fcce39284e5d03f31d5490eaf9fab8089a7443bc
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /**
45 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
46 * @intel_dp: DP struct
47 *
48 * If a CPU or PCH DP output is attached to an eDP panel, this function
49 * will return true, and false otherwise.
50 */
51 static bool is_edp(struct intel_dp *intel_dp)
52 {
53 return intel_dp->base.type == INTEL_OUTPUT_EDP;
54 }
55
56 /**
57 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
58 * @intel_dp: DP struct
59 *
60 * Returns true if the given DP struct corresponds to a PCH DP port attached
61 * to an eDP panel, false otherwise. Helpful for determining whether we
62 * may need FDI resources for a given DP output or not.
63 */
64 static bool is_pch_edp(struct intel_dp *intel_dp)
65 {
66 return intel_dp->is_pch_edp;
67 }
68
69 /**
70 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
71 * @intel_dp: DP struct
72 *
73 * Returns true if the given DP struct corresponds to a CPU eDP port.
74 */
75 static bool is_cpu_edp(struct intel_dp *intel_dp)
76 {
77 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
78 }
79
80 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
81 {
82 return container_of(encoder, struct intel_dp, base.base);
83 }
84
85 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
86 {
87 return container_of(intel_attached_encoder(connector),
88 struct intel_dp, base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
112 static void intel_dp_link_down(struct intel_dp *intel_dp);
113
114 void
115 intel_edp_link_config(struct intel_encoder *intel_encoder,
116 int *lane_num, int *link_bw)
117 {
118 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119
120 *lane_num = intel_dp->lane_count;
121 if (intel_dp->link_bw == DP_LINK_BW_1_62)
122 *link_bw = 162000;
123 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
124 *link_bw = 270000;
125 }
126
127 int
128 intel_edp_target_clock(struct intel_encoder *intel_encoder,
129 struct drm_display_mode *mode)
130 {
131 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
132
133 if (intel_dp->panel_fixed_mode)
134 return intel_dp->panel_fixed_mode->clock;
135 else
136 return mode->clock;
137 }
138
139 static int
140 intel_dp_max_lane_count(struct intel_dp *intel_dp)
141 {
142 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143 switch (max_lane_count) {
144 case 1: case 2: case 4:
145 break;
146 default:
147 max_lane_count = 4;
148 }
149 return max_lane_count;
150 }
151
152 static int
153 intel_dp_max_link_bw(struct intel_dp *intel_dp)
154 {
155 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
156
157 switch (max_link_bw) {
158 case DP_LINK_BW_1_62:
159 case DP_LINK_BW_2_7:
160 break;
161 default:
162 max_link_bw = DP_LINK_BW_1_62;
163 break;
164 }
165 return max_link_bw;
166 }
167
168 static int
169 intel_dp_link_clock(uint8_t link_bw)
170 {
171 if (link_bw == DP_LINK_BW_2_7)
172 return 270000;
173 else
174 return 162000;
175 }
176
177 /*
178 * The units on the numbers in the next two are... bizarre. Examples will
179 * make it clearer; this one parallels an example in the eDP spec.
180 *
181 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
182 *
183 * 270000 * 1 * 8 / 10 == 216000
184 *
185 * The actual data capacity of that configuration is 2.16Gbit/s, so the
186 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
187 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
188 * 119000. At 18bpp that's 2142000 kilobits per second.
189 *
190 * Thus the strange-looking division by 10 in intel_dp_link_required, to
191 * get the result in decakilobits instead of kilobits.
192 */
193
194 static int
195 intel_dp_link_required(int pixel_clock, int bpp)
196 {
197 return (pixel_clock * bpp + 9) / 10;
198 }
199
200 static int
201 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
202 {
203 return (max_link_clock * max_lanes * 8) / 10;
204 }
205
206 static bool
207 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
208 struct drm_display_mode *mode,
209 bool adjust_mode)
210 {
211 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
212 int max_lanes = intel_dp_max_lane_count(intel_dp);
213 int max_rate, mode_rate;
214
215 mode_rate = intel_dp_link_required(mode->clock, 24);
216 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
217
218 if (mode_rate > max_rate) {
219 mode_rate = intel_dp_link_required(mode->clock, 18);
220 if (mode_rate > max_rate)
221 return false;
222
223 if (adjust_mode)
224 mode->private_flags
225 |= INTEL_MODE_DP_FORCE_6BPC;
226
227 return true;
228 }
229
230 return true;
231 }
232
233 static int
234 intel_dp_mode_valid(struct drm_connector *connector,
235 struct drm_display_mode *mode)
236 {
237 struct intel_dp *intel_dp = intel_attached_dp(connector);
238
239 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
240 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
241 return MODE_PANEL;
242
243 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
244 return MODE_PANEL;
245 }
246
247 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
248 return MODE_CLOCK_HIGH;
249
250 if (mode->clock < 10000)
251 return MODE_CLOCK_LOW;
252
253 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
254 return MODE_H_ILLEGAL;
255
256 return MODE_OK;
257 }
258
259 static uint32_t
260 pack_aux(uint8_t *src, int src_bytes)
261 {
262 int i;
263 uint32_t v = 0;
264
265 if (src_bytes > 4)
266 src_bytes = 4;
267 for (i = 0; i < src_bytes; i++)
268 v |= ((uint32_t) src[i]) << ((3-i) * 8);
269 return v;
270 }
271
272 static void
273 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
274 {
275 int i;
276 if (dst_bytes > 4)
277 dst_bytes = 4;
278 for (i = 0; i < dst_bytes; i++)
279 dst[i] = src >> ((3-i) * 8);
280 }
281
282 /* hrawclock is 1/4 the FSB frequency */
283 static int
284 intel_hrawclk(struct drm_device *dev)
285 {
286 struct drm_i915_private *dev_priv = dev->dev_private;
287 uint32_t clkcfg;
288
289 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
290 if (IS_VALLEYVIEW(dev))
291 return 200;
292
293 clkcfg = I915_READ(CLKCFG);
294 switch (clkcfg & CLKCFG_FSB_MASK) {
295 case CLKCFG_FSB_400:
296 return 100;
297 case CLKCFG_FSB_533:
298 return 133;
299 case CLKCFG_FSB_667:
300 return 166;
301 case CLKCFG_FSB_800:
302 return 200;
303 case CLKCFG_FSB_1067:
304 return 266;
305 case CLKCFG_FSB_1333:
306 return 333;
307 /* these two are just a guess; one of them might be right */
308 case CLKCFG_FSB_1600:
309 case CLKCFG_FSB_1600_ALT:
310 return 400;
311 default:
312 return 133;
313 }
314 }
315
316 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
317 {
318 struct drm_device *dev = intel_dp->base.base.dev;
319 struct drm_i915_private *dev_priv = dev->dev_private;
320
321 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
322 }
323
324 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
325 {
326 struct drm_device *dev = intel_dp->base.base.dev;
327 struct drm_i915_private *dev_priv = dev->dev_private;
328
329 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
330 }
331
332 static void
333 intel_dp_check_edp(struct intel_dp *intel_dp)
334 {
335 struct drm_device *dev = intel_dp->base.base.dev;
336 struct drm_i915_private *dev_priv = dev->dev_private;
337
338 if (!is_edp(intel_dp))
339 return;
340 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
341 WARN(1, "eDP powered off while attempting aux channel communication.\n");
342 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
343 I915_READ(PCH_PP_STATUS),
344 I915_READ(PCH_PP_CONTROL));
345 }
346 }
347
348 static int
349 intel_dp_aux_ch(struct intel_dp *intel_dp,
350 uint8_t *send, int send_bytes,
351 uint8_t *recv, int recv_size)
352 {
353 uint32_t output_reg = intel_dp->output_reg;
354 struct drm_device *dev = intel_dp->base.base.dev;
355 struct drm_i915_private *dev_priv = dev->dev_private;
356 uint32_t ch_ctl = output_reg + 0x10;
357 uint32_t ch_data = ch_ctl + 4;
358 int i;
359 int recv_bytes;
360 uint32_t status;
361 uint32_t aux_clock_divider;
362 int try, precharge;
363
364 intel_dp_check_edp(intel_dp);
365 /* The clock divider is based off the hrawclk,
366 * and would like to run at 2MHz. So, take the
367 * hrawclk value and divide by 2 and use that
368 *
369 * Note that PCH attached eDP panels should use a 125MHz input
370 * clock divider.
371 */
372 if (is_cpu_edp(intel_dp)) {
373 if (IS_VALLEYVIEW(dev))
374 aux_clock_divider = 100;
375 else if (IS_GEN6(dev) || IS_GEN7(dev))
376 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
377 else
378 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
379 } else if (HAS_PCH_SPLIT(dev))
380 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
381 else
382 aux_clock_divider = intel_hrawclk(dev) / 2;
383
384 if (IS_GEN6(dev))
385 precharge = 3;
386 else
387 precharge = 5;
388
389 /* Try to wait for any previous AUX channel activity */
390 for (try = 0; try < 3; try++) {
391 status = I915_READ(ch_ctl);
392 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
393 break;
394 msleep(1);
395 }
396
397 if (try == 3) {
398 WARN(1, "dp_aux_ch not started status 0x%08x\n",
399 I915_READ(ch_ctl));
400 return -EBUSY;
401 }
402
403 /* Must try at least 3 times according to DP spec */
404 for (try = 0; try < 5; try++) {
405 /* Load the send data into the aux channel data registers */
406 for (i = 0; i < send_bytes; i += 4)
407 I915_WRITE(ch_data + i,
408 pack_aux(send + i, send_bytes - i));
409
410 /* Send the command and wait for it to complete */
411 I915_WRITE(ch_ctl,
412 DP_AUX_CH_CTL_SEND_BUSY |
413 DP_AUX_CH_CTL_TIME_OUT_400us |
414 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
415 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
416 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
417 DP_AUX_CH_CTL_DONE |
418 DP_AUX_CH_CTL_TIME_OUT_ERROR |
419 DP_AUX_CH_CTL_RECEIVE_ERROR);
420 for (;;) {
421 status = I915_READ(ch_ctl);
422 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
423 break;
424 udelay(100);
425 }
426
427 /* Clear done status and any errors */
428 I915_WRITE(ch_ctl,
429 status |
430 DP_AUX_CH_CTL_DONE |
431 DP_AUX_CH_CTL_TIME_OUT_ERROR |
432 DP_AUX_CH_CTL_RECEIVE_ERROR);
433
434 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
435 DP_AUX_CH_CTL_RECEIVE_ERROR))
436 continue;
437 if (status & DP_AUX_CH_CTL_DONE)
438 break;
439 }
440
441 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
442 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
443 return -EBUSY;
444 }
445
446 /* Check for timeout or receive error.
447 * Timeouts occur when the sink is not connected
448 */
449 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
450 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
451 return -EIO;
452 }
453
454 /* Timeouts occur when the device isn't connected, so they're
455 * "normal" -- don't fill the kernel log with these */
456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
457 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
458 return -ETIMEDOUT;
459 }
460
461 /* Unload any bytes sent back from the other side */
462 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
463 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
464 if (recv_bytes > recv_size)
465 recv_bytes = recv_size;
466
467 for (i = 0; i < recv_bytes; i += 4)
468 unpack_aux(I915_READ(ch_data + i),
469 recv + i, recv_bytes - i);
470
471 return recv_bytes;
472 }
473
474 /* Write data to the aux channel in native mode */
475 static int
476 intel_dp_aux_native_write(struct intel_dp *intel_dp,
477 uint16_t address, uint8_t *send, int send_bytes)
478 {
479 int ret;
480 uint8_t msg[20];
481 int msg_bytes;
482 uint8_t ack;
483
484 intel_dp_check_edp(intel_dp);
485 if (send_bytes > 16)
486 return -1;
487 msg[0] = AUX_NATIVE_WRITE << 4;
488 msg[1] = address >> 8;
489 msg[2] = address & 0xff;
490 msg[3] = send_bytes - 1;
491 memcpy(&msg[4], send, send_bytes);
492 msg_bytes = send_bytes + 4;
493 for (;;) {
494 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
495 if (ret < 0)
496 return ret;
497 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
498 break;
499 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
500 udelay(100);
501 else
502 return -EIO;
503 }
504 return send_bytes;
505 }
506
507 /* Write a single byte to the aux channel in native mode */
508 static int
509 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
510 uint16_t address, uint8_t byte)
511 {
512 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
513 }
514
515 /* read bytes from a native aux channel */
516 static int
517 intel_dp_aux_native_read(struct intel_dp *intel_dp,
518 uint16_t address, uint8_t *recv, int recv_bytes)
519 {
520 uint8_t msg[4];
521 int msg_bytes;
522 uint8_t reply[20];
523 int reply_bytes;
524 uint8_t ack;
525 int ret;
526
527 intel_dp_check_edp(intel_dp);
528 msg[0] = AUX_NATIVE_READ << 4;
529 msg[1] = address >> 8;
530 msg[2] = address & 0xff;
531 msg[3] = recv_bytes - 1;
532
533 msg_bytes = 4;
534 reply_bytes = recv_bytes + 1;
535
536 for (;;) {
537 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
538 reply, reply_bytes);
539 if (ret == 0)
540 return -EPROTO;
541 if (ret < 0)
542 return ret;
543 ack = reply[0];
544 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
545 memcpy(recv, reply + 1, ret - 1);
546 return ret - 1;
547 }
548 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
549 udelay(100);
550 else
551 return -EIO;
552 }
553 }
554
555 static int
556 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
557 uint8_t write_byte, uint8_t *read_byte)
558 {
559 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
560 struct intel_dp *intel_dp = container_of(adapter,
561 struct intel_dp,
562 adapter);
563 uint16_t address = algo_data->address;
564 uint8_t msg[5];
565 uint8_t reply[2];
566 unsigned retry;
567 int msg_bytes;
568 int reply_bytes;
569 int ret;
570
571 intel_dp_check_edp(intel_dp);
572 /* Set up the command byte */
573 if (mode & MODE_I2C_READ)
574 msg[0] = AUX_I2C_READ << 4;
575 else
576 msg[0] = AUX_I2C_WRITE << 4;
577
578 if (!(mode & MODE_I2C_STOP))
579 msg[0] |= AUX_I2C_MOT << 4;
580
581 msg[1] = address >> 8;
582 msg[2] = address;
583
584 switch (mode) {
585 case MODE_I2C_WRITE:
586 msg[3] = 0;
587 msg[4] = write_byte;
588 msg_bytes = 5;
589 reply_bytes = 1;
590 break;
591 case MODE_I2C_READ:
592 msg[3] = 0;
593 msg_bytes = 4;
594 reply_bytes = 2;
595 break;
596 default:
597 msg_bytes = 3;
598 reply_bytes = 1;
599 break;
600 }
601
602 for (retry = 0; retry < 5; retry++) {
603 ret = intel_dp_aux_ch(intel_dp,
604 msg, msg_bytes,
605 reply, reply_bytes);
606 if (ret < 0) {
607 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
608 return ret;
609 }
610
611 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
612 case AUX_NATIVE_REPLY_ACK:
613 /* I2C-over-AUX Reply field is only valid
614 * when paired with AUX ACK.
615 */
616 break;
617 case AUX_NATIVE_REPLY_NACK:
618 DRM_DEBUG_KMS("aux_ch native nack\n");
619 return -EREMOTEIO;
620 case AUX_NATIVE_REPLY_DEFER:
621 udelay(100);
622 continue;
623 default:
624 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
625 reply[0]);
626 return -EREMOTEIO;
627 }
628
629 switch (reply[0] & AUX_I2C_REPLY_MASK) {
630 case AUX_I2C_REPLY_ACK:
631 if (mode == MODE_I2C_READ) {
632 *read_byte = reply[1];
633 }
634 return reply_bytes - 1;
635 case AUX_I2C_REPLY_NACK:
636 DRM_DEBUG_KMS("aux_i2c nack\n");
637 return -EREMOTEIO;
638 case AUX_I2C_REPLY_DEFER:
639 DRM_DEBUG_KMS("aux_i2c defer\n");
640 udelay(100);
641 break;
642 default:
643 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
644 return -EREMOTEIO;
645 }
646 }
647
648 DRM_ERROR("too many retries, giving up\n");
649 return -EREMOTEIO;
650 }
651
652 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
653 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
654
655 static int
656 intel_dp_i2c_init(struct intel_dp *intel_dp,
657 struct intel_connector *intel_connector, const char *name)
658 {
659 int ret;
660
661 DRM_DEBUG_KMS("i2c_init %s\n", name);
662 intel_dp->algo.running = false;
663 intel_dp->algo.address = 0;
664 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
665
666 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
667 intel_dp->adapter.owner = THIS_MODULE;
668 intel_dp->adapter.class = I2C_CLASS_DDC;
669 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
670 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
671 intel_dp->adapter.algo_data = &intel_dp->algo;
672 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
673
674 ironlake_edp_panel_vdd_on(intel_dp);
675 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
676 ironlake_edp_panel_vdd_off(intel_dp, false);
677 return ret;
678 }
679
680 static bool
681 intel_dp_mode_fixup(struct drm_encoder *encoder,
682 const struct drm_display_mode *mode,
683 struct drm_display_mode *adjusted_mode)
684 {
685 struct drm_device *dev = encoder->dev;
686 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
687 int lane_count, clock;
688 int max_lane_count = intel_dp_max_lane_count(intel_dp);
689 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
690 int bpp, mode_rate;
691 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
692
693 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
694 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
695 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
696 mode, adjusted_mode);
697 }
698
699 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
700 return false;
701
702 DRM_DEBUG_KMS("DP link computation with max lane count %i "
703 "max bw %02x pixel clock %iKHz\n",
704 max_lane_count, bws[max_clock], adjusted_mode->clock);
705
706 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
707 return false;
708
709 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
710 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
711
712 for (clock = 0; clock <= max_clock; clock++) {
713 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
714 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
715
716 if (mode_rate <= link_avail) {
717 intel_dp->link_bw = bws[clock];
718 intel_dp->lane_count = lane_count;
719 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
720 DRM_DEBUG_KMS("DP link bw %02x lane "
721 "count %d clock %d bpp %d\n",
722 intel_dp->link_bw, intel_dp->lane_count,
723 adjusted_mode->clock, bpp);
724 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
725 mode_rate, link_avail);
726 return true;
727 }
728 }
729 }
730
731 return false;
732 }
733
734 struct intel_dp_m_n {
735 uint32_t tu;
736 uint32_t gmch_m;
737 uint32_t gmch_n;
738 uint32_t link_m;
739 uint32_t link_n;
740 };
741
742 static void
743 intel_reduce_ratio(uint32_t *num, uint32_t *den)
744 {
745 while (*num > 0xffffff || *den > 0xffffff) {
746 *num >>= 1;
747 *den >>= 1;
748 }
749 }
750
751 static void
752 intel_dp_compute_m_n(int bpp,
753 int nlanes,
754 int pixel_clock,
755 int link_clock,
756 struct intel_dp_m_n *m_n)
757 {
758 m_n->tu = 64;
759 m_n->gmch_m = (pixel_clock * bpp) >> 3;
760 m_n->gmch_n = link_clock * nlanes;
761 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
762 m_n->link_m = pixel_clock;
763 m_n->link_n = link_clock;
764 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
765 }
766
767 void
768 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
769 struct drm_display_mode *adjusted_mode)
770 {
771 struct drm_device *dev = crtc->dev;
772 struct intel_encoder *encoder;
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
775 int lane_count = 4;
776 struct intel_dp_m_n m_n;
777 int pipe = intel_crtc->pipe;
778
779 /*
780 * Find the lane count in the intel_encoder private
781 */
782 for_each_encoder_on_crtc(dev, crtc, encoder) {
783 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
784
785 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
786 intel_dp->base.type == INTEL_OUTPUT_EDP)
787 {
788 lane_count = intel_dp->lane_count;
789 break;
790 }
791 }
792
793 /*
794 * Compute the GMCH and Link ratios. The '3' here is
795 * the number of bytes_per_pixel post-LUT, which we always
796 * set up for 8-bits of R/G/B, or 3 bytes total.
797 */
798 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
799 mode->clock, adjusted_mode->clock, &m_n);
800
801 if (HAS_PCH_SPLIT(dev)) {
802 I915_WRITE(TRANSDATA_M1(pipe),
803 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804 m_n.gmch_m);
805 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
806 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
807 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
808 } else if (IS_VALLEYVIEW(dev)) {
809 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
810 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
811 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
812 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
813 } else {
814 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
815 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
816 m_n.gmch_m);
817 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
818 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
819 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
820 }
821 }
822
823 static void
824 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
825 struct drm_display_mode *adjusted_mode)
826 {
827 struct drm_device *dev = encoder->dev;
828 struct drm_i915_private *dev_priv = dev->dev_private;
829 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
830 struct drm_crtc *crtc = intel_dp->base.base.crtc;
831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
832
833 /*
834 * There are four kinds of DP registers:
835 *
836 * IBX PCH
837 * SNB CPU
838 * IVB CPU
839 * CPT PCH
840 *
841 * IBX PCH and CPU are the same for almost everything,
842 * except that the CPU DP PLL is configured in this
843 * register
844 *
845 * CPT PCH is quite different, having many bits moved
846 * to the TRANS_DP_CTL register instead. That
847 * configuration happens (oddly) in ironlake_pch_enable
848 */
849
850 /* Preserve the BIOS-computed detected bit. This is
851 * supposed to be read-only.
852 */
853 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
854
855 /* Handle DP bits in common between all three register formats */
856 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
857
858 switch (intel_dp->lane_count) {
859 case 1:
860 intel_dp->DP |= DP_PORT_WIDTH_1;
861 break;
862 case 2:
863 intel_dp->DP |= DP_PORT_WIDTH_2;
864 break;
865 case 4:
866 intel_dp->DP |= DP_PORT_WIDTH_4;
867 break;
868 }
869 if (intel_dp->has_audio) {
870 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
871 pipe_name(intel_crtc->pipe));
872 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
873 intel_write_eld(encoder, adjusted_mode);
874 }
875 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
876 intel_dp->link_configuration[0] = intel_dp->link_bw;
877 intel_dp->link_configuration[1] = intel_dp->lane_count;
878 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
879 /*
880 * Check for DPCD version > 1.1 and enhanced framing support
881 */
882 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
883 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
884 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
885 }
886
887 /* Split out the IBX/CPU vs CPT settings */
888
889 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
890 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
891 intel_dp->DP |= DP_SYNC_HS_HIGH;
892 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
893 intel_dp->DP |= DP_SYNC_VS_HIGH;
894 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
895
896 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
897 intel_dp->DP |= DP_ENHANCED_FRAMING;
898
899 intel_dp->DP |= intel_crtc->pipe << 29;
900
901 /* don't miss out required setting for eDP */
902 if (adjusted_mode->clock < 200000)
903 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
904 else
905 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
906 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
907 intel_dp->DP |= intel_dp->color_range;
908
909 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
910 intel_dp->DP |= DP_SYNC_HS_HIGH;
911 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
912 intel_dp->DP |= DP_SYNC_VS_HIGH;
913 intel_dp->DP |= DP_LINK_TRAIN_OFF;
914
915 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
916 intel_dp->DP |= DP_ENHANCED_FRAMING;
917
918 if (intel_crtc->pipe == 1)
919 intel_dp->DP |= DP_PIPEB_SELECT;
920
921 if (is_cpu_edp(intel_dp)) {
922 /* don't miss out required setting for eDP */
923 if (adjusted_mode->clock < 200000)
924 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
925 else
926 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
927 }
928 } else {
929 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
930 }
931 }
932
933 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
934 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
935
936 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
937 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
938
939 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
940 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
941
942 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
943 u32 mask,
944 u32 value)
945 {
946 struct drm_device *dev = intel_dp->base.base.dev;
947 struct drm_i915_private *dev_priv = dev->dev_private;
948
949 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
950 mask, value,
951 I915_READ(PCH_PP_STATUS),
952 I915_READ(PCH_PP_CONTROL));
953
954 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
955 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
956 I915_READ(PCH_PP_STATUS),
957 I915_READ(PCH_PP_CONTROL));
958 }
959 }
960
961 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
962 {
963 DRM_DEBUG_KMS("Wait for panel power on\n");
964 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
965 }
966
967 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
968 {
969 DRM_DEBUG_KMS("Wait for panel power off time\n");
970 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
971 }
972
973 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
974 {
975 DRM_DEBUG_KMS("Wait for panel power cycle\n");
976 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
977 }
978
979
980 /* Read the current pp_control value, unlocking the register if it
981 * is locked
982 */
983
984 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
985 {
986 u32 control = I915_READ(PCH_PP_CONTROL);
987
988 control &= ~PANEL_UNLOCK_MASK;
989 control |= PANEL_UNLOCK_REGS;
990 return control;
991 }
992
993 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
994 {
995 struct drm_device *dev = intel_dp->base.base.dev;
996 struct drm_i915_private *dev_priv = dev->dev_private;
997 u32 pp;
998
999 if (!is_edp(intel_dp))
1000 return;
1001 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1002
1003 WARN(intel_dp->want_panel_vdd,
1004 "eDP VDD already requested on\n");
1005
1006 intel_dp->want_panel_vdd = true;
1007
1008 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1009 DRM_DEBUG_KMS("eDP VDD already on\n");
1010 return;
1011 }
1012
1013 if (!ironlake_edp_have_panel_power(intel_dp))
1014 ironlake_wait_panel_power_cycle(intel_dp);
1015
1016 pp = ironlake_get_pp_control(dev_priv);
1017 pp |= EDP_FORCE_VDD;
1018 I915_WRITE(PCH_PP_CONTROL, pp);
1019 POSTING_READ(PCH_PP_CONTROL);
1020 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023 /*
1024 * If the panel wasn't on, delay before accessing aux channel
1025 */
1026 if (!ironlake_edp_have_panel_power(intel_dp)) {
1027 DRM_DEBUG_KMS("eDP was not running\n");
1028 msleep(intel_dp->panel_power_up_delay);
1029 }
1030 }
1031
1032 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1033 {
1034 struct drm_device *dev = intel_dp->base.base.dev;
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1036 u32 pp;
1037
1038 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1039 pp = ironlake_get_pp_control(dev_priv);
1040 pp &= ~EDP_FORCE_VDD;
1041 I915_WRITE(PCH_PP_CONTROL, pp);
1042 POSTING_READ(PCH_PP_CONTROL);
1043
1044 /* Make sure sequencer is idle before allowing subsequent activity */
1045 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1046 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1047
1048 msleep(intel_dp->panel_power_down_delay);
1049 }
1050 }
1051
1052 static void ironlake_panel_vdd_work(struct work_struct *__work)
1053 {
1054 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1055 struct intel_dp, panel_vdd_work);
1056 struct drm_device *dev = intel_dp->base.base.dev;
1057
1058 mutex_lock(&dev->mode_config.mutex);
1059 ironlake_panel_vdd_off_sync(intel_dp);
1060 mutex_unlock(&dev->mode_config.mutex);
1061 }
1062
1063 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1064 {
1065 if (!is_edp(intel_dp))
1066 return;
1067
1068 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1069 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1070
1071 intel_dp->want_panel_vdd = false;
1072
1073 if (sync) {
1074 ironlake_panel_vdd_off_sync(intel_dp);
1075 } else {
1076 /*
1077 * Queue the timer to fire a long
1078 * time from now (relative to the power down delay)
1079 * to keep the panel power up across a sequence of operations
1080 */
1081 schedule_delayed_work(&intel_dp->panel_vdd_work,
1082 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1083 }
1084 }
1085
1086 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1087 {
1088 struct drm_device *dev = intel_dp->base.base.dev;
1089 struct drm_i915_private *dev_priv = dev->dev_private;
1090 u32 pp;
1091
1092 if (!is_edp(intel_dp))
1093 return;
1094
1095 DRM_DEBUG_KMS("Turn eDP power on\n");
1096
1097 if (ironlake_edp_have_panel_power(intel_dp)) {
1098 DRM_DEBUG_KMS("eDP power already on\n");
1099 return;
1100 }
1101
1102 ironlake_wait_panel_power_cycle(intel_dp);
1103
1104 pp = ironlake_get_pp_control(dev_priv);
1105 if (IS_GEN5(dev)) {
1106 /* ILK workaround: disable reset around power sequence */
1107 pp &= ~PANEL_POWER_RESET;
1108 I915_WRITE(PCH_PP_CONTROL, pp);
1109 POSTING_READ(PCH_PP_CONTROL);
1110 }
1111
1112 pp |= POWER_TARGET_ON;
1113 if (!IS_GEN5(dev))
1114 pp |= PANEL_POWER_RESET;
1115
1116 I915_WRITE(PCH_PP_CONTROL, pp);
1117 POSTING_READ(PCH_PP_CONTROL);
1118
1119 ironlake_wait_panel_on(intel_dp);
1120
1121 if (IS_GEN5(dev)) {
1122 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1123 I915_WRITE(PCH_PP_CONTROL, pp);
1124 POSTING_READ(PCH_PP_CONTROL);
1125 }
1126 }
1127
1128 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1129 {
1130 struct drm_device *dev = intel_dp->base.base.dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 u32 pp;
1133
1134 if (!is_edp(intel_dp))
1135 return;
1136
1137 DRM_DEBUG_KMS("Turn eDP power off\n");
1138
1139 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1140
1141 pp = ironlake_get_pp_control(dev_priv);
1142 /* We need to switch off panel power _and_ force vdd, for otherwise some
1143 * panels get very unhappy and cease to work. */
1144 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1145 I915_WRITE(PCH_PP_CONTROL, pp);
1146 POSTING_READ(PCH_PP_CONTROL);
1147
1148 intel_dp->want_panel_vdd = false;
1149
1150 ironlake_wait_panel_off(intel_dp);
1151 }
1152
1153 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1154 {
1155 struct drm_device *dev = intel_dp->base.base.dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 u32 pp;
1158
1159 if (!is_edp(intel_dp))
1160 return;
1161
1162 DRM_DEBUG_KMS("\n");
1163 /*
1164 * If we enable the backlight right away following a panel power
1165 * on, we may see slight flicker as the panel syncs with the eDP
1166 * link. So delay a bit to make sure the image is solid before
1167 * allowing it to appear.
1168 */
1169 msleep(intel_dp->backlight_on_delay);
1170 pp = ironlake_get_pp_control(dev_priv);
1171 pp |= EDP_BLC_ENABLE;
1172 I915_WRITE(PCH_PP_CONTROL, pp);
1173 POSTING_READ(PCH_PP_CONTROL);
1174 }
1175
1176 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1177 {
1178 struct drm_device *dev = intel_dp->base.base.dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 u32 pp;
1181
1182 if (!is_edp(intel_dp))
1183 return;
1184
1185 DRM_DEBUG_KMS("\n");
1186 pp = ironlake_get_pp_control(dev_priv);
1187 pp &= ~EDP_BLC_ENABLE;
1188 I915_WRITE(PCH_PP_CONTROL, pp);
1189 POSTING_READ(PCH_PP_CONTROL);
1190 msleep(intel_dp->backlight_off_delay);
1191 }
1192
1193 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1194 {
1195 struct drm_device *dev = intel_dp->base.base.dev;
1196 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 u32 dpa_ctl;
1199
1200 assert_pipe_disabled(dev_priv,
1201 to_intel_crtc(crtc)->pipe);
1202
1203 DRM_DEBUG_KMS("\n");
1204 dpa_ctl = I915_READ(DP_A);
1205 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1206 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1207
1208 /* We don't adjust intel_dp->DP while tearing down the link, to
1209 * facilitate link retraining (e.g. after hotplug). Hence clear all
1210 * enable bits here to ensure that we don't enable too much. */
1211 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1212 intel_dp->DP |= DP_PLL_ENABLE;
1213 I915_WRITE(DP_A, intel_dp->DP);
1214 POSTING_READ(DP_A);
1215 udelay(200);
1216 }
1217
1218 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1219 {
1220 struct drm_device *dev = intel_dp->base.base.dev;
1221 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1222 struct drm_i915_private *dev_priv = dev->dev_private;
1223 u32 dpa_ctl;
1224
1225 assert_pipe_disabled(dev_priv,
1226 to_intel_crtc(crtc)->pipe);
1227
1228 dpa_ctl = I915_READ(DP_A);
1229 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1230 "dp pll off, should be on\n");
1231 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1232
1233 /* We can't rely on the value tracked for the DP register in
1234 * intel_dp->DP because link_down must not change that (otherwise link
1235 * re-training will fail. */
1236 dpa_ctl &= ~DP_PLL_ENABLE;
1237 I915_WRITE(DP_A, dpa_ctl);
1238 POSTING_READ(DP_A);
1239 udelay(200);
1240 }
1241
1242 /* If the sink supports it, try to set the power state appropriately */
1243 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1244 {
1245 int ret, i;
1246
1247 /* Should have a valid DPCD by this point */
1248 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1249 return;
1250
1251 if (mode != DRM_MODE_DPMS_ON) {
1252 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1253 DP_SET_POWER_D3);
1254 if (ret != 1)
1255 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1256 } else {
1257 /*
1258 * When turning on, we need to retry for 1ms to give the sink
1259 * time to wake up.
1260 */
1261 for (i = 0; i < 3; i++) {
1262 ret = intel_dp_aux_native_write_1(intel_dp,
1263 DP_SET_POWER,
1264 DP_SET_POWER_D0);
1265 if (ret == 1)
1266 break;
1267 msleep(1);
1268 }
1269 }
1270 }
1271
1272 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1273 enum pipe *pipe)
1274 {
1275 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1276 struct drm_device *dev = encoder->base.dev;
1277 struct drm_i915_private *dev_priv = dev->dev_private;
1278 u32 tmp = I915_READ(intel_dp->output_reg);
1279
1280 if (!(tmp & DP_PORT_EN))
1281 return false;
1282
1283 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1284 *pipe = PORT_TO_PIPE_CPT(tmp);
1285 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1286 *pipe = PORT_TO_PIPE(tmp);
1287 } else {
1288 u32 trans_sel;
1289 u32 trans_dp;
1290 int i;
1291
1292 switch (intel_dp->output_reg) {
1293 case PCH_DP_B:
1294 trans_sel = TRANS_DP_PORT_SEL_B;
1295 break;
1296 case PCH_DP_C:
1297 trans_sel = TRANS_DP_PORT_SEL_C;
1298 break;
1299 case PCH_DP_D:
1300 trans_sel = TRANS_DP_PORT_SEL_D;
1301 break;
1302 default:
1303 return true;
1304 }
1305
1306 for_each_pipe(i) {
1307 trans_dp = I915_READ(TRANS_DP_CTL(i));
1308 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1309 *pipe = i;
1310 return true;
1311 }
1312 }
1313 }
1314
1315 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1316
1317 return true;
1318 }
1319
1320 static void intel_disable_dp(struct intel_encoder *encoder)
1321 {
1322 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1323
1324 /* Make sure the panel is off before trying to change the mode. But also
1325 * ensure that we have vdd while we switch off the panel. */
1326 ironlake_edp_panel_vdd_on(intel_dp);
1327 ironlake_edp_backlight_off(intel_dp);
1328 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1329 ironlake_edp_panel_off(intel_dp);
1330
1331 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1332 if (!is_cpu_edp(intel_dp))
1333 intel_dp_link_down(intel_dp);
1334 }
1335
1336 static void intel_post_disable_dp(struct intel_encoder *encoder)
1337 {
1338 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1339
1340 if (is_cpu_edp(intel_dp)) {
1341 intel_dp_link_down(intel_dp);
1342 ironlake_edp_pll_off(intel_dp);
1343 }
1344 }
1345
1346 static void intel_enable_dp(struct intel_encoder *encoder)
1347 {
1348 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1349 struct drm_device *dev = encoder->base.dev;
1350 struct drm_i915_private *dev_priv = dev->dev_private;
1351 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1352
1353 if (WARN_ON(dp_reg & DP_PORT_EN))
1354 return;
1355
1356 ironlake_edp_panel_vdd_on(intel_dp);
1357 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1358 intel_dp_start_link_train(intel_dp);
1359 ironlake_edp_panel_on(intel_dp);
1360 ironlake_edp_panel_vdd_off(intel_dp, true);
1361 intel_dp_complete_link_train(intel_dp);
1362 ironlake_edp_backlight_on(intel_dp);
1363 }
1364
1365 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1366 {
1367 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1368
1369 if (is_cpu_edp(intel_dp))
1370 ironlake_edp_pll_on(intel_dp);
1371 }
1372
1373 /*
1374 * Native read with retry for link status and receiver capability reads for
1375 * cases where the sink may still be asleep.
1376 */
1377 static bool
1378 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1379 uint8_t *recv, int recv_bytes)
1380 {
1381 int ret, i;
1382
1383 /*
1384 * Sinks are *supposed* to come up within 1ms from an off state,
1385 * but we're also supposed to retry 3 times per the spec.
1386 */
1387 for (i = 0; i < 3; i++) {
1388 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1389 recv_bytes);
1390 if (ret == recv_bytes)
1391 return true;
1392 msleep(1);
1393 }
1394
1395 return false;
1396 }
1397
1398 /*
1399 * Fetch AUX CH registers 0x202 - 0x207 which contain
1400 * link status information
1401 */
1402 static bool
1403 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1404 {
1405 return intel_dp_aux_native_read_retry(intel_dp,
1406 DP_LANE0_1_STATUS,
1407 link_status,
1408 DP_LINK_STATUS_SIZE);
1409 }
1410
1411 static uint8_t
1412 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1413 int r)
1414 {
1415 return link_status[r - DP_LANE0_1_STATUS];
1416 }
1417
1418 static uint8_t
1419 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1420 int lane)
1421 {
1422 int s = ((lane & 1) ?
1423 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1424 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1425 uint8_t l = adjust_request[lane>>1];
1426
1427 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1428 }
1429
1430 static uint8_t
1431 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1432 int lane)
1433 {
1434 int s = ((lane & 1) ?
1435 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1436 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1437 uint8_t l = adjust_request[lane>>1];
1438
1439 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1440 }
1441
1442
1443 #if 0
1444 static char *voltage_names[] = {
1445 "0.4V", "0.6V", "0.8V", "1.2V"
1446 };
1447 static char *pre_emph_names[] = {
1448 "0dB", "3.5dB", "6dB", "9.5dB"
1449 };
1450 static char *link_train_names[] = {
1451 "pattern 1", "pattern 2", "idle", "off"
1452 };
1453 #endif
1454
1455 /*
1456 * These are source-specific values; current Intel hardware supports
1457 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1458 */
1459
1460 static uint8_t
1461 intel_dp_voltage_max(struct intel_dp *intel_dp)
1462 {
1463 struct drm_device *dev = intel_dp->base.base.dev;
1464
1465 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1466 return DP_TRAIN_VOLTAGE_SWING_800;
1467 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1468 return DP_TRAIN_VOLTAGE_SWING_1200;
1469 else
1470 return DP_TRAIN_VOLTAGE_SWING_800;
1471 }
1472
1473 static uint8_t
1474 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1475 {
1476 struct drm_device *dev = intel_dp->base.base.dev;
1477
1478 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1479 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1480 case DP_TRAIN_VOLTAGE_SWING_400:
1481 return DP_TRAIN_PRE_EMPHASIS_6;
1482 case DP_TRAIN_VOLTAGE_SWING_600:
1483 case DP_TRAIN_VOLTAGE_SWING_800:
1484 return DP_TRAIN_PRE_EMPHASIS_3_5;
1485 default:
1486 return DP_TRAIN_PRE_EMPHASIS_0;
1487 }
1488 } else {
1489 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1490 case DP_TRAIN_VOLTAGE_SWING_400:
1491 return DP_TRAIN_PRE_EMPHASIS_6;
1492 case DP_TRAIN_VOLTAGE_SWING_600:
1493 return DP_TRAIN_PRE_EMPHASIS_6;
1494 case DP_TRAIN_VOLTAGE_SWING_800:
1495 return DP_TRAIN_PRE_EMPHASIS_3_5;
1496 case DP_TRAIN_VOLTAGE_SWING_1200:
1497 default:
1498 return DP_TRAIN_PRE_EMPHASIS_0;
1499 }
1500 }
1501 }
1502
1503 static void
1504 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1505 {
1506 uint8_t v = 0;
1507 uint8_t p = 0;
1508 int lane;
1509 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1510 uint8_t voltage_max;
1511 uint8_t preemph_max;
1512
1513 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1514 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1515 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1516
1517 if (this_v > v)
1518 v = this_v;
1519 if (this_p > p)
1520 p = this_p;
1521 }
1522
1523 voltage_max = intel_dp_voltage_max(intel_dp);
1524 if (v >= voltage_max)
1525 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1526
1527 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1528 if (p >= preemph_max)
1529 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1530
1531 for (lane = 0; lane < 4; lane++)
1532 intel_dp->train_set[lane] = v | p;
1533 }
1534
1535 static uint32_t
1536 intel_dp_signal_levels(uint8_t train_set)
1537 {
1538 uint32_t signal_levels = 0;
1539
1540 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1541 case DP_TRAIN_VOLTAGE_SWING_400:
1542 default:
1543 signal_levels |= DP_VOLTAGE_0_4;
1544 break;
1545 case DP_TRAIN_VOLTAGE_SWING_600:
1546 signal_levels |= DP_VOLTAGE_0_6;
1547 break;
1548 case DP_TRAIN_VOLTAGE_SWING_800:
1549 signal_levels |= DP_VOLTAGE_0_8;
1550 break;
1551 case DP_TRAIN_VOLTAGE_SWING_1200:
1552 signal_levels |= DP_VOLTAGE_1_2;
1553 break;
1554 }
1555 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1556 case DP_TRAIN_PRE_EMPHASIS_0:
1557 default:
1558 signal_levels |= DP_PRE_EMPHASIS_0;
1559 break;
1560 case DP_TRAIN_PRE_EMPHASIS_3_5:
1561 signal_levels |= DP_PRE_EMPHASIS_3_5;
1562 break;
1563 case DP_TRAIN_PRE_EMPHASIS_6:
1564 signal_levels |= DP_PRE_EMPHASIS_6;
1565 break;
1566 case DP_TRAIN_PRE_EMPHASIS_9_5:
1567 signal_levels |= DP_PRE_EMPHASIS_9_5;
1568 break;
1569 }
1570 return signal_levels;
1571 }
1572
1573 /* Gen6's DP voltage swing and pre-emphasis control */
1574 static uint32_t
1575 intel_gen6_edp_signal_levels(uint8_t train_set)
1576 {
1577 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1578 DP_TRAIN_PRE_EMPHASIS_MASK);
1579 switch (signal_levels) {
1580 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1581 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1582 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1583 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1585 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1586 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1587 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1588 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1589 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1591 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1592 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1593 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1594 default:
1595 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1596 "0x%x\n", signal_levels);
1597 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1598 }
1599 }
1600
1601 /* Gen7's DP voltage swing and pre-emphasis control */
1602 static uint32_t
1603 intel_gen7_edp_signal_levels(uint8_t train_set)
1604 {
1605 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1606 DP_TRAIN_PRE_EMPHASIS_MASK);
1607 switch (signal_levels) {
1608 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1609 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1610 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1611 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1612 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1613 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1614
1615 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1616 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1617 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1618 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1619
1620 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1621 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1622 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1623 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1624
1625 default:
1626 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1627 "0x%x\n", signal_levels);
1628 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1629 }
1630 }
1631
1632 static uint8_t
1633 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1634 int lane)
1635 {
1636 int s = (lane & 1) * 4;
1637 uint8_t l = link_status[lane>>1];
1638
1639 return (l >> s) & 0xf;
1640 }
1641
1642 /* Check for clock recovery is done on all channels */
1643 static bool
1644 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1645 {
1646 int lane;
1647 uint8_t lane_status;
1648
1649 for (lane = 0; lane < lane_count; lane++) {
1650 lane_status = intel_get_lane_status(link_status, lane);
1651 if ((lane_status & DP_LANE_CR_DONE) == 0)
1652 return false;
1653 }
1654 return true;
1655 }
1656
1657 /* Check to see if channel eq is done on all channels */
1658 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1659 DP_LANE_CHANNEL_EQ_DONE|\
1660 DP_LANE_SYMBOL_LOCKED)
1661 static bool
1662 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1663 {
1664 uint8_t lane_align;
1665 uint8_t lane_status;
1666 int lane;
1667
1668 lane_align = intel_dp_link_status(link_status,
1669 DP_LANE_ALIGN_STATUS_UPDATED);
1670 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1671 return false;
1672 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1673 lane_status = intel_get_lane_status(link_status, lane);
1674 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1675 return false;
1676 }
1677 return true;
1678 }
1679
1680 static bool
1681 intel_dp_set_link_train(struct intel_dp *intel_dp,
1682 uint32_t dp_reg_value,
1683 uint8_t dp_train_pat)
1684 {
1685 struct drm_device *dev = intel_dp->base.base.dev;
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 int ret;
1688
1689 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1690 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1691
1692 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1693 case DP_TRAINING_PATTERN_DISABLE:
1694 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1695 break;
1696 case DP_TRAINING_PATTERN_1:
1697 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1698 break;
1699 case DP_TRAINING_PATTERN_2:
1700 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1701 break;
1702 case DP_TRAINING_PATTERN_3:
1703 DRM_ERROR("DP training pattern 3 not supported\n");
1704 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1705 break;
1706 }
1707
1708 } else {
1709 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1710
1711 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1712 case DP_TRAINING_PATTERN_DISABLE:
1713 dp_reg_value |= DP_LINK_TRAIN_OFF;
1714 break;
1715 case DP_TRAINING_PATTERN_1:
1716 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1717 break;
1718 case DP_TRAINING_PATTERN_2:
1719 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1720 break;
1721 case DP_TRAINING_PATTERN_3:
1722 DRM_ERROR("DP training pattern 3 not supported\n");
1723 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1724 break;
1725 }
1726 }
1727
1728 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1729 POSTING_READ(intel_dp->output_reg);
1730
1731 intel_dp_aux_native_write_1(intel_dp,
1732 DP_TRAINING_PATTERN_SET,
1733 dp_train_pat);
1734
1735 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1736 DP_TRAINING_PATTERN_DISABLE) {
1737 ret = intel_dp_aux_native_write(intel_dp,
1738 DP_TRAINING_LANE0_SET,
1739 intel_dp->train_set,
1740 intel_dp->lane_count);
1741 if (ret != intel_dp->lane_count)
1742 return false;
1743 }
1744
1745 return true;
1746 }
1747
1748 /* Enable corresponding port and start training pattern 1 */
1749 static void
1750 intel_dp_start_link_train(struct intel_dp *intel_dp)
1751 {
1752 struct drm_device *dev = intel_dp->base.base.dev;
1753 int i;
1754 uint8_t voltage;
1755 bool clock_recovery = false;
1756 int voltage_tries, loop_tries;
1757 uint32_t DP = intel_dp->DP;
1758
1759 /* Write the link configuration data */
1760 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1761 intel_dp->link_configuration,
1762 DP_LINK_CONFIGURATION_SIZE);
1763
1764 DP |= DP_PORT_EN;
1765
1766 memset(intel_dp->train_set, 0, 4);
1767 voltage = 0xff;
1768 voltage_tries = 0;
1769 loop_tries = 0;
1770 clock_recovery = false;
1771 for (;;) {
1772 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1773 uint8_t link_status[DP_LINK_STATUS_SIZE];
1774 uint32_t signal_levels;
1775
1776
1777 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1778 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1779 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1780 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1781 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1782 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1783 } else {
1784 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1785 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1786 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1787 }
1788
1789 if (!intel_dp_set_link_train(intel_dp, DP,
1790 DP_TRAINING_PATTERN_1 |
1791 DP_LINK_SCRAMBLING_DISABLE))
1792 break;
1793 /* Set training pattern 1 */
1794
1795 udelay(100);
1796 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1797 DRM_ERROR("failed to get link status\n");
1798 break;
1799 }
1800
1801 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1802 DRM_DEBUG_KMS("clock recovery OK\n");
1803 clock_recovery = true;
1804 break;
1805 }
1806
1807 /* Check to see if we've tried the max voltage */
1808 for (i = 0; i < intel_dp->lane_count; i++)
1809 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1810 break;
1811 if (i == intel_dp->lane_count && voltage_tries == 5) {
1812 ++loop_tries;
1813 if (loop_tries == 5) {
1814 DRM_DEBUG_KMS("too many full retries, give up\n");
1815 break;
1816 }
1817 memset(intel_dp->train_set, 0, 4);
1818 voltage_tries = 0;
1819 continue;
1820 }
1821
1822 /* Check to see if we've tried the same voltage 5 times */
1823 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1824 ++voltage_tries;
1825 if (voltage_tries == 5) {
1826 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1827 break;
1828 }
1829 } else
1830 voltage_tries = 0;
1831 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1832
1833 /* Compute new intel_dp->train_set as requested by target */
1834 intel_get_adjust_train(intel_dp, link_status);
1835 }
1836
1837 intel_dp->DP = DP;
1838 }
1839
1840 static void
1841 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1842 {
1843 struct drm_device *dev = intel_dp->base.base.dev;
1844 bool channel_eq = false;
1845 int tries, cr_tries;
1846 uint32_t DP = intel_dp->DP;
1847
1848 /* channel equalization */
1849 tries = 0;
1850 cr_tries = 0;
1851 channel_eq = false;
1852 for (;;) {
1853 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1854 uint32_t signal_levels;
1855 uint8_t link_status[DP_LINK_STATUS_SIZE];
1856
1857 if (cr_tries > 5) {
1858 DRM_ERROR("failed to train DP, aborting\n");
1859 intel_dp_link_down(intel_dp);
1860 break;
1861 }
1862
1863 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1864 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1865 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1866 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1867 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1868 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1869 } else {
1870 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1871 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1872 }
1873
1874 /* channel eq pattern */
1875 if (!intel_dp_set_link_train(intel_dp, DP,
1876 DP_TRAINING_PATTERN_2 |
1877 DP_LINK_SCRAMBLING_DISABLE))
1878 break;
1879
1880 udelay(400);
1881 if (!intel_dp_get_link_status(intel_dp, link_status))
1882 break;
1883
1884 /* Make sure clock is still ok */
1885 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1886 intel_dp_start_link_train(intel_dp);
1887 cr_tries++;
1888 continue;
1889 }
1890
1891 if (intel_channel_eq_ok(intel_dp, link_status)) {
1892 channel_eq = true;
1893 break;
1894 }
1895
1896 /* Try 5 times, then try clock recovery if that fails */
1897 if (tries > 5) {
1898 intel_dp_link_down(intel_dp);
1899 intel_dp_start_link_train(intel_dp);
1900 tries = 0;
1901 cr_tries++;
1902 continue;
1903 }
1904
1905 /* Compute new intel_dp->train_set as requested by target */
1906 intel_get_adjust_train(intel_dp, link_status);
1907 ++tries;
1908 }
1909
1910 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1911 }
1912
1913 static void
1914 intel_dp_link_down(struct intel_dp *intel_dp)
1915 {
1916 struct drm_device *dev = intel_dp->base.base.dev;
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 uint32_t DP = intel_dp->DP;
1919
1920 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1921 return;
1922
1923 DRM_DEBUG_KMS("\n");
1924
1925 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1926 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1927 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1928 } else {
1929 DP &= ~DP_LINK_TRAIN_MASK;
1930 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1931 }
1932 POSTING_READ(intel_dp->output_reg);
1933
1934 msleep(17);
1935
1936 if (HAS_PCH_IBX(dev) &&
1937 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1938 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1939
1940 /* Hardware workaround: leaving our transcoder select
1941 * set to transcoder B while it's off will prevent the
1942 * corresponding HDMI output on transcoder A.
1943 *
1944 * Combine this with another hardware workaround:
1945 * transcoder select bit can only be cleared while the
1946 * port is enabled.
1947 */
1948 DP &= ~DP_PIPEB_SELECT;
1949 I915_WRITE(intel_dp->output_reg, DP);
1950
1951 /* Changes to enable or select take place the vblank
1952 * after being written.
1953 */
1954 if (crtc == NULL) {
1955 /* We can arrive here never having been attached
1956 * to a CRTC, for instance, due to inheriting
1957 * random state from the BIOS.
1958 *
1959 * If the pipe is not running, play safe and
1960 * wait for the clocks to stabilise before
1961 * continuing.
1962 */
1963 POSTING_READ(intel_dp->output_reg);
1964 msleep(50);
1965 } else
1966 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1967 }
1968
1969 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1970 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1971 POSTING_READ(intel_dp->output_reg);
1972 msleep(intel_dp->panel_power_down_delay);
1973 }
1974
1975 static bool
1976 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1977 {
1978 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1979 sizeof(intel_dp->dpcd)) == 0)
1980 return false; /* aux transfer failed */
1981
1982 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
1983 return false; /* DPCD not present */
1984
1985 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1986 DP_DWN_STRM_PORT_PRESENT))
1987 return true; /* native DP sink */
1988
1989 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
1990 return true; /* no per-port downstream info */
1991
1992 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
1993 intel_dp->downstream_ports,
1994 DP_MAX_DOWNSTREAM_PORTS) == 0)
1995 return false; /* downstream port status fetch failed */
1996
1997 return true;
1998 }
1999
2000 static void
2001 intel_dp_probe_oui(struct intel_dp *intel_dp)
2002 {
2003 u8 buf[3];
2004
2005 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2006 return;
2007
2008 ironlake_edp_panel_vdd_on(intel_dp);
2009
2010 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2011 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2012 buf[0], buf[1], buf[2]);
2013
2014 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2015 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2016 buf[0], buf[1], buf[2]);
2017
2018 ironlake_edp_panel_vdd_off(intel_dp, false);
2019 }
2020
2021 static bool
2022 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2023 {
2024 int ret;
2025
2026 ret = intel_dp_aux_native_read_retry(intel_dp,
2027 DP_DEVICE_SERVICE_IRQ_VECTOR,
2028 sink_irq_vector, 1);
2029 if (!ret)
2030 return false;
2031
2032 return true;
2033 }
2034
2035 static void
2036 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2037 {
2038 /* NAK by default */
2039 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2040 }
2041
2042 /*
2043 * According to DP spec
2044 * 5.1.2:
2045 * 1. Read DPCD
2046 * 2. Configure link according to Receiver Capabilities
2047 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2048 * 4. Check link status on receipt of hot-plug interrupt
2049 */
2050
2051 static void
2052 intel_dp_check_link_status(struct intel_dp *intel_dp)
2053 {
2054 u8 sink_irq_vector;
2055 u8 link_status[DP_LINK_STATUS_SIZE];
2056
2057 if (!intel_dp->base.connectors_active)
2058 return;
2059
2060 if (WARN_ON(!intel_dp->base.base.crtc))
2061 return;
2062
2063 /* Try to read receiver status if the link appears to be up */
2064 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2065 intel_dp_link_down(intel_dp);
2066 return;
2067 }
2068
2069 /* Now read the DPCD to see if it's actually running */
2070 if (!intel_dp_get_dpcd(intel_dp)) {
2071 intel_dp_link_down(intel_dp);
2072 return;
2073 }
2074
2075 /* Try to read the source of the interrupt */
2076 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2077 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2078 /* Clear interrupt source */
2079 intel_dp_aux_native_write_1(intel_dp,
2080 DP_DEVICE_SERVICE_IRQ_VECTOR,
2081 sink_irq_vector);
2082
2083 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2084 intel_dp_handle_test_request(intel_dp);
2085 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2086 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2087 }
2088
2089 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2090 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2091 drm_get_encoder_name(&intel_dp->base.base));
2092 intel_dp_start_link_train(intel_dp);
2093 intel_dp_complete_link_train(intel_dp);
2094 }
2095 }
2096
2097 /* XXX this is probably wrong for multiple downstream ports */
2098 static enum drm_connector_status
2099 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2100 {
2101 uint8_t *dpcd = intel_dp->dpcd;
2102 bool hpd;
2103 uint8_t type;
2104
2105 if (!intel_dp_get_dpcd(intel_dp))
2106 return connector_status_disconnected;
2107
2108 /* if there's no downstream port, we're done */
2109 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2110 return connector_status_connected;
2111
2112 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2113 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2114 if (hpd) {
2115 uint8_t reg;
2116 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2117 &reg, 1))
2118 return connector_status_unknown;
2119 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2120 : connector_status_disconnected;
2121 }
2122
2123 /* If no HPD, poke DDC gently */
2124 if (drm_probe_ddc(&intel_dp->adapter))
2125 return connector_status_connected;
2126
2127 /* Well we tried, say unknown for unreliable port types */
2128 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2129 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2130 return connector_status_unknown;
2131
2132 /* Anything else is out of spec, warn and ignore */
2133 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2134 return connector_status_disconnected;
2135 }
2136
2137 static enum drm_connector_status
2138 ironlake_dp_detect(struct intel_dp *intel_dp)
2139 {
2140 enum drm_connector_status status;
2141
2142 /* Can't disconnect eDP, but you can close the lid... */
2143 if (is_edp(intel_dp)) {
2144 status = intel_panel_detect(intel_dp->base.base.dev);
2145 if (status == connector_status_unknown)
2146 status = connector_status_connected;
2147 return status;
2148 }
2149
2150 return intel_dp_detect_dpcd(intel_dp);
2151 }
2152
2153 static enum drm_connector_status
2154 g4x_dp_detect(struct intel_dp *intel_dp)
2155 {
2156 struct drm_device *dev = intel_dp->base.base.dev;
2157 struct drm_i915_private *dev_priv = dev->dev_private;
2158 uint32_t bit;
2159
2160 switch (intel_dp->output_reg) {
2161 case DP_B:
2162 bit = DPB_HOTPLUG_LIVE_STATUS;
2163 break;
2164 case DP_C:
2165 bit = DPC_HOTPLUG_LIVE_STATUS;
2166 break;
2167 case DP_D:
2168 bit = DPD_HOTPLUG_LIVE_STATUS;
2169 break;
2170 default:
2171 return connector_status_unknown;
2172 }
2173
2174 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2175 return connector_status_disconnected;
2176
2177 return intel_dp_detect_dpcd(intel_dp);
2178 }
2179
2180 static struct edid *
2181 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2182 {
2183 struct intel_dp *intel_dp = intel_attached_dp(connector);
2184 struct edid *edid;
2185 int size;
2186
2187 if (is_edp(intel_dp)) {
2188 if (!intel_dp->edid)
2189 return NULL;
2190
2191 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2192 edid = kmalloc(size, GFP_KERNEL);
2193 if (!edid)
2194 return NULL;
2195
2196 memcpy(edid, intel_dp->edid, size);
2197 return edid;
2198 }
2199
2200 edid = drm_get_edid(connector, adapter);
2201 return edid;
2202 }
2203
2204 static int
2205 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2206 {
2207 struct intel_dp *intel_dp = intel_attached_dp(connector);
2208 int ret;
2209
2210 if (is_edp(intel_dp)) {
2211 drm_mode_connector_update_edid_property(connector,
2212 intel_dp->edid);
2213 ret = drm_add_edid_modes(connector, intel_dp->edid);
2214 drm_edid_to_eld(connector,
2215 intel_dp->edid);
2216 return intel_dp->edid_mode_count;
2217 }
2218
2219 ret = intel_ddc_get_modes(connector, adapter);
2220 return ret;
2221 }
2222
2223
2224 /**
2225 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2226 *
2227 * \return true if DP port is connected.
2228 * \return false if DP port is disconnected.
2229 */
2230 static enum drm_connector_status
2231 intel_dp_detect(struct drm_connector *connector, bool force)
2232 {
2233 struct intel_dp *intel_dp = intel_attached_dp(connector);
2234 struct drm_device *dev = intel_dp->base.base.dev;
2235 enum drm_connector_status status;
2236 struct edid *edid = NULL;
2237
2238 intel_dp->has_audio = false;
2239
2240 if (HAS_PCH_SPLIT(dev))
2241 status = ironlake_dp_detect(intel_dp);
2242 else
2243 status = g4x_dp_detect(intel_dp);
2244
2245 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2246 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2247 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2248 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2249
2250 if (status != connector_status_connected)
2251 return status;
2252
2253 intel_dp_probe_oui(intel_dp);
2254
2255 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2256 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2257 } else {
2258 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2259 if (edid) {
2260 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2261 kfree(edid);
2262 }
2263 }
2264
2265 return connector_status_connected;
2266 }
2267
2268 static int intel_dp_get_modes(struct drm_connector *connector)
2269 {
2270 struct intel_dp *intel_dp = intel_attached_dp(connector);
2271 struct drm_device *dev = intel_dp->base.base.dev;
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 int ret;
2274
2275 /* We should parse the EDID data and find out if it has an audio sink
2276 */
2277
2278 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2279 if (ret) {
2280 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2281 struct drm_display_mode *newmode;
2282 list_for_each_entry(newmode, &connector->probed_modes,
2283 head) {
2284 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2285 intel_dp->panel_fixed_mode =
2286 drm_mode_duplicate(dev, newmode);
2287 break;
2288 }
2289 }
2290 }
2291 return ret;
2292 }
2293
2294 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2295 if (is_edp(intel_dp)) {
2296 /* initialize panel mode from VBT if available for eDP */
2297 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2298 intel_dp->panel_fixed_mode =
2299 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2300 if (intel_dp->panel_fixed_mode) {
2301 intel_dp->panel_fixed_mode->type |=
2302 DRM_MODE_TYPE_PREFERRED;
2303 }
2304 }
2305 if (intel_dp->panel_fixed_mode) {
2306 struct drm_display_mode *mode;
2307 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2308 drm_mode_probed_add(connector, mode);
2309 return 1;
2310 }
2311 }
2312 return 0;
2313 }
2314
2315 static bool
2316 intel_dp_detect_audio(struct drm_connector *connector)
2317 {
2318 struct intel_dp *intel_dp = intel_attached_dp(connector);
2319 struct edid *edid;
2320 bool has_audio = false;
2321
2322 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2323 if (edid) {
2324 has_audio = drm_detect_monitor_audio(edid);
2325 kfree(edid);
2326 }
2327
2328 return has_audio;
2329 }
2330
2331 static int
2332 intel_dp_set_property(struct drm_connector *connector,
2333 struct drm_property *property,
2334 uint64_t val)
2335 {
2336 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2337 struct intel_dp *intel_dp = intel_attached_dp(connector);
2338 int ret;
2339
2340 ret = drm_connector_property_set_value(connector, property, val);
2341 if (ret)
2342 return ret;
2343
2344 if (property == dev_priv->force_audio_property) {
2345 int i = val;
2346 bool has_audio;
2347
2348 if (i == intel_dp->force_audio)
2349 return 0;
2350
2351 intel_dp->force_audio = i;
2352
2353 if (i == HDMI_AUDIO_AUTO)
2354 has_audio = intel_dp_detect_audio(connector);
2355 else
2356 has_audio = (i == HDMI_AUDIO_ON);
2357
2358 if (has_audio == intel_dp->has_audio)
2359 return 0;
2360
2361 intel_dp->has_audio = has_audio;
2362 goto done;
2363 }
2364
2365 if (property == dev_priv->broadcast_rgb_property) {
2366 if (val == !!intel_dp->color_range)
2367 return 0;
2368
2369 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2370 goto done;
2371 }
2372
2373 return -EINVAL;
2374
2375 done:
2376 if (intel_dp->base.base.crtc) {
2377 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2378 intel_set_mode(crtc, &crtc->mode,
2379 crtc->x, crtc->y, crtc->fb);
2380 }
2381
2382 return 0;
2383 }
2384
2385 static void
2386 intel_dp_destroy(struct drm_connector *connector)
2387 {
2388 struct drm_device *dev = connector->dev;
2389
2390 if (intel_dpd_is_edp(dev))
2391 intel_panel_destroy_backlight(dev);
2392
2393 drm_sysfs_connector_remove(connector);
2394 drm_connector_cleanup(connector);
2395 kfree(connector);
2396 }
2397
2398 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2399 {
2400 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2401
2402 i2c_del_adapter(&intel_dp->adapter);
2403 drm_encoder_cleanup(encoder);
2404 if (is_edp(intel_dp)) {
2405 kfree(intel_dp->edid);
2406 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2407 ironlake_panel_vdd_off_sync(intel_dp);
2408 }
2409 kfree(intel_dp);
2410 }
2411
2412 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2413 .mode_fixup = intel_dp_mode_fixup,
2414 .mode_set = intel_dp_mode_set,
2415 .disable = intel_encoder_noop,
2416 };
2417
2418 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2419 .dpms = intel_connector_dpms,
2420 .detect = intel_dp_detect,
2421 .fill_modes = drm_helper_probe_single_connector_modes,
2422 .set_property = intel_dp_set_property,
2423 .destroy = intel_dp_destroy,
2424 };
2425
2426 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2427 .get_modes = intel_dp_get_modes,
2428 .mode_valid = intel_dp_mode_valid,
2429 .best_encoder = intel_best_encoder,
2430 };
2431
2432 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2433 .destroy = intel_dp_encoder_destroy,
2434 };
2435
2436 static void
2437 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2438 {
2439 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2440
2441 intel_dp_check_link_status(intel_dp);
2442 }
2443
2444 /* Return which DP Port should be selected for Transcoder DP control */
2445 int
2446 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2447 {
2448 struct drm_device *dev = crtc->dev;
2449 struct intel_encoder *encoder;
2450
2451 for_each_encoder_on_crtc(dev, crtc, encoder) {
2452 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2453
2454 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2455 intel_dp->base.type == INTEL_OUTPUT_EDP)
2456 return intel_dp->output_reg;
2457 }
2458
2459 return -1;
2460 }
2461
2462 /* check the VBT to see whether the eDP is on DP-D port */
2463 bool intel_dpd_is_edp(struct drm_device *dev)
2464 {
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 struct child_device_config *p_child;
2467 int i;
2468
2469 if (!dev_priv->child_dev_num)
2470 return false;
2471
2472 for (i = 0; i < dev_priv->child_dev_num; i++) {
2473 p_child = dev_priv->child_dev + i;
2474
2475 if (p_child->dvo_port == PORT_IDPD &&
2476 p_child->device_type == DEVICE_TYPE_eDP)
2477 return true;
2478 }
2479 return false;
2480 }
2481
2482 static void
2483 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2484 {
2485 intel_attach_force_audio_property(connector);
2486 intel_attach_broadcast_rgb_property(connector);
2487 }
2488
2489 void
2490 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2491 {
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 struct drm_connector *connector;
2494 struct intel_dp *intel_dp;
2495 struct intel_encoder *intel_encoder;
2496 struct intel_connector *intel_connector;
2497 const char *name = NULL;
2498 int type;
2499
2500 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2501 if (!intel_dp)
2502 return;
2503
2504 intel_dp->output_reg = output_reg;
2505 intel_dp->port = port;
2506 /* Preserve the current hw state. */
2507 intel_dp->DP = I915_READ(intel_dp->output_reg);
2508
2509 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2510 if (!intel_connector) {
2511 kfree(intel_dp);
2512 return;
2513 }
2514 intel_encoder = &intel_dp->base;
2515
2516 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2517 if (intel_dpd_is_edp(dev))
2518 intel_dp->is_pch_edp = true;
2519
2520 /*
2521 * FIXME : We need to initialize built-in panels before external panels.
2522 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2523 */
2524 if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2525 type = DRM_MODE_CONNECTOR_eDP;
2526 intel_encoder->type = INTEL_OUTPUT_EDP;
2527 } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2528 type = DRM_MODE_CONNECTOR_eDP;
2529 intel_encoder->type = INTEL_OUTPUT_EDP;
2530 } else {
2531 type = DRM_MODE_CONNECTOR_DisplayPort;
2532 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2533 }
2534
2535 connector = &intel_connector->base;
2536 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2537 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2538
2539 connector->polled = DRM_CONNECTOR_POLL_HPD;
2540
2541 intel_encoder->cloneable = false;
2542
2543 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2544 ironlake_panel_vdd_work);
2545
2546 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2547
2548 connector->interlace_allowed = true;
2549 connector->doublescan_allowed = 0;
2550
2551 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2552 DRM_MODE_ENCODER_TMDS);
2553 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2554
2555 intel_connector_attach_encoder(intel_connector, intel_encoder);
2556 drm_sysfs_connector_add(connector);
2557
2558 intel_encoder->enable = intel_enable_dp;
2559 intel_encoder->pre_enable = intel_pre_enable_dp;
2560 intel_encoder->disable = intel_disable_dp;
2561 intel_encoder->post_disable = intel_post_disable_dp;
2562 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2563 intel_connector->get_hw_state = intel_connector_get_hw_state;
2564
2565 /* Set up the DDC bus. */
2566 switch (port) {
2567 case PORT_A:
2568 name = "DPDDC-A";
2569 break;
2570 case PORT_B:
2571 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2572 name = "DPDDC-B";
2573 break;
2574 case PORT_C:
2575 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2576 name = "DPDDC-C";
2577 break;
2578 case PORT_D:
2579 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2580 name = "DPDDC-D";
2581 break;
2582 default:
2583 WARN(1, "Invalid port %c\n", port_name(port));
2584 break;
2585 }
2586
2587 /* Cache some DPCD data in the eDP case */
2588 if (is_edp(intel_dp)) {
2589 struct edp_power_seq cur, vbt;
2590 u32 pp_on, pp_off, pp_div;
2591
2592 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2593 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2594 pp_div = I915_READ(PCH_PP_DIVISOR);
2595
2596 if (!pp_on || !pp_off || !pp_div) {
2597 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2598 intel_dp_encoder_destroy(&intel_dp->base.base);
2599 intel_dp_destroy(&intel_connector->base);
2600 return;
2601 }
2602
2603 /* Pull timing values out of registers */
2604 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2605 PANEL_POWER_UP_DELAY_SHIFT;
2606
2607 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2608 PANEL_LIGHT_ON_DELAY_SHIFT;
2609
2610 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2611 PANEL_LIGHT_OFF_DELAY_SHIFT;
2612
2613 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2614 PANEL_POWER_DOWN_DELAY_SHIFT;
2615
2616 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2617 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2618
2619 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2620 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2621
2622 vbt = dev_priv->edp.pps;
2623
2624 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2625 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2626
2627 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2628
2629 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2630 intel_dp->backlight_on_delay = get_delay(t8);
2631 intel_dp->backlight_off_delay = get_delay(t9);
2632 intel_dp->panel_power_down_delay = get_delay(t10);
2633 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2634
2635 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2636 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2637 intel_dp->panel_power_cycle_delay);
2638
2639 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2640 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2641 }
2642
2643 intel_dp_i2c_init(intel_dp, intel_connector, name);
2644
2645 if (is_edp(intel_dp)) {
2646 bool ret;
2647 struct edid *edid;
2648
2649 ironlake_edp_panel_vdd_on(intel_dp);
2650 ret = intel_dp_get_dpcd(intel_dp);
2651 ironlake_edp_panel_vdd_off(intel_dp, false);
2652
2653 if (ret) {
2654 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2655 dev_priv->no_aux_handshake =
2656 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2657 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2658 } else {
2659 /* if this fails, presume the device is a ghost */
2660 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2661 intel_dp_encoder_destroy(&intel_dp->base.base);
2662 intel_dp_destroy(&intel_connector->base);
2663 return;
2664 }
2665
2666 ironlake_edp_panel_vdd_on(intel_dp);
2667 edid = drm_get_edid(connector, &intel_dp->adapter);
2668 if (edid) {
2669 drm_mode_connector_update_edid_property(connector,
2670 edid);
2671 intel_dp->edid_mode_count =
2672 drm_add_edid_modes(connector, edid);
2673 drm_edid_to_eld(connector, edid);
2674 intel_dp->edid = edid;
2675 }
2676 ironlake_edp_panel_vdd_off(intel_dp, false);
2677 }
2678
2679 intel_encoder->hot_plug = intel_dp_hot_plug;
2680
2681 if (is_edp(intel_dp)) {
2682 dev_priv->int_edp_connector = connector;
2683 intel_panel_setup_backlight(dev);
2684 }
2685
2686 intel_dp_add_properties(intel_dp, connector);
2687
2688 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2689 * 0xd. Failure to do so will result in spurious interrupts being
2690 * generated on the port when a cable is not attached.
2691 */
2692 if (IS_G4X(dev) && !IS_GM45(dev)) {
2693 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2694 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2695 }
2696 }
This page took 0.102171 seconds and 4 git commands to generate.