drm/i915: Slaughter the thundering i915_wait_request herd
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195 struct drm_display_mode *mode)
196 {
197 struct intel_dp *intel_dp = intel_attached_dp(connector);
198 struct intel_connector *intel_connector = to_intel_connector(connector);
199 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200 int target_clock = mode->clock;
201 int max_rate, mode_rate, max_lanes, max_link_clock;
202 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204 if (is_edp(intel_dp) && fixed_mode) {
205 if (mode->hdisplay > fixed_mode->hdisplay)
206 return MODE_PANEL;
207
208 if (mode->vdisplay > fixed_mode->vdisplay)
209 return MODE_PANEL;
210
211 target_clock = fixed_mode->clock;
212 }
213
214 max_link_clock = intel_dp_max_link_rate(intel_dp);
215 max_lanes = intel_dp_max_lane_count(intel_dp);
216
217 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218 mode_rate = intel_dp_link_required(target_clock, 18);
219
220 if (mode_rate > max_rate || target_clock > max_dotclk)
221 return MODE_CLOCK_HIGH;
222
223 if (mode->clock < 10000)
224 return MODE_CLOCK_LOW;
225
226 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227 return MODE_H_ILLEGAL;
228
229 return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234 int i;
235 uint32_t v = 0;
236
237 if (src_bytes > 4)
238 src_bytes = 4;
239 for (i = 0; i < src_bytes; i++)
240 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241 return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246 int i;
247 if (dst_bytes > 4)
248 dst_bytes = 4;
249 for (i = 0; i < dst_bytes; i++)
250 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255 struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258 struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263 struct intel_encoder *encoder = &intel_dig_port->base;
264 struct drm_device *dev = encoder->base.dev;
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 enum intel_display_power_domain power_domain;
267
268 /*
269 * See vlv_power_sequencer_reset() why we need
270 * a power domain reference here.
271 */
272 power_domain = intel_display_port_aux_power_domain(encoder);
273 intel_display_power_get(dev_priv, power_domain);
274
275 mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281 struct intel_encoder *encoder = &intel_dig_port->base;
282 struct drm_device *dev = encoder->base.dev;
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 enum intel_display_power_domain power_domain;
285
286 mutex_unlock(&dev_priv->pps_mutex);
287
288 power_domain = intel_display_port_aux_power_domain(encoder);
289 intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct drm_device *dev = intel_dig_port->base.base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum pipe pipe = intel_dp->pps_pipe;
299 bool pll_enabled, release_cl_override = false;
300 enum dpio_phy phy = DPIO_PHY(pipe);
301 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302 uint32_t DP;
303
304 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306 pipe_name(pipe), port_name(intel_dig_port->port)))
307 return;
308
309 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310 pipe_name(pipe), port_name(intel_dig_port->port));
311
312 /* Preserve the BIOS-computed detected bit. This is
313 * supposed to be read-only.
314 */
315 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317 DP |= DP_PORT_WIDTH(1);
318 DP |= DP_LINK_TRAIN_PAT_1;
319
320 if (IS_CHERRYVIEW(dev))
321 DP |= DP_PIPE_SELECT_CHV(pipe);
322 else if (pipe == PIPE_B)
323 DP |= DP_PIPEB_SELECT;
324
325 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327 /*
328 * The DPLL for the pipe must be enabled for this to work.
329 * So enable temporarily it if it's not already enabled.
330 */
331 if (!pll_enabled) {
332 release_cl_override = IS_CHERRYVIEW(dev) &&
333 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337 DRM_ERROR("Failed to force on pll for pipe %c!\n",
338 pipe_name(pipe));
339 return;
340 }
341 }
342
343 /*
344 * Similar magic as in intel_dp_enable_port().
345 * We _must_ do this port enable + disable trick
346 * to make this power seqeuencer lock onto the port.
347 * Otherwise even VDD force bit won't work.
348 */
349 I915_WRITE(intel_dp->output_reg, DP);
350 POSTING_READ(intel_dp->output_reg);
351
352 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353 POSTING_READ(intel_dp->output_reg);
354
355 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356 POSTING_READ(intel_dp->output_reg);
357
358 if (!pll_enabled) {
359 vlv_force_pll_off(dev, pipe);
360
361 if (release_cl_override)
362 chv_phy_powergate_ch(dev_priv, phy, ch, false);
363 }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370 struct drm_device *dev = intel_dig_port->base.base.dev;
371 struct drm_i915_private *dev_priv = dev->dev_private;
372 struct intel_encoder *encoder;
373 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374 enum pipe pipe;
375
376 lockdep_assert_held(&dev_priv->pps_mutex);
377
378 /* We should never land here with regular DP ports */
379 WARN_ON(!is_edp(intel_dp));
380
381 if (intel_dp->pps_pipe != INVALID_PIPE)
382 return intel_dp->pps_pipe;
383
384 /*
385 * We don't have power sequencer currently.
386 * Pick one that's not used by other ports.
387 */
388 for_each_intel_encoder(dev, encoder) {
389 struct intel_dp *tmp;
390
391 if (encoder->type != INTEL_OUTPUT_EDP)
392 continue;
393
394 tmp = enc_to_intel_dp(&encoder->base);
395
396 if (tmp->pps_pipe != INVALID_PIPE)
397 pipes &= ~(1 << tmp->pps_pipe);
398 }
399
400 /*
401 * Didn't find one. This should not happen since there
402 * are two power sequencers and up to two eDP ports.
403 */
404 if (WARN_ON(pipes == 0))
405 pipe = PIPE_A;
406 else
407 pipe = ffs(pipes) - 1;
408
409 vlv_steal_power_sequencer(dev, pipe);
410 intel_dp->pps_pipe = pipe;
411
412 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413 pipe_name(intel_dp->pps_pipe),
414 port_name(intel_dig_port->port));
415
416 /* init power sequencer on this pipe and port */
417 intel_dp_init_panel_power_sequencer(dev, intel_dp);
418 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420 /*
421 * Even vdd force doesn't work until we've made
422 * the power sequencer lock in on the port.
423 */
424 vlv_power_sequencer_kick(intel_dp);
425
426 return intel_dp->pps_pipe;
427 }
428
429 static int
430 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
431 {
432 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
433 struct drm_device *dev = intel_dig_port->base.base.dev;
434 struct drm_i915_private *dev_priv = dev->dev_private;
435
436 lockdep_assert_held(&dev_priv->pps_mutex);
437
438 /* We should never land here with regular DP ports */
439 WARN_ON(!is_edp(intel_dp));
440
441 /*
442 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
443 * mapping needs to be retrieved from VBT, for now just hard-code to
444 * use instance #0 always.
445 */
446 if (!intel_dp->pps_reset)
447 return 0;
448
449 intel_dp->pps_reset = false;
450
451 /*
452 * Only the HW needs to be reprogrammed, the SW state is fixed and
453 * has been setup during connector init.
454 */
455 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
456
457 return 0;
458 }
459
460 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
461 enum pipe pipe);
462
463 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
467 }
468
469 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
470 enum pipe pipe)
471 {
472 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
473 }
474
475 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
476 enum pipe pipe)
477 {
478 return true;
479 }
480
481 static enum pipe
482 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
483 enum port port,
484 vlv_pipe_check pipe_check)
485 {
486 enum pipe pipe;
487
488 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
489 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
490 PANEL_PORT_SELECT_MASK;
491
492 if (port_sel != PANEL_PORT_SELECT_VLV(port))
493 continue;
494
495 if (!pipe_check(dev_priv, pipe))
496 continue;
497
498 return pipe;
499 }
500
501 return INVALID_PIPE;
502 }
503
504 static void
505 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
506 {
507 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
508 struct drm_device *dev = intel_dig_port->base.base.dev;
509 struct drm_i915_private *dev_priv = dev->dev_private;
510 enum port port = intel_dig_port->port;
511
512 lockdep_assert_held(&dev_priv->pps_mutex);
513
514 /* try to find a pipe with this port selected */
515 /* first pick one where the panel is on */
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_pp_on);
518 /* didn't find one? pick one where vdd is on */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_has_vdd_on);
522 /* didn't find one? pick one with just the correct port */
523 if (intel_dp->pps_pipe == INVALID_PIPE)
524 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
525 vlv_pipe_any);
526
527 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
528 if (intel_dp->pps_pipe == INVALID_PIPE) {
529 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
530 port_name(port));
531 return;
532 }
533
534 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
535 port_name(port), pipe_name(intel_dp->pps_pipe));
536
537 intel_dp_init_panel_power_sequencer(dev, intel_dp);
538 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
539 }
540
541 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
542 {
543 struct drm_device *dev = dev_priv->dev;
544 struct intel_encoder *encoder;
545
546 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
547 !IS_BROXTON(dev)))
548 return;
549
550 /*
551 * We can't grab pps_mutex here due to deadlock with power_domain
552 * mutex when power_domain functions are called while holding pps_mutex.
553 * That also means that in order to use pps_pipe the code needs to
554 * hold both a power domain reference and pps_mutex, and the power domain
555 * reference get/put must be done while _not_ holding pps_mutex.
556 * pps_{lock,unlock}() do these steps in the correct order, so one
557 * should use them always.
558 */
559
560 for_each_intel_encoder(dev, encoder) {
561 struct intel_dp *intel_dp;
562
563 if (encoder->type != INTEL_OUTPUT_EDP)
564 continue;
565
566 intel_dp = enc_to_intel_dp(&encoder->base);
567 if (IS_BROXTON(dev))
568 intel_dp->pps_reset = true;
569 else
570 intel_dp->pps_pipe = INVALID_PIPE;
571 }
572 }
573
574 struct pps_registers {
575 i915_reg_t pp_ctrl;
576 i915_reg_t pp_stat;
577 i915_reg_t pp_on;
578 i915_reg_t pp_off;
579 i915_reg_t pp_div;
580 };
581
582 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
583 struct intel_dp *intel_dp,
584 struct pps_registers *regs)
585 {
586 memset(regs, 0, sizeof(*regs));
587
588 if (IS_BROXTON(dev_priv)) {
589 int idx = bxt_power_sequencer_idx(intel_dp);
590
591 regs->pp_ctrl = BXT_PP_CONTROL(idx);
592 regs->pp_stat = BXT_PP_STATUS(idx);
593 regs->pp_on = BXT_PP_ON_DELAYS(idx);
594 regs->pp_off = BXT_PP_OFF_DELAYS(idx);
595 } else if (HAS_PCH_SPLIT(dev_priv)) {
596 regs->pp_ctrl = PCH_PP_CONTROL;
597 regs->pp_stat = PCH_PP_STATUS;
598 regs->pp_on = PCH_PP_ON_DELAYS;
599 regs->pp_off = PCH_PP_OFF_DELAYS;
600 regs->pp_div = PCH_PP_DIVISOR;
601 } else {
602 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604 regs->pp_ctrl = VLV_PIPE_PP_CONTROL(pipe);
605 regs->pp_stat = VLV_PIPE_PP_STATUS(pipe);
606 regs->pp_on = VLV_PIPE_PP_ON_DELAYS(pipe);
607 regs->pp_off = VLV_PIPE_PP_OFF_DELAYS(pipe);
608 regs->pp_div = VLV_PIPE_PP_DIVISOR(pipe);
609 }
610 }
611
612 static i915_reg_t
613 _pp_ctrl_reg(struct intel_dp *intel_dp)
614 {
615 struct pps_registers regs;
616
617 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
618 &regs);
619
620 return regs.pp_ctrl;
621 }
622
623 static i915_reg_t
624 _pp_stat_reg(struct intel_dp *intel_dp)
625 {
626 struct pps_registers regs;
627
628 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
629 &regs);
630
631 return regs.pp_stat;
632 }
633
634 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
635 This function only applicable when panel PM state is not to be tracked */
636 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
637 void *unused)
638 {
639 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
640 edp_notifier);
641 struct drm_device *dev = intel_dp_to_dev(intel_dp);
642 struct drm_i915_private *dev_priv = dev->dev_private;
643
644 if (!is_edp(intel_dp) || code != SYS_RESTART)
645 return 0;
646
647 pps_lock(intel_dp);
648
649 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
650 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
651 i915_reg_t pp_ctrl_reg, pp_div_reg;
652 u32 pp_div;
653
654 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
655 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
656 pp_div = I915_READ(pp_div_reg);
657 pp_div &= PP_REFERENCE_DIVIDER_MASK;
658
659 /* 0x1F write to PP_DIV_REG sets max cycle delay */
660 I915_WRITE(pp_div_reg, pp_div | 0x1F);
661 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
662 msleep(intel_dp->panel_power_cycle_delay);
663 }
664
665 pps_unlock(intel_dp);
666
667 return 0;
668 }
669
670 static bool edp_have_panel_power(struct intel_dp *intel_dp)
671 {
672 struct drm_device *dev = intel_dp_to_dev(intel_dp);
673 struct drm_i915_private *dev_priv = dev->dev_private;
674
675 lockdep_assert_held(&dev_priv->pps_mutex);
676
677 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
678 intel_dp->pps_pipe == INVALID_PIPE)
679 return false;
680
681 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
682 }
683
684 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
685 {
686 struct drm_device *dev = intel_dp_to_dev(intel_dp);
687 struct drm_i915_private *dev_priv = dev->dev_private;
688
689 lockdep_assert_held(&dev_priv->pps_mutex);
690
691 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
692 intel_dp->pps_pipe == INVALID_PIPE)
693 return false;
694
695 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
696 }
697
698 static void
699 intel_dp_check_edp(struct intel_dp *intel_dp)
700 {
701 struct drm_device *dev = intel_dp_to_dev(intel_dp);
702 struct drm_i915_private *dev_priv = dev->dev_private;
703
704 if (!is_edp(intel_dp))
705 return;
706
707 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
708 WARN(1, "eDP powered off while attempting aux channel communication.\n");
709 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
710 I915_READ(_pp_stat_reg(intel_dp)),
711 I915_READ(_pp_ctrl_reg(intel_dp)));
712 }
713 }
714
715 static uint32_t
716 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
717 {
718 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719 struct drm_device *dev = intel_dig_port->base.base.dev;
720 struct drm_i915_private *dev_priv = dev->dev_private;
721 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
722 uint32_t status;
723 bool done;
724
725 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
726 if (has_aux_irq)
727 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
728 msecs_to_jiffies_timeout(10));
729 else
730 done = wait_for(C, 10) == 0;
731 if (!done)
732 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
733 has_aux_irq);
734 #undef C
735
736 return status;
737 }
738
739 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
743
744 if (index)
745 return 0;
746
747 /*
748 * The clock divider is based off the hrawclk, and would like to run at
749 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
750 */
751 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
752 }
753
754 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
755 {
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
758
759 if (index)
760 return 0;
761
762 /*
763 * The clock divider is based off the cdclk or PCH rawclk, and would
764 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
765 * divide by 2000 and use that
766 */
767 if (intel_dig_port->port == PORT_A)
768 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
769 else
770 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
779 /* Workaround for non-ULT HSW */
780 switch (index) {
781 case 0: return 63;
782 case 1: return 72;
783 default: return 0;
784 }
785 }
786
787 return ilk_get_aux_clock_divider(intel_dp, index);
788 }
789
790 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
791 {
792 /*
793 * SKL doesn't need us to program the AUX clock divider (Hardware will
794 * derive the clock from CDCLK automatically). We still implement the
795 * get_aux_clock_divider vfunc to plug-in into the existing code.
796 */
797 return index ? 0 : 1;
798 }
799
800 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
801 bool has_aux_irq,
802 int send_bytes,
803 uint32_t aux_clock_divider)
804 {
805 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
806 struct drm_device *dev = intel_dig_port->base.base.dev;
807 uint32_t precharge, timeout;
808
809 if (IS_GEN6(dev))
810 precharge = 3;
811 else
812 precharge = 5;
813
814 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
815 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
816 else
817 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
818
819 return DP_AUX_CH_CTL_SEND_BUSY |
820 DP_AUX_CH_CTL_DONE |
821 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
822 DP_AUX_CH_CTL_TIME_OUT_ERROR |
823 timeout |
824 DP_AUX_CH_CTL_RECEIVE_ERROR |
825 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
826 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
827 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
828 }
829
830 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
831 bool has_aux_irq,
832 int send_bytes,
833 uint32_t unused)
834 {
835 return DP_AUX_CH_CTL_SEND_BUSY |
836 DP_AUX_CH_CTL_DONE |
837 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
838 DP_AUX_CH_CTL_TIME_OUT_ERROR |
839 DP_AUX_CH_CTL_TIME_OUT_1600us |
840 DP_AUX_CH_CTL_RECEIVE_ERROR |
841 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
842 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
843 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
844 }
845
846 static int
847 intel_dp_aux_ch(struct intel_dp *intel_dp,
848 const uint8_t *send, int send_bytes,
849 uint8_t *recv, int recv_size)
850 {
851 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
852 struct drm_device *dev = intel_dig_port->base.base.dev;
853 struct drm_i915_private *dev_priv = dev->dev_private;
854 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
855 uint32_t aux_clock_divider;
856 int i, ret, recv_bytes;
857 uint32_t status;
858 int try, clock = 0;
859 bool has_aux_irq = HAS_AUX_IRQ(dev);
860 bool vdd;
861
862 pps_lock(intel_dp);
863
864 /*
865 * We will be called with VDD already enabled for dpcd/edid/oui reads.
866 * In such cases we want to leave VDD enabled and it's up to upper layers
867 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
868 * ourselves.
869 */
870 vdd = edp_panel_vdd_on(intel_dp);
871
872 /* dp aux is extremely sensitive to irq latency, hence request the
873 * lowest possible wakeup latency and so prevent the cpu from going into
874 * deep sleep states.
875 */
876 pm_qos_update_request(&dev_priv->pm_qos, 0);
877
878 intel_dp_check_edp(intel_dp);
879
880 /* Try to wait for any previous AUX channel activity */
881 for (try = 0; try < 3; try++) {
882 status = I915_READ_NOTRACE(ch_ctl);
883 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
884 break;
885 msleep(1);
886 }
887
888 if (try == 3) {
889 static u32 last_status = -1;
890 const u32 status = I915_READ(ch_ctl);
891
892 if (status != last_status) {
893 WARN(1, "dp_aux_ch not started status 0x%08x\n",
894 status);
895 last_status = status;
896 }
897
898 ret = -EBUSY;
899 goto out;
900 }
901
902 /* Only 5 data registers! */
903 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
904 ret = -E2BIG;
905 goto out;
906 }
907
908 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
909 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
910 has_aux_irq,
911 send_bytes,
912 aux_clock_divider);
913
914 /* Must try at least 3 times according to DP spec */
915 for (try = 0; try < 5; try++) {
916 /* Load the send data into the aux channel data registers */
917 for (i = 0; i < send_bytes; i += 4)
918 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
919 intel_dp_pack_aux(send + i,
920 send_bytes - i));
921
922 /* Send the command and wait for it to complete */
923 I915_WRITE(ch_ctl, send_ctl);
924
925 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
926
927 /* Clear done status and any errors */
928 I915_WRITE(ch_ctl,
929 status |
930 DP_AUX_CH_CTL_DONE |
931 DP_AUX_CH_CTL_TIME_OUT_ERROR |
932 DP_AUX_CH_CTL_RECEIVE_ERROR);
933
934 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
935 continue;
936
937 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
938 * 400us delay required for errors and timeouts
939 * Timeout errors from the HW already meet this
940 * requirement so skip to next iteration
941 */
942 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
943 usleep_range(400, 500);
944 continue;
945 }
946 if (status & DP_AUX_CH_CTL_DONE)
947 goto done;
948 }
949 }
950
951 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
952 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
953 ret = -EBUSY;
954 goto out;
955 }
956
957 done:
958 /* Check for timeout or receive error.
959 * Timeouts occur when the sink is not connected
960 */
961 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
963 ret = -EIO;
964 goto out;
965 }
966
967 /* Timeouts occur when the device isn't connected, so they're
968 * "normal" -- don't fill the kernel log with these */
969 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
970 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
971 ret = -ETIMEDOUT;
972 goto out;
973 }
974
975 /* Unload any bytes sent back from the other side */
976 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
977 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
978
979 /*
980 * By BSpec: "Message sizes of 0 or >20 are not allowed."
981 * We have no idea of what happened so we return -EBUSY so
982 * drm layer takes care for the necessary retries.
983 */
984 if (recv_bytes == 0 || recv_bytes > 20) {
985 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
986 recv_bytes);
987 /*
988 * FIXME: This patch was created on top of a series that
989 * organize the retries at drm level. There EBUSY should
990 * also take care for 1ms wait before retrying.
991 * That aux retries re-org is still needed and after that is
992 * merged we remove this sleep from here.
993 */
994 usleep_range(1000, 1500);
995 ret = -EBUSY;
996 goto out;
997 }
998
999 if (recv_bytes > recv_size)
1000 recv_bytes = recv_size;
1001
1002 for (i = 0; i < recv_bytes; i += 4)
1003 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1004 recv + i, recv_bytes - i);
1005
1006 ret = recv_bytes;
1007 out:
1008 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1009
1010 if (vdd)
1011 edp_panel_vdd_off(intel_dp, false);
1012
1013 pps_unlock(intel_dp);
1014
1015 return ret;
1016 }
1017
1018 #define BARE_ADDRESS_SIZE 3
1019 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1020 static ssize_t
1021 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1022 {
1023 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1024 uint8_t txbuf[20], rxbuf[20];
1025 size_t txsize, rxsize;
1026 int ret;
1027
1028 txbuf[0] = (msg->request << 4) |
1029 ((msg->address >> 16) & 0xf);
1030 txbuf[1] = (msg->address >> 8) & 0xff;
1031 txbuf[2] = msg->address & 0xff;
1032 txbuf[3] = msg->size - 1;
1033
1034 switch (msg->request & ~DP_AUX_I2C_MOT) {
1035 case DP_AUX_NATIVE_WRITE:
1036 case DP_AUX_I2C_WRITE:
1037 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1038 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1039 rxsize = 2; /* 0 or 1 data bytes */
1040
1041 if (WARN_ON(txsize > 20))
1042 return -E2BIG;
1043
1044 if (msg->buffer)
1045 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1046 else
1047 WARN_ON(msg->size);
1048
1049 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1050 if (ret > 0) {
1051 msg->reply = rxbuf[0] >> 4;
1052
1053 if (ret > 1) {
1054 /* Number of bytes written in a short write. */
1055 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1056 } else {
1057 /* Return payload size. */
1058 ret = msg->size;
1059 }
1060 }
1061 break;
1062
1063 case DP_AUX_NATIVE_READ:
1064 case DP_AUX_I2C_READ:
1065 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1066 rxsize = msg->size + 1;
1067
1068 if (WARN_ON(rxsize > 20))
1069 return -E2BIG;
1070
1071 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1072 if (ret > 0) {
1073 msg->reply = rxbuf[0] >> 4;
1074 /*
1075 * Assume happy day, and copy the data. The caller is
1076 * expected to check msg->reply before touching it.
1077 *
1078 * Return payload size.
1079 */
1080 ret--;
1081 memcpy(msg->buffer, rxbuf + 1, ret);
1082 }
1083 break;
1084
1085 default:
1086 ret = -EINVAL;
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092
1093 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1094 enum port port)
1095 {
1096 switch (port) {
1097 case PORT_B:
1098 case PORT_C:
1099 case PORT_D:
1100 return DP_AUX_CH_CTL(port);
1101 default:
1102 MISSING_CASE(port);
1103 return DP_AUX_CH_CTL(PORT_B);
1104 }
1105 }
1106
1107 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1108 enum port port, int index)
1109 {
1110 switch (port) {
1111 case PORT_B:
1112 case PORT_C:
1113 case PORT_D:
1114 return DP_AUX_CH_DATA(port, index);
1115 default:
1116 MISSING_CASE(port);
1117 return DP_AUX_CH_DATA(PORT_B, index);
1118 }
1119 }
1120
1121 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1122 enum port port)
1123 {
1124 switch (port) {
1125 case PORT_A:
1126 return DP_AUX_CH_CTL(port);
1127 case PORT_B:
1128 case PORT_C:
1129 case PORT_D:
1130 return PCH_DP_AUX_CH_CTL(port);
1131 default:
1132 MISSING_CASE(port);
1133 return DP_AUX_CH_CTL(PORT_A);
1134 }
1135 }
1136
1137 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1138 enum port port, int index)
1139 {
1140 switch (port) {
1141 case PORT_A:
1142 return DP_AUX_CH_DATA(port, index);
1143 case PORT_B:
1144 case PORT_C:
1145 case PORT_D:
1146 return PCH_DP_AUX_CH_DATA(port, index);
1147 default:
1148 MISSING_CASE(port);
1149 return DP_AUX_CH_DATA(PORT_A, index);
1150 }
1151 }
1152
1153 /*
1154 * On SKL we don't have Aux for port E so we rely
1155 * on VBT to set a proper alternate aux channel.
1156 */
1157 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1158 {
1159 const struct ddi_vbt_port_info *info =
1160 &dev_priv->vbt.ddi_port_info[PORT_E];
1161
1162 switch (info->alternate_aux_channel) {
1163 case DP_AUX_A:
1164 return PORT_A;
1165 case DP_AUX_B:
1166 return PORT_B;
1167 case DP_AUX_C:
1168 return PORT_C;
1169 case DP_AUX_D:
1170 return PORT_D;
1171 default:
1172 MISSING_CASE(info->alternate_aux_channel);
1173 return PORT_A;
1174 }
1175 }
1176
1177 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178 enum port port)
1179 {
1180 if (port == PORT_E)
1181 port = skl_porte_aux_port(dev_priv);
1182
1183 switch (port) {
1184 case PORT_A:
1185 case PORT_B:
1186 case PORT_C:
1187 case PORT_D:
1188 return DP_AUX_CH_CTL(port);
1189 default:
1190 MISSING_CASE(port);
1191 return DP_AUX_CH_CTL(PORT_A);
1192 }
1193 }
1194
1195 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1196 enum port port, int index)
1197 {
1198 if (port == PORT_E)
1199 port = skl_porte_aux_port(dev_priv);
1200
1201 switch (port) {
1202 case PORT_A:
1203 case PORT_B:
1204 case PORT_C:
1205 case PORT_D:
1206 return DP_AUX_CH_DATA(port, index);
1207 default:
1208 MISSING_CASE(port);
1209 return DP_AUX_CH_DATA(PORT_A, index);
1210 }
1211 }
1212
1213 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1214 enum port port)
1215 {
1216 if (INTEL_INFO(dev_priv)->gen >= 9)
1217 return skl_aux_ctl_reg(dev_priv, port);
1218 else if (HAS_PCH_SPLIT(dev_priv))
1219 return ilk_aux_ctl_reg(dev_priv, port);
1220 else
1221 return g4x_aux_ctl_reg(dev_priv, port);
1222 }
1223
1224 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1225 enum port port, int index)
1226 {
1227 if (INTEL_INFO(dev_priv)->gen >= 9)
1228 return skl_aux_data_reg(dev_priv, port, index);
1229 else if (HAS_PCH_SPLIT(dev_priv))
1230 return ilk_aux_data_reg(dev_priv, port, index);
1231 else
1232 return g4x_aux_data_reg(dev_priv, port, index);
1233 }
1234
1235 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1236 {
1237 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1238 enum port port = dp_to_dig_port(intel_dp)->port;
1239 int i;
1240
1241 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1242 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1243 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1244 }
1245
1246 static void
1247 intel_dp_aux_fini(struct intel_dp *intel_dp)
1248 {
1249 kfree(intel_dp->aux.name);
1250 }
1251
1252 static void
1253 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1254 {
1255 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1256 enum port port = intel_dig_port->port;
1257
1258 intel_aux_reg_init(intel_dp);
1259 drm_dp_aux_init(&intel_dp->aux);
1260
1261 /* Failure to allocate our preferred name is not critical */
1262 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1263 intel_dp->aux.transfer = intel_dp_aux_transfer;
1264 }
1265
1266 static int
1267 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1268 {
1269 if (intel_dp->num_sink_rates) {
1270 *sink_rates = intel_dp->sink_rates;
1271 return intel_dp->num_sink_rates;
1272 }
1273
1274 *sink_rates = default_rates;
1275
1276 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1277 }
1278
1279 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1280 {
1281 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1282 struct drm_device *dev = dig_port->base.base.dev;
1283
1284 /* WaDisableHBR2:skl */
1285 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1286 return false;
1287
1288 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1289 (INTEL_INFO(dev)->gen >= 9))
1290 return true;
1291 else
1292 return false;
1293 }
1294
1295 static int
1296 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1297 {
1298 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1299 struct drm_device *dev = dig_port->base.base.dev;
1300 int size;
1301
1302 if (IS_BROXTON(dev)) {
1303 *source_rates = bxt_rates;
1304 size = ARRAY_SIZE(bxt_rates);
1305 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1306 *source_rates = skl_rates;
1307 size = ARRAY_SIZE(skl_rates);
1308 } else {
1309 *source_rates = default_rates;
1310 size = ARRAY_SIZE(default_rates);
1311 }
1312
1313 /* This depends on the fact that 5.4 is last value in the array */
1314 if (!intel_dp_source_supports_hbr2(intel_dp))
1315 size--;
1316
1317 return size;
1318 }
1319
1320 static void
1321 intel_dp_set_clock(struct intel_encoder *encoder,
1322 struct intel_crtc_state *pipe_config)
1323 {
1324 struct drm_device *dev = encoder->base.dev;
1325 const struct dp_link_dpll *divisor = NULL;
1326 int i, count = 0;
1327
1328 if (IS_G4X(dev)) {
1329 divisor = gen4_dpll;
1330 count = ARRAY_SIZE(gen4_dpll);
1331 } else if (HAS_PCH_SPLIT(dev)) {
1332 divisor = pch_dpll;
1333 count = ARRAY_SIZE(pch_dpll);
1334 } else if (IS_CHERRYVIEW(dev)) {
1335 divisor = chv_dpll;
1336 count = ARRAY_SIZE(chv_dpll);
1337 } else if (IS_VALLEYVIEW(dev)) {
1338 divisor = vlv_dpll;
1339 count = ARRAY_SIZE(vlv_dpll);
1340 }
1341
1342 if (divisor && count) {
1343 for (i = 0; i < count; i++) {
1344 if (pipe_config->port_clock == divisor[i].clock) {
1345 pipe_config->dpll = divisor[i].dpll;
1346 pipe_config->clock_set = true;
1347 break;
1348 }
1349 }
1350 }
1351 }
1352
1353 static int intersect_rates(const int *source_rates, int source_len,
1354 const int *sink_rates, int sink_len,
1355 int *common_rates)
1356 {
1357 int i = 0, j = 0, k = 0;
1358
1359 while (i < source_len && j < sink_len) {
1360 if (source_rates[i] == sink_rates[j]) {
1361 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1362 return k;
1363 common_rates[k] = source_rates[i];
1364 ++k;
1365 ++i;
1366 ++j;
1367 } else if (source_rates[i] < sink_rates[j]) {
1368 ++i;
1369 } else {
1370 ++j;
1371 }
1372 }
1373 return k;
1374 }
1375
1376 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1377 int *common_rates)
1378 {
1379 const int *source_rates, *sink_rates;
1380 int source_len, sink_len;
1381
1382 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1384
1385 return intersect_rates(source_rates, source_len,
1386 sink_rates, sink_len,
1387 common_rates);
1388 }
1389
1390 static void snprintf_int_array(char *str, size_t len,
1391 const int *array, int nelem)
1392 {
1393 int i;
1394
1395 str[0] = '\0';
1396
1397 for (i = 0; i < nelem; i++) {
1398 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1399 if (r >= len)
1400 return;
1401 str += r;
1402 len -= r;
1403 }
1404 }
1405
1406 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1407 {
1408 const int *source_rates, *sink_rates;
1409 int source_len, sink_len, common_len;
1410 int common_rates[DP_MAX_SUPPORTED_RATES];
1411 char str[128]; /* FIXME: too big for stack? */
1412
1413 if ((drm_debug & DRM_UT_KMS) == 0)
1414 return;
1415
1416 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1417 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1418 DRM_DEBUG_KMS("source rates: %s\n", str);
1419
1420 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1421 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1422 DRM_DEBUG_KMS("sink rates: %s\n", str);
1423
1424 common_len = intel_dp_common_rates(intel_dp, common_rates);
1425 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1426 DRM_DEBUG_KMS("common rates: %s\n", str);
1427 }
1428
1429 static int rate_to_index(int find, const int *rates)
1430 {
1431 int i = 0;
1432
1433 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1434 if (find == rates[i])
1435 break;
1436
1437 return i;
1438 }
1439
1440 int
1441 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1442 {
1443 int rates[DP_MAX_SUPPORTED_RATES] = {};
1444 int len;
1445
1446 len = intel_dp_common_rates(intel_dp, rates);
1447 if (WARN_ON(len <= 0))
1448 return 162000;
1449
1450 return rates[rate_to_index(0, rates) - 1];
1451 }
1452
1453 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1454 {
1455 return rate_to_index(rate, intel_dp->sink_rates);
1456 }
1457
1458 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1459 uint8_t *link_bw, uint8_t *rate_select)
1460 {
1461 if (intel_dp->num_sink_rates) {
1462 *link_bw = 0;
1463 *rate_select =
1464 intel_dp_rate_select(intel_dp, port_clock);
1465 } else {
1466 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1467 *rate_select = 0;
1468 }
1469 }
1470
1471 bool
1472 intel_dp_compute_config(struct intel_encoder *encoder,
1473 struct intel_crtc_state *pipe_config)
1474 {
1475 struct drm_device *dev = encoder->base.dev;
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1478 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1479 enum port port = dp_to_dig_port(intel_dp)->port;
1480 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1481 struct intel_connector *intel_connector = intel_dp->attached_connector;
1482 int lane_count, clock;
1483 int min_lane_count = 1;
1484 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1485 /* Conveniently, the link BW constants become indices with a shift...*/
1486 int min_clock = 0;
1487 int max_clock;
1488 int bpp, mode_rate;
1489 int link_avail, link_clock;
1490 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1491 int common_len;
1492 uint8_t link_bw, rate_select;
1493
1494 common_len = intel_dp_common_rates(intel_dp, common_rates);
1495
1496 /* No common link rates between source and sink */
1497 WARN_ON(common_len <= 0);
1498
1499 max_clock = common_len - 1;
1500
1501 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1502 pipe_config->has_pch_encoder = true;
1503
1504 pipe_config->has_dp_encoder = true;
1505 pipe_config->has_drrs = false;
1506 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1507
1508 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1509 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1510 adjusted_mode);
1511
1512 if (INTEL_INFO(dev)->gen >= 9) {
1513 int ret;
1514 ret = skl_update_scaler_crtc(pipe_config);
1515 if (ret)
1516 return ret;
1517 }
1518
1519 if (HAS_GMCH_DISPLAY(dev))
1520 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1521 intel_connector->panel.fitting_mode);
1522 else
1523 intel_pch_panel_fitting(intel_crtc, pipe_config,
1524 intel_connector->panel.fitting_mode);
1525 }
1526
1527 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1528 return false;
1529
1530 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1531 "max bw %d pixel clock %iKHz\n",
1532 max_lane_count, common_rates[max_clock],
1533 adjusted_mode->crtc_clock);
1534
1535 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1536 * bpc in between. */
1537 bpp = pipe_config->pipe_bpp;
1538 if (is_edp(intel_dp)) {
1539
1540 /* Get bpp from vbt only for panels that dont have bpp in edid */
1541 if (intel_connector->base.display_info.bpc == 0 &&
1542 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1543 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1544 dev_priv->vbt.edp.bpp);
1545 bpp = dev_priv->vbt.edp.bpp;
1546 }
1547
1548 /*
1549 * Use the maximum clock and number of lanes the eDP panel
1550 * advertizes being capable of. The panels are generally
1551 * designed to support only a single clock and lane
1552 * configuration, and typically these values correspond to the
1553 * native resolution of the panel.
1554 */
1555 min_lane_count = max_lane_count;
1556 min_clock = max_clock;
1557 }
1558
1559 for (; bpp >= 6*3; bpp -= 2*3) {
1560 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1561 bpp);
1562
1563 for (clock = min_clock; clock <= max_clock; clock++) {
1564 for (lane_count = min_lane_count;
1565 lane_count <= max_lane_count;
1566 lane_count <<= 1) {
1567
1568 link_clock = common_rates[clock];
1569 link_avail = intel_dp_max_data_rate(link_clock,
1570 lane_count);
1571
1572 if (mode_rate <= link_avail) {
1573 goto found;
1574 }
1575 }
1576 }
1577 }
1578
1579 return false;
1580
1581 found:
1582 if (intel_dp->color_range_auto) {
1583 /*
1584 * See:
1585 * CEA-861-E - 5.1 Default Encoding Parameters
1586 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1587 */
1588 pipe_config->limited_color_range =
1589 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1590 } else {
1591 pipe_config->limited_color_range =
1592 intel_dp->limited_color_range;
1593 }
1594
1595 pipe_config->lane_count = lane_count;
1596
1597 pipe_config->pipe_bpp = bpp;
1598 pipe_config->port_clock = common_rates[clock];
1599
1600 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1601 &link_bw, &rate_select);
1602
1603 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1604 link_bw, rate_select, pipe_config->lane_count,
1605 pipe_config->port_clock, bpp);
1606 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1607 mode_rate, link_avail);
1608
1609 intel_link_compute_m_n(bpp, lane_count,
1610 adjusted_mode->crtc_clock,
1611 pipe_config->port_clock,
1612 &pipe_config->dp_m_n);
1613
1614 if (intel_connector->panel.downclock_mode != NULL &&
1615 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1616 pipe_config->has_drrs = true;
1617 intel_link_compute_m_n(bpp, lane_count,
1618 intel_connector->panel.downclock_mode->clock,
1619 pipe_config->port_clock,
1620 &pipe_config->dp_m2_n2);
1621 }
1622
1623 /*
1624 * DPLL0 VCO may need to be adjusted to get the correct
1625 * clock for eDP. This will affect cdclk as well.
1626 */
1627 if (is_edp(intel_dp) &&
1628 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1629 int vco;
1630
1631 switch (pipe_config->port_clock / 2) {
1632 case 108000:
1633 case 216000:
1634 vco = 8640000;
1635 break;
1636 default:
1637 vco = 8100000;
1638 break;
1639 }
1640
1641 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1642 }
1643
1644 if (!HAS_DDI(dev))
1645 intel_dp_set_clock(encoder, pipe_config);
1646
1647 return true;
1648 }
1649
1650 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1651 const struct intel_crtc_state *pipe_config)
1652 {
1653 intel_dp->link_rate = pipe_config->port_clock;
1654 intel_dp->lane_count = pipe_config->lane_count;
1655 }
1656
1657 static void intel_dp_prepare(struct intel_encoder *encoder)
1658 {
1659 struct drm_device *dev = encoder->base.dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1662 enum port port = dp_to_dig_port(intel_dp)->port;
1663 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1664 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1665
1666 intel_dp_set_link_params(intel_dp, crtc->config);
1667
1668 /*
1669 * There are four kinds of DP registers:
1670 *
1671 * IBX PCH
1672 * SNB CPU
1673 * IVB CPU
1674 * CPT PCH
1675 *
1676 * IBX PCH and CPU are the same for almost everything,
1677 * except that the CPU DP PLL is configured in this
1678 * register
1679 *
1680 * CPT PCH is quite different, having many bits moved
1681 * to the TRANS_DP_CTL register instead. That
1682 * configuration happens (oddly) in ironlake_pch_enable
1683 */
1684
1685 /* Preserve the BIOS-computed detected bit. This is
1686 * supposed to be read-only.
1687 */
1688 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1689
1690 /* Handle DP bits in common between all three register formats */
1691 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1692 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1693
1694 /* Split out the IBX/CPU vs CPT settings */
1695
1696 if (IS_GEN7(dev) && port == PORT_A) {
1697 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1698 intel_dp->DP |= DP_SYNC_HS_HIGH;
1699 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1700 intel_dp->DP |= DP_SYNC_VS_HIGH;
1701 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1702
1703 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1704 intel_dp->DP |= DP_ENHANCED_FRAMING;
1705
1706 intel_dp->DP |= crtc->pipe << 29;
1707 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1708 u32 trans_dp;
1709
1710 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1711
1712 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1713 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1714 trans_dp |= TRANS_DP_ENH_FRAMING;
1715 else
1716 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1717 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1718 } else {
1719 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1720 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1721 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1722
1723 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1724 intel_dp->DP |= DP_SYNC_HS_HIGH;
1725 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1726 intel_dp->DP |= DP_SYNC_VS_HIGH;
1727 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1728
1729 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1730 intel_dp->DP |= DP_ENHANCED_FRAMING;
1731
1732 if (IS_CHERRYVIEW(dev))
1733 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1734 else if (crtc->pipe == PIPE_B)
1735 intel_dp->DP |= DP_PIPEB_SELECT;
1736 }
1737 }
1738
1739 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1740 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1741
1742 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1743 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1744
1745 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1746 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1747
1748 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1749 struct intel_dp *intel_dp);
1750
1751 static void wait_panel_status(struct intel_dp *intel_dp,
1752 u32 mask,
1753 u32 value)
1754 {
1755 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1756 struct drm_i915_private *dev_priv = dev->dev_private;
1757 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1758
1759 lockdep_assert_held(&dev_priv->pps_mutex);
1760
1761 intel_pps_verify_state(dev_priv, intel_dp);
1762
1763 pp_stat_reg = _pp_stat_reg(intel_dp);
1764 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1765
1766 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1767 mask, value,
1768 I915_READ(pp_stat_reg),
1769 I915_READ(pp_ctrl_reg));
1770
1771 if (intel_wait_for_register(dev_priv,
1772 pp_stat_reg, mask, value,
1773 5000))
1774 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1775 I915_READ(pp_stat_reg),
1776 I915_READ(pp_ctrl_reg));
1777
1778 DRM_DEBUG_KMS("Wait complete\n");
1779 }
1780
1781 static void wait_panel_on(struct intel_dp *intel_dp)
1782 {
1783 DRM_DEBUG_KMS("Wait for panel power on\n");
1784 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1785 }
1786
1787 static void wait_panel_off(struct intel_dp *intel_dp)
1788 {
1789 DRM_DEBUG_KMS("Wait for panel power off time\n");
1790 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1791 }
1792
1793 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1794 {
1795 ktime_t panel_power_on_time;
1796 s64 panel_power_off_duration;
1797
1798 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1799
1800 /* take the difference of currrent time and panel power off time
1801 * and then make panel wait for t11_t12 if needed. */
1802 panel_power_on_time = ktime_get_boottime();
1803 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1804
1805 /* When we disable the VDD override bit last we have to do the manual
1806 * wait. */
1807 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1808 wait_remaining_ms_from_jiffies(jiffies,
1809 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1810
1811 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1812 }
1813
1814 static void wait_backlight_on(struct intel_dp *intel_dp)
1815 {
1816 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1817 intel_dp->backlight_on_delay);
1818 }
1819
1820 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1821 {
1822 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1823 intel_dp->backlight_off_delay);
1824 }
1825
1826 /* Read the current pp_control value, unlocking the register if it
1827 * is locked
1828 */
1829
1830 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1831 {
1832 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 u32 control;
1835
1836 lockdep_assert_held(&dev_priv->pps_mutex);
1837
1838 control = I915_READ(_pp_ctrl_reg(intel_dp));
1839 if (!IS_BROXTON(dev)) {
1840 control &= ~PANEL_UNLOCK_MASK;
1841 control |= PANEL_UNLOCK_REGS;
1842 }
1843 return control;
1844 }
1845
1846 /*
1847 * Must be paired with edp_panel_vdd_off().
1848 * Must hold pps_mutex around the whole on/off sequence.
1849 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1850 */
1851 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1852 {
1853 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1854 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1855 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1856 struct drm_i915_private *dev_priv = dev->dev_private;
1857 enum intel_display_power_domain power_domain;
1858 u32 pp;
1859 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1860 bool need_to_disable = !intel_dp->want_panel_vdd;
1861
1862 lockdep_assert_held(&dev_priv->pps_mutex);
1863
1864 if (!is_edp(intel_dp))
1865 return false;
1866
1867 cancel_delayed_work(&intel_dp->panel_vdd_work);
1868 intel_dp->want_panel_vdd = true;
1869
1870 if (edp_have_panel_vdd(intel_dp))
1871 return need_to_disable;
1872
1873 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1874 intel_display_power_get(dev_priv, power_domain);
1875
1876 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1877 port_name(intel_dig_port->port));
1878
1879 if (!edp_have_panel_power(intel_dp))
1880 wait_panel_power_cycle(intel_dp);
1881
1882 pp = ironlake_get_pp_control(intel_dp);
1883 pp |= EDP_FORCE_VDD;
1884
1885 pp_stat_reg = _pp_stat_reg(intel_dp);
1886 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1887
1888 I915_WRITE(pp_ctrl_reg, pp);
1889 POSTING_READ(pp_ctrl_reg);
1890 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1891 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1892 /*
1893 * If the panel wasn't on, delay before accessing aux channel
1894 */
1895 if (!edp_have_panel_power(intel_dp)) {
1896 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1897 port_name(intel_dig_port->port));
1898 msleep(intel_dp->panel_power_up_delay);
1899 }
1900
1901 return need_to_disable;
1902 }
1903
1904 /*
1905 * Must be paired with intel_edp_panel_vdd_off() or
1906 * intel_edp_panel_off().
1907 * Nested calls to these functions are not allowed since
1908 * we drop the lock. Caller must use some higher level
1909 * locking to prevent nested calls from other threads.
1910 */
1911 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1912 {
1913 bool vdd;
1914
1915 if (!is_edp(intel_dp))
1916 return;
1917
1918 pps_lock(intel_dp);
1919 vdd = edp_panel_vdd_on(intel_dp);
1920 pps_unlock(intel_dp);
1921
1922 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1923 port_name(dp_to_dig_port(intel_dp)->port));
1924 }
1925
1926 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1927 {
1928 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 struct intel_digital_port *intel_dig_port =
1931 dp_to_dig_port(intel_dp);
1932 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1933 enum intel_display_power_domain power_domain;
1934 u32 pp;
1935 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1936
1937 lockdep_assert_held(&dev_priv->pps_mutex);
1938
1939 WARN_ON(intel_dp->want_panel_vdd);
1940
1941 if (!edp_have_panel_vdd(intel_dp))
1942 return;
1943
1944 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1945 port_name(intel_dig_port->port));
1946
1947 pp = ironlake_get_pp_control(intel_dp);
1948 pp &= ~EDP_FORCE_VDD;
1949
1950 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1951 pp_stat_reg = _pp_stat_reg(intel_dp);
1952
1953 I915_WRITE(pp_ctrl_reg, pp);
1954 POSTING_READ(pp_ctrl_reg);
1955
1956 /* Make sure sequencer is idle before allowing subsequent activity */
1957 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1958 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1959
1960 if ((pp & POWER_TARGET_ON) == 0)
1961 intel_dp->panel_power_off_time = ktime_get_boottime();
1962
1963 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1964 intel_display_power_put(dev_priv, power_domain);
1965 }
1966
1967 static void edp_panel_vdd_work(struct work_struct *__work)
1968 {
1969 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1970 struct intel_dp, panel_vdd_work);
1971
1972 pps_lock(intel_dp);
1973 if (!intel_dp->want_panel_vdd)
1974 edp_panel_vdd_off_sync(intel_dp);
1975 pps_unlock(intel_dp);
1976 }
1977
1978 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1979 {
1980 unsigned long delay;
1981
1982 /*
1983 * Queue the timer to fire a long time from now (relative to the power
1984 * down delay) to keep the panel power up across a sequence of
1985 * operations.
1986 */
1987 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1988 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1989 }
1990
1991 /*
1992 * Must be paired with edp_panel_vdd_on().
1993 * Must hold pps_mutex around the whole on/off sequence.
1994 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1995 */
1996 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1997 {
1998 struct drm_i915_private *dev_priv =
1999 intel_dp_to_dev(intel_dp)->dev_private;
2000
2001 lockdep_assert_held(&dev_priv->pps_mutex);
2002
2003 if (!is_edp(intel_dp))
2004 return;
2005
2006 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2007 port_name(dp_to_dig_port(intel_dp)->port));
2008
2009 intel_dp->want_panel_vdd = false;
2010
2011 if (sync)
2012 edp_panel_vdd_off_sync(intel_dp);
2013 else
2014 edp_panel_vdd_schedule_off(intel_dp);
2015 }
2016
2017 static void edp_panel_on(struct intel_dp *intel_dp)
2018 {
2019 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 u32 pp;
2022 i915_reg_t pp_ctrl_reg;
2023
2024 lockdep_assert_held(&dev_priv->pps_mutex);
2025
2026 if (!is_edp(intel_dp))
2027 return;
2028
2029 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2030 port_name(dp_to_dig_port(intel_dp)->port));
2031
2032 if (WARN(edp_have_panel_power(intel_dp),
2033 "eDP port %c panel power already on\n",
2034 port_name(dp_to_dig_port(intel_dp)->port)))
2035 return;
2036
2037 wait_panel_power_cycle(intel_dp);
2038
2039 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2040 pp = ironlake_get_pp_control(intel_dp);
2041 if (IS_GEN5(dev)) {
2042 /* ILK workaround: disable reset around power sequence */
2043 pp &= ~PANEL_POWER_RESET;
2044 I915_WRITE(pp_ctrl_reg, pp);
2045 POSTING_READ(pp_ctrl_reg);
2046 }
2047
2048 pp |= POWER_TARGET_ON;
2049 if (!IS_GEN5(dev))
2050 pp |= PANEL_POWER_RESET;
2051
2052 I915_WRITE(pp_ctrl_reg, pp);
2053 POSTING_READ(pp_ctrl_reg);
2054
2055 wait_panel_on(intel_dp);
2056 intel_dp->last_power_on = jiffies;
2057
2058 if (IS_GEN5(dev)) {
2059 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2060 I915_WRITE(pp_ctrl_reg, pp);
2061 POSTING_READ(pp_ctrl_reg);
2062 }
2063 }
2064
2065 void intel_edp_panel_on(struct intel_dp *intel_dp)
2066 {
2067 if (!is_edp(intel_dp))
2068 return;
2069
2070 pps_lock(intel_dp);
2071 edp_panel_on(intel_dp);
2072 pps_unlock(intel_dp);
2073 }
2074
2075
2076 static void edp_panel_off(struct intel_dp *intel_dp)
2077 {
2078 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2079 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2080 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 enum intel_display_power_domain power_domain;
2083 u32 pp;
2084 i915_reg_t pp_ctrl_reg;
2085
2086 lockdep_assert_held(&dev_priv->pps_mutex);
2087
2088 if (!is_edp(intel_dp))
2089 return;
2090
2091 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2092 port_name(dp_to_dig_port(intel_dp)->port));
2093
2094 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2095 port_name(dp_to_dig_port(intel_dp)->port));
2096
2097 pp = ironlake_get_pp_control(intel_dp);
2098 /* We need to switch off panel power _and_ force vdd, for otherwise some
2099 * panels get very unhappy and cease to work. */
2100 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2101 EDP_BLC_ENABLE);
2102
2103 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2104
2105 intel_dp->want_panel_vdd = false;
2106
2107 I915_WRITE(pp_ctrl_reg, pp);
2108 POSTING_READ(pp_ctrl_reg);
2109
2110 intel_dp->panel_power_off_time = ktime_get_boottime();
2111 wait_panel_off(intel_dp);
2112
2113 /* We got a reference when we enabled the VDD. */
2114 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2115 intel_display_power_put(dev_priv, power_domain);
2116 }
2117
2118 void intel_edp_panel_off(struct intel_dp *intel_dp)
2119 {
2120 if (!is_edp(intel_dp))
2121 return;
2122
2123 pps_lock(intel_dp);
2124 edp_panel_off(intel_dp);
2125 pps_unlock(intel_dp);
2126 }
2127
2128 /* Enable backlight in the panel power control. */
2129 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2130 {
2131 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2132 struct drm_device *dev = intel_dig_port->base.base.dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 u32 pp;
2135 i915_reg_t pp_ctrl_reg;
2136
2137 /*
2138 * If we enable the backlight right away following a panel power
2139 * on, we may see slight flicker as the panel syncs with the eDP
2140 * link. So delay a bit to make sure the image is solid before
2141 * allowing it to appear.
2142 */
2143 wait_backlight_on(intel_dp);
2144
2145 pps_lock(intel_dp);
2146
2147 pp = ironlake_get_pp_control(intel_dp);
2148 pp |= EDP_BLC_ENABLE;
2149
2150 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2151
2152 I915_WRITE(pp_ctrl_reg, pp);
2153 POSTING_READ(pp_ctrl_reg);
2154
2155 pps_unlock(intel_dp);
2156 }
2157
2158 /* Enable backlight PWM and backlight PP control. */
2159 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2160 {
2161 if (!is_edp(intel_dp))
2162 return;
2163
2164 DRM_DEBUG_KMS("\n");
2165
2166 intel_panel_enable_backlight(intel_dp->attached_connector);
2167 _intel_edp_backlight_on(intel_dp);
2168 }
2169
2170 /* Disable backlight in the panel power control. */
2171 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2172 {
2173 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175 u32 pp;
2176 i915_reg_t pp_ctrl_reg;
2177
2178 if (!is_edp(intel_dp))
2179 return;
2180
2181 pps_lock(intel_dp);
2182
2183 pp = ironlake_get_pp_control(intel_dp);
2184 pp &= ~EDP_BLC_ENABLE;
2185
2186 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2187
2188 I915_WRITE(pp_ctrl_reg, pp);
2189 POSTING_READ(pp_ctrl_reg);
2190
2191 pps_unlock(intel_dp);
2192
2193 intel_dp->last_backlight_off = jiffies;
2194 edp_wait_backlight_off(intel_dp);
2195 }
2196
2197 /* Disable backlight PP control and backlight PWM. */
2198 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2199 {
2200 if (!is_edp(intel_dp))
2201 return;
2202
2203 DRM_DEBUG_KMS("\n");
2204
2205 _intel_edp_backlight_off(intel_dp);
2206 intel_panel_disable_backlight(intel_dp->attached_connector);
2207 }
2208
2209 /*
2210 * Hook for controlling the panel power control backlight through the bl_power
2211 * sysfs attribute. Take care to handle multiple calls.
2212 */
2213 static void intel_edp_backlight_power(struct intel_connector *connector,
2214 bool enable)
2215 {
2216 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2217 bool is_enabled;
2218
2219 pps_lock(intel_dp);
2220 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2221 pps_unlock(intel_dp);
2222
2223 if (is_enabled == enable)
2224 return;
2225
2226 DRM_DEBUG_KMS("panel power control backlight %s\n",
2227 enable ? "enable" : "disable");
2228
2229 if (enable)
2230 _intel_edp_backlight_on(intel_dp);
2231 else
2232 _intel_edp_backlight_off(intel_dp);
2233 }
2234
2235 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2236 {
2237 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2238 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2239 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2240
2241 I915_STATE_WARN(cur_state != state,
2242 "DP port %c state assertion failure (expected %s, current %s)\n",
2243 port_name(dig_port->port),
2244 onoff(state), onoff(cur_state));
2245 }
2246 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2247
2248 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2249 {
2250 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2251
2252 I915_STATE_WARN(cur_state != state,
2253 "eDP PLL state assertion failure (expected %s, current %s)\n",
2254 onoff(state), onoff(cur_state));
2255 }
2256 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2257 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2258
2259 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2260 {
2261 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2262 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2263 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2264
2265 assert_pipe_disabled(dev_priv, crtc->pipe);
2266 assert_dp_port_disabled(intel_dp);
2267 assert_edp_pll_disabled(dev_priv);
2268
2269 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2270 crtc->config->port_clock);
2271
2272 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2273
2274 if (crtc->config->port_clock == 162000)
2275 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2276 else
2277 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2278
2279 I915_WRITE(DP_A, intel_dp->DP);
2280 POSTING_READ(DP_A);
2281 udelay(500);
2282
2283 /*
2284 * [DevILK] Work around required when enabling DP PLL
2285 * while a pipe is enabled going to FDI:
2286 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2287 * 2. Program DP PLL enable
2288 */
2289 if (IS_GEN5(dev_priv))
2290 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2291
2292 intel_dp->DP |= DP_PLL_ENABLE;
2293
2294 I915_WRITE(DP_A, intel_dp->DP);
2295 POSTING_READ(DP_A);
2296 udelay(200);
2297 }
2298
2299 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2300 {
2301 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2302 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2303 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2304
2305 assert_pipe_disabled(dev_priv, crtc->pipe);
2306 assert_dp_port_disabled(intel_dp);
2307 assert_edp_pll_enabled(dev_priv);
2308
2309 DRM_DEBUG_KMS("disabling eDP PLL\n");
2310
2311 intel_dp->DP &= ~DP_PLL_ENABLE;
2312
2313 I915_WRITE(DP_A, intel_dp->DP);
2314 POSTING_READ(DP_A);
2315 udelay(200);
2316 }
2317
2318 /* If the sink supports it, try to set the power state appropriately */
2319 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2320 {
2321 int ret, i;
2322
2323 /* Should have a valid DPCD by this point */
2324 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2325 return;
2326
2327 if (mode != DRM_MODE_DPMS_ON) {
2328 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2329 DP_SET_POWER_D3);
2330 } else {
2331 /*
2332 * When turning on, we need to retry for 1ms to give the sink
2333 * time to wake up.
2334 */
2335 for (i = 0; i < 3; i++) {
2336 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2337 DP_SET_POWER_D0);
2338 if (ret == 1)
2339 break;
2340 msleep(1);
2341 }
2342 }
2343
2344 if (ret != 1)
2345 DRM_DEBUG_KMS("failed to %s sink power state\n",
2346 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2347 }
2348
2349 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2350 enum pipe *pipe)
2351 {
2352 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2353 enum port port = dp_to_dig_port(intel_dp)->port;
2354 struct drm_device *dev = encoder->base.dev;
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 enum intel_display_power_domain power_domain;
2357 u32 tmp;
2358 bool ret;
2359
2360 power_domain = intel_display_port_power_domain(encoder);
2361 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2362 return false;
2363
2364 ret = false;
2365
2366 tmp = I915_READ(intel_dp->output_reg);
2367
2368 if (!(tmp & DP_PORT_EN))
2369 goto out;
2370
2371 if (IS_GEN7(dev) && port == PORT_A) {
2372 *pipe = PORT_TO_PIPE_CPT(tmp);
2373 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2374 enum pipe p;
2375
2376 for_each_pipe(dev_priv, p) {
2377 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2378 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2379 *pipe = p;
2380 ret = true;
2381
2382 goto out;
2383 }
2384 }
2385
2386 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2387 i915_mmio_reg_offset(intel_dp->output_reg));
2388 } else if (IS_CHERRYVIEW(dev)) {
2389 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2390 } else {
2391 *pipe = PORT_TO_PIPE(tmp);
2392 }
2393
2394 ret = true;
2395
2396 out:
2397 intel_display_power_put(dev_priv, power_domain);
2398
2399 return ret;
2400 }
2401
2402 static void intel_dp_get_config(struct intel_encoder *encoder,
2403 struct intel_crtc_state *pipe_config)
2404 {
2405 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2406 u32 tmp, flags = 0;
2407 struct drm_device *dev = encoder->base.dev;
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409 enum port port = dp_to_dig_port(intel_dp)->port;
2410 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2411
2412 tmp = I915_READ(intel_dp->output_reg);
2413
2414 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2415
2416 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2417 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2418
2419 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2420 flags |= DRM_MODE_FLAG_PHSYNC;
2421 else
2422 flags |= DRM_MODE_FLAG_NHSYNC;
2423
2424 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2425 flags |= DRM_MODE_FLAG_PVSYNC;
2426 else
2427 flags |= DRM_MODE_FLAG_NVSYNC;
2428 } else {
2429 if (tmp & DP_SYNC_HS_HIGH)
2430 flags |= DRM_MODE_FLAG_PHSYNC;
2431 else
2432 flags |= DRM_MODE_FLAG_NHSYNC;
2433
2434 if (tmp & DP_SYNC_VS_HIGH)
2435 flags |= DRM_MODE_FLAG_PVSYNC;
2436 else
2437 flags |= DRM_MODE_FLAG_NVSYNC;
2438 }
2439
2440 pipe_config->base.adjusted_mode.flags |= flags;
2441
2442 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2443 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2444 pipe_config->limited_color_range = true;
2445
2446 pipe_config->has_dp_encoder = true;
2447
2448 pipe_config->lane_count =
2449 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2450
2451 intel_dp_get_m_n(crtc, pipe_config);
2452
2453 if (port == PORT_A) {
2454 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2455 pipe_config->port_clock = 162000;
2456 else
2457 pipe_config->port_clock = 270000;
2458 }
2459
2460 pipe_config->base.adjusted_mode.crtc_clock =
2461 intel_dotclock_calculate(pipe_config->port_clock,
2462 &pipe_config->dp_m_n);
2463
2464 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2465 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2466 /*
2467 * This is a big fat ugly hack.
2468 *
2469 * Some machines in UEFI boot mode provide us a VBT that has 18
2470 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2471 * unknown we fail to light up. Yet the same BIOS boots up with
2472 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2473 * max, not what it tells us to use.
2474 *
2475 * Note: This will still be broken if the eDP panel is not lit
2476 * up by the BIOS, and thus we can't get the mode at module
2477 * load.
2478 */
2479 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2480 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2481 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2482 }
2483 }
2484
2485 static void intel_disable_dp(struct intel_encoder *encoder)
2486 {
2487 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2488 struct drm_device *dev = encoder->base.dev;
2489 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2490
2491 if (crtc->config->has_audio)
2492 intel_audio_codec_disable(encoder);
2493
2494 if (HAS_PSR(dev) && !HAS_DDI(dev))
2495 intel_psr_disable(intel_dp);
2496
2497 /* Make sure the panel is off before trying to change the mode. But also
2498 * ensure that we have vdd while we switch off the panel. */
2499 intel_edp_panel_vdd_on(intel_dp);
2500 intel_edp_backlight_off(intel_dp);
2501 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2502 intel_edp_panel_off(intel_dp);
2503
2504 /* disable the port before the pipe on g4x */
2505 if (INTEL_INFO(dev)->gen < 5)
2506 intel_dp_link_down(intel_dp);
2507 }
2508
2509 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2510 {
2511 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2512 enum port port = dp_to_dig_port(intel_dp)->port;
2513
2514 intel_dp_link_down(intel_dp);
2515
2516 /* Only ilk+ has port A */
2517 if (port == PORT_A)
2518 ironlake_edp_pll_off(intel_dp);
2519 }
2520
2521 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2522 {
2523 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2524
2525 intel_dp_link_down(intel_dp);
2526 }
2527
2528 static void chv_post_disable_dp(struct intel_encoder *encoder)
2529 {
2530 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2531 struct drm_device *dev = encoder->base.dev;
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533
2534 intel_dp_link_down(intel_dp);
2535
2536 mutex_lock(&dev_priv->sb_lock);
2537
2538 /* Assert data lane reset */
2539 chv_data_lane_soft_reset(encoder, true);
2540
2541 mutex_unlock(&dev_priv->sb_lock);
2542 }
2543
2544 static void
2545 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2546 uint32_t *DP,
2547 uint8_t dp_train_pat)
2548 {
2549 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2550 struct drm_device *dev = intel_dig_port->base.base.dev;
2551 struct drm_i915_private *dev_priv = dev->dev_private;
2552 enum port port = intel_dig_port->port;
2553
2554 if (HAS_DDI(dev)) {
2555 uint32_t temp = I915_READ(DP_TP_CTL(port));
2556
2557 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2558 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2559 else
2560 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2561
2562 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2563 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2564 case DP_TRAINING_PATTERN_DISABLE:
2565 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2566
2567 break;
2568 case DP_TRAINING_PATTERN_1:
2569 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2570 break;
2571 case DP_TRAINING_PATTERN_2:
2572 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2573 break;
2574 case DP_TRAINING_PATTERN_3:
2575 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2576 break;
2577 }
2578 I915_WRITE(DP_TP_CTL(port), temp);
2579
2580 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2581 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2582 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2583
2584 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2585 case DP_TRAINING_PATTERN_DISABLE:
2586 *DP |= DP_LINK_TRAIN_OFF_CPT;
2587 break;
2588 case DP_TRAINING_PATTERN_1:
2589 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2590 break;
2591 case DP_TRAINING_PATTERN_2:
2592 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2593 break;
2594 case DP_TRAINING_PATTERN_3:
2595 DRM_ERROR("DP training pattern 3 not supported\n");
2596 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2597 break;
2598 }
2599
2600 } else {
2601 if (IS_CHERRYVIEW(dev))
2602 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2603 else
2604 *DP &= ~DP_LINK_TRAIN_MASK;
2605
2606 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2607 case DP_TRAINING_PATTERN_DISABLE:
2608 *DP |= DP_LINK_TRAIN_OFF;
2609 break;
2610 case DP_TRAINING_PATTERN_1:
2611 *DP |= DP_LINK_TRAIN_PAT_1;
2612 break;
2613 case DP_TRAINING_PATTERN_2:
2614 *DP |= DP_LINK_TRAIN_PAT_2;
2615 break;
2616 case DP_TRAINING_PATTERN_3:
2617 if (IS_CHERRYVIEW(dev)) {
2618 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2619 } else {
2620 DRM_ERROR("DP training pattern 3 not supported\n");
2621 *DP |= DP_LINK_TRAIN_PAT_2;
2622 }
2623 break;
2624 }
2625 }
2626 }
2627
2628 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2629 {
2630 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *crtc =
2633 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2634
2635 /* enable with pattern 1 (as per spec) */
2636 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2637 DP_TRAINING_PATTERN_1);
2638
2639 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2640 POSTING_READ(intel_dp->output_reg);
2641
2642 /*
2643 * Magic for VLV/CHV. We _must_ first set up the register
2644 * without actually enabling the port, and then do another
2645 * write to enable the port. Otherwise link training will
2646 * fail when the power sequencer is freshly used for this port.
2647 */
2648 intel_dp->DP |= DP_PORT_EN;
2649 if (crtc->config->has_audio)
2650 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2651
2652 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2653 POSTING_READ(intel_dp->output_reg);
2654 }
2655
2656 static void intel_enable_dp(struct intel_encoder *encoder)
2657 {
2658 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2659 struct drm_device *dev = encoder->base.dev;
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2662 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2663 enum pipe pipe = crtc->pipe;
2664
2665 if (WARN_ON(dp_reg & DP_PORT_EN))
2666 return;
2667
2668 pps_lock(intel_dp);
2669
2670 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2671 vlv_init_panel_power_sequencer(intel_dp);
2672
2673 intel_dp_enable_port(intel_dp);
2674
2675 edp_panel_vdd_on(intel_dp);
2676 edp_panel_on(intel_dp);
2677 edp_panel_vdd_off(intel_dp, true);
2678
2679 pps_unlock(intel_dp);
2680
2681 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2682 unsigned int lane_mask = 0x0;
2683
2684 if (IS_CHERRYVIEW(dev))
2685 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2686
2687 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2688 lane_mask);
2689 }
2690
2691 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2692 intel_dp_start_link_train(intel_dp);
2693 intel_dp_stop_link_train(intel_dp);
2694
2695 if (crtc->config->has_audio) {
2696 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2697 pipe_name(pipe));
2698 intel_audio_codec_enable(encoder);
2699 }
2700 }
2701
2702 static void g4x_enable_dp(struct intel_encoder *encoder)
2703 {
2704 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2705
2706 intel_enable_dp(encoder);
2707 intel_edp_backlight_on(intel_dp);
2708 }
2709
2710 static void vlv_enable_dp(struct intel_encoder *encoder)
2711 {
2712 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2713
2714 intel_edp_backlight_on(intel_dp);
2715 intel_psr_enable(intel_dp);
2716 }
2717
2718 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2719 {
2720 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2721 enum port port = dp_to_dig_port(intel_dp)->port;
2722
2723 intel_dp_prepare(encoder);
2724
2725 /* Only ilk+ has port A */
2726 if (port == PORT_A)
2727 ironlake_edp_pll_on(intel_dp);
2728 }
2729
2730 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2731 {
2732 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2733 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2734 enum pipe pipe = intel_dp->pps_pipe;
2735 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2736
2737 edp_panel_vdd_off_sync(intel_dp);
2738
2739 /*
2740 * VLV seems to get confused when multiple power seqeuencers
2741 * have the same port selected (even if only one has power/vdd
2742 * enabled). The failure manifests as vlv_wait_port_ready() failing
2743 * CHV on the other hand doesn't seem to mind having the same port
2744 * selected in multiple power seqeuencers, but let's clear the
2745 * port select always when logically disconnecting a power sequencer
2746 * from a port.
2747 */
2748 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2749 pipe_name(pipe), port_name(intel_dig_port->port));
2750 I915_WRITE(pp_on_reg, 0);
2751 POSTING_READ(pp_on_reg);
2752
2753 intel_dp->pps_pipe = INVALID_PIPE;
2754 }
2755
2756 static void vlv_steal_power_sequencer(struct drm_device *dev,
2757 enum pipe pipe)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 struct intel_encoder *encoder;
2761
2762 lockdep_assert_held(&dev_priv->pps_mutex);
2763
2764 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2765 return;
2766
2767 for_each_intel_encoder(dev, encoder) {
2768 struct intel_dp *intel_dp;
2769 enum port port;
2770
2771 if (encoder->type != INTEL_OUTPUT_EDP)
2772 continue;
2773
2774 intel_dp = enc_to_intel_dp(&encoder->base);
2775 port = dp_to_dig_port(intel_dp)->port;
2776
2777 if (intel_dp->pps_pipe != pipe)
2778 continue;
2779
2780 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2781 pipe_name(pipe), port_name(port));
2782
2783 WARN(encoder->base.crtc,
2784 "stealing pipe %c power sequencer from active eDP port %c\n",
2785 pipe_name(pipe), port_name(port));
2786
2787 /* make sure vdd is off before we steal it */
2788 vlv_detach_power_sequencer(intel_dp);
2789 }
2790 }
2791
2792 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2793 {
2794 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2795 struct intel_encoder *encoder = &intel_dig_port->base;
2796 struct drm_device *dev = encoder->base.dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2799
2800 lockdep_assert_held(&dev_priv->pps_mutex);
2801
2802 if (!is_edp(intel_dp))
2803 return;
2804
2805 if (intel_dp->pps_pipe == crtc->pipe)
2806 return;
2807
2808 /*
2809 * If another power sequencer was being used on this
2810 * port previously make sure to turn off vdd there while
2811 * we still have control of it.
2812 */
2813 if (intel_dp->pps_pipe != INVALID_PIPE)
2814 vlv_detach_power_sequencer(intel_dp);
2815
2816 /*
2817 * We may be stealing the power
2818 * sequencer from another port.
2819 */
2820 vlv_steal_power_sequencer(dev, crtc->pipe);
2821
2822 /* now it's all ours */
2823 intel_dp->pps_pipe = crtc->pipe;
2824
2825 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2826 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2827
2828 /* init power sequencer on this pipe and port */
2829 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2830 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2831 }
2832
2833 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2834 {
2835 vlv_phy_pre_encoder_enable(encoder);
2836
2837 intel_enable_dp(encoder);
2838 }
2839
2840 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2841 {
2842 intel_dp_prepare(encoder);
2843
2844 vlv_phy_pre_pll_enable(encoder);
2845 }
2846
2847 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2848 {
2849 chv_phy_pre_encoder_enable(encoder);
2850
2851 intel_enable_dp(encoder);
2852
2853 /* Second common lane will stay alive on its own now */
2854 chv_phy_release_cl2_override(encoder);
2855 }
2856
2857 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2858 {
2859 intel_dp_prepare(encoder);
2860
2861 chv_phy_pre_pll_enable(encoder);
2862 }
2863
2864 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2865 {
2866 chv_phy_post_pll_disable(encoder);
2867 }
2868
2869 /*
2870 * Fetch AUX CH registers 0x202 - 0x207 which contain
2871 * link status information
2872 */
2873 bool
2874 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2875 {
2876 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2877 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2878 }
2879
2880 /* These are source-specific values. */
2881 uint8_t
2882 intel_dp_voltage_max(struct intel_dp *intel_dp)
2883 {
2884 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 enum port port = dp_to_dig_port(intel_dp)->port;
2887
2888 if (IS_BROXTON(dev))
2889 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2890 else if (INTEL_INFO(dev)->gen >= 9) {
2891 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2892 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2893 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2894 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2895 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2896 else if (IS_GEN7(dev) && port == PORT_A)
2897 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2898 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2899 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2900 else
2901 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2902 }
2903
2904 uint8_t
2905 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2906 {
2907 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2908 enum port port = dp_to_dig_port(intel_dp)->port;
2909
2910 if (INTEL_INFO(dev)->gen >= 9) {
2911 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2913 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2915 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2916 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2917 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2919 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2920 default:
2921 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2922 }
2923 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2924 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2926 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2928 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2930 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2931 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2932 default:
2933 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2934 }
2935 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2936 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2938 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2940 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2942 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2944 default:
2945 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2946 }
2947 } else if (IS_GEN7(dev) && port == PORT_A) {
2948 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2949 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2950 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2952 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2953 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2954 default:
2955 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2956 }
2957 } else {
2958 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2960 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2962 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2963 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2964 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2965 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2966 default:
2967 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2968 }
2969 }
2970 }
2971
2972 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2973 {
2974 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2975 unsigned long demph_reg_value, preemph_reg_value,
2976 uniqtranscale_reg_value;
2977 uint8_t train_set = intel_dp->train_set[0];
2978
2979 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2980 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2981 preemph_reg_value = 0x0004000;
2982 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2984 demph_reg_value = 0x2B405555;
2985 uniqtranscale_reg_value = 0x552AB83A;
2986 break;
2987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2988 demph_reg_value = 0x2B404040;
2989 uniqtranscale_reg_value = 0x5548B83A;
2990 break;
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2992 demph_reg_value = 0x2B245555;
2993 uniqtranscale_reg_value = 0x5560B83A;
2994 break;
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2996 demph_reg_value = 0x2B405555;
2997 uniqtranscale_reg_value = 0x5598DA3A;
2998 break;
2999 default:
3000 return 0;
3001 }
3002 break;
3003 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3004 preemph_reg_value = 0x0002000;
3005 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3007 demph_reg_value = 0x2B404040;
3008 uniqtranscale_reg_value = 0x5552B83A;
3009 break;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3011 demph_reg_value = 0x2B404848;
3012 uniqtranscale_reg_value = 0x5580B83A;
3013 break;
3014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3015 demph_reg_value = 0x2B404040;
3016 uniqtranscale_reg_value = 0x55ADDA3A;
3017 break;
3018 default:
3019 return 0;
3020 }
3021 break;
3022 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3023 preemph_reg_value = 0x0000000;
3024 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3026 demph_reg_value = 0x2B305555;
3027 uniqtranscale_reg_value = 0x5570B83A;
3028 break;
3029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3030 demph_reg_value = 0x2B2B4040;
3031 uniqtranscale_reg_value = 0x55ADDA3A;
3032 break;
3033 default:
3034 return 0;
3035 }
3036 break;
3037 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3038 preemph_reg_value = 0x0006000;
3039 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3041 demph_reg_value = 0x1B405555;
3042 uniqtranscale_reg_value = 0x55ADDA3A;
3043 break;
3044 default:
3045 return 0;
3046 }
3047 break;
3048 default:
3049 return 0;
3050 }
3051
3052 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3053 uniqtranscale_reg_value, 0);
3054
3055 return 0;
3056 }
3057
3058 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3059 {
3060 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3061 u32 deemph_reg_value, margin_reg_value;
3062 bool uniq_trans_scale = false;
3063 uint8_t train_set = intel_dp->train_set[0];
3064
3065 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3066 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3067 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3068 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3069 deemph_reg_value = 128;
3070 margin_reg_value = 52;
3071 break;
3072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3073 deemph_reg_value = 128;
3074 margin_reg_value = 77;
3075 break;
3076 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3077 deemph_reg_value = 128;
3078 margin_reg_value = 102;
3079 break;
3080 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3081 deemph_reg_value = 128;
3082 margin_reg_value = 154;
3083 uniq_trans_scale = true;
3084 break;
3085 default:
3086 return 0;
3087 }
3088 break;
3089 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3090 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 deemph_reg_value = 85;
3093 margin_reg_value = 78;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096 deemph_reg_value = 85;
3097 margin_reg_value = 116;
3098 break;
3099 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3100 deemph_reg_value = 85;
3101 margin_reg_value = 154;
3102 break;
3103 default:
3104 return 0;
3105 }
3106 break;
3107 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3108 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3109 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3110 deemph_reg_value = 64;
3111 margin_reg_value = 104;
3112 break;
3113 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3114 deemph_reg_value = 64;
3115 margin_reg_value = 154;
3116 break;
3117 default:
3118 return 0;
3119 }
3120 break;
3121 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3122 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3124 deemph_reg_value = 43;
3125 margin_reg_value = 154;
3126 break;
3127 default:
3128 return 0;
3129 }
3130 break;
3131 default:
3132 return 0;
3133 }
3134
3135 chv_set_phy_signal_level(encoder, deemph_reg_value,
3136 margin_reg_value, uniq_trans_scale);
3137
3138 return 0;
3139 }
3140
3141 static uint32_t
3142 gen4_signal_levels(uint8_t train_set)
3143 {
3144 uint32_t signal_levels = 0;
3145
3146 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3148 default:
3149 signal_levels |= DP_VOLTAGE_0_4;
3150 break;
3151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3152 signal_levels |= DP_VOLTAGE_0_6;
3153 break;
3154 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3155 signal_levels |= DP_VOLTAGE_0_8;
3156 break;
3157 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3158 signal_levels |= DP_VOLTAGE_1_2;
3159 break;
3160 }
3161 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3162 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3163 default:
3164 signal_levels |= DP_PRE_EMPHASIS_0;
3165 break;
3166 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3167 signal_levels |= DP_PRE_EMPHASIS_3_5;
3168 break;
3169 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3170 signal_levels |= DP_PRE_EMPHASIS_6;
3171 break;
3172 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3173 signal_levels |= DP_PRE_EMPHASIS_9_5;
3174 break;
3175 }
3176 return signal_levels;
3177 }
3178
3179 /* Gen6's DP voltage swing and pre-emphasis control */
3180 static uint32_t
3181 gen6_edp_signal_levels(uint8_t train_set)
3182 {
3183 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3184 DP_TRAIN_PRE_EMPHASIS_MASK);
3185 switch (signal_levels) {
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3187 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3188 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3190 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3193 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3196 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3199 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3200 default:
3201 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3202 "0x%x\n", signal_levels);
3203 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3204 }
3205 }
3206
3207 /* Gen7's DP voltage swing and pre-emphasis control */
3208 static uint32_t
3209 gen7_edp_signal_levels(uint8_t train_set)
3210 {
3211 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3212 DP_TRAIN_PRE_EMPHASIS_MASK);
3213 switch (signal_levels) {
3214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3215 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3216 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3217 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3218 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3219 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3220
3221 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3222 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3223 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3224 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3225
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3227 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3229 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3230
3231 default:
3232 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3233 "0x%x\n", signal_levels);
3234 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3235 }
3236 }
3237
3238 void
3239 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3240 {
3241 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3242 enum port port = intel_dig_port->port;
3243 struct drm_device *dev = intel_dig_port->base.base.dev;
3244 struct drm_i915_private *dev_priv = to_i915(dev);
3245 uint32_t signal_levels, mask = 0;
3246 uint8_t train_set = intel_dp->train_set[0];
3247
3248 if (HAS_DDI(dev)) {
3249 signal_levels = ddi_signal_levels(intel_dp);
3250
3251 if (IS_BROXTON(dev))
3252 signal_levels = 0;
3253 else
3254 mask = DDI_BUF_EMP_MASK;
3255 } else if (IS_CHERRYVIEW(dev)) {
3256 signal_levels = chv_signal_levels(intel_dp);
3257 } else if (IS_VALLEYVIEW(dev)) {
3258 signal_levels = vlv_signal_levels(intel_dp);
3259 } else if (IS_GEN7(dev) && port == PORT_A) {
3260 signal_levels = gen7_edp_signal_levels(train_set);
3261 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3262 } else if (IS_GEN6(dev) && port == PORT_A) {
3263 signal_levels = gen6_edp_signal_levels(train_set);
3264 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3265 } else {
3266 signal_levels = gen4_signal_levels(train_set);
3267 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3268 }
3269
3270 if (mask)
3271 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3272
3273 DRM_DEBUG_KMS("Using vswing level %d\n",
3274 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3275 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3276 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3277 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3278
3279 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3280
3281 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3282 POSTING_READ(intel_dp->output_reg);
3283 }
3284
3285 void
3286 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3287 uint8_t dp_train_pat)
3288 {
3289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3290 struct drm_i915_private *dev_priv =
3291 to_i915(intel_dig_port->base.base.dev);
3292
3293 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3294
3295 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3296 POSTING_READ(intel_dp->output_reg);
3297 }
3298
3299 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3300 {
3301 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3302 struct drm_device *dev = intel_dig_port->base.base.dev;
3303 struct drm_i915_private *dev_priv = dev->dev_private;
3304 enum port port = intel_dig_port->port;
3305 uint32_t val;
3306
3307 if (!HAS_DDI(dev))
3308 return;
3309
3310 val = I915_READ(DP_TP_CTL(port));
3311 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3312 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3313 I915_WRITE(DP_TP_CTL(port), val);
3314
3315 /*
3316 * On PORT_A we can have only eDP in SST mode. There the only reason
3317 * we need to set idle transmission mode is to work around a HW issue
3318 * where we enable the pipe while not in idle link-training mode.
3319 * In this case there is requirement to wait for a minimum number of
3320 * idle patterns to be sent.
3321 */
3322 if (port == PORT_A)
3323 return;
3324
3325 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3326 DP_TP_STATUS_IDLE_DONE,
3327 DP_TP_STATUS_IDLE_DONE,
3328 1))
3329 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3330 }
3331
3332 static void
3333 intel_dp_link_down(struct intel_dp *intel_dp)
3334 {
3335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3336 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3337 enum port port = intel_dig_port->port;
3338 struct drm_device *dev = intel_dig_port->base.base.dev;
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 uint32_t DP = intel_dp->DP;
3341
3342 if (WARN_ON(HAS_DDI(dev)))
3343 return;
3344
3345 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3346 return;
3347
3348 DRM_DEBUG_KMS("\n");
3349
3350 if ((IS_GEN7(dev) && port == PORT_A) ||
3351 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3352 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3353 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3354 } else {
3355 if (IS_CHERRYVIEW(dev))
3356 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3357 else
3358 DP &= ~DP_LINK_TRAIN_MASK;
3359 DP |= DP_LINK_TRAIN_PAT_IDLE;
3360 }
3361 I915_WRITE(intel_dp->output_reg, DP);
3362 POSTING_READ(intel_dp->output_reg);
3363
3364 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3365 I915_WRITE(intel_dp->output_reg, DP);
3366 POSTING_READ(intel_dp->output_reg);
3367
3368 /*
3369 * HW workaround for IBX, we need to move the port
3370 * to transcoder A after disabling it to allow the
3371 * matching HDMI port to be enabled on transcoder A.
3372 */
3373 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3374 /*
3375 * We get CPU/PCH FIFO underruns on the other pipe when
3376 * doing the workaround. Sweep them under the rug.
3377 */
3378 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3379 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3380
3381 /* always enable with pattern 1 (as per spec) */
3382 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3383 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3384 I915_WRITE(intel_dp->output_reg, DP);
3385 POSTING_READ(intel_dp->output_reg);
3386
3387 DP &= ~DP_PORT_EN;
3388 I915_WRITE(intel_dp->output_reg, DP);
3389 POSTING_READ(intel_dp->output_reg);
3390
3391 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3392 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3393 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3394 }
3395
3396 msleep(intel_dp->panel_power_down_delay);
3397
3398 intel_dp->DP = DP;
3399 }
3400
3401 static bool
3402 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3403 {
3404 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3405 struct drm_device *dev = dig_port->base.base.dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407
3408 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3409 sizeof(intel_dp->dpcd)) < 0)
3410 return false; /* aux transfer failed */
3411
3412 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3413
3414 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3415 return false; /* DPCD not present */
3416
3417 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3418 &intel_dp->sink_count, 1) < 0)
3419 return false;
3420
3421 /*
3422 * Sink count can change between short pulse hpd hence
3423 * a member variable in intel_dp will track any changes
3424 * between short pulse interrupts.
3425 */
3426 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3427
3428 /*
3429 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3430 * a dongle is present but no display. Unless we require to know
3431 * if a dongle is present or not, we don't need to update
3432 * downstream port information. So, an early return here saves
3433 * time from performing other operations which are not required.
3434 */
3435 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3436 return false;
3437
3438 /* Check if the panel supports PSR */
3439 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3440 if (is_edp(intel_dp)) {
3441 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3442 intel_dp->psr_dpcd,
3443 sizeof(intel_dp->psr_dpcd));
3444 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3445 dev_priv->psr.sink_support = true;
3446 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3447 }
3448
3449 if (INTEL_INFO(dev)->gen >= 9 &&
3450 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3451 uint8_t frame_sync_cap;
3452
3453 dev_priv->psr.sink_support = true;
3454 drm_dp_dpcd_read(&intel_dp->aux,
3455 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3456 &frame_sync_cap, 1);
3457 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3458 /* PSR2 needs frame sync as well */
3459 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3460 DRM_DEBUG_KMS("PSR2 %s on sink",
3461 dev_priv->psr.psr2_support ? "supported" : "not supported");
3462 }
3463
3464 /* Read the eDP Display control capabilities registers */
3465 memset(intel_dp->edp_dpcd, 0, sizeof(intel_dp->edp_dpcd));
3466 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3467 (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3468 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3469 sizeof(intel_dp->edp_dpcd)))
3470 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3471 intel_dp->edp_dpcd);
3472 }
3473
3474 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3475 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3476 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3477
3478 /* Intermediate frequency support */
3479 if (is_edp(intel_dp) && (intel_dp->edp_dpcd[0] >= 0x03)) { /* eDp v1.4 or higher */
3480 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3481 int i;
3482
3483 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3484 sink_rates, sizeof(sink_rates));
3485
3486 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3487 int val = le16_to_cpu(sink_rates[i]);
3488
3489 if (val == 0)
3490 break;
3491
3492 /* Value read is in kHz while drm clock is saved in deca-kHz */
3493 intel_dp->sink_rates[i] = (val * 200) / 10;
3494 }
3495 intel_dp->num_sink_rates = i;
3496 }
3497
3498 intel_dp_print_rates(intel_dp);
3499
3500 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3501 DP_DWN_STRM_PORT_PRESENT))
3502 return true; /* native DP sink */
3503
3504 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3505 return true; /* no per-port downstream info */
3506
3507 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3508 intel_dp->downstream_ports,
3509 DP_MAX_DOWNSTREAM_PORTS) < 0)
3510 return false; /* downstream port status fetch failed */
3511
3512 return true;
3513 }
3514
3515 static void
3516 intel_dp_probe_oui(struct intel_dp *intel_dp)
3517 {
3518 u8 buf[3];
3519
3520 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3521 return;
3522
3523 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3524 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3525 buf[0], buf[1], buf[2]);
3526
3527 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3528 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3529 buf[0], buf[1], buf[2]);
3530 }
3531
3532 static bool
3533 intel_dp_probe_mst(struct intel_dp *intel_dp)
3534 {
3535 u8 buf[1];
3536
3537 if (!i915.enable_dp_mst)
3538 return false;
3539
3540 if (!intel_dp->can_mst)
3541 return false;
3542
3543 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3544 return false;
3545
3546 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3547 if (buf[0] & DP_MST_CAP) {
3548 DRM_DEBUG_KMS("Sink is MST capable\n");
3549 intel_dp->is_mst = true;
3550 } else {
3551 DRM_DEBUG_KMS("Sink is not MST capable\n");
3552 intel_dp->is_mst = false;
3553 }
3554 }
3555
3556 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3557 return intel_dp->is_mst;
3558 }
3559
3560 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3561 {
3562 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3563 struct drm_device *dev = dig_port->base.base.dev;
3564 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3565 u8 buf;
3566 int ret = 0;
3567 int count = 0;
3568 int attempts = 10;
3569
3570 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3571 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3572 ret = -EIO;
3573 goto out;
3574 }
3575
3576 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3577 buf & ~DP_TEST_SINK_START) < 0) {
3578 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3579 ret = -EIO;
3580 goto out;
3581 }
3582
3583 do {
3584 intel_wait_for_vblank(dev, intel_crtc->pipe);
3585
3586 if (drm_dp_dpcd_readb(&intel_dp->aux,
3587 DP_TEST_SINK_MISC, &buf) < 0) {
3588 ret = -EIO;
3589 goto out;
3590 }
3591 count = buf & DP_TEST_COUNT_MASK;
3592 } while (--attempts && count);
3593
3594 if (attempts == 0) {
3595 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3596 ret = -ETIMEDOUT;
3597 }
3598
3599 out:
3600 hsw_enable_ips(intel_crtc);
3601 return ret;
3602 }
3603
3604 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3605 {
3606 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3607 struct drm_device *dev = dig_port->base.base.dev;
3608 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3609 u8 buf;
3610 int ret;
3611
3612 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3613 return -EIO;
3614
3615 if (!(buf & DP_TEST_CRC_SUPPORTED))
3616 return -ENOTTY;
3617
3618 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3619 return -EIO;
3620
3621 if (buf & DP_TEST_SINK_START) {
3622 ret = intel_dp_sink_crc_stop(intel_dp);
3623 if (ret)
3624 return ret;
3625 }
3626
3627 hsw_disable_ips(intel_crtc);
3628
3629 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3630 buf | DP_TEST_SINK_START) < 0) {
3631 hsw_enable_ips(intel_crtc);
3632 return -EIO;
3633 }
3634
3635 intel_wait_for_vblank(dev, intel_crtc->pipe);
3636 return 0;
3637 }
3638
3639 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3640 {
3641 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3642 struct drm_device *dev = dig_port->base.base.dev;
3643 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3644 u8 buf;
3645 int count, ret;
3646 int attempts = 6;
3647
3648 ret = intel_dp_sink_crc_start(intel_dp);
3649 if (ret)
3650 return ret;
3651
3652 do {
3653 intel_wait_for_vblank(dev, intel_crtc->pipe);
3654
3655 if (drm_dp_dpcd_readb(&intel_dp->aux,
3656 DP_TEST_SINK_MISC, &buf) < 0) {
3657 ret = -EIO;
3658 goto stop;
3659 }
3660 count = buf & DP_TEST_COUNT_MASK;
3661
3662 } while (--attempts && count == 0);
3663
3664 if (attempts == 0) {
3665 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3666 ret = -ETIMEDOUT;
3667 goto stop;
3668 }
3669
3670 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3671 ret = -EIO;
3672 goto stop;
3673 }
3674
3675 stop:
3676 intel_dp_sink_crc_stop(intel_dp);
3677 return ret;
3678 }
3679
3680 static bool
3681 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3682 {
3683 return drm_dp_dpcd_read(&intel_dp->aux,
3684 DP_DEVICE_SERVICE_IRQ_VECTOR,
3685 sink_irq_vector, 1) == 1;
3686 }
3687
3688 static bool
3689 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3690 {
3691 int ret;
3692
3693 ret = drm_dp_dpcd_read(&intel_dp->aux,
3694 DP_SINK_COUNT_ESI,
3695 sink_irq_vector, 14);
3696 if (ret != 14)
3697 return false;
3698
3699 return true;
3700 }
3701
3702 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3703 {
3704 uint8_t test_result = DP_TEST_ACK;
3705 return test_result;
3706 }
3707
3708 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3709 {
3710 uint8_t test_result = DP_TEST_NAK;
3711 return test_result;
3712 }
3713
3714 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3715 {
3716 uint8_t test_result = DP_TEST_NAK;
3717 struct intel_connector *intel_connector = intel_dp->attached_connector;
3718 struct drm_connector *connector = &intel_connector->base;
3719
3720 if (intel_connector->detect_edid == NULL ||
3721 connector->edid_corrupt ||
3722 intel_dp->aux.i2c_defer_count > 6) {
3723 /* Check EDID read for NACKs, DEFERs and corruption
3724 * (DP CTS 1.2 Core r1.1)
3725 * 4.2.2.4 : Failed EDID read, I2C_NAK
3726 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3727 * 4.2.2.6 : EDID corruption detected
3728 * Use failsafe mode for all cases
3729 */
3730 if (intel_dp->aux.i2c_nack_count > 0 ||
3731 intel_dp->aux.i2c_defer_count > 0)
3732 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3733 intel_dp->aux.i2c_nack_count,
3734 intel_dp->aux.i2c_defer_count);
3735 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3736 } else {
3737 struct edid *block = intel_connector->detect_edid;
3738
3739 /* We have to write the checksum
3740 * of the last block read
3741 */
3742 block += intel_connector->detect_edid->extensions;
3743
3744 if (!drm_dp_dpcd_write(&intel_dp->aux,
3745 DP_TEST_EDID_CHECKSUM,
3746 &block->checksum,
3747 1))
3748 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3749
3750 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3751 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3752 }
3753
3754 /* Set test active flag here so userspace doesn't interrupt things */
3755 intel_dp->compliance_test_active = 1;
3756
3757 return test_result;
3758 }
3759
3760 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3761 {
3762 uint8_t test_result = DP_TEST_NAK;
3763 return test_result;
3764 }
3765
3766 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3767 {
3768 uint8_t response = DP_TEST_NAK;
3769 uint8_t rxdata = 0;
3770 int status = 0;
3771
3772 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3773 if (status <= 0) {
3774 DRM_DEBUG_KMS("Could not read test request from sink\n");
3775 goto update_status;
3776 }
3777
3778 switch (rxdata) {
3779 case DP_TEST_LINK_TRAINING:
3780 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3781 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3782 response = intel_dp_autotest_link_training(intel_dp);
3783 break;
3784 case DP_TEST_LINK_VIDEO_PATTERN:
3785 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3786 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3787 response = intel_dp_autotest_video_pattern(intel_dp);
3788 break;
3789 case DP_TEST_LINK_EDID_READ:
3790 DRM_DEBUG_KMS("EDID test requested\n");
3791 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3792 response = intel_dp_autotest_edid(intel_dp);
3793 break;
3794 case DP_TEST_LINK_PHY_TEST_PATTERN:
3795 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3796 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3797 response = intel_dp_autotest_phy_pattern(intel_dp);
3798 break;
3799 default:
3800 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3801 break;
3802 }
3803
3804 update_status:
3805 status = drm_dp_dpcd_write(&intel_dp->aux,
3806 DP_TEST_RESPONSE,
3807 &response, 1);
3808 if (status <= 0)
3809 DRM_DEBUG_KMS("Could not write test response to sink\n");
3810 }
3811
3812 static int
3813 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3814 {
3815 bool bret;
3816
3817 if (intel_dp->is_mst) {
3818 u8 esi[16] = { 0 };
3819 int ret = 0;
3820 int retry;
3821 bool handled;
3822 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3823 go_again:
3824 if (bret == true) {
3825
3826 /* check link status - esi[10] = 0x200c */
3827 if (intel_dp->active_mst_links &&
3828 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3829 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3830 intel_dp_start_link_train(intel_dp);
3831 intel_dp_stop_link_train(intel_dp);
3832 }
3833
3834 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3835 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3836
3837 if (handled) {
3838 for (retry = 0; retry < 3; retry++) {
3839 int wret;
3840 wret = drm_dp_dpcd_write(&intel_dp->aux,
3841 DP_SINK_COUNT_ESI+1,
3842 &esi[1], 3);
3843 if (wret == 3) {
3844 break;
3845 }
3846 }
3847
3848 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3849 if (bret == true) {
3850 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3851 goto go_again;
3852 }
3853 } else
3854 ret = 0;
3855
3856 return ret;
3857 } else {
3858 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3859 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3860 intel_dp->is_mst = false;
3861 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3862 /* send a hotplug event */
3863 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3864 }
3865 }
3866 return -EINVAL;
3867 }
3868
3869 static void
3870 intel_dp_check_link_status(struct intel_dp *intel_dp)
3871 {
3872 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3873 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3874 u8 link_status[DP_LINK_STATUS_SIZE];
3875
3876 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3877
3878 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3879 DRM_ERROR("Failed to get link status\n");
3880 return;
3881 }
3882
3883 if (!intel_encoder->base.crtc)
3884 return;
3885
3886 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3887 return;
3888
3889 /* if link training is requested we should perform it always */
3890 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3891 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3892 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3893 intel_encoder->base.name);
3894 intel_dp_start_link_train(intel_dp);
3895 intel_dp_stop_link_train(intel_dp);
3896 }
3897 }
3898
3899 /*
3900 * According to DP spec
3901 * 5.1.2:
3902 * 1. Read DPCD
3903 * 2. Configure link according to Receiver Capabilities
3904 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3905 * 4. Check link status on receipt of hot-plug interrupt
3906 *
3907 * intel_dp_short_pulse - handles short pulse interrupts
3908 * when full detection is not required.
3909 * Returns %true if short pulse is handled and full detection
3910 * is NOT required and %false otherwise.
3911 */
3912 static bool
3913 intel_dp_short_pulse(struct intel_dp *intel_dp)
3914 {
3915 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3916 u8 sink_irq_vector;
3917 u8 old_sink_count = intel_dp->sink_count;
3918 bool ret;
3919
3920 /*
3921 * Clearing compliance test variables to allow capturing
3922 * of values for next automated test request.
3923 */
3924 intel_dp->compliance_test_active = 0;
3925 intel_dp->compliance_test_type = 0;
3926 intel_dp->compliance_test_data = 0;
3927
3928 /*
3929 * Now read the DPCD to see if it's actually running
3930 * If the current value of sink count doesn't match with
3931 * the value that was stored earlier or dpcd read failed
3932 * we need to do full detection
3933 */
3934 ret = intel_dp_get_dpcd(intel_dp);
3935
3936 if ((old_sink_count != intel_dp->sink_count) || !ret) {
3937 /* No need to proceed if we are going to do full detect */
3938 return false;
3939 }
3940
3941 /* Try to read the source of the interrupt */
3942 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3943 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3944 /* Clear interrupt source */
3945 drm_dp_dpcd_writeb(&intel_dp->aux,
3946 DP_DEVICE_SERVICE_IRQ_VECTOR,
3947 sink_irq_vector);
3948
3949 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3950 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3951 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3952 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3953 }
3954
3955 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3956 intel_dp_check_link_status(intel_dp);
3957 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3958
3959 return true;
3960 }
3961
3962 /* XXX this is probably wrong for multiple downstream ports */
3963 static enum drm_connector_status
3964 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3965 {
3966 uint8_t *dpcd = intel_dp->dpcd;
3967 uint8_t type;
3968
3969 if (!intel_dp_get_dpcd(intel_dp))
3970 return connector_status_disconnected;
3971
3972 if (is_edp(intel_dp))
3973 return connector_status_connected;
3974
3975 /* if there's no downstream port, we're done */
3976 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3977 return connector_status_connected;
3978
3979 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3980 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3981 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3982
3983 return intel_dp->sink_count ?
3984 connector_status_connected : connector_status_disconnected;
3985 }
3986
3987 /* If no HPD, poke DDC gently */
3988 if (drm_probe_ddc(&intel_dp->aux.ddc))
3989 return connector_status_connected;
3990
3991 /* Well we tried, say unknown for unreliable port types */
3992 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3993 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3994 if (type == DP_DS_PORT_TYPE_VGA ||
3995 type == DP_DS_PORT_TYPE_NON_EDID)
3996 return connector_status_unknown;
3997 } else {
3998 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3999 DP_DWN_STRM_PORT_TYPE_MASK;
4000 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4001 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4002 return connector_status_unknown;
4003 }
4004
4005 /* Anything else is out of spec, warn and ignore */
4006 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4007 return connector_status_disconnected;
4008 }
4009
4010 static enum drm_connector_status
4011 edp_detect(struct intel_dp *intel_dp)
4012 {
4013 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4014 enum drm_connector_status status;
4015
4016 status = intel_panel_detect(dev);
4017 if (status == connector_status_unknown)
4018 status = connector_status_connected;
4019
4020 return status;
4021 }
4022
4023 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4024 struct intel_digital_port *port)
4025 {
4026 u32 bit;
4027
4028 switch (port->port) {
4029 case PORT_A:
4030 return true;
4031 case PORT_B:
4032 bit = SDE_PORTB_HOTPLUG;
4033 break;
4034 case PORT_C:
4035 bit = SDE_PORTC_HOTPLUG;
4036 break;
4037 case PORT_D:
4038 bit = SDE_PORTD_HOTPLUG;
4039 break;
4040 default:
4041 MISSING_CASE(port->port);
4042 return false;
4043 }
4044
4045 return I915_READ(SDEISR) & bit;
4046 }
4047
4048 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4049 struct intel_digital_port *port)
4050 {
4051 u32 bit;
4052
4053 switch (port->port) {
4054 case PORT_A:
4055 return true;
4056 case PORT_B:
4057 bit = SDE_PORTB_HOTPLUG_CPT;
4058 break;
4059 case PORT_C:
4060 bit = SDE_PORTC_HOTPLUG_CPT;
4061 break;
4062 case PORT_D:
4063 bit = SDE_PORTD_HOTPLUG_CPT;
4064 break;
4065 case PORT_E:
4066 bit = SDE_PORTE_HOTPLUG_SPT;
4067 break;
4068 default:
4069 MISSING_CASE(port->port);
4070 return false;
4071 }
4072
4073 return I915_READ(SDEISR) & bit;
4074 }
4075
4076 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4077 struct intel_digital_port *port)
4078 {
4079 u32 bit;
4080
4081 switch (port->port) {
4082 case PORT_B:
4083 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4084 break;
4085 case PORT_C:
4086 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4087 break;
4088 case PORT_D:
4089 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4090 break;
4091 default:
4092 MISSING_CASE(port->port);
4093 return false;
4094 }
4095
4096 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4097 }
4098
4099 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4100 struct intel_digital_port *port)
4101 {
4102 u32 bit;
4103
4104 switch (port->port) {
4105 case PORT_B:
4106 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4107 break;
4108 case PORT_C:
4109 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4110 break;
4111 case PORT_D:
4112 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4113 break;
4114 default:
4115 MISSING_CASE(port->port);
4116 return false;
4117 }
4118
4119 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4120 }
4121
4122 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4123 struct intel_digital_port *intel_dig_port)
4124 {
4125 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4126 enum port port;
4127 u32 bit;
4128
4129 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4130 switch (port) {
4131 case PORT_A:
4132 bit = BXT_DE_PORT_HP_DDIA;
4133 break;
4134 case PORT_B:
4135 bit = BXT_DE_PORT_HP_DDIB;
4136 break;
4137 case PORT_C:
4138 bit = BXT_DE_PORT_HP_DDIC;
4139 break;
4140 default:
4141 MISSING_CASE(port);
4142 return false;
4143 }
4144
4145 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4146 }
4147
4148 /*
4149 * intel_digital_port_connected - is the specified port connected?
4150 * @dev_priv: i915 private structure
4151 * @port: the port to test
4152 *
4153 * Return %true if @port is connected, %false otherwise.
4154 */
4155 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4156 struct intel_digital_port *port)
4157 {
4158 if (HAS_PCH_IBX(dev_priv))
4159 return ibx_digital_port_connected(dev_priv, port);
4160 else if (HAS_PCH_SPLIT(dev_priv))
4161 return cpt_digital_port_connected(dev_priv, port);
4162 else if (IS_BROXTON(dev_priv))
4163 return bxt_digital_port_connected(dev_priv, port);
4164 else if (IS_GM45(dev_priv))
4165 return gm45_digital_port_connected(dev_priv, port);
4166 else
4167 return g4x_digital_port_connected(dev_priv, port);
4168 }
4169
4170 static struct edid *
4171 intel_dp_get_edid(struct intel_dp *intel_dp)
4172 {
4173 struct intel_connector *intel_connector = intel_dp->attached_connector;
4174
4175 /* use cached edid if we have one */
4176 if (intel_connector->edid) {
4177 /* invalid edid */
4178 if (IS_ERR(intel_connector->edid))
4179 return NULL;
4180
4181 return drm_edid_duplicate(intel_connector->edid);
4182 } else
4183 return drm_get_edid(&intel_connector->base,
4184 &intel_dp->aux.ddc);
4185 }
4186
4187 static void
4188 intel_dp_set_edid(struct intel_dp *intel_dp)
4189 {
4190 struct intel_connector *intel_connector = intel_dp->attached_connector;
4191 struct edid *edid;
4192
4193 intel_dp_unset_edid(intel_dp);
4194 edid = intel_dp_get_edid(intel_dp);
4195 intel_connector->detect_edid = edid;
4196
4197 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4198 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4199 else
4200 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4201 }
4202
4203 static void
4204 intel_dp_unset_edid(struct intel_dp *intel_dp)
4205 {
4206 struct intel_connector *intel_connector = intel_dp->attached_connector;
4207
4208 kfree(intel_connector->detect_edid);
4209 intel_connector->detect_edid = NULL;
4210
4211 intel_dp->has_audio = false;
4212 }
4213
4214 static void
4215 intel_dp_long_pulse(struct intel_connector *intel_connector)
4216 {
4217 struct drm_connector *connector = &intel_connector->base;
4218 struct intel_dp *intel_dp = intel_attached_dp(connector);
4219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4220 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4221 struct drm_device *dev = connector->dev;
4222 enum drm_connector_status status;
4223 enum intel_display_power_domain power_domain;
4224 bool ret;
4225 u8 sink_irq_vector;
4226
4227 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4228 intel_display_power_get(to_i915(dev), power_domain);
4229
4230 /* Can't disconnect eDP, but you can close the lid... */
4231 if (is_edp(intel_dp))
4232 status = edp_detect(intel_dp);
4233 else if (intel_digital_port_connected(to_i915(dev),
4234 dp_to_dig_port(intel_dp)))
4235 status = intel_dp_detect_dpcd(intel_dp);
4236 else
4237 status = connector_status_disconnected;
4238
4239 if (status != connector_status_connected) {
4240 intel_dp->compliance_test_active = 0;
4241 intel_dp->compliance_test_type = 0;
4242 intel_dp->compliance_test_data = 0;
4243
4244 if (intel_dp->is_mst) {
4245 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4246 intel_dp->is_mst,
4247 intel_dp->mst_mgr.mst_state);
4248 intel_dp->is_mst = false;
4249 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4250 intel_dp->is_mst);
4251 }
4252
4253 goto out;
4254 }
4255
4256 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4257 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4258
4259 intel_dp_probe_oui(intel_dp);
4260
4261 ret = intel_dp_probe_mst(intel_dp);
4262 if (ret) {
4263 /*
4264 * If we are in MST mode then this connector
4265 * won't appear connected or have anything
4266 * with EDID on it
4267 */
4268 status = connector_status_disconnected;
4269 goto out;
4270 } else if (connector->status == connector_status_connected) {
4271 /*
4272 * If display was connected already and is still connected
4273 * check links status, there has been known issues of
4274 * link loss triggerring long pulse!!!!
4275 */
4276 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4277 intel_dp_check_link_status(intel_dp);
4278 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4279 goto out;
4280 }
4281
4282 /*
4283 * Clearing NACK and defer counts to get their exact values
4284 * while reading EDID which are required by Compliance tests
4285 * 4.2.2.4 and 4.2.2.5
4286 */
4287 intel_dp->aux.i2c_nack_count = 0;
4288 intel_dp->aux.i2c_defer_count = 0;
4289
4290 intel_dp_set_edid(intel_dp);
4291
4292 status = connector_status_connected;
4293 intel_dp->detect_done = true;
4294
4295 /* Try to read the source of the interrupt */
4296 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4297 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4298 /* Clear interrupt source */
4299 drm_dp_dpcd_writeb(&intel_dp->aux,
4300 DP_DEVICE_SERVICE_IRQ_VECTOR,
4301 sink_irq_vector);
4302
4303 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4304 intel_dp_handle_test_request(intel_dp);
4305 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4306 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4307 }
4308
4309 out:
4310 if ((status != connector_status_connected) &&
4311 (intel_dp->is_mst == false))
4312 intel_dp_unset_edid(intel_dp);
4313
4314 intel_display_power_put(to_i915(dev), power_domain);
4315 return;
4316 }
4317
4318 static enum drm_connector_status
4319 intel_dp_detect(struct drm_connector *connector, bool force)
4320 {
4321 struct intel_dp *intel_dp = intel_attached_dp(connector);
4322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4323 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4324 struct intel_connector *intel_connector = to_intel_connector(connector);
4325
4326 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4327 connector->base.id, connector->name);
4328
4329 if (intel_dp->is_mst) {
4330 /* MST devices are disconnected from a monitor POV */
4331 intel_dp_unset_edid(intel_dp);
4332 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4333 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4334 return connector_status_disconnected;
4335 }
4336
4337 /* If full detect is not performed yet, do a full detect */
4338 if (!intel_dp->detect_done)
4339 intel_dp_long_pulse(intel_dp->attached_connector);
4340
4341 intel_dp->detect_done = false;
4342
4343 if (intel_connector->detect_edid)
4344 return connector_status_connected;
4345 else
4346 return connector_status_disconnected;
4347 }
4348
4349 static void
4350 intel_dp_force(struct drm_connector *connector)
4351 {
4352 struct intel_dp *intel_dp = intel_attached_dp(connector);
4353 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4354 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4355 enum intel_display_power_domain power_domain;
4356
4357 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4358 connector->base.id, connector->name);
4359 intel_dp_unset_edid(intel_dp);
4360
4361 if (connector->status != connector_status_connected)
4362 return;
4363
4364 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4365 intel_display_power_get(dev_priv, power_domain);
4366
4367 intel_dp_set_edid(intel_dp);
4368
4369 intel_display_power_put(dev_priv, power_domain);
4370
4371 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4372 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4373 }
4374
4375 static int intel_dp_get_modes(struct drm_connector *connector)
4376 {
4377 struct intel_connector *intel_connector = to_intel_connector(connector);
4378 struct edid *edid;
4379
4380 edid = intel_connector->detect_edid;
4381 if (edid) {
4382 int ret = intel_connector_update_modes(connector, edid);
4383 if (ret)
4384 return ret;
4385 }
4386
4387 /* if eDP has no EDID, fall back to fixed mode */
4388 if (is_edp(intel_attached_dp(connector)) &&
4389 intel_connector->panel.fixed_mode) {
4390 struct drm_display_mode *mode;
4391
4392 mode = drm_mode_duplicate(connector->dev,
4393 intel_connector->panel.fixed_mode);
4394 if (mode) {
4395 drm_mode_probed_add(connector, mode);
4396 return 1;
4397 }
4398 }
4399
4400 return 0;
4401 }
4402
4403 static bool
4404 intel_dp_detect_audio(struct drm_connector *connector)
4405 {
4406 bool has_audio = false;
4407 struct edid *edid;
4408
4409 edid = to_intel_connector(connector)->detect_edid;
4410 if (edid)
4411 has_audio = drm_detect_monitor_audio(edid);
4412
4413 return has_audio;
4414 }
4415
4416 static int
4417 intel_dp_set_property(struct drm_connector *connector,
4418 struct drm_property *property,
4419 uint64_t val)
4420 {
4421 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4422 struct intel_connector *intel_connector = to_intel_connector(connector);
4423 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4424 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4425 int ret;
4426
4427 ret = drm_object_property_set_value(&connector->base, property, val);
4428 if (ret)
4429 return ret;
4430
4431 if (property == dev_priv->force_audio_property) {
4432 int i = val;
4433 bool has_audio;
4434
4435 if (i == intel_dp->force_audio)
4436 return 0;
4437
4438 intel_dp->force_audio = i;
4439
4440 if (i == HDMI_AUDIO_AUTO)
4441 has_audio = intel_dp_detect_audio(connector);
4442 else
4443 has_audio = (i == HDMI_AUDIO_ON);
4444
4445 if (has_audio == intel_dp->has_audio)
4446 return 0;
4447
4448 intel_dp->has_audio = has_audio;
4449 goto done;
4450 }
4451
4452 if (property == dev_priv->broadcast_rgb_property) {
4453 bool old_auto = intel_dp->color_range_auto;
4454 bool old_range = intel_dp->limited_color_range;
4455
4456 switch (val) {
4457 case INTEL_BROADCAST_RGB_AUTO:
4458 intel_dp->color_range_auto = true;
4459 break;
4460 case INTEL_BROADCAST_RGB_FULL:
4461 intel_dp->color_range_auto = false;
4462 intel_dp->limited_color_range = false;
4463 break;
4464 case INTEL_BROADCAST_RGB_LIMITED:
4465 intel_dp->color_range_auto = false;
4466 intel_dp->limited_color_range = true;
4467 break;
4468 default:
4469 return -EINVAL;
4470 }
4471
4472 if (old_auto == intel_dp->color_range_auto &&
4473 old_range == intel_dp->limited_color_range)
4474 return 0;
4475
4476 goto done;
4477 }
4478
4479 if (is_edp(intel_dp) &&
4480 property == connector->dev->mode_config.scaling_mode_property) {
4481 if (val == DRM_MODE_SCALE_NONE) {
4482 DRM_DEBUG_KMS("no scaling not supported\n");
4483 return -EINVAL;
4484 }
4485 if (HAS_GMCH_DISPLAY(dev_priv) &&
4486 val == DRM_MODE_SCALE_CENTER) {
4487 DRM_DEBUG_KMS("centering not supported\n");
4488 return -EINVAL;
4489 }
4490
4491 if (intel_connector->panel.fitting_mode == val) {
4492 /* the eDP scaling property is not changed */
4493 return 0;
4494 }
4495 intel_connector->panel.fitting_mode = val;
4496
4497 goto done;
4498 }
4499
4500 return -EINVAL;
4501
4502 done:
4503 if (intel_encoder->base.crtc)
4504 intel_crtc_restore_mode(intel_encoder->base.crtc);
4505
4506 return 0;
4507 }
4508
4509 static int
4510 intel_dp_connector_register(struct drm_connector *connector)
4511 {
4512 struct intel_dp *intel_dp = intel_attached_dp(connector);
4513 int ret;
4514
4515 ret = intel_connector_register(connector);
4516 if (ret)
4517 return ret;
4518
4519 i915_debugfs_connector_add(connector);
4520
4521 DRM_DEBUG_KMS("registering %s bus for %s\n",
4522 intel_dp->aux.name, connector->kdev->kobj.name);
4523
4524 intel_dp->aux.dev = connector->kdev;
4525 return drm_dp_aux_register(&intel_dp->aux);
4526 }
4527
4528 static void
4529 intel_dp_connector_unregister(struct drm_connector *connector)
4530 {
4531 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4532 intel_connector_unregister(connector);
4533 }
4534
4535 static void
4536 intel_dp_connector_destroy(struct drm_connector *connector)
4537 {
4538 struct intel_connector *intel_connector = to_intel_connector(connector);
4539
4540 kfree(intel_connector->detect_edid);
4541
4542 if (!IS_ERR_OR_NULL(intel_connector->edid))
4543 kfree(intel_connector->edid);
4544
4545 /* Can't call is_edp() since the encoder may have been destroyed
4546 * already. */
4547 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4548 intel_panel_fini(&intel_connector->panel);
4549
4550 drm_connector_cleanup(connector);
4551 kfree(connector);
4552 }
4553
4554 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4555 {
4556 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4557 struct intel_dp *intel_dp = &intel_dig_port->dp;
4558
4559 intel_dp_mst_encoder_cleanup(intel_dig_port);
4560 if (is_edp(intel_dp)) {
4561 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4562 /*
4563 * vdd might still be enabled do to the delayed vdd off.
4564 * Make sure vdd is actually turned off here.
4565 */
4566 pps_lock(intel_dp);
4567 edp_panel_vdd_off_sync(intel_dp);
4568 pps_unlock(intel_dp);
4569
4570 if (intel_dp->edp_notifier.notifier_call) {
4571 unregister_reboot_notifier(&intel_dp->edp_notifier);
4572 intel_dp->edp_notifier.notifier_call = NULL;
4573 }
4574 }
4575
4576 intel_dp_aux_fini(intel_dp);
4577
4578 drm_encoder_cleanup(encoder);
4579 kfree(intel_dig_port);
4580 }
4581
4582 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4583 {
4584 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4585
4586 if (!is_edp(intel_dp))
4587 return;
4588
4589 /*
4590 * vdd might still be enabled do to the delayed vdd off.
4591 * Make sure vdd is actually turned off here.
4592 */
4593 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4594 pps_lock(intel_dp);
4595 edp_panel_vdd_off_sync(intel_dp);
4596 pps_unlock(intel_dp);
4597 }
4598
4599 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4600 {
4601 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4602 struct drm_device *dev = intel_dig_port->base.base.dev;
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604 enum intel_display_power_domain power_domain;
4605
4606 lockdep_assert_held(&dev_priv->pps_mutex);
4607
4608 if (!edp_have_panel_vdd(intel_dp))
4609 return;
4610
4611 /*
4612 * The VDD bit needs a power domain reference, so if the bit is
4613 * already enabled when we boot or resume, grab this reference and
4614 * schedule a vdd off, so we don't hold on to the reference
4615 * indefinitely.
4616 */
4617 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4618 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4619 intel_display_power_get(dev_priv, power_domain);
4620
4621 edp_panel_vdd_schedule_off(intel_dp);
4622 }
4623
4624 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4625 {
4626 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4627 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4628
4629 if (!HAS_DDI(dev_priv))
4630 intel_dp->DP = I915_READ(intel_dp->output_reg);
4631
4632 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4633 return;
4634
4635 pps_lock(intel_dp);
4636
4637 /*
4638 * Read out the current power sequencer assignment,
4639 * in case the BIOS did something with it.
4640 */
4641 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4642 vlv_initial_power_sequencer_setup(intel_dp);
4643
4644 intel_edp_panel_vdd_sanitize(intel_dp);
4645
4646 pps_unlock(intel_dp);
4647 }
4648
4649 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4650 .dpms = drm_atomic_helper_connector_dpms,
4651 .detect = intel_dp_detect,
4652 .force = intel_dp_force,
4653 .fill_modes = drm_helper_probe_single_connector_modes,
4654 .set_property = intel_dp_set_property,
4655 .atomic_get_property = intel_connector_atomic_get_property,
4656 .late_register = intel_dp_connector_register,
4657 .early_unregister = intel_dp_connector_unregister,
4658 .destroy = intel_dp_connector_destroy,
4659 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4660 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4661 };
4662
4663 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4664 .get_modes = intel_dp_get_modes,
4665 .mode_valid = intel_dp_mode_valid,
4666 };
4667
4668 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4669 .reset = intel_dp_encoder_reset,
4670 .destroy = intel_dp_encoder_destroy,
4671 };
4672
4673 enum irqreturn
4674 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4675 {
4676 struct intel_dp *intel_dp = &intel_dig_port->dp;
4677 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4678 struct drm_device *dev = intel_dig_port->base.base.dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 enum intel_display_power_domain power_domain;
4681 enum irqreturn ret = IRQ_NONE;
4682
4683 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4684 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4685 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4686
4687 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4688 /*
4689 * vdd off can generate a long pulse on eDP which
4690 * would require vdd on to handle it, and thus we
4691 * would end up in an endless cycle of
4692 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4693 */
4694 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4695 port_name(intel_dig_port->port));
4696 return IRQ_HANDLED;
4697 }
4698
4699 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4700 port_name(intel_dig_port->port),
4701 long_hpd ? "long" : "short");
4702
4703 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4704 intel_display_power_get(dev_priv, power_domain);
4705
4706 if (long_hpd) {
4707 intel_dp_long_pulse(intel_dp->attached_connector);
4708 if (intel_dp->is_mst)
4709 ret = IRQ_HANDLED;
4710 goto put_power;
4711
4712 } else {
4713 if (intel_dp->is_mst) {
4714 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4715 /*
4716 * If we were in MST mode, and device is not
4717 * there, get out of MST mode
4718 */
4719 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4720 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4721 intel_dp->is_mst = false;
4722 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4723 intel_dp->is_mst);
4724 goto put_power;
4725 }
4726 }
4727
4728 if (!intel_dp->is_mst) {
4729 if (!intel_dp_short_pulse(intel_dp)) {
4730 intel_dp_long_pulse(intel_dp->attached_connector);
4731 goto put_power;
4732 }
4733 }
4734 }
4735
4736 ret = IRQ_HANDLED;
4737
4738 put_power:
4739 intel_display_power_put(dev_priv, power_domain);
4740
4741 return ret;
4742 }
4743
4744 /* check the VBT to see whether the eDP is on another port */
4745 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4746 {
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748
4749 /*
4750 * eDP not supported on g4x. so bail out early just
4751 * for a bit extra safety in case the VBT is bonkers.
4752 */
4753 if (INTEL_INFO(dev)->gen < 5)
4754 return false;
4755
4756 if (port == PORT_A)
4757 return true;
4758
4759 return intel_bios_is_port_edp(dev_priv, port);
4760 }
4761
4762 void
4763 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4764 {
4765 struct intel_connector *intel_connector = to_intel_connector(connector);
4766
4767 intel_attach_force_audio_property(connector);
4768 intel_attach_broadcast_rgb_property(connector);
4769 intel_dp->color_range_auto = true;
4770
4771 if (is_edp(intel_dp)) {
4772 drm_mode_create_scaling_mode_property(connector->dev);
4773 drm_object_attach_property(
4774 &connector->base,
4775 connector->dev->mode_config.scaling_mode_property,
4776 DRM_MODE_SCALE_ASPECT);
4777 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4778 }
4779 }
4780
4781 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4782 {
4783 intel_dp->panel_power_off_time = ktime_get_boottime();
4784 intel_dp->last_power_on = jiffies;
4785 intel_dp->last_backlight_off = jiffies;
4786 }
4787
4788 static void
4789 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4790 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4791 {
4792 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4793 struct pps_registers regs;
4794
4795 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4796
4797 /* Workaround: Need to write PP_CONTROL with the unlock key as
4798 * the very first thing. */
4799 pp_ctl = ironlake_get_pp_control(intel_dp);
4800
4801 pp_on = I915_READ(regs.pp_on);
4802 pp_off = I915_READ(regs.pp_off);
4803 if (!IS_BROXTON(dev_priv)) {
4804 I915_WRITE(regs.pp_ctrl, pp_ctl);
4805 pp_div = I915_READ(regs.pp_div);
4806 }
4807
4808 /* Pull timing values out of registers */
4809 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4810 PANEL_POWER_UP_DELAY_SHIFT;
4811
4812 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4813 PANEL_LIGHT_ON_DELAY_SHIFT;
4814
4815 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4816 PANEL_LIGHT_OFF_DELAY_SHIFT;
4817
4818 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4819 PANEL_POWER_DOWN_DELAY_SHIFT;
4820
4821 if (IS_BROXTON(dev_priv)) {
4822 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4823 BXT_POWER_CYCLE_DELAY_SHIFT;
4824 if (tmp > 0)
4825 seq->t11_t12 = (tmp - 1) * 1000;
4826 else
4827 seq->t11_t12 = 0;
4828 } else {
4829 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4830 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4831 }
4832 }
4833
4834 static void
4835 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4836 {
4837 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4838 state_name,
4839 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4840 }
4841
4842 static void
4843 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4844 struct intel_dp *intel_dp)
4845 {
4846 struct edp_power_seq hw;
4847 struct edp_power_seq *sw = &intel_dp->pps_delays;
4848
4849 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4850
4851 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4852 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4853 DRM_ERROR("PPS state mismatch\n");
4854 intel_pps_dump_state("sw", sw);
4855 intel_pps_dump_state("hw", &hw);
4856 }
4857 }
4858
4859 static void
4860 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4861 struct intel_dp *intel_dp)
4862 {
4863 struct drm_i915_private *dev_priv = dev->dev_private;
4864 struct edp_power_seq cur, vbt, spec,
4865 *final = &intel_dp->pps_delays;
4866
4867 lockdep_assert_held(&dev_priv->pps_mutex);
4868
4869 /* already initialized? */
4870 if (final->t11_t12 != 0)
4871 return;
4872
4873 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4874
4875 intel_pps_dump_state("cur", &cur);
4876
4877 vbt = dev_priv->vbt.edp.pps;
4878
4879 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4880 * our hw here, which are all in 100usec. */
4881 spec.t1_t3 = 210 * 10;
4882 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4883 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4884 spec.t10 = 500 * 10;
4885 /* This one is special and actually in units of 100ms, but zero
4886 * based in the hw (so we need to add 100 ms). But the sw vbt
4887 * table multiplies it with 1000 to make it in units of 100usec,
4888 * too. */
4889 spec.t11_t12 = (510 + 100) * 10;
4890
4891 intel_pps_dump_state("vbt", &vbt);
4892
4893 /* Use the max of the register settings and vbt. If both are
4894 * unset, fall back to the spec limits. */
4895 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4896 spec.field : \
4897 max(cur.field, vbt.field))
4898 assign_final(t1_t3);
4899 assign_final(t8);
4900 assign_final(t9);
4901 assign_final(t10);
4902 assign_final(t11_t12);
4903 #undef assign_final
4904
4905 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4906 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4907 intel_dp->backlight_on_delay = get_delay(t8);
4908 intel_dp->backlight_off_delay = get_delay(t9);
4909 intel_dp->panel_power_down_delay = get_delay(t10);
4910 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4911 #undef get_delay
4912
4913 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4914 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4915 intel_dp->panel_power_cycle_delay);
4916
4917 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4918 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4919
4920 /*
4921 * We override the HW backlight delays to 1 because we do manual waits
4922 * on them. For T8, even BSpec recommends doing it. For T9, if we
4923 * don't do this, we'll end up waiting for the backlight off delay
4924 * twice: once when we do the manual sleep, and once when we disable
4925 * the panel and wait for the PP_STATUS bit to become zero.
4926 */
4927 final->t8 = 1;
4928 final->t9 = 1;
4929 }
4930
4931 static void
4932 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4933 struct intel_dp *intel_dp)
4934 {
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4936 u32 pp_on, pp_off, pp_div, port_sel = 0;
4937 int div = dev_priv->rawclk_freq / 1000;
4938 struct pps_registers regs;
4939 enum port port = dp_to_dig_port(intel_dp)->port;
4940 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4941
4942 lockdep_assert_held(&dev_priv->pps_mutex);
4943
4944 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4945
4946 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4947 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4948 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4949 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4950 /* Compute the divisor for the pp clock, simply match the Bspec
4951 * formula. */
4952 if (IS_BROXTON(dev)) {
4953 pp_div = I915_READ(regs.pp_ctrl);
4954 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4955 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4956 << BXT_POWER_CYCLE_DELAY_SHIFT);
4957 } else {
4958 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4959 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4960 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4961 }
4962
4963 /* Haswell doesn't have any port selection bits for the panel
4964 * power sequencer any more. */
4965 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4966 port_sel = PANEL_PORT_SELECT_VLV(port);
4967 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4968 if (port == PORT_A)
4969 port_sel = PANEL_PORT_SELECT_DPA;
4970 else
4971 port_sel = PANEL_PORT_SELECT_DPD;
4972 }
4973
4974 pp_on |= port_sel;
4975
4976 I915_WRITE(regs.pp_on, pp_on);
4977 I915_WRITE(regs.pp_off, pp_off);
4978 if (IS_BROXTON(dev))
4979 I915_WRITE(regs.pp_ctrl, pp_div);
4980 else
4981 I915_WRITE(regs.pp_div, pp_div);
4982
4983 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4984 I915_READ(regs.pp_on),
4985 I915_READ(regs.pp_off),
4986 IS_BROXTON(dev) ?
4987 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
4988 I915_READ(regs.pp_div));
4989 }
4990
4991 /**
4992 * intel_dp_set_drrs_state - program registers for RR switch to take effect
4993 * @dev: DRM device
4994 * @refresh_rate: RR to be programmed
4995 *
4996 * This function gets called when refresh rate (RR) has to be changed from
4997 * one frequency to another. Switches can be between high and low RR
4998 * supported by the panel or to any other RR based on media playback (in
4999 * this case, RR value needs to be passed from user space).
5000 *
5001 * The caller of this function needs to take a lock on dev_priv->drrs.
5002 */
5003 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5004 {
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 struct intel_encoder *encoder;
5007 struct intel_digital_port *dig_port = NULL;
5008 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5009 struct intel_crtc_state *config = NULL;
5010 struct intel_crtc *intel_crtc = NULL;
5011 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5012
5013 if (refresh_rate <= 0) {
5014 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5015 return;
5016 }
5017
5018 if (intel_dp == NULL) {
5019 DRM_DEBUG_KMS("DRRS not supported.\n");
5020 return;
5021 }
5022
5023 /*
5024 * FIXME: This needs proper synchronization with psr state for some
5025 * platforms that cannot have PSR and DRRS enabled at the same time.
5026 */
5027
5028 dig_port = dp_to_dig_port(intel_dp);
5029 encoder = &dig_port->base;
5030 intel_crtc = to_intel_crtc(encoder->base.crtc);
5031
5032 if (!intel_crtc) {
5033 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5034 return;
5035 }
5036
5037 config = intel_crtc->config;
5038
5039 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5040 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5041 return;
5042 }
5043
5044 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5045 refresh_rate)
5046 index = DRRS_LOW_RR;
5047
5048 if (index == dev_priv->drrs.refresh_rate_type) {
5049 DRM_DEBUG_KMS(
5050 "DRRS requested for previously set RR...ignoring\n");
5051 return;
5052 }
5053
5054 if (!intel_crtc->active) {
5055 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5056 return;
5057 }
5058
5059 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5060 switch (index) {
5061 case DRRS_HIGH_RR:
5062 intel_dp_set_m_n(intel_crtc, M1_N1);
5063 break;
5064 case DRRS_LOW_RR:
5065 intel_dp_set_m_n(intel_crtc, M2_N2);
5066 break;
5067 case DRRS_MAX_RR:
5068 default:
5069 DRM_ERROR("Unsupported refreshrate type\n");
5070 }
5071 } else if (INTEL_INFO(dev)->gen > 6) {
5072 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5073 u32 val;
5074
5075 val = I915_READ(reg);
5076 if (index > DRRS_HIGH_RR) {
5077 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5078 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5079 else
5080 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5081 } else {
5082 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5083 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5084 else
5085 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5086 }
5087 I915_WRITE(reg, val);
5088 }
5089
5090 dev_priv->drrs.refresh_rate_type = index;
5091
5092 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5093 }
5094
5095 /**
5096 * intel_edp_drrs_enable - init drrs struct if supported
5097 * @intel_dp: DP struct
5098 *
5099 * Initializes frontbuffer_bits and drrs.dp
5100 */
5101 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5102 {
5103 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5104 struct drm_i915_private *dev_priv = dev->dev_private;
5105 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5106 struct drm_crtc *crtc = dig_port->base.base.crtc;
5107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5108
5109 if (!intel_crtc->config->has_drrs) {
5110 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5111 return;
5112 }
5113
5114 mutex_lock(&dev_priv->drrs.mutex);
5115 if (WARN_ON(dev_priv->drrs.dp)) {
5116 DRM_ERROR("DRRS already enabled\n");
5117 goto unlock;
5118 }
5119
5120 dev_priv->drrs.busy_frontbuffer_bits = 0;
5121
5122 dev_priv->drrs.dp = intel_dp;
5123
5124 unlock:
5125 mutex_unlock(&dev_priv->drrs.mutex);
5126 }
5127
5128 /**
5129 * intel_edp_drrs_disable - Disable DRRS
5130 * @intel_dp: DP struct
5131 *
5132 */
5133 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5134 {
5135 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5136 struct drm_i915_private *dev_priv = dev->dev_private;
5137 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5138 struct drm_crtc *crtc = dig_port->base.base.crtc;
5139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5140
5141 if (!intel_crtc->config->has_drrs)
5142 return;
5143
5144 mutex_lock(&dev_priv->drrs.mutex);
5145 if (!dev_priv->drrs.dp) {
5146 mutex_unlock(&dev_priv->drrs.mutex);
5147 return;
5148 }
5149
5150 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5151 intel_dp_set_drrs_state(dev_priv->dev,
5152 intel_dp->attached_connector->panel.
5153 fixed_mode->vrefresh);
5154
5155 dev_priv->drrs.dp = NULL;
5156 mutex_unlock(&dev_priv->drrs.mutex);
5157
5158 cancel_delayed_work_sync(&dev_priv->drrs.work);
5159 }
5160
5161 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5162 {
5163 struct drm_i915_private *dev_priv =
5164 container_of(work, typeof(*dev_priv), drrs.work.work);
5165 struct intel_dp *intel_dp;
5166
5167 mutex_lock(&dev_priv->drrs.mutex);
5168
5169 intel_dp = dev_priv->drrs.dp;
5170
5171 if (!intel_dp)
5172 goto unlock;
5173
5174 /*
5175 * The delayed work can race with an invalidate hence we need to
5176 * recheck.
5177 */
5178
5179 if (dev_priv->drrs.busy_frontbuffer_bits)
5180 goto unlock;
5181
5182 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5183 intel_dp_set_drrs_state(dev_priv->dev,
5184 intel_dp->attached_connector->panel.
5185 downclock_mode->vrefresh);
5186
5187 unlock:
5188 mutex_unlock(&dev_priv->drrs.mutex);
5189 }
5190
5191 /**
5192 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5193 * @dev: DRM device
5194 * @frontbuffer_bits: frontbuffer plane tracking bits
5195 *
5196 * This function gets called everytime rendering on the given planes start.
5197 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5198 *
5199 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5200 */
5201 void intel_edp_drrs_invalidate(struct drm_device *dev,
5202 unsigned frontbuffer_bits)
5203 {
5204 struct drm_i915_private *dev_priv = dev->dev_private;
5205 struct drm_crtc *crtc;
5206 enum pipe pipe;
5207
5208 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5209 return;
5210
5211 cancel_delayed_work(&dev_priv->drrs.work);
5212
5213 mutex_lock(&dev_priv->drrs.mutex);
5214 if (!dev_priv->drrs.dp) {
5215 mutex_unlock(&dev_priv->drrs.mutex);
5216 return;
5217 }
5218
5219 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5220 pipe = to_intel_crtc(crtc)->pipe;
5221
5222 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5223 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5224
5225 /* invalidate means busy screen hence upclock */
5226 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5227 intel_dp_set_drrs_state(dev_priv->dev,
5228 dev_priv->drrs.dp->attached_connector->panel.
5229 fixed_mode->vrefresh);
5230
5231 mutex_unlock(&dev_priv->drrs.mutex);
5232 }
5233
5234 /**
5235 * intel_edp_drrs_flush - Restart Idleness DRRS
5236 * @dev: DRM device
5237 * @frontbuffer_bits: frontbuffer plane tracking bits
5238 *
5239 * This function gets called every time rendering on the given planes has
5240 * completed or flip on a crtc is completed. So DRRS should be upclocked
5241 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5242 * if no other planes are dirty.
5243 *
5244 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5245 */
5246 void intel_edp_drrs_flush(struct drm_device *dev,
5247 unsigned frontbuffer_bits)
5248 {
5249 struct drm_i915_private *dev_priv = dev->dev_private;
5250 struct drm_crtc *crtc;
5251 enum pipe pipe;
5252
5253 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5254 return;
5255
5256 cancel_delayed_work(&dev_priv->drrs.work);
5257
5258 mutex_lock(&dev_priv->drrs.mutex);
5259 if (!dev_priv->drrs.dp) {
5260 mutex_unlock(&dev_priv->drrs.mutex);
5261 return;
5262 }
5263
5264 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5265 pipe = to_intel_crtc(crtc)->pipe;
5266
5267 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5268 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5269
5270 /* flush means busy screen hence upclock */
5271 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5272 intel_dp_set_drrs_state(dev_priv->dev,
5273 dev_priv->drrs.dp->attached_connector->panel.
5274 fixed_mode->vrefresh);
5275
5276 /*
5277 * flush also means no more activity hence schedule downclock, if all
5278 * other fbs are quiescent too
5279 */
5280 if (!dev_priv->drrs.busy_frontbuffer_bits)
5281 schedule_delayed_work(&dev_priv->drrs.work,
5282 msecs_to_jiffies(1000));
5283 mutex_unlock(&dev_priv->drrs.mutex);
5284 }
5285
5286 /**
5287 * DOC: Display Refresh Rate Switching (DRRS)
5288 *
5289 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5290 * which enables swtching between low and high refresh rates,
5291 * dynamically, based on the usage scenario. This feature is applicable
5292 * for internal panels.
5293 *
5294 * Indication that the panel supports DRRS is given by the panel EDID, which
5295 * would list multiple refresh rates for one resolution.
5296 *
5297 * DRRS is of 2 types - static and seamless.
5298 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5299 * (may appear as a blink on screen) and is used in dock-undock scenario.
5300 * Seamless DRRS involves changing RR without any visual effect to the user
5301 * and can be used during normal system usage. This is done by programming
5302 * certain registers.
5303 *
5304 * Support for static/seamless DRRS may be indicated in the VBT based on
5305 * inputs from the panel spec.
5306 *
5307 * DRRS saves power by switching to low RR based on usage scenarios.
5308 *
5309 * The implementation is based on frontbuffer tracking implementation. When
5310 * there is a disturbance on the screen triggered by user activity or a periodic
5311 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5312 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5313 * made.
5314 *
5315 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5316 * and intel_edp_drrs_flush() are called.
5317 *
5318 * DRRS can be further extended to support other internal panels and also
5319 * the scenario of video playback wherein RR is set based on the rate
5320 * requested by userspace.
5321 */
5322
5323 /**
5324 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5325 * @intel_connector: eDP connector
5326 * @fixed_mode: preferred mode of panel
5327 *
5328 * This function is called only once at driver load to initialize basic
5329 * DRRS stuff.
5330 *
5331 * Returns:
5332 * Downclock mode if panel supports it, else return NULL.
5333 * DRRS support is determined by the presence of downclock mode (apart
5334 * from VBT setting).
5335 */
5336 static struct drm_display_mode *
5337 intel_dp_drrs_init(struct intel_connector *intel_connector,
5338 struct drm_display_mode *fixed_mode)
5339 {
5340 struct drm_connector *connector = &intel_connector->base;
5341 struct drm_device *dev = connector->dev;
5342 struct drm_i915_private *dev_priv = dev->dev_private;
5343 struct drm_display_mode *downclock_mode = NULL;
5344
5345 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5346 mutex_init(&dev_priv->drrs.mutex);
5347
5348 if (INTEL_INFO(dev)->gen <= 6) {
5349 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5350 return NULL;
5351 }
5352
5353 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5354 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5355 return NULL;
5356 }
5357
5358 downclock_mode = intel_find_panel_downclock
5359 (dev, fixed_mode, connector);
5360
5361 if (!downclock_mode) {
5362 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5363 return NULL;
5364 }
5365
5366 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5367
5368 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5369 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5370 return downclock_mode;
5371 }
5372
5373 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5374 struct intel_connector *intel_connector)
5375 {
5376 struct drm_connector *connector = &intel_connector->base;
5377 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5378 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5379 struct drm_device *dev = intel_encoder->base.dev;
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5381 struct drm_display_mode *fixed_mode = NULL;
5382 struct drm_display_mode *downclock_mode = NULL;
5383 bool has_dpcd;
5384 struct drm_display_mode *scan;
5385 struct edid *edid;
5386 enum pipe pipe = INVALID_PIPE;
5387
5388 if (!is_edp(intel_dp))
5389 return true;
5390
5391 /*
5392 * On IBX/CPT we may get here with LVDS already registered. Since the
5393 * driver uses the only internal power sequencer available for both
5394 * eDP and LVDS bail out early in this case to prevent interfering
5395 * with an already powered-on LVDS power sequencer.
5396 */
5397 if (intel_get_lvds_encoder(dev)) {
5398 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5399 DRM_INFO("LVDS was detected, not registering eDP\n");
5400
5401 return false;
5402 }
5403
5404 pps_lock(intel_dp);
5405
5406 intel_dp_init_panel_power_timestamps(intel_dp);
5407
5408 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5409 vlv_initial_power_sequencer_setup(intel_dp);
5410 } else {
5411 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5412 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5413 }
5414
5415 intel_edp_panel_vdd_sanitize(intel_dp);
5416
5417 pps_unlock(intel_dp);
5418
5419 /* Cache DPCD and EDID for edp. */
5420 has_dpcd = intel_dp_get_dpcd(intel_dp);
5421
5422 if (has_dpcd) {
5423 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5424 dev_priv->no_aux_handshake =
5425 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5426 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5427 } else {
5428 /* if this fails, presume the device is a ghost */
5429 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5430 goto out_vdd_off;
5431 }
5432
5433 mutex_lock(&dev->mode_config.mutex);
5434 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5435 if (edid) {
5436 if (drm_add_edid_modes(connector, edid)) {
5437 drm_mode_connector_update_edid_property(connector,
5438 edid);
5439 drm_edid_to_eld(connector, edid);
5440 } else {
5441 kfree(edid);
5442 edid = ERR_PTR(-EINVAL);
5443 }
5444 } else {
5445 edid = ERR_PTR(-ENOENT);
5446 }
5447 intel_connector->edid = edid;
5448
5449 /* prefer fixed mode from EDID if available */
5450 list_for_each_entry(scan, &connector->probed_modes, head) {
5451 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5452 fixed_mode = drm_mode_duplicate(dev, scan);
5453 downclock_mode = intel_dp_drrs_init(
5454 intel_connector, fixed_mode);
5455 break;
5456 }
5457 }
5458
5459 /* fallback to VBT if available for eDP */
5460 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5461 fixed_mode = drm_mode_duplicate(dev,
5462 dev_priv->vbt.lfp_lvds_vbt_mode);
5463 if (fixed_mode) {
5464 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5465 connector->display_info.width_mm = fixed_mode->width_mm;
5466 connector->display_info.height_mm = fixed_mode->height_mm;
5467 }
5468 }
5469 mutex_unlock(&dev->mode_config.mutex);
5470
5471 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5472 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5473 register_reboot_notifier(&intel_dp->edp_notifier);
5474
5475 /*
5476 * Figure out the current pipe for the initial backlight setup.
5477 * If the current pipe isn't valid, try the PPS pipe, and if that
5478 * fails just assume pipe A.
5479 */
5480 if (IS_CHERRYVIEW(dev))
5481 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5482 else
5483 pipe = PORT_TO_PIPE(intel_dp->DP);
5484
5485 if (pipe != PIPE_A && pipe != PIPE_B)
5486 pipe = intel_dp->pps_pipe;
5487
5488 if (pipe != PIPE_A && pipe != PIPE_B)
5489 pipe = PIPE_A;
5490
5491 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5492 pipe_name(pipe));
5493 }
5494
5495 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5496 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5497 intel_panel_setup_backlight(connector, pipe);
5498
5499 return true;
5500
5501 out_vdd_off:
5502 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5503 /*
5504 * vdd might still be enabled do to the delayed vdd off.
5505 * Make sure vdd is actually turned off here.
5506 */
5507 pps_lock(intel_dp);
5508 edp_panel_vdd_off_sync(intel_dp);
5509 pps_unlock(intel_dp);
5510
5511 return false;
5512 }
5513
5514 bool
5515 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5516 struct intel_connector *intel_connector)
5517 {
5518 struct drm_connector *connector = &intel_connector->base;
5519 struct intel_dp *intel_dp = &intel_dig_port->dp;
5520 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5521 struct drm_device *dev = intel_encoder->base.dev;
5522 struct drm_i915_private *dev_priv = dev->dev_private;
5523 enum port port = intel_dig_port->port;
5524 int type;
5525
5526 if (WARN(intel_dig_port->max_lanes < 1,
5527 "Not enough lanes (%d) for DP on port %c\n",
5528 intel_dig_port->max_lanes, port_name(port)))
5529 return false;
5530
5531 intel_dp->pps_pipe = INVALID_PIPE;
5532
5533 /* intel_dp vfuncs */
5534 if (INTEL_INFO(dev)->gen >= 9)
5535 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5536 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5537 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5538 else if (HAS_PCH_SPLIT(dev))
5539 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5540 else
5541 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5542
5543 if (INTEL_INFO(dev)->gen >= 9)
5544 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5545 else
5546 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5547
5548 if (HAS_DDI(dev))
5549 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5550
5551 /* Preserve the current hw state. */
5552 intel_dp->DP = I915_READ(intel_dp->output_reg);
5553 intel_dp->attached_connector = intel_connector;
5554
5555 if (intel_dp_is_edp(dev, port))
5556 type = DRM_MODE_CONNECTOR_eDP;
5557 else
5558 type = DRM_MODE_CONNECTOR_DisplayPort;
5559
5560 /*
5561 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5562 * for DP the encoder type can be set by the caller to
5563 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5564 */
5565 if (type == DRM_MODE_CONNECTOR_eDP)
5566 intel_encoder->type = INTEL_OUTPUT_EDP;
5567
5568 /* eDP only on port B and/or C on vlv/chv */
5569 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5570 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5571 return false;
5572
5573 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5574 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5575 port_name(port));
5576
5577 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5578 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5579
5580 connector->interlace_allowed = true;
5581 connector->doublescan_allowed = 0;
5582
5583 intel_dp_aux_init(intel_dp, intel_connector);
5584
5585 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5586 edp_panel_vdd_work);
5587
5588 intel_connector_attach_encoder(intel_connector, intel_encoder);
5589
5590 if (HAS_DDI(dev))
5591 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5592 else
5593 intel_connector->get_hw_state = intel_connector_get_hw_state;
5594
5595 /* Set up the hotplug pin. */
5596 switch (port) {
5597 case PORT_A:
5598 intel_encoder->hpd_pin = HPD_PORT_A;
5599 break;
5600 case PORT_B:
5601 intel_encoder->hpd_pin = HPD_PORT_B;
5602 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5603 intel_encoder->hpd_pin = HPD_PORT_A;
5604 break;
5605 case PORT_C:
5606 intel_encoder->hpd_pin = HPD_PORT_C;
5607 break;
5608 case PORT_D:
5609 intel_encoder->hpd_pin = HPD_PORT_D;
5610 break;
5611 case PORT_E:
5612 intel_encoder->hpd_pin = HPD_PORT_E;
5613 break;
5614 default:
5615 BUG();
5616 }
5617
5618 /* init MST on ports that can support it */
5619 if (HAS_DP_MST(dev) &&
5620 (port == PORT_B || port == PORT_C || port == PORT_D))
5621 intel_dp_mst_encoder_init(intel_dig_port,
5622 intel_connector->base.base.id);
5623
5624 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5625 intel_dp_aux_fini(intel_dp);
5626 intel_dp_mst_encoder_cleanup(intel_dig_port);
5627 goto fail;
5628 }
5629
5630 intel_dp_add_properties(intel_dp, connector);
5631
5632 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5633 * 0xd. Failure to do so will result in spurious interrupts being
5634 * generated on the port when a cable is not attached.
5635 */
5636 if (IS_G4X(dev) && !IS_GM45(dev)) {
5637 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5638 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5639 }
5640
5641 return true;
5642
5643 fail:
5644 drm_connector_cleanup(connector);
5645
5646 return false;
5647 }
5648
5649 bool intel_dp_init(struct drm_device *dev,
5650 i915_reg_t output_reg,
5651 enum port port)
5652 {
5653 struct drm_i915_private *dev_priv = dev->dev_private;
5654 struct intel_digital_port *intel_dig_port;
5655 struct intel_encoder *intel_encoder;
5656 struct drm_encoder *encoder;
5657 struct intel_connector *intel_connector;
5658
5659 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5660 if (!intel_dig_port)
5661 return false;
5662
5663 intel_connector = intel_connector_alloc();
5664 if (!intel_connector)
5665 goto err_connector_alloc;
5666
5667 intel_encoder = &intel_dig_port->base;
5668 encoder = &intel_encoder->base;
5669
5670 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5671 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5672 goto err_encoder_init;
5673
5674 intel_encoder->compute_config = intel_dp_compute_config;
5675 intel_encoder->disable = intel_disable_dp;
5676 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5677 intel_encoder->get_config = intel_dp_get_config;
5678 intel_encoder->suspend = intel_dp_encoder_suspend;
5679 if (IS_CHERRYVIEW(dev)) {
5680 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5681 intel_encoder->pre_enable = chv_pre_enable_dp;
5682 intel_encoder->enable = vlv_enable_dp;
5683 intel_encoder->post_disable = chv_post_disable_dp;
5684 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5685 } else if (IS_VALLEYVIEW(dev)) {
5686 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5687 intel_encoder->pre_enable = vlv_pre_enable_dp;
5688 intel_encoder->enable = vlv_enable_dp;
5689 intel_encoder->post_disable = vlv_post_disable_dp;
5690 } else {
5691 intel_encoder->pre_enable = g4x_pre_enable_dp;
5692 intel_encoder->enable = g4x_enable_dp;
5693 if (INTEL_INFO(dev)->gen >= 5)
5694 intel_encoder->post_disable = ilk_post_disable_dp;
5695 }
5696
5697 intel_dig_port->port = port;
5698 intel_dig_port->dp.output_reg = output_reg;
5699 intel_dig_port->max_lanes = 4;
5700
5701 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5702 if (IS_CHERRYVIEW(dev)) {
5703 if (port == PORT_D)
5704 intel_encoder->crtc_mask = 1 << 2;
5705 else
5706 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5707 } else {
5708 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5709 }
5710 intel_encoder->cloneable = 0;
5711
5712 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5713 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5714
5715 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5716 goto err_init_connector;
5717
5718 return true;
5719
5720 err_init_connector:
5721 drm_encoder_cleanup(encoder);
5722 err_encoder_init:
5723 kfree(intel_connector);
5724 err_connector_alloc:
5725 kfree(intel_dig_port);
5726 return false;
5727 }
5728
5729 void intel_dp_mst_suspend(struct drm_device *dev)
5730 {
5731 struct drm_i915_private *dev_priv = dev->dev_private;
5732 int i;
5733
5734 /* disable MST */
5735 for (i = 0; i < I915_MAX_PORTS; i++) {
5736 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5737 if (!intel_dig_port)
5738 continue;
5739
5740 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5741 if (!intel_dig_port->dp.can_mst)
5742 continue;
5743 if (intel_dig_port->dp.is_mst)
5744 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5745 }
5746 }
5747 }
5748
5749 void intel_dp_mst_resume(struct drm_device *dev)
5750 {
5751 struct drm_i915_private *dev_priv = dev->dev_private;
5752 int i;
5753
5754 for (i = 0; i < I915_MAX_PORTS; i++) {
5755 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5756 if (!intel_dig_port)
5757 continue;
5758 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5759 int ret;
5760
5761 if (!intel_dig_port->dp.can_mst)
5762 continue;
5763
5764 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5765 if (ret != 0) {
5766 intel_dp_check_mst_status(&intel_dig_port->dp);
5767 }
5768 }
5769 }
5770 }
This page took 0.229979 seconds and 5 git commands to generate.