drm/i915: Warn if trying to register eDP on port != B/C on vlv/chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(const uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
665 {
666 /*
667 * SKL doesn't need us to program the AUX clock divider (Hardware will
668 * derive the clock from CDCLK automatically). We still implement the
669 * get_aux_clock_divider vfunc to plug-in into the existing code.
670 */
671 return index ? 0 : 1;
672 }
673
674 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
675 bool has_aux_irq,
676 int send_bytes,
677 uint32_t aux_clock_divider)
678 {
679 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
680 struct drm_device *dev = intel_dig_port->base.base.dev;
681 uint32_t precharge, timeout;
682
683 if (IS_GEN6(dev))
684 precharge = 3;
685 else
686 precharge = 5;
687
688 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
689 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
690 else
691 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
692
693 return DP_AUX_CH_CTL_SEND_BUSY |
694 DP_AUX_CH_CTL_DONE |
695 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
696 DP_AUX_CH_CTL_TIME_OUT_ERROR |
697 timeout |
698 DP_AUX_CH_CTL_RECEIVE_ERROR |
699 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
700 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
701 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
702 }
703
704 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
705 bool has_aux_irq,
706 int send_bytes,
707 uint32_t unused)
708 {
709 return DP_AUX_CH_CTL_SEND_BUSY |
710 DP_AUX_CH_CTL_DONE |
711 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
712 DP_AUX_CH_CTL_TIME_OUT_ERROR |
713 DP_AUX_CH_CTL_TIME_OUT_1600us |
714 DP_AUX_CH_CTL_RECEIVE_ERROR |
715 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
716 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
717 }
718
719 static int
720 intel_dp_aux_ch(struct intel_dp *intel_dp,
721 const uint8_t *send, int send_bytes,
722 uint8_t *recv, int recv_size)
723 {
724 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
725 struct drm_device *dev = intel_dig_port->base.base.dev;
726 struct drm_i915_private *dev_priv = dev->dev_private;
727 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
728 uint32_t ch_data = ch_ctl + 4;
729 uint32_t aux_clock_divider;
730 int i, ret, recv_bytes;
731 uint32_t status;
732 int try, clock = 0;
733 bool has_aux_irq = HAS_AUX_IRQ(dev);
734 bool vdd;
735
736 pps_lock(intel_dp);
737
738 /*
739 * We will be called with VDD already enabled for dpcd/edid/oui reads.
740 * In such cases we want to leave VDD enabled and it's up to upper layers
741 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
742 * ourselves.
743 */
744 vdd = edp_panel_vdd_on(intel_dp);
745
746 /* dp aux is extremely sensitive to irq latency, hence request the
747 * lowest possible wakeup latency and so prevent the cpu from going into
748 * deep sleep states.
749 */
750 pm_qos_update_request(&dev_priv->pm_qos, 0);
751
752 intel_dp_check_edp(intel_dp);
753
754 intel_aux_display_runtime_get(dev_priv);
755
756 /* Try to wait for any previous AUX channel activity */
757 for (try = 0; try < 3; try++) {
758 status = I915_READ_NOTRACE(ch_ctl);
759 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
760 break;
761 msleep(1);
762 }
763
764 if (try == 3) {
765 WARN(1, "dp_aux_ch not started status 0x%08x\n",
766 I915_READ(ch_ctl));
767 ret = -EBUSY;
768 goto out;
769 }
770
771 /* Only 5 data registers! */
772 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
773 ret = -E2BIG;
774 goto out;
775 }
776
777 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
778 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
779 has_aux_irq,
780 send_bytes,
781 aux_clock_divider);
782
783 /* Must try at least 3 times according to DP spec */
784 for (try = 0; try < 5; try++) {
785 /* Load the send data into the aux channel data registers */
786 for (i = 0; i < send_bytes; i += 4)
787 I915_WRITE(ch_data + i,
788 pack_aux(send + i, send_bytes - i));
789
790 /* Send the command and wait for it to complete */
791 I915_WRITE(ch_ctl, send_ctl);
792
793 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
794
795 /* Clear done status and any errors */
796 I915_WRITE(ch_ctl,
797 status |
798 DP_AUX_CH_CTL_DONE |
799 DP_AUX_CH_CTL_TIME_OUT_ERROR |
800 DP_AUX_CH_CTL_RECEIVE_ERROR);
801
802 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
803 DP_AUX_CH_CTL_RECEIVE_ERROR))
804 continue;
805 if (status & DP_AUX_CH_CTL_DONE)
806 break;
807 }
808 if (status & DP_AUX_CH_CTL_DONE)
809 break;
810 }
811
812 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
813 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
814 ret = -EBUSY;
815 goto out;
816 }
817
818 /* Check for timeout or receive error.
819 * Timeouts occur when the sink is not connected
820 */
821 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
822 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
823 ret = -EIO;
824 goto out;
825 }
826
827 /* Timeouts occur when the device isn't connected, so they're
828 * "normal" -- don't fill the kernel log with these */
829 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
830 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
831 ret = -ETIMEDOUT;
832 goto out;
833 }
834
835 /* Unload any bytes sent back from the other side */
836 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
837 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
838 if (recv_bytes > recv_size)
839 recv_bytes = recv_size;
840
841 for (i = 0; i < recv_bytes; i += 4)
842 unpack_aux(I915_READ(ch_data + i),
843 recv + i, recv_bytes - i);
844
845 ret = recv_bytes;
846 out:
847 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
848 intel_aux_display_runtime_put(dev_priv);
849
850 if (vdd)
851 edp_panel_vdd_off(intel_dp, false);
852
853 pps_unlock(intel_dp);
854
855 return ret;
856 }
857
858 #define BARE_ADDRESS_SIZE 3
859 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
860 static ssize_t
861 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
862 {
863 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
864 uint8_t txbuf[20], rxbuf[20];
865 size_t txsize, rxsize;
866 int ret;
867
868 txbuf[0] = msg->request << 4;
869 txbuf[1] = msg->address >> 8;
870 txbuf[2] = msg->address & 0xff;
871 txbuf[3] = msg->size - 1;
872
873 switch (msg->request & ~DP_AUX_I2C_MOT) {
874 case DP_AUX_NATIVE_WRITE:
875 case DP_AUX_I2C_WRITE:
876 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
877 rxsize = 1;
878
879 if (WARN_ON(txsize > 20))
880 return -E2BIG;
881
882 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
883
884 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
885 if (ret > 0) {
886 msg->reply = rxbuf[0] >> 4;
887
888 /* Return payload size. */
889 ret = msg->size;
890 }
891 break;
892
893 case DP_AUX_NATIVE_READ:
894 case DP_AUX_I2C_READ:
895 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
896 rxsize = msg->size + 1;
897
898 if (WARN_ON(rxsize > 20))
899 return -E2BIG;
900
901 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
902 if (ret > 0) {
903 msg->reply = rxbuf[0] >> 4;
904 /*
905 * Assume happy day, and copy the data. The caller is
906 * expected to check msg->reply before touching it.
907 *
908 * Return payload size.
909 */
910 ret--;
911 memcpy(msg->buffer, rxbuf + 1, ret);
912 }
913 break;
914
915 default:
916 ret = -EINVAL;
917 break;
918 }
919
920 return ret;
921 }
922
923 static void
924 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
925 {
926 struct drm_device *dev = intel_dp_to_dev(intel_dp);
927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
928 enum port port = intel_dig_port->port;
929 const char *name = NULL;
930 int ret;
931
932 switch (port) {
933 case PORT_A:
934 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
935 name = "DPDDC-A";
936 break;
937 case PORT_B:
938 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
939 name = "DPDDC-B";
940 break;
941 case PORT_C:
942 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
943 name = "DPDDC-C";
944 break;
945 case PORT_D:
946 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
947 name = "DPDDC-D";
948 break;
949 default:
950 BUG();
951 }
952
953 /*
954 * The AUX_CTL register is usually DP_CTL + 0x10.
955 *
956 * On Haswell and Broadwell though:
957 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
958 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
959 *
960 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
961 */
962 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
963 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
964
965 intel_dp->aux.name = name;
966 intel_dp->aux.dev = dev->dev;
967 intel_dp->aux.transfer = intel_dp_aux_transfer;
968
969 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
970 connector->base.kdev->kobj.name);
971
972 ret = drm_dp_aux_register(&intel_dp->aux);
973 if (ret < 0) {
974 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
975 name, ret);
976 return;
977 }
978
979 ret = sysfs_create_link(&connector->base.kdev->kobj,
980 &intel_dp->aux.ddc.dev.kobj,
981 intel_dp->aux.ddc.dev.kobj.name);
982 if (ret < 0) {
983 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
984 drm_dp_aux_unregister(&intel_dp->aux);
985 }
986 }
987
988 static void
989 intel_dp_connector_unregister(struct intel_connector *intel_connector)
990 {
991 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
992
993 if (!intel_connector->mst_port)
994 sysfs_remove_link(&intel_connector->base.kdev->kobj,
995 intel_dp->aux.ddc.dev.kobj.name);
996 intel_connector_unregister(intel_connector);
997 }
998
999 static void
1000 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1001 {
1002 switch (link_bw) {
1003 case DP_LINK_BW_1_62:
1004 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1005 break;
1006 case DP_LINK_BW_2_7:
1007 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1008 break;
1009 case DP_LINK_BW_5_4:
1010 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1011 break;
1012 }
1013 }
1014
1015 static void
1016 intel_dp_set_clock(struct intel_encoder *encoder,
1017 struct intel_crtc_config *pipe_config, int link_bw)
1018 {
1019 struct drm_device *dev = encoder->base.dev;
1020 const struct dp_link_dpll *divisor = NULL;
1021 int i, count = 0;
1022
1023 if (IS_G4X(dev)) {
1024 divisor = gen4_dpll;
1025 count = ARRAY_SIZE(gen4_dpll);
1026 } else if (HAS_PCH_SPLIT(dev)) {
1027 divisor = pch_dpll;
1028 count = ARRAY_SIZE(pch_dpll);
1029 } else if (IS_CHERRYVIEW(dev)) {
1030 divisor = chv_dpll;
1031 count = ARRAY_SIZE(chv_dpll);
1032 } else if (IS_VALLEYVIEW(dev)) {
1033 divisor = vlv_dpll;
1034 count = ARRAY_SIZE(vlv_dpll);
1035 }
1036
1037 if (divisor && count) {
1038 for (i = 0; i < count; i++) {
1039 if (link_bw == divisor[i].link_bw) {
1040 pipe_config->dpll = divisor[i].dpll;
1041 pipe_config->clock_set = true;
1042 break;
1043 }
1044 }
1045 }
1046 }
1047
1048 bool
1049 intel_dp_compute_config(struct intel_encoder *encoder,
1050 struct intel_crtc_config *pipe_config)
1051 {
1052 struct drm_device *dev = encoder->base.dev;
1053 struct drm_i915_private *dev_priv = dev->dev_private;
1054 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1055 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1056 enum port port = dp_to_dig_port(intel_dp)->port;
1057 struct intel_crtc *intel_crtc = encoder->new_crtc;
1058 struct intel_connector *intel_connector = intel_dp->attached_connector;
1059 int lane_count, clock;
1060 int min_lane_count = 1;
1061 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1062 /* Conveniently, the link BW constants become indices with a shift...*/
1063 int min_clock = 0;
1064 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1065 int bpp, mode_rate;
1066 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1067 int link_avail, link_clock;
1068
1069 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1070 pipe_config->has_pch_encoder = true;
1071
1072 pipe_config->has_dp_encoder = true;
1073 pipe_config->has_drrs = false;
1074 pipe_config->has_audio = intel_dp->has_audio;
1075
1076 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1077 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1078 adjusted_mode);
1079 if (!HAS_PCH_SPLIT(dev))
1080 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1081 intel_connector->panel.fitting_mode);
1082 else
1083 intel_pch_panel_fitting(intel_crtc, pipe_config,
1084 intel_connector->panel.fitting_mode);
1085 }
1086
1087 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1088 return false;
1089
1090 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1091 "max bw %02x pixel clock %iKHz\n",
1092 max_lane_count, bws[max_clock],
1093 adjusted_mode->crtc_clock);
1094
1095 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1096 * bpc in between. */
1097 bpp = pipe_config->pipe_bpp;
1098 if (is_edp(intel_dp)) {
1099 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1100 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1101 dev_priv->vbt.edp_bpp);
1102 bpp = dev_priv->vbt.edp_bpp;
1103 }
1104
1105 /*
1106 * Use the maximum clock and number of lanes the eDP panel
1107 * advertizes being capable of. The panels are generally
1108 * designed to support only a single clock and lane
1109 * configuration, and typically these values correspond to the
1110 * native resolution of the panel.
1111 */
1112 min_lane_count = max_lane_count;
1113 min_clock = max_clock;
1114 }
1115
1116 for (; bpp >= 6*3; bpp -= 2*3) {
1117 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1118 bpp);
1119
1120 for (clock = min_clock; clock <= max_clock; clock++) {
1121 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1122 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1123 link_avail = intel_dp_max_data_rate(link_clock,
1124 lane_count);
1125
1126 if (mode_rate <= link_avail) {
1127 goto found;
1128 }
1129 }
1130 }
1131 }
1132
1133 return false;
1134
1135 found:
1136 if (intel_dp->color_range_auto) {
1137 /*
1138 * See:
1139 * CEA-861-E - 5.1 Default Encoding Parameters
1140 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1141 */
1142 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1143 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1144 else
1145 intel_dp->color_range = 0;
1146 }
1147
1148 if (intel_dp->color_range)
1149 pipe_config->limited_color_range = true;
1150
1151 intel_dp->link_bw = bws[clock];
1152 intel_dp->lane_count = lane_count;
1153 pipe_config->pipe_bpp = bpp;
1154 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1155
1156 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1157 intel_dp->link_bw, intel_dp->lane_count,
1158 pipe_config->port_clock, bpp);
1159 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1160 mode_rate, link_avail);
1161
1162 intel_link_compute_m_n(bpp, lane_count,
1163 adjusted_mode->crtc_clock,
1164 pipe_config->port_clock,
1165 &pipe_config->dp_m_n);
1166
1167 if (intel_connector->panel.downclock_mode != NULL &&
1168 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1169 pipe_config->has_drrs = true;
1170 intel_link_compute_m_n(bpp, lane_count,
1171 intel_connector->panel.downclock_mode->clock,
1172 pipe_config->port_clock,
1173 &pipe_config->dp_m2_n2);
1174 }
1175
1176 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1177 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1178 else
1179 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1180
1181 return true;
1182 }
1183
1184 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1185 {
1186 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1187 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1188 struct drm_device *dev = crtc->base.dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 u32 dpa_ctl;
1191
1192 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1193 dpa_ctl = I915_READ(DP_A);
1194 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1195
1196 if (crtc->config.port_clock == 162000) {
1197 /* For a long time we've carried around a ILK-DevA w/a for the
1198 * 160MHz clock. If we're really unlucky, it's still required.
1199 */
1200 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1201 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1202 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1203 } else {
1204 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1205 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1206 }
1207
1208 I915_WRITE(DP_A, dpa_ctl);
1209
1210 POSTING_READ(DP_A);
1211 udelay(500);
1212 }
1213
1214 static void intel_dp_prepare(struct intel_encoder *encoder)
1215 {
1216 struct drm_device *dev = encoder->base.dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1219 enum port port = dp_to_dig_port(intel_dp)->port;
1220 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1221 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1222
1223 /*
1224 * There are four kinds of DP registers:
1225 *
1226 * IBX PCH
1227 * SNB CPU
1228 * IVB CPU
1229 * CPT PCH
1230 *
1231 * IBX PCH and CPU are the same for almost everything,
1232 * except that the CPU DP PLL is configured in this
1233 * register
1234 *
1235 * CPT PCH is quite different, having many bits moved
1236 * to the TRANS_DP_CTL register instead. That
1237 * configuration happens (oddly) in ironlake_pch_enable
1238 */
1239
1240 /* Preserve the BIOS-computed detected bit. This is
1241 * supposed to be read-only.
1242 */
1243 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1244
1245 /* Handle DP bits in common between all three register formats */
1246 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1247 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1248
1249 if (crtc->config.has_audio) {
1250 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1251 pipe_name(crtc->pipe));
1252 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1253 intel_write_eld(encoder);
1254 }
1255
1256 /* Split out the IBX/CPU vs CPT settings */
1257
1258 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1259 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1260 intel_dp->DP |= DP_SYNC_HS_HIGH;
1261 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1262 intel_dp->DP |= DP_SYNC_VS_HIGH;
1263 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1264
1265 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1266 intel_dp->DP |= DP_ENHANCED_FRAMING;
1267
1268 intel_dp->DP |= crtc->pipe << 29;
1269 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1270 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1271 intel_dp->DP |= intel_dp->color_range;
1272
1273 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1274 intel_dp->DP |= DP_SYNC_HS_HIGH;
1275 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1276 intel_dp->DP |= DP_SYNC_VS_HIGH;
1277 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1278
1279 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1280 intel_dp->DP |= DP_ENHANCED_FRAMING;
1281
1282 if (!IS_CHERRYVIEW(dev)) {
1283 if (crtc->pipe == 1)
1284 intel_dp->DP |= DP_PIPEB_SELECT;
1285 } else {
1286 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1287 }
1288 } else {
1289 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1290 }
1291 }
1292
1293 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1294 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1295
1296 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1297 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1298
1299 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1300 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1301
1302 static void wait_panel_status(struct intel_dp *intel_dp,
1303 u32 mask,
1304 u32 value)
1305 {
1306 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 u32 pp_stat_reg, pp_ctrl_reg;
1309
1310 lockdep_assert_held(&dev_priv->pps_mutex);
1311
1312 pp_stat_reg = _pp_stat_reg(intel_dp);
1313 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1314
1315 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1316 mask, value,
1317 I915_READ(pp_stat_reg),
1318 I915_READ(pp_ctrl_reg));
1319
1320 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1321 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1322 I915_READ(pp_stat_reg),
1323 I915_READ(pp_ctrl_reg));
1324 }
1325
1326 DRM_DEBUG_KMS("Wait complete\n");
1327 }
1328
1329 static void wait_panel_on(struct intel_dp *intel_dp)
1330 {
1331 DRM_DEBUG_KMS("Wait for panel power on\n");
1332 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1333 }
1334
1335 static void wait_panel_off(struct intel_dp *intel_dp)
1336 {
1337 DRM_DEBUG_KMS("Wait for panel power off time\n");
1338 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1339 }
1340
1341 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1342 {
1343 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1344
1345 /* When we disable the VDD override bit last we have to do the manual
1346 * wait. */
1347 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1348 intel_dp->panel_power_cycle_delay);
1349
1350 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1351 }
1352
1353 static void wait_backlight_on(struct intel_dp *intel_dp)
1354 {
1355 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1356 intel_dp->backlight_on_delay);
1357 }
1358
1359 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1360 {
1361 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1362 intel_dp->backlight_off_delay);
1363 }
1364
1365 /* Read the current pp_control value, unlocking the register if it
1366 * is locked
1367 */
1368
1369 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1370 {
1371 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1372 struct drm_i915_private *dev_priv = dev->dev_private;
1373 u32 control;
1374
1375 lockdep_assert_held(&dev_priv->pps_mutex);
1376
1377 control = I915_READ(_pp_ctrl_reg(intel_dp));
1378 control &= ~PANEL_UNLOCK_MASK;
1379 control |= PANEL_UNLOCK_REGS;
1380 return control;
1381 }
1382
1383 /*
1384 * Must be paired with edp_panel_vdd_off().
1385 * Must hold pps_mutex around the whole on/off sequence.
1386 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1387 */
1388 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1389 {
1390 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1392 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1393 struct drm_i915_private *dev_priv = dev->dev_private;
1394 enum intel_display_power_domain power_domain;
1395 u32 pp;
1396 u32 pp_stat_reg, pp_ctrl_reg;
1397 bool need_to_disable = !intel_dp->want_panel_vdd;
1398
1399 lockdep_assert_held(&dev_priv->pps_mutex);
1400
1401 if (!is_edp(intel_dp))
1402 return false;
1403
1404 intel_dp->want_panel_vdd = true;
1405
1406 if (edp_have_panel_vdd(intel_dp))
1407 return need_to_disable;
1408
1409 power_domain = intel_display_port_power_domain(intel_encoder);
1410 intel_display_power_get(dev_priv, power_domain);
1411
1412 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1413
1414 if (!edp_have_panel_power(intel_dp))
1415 wait_panel_power_cycle(intel_dp);
1416
1417 pp = ironlake_get_pp_control(intel_dp);
1418 pp |= EDP_FORCE_VDD;
1419
1420 pp_stat_reg = _pp_stat_reg(intel_dp);
1421 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423 I915_WRITE(pp_ctrl_reg, pp);
1424 POSTING_READ(pp_ctrl_reg);
1425 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1426 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1427 /*
1428 * If the panel wasn't on, delay before accessing aux channel
1429 */
1430 if (!edp_have_panel_power(intel_dp)) {
1431 DRM_DEBUG_KMS("eDP was not running\n");
1432 msleep(intel_dp->panel_power_up_delay);
1433 }
1434
1435 return need_to_disable;
1436 }
1437
1438 /*
1439 * Must be paired with intel_edp_panel_vdd_off() or
1440 * intel_edp_panel_off().
1441 * Nested calls to these functions are not allowed since
1442 * we drop the lock. Caller must use some higher level
1443 * locking to prevent nested calls from other threads.
1444 */
1445 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1446 {
1447 bool vdd;
1448
1449 if (!is_edp(intel_dp))
1450 return;
1451
1452 pps_lock(intel_dp);
1453 vdd = edp_panel_vdd_on(intel_dp);
1454 pps_unlock(intel_dp);
1455
1456 WARN(!vdd, "eDP VDD already requested on\n");
1457 }
1458
1459 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1460 {
1461 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463 struct intel_digital_port *intel_dig_port =
1464 dp_to_dig_port(intel_dp);
1465 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1466 enum intel_display_power_domain power_domain;
1467 u32 pp;
1468 u32 pp_stat_reg, pp_ctrl_reg;
1469
1470 lockdep_assert_held(&dev_priv->pps_mutex);
1471
1472 WARN_ON(intel_dp->want_panel_vdd);
1473
1474 if (!edp_have_panel_vdd(intel_dp))
1475 return;
1476
1477 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1478
1479 pp = ironlake_get_pp_control(intel_dp);
1480 pp &= ~EDP_FORCE_VDD;
1481
1482 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1483 pp_stat_reg = _pp_stat_reg(intel_dp);
1484
1485 I915_WRITE(pp_ctrl_reg, pp);
1486 POSTING_READ(pp_ctrl_reg);
1487
1488 /* Make sure sequencer is idle before allowing subsequent activity */
1489 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1490 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1491
1492 if ((pp & POWER_TARGET_ON) == 0)
1493 intel_dp->last_power_cycle = jiffies;
1494
1495 power_domain = intel_display_port_power_domain(intel_encoder);
1496 intel_display_power_put(dev_priv, power_domain);
1497 }
1498
1499 static void edp_panel_vdd_work(struct work_struct *__work)
1500 {
1501 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1502 struct intel_dp, panel_vdd_work);
1503
1504 pps_lock(intel_dp);
1505 if (!intel_dp->want_panel_vdd)
1506 edp_panel_vdd_off_sync(intel_dp);
1507 pps_unlock(intel_dp);
1508 }
1509
1510 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1511 {
1512 unsigned long delay;
1513
1514 /*
1515 * Queue the timer to fire a long time from now (relative to the power
1516 * down delay) to keep the panel power up across a sequence of
1517 * operations.
1518 */
1519 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1520 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1521 }
1522
1523 /*
1524 * Must be paired with edp_panel_vdd_on().
1525 * Must hold pps_mutex around the whole on/off sequence.
1526 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1527 */
1528 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1529 {
1530 struct drm_i915_private *dev_priv =
1531 intel_dp_to_dev(intel_dp)->dev_private;
1532
1533 lockdep_assert_held(&dev_priv->pps_mutex);
1534
1535 if (!is_edp(intel_dp))
1536 return;
1537
1538 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1539
1540 intel_dp->want_panel_vdd = false;
1541
1542 if (sync)
1543 edp_panel_vdd_off_sync(intel_dp);
1544 else
1545 edp_panel_vdd_schedule_off(intel_dp);
1546 }
1547
1548 /*
1549 * Must be paired with intel_edp_panel_vdd_on().
1550 * Nested calls to these functions are not allowed since
1551 * we drop the lock. Caller must use some higher level
1552 * locking to prevent nested calls from other threads.
1553 */
1554 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1555 {
1556 if (!is_edp(intel_dp))
1557 return;
1558
1559 pps_lock(intel_dp);
1560 edp_panel_vdd_off(intel_dp, sync);
1561 pps_unlock(intel_dp);
1562 }
1563
1564 void intel_edp_panel_on(struct intel_dp *intel_dp)
1565 {
1566 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 u32 pp;
1569 u32 pp_ctrl_reg;
1570
1571 if (!is_edp(intel_dp))
1572 return;
1573
1574 DRM_DEBUG_KMS("Turn eDP power on\n");
1575
1576 pps_lock(intel_dp);
1577
1578 if (edp_have_panel_power(intel_dp)) {
1579 DRM_DEBUG_KMS("eDP power already on\n");
1580 goto out;
1581 }
1582
1583 wait_panel_power_cycle(intel_dp);
1584
1585 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1586 pp = ironlake_get_pp_control(intel_dp);
1587 if (IS_GEN5(dev)) {
1588 /* ILK workaround: disable reset around power sequence */
1589 pp &= ~PANEL_POWER_RESET;
1590 I915_WRITE(pp_ctrl_reg, pp);
1591 POSTING_READ(pp_ctrl_reg);
1592 }
1593
1594 pp |= POWER_TARGET_ON;
1595 if (!IS_GEN5(dev))
1596 pp |= PANEL_POWER_RESET;
1597
1598 I915_WRITE(pp_ctrl_reg, pp);
1599 POSTING_READ(pp_ctrl_reg);
1600
1601 wait_panel_on(intel_dp);
1602 intel_dp->last_power_on = jiffies;
1603
1604 if (IS_GEN5(dev)) {
1605 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1606 I915_WRITE(pp_ctrl_reg, pp);
1607 POSTING_READ(pp_ctrl_reg);
1608 }
1609
1610 out:
1611 pps_unlock(intel_dp);
1612 }
1613
1614 void intel_edp_panel_off(struct intel_dp *intel_dp)
1615 {
1616 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1617 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1618 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 enum intel_display_power_domain power_domain;
1621 u32 pp;
1622 u32 pp_ctrl_reg;
1623
1624 if (!is_edp(intel_dp))
1625 return;
1626
1627 DRM_DEBUG_KMS("Turn eDP power off\n");
1628
1629 pps_lock(intel_dp);
1630
1631 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1632
1633 pp = ironlake_get_pp_control(intel_dp);
1634 /* We need to switch off panel power _and_ force vdd, for otherwise some
1635 * panels get very unhappy and cease to work. */
1636 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1637 EDP_BLC_ENABLE);
1638
1639 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1640
1641 intel_dp->want_panel_vdd = false;
1642
1643 I915_WRITE(pp_ctrl_reg, pp);
1644 POSTING_READ(pp_ctrl_reg);
1645
1646 intel_dp->last_power_cycle = jiffies;
1647 wait_panel_off(intel_dp);
1648
1649 /* We got a reference when we enabled the VDD. */
1650 power_domain = intel_display_port_power_domain(intel_encoder);
1651 intel_display_power_put(dev_priv, power_domain);
1652
1653 pps_unlock(intel_dp);
1654 }
1655
1656 /* Enable backlight in the panel power control. */
1657 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1658 {
1659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1660 struct drm_device *dev = intel_dig_port->base.base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 u32 pp;
1663 u32 pp_ctrl_reg;
1664
1665 /*
1666 * If we enable the backlight right away following a panel power
1667 * on, we may see slight flicker as the panel syncs with the eDP
1668 * link. So delay a bit to make sure the image is solid before
1669 * allowing it to appear.
1670 */
1671 wait_backlight_on(intel_dp);
1672
1673 pps_lock(intel_dp);
1674
1675 pp = ironlake_get_pp_control(intel_dp);
1676 pp |= EDP_BLC_ENABLE;
1677
1678 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1679
1680 I915_WRITE(pp_ctrl_reg, pp);
1681 POSTING_READ(pp_ctrl_reg);
1682
1683 pps_unlock(intel_dp);
1684 }
1685
1686 /* Enable backlight PWM and backlight PP control. */
1687 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1688 {
1689 if (!is_edp(intel_dp))
1690 return;
1691
1692 DRM_DEBUG_KMS("\n");
1693
1694 intel_panel_enable_backlight(intel_dp->attached_connector);
1695 _intel_edp_backlight_on(intel_dp);
1696 }
1697
1698 /* Disable backlight in the panel power control. */
1699 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1700 {
1701 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 u32 pp;
1704 u32 pp_ctrl_reg;
1705
1706 if (!is_edp(intel_dp))
1707 return;
1708
1709 pps_lock(intel_dp);
1710
1711 pp = ironlake_get_pp_control(intel_dp);
1712 pp &= ~EDP_BLC_ENABLE;
1713
1714 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1715
1716 I915_WRITE(pp_ctrl_reg, pp);
1717 POSTING_READ(pp_ctrl_reg);
1718
1719 pps_unlock(intel_dp);
1720
1721 intel_dp->last_backlight_off = jiffies;
1722 edp_wait_backlight_off(intel_dp);
1723 }
1724
1725 /* Disable backlight PP control and backlight PWM. */
1726 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1727 {
1728 if (!is_edp(intel_dp))
1729 return;
1730
1731 DRM_DEBUG_KMS("\n");
1732
1733 _intel_edp_backlight_off(intel_dp);
1734 intel_panel_disable_backlight(intel_dp->attached_connector);
1735 }
1736
1737 /*
1738 * Hook for controlling the panel power control backlight through the bl_power
1739 * sysfs attribute. Take care to handle multiple calls.
1740 */
1741 static void intel_edp_backlight_power(struct intel_connector *connector,
1742 bool enable)
1743 {
1744 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1745 bool is_enabled;
1746
1747 pps_lock(intel_dp);
1748 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1749 pps_unlock(intel_dp);
1750
1751 if (is_enabled == enable)
1752 return;
1753
1754 DRM_DEBUG_KMS("panel power control backlight %s\n",
1755 enable ? "enable" : "disable");
1756
1757 if (enable)
1758 _intel_edp_backlight_on(intel_dp);
1759 else
1760 _intel_edp_backlight_off(intel_dp);
1761 }
1762
1763 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1764 {
1765 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1766 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1767 struct drm_device *dev = crtc->dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 dpa_ctl;
1770
1771 assert_pipe_disabled(dev_priv,
1772 to_intel_crtc(crtc)->pipe);
1773
1774 DRM_DEBUG_KMS("\n");
1775 dpa_ctl = I915_READ(DP_A);
1776 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1777 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1778
1779 /* We don't adjust intel_dp->DP while tearing down the link, to
1780 * facilitate link retraining (e.g. after hotplug). Hence clear all
1781 * enable bits here to ensure that we don't enable too much. */
1782 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1783 intel_dp->DP |= DP_PLL_ENABLE;
1784 I915_WRITE(DP_A, intel_dp->DP);
1785 POSTING_READ(DP_A);
1786 udelay(200);
1787 }
1788
1789 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1790 {
1791 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1792 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1793 struct drm_device *dev = crtc->dev;
1794 struct drm_i915_private *dev_priv = dev->dev_private;
1795 u32 dpa_ctl;
1796
1797 assert_pipe_disabled(dev_priv,
1798 to_intel_crtc(crtc)->pipe);
1799
1800 dpa_ctl = I915_READ(DP_A);
1801 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1802 "dp pll off, should be on\n");
1803 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1804
1805 /* We can't rely on the value tracked for the DP register in
1806 * intel_dp->DP because link_down must not change that (otherwise link
1807 * re-training will fail. */
1808 dpa_ctl &= ~DP_PLL_ENABLE;
1809 I915_WRITE(DP_A, dpa_ctl);
1810 POSTING_READ(DP_A);
1811 udelay(200);
1812 }
1813
1814 /* If the sink supports it, try to set the power state appropriately */
1815 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1816 {
1817 int ret, i;
1818
1819 /* Should have a valid DPCD by this point */
1820 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1821 return;
1822
1823 if (mode != DRM_MODE_DPMS_ON) {
1824 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1825 DP_SET_POWER_D3);
1826 } else {
1827 /*
1828 * When turning on, we need to retry for 1ms to give the sink
1829 * time to wake up.
1830 */
1831 for (i = 0; i < 3; i++) {
1832 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1833 DP_SET_POWER_D0);
1834 if (ret == 1)
1835 break;
1836 msleep(1);
1837 }
1838 }
1839
1840 if (ret != 1)
1841 DRM_DEBUG_KMS("failed to %s sink power state\n",
1842 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1843 }
1844
1845 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1846 enum pipe *pipe)
1847 {
1848 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1849 enum port port = dp_to_dig_port(intel_dp)->port;
1850 struct drm_device *dev = encoder->base.dev;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 enum intel_display_power_domain power_domain;
1853 u32 tmp;
1854
1855 power_domain = intel_display_port_power_domain(encoder);
1856 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1857 return false;
1858
1859 tmp = I915_READ(intel_dp->output_reg);
1860
1861 if (!(tmp & DP_PORT_EN))
1862 return false;
1863
1864 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1865 *pipe = PORT_TO_PIPE_CPT(tmp);
1866 } else if (IS_CHERRYVIEW(dev)) {
1867 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1868 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1869 *pipe = PORT_TO_PIPE(tmp);
1870 } else {
1871 u32 trans_sel;
1872 u32 trans_dp;
1873 int i;
1874
1875 switch (intel_dp->output_reg) {
1876 case PCH_DP_B:
1877 trans_sel = TRANS_DP_PORT_SEL_B;
1878 break;
1879 case PCH_DP_C:
1880 trans_sel = TRANS_DP_PORT_SEL_C;
1881 break;
1882 case PCH_DP_D:
1883 trans_sel = TRANS_DP_PORT_SEL_D;
1884 break;
1885 default:
1886 return true;
1887 }
1888
1889 for_each_pipe(dev_priv, i) {
1890 trans_dp = I915_READ(TRANS_DP_CTL(i));
1891 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1892 *pipe = i;
1893 return true;
1894 }
1895 }
1896
1897 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1898 intel_dp->output_reg);
1899 }
1900
1901 return true;
1902 }
1903
1904 static void intel_dp_get_config(struct intel_encoder *encoder,
1905 struct intel_crtc_config *pipe_config)
1906 {
1907 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1908 u32 tmp, flags = 0;
1909 struct drm_device *dev = encoder->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 enum port port = dp_to_dig_port(intel_dp)->port;
1912 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1913 int dotclock;
1914
1915 tmp = I915_READ(intel_dp->output_reg);
1916 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1917 pipe_config->has_audio = true;
1918
1919 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1920 if (tmp & DP_SYNC_HS_HIGH)
1921 flags |= DRM_MODE_FLAG_PHSYNC;
1922 else
1923 flags |= DRM_MODE_FLAG_NHSYNC;
1924
1925 if (tmp & DP_SYNC_VS_HIGH)
1926 flags |= DRM_MODE_FLAG_PVSYNC;
1927 else
1928 flags |= DRM_MODE_FLAG_NVSYNC;
1929 } else {
1930 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1931 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1932 flags |= DRM_MODE_FLAG_PHSYNC;
1933 else
1934 flags |= DRM_MODE_FLAG_NHSYNC;
1935
1936 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1937 flags |= DRM_MODE_FLAG_PVSYNC;
1938 else
1939 flags |= DRM_MODE_FLAG_NVSYNC;
1940 }
1941
1942 pipe_config->adjusted_mode.flags |= flags;
1943
1944 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1945 tmp & DP_COLOR_RANGE_16_235)
1946 pipe_config->limited_color_range = true;
1947
1948 pipe_config->has_dp_encoder = true;
1949
1950 intel_dp_get_m_n(crtc, pipe_config);
1951
1952 if (port == PORT_A) {
1953 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1954 pipe_config->port_clock = 162000;
1955 else
1956 pipe_config->port_clock = 270000;
1957 }
1958
1959 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1960 &pipe_config->dp_m_n);
1961
1962 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1963 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1964
1965 pipe_config->adjusted_mode.crtc_clock = dotclock;
1966
1967 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1968 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1969 /*
1970 * This is a big fat ugly hack.
1971 *
1972 * Some machines in UEFI boot mode provide us a VBT that has 18
1973 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1974 * unknown we fail to light up. Yet the same BIOS boots up with
1975 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1976 * max, not what it tells us to use.
1977 *
1978 * Note: This will still be broken if the eDP panel is not lit
1979 * up by the BIOS, and thus we can't get the mode at module
1980 * load.
1981 */
1982 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1983 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1984 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1985 }
1986 }
1987
1988 static bool is_edp_psr(struct intel_dp *intel_dp)
1989 {
1990 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1991 }
1992
1993 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1994 {
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996
1997 if (!HAS_PSR(dev))
1998 return false;
1999
2000 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2001 }
2002
2003 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2004 struct edp_vsc_psr *vsc_psr)
2005 {
2006 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2007 struct drm_device *dev = dig_port->base.base.dev;
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2010 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2011 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2012 uint32_t *data = (uint32_t *) vsc_psr;
2013 unsigned int i;
2014
2015 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2016 the video DIP being updated before program video DIP data buffer
2017 registers for DIP being updated. */
2018 I915_WRITE(ctl_reg, 0);
2019 POSTING_READ(ctl_reg);
2020
2021 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2022 if (i < sizeof(struct edp_vsc_psr))
2023 I915_WRITE(data_reg + i, *data++);
2024 else
2025 I915_WRITE(data_reg + i, 0);
2026 }
2027
2028 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2029 POSTING_READ(ctl_reg);
2030 }
2031
2032 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2033 {
2034 struct edp_vsc_psr psr_vsc;
2035
2036 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2037 memset(&psr_vsc, 0, sizeof(psr_vsc));
2038 psr_vsc.sdp_header.HB0 = 0;
2039 psr_vsc.sdp_header.HB1 = 0x7;
2040 psr_vsc.sdp_header.HB2 = 0x2;
2041 psr_vsc.sdp_header.HB3 = 0x8;
2042 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2043 }
2044
2045 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2046 {
2047 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2048 struct drm_device *dev = dig_port->base.base.dev;
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 uint32_t aux_clock_divider;
2051 int precharge = 0x3;
2052 bool only_standby = false;
2053 static const uint8_t aux_msg[] = {
2054 [0] = DP_AUX_NATIVE_WRITE << 4,
2055 [1] = DP_SET_POWER >> 8,
2056 [2] = DP_SET_POWER & 0xff,
2057 [3] = 1 - 1,
2058 [4] = DP_SET_POWER_D0,
2059 };
2060 int i;
2061
2062 BUILD_BUG_ON(sizeof(aux_msg) > 20);
2063
2064 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2065
2066 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2067 only_standby = true;
2068
2069 /* Enable PSR in sink */
2070 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2071 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2072 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2073 else
2074 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2075 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2076
2077 /* Setup AUX registers */
2078 for (i = 0; i < sizeof(aux_msg); i += 4)
2079 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2080 pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2081
2082 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2083 DP_AUX_CH_CTL_TIME_OUT_400us |
2084 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2085 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2086 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2087 }
2088
2089 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2090 {
2091 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2092 struct drm_device *dev = dig_port->base.base.dev;
2093 struct drm_i915_private *dev_priv = dev->dev_private;
2094 uint32_t max_sleep_time = 0x1f;
2095 uint32_t idle_frames = 1;
2096 uint32_t val = 0x0;
2097 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2098 bool only_standby = false;
2099
2100 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2101 only_standby = true;
2102
2103 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2104 val |= EDP_PSR_LINK_STANDBY;
2105 val |= EDP_PSR_TP2_TP3_TIME_0us;
2106 val |= EDP_PSR_TP1_TIME_0us;
2107 val |= EDP_PSR_SKIP_AUX_EXIT;
2108 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2109 } else
2110 val |= EDP_PSR_LINK_DISABLE;
2111
2112 I915_WRITE(EDP_PSR_CTL(dev), val |
2113 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2114 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2115 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2116 EDP_PSR_ENABLE);
2117 }
2118
2119 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2120 {
2121 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2122 struct drm_device *dev = dig_port->base.base.dev;
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 struct drm_crtc *crtc = dig_port->base.base.crtc;
2125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2126
2127 lockdep_assert_held(&dev_priv->psr.lock);
2128 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2129 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2130
2131 dev_priv->psr.source_ok = false;
2132
2133 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2134 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2135 return false;
2136 }
2137
2138 if (!i915.enable_psr) {
2139 DRM_DEBUG_KMS("PSR disable by flag\n");
2140 return false;
2141 }
2142
2143 /* Below limitations aren't valid for Broadwell */
2144 if (IS_BROADWELL(dev))
2145 goto out;
2146
2147 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2148 S3D_ENABLE) {
2149 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2150 return false;
2151 }
2152
2153 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2154 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2155 return false;
2156 }
2157
2158 out:
2159 dev_priv->psr.source_ok = true;
2160 return true;
2161 }
2162
2163 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2164 {
2165 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2166 struct drm_device *dev = intel_dig_port->base.base.dev;
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168
2169 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2170 WARN_ON(dev_priv->psr.active);
2171 lockdep_assert_held(&dev_priv->psr.lock);
2172
2173 /* Enable/Re-enable PSR on the host */
2174 intel_edp_psr_enable_source(intel_dp);
2175
2176 dev_priv->psr.active = true;
2177 }
2178
2179 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2180 {
2181 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2182 struct drm_i915_private *dev_priv = dev->dev_private;
2183
2184 if (!HAS_PSR(dev)) {
2185 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2186 return;
2187 }
2188
2189 if (!is_edp_psr(intel_dp)) {
2190 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2191 return;
2192 }
2193
2194 mutex_lock(&dev_priv->psr.lock);
2195 if (dev_priv->psr.enabled) {
2196 DRM_DEBUG_KMS("PSR already in use\n");
2197 goto unlock;
2198 }
2199
2200 if (!intel_edp_psr_match_conditions(intel_dp))
2201 goto unlock;
2202
2203 dev_priv->psr.busy_frontbuffer_bits = 0;
2204
2205 intel_edp_psr_setup_vsc(intel_dp);
2206
2207 /* Avoid continuous PSR exit by masking memup and hpd */
2208 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2209 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2210
2211 /* Enable PSR on the panel */
2212 intel_edp_psr_enable_sink(intel_dp);
2213
2214 dev_priv->psr.enabled = intel_dp;
2215 unlock:
2216 mutex_unlock(&dev_priv->psr.lock);
2217 }
2218
2219 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2220 {
2221 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2222 struct drm_i915_private *dev_priv = dev->dev_private;
2223
2224 mutex_lock(&dev_priv->psr.lock);
2225 if (!dev_priv->psr.enabled) {
2226 mutex_unlock(&dev_priv->psr.lock);
2227 return;
2228 }
2229
2230 if (dev_priv->psr.active) {
2231 I915_WRITE(EDP_PSR_CTL(dev),
2232 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2233
2234 /* Wait till PSR is idle */
2235 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2236 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2237 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2238
2239 dev_priv->psr.active = false;
2240 } else {
2241 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2242 }
2243
2244 dev_priv->psr.enabled = NULL;
2245 mutex_unlock(&dev_priv->psr.lock);
2246
2247 cancel_delayed_work_sync(&dev_priv->psr.work);
2248 }
2249
2250 static void intel_edp_psr_work(struct work_struct *work)
2251 {
2252 struct drm_i915_private *dev_priv =
2253 container_of(work, typeof(*dev_priv), psr.work.work);
2254 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2255
2256 /* We have to make sure PSR is ready for re-enable
2257 * otherwise it keeps disabled until next full enable/disable cycle.
2258 * PSR might take some time to get fully disabled
2259 * and be ready for re-enable.
2260 */
2261 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2262 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2263 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2264 return;
2265 }
2266
2267 mutex_lock(&dev_priv->psr.lock);
2268 intel_dp = dev_priv->psr.enabled;
2269
2270 if (!intel_dp)
2271 goto unlock;
2272
2273 /*
2274 * The delayed work can race with an invalidate hence we need to
2275 * recheck. Since psr_flush first clears this and then reschedules we
2276 * won't ever miss a flush when bailing out here.
2277 */
2278 if (dev_priv->psr.busy_frontbuffer_bits)
2279 goto unlock;
2280
2281 intel_edp_psr_do_enable(intel_dp);
2282 unlock:
2283 mutex_unlock(&dev_priv->psr.lock);
2284 }
2285
2286 static void intel_edp_psr_do_exit(struct drm_device *dev)
2287 {
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289
2290 if (dev_priv->psr.active) {
2291 u32 val = I915_READ(EDP_PSR_CTL(dev));
2292
2293 WARN_ON(!(val & EDP_PSR_ENABLE));
2294
2295 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2296
2297 dev_priv->psr.active = false;
2298 }
2299
2300 }
2301
2302 void intel_edp_psr_invalidate(struct drm_device *dev,
2303 unsigned frontbuffer_bits)
2304 {
2305 struct drm_i915_private *dev_priv = dev->dev_private;
2306 struct drm_crtc *crtc;
2307 enum pipe pipe;
2308
2309 mutex_lock(&dev_priv->psr.lock);
2310 if (!dev_priv->psr.enabled) {
2311 mutex_unlock(&dev_priv->psr.lock);
2312 return;
2313 }
2314
2315 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2316 pipe = to_intel_crtc(crtc)->pipe;
2317
2318 intel_edp_psr_do_exit(dev);
2319
2320 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2321
2322 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2323 mutex_unlock(&dev_priv->psr.lock);
2324 }
2325
2326 void intel_edp_psr_flush(struct drm_device *dev,
2327 unsigned frontbuffer_bits)
2328 {
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct drm_crtc *crtc;
2331 enum pipe pipe;
2332
2333 mutex_lock(&dev_priv->psr.lock);
2334 if (!dev_priv->psr.enabled) {
2335 mutex_unlock(&dev_priv->psr.lock);
2336 return;
2337 }
2338
2339 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2340 pipe = to_intel_crtc(crtc)->pipe;
2341 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2342
2343 /*
2344 * On Haswell sprite plane updates don't result in a psr invalidating
2345 * signal in the hardware. Which means we need to manually fake this in
2346 * software for all flushes, not just when we've seen a preceding
2347 * invalidation through frontbuffer rendering.
2348 */
2349 if (IS_HASWELL(dev) &&
2350 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2351 intel_edp_psr_do_exit(dev);
2352
2353 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2354 schedule_delayed_work(&dev_priv->psr.work,
2355 msecs_to_jiffies(100));
2356 mutex_unlock(&dev_priv->psr.lock);
2357 }
2358
2359 void intel_edp_psr_init(struct drm_device *dev)
2360 {
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362
2363 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2364 mutex_init(&dev_priv->psr.lock);
2365 }
2366
2367 static void intel_disable_dp(struct intel_encoder *encoder)
2368 {
2369 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2370 struct drm_device *dev = encoder->base.dev;
2371
2372 /* Make sure the panel is off before trying to change the mode. But also
2373 * ensure that we have vdd while we switch off the panel. */
2374 intel_edp_panel_vdd_on(intel_dp);
2375 intel_edp_backlight_off(intel_dp);
2376 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2377 intel_edp_panel_off(intel_dp);
2378
2379 /* disable the port before the pipe on g4x */
2380 if (INTEL_INFO(dev)->gen < 5)
2381 intel_dp_link_down(intel_dp);
2382 }
2383
2384 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2385 {
2386 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2387 enum port port = dp_to_dig_port(intel_dp)->port;
2388
2389 intel_dp_link_down(intel_dp);
2390 if (port == PORT_A)
2391 ironlake_edp_pll_off(intel_dp);
2392 }
2393
2394 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2395 {
2396 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2397
2398 intel_dp_link_down(intel_dp);
2399 }
2400
2401 static void chv_post_disable_dp(struct intel_encoder *encoder)
2402 {
2403 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2404 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2405 struct drm_device *dev = encoder->base.dev;
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 struct intel_crtc *intel_crtc =
2408 to_intel_crtc(encoder->base.crtc);
2409 enum dpio_channel ch = vlv_dport_to_channel(dport);
2410 enum pipe pipe = intel_crtc->pipe;
2411 u32 val;
2412
2413 intel_dp_link_down(intel_dp);
2414
2415 mutex_lock(&dev_priv->dpio_lock);
2416
2417 /* Propagate soft reset to data lane reset */
2418 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2419 val |= CHV_PCS_REQ_SOFTRESET_EN;
2420 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2421
2422 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2423 val |= CHV_PCS_REQ_SOFTRESET_EN;
2424 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2425
2426 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2427 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2428 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2429
2430 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2431 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2432 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2433
2434 mutex_unlock(&dev_priv->dpio_lock);
2435 }
2436
2437 static void
2438 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2439 uint32_t *DP,
2440 uint8_t dp_train_pat)
2441 {
2442 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2443 struct drm_device *dev = intel_dig_port->base.base.dev;
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 enum port port = intel_dig_port->port;
2446
2447 if (HAS_DDI(dev)) {
2448 uint32_t temp = I915_READ(DP_TP_CTL(port));
2449
2450 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2451 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2452 else
2453 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2454
2455 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2456 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2457 case DP_TRAINING_PATTERN_DISABLE:
2458 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2459
2460 break;
2461 case DP_TRAINING_PATTERN_1:
2462 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2463 break;
2464 case DP_TRAINING_PATTERN_2:
2465 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2466 break;
2467 case DP_TRAINING_PATTERN_3:
2468 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2469 break;
2470 }
2471 I915_WRITE(DP_TP_CTL(port), temp);
2472
2473 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2474 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2475
2476 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2477 case DP_TRAINING_PATTERN_DISABLE:
2478 *DP |= DP_LINK_TRAIN_OFF_CPT;
2479 break;
2480 case DP_TRAINING_PATTERN_1:
2481 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2482 break;
2483 case DP_TRAINING_PATTERN_2:
2484 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2485 break;
2486 case DP_TRAINING_PATTERN_3:
2487 DRM_ERROR("DP training pattern 3 not supported\n");
2488 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2489 break;
2490 }
2491
2492 } else {
2493 if (IS_CHERRYVIEW(dev))
2494 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2495 else
2496 *DP &= ~DP_LINK_TRAIN_MASK;
2497
2498 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2499 case DP_TRAINING_PATTERN_DISABLE:
2500 *DP |= DP_LINK_TRAIN_OFF;
2501 break;
2502 case DP_TRAINING_PATTERN_1:
2503 *DP |= DP_LINK_TRAIN_PAT_1;
2504 break;
2505 case DP_TRAINING_PATTERN_2:
2506 *DP |= DP_LINK_TRAIN_PAT_2;
2507 break;
2508 case DP_TRAINING_PATTERN_3:
2509 if (IS_CHERRYVIEW(dev)) {
2510 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2511 } else {
2512 DRM_ERROR("DP training pattern 3 not supported\n");
2513 *DP |= DP_LINK_TRAIN_PAT_2;
2514 }
2515 break;
2516 }
2517 }
2518 }
2519
2520 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2521 {
2522 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2523 struct drm_i915_private *dev_priv = dev->dev_private;
2524
2525 intel_dp->DP |= DP_PORT_EN;
2526
2527 /* enable with pattern 1 (as per spec) */
2528 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2529 DP_TRAINING_PATTERN_1);
2530
2531 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2532 POSTING_READ(intel_dp->output_reg);
2533 }
2534
2535 static void intel_enable_dp(struct intel_encoder *encoder)
2536 {
2537 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2538 struct drm_device *dev = encoder->base.dev;
2539 struct drm_i915_private *dev_priv = dev->dev_private;
2540 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2541
2542 if (WARN_ON(dp_reg & DP_PORT_EN))
2543 return;
2544
2545 intel_dp_enable_port(intel_dp);
2546 intel_edp_panel_vdd_on(intel_dp);
2547 intel_edp_panel_on(intel_dp);
2548 intel_edp_panel_vdd_off(intel_dp, true);
2549 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2550 intel_dp_start_link_train(intel_dp);
2551 intel_dp_complete_link_train(intel_dp);
2552 intel_dp_stop_link_train(intel_dp);
2553 }
2554
2555 static void g4x_enable_dp(struct intel_encoder *encoder)
2556 {
2557 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2558
2559 intel_enable_dp(encoder);
2560 intel_edp_backlight_on(intel_dp);
2561 }
2562
2563 static void vlv_enable_dp(struct intel_encoder *encoder)
2564 {
2565 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2566
2567 intel_edp_backlight_on(intel_dp);
2568 }
2569
2570 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2571 {
2572 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2573 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2574
2575 intel_dp_prepare(encoder);
2576
2577 /* Only ilk+ has port A */
2578 if (dport->port == PORT_A) {
2579 ironlake_set_pll_cpu_edp(intel_dp);
2580 ironlake_edp_pll_on(intel_dp);
2581 }
2582 }
2583
2584 static void vlv_steal_power_sequencer(struct drm_device *dev,
2585 enum pipe pipe)
2586 {
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 struct intel_encoder *encoder;
2589
2590 lockdep_assert_held(&dev_priv->pps_mutex);
2591
2592 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2593 base.head) {
2594 struct intel_dp *intel_dp;
2595 enum port port;
2596
2597 if (encoder->type != INTEL_OUTPUT_EDP)
2598 continue;
2599
2600 intel_dp = enc_to_intel_dp(&encoder->base);
2601 port = dp_to_dig_port(intel_dp)->port;
2602
2603 if (intel_dp->pps_pipe != pipe)
2604 continue;
2605
2606 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2607 pipe_name(pipe), port_name(port));
2608
2609 /* make sure vdd is off before we steal it */
2610 edp_panel_vdd_off_sync(intel_dp);
2611
2612 intel_dp->pps_pipe = INVALID_PIPE;
2613 }
2614 }
2615
2616 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2617 {
2618 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2619 struct intel_encoder *encoder = &intel_dig_port->base;
2620 struct drm_device *dev = encoder->base.dev;
2621 struct drm_i915_private *dev_priv = dev->dev_private;
2622 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2623 struct edp_power_seq power_seq;
2624
2625 lockdep_assert_held(&dev_priv->pps_mutex);
2626
2627 if (intel_dp->pps_pipe == crtc->pipe)
2628 return;
2629
2630 /*
2631 * If another power sequencer was being used on this
2632 * port previously make sure to turn off vdd there while
2633 * we still have control of it.
2634 */
2635 if (intel_dp->pps_pipe != INVALID_PIPE)
2636 edp_panel_vdd_off_sync(intel_dp);
2637
2638 /*
2639 * We may be stealing the power
2640 * sequencer from another port.
2641 */
2642 vlv_steal_power_sequencer(dev, crtc->pipe);
2643
2644 /* now it's all ours */
2645 intel_dp->pps_pipe = crtc->pipe;
2646
2647 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2648 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2649
2650 /* init power sequencer on this pipe and port */
2651 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2652 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2653 &power_seq);
2654 }
2655
2656 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2657 {
2658 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2659 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2660 struct drm_device *dev = encoder->base.dev;
2661 struct drm_i915_private *dev_priv = dev->dev_private;
2662 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2663 enum dpio_channel port = vlv_dport_to_channel(dport);
2664 int pipe = intel_crtc->pipe;
2665 u32 val;
2666
2667 mutex_lock(&dev_priv->dpio_lock);
2668
2669 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2670 val = 0;
2671 if (pipe)
2672 val |= (1<<21);
2673 else
2674 val &= ~(1<<21);
2675 val |= 0x001000c4;
2676 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2677 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2678 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2679
2680 mutex_unlock(&dev_priv->dpio_lock);
2681
2682 if (is_edp(intel_dp)) {
2683 pps_lock(intel_dp);
2684 vlv_init_panel_power_sequencer(intel_dp);
2685 pps_unlock(intel_dp);
2686 }
2687
2688 intel_enable_dp(encoder);
2689
2690 vlv_wait_port_ready(dev_priv, dport);
2691 }
2692
2693 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2694 {
2695 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2696 struct drm_device *dev = encoder->base.dev;
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 struct intel_crtc *intel_crtc =
2699 to_intel_crtc(encoder->base.crtc);
2700 enum dpio_channel port = vlv_dport_to_channel(dport);
2701 int pipe = intel_crtc->pipe;
2702
2703 intel_dp_prepare(encoder);
2704
2705 /* Program Tx lane resets to default */
2706 mutex_lock(&dev_priv->dpio_lock);
2707 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2708 DPIO_PCS_TX_LANE2_RESET |
2709 DPIO_PCS_TX_LANE1_RESET);
2710 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2711 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2712 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2713 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2714 DPIO_PCS_CLK_SOFT_RESET);
2715
2716 /* Fix up inter-pair skew failure */
2717 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2718 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2719 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2720 mutex_unlock(&dev_priv->dpio_lock);
2721 }
2722
2723 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2724 {
2725 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2726 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2727 struct drm_device *dev = encoder->base.dev;
2728 struct drm_i915_private *dev_priv = dev->dev_private;
2729 struct intel_crtc *intel_crtc =
2730 to_intel_crtc(encoder->base.crtc);
2731 enum dpio_channel ch = vlv_dport_to_channel(dport);
2732 int pipe = intel_crtc->pipe;
2733 int data, i;
2734 u32 val;
2735
2736 mutex_lock(&dev_priv->dpio_lock);
2737
2738 /* allow hardware to manage TX FIFO reset source */
2739 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2740 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2741 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2742
2743 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2744 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2745 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2746
2747 /* Deassert soft data lane reset*/
2748 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2749 val |= CHV_PCS_REQ_SOFTRESET_EN;
2750 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2751
2752 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2753 val |= CHV_PCS_REQ_SOFTRESET_EN;
2754 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2755
2756 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2757 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2758 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2759
2760 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2761 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2762 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2763
2764 /* Program Tx lane latency optimal setting*/
2765 for (i = 0; i < 4; i++) {
2766 /* Set the latency optimal bit */
2767 data = (i == 1) ? 0x0 : 0x6;
2768 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2769 data << DPIO_FRC_LATENCY_SHFIT);
2770
2771 /* Set the upar bit */
2772 data = (i == 1) ? 0x0 : 0x1;
2773 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2774 data << DPIO_UPAR_SHIFT);
2775 }
2776
2777 /* Data lane stagger programming */
2778 /* FIXME: Fix up value only after power analysis */
2779
2780 mutex_unlock(&dev_priv->dpio_lock);
2781
2782 if (is_edp(intel_dp)) {
2783 pps_lock(intel_dp);
2784 vlv_init_panel_power_sequencer(intel_dp);
2785 pps_unlock(intel_dp);
2786 }
2787
2788 intel_enable_dp(encoder);
2789
2790 vlv_wait_port_ready(dev_priv, dport);
2791 }
2792
2793 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2794 {
2795 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2796 struct drm_device *dev = encoder->base.dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc =
2799 to_intel_crtc(encoder->base.crtc);
2800 enum dpio_channel ch = vlv_dport_to_channel(dport);
2801 enum pipe pipe = intel_crtc->pipe;
2802 u32 val;
2803
2804 intel_dp_prepare(encoder);
2805
2806 mutex_lock(&dev_priv->dpio_lock);
2807
2808 /* program left/right clock distribution */
2809 if (pipe != PIPE_B) {
2810 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2811 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2812 if (ch == DPIO_CH0)
2813 val |= CHV_BUFLEFTENA1_FORCE;
2814 if (ch == DPIO_CH1)
2815 val |= CHV_BUFRIGHTENA1_FORCE;
2816 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2817 } else {
2818 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2819 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2820 if (ch == DPIO_CH0)
2821 val |= CHV_BUFLEFTENA2_FORCE;
2822 if (ch == DPIO_CH1)
2823 val |= CHV_BUFRIGHTENA2_FORCE;
2824 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2825 }
2826
2827 /* program clock channel usage */
2828 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2829 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2830 if (pipe != PIPE_B)
2831 val &= ~CHV_PCS_USEDCLKCHANNEL;
2832 else
2833 val |= CHV_PCS_USEDCLKCHANNEL;
2834 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2835
2836 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2837 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2838 if (pipe != PIPE_B)
2839 val &= ~CHV_PCS_USEDCLKCHANNEL;
2840 else
2841 val |= CHV_PCS_USEDCLKCHANNEL;
2842 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2843
2844 /*
2845 * This a a bit weird since generally CL
2846 * matches the pipe, but here we need to
2847 * pick the CL based on the port.
2848 */
2849 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2850 if (pipe != PIPE_B)
2851 val &= ~CHV_CMN_USEDCLKCHANNEL;
2852 else
2853 val |= CHV_CMN_USEDCLKCHANNEL;
2854 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2855
2856 mutex_unlock(&dev_priv->dpio_lock);
2857 }
2858
2859 /*
2860 * Native read with retry for link status and receiver capability reads for
2861 * cases where the sink may still be asleep.
2862 *
2863 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2864 * supposed to retry 3 times per the spec.
2865 */
2866 static ssize_t
2867 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2868 void *buffer, size_t size)
2869 {
2870 ssize_t ret;
2871 int i;
2872
2873 for (i = 0; i < 3; i++) {
2874 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2875 if (ret == size)
2876 return ret;
2877 msleep(1);
2878 }
2879
2880 return ret;
2881 }
2882
2883 /*
2884 * Fetch AUX CH registers 0x202 - 0x207 which contain
2885 * link status information
2886 */
2887 static bool
2888 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2889 {
2890 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2891 DP_LANE0_1_STATUS,
2892 link_status,
2893 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2894 }
2895
2896 /* These are source-specific values. */
2897 static uint8_t
2898 intel_dp_voltage_max(struct intel_dp *intel_dp)
2899 {
2900 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2901 enum port port = dp_to_dig_port(intel_dp)->port;
2902
2903 if (INTEL_INFO(dev)->gen >= 9)
2904 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2905 else if (IS_VALLEYVIEW(dev))
2906 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2907 else if (IS_GEN7(dev) && port == PORT_A)
2908 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2909 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2910 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2911 else
2912 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2913 }
2914
2915 static uint8_t
2916 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2917 {
2918 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2919 enum port port = dp_to_dig_port(intel_dp)->port;
2920
2921 if (INTEL_INFO(dev)->gen >= 9) {
2922 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2924 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2926 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2928 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2929 default:
2930 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2931 }
2932 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2933 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2934 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2935 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2936 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2937 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2938 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2939 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2940 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2941 default:
2942 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2943 }
2944 } else if (IS_VALLEYVIEW(dev)) {
2945 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2946 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2947 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2949 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2950 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2951 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2952 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2953 default:
2954 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2955 }
2956 } else if (IS_GEN7(dev) && port == PORT_A) {
2957 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2959 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2962 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2963 default:
2964 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2965 }
2966 } else {
2967 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2968 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2969 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2971 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2972 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2973 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2975 default:
2976 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2977 }
2978 }
2979 }
2980
2981 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2982 {
2983 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2984 struct drm_i915_private *dev_priv = dev->dev_private;
2985 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2986 struct intel_crtc *intel_crtc =
2987 to_intel_crtc(dport->base.base.crtc);
2988 unsigned long demph_reg_value, preemph_reg_value,
2989 uniqtranscale_reg_value;
2990 uint8_t train_set = intel_dp->train_set[0];
2991 enum dpio_channel port = vlv_dport_to_channel(dport);
2992 int pipe = intel_crtc->pipe;
2993
2994 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2995 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2996 preemph_reg_value = 0x0004000;
2997 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2999 demph_reg_value = 0x2B405555;
3000 uniqtranscale_reg_value = 0x552AB83A;
3001 break;
3002 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3003 demph_reg_value = 0x2B404040;
3004 uniqtranscale_reg_value = 0x5548B83A;
3005 break;
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3007 demph_reg_value = 0x2B245555;
3008 uniqtranscale_reg_value = 0x5560B83A;
3009 break;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3011 demph_reg_value = 0x2B405555;
3012 uniqtranscale_reg_value = 0x5598DA3A;
3013 break;
3014 default:
3015 return 0;
3016 }
3017 break;
3018 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3019 preemph_reg_value = 0x0002000;
3020 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3022 demph_reg_value = 0x2B404040;
3023 uniqtranscale_reg_value = 0x5552B83A;
3024 break;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3026 demph_reg_value = 0x2B404848;
3027 uniqtranscale_reg_value = 0x5580B83A;
3028 break;
3029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3030 demph_reg_value = 0x2B404040;
3031 uniqtranscale_reg_value = 0x55ADDA3A;
3032 break;
3033 default:
3034 return 0;
3035 }
3036 break;
3037 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3038 preemph_reg_value = 0x0000000;
3039 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3041 demph_reg_value = 0x2B305555;
3042 uniqtranscale_reg_value = 0x5570B83A;
3043 break;
3044 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3045 demph_reg_value = 0x2B2B4040;
3046 uniqtranscale_reg_value = 0x55ADDA3A;
3047 break;
3048 default:
3049 return 0;
3050 }
3051 break;
3052 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3053 preemph_reg_value = 0x0006000;
3054 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3056 demph_reg_value = 0x1B405555;
3057 uniqtranscale_reg_value = 0x55ADDA3A;
3058 break;
3059 default:
3060 return 0;
3061 }
3062 break;
3063 default:
3064 return 0;
3065 }
3066
3067 mutex_lock(&dev_priv->dpio_lock);
3068 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3069 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3070 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3071 uniqtranscale_reg_value);
3072 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3073 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3074 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3075 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3076 mutex_unlock(&dev_priv->dpio_lock);
3077
3078 return 0;
3079 }
3080
3081 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3082 {
3083 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3084 struct drm_i915_private *dev_priv = dev->dev_private;
3085 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3086 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3087 u32 deemph_reg_value, margin_reg_value, val;
3088 uint8_t train_set = intel_dp->train_set[0];
3089 enum dpio_channel ch = vlv_dport_to_channel(dport);
3090 enum pipe pipe = intel_crtc->pipe;
3091 int i;
3092
3093 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3094 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3095 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3097 deemph_reg_value = 128;
3098 margin_reg_value = 52;
3099 break;
3100 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3101 deemph_reg_value = 128;
3102 margin_reg_value = 77;
3103 break;
3104 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3105 deemph_reg_value = 128;
3106 margin_reg_value = 102;
3107 break;
3108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3109 deemph_reg_value = 128;
3110 margin_reg_value = 154;
3111 /* FIXME extra to set for 1200 */
3112 break;
3113 default:
3114 return 0;
3115 }
3116 break;
3117 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3118 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3119 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3120 deemph_reg_value = 85;
3121 margin_reg_value = 78;
3122 break;
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3124 deemph_reg_value = 85;
3125 margin_reg_value = 116;
3126 break;
3127 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3128 deemph_reg_value = 85;
3129 margin_reg_value = 154;
3130 break;
3131 default:
3132 return 0;
3133 }
3134 break;
3135 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3136 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3138 deemph_reg_value = 64;
3139 margin_reg_value = 104;
3140 break;
3141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3142 deemph_reg_value = 64;
3143 margin_reg_value = 154;
3144 break;
3145 default:
3146 return 0;
3147 }
3148 break;
3149 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3150 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3152 deemph_reg_value = 43;
3153 margin_reg_value = 154;
3154 break;
3155 default:
3156 return 0;
3157 }
3158 break;
3159 default:
3160 return 0;
3161 }
3162
3163 mutex_lock(&dev_priv->dpio_lock);
3164
3165 /* Clear calc init */
3166 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3167 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3168 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3169 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3170 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3171
3172 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3173 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3174 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3175 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3176 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3177
3178 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3179 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3180 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3181 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3182
3183 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3184 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3185 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3186 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3187
3188 /* Program swing deemph */
3189 for (i = 0; i < 4; i++) {
3190 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3191 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3192 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3193 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3194 }
3195
3196 /* Program swing margin */
3197 for (i = 0; i < 4; i++) {
3198 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3199 val &= ~DPIO_SWING_MARGIN000_MASK;
3200 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3201 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3202 }
3203
3204 /* Disable unique transition scale */
3205 for (i = 0; i < 4; i++) {
3206 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3207 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3208 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3209 }
3210
3211 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3212 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3213 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3214 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3215
3216 /*
3217 * The document said it needs to set bit 27 for ch0 and bit 26
3218 * for ch1. Might be a typo in the doc.
3219 * For now, for this unique transition scale selection, set bit
3220 * 27 for ch0 and ch1.
3221 */
3222 for (i = 0; i < 4; i++) {
3223 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3224 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3225 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3226 }
3227
3228 for (i = 0; i < 4; i++) {
3229 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3230 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3231 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3232 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3233 }
3234 }
3235
3236 /* Start swing calculation */
3237 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3238 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3239 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3240
3241 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3242 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3243 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3244
3245 /* LRC Bypass */
3246 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3247 val |= DPIO_LRC_BYPASS;
3248 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3249
3250 mutex_unlock(&dev_priv->dpio_lock);
3251
3252 return 0;
3253 }
3254
3255 static void
3256 intel_get_adjust_train(struct intel_dp *intel_dp,
3257 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3258 {
3259 uint8_t v = 0;
3260 uint8_t p = 0;
3261 int lane;
3262 uint8_t voltage_max;
3263 uint8_t preemph_max;
3264
3265 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3266 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3267 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3268
3269 if (this_v > v)
3270 v = this_v;
3271 if (this_p > p)
3272 p = this_p;
3273 }
3274
3275 voltage_max = intel_dp_voltage_max(intel_dp);
3276 if (v >= voltage_max)
3277 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3278
3279 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3280 if (p >= preemph_max)
3281 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3282
3283 for (lane = 0; lane < 4; lane++)
3284 intel_dp->train_set[lane] = v | p;
3285 }
3286
3287 static uint32_t
3288 intel_gen4_signal_levels(uint8_t train_set)
3289 {
3290 uint32_t signal_levels = 0;
3291
3292 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3294 default:
3295 signal_levels |= DP_VOLTAGE_0_4;
3296 break;
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3298 signal_levels |= DP_VOLTAGE_0_6;
3299 break;
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3301 signal_levels |= DP_VOLTAGE_0_8;
3302 break;
3303 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3304 signal_levels |= DP_VOLTAGE_1_2;
3305 break;
3306 }
3307 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3308 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3309 default:
3310 signal_levels |= DP_PRE_EMPHASIS_0;
3311 break;
3312 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3313 signal_levels |= DP_PRE_EMPHASIS_3_5;
3314 break;
3315 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3316 signal_levels |= DP_PRE_EMPHASIS_6;
3317 break;
3318 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3319 signal_levels |= DP_PRE_EMPHASIS_9_5;
3320 break;
3321 }
3322 return signal_levels;
3323 }
3324
3325 /* Gen6's DP voltage swing and pre-emphasis control */
3326 static uint32_t
3327 intel_gen6_edp_signal_levels(uint8_t train_set)
3328 {
3329 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3330 DP_TRAIN_PRE_EMPHASIS_MASK);
3331 switch (signal_levels) {
3332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3334 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3336 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3338 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3339 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3342 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3343 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3344 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3345 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3346 default:
3347 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3348 "0x%x\n", signal_levels);
3349 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3350 }
3351 }
3352
3353 /* Gen7's DP voltage swing and pre-emphasis control */
3354 static uint32_t
3355 intel_gen7_edp_signal_levels(uint8_t train_set)
3356 {
3357 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3358 DP_TRAIN_PRE_EMPHASIS_MASK);
3359 switch (signal_levels) {
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3361 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3363 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3365 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3366
3367 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3368 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3370 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3371
3372 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3373 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3375 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3376
3377 default:
3378 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3379 "0x%x\n", signal_levels);
3380 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3381 }
3382 }
3383
3384 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3385 static uint32_t
3386 intel_hsw_signal_levels(uint8_t train_set)
3387 {
3388 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3389 DP_TRAIN_PRE_EMPHASIS_MASK);
3390 switch (signal_levels) {
3391 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3392 return DDI_BUF_TRANS_SELECT(0);
3393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3394 return DDI_BUF_TRANS_SELECT(1);
3395 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3396 return DDI_BUF_TRANS_SELECT(2);
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3398 return DDI_BUF_TRANS_SELECT(3);
3399
3400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3401 return DDI_BUF_TRANS_SELECT(4);
3402 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3403 return DDI_BUF_TRANS_SELECT(5);
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3405 return DDI_BUF_TRANS_SELECT(6);
3406
3407 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3408 return DDI_BUF_TRANS_SELECT(7);
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3410 return DDI_BUF_TRANS_SELECT(8);
3411 default:
3412 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3413 "0x%x\n", signal_levels);
3414 return DDI_BUF_TRANS_SELECT(0);
3415 }
3416 }
3417
3418 /* Properly updates "DP" with the correct signal levels. */
3419 static void
3420 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3421 {
3422 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3423 enum port port = intel_dig_port->port;
3424 struct drm_device *dev = intel_dig_port->base.base.dev;
3425 uint32_t signal_levels, mask;
3426 uint8_t train_set = intel_dp->train_set[0];
3427
3428 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3429 signal_levels = intel_hsw_signal_levels(train_set);
3430 mask = DDI_BUF_EMP_MASK;
3431 } else if (IS_CHERRYVIEW(dev)) {
3432 signal_levels = intel_chv_signal_levels(intel_dp);
3433 mask = 0;
3434 } else if (IS_VALLEYVIEW(dev)) {
3435 signal_levels = intel_vlv_signal_levels(intel_dp);
3436 mask = 0;
3437 } else if (IS_GEN7(dev) && port == PORT_A) {
3438 signal_levels = intel_gen7_edp_signal_levels(train_set);
3439 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3440 } else if (IS_GEN6(dev) && port == PORT_A) {
3441 signal_levels = intel_gen6_edp_signal_levels(train_set);
3442 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3443 } else {
3444 signal_levels = intel_gen4_signal_levels(train_set);
3445 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3446 }
3447
3448 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3449
3450 *DP = (*DP & ~mask) | signal_levels;
3451 }
3452
3453 static bool
3454 intel_dp_set_link_train(struct intel_dp *intel_dp,
3455 uint32_t *DP,
3456 uint8_t dp_train_pat)
3457 {
3458 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3459 struct drm_device *dev = intel_dig_port->base.base.dev;
3460 struct drm_i915_private *dev_priv = dev->dev_private;
3461 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3462 int ret, len;
3463
3464 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3465
3466 I915_WRITE(intel_dp->output_reg, *DP);
3467 POSTING_READ(intel_dp->output_reg);
3468
3469 buf[0] = dp_train_pat;
3470 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3471 DP_TRAINING_PATTERN_DISABLE) {
3472 /* don't write DP_TRAINING_LANEx_SET on disable */
3473 len = 1;
3474 } else {
3475 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3476 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3477 len = intel_dp->lane_count + 1;
3478 }
3479
3480 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3481 buf, len);
3482
3483 return ret == len;
3484 }
3485
3486 static bool
3487 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3488 uint8_t dp_train_pat)
3489 {
3490 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3491 intel_dp_set_signal_levels(intel_dp, DP);
3492 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3493 }
3494
3495 static bool
3496 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3497 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3498 {
3499 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3500 struct drm_device *dev = intel_dig_port->base.base.dev;
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 int ret;
3503
3504 intel_get_adjust_train(intel_dp, link_status);
3505 intel_dp_set_signal_levels(intel_dp, DP);
3506
3507 I915_WRITE(intel_dp->output_reg, *DP);
3508 POSTING_READ(intel_dp->output_reg);
3509
3510 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3511 intel_dp->train_set, intel_dp->lane_count);
3512
3513 return ret == intel_dp->lane_count;
3514 }
3515
3516 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3517 {
3518 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3519 struct drm_device *dev = intel_dig_port->base.base.dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 enum port port = intel_dig_port->port;
3522 uint32_t val;
3523
3524 if (!HAS_DDI(dev))
3525 return;
3526
3527 val = I915_READ(DP_TP_CTL(port));
3528 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3529 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3530 I915_WRITE(DP_TP_CTL(port), val);
3531
3532 /*
3533 * On PORT_A we can have only eDP in SST mode. There the only reason
3534 * we need to set idle transmission mode is to work around a HW issue
3535 * where we enable the pipe while not in idle link-training mode.
3536 * In this case there is requirement to wait for a minimum number of
3537 * idle patterns to be sent.
3538 */
3539 if (port == PORT_A)
3540 return;
3541
3542 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3543 1))
3544 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3545 }
3546
3547 /* Enable corresponding port and start training pattern 1 */
3548 void
3549 intel_dp_start_link_train(struct intel_dp *intel_dp)
3550 {
3551 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3552 struct drm_device *dev = encoder->dev;
3553 int i;
3554 uint8_t voltage;
3555 int voltage_tries, loop_tries;
3556 uint32_t DP = intel_dp->DP;
3557 uint8_t link_config[2];
3558
3559 if (HAS_DDI(dev))
3560 intel_ddi_prepare_link_retrain(encoder);
3561
3562 /* Write the link configuration data */
3563 link_config[0] = intel_dp->link_bw;
3564 link_config[1] = intel_dp->lane_count;
3565 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3566 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3567 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3568
3569 link_config[0] = 0;
3570 link_config[1] = DP_SET_ANSI_8B10B;
3571 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3572
3573 DP |= DP_PORT_EN;
3574
3575 /* clock recovery */
3576 if (!intel_dp_reset_link_train(intel_dp, &DP,
3577 DP_TRAINING_PATTERN_1 |
3578 DP_LINK_SCRAMBLING_DISABLE)) {
3579 DRM_ERROR("failed to enable link training\n");
3580 return;
3581 }
3582
3583 voltage = 0xff;
3584 voltage_tries = 0;
3585 loop_tries = 0;
3586 for (;;) {
3587 uint8_t link_status[DP_LINK_STATUS_SIZE];
3588
3589 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3590 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3591 DRM_ERROR("failed to get link status\n");
3592 break;
3593 }
3594
3595 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3596 DRM_DEBUG_KMS("clock recovery OK\n");
3597 break;
3598 }
3599
3600 /* Check to see if we've tried the max voltage */
3601 for (i = 0; i < intel_dp->lane_count; i++)
3602 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3603 break;
3604 if (i == intel_dp->lane_count) {
3605 ++loop_tries;
3606 if (loop_tries == 5) {
3607 DRM_ERROR("too many full retries, give up\n");
3608 break;
3609 }
3610 intel_dp_reset_link_train(intel_dp, &DP,
3611 DP_TRAINING_PATTERN_1 |
3612 DP_LINK_SCRAMBLING_DISABLE);
3613 voltage_tries = 0;
3614 continue;
3615 }
3616
3617 /* Check to see if we've tried the same voltage 5 times */
3618 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3619 ++voltage_tries;
3620 if (voltage_tries == 5) {
3621 DRM_ERROR("too many voltage retries, give up\n");
3622 break;
3623 }
3624 } else
3625 voltage_tries = 0;
3626 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3627
3628 /* Update training set as requested by target */
3629 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3630 DRM_ERROR("failed to update link training\n");
3631 break;
3632 }
3633 }
3634
3635 intel_dp->DP = DP;
3636 }
3637
3638 void
3639 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3640 {
3641 bool channel_eq = false;
3642 int tries, cr_tries;
3643 uint32_t DP = intel_dp->DP;
3644 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3645
3646 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3647 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3648 training_pattern = DP_TRAINING_PATTERN_3;
3649
3650 /* channel equalization */
3651 if (!intel_dp_set_link_train(intel_dp, &DP,
3652 training_pattern |
3653 DP_LINK_SCRAMBLING_DISABLE)) {
3654 DRM_ERROR("failed to start channel equalization\n");
3655 return;
3656 }
3657
3658 tries = 0;
3659 cr_tries = 0;
3660 channel_eq = false;
3661 for (;;) {
3662 uint8_t link_status[DP_LINK_STATUS_SIZE];
3663
3664 if (cr_tries > 5) {
3665 DRM_ERROR("failed to train DP, aborting\n");
3666 break;
3667 }
3668
3669 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3670 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3671 DRM_ERROR("failed to get link status\n");
3672 break;
3673 }
3674
3675 /* Make sure clock is still ok */
3676 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3677 intel_dp_start_link_train(intel_dp);
3678 intel_dp_set_link_train(intel_dp, &DP,
3679 training_pattern |
3680 DP_LINK_SCRAMBLING_DISABLE);
3681 cr_tries++;
3682 continue;
3683 }
3684
3685 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3686 channel_eq = true;
3687 break;
3688 }
3689
3690 /* Try 5 times, then try clock recovery if that fails */
3691 if (tries > 5) {
3692 intel_dp_link_down(intel_dp);
3693 intel_dp_start_link_train(intel_dp);
3694 intel_dp_set_link_train(intel_dp, &DP,
3695 training_pattern |
3696 DP_LINK_SCRAMBLING_DISABLE);
3697 tries = 0;
3698 cr_tries++;
3699 continue;
3700 }
3701
3702 /* Update training set as requested by target */
3703 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3704 DRM_ERROR("failed to update link training\n");
3705 break;
3706 }
3707 ++tries;
3708 }
3709
3710 intel_dp_set_idle_link_train(intel_dp);
3711
3712 intel_dp->DP = DP;
3713
3714 if (channel_eq)
3715 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3716
3717 }
3718
3719 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3720 {
3721 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3722 DP_TRAINING_PATTERN_DISABLE);
3723 }
3724
3725 static void
3726 intel_dp_link_down(struct intel_dp *intel_dp)
3727 {
3728 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3729 enum port port = intel_dig_port->port;
3730 struct drm_device *dev = intel_dig_port->base.base.dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732 struct intel_crtc *intel_crtc =
3733 to_intel_crtc(intel_dig_port->base.base.crtc);
3734 uint32_t DP = intel_dp->DP;
3735
3736 if (WARN_ON(HAS_DDI(dev)))
3737 return;
3738
3739 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3740 return;
3741
3742 DRM_DEBUG_KMS("\n");
3743
3744 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3745 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3746 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3747 } else {
3748 if (IS_CHERRYVIEW(dev))
3749 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3750 else
3751 DP &= ~DP_LINK_TRAIN_MASK;
3752 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3753 }
3754 POSTING_READ(intel_dp->output_reg);
3755
3756 if (HAS_PCH_IBX(dev) &&
3757 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3758 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3759
3760 /* Hardware workaround: leaving our transcoder select
3761 * set to transcoder B while it's off will prevent the
3762 * corresponding HDMI output on transcoder A.
3763 *
3764 * Combine this with another hardware workaround:
3765 * transcoder select bit can only be cleared while the
3766 * port is enabled.
3767 */
3768 DP &= ~DP_PIPEB_SELECT;
3769 I915_WRITE(intel_dp->output_reg, DP);
3770
3771 /* Changes to enable or select take place the vblank
3772 * after being written.
3773 */
3774 if (WARN_ON(crtc == NULL)) {
3775 /* We should never try to disable a port without a crtc
3776 * attached. For paranoia keep the code around for a
3777 * bit. */
3778 POSTING_READ(intel_dp->output_reg);
3779 msleep(50);
3780 } else
3781 intel_wait_for_vblank(dev, intel_crtc->pipe);
3782 }
3783
3784 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3785 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3786 POSTING_READ(intel_dp->output_reg);
3787 msleep(intel_dp->panel_power_down_delay);
3788 }
3789
3790 static bool
3791 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3792 {
3793 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3794 struct drm_device *dev = dig_port->base.base.dev;
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796
3797 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3798 sizeof(intel_dp->dpcd)) < 0)
3799 return false; /* aux transfer failed */
3800
3801 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3802
3803 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3804 return false; /* DPCD not present */
3805
3806 /* Check if the panel supports PSR */
3807 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3808 if (is_edp(intel_dp)) {
3809 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3810 intel_dp->psr_dpcd,
3811 sizeof(intel_dp->psr_dpcd));
3812 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3813 dev_priv->psr.sink_support = true;
3814 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3815 }
3816 }
3817
3818 /* Training Pattern 3 support */
3819 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3820 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3821 intel_dp->use_tps3 = true;
3822 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3823 } else
3824 intel_dp->use_tps3 = false;
3825
3826 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3827 DP_DWN_STRM_PORT_PRESENT))
3828 return true; /* native DP sink */
3829
3830 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3831 return true; /* no per-port downstream info */
3832
3833 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3834 intel_dp->downstream_ports,
3835 DP_MAX_DOWNSTREAM_PORTS) < 0)
3836 return false; /* downstream port status fetch failed */
3837
3838 return true;
3839 }
3840
3841 static void
3842 intel_dp_probe_oui(struct intel_dp *intel_dp)
3843 {
3844 u8 buf[3];
3845
3846 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3847 return;
3848
3849 intel_edp_panel_vdd_on(intel_dp);
3850
3851 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3852 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3853 buf[0], buf[1], buf[2]);
3854
3855 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3856 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3857 buf[0], buf[1], buf[2]);
3858
3859 intel_edp_panel_vdd_off(intel_dp, false);
3860 }
3861
3862 static bool
3863 intel_dp_probe_mst(struct intel_dp *intel_dp)
3864 {
3865 u8 buf[1];
3866
3867 if (!intel_dp->can_mst)
3868 return false;
3869
3870 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3871 return false;
3872
3873 intel_edp_panel_vdd_on(intel_dp);
3874 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3875 if (buf[0] & DP_MST_CAP) {
3876 DRM_DEBUG_KMS("Sink is MST capable\n");
3877 intel_dp->is_mst = true;
3878 } else {
3879 DRM_DEBUG_KMS("Sink is not MST capable\n");
3880 intel_dp->is_mst = false;
3881 }
3882 }
3883 intel_edp_panel_vdd_off(intel_dp, false);
3884
3885 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3886 return intel_dp->is_mst;
3887 }
3888
3889 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3890 {
3891 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3892 struct drm_device *dev = intel_dig_port->base.base.dev;
3893 struct intel_crtc *intel_crtc =
3894 to_intel_crtc(intel_dig_port->base.base.crtc);
3895 u8 buf;
3896 int test_crc_count;
3897 int attempts = 6;
3898
3899 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3900 return -EIO;
3901
3902 if (!(buf & DP_TEST_CRC_SUPPORTED))
3903 return -ENOTTY;
3904
3905 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3906 return -EIO;
3907
3908 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3909 buf | DP_TEST_SINK_START) < 0)
3910 return -EIO;
3911
3912 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3913 return -EIO;
3914 test_crc_count = buf & DP_TEST_COUNT_MASK;
3915
3916 do {
3917 if (drm_dp_dpcd_readb(&intel_dp->aux,
3918 DP_TEST_SINK_MISC, &buf) < 0)
3919 return -EIO;
3920 intel_wait_for_vblank(dev, intel_crtc->pipe);
3921 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3922
3923 if (attempts == 0) {
3924 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
3925 return -EIO;
3926 }
3927
3928 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3929 return -EIO;
3930
3931 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3932 return -EIO;
3933 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3934 buf & ~DP_TEST_SINK_START) < 0)
3935 return -EIO;
3936
3937 return 0;
3938 }
3939
3940 static bool
3941 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3942 {
3943 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3944 DP_DEVICE_SERVICE_IRQ_VECTOR,
3945 sink_irq_vector, 1) == 1;
3946 }
3947
3948 static bool
3949 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3950 {
3951 int ret;
3952
3953 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3954 DP_SINK_COUNT_ESI,
3955 sink_irq_vector, 14);
3956 if (ret != 14)
3957 return false;
3958
3959 return true;
3960 }
3961
3962 static void
3963 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3964 {
3965 /* NAK by default */
3966 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3967 }
3968
3969 static int
3970 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3971 {
3972 bool bret;
3973
3974 if (intel_dp->is_mst) {
3975 u8 esi[16] = { 0 };
3976 int ret = 0;
3977 int retry;
3978 bool handled;
3979 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3980 go_again:
3981 if (bret == true) {
3982
3983 /* check link status - esi[10] = 0x200c */
3984 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3985 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3986 intel_dp_start_link_train(intel_dp);
3987 intel_dp_complete_link_train(intel_dp);
3988 intel_dp_stop_link_train(intel_dp);
3989 }
3990
3991 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3992 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3993
3994 if (handled) {
3995 for (retry = 0; retry < 3; retry++) {
3996 int wret;
3997 wret = drm_dp_dpcd_write(&intel_dp->aux,
3998 DP_SINK_COUNT_ESI+1,
3999 &esi[1], 3);
4000 if (wret == 3) {
4001 break;
4002 }
4003 }
4004
4005 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4006 if (bret == true) {
4007 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4008 goto go_again;
4009 }
4010 } else
4011 ret = 0;
4012
4013 return ret;
4014 } else {
4015 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4016 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4017 intel_dp->is_mst = false;
4018 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4019 /* send a hotplug event */
4020 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4021 }
4022 }
4023 return -EINVAL;
4024 }
4025
4026 /*
4027 * According to DP spec
4028 * 5.1.2:
4029 * 1. Read DPCD
4030 * 2. Configure link according to Receiver Capabilities
4031 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4032 * 4. Check link status on receipt of hot-plug interrupt
4033 */
4034 void
4035 intel_dp_check_link_status(struct intel_dp *intel_dp)
4036 {
4037 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4038 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4039 u8 sink_irq_vector;
4040 u8 link_status[DP_LINK_STATUS_SIZE];
4041
4042 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4043
4044 if (!intel_encoder->connectors_active)
4045 return;
4046
4047 if (WARN_ON(!intel_encoder->base.crtc))
4048 return;
4049
4050 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4051 return;
4052
4053 /* Try to read receiver status if the link appears to be up */
4054 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4055 return;
4056 }
4057
4058 /* Now read the DPCD to see if it's actually running */
4059 if (!intel_dp_get_dpcd(intel_dp)) {
4060 return;
4061 }
4062
4063 /* Try to read the source of the interrupt */
4064 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4065 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4066 /* Clear interrupt source */
4067 drm_dp_dpcd_writeb(&intel_dp->aux,
4068 DP_DEVICE_SERVICE_IRQ_VECTOR,
4069 sink_irq_vector);
4070
4071 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4072 intel_dp_handle_test_request(intel_dp);
4073 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4074 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4075 }
4076
4077 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4078 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4079 intel_encoder->base.name);
4080 intel_dp_start_link_train(intel_dp);
4081 intel_dp_complete_link_train(intel_dp);
4082 intel_dp_stop_link_train(intel_dp);
4083 }
4084 }
4085
4086 /* XXX this is probably wrong for multiple downstream ports */
4087 static enum drm_connector_status
4088 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4089 {
4090 uint8_t *dpcd = intel_dp->dpcd;
4091 uint8_t type;
4092
4093 if (!intel_dp_get_dpcd(intel_dp))
4094 return connector_status_disconnected;
4095
4096 /* if there's no downstream port, we're done */
4097 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4098 return connector_status_connected;
4099
4100 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4101 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4102 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4103 uint8_t reg;
4104
4105 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4106 &reg, 1) < 0)
4107 return connector_status_unknown;
4108
4109 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4110 : connector_status_disconnected;
4111 }
4112
4113 /* If no HPD, poke DDC gently */
4114 if (drm_probe_ddc(&intel_dp->aux.ddc))
4115 return connector_status_connected;
4116
4117 /* Well we tried, say unknown for unreliable port types */
4118 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4119 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4120 if (type == DP_DS_PORT_TYPE_VGA ||
4121 type == DP_DS_PORT_TYPE_NON_EDID)
4122 return connector_status_unknown;
4123 } else {
4124 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4125 DP_DWN_STRM_PORT_TYPE_MASK;
4126 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4127 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4128 return connector_status_unknown;
4129 }
4130
4131 /* Anything else is out of spec, warn and ignore */
4132 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4133 return connector_status_disconnected;
4134 }
4135
4136 static enum drm_connector_status
4137 edp_detect(struct intel_dp *intel_dp)
4138 {
4139 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4140 enum drm_connector_status status;
4141
4142 status = intel_panel_detect(dev);
4143 if (status == connector_status_unknown)
4144 status = connector_status_connected;
4145
4146 return status;
4147 }
4148
4149 static enum drm_connector_status
4150 ironlake_dp_detect(struct intel_dp *intel_dp)
4151 {
4152 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4153 struct drm_i915_private *dev_priv = dev->dev_private;
4154 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4155
4156 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4157 return connector_status_disconnected;
4158
4159 return intel_dp_detect_dpcd(intel_dp);
4160 }
4161
4162 static int g4x_digital_port_connected(struct drm_device *dev,
4163 struct intel_digital_port *intel_dig_port)
4164 {
4165 struct drm_i915_private *dev_priv = dev->dev_private;
4166 uint32_t bit;
4167
4168 if (IS_VALLEYVIEW(dev)) {
4169 switch (intel_dig_port->port) {
4170 case PORT_B:
4171 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4172 break;
4173 case PORT_C:
4174 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4175 break;
4176 case PORT_D:
4177 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4178 break;
4179 default:
4180 return -EINVAL;
4181 }
4182 } else {
4183 switch (intel_dig_port->port) {
4184 case PORT_B:
4185 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4186 break;
4187 case PORT_C:
4188 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4189 break;
4190 case PORT_D:
4191 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4192 break;
4193 default:
4194 return -EINVAL;
4195 }
4196 }
4197
4198 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4199 return 0;
4200 return 1;
4201 }
4202
4203 static enum drm_connector_status
4204 g4x_dp_detect(struct intel_dp *intel_dp)
4205 {
4206 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4207 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4208 int ret;
4209
4210 /* Can't disconnect eDP, but you can close the lid... */
4211 if (is_edp(intel_dp)) {
4212 enum drm_connector_status status;
4213
4214 status = intel_panel_detect(dev);
4215 if (status == connector_status_unknown)
4216 status = connector_status_connected;
4217 return status;
4218 }
4219
4220 ret = g4x_digital_port_connected(dev, intel_dig_port);
4221 if (ret == -EINVAL)
4222 return connector_status_unknown;
4223 else if (ret == 0)
4224 return connector_status_disconnected;
4225
4226 return intel_dp_detect_dpcd(intel_dp);
4227 }
4228
4229 static struct edid *
4230 intel_dp_get_edid(struct intel_dp *intel_dp)
4231 {
4232 struct intel_connector *intel_connector = intel_dp->attached_connector;
4233
4234 /* use cached edid if we have one */
4235 if (intel_connector->edid) {
4236 /* invalid edid */
4237 if (IS_ERR(intel_connector->edid))
4238 return NULL;
4239
4240 return drm_edid_duplicate(intel_connector->edid);
4241 } else
4242 return drm_get_edid(&intel_connector->base,
4243 &intel_dp->aux.ddc);
4244 }
4245
4246 static void
4247 intel_dp_set_edid(struct intel_dp *intel_dp)
4248 {
4249 struct intel_connector *intel_connector = intel_dp->attached_connector;
4250 struct edid *edid;
4251
4252 edid = intel_dp_get_edid(intel_dp);
4253 intel_connector->detect_edid = edid;
4254
4255 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4256 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4257 else
4258 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4259 }
4260
4261 static void
4262 intel_dp_unset_edid(struct intel_dp *intel_dp)
4263 {
4264 struct intel_connector *intel_connector = intel_dp->attached_connector;
4265
4266 kfree(intel_connector->detect_edid);
4267 intel_connector->detect_edid = NULL;
4268
4269 intel_dp->has_audio = false;
4270 }
4271
4272 static enum intel_display_power_domain
4273 intel_dp_power_get(struct intel_dp *dp)
4274 {
4275 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4276 enum intel_display_power_domain power_domain;
4277
4278 power_domain = intel_display_port_power_domain(encoder);
4279 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4280
4281 return power_domain;
4282 }
4283
4284 static void
4285 intel_dp_power_put(struct intel_dp *dp,
4286 enum intel_display_power_domain power_domain)
4287 {
4288 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4289 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4290 }
4291
4292 static enum drm_connector_status
4293 intel_dp_detect(struct drm_connector *connector, bool force)
4294 {
4295 struct intel_dp *intel_dp = intel_attached_dp(connector);
4296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4297 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4298 struct drm_device *dev = connector->dev;
4299 enum drm_connector_status status;
4300 enum intel_display_power_domain power_domain;
4301 bool ret;
4302
4303 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4304 connector->base.id, connector->name);
4305 intel_dp_unset_edid(intel_dp);
4306
4307 if (intel_dp->is_mst) {
4308 /* MST devices are disconnected from a monitor POV */
4309 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4310 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4311 return connector_status_disconnected;
4312 }
4313
4314 power_domain = intel_dp_power_get(intel_dp);
4315
4316 /* Can't disconnect eDP, but you can close the lid... */
4317 if (is_edp(intel_dp))
4318 status = edp_detect(intel_dp);
4319 else if (HAS_PCH_SPLIT(dev))
4320 status = ironlake_dp_detect(intel_dp);
4321 else
4322 status = g4x_dp_detect(intel_dp);
4323 if (status != connector_status_connected)
4324 goto out;
4325
4326 intel_dp_probe_oui(intel_dp);
4327
4328 ret = intel_dp_probe_mst(intel_dp);
4329 if (ret) {
4330 /* if we are in MST mode then this connector
4331 won't appear connected or have anything with EDID on it */
4332 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4333 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4334 status = connector_status_disconnected;
4335 goto out;
4336 }
4337
4338 intel_dp_set_edid(intel_dp);
4339
4340 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4341 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4342 status = connector_status_connected;
4343
4344 out:
4345 intel_dp_power_put(intel_dp, power_domain);
4346 return status;
4347 }
4348
4349 static void
4350 intel_dp_force(struct drm_connector *connector)
4351 {
4352 struct intel_dp *intel_dp = intel_attached_dp(connector);
4353 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4354 enum intel_display_power_domain power_domain;
4355
4356 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4357 connector->base.id, connector->name);
4358 intel_dp_unset_edid(intel_dp);
4359
4360 if (connector->status != connector_status_connected)
4361 return;
4362
4363 power_domain = intel_dp_power_get(intel_dp);
4364
4365 intel_dp_set_edid(intel_dp);
4366
4367 intel_dp_power_put(intel_dp, power_domain);
4368
4369 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4370 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4371 }
4372
4373 static int intel_dp_get_modes(struct drm_connector *connector)
4374 {
4375 struct intel_connector *intel_connector = to_intel_connector(connector);
4376 struct edid *edid;
4377
4378 edid = intel_connector->detect_edid;
4379 if (edid) {
4380 int ret = intel_connector_update_modes(connector, edid);
4381 if (ret)
4382 return ret;
4383 }
4384
4385 /* if eDP has no EDID, fall back to fixed mode */
4386 if (is_edp(intel_attached_dp(connector)) &&
4387 intel_connector->panel.fixed_mode) {
4388 struct drm_display_mode *mode;
4389
4390 mode = drm_mode_duplicate(connector->dev,
4391 intel_connector->panel.fixed_mode);
4392 if (mode) {
4393 drm_mode_probed_add(connector, mode);
4394 return 1;
4395 }
4396 }
4397
4398 return 0;
4399 }
4400
4401 static bool
4402 intel_dp_detect_audio(struct drm_connector *connector)
4403 {
4404 bool has_audio = false;
4405 struct edid *edid;
4406
4407 edid = to_intel_connector(connector)->detect_edid;
4408 if (edid)
4409 has_audio = drm_detect_monitor_audio(edid);
4410
4411 return has_audio;
4412 }
4413
4414 static int
4415 intel_dp_set_property(struct drm_connector *connector,
4416 struct drm_property *property,
4417 uint64_t val)
4418 {
4419 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4420 struct intel_connector *intel_connector = to_intel_connector(connector);
4421 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4422 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4423 int ret;
4424
4425 ret = drm_object_property_set_value(&connector->base, property, val);
4426 if (ret)
4427 return ret;
4428
4429 if (property == dev_priv->force_audio_property) {
4430 int i = val;
4431 bool has_audio;
4432
4433 if (i == intel_dp->force_audio)
4434 return 0;
4435
4436 intel_dp->force_audio = i;
4437
4438 if (i == HDMI_AUDIO_AUTO)
4439 has_audio = intel_dp_detect_audio(connector);
4440 else
4441 has_audio = (i == HDMI_AUDIO_ON);
4442
4443 if (has_audio == intel_dp->has_audio)
4444 return 0;
4445
4446 intel_dp->has_audio = has_audio;
4447 goto done;
4448 }
4449
4450 if (property == dev_priv->broadcast_rgb_property) {
4451 bool old_auto = intel_dp->color_range_auto;
4452 uint32_t old_range = intel_dp->color_range;
4453
4454 switch (val) {
4455 case INTEL_BROADCAST_RGB_AUTO:
4456 intel_dp->color_range_auto = true;
4457 break;
4458 case INTEL_BROADCAST_RGB_FULL:
4459 intel_dp->color_range_auto = false;
4460 intel_dp->color_range = 0;
4461 break;
4462 case INTEL_BROADCAST_RGB_LIMITED:
4463 intel_dp->color_range_auto = false;
4464 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4465 break;
4466 default:
4467 return -EINVAL;
4468 }
4469
4470 if (old_auto == intel_dp->color_range_auto &&
4471 old_range == intel_dp->color_range)
4472 return 0;
4473
4474 goto done;
4475 }
4476
4477 if (is_edp(intel_dp) &&
4478 property == connector->dev->mode_config.scaling_mode_property) {
4479 if (val == DRM_MODE_SCALE_NONE) {
4480 DRM_DEBUG_KMS("no scaling not supported\n");
4481 return -EINVAL;
4482 }
4483
4484 if (intel_connector->panel.fitting_mode == val) {
4485 /* the eDP scaling property is not changed */
4486 return 0;
4487 }
4488 intel_connector->panel.fitting_mode = val;
4489
4490 goto done;
4491 }
4492
4493 return -EINVAL;
4494
4495 done:
4496 if (intel_encoder->base.crtc)
4497 intel_crtc_restore_mode(intel_encoder->base.crtc);
4498
4499 return 0;
4500 }
4501
4502 static void
4503 intel_dp_connector_destroy(struct drm_connector *connector)
4504 {
4505 struct intel_connector *intel_connector = to_intel_connector(connector);
4506
4507 kfree(intel_connector->detect_edid);
4508
4509 if (!IS_ERR_OR_NULL(intel_connector->edid))
4510 kfree(intel_connector->edid);
4511
4512 /* Can't call is_edp() since the encoder may have been destroyed
4513 * already. */
4514 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4515 intel_panel_fini(&intel_connector->panel);
4516
4517 drm_connector_cleanup(connector);
4518 kfree(connector);
4519 }
4520
4521 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4522 {
4523 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4524 struct intel_dp *intel_dp = &intel_dig_port->dp;
4525
4526 drm_dp_aux_unregister(&intel_dp->aux);
4527 intel_dp_mst_encoder_cleanup(intel_dig_port);
4528 drm_encoder_cleanup(encoder);
4529 if (is_edp(intel_dp)) {
4530 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4531 /*
4532 * vdd might still be enabled do to the delayed vdd off.
4533 * Make sure vdd is actually turned off here.
4534 */
4535 pps_lock(intel_dp);
4536 edp_panel_vdd_off_sync(intel_dp);
4537 pps_unlock(intel_dp);
4538
4539 if (intel_dp->edp_notifier.notifier_call) {
4540 unregister_reboot_notifier(&intel_dp->edp_notifier);
4541 intel_dp->edp_notifier.notifier_call = NULL;
4542 }
4543 }
4544 kfree(intel_dig_port);
4545 }
4546
4547 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4548 {
4549 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4550
4551 if (!is_edp(intel_dp))
4552 return;
4553
4554 /*
4555 * vdd might still be enabled do to the delayed vdd off.
4556 * Make sure vdd is actually turned off here.
4557 */
4558 pps_lock(intel_dp);
4559 edp_panel_vdd_off_sync(intel_dp);
4560 pps_unlock(intel_dp);
4561 }
4562
4563 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4564 {
4565 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4566 }
4567
4568 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4569 .dpms = intel_connector_dpms,
4570 .detect = intel_dp_detect,
4571 .force = intel_dp_force,
4572 .fill_modes = drm_helper_probe_single_connector_modes,
4573 .set_property = intel_dp_set_property,
4574 .destroy = intel_dp_connector_destroy,
4575 };
4576
4577 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4578 .get_modes = intel_dp_get_modes,
4579 .mode_valid = intel_dp_mode_valid,
4580 .best_encoder = intel_best_encoder,
4581 };
4582
4583 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4584 .reset = intel_dp_encoder_reset,
4585 .destroy = intel_dp_encoder_destroy,
4586 };
4587
4588 void
4589 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4590 {
4591 return;
4592 }
4593
4594 bool
4595 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4596 {
4597 struct intel_dp *intel_dp = &intel_dig_port->dp;
4598 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4599 struct drm_device *dev = intel_dig_port->base.base.dev;
4600 struct drm_i915_private *dev_priv = dev->dev_private;
4601 enum intel_display_power_domain power_domain;
4602 bool ret = true;
4603
4604 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4605 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4606
4607 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4608 port_name(intel_dig_port->port),
4609 long_hpd ? "long" : "short");
4610
4611 power_domain = intel_display_port_power_domain(intel_encoder);
4612 intel_display_power_get(dev_priv, power_domain);
4613
4614 if (long_hpd) {
4615
4616 if (HAS_PCH_SPLIT(dev)) {
4617 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4618 goto mst_fail;
4619 } else {
4620 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4621 goto mst_fail;
4622 }
4623
4624 if (!intel_dp_get_dpcd(intel_dp)) {
4625 goto mst_fail;
4626 }
4627
4628 intel_dp_probe_oui(intel_dp);
4629
4630 if (!intel_dp_probe_mst(intel_dp))
4631 goto mst_fail;
4632
4633 } else {
4634 if (intel_dp->is_mst) {
4635 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4636 goto mst_fail;
4637 }
4638
4639 if (!intel_dp->is_mst) {
4640 /*
4641 * we'll check the link status via the normal hot plug path later -
4642 * but for short hpds we should check it now
4643 */
4644 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4645 intel_dp_check_link_status(intel_dp);
4646 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4647 }
4648 }
4649 ret = false;
4650 goto put_power;
4651 mst_fail:
4652 /* if we were in MST mode, and device is not there get out of MST mode */
4653 if (intel_dp->is_mst) {
4654 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4655 intel_dp->is_mst = false;
4656 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4657 }
4658 put_power:
4659 intel_display_power_put(dev_priv, power_domain);
4660
4661 return ret;
4662 }
4663
4664 /* Return which DP Port should be selected for Transcoder DP control */
4665 int
4666 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4667 {
4668 struct drm_device *dev = crtc->dev;
4669 struct intel_encoder *intel_encoder;
4670 struct intel_dp *intel_dp;
4671
4672 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4673 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4674
4675 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4676 intel_encoder->type == INTEL_OUTPUT_EDP)
4677 return intel_dp->output_reg;
4678 }
4679
4680 return -1;
4681 }
4682
4683 /* check the VBT to see whether the eDP is on DP-D port */
4684 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4685 {
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687 union child_device_config *p_child;
4688 int i;
4689 static const short port_mapping[] = {
4690 [PORT_B] = PORT_IDPB,
4691 [PORT_C] = PORT_IDPC,
4692 [PORT_D] = PORT_IDPD,
4693 };
4694
4695 if (port == PORT_A)
4696 return true;
4697
4698 if (!dev_priv->vbt.child_dev_num)
4699 return false;
4700
4701 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4702 p_child = dev_priv->vbt.child_dev + i;
4703
4704 if (p_child->common.dvo_port == port_mapping[port] &&
4705 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4706 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4707 return true;
4708 }
4709 return false;
4710 }
4711
4712 void
4713 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4714 {
4715 struct intel_connector *intel_connector = to_intel_connector(connector);
4716
4717 intel_attach_force_audio_property(connector);
4718 intel_attach_broadcast_rgb_property(connector);
4719 intel_dp->color_range_auto = true;
4720
4721 if (is_edp(intel_dp)) {
4722 drm_mode_create_scaling_mode_property(connector->dev);
4723 drm_object_attach_property(
4724 &connector->base,
4725 connector->dev->mode_config.scaling_mode_property,
4726 DRM_MODE_SCALE_ASPECT);
4727 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4728 }
4729 }
4730
4731 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4732 {
4733 intel_dp->last_power_cycle = jiffies;
4734 intel_dp->last_power_on = jiffies;
4735 intel_dp->last_backlight_off = jiffies;
4736 }
4737
4738 static void
4739 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4740 struct intel_dp *intel_dp,
4741 struct edp_power_seq *out)
4742 {
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 struct edp_power_seq cur, vbt, spec, final;
4745 u32 pp_on, pp_off, pp_div, pp;
4746 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4747
4748 lockdep_assert_held(&dev_priv->pps_mutex);
4749
4750 if (HAS_PCH_SPLIT(dev)) {
4751 pp_ctrl_reg = PCH_PP_CONTROL;
4752 pp_on_reg = PCH_PP_ON_DELAYS;
4753 pp_off_reg = PCH_PP_OFF_DELAYS;
4754 pp_div_reg = PCH_PP_DIVISOR;
4755 } else {
4756 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4757
4758 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4759 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4760 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4761 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4762 }
4763
4764 /* Workaround: Need to write PP_CONTROL with the unlock key as
4765 * the very first thing. */
4766 pp = ironlake_get_pp_control(intel_dp);
4767 I915_WRITE(pp_ctrl_reg, pp);
4768
4769 pp_on = I915_READ(pp_on_reg);
4770 pp_off = I915_READ(pp_off_reg);
4771 pp_div = I915_READ(pp_div_reg);
4772
4773 /* Pull timing values out of registers */
4774 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4775 PANEL_POWER_UP_DELAY_SHIFT;
4776
4777 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4778 PANEL_LIGHT_ON_DELAY_SHIFT;
4779
4780 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4781 PANEL_LIGHT_OFF_DELAY_SHIFT;
4782
4783 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4784 PANEL_POWER_DOWN_DELAY_SHIFT;
4785
4786 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4787 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4788
4789 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4790 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4791
4792 vbt = dev_priv->vbt.edp_pps;
4793
4794 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4795 * our hw here, which are all in 100usec. */
4796 spec.t1_t3 = 210 * 10;
4797 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4798 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4799 spec.t10 = 500 * 10;
4800 /* This one is special and actually in units of 100ms, but zero
4801 * based in the hw (so we need to add 100 ms). But the sw vbt
4802 * table multiplies it with 1000 to make it in units of 100usec,
4803 * too. */
4804 spec.t11_t12 = (510 + 100) * 10;
4805
4806 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4807 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4808
4809 /* Use the max of the register settings and vbt. If both are
4810 * unset, fall back to the spec limits. */
4811 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4812 spec.field : \
4813 max(cur.field, vbt.field))
4814 assign_final(t1_t3);
4815 assign_final(t8);
4816 assign_final(t9);
4817 assign_final(t10);
4818 assign_final(t11_t12);
4819 #undef assign_final
4820
4821 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4822 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4823 intel_dp->backlight_on_delay = get_delay(t8);
4824 intel_dp->backlight_off_delay = get_delay(t9);
4825 intel_dp->panel_power_down_delay = get_delay(t10);
4826 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4827 #undef get_delay
4828
4829 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4830 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4831 intel_dp->panel_power_cycle_delay);
4832
4833 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4834 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4835
4836 if (out)
4837 *out = final;
4838 }
4839
4840 static void
4841 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4842 struct intel_dp *intel_dp,
4843 struct edp_power_seq *seq)
4844 {
4845 struct drm_i915_private *dev_priv = dev->dev_private;
4846 u32 pp_on, pp_off, pp_div, port_sel = 0;
4847 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4848 int pp_on_reg, pp_off_reg, pp_div_reg;
4849 enum port port = dp_to_dig_port(intel_dp)->port;
4850
4851 lockdep_assert_held(&dev_priv->pps_mutex);
4852
4853 if (HAS_PCH_SPLIT(dev)) {
4854 pp_on_reg = PCH_PP_ON_DELAYS;
4855 pp_off_reg = PCH_PP_OFF_DELAYS;
4856 pp_div_reg = PCH_PP_DIVISOR;
4857 } else {
4858 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4859
4860 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4861 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4862 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4863 }
4864
4865 /*
4866 * And finally store the new values in the power sequencer. The
4867 * backlight delays are set to 1 because we do manual waits on them. For
4868 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4869 * we'll end up waiting for the backlight off delay twice: once when we
4870 * do the manual sleep, and once when we disable the panel and wait for
4871 * the PP_STATUS bit to become zero.
4872 */
4873 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4874 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4875 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4876 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4877 /* Compute the divisor for the pp clock, simply match the Bspec
4878 * formula. */
4879 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4880 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4881 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4882
4883 /* Haswell doesn't have any port selection bits for the panel
4884 * power sequencer any more. */
4885 if (IS_VALLEYVIEW(dev)) {
4886 port_sel = PANEL_PORT_SELECT_VLV(port);
4887 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4888 if (port == PORT_A)
4889 port_sel = PANEL_PORT_SELECT_DPA;
4890 else
4891 port_sel = PANEL_PORT_SELECT_DPD;
4892 }
4893
4894 pp_on |= port_sel;
4895
4896 I915_WRITE(pp_on_reg, pp_on);
4897 I915_WRITE(pp_off_reg, pp_off);
4898 I915_WRITE(pp_div_reg, pp_div);
4899
4900 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4901 I915_READ(pp_on_reg),
4902 I915_READ(pp_off_reg),
4903 I915_READ(pp_div_reg));
4904 }
4905
4906 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4907 {
4908 struct drm_i915_private *dev_priv = dev->dev_private;
4909 struct intel_encoder *encoder;
4910 struct intel_dp *intel_dp = NULL;
4911 struct intel_crtc_config *config = NULL;
4912 struct intel_crtc *intel_crtc = NULL;
4913 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4914 u32 reg, val;
4915 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4916
4917 if (refresh_rate <= 0) {
4918 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4919 return;
4920 }
4921
4922 if (intel_connector == NULL) {
4923 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4924 return;
4925 }
4926
4927 /*
4928 * FIXME: This needs proper synchronization with psr state. But really
4929 * hard to tell without seeing the user of this function of this code.
4930 * Check locking and ordering once that lands.
4931 */
4932 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4933 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4934 return;
4935 }
4936
4937 encoder = intel_attached_encoder(&intel_connector->base);
4938 intel_dp = enc_to_intel_dp(&encoder->base);
4939 intel_crtc = encoder->new_crtc;
4940
4941 if (!intel_crtc) {
4942 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4943 return;
4944 }
4945
4946 config = &intel_crtc->config;
4947
4948 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4949 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4950 return;
4951 }
4952
4953 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4954 index = DRRS_LOW_RR;
4955
4956 if (index == intel_dp->drrs_state.refresh_rate_type) {
4957 DRM_DEBUG_KMS(
4958 "DRRS requested for previously set RR...ignoring\n");
4959 return;
4960 }
4961
4962 if (!intel_crtc->active) {
4963 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4964 return;
4965 }
4966
4967 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4968 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4969 val = I915_READ(reg);
4970 if (index > DRRS_HIGH_RR) {
4971 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4972 intel_dp_set_m_n(intel_crtc);
4973 } else {
4974 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4975 }
4976 I915_WRITE(reg, val);
4977 }
4978
4979 /*
4980 * mutex taken to ensure that there is no race between differnt
4981 * drrs calls trying to update refresh rate. This scenario may occur
4982 * in future when idleness detection based DRRS in kernel and
4983 * possible calls from user space to set differnt RR are made.
4984 */
4985
4986 mutex_lock(&intel_dp->drrs_state.mutex);
4987
4988 intel_dp->drrs_state.refresh_rate_type = index;
4989
4990 mutex_unlock(&intel_dp->drrs_state.mutex);
4991
4992 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4993 }
4994
4995 static struct drm_display_mode *
4996 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4997 struct intel_connector *intel_connector,
4998 struct drm_display_mode *fixed_mode)
4999 {
5000 struct drm_connector *connector = &intel_connector->base;
5001 struct intel_dp *intel_dp = &intel_dig_port->dp;
5002 struct drm_device *dev = intel_dig_port->base.base.dev;
5003 struct drm_i915_private *dev_priv = dev->dev_private;
5004 struct drm_display_mode *downclock_mode = NULL;
5005
5006 if (INTEL_INFO(dev)->gen <= 6) {
5007 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5008 return NULL;
5009 }
5010
5011 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5012 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5013 return NULL;
5014 }
5015
5016 downclock_mode = intel_find_panel_downclock
5017 (dev, fixed_mode, connector);
5018
5019 if (!downclock_mode) {
5020 DRM_DEBUG_KMS("DRRS not supported\n");
5021 return NULL;
5022 }
5023
5024 dev_priv->drrs.connector = intel_connector;
5025
5026 mutex_init(&intel_dp->drrs_state.mutex);
5027
5028 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5029
5030 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5031 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5032 return downclock_mode;
5033 }
5034
5035 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
5036 {
5037 struct drm_device *dev = intel_encoder->base.dev;
5038 struct drm_i915_private *dev_priv = dev->dev_private;
5039 struct intel_dp *intel_dp;
5040 enum intel_display_power_domain power_domain;
5041
5042 if (intel_encoder->type != INTEL_OUTPUT_EDP)
5043 return;
5044
5045 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5046
5047 pps_lock(intel_dp);
5048
5049 if (!edp_have_panel_vdd(intel_dp))
5050 goto out;
5051 /*
5052 * The VDD bit needs a power domain reference, so if the bit is
5053 * already enabled when we boot or resume, grab this reference and
5054 * schedule a vdd off, so we don't hold on to the reference
5055 * indefinitely.
5056 */
5057 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5058 power_domain = intel_display_port_power_domain(intel_encoder);
5059 intel_display_power_get(dev_priv, power_domain);
5060
5061 edp_panel_vdd_schedule_off(intel_dp);
5062 out:
5063 pps_unlock(intel_dp);
5064 }
5065
5066 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5067 struct intel_connector *intel_connector,
5068 struct edp_power_seq *power_seq)
5069 {
5070 struct drm_connector *connector = &intel_connector->base;
5071 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5072 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5073 struct drm_device *dev = intel_encoder->base.dev;
5074 struct drm_i915_private *dev_priv = dev->dev_private;
5075 struct drm_display_mode *fixed_mode = NULL;
5076 struct drm_display_mode *downclock_mode = NULL;
5077 bool has_dpcd;
5078 struct drm_display_mode *scan;
5079 struct edid *edid;
5080
5081 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5082
5083 if (!is_edp(intel_dp))
5084 return true;
5085
5086 intel_edp_panel_vdd_sanitize(intel_encoder);
5087
5088 /* Cache DPCD and EDID for edp. */
5089 intel_edp_panel_vdd_on(intel_dp);
5090 has_dpcd = intel_dp_get_dpcd(intel_dp);
5091 intel_edp_panel_vdd_off(intel_dp, false);
5092
5093 if (has_dpcd) {
5094 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5095 dev_priv->no_aux_handshake =
5096 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5097 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5098 } else {
5099 /* if this fails, presume the device is a ghost */
5100 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5101 return false;
5102 }
5103
5104 /* We now know it's not a ghost, init power sequence regs. */
5105 pps_lock(intel_dp);
5106 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
5107 pps_unlock(intel_dp);
5108
5109 mutex_lock(&dev->mode_config.mutex);
5110 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5111 if (edid) {
5112 if (drm_add_edid_modes(connector, edid)) {
5113 drm_mode_connector_update_edid_property(connector,
5114 edid);
5115 drm_edid_to_eld(connector, edid);
5116 } else {
5117 kfree(edid);
5118 edid = ERR_PTR(-EINVAL);
5119 }
5120 } else {
5121 edid = ERR_PTR(-ENOENT);
5122 }
5123 intel_connector->edid = edid;
5124
5125 /* prefer fixed mode from EDID if available */
5126 list_for_each_entry(scan, &connector->probed_modes, head) {
5127 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5128 fixed_mode = drm_mode_duplicate(dev, scan);
5129 downclock_mode = intel_dp_drrs_init(
5130 intel_dig_port,
5131 intel_connector, fixed_mode);
5132 break;
5133 }
5134 }
5135
5136 /* fallback to VBT if available for eDP */
5137 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5138 fixed_mode = drm_mode_duplicate(dev,
5139 dev_priv->vbt.lfp_lvds_vbt_mode);
5140 if (fixed_mode)
5141 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5142 }
5143 mutex_unlock(&dev->mode_config.mutex);
5144
5145 if (IS_VALLEYVIEW(dev)) {
5146 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5147 register_reboot_notifier(&intel_dp->edp_notifier);
5148 }
5149
5150 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5151 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5152 intel_panel_setup_backlight(connector);
5153
5154 return true;
5155 }
5156
5157 bool
5158 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5159 struct intel_connector *intel_connector)
5160 {
5161 struct drm_connector *connector = &intel_connector->base;
5162 struct intel_dp *intel_dp = &intel_dig_port->dp;
5163 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5164 struct drm_device *dev = intel_encoder->base.dev;
5165 struct drm_i915_private *dev_priv = dev->dev_private;
5166 enum port port = intel_dig_port->port;
5167 struct edp_power_seq power_seq = { 0 };
5168 int type;
5169
5170 intel_dp->pps_pipe = INVALID_PIPE;
5171
5172 /* intel_dp vfuncs */
5173 if (INTEL_INFO(dev)->gen >= 9)
5174 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5175 else if (IS_VALLEYVIEW(dev))
5176 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5177 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5178 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5179 else if (HAS_PCH_SPLIT(dev))
5180 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5181 else
5182 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5183
5184 if (INTEL_INFO(dev)->gen >= 9)
5185 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5186 else
5187 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5188
5189 /* Preserve the current hw state. */
5190 intel_dp->DP = I915_READ(intel_dp->output_reg);
5191 intel_dp->attached_connector = intel_connector;
5192
5193 if (intel_dp_is_edp(dev, port))
5194 type = DRM_MODE_CONNECTOR_eDP;
5195 else
5196 type = DRM_MODE_CONNECTOR_DisplayPort;
5197
5198 /*
5199 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5200 * for DP the encoder type can be set by the caller to
5201 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5202 */
5203 if (type == DRM_MODE_CONNECTOR_eDP)
5204 intel_encoder->type = INTEL_OUTPUT_EDP;
5205
5206 /* eDP only on port B and/or C on vlv/chv */
5207 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5208 port != PORT_B && port != PORT_C))
5209 return false;
5210
5211 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5212 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5213 port_name(port));
5214
5215 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5216 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5217
5218 connector->interlace_allowed = true;
5219 connector->doublescan_allowed = 0;
5220
5221 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5222 edp_panel_vdd_work);
5223
5224 intel_connector_attach_encoder(intel_connector, intel_encoder);
5225 drm_connector_register(connector);
5226
5227 if (HAS_DDI(dev))
5228 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5229 else
5230 intel_connector->get_hw_state = intel_connector_get_hw_state;
5231 intel_connector->unregister = intel_dp_connector_unregister;
5232
5233 /* Set up the hotplug pin. */
5234 switch (port) {
5235 case PORT_A:
5236 intel_encoder->hpd_pin = HPD_PORT_A;
5237 break;
5238 case PORT_B:
5239 intel_encoder->hpd_pin = HPD_PORT_B;
5240 break;
5241 case PORT_C:
5242 intel_encoder->hpd_pin = HPD_PORT_C;
5243 break;
5244 case PORT_D:
5245 intel_encoder->hpd_pin = HPD_PORT_D;
5246 break;
5247 default:
5248 BUG();
5249 }
5250
5251 if (is_edp(intel_dp)) {
5252 pps_lock(intel_dp);
5253 if (IS_VALLEYVIEW(dev)) {
5254 vlv_initial_power_sequencer_setup(intel_dp);
5255 } else {
5256 intel_dp_init_panel_power_timestamps(intel_dp);
5257 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5258 &power_seq);
5259 }
5260 pps_unlock(intel_dp);
5261 }
5262
5263 intel_dp_aux_init(intel_dp, intel_connector);
5264
5265 /* init MST on ports that can support it */
5266 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5267 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5268 intel_dp_mst_encoder_init(intel_dig_port,
5269 intel_connector->base.base.id);
5270 }
5271 }
5272
5273 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5274 drm_dp_aux_unregister(&intel_dp->aux);
5275 if (is_edp(intel_dp)) {
5276 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5277 /*
5278 * vdd might still be enabled do to the delayed vdd off.
5279 * Make sure vdd is actually turned off here.
5280 */
5281 pps_lock(intel_dp);
5282 edp_panel_vdd_off_sync(intel_dp);
5283 pps_unlock(intel_dp);
5284 }
5285 drm_connector_unregister(connector);
5286 drm_connector_cleanup(connector);
5287 return false;
5288 }
5289
5290 intel_dp_add_properties(intel_dp, connector);
5291
5292 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5293 * 0xd. Failure to do so will result in spurious interrupts being
5294 * generated on the port when a cable is not attached.
5295 */
5296 if (IS_G4X(dev) && !IS_GM45(dev)) {
5297 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5298 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5299 }
5300
5301 return true;
5302 }
5303
5304 void
5305 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5306 {
5307 struct drm_i915_private *dev_priv = dev->dev_private;
5308 struct intel_digital_port *intel_dig_port;
5309 struct intel_encoder *intel_encoder;
5310 struct drm_encoder *encoder;
5311 struct intel_connector *intel_connector;
5312
5313 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5314 if (!intel_dig_port)
5315 return;
5316
5317 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5318 if (!intel_connector) {
5319 kfree(intel_dig_port);
5320 return;
5321 }
5322
5323 intel_encoder = &intel_dig_port->base;
5324 encoder = &intel_encoder->base;
5325
5326 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5327 DRM_MODE_ENCODER_TMDS);
5328
5329 intel_encoder->compute_config = intel_dp_compute_config;
5330 intel_encoder->disable = intel_disable_dp;
5331 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5332 intel_encoder->get_config = intel_dp_get_config;
5333 intel_encoder->suspend = intel_dp_encoder_suspend;
5334 if (IS_CHERRYVIEW(dev)) {
5335 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5336 intel_encoder->pre_enable = chv_pre_enable_dp;
5337 intel_encoder->enable = vlv_enable_dp;
5338 intel_encoder->post_disable = chv_post_disable_dp;
5339 } else if (IS_VALLEYVIEW(dev)) {
5340 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5341 intel_encoder->pre_enable = vlv_pre_enable_dp;
5342 intel_encoder->enable = vlv_enable_dp;
5343 intel_encoder->post_disable = vlv_post_disable_dp;
5344 } else {
5345 intel_encoder->pre_enable = g4x_pre_enable_dp;
5346 intel_encoder->enable = g4x_enable_dp;
5347 if (INTEL_INFO(dev)->gen >= 5)
5348 intel_encoder->post_disable = ilk_post_disable_dp;
5349 }
5350
5351 intel_dig_port->port = port;
5352 intel_dig_port->dp.output_reg = output_reg;
5353
5354 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5355 if (IS_CHERRYVIEW(dev)) {
5356 if (port == PORT_D)
5357 intel_encoder->crtc_mask = 1 << 2;
5358 else
5359 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5360 } else {
5361 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5362 }
5363 intel_encoder->cloneable = 0;
5364 intel_encoder->hot_plug = intel_dp_hot_plug;
5365
5366 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5367 dev_priv->hpd_irq_port[port] = intel_dig_port;
5368
5369 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5370 drm_encoder_cleanup(encoder);
5371 kfree(intel_dig_port);
5372 kfree(intel_connector);
5373 }
5374 }
5375
5376 void intel_dp_mst_suspend(struct drm_device *dev)
5377 {
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 int i;
5380
5381 /* disable MST */
5382 for (i = 0; i < I915_MAX_PORTS; i++) {
5383 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5384 if (!intel_dig_port)
5385 continue;
5386
5387 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5388 if (!intel_dig_port->dp.can_mst)
5389 continue;
5390 if (intel_dig_port->dp.is_mst)
5391 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5392 }
5393 }
5394 }
5395
5396 void intel_dp_mst_resume(struct drm_device *dev)
5397 {
5398 struct drm_i915_private *dev_priv = dev->dev_private;
5399 int i;
5400
5401 for (i = 0; i < I915_MAX_PORTS; i++) {
5402 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5403 if (!intel_dig_port)
5404 continue;
5405 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5406 int ret;
5407
5408 if (!intel_dig_port->dp.can_mst)
5409 continue;
5410
5411 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5412 if (ret != 0) {
5413 intel_dp_check_mst_status(&intel_dig_port->dp);
5414 }
5415 }
5416 }
5417 }
This page took 0.143681 seconds and 5 git commands to generate.