drm/i915: tame the chattermouth (v2)
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
117 static void vlv_steal_power_sequencer(struct drm_device *dev,
118 enum pipe pipe);
119
120 int
121 intel_dp_max_link_bw(struct intel_dp *intel_dp)
122 {
123 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
124 struct drm_device *dev = intel_dp->attached_connector->base.dev;
125
126 switch (max_link_bw) {
127 case DP_LINK_BW_1_62:
128 case DP_LINK_BW_2_7:
129 break;
130 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
131 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
132 INTEL_INFO(dev)->gen >= 8) &&
133 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
134 max_link_bw = DP_LINK_BW_5_4;
135 else
136 max_link_bw = DP_LINK_BW_2_7;
137 break;
138 default:
139 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
140 max_link_bw);
141 max_link_bw = DP_LINK_BW_1_62;
142 break;
143 }
144 return max_link_bw;
145 }
146
147 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
148 {
149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150 struct drm_device *dev = intel_dig_port->base.base.dev;
151 u8 source_max, sink_max;
152
153 source_max = 4;
154 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
155 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
156 source_max = 2;
157
158 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
159
160 return min(source_max, sink_max);
161 }
162
163 /*
164 * The units on the numbers in the next two are... bizarre. Examples will
165 * make it clearer; this one parallels an example in the eDP spec.
166 *
167 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
168 *
169 * 270000 * 1 * 8 / 10 == 216000
170 *
171 * The actual data capacity of that configuration is 2.16Gbit/s, so the
172 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
173 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
174 * 119000. At 18bpp that's 2142000 kilobits per second.
175 *
176 * Thus the strange-looking division by 10 in intel_dp_link_required, to
177 * get the result in decakilobits instead of kilobits.
178 */
179
180 static int
181 intel_dp_link_required(int pixel_clock, int bpp)
182 {
183 return (pixel_clock * bpp + 9) / 10;
184 }
185
186 static int
187 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
188 {
189 return (max_link_clock * max_lanes * 8) / 10;
190 }
191
192 static enum drm_mode_status
193 intel_dp_mode_valid(struct drm_connector *connector,
194 struct drm_display_mode *mode)
195 {
196 struct intel_dp *intel_dp = intel_attached_dp(connector);
197 struct intel_connector *intel_connector = to_intel_connector(connector);
198 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
199 int target_clock = mode->clock;
200 int max_rate, mode_rate, max_lanes, max_link_clock;
201
202 if (is_edp(intel_dp) && fixed_mode) {
203 if (mode->hdisplay > fixed_mode->hdisplay)
204 return MODE_PANEL;
205
206 if (mode->vdisplay > fixed_mode->vdisplay)
207 return MODE_PANEL;
208
209 target_clock = fixed_mode->clock;
210 }
211
212 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
213 max_lanes = intel_dp_max_lane_count(intel_dp);
214
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216 mode_rate = intel_dp_link_required(target_clock, 18);
217
218 if (mode_rate > max_rate)
219 return MODE_CLOCK_HIGH;
220
221 if (mode->clock < 10000)
222 return MODE_CLOCK_LOW;
223
224 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
225 return MODE_H_ILLEGAL;
226
227 return MODE_OK;
228 }
229
230 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
231 {
232 int i;
233 uint32_t v = 0;
234
235 if (src_bytes > 4)
236 src_bytes = 4;
237 for (i = 0; i < src_bytes; i++)
238 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239 return v;
240 }
241
242 void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244 int i;
245 if (dst_bytes > 4)
246 dst_bytes = 4;
247 for (i = 0; i < dst_bytes; i++)
248 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 uint32_t clkcfg;
257
258 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
259 if (IS_VALLEYVIEW(dev))
260 return 200;
261
262 clkcfg = I915_READ(CLKCFG);
263 switch (clkcfg & CLKCFG_FSB_MASK) {
264 case CLKCFG_FSB_400:
265 return 100;
266 case CLKCFG_FSB_533:
267 return 133;
268 case CLKCFG_FSB_667:
269 return 166;
270 case CLKCFG_FSB_800:
271 return 200;
272 case CLKCFG_FSB_1067:
273 return 266;
274 case CLKCFG_FSB_1333:
275 return 333;
276 /* these two are just a guess; one of them might be right */
277 case CLKCFG_FSB_1600:
278 case CLKCFG_FSB_1600_ALT:
279 return 400;
280 default:
281 return 133;
282 }
283 }
284
285 static void
286 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
287 struct intel_dp *intel_dp);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp);
291
292 static void pps_lock(struct intel_dp *intel_dp)
293 {
294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295 struct intel_encoder *encoder = &intel_dig_port->base;
296 struct drm_device *dev = encoder->base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum intel_display_power_domain power_domain;
299
300 /*
301 * See vlv_power_sequencer_reset() why we need
302 * a power domain reference here.
303 */
304 power_domain = intel_display_port_power_domain(encoder);
305 intel_display_power_get(dev_priv, power_domain);
306
307 mutex_lock(&dev_priv->pps_mutex);
308 }
309
310 static void pps_unlock(struct intel_dp *intel_dp)
311 {
312 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &intel_dig_port->base;
314 struct drm_device *dev = encoder->base.dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 enum intel_display_power_domain power_domain;
317
318 mutex_unlock(&dev_priv->pps_mutex);
319
320 power_domain = intel_display_port_power_domain(encoder);
321 intel_display_power_put(dev_priv, power_domain);
322 }
323
324 static void
325 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
326 {
327 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
328 struct drm_device *dev = intel_dig_port->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 enum pipe pipe = intel_dp->pps_pipe;
331 bool pll_enabled;
332 uint32_t DP;
333
334 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
335 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
336 pipe_name(pipe), port_name(intel_dig_port->port)))
337 return;
338
339 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
340 pipe_name(pipe), port_name(intel_dig_port->port));
341
342 /* Preserve the BIOS-computed detected bit. This is
343 * supposed to be read-only.
344 */
345 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
346 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
347 DP |= DP_PORT_WIDTH(1);
348 DP |= DP_LINK_TRAIN_PAT_1;
349
350 if (IS_CHERRYVIEW(dev))
351 DP |= DP_PIPE_SELECT_CHV(pipe);
352 else if (pipe == PIPE_B)
353 DP |= DP_PIPEB_SELECT;
354
355 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
356
357 /*
358 * The DPLL for the pipe must be enabled for this to work.
359 * So enable temporarily it if it's not already enabled.
360 */
361 if (!pll_enabled)
362 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
364
365 /*
366 * Similar magic as in intel_dp_enable_port().
367 * We _must_ do this port enable + disable trick
368 * to make this power seqeuencer lock onto the port.
369 * Otherwise even VDD force bit won't work.
370 */
371 I915_WRITE(intel_dp->output_reg, DP);
372 POSTING_READ(intel_dp->output_reg);
373
374 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
375 POSTING_READ(intel_dp->output_reg);
376
377 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
378 POSTING_READ(intel_dp->output_reg);
379
380 if (!pll_enabled)
381 vlv_force_pll_off(dev, pipe);
382 }
383
384 static enum pipe
385 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
386 {
387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
388 struct drm_device *dev = intel_dig_port->base.base.dev;
389 struct drm_i915_private *dev_priv = dev->dev_private;
390 struct intel_encoder *encoder;
391 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
392 enum pipe pipe;
393
394 lockdep_assert_held(&dev_priv->pps_mutex);
395
396 /* We should never land here with regular DP ports */
397 WARN_ON(!is_edp(intel_dp));
398
399 if (intel_dp->pps_pipe != INVALID_PIPE)
400 return intel_dp->pps_pipe;
401
402 /*
403 * We don't have power sequencer currently.
404 * Pick one that's not used by other ports.
405 */
406 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
407 base.head) {
408 struct intel_dp *tmp;
409
410 if (encoder->type != INTEL_OUTPUT_EDP)
411 continue;
412
413 tmp = enc_to_intel_dp(&encoder->base);
414
415 if (tmp->pps_pipe != INVALID_PIPE)
416 pipes &= ~(1 << tmp->pps_pipe);
417 }
418
419 /*
420 * Didn't find one. This should not happen since there
421 * are two power sequencers and up to two eDP ports.
422 */
423 if (WARN_ON(pipes == 0))
424 pipe = PIPE_A;
425 else
426 pipe = ffs(pipes) - 1;
427
428 vlv_steal_power_sequencer(dev, pipe);
429 intel_dp->pps_pipe = pipe;
430
431 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
432 pipe_name(intel_dp->pps_pipe),
433 port_name(intel_dig_port->port));
434
435 /* init power sequencer on this pipe and port */
436 intel_dp_init_panel_power_sequencer(dev, intel_dp);
437 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
438
439 /*
440 * Even vdd force doesn't work until we've made
441 * the power sequencer lock in on the port.
442 */
443 vlv_power_sequencer_kick(intel_dp);
444
445 return intel_dp->pps_pipe;
446 }
447
448 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
449 enum pipe pipe);
450
451 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
452 enum pipe pipe)
453 {
454 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
455 }
456
457 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
458 enum pipe pipe)
459 {
460 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
461 }
462
463 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return true;
467 }
468
469 static enum pipe
470 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
471 enum port port,
472 vlv_pipe_check pipe_check)
473 {
474 enum pipe pipe;
475
476 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
477 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
478 PANEL_PORT_SELECT_MASK;
479
480 if (port_sel != PANEL_PORT_SELECT_VLV(port))
481 continue;
482
483 if (!pipe_check(dev_priv, pipe))
484 continue;
485
486 return pipe;
487 }
488
489 return INVALID_PIPE;
490 }
491
492 static void
493 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
494 {
495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
496 struct drm_device *dev = intel_dig_port->base.base.dev;
497 struct drm_i915_private *dev_priv = dev->dev_private;
498 enum port port = intel_dig_port->port;
499
500 lockdep_assert_held(&dev_priv->pps_mutex);
501
502 /* try to find a pipe with this port selected */
503 /* first pick one where the panel is on */
504 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
505 vlv_pipe_has_pp_on);
506 /* didn't find one? pick one where vdd is on */
507 if (intel_dp->pps_pipe == INVALID_PIPE)
508 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
509 vlv_pipe_has_vdd_on);
510 /* didn't find one? pick one with just the correct port */
511 if (intel_dp->pps_pipe == INVALID_PIPE)
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_any);
514
515 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
516 if (intel_dp->pps_pipe == INVALID_PIPE) {
517 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
518 port_name(port));
519 return;
520 }
521
522 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
523 port_name(port), pipe_name(intel_dp->pps_pipe));
524
525 intel_dp_init_panel_power_sequencer(dev, intel_dp);
526 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
527 }
528
529 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
530 {
531 struct drm_device *dev = dev_priv->dev;
532 struct intel_encoder *encoder;
533
534 if (WARN_ON(!IS_VALLEYVIEW(dev)))
535 return;
536
537 /*
538 * We can't grab pps_mutex here due to deadlock with power_domain
539 * mutex when power_domain functions are called while holding pps_mutex.
540 * That also means that in order to use pps_pipe the code needs to
541 * hold both a power domain reference and pps_mutex, and the power domain
542 * reference get/put must be done while _not_ holding pps_mutex.
543 * pps_{lock,unlock}() do these steps in the correct order, so one
544 * should use them always.
545 */
546
547 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
548 struct intel_dp *intel_dp;
549
550 if (encoder->type != INTEL_OUTPUT_EDP)
551 continue;
552
553 intel_dp = enc_to_intel_dp(&encoder->base);
554 intel_dp->pps_pipe = INVALID_PIPE;
555 }
556 }
557
558 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
559 {
560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562 if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_CONTROL;
564 else
565 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
569 {
570 struct drm_device *dev = intel_dp_to_dev(intel_dp);
571
572 if (HAS_PCH_SPLIT(dev))
573 return PCH_PP_STATUS;
574 else
575 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
576 }
577
578 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
579 This function only applicable when panel PM state is not to be tracked */
580 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
581 void *unused)
582 {
583 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
584 edp_notifier);
585 struct drm_device *dev = intel_dp_to_dev(intel_dp);
586 struct drm_i915_private *dev_priv = dev->dev_private;
587 u32 pp_div;
588 u32 pp_ctrl_reg, pp_div_reg;
589
590 if (!is_edp(intel_dp) || code != SYS_RESTART)
591 return 0;
592
593 pps_lock(intel_dp);
594
595 if (IS_VALLEYVIEW(dev)) {
596 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
597
598 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
599 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
600 pp_div = I915_READ(pp_div_reg);
601 pp_div &= PP_REFERENCE_DIVIDER_MASK;
602
603 /* 0x1F write to PP_DIV_REG sets max cycle delay */
604 I915_WRITE(pp_div_reg, pp_div | 0x1F);
605 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
606 msleep(intel_dp->panel_power_cycle_delay);
607 }
608
609 pps_unlock(intel_dp);
610
611 return 0;
612 }
613
614 static bool edp_have_panel_power(struct intel_dp *intel_dp)
615 {
616 struct drm_device *dev = intel_dp_to_dev(intel_dp);
617 struct drm_i915_private *dev_priv = dev->dev_private;
618
619 lockdep_assert_held(&dev_priv->pps_mutex);
620
621 if (IS_VALLEYVIEW(dev) &&
622 intel_dp->pps_pipe == INVALID_PIPE)
623 return false;
624
625 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
626 }
627
628 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
629 {
630 struct drm_device *dev = intel_dp_to_dev(intel_dp);
631 struct drm_i915_private *dev_priv = dev->dev_private;
632
633 lockdep_assert_held(&dev_priv->pps_mutex);
634
635 if (IS_VALLEYVIEW(dev) &&
636 intel_dp->pps_pipe == INVALID_PIPE)
637 return false;
638
639 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
640 }
641
642 static void
643 intel_dp_check_edp(struct intel_dp *intel_dp)
644 {
645 struct drm_device *dev = intel_dp_to_dev(intel_dp);
646 struct drm_i915_private *dev_priv = dev->dev_private;
647
648 if (!is_edp(intel_dp))
649 return;
650
651 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
652 WARN(1, "eDP powered off while attempting aux channel communication.\n");
653 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
654 I915_READ(_pp_stat_reg(intel_dp)),
655 I915_READ(_pp_ctrl_reg(intel_dp)));
656 }
657 }
658
659 static uint32_t
660 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
661 {
662 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
663 struct drm_device *dev = intel_dig_port->base.base.dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
666 uint32_t status;
667 bool done;
668
669 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
670 if (has_aux_irq)
671 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
672 msecs_to_jiffies_timeout(10));
673 else
674 done = wait_for_atomic(C, 10) == 0;
675 if (!done)
676 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
677 has_aux_irq);
678 #undef C
679
680 return status;
681 }
682
683 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
684 {
685 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
686 struct drm_device *dev = intel_dig_port->base.base.dev;
687
688 /*
689 * The clock divider is based off the hrawclk, and would like to run at
690 * 2MHz. So, take the hrawclk value and divide by 2 and use that
691 */
692 return index ? 0 : intel_hrawclk(dev) / 2;
693 }
694
695 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
696 {
697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
698 struct drm_device *dev = intel_dig_port->base.base.dev;
699
700 if (index)
701 return 0;
702
703 if (intel_dig_port->port == PORT_A) {
704 if (IS_GEN6(dev) || IS_GEN7(dev))
705 return 200; /* SNB & IVB eDP input clock at 400Mhz */
706 else
707 return 225; /* eDP input clock at 450Mhz */
708 } else {
709 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
710 }
711 }
712
713 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
714 {
715 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
716 struct drm_device *dev = intel_dig_port->base.base.dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718
719 if (intel_dig_port->port == PORT_A) {
720 if (index)
721 return 0;
722 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
723 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
724 /* Workaround for non-ULT HSW */
725 switch (index) {
726 case 0: return 63;
727 case 1: return 72;
728 default: return 0;
729 }
730 } else {
731 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
732 }
733 }
734
735 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
736 {
737 return index ? 0 : 100;
738 }
739
740 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
741 {
742 /*
743 * SKL doesn't need us to program the AUX clock divider (Hardware will
744 * derive the clock from CDCLK automatically). We still implement the
745 * get_aux_clock_divider vfunc to plug-in into the existing code.
746 */
747 return index ? 0 : 1;
748 }
749
750 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
751 bool has_aux_irq,
752 int send_bytes,
753 uint32_t aux_clock_divider)
754 {
755 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
756 struct drm_device *dev = intel_dig_port->base.base.dev;
757 uint32_t precharge, timeout;
758
759 if (IS_GEN6(dev))
760 precharge = 3;
761 else
762 precharge = 5;
763
764 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
765 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
766 else
767 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
768
769 return DP_AUX_CH_CTL_SEND_BUSY |
770 DP_AUX_CH_CTL_DONE |
771 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
772 DP_AUX_CH_CTL_TIME_OUT_ERROR |
773 timeout |
774 DP_AUX_CH_CTL_RECEIVE_ERROR |
775 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
776 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
777 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
778 }
779
780 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
781 bool has_aux_irq,
782 int send_bytes,
783 uint32_t unused)
784 {
785 return DP_AUX_CH_CTL_SEND_BUSY |
786 DP_AUX_CH_CTL_DONE |
787 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
788 DP_AUX_CH_CTL_TIME_OUT_ERROR |
789 DP_AUX_CH_CTL_TIME_OUT_1600us |
790 DP_AUX_CH_CTL_RECEIVE_ERROR |
791 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
792 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
793 }
794
795 static int
796 intel_dp_aux_ch(struct intel_dp *intel_dp,
797 const uint8_t *send, int send_bytes,
798 uint8_t *recv, int recv_size)
799 {
800 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
801 struct drm_device *dev = intel_dig_port->base.base.dev;
802 struct drm_i915_private *dev_priv = dev->dev_private;
803 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
804 uint32_t ch_data = ch_ctl + 4;
805 uint32_t aux_clock_divider;
806 int i, ret, recv_bytes;
807 uint32_t status;
808 int try, clock = 0;
809 bool has_aux_irq = HAS_AUX_IRQ(dev);
810 bool vdd;
811
812 pps_lock(intel_dp);
813
814 /*
815 * We will be called with VDD already enabled for dpcd/edid/oui reads.
816 * In such cases we want to leave VDD enabled and it's up to upper layers
817 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
818 * ourselves.
819 */
820 vdd = edp_panel_vdd_on(intel_dp);
821
822 /* dp aux is extremely sensitive to irq latency, hence request the
823 * lowest possible wakeup latency and so prevent the cpu from going into
824 * deep sleep states.
825 */
826 pm_qos_update_request(&dev_priv->pm_qos, 0);
827
828 intel_dp_check_edp(intel_dp);
829
830 intel_aux_display_runtime_get(dev_priv);
831
832 /* Try to wait for any previous AUX channel activity */
833 for (try = 0; try < 3; try++) {
834 status = I915_READ_NOTRACE(ch_ctl);
835 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
836 break;
837 msleep(1);
838 }
839
840 if (try == 3) {
841 WARN(1, "dp_aux_ch not started status 0x%08x\n",
842 I915_READ(ch_ctl));
843 ret = -EBUSY;
844 goto out;
845 }
846
847 /* Only 5 data registers! */
848 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
849 ret = -E2BIG;
850 goto out;
851 }
852
853 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
854 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
855 has_aux_irq,
856 send_bytes,
857 aux_clock_divider);
858
859 /* Must try at least 3 times according to DP spec */
860 for (try = 0; try < 5; try++) {
861 /* Load the send data into the aux channel data registers */
862 for (i = 0; i < send_bytes; i += 4)
863 I915_WRITE(ch_data + i,
864 intel_dp_pack_aux(send + i,
865 send_bytes - i));
866
867 /* Send the command and wait for it to complete */
868 I915_WRITE(ch_ctl, send_ctl);
869
870 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
871
872 /* Clear done status and any errors */
873 I915_WRITE(ch_ctl,
874 status |
875 DP_AUX_CH_CTL_DONE |
876 DP_AUX_CH_CTL_TIME_OUT_ERROR |
877 DP_AUX_CH_CTL_RECEIVE_ERROR);
878
879 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
880 DP_AUX_CH_CTL_RECEIVE_ERROR))
881 continue;
882 if (status & DP_AUX_CH_CTL_DONE)
883 break;
884 }
885 if (status & DP_AUX_CH_CTL_DONE)
886 break;
887 }
888
889 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
890 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
891 ret = -EBUSY;
892 goto out;
893 }
894
895 /* Check for timeout or receive error.
896 * Timeouts occur when the sink is not connected
897 */
898 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
899 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
900 ret = -EIO;
901 goto out;
902 }
903
904 /* Timeouts occur when the device isn't connected, so they're
905 * "normal" -- don't fill the kernel log with these */
906 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
907 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
908 ret = -ETIMEDOUT;
909 goto out;
910 }
911
912 /* Unload any bytes sent back from the other side */
913 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
914 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
915 if (recv_bytes > recv_size)
916 recv_bytes = recv_size;
917
918 for (i = 0; i < recv_bytes; i += 4)
919 intel_dp_unpack_aux(I915_READ(ch_data + i),
920 recv + i, recv_bytes - i);
921
922 ret = recv_bytes;
923 out:
924 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
925 intel_aux_display_runtime_put(dev_priv);
926
927 if (vdd)
928 edp_panel_vdd_off(intel_dp, false);
929
930 pps_unlock(intel_dp);
931
932 return ret;
933 }
934
935 #define BARE_ADDRESS_SIZE 3
936 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
937 static ssize_t
938 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
939 {
940 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
941 uint8_t txbuf[20], rxbuf[20];
942 size_t txsize, rxsize;
943 int ret;
944
945 txbuf[0] = msg->request << 4;
946 txbuf[1] = msg->address >> 8;
947 txbuf[2] = msg->address & 0xff;
948 txbuf[3] = msg->size - 1;
949
950 switch (msg->request & ~DP_AUX_I2C_MOT) {
951 case DP_AUX_NATIVE_WRITE:
952 case DP_AUX_I2C_WRITE:
953 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
954 rxsize = 1;
955
956 if (WARN_ON(txsize > 20))
957 return -E2BIG;
958
959 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
960
961 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
962 if (ret > 0) {
963 msg->reply = rxbuf[0] >> 4;
964
965 /* Return payload size. */
966 ret = msg->size;
967 }
968 break;
969
970 case DP_AUX_NATIVE_READ:
971 case DP_AUX_I2C_READ:
972 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
973 rxsize = msg->size + 1;
974
975 if (WARN_ON(rxsize > 20))
976 return -E2BIG;
977
978 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
979 if (ret > 0) {
980 msg->reply = rxbuf[0] >> 4;
981 /*
982 * Assume happy day, and copy the data. The caller is
983 * expected to check msg->reply before touching it.
984 *
985 * Return payload size.
986 */
987 ret--;
988 memcpy(msg->buffer, rxbuf + 1, ret);
989 }
990 break;
991
992 default:
993 ret = -EINVAL;
994 break;
995 }
996
997 return ret;
998 }
999
1000 static void
1001 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1002 {
1003 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1004 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1005 enum port port = intel_dig_port->port;
1006 const char *name = NULL;
1007 int ret;
1008
1009 switch (port) {
1010 case PORT_A:
1011 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1012 name = "DPDDC-A";
1013 break;
1014 case PORT_B:
1015 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1016 name = "DPDDC-B";
1017 break;
1018 case PORT_C:
1019 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1020 name = "DPDDC-C";
1021 break;
1022 case PORT_D:
1023 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1024 name = "DPDDC-D";
1025 break;
1026 default:
1027 BUG();
1028 }
1029
1030 /*
1031 * The AUX_CTL register is usually DP_CTL + 0x10.
1032 *
1033 * On Haswell and Broadwell though:
1034 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1035 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1036 *
1037 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1038 */
1039 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1040 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1041
1042 intel_dp->aux.name = name;
1043 intel_dp->aux.dev = dev->dev;
1044 intel_dp->aux.transfer = intel_dp_aux_transfer;
1045
1046 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1047 connector->base.kdev->kobj.name);
1048
1049 ret = drm_dp_aux_register(&intel_dp->aux);
1050 if (ret < 0) {
1051 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1052 name, ret);
1053 return;
1054 }
1055
1056 ret = sysfs_create_link(&connector->base.kdev->kobj,
1057 &intel_dp->aux.ddc.dev.kobj,
1058 intel_dp->aux.ddc.dev.kobj.name);
1059 if (ret < 0) {
1060 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1061 drm_dp_aux_unregister(&intel_dp->aux);
1062 }
1063 }
1064
1065 static void
1066 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1067 {
1068 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1069
1070 if (!intel_connector->mst_port)
1071 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1072 intel_dp->aux.ddc.dev.kobj.name);
1073 intel_connector_unregister(intel_connector);
1074 }
1075
1076 static void
1077 skl_edp_set_pll_config(struct intel_crtc_config *pipe_config, int link_bw)
1078 {
1079 u32 ctrl1;
1080
1081 pipe_config->ddi_pll_sel = SKL_DPLL0;
1082 pipe_config->dpll_hw_state.cfgcr1 = 0;
1083 pipe_config->dpll_hw_state.cfgcr2 = 0;
1084
1085 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1086 switch (link_bw) {
1087 case DP_LINK_BW_1_62:
1088 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1089 SKL_DPLL0);
1090 break;
1091 case DP_LINK_BW_2_7:
1092 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1093 SKL_DPLL0);
1094 break;
1095 case DP_LINK_BW_5_4:
1096 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1097 SKL_DPLL0);
1098 break;
1099 }
1100 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1101 }
1102
1103 static void
1104 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1105 {
1106 switch (link_bw) {
1107 case DP_LINK_BW_1_62:
1108 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1109 break;
1110 case DP_LINK_BW_2_7:
1111 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1112 break;
1113 case DP_LINK_BW_5_4:
1114 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1115 break;
1116 }
1117 }
1118
1119 static void
1120 intel_dp_set_clock(struct intel_encoder *encoder,
1121 struct intel_crtc_config *pipe_config, int link_bw)
1122 {
1123 struct drm_device *dev = encoder->base.dev;
1124 const struct dp_link_dpll *divisor = NULL;
1125 int i, count = 0;
1126
1127 if (IS_G4X(dev)) {
1128 divisor = gen4_dpll;
1129 count = ARRAY_SIZE(gen4_dpll);
1130 } else if (HAS_PCH_SPLIT(dev)) {
1131 divisor = pch_dpll;
1132 count = ARRAY_SIZE(pch_dpll);
1133 } else if (IS_CHERRYVIEW(dev)) {
1134 divisor = chv_dpll;
1135 count = ARRAY_SIZE(chv_dpll);
1136 } else if (IS_VALLEYVIEW(dev)) {
1137 divisor = vlv_dpll;
1138 count = ARRAY_SIZE(vlv_dpll);
1139 }
1140
1141 if (divisor && count) {
1142 for (i = 0; i < count; i++) {
1143 if (link_bw == divisor[i].link_bw) {
1144 pipe_config->dpll = divisor[i].dpll;
1145 pipe_config->clock_set = true;
1146 break;
1147 }
1148 }
1149 }
1150 }
1151
1152 bool
1153 intel_dp_compute_config(struct intel_encoder *encoder,
1154 struct intel_crtc_config *pipe_config)
1155 {
1156 struct drm_device *dev = encoder->base.dev;
1157 struct drm_i915_private *dev_priv = dev->dev_private;
1158 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1159 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1160 enum port port = dp_to_dig_port(intel_dp)->port;
1161 struct intel_crtc *intel_crtc = encoder->new_crtc;
1162 struct intel_connector *intel_connector = intel_dp->attached_connector;
1163 int lane_count, clock;
1164 int min_lane_count = 1;
1165 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1166 /* Conveniently, the link BW constants become indices with a shift...*/
1167 int min_clock = 0;
1168 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1169 int bpp, mode_rate;
1170 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1171 int link_avail, link_clock;
1172
1173 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1174 pipe_config->has_pch_encoder = true;
1175
1176 pipe_config->has_dp_encoder = true;
1177 pipe_config->has_drrs = false;
1178 pipe_config->has_audio = intel_dp->has_audio;
1179
1180 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1181 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1182 adjusted_mode);
1183 if (!HAS_PCH_SPLIT(dev))
1184 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1185 intel_connector->panel.fitting_mode);
1186 else
1187 intel_pch_panel_fitting(intel_crtc, pipe_config,
1188 intel_connector->panel.fitting_mode);
1189 }
1190
1191 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1192 return false;
1193
1194 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1195 "max bw %02x pixel clock %iKHz\n",
1196 max_lane_count, bws[max_clock],
1197 adjusted_mode->crtc_clock);
1198
1199 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1200 * bpc in between. */
1201 bpp = pipe_config->pipe_bpp;
1202 if (is_edp(intel_dp)) {
1203 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1204 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1205 dev_priv->vbt.edp_bpp);
1206 bpp = dev_priv->vbt.edp_bpp;
1207 }
1208
1209 /*
1210 * Use the maximum clock and number of lanes the eDP panel
1211 * advertizes being capable of. The panels are generally
1212 * designed to support only a single clock and lane
1213 * configuration, and typically these values correspond to the
1214 * native resolution of the panel.
1215 */
1216 min_lane_count = max_lane_count;
1217 min_clock = max_clock;
1218 }
1219
1220 for (; bpp >= 6*3; bpp -= 2*3) {
1221 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1222 bpp);
1223
1224 for (clock = min_clock; clock <= max_clock; clock++) {
1225 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1226 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1227 link_avail = intel_dp_max_data_rate(link_clock,
1228 lane_count);
1229
1230 if (mode_rate <= link_avail) {
1231 goto found;
1232 }
1233 }
1234 }
1235 }
1236
1237 return false;
1238
1239 found:
1240 if (intel_dp->color_range_auto) {
1241 /*
1242 * See:
1243 * CEA-861-E - 5.1 Default Encoding Parameters
1244 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1245 */
1246 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1247 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1248 else
1249 intel_dp->color_range = 0;
1250 }
1251
1252 if (intel_dp->color_range)
1253 pipe_config->limited_color_range = true;
1254
1255 intel_dp->link_bw = bws[clock];
1256 intel_dp->lane_count = lane_count;
1257 pipe_config->pipe_bpp = bpp;
1258 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1259
1260 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1261 intel_dp->link_bw, intel_dp->lane_count,
1262 pipe_config->port_clock, bpp);
1263 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1264 mode_rate, link_avail);
1265
1266 intel_link_compute_m_n(bpp, lane_count,
1267 adjusted_mode->crtc_clock,
1268 pipe_config->port_clock,
1269 &pipe_config->dp_m_n);
1270
1271 if (intel_connector->panel.downclock_mode != NULL &&
1272 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1273 pipe_config->has_drrs = true;
1274 intel_link_compute_m_n(bpp, lane_count,
1275 intel_connector->panel.downclock_mode->clock,
1276 pipe_config->port_clock,
1277 &pipe_config->dp_m2_n2);
1278 }
1279
1280 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1281 skl_edp_set_pll_config(pipe_config, intel_dp->link_bw);
1282 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1283 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1284 else
1285 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1286
1287 return true;
1288 }
1289
1290 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1291 {
1292 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1293 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1294 struct drm_device *dev = crtc->base.dev;
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296 u32 dpa_ctl;
1297
1298 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1299 dpa_ctl = I915_READ(DP_A);
1300 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1301
1302 if (crtc->config.port_clock == 162000) {
1303 /* For a long time we've carried around a ILK-DevA w/a for the
1304 * 160MHz clock. If we're really unlucky, it's still required.
1305 */
1306 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1307 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1308 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1309 } else {
1310 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1311 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1312 }
1313
1314 I915_WRITE(DP_A, dpa_ctl);
1315
1316 POSTING_READ(DP_A);
1317 udelay(500);
1318 }
1319
1320 static void intel_dp_prepare(struct intel_encoder *encoder)
1321 {
1322 struct drm_device *dev = encoder->base.dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1325 enum port port = dp_to_dig_port(intel_dp)->port;
1326 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1327 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1328
1329 /*
1330 * There are four kinds of DP registers:
1331 *
1332 * IBX PCH
1333 * SNB CPU
1334 * IVB CPU
1335 * CPT PCH
1336 *
1337 * IBX PCH and CPU are the same for almost everything,
1338 * except that the CPU DP PLL is configured in this
1339 * register
1340 *
1341 * CPT PCH is quite different, having many bits moved
1342 * to the TRANS_DP_CTL register instead. That
1343 * configuration happens (oddly) in ironlake_pch_enable
1344 */
1345
1346 /* Preserve the BIOS-computed detected bit. This is
1347 * supposed to be read-only.
1348 */
1349 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1350
1351 /* Handle DP bits in common between all three register formats */
1352 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1353 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1354
1355 if (crtc->config.has_audio)
1356 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1357
1358 /* Split out the IBX/CPU vs CPT settings */
1359
1360 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1361 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1362 intel_dp->DP |= DP_SYNC_HS_HIGH;
1363 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1364 intel_dp->DP |= DP_SYNC_VS_HIGH;
1365 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1366
1367 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1368 intel_dp->DP |= DP_ENHANCED_FRAMING;
1369
1370 intel_dp->DP |= crtc->pipe << 29;
1371 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1372 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1373 intel_dp->DP |= intel_dp->color_range;
1374
1375 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1376 intel_dp->DP |= DP_SYNC_HS_HIGH;
1377 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1378 intel_dp->DP |= DP_SYNC_VS_HIGH;
1379 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1380
1381 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1382 intel_dp->DP |= DP_ENHANCED_FRAMING;
1383
1384 if (!IS_CHERRYVIEW(dev)) {
1385 if (crtc->pipe == 1)
1386 intel_dp->DP |= DP_PIPEB_SELECT;
1387 } else {
1388 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1389 }
1390 } else {
1391 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1392 }
1393 }
1394
1395 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1396 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1397
1398 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1399 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1400
1401 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1402 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1403
1404 static void wait_panel_status(struct intel_dp *intel_dp,
1405 u32 mask,
1406 u32 value)
1407 {
1408 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 u32 pp_stat_reg, pp_ctrl_reg;
1411
1412 lockdep_assert_held(&dev_priv->pps_mutex);
1413
1414 pp_stat_reg = _pp_stat_reg(intel_dp);
1415 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1416
1417 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1418 mask, value,
1419 I915_READ(pp_stat_reg),
1420 I915_READ(pp_ctrl_reg));
1421
1422 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1423 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1424 I915_READ(pp_stat_reg),
1425 I915_READ(pp_ctrl_reg));
1426 }
1427
1428 DRM_DEBUG_KMS("Wait complete\n");
1429 }
1430
1431 static void wait_panel_on(struct intel_dp *intel_dp)
1432 {
1433 DRM_DEBUG_KMS("Wait for panel power on\n");
1434 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1435 }
1436
1437 static void wait_panel_off(struct intel_dp *intel_dp)
1438 {
1439 DRM_DEBUG_KMS("Wait for panel power off time\n");
1440 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1441 }
1442
1443 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1444 {
1445 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1446
1447 /* When we disable the VDD override bit last we have to do the manual
1448 * wait. */
1449 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1450 intel_dp->panel_power_cycle_delay);
1451
1452 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1453 }
1454
1455 static void wait_backlight_on(struct intel_dp *intel_dp)
1456 {
1457 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1458 intel_dp->backlight_on_delay);
1459 }
1460
1461 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1462 {
1463 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1464 intel_dp->backlight_off_delay);
1465 }
1466
1467 /* Read the current pp_control value, unlocking the register if it
1468 * is locked
1469 */
1470
1471 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1472 {
1473 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 u32 control;
1476
1477 lockdep_assert_held(&dev_priv->pps_mutex);
1478
1479 control = I915_READ(_pp_ctrl_reg(intel_dp));
1480 control &= ~PANEL_UNLOCK_MASK;
1481 control |= PANEL_UNLOCK_REGS;
1482 return control;
1483 }
1484
1485 /*
1486 * Must be paired with edp_panel_vdd_off().
1487 * Must hold pps_mutex around the whole on/off sequence.
1488 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1489 */
1490 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1491 {
1492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1493 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1494 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 enum intel_display_power_domain power_domain;
1497 u32 pp;
1498 u32 pp_stat_reg, pp_ctrl_reg;
1499 bool need_to_disable = !intel_dp->want_panel_vdd;
1500
1501 lockdep_assert_held(&dev_priv->pps_mutex);
1502
1503 if (!is_edp(intel_dp))
1504 return false;
1505
1506 cancel_delayed_work(&intel_dp->panel_vdd_work);
1507 intel_dp->want_panel_vdd = true;
1508
1509 if (edp_have_panel_vdd(intel_dp))
1510 return need_to_disable;
1511
1512 power_domain = intel_display_port_power_domain(intel_encoder);
1513 intel_display_power_get(dev_priv, power_domain);
1514
1515 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1516 port_name(intel_dig_port->port));
1517
1518 if (!edp_have_panel_power(intel_dp))
1519 wait_panel_power_cycle(intel_dp);
1520
1521 pp = ironlake_get_pp_control(intel_dp);
1522 pp |= EDP_FORCE_VDD;
1523
1524 pp_stat_reg = _pp_stat_reg(intel_dp);
1525 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1526
1527 I915_WRITE(pp_ctrl_reg, pp);
1528 POSTING_READ(pp_ctrl_reg);
1529 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1530 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1531 /*
1532 * If the panel wasn't on, delay before accessing aux channel
1533 */
1534 if (!edp_have_panel_power(intel_dp)) {
1535 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1536 port_name(intel_dig_port->port));
1537 msleep(intel_dp->panel_power_up_delay);
1538 }
1539
1540 return need_to_disable;
1541 }
1542
1543 /*
1544 * Must be paired with intel_edp_panel_vdd_off() or
1545 * intel_edp_panel_off().
1546 * Nested calls to these functions are not allowed since
1547 * we drop the lock. Caller must use some higher level
1548 * locking to prevent nested calls from other threads.
1549 */
1550 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1551 {
1552 bool vdd;
1553
1554 if (!is_edp(intel_dp))
1555 return;
1556
1557 pps_lock(intel_dp);
1558 vdd = edp_panel_vdd_on(intel_dp);
1559 pps_unlock(intel_dp);
1560
1561 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1562 port_name(dp_to_dig_port(intel_dp)->port));
1563 }
1564
1565 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1566 {
1567 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 struct intel_digital_port *intel_dig_port =
1570 dp_to_dig_port(intel_dp);
1571 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1572 enum intel_display_power_domain power_domain;
1573 u32 pp;
1574 u32 pp_stat_reg, pp_ctrl_reg;
1575
1576 lockdep_assert_held(&dev_priv->pps_mutex);
1577
1578 WARN_ON(intel_dp->want_panel_vdd);
1579
1580 if (!edp_have_panel_vdd(intel_dp))
1581 return;
1582
1583 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1584 port_name(intel_dig_port->port));
1585
1586 pp = ironlake_get_pp_control(intel_dp);
1587 pp &= ~EDP_FORCE_VDD;
1588
1589 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1590 pp_stat_reg = _pp_stat_reg(intel_dp);
1591
1592 I915_WRITE(pp_ctrl_reg, pp);
1593 POSTING_READ(pp_ctrl_reg);
1594
1595 /* Make sure sequencer is idle before allowing subsequent activity */
1596 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1597 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1598
1599 if ((pp & POWER_TARGET_ON) == 0)
1600 intel_dp->last_power_cycle = jiffies;
1601
1602 power_domain = intel_display_port_power_domain(intel_encoder);
1603 intel_display_power_put(dev_priv, power_domain);
1604 }
1605
1606 static void edp_panel_vdd_work(struct work_struct *__work)
1607 {
1608 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1609 struct intel_dp, panel_vdd_work);
1610
1611 pps_lock(intel_dp);
1612 if (!intel_dp->want_panel_vdd)
1613 edp_panel_vdd_off_sync(intel_dp);
1614 pps_unlock(intel_dp);
1615 }
1616
1617 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1618 {
1619 unsigned long delay;
1620
1621 /*
1622 * Queue the timer to fire a long time from now (relative to the power
1623 * down delay) to keep the panel power up across a sequence of
1624 * operations.
1625 */
1626 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1627 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1628 }
1629
1630 /*
1631 * Must be paired with edp_panel_vdd_on().
1632 * Must hold pps_mutex around the whole on/off sequence.
1633 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1634 */
1635 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1636 {
1637 struct drm_i915_private *dev_priv =
1638 intel_dp_to_dev(intel_dp)->dev_private;
1639
1640 lockdep_assert_held(&dev_priv->pps_mutex);
1641
1642 if (!is_edp(intel_dp))
1643 return;
1644
1645 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1646 port_name(dp_to_dig_port(intel_dp)->port));
1647
1648 intel_dp->want_panel_vdd = false;
1649
1650 if (sync)
1651 edp_panel_vdd_off_sync(intel_dp);
1652 else
1653 edp_panel_vdd_schedule_off(intel_dp);
1654 }
1655
1656 static void edp_panel_on(struct intel_dp *intel_dp)
1657 {
1658 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1659 struct drm_i915_private *dev_priv = dev->dev_private;
1660 u32 pp;
1661 u32 pp_ctrl_reg;
1662
1663 lockdep_assert_held(&dev_priv->pps_mutex);
1664
1665 if (!is_edp(intel_dp))
1666 return;
1667
1668 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1669 port_name(dp_to_dig_port(intel_dp)->port));
1670
1671 if (WARN(edp_have_panel_power(intel_dp),
1672 "eDP port %c panel power already on\n",
1673 port_name(dp_to_dig_port(intel_dp)->port)))
1674 return;
1675
1676 wait_panel_power_cycle(intel_dp);
1677
1678 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1679 pp = ironlake_get_pp_control(intel_dp);
1680 if (IS_GEN5(dev)) {
1681 /* ILK workaround: disable reset around power sequence */
1682 pp &= ~PANEL_POWER_RESET;
1683 I915_WRITE(pp_ctrl_reg, pp);
1684 POSTING_READ(pp_ctrl_reg);
1685 }
1686
1687 pp |= POWER_TARGET_ON;
1688 if (!IS_GEN5(dev))
1689 pp |= PANEL_POWER_RESET;
1690
1691 I915_WRITE(pp_ctrl_reg, pp);
1692 POSTING_READ(pp_ctrl_reg);
1693
1694 wait_panel_on(intel_dp);
1695 intel_dp->last_power_on = jiffies;
1696
1697 if (IS_GEN5(dev)) {
1698 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1699 I915_WRITE(pp_ctrl_reg, pp);
1700 POSTING_READ(pp_ctrl_reg);
1701 }
1702 }
1703
1704 void intel_edp_panel_on(struct intel_dp *intel_dp)
1705 {
1706 if (!is_edp(intel_dp))
1707 return;
1708
1709 pps_lock(intel_dp);
1710 edp_panel_on(intel_dp);
1711 pps_unlock(intel_dp);
1712 }
1713
1714
1715 static void edp_panel_off(struct intel_dp *intel_dp)
1716 {
1717 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1718 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1720 struct drm_i915_private *dev_priv = dev->dev_private;
1721 enum intel_display_power_domain power_domain;
1722 u32 pp;
1723 u32 pp_ctrl_reg;
1724
1725 lockdep_assert_held(&dev_priv->pps_mutex);
1726
1727 if (!is_edp(intel_dp))
1728 return;
1729
1730 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1731 port_name(dp_to_dig_port(intel_dp)->port));
1732
1733 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1734 port_name(dp_to_dig_port(intel_dp)->port));
1735
1736 pp = ironlake_get_pp_control(intel_dp);
1737 /* We need to switch off panel power _and_ force vdd, for otherwise some
1738 * panels get very unhappy and cease to work. */
1739 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1740 EDP_BLC_ENABLE);
1741
1742 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1743
1744 intel_dp->want_panel_vdd = false;
1745
1746 I915_WRITE(pp_ctrl_reg, pp);
1747 POSTING_READ(pp_ctrl_reg);
1748
1749 intel_dp->last_power_cycle = jiffies;
1750 wait_panel_off(intel_dp);
1751
1752 /* We got a reference when we enabled the VDD. */
1753 power_domain = intel_display_port_power_domain(intel_encoder);
1754 intel_display_power_put(dev_priv, power_domain);
1755 }
1756
1757 void intel_edp_panel_off(struct intel_dp *intel_dp)
1758 {
1759 if (!is_edp(intel_dp))
1760 return;
1761
1762 pps_lock(intel_dp);
1763 edp_panel_off(intel_dp);
1764 pps_unlock(intel_dp);
1765 }
1766
1767 /* Enable backlight in the panel power control. */
1768 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1769 {
1770 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1771 struct drm_device *dev = intel_dig_port->base.base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
1773 u32 pp;
1774 u32 pp_ctrl_reg;
1775
1776 /*
1777 * If we enable the backlight right away following a panel power
1778 * on, we may see slight flicker as the panel syncs with the eDP
1779 * link. So delay a bit to make sure the image is solid before
1780 * allowing it to appear.
1781 */
1782 wait_backlight_on(intel_dp);
1783
1784 pps_lock(intel_dp);
1785
1786 pp = ironlake_get_pp_control(intel_dp);
1787 pp |= EDP_BLC_ENABLE;
1788
1789 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1790
1791 I915_WRITE(pp_ctrl_reg, pp);
1792 POSTING_READ(pp_ctrl_reg);
1793
1794 pps_unlock(intel_dp);
1795 }
1796
1797 /* Enable backlight PWM and backlight PP control. */
1798 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1799 {
1800 if (!is_edp(intel_dp))
1801 return;
1802
1803 DRM_DEBUG_KMS("\n");
1804
1805 intel_panel_enable_backlight(intel_dp->attached_connector);
1806 _intel_edp_backlight_on(intel_dp);
1807 }
1808
1809 /* Disable backlight in the panel power control. */
1810 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1811 {
1812 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1813 struct drm_i915_private *dev_priv = dev->dev_private;
1814 u32 pp;
1815 u32 pp_ctrl_reg;
1816
1817 if (!is_edp(intel_dp))
1818 return;
1819
1820 pps_lock(intel_dp);
1821
1822 pp = ironlake_get_pp_control(intel_dp);
1823 pp &= ~EDP_BLC_ENABLE;
1824
1825 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1826
1827 I915_WRITE(pp_ctrl_reg, pp);
1828 POSTING_READ(pp_ctrl_reg);
1829
1830 pps_unlock(intel_dp);
1831
1832 intel_dp->last_backlight_off = jiffies;
1833 edp_wait_backlight_off(intel_dp);
1834 }
1835
1836 /* Disable backlight PP control and backlight PWM. */
1837 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1838 {
1839 if (!is_edp(intel_dp))
1840 return;
1841
1842 DRM_DEBUG_KMS("\n");
1843
1844 _intel_edp_backlight_off(intel_dp);
1845 intel_panel_disable_backlight(intel_dp->attached_connector);
1846 }
1847
1848 /*
1849 * Hook for controlling the panel power control backlight through the bl_power
1850 * sysfs attribute. Take care to handle multiple calls.
1851 */
1852 static void intel_edp_backlight_power(struct intel_connector *connector,
1853 bool enable)
1854 {
1855 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1856 bool is_enabled;
1857
1858 pps_lock(intel_dp);
1859 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1860 pps_unlock(intel_dp);
1861
1862 if (is_enabled == enable)
1863 return;
1864
1865 DRM_DEBUG_KMS("panel power control backlight %s\n",
1866 enable ? "enable" : "disable");
1867
1868 if (enable)
1869 _intel_edp_backlight_on(intel_dp);
1870 else
1871 _intel_edp_backlight_off(intel_dp);
1872 }
1873
1874 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1875 {
1876 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1877 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1878 struct drm_device *dev = crtc->dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 dpa_ctl;
1881
1882 assert_pipe_disabled(dev_priv,
1883 to_intel_crtc(crtc)->pipe);
1884
1885 DRM_DEBUG_KMS("\n");
1886 dpa_ctl = I915_READ(DP_A);
1887 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1888 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1889
1890 /* We don't adjust intel_dp->DP while tearing down the link, to
1891 * facilitate link retraining (e.g. after hotplug). Hence clear all
1892 * enable bits here to ensure that we don't enable too much. */
1893 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1894 intel_dp->DP |= DP_PLL_ENABLE;
1895 I915_WRITE(DP_A, intel_dp->DP);
1896 POSTING_READ(DP_A);
1897 udelay(200);
1898 }
1899
1900 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1901 {
1902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1903 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1904 struct drm_device *dev = crtc->dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 u32 dpa_ctl;
1907
1908 assert_pipe_disabled(dev_priv,
1909 to_intel_crtc(crtc)->pipe);
1910
1911 dpa_ctl = I915_READ(DP_A);
1912 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1913 "dp pll off, should be on\n");
1914 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1915
1916 /* We can't rely on the value tracked for the DP register in
1917 * intel_dp->DP because link_down must not change that (otherwise link
1918 * re-training will fail. */
1919 dpa_ctl &= ~DP_PLL_ENABLE;
1920 I915_WRITE(DP_A, dpa_ctl);
1921 POSTING_READ(DP_A);
1922 udelay(200);
1923 }
1924
1925 /* If the sink supports it, try to set the power state appropriately */
1926 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1927 {
1928 int ret, i;
1929
1930 /* Should have a valid DPCD by this point */
1931 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1932 return;
1933
1934 if (mode != DRM_MODE_DPMS_ON) {
1935 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1936 DP_SET_POWER_D3);
1937 } else {
1938 /*
1939 * When turning on, we need to retry for 1ms to give the sink
1940 * time to wake up.
1941 */
1942 for (i = 0; i < 3; i++) {
1943 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1944 DP_SET_POWER_D0);
1945 if (ret == 1)
1946 break;
1947 msleep(1);
1948 }
1949 }
1950
1951 if (ret != 1)
1952 DRM_DEBUG_KMS("failed to %s sink power state\n",
1953 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1954 }
1955
1956 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1957 enum pipe *pipe)
1958 {
1959 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1960 enum port port = dp_to_dig_port(intel_dp)->port;
1961 struct drm_device *dev = encoder->base.dev;
1962 struct drm_i915_private *dev_priv = dev->dev_private;
1963 enum intel_display_power_domain power_domain;
1964 u32 tmp;
1965
1966 power_domain = intel_display_port_power_domain(encoder);
1967 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1968 return false;
1969
1970 tmp = I915_READ(intel_dp->output_reg);
1971
1972 if (!(tmp & DP_PORT_EN))
1973 return false;
1974
1975 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1976 *pipe = PORT_TO_PIPE_CPT(tmp);
1977 } else if (IS_CHERRYVIEW(dev)) {
1978 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1979 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1980 *pipe = PORT_TO_PIPE(tmp);
1981 } else {
1982 u32 trans_sel;
1983 u32 trans_dp;
1984 int i;
1985
1986 switch (intel_dp->output_reg) {
1987 case PCH_DP_B:
1988 trans_sel = TRANS_DP_PORT_SEL_B;
1989 break;
1990 case PCH_DP_C:
1991 trans_sel = TRANS_DP_PORT_SEL_C;
1992 break;
1993 case PCH_DP_D:
1994 trans_sel = TRANS_DP_PORT_SEL_D;
1995 break;
1996 default:
1997 return true;
1998 }
1999
2000 for_each_pipe(dev_priv, i) {
2001 trans_dp = I915_READ(TRANS_DP_CTL(i));
2002 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2003 *pipe = i;
2004 return true;
2005 }
2006 }
2007
2008 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2009 intel_dp->output_reg);
2010 }
2011
2012 return true;
2013 }
2014
2015 static void intel_dp_get_config(struct intel_encoder *encoder,
2016 struct intel_crtc_config *pipe_config)
2017 {
2018 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2019 u32 tmp, flags = 0;
2020 struct drm_device *dev = encoder->base.dev;
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 enum port port = dp_to_dig_port(intel_dp)->port;
2023 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2024 int dotclock;
2025
2026 tmp = I915_READ(intel_dp->output_reg);
2027 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2028 pipe_config->has_audio = true;
2029
2030 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2031 if (tmp & DP_SYNC_HS_HIGH)
2032 flags |= DRM_MODE_FLAG_PHSYNC;
2033 else
2034 flags |= DRM_MODE_FLAG_NHSYNC;
2035
2036 if (tmp & DP_SYNC_VS_HIGH)
2037 flags |= DRM_MODE_FLAG_PVSYNC;
2038 else
2039 flags |= DRM_MODE_FLAG_NVSYNC;
2040 } else {
2041 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2042 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2043 flags |= DRM_MODE_FLAG_PHSYNC;
2044 else
2045 flags |= DRM_MODE_FLAG_NHSYNC;
2046
2047 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2048 flags |= DRM_MODE_FLAG_PVSYNC;
2049 else
2050 flags |= DRM_MODE_FLAG_NVSYNC;
2051 }
2052
2053 pipe_config->adjusted_mode.flags |= flags;
2054
2055 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2056 tmp & DP_COLOR_RANGE_16_235)
2057 pipe_config->limited_color_range = true;
2058
2059 pipe_config->has_dp_encoder = true;
2060
2061 intel_dp_get_m_n(crtc, pipe_config);
2062
2063 if (port == PORT_A) {
2064 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2065 pipe_config->port_clock = 162000;
2066 else
2067 pipe_config->port_clock = 270000;
2068 }
2069
2070 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2071 &pipe_config->dp_m_n);
2072
2073 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2074 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2075
2076 pipe_config->adjusted_mode.crtc_clock = dotclock;
2077
2078 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2079 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2080 /*
2081 * This is a big fat ugly hack.
2082 *
2083 * Some machines in UEFI boot mode provide us a VBT that has 18
2084 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2085 * unknown we fail to light up. Yet the same BIOS boots up with
2086 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2087 * max, not what it tells us to use.
2088 *
2089 * Note: This will still be broken if the eDP panel is not lit
2090 * up by the BIOS, and thus we can't get the mode at module
2091 * load.
2092 */
2093 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2094 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2095 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2096 }
2097 }
2098
2099 static void intel_disable_dp(struct intel_encoder *encoder)
2100 {
2101 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2102 struct drm_device *dev = encoder->base.dev;
2103 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2104
2105 if (crtc->config.has_audio)
2106 intel_audio_codec_disable(encoder);
2107
2108 if (HAS_PSR(dev) && !HAS_DDI(dev))
2109 intel_psr_disable(intel_dp);
2110
2111 /* Make sure the panel is off before trying to change the mode. But also
2112 * ensure that we have vdd while we switch off the panel. */
2113 intel_edp_panel_vdd_on(intel_dp);
2114 intel_edp_backlight_off(intel_dp);
2115 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2116 intel_edp_panel_off(intel_dp);
2117
2118 /* disable the port before the pipe on g4x */
2119 if (INTEL_INFO(dev)->gen < 5)
2120 intel_dp_link_down(intel_dp);
2121 }
2122
2123 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2124 {
2125 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2126 enum port port = dp_to_dig_port(intel_dp)->port;
2127
2128 intel_dp_link_down(intel_dp);
2129 if (port == PORT_A)
2130 ironlake_edp_pll_off(intel_dp);
2131 }
2132
2133 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2134 {
2135 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2136
2137 intel_dp_link_down(intel_dp);
2138 }
2139
2140 static void chv_post_disable_dp(struct intel_encoder *encoder)
2141 {
2142 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2143 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2144 struct drm_device *dev = encoder->base.dev;
2145 struct drm_i915_private *dev_priv = dev->dev_private;
2146 struct intel_crtc *intel_crtc =
2147 to_intel_crtc(encoder->base.crtc);
2148 enum dpio_channel ch = vlv_dport_to_channel(dport);
2149 enum pipe pipe = intel_crtc->pipe;
2150 u32 val;
2151
2152 intel_dp_link_down(intel_dp);
2153
2154 mutex_lock(&dev_priv->dpio_lock);
2155
2156 /* Propagate soft reset to data lane reset */
2157 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2158 val |= CHV_PCS_REQ_SOFTRESET_EN;
2159 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2160
2161 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2162 val |= CHV_PCS_REQ_SOFTRESET_EN;
2163 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2164
2165 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2166 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2167 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2168
2169 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2170 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2171 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2172
2173 mutex_unlock(&dev_priv->dpio_lock);
2174 }
2175
2176 static void
2177 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2178 uint32_t *DP,
2179 uint8_t dp_train_pat)
2180 {
2181 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2182 struct drm_device *dev = intel_dig_port->base.base.dev;
2183 struct drm_i915_private *dev_priv = dev->dev_private;
2184 enum port port = intel_dig_port->port;
2185
2186 if (HAS_DDI(dev)) {
2187 uint32_t temp = I915_READ(DP_TP_CTL(port));
2188
2189 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2190 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2191 else
2192 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2193
2194 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2195 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2196 case DP_TRAINING_PATTERN_DISABLE:
2197 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2198
2199 break;
2200 case DP_TRAINING_PATTERN_1:
2201 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2202 break;
2203 case DP_TRAINING_PATTERN_2:
2204 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2205 break;
2206 case DP_TRAINING_PATTERN_3:
2207 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2208 break;
2209 }
2210 I915_WRITE(DP_TP_CTL(port), temp);
2211
2212 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2213 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2214
2215 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2216 case DP_TRAINING_PATTERN_DISABLE:
2217 *DP |= DP_LINK_TRAIN_OFF_CPT;
2218 break;
2219 case DP_TRAINING_PATTERN_1:
2220 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2221 break;
2222 case DP_TRAINING_PATTERN_2:
2223 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2224 break;
2225 case DP_TRAINING_PATTERN_3:
2226 DRM_ERROR("DP training pattern 3 not supported\n");
2227 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2228 break;
2229 }
2230
2231 } else {
2232 if (IS_CHERRYVIEW(dev))
2233 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2234 else
2235 *DP &= ~DP_LINK_TRAIN_MASK;
2236
2237 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2238 case DP_TRAINING_PATTERN_DISABLE:
2239 *DP |= DP_LINK_TRAIN_OFF;
2240 break;
2241 case DP_TRAINING_PATTERN_1:
2242 *DP |= DP_LINK_TRAIN_PAT_1;
2243 break;
2244 case DP_TRAINING_PATTERN_2:
2245 *DP |= DP_LINK_TRAIN_PAT_2;
2246 break;
2247 case DP_TRAINING_PATTERN_3:
2248 if (IS_CHERRYVIEW(dev)) {
2249 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2250 } else {
2251 DRM_ERROR("DP training pattern 3 not supported\n");
2252 *DP |= DP_LINK_TRAIN_PAT_2;
2253 }
2254 break;
2255 }
2256 }
2257 }
2258
2259 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2260 {
2261 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263
2264 /* enable with pattern 1 (as per spec) */
2265 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2266 DP_TRAINING_PATTERN_1);
2267
2268 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2269 POSTING_READ(intel_dp->output_reg);
2270
2271 /*
2272 * Magic for VLV/CHV. We _must_ first set up the register
2273 * without actually enabling the port, and then do another
2274 * write to enable the port. Otherwise link training will
2275 * fail when the power sequencer is freshly used for this port.
2276 */
2277 intel_dp->DP |= DP_PORT_EN;
2278
2279 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2280 POSTING_READ(intel_dp->output_reg);
2281 }
2282
2283 static void intel_enable_dp(struct intel_encoder *encoder)
2284 {
2285 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286 struct drm_device *dev = encoder->base.dev;
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2289 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2290
2291 if (WARN_ON(dp_reg & DP_PORT_EN))
2292 return;
2293
2294 pps_lock(intel_dp);
2295
2296 if (IS_VALLEYVIEW(dev))
2297 vlv_init_panel_power_sequencer(intel_dp);
2298
2299 intel_dp_enable_port(intel_dp);
2300
2301 edp_panel_vdd_on(intel_dp);
2302 edp_panel_on(intel_dp);
2303 edp_panel_vdd_off(intel_dp, true);
2304
2305 pps_unlock(intel_dp);
2306
2307 if (IS_VALLEYVIEW(dev))
2308 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2309
2310 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2311 intel_dp_start_link_train(intel_dp);
2312 intel_dp_complete_link_train(intel_dp);
2313 intel_dp_stop_link_train(intel_dp);
2314
2315 if (crtc->config.has_audio) {
2316 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2317 pipe_name(crtc->pipe));
2318 intel_audio_codec_enable(encoder);
2319 }
2320 }
2321
2322 static void g4x_enable_dp(struct intel_encoder *encoder)
2323 {
2324 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2325
2326 intel_enable_dp(encoder);
2327 intel_edp_backlight_on(intel_dp);
2328 }
2329
2330 static void vlv_enable_dp(struct intel_encoder *encoder)
2331 {
2332 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2333
2334 intel_edp_backlight_on(intel_dp);
2335 intel_psr_enable(intel_dp);
2336 }
2337
2338 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2339 {
2340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2342
2343 intel_dp_prepare(encoder);
2344
2345 /* Only ilk+ has port A */
2346 if (dport->port == PORT_A) {
2347 ironlake_set_pll_cpu_edp(intel_dp);
2348 ironlake_edp_pll_on(intel_dp);
2349 }
2350 }
2351
2352 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2353 {
2354 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2355 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2356 enum pipe pipe = intel_dp->pps_pipe;
2357 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2358
2359 edp_panel_vdd_off_sync(intel_dp);
2360
2361 /*
2362 * VLV seems to get confused when multiple power seqeuencers
2363 * have the same port selected (even if only one has power/vdd
2364 * enabled). The failure manifests as vlv_wait_port_ready() failing
2365 * CHV on the other hand doesn't seem to mind having the same port
2366 * selected in multiple power seqeuencers, but let's clear the
2367 * port select always when logically disconnecting a power sequencer
2368 * from a port.
2369 */
2370 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2371 pipe_name(pipe), port_name(intel_dig_port->port));
2372 I915_WRITE(pp_on_reg, 0);
2373 POSTING_READ(pp_on_reg);
2374
2375 intel_dp->pps_pipe = INVALID_PIPE;
2376 }
2377
2378 static void vlv_steal_power_sequencer(struct drm_device *dev,
2379 enum pipe pipe)
2380 {
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 struct intel_encoder *encoder;
2383
2384 lockdep_assert_held(&dev_priv->pps_mutex);
2385
2386 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2387 return;
2388
2389 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2390 base.head) {
2391 struct intel_dp *intel_dp;
2392 enum port port;
2393
2394 if (encoder->type != INTEL_OUTPUT_EDP)
2395 continue;
2396
2397 intel_dp = enc_to_intel_dp(&encoder->base);
2398 port = dp_to_dig_port(intel_dp)->port;
2399
2400 if (intel_dp->pps_pipe != pipe)
2401 continue;
2402
2403 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2404 pipe_name(pipe), port_name(port));
2405
2406 WARN(encoder->connectors_active,
2407 "stealing pipe %c power sequencer from active eDP port %c\n",
2408 pipe_name(pipe), port_name(port));
2409
2410 /* make sure vdd is off before we steal it */
2411 vlv_detach_power_sequencer(intel_dp);
2412 }
2413 }
2414
2415 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2416 {
2417 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2418 struct intel_encoder *encoder = &intel_dig_port->base;
2419 struct drm_device *dev = encoder->base.dev;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2422
2423 lockdep_assert_held(&dev_priv->pps_mutex);
2424
2425 if (!is_edp(intel_dp))
2426 return;
2427
2428 if (intel_dp->pps_pipe == crtc->pipe)
2429 return;
2430
2431 /*
2432 * If another power sequencer was being used on this
2433 * port previously make sure to turn off vdd there while
2434 * we still have control of it.
2435 */
2436 if (intel_dp->pps_pipe != INVALID_PIPE)
2437 vlv_detach_power_sequencer(intel_dp);
2438
2439 /*
2440 * We may be stealing the power
2441 * sequencer from another port.
2442 */
2443 vlv_steal_power_sequencer(dev, crtc->pipe);
2444
2445 /* now it's all ours */
2446 intel_dp->pps_pipe = crtc->pipe;
2447
2448 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2449 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2450
2451 /* init power sequencer on this pipe and port */
2452 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2453 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2454 }
2455
2456 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2457 {
2458 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2459 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2460 struct drm_device *dev = encoder->base.dev;
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2463 enum dpio_channel port = vlv_dport_to_channel(dport);
2464 int pipe = intel_crtc->pipe;
2465 u32 val;
2466
2467 mutex_lock(&dev_priv->dpio_lock);
2468
2469 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2470 val = 0;
2471 if (pipe)
2472 val |= (1<<21);
2473 else
2474 val &= ~(1<<21);
2475 val |= 0x001000c4;
2476 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2477 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2478 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2479
2480 mutex_unlock(&dev_priv->dpio_lock);
2481
2482 intel_enable_dp(encoder);
2483 }
2484
2485 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2486 {
2487 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2488 struct drm_device *dev = encoder->base.dev;
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 struct intel_crtc *intel_crtc =
2491 to_intel_crtc(encoder->base.crtc);
2492 enum dpio_channel port = vlv_dport_to_channel(dport);
2493 int pipe = intel_crtc->pipe;
2494
2495 intel_dp_prepare(encoder);
2496
2497 /* Program Tx lane resets to default */
2498 mutex_lock(&dev_priv->dpio_lock);
2499 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2500 DPIO_PCS_TX_LANE2_RESET |
2501 DPIO_PCS_TX_LANE1_RESET);
2502 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2503 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2504 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2505 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2506 DPIO_PCS_CLK_SOFT_RESET);
2507
2508 /* Fix up inter-pair skew failure */
2509 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2510 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2511 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2512 mutex_unlock(&dev_priv->dpio_lock);
2513 }
2514
2515 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2516 {
2517 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2518 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2519 struct drm_device *dev = encoder->base.dev;
2520 struct drm_i915_private *dev_priv = dev->dev_private;
2521 struct intel_crtc *intel_crtc =
2522 to_intel_crtc(encoder->base.crtc);
2523 enum dpio_channel ch = vlv_dport_to_channel(dport);
2524 int pipe = intel_crtc->pipe;
2525 int data, i;
2526 u32 val;
2527
2528 mutex_lock(&dev_priv->dpio_lock);
2529
2530 /* allow hardware to manage TX FIFO reset source */
2531 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2532 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2533 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2534
2535 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2536 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2537 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2538
2539 /* Deassert soft data lane reset*/
2540 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2541 val |= CHV_PCS_REQ_SOFTRESET_EN;
2542 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2543
2544 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2545 val |= CHV_PCS_REQ_SOFTRESET_EN;
2546 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2547
2548 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2549 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2550 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2551
2552 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2553 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2554 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2555
2556 /* Program Tx lane latency optimal setting*/
2557 for (i = 0; i < 4; i++) {
2558 /* Set the latency optimal bit */
2559 data = (i == 1) ? 0x0 : 0x6;
2560 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2561 data << DPIO_FRC_LATENCY_SHFIT);
2562
2563 /* Set the upar bit */
2564 data = (i == 1) ? 0x0 : 0x1;
2565 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2566 data << DPIO_UPAR_SHIFT);
2567 }
2568
2569 /* Data lane stagger programming */
2570 /* FIXME: Fix up value only after power analysis */
2571
2572 mutex_unlock(&dev_priv->dpio_lock);
2573
2574 intel_enable_dp(encoder);
2575 }
2576
2577 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2578 {
2579 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2580 struct drm_device *dev = encoder->base.dev;
2581 struct drm_i915_private *dev_priv = dev->dev_private;
2582 struct intel_crtc *intel_crtc =
2583 to_intel_crtc(encoder->base.crtc);
2584 enum dpio_channel ch = vlv_dport_to_channel(dport);
2585 enum pipe pipe = intel_crtc->pipe;
2586 u32 val;
2587
2588 intel_dp_prepare(encoder);
2589
2590 mutex_lock(&dev_priv->dpio_lock);
2591
2592 /* program left/right clock distribution */
2593 if (pipe != PIPE_B) {
2594 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2595 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2596 if (ch == DPIO_CH0)
2597 val |= CHV_BUFLEFTENA1_FORCE;
2598 if (ch == DPIO_CH1)
2599 val |= CHV_BUFRIGHTENA1_FORCE;
2600 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2601 } else {
2602 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2603 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2604 if (ch == DPIO_CH0)
2605 val |= CHV_BUFLEFTENA2_FORCE;
2606 if (ch == DPIO_CH1)
2607 val |= CHV_BUFRIGHTENA2_FORCE;
2608 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2609 }
2610
2611 /* program clock channel usage */
2612 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2613 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2614 if (pipe != PIPE_B)
2615 val &= ~CHV_PCS_USEDCLKCHANNEL;
2616 else
2617 val |= CHV_PCS_USEDCLKCHANNEL;
2618 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2619
2620 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2621 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2622 if (pipe != PIPE_B)
2623 val &= ~CHV_PCS_USEDCLKCHANNEL;
2624 else
2625 val |= CHV_PCS_USEDCLKCHANNEL;
2626 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2627
2628 /*
2629 * This a a bit weird since generally CL
2630 * matches the pipe, but here we need to
2631 * pick the CL based on the port.
2632 */
2633 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2634 if (pipe != PIPE_B)
2635 val &= ~CHV_CMN_USEDCLKCHANNEL;
2636 else
2637 val |= CHV_CMN_USEDCLKCHANNEL;
2638 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2639
2640 mutex_unlock(&dev_priv->dpio_lock);
2641 }
2642
2643 /*
2644 * Native read with retry for link status and receiver capability reads for
2645 * cases where the sink may still be asleep.
2646 *
2647 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2648 * supposed to retry 3 times per the spec.
2649 */
2650 static ssize_t
2651 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2652 void *buffer, size_t size)
2653 {
2654 ssize_t ret;
2655 int i;
2656
2657 /*
2658 * Sometime we just get the same incorrect byte repeated
2659 * over the entire buffer. Doing just one throw away read
2660 * initially seems to "solve" it.
2661 */
2662 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2663
2664 for (i = 0; i < 3; i++) {
2665 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2666 if (ret == size)
2667 return ret;
2668 msleep(1);
2669 }
2670
2671 return ret;
2672 }
2673
2674 /*
2675 * Fetch AUX CH registers 0x202 - 0x207 which contain
2676 * link status information
2677 */
2678 static bool
2679 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2680 {
2681 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2682 DP_LANE0_1_STATUS,
2683 link_status,
2684 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2685 }
2686
2687 /* These are source-specific values. */
2688 static uint8_t
2689 intel_dp_voltage_max(struct intel_dp *intel_dp)
2690 {
2691 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2692 enum port port = dp_to_dig_port(intel_dp)->port;
2693
2694 if (INTEL_INFO(dev)->gen >= 9)
2695 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2696 else if (IS_VALLEYVIEW(dev))
2697 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2698 else if (IS_GEN7(dev) && port == PORT_A)
2699 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2700 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2701 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2702 else
2703 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2704 }
2705
2706 static uint8_t
2707 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2708 {
2709 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2710 enum port port = dp_to_dig_port(intel_dp)->port;
2711
2712 if (INTEL_INFO(dev)->gen >= 9) {
2713 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2714 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2715 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2716 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2717 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2718 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2719 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2720 default:
2721 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2722 }
2723 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2724 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2725 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2726 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2727 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2728 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2729 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2730 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2731 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2732 default:
2733 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2734 }
2735 } else if (IS_VALLEYVIEW(dev)) {
2736 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2737 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2738 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2739 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2740 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2741 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2742 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2743 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2744 default:
2745 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2746 }
2747 } else if (IS_GEN7(dev) && port == PORT_A) {
2748 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2749 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2750 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2751 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2752 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2753 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2754 default:
2755 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2756 }
2757 } else {
2758 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2759 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2760 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2762 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2763 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2764 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2765 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2766 default:
2767 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2768 }
2769 }
2770 }
2771
2772 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2773 {
2774 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2775 struct drm_i915_private *dev_priv = dev->dev_private;
2776 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2777 struct intel_crtc *intel_crtc =
2778 to_intel_crtc(dport->base.base.crtc);
2779 unsigned long demph_reg_value, preemph_reg_value,
2780 uniqtranscale_reg_value;
2781 uint8_t train_set = intel_dp->train_set[0];
2782 enum dpio_channel port = vlv_dport_to_channel(dport);
2783 int pipe = intel_crtc->pipe;
2784
2785 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2786 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2787 preemph_reg_value = 0x0004000;
2788 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2789 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2790 demph_reg_value = 0x2B405555;
2791 uniqtranscale_reg_value = 0x552AB83A;
2792 break;
2793 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2794 demph_reg_value = 0x2B404040;
2795 uniqtranscale_reg_value = 0x5548B83A;
2796 break;
2797 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2798 demph_reg_value = 0x2B245555;
2799 uniqtranscale_reg_value = 0x5560B83A;
2800 break;
2801 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2802 demph_reg_value = 0x2B405555;
2803 uniqtranscale_reg_value = 0x5598DA3A;
2804 break;
2805 default:
2806 return 0;
2807 }
2808 break;
2809 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2810 preemph_reg_value = 0x0002000;
2811 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2813 demph_reg_value = 0x2B404040;
2814 uniqtranscale_reg_value = 0x5552B83A;
2815 break;
2816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2817 demph_reg_value = 0x2B404848;
2818 uniqtranscale_reg_value = 0x5580B83A;
2819 break;
2820 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2821 demph_reg_value = 0x2B404040;
2822 uniqtranscale_reg_value = 0x55ADDA3A;
2823 break;
2824 default:
2825 return 0;
2826 }
2827 break;
2828 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2829 preemph_reg_value = 0x0000000;
2830 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2831 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2832 demph_reg_value = 0x2B305555;
2833 uniqtranscale_reg_value = 0x5570B83A;
2834 break;
2835 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2836 demph_reg_value = 0x2B2B4040;
2837 uniqtranscale_reg_value = 0x55ADDA3A;
2838 break;
2839 default:
2840 return 0;
2841 }
2842 break;
2843 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2844 preemph_reg_value = 0x0006000;
2845 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2846 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2847 demph_reg_value = 0x1B405555;
2848 uniqtranscale_reg_value = 0x55ADDA3A;
2849 break;
2850 default:
2851 return 0;
2852 }
2853 break;
2854 default:
2855 return 0;
2856 }
2857
2858 mutex_lock(&dev_priv->dpio_lock);
2859 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2860 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2861 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2862 uniqtranscale_reg_value);
2863 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2864 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2865 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2866 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2867 mutex_unlock(&dev_priv->dpio_lock);
2868
2869 return 0;
2870 }
2871
2872 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2873 {
2874 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2875 struct drm_i915_private *dev_priv = dev->dev_private;
2876 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2877 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2878 u32 deemph_reg_value, margin_reg_value, val;
2879 uint8_t train_set = intel_dp->train_set[0];
2880 enum dpio_channel ch = vlv_dport_to_channel(dport);
2881 enum pipe pipe = intel_crtc->pipe;
2882 int i;
2883
2884 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2885 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2886 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2887 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2888 deemph_reg_value = 128;
2889 margin_reg_value = 52;
2890 break;
2891 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2892 deemph_reg_value = 128;
2893 margin_reg_value = 77;
2894 break;
2895 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2896 deemph_reg_value = 128;
2897 margin_reg_value = 102;
2898 break;
2899 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2900 deemph_reg_value = 128;
2901 margin_reg_value = 154;
2902 /* FIXME extra to set for 1200 */
2903 break;
2904 default:
2905 return 0;
2906 }
2907 break;
2908 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2909 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2910 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2911 deemph_reg_value = 85;
2912 margin_reg_value = 78;
2913 break;
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2915 deemph_reg_value = 85;
2916 margin_reg_value = 116;
2917 break;
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2919 deemph_reg_value = 85;
2920 margin_reg_value = 154;
2921 break;
2922 default:
2923 return 0;
2924 }
2925 break;
2926 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2927 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2928 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2929 deemph_reg_value = 64;
2930 margin_reg_value = 104;
2931 break;
2932 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2933 deemph_reg_value = 64;
2934 margin_reg_value = 154;
2935 break;
2936 default:
2937 return 0;
2938 }
2939 break;
2940 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2941 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2942 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2943 deemph_reg_value = 43;
2944 margin_reg_value = 154;
2945 break;
2946 default:
2947 return 0;
2948 }
2949 break;
2950 default:
2951 return 0;
2952 }
2953
2954 mutex_lock(&dev_priv->dpio_lock);
2955
2956 /* Clear calc init */
2957 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2958 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2959 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2960 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2961 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2962
2963 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2964 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2965 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2966 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2967 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2968
2969 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
2970 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2971 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2972 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
2973
2974 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
2975 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2976 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2977 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
2978
2979 /* Program swing deemph */
2980 for (i = 0; i < 4; i++) {
2981 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2982 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2983 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2984 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2985 }
2986
2987 /* Program swing margin */
2988 for (i = 0; i < 4; i++) {
2989 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2990 val &= ~DPIO_SWING_MARGIN000_MASK;
2991 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2992 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2993 }
2994
2995 /* Disable unique transition scale */
2996 for (i = 0; i < 4; i++) {
2997 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2998 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2999 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3000 }
3001
3002 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3003 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3004 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3005 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3006
3007 /*
3008 * The document said it needs to set bit 27 for ch0 and bit 26
3009 * for ch1. Might be a typo in the doc.
3010 * For now, for this unique transition scale selection, set bit
3011 * 27 for ch0 and ch1.
3012 */
3013 for (i = 0; i < 4; i++) {
3014 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3015 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3016 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3017 }
3018
3019 for (i = 0; i < 4; i++) {
3020 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3021 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3022 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3023 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3024 }
3025 }
3026
3027 /* Start swing calculation */
3028 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3029 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3030 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3031
3032 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3033 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3034 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3035
3036 /* LRC Bypass */
3037 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3038 val |= DPIO_LRC_BYPASS;
3039 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3040
3041 mutex_unlock(&dev_priv->dpio_lock);
3042
3043 return 0;
3044 }
3045
3046 static void
3047 intel_get_adjust_train(struct intel_dp *intel_dp,
3048 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3049 {
3050 uint8_t v = 0;
3051 uint8_t p = 0;
3052 int lane;
3053 uint8_t voltage_max;
3054 uint8_t preemph_max;
3055
3056 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3057 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3058 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3059
3060 if (this_v > v)
3061 v = this_v;
3062 if (this_p > p)
3063 p = this_p;
3064 }
3065
3066 voltage_max = intel_dp_voltage_max(intel_dp);
3067 if (v >= voltage_max)
3068 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3069
3070 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3071 if (p >= preemph_max)
3072 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3073
3074 for (lane = 0; lane < 4; lane++)
3075 intel_dp->train_set[lane] = v | p;
3076 }
3077
3078 static uint32_t
3079 intel_gen4_signal_levels(uint8_t train_set)
3080 {
3081 uint32_t signal_levels = 0;
3082
3083 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3084 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3085 default:
3086 signal_levels |= DP_VOLTAGE_0_4;
3087 break;
3088 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3089 signal_levels |= DP_VOLTAGE_0_6;
3090 break;
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3092 signal_levels |= DP_VOLTAGE_0_8;
3093 break;
3094 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3095 signal_levels |= DP_VOLTAGE_1_2;
3096 break;
3097 }
3098 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3099 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3100 default:
3101 signal_levels |= DP_PRE_EMPHASIS_0;
3102 break;
3103 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3104 signal_levels |= DP_PRE_EMPHASIS_3_5;
3105 break;
3106 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3107 signal_levels |= DP_PRE_EMPHASIS_6;
3108 break;
3109 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3110 signal_levels |= DP_PRE_EMPHASIS_9_5;
3111 break;
3112 }
3113 return signal_levels;
3114 }
3115
3116 /* Gen6's DP voltage swing and pre-emphasis control */
3117 static uint32_t
3118 intel_gen6_edp_signal_levels(uint8_t train_set)
3119 {
3120 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3121 DP_TRAIN_PRE_EMPHASIS_MASK);
3122 switch (signal_levels) {
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3124 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3125 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3126 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3127 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3130 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3133 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3136 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3137 default:
3138 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3139 "0x%x\n", signal_levels);
3140 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3141 }
3142 }
3143
3144 /* Gen7's DP voltage swing and pre-emphasis control */
3145 static uint32_t
3146 intel_gen7_edp_signal_levels(uint8_t train_set)
3147 {
3148 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3149 DP_TRAIN_PRE_EMPHASIS_MASK);
3150 switch (signal_levels) {
3151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3152 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3153 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3154 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3156 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3157
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3159 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3161 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3162
3163 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3164 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3166 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3167
3168 default:
3169 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3170 "0x%x\n", signal_levels);
3171 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3172 }
3173 }
3174
3175 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3176 static uint32_t
3177 intel_hsw_signal_levels(uint8_t train_set)
3178 {
3179 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3180 DP_TRAIN_PRE_EMPHASIS_MASK);
3181 switch (signal_levels) {
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3183 return DDI_BUF_TRANS_SELECT(0);
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3185 return DDI_BUF_TRANS_SELECT(1);
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3187 return DDI_BUF_TRANS_SELECT(2);
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3189 return DDI_BUF_TRANS_SELECT(3);
3190
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3192 return DDI_BUF_TRANS_SELECT(4);
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3194 return DDI_BUF_TRANS_SELECT(5);
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3196 return DDI_BUF_TRANS_SELECT(6);
3197
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3199 return DDI_BUF_TRANS_SELECT(7);
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3201 return DDI_BUF_TRANS_SELECT(8);
3202 default:
3203 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3204 "0x%x\n", signal_levels);
3205 return DDI_BUF_TRANS_SELECT(0);
3206 }
3207 }
3208
3209 /* Properly updates "DP" with the correct signal levels. */
3210 static void
3211 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3212 {
3213 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3214 enum port port = intel_dig_port->port;
3215 struct drm_device *dev = intel_dig_port->base.base.dev;
3216 uint32_t signal_levels, mask;
3217 uint8_t train_set = intel_dp->train_set[0];
3218
3219 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3220 signal_levels = intel_hsw_signal_levels(train_set);
3221 mask = DDI_BUF_EMP_MASK;
3222 } else if (IS_CHERRYVIEW(dev)) {
3223 signal_levels = intel_chv_signal_levels(intel_dp);
3224 mask = 0;
3225 } else if (IS_VALLEYVIEW(dev)) {
3226 signal_levels = intel_vlv_signal_levels(intel_dp);
3227 mask = 0;
3228 } else if (IS_GEN7(dev) && port == PORT_A) {
3229 signal_levels = intel_gen7_edp_signal_levels(train_set);
3230 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3231 } else if (IS_GEN6(dev) && port == PORT_A) {
3232 signal_levels = intel_gen6_edp_signal_levels(train_set);
3233 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3234 } else {
3235 signal_levels = intel_gen4_signal_levels(train_set);
3236 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3237 }
3238
3239 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3240
3241 *DP = (*DP & ~mask) | signal_levels;
3242 }
3243
3244 static bool
3245 intel_dp_set_link_train(struct intel_dp *intel_dp,
3246 uint32_t *DP,
3247 uint8_t dp_train_pat)
3248 {
3249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3250 struct drm_device *dev = intel_dig_port->base.base.dev;
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3253 int ret, len;
3254
3255 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3256
3257 I915_WRITE(intel_dp->output_reg, *DP);
3258 POSTING_READ(intel_dp->output_reg);
3259
3260 buf[0] = dp_train_pat;
3261 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3262 DP_TRAINING_PATTERN_DISABLE) {
3263 /* don't write DP_TRAINING_LANEx_SET on disable */
3264 len = 1;
3265 } else {
3266 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3267 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3268 len = intel_dp->lane_count + 1;
3269 }
3270
3271 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3272 buf, len);
3273
3274 return ret == len;
3275 }
3276
3277 static bool
3278 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3279 uint8_t dp_train_pat)
3280 {
3281 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3282 intel_dp_set_signal_levels(intel_dp, DP);
3283 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3284 }
3285
3286 static bool
3287 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3288 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3289 {
3290 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3291 struct drm_device *dev = intel_dig_port->base.base.dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 int ret;
3294
3295 intel_get_adjust_train(intel_dp, link_status);
3296 intel_dp_set_signal_levels(intel_dp, DP);
3297
3298 I915_WRITE(intel_dp->output_reg, *DP);
3299 POSTING_READ(intel_dp->output_reg);
3300
3301 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3302 intel_dp->train_set, intel_dp->lane_count);
3303
3304 return ret == intel_dp->lane_count;
3305 }
3306
3307 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3308 {
3309 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3310 struct drm_device *dev = intel_dig_port->base.base.dev;
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 enum port port = intel_dig_port->port;
3313 uint32_t val;
3314
3315 if (!HAS_DDI(dev))
3316 return;
3317
3318 val = I915_READ(DP_TP_CTL(port));
3319 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3320 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3321 I915_WRITE(DP_TP_CTL(port), val);
3322
3323 /*
3324 * On PORT_A we can have only eDP in SST mode. There the only reason
3325 * we need to set idle transmission mode is to work around a HW issue
3326 * where we enable the pipe while not in idle link-training mode.
3327 * In this case there is requirement to wait for a minimum number of
3328 * idle patterns to be sent.
3329 */
3330 if (port == PORT_A)
3331 return;
3332
3333 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3334 1))
3335 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3336 }
3337
3338 /* Enable corresponding port and start training pattern 1 */
3339 void
3340 intel_dp_start_link_train(struct intel_dp *intel_dp)
3341 {
3342 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3343 struct drm_device *dev = encoder->dev;
3344 int i;
3345 uint8_t voltage;
3346 int voltage_tries, loop_tries;
3347 uint32_t DP = intel_dp->DP;
3348 uint8_t link_config[2];
3349
3350 if (HAS_DDI(dev))
3351 intel_ddi_prepare_link_retrain(encoder);
3352
3353 /* Write the link configuration data */
3354 link_config[0] = intel_dp->link_bw;
3355 link_config[1] = intel_dp->lane_count;
3356 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3357 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3358 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3359
3360 link_config[0] = 0;
3361 link_config[1] = DP_SET_ANSI_8B10B;
3362 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3363
3364 DP |= DP_PORT_EN;
3365
3366 /* clock recovery */
3367 if (!intel_dp_reset_link_train(intel_dp, &DP,
3368 DP_TRAINING_PATTERN_1 |
3369 DP_LINK_SCRAMBLING_DISABLE)) {
3370 DRM_ERROR("failed to enable link training\n");
3371 return;
3372 }
3373
3374 voltage = 0xff;
3375 voltage_tries = 0;
3376 loop_tries = 0;
3377 for (;;) {
3378 uint8_t link_status[DP_LINK_STATUS_SIZE];
3379
3380 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3381 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3382 DRM_ERROR("failed to get link status\n");
3383 break;
3384 }
3385
3386 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3387 DRM_DEBUG_KMS("clock recovery OK\n");
3388 break;
3389 }
3390
3391 /* Check to see if we've tried the max voltage */
3392 for (i = 0; i < intel_dp->lane_count; i++)
3393 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3394 break;
3395 if (i == intel_dp->lane_count) {
3396 ++loop_tries;
3397 if (loop_tries == 5) {
3398 DRM_ERROR("too many full retries, give up\n");
3399 break;
3400 }
3401 intel_dp_reset_link_train(intel_dp, &DP,
3402 DP_TRAINING_PATTERN_1 |
3403 DP_LINK_SCRAMBLING_DISABLE);
3404 voltage_tries = 0;
3405 continue;
3406 }
3407
3408 /* Check to see if we've tried the same voltage 5 times */
3409 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3410 ++voltage_tries;
3411 if (voltage_tries == 5) {
3412 DRM_ERROR("too many voltage retries, give up\n");
3413 break;
3414 }
3415 } else
3416 voltage_tries = 0;
3417 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3418
3419 /* Update training set as requested by target */
3420 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3421 DRM_ERROR("failed to update link training\n");
3422 break;
3423 }
3424 }
3425
3426 intel_dp->DP = DP;
3427 }
3428
3429 void
3430 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3431 {
3432 bool channel_eq = false;
3433 int tries, cr_tries;
3434 uint32_t DP = intel_dp->DP;
3435 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3436
3437 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3438 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3439 training_pattern = DP_TRAINING_PATTERN_3;
3440
3441 /* channel equalization */
3442 if (!intel_dp_set_link_train(intel_dp, &DP,
3443 training_pattern |
3444 DP_LINK_SCRAMBLING_DISABLE)) {
3445 DRM_ERROR("failed to start channel equalization\n");
3446 return;
3447 }
3448
3449 tries = 0;
3450 cr_tries = 0;
3451 channel_eq = false;
3452 for (;;) {
3453 uint8_t link_status[DP_LINK_STATUS_SIZE];
3454
3455 if (cr_tries > 5) {
3456 DRM_ERROR("failed to train DP, aborting\n");
3457 break;
3458 }
3459
3460 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3461 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3462 DRM_ERROR("failed to get link status\n");
3463 break;
3464 }
3465
3466 /* Make sure clock is still ok */
3467 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3468 intel_dp_start_link_train(intel_dp);
3469 intel_dp_set_link_train(intel_dp, &DP,
3470 training_pattern |
3471 DP_LINK_SCRAMBLING_DISABLE);
3472 cr_tries++;
3473 continue;
3474 }
3475
3476 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3477 channel_eq = true;
3478 break;
3479 }
3480
3481 /* Try 5 times, then try clock recovery if that fails */
3482 if (tries > 5) {
3483 intel_dp_start_link_train(intel_dp);
3484 intel_dp_set_link_train(intel_dp, &DP,
3485 training_pattern |
3486 DP_LINK_SCRAMBLING_DISABLE);
3487 tries = 0;
3488 cr_tries++;
3489 continue;
3490 }
3491
3492 /* Update training set as requested by target */
3493 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3494 DRM_ERROR("failed to update link training\n");
3495 break;
3496 }
3497 ++tries;
3498 }
3499
3500 intel_dp_set_idle_link_train(intel_dp);
3501
3502 intel_dp->DP = DP;
3503
3504 if (channel_eq)
3505 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3506
3507 }
3508
3509 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3510 {
3511 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3512 DP_TRAINING_PATTERN_DISABLE);
3513 }
3514
3515 static void
3516 intel_dp_link_down(struct intel_dp *intel_dp)
3517 {
3518 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3519 enum port port = intel_dig_port->port;
3520 struct drm_device *dev = intel_dig_port->base.base.dev;
3521 struct drm_i915_private *dev_priv = dev->dev_private;
3522 struct intel_crtc *intel_crtc =
3523 to_intel_crtc(intel_dig_port->base.base.crtc);
3524 uint32_t DP = intel_dp->DP;
3525
3526 if (WARN_ON(HAS_DDI(dev)))
3527 return;
3528
3529 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3530 return;
3531
3532 DRM_DEBUG_KMS("\n");
3533
3534 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3535 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3536 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3537 } else {
3538 if (IS_CHERRYVIEW(dev))
3539 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3540 else
3541 DP &= ~DP_LINK_TRAIN_MASK;
3542 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3543 }
3544 POSTING_READ(intel_dp->output_reg);
3545
3546 if (HAS_PCH_IBX(dev) &&
3547 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3548 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3549
3550 /* Hardware workaround: leaving our transcoder select
3551 * set to transcoder B while it's off will prevent the
3552 * corresponding HDMI output on transcoder A.
3553 *
3554 * Combine this with another hardware workaround:
3555 * transcoder select bit can only be cleared while the
3556 * port is enabled.
3557 */
3558 DP &= ~DP_PIPEB_SELECT;
3559 I915_WRITE(intel_dp->output_reg, DP);
3560
3561 /* Changes to enable or select take place the vblank
3562 * after being written.
3563 */
3564 if (WARN_ON(crtc == NULL)) {
3565 /* We should never try to disable a port without a crtc
3566 * attached. For paranoia keep the code around for a
3567 * bit. */
3568 POSTING_READ(intel_dp->output_reg);
3569 msleep(50);
3570 } else
3571 intel_wait_for_vblank(dev, intel_crtc->pipe);
3572 }
3573
3574 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3575 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3576 POSTING_READ(intel_dp->output_reg);
3577 msleep(intel_dp->panel_power_down_delay);
3578 }
3579
3580 static bool
3581 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3582 {
3583 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3584 struct drm_device *dev = dig_port->base.base.dev;
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586
3587 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3588 sizeof(intel_dp->dpcd)) < 0)
3589 return false; /* aux transfer failed */
3590
3591 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3592
3593 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3594 return false; /* DPCD not present */
3595
3596 /* Check if the panel supports PSR */
3597 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3598 if (is_edp(intel_dp)) {
3599 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3600 intel_dp->psr_dpcd,
3601 sizeof(intel_dp->psr_dpcd));
3602 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3603 dev_priv->psr.sink_support = true;
3604 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3605 }
3606 }
3607
3608 /* Training Pattern 3 support, both source and sink */
3609 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3610 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3611 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3612 intel_dp->use_tps3 = true;
3613 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3614 } else
3615 intel_dp->use_tps3 = false;
3616
3617 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3618 DP_DWN_STRM_PORT_PRESENT))
3619 return true; /* native DP sink */
3620
3621 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3622 return true; /* no per-port downstream info */
3623
3624 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3625 intel_dp->downstream_ports,
3626 DP_MAX_DOWNSTREAM_PORTS) < 0)
3627 return false; /* downstream port status fetch failed */
3628
3629 return true;
3630 }
3631
3632 static void
3633 intel_dp_probe_oui(struct intel_dp *intel_dp)
3634 {
3635 u8 buf[3];
3636
3637 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3638 return;
3639
3640 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3641 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3642 buf[0], buf[1], buf[2]);
3643
3644 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3645 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3646 buf[0], buf[1], buf[2]);
3647 }
3648
3649 static bool
3650 intel_dp_probe_mst(struct intel_dp *intel_dp)
3651 {
3652 u8 buf[1];
3653
3654 if (!intel_dp->can_mst)
3655 return false;
3656
3657 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3658 return false;
3659
3660 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3661 if (buf[0] & DP_MST_CAP) {
3662 DRM_DEBUG_KMS("Sink is MST capable\n");
3663 intel_dp->is_mst = true;
3664 } else {
3665 DRM_DEBUG_KMS("Sink is not MST capable\n");
3666 intel_dp->is_mst = false;
3667 }
3668 }
3669
3670 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3671 return intel_dp->is_mst;
3672 }
3673
3674 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3675 {
3676 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3677 struct drm_device *dev = intel_dig_port->base.base.dev;
3678 struct intel_crtc *intel_crtc =
3679 to_intel_crtc(intel_dig_port->base.base.crtc);
3680 u8 buf;
3681 int test_crc_count;
3682 int attempts = 6;
3683
3684 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3685 return -EIO;
3686
3687 if (!(buf & DP_TEST_CRC_SUPPORTED))
3688 return -ENOTTY;
3689
3690 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3691 return -EIO;
3692
3693 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3694 buf | DP_TEST_SINK_START) < 0)
3695 return -EIO;
3696
3697 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3698 return -EIO;
3699 test_crc_count = buf & DP_TEST_COUNT_MASK;
3700
3701 do {
3702 if (drm_dp_dpcd_readb(&intel_dp->aux,
3703 DP_TEST_SINK_MISC, &buf) < 0)
3704 return -EIO;
3705 intel_wait_for_vblank(dev, intel_crtc->pipe);
3706 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3707
3708 if (attempts == 0) {
3709 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
3710 return -ETIMEDOUT;
3711 }
3712
3713 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3714 return -EIO;
3715
3716 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3717 return -EIO;
3718 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3719 buf & ~DP_TEST_SINK_START) < 0)
3720 return -EIO;
3721
3722 return 0;
3723 }
3724
3725 static bool
3726 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3727 {
3728 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3729 DP_DEVICE_SERVICE_IRQ_VECTOR,
3730 sink_irq_vector, 1) == 1;
3731 }
3732
3733 static bool
3734 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3735 {
3736 int ret;
3737
3738 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3739 DP_SINK_COUNT_ESI,
3740 sink_irq_vector, 14);
3741 if (ret != 14)
3742 return false;
3743
3744 return true;
3745 }
3746
3747 static void
3748 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3749 {
3750 /* NAK by default */
3751 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3752 }
3753
3754 static int
3755 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3756 {
3757 bool bret;
3758
3759 if (intel_dp->is_mst) {
3760 u8 esi[16] = { 0 };
3761 int ret = 0;
3762 int retry;
3763 bool handled;
3764 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3765 go_again:
3766 if (bret == true) {
3767
3768 /* check link status - esi[10] = 0x200c */
3769 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3770 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3771 intel_dp_start_link_train(intel_dp);
3772 intel_dp_complete_link_train(intel_dp);
3773 intel_dp_stop_link_train(intel_dp);
3774 }
3775
3776 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3777 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3778
3779 if (handled) {
3780 for (retry = 0; retry < 3; retry++) {
3781 int wret;
3782 wret = drm_dp_dpcd_write(&intel_dp->aux,
3783 DP_SINK_COUNT_ESI+1,
3784 &esi[1], 3);
3785 if (wret == 3) {
3786 break;
3787 }
3788 }
3789
3790 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3791 if (bret == true) {
3792 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3793 goto go_again;
3794 }
3795 } else
3796 ret = 0;
3797
3798 return ret;
3799 } else {
3800 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3801 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3802 intel_dp->is_mst = false;
3803 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3804 /* send a hotplug event */
3805 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3806 }
3807 }
3808 return -EINVAL;
3809 }
3810
3811 /*
3812 * According to DP spec
3813 * 5.1.2:
3814 * 1. Read DPCD
3815 * 2. Configure link according to Receiver Capabilities
3816 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3817 * 4. Check link status on receipt of hot-plug interrupt
3818 */
3819 void
3820 intel_dp_check_link_status(struct intel_dp *intel_dp)
3821 {
3822 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3823 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3824 u8 sink_irq_vector;
3825 u8 link_status[DP_LINK_STATUS_SIZE];
3826
3827 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3828
3829 if (!intel_encoder->connectors_active)
3830 return;
3831
3832 if (WARN_ON(!intel_encoder->base.crtc))
3833 return;
3834
3835 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3836 return;
3837
3838 /* Try to read receiver status if the link appears to be up */
3839 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3840 return;
3841 }
3842
3843 /* Now read the DPCD to see if it's actually running */
3844 if (!intel_dp_get_dpcd(intel_dp)) {
3845 return;
3846 }
3847
3848 /* Try to read the source of the interrupt */
3849 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3850 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3851 /* Clear interrupt source */
3852 drm_dp_dpcd_writeb(&intel_dp->aux,
3853 DP_DEVICE_SERVICE_IRQ_VECTOR,
3854 sink_irq_vector);
3855
3856 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3857 intel_dp_handle_test_request(intel_dp);
3858 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3859 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3860 }
3861
3862 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3863 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3864 intel_encoder->base.name);
3865 intel_dp_start_link_train(intel_dp);
3866 intel_dp_complete_link_train(intel_dp);
3867 intel_dp_stop_link_train(intel_dp);
3868 }
3869 }
3870
3871 /* XXX this is probably wrong for multiple downstream ports */
3872 static enum drm_connector_status
3873 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3874 {
3875 uint8_t *dpcd = intel_dp->dpcd;
3876 uint8_t type;
3877
3878 if (!intel_dp_get_dpcd(intel_dp))
3879 return connector_status_disconnected;
3880
3881 /* if there's no downstream port, we're done */
3882 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3883 return connector_status_connected;
3884
3885 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3886 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3887 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3888 uint8_t reg;
3889
3890 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3891 &reg, 1) < 0)
3892 return connector_status_unknown;
3893
3894 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3895 : connector_status_disconnected;
3896 }
3897
3898 /* If no HPD, poke DDC gently */
3899 if (drm_probe_ddc(&intel_dp->aux.ddc))
3900 return connector_status_connected;
3901
3902 /* Well we tried, say unknown for unreliable port types */
3903 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3904 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3905 if (type == DP_DS_PORT_TYPE_VGA ||
3906 type == DP_DS_PORT_TYPE_NON_EDID)
3907 return connector_status_unknown;
3908 } else {
3909 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3910 DP_DWN_STRM_PORT_TYPE_MASK;
3911 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3912 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3913 return connector_status_unknown;
3914 }
3915
3916 /* Anything else is out of spec, warn and ignore */
3917 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3918 return connector_status_disconnected;
3919 }
3920
3921 static enum drm_connector_status
3922 edp_detect(struct intel_dp *intel_dp)
3923 {
3924 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3925 enum drm_connector_status status;
3926
3927 status = intel_panel_detect(dev);
3928 if (status == connector_status_unknown)
3929 status = connector_status_connected;
3930
3931 return status;
3932 }
3933
3934 static enum drm_connector_status
3935 ironlake_dp_detect(struct intel_dp *intel_dp)
3936 {
3937 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3938 struct drm_i915_private *dev_priv = dev->dev_private;
3939 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3940
3941 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3942 return connector_status_disconnected;
3943
3944 return intel_dp_detect_dpcd(intel_dp);
3945 }
3946
3947 static int g4x_digital_port_connected(struct drm_device *dev,
3948 struct intel_digital_port *intel_dig_port)
3949 {
3950 struct drm_i915_private *dev_priv = dev->dev_private;
3951 uint32_t bit;
3952
3953 if (IS_VALLEYVIEW(dev)) {
3954 switch (intel_dig_port->port) {
3955 case PORT_B:
3956 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3957 break;
3958 case PORT_C:
3959 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3960 break;
3961 case PORT_D:
3962 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3963 break;
3964 default:
3965 return -EINVAL;
3966 }
3967 } else {
3968 switch (intel_dig_port->port) {
3969 case PORT_B:
3970 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3971 break;
3972 case PORT_C:
3973 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3974 break;
3975 case PORT_D:
3976 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3977 break;
3978 default:
3979 return -EINVAL;
3980 }
3981 }
3982
3983 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3984 return 0;
3985 return 1;
3986 }
3987
3988 static enum drm_connector_status
3989 g4x_dp_detect(struct intel_dp *intel_dp)
3990 {
3991 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3992 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3993 int ret;
3994
3995 /* Can't disconnect eDP, but you can close the lid... */
3996 if (is_edp(intel_dp)) {
3997 enum drm_connector_status status;
3998
3999 status = intel_panel_detect(dev);
4000 if (status == connector_status_unknown)
4001 status = connector_status_connected;
4002 return status;
4003 }
4004
4005 ret = g4x_digital_port_connected(dev, intel_dig_port);
4006 if (ret == -EINVAL)
4007 return connector_status_unknown;
4008 else if (ret == 0)
4009 return connector_status_disconnected;
4010
4011 return intel_dp_detect_dpcd(intel_dp);
4012 }
4013
4014 static struct edid *
4015 intel_dp_get_edid(struct intel_dp *intel_dp)
4016 {
4017 struct intel_connector *intel_connector = intel_dp->attached_connector;
4018
4019 /* use cached edid if we have one */
4020 if (intel_connector->edid) {
4021 /* invalid edid */
4022 if (IS_ERR(intel_connector->edid))
4023 return NULL;
4024
4025 return drm_edid_duplicate(intel_connector->edid);
4026 } else
4027 return drm_get_edid(&intel_connector->base,
4028 &intel_dp->aux.ddc);
4029 }
4030
4031 static void
4032 intel_dp_set_edid(struct intel_dp *intel_dp)
4033 {
4034 struct intel_connector *intel_connector = intel_dp->attached_connector;
4035 struct edid *edid;
4036
4037 edid = intel_dp_get_edid(intel_dp);
4038 intel_connector->detect_edid = edid;
4039
4040 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4041 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4042 else
4043 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4044 }
4045
4046 static void
4047 intel_dp_unset_edid(struct intel_dp *intel_dp)
4048 {
4049 struct intel_connector *intel_connector = intel_dp->attached_connector;
4050
4051 kfree(intel_connector->detect_edid);
4052 intel_connector->detect_edid = NULL;
4053
4054 intel_dp->has_audio = false;
4055 }
4056
4057 static enum intel_display_power_domain
4058 intel_dp_power_get(struct intel_dp *dp)
4059 {
4060 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4061 enum intel_display_power_domain power_domain;
4062
4063 power_domain = intel_display_port_power_domain(encoder);
4064 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4065
4066 return power_domain;
4067 }
4068
4069 static void
4070 intel_dp_power_put(struct intel_dp *dp,
4071 enum intel_display_power_domain power_domain)
4072 {
4073 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4074 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4075 }
4076
4077 static enum drm_connector_status
4078 intel_dp_detect(struct drm_connector *connector, bool force)
4079 {
4080 struct intel_dp *intel_dp = intel_attached_dp(connector);
4081 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4082 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4083 struct drm_device *dev = connector->dev;
4084 enum drm_connector_status status;
4085 enum intel_display_power_domain power_domain;
4086 bool ret;
4087
4088 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4089 connector->base.id, connector->name);
4090 intel_dp_unset_edid(intel_dp);
4091
4092 if (intel_dp->is_mst) {
4093 /* MST devices are disconnected from a monitor POV */
4094 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4095 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4096 return connector_status_disconnected;
4097 }
4098
4099 power_domain = intel_dp_power_get(intel_dp);
4100
4101 /* Can't disconnect eDP, but you can close the lid... */
4102 if (is_edp(intel_dp))
4103 status = edp_detect(intel_dp);
4104 else if (HAS_PCH_SPLIT(dev))
4105 status = ironlake_dp_detect(intel_dp);
4106 else
4107 status = g4x_dp_detect(intel_dp);
4108 if (status != connector_status_connected)
4109 goto out;
4110
4111 intel_dp_probe_oui(intel_dp);
4112
4113 ret = intel_dp_probe_mst(intel_dp);
4114 if (ret) {
4115 /* if we are in MST mode then this connector
4116 won't appear connected or have anything with EDID on it */
4117 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4118 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4119 status = connector_status_disconnected;
4120 goto out;
4121 }
4122
4123 intel_dp_set_edid(intel_dp);
4124
4125 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4126 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4127 status = connector_status_connected;
4128
4129 out:
4130 intel_dp_power_put(intel_dp, power_domain);
4131 return status;
4132 }
4133
4134 static void
4135 intel_dp_force(struct drm_connector *connector)
4136 {
4137 struct intel_dp *intel_dp = intel_attached_dp(connector);
4138 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4139 enum intel_display_power_domain power_domain;
4140
4141 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4142 connector->base.id, connector->name);
4143 intel_dp_unset_edid(intel_dp);
4144
4145 if (connector->status != connector_status_connected)
4146 return;
4147
4148 power_domain = intel_dp_power_get(intel_dp);
4149
4150 intel_dp_set_edid(intel_dp);
4151
4152 intel_dp_power_put(intel_dp, power_domain);
4153
4154 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4155 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4156 }
4157
4158 static int intel_dp_get_modes(struct drm_connector *connector)
4159 {
4160 struct intel_connector *intel_connector = to_intel_connector(connector);
4161 struct edid *edid;
4162
4163 edid = intel_connector->detect_edid;
4164 if (edid) {
4165 int ret = intel_connector_update_modes(connector, edid);
4166 if (ret)
4167 return ret;
4168 }
4169
4170 /* if eDP has no EDID, fall back to fixed mode */
4171 if (is_edp(intel_attached_dp(connector)) &&
4172 intel_connector->panel.fixed_mode) {
4173 struct drm_display_mode *mode;
4174
4175 mode = drm_mode_duplicate(connector->dev,
4176 intel_connector->panel.fixed_mode);
4177 if (mode) {
4178 drm_mode_probed_add(connector, mode);
4179 return 1;
4180 }
4181 }
4182
4183 return 0;
4184 }
4185
4186 static bool
4187 intel_dp_detect_audio(struct drm_connector *connector)
4188 {
4189 bool has_audio = false;
4190 struct edid *edid;
4191
4192 edid = to_intel_connector(connector)->detect_edid;
4193 if (edid)
4194 has_audio = drm_detect_monitor_audio(edid);
4195
4196 return has_audio;
4197 }
4198
4199 static int
4200 intel_dp_set_property(struct drm_connector *connector,
4201 struct drm_property *property,
4202 uint64_t val)
4203 {
4204 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4205 struct intel_connector *intel_connector = to_intel_connector(connector);
4206 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4207 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4208 int ret;
4209
4210 ret = drm_object_property_set_value(&connector->base, property, val);
4211 if (ret)
4212 return ret;
4213
4214 if (property == dev_priv->force_audio_property) {
4215 int i = val;
4216 bool has_audio;
4217
4218 if (i == intel_dp->force_audio)
4219 return 0;
4220
4221 intel_dp->force_audio = i;
4222
4223 if (i == HDMI_AUDIO_AUTO)
4224 has_audio = intel_dp_detect_audio(connector);
4225 else
4226 has_audio = (i == HDMI_AUDIO_ON);
4227
4228 if (has_audio == intel_dp->has_audio)
4229 return 0;
4230
4231 intel_dp->has_audio = has_audio;
4232 goto done;
4233 }
4234
4235 if (property == dev_priv->broadcast_rgb_property) {
4236 bool old_auto = intel_dp->color_range_auto;
4237 uint32_t old_range = intel_dp->color_range;
4238
4239 switch (val) {
4240 case INTEL_BROADCAST_RGB_AUTO:
4241 intel_dp->color_range_auto = true;
4242 break;
4243 case INTEL_BROADCAST_RGB_FULL:
4244 intel_dp->color_range_auto = false;
4245 intel_dp->color_range = 0;
4246 break;
4247 case INTEL_BROADCAST_RGB_LIMITED:
4248 intel_dp->color_range_auto = false;
4249 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4250 break;
4251 default:
4252 return -EINVAL;
4253 }
4254
4255 if (old_auto == intel_dp->color_range_auto &&
4256 old_range == intel_dp->color_range)
4257 return 0;
4258
4259 goto done;
4260 }
4261
4262 if (is_edp(intel_dp) &&
4263 property == connector->dev->mode_config.scaling_mode_property) {
4264 if (val == DRM_MODE_SCALE_NONE) {
4265 DRM_DEBUG_KMS("no scaling not supported\n");
4266 return -EINVAL;
4267 }
4268
4269 if (intel_connector->panel.fitting_mode == val) {
4270 /* the eDP scaling property is not changed */
4271 return 0;
4272 }
4273 intel_connector->panel.fitting_mode = val;
4274
4275 goto done;
4276 }
4277
4278 return -EINVAL;
4279
4280 done:
4281 if (intel_encoder->base.crtc)
4282 intel_crtc_restore_mode(intel_encoder->base.crtc);
4283
4284 return 0;
4285 }
4286
4287 static void
4288 intel_dp_connector_destroy(struct drm_connector *connector)
4289 {
4290 struct intel_connector *intel_connector = to_intel_connector(connector);
4291
4292 kfree(intel_connector->detect_edid);
4293
4294 if (!IS_ERR_OR_NULL(intel_connector->edid))
4295 kfree(intel_connector->edid);
4296
4297 /* Can't call is_edp() since the encoder may have been destroyed
4298 * already. */
4299 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4300 intel_panel_fini(&intel_connector->panel);
4301
4302 drm_connector_cleanup(connector);
4303 kfree(connector);
4304 }
4305
4306 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4307 {
4308 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4309 struct intel_dp *intel_dp = &intel_dig_port->dp;
4310
4311 drm_dp_aux_unregister(&intel_dp->aux);
4312 intel_dp_mst_encoder_cleanup(intel_dig_port);
4313 if (is_edp(intel_dp)) {
4314 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4315 /*
4316 * vdd might still be enabled do to the delayed vdd off.
4317 * Make sure vdd is actually turned off here.
4318 */
4319 pps_lock(intel_dp);
4320 edp_panel_vdd_off_sync(intel_dp);
4321 pps_unlock(intel_dp);
4322
4323 if (intel_dp->edp_notifier.notifier_call) {
4324 unregister_reboot_notifier(&intel_dp->edp_notifier);
4325 intel_dp->edp_notifier.notifier_call = NULL;
4326 }
4327 }
4328 drm_encoder_cleanup(encoder);
4329 kfree(intel_dig_port);
4330 }
4331
4332 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4333 {
4334 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4335
4336 if (!is_edp(intel_dp))
4337 return;
4338
4339 /*
4340 * vdd might still be enabled do to the delayed vdd off.
4341 * Make sure vdd is actually turned off here.
4342 */
4343 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4344 pps_lock(intel_dp);
4345 edp_panel_vdd_off_sync(intel_dp);
4346 pps_unlock(intel_dp);
4347 }
4348
4349 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4350 {
4351 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4352 struct drm_device *dev = intel_dig_port->base.base.dev;
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 enum intel_display_power_domain power_domain;
4355
4356 lockdep_assert_held(&dev_priv->pps_mutex);
4357
4358 if (!edp_have_panel_vdd(intel_dp))
4359 return;
4360
4361 /*
4362 * The VDD bit needs a power domain reference, so if the bit is
4363 * already enabled when we boot or resume, grab this reference and
4364 * schedule a vdd off, so we don't hold on to the reference
4365 * indefinitely.
4366 */
4367 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4368 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4369 intel_display_power_get(dev_priv, power_domain);
4370
4371 edp_panel_vdd_schedule_off(intel_dp);
4372 }
4373
4374 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4375 {
4376 struct intel_dp *intel_dp;
4377
4378 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4379 return;
4380
4381 intel_dp = enc_to_intel_dp(encoder);
4382
4383 pps_lock(intel_dp);
4384
4385 /*
4386 * Read out the current power sequencer assignment,
4387 * in case the BIOS did something with it.
4388 */
4389 if (IS_VALLEYVIEW(encoder->dev))
4390 vlv_initial_power_sequencer_setup(intel_dp);
4391
4392 intel_edp_panel_vdd_sanitize(intel_dp);
4393
4394 pps_unlock(intel_dp);
4395 }
4396
4397 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4398 .dpms = intel_connector_dpms,
4399 .detect = intel_dp_detect,
4400 .force = intel_dp_force,
4401 .fill_modes = drm_helper_probe_single_connector_modes,
4402 .set_property = intel_dp_set_property,
4403 .destroy = intel_dp_connector_destroy,
4404 };
4405
4406 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4407 .get_modes = intel_dp_get_modes,
4408 .mode_valid = intel_dp_mode_valid,
4409 .best_encoder = intel_best_encoder,
4410 };
4411
4412 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4413 .reset = intel_dp_encoder_reset,
4414 .destroy = intel_dp_encoder_destroy,
4415 };
4416
4417 void
4418 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4419 {
4420 return;
4421 }
4422
4423 bool
4424 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4425 {
4426 struct intel_dp *intel_dp = &intel_dig_port->dp;
4427 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4428 struct drm_device *dev = intel_dig_port->base.base.dev;
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 enum intel_display_power_domain power_domain;
4431 bool ret = true;
4432
4433 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4434 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4435
4436 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4437 /*
4438 * vdd off can generate a long pulse on eDP which
4439 * would require vdd on to handle it, and thus we
4440 * would end up in an endless cycle of
4441 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4442 */
4443 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4444 port_name(intel_dig_port->port));
4445 return false;
4446 }
4447
4448 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4449 port_name(intel_dig_port->port),
4450 long_hpd ? "long" : "short");
4451
4452 power_domain = intel_display_port_power_domain(intel_encoder);
4453 intel_display_power_get(dev_priv, power_domain);
4454
4455 if (long_hpd) {
4456
4457 if (HAS_PCH_SPLIT(dev)) {
4458 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4459 goto mst_fail;
4460 } else {
4461 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4462 goto mst_fail;
4463 }
4464
4465 if (!intel_dp_get_dpcd(intel_dp)) {
4466 goto mst_fail;
4467 }
4468
4469 intel_dp_probe_oui(intel_dp);
4470
4471 if (!intel_dp_probe_mst(intel_dp))
4472 goto mst_fail;
4473
4474 } else {
4475 if (intel_dp->is_mst) {
4476 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4477 goto mst_fail;
4478 }
4479
4480 if (!intel_dp->is_mst) {
4481 /*
4482 * we'll check the link status via the normal hot plug path later -
4483 * but for short hpds we should check it now
4484 */
4485 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4486 intel_dp_check_link_status(intel_dp);
4487 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4488 }
4489 }
4490 ret = false;
4491 goto put_power;
4492 mst_fail:
4493 /* if we were in MST mode, and device is not there get out of MST mode */
4494 if (intel_dp->is_mst) {
4495 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4496 intel_dp->is_mst = false;
4497 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4498 }
4499 put_power:
4500 intel_display_power_put(dev_priv, power_domain);
4501
4502 return ret;
4503 }
4504
4505 /* Return which DP Port should be selected for Transcoder DP control */
4506 int
4507 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4508 {
4509 struct drm_device *dev = crtc->dev;
4510 struct intel_encoder *intel_encoder;
4511 struct intel_dp *intel_dp;
4512
4513 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4514 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4515
4516 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4517 intel_encoder->type == INTEL_OUTPUT_EDP)
4518 return intel_dp->output_reg;
4519 }
4520
4521 return -1;
4522 }
4523
4524 /* check the VBT to see whether the eDP is on DP-D port */
4525 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4526 {
4527 struct drm_i915_private *dev_priv = dev->dev_private;
4528 union child_device_config *p_child;
4529 int i;
4530 static const short port_mapping[] = {
4531 [PORT_B] = PORT_IDPB,
4532 [PORT_C] = PORT_IDPC,
4533 [PORT_D] = PORT_IDPD,
4534 };
4535
4536 if (port == PORT_A)
4537 return true;
4538
4539 if (!dev_priv->vbt.child_dev_num)
4540 return false;
4541
4542 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4543 p_child = dev_priv->vbt.child_dev + i;
4544
4545 if (p_child->common.dvo_port == port_mapping[port] &&
4546 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4547 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4548 return true;
4549 }
4550 return false;
4551 }
4552
4553 void
4554 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4555 {
4556 struct intel_connector *intel_connector = to_intel_connector(connector);
4557
4558 intel_attach_force_audio_property(connector);
4559 intel_attach_broadcast_rgb_property(connector);
4560 intel_dp->color_range_auto = true;
4561
4562 if (is_edp(intel_dp)) {
4563 drm_mode_create_scaling_mode_property(connector->dev);
4564 drm_object_attach_property(
4565 &connector->base,
4566 connector->dev->mode_config.scaling_mode_property,
4567 DRM_MODE_SCALE_ASPECT);
4568 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4569 }
4570 }
4571
4572 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4573 {
4574 intel_dp->last_power_cycle = jiffies;
4575 intel_dp->last_power_on = jiffies;
4576 intel_dp->last_backlight_off = jiffies;
4577 }
4578
4579 static void
4580 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4581 struct intel_dp *intel_dp)
4582 {
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 struct edp_power_seq cur, vbt, spec,
4585 *final = &intel_dp->pps_delays;
4586 u32 pp_on, pp_off, pp_div, pp;
4587 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4588
4589 lockdep_assert_held(&dev_priv->pps_mutex);
4590
4591 /* already initialized? */
4592 if (final->t11_t12 != 0)
4593 return;
4594
4595 if (HAS_PCH_SPLIT(dev)) {
4596 pp_ctrl_reg = PCH_PP_CONTROL;
4597 pp_on_reg = PCH_PP_ON_DELAYS;
4598 pp_off_reg = PCH_PP_OFF_DELAYS;
4599 pp_div_reg = PCH_PP_DIVISOR;
4600 } else {
4601 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4602
4603 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4604 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4605 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4606 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4607 }
4608
4609 /* Workaround: Need to write PP_CONTROL with the unlock key as
4610 * the very first thing. */
4611 pp = ironlake_get_pp_control(intel_dp);
4612 I915_WRITE(pp_ctrl_reg, pp);
4613
4614 pp_on = I915_READ(pp_on_reg);
4615 pp_off = I915_READ(pp_off_reg);
4616 pp_div = I915_READ(pp_div_reg);
4617
4618 /* Pull timing values out of registers */
4619 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4620 PANEL_POWER_UP_DELAY_SHIFT;
4621
4622 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4623 PANEL_LIGHT_ON_DELAY_SHIFT;
4624
4625 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4626 PANEL_LIGHT_OFF_DELAY_SHIFT;
4627
4628 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4629 PANEL_POWER_DOWN_DELAY_SHIFT;
4630
4631 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4632 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4633
4634 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4635 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4636
4637 vbt = dev_priv->vbt.edp_pps;
4638
4639 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4640 * our hw here, which are all in 100usec. */
4641 spec.t1_t3 = 210 * 10;
4642 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4643 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4644 spec.t10 = 500 * 10;
4645 /* This one is special and actually in units of 100ms, but zero
4646 * based in the hw (so we need to add 100 ms). But the sw vbt
4647 * table multiplies it with 1000 to make it in units of 100usec,
4648 * too. */
4649 spec.t11_t12 = (510 + 100) * 10;
4650
4651 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4652 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4653
4654 /* Use the max of the register settings and vbt. If both are
4655 * unset, fall back to the spec limits. */
4656 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4657 spec.field : \
4658 max(cur.field, vbt.field))
4659 assign_final(t1_t3);
4660 assign_final(t8);
4661 assign_final(t9);
4662 assign_final(t10);
4663 assign_final(t11_t12);
4664 #undef assign_final
4665
4666 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4667 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4668 intel_dp->backlight_on_delay = get_delay(t8);
4669 intel_dp->backlight_off_delay = get_delay(t9);
4670 intel_dp->panel_power_down_delay = get_delay(t10);
4671 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4672 #undef get_delay
4673
4674 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4675 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4676 intel_dp->panel_power_cycle_delay);
4677
4678 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4679 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4680 }
4681
4682 static void
4683 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4684 struct intel_dp *intel_dp)
4685 {
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687 u32 pp_on, pp_off, pp_div, port_sel = 0;
4688 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4689 int pp_on_reg, pp_off_reg, pp_div_reg;
4690 enum port port = dp_to_dig_port(intel_dp)->port;
4691 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4692
4693 lockdep_assert_held(&dev_priv->pps_mutex);
4694
4695 if (HAS_PCH_SPLIT(dev)) {
4696 pp_on_reg = PCH_PP_ON_DELAYS;
4697 pp_off_reg = PCH_PP_OFF_DELAYS;
4698 pp_div_reg = PCH_PP_DIVISOR;
4699 } else {
4700 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4701
4702 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4703 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4704 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4705 }
4706
4707 /*
4708 * And finally store the new values in the power sequencer. The
4709 * backlight delays are set to 1 because we do manual waits on them. For
4710 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4711 * we'll end up waiting for the backlight off delay twice: once when we
4712 * do the manual sleep, and once when we disable the panel and wait for
4713 * the PP_STATUS bit to become zero.
4714 */
4715 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4716 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4717 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4718 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4719 /* Compute the divisor for the pp clock, simply match the Bspec
4720 * formula. */
4721 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4722 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4723 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4724
4725 /* Haswell doesn't have any port selection bits for the panel
4726 * power sequencer any more. */
4727 if (IS_VALLEYVIEW(dev)) {
4728 port_sel = PANEL_PORT_SELECT_VLV(port);
4729 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4730 if (port == PORT_A)
4731 port_sel = PANEL_PORT_SELECT_DPA;
4732 else
4733 port_sel = PANEL_PORT_SELECT_DPD;
4734 }
4735
4736 pp_on |= port_sel;
4737
4738 I915_WRITE(pp_on_reg, pp_on);
4739 I915_WRITE(pp_off_reg, pp_off);
4740 I915_WRITE(pp_div_reg, pp_div);
4741
4742 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4743 I915_READ(pp_on_reg),
4744 I915_READ(pp_off_reg),
4745 I915_READ(pp_div_reg));
4746 }
4747
4748 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4749 {
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751 struct intel_encoder *encoder;
4752 struct intel_dp *intel_dp = NULL;
4753 struct intel_crtc_config *config = NULL;
4754 struct intel_crtc *intel_crtc = NULL;
4755 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4756 u32 reg, val;
4757 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4758
4759 if (refresh_rate <= 0) {
4760 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4761 return;
4762 }
4763
4764 if (intel_connector == NULL) {
4765 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4766 return;
4767 }
4768
4769 /*
4770 * FIXME: This needs proper synchronization with psr state for some
4771 * platforms that cannot have PSR and DRRS enabled at the same time.
4772 */
4773
4774 encoder = intel_attached_encoder(&intel_connector->base);
4775 intel_dp = enc_to_intel_dp(&encoder->base);
4776 intel_crtc = encoder->new_crtc;
4777
4778 if (!intel_crtc) {
4779 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4780 return;
4781 }
4782
4783 config = &intel_crtc->config;
4784
4785 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4786 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4787 return;
4788 }
4789
4790 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4791 index = DRRS_LOW_RR;
4792
4793 if (index == intel_dp->drrs_state.refresh_rate_type) {
4794 DRM_DEBUG_KMS(
4795 "DRRS requested for previously set RR...ignoring\n");
4796 return;
4797 }
4798
4799 if (!intel_crtc->active) {
4800 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4801 return;
4802 }
4803
4804 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4805 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4806 val = I915_READ(reg);
4807 if (index > DRRS_HIGH_RR) {
4808 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4809 intel_dp_set_m_n(intel_crtc);
4810 } else {
4811 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4812 }
4813 I915_WRITE(reg, val);
4814 }
4815
4816 /*
4817 * mutex taken to ensure that there is no race between differnt
4818 * drrs calls trying to update refresh rate. This scenario may occur
4819 * in future when idleness detection based DRRS in kernel and
4820 * possible calls from user space to set differnt RR are made.
4821 */
4822
4823 mutex_lock(&intel_dp->drrs_state.mutex);
4824
4825 intel_dp->drrs_state.refresh_rate_type = index;
4826
4827 mutex_unlock(&intel_dp->drrs_state.mutex);
4828
4829 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4830 }
4831
4832 static struct drm_display_mode *
4833 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4834 struct intel_connector *intel_connector,
4835 struct drm_display_mode *fixed_mode)
4836 {
4837 struct drm_connector *connector = &intel_connector->base;
4838 struct intel_dp *intel_dp = &intel_dig_port->dp;
4839 struct drm_device *dev = intel_dig_port->base.base.dev;
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 struct drm_display_mode *downclock_mode = NULL;
4842
4843 if (INTEL_INFO(dev)->gen <= 6) {
4844 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4845 return NULL;
4846 }
4847
4848 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4849 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4850 return NULL;
4851 }
4852
4853 downclock_mode = intel_find_panel_downclock
4854 (dev, fixed_mode, connector);
4855
4856 if (!downclock_mode) {
4857 DRM_DEBUG_KMS("DRRS not supported\n");
4858 return NULL;
4859 }
4860
4861 dev_priv->drrs.connector = intel_connector;
4862
4863 mutex_init(&intel_dp->drrs_state.mutex);
4864
4865 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4866
4867 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4868 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4869 return downclock_mode;
4870 }
4871
4872 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4873 struct intel_connector *intel_connector)
4874 {
4875 struct drm_connector *connector = &intel_connector->base;
4876 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4877 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4878 struct drm_device *dev = intel_encoder->base.dev;
4879 struct drm_i915_private *dev_priv = dev->dev_private;
4880 struct drm_display_mode *fixed_mode = NULL;
4881 struct drm_display_mode *downclock_mode = NULL;
4882 bool has_dpcd;
4883 struct drm_display_mode *scan;
4884 struct edid *edid;
4885 enum pipe pipe = INVALID_PIPE;
4886
4887 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4888
4889 if (!is_edp(intel_dp))
4890 return true;
4891
4892 pps_lock(intel_dp);
4893 intel_edp_panel_vdd_sanitize(intel_dp);
4894 pps_unlock(intel_dp);
4895
4896 /* Cache DPCD and EDID for edp. */
4897 has_dpcd = intel_dp_get_dpcd(intel_dp);
4898
4899 if (has_dpcd) {
4900 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4901 dev_priv->no_aux_handshake =
4902 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4903 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4904 } else {
4905 /* if this fails, presume the device is a ghost */
4906 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4907 return false;
4908 }
4909
4910 /* We now know it's not a ghost, init power sequence regs. */
4911 pps_lock(intel_dp);
4912 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
4913 pps_unlock(intel_dp);
4914
4915 mutex_lock(&dev->mode_config.mutex);
4916 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4917 if (edid) {
4918 if (drm_add_edid_modes(connector, edid)) {
4919 drm_mode_connector_update_edid_property(connector,
4920 edid);
4921 drm_edid_to_eld(connector, edid);
4922 } else {
4923 kfree(edid);
4924 edid = ERR_PTR(-EINVAL);
4925 }
4926 } else {
4927 edid = ERR_PTR(-ENOENT);
4928 }
4929 intel_connector->edid = edid;
4930
4931 /* prefer fixed mode from EDID if available */
4932 list_for_each_entry(scan, &connector->probed_modes, head) {
4933 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4934 fixed_mode = drm_mode_duplicate(dev, scan);
4935 downclock_mode = intel_dp_drrs_init(
4936 intel_dig_port,
4937 intel_connector, fixed_mode);
4938 break;
4939 }
4940 }
4941
4942 /* fallback to VBT if available for eDP */
4943 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4944 fixed_mode = drm_mode_duplicate(dev,
4945 dev_priv->vbt.lfp_lvds_vbt_mode);
4946 if (fixed_mode)
4947 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4948 }
4949 mutex_unlock(&dev->mode_config.mutex);
4950
4951 if (IS_VALLEYVIEW(dev)) {
4952 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4953 register_reboot_notifier(&intel_dp->edp_notifier);
4954
4955 /*
4956 * Figure out the current pipe for the initial backlight setup.
4957 * If the current pipe isn't valid, try the PPS pipe, and if that
4958 * fails just assume pipe A.
4959 */
4960 if (IS_CHERRYVIEW(dev))
4961 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
4962 else
4963 pipe = PORT_TO_PIPE(intel_dp->DP);
4964
4965 if (pipe != PIPE_A && pipe != PIPE_B)
4966 pipe = intel_dp->pps_pipe;
4967
4968 if (pipe != PIPE_A && pipe != PIPE_B)
4969 pipe = PIPE_A;
4970
4971 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
4972 pipe_name(pipe));
4973 }
4974
4975 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4976 intel_connector->panel.backlight_power = intel_edp_backlight_power;
4977 intel_panel_setup_backlight(connector, pipe);
4978
4979 return true;
4980 }
4981
4982 bool
4983 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4984 struct intel_connector *intel_connector)
4985 {
4986 struct drm_connector *connector = &intel_connector->base;
4987 struct intel_dp *intel_dp = &intel_dig_port->dp;
4988 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4989 struct drm_device *dev = intel_encoder->base.dev;
4990 struct drm_i915_private *dev_priv = dev->dev_private;
4991 enum port port = intel_dig_port->port;
4992 int type;
4993
4994 intel_dp->pps_pipe = INVALID_PIPE;
4995
4996 /* intel_dp vfuncs */
4997 if (INTEL_INFO(dev)->gen >= 9)
4998 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
4999 else if (IS_VALLEYVIEW(dev))
5000 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5001 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5002 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5003 else if (HAS_PCH_SPLIT(dev))
5004 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5005 else
5006 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5007
5008 if (INTEL_INFO(dev)->gen >= 9)
5009 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5010 else
5011 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5012
5013 /* Preserve the current hw state. */
5014 intel_dp->DP = I915_READ(intel_dp->output_reg);
5015 intel_dp->attached_connector = intel_connector;
5016
5017 if (intel_dp_is_edp(dev, port))
5018 type = DRM_MODE_CONNECTOR_eDP;
5019 else
5020 type = DRM_MODE_CONNECTOR_DisplayPort;
5021
5022 /*
5023 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5024 * for DP the encoder type can be set by the caller to
5025 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5026 */
5027 if (type == DRM_MODE_CONNECTOR_eDP)
5028 intel_encoder->type = INTEL_OUTPUT_EDP;
5029
5030 /* eDP only on port B and/or C on vlv/chv */
5031 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5032 port != PORT_B && port != PORT_C))
5033 return false;
5034
5035 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5036 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5037 port_name(port));
5038
5039 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5040 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5041
5042 connector->interlace_allowed = true;
5043 connector->doublescan_allowed = 0;
5044
5045 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5046 edp_panel_vdd_work);
5047
5048 intel_connector_attach_encoder(intel_connector, intel_encoder);
5049 drm_connector_register(connector);
5050
5051 if (HAS_DDI(dev))
5052 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5053 else
5054 intel_connector->get_hw_state = intel_connector_get_hw_state;
5055 intel_connector->unregister = intel_dp_connector_unregister;
5056
5057 /* Set up the hotplug pin. */
5058 switch (port) {
5059 case PORT_A:
5060 intel_encoder->hpd_pin = HPD_PORT_A;
5061 break;
5062 case PORT_B:
5063 intel_encoder->hpd_pin = HPD_PORT_B;
5064 break;
5065 case PORT_C:
5066 intel_encoder->hpd_pin = HPD_PORT_C;
5067 break;
5068 case PORT_D:
5069 intel_encoder->hpd_pin = HPD_PORT_D;
5070 break;
5071 default:
5072 BUG();
5073 }
5074
5075 if (is_edp(intel_dp)) {
5076 pps_lock(intel_dp);
5077 intel_dp_init_panel_power_timestamps(intel_dp);
5078 if (IS_VALLEYVIEW(dev))
5079 vlv_initial_power_sequencer_setup(intel_dp);
5080 else
5081 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5082 pps_unlock(intel_dp);
5083 }
5084
5085 intel_dp_aux_init(intel_dp, intel_connector);
5086
5087 /* init MST on ports that can support it */
5088 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5089 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5090 intel_dp_mst_encoder_init(intel_dig_port,
5091 intel_connector->base.base.id);
5092 }
5093 }
5094
5095 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5096 drm_dp_aux_unregister(&intel_dp->aux);
5097 if (is_edp(intel_dp)) {
5098 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5099 /*
5100 * vdd might still be enabled do to the delayed vdd off.
5101 * Make sure vdd is actually turned off here.
5102 */
5103 pps_lock(intel_dp);
5104 edp_panel_vdd_off_sync(intel_dp);
5105 pps_unlock(intel_dp);
5106 }
5107 drm_connector_unregister(connector);
5108 drm_connector_cleanup(connector);
5109 return false;
5110 }
5111
5112 intel_dp_add_properties(intel_dp, connector);
5113
5114 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5115 * 0xd. Failure to do so will result in spurious interrupts being
5116 * generated on the port when a cable is not attached.
5117 */
5118 if (IS_G4X(dev) && !IS_GM45(dev)) {
5119 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5120 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5121 }
5122
5123 return true;
5124 }
5125
5126 void
5127 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5128 {
5129 struct drm_i915_private *dev_priv = dev->dev_private;
5130 struct intel_digital_port *intel_dig_port;
5131 struct intel_encoder *intel_encoder;
5132 struct drm_encoder *encoder;
5133 struct intel_connector *intel_connector;
5134
5135 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5136 if (!intel_dig_port)
5137 return;
5138
5139 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5140 if (!intel_connector) {
5141 kfree(intel_dig_port);
5142 return;
5143 }
5144
5145 intel_encoder = &intel_dig_port->base;
5146 encoder = &intel_encoder->base;
5147
5148 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5149 DRM_MODE_ENCODER_TMDS);
5150
5151 intel_encoder->compute_config = intel_dp_compute_config;
5152 intel_encoder->disable = intel_disable_dp;
5153 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5154 intel_encoder->get_config = intel_dp_get_config;
5155 intel_encoder->suspend = intel_dp_encoder_suspend;
5156 if (IS_CHERRYVIEW(dev)) {
5157 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5158 intel_encoder->pre_enable = chv_pre_enable_dp;
5159 intel_encoder->enable = vlv_enable_dp;
5160 intel_encoder->post_disable = chv_post_disable_dp;
5161 } else if (IS_VALLEYVIEW(dev)) {
5162 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5163 intel_encoder->pre_enable = vlv_pre_enable_dp;
5164 intel_encoder->enable = vlv_enable_dp;
5165 intel_encoder->post_disable = vlv_post_disable_dp;
5166 } else {
5167 intel_encoder->pre_enable = g4x_pre_enable_dp;
5168 intel_encoder->enable = g4x_enable_dp;
5169 if (INTEL_INFO(dev)->gen >= 5)
5170 intel_encoder->post_disable = ilk_post_disable_dp;
5171 }
5172
5173 intel_dig_port->port = port;
5174 intel_dig_port->dp.output_reg = output_reg;
5175
5176 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5177 if (IS_CHERRYVIEW(dev)) {
5178 if (port == PORT_D)
5179 intel_encoder->crtc_mask = 1 << 2;
5180 else
5181 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5182 } else {
5183 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5184 }
5185 intel_encoder->cloneable = 0;
5186 intel_encoder->hot_plug = intel_dp_hot_plug;
5187
5188 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5189 dev_priv->hpd_irq_port[port] = intel_dig_port;
5190
5191 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5192 drm_encoder_cleanup(encoder);
5193 kfree(intel_dig_port);
5194 kfree(intel_connector);
5195 }
5196 }
5197
5198 void intel_dp_mst_suspend(struct drm_device *dev)
5199 {
5200 struct drm_i915_private *dev_priv = dev->dev_private;
5201 int i;
5202
5203 /* disable MST */
5204 for (i = 0; i < I915_MAX_PORTS; i++) {
5205 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5206 if (!intel_dig_port)
5207 continue;
5208
5209 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5210 if (!intel_dig_port->dp.can_mst)
5211 continue;
5212 if (intel_dig_port->dp.is_mst)
5213 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5214 }
5215 }
5216 }
5217
5218 void intel_dp_mst_resume(struct drm_device *dev)
5219 {
5220 struct drm_i915_private *dev_priv = dev->dev_private;
5221 int i;
5222
5223 for (i = 0; i < I915_MAX_PORTS; i++) {
5224 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5225 if (!intel_dig_port)
5226 continue;
5227 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5228 int ret;
5229
5230 if (!intel_dig_port->dp.can_mst)
5231 continue;
5232
5233 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5234 if (ret != 0) {
5235 intel_dp_check_mst_status(&intel_dig_port->dp);
5236 }
5237 }
5238 }
5239 }
This page took 0.143093 seconds and 5 git commands to generate.