Merge tag 'regulator-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59 return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74 switch (max_link_bw) {
75 case DP_LINK_BW_1_62:
76 case DP_LINK_BW_2_7:
77 break;
78 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79 max_link_bw = DP_LINK_BW_2_7;
80 break;
81 default:
82 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83 max_link_bw);
84 max_link_bw = DP_LINK_BW_1_62;
85 break;
86 }
87 return max_link_bw;
88 }
89
90 /*
91 * The units on the numbers in the next two are... bizarre. Examples will
92 * make it clearer; this one parallels an example in the eDP spec.
93 *
94 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95 *
96 * 270000 * 1 * 8 / 10 == 216000
97 *
98 * The actual data capacity of that configuration is 2.16Gbit/s, so the
99 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
100 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101 * 119000. At 18bpp that's 2142000 kilobits per second.
102 *
103 * Thus the strange-looking division by 10 in intel_dp_link_required, to
104 * get the result in decakilobits instead of kilobits.
105 */
106
107 static int
108 intel_dp_link_required(int pixel_clock, int bpp)
109 {
110 return (pixel_clock * bpp + 9) / 10;
111 }
112
113 static int
114 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115 {
116 return (max_link_clock * max_lanes * 8) / 10;
117 }
118
119 static int
120 intel_dp_mode_valid(struct drm_connector *connector,
121 struct drm_display_mode *mode)
122 {
123 struct intel_dp *intel_dp = intel_attached_dp(connector);
124 struct intel_connector *intel_connector = to_intel_connector(connector);
125 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
126 int target_clock = mode->clock;
127 int max_rate, mode_rate, max_lanes, max_link_clock;
128
129 if (is_edp(intel_dp) && fixed_mode) {
130 if (mode->hdisplay > fixed_mode->hdisplay)
131 return MODE_PANEL;
132
133 if (mode->vdisplay > fixed_mode->vdisplay)
134 return MODE_PANEL;
135
136 target_clock = fixed_mode->clock;
137 }
138
139 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
142 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143 mode_rate = intel_dp_link_required(target_clock, 18);
144
145 if (mode_rate > max_rate)
146 return MODE_CLOCK_HIGH;
147
148 if (mode->clock < 10000)
149 return MODE_CLOCK_LOW;
150
151 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152 return MODE_H_ILLEGAL;
153
154 return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160 int i;
161 uint32_t v = 0;
162
163 if (src_bytes > 4)
164 src_bytes = 4;
165 for (i = 0; i < src_bytes; i++)
166 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167 return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173 int i;
174 if (dst_bytes > 4)
175 dst_bytes = 4;
176 for (i = 0; i < dst_bytes; i++)
177 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184 struct drm_i915_private *dev_priv = dev->dev_private;
185 uint32_t clkcfg;
186
187 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188 if (IS_VALLEYVIEW(dev))
189 return 200;
190
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
194 return 100;
195 case CLKCFG_FSB_533:
196 return 133;
197 case CLKCFG_FSB_667:
198 return 166;
199 case CLKCFG_FSB_800:
200 return 200;
201 case CLKCFG_FSB_1067:
202 return 266;
203 case CLKCFG_FSB_1333:
204 return 333;
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
208 return 400;
209 default:
210 return 133;
211 }
212 }
213
214 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215 {
216 struct drm_device *dev = intel_dp_to_dev(intel_dp);
217 struct drm_i915_private *dev_priv = dev->dev_private;
218 u32 pp_stat_reg;
219
220 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221 return (I915_READ(pp_stat_reg) & PP_ON) != 0;
222 }
223
224 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225 {
226 struct drm_device *dev = intel_dp_to_dev(intel_dp);
227 struct drm_i915_private *dev_priv = dev->dev_private;
228 u32 pp_ctrl_reg;
229
230 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231 return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
232 }
233
234 static void
235 intel_dp_check_edp(struct intel_dp *intel_dp)
236 {
237 struct drm_device *dev = intel_dp_to_dev(intel_dp);
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 u32 pp_stat_reg, pp_ctrl_reg;
240
241 if (!is_edp(intel_dp))
242 return;
243
244 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
247 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248 WARN(1, "eDP powered off while attempting aux channel communication.\n");
249 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
250 I915_READ(pp_stat_reg),
251 I915_READ(pp_ctrl_reg));
252 }
253 }
254
255 static uint32_t
256 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257 {
258 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259 struct drm_device *dev = intel_dig_port->base.base.dev;
260 struct drm_i915_private *dev_priv = dev->dev_private;
261 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
262 uint32_t status;
263 bool done;
264
265 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266 if (has_aux_irq)
267 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
268 msecs_to_jiffies_timeout(10));
269 else
270 done = wait_for_atomic(C, 10) == 0;
271 if (!done)
272 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273 has_aux_irq);
274 #undef C
275
276 return status;
277 }
278
279 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
280 int index)
281 {
282 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283 struct drm_device *dev = intel_dig_port->base.base.dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
285
286 /* The clock divider is based off the hrawclk,
287 * and would like to run at 2MHz. So, take the
288 * hrawclk value and divide by 2 and use that
289 *
290 * Note that PCH attached eDP panels should use a 125MHz input
291 * clock divider.
292 */
293 if (IS_VALLEYVIEW(dev)) {
294 return index ? 0 : 100;
295 } else if (intel_dig_port->port == PORT_A) {
296 if (index)
297 return 0;
298 if (HAS_DDI(dev))
299 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
300 else if (IS_GEN6(dev) || IS_GEN7(dev))
301 return 200; /* SNB & IVB eDP input clock at 400Mhz */
302 else
303 return 225; /* eDP input clock at 450Mhz */
304 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
305 /* Workaround for non-ULT HSW */
306 switch (index) {
307 case 0: return 63;
308 case 1: return 72;
309 default: return 0;
310 }
311 } else if (HAS_PCH_SPLIT(dev)) {
312 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
313 } else {
314 return index ? 0 :intel_hrawclk(dev) / 2;
315 }
316 }
317
318 static int
319 intel_dp_aux_ch(struct intel_dp *intel_dp,
320 uint8_t *send, int send_bytes,
321 uint8_t *recv, int recv_size)
322 {
323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324 struct drm_device *dev = intel_dig_port->base.base.dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
327 uint32_t ch_data = ch_ctl + 4;
328 uint32_t aux_clock_divider;
329 int i, ret, recv_bytes;
330 uint32_t status;
331 int try, precharge, clock = 0;
332 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
333
334 /* dp aux is extremely sensitive to irq latency, hence request the
335 * lowest possible wakeup latency and so prevent the cpu from going into
336 * deep sleep states.
337 */
338 pm_qos_update_request(&dev_priv->pm_qos, 0);
339
340 intel_dp_check_edp(intel_dp);
341
342 if (IS_GEN6(dev))
343 precharge = 3;
344 else
345 precharge = 5;
346
347 intel_aux_display_runtime_get(dev_priv);
348
349 /* Try to wait for any previous AUX channel activity */
350 for (try = 0; try < 3; try++) {
351 status = I915_READ_NOTRACE(ch_ctl);
352 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
353 break;
354 msleep(1);
355 }
356
357 if (try == 3) {
358 WARN(1, "dp_aux_ch not started status 0x%08x\n",
359 I915_READ(ch_ctl));
360 ret = -EBUSY;
361 goto out;
362 }
363
364 while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
365 /* Must try at least 3 times according to DP spec */
366 for (try = 0; try < 5; try++) {
367 /* Load the send data into the aux channel data registers */
368 for (i = 0; i < send_bytes; i += 4)
369 I915_WRITE(ch_data + i,
370 pack_aux(send + i, send_bytes - i));
371
372 /* Send the command and wait for it to complete */
373 I915_WRITE(ch_ctl,
374 DP_AUX_CH_CTL_SEND_BUSY |
375 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
376 DP_AUX_CH_CTL_TIME_OUT_400us |
377 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
378 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
379 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
380 DP_AUX_CH_CTL_DONE |
381 DP_AUX_CH_CTL_TIME_OUT_ERROR |
382 DP_AUX_CH_CTL_RECEIVE_ERROR);
383
384 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
385
386 /* Clear done status and any errors */
387 I915_WRITE(ch_ctl,
388 status |
389 DP_AUX_CH_CTL_DONE |
390 DP_AUX_CH_CTL_TIME_OUT_ERROR |
391 DP_AUX_CH_CTL_RECEIVE_ERROR);
392
393 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
394 DP_AUX_CH_CTL_RECEIVE_ERROR))
395 continue;
396 if (status & DP_AUX_CH_CTL_DONE)
397 break;
398 }
399 if (status & DP_AUX_CH_CTL_DONE)
400 break;
401 }
402
403 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
404 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
405 ret = -EBUSY;
406 goto out;
407 }
408
409 /* Check for timeout or receive error.
410 * Timeouts occur when the sink is not connected
411 */
412 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
413 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
414 ret = -EIO;
415 goto out;
416 }
417
418 /* Timeouts occur when the device isn't connected, so they're
419 * "normal" -- don't fill the kernel log with these */
420 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
421 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
422 ret = -ETIMEDOUT;
423 goto out;
424 }
425
426 /* Unload any bytes sent back from the other side */
427 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
428 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
429 if (recv_bytes > recv_size)
430 recv_bytes = recv_size;
431
432 for (i = 0; i < recv_bytes; i += 4)
433 unpack_aux(I915_READ(ch_data + i),
434 recv + i, recv_bytes - i);
435
436 ret = recv_bytes;
437 out:
438 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
439 intel_aux_display_runtime_put(dev_priv);
440
441 return ret;
442 }
443
444 /* Write data to the aux channel in native mode */
445 static int
446 intel_dp_aux_native_write(struct intel_dp *intel_dp,
447 uint16_t address, uint8_t *send, int send_bytes)
448 {
449 int ret;
450 uint8_t msg[20];
451 int msg_bytes;
452 uint8_t ack;
453
454 intel_dp_check_edp(intel_dp);
455 if (send_bytes > 16)
456 return -1;
457 msg[0] = AUX_NATIVE_WRITE << 4;
458 msg[1] = address >> 8;
459 msg[2] = address & 0xff;
460 msg[3] = send_bytes - 1;
461 memcpy(&msg[4], send, send_bytes);
462 msg_bytes = send_bytes + 4;
463 for (;;) {
464 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
465 if (ret < 0)
466 return ret;
467 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
468 break;
469 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
470 udelay(100);
471 else
472 return -EIO;
473 }
474 return send_bytes;
475 }
476
477 /* Write a single byte to the aux channel in native mode */
478 static int
479 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
480 uint16_t address, uint8_t byte)
481 {
482 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
483 }
484
485 /* read bytes from a native aux channel */
486 static int
487 intel_dp_aux_native_read(struct intel_dp *intel_dp,
488 uint16_t address, uint8_t *recv, int recv_bytes)
489 {
490 uint8_t msg[4];
491 int msg_bytes;
492 uint8_t reply[20];
493 int reply_bytes;
494 uint8_t ack;
495 int ret;
496
497 intel_dp_check_edp(intel_dp);
498 msg[0] = AUX_NATIVE_READ << 4;
499 msg[1] = address >> 8;
500 msg[2] = address & 0xff;
501 msg[3] = recv_bytes - 1;
502
503 msg_bytes = 4;
504 reply_bytes = recv_bytes + 1;
505
506 for (;;) {
507 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
508 reply, reply_bytes);
509 if (ret == 0)
510 return -EPROTO;
511 if (ret < 0)
512 return ret;
513 ack = reply[0];
514 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
515 memcpy(recv, reply + 1, ret - 1);
516 return ret - 1;
517 }
518 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
519 udelay(100);
520 else
521 return -EIO;
522 }
523 }
524
525 static int
526 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
527 uint8_t write_byte, uint8_t *read_byte)
528 {
529 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
530 struct intel_dp *intel_dp = container_of(adapter,
531 struct intel_dp,
532 adapter);
533 uint16_t address = algo_data->address;
534 uint8_t msg[5];
535 uint8_t reply[2];
536 unsigned retry;
537 int msg_bytes;
538 int reply_bytes;
539 int ret;
540
541 intel_dp_check_edp(intel_dp);
542 /* Set up the command byte */
543 if (mode & MODE_I2C_READ)
544 msg[0] = AUX_I2C_READ << 4;
545 else
546 msg[0] = AUX_I2C_WRITE << 4;
547
548 if (!(mode & MODE_I2C_STOP))
549 msg[0] |= AUX_I2C_MOT << 4;
550
551 msg[1] = address >> 8;
552 msg[2] = address;
553
554 switch (mode) {
555 case MODE_I2C_WRITE:
556 msg[3] = 0;
557 msg[4] = write_byte;
558 msg_bytes = 5;
559 reply_bytes = 1;
560 break;
561 case MODE_I2C_READ:
562 msg[3] = 0;
563 msg_bytes = 4;
564 reply_bytes = 2;
565 break;
566 default:
567 msg_bytes = 3;
568 reply_bytes = 1;
569 break;
570 }
571
572 for (retry = 0; retry < 5; retry++) {
573 ret = intel_dp_aux_ch(intel_dp,
574 msg, msg_bytes,
575 reply, reply_bytes);
576 if (ret < 0) {
577 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
578 return ret;
579 }
580
581 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
582 case AUX_NATIVE_REPLY_ACK:
583 /* I2C-over-AUX Reply field is only valid
584 * when paired with AUX ACK.
585 */
586 break;
587 case AUX_NATIVE_REPLY_NACK:
588 DRM_DEBUG_KMS("aux_ch native nack\n");
589 return -EREMOTEIO;
590 case AUX_NATIVE_REPLY_DEFER:
591 /*
592 * For now, just give more slack to branch devices. We
593 * could check the DPCD for I2C bit rate capabilities,
594 * and if available, adjust the interval. We could also
595 * be more careful with DP-to-Legacy adapters where a
596 * long legacy cable may force very low I2C bit rates.
597 */
598 if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
599 DP_DWN_STRM_PORT_PRESENT)
600 usleep_range(500, 600);
601 else
602 usleep_range(300, 400);
603 continue;
604 default:
605 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
606 reply[0]);
607 return -EREMOTEIO;
608 }
609
610 switch (reply[0] & AUX_I2C_REPLY_MASK) {
611 case AUX_I2C_REPLY_ACK:
612 if (mode == MODE_I2C_READ) {
613 *read_byte = reply[1];
614 }
615 return reply_bytes - 1;
616 case AUX_I2C_REPLY_NACK:
617 DRM_DEBUG_KMS("aux_i2c nack\n");
618 return -EREMOTEIO;
619 case AUX_I2C_REPLY_DEFER:
620 DRM_DEBUG_KMS("aux_i2c defer\n");
621 udelay(100);
622 break;
623 default:
624 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
625 return -EREMOTEIO;
626 }
627 }
628
629 DRM_ERROR("too many retries, giving up\n");
630 return -EREMOTEIO;
631 }
632
633 static int
634 intel_dp_i2c_init(struct intel_dp *intel_dp,
635 struct intel_connector *intel_connector, const char *name)
636 {
637 int ret;
638
639 DRM_DEBUG_KMS("i2c_init %s\n", name);
640 intel_dp->algo.running = false;
641 intel_dp->algo.address = 0;
642 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
643
644 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
645 intel_dp->adapter.owner = THIS_MODULE;
646 intel_dp->adapter.class = I2C_CLASS_DDC;
647 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
648 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
649 intel_dp->adapter.algo_data = &intel_dp->algo;
650 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
651
652 ironlake_edp_panel_vdd_on(intel_dp);
653 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
654 ironlake_edp_panel_vdd_off(intel_dp, false);
655 return ret;
656 }
657
658 static void
659 intel_dp_set_clock(struct intel_encoder *encoder,
660 struct intel_crtc_config *pipe_config, int link_bw)
661 {
662 struct drm_device *dev = encoder->base.dev;
663
664 if (IS_G4X(dev)) {
665 if (link_bw == DP_LINK_BW_1_62) {
666 pipe_config->dpll.p1 = 2;
667 pipe_config->dpll.p2 = 10;
668 pipe_config->dpll.n = 2;
669 pipe_config->dpll.m1 = 23;
670 pipe_config->dpll.m2 = 8;
671 } else {
672 pipe_config->dpll.p1 = 1;
673 pipe_config->dpll.p2 = 10;
674 pipe_config->dpll.n = 1;
675 pipe_config->dpll.m1 = 14;
676 pipe_config->dpll.m2 = 2;
677 }
678 pipe_config->clock_set = true;
679 } else if (IS_HASWELL(dev)) {
680 /* Haswell has special-purpose DP DDI clocks. */
681 } else if (HAS_PCH_SPLIT(dev)) {
682 if (link_bw == DP_LINK_BW_1_62) {
683 pipe_config->dpll.n = 1;
684 pipe_config->dpll.p1 = 2;
685 pipe_config->dpll.p2 = 10;
686 pipe_config->dpll.m1 = 12;
687 pipe_config->dpll.m2 = 9;
688 } else {
689 pipe_config->dpll.n = 2;
690 pipe_config->dpll.p1 = 1;
691 pipe_config->dpll.p2 = 10;
692 pipe_config->dpll.m1 = 14;
693 pipe_config->dpll.m2 = 8;
694 }
695 pipe_config->clock_set = true;
696 } else if (IS_VALLEYVIEW(dev)) {
697 /* FIXME: Need to figure out optimized DP clocks for vlv. */
698 }
699 }
700
701 bool
702 intel_dp_compute_config(struct intel_encoder *encoder,
703 struct intel_crtc_config *pipe_config)
704 {
705 struct drm_device *dev = encoder->base.dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
708 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
709 enum port port = dp_to_dig_port(intel_dp)->port;
710 struct intel_crtc *intel_crtc = encoder->new_crtc;
711 struct intel_connector *intel_connector = intel_dp->attached_connector;
712 int lane_count, clock;
713 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
714 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
715 int bpp, mode_rate;
716 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
717 int link_avail, link_clock;
718
719 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
720 pipe_config->has_pch_encoder = true;
721
722 pipe_config->has_dp_encoder = true;
723
724 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
725 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
726 adjusted_mode);
727 if (!HAS_PCH_SPLIT(dev))
728 intel_gmch_panel_fitting(intel_crtc, pipe_config,
729 intel_connector->panel.fitting_mode);
730 else
731 intel_pch_panel_fitting(intel_crtc, pipe_config,
732 intel_connector->panel.fitting_mode);
733 }
734
735 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
736 return false;
737
738 DRM_DEBUG_KMS("DP link computation with max lane count %i "
739 "max bw %02x pixel clock %iKHz\n",
740 max_lane_count, bws[max_clock], adjusted_mode->clock);
741
742 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
743 * bpc in between. */
744 bpp = pipe_config->pipe_bpp;
745 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
746 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
747 dev_priv->vbt.edp_bpp);
748 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
749 }
750
751 for (; bpp >= 6*3; bpp -= 2*3) {
752 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
753
754 for (clock = 0; clock <= max_clock; clock++) {
755 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
756 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
757 link_avail = intel_dp_max_data_rate(link_clock,
758 lane_count);
759
760 if (mode_rate <= link_avail) {
761 goto found;
762 }
763 }
764 }
765 }
766
767 return false;
768
769 found:
770 if (intel_dp->color_range_auto) {
771 /*
772 * See:
773 * CEA-861-E - 5.1 Default Encoding Parameters
774 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
775 */
776 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
777 intel_dp->color_range = DP_COLOR_RANGE_16_235;
778 else
779 intel_dp->color_range = 0;
780 }
781
782 if (intel_dp->color_range)
783 pipe_config->limited_color_range = true;
784
785 intel_dp->link_bw = bws[clock];
786 intel_dp->lane_count = lane_count;
787 pipe_config->pipe_bpp = bpp;
788 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
789
790 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
791 intel_dp->link_bw, intel_dp->lane_count,
792 pipe_config->port_clock, bpp);
793 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
794 mode_rate, link_avail);
795
796 intel_link_compute_m_n(bpp, lane_count,
797 adjusted_mode->clock, pipe_config->port_clock,
798 &pipe_config->dp_m_n);
799
800 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
801
802 return true;
803 }
804
805 void intel_dp_init_link_config(struct intel_dp *intel_dp)
806 {
807 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
808 intel_dp->link_configuration[0] = intel_dp->link_bw;
809 intel_dp->link_configuration[1] = intel_dp->lane_count;
810 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
811 /*
812 * Check for DPCD version > 1.1 and enhanced framing support
813 */
814 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
815 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
816 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
817 }
818 }
819
820 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
821 {
822 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
823 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
824 struct drm_device *dev = crtc->base.dev;
825 struct drm_i915_private *dev_priv = dev->dev_private;
826 u32 dpa_ctl;
827
828 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
829 dpa_ctl = I915_READ(DP_A);
830 dpa_ctl &= ~DP_PLL_FREQ_MASK;
831
832 if (crtc->config.port_clock == 162000) {
833 /* For a long time we've carried around a ILK-DevA w/a for the
834 * 160MHz clock. If we're really unlucky, it's still required.
835 */
836 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
837 dpa_ctl |= DP_PLL_FREQ_160MHZ;
838 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
839 } else {
840 dpa_ctl |= DP_PLL_FREQ_270MHZ;
841 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
842 }
843
844 I915_WRITE(DP_A, dpa_ctl);
845
846 POSTING_READ(DP_A);
847 udelay(500);
848 }
849
850 static void intel_dp_mode_set(struct intel_encoder *encoder)
851 {
852 struct drm_device *dev = encoder->base.dev;
853 struct drm_i915_private *dev_priv = dev->dev_private;
854 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
855 enum port port = dp_to_dig_port(intel_dp)->port;
856 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
857 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
858
859 /*
860 * There are four kinds of DP registers:
861 *
862 * IBX PCH
863 * SNB CPU
864 * IVB CPU
865 * CPT PCH
866 *
867 * IBX PCH and CPU are the same for almost everything,
868 * except that the CPU DP PLL is configured in this
869 * register
870 *
871 * CPT PCH is quite different, having many bits moved
872 * to the TRANS_DP_CTL register instead. That
873 * configuration happens (oddly) in ironlake_pch_enable
874 */
875
876 /* Preserve the BIOS-computed detected bit. This is
877 * supposed to be read-only.
878 */
879 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
880
881 /* Handle DP bits in common between all three register formats */
882 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
883 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
884
885 if (intel_dp->has_audio) {
886 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
887 pipe_name(crtc->pipe));
888 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
889 intel_write_eld(&encoder->base, adjusted_mode);
890 }
891
892 intel_dp_init_link_config(intel_dp);
893
894 /* Split out the IBX/CPU vs CPT settings */
895
896 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
897 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898 intel_dp->DP |= DP_SYNC_HS_HIGH;
899 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900 intel_dp->DP |= DP_SYNC_VS_HIGH;
901 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
902
903 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904 intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906 intel_dp->DP |= crtc->pipe << 29;
907 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
908 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
909 intel_dp->DP |= intel_dp->color_range;
910
911 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
912 intel_dp->DP |= DP_SYNC_HS_HIGH;
913 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
914 intel_dp->DP |= DP_SYNC_VS_HIGH;
915 intel_dp->DP |= DP_LINK_TRAIN_OFF;
916
917 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
918 intel_dp->DP |= DP_ENHANCED_FRAMING;
919
920 if (crtc->pipe == 1)
921 intel_dp->DP |= DP_PIPEB_SELECT;
922 } else {
923 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
924 }
925
926 if (port == PORT_A && !IS_VALLEYVIEW(dev))
927 ironlake_set_pll_cpu_edp(intel_dp);
928 }
929
930 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
931 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
932
933 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
934 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
935
936 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
937 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
938
939 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
940 u32 mask,
941 u32 value)
942 {
943 struct drm_device *dev = intel_dp_to_dev(intel_dp);
944 struct drm_i915_private *dev_priv = dev->dev_private;
945 u32 pp_stat_reg, pp_ctrl_reg;
946
947 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
948 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
949
950 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
951 mask, value,
952 I915_READ(pp_stat_reg),
953 I915_READ(pp_ctrl_reg));
954
955 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
956 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
957 I915_READ(pp_stat_reg),
958 I915_READ(pp_ctrl_reg));
959 }
960 }
961
962 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
963 {
964 DRM_DEBUG_KMS("Wait for panel power on\n");
965 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
966 }
967
968 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
969 {
970 DRM_DEBUG_KMS("Wait for panel power off time\n");
971 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
972 }
973
974 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
975 {
976 DRM_DEBUG_KMS("Wait for panel power cycle\n");
977 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
978 }
979
980
981 /* Read the current pp_control value, unlocking the register if it
982 * is locked
983 */
984
985 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
986 {
987 struct drm_device *dev = intel_dp_to_dev(intel_dp);
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 control;
990 u32 pp_ctrl_reg;
991
992 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
993 control = I915_READ(pp_ctrl_reg);
994
995 control &= ~PANEL_UNLOCK_MASK;
996 control |= PANEL_UNLOCK_REGS;
997 return control;
998 }
999
1000 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1001 {
1002 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1003 struct drm_i915_private *dev_priv = dev->dev_private;
1004 u32 pp;
1005 u32 pp_stat_reg, pp_ctrl_reg;
1006
1007 if (!is_edp(intel_dp))
1008 return;
1009 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1010
1011 WARN(intel_dp->want_panel_vdd,
1012 "eDP VDD already requested on\n");
1013
1014 intel_dp->want_panel_vdd = true;
1015
1016 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1017 DRM_DEBUG_KMS("eDP VDD already on\n");
1018 return;
1019 }
1020
1021 if (!ironlake_edp_have_panel_power(intel_dp))
1022 ironlake_wait_panel_power_cycle(intel_dp);
1023
1024 pp = ironlake_get_pp_control(intel_dp);
1025 pp |= EDP_FORCE_VDD;
1026
1027 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1028 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1029
1030 I915_WRITE(pp_ctrl_reg, pp);
1031 POSTING_READ(pp_ctrl_reg);
1032 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1033 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1034 /*
1035 * If the panel wasn't on, delay before accessing aux channel
1036 */
1037 if (!ironlake_edp_have_panel_power(intel_dp)) {
1038 DRM_DEBUG_KMS("eDP was not running\n");
1039 msleep(intel_dp->panel_power_up_delay);
1040 }
1041 }
1042
1043 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1044 {
1045 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 u32 pp;
1048 u32 pp_stat_reg, pp_ctrl_reg;
1049
1050 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1051
1052 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1053 pp = ironlake_get_pp_control(intel_dp);
1054 pp &= ~EDP_FORCE_VDD;
1055
1056 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1057 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1058
1059 I915_WRITE(pp_ctrl_reg, pp);
1060 POSTING_READ(pp_ctrl_reg);
1061
1062 /* Make sure sequencer is idle before allowing subsequent activity */
1063 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1064 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1065 msleep(intel_dp->panel_power_down_delay);
1066 }
1067 }
1068
1069 static void ironlake_panel_vdd_work(struct work_struct *__work)
1070 {
1071 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1072 struct intel_dp, panel_vdd_work);
1073 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1074
1075 mutex_lock(&dev->mode_config.mutex);
1076 ironlake_panel_vdd_off_sync(intel_dp);
1077 mutex_unlock(&dev->mode_config.mutex);
1078 }
1079
1080 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1081 {
1082 if (!is_edp(intel_dp))
1083 return;
1084
1085 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1086 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1087
1088 intel_dp->want_panel_vdd = false;
1089
1090 if (sync) {
1091 ironlake_panel_vdd_off_sync(intel_dp);
1092 } else {
1093 /*
1094 * Queue the timer to fire a long
1095 * time from now (relative to the power down delay)
1096 * to keep the panel power up across a sequence of operations
1097 */
1098 schedule_delayed_work(&intel_dp->panel_vdd_work,
1099 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1100 }
1101 }
1102
1103 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1104 {
1105 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 pp;
1108 u32 pp_ctrl_reg;
1109
1110 if (!is_edp(intel_dp))
1111 return;
1112
1113 DRM_DEBUG_KMS("Turn eDP power on\n");
1114
1115 if (ironlake_edp_have_panel_power(intel_dp)) {
1116 DRM_DEBUG_KMS("eDP power already on\n");
1117 return;
1118 }
1119
1120 ironlake_wait_panel_power_cycle(intel_dp);
1121
1122 pp = ironlake_get_pp_control(intel_dp);
1123 if (IS_GEN5(dev)) {
1124 /* ILK workaround: disable reset around power sequence */
1125 pp &= ~PANEL_POWER_RESET;
1126 I915_WRITE(PCH_PP_CONTROL, pp);
1127 POSTING_READ(PCH_PP_CONTROL);
1128 }
1129
1130 pp |= POWER_TARGET_ON;
1131 if (!IS_GEN5(dev))
1132 pp |= PANEL_POWER_RESET;
1133
1134 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1135
1136 I915_WRITE(pp_ctrl_reg, pp);
1137 POSTING_READ(pp_ctrl_reg);
1138
1139 ironlake_wait_panel_on(intel_dp);
1140
1141 if (IS_GEN5(dev)) {
1142 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1143 I915_WRITE(PCH_PP_CONTROL, pp);
1144 POSTING_READ(PCH_PP_CONTROL);
1145 }
1146 }
1147
1148 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1149 {
1150 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 u32 pp;
1153 u32 pp_ctrl_reg;
1154
1155 if (!is_edp(intel_dp))
1156 return;
1157
1158 DRM_DEBUG_KMS("Turn eDP power off\n");
1159
1160 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1161
1162 pp = ironlake_get_pp_control(intel_dp);
1163 /* We need to switch off panel power _and_ force vdd, for otherwise some
1164 * panels get very unhappy and cease to work. */
1165 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1166
1167 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1168
1169 I915_WRITE(pp_ctrl_reg, pp);
1170 POSTING_READ(pp_ctrl_reg);
1171
1172 intel_dp->want_panel_vdd = false;
1173
1174 ironlake_wait_panel_off(intel_dp);
1175 }
1176
1177 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1178 {
1179 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1180 struct drm_device *dev = intel_dig_port->base.base.dev;
1181 struct drm_i915_private *dev_priv = dev->dev_private;
1182 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1183 u32 pp;
1184 u32 pp_ctrl_reg;
1185
1186 if (!is_edp(intel_dp))
1187 return;
1188
1189 DRM_DEBUG_KMS("\n");
1190 /*
1191 * If we enable the backlight right away following a panel power
1192 * on, we may see slight flicker as the panel syncs with the eDP
1193 * link. So delay a bit to make sure the image is solid before
1194 * allowing it to appear.
1195 */
1196 msleep(intel_dp->backlight_on_delay);
1197 pp = ironlake_get_pp_control(intel_dp);
1198 pp |= EDP_BLC_ENABLE;
1199
1200 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1201
1202 I915_WRITE(pp_ctrl_reg, pp);
1203 POSTING_READ(pp_ctrl_reg);
1204
1205 intel_panel_enable_backlight(dev, pipe);
1206 }
1207
1208 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1209 {
1210 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1211 struct drm_i915_private *dev_priv = dev->dev_private;
1212 u32 pp;
1213 u32 pp_ctrl_reg;
1214
1215 if (!is_edp(intel_dp))
1216 return;
1217
1218 intel_panel_disable_backlight(dev);
1219
1220 DRM_DEBUG_KMS("\n");
1221 pp = ironlake_get_pp_control(intel_dp);
1222 pp &= ~EDP_BLC_ENABLE;
1223
1224 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1225
1226 I915_WRITE(pp_ctrl_reg, pp);
1227 POSTING_READ(pp_ctrl_reg);
1228 msleep(intel_dp->backlight_off_delay);
1229 }
1230
1231 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1232 {
1233 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1234 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1235 struct drm_device *dev = crtc->dev;
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 u32 dpa_ctl;
1238
1239 assert_pipe_disabled(dev_priv,
1240 to_intel_crtc(crtc)->pipe);
1241
1242 DRM_DEBUG_KMS("\n");
1243 dpa_ctl = I915_READ(DP_A);
1244 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1245 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1246
1247 /* We don't adjust intel_dp->DP while tearing down the link, to
1248 * facilitate link retraining (e.g. after hotplug). Hence clear all
1249 * enable bits here to ensure that we don't enable too much. */
1250 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1251 intel_dp->DP |= DP_PLL_ENABLE;
1252 I915_WRITE(DP_A, intel_dp->DP);
1253 POSTING_READ(DP_A);
1254 udelay(200);
1255 }
1256
1257 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1258 {
1259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1260 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1261 struct drm_device *dev = crtc->dev;
1262 struct drm_i915_private *dev_priv = dev->dev_private;
1263 u32 dpa_ctl;
1264
1265 assert_pipe_disabled(dev_priv,
1266 to_intel_crtc(crtc)->pipe);
1267
1268 dpa_ctl = I915_READ(DP_A);
1269 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1270 "dp pll off, should be on\n");
1271 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1272
1273 /* We can't rely on the value tracked for the DP register in
1274 * intel_dp->DP because link_down must not change that (otherwise link
1275 * re-training will fail. */
1276 dpa_ctl &= ~DP_PLL_ENABLE;
1277 I915_WRITE(DP_A, dpa_ctl);
1278 POSTING_READ(DP_A);
1279 udelay(200);
1280 }
1281
1282 /* If the sink supports it, try to set the power state appropriately */
1283 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1284 {
1285 int ret, i;
1286
1287 /* Should have a valid DPCD by this point */
1288 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1289 return;
1290
1291 if (mode != DRM_MODE_DPMS_ON) {
1292 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1293 DP_SET_POWER_D3);
1294 if (ret != 1)
1295 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1296 } else {
1297 /*
1298 * When turning on, we need to retry for 1ms to give the sink
1299 * time to wake up.
1300 */
1301 for (i = 0; i < 3; i++) {
1302 ret = intel_dp_aux_native_write_1(intel_dp,
1303 DP_SET_POWER,
1304 DP_SET_POWER_D0);
1305 if (ret == 1)
1306 break;
1307 msleep(1);
1308 }
1309 }
1310 }
1311
1312 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1313 enum pipe *pipe)
1314 {
1315 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1316 enum port port = dp_to_dig_port(intel_dp)->port;
1317 struct drm_device *dev = encoder->base.dev;
1318 struct drm_i915_private *dev_priv = dev->dev_private;
1319 u32 tmp = I915_READ(intel_dp->output_reg);
1320
1321 if (!(tmp & DP_PORT_EN))
1322 return false;
1323
1324 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1325 *pipe = PORT_TO_PIPE_CPT(tmp);
1326 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1327 *pipe = PORT_TO_PIPE(tmp);
1328 } else {
1329 u32 trans_sel;
1330 u32 trans_dp;
1331 int i;
1332
1333 switch (intel_dp->output_reg) {
1334 case PCH_DP_B:
1335 trans_sel = TRANS_DP_PORT_SEL_B;
1336 break;
1337 case PCH_DP_C:
1338 trans_sel = TRANS_DP_PORT_SEL_C;
1339 break;
1340 case PCH_DP_D:
1341 trans_sel = TRANS_DP_PORT_SEL_D;
1342 break;
1343 default:
1344 return true;
1345 }
1346
1347 for_each_pipe(i) {
1348 trans_dp = I915_READ(TRANS_DP_CTL(i));
1349 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1350 *pipe = i;
1351 return true;
1352 }
1353 }
1354
1355 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1356 intel_dp->output_reg);
1357 }
1358
1359 return true;
1360 }
1361
1362 static void intel_dp_get_config(struct intel_encoder *encoder,
1363 struct intel_crtc_config *pipe_config)
1364 {
1365 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1366 u32 tmp, flags = 0;
1367 struct drm_device *dev = encoder->base.dev;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 enum port port = dp_to_dig_port(intel_dp)->port;
1370 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1371
1372 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1373 tmp = I915_READ(intel_dp->output_reg);
1374 if (tmp & DP_SYNC_HS_HIGH)
1375 flags |= DRM_MODE_FLAG_PHSYNC;
1376 else
1377 flags |= DRM_MODE_FLAG_NHSYNC;
1378
1379 if (tmp & DP_SYNC_VS_HIGH)
1380 flags |= DRM_MODE_FLAG_PVSYNC;
1381 else
1382 flags |= DRM_MODE_FLAG_NVSYNC;
1383 } else {
1384 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1385 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1386 flags |= DRM_MODE_FLAG_PHSYNC;
1387 else
1388 flags |= DRM_MODE_FLAG_NHSYNC;
1389
1390 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1391 flags |= DRM_MODE_FLAG_PVSYNC;
1392 else
1393 flags |= DRM_MODE_FLAG_NVSYNC;
1394 }
1395
1396 pipe_config->adjusted_mode.flags |= flags;
1397
1398 if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1399 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1400 pipe_config->port_clock = 162000;
1401 else
1402 pipe_config->port_clock = 270000;
1403 }
1404
1405 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1406 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1407 /*
1408 * This is a big fat ugly hack.
1409 *
1410 * Some machines in UEFI boot mode provide us a VBT that has 18
1411 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1412 * unknown we fail to light up. Yet the same BIOS boots up with
1413 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1414 * max, not what it tells us to use.
1415 *
1416 * Note: This will still be broken if the eDP panel is not lit
1417 * up by the BIOS, and thus we can't get the mode at module
1418 * load.
1419 */
1420 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1421 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1422 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1423 }
1424 }
1425
1426 static bool is_edp_psr(struct intel_dp *intel_dp)
1427 {
1428 return is_edp(intel_dp) &&
1429 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1430 }
1431
1432 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1433 {
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435
1436 if (!IS_HASWELL(dev))
1437 return false;
1438
1439 return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1440 }
1441
1442 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1443 struct edp_vsc_psr *vsc_psr)
1444 {
1445 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1446 struct drm_device *dev = dig_port->base.base.dev;
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1449 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1450 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1451 uint32_t *data = (uint32_t *) vsc_psr;
1452 unsigned int i;
1453
1454 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1455 the video DIP being updated before program video DIP data buffer
1456 registers for DIP being updated. */
1457 I915_WRITE(ctl_reg, 0);
1458 POSTING_READ(ctl_reg);
1459
1460 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1461 if (i < sizeof(struct edp_vsc_psr))
1462 I915_WRITE(data_reg + i, *data++);
1463 else
1464 I915_WRITE(data_reg + i, 0);
1465 }
1466
1467 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1468 POSTING_READ(ctl_reg);
1469 }
1470
1471 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1472 {
1473 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 struct edp_vsc_psr psr_vsc;
1476
1477 if (intel_dp->psr_setup_done)
1478 return;
1479
1480 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1481 memset(&psr_vsc, 0, sizeof(psr_vsc));
1482 psr_vsc.sdp_header.HB0 = 0;
1483 psr_vsc.sdp_header.HB1 = 0x7;
1484 psr_vsc.sdp_header.HB2 = 0x2;
1485 psr_vsc.sdp_header.HB3 = 0x8;
1486 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1487
1488 /* Avoid continuous PSR exit by masking memup and hpd */
1489 I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1490 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1491
1492 intel_dp->psr_setup_done = true;
1493 }
1494
1495 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1496 {
1497 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1500 int precharge = 0x3;
1501 int msg_size = 5; /* Header(4) + Message(1) */
1502
1503 /* Enable PSR in sink */
1504 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1505 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1506 DP_PSR_ENABLE &
1507 ~DP_PSR_MAIN_LINK_ACTIVE);
1508 else
1509 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1510 DP_PSR_ENABLE |
1511 DP_PSR_MAIN_LINK_ACTIVE);
1512
1513 /* Setup AUX registers */
1514 I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1515 I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1516 I915_WRITE(EDP_PSR_AUX_CTL,
1517 DP_AUX_CH_CTL_TIME_OUT_400us |
1518 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1519 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1520 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1521 }
1522
1523 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1524 {
1525 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 uint32_t max_sleep_time = 0x1f;
1528 uint32_t idle_frames = 1;
1529 uint32_t val = 0x0;
1530
1531 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1532 val |= EDP_PSR_LINK_STANDBY;
1533 val |= EDP_PSR_TP2_TP3_TIME_0us;
1534 val |= EDP_PSR_TP1_TIME_0us;
1535 val |= EDP_PSR_SKIP_AUX_EXIT;
1536 } else
1537 val |= EDP_PSR_LINK_DISABLE;
1538
1539 I915_WRITE(EDP_PSR_CTL, val |
1540 EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1541 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1542 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1543 EDP_PSR_ENABLE);
1544 }
1545
1546 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1547 {
1548 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1549 struct drm_device *dev = dig_port->base.base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 struct drm_crtc *crtc = dig_port->base.base.crtc;
1552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1553 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1554 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1555
1556 if (!IS_HASWELL(dev)) {
1557 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1558 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1559 return false;
1560 }
1561
1562 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1563 (dig_port->port != PORT_A)) {
1564 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1565 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1566 return false;
1567 }
1568
1569 if (!is_edp_psr(intel_dp)) {
1570 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1571 dev_priv->no_psr_reason = PSR_NO_SINK;
1572 return false;
1573 }
1574
1575 if (!i915_enable_psr) {
1576 DRM_DEBUG_KMS("PSR disable by flag\n");
1577 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1578 return false;
1579 }
1580
1581 crtc = dig_port->base.base.crtc;
1582 if (crtc == NULL) {
1583 DRM_DEBUG_KMS("crtc not active for PSR\n");
1584 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1585 return false;
1586 }
1587
1588 intel_crtc = to_intel_crtc(crtc);
1589 if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1590 DRM_DEBUG_KMS("crtc not active for PSR\n");
1591 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1592 return false;
1593 }
1594
1595 obj = to_intel_framebuffer(crtc->fb)->obj;
1596 if (obj->tiling_mode != I915_TILING_X ||
1597 obj->fence_reg == I915_FENCE_REG_NONE) {
1598 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1599 dev_priv->no_psr_reason = PSR_NOT_TILED;
1600 return false;
1601 }
1602
1603 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1604 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1605 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1606 return false;
1607 }
1608
1609 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1610 S3D_ENABLE) {
1611 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1612 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1613 return false;
1614 }
1615
1616 if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1617 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1618 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1619 return false;
1620 }
1621
1622 return true;
1623 }
1624
1625 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1626 {
1627 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1628
1629 if (!intel_edp_psr_match_conditions(intel_dp) ||
1630 intel_edp_is_psr_enabled(dev))
1631 return;
1632
1633 /* Setup PSR once */
1634 intel_edp_psr_setup(intel_dp);
1635
1636 /* Enable PSR on the panel */
1637 intel_edp_psr_enable_sink(intel_dp);
1638
1639 /* Enable PSR on the host */
1640 intel_edp_psr_enable_source(intel_dp);
1641 }
1642
1643 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1644 {
1645 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1646
1647 if (intel_edp_psr_match_conditions(intel_dp) &&
1648 !intel_edp_is_psr_enabled(dev))
1649 intel_edp_psr_do_enable(intel_dp);
1650 }
1651
1652 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1653 {
1654 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656
1657 if (!intel_edp_is_psr_enabled(dev))
1658 return;
1659
1660 I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1661
1662 /* Wait till PSR is idle */
1663 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1664 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1665 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1666 }
1667
1668 void intel_edp_psr_update(struct drm_device *dev)
1669 {
1670 struct intel_encoder *encoder;
1671 struct intel_dp *intel_dp = NULL;
1672
1673 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1674 if (encoder->type == INTEL_OUTPUT_EDP) {
1675 intel_dp = enc_to_intel_dp(&encoder->base);
1676
1677 if (!is_edp_psr(intel_dp))
1678 return;
1679
1680 if (!intel_edp_psr_match_conditions(intel_dp))
1681 intel_edp_psr_disable(intel_dp);
1682 else
1683 if (!intel_edp_is_psr_enabled(dev))
1684 intel_edp_psr_do_enable(intel_dp);
1685 }
1686 }
1687
1688 static void intel_disable_dp(struct intel_encoder *encoder)
1689 {
1690 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1691 enum port port = dp_to_dig_port(intel_dp)->port;
1692 struct drm_device *dev = encoder->base.dev;
1693
1694 /* Make sure the panel is off before trying to change the mode. But also
1695 * ensure that we have vdd while we switch off the panel. */
1696 ironlake_edp_panel_vdd_on(intel_dp);
1697 ironlake_edp_backlight_off(intel_dp);
1698 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1699 ironlake_edp_panel_off(intel_dp);
1700
1701 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1702 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1703 intel_dp_link_down(intel_dp);
1704 }
1705
1706 static void intel_post_disable_dp(struct intel_encoder *encoder)
1707 {
1708 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1709 enum port port = dp_to_dig_port(intel_dp)->port;
1710 struct drm_device *dev = encoder->base.dev;
1711
1712 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1713 intel_dp_link_down(intel_dp);
1714 if (!IS_VALLEYVIEW(dev))
1715 ironlake_edp_pll_off(intel_dp);
1716 }
1717 }
1718
1719 static void intel_enable_dp(struct intel_encoder *encoder)
1720 {
1721 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1722 struct drm_device *dev = encoder->base.dev;
1723 struct drm_i915_private *dev_priv = dev->dev_private;
1724 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1725
1726 if (WARN_ON(dp_reg & DP_PORT_EN))
1727 return;
1728
1729 ironlake_edp_panel_vdd_on(intel_dp);
1730 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1731 intel_dp_start_link_train(intel_dp);
1732 ironlake_edp_panel_on(intel_dp);
1733 ironlake_edp_panel_vdd_off(intel_dp, true);
1734 intel_dp_complete_link_train(intel_dp);
1735 intel_dp_stop_link_train(intel_dp);
1736 ironlake_edp_backlight_on(intel_dp);
1737 }
1738
1739 static void vlv_enable_dp(struct intel_encoder *encoder)
1740 {
1741 }
1742
1743 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1744 {
1745 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1746 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1747
1748 if (dport->port == PORT_A)
1749 ironlake_edp_pll_on(intel_dp);
1750 }
1751
1752 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1753 {
1754 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1755 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1756 struct drm_device *dev = encoder->base.dev;
1757 struct drm_i915_private *dev_priv = dev->dev_private;
1758 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1759 int port = vlv_dport_to_channel(dport);
1760 int pipe = intel_crtc->pipe;
1761 u32 val;
1762
1763 mutex_lock(&dev_priv->dpio_lock);
1764
1765 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1766 val = 0;
1767 if (pipe)
1768 val |= (1<<21);
1769 else
1770 val &= ~(1<<21);
1771 val |= 0x001000c4;
1772 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1773 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1774 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1775
1776 mutex_unlock(&dev_priv->dpio_lock);
1777
1778 intel_enable_dp(encoder);
1779
1780 vlv_wait_port_ready(dev_priv, port);
1781 }
1782
1783 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1784 {
1785 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1786 struct drm_device *dev = encoder->base.dev;
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 int port = vlv_dport_to_channel(dport);
1789
1790 if (!IS_VALLEYVIEW(dev))
1791 return;
1792
1793 /* Program Tx lane resets to default */
1794 mutex_lock(&dev_priv->dpio_lock);
1795 vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1796 DPIO_PCS_TX_LANE2_RESET |
1797 DPIO_PCS_TX_LANE1_RESET);
1798 vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1799 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1800 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1801 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1802 DPIO_PCS_CLK_SOFT_RESET);
1803
1804 /* Fix up inter-pair skew failure */
1805 vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1806 vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1807 vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1808 mutex_unlock(&dev_priv->dpio_lock);
1809 }
1810
1811 /*
1812 * Native read with retry for link status and receiver capability reads for
1813 * cases where the sink may still be asleep.
1814 */
1815 static bool
1816 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1817 uint8_t *recv, int recv_bytes)
1818 {
1819 int ret, i;
1820
1821 /*
1822 * Sinks are *supposed* to come up within 1ms from an off state,
1823 * but we're also supposed to retry 3 times per the spec.
1824 */
1825 for (i = 0; i < 3; i++) {
1826 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1827 recv_bytes);
1828 if (ret == recv_bytes)
1829 return true;
1830 msleep(1);
1831 }
1832
1833 return false;
1834 }
1835
1836 /*
1837 * Fetch AUX CH registers 0x202 - 0x207 which contain
1838 * link status information
1839 */
1840 static bool
1841 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1842 {
1843 return intel_dp_aux_native_read_retry(intel_dp,
1844 DP_LANE0_1_STATUS,
1845 link_status,
1846 DP_LINK_STATUS_SIZE);
1847 }
1848
1849 #if 0
1850 static char *voltage_names[] = {
1851 "0.4V", "0.6V", "0.8V", "1.2V"
1852 };
1853 static char *pre_emph_names[] = {
1854 "0dB", "3.5dB", "6dB", "9.5dB"
1855 };
1856 static char *link_train_names[] = {
1857 "pattern 1", "pattern 2", "idle", "off"
1858 };
1859 #endif
1860
1861 /*
1862 * These are source-specific values; current Intel hardware supports
1863 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1864 */
1865
1866 static uint8_t
1867 intel_dp_voltage_max(struct intel_dp *intel_dp)
1868 {
1869 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1870 enum port port = dp_to_dig_port(intel_dp)->port;
1871
1872 if (IS_VALLEYVIEW(dev))
1873 return DP_TRAIN_VOLTAGE_SWING_1200;
1874 else if (IS_GEN7(dev) && port == PORT_A)
1875 return DP_TRAIN_VOLTAGE_SWING_800;
1876 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1877 return DP_TRAIN_VOLTAGE_SWING_1200;
1878 else
1879 return DP_TRAIN_VOLTAGE_SWING_800;
1880 }
1881
1882 static uint8_t
1883 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1884 {
1885 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1886 enum port port = dp_to_dig_port(intel_dp)->port;
1887
1888 if (HAS_DDI(dev)) {
1889 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1890 case DP_TRAIN_VOLTAGE_SWING_400:
1891 return DP_TRAIN_PRE_EMPHASIS_9_5;
1892 case DP_TRAIN_VOLTAGE_SWING_600:
1893 return DP_TRAIN_PRE_EMPHASIS_6;
1894 case DP_TRAIN_VOLTAGE_SWING_800:
1895 return DP_TRAIN_PRE_EMPHASIS_3_5;
1896 case DP_TRAIN_VOLTAGE_SWING_1200:
1897 default:
1898 return DP_TRAIN_PRE_EMPHASIS_0;
1899 }
1900 } else if (IS_VALLEYVIEW(dev)) {
1901 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1902 case DP_TRAIN_VOLTAGE_SWING_400:
1903 return DP_TRAIN_PRE_EMPHASIS_9_5;
1904 case DP_TRAIN_VOLTAGE_SWING_600:
1905 return DP_TRAIN_PRE_EMPHASIS_6;
1906 case DP_TRAIN_VOLTAGE_SWING_800:
1907 return DP_TRAIN_PRE_EMPHASIS_3_5;
1908 case DP_TRAIN_VOLTAGE_SWING_1200:
1909 default:
1910 return DP_TRAIN_PRE_EMPHASIS_0;
1911 }
1912 } else if (IS_GEN7(dev) && port == PORT_A) {
1913 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1914 case DP_TRAIN_VOLTAGE_SWING_400:
1915 return DP_TRAIN_PRE_EMPHASIS_6;
1916 case DP_TRAIN_VOLTAGE_SWING_600:
1917 case DP_TRAIN_VOLTAGE_SWING_800:
1918 return DP_TRAIN_PRE_EMPHASIS_3_5;
1919 default:
1920 return DP_TRAIN_PRE_EMPHASIS_0;
1921 }
1922 } else {
1923 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1924 case DP_TRAIN_VOLTAGE_SWING_400:
1925 return DP_TRAIN_PRE_EMPHASIS_6;
1926 case DP_TRAIN_VOLTAGE_SWING_600:
1927 return DP_TRAIN_PRE_EMPHASIS_6;
1928 case DP_TRAIN_VOLTAGE_SWING_800:
1929 return DP_TRAIN_PRE_EMPHASIS_3_5;
1930 case DP_TRAIN_VOLTAGE_SWING_1200:
1931 default:
1932 return DP_TRAIN_PRE_EMPHASIS_0;
1933 }
1934 }
1935 }
1936
1937 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1938 {
1939 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1942 unsigned long demph_reg_value, preemph_reg_value,
1943 uniqtranscale_reg_value;
1944 uint8_t train_set = intel_dp->train_set[0];
1945 int port = vlv_dport_to_channel(dport);
1946
1947 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1948 case DP_TRAIN_PRE_EMPHASIS_0:
1949 preemph_reg_value = 0x0004000;
1950 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1951 case DP_TRAIN_VOLTAGE_SWING_400:
1952 demph_reg_value = 0x2B405555;
1953 uniqtranscale_reg_value = 0x552AB83A;
1954 break;
1955 case DP_TRAIN_VOLTAGE_SWING_600:
1956 demph_reg_value = 0x2B404040;
1957 uniqtranscale_reg_value = 0x5548B83A;
1958 break;
1959 case DP_TRAIN_VOLTAGE_SWING_800:
1960 demph_reg_value = 0x2B245555;
1961 uniqtranscale_reg_value = 0x5560B83A;
1962 break;
1963 case DP_TRAIN_VOLTAGE_SWING_1200:
1964 demph_reg_value = 0x2B405555;
1965 uniqtranscale_reg_value = 0x5598DA3A;
1966 break;
1967 default:
1968 return 0;
1969 }
1970 break;
1971 case DP_TRAIN_PRE_EMPHASIS_3_5:
1972 preemph_reg_value = 0x0002000;
1973 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1974 case DP_TRAIN_VOLTAGE_SWING_400:
1975 demph_reg_value = 0x2B404040;
1976 uniqtranscale_reg_value = 0x5552B83A;
1977 break;
1978 case DP_TRAIN_VOLTAGE_SWING_600:
1979 demph_reg_value = 0x2B404848;
1980 uniqtranscale_reg_value = 0x5580B83A;
1981 break;
1982 case DP_TRAIN_VOLTAGE_SWING_800:
1983 demph_reg_value = 0x2B404040;
1984 uniqtranscale_reg_value = 0x55ADDA3A;
1985 break;
1986 default:
1987 return 0;
1988 }
1989 break;
1990 case DP_TRAIN_PRE_EMPHASIS_6:
1991 preemph_reg_value = 0x0000000;
1992 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1993 case DP_TRAIN_VOLTAGE_SWING_400:
1994 demph_reg_value = 0x2B305555;
1995 uniqtranscale_reg_value = 0x5570B83A;
1996 break;
1997 case DP_TRAIN_VOLTAGE_SWING_600:
1998 demph_reg_value = 0x2B2B4040;
1999 uniqtranscale_reg_value = 0x55ADDA3A;
2000 break;
2001 default:
2002 return 0;
2003 }
2004 break;
2005 case DP_TRAIN_PRE_EMPHASIS_9_5:
2006 preemph_reg_value = 0x0006000;
2007 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2008 case DP_TRAIN_VOLTAGE_SWING_400:
2009 demph_reg_value = 0x1B405555;
2010 uniqtranscale_reg_value = 0x55ADDA3A;
2011 break;
2012 default:
2013 return 0;
2014 }
2015 break;
2016 default:
2017 return 0;
2018 }
2019
2020 mutex_lock(&dev_priv->dpio_lock);
2021 vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
2022 vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2023 vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
2024 uniqtranscale_reg_value);
2025 vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2026 vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
2027 vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2028 vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
2029 mutex_unlock(&dev_priv->dpio_lock);
2030
2031 return 0;
2032 }
2033
2034 static void
2035 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2036 {
2037 uint8_t v = 0;
2038 uint8_t p = 0;
2039 int lane;
2040 uint8_t voltage_max;
2041 uint8_t preemph_max;
2042
2043 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2044 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2045 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2046
2047 if (this_v > v)
2048 v = this_v;
2049 if (this_p > p)
2050 p = this_p;
2051 }
2052
2053 voltage_max = intel_dp_voltage_max(intel_dp);
2054 if (v >= voltage_max)
2055 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2056
2057 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2058 if (p >= preemph_max)
2059 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2060
2061 for (lane = 0; lane < 4; lane++)
2062 intel_dp->train_set[lane] = v | p;
2063 }
2064
2065 static uint32_t
2066 intel_gen4_signal_levels(uint8_t train_set)
2067 {
2068 uint32_t signal_levels = 0;
2069
2070 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2071 case DP_TRAIN_VOLTAGE_SWING_400:
2072 default:
2073 signal_levels |= DP_VOLTAGE_0_4;
2074 break;
2075 case DP_TRAIN_VOLTAGE_SWING_600:
2076 signal_levels |= DP_VOLTAGE_0_6;
2077 break;
2078 case DP_TRAIN_VOLTAGE_SWING_800:
2079 signal_levels |= DP_VOLTAGE_0_8;
2080 break;
2081 case DP_TRAIN_VOLTAGE_SWING_1200:
2082 signal_levels |= DP_VOLTAGE_1_2;
2083 break;
2084 }
2085 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2086 case DP_TRAIN_PRE_EMPHASIS_0:
2087 default:
2088 signal_levels |= DP_PRE_EMPHASIS_0;
2089 break;
2090 case DP_TRAIN_PRE_EMPHASIS_3_5:
2091 signal_levels |= DP_PRE_EMPHASIS_3_5;
2092 break;
2093 case DP_TRAIN_PRE_EMPHASIS_6:
2094 signal_levels |= DP_PRE_EMPHASIS_6;
2095 break;
2096 case DP_TRAIN_PRE_EMPHASIS_9_5:
2097 signal_levels |= DP_PRE_EMPHASIS_9_5;
2098 break;
2099 }
2100 return signal_levels;
2101 }
2102
2103 /* Gen6's DP voltage swing and pre-emphasis control */
2104 static uint32_t
2105 intel_gen6_edp_signal_levels(uint8_t train_set)
2106 {
2107 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2108 DP_TRAIN_PRE_EMPHASIS_MASK);
2109 switch (signal_levels) {
2110 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2111 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2112 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2113 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2114 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2115 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2116 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2117 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2118 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2119 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2120 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2121 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2122 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2123 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2124 default:
2125 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2126 "0x%x\n", signal_levels);
2127 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2128 }
2129 }
2130
2131 /* Gen7's DP voltage swing and pre-emphasis control */
2132 static uint32_t
2133 intel_gen7_edp_signal_levels(uint8_t train_set)
2134 {
2135 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2136 DP_TRAIN_PRE_EMPHASIS_MASK);
2137 switch (signal_levels) {
2138 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2139 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2140 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2141 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2142 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2143 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2144
2145 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2146 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2147 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2148 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2149
2150 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2151 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2152 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2153 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2154
2155 default:
2156 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2157 "0x%x\n", signal_levels);
2158 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2159 }
2160 }
2161
2162 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2163 static uint32_t
2164 intel_hsw_signal_levels(uint8_t train_set)
2165 {
2166 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2167 DP_TRAIN_PRE_EMPHASIS_MASK);
2168 switch (signal_levels) {
2169 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2170 return DDI_BUF_EMP_400MV_0DB_HSW;
2171 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2172 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2173 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2174 return DDI_BUF_EMP_400MV_6DB_HSW;
2175 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2176 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2177
2178 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2179 return DDI_BUF_EMP_600MV_0DB_HSW;
2180 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2181 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2182 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2183 return DDI_BUF_EMP_600MV_6DB_HSW;
2184
2185 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2186 return DDI_BUF_EMP_800MV_0DB_HSW;
2187 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2188 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2189 default:
2190 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2191 "0x%x\n", signal_levels);
2192 return DDI_BUF_EMP_400MV_0DB_HSW;
2193 }
2194 }
2195
2196 /* Properly updates "DP" with the correct signal levels. */
2197 static void
2198 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2199 {
2200 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2201 enum port port = intel_dig_port->port;
2202 struct drm_device *dev = intel_dig_port->base.base.dev;
2203 uint32_t signal_levels, mask;
2204 uint8_t train_set = intel_dp->train_set[0];
2205
2206 if (HAS_DDI(dev)) {
2207 signal_levels = intel_hsw_signal_levels(train_set);
2208 mask = DDI_BUF_EMP_MASK;
2209 } else if (IS_VALLEYVIEW(dev)) {
2210 signal_levels = intel_vlv_signal_levels(intel_dp);
2211 mask = 0;
2212 } else if (IS_GEN7(dev) && port == PORT_A) {
2213 signal_levels = intel_gen7_edp_signal_levels(train_set);
2214 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2215 } else if (IS_GEN6(dev) && port == PORT_A) {
2216 signal_levels = intel_gen6_edp_signal_levels(train_set);
2217 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2218 } else {
2219 signal_levels = intel_gen4_signal_levels(train_set);
2220 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2221 }
2222
2223 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2224
2225 *DP = (*DP & ~mask) | signal_levels;
2226 }
2227
2228 static bool
2229 intel_dp_set_link_train(struct intel_dp *intel_dp,
2230 uint32_t dp_reg_value,
2231 uint8_t dp_train_pat)
2232 {
2233 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2234 struct drm_device *dev = intel_dig_port->base.base.dev;
2235 struct drm_i915_private *dev_priv = dev->dev_private;
2236 enum port port = intel_dig_port->port;
2237 int ret;
2238
2239 if (HAS_DDI(dev)) {
2240 uint32_t temp = I915_READ(DP_TP_CTL(port));
2241
2242 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2243 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2244 else
2245 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2246
2247 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2248 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2249 case DP_TRAINING_PATTERN_DISABLE:
2250 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2251
2252 break;
2253 case DP_TRAINING_PATTERN_1:
2254 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2255 break;
2256 case DP_TRAINING_PATTERN_2:
2257 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2258 break;
2259 case DP_TRAINING_PATTERN_3:
2260 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2261 break;
2262 }
2263 I915_WRITE(DP_TP_CTL(port), temp);
2264
2265 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2266 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2267
2268 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2269 case DP_TRAINING_PATTERN_DISABLE:
2270 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2271 break;
2272 case DP_TRAINING_PATTERN_1:
2273 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2274 break;
2275 case DP_TRAINING_PATTERN_2:
2276 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2277 break;
2278 case DP_TRAINING_PATTERN_3:
2279 DRM_ERROR("DP training pattern 3 not supported\n");
2280 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2281 break;
2282 }
2283
2284 } else {
2285 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2286
2287 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2288 case DP_TRAINING_PATTERN_DISABLE:
2289 dp_reg_value |= DP_LINK_TRAIN_OFF;
2290 break;
2291 case DP_TRAINING_PATTERN_1:
2292 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2293 break;
2294 case DP_TRAINING_PATTERN_2:
2295 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2296 break;
2297 case DP_TRAINING_PATTERN_3:
2298 DRM_ERROR("DP training pattern 3 not supported\n");
2299 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2300 break;
2301 }
2302 }
2303
2304 I915_WRITE(intel_dp->output_reg, dp_reg_value);
2305 POSTING_READ(intel_dp->output_reg);
2306
2307 intel_dp_aux_native_write_1(intel_dp,
2308 DP_TRAINING_PATTERN_SET,
2309 dp_train_pat);
2310
2311 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2312 DP_TRAINING_PATTERN_DISABLE) {
2313 ret = intel_dp_aux_native_write(intel_dp,
2314 DP_TRAINING_LANE0_SET,
2315 intel_dp->train_set,
2316 intel_dp->lane_count);
2317 if (ret != intel_dp->lane_count)
2318 return false;
2319 }
2320
2321 return true;
2322 }
2323
2324 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2325 {
2326 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2327 struct drm_device *dev = intel_dig_port->base.base.dev;
2328 struct drm_i915_private *dev_priv = dev->dev_private;
2329 enum port port = intel_dig_port->port;
2330 uint32_t val;
2331
2332 if (!HAS_DDI(dev))
2333 return;
2334
2335 val = I915_READ(DP_TP_CTL(port));
2336 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2337 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2338 I915_WRITE(DP_TP_CTL(port), val);
2339
2340 /*
2341 * On PORT_A we can have only eDP in SST mode. There the only reason
2342 * we need to set idle transmission mode is to work around a HW issue
2343 * where we enable the pipe while not in idle link-training mode.
2344 * In this case there is requirement to wait for a minimum number of
2345 * idle patterns to be sent.
2346 */
2347 if (port == PORT_A)
2348 return;
2349
2350 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2351 1))
2352 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2353 }
2354
2355 /* Enable corresponding port and start training pattern 1 */
2356 void
2357 intel_dp_start_link_train(struct intel_dp *intel_dp)
2358 {
2359 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2360 struct drm_device *dev = encoder->dev;
2361 int i;
2362 uint8_t voltage;
2363 int voltage_tries, loop_tries;
2364 uint32_t DP = intel_dp->DP;
2365
2366 if (HAS_DDI(dev))
2367 intel_ddi_prepare_link_retrain(encoder);
2368
2369 /* Write the link configuration data */
2370 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2371 intel_dp->link_configuration,
2372 DP_LINK_CONFIGURATION_SIZE);
2373
2374 DP |= DP_PORT_EN;
2375
2376 memset(intel_dp->train_set, 0, 4);
2377 voltage = 0xff;
2378 voltage_tries = 0;
2379 loop_tries = 0;
2380 for (;;) {
2381 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2382 uint8_t link_status[DP_LINK_STATUS_SIZE];
2383
2384 intel_dp_set_signal_levels(intel_dp, &DP);
2385
2386 /* Set training pattern 1 */
2387 if (!intel_dp_set_link_train(intel_dp, DP,
2388 DP_TRAINING_PATTERN_1 |
2389 DP_LINK_SCRAMBLING_DISABLE))
2390 break;
2391
2392 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2393 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2394 DRM_ERROR("failed to get link status\n");
2395 break;
2396 }
2397
2398 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2399 DRM_DEBUG_KMS("clock recovery OK\n");
2400 break;
2401 }
2402
2403 /* Check to see if we've tried the max voltage */
2404 for (i = 0; i < intel_dp->lane_count; i++)
2405 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2406 break;
2407 if (i == intel_dp->lane_count) {
2408 ++loop_tries;
2409 if (loop_tries == 5) {
2410 DRM_DEBUG_KMS("too many full retries, give up\n");
2411 break;
2412 }
2413 memset(intel_dp->train_set, 0, 4);
2414 voltage_tries = 0;
2415 continue;
2416 }
2417
2418 /* Check to see if we've tried the same voltage 5 times */
2419 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2420 ++voltage_tries;
2421 if (voltage_tries == 5) {
2422 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2423 break;
2424 }
2425 } else
2426 voltage_tries = 0;
2427 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2428
2429 /* Compute new intel_dp->train_set as requested by target */
2430 intel_get_adjust_train(intel_dp, link_status);
2431 }
2432
2433 intel_dp->DP = DP;
2434 }
2435
2436 void
2437 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2438 {
2439 bool channel_eq = false;
2440 int tries, cr_tries;
2441 uint32_t DP = intel_dp->DP;
2442
2443 /* channel equalization */
2444 tries = 0;
2445 cr_tries = 0;
2446 channel_eq = false;
2447 for (;;) {
2448 uint8_t link_status[DP_LINK_STATUS_SIZE];
2449
2450 if (cr_tries > 5) {
2451 DRM_ERROR("failed to train DP, aborting\n");
2452 intel_dp_link_down(intel_dp);
2453 break;
2454 }
2455
2456 intel_dp_set_signal_levels(intel_dp, &DP);
2457
2458 /* channel eq pattern */
2459 if (!intel_dp_set_link_train(intel_dp, DP,
2460 DP_TRAINING_PATTERN_2 |
2461 DP_LINK_SCRAMBLING_DISABLE))
2462 break;
2463
2464 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2465 if (!intel_dp_get_link_status(intel_dp, link_status))
2466 break;
2467
2468 /* Make sure clock is still ok */
2469 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2470 intel_dp_start_link_train(intel_dp);
2471 cr_tries++;
2472 continue;
2473 }
2474
2475 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2476 channel_eq = true;
2477 break;
2478 }
2479
2480 /* Try 5 times, then try clock recovery if that fails */
2481 if (tries > 5) {
2482 intel_dp_link_down(intel_dp);
2483 intel_dp_start_link_train(intel_dp);
2484 tries = 0;
2485 cr_tries++;
2486 continue;
2487 }
2488
2489 /* Compute new intel_dp->train_set as requested by target */
2490 intel_get_adjust_train(intel_dp, link_status);
2491 ++tries;
2492 }
2493
2494 intel_dp_set_idle_link_train(intel_dp);
2495
2496 intel_dp->DP = DP;
2497
2498 if (channel_eq)
2499 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2500
2501 }
2502
2503 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2504 {
2505 intel_dp_set_link_train(intel_dp, intel_dp->DP,
2506 DP_TRAINING_PATTERN_DISABLE);
2507 }
2508
2509 static void
2510 intel_dp_link_down(struct intel_dp *intel_dp)
2511 {
2512 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2513 enum port port = intel_dig_port->port;
2514 struct drm_device *dev = intel_dig_port->base.base.dev;
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 struct intel_crtc *intel_crtc =
2517 to_intel_crtc(intel_dig_port->base.base.crtc);
2518 uint32_t DP = intel_dp->DP;
2519
2520 /*
2521 * DDI code has a strict mode set sequence and we should try to respect
2522 * it, otherwise we might hang the machine in many different ways. So we
2523 * really should be disabling the port only on a complete crtc_disable
2524 * sequence. This function is just called under two conditions on DDI
2525 * code:
2526 * - Link train failed while doing crtc_enable, and on this case we
2527 * really should respect the mode set sequence and wait for a
2528 * crtc_disable.
2529 * - Someone turned the monitor off and intel_dp_check_link_status
2530 * called us. We don't need to disable the whole port on this case, so
2531 * when someone turns the monitor on again,
2532 * intel_ddi_prepare_link_retrain will take care of redoing the link
2533 * train.
2534 */
2535 if (HAS_DDI(dev))
2536 return;
2537
2538 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2539 return;
2540
2541 DRM_DEBUG_KMS("\n");
2542
2543 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2544 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2545 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2546 } else {
2547 DP &= ~DP_LINK_TRAIN_MASK;
2548 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2549 }
2550 POSTING_READ(intel_dp->output_reg);
2551
2552 /* We don't really know why we're doing this */
2553 intel_wait_for_vblank(dev, intel_crtc->pipe);
2554
2555 if (HAS_PCH_IBX(dev) &&
2556 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2557 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2558
2559 /* Hardware workaround: leaving our transcoder select
2560 * set to transcoder B while it's off will prevent the
2561 * corresponding HDMI output on transcoder A.
2562 *
2563 * Combine this with another hardware workaround:
2564 * transcoder select bit can only be cleared while the
2565 * port is enabled.
2566 */
2567 DP &= ~DP_PIPEB_SELECT;
2568 I915_WRITE(intel_dp->output_reg, DP);
2569
2570 /* Changes to enable or select take place the vblank
2571 * after being written.
2572 */
2573 if (WARN_ON(crtc == NULL)) {
2574 /* We should never try to disable a port without a crtc
2575 * attached. For paranoia keep the code around for a
2576 * bit. */
2577 POSTING_READ(intel_dp->output_reg);
2578 msleep(50);
2579 } else
2580 intel_wait_for_vblank(dev, intel_crtc->pipe);
2581 }
2582
2583 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2584 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2585 POSTING_READ(intel_dp->output_reg);
2586 msleep(intel_dp->panel_power_down_delay);
2587 }
2588
2589 static bool
2590 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2591 {
2592 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2593
2594 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2595 sizeof(intel_dp->dpcd)) == 0)
2596 return false; /* aux transfer failed */
2597
2598 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2599 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2600 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2601
2602 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2603 return false; /* DPCD not present */
2604
2605 /* Check if the panel supports PSR */
2606 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2607 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2608 intel_dp->psr_dpcd,
2609 sizeof(intel_dp->psr_dpcd));
2610 if (is_edp_psr(intel_dp))
2611 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2612 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2613 DP_DWN_STRM_PORT_PRESENT))
2614 return true; /* native DP sink */
2615
2616 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2617 return true; /* no per-port downstream info */
2618
2619 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2620 intel_dp->downstream_ports,
2621 DP_MAX_DOWNSTREAM_PORTS) == 0)
2622 return false; /* downstream port status fetch failed */
2623
2624 return true;
2625 }
2626
2627 static void
2628 intel_dp_probe_oui(struct intel_dp *intel_dp)
2629 {
2630 u8 buf[3];
2631
2632 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2633 return;
2634
2635 ironlake_edp_panel_vdd_on(intel_dp);
2636
2637 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2638 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2639 buf[0], buf[1], buf[2]);
2640
2641 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2642 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2643 buf[0], buf[1], buf[2]);
2644
2645 ironlake_edp_panel_vdd_off(intel_dp, false);
2646 }
2647
2648 static bool
2649 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2650 {
2651 int ret;
2652
2653 ret = intel_dp_aux_native_read_retry(intel_dp,
2654 DP_DEVICE_SERVICE_IRQ_VECTOR,
2655 sink_irq_vector, 1);
2656 if (!ret)
2657 return false;
2658
2659 return true;
2660 }
2661
2662 static void
2663 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2664 {
2665 /* NAK by default */
2666 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2667 }
2668
2669 /*
2670 * According to DP spec
2671 * 5.1.2:
2672 * 1. Read DPCD
2673 * 2. Configure link according to Receiver Capabilities
2674 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2675 * 4. Check link status on receipt of hot-plug interrupt
2676 */
2677
2678 void
2679 intel_dp_check_link_status(struct intel_dp *intel_dp)
2680 {
2681 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2682 u8 sink_irq_vector;
2683 u8 link_status[DP_LINK_STATUS_SIZE];
2684
2685 if (!intel_encoder->connectors_active)
2686 return;
2687
2688 if (WARN_ON(!intel_encoder->base.crtc))
2689 return;
2690
2691 /* Try to read receiver status if the link appears to be up */
2692 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2693 intel_dp_link_down(intel_dp);
2694 return;
2695 }
2696
2697 /* Now read the DPCD to see if it's actually running */
2698 if (!intel_dp_get_dpcd(intel_dp)) {
2699 intel_dp_link_down(intel_dp);
2700 return;
2701 }
2702
2703 /* Try to read the source of the interrupt */
2704 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2705 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2706 /* Clear interrupt source */
2707 intel_dp_aux_native_write_1(intel_dp,
2708 DP_DEVICE_SERVICE_IRQ_VECTOR,
2709 sink_irq_vector);
2710
2711 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2712 intel_dp_handle_test_request(intel_dp);
2713 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2714 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2715 }
2716
2717 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2718 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2719 drm_get_encoder_name(&intel_encoder->base));
2720 intel_dp_start_link_train(intel_dp);
2721 intel_dp_complete_link_train(intel_dp);
2722 intel_dp_stop_link_train(intel_dp);
2723 }
2724 }
2725
2726 /* XXX this is probably wrong for multiple downstream ports */
2727 static enum drm_connector_status
2728 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2729 {
2730 uint8_t *dpcd = intel_dp->dpcd;
2731 bool hpd;
2732 uint8_t type;
2733
2734 if (!intel_dp_get_dpcd(intel_dp))
2735 return connector_status_disconnected;
2736
2737 /* if there's no downstream port, we're done */
2738 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2739 return connector_status_connected;
2740
2741 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2742 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2743 if (hpd) {
2744 uint8_t reg;
2745 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2746 &reg, 1))
2747 return connector_status_unknown;
2748 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2749 : connector_status_disconnected;
2750 }
2751
2752 /* If no HPD, poke DDC gently */
2753 if (drm_probe_ddc(&intel_dp->adapter))
2754 return connector_status_connected;
2755
2756 /* Well we tried, say unknown for unreliable port types */
2757 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2758 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2759 return connector_status_unknown;
2760
2761 /* Anything else is out of spec, warn and ignore */
2762 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2763 return connector_status_disconnected;
2764 }
2765
2766 static enum drm_connector_status
2767 ironlake_dp_detect(struct intel_dp *intel_dp)
2768 {
2769 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2772 enum drm_connector_status status;
2773
2774 /* Can't disconnect eDP, but you can close the lid... */
2775 if (is_edp(intel_dp)) {
2776 status = intel_panel_detect(dev);
2777 if (status == connector_status_unknown)
2778 status = connector_status_connected;
2779 return status;
2780 }
2781
2782 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2783 return connector_status_disconnected;
2784
2785 return intel_dp_detect_dpcd(intel_dp);
2786 }
2787
2788 static enum drm_connector_status
2789 g4x_dp_detect(struct intel_dp *intel_dp)
2790 {
2791 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2792 struct drm_i915_private *dev_priv = dev->dev_private;
2793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2794 uint32_t bit;
2795
2796 /* Can't disconnect eDP, but you can close the lid... */
2797 if (is_edp(intel_dp)) {
2798 enum drm_connector_status status;
2799
2800 status = intel_panel_detect(dev);
2801 if (status == connector_status_unknown)
2802 status = connector_status_connected;
2803 return status;
2804 }
2805
2806 switch (intel_dig_port->port) {
2807 case PORT_B:
2808 bit = PORTB_HOTPLUG_LIVE_STATUS;
2809 break;
2810 case PORT_C:
2811 bit = PORTC_HOTPLUG_LIVE_STATUS;
2812 break;
2813 case PORT_D:
2814 bit = PORTD_HOTPLUG_LIVE_STATUS;
2815 break;
2816 default:
2817 return connector_status_unknown;
2818 }
2819
2820 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2821 return connector_status_disconnected;
2822
2823 return intel_dp_detect_dpcd(intel_dp);
2824 }
2825
2826 static struct edid *
2827 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2828 {
2829 struct intel_connector *intel_connector = to_intel_connector(connector);
2830
2831 /* use cached edid if we have one */
2832 if (intel_connector->edid) {
2833 struct edid *edid;
2834 int size;
2835
2836 /* invalid edid */
2837 if (IS_ERR(intel_connector->edid))
2838 return NULL;
2839
2840 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2841 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2842 if (!edid)
2843 return NULL;
2844
2845 return edid;
2846 }
2847
2848 return drm_get_edid(connector, adapter);
2849 }
2850
2851 static int
2852 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2853 {
2854 struct intel_connector *intel_connector = to_intel_connector(connector);
2855
2856 /* use cached edid if we have one */
2857 if (intel_connector->edid) {
2858 /* invalid edid */
2859 if (IS_ERR(intel_connector->edid))
2860 return 0;
2861
2862 return intel_connector_update_modes(connector,
2863 intel_connector->edid);
2864 }
2865
2866 return intel_ddc_get_modes(connector, adapter);
2867 }
2868
2869 static enum drm_connector_status
2870 intel_dp_detect(struct drm_connector *connector, bool force)
2871 {
2872 struct intel_dp *intel_dp = intel_attached_dp(connector);
2873 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2874 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2875 struct drm_device *dev = connector->dev;
2876 enum drm_connector_status status;
2877 struct edid *edid = NULL;
2878
2879 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2880 connector->base.id, drm_get_connector_name(connector));
2881
2882 intel_dp->has_audio = false;
2883
2884 if (HAS_PCH_SPLIT(dev))
2885 status = ironlake_dp_detect(intel_dp);
2886 else
2887 status = g4x_dp_detect(intel_dp);
2888
2889 if (status != connector_status_connected)
2890 return status;
2891
2892 intel_dp_probe_oui(intel_dp);
2893
2894 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2895 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2896 } else {
2897 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2898 if (edid) {
2899 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2900 kfree(edid);
2901 }
2902 }
2903
2904 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2905 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2906 return connector_status_connected;
2907 }
2908
2909 static int intel_dp_get_modes(struct drm_connector *connector)
2910 {
2911 struct intel_dp *intel_dp = intel_attached_dp(connector);
2912 struct intel_connector *intel_connector = to_intel_connector(connector);
2913 struct drm_device *dev = connector->dev;
2914 int ret;
2915
2916 /* We should parse the EDID data and find out if it has an audio sink
2917 */
2918
2919 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2920 if (ret)
2921 return ret;
2922
2923 /* if eDP has no EDID, fall back to fixed mode */
2924 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2925 struct drm_display_mode *mode;
2926 mode = drm_mode_duplicate(dev,
2927 intel_connector->panel.fixed_mode);
2928 if (mode) {
2929 drm_mode_probed_add(connector, mode);
2930 return 1;
2931 }
2932 }
2933 return 0;
2934 }
2935
2936 static bool
2937 intel_dp_detect_audio(struct drm_connector *connector)
2938 {
2939 struct intel_dp *intel_dp = intel_attached_dp(connector);
2940 struct edid *edid;
2941 bool has_audio = false;
2942
2943 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2944 if (edid) {
2945 has_audio = drm_detect_monitor_audio(edid);
2946 kfree(edid);
2947 }
2948
2949 return has_audio;
2950 }
2951
2952 static int
2953 intel_dp_set_property(struct drm_connector *connector,
2954 struct drm_property *property,
2955 uint64_t val)
2956 {
2957 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2958 struct intel_connector *intel_connector = to_intel_connector(connector);
2959 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2960 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2961 int ret;
2962
2963 ret = drm_object_property_set_value(&connector->base, property, val);
2964 if (ret)
2965 return ret;
2966
2967 if (property == dev_priv->force_audio_property) {
2968 int i = val;
2969 bool has_audio;
2970
2971 if (i == intel_dp->force_audio)
2972 return 0;
2973
2974 intel_dp->force_audio = i;
2975
2976 if (i == HDMI_AUDIO_AUTO)
2977 has_audio = intel_dp_detect_audio(connector);
2978 else
2979 has_audio = (i == HDMI_AUDIO_ON);
2980
2981 if (has_audio == intel_dp->has_audio)
2982 return 0;
2983
2984 intel_dp->has_audio = has_audio;
2985 goto done;
2986 }
2987
2988 if (property == dev_priv->broadcast_rgb_property) {
2989 bool old_auto = intel_dp->color_range_auto;
2990 uint32_t old_range = intel_dp->color_range;
2991
2992 switch (val) {
2993 case INTEL_BROADCAST_RGB_AUTO:
2994 intel_dp->color_range_auto = true;
2995 break;
2996 case INTEL_BROADCAST_RGB_FULL:
2997 intel_dp->color_range_auto = false;
2998 intel_dp->color_range = 0;
2999 break;
3000 case INTEL_BROADCAST_RGB_LIMITED:
3001 intel_dp->color_range_auto = false;
3002 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3003 break;
3004 default:
3005 return -EINVAL;
3006 }
3007
3008 if (old_auto == intel_dp->color_range_auto &&
3009 old_range == intel_dp->color_range)
3010 return 0;
3011
3012 goto done;
3013 }
3014
3015 if (is_edp(intel_dp) &&
3016 property == connector->dev->mode_config.scaling_mode_property) {
3017 if (val == DRM_MODE_SCALE_NONE) {
3018 DRM_DEBUG_KMS("no scaling not supported\n");
3019 return -EINVAL;
3020 }
3021
3022 if (intel_connector->panel.fitting_mode == val) {
3023 /* the eDP scaling property is not changed */
3024 return 0;
3025 }
3026 intel_connector->panel.fitting_mode = val;
3027
3028 goto done;
3029 }
3030
3031 return -EINVAL;
3032
3033 done:
3034 if (intel_encoder->base.crtc)
3035 intel_crtc_restore_mode(intel_encoder->base.crtc);
3036
3037 return 0;
3038 }
3039
3040 static void
3041 intel_dp_connector_destroy(struct drm_connector *connector)
3042 {
3043 struct intel_connector *intel_connector = to_intel_connector(connector);
3044
3045 if (!IS_ERR_OR_NULL(intel_connector->edid))
3046 kfree(intel_connector->edid);
3047
3048 /* Can't call is_edp() since the encoder may have been destroyed
3049 * already. */
3050 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3051 intel_panel_fini(&intel_connector->panel);
3052
3053 drm_sysfs_connector_remove(connector);
3054 drm_connector_cleanup(connector);
3055 kfree(connector);
3056 }
3057
3058 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3059 {
3060 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3061 struct intel_dp *intel_dp = &intel_dig_port->dp;
3062 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3063
3064 i2c_del_adapter(&intel_dp->adapter);
3065 drm_encoder_cleanup(encoder);
3066 if (is_edp(intel_dp)) {
3067 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3068 mutex_lock(&dev->mode_config.mutex);
3069 ironlake_panel_vdd_off_sync(intel_dp);
3070 mutex_unlock(&dev->mode_config.mutex);
3071 }
3072 kfree(intel_dig_port);
3073 }
3074
3075 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3076 .dpms = intel_connector_dpms,
3077 .detect = intel_dp_detect,
3078 .fill_modes = drm_helper_probe_single_connector_modes,
3079 .set_property = intel_dp_set_property,
3080 .destroy = intel_dp_connector_destroy,
3081 };
3082
3083 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3084 .get_modes = intel_dp_get_modes,
3085 .mode_valid = intel_dp_mode_valid,
3086 .best_encoder = intel_best_encoder,
3087 };
3088
3089 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3090 .destroy = intel_dp_encoder_destroy,
3091 };
3092
3093 static void
3094 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3095 {
3096 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3097
3098 intel_dp_check_link_status(intel_dp);
3099 }
3100
3101 /* Return which DP Port should be selected for Transcoder DP control */
3102 int
3103 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3104 {
3105 struct drm_device *dev = crtc->dev;
3106 struct intel_encoder *intel_encoder;
3107 struct intel_dp *intel_dp;
3108
3109 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3110 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3111
3112 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3113 intel_encoder->type == INTEL_OUTPUT_EDP)
3114 return intel_dp->output_reg;
3115 }
3116
3117 return -1;
3118 }
3119
3120 /* check the VBT to see whether the eDP is on DP-D port */
3121 bool intel_dpd_is_edp(struct drm_device *dev)
3122 {
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct child_device_config *p_child;
3125 int i;
3126
3127 if (!dev_priv->vbt.child_dev_num)
3128 return false;
3129
3130 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3131 p_child = dev_priv->vbt.child_dev + i;
3132
3133 if (p_child->dvo_port == PORT_IDPD &&
3134 p_child->device_type == DEVICE_TYPE_eDP)
3135 return true;
3136 }
3137 return false;
3138 }
3139
3140 static void
3141 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3142 {
3143 struct intel_connector *intel_connector = to_intel_connector(connector);
3144
3145 intel_attach_force_audio_property(connector);
3146 intel_attach_broadcast_rgb_property(connector);
3147 intel_dp->color_range_auto = true;
3148
3149 if (is_edp(intel_dp)) {
3150 drm_mode_create_scaling_mode_property(connector->dev);
3151 drm_object_attach_property(
3152 &connector->base,
3153 connector->dev->mode_config.scaling_mode_property,
3154 DRM_MODE_SCALE_ASPECT);
3155 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3156 }
3157 }
3158
3159 static void
3160 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3161 struct intel_dp *intel_dp,
3162 struct edp_power_seq *out)
3163 {
3164 struct drm_i915_private *dev_priv = dev->dev_private;
3165 struct edp_power_seq cur, vbt, spec, final;
3166 u32 pp_on, pp_off, pp_div, pp;
3167 int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3168
3169 if (HAS_PCH_SPLIT(dev)) {
3170 pp_control_reg = PCH_PP_CONTROL;
3171 pp_on_reg = PCH_PP_ON_DELAYS;
3172 pp_off_reg = PCH_PP_OFF_DELAYS;
3173 pp_div_reg = PCH_PP_DIVISOR;
3174 } else {
3175 pp_control_reg = PIPEA_PP_CONTROL;
3176 pp_on_reg = PIPEA_PP_ON_DELAYS;
3177 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3178 pp_div_reg = PIPEA_PP_DIVISOR;
3179 }
3180
3181 /* Workaround: Need to write PP_CONTROL with the unlock key as
3182 * the very first thing. */
3183 pp = ironlake_get_pp_control(intel_dp);
3184 I915_WRITE(pp_control_reg, pp);
3185
3186 pp_on = I915_READ(pp_on_reg);
3187 pp_off = I915_READ(pp_off_reg);
3188 pp_div = I915_READ(pp_div_reg);
3189
3190 /* Pull timing values out of registers */
3191 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3192 PANEL_POWER_UP_DELAY_SHIFT;
3193
3194 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3195 PANEL_LIGHT_ON_DELAY_SHIFT;
3196
3197 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3198 PANEL_LIGHT_OFF_DELAY_SHIFT;
3199
3200 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3201 PANEL_POWER_DOWN_DELAY_SHIFT;
3202
3203 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3204 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3205
3206 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3207 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3208
3209 vbt = dev_priv->vbt.edp_pps;
3210
3211 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3212 * our hw here, which are all in 100usec. */
3213 spec.t1_t3 = 210 * 10;
3214 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3215 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3216 spec.t10 = 500 * 10;
3217 /* This one is special and actually in units of 100ms, but zero
3218 * based in the hw (so we need to add 100 ms). But the sw vbt
3219 * table multiplies it with 1000 to make it in units of 100usec,
3220 * too. */
3221 spec.t11_t12 = (510 + 100) * 10;
3222
3223 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3224 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3225
3226 /* Use the max of the register settings and vbt. If both are
3227 * unset, fall back to the spec limits. */
3228 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3229 spec.field : \
3230 max(cur.field, vbt.field))
3231 assign_final(t1_t3);
3232 assign_final(t8);
3233 assign_final(t9);
3234 assign_final(t10);
3235 assign_final(t11_t12);
3236 #undef assign_final
3237
3238 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3239 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3240 intel_dp->backlight_on_delay = get_delay(t8);
3241 intel_dp->backlight_off_delay = get_delay(t9);
3242 intel_dp->panel_power_down_delay = get_delay(t10);
3243 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3244 #undef get_delay
3245
3246 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3247 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3248 intel_dp->panel_power_cycle_delay);
3249
3250 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3251 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3252
3253 if (out)
3254 *out = final;
3255 }
3256
3257 static void
3258 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3259 struct intel_dp *intel_dp,
3260 struct edp_power_seq *seq)
3261 {
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 u32 pp_on, pp_off, pp_div, port_sel = 0;
3264 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3265 int pp_on_reg, pp_off_reg, pp_div_reg;
3266
3267 if (HAS_PCH_SPLIT(dev)) {
3268 pp_on_reg = PCH_PP_ON_DELAYS;
3269 pp_off_reg = PCH_PP_OFF_DELAYS;
3270 pp_div_reg = PCH_PP_DIVISOR;
3271 } else {
3272 pp_on_reg = PIPEA_PP_ON_DELAYS;
3273 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3274 pp_div_reg = PIPEA_PP_DIVISOR;
3275 }
3276
3277 /* And finally store the new values in the power sequencer. */
3278 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3279 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3280 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3281 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3282 /* Compute the divisor for the pp clock, simply match the Bspec
3283 * formula. */
3284 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3285 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3286 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3287
3288 /* Haswell doesn't have any port selection bits for the panel
3289 * power sequencer any more. */
3290 if (IS_VALLEYVIEW(dev)) {
3291 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3292 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3293 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3294 port_sel = PANEL_POWER_PORT_DP_A;
3295 else
3296 port_sel = PANEL_POWER_PORT_DP_D;
3297 }
3298
3299 pp_on |= port_sel;
3300
3301 I915_WRITE(pp_on_reg, pp_on);
3302 I915_WRITE(pp_off_reg, pp_off);
3303 I915_WRITE(pp_div_reg, pp_div);
3304
3305 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3306 I915_READ(pp_on_reg),
3307 I915_READ(pp_off_reg),
3308 I915_READ(pp_div_reg));
3309 }
3310
3311 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3312 struct intel_connector *intel_connector)
3313 {
3314 struct drm_connector *connector = &intel_connector->base;
3315 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3316 struct drm_device *dev = intel_dig_port->base.base.dev;
3317 struct drm_i915_private *dev_priv = dev->dev_private;
3318 struct drm_display_mode *fixed_mode = NULL;
3319 struct edp_power_seq power_seq = { 0 };
3320 bool has_dpcd;
3321 struct drm_display_mode *scan;
3322 struct edid *edid;
3323
3324 if (!is_edp(intel_dp))
3325 return true;
3326
3327 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3328
3329 /* Cache DPCD and EDID for edp. */
3330 ironlake_edp_panel_vdd_on(intel_dp);
3331 has_dpcd = intel_dp_get_dpcd(intel_dp);
3332 ironlake_edp_panel_vdd_off(intel_dp, false);
3333
3334 if (has_dpcd) {
3335 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3336 dev_priv->no_aux_handshake =
3337 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3338 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3339 } else {
3340 /* if this fails, presume the device is a ghost */
3341 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3342 return false;
3343 }
3344
3345 /* We now know it's not a ghost, init power sequence regs. */
3346 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3347 &power_seq);
3348
3349 ironlake_edp_panel_vdd_on(intel_dp);
3350 edid = drm_get_edid(connector, &intel_dp->adapter);
3351 if (edid) {
3352 if (drm_add_edid_modes(connector, edid)) {
3353 drm_mode_connector_update_edid_property(connector,
3354 edid);
3355 drm_edid_to_eld(connector, edid);
3356 } else {
3357 kfree(edid);
3358 edid = ERR_PTR(-EINVAL);
3359 }
3360 } else {
3361 edid = ERR_PTR(-ENOENT);
3362 }
3363 intel_connector->edid = edid;
3364
3365 /* prefer fixed mode from EDID if available */
3366 list_for_each_entry(scan, &connector->probed_modes, head) {
3367 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3368 fixed_mode = drm_mode_duplicate(dev, scan);
3369 break;
3370 }
3371 }
3372
3373 /* fallback to VBT if available for eDP */
3374 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3375 fixed_mode = drm_mode_duplicate(dev,
3376 dev_priv->vbt.lfp_lvds_vbt_mode);
3377 if (fixed_mode)
3378 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3379 }
3380
3381 ironlake_edp_panel_vdd_off(intel_dp, false);
3382
3383 intel_panel_init(&intel_connector->panel, fixed_mode);
3384 intel_panel_setup_backlight(connector);
3385
3386 return true;
3387 }
3388
3389 bool
3390 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3391 struct intel_connector *intel_connector)
3392 {
3393 struct drm_connector *connector = &intel_connector->base;
3394 struct intel_dp *intel_dp = &intel_dig_port->dp;
3395 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3396 struct drm_device *dev = intel_encoder->base.dev;
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 enum port port = intel_dig_port->port;
3399 const char *name = NULL;
3400 int type, error;
3401
3402 /* Preserve the current hw state. */
3403 intel_dp->DP = I915_READ(intel_dp->output_reg);
3404 intel_dp->attached_connector = intel_connector;
3405
3406 type = DRM_MODE_CONNECTOR_DisplayPort;
3407 /*
3408 * FIXME : We need to initialize built-in panels before external panels.
3409 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3410 */
3411 switch (port) {
3412 case PORT_A:
3413 type = DRM_MODE_CONNECTOR_eDP;
3414 break;
3415 case PORT_C:
3416 if (IS_VALLEYVIEW(dev))
3417 type = DRM_MODE_CONNECTOR_eDP;
3418 break;
3419 case PORT_D:
3420 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3421 type = DRM_MODE_CONNECTOR_eDP;
3422 break;
3423 default: /* silence GCC warning */
3424 break;
3425 }
3426
3427 /*
3428 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3429 * for DP the encoder type can be set by the caller to
3430 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3431 */
3432 if (type == DRM_MODE_CONNECTOR_eDP)
3433 intel_encoder->type = INTEL_OUTPUT_EDP;
3434
3435 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3436 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3437 port_name(port));
3438
3439 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3440 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3441
3442 connector->interlace_allowed = true;
3443 connector->doublescan_allowed = 0;
3444
3445 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3446 ironlake_panel_vdd_work);
3447
3448 intel_connector_attach_encoder(intel_connector, intel_encoder);
3449 drm_sysfs_connector_add(connector);
3450
3451 if (HAS_DDI(dev))
3452 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3453 else
3454 intel_connector->get_hw_state = intel_connector_get_hw_state;
3455
3456 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3457 if (HAS_DDI(dev)) {
3458 switch (intel_dig_port->port) {
3459 case PORT_A:
3460 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3461 break;
3462 case PORT_B:
3463 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3464 break;
3465 case PORT_C:
3466 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3467 break;
3468 case PORT_D:
3469 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3470 break;
3471 default:
3472 BUG();
3473 }
3474 }
3475
3476 /* Set up the DDC bus. */
3477 switch (port) {
3478 case PORT_A:
3479 intel_encoder->hpd_pin = HPD_PORT_A;
3480 name = "DPDDC-A";
3481 break;
3482 case PORT_B:
3483 intel_encoder->hpd_pin = HPD_PORT_B;
3484 name = "DPDDC-B";
3485 break;
3486 case PORT_C:
3487 intel_encoder->hpd_pin = HPD_PORT_C;
3488 name = "DPDDC-C";
3489 break;
3490 case PORT_D:
3491 intel_encoder->hpd_pin = HPD_PORT_D;
3492 name = "DPDDC-D";
3493 break;
3494 default:
3495 BUG();
3496 }
3497
3498 error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3499 WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3500 error, port_name(port));
3501
3502 intel_dp->psr_setup_done = false;
3503
3504 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3505 i2c_del_adapter(&intel_dp->adapter);
3506 if (is_edp(intel_dp)) {
3507 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3508 mutex_lock(&dev->mode_config.mutex);
3509 ironlake_panel_vdd_off_sync(intel_dp);
3510 mutex_unlock(&dev->mode_config.mutex);
3511 }
3512 drm_sysfs_connector_remove(connector);
3513 drm_connector_cleanup(connector);
3514 return false;
3515 }
3516
3517 intel_dp_add_properties(intel_dp, connector);
3518
3519 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3520 * 0xd. Failure to do so will result in spurious interrupts being
3521 * generated on the port when a cable is not attached.
3522 */
3523 if (IS_G4X(dev) && !IS_GM45(dev)) {
3524 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3525 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3526 }
3527
3528 return true;
3529 }
3530
3531 void
3532 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3533 {
3534 struct intel_digital_port *intel_dig_port;
3535 struct intel_encoder *intel_encoder;
3536 struct drm_encoder *encoder;
3537 struct intel_connector *intel_connector;
3538
3539 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3540 if (!intel_dig_port)
3541 return;
3542
3543 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3544 if (!intel_connector) {
3545 kfree(intel_dig_port);
3546 return;
3547 }
3548
3549 intel_encoder = &intel_dig_port->base;
3550 encoder = &intel_encoder->base;
3551
3552 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3553 DRM_MODE_ENCODER_TMDS);
3554
3555 intel_encoder->compute_config = intel_dp_compute_config;
3556 intel_encoder->mode_set = intel_dp_mode_set;
3557 intel_encoder->disable = intel_disable_dp;
3558 intel_encoder->post_disable = intel_post_disable_dp;
3559 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3560 intel_encoder->get_config = intel_dp_get_config;
3561 if (IS_VALLEYVIEW(dev)) {
3562 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3563 intel_encoder->pre_enable = vlv_pre_enable_dp;
3564 intel_encoder->enable = vlv_enable_dp;
3565 } else {
3566 intel_encoder->pre_enable = intel_pre_enable_dp;
3567 intel_encoder->enable = intel_enable_dp;
3568 }
3569
3570 intel_dig_port->port = port;
3571 intel_dig_port->dp.output_reg = output_reg;
3572
3573 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3574 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3575 intel_encoder->cloneable = false;
3576 intel_encoder->hot_plug = intel_dp_hot_plug;
3577
3578 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3579 drm_encoder_cleanup(encoder);
3580 kfree(intel_dig_port);
3581 kfree(intel_connector);
3582 }
3583 }
This page took 0.113132 seconds and 5 git commands to generate.