484
15485 intel_modeset_init_hw(dev);
15486
15487 intel_setup_overlay(dev);
15488
15489 /*
15490 * Make sure any fbs we allocated at startup are properly
15491 * pinned & fenced. When we do the allocation it's too early
15492 * for this.
15493 */
15494 for_each_crtc(dev, c) {
15495 obj = intel_fb_obj(c->primary->fb);
15496 if (obj == NULL)
15497 continue;
15498
15499 mutex_lock(&dev->struct_mutex);
15500 ret = intel_pin_and_fence_fb_obj(c->primary,
15501 c->primary->fb,
15502 c->primary->state,
15503 NULL, NULL);
15504 mutex_unlock(&dev->struct_mutex);
15505 if (ret) {
15506 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15507 to_intel_crtc(c)->pipe);
15508 drm_framebuffer_unreference(c->primary->fb);
15509 c->primary->fb = NULL;
15510 c->primary->crtc = c->primary->state->crtc = NULL;
15511 update_state_fb(c->primary);
15512 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15513 }
15514 }
15515
15516 intel_backlight_register(dev);
15517 }
15518
15519 void intel_connector_unregister(struct intel_connector *intel_connector)
15520 {
15521 struct drm_connector *connector = &intel_connector->base;
15522
15523 intel_panel_destroy_backlight(connector);
15524 drm_connector_unregister(connector);
15525 }
15526
15527 void intel_modeset_cleanup(struct drm_device *dev)
15528 {
15529 struct drm_i915_private *dev_priv = dev->dev_private;
15530 struct drm_connector *connector;
15531
15532 intel_disable_gt_powersave(dev);
15533
15534 intel_backlight_unregister(dev);
15535
15536 /*
15537 * Interrupts and polling as the first thing to avoid creating havoc.
15538 * Too much stuff here (turning of connectors, ...) would
15539 * experience fancy races otherwise.
15540 */
15541 intel_irq_uninstall(dev_priv);
15542
15543 /*
15544 * Due to the hpd irq storm handling the hotplug work can re-arm the
15545 * poll handlers. Hence disable polling after hpd handling is shut down.
15546 */
15547 drm_kms_helper_poll_fini(dev);
15548
15549 intel_unregister_dsm_handler();
15550
15551 intel_fbc_disable(dev_priv);
15552
15553 /* flush any delayed tasks or pending work */
15554 flush_scheduled_work();
15555
15556 /* destroy the backlight and sysfs files before encoders/connectors */
15557 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15558 struct intel_connector *intel_connector;
15559
15560 intel_connector = to_intel_connector(connector);
15561 intel_connector->unregister(intel_connector);
15562 }
15563
15564 drm_mode_config_cleanup(dev);
15565
15566 intel_cleanup_overlay(dev);
15567
15568 mutex_lock(&dev->struct_mutex);
15569 intel_cleanup_gt_powersave(dev);
15570 mutex_unlock(&dev->struct_mutex);
15571 }
15572
15573 /*
15574 * Return which encoder is currently attached for connector.
15575 */
15576 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15577 {
15578 return &intel_attached_encoder(connector)->base;
15579 }
15580
15581 void intel_connector_attach_encoder(struct intel_connector *connector,
15582 struct intel_encoder *encoder)
15583 {
15584 connector->encoder = encoder;
15585 drm_mode_connector_attach_encoder(&connector->base,
15586 &encoder->base);
15587 }
15588
15589 /*
15590 * set vga decode state - true == enable VGA decode
15591 */
15592 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15593 {
15594 struct drm_i915_private *dev_priv = dev->dev_private;
15595 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15596 u16 gmch_ctrl;
15597
15598 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15599 DRM_ERROR("failed to read control word\n");
15600 return -EIO;
15601 }
15602
15603 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15604 return 0;
15605
15606 if (state)
15607 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15608 else
15609 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15610
15611 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15612 DRM_ERROR("failed to write control word\n");
15613 return -EIO;
15614 }
15615
15616 return 0;
15617 }
15618
15619 struct intel_display_error_state {
15620
15621 u32 power_well_driver;
15622
15623 int num_transcoders;
15624
15625 struct intel_cursor_error_state {
15626 u32 control;
15627 u32 position;
15628 u32 base;
15629 u32 size;
15630 } cursor[I915_MAX_PIPES];
15631
15632 struct intel_pipe_error_state {
15633 bool power_domain_on;
15634 u32 source;
15635 u32 stat;
15636 } pipe[I915_MAX_PIPES];
15637
15638 struct intel_plane_error_state {
15639 u32 control;
15640 u32 stride;
15641 u32 size;
15642 u32 pos;
15643 u32 addr;
15644 u32 surface;
15645 u32 tile_offset;
15646 } plane[I915_MAX_PIPES];
15647
15648 struct intel_transcoder_error_state {
15649 bool power_domain_on;
15650 enum transcoder cpu_transcoder;
15651
15652 u32 conf;
15653
15654 u32 htotal;
15655 u32 hblank;
15656 u32 hsync;
15657 u32 vtotal;
15658 u32 vblank;
15659 u32 vsync;
15660 } transcoder[4];
15661 };
15662
15663 struct intel_display_error_state *
15664 intel_display_capture_error_state(struct drm_device *dev)
15665 {
15666 struct drm_i915_private *dev_priv = dev->dev_private;
15667 struct intel_display_error_state *error;
15668 int transcoders[] = {
15669 TRANSCODER_A,
15670 TRANSCODER_B,
15671 TRANSCODER_C,
15672 TRANSCODER_EDP,
15673 };
15674 int i;
15675
15676 if (INTEL_INFO(dev)->num_pipes == 0)
15677 return NULL;
15678
15679 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15680 if (error == NULL)
15681 return NULL;
15682
15683 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15684 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15685
15686 for_each_pipe(dev_priv, i) {
15687 error->pipe[i].power_domain_on =
15688 __intel_display_power_is_enabled(dev_priv,
15689 POWER_DOMAIN_PIPE(i));
15690 if (!error->pipe[i].power_domain_on)
15691 continue;
15692
15693 error->cursor[i].control = I915_READ(CURCNTR(i));
15694 error->cursor[i].position = I915_READ(CURPOS(i));
15695 error->cursor[i].base = I915_READ(CURBASE(i));
15696
15697 error->plane[i].control = I915_READ(DSPCNTR(i));
15698 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15699 if (INTEL_INFO(dev)->gen <= 3) {
15700 error->plane[i].size = I915_READ(DSPSIZE(i));
15701 error->plane[i].pos = I915_READ(DSPPOS(i));
15702 }
15703 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15704 error->plane[i].addr = I915_READ(DSPADDR(i));
15705 if (INTEL_INFO(dev)->gen >= 4) {
15706 error->plane[i].surface = I915_READ(DSPSURF(i));
15707 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15708 }
15709
15710 error->pipe[i].source = I915_READ(PIPESRC(i));
15711
15712 if (HAS_GMCH_DISPLAY(dev))
15713 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15714 }
15715
15716 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15717 if (HAS_DDI(dev_priv->dev))
15718 error->num_transcoders++; /* Account for eDP. */
15719
15720 for (i = 0; i < error->num_transcoders; i++) {
15721 enum transcoder cpu_transcoder = transcoders[i];
15722
15723 error->transcoder[i].power_domain_on =
15724 __intel_display_power_is_enabled(dev_priv,
15725 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15726 if (!error->transcoder[i].power_domain_on)
15727 continue;
15728
15729 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15730
15731 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15732 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15733 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15734 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15735 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15736 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15737 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15738 }
15739
15740 return error;
15741 }
15742
15743 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15744
15745 void
15746 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15747 struct drm_device *dev,
15748 struct intel_display_error_state *error)
15749 {
15750 struct drm_i915_private *dev_priv = dev->dev_private;
15751 int i;
15752
15753 if (!error)
15754 return;
15755
15756 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15757 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15758 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15759 error->power_well_driver);
15760 for_each_pipe(dev_priv, i) {
15761 err_printf(m, "Pipe [%d]:\n", i);
15762 err_printf(m, " Power: %s\n",
15763 error->pipe[i].power_domain_on ? "on" : "off");
15764 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15765 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15766
15767 err_printf(m, "Plane [%d]:\n", i);
15768 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15769 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15770 if (INTEL_INFO(dev)->gen <= 3) {
15771 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15772 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15773 }
15774 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15775 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15776 if (INTEL_INFO(dev)->gen >= 4) {
15777 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15778 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15779 }
15780
15781 err_printf(m, "Cursor [%d]:\n", i);
15782 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15783 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15784 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15785 }
15786
15787 for (i = 0; i < error->num_transcoders; i++) {
15788 err_printf(m, "CPU transcoder: %c\n",
15789 transcoder_name(error->transcoder[i].cpu_transcoder));
15790 err_printf(m, " Power: %s\n",
15791 error->transcoder[i].power_domain_on ? "on" : "off");
15792 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15793 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15794 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15795 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15796 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15797 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15798 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15799 }
15800 }
15801
15802 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15803 {
15804 struct intel_crtc *crtc;
15805
15806 for_each_intel_crtc(dev, crtc) {
15807 struct intel_unpin_work *work;
15808
15809 spin_lock_irq(&dev->event_lock);
15810
15811 work = crtc->unpin_work;
15812
15813 if (work && work->event &&
15814 work->event->base.file_priv == file) {
15815 kfree(work->event);
15816 work->event = NULL;
15817 }
15818
15819 spin_unlock_irq(&dev->event_lock);
15820 }
15821 }
This page took 0.536351 seconds and 6 git commands to generate.