Merge tag 'at91-fixes' of git://github.com/at91linux/linux-at91 into fixes
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "drm_dp_helper.h"
40
41 #define DP_RECEIVER_CAP_SIZE 0xf
42 #define DP_LINK_STATUS_SIZE 6
43 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
44
45 #define DP_LINK_CONFIGURATION_SIZE 9
46
47 struct intel_dp {
48 struct intel_encoder base;
49 uint32_t output_reg;
50 uint32_t DP;
51 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
52 bool has_audio;
53 enum hdmi_force_audio force_audio;
54 uint32_t color_range;
55 int dpms_mode;
56 uint8_t link_bw;
57 uint8_t lane_count;
58 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
59 struct i2c_adapter adapter;
60 struct i2c_algo_dp_aux_data algo;
61 bool is_pch_edp;
62 uint8_t train_set[4];
63 int panel_power_up_delay;
64 int panel_power_down_delay;
65 int panel_power_cycle_delay;
66 int backlight_on_delay;
67 int backlight_off_delay;
68 struct drm_display_mode *panel_fixed_mode; /* for eDP */
69 struct delayed_work panel_vdd_work;
70 bool want_panel_vdd;
71 struct edid *edid; /* cached EDID for eDP */
72 int edid_mode_count;
73 };
74
75 /**
76 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77 * @intel_dp: DP struct
78 *
79 * If a CPU or PCH DP output is attached to an eDP panel, this function
80 * will return true, and false otherwise.
81 */
82 static bool is_edp(struct intel_dp *intel_dp)
83 {
84 return intel_dp->base.type == INTEL_OUTPUT_EDP;
85 }
86
87 /**
88 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89 * @intel_dp: DP struct
90 *
91 * Returns true if the given DP struct corresponds to a PCH DP port attached
92 * to an eDP panel, false otherwise. Helpful for determining whether we
93 * may need FDI resources for a given DP output or not.
94 */
95 static bool is_pch_edp(struct intel_dp *intel_dp)
96 {
97 return intel_dp->is_pch_edp;
98 }
99
100 /**
101 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102 * @intel_dp: DP struct
103 *
104 * Returns true if the given DP struct corresponds to a CPU eDP port.
105 */
106 static bool is_cpu_edp(struct intel_dp *intel_dp)
107 {
108 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109 }
110
111 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112 {
113 return container_of(encoder, struct intel_dp, base.base);
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118 return container_of(intel_attached_encoder(connector),
119 struct intel_dp, base);
120 }
121
122 /**
123 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124 * @encoder: DRM encoder
125 *
126 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
127 * by intel_display.c.
128 */
129 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130 {
131 struct intel_dp *intel_dp;
132
133 if (!encoder)
134 return false;
135
136 intel_dp = enc_to_intel_dp(encoder);
137
138 return is_pch_edp(intel_dp);
139 }
140
141 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143 static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145 void
146 intel_edp_link_config(struct intel_encoder *intel_encoder,
147 int *lane_num, int *link_bw)
148 {
149 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151 *lane_num = intel_dp->lane_count;
152 if (intel_dp->link_bw == DP_LINK_BW_1_62)
153 *link_bw = 162000;
154 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155 *link_bw = 270000;
156 }
157
158 int
159 intel_edp_target_clock(struct intel_encoder *intel_encoder,
160 struct drm_display_mode *mode)
161 {
162 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
163
164 if (intel_dp->panel_fixed_mode)
165 return intel_dp->panel_fixed_mode->clock;
166 else
167 return mode->clock;
168 }
169
170 static int
171 intel_dp_max_lane_count(struct intel_dp *intel_dp)
172 {
173 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
174 switch (max_lane_count) {
175 case 1: case 2: case 4:
176 break;
177 default:
178 max_lane_count = 4;
179 }
180 return max_lane_count;
181 }
182
183 static int
184 intel_dp_max_link_bw(struct intel_dp *intel_dp)
185 {
186 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
187
188 switch (max_link_bw) {
189 case DP_LINK_BW_1_62:
190 case DP_LINK_BW_2_7:
191 break;
192 default:
193 max_link_bw = DP_LINK_BW_1_62;
194 break;
195 }
196 return max_link_bw;
197 }
198
199 static int
200 intel_dp_link_clock(uint8_t link_bw)
201 {
202 if (link_bw == DP_LINK_BW_2_7)
203 return 270000;
204 else
205 return 162000;
206 }
207
208 /*
209 * The units on the numbers in the next two are... bizarre. Examples will
210 * make it clearer; this one parallels an example in the eDP spec.
211 *
212 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
213 *
214 * 270000 * 1 * 8 / 10 == 216000
215 *
216 * The actual data capacity of that configuration is 2.16Gbit/s, so the
217 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
218 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
219 * 119000. At 18bpp that's 2142000 kilobits per second.
220 *
221 * Thus the strange-looking division by 10 in intel_dp_link_required, to
222 * get the result in decakilobits instead of kilobits.
223 */
224
225 static int
226 intel_dp_link_required(int pixel_clock, int bpp)
227 {
228 return (pixel_clock * bpp + 9) / 10;
229 }
230
231 static int
232 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
233 {
234 return (max_link_clock * max_lanes * 8) / 10;
235 }
236
237 static bool
238 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
239 struct drm_display_mode *mode,
240 bool adjust_mode)
241 {
242 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
243 int max_lanes = intel_dp_max_lane_count(intel_dp);
244 int max_rate, mode_rate;
245
246 mode_rate = intel_dp_link_required(mode->clock, 24);
247 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
248
249 if (mode_rate > max_rate) {
250 mode_rate = intel_dp_link_required(mode->clock, 18);
251 if (mode_rate > max_rate)
252 return false;
253
254 if (adjust_mode)
255 mode->private_flags
256 |= INTEL_MODE_DP_FORCE_6BPC;
257
258 return true;
259 }
260
261 return true;
262 }
263
264 static int
265 intel_dp_mode_valid(struct drm_connector *connector,
266 struct drm_display_mode *mode)
267 {
268 struct intel_dp *intel_dp = intel_attached_dp(connector);
269
270 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
271 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
272 return MODE_PANEL;
273
274 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
275 return MODE_PANEL;
276 }
277
278 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
279 return MODE_CLOCK_HIGH;
280
281 if (mode->clock < 10000)
282 return MODE_CLOCK_LOW;
283
284 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
285 return MODE_H_ILLEGAL;
286
287 return MODE_OK;
288 }
289
290 static uint32_t
291 pack_aux(uint8_t *src, int src_bytes)
292 {
293 int i;
294 uint32_t v = 0;
295
296 if (src_bytes > 4)
297 src_bytes = 4;
298 for (i = 0; i < src_bytes; i++)
299 v |= ((uint32_t) src[i]) << ((3-i) * 8);
300 return v;
301 }
302
303 static void
304 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
305 {
306 int i;
307 if (dst_bytes > 4)
308 dst_bytes = 4;
309 for (i = 0; i < dst_bytes; i++)
310 dst[i] = src >> ((3-i) * 8);
311 }
312
313 /* hrawclock is 1/4 the FSB frequency */
314 static int
315 intel_hrawclk(struct drm_device *dev)
316 {
317 struct drm_i915_private *dev_priv = dev->dev_private;
318 uint32_t clkcfg;
319
320 clkcfg = I915_READ(CLKCFG);
321 switch (clkcfg & CLKCFG_FSB_MASK) {
322 case CLKCFG_FSB_400:
323 return 100;
324 case CLKCFG_FSB_533:
325 return 133;
326 case CLKCFG_FSB_667:
327 return 166;
328 case CLKCFG_FSB_800:
329 return 200;
330 case CLKCFG_FSB_1067:
331 return 266;
332 case CLKCFG_FSB_1333:
333 return 333;
334 /* these two are just a guess; one of them might be right */
335 case CLKCFG_FSB_1600:
336 case CLKCFG_FSB_1600_ALT:
337 return 400;
338 default:
339 return 133;
340 }
341 }
342
343 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
344 {
345 struct drm_device *dev = intel_dp->base.base.dev;
346 struct drm_i915_private *dev_priv = dev->dev_private;
347
348 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
349 }
350
351 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
352 {
353 struct drm_device *dev = intel_dp->base.base.dev;
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
357 }
358
359 static void
360 intel_dp_check_edp(struct intel_dp *intel_dp)
361 {
362 struct drm_device *dev = intel_dp->base.base.dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364
365 if (!is_edp(intel_dp))
366 return;
367 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
368 WARN(1, "eDP powered off while attempting aux channel communication.\n");
369 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
370 I915_READ(PCH_PP_STATUS),
371 I915_READ(PCH_PP_CONTROL));
372 }
373 }
374
375 static int
376 intel_dp_aux_ch(struct intel_dp *intel_dp,
377 uint8_t *send, int send_bytes,
378 uint8_t *recv, int recv_size)
379 {
380 uint32_t output_reg = intel_dp->output_reg;
381 struct drm_device *dev = intel_dp->base.base.dev;
382 struct drm_i915_private *dev_priv = dev->dev_private;
383 uint32_t ch_ctl = output_reg + 0x10;
384 uint32_t ch_data = ch_ctl + 4;
385 int i;
386 int recv_bytes;
387 uint32_t status;
388 uint32_t aux_clock_divider;
389 int try, precharge;
390
391 intel_dp_check_edp(intel_dp);
392 /* The clock divider is based off the hrawclk,
393 * and would like to run at 2MHz. So, take the
394 * hrawclk value and divide by 2 and use that
395 *
396 * Note that PCH attached eDP panels should use a 125MHz input
397 * clock divider.
398 */
399 if (is_cpu_edp(intel_dp)) {
400 if (IS_GEN6(dev) || IS_GEN7(dev))
401 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
402 else
403 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
404 } else if (HAS_PCH_SPLIT(dev))
405 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
406 else
407 aux_clock_divider = intel_hrawclk(dev) / 2;
408
409 if (IS_GEN6(dev))
410 precharge = 3;
411 else
412 precharge = 5;
413
414 /* Try to wait for any previous AUX channel activity */
415 for (try = 0; try < 3; try++) {
416 status = I915_READ(ch_ctl);
417 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
418 break;
419 msleep(1);
420 }
421
422 if (try == 3) {
423 WARN(1, "dp_aux_ch not started status 0x%08x\n",
424 I915_READ(ch_ctl));
425 return -EBUSY;
426 }
427
428 /* Must try at least 3 times according to DP spec */
429 for (try = 0; try < 5; try++) {
430 /* Load the send data into the aux channel data registers */
431 for (i = 0; i < send_bytes; i += 4)
432 I915_WRITE(ch_data + i,
433 pack_aux(send + i, send_bytes - i));
434
435 /* Send the command and wait for it to complete */
436 I915_WRITE(ch_ctl,
437 DP_AUX_CH_CTL_SEND_BUSY |
438 DP_AUX_CH_CTL_TIME_OUT_400us |
439 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
440 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
441 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
442 DP_AUX_CH_CTL_DONE |
443 DP_AUX_CH_CTL_TIME_OUT_ERROR |
444 DP_AUX_CH_CTL_RECEIVE_ERROR);
445 for (;;) {
446 status = I915_READ(ch_ctl);
447 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
448 break;
449 udelay(100);
450 }
451
452 /* Clear done status and any errors */
453 I915_WRITE(ch_ctl,
454 status |
455 DP_AUX_CH_CTL_DONE |
456 DP_AUX_CH_CTL_TIME_OUT_ERROR |
457 DP_AUX_CH_CTL_RECEIVE_ERROR);
458
459 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
460 DP_AUX_CH_CTL_RECEIVE_ERROR))
461 continue;
462 if (status & DP_AUX_CH_CTL_DONE)
463 break;
464 }
465
466 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
467 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
468 return -EBUSY;
469 }
470
471 /* Check for timeout or receive error.
472 * Timeouts occur when the sink is not connected
473 */
474 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
475 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
476 return -EIO;
477 }
478
479 /* Timeouts occur when the device isn't connected, so they're
480 * "normal" -- don't fill the kernel log with these */
481 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
482 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
483 return -ETIMEDOUT;
484 }
485
486 /* Unload any bytes sent back from the other side */
487 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
488 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
489 if (recv_bytes > recv_size)
490 recv_bytes = recv_size;
491
492 for (i = 0; i < recv_bytes; i += 4)
493 unpack_aux(I915_READ(ch_data + i),
494 recv + i, recv_bytes - i);
495
496 return recv_bytes;
497 }
498
499 /* Write data to the aux channel in native mode */
500 static int
501 intel_dp_aux_native_write(struct intel_dp *intel_dp,
502 uint16_t address, uint8_t *send, int send_bytes)
503 {
504 int ret;
505 uint8_t msg[20];
506 int msg_bytes;
507 uint8_t ack;
508
509 intel_dp_check_edp(intel_dp);
510 if (send_bytes > 16)
511 return -1;
512 msg[0] = AUX_NATIVE_WRITE << 4;
513 msg[1] = address >> 8;
514 msg[2] = address & 0xff;
515 msg[3] = send_bytes - 1;
516 memcpy(&msg[4], send, send_bytes);
517 msg_bytes = send_bytes + 4;
518 for (;;) {
519 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
520 if (ret < 0)
521 return ret;
522 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
523 break;
524 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
525 udelay(100);
526 else
527 return -EIO;
528 }
529 return send_bytes;
530 }
531
532 /* Write a single byte to the aux channel in native mode */
533 static int
534 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
535 uint16_t address, uint8_t byte)
536 {
537 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
538 }
539
540 /* read bytes from a native aux channel */
541 static int
542 intel_dp_aux_native_read(struct intel_dp *intel_dp,
543 uint16_t address, uint8_t *recv, int recv_bytes)
544 {
545 uint8_t msg[4];
546 int msg_bytes;
547 uint8_t reply[20];
548 int reply_bytes;
549 uint8_t ack;
550 int ret;
551
552 intel_dp_check_edp(intel_dp);
553 msg[0] = AUX_NATIVE_READ << 4;
554 msg[1] = address >> 8;
555 msg[2] = address & 0xff;
556 msg[3] = recv_bytes - 1;
557
558 msg_bytes = 4;
559 reply_bytes = recv_bytes + 1;
560
561 for (;;) {
562 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
563 reply, reply_bytes);
564 if (ret == 0)
565 return -EPROTO;
566 if (ret < 0)
567 return ret;
568 ack = reply[0];
569 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
570 memcpy(recv, reply + 1, ret - 1);
571 return ret - 1;
572 }
573 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
574 udelay(100);
575 else
576 return -EIO;
577 }
578 }
579
580 static int
581 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
582 uint8_t write_byte, uint8_t *read_byte)
583 {
584 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
585 struct intel_dp *intel_dp = container_of(adapter,
586 struct intel_dp,
587 adapter);
588 uint16_t address = algo_data->address;
589 uint8_t msg[5];
590 uint8_t reply[2];
591 unsigned retry;
592 int msg_bytes;
593 int reply_bytes;
594 int ret;
595
596 intel_dp_check_edp(intel_dp);
597 /* Set up the command byte */
598 if (mode & MODE_I2C_READ)
599 msg[0] = AUX_I2C_READ << 4;
600 else
601 msg[0] = AUX_I2C_WRITE << 4;
602
603 if (!(mode & MODE_I2C_STOP))
604 msg[0] |= AUX_I2C_MOT << 4;
605
606 msg[1] = address >> 8;
607 msg[2] = address;
608
609 switch (mode) {
610 case MODE_I2C_WRITE:
611 msg[3] = 0;
612 msg[4] = write_byte;
613 msg_bytes = 5;
614 reply_bytes = 1;
615 break;
616 case MODE_I2C_READ:
617 msg[3] = 0;
618 msg_bytes = 4;
619 reply_bytes = 2;
620 break;
621 default:
622 msg_bytes = 3;
623 reply_bytes = 1;
624 break;
625 }
626
627 for (retry = 0; retry < 5; retry++) {
628 ret = intel_dp_aux_ch(intel_dp,
629 msg, msg_bytes,
630 reply, reply_bytes);
631 if (ret < 0) {
632 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
633 return ret;
634 }
635
636 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
637 case AUX_NATIVE_REPLY_ACK:
638 /* I2C-over-AUX Reply field is only valid
639 * when paired with AUX ACK.
640 */
641 break;
642 case AUX_NATIVE_REPLY_NACK:
643 DRM_DEBUG_KMS("aux_ch native nack\n");
644 return -EREMOTEIO;
645 case AUX_NATIVE_REPLY_DEFER:
646 udelay(100);
647 continue;
648 default:
649 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
650 reply[0]);
651 return -EREMOTEIO;
652 }
653
654 switch (reply[0] & AUX_I2C_REPLY_MASK) {
655 case AUX_I2C_REPLY_ACK:
656 if (mode == MODE_I2C_READ) {
657 *read_byte = reply[1];
658 }
659 return reply_bytes - 1;
660 case AUX_I2C_REPLY_NACK:
661 DRM_DEBUG_KMS("aux_i2c nack\n");
662 return -EREMOTEIO;
663 case AUX_I2C_REPLY_DEFER:
664 DRM_DEBUG_KMS("aux_i2c defer\n");
665 udelay(100);
666 break;
667 default:
668 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
669 return -EREMOTEIO;
670 }
671 }
672
673 DRM_ERROR("too many retries, giving up\n");
674 return -EREMOTEIO;
675 }
676
677 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
678 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
679
680 static int
681 intel_dp_i2c_init(struct intel_dp *intel_dp,
682 struct intel_connector *intel_connector, const char *name)
683 {
684 int ret;
685
686 DRM_DEBUG_KMS("i2c_init %s\n", name);
687 intel_dp->algo.running = false;
688 intel_dp->algo.address = 0;
689 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
690
691 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
692 intel_dp->adapter.owner = THIS_MODULE;
693 intel_dp->adapter.class = I2C_CLASS_DDC;
694 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
695 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
696 intel_dp->adapter.algo_data = &intel_dp->algo;
697 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
698
699 ironlake_edp_panel_vdd_on(intel_dp);
700 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
701 ironlake_edp_panel_vdd_off(intel_dp, false);
702 return ret;
703 }
704
705 static bool
706 intel_dp_mode_fixup(struct drm_encoder *encoder,
707 const struct drm_display_mode *mode,
708 struct drm_display_mode *adjusted_mode)
709 {
710 struct drm_device *dev = encoder->dev;
711 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
712 int lane_count, clock;
713 int max_lane_count = intel_dp_max_lane_count(intel_dp);
714 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
715 int bpp, mode_rate;
716 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
717
718 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
719 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
720 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
721 mode, adjusted_mode);
722 }
723
724 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
725 return false;
726
727 DRM_DEBUG_KMS("DP link computation with max lane count %i "
728 "max bw %02x pixel clock %iKHz\n",
729 max_lane_count, bws[max_clock], adjusted_mode->clock);
730
731 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
732 return false;
733
734 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
735 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
736
737 for (clock = 0; clock <= max_clock; clock++) {
738 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
739 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
740
741 if (mode_rate <= link_avail) {
742 intel_dp->link_bw = bws[clock];
743 intel_dp->lane_count = lane_count;
744 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
745 DRM_DEBUG_KMS("DP link bw %02x lane "
746 "count %d clock %d bpp %d\n",
747 intel_dp->link_bw, intel_dp->lane_count,
748 adjusted_mode->clock, bpp);
749 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
750 mode_rate, link_avail);
751 return true;
752 }
753 }
754 }
755
756 return false;
757 }
758
759 struct intel_dp_m_n {
760 uint32_t tu;
761 uint32_t gmch_m;
762 uint32_t gmch_n;
763 uint32_t link_m;
764 uint32_t link_n;
765 };
766
767 static void
768 intel_reduce_ratio(uint32_t *num, uint32_t *den)
769 {
770 while (*num > 0xffffff || *den > 0xffffff) {
771 *num >>= 1;
772 *den >>= 1;
773 }
774 }
775
776 static void
777 intel_dp_compute_m_n(int bpp,
778 int nlanes,
779 int pixel_clock,
780 int link_clock,
781 struct intel_dp_m_n *m_n)
782 {
783 m_n->tu = 64;
784 m_n->gmch_m = (pixel_clock * bpp) >> 3;
785 m_n->gmch_n = link_clock * nlanes;
786 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
787 m_n->link_m = pixel_clock;
788 m_n->link_n = link_clock;
789 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
790 }
791
792 void
793 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
794 struct drm_display_mode *adjusted_mode)
795 {
796 struct drm_device *dev = crtc->dev;
797 struct intel_encoder *encoder;
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
800 int lane_count = 4;
801 struct intel_dp_m_n m_n;
802 int pipe = intel_crtc->pipe;
803
804 /*
805 * Find the lane count in the intel_encoder private
806 */
807 for_each_encoder_on_crtc(dev, crtc, encoder) {
808 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
809
810 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
811 intel_dp->base.type == INTEL_OUTPUT_EDP)
812 {
813 lane_count = intel_dp->lane_count;
814 break;
815 }
816 }
817
818 /*
819 * Compute the GMCH and Link ratios. The '3' here is
820 * the number of bytes_per_pixel post-LUT, which we always
821 * set up for 8-bits of R/G/B, or 3 bytes total.
822 */
823 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
824 mode->clock, adjusted_mode->clock, &m_n);
825
826 if (HAS_PCH_SPLIT(dev)) {
827 I915_WRITE(TRANSDATA_M1(pipe),
828 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
829 m_n.gmch_m);
830 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
831 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
832 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
833 } else {
834 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
835 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
836 m_n.gmch_m);
837 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
838 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
839 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
840 }
841 }
842
843 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
844 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
845
846 static void
847 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
848 struct drm_display_mode *adjusted_mode)
849 {
850 struct drm_device *dev = encoder->dev;
851 struct drm_i915_private *dev_priv = dev->dev_private;
852 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
853 struct drm_crtc *crtc = intel_dp->base.base.crtc;
854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
855
856 /* Turn on the eDP PLL if needed */
857 if (is_edp(intel_dp)) {
858 if (!is_pch_edp(intel_dp))
859 ironlake_edp_pll_on(encoder);
860 else
861 ironlake_edp_pll_off(encoder);
862 }
863
864 /*
865 * There are four kinds of DP registers:
866 *
867 * IBX PCH
868 * SNB CPU
869 * IVB CPU
870 * CPT PCH
871 *
872 * IBX PCH and CPU are the same for almost everything,
873 * except that the CPU DP PLL is configured in this
874 * register
875 *
876 * CPT PCH is quite different, having many bits moved
877 * to the TRANS_DP_CTL register instead. That
878 * configuration happens (oddly) in ironlake_pch_enable
879 */
880
881 /* Preserve the BIOS-computed detected bit. This is
882 * supposed to be read-only.
883 */
884 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
885 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
886
887 /* Handle DP bits in common between all three register formats */
888
889 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
890
891 switch (intel_dp->lane_count) {
892 case 1:
893 intel_dp->DP |= DP_PORT_WIDTH_1;
894 break;
895 case 2:
896 intel_dp->DP |= DP_PORT_WIDTH_2;
897 break;
898 case 4:
899 intel_dp->DP |= DP_PORT_WIDTH_4;
900 break;
901 }
902 if (intel_dp->has_audio) {
903 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
904 pipe_name(intel_crtc->pipe));
905 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
906 intel_write_eld(encoder, adjusted_mode);
907 }
908 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
909 intel_dp->link_configuration[0] = intel_dp->link_bw;
910 intel_dp->link_configuration[1] = intel_dp->lane_count;
911 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
912 /*
913 * Check for DPCD version > 1.1 and enhanced framing support
914 */
915 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
916 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
917 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
918 }
919
920 /* Split out the IBX/CPU vs CPT settings */
921
922 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
923 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
924 intel_dp->DP |= DP_SYNC_HS_HIGH;
925 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
926 intel_dp->DP |= DP_SYNC_VS_HIGH;
927 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
928
929 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
930 intel_dp->DP |= DP_ENHANCED_FRAMING;
931
932 intel_dp->DP |= intel_crtc->pipe << 29;
933
934 /* don't miss out required setting for eDP */
935 intel_dp->DP |= DP_PLL_ENABLE;
936 if (adjusted_mode->clock < 200000)
937 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
938 else
939 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
940 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
941 intel_dp->DP |= intel_dp->color_range;
942
943 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
944 intel_dp->DP |= DP_SYNC_HS_HIGH;
945 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
946 intel_dp->DP |= DP_SYNC_VS_HIGH;
947 intel_dp->DP |= DP_LINK_TRAIN_OFF;
948
949 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
950 intel_dp->DP |= DP_ENHANCED_FRAMING;
951
952 if (intel_crtc->pipe == 1)
953 intel_dp->DP |= DP_PIPEB_SELECT;
954
955 if (is_cpu_edp(intel_dp)) {
956 /* don't miss out required setting for eDP */
957 intel_dp->DP |= DP_PLL_ENABLE;
958 if (adjusted_mode->clock < 200000)
959 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
960 else
961 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
962 }
963 } else {
964 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
965 }
966 }
967
968 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
969 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
970
971 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
972 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
973
974 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
975 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
976
977 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
978 u32 mask,
979 u32 value)
980 {
981 struct drm_device *dev = intel_dp->base.base.dev;
982 struct drm_i915_private *dev_priv = dev->dev_private;
983
984 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
985 mask, value,
986 I915_READ(PCH_PP_STATUS),
987 I915_READ(PCH_PP_CONTROL));
988
989 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
990 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
991 I915_READ(PCH_PP_STATUS),
992 I915_READ(PCH_PP_CONTROL));
993 }
994 }
995
996 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
997 {
998 DRM_DEBUG_KMS("Wait for panel power on\n");
999 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1000 }
1001
1002 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1003 {
1004 DRM_DEBUG_KMS("Wait for panel power off time\n");
1005 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1006 }
1007
1008 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1009 {
1010 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1011 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1012 }
1013
1014
1015 /* Read the current pp_control value, unlocking the register if it
1016 * is locked
1017 */
1018
1019 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1020 {
1021 u32 control = I915_READ(PCH_PP_CONTROL);
1022
1023 control &= ~PANEL_UNLOCK_MASK;
1024 control |= PANEL_UNLOCK_REGS;
1025 return control;
1026 }
1027
1028 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1029 {
1030 struct drm_device *dev = intel_dp->base.base.dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 u32 pp;
1033
1034 if (!is_edp(intel_dp))
1035 return;
1036 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1037
1038 WARN(intel_dp->want_panel_vdd,
1039 "eDP VDD already requested on\n");
1040
1041 intel_dp->want_panel_vdd = true;
1042
1043 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1044 DRM_DEBUG_KMS("eDP VDD already on\n");
1045 return;
1046 }
1047
1048 if (!ironlake_edp_have_panel_power(intel_dp))
1049 ironlake_wait_panel_power_cycle(intel_dp);
1050
1051 pp = ironlake_get_pp_control(dev_priv);
1052 pp |= EDP_FORCE_VDD;
1053 I915_WRITE(PCH_PP_CONTROL, pp);
1054 POSTING_READ(PCH_PP_CONTROL);
1055 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1056 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1057
1058 /*
1059 * If the panel wasn't on, delay before accessing aux channel
1060 */
1061 if (!ironlake_edp_have_panel_power(intel_dp)) {
1062 DRM_DEBUG_KMS("eDP was not running\n");
1063 msleep(intel_dp->panel_power_up_delay);
1064 }
1065 }
1066
1067 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1068 {
1069 struct drm_device *dev = intel_dp->base.base.dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 u32 pp;
1072
1073 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1074 pp = ironlake_get_pp_control(dev_priv);
1075 pp &= ~EDP_FORCE_VDD;
1076 I915_WRITE(PCH_PP_CONTROL, pp);
1077 POSTING_READ(PCH_PP_CONTROL);
1078
1079 /* Make sure sequencer is idle before allowing subsequent activity */
1080 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1081 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1082
1083 msleep(intel_dp->panel_power_down_delay);
1084 }
1085 }
1086
1087 static void ironlake_panel_vdd_work(struct work_struct *__work)
1088 {
1089 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1090 struct intel_dp, panel_vdd_work);
1091 struct drm_device *dev = intel_dp->base.base.dev;
1092
1093 mutex_lock(&dev->mode_config.mutex);
1094 ironlake_panel_vdd_off_sync(intel_dp);
1095 mutex_unlock(&dev->mode_config.mutex);
1096 }
1097
1098 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1099 {
1100 if (!is_edp(intel_dp))
1101 return;
1102
1103 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1104 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1105
1106 intel_dp->want_panel_vdd = false;
1107
1108 if (sync) {
1109 ironlake_panel_vdd_off_sync(intel_dp);
1110 } else {
1111 /*
1112 * Queue the timer to fire a long
1113 * time from now (relative to the power down delay)
1114 * to keep the panel power up across a sequence of operations
1115 */
1116 schedule_delayed_work(&intel_dp->panel_vdd_work,
1117 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1118 }
1119 }
1120
1121 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1122 {
1123 struct drm_device *dev = intel_dp->base.base.dev;
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1125 u32 pp;
1126
1127 if (!is_edp(intel_dp))
1128 return;
1129
1130 DRM_DEBUG_KMS("Turn eDP power on\n");
1131
1132 if (ironlake_edp_have_panel_power(intel_dp)) {
1133 DRM_DEBUG_KMS("eDP power already on\n");
1134 return;
1135 }
1136
1137 ironlake_wait_panel_power_cycle(intel_dp);
1138
1139 pp = ironlake_get_pp_control(dev_priv);
1140 if (IS_GEN5(dev)) {
1141 /* ILK workaround: disable reset around power sequence */
1142 pp &= ~PANEL_POWER_RESET;
1143 I915_WRITE(PCH_PP_CONTROL, pp);
1144 POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 pp |= POWER_TARGET_ON;
1148 if (!IS_GEN5(dev))
1149 pp |= PANEL_POWER_RESET;
1150
1151 I915_WRITE(PCH_PP_CONTROL, pp);
1152 POSTING_READ(PCH_PP_CONTROL);
1153
1154 ironlake_wait_panel_on(intel_dp);
1155
1156 if (IS_GEN5(dev)) {
1157 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1158 I915_WRITE(PCH_PP_CONTROL, pp);
1159 POSTING_READ(PCH_PP_CONTROL);
1160 }
1161 }
1162
1163 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1164 {
1165 struct drm_device *dev = intel_dp->base.base.dev;
1166 struct drm_i915_private *dev_priv = dev->dev_private;
1167 u32 pp;
1168
1169 if (!is_edp(intel_dp))
1170 return;
1171
1172 DRM_DEBUG_KMS("Turn eDP power off\n");
1173
1174 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1175
1176 pp = ironlake_get_pp_control(dev_priv);
1177 /* We need to switch off panel power _and_ force vdd, for otherwise some
1178 * panels get very unhappy and cease to work. */
1179 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1180 I915_WRITE(PCH_PP_CONTROL, pp);
1181 POSTING_READ(PCH_PP_CONTROL);
1182
1183 intel_dp->want_panel_vdd = false;
1184
1185 ironlake_wait_panel_off(intel_dp);
1186 }
1187
1188 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1189 {
1190 struct drm_device *dev = intel_dp->base.base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 u32 pp;
1193
1194 if (!is_edp(intel_dp))
1195 return;
1196
1197 DRM_DEBUG_KMS("\n");
1198 /*
1199 * If we enable the backlight right away following a panel power
1200 * on, we may see slight flicker as the panel syncs with the eDP
1201 * link. So delay a bit to make sure the image is solid before
1202 * allowing it to appear.
1203 */
1204 msleep(intel_dp->backlight_on_delay);
1205 pp = ironlake_get_pp_control(dev_priv);
1206 pp |= EDP_BLC_ENABLE;
1207 I915_WRITE(PCH_PP_CONTROL, pp);
1208 POSTING_READ(PCH_PP_CONTROL);
1209 }
1210
1211 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1212 {
1213 struct drm_device *dev = intel_dp->base.base.dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 u32 pp;
1216
1217 if (!is_edp(intel_dp))
1218 return;
1219
1220 DRM_DEBUG_KMS("\n");
1221 pp = ironlake_get_pp_control(dev_priv);
1222 pp &= ~EDP_BLC_ENABLE;
1223 I915_WRITE(PCH_PP_CONTROL, pp);
1224 POSTING_READ(PCH_PP_CONTROL);
1225 msleep(intel_dp->backlight_off_delay);
1226 }
1227
1228 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1229 {
1230 struct drm_device *dev = encoder->dev;
1231 struct drm_i915_private *dev_priv = dev->dev_private;
1232 u32 dpa_ctl;
1233
1234 DRM_DEBUG_KMS("\n");
1235 dpa_ctl = I915_READ(DP_A);
1236 dpa_ctl |= DP_PLL_ENABLE;
1237 I915_WRITE(DP_A, dpa_ctl);
1238 POSTING_READ(DP_A);
1239 udelay(200);
1240 }
1241
1242 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1243 {
1244 struct drm_device *dev = encoder->dev;
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1246 u32 dpa_ctl;
1247
1248 dpa_ctl = I915_READ(DP_A);
1249 dpa_ctl &= ~DP_PLL_ENABLE;
1250 I915_WRITE(DP_A, dpa_ctl);
1251 POSTING_READ(DP_A);
1252 udelay(200);
1253 }
1254
1255 /* If the sink supports it, try to set the power state appropriately */
1256 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1257 {
1258 int ret, i;
1259
1260 /* Should have a valid DPCD by this point */
1261 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1262 return;
1263
1264 if (mode != DRM_MODE_DPMS_ON) {
1265 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1266 DP_SET_POWER_D3);
1267 if (ret != 1)
1268 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1269 } else {
1270 /*
1271 * When turning on, we need to retry for 1ms to give the sink
1272 * time to wake up.
1273 */
1274 for (i = 0; i < 3; i++) {
1275 ret = intel_dp_aux_native_write_1(intel_dp,
1276 DP_SET_POWER,
1277 DP_SET_POWER_D0);
1278 if (ret == 1)
1279 break;
1280 msleep(1);
1281 }
1282 }
1283 }
1284
1285 static void intel_dp_prepare(struct drm_encoder *encoder)
1286 {
1287 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1288
1289
1290 /* Make sure the panel is off before trying to change the mode. But also
1291 * ensure that we have vdd while we switch off the panel. */
1292 ironlake_edp_panel_vdd_on(intel_dp);
1293 ironlake_edp_backlight_off(intel_dp);
1294 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1295 ironlake_edp_panel_off(intel_dp);
1296 intel_dp_link_down(intel_dp);
1297 }
1298
1299 static void intel_dp_commit(struct drm_encoder *encoder)
1300 {
1301 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1302 struct drm_device *dev = encoder->dev;
1303 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1304
1305 ironlake_edp_panel_vdd_on(intel_dp);
1306 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1307 intel_dp_start_link_train(intel_dp);
1308 ironlake_edp_panel_on(intel_dp);
1309 ironlake_edp_panel_vdd_off(intel_dp, true);
1310 intel_dp_complete_link_train(intel_dp);
1311 ironlake_edp_backlight_on(intel_dp);
1312
1313 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1314
1315 if (HAS_PCH_CPT(dev))
1316 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1317 }
1318
1319 static void
1320 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1321 {
1322 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1323 struct drm_device *dev = encoder->dev;
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1326
1327 if (mode != DRM_MODE_DPMS_ON) {
1328 /* Switching the panel off requires vdd. */
1329 ironlake_edp_panel_vdd_on(intel_dp);
1330 ironlake_edp_backlight_off(intel_dp);
1331 intel_dp_sink_dpms(intel_dp, mode);
1332 ironlake_edp_panel_off(intel_dp);
1333 intel_dp_link_down(intel_dp);
1334
1335 if (is_cpu_edp(intel_dp))
1336 ironlake_edp_pll_off(encoder);
1337 } else {
1338 if (is_cpu_edp(intel_dp))
1339 ironlake_edp_pll_on(encoder);
1340
1341 ironlake_edp_panel_vdd_on(intel_dp);
1342 intel_dp_sink_dpms(intel_dp, mode);
1343 if (!(dp_reg & DP_PORT_EN)) {
1344 intel_dp_start_link_train(intel_dp);
1345 ironlake_edp_panel_on(intel_dp);
1346 ironlake_edp_panel_vdd_off(intel_dp, true);
1347 intel_dp_complete_link_train(intel_dp);
1348 } else
1349 ironlake_edp_panel_vdd_off(intel_dp, false);
1350 ironlake_edp_backlight_on(intel_dp);
1351 }
1352 intel_dp->dpms_mode = mode;
1353 }
1354
1355 /*
1356 * Native read with retry for link status and receiver capability reads for
1357 * cases where the sink may still be asleep.
1358 */
1359 static bool
1360 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1361 uint8_t *recv, int recv_bytes)
1362 {
1363 int ret, i;
1364
1365 /*
1366 * Sinks are *supposed* to come up within 1ms from an off state,
1367 * but we're also supposed to retry 3 times per the spec.
1368 */
1369 for (i = 0; i < 3; i++) {
1370 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1371 recv_bytes);
1372 if (ret == recv_bytes)
1373 return true;
1374 msleep(1);
1375 }
1376
1377 return false;
1378 }
1379
1380 /*
1381 * Fetch AUX CH registers 0x202 - 0x207 which contain
1382 * link status information
1383 */
1384 static bool
1385 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1386 {
1387 return intel_dp_aux_native_read_retry(intel_dp,
1388 DP_LANE0_1_STATUS,
1389 link_status,
1390 DP_LINK_STATUS_SIZE);
1391 }
1392
1393 static uint8_t
1394 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1395 int r)
1396 {
1397 return link_status[r - DP_LANE0_1_STATUS];
1398 }
1399
1400 static uint8_t
1401 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1402 int lane)
1403 {
1404 int s = ((lane & 1) ?
1405 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1406 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1407 uint8_t l = adjust_request[lane>>1];
1408
1409 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1410 }
1411
1412 static uint8_t
1413 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1414 int lane)
1415 {
1416 int s = ((lane & 1) ?
1417 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1418 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1419 uint8_t l = adjust_request[lane>>1];
1420
1421 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1422 }
1423
1424
1425 #if 0
1426 static char *voltage_names[] = {
1427 "0.4V", "0.6V", "0.8V", "1.2V"
1428 };
1429 static char *pre_emph_names[] = {
1430 "0dB", "3.5dB", "6dB", "9.5dB"
1431 };
1432 static char *link_train_names[] = {
1433 "pattern 1", "pattern 2", "idle", "off"
1434 };
1435 #endif
1436
1437 /*
1438 * These are source-specific values; current Intel hardware supports
1439 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1440 */
1441
1442 static uint8_t
1443 intel_dp_voltage_max(struct intel_dp *intel_dp)
1444 {
1445 struct drm_device *dev = intel_dp->base.base.dev;
1446
1447 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1448 return DP_TRAIN_VOLTAGE_SWING_800;
1449 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1450 return DP_TRAIN_VOLTAGE_SWING_1200;
1451 else
1452 return DP_TRAIN_VOLTAGE_SWING_800;
1453 }
1454
1455 static uint8_t
1456 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1457 {
1458 struct drm_device *dev = intel_dp->base.base.dev;
1459
1460 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1461 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1462 case DP_TRAIN_VOLTAGE_SWING_400:
1463 return DP_TRAIN_PRE_EMPHASIS_6;
1464 case DP_TRAIN_VOLTAGE_SWING_600:
1465 case DP_TRAIN_VOLTAGE_SWING_800:
1466 return DP_TRAIN_PRE_EMPHASIS_3_5;
1467 default:
1468 return DP_TRAIN_PRE_EMPHASIS_0;
1469 }
1470 } else {
1471 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1472 case DP_TRAIN_VOLTAGE_SWING_400:
1473 return DP_TRAIN_PRE_EMPHASIS_6;
1474 case DP_TRAIN_VOLTAGE_SWING_600:
1475 return DP_TRAIN_PRE_EMPHASIS_6;
1476 case DP_TRAIN_VOLTAGE_SWING_800:
1477 return DP_TRAIN_PRE_EMPHASIS_3_5;
1478 case DP_TRAIN_VOLTAGE_SWING_1200:
1479 default:
1480 return DP_TRAIN_PRE_EMPHASIS_0;
1481 }
1482 }
1483 }
1484
1485 static void
1486 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1487 {
1488 uint8_t v = 0;
1489 uint8_t p = 0;
1490 int lane;
1491 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1492 uint8_t voltage_max;
1493 uint8_t preemph_max;
1494
1495 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1496 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1497 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1498
1499 if (this_v > v)
1500 v = this_v;
1501 if (this_p > p)
1502 p = this_p;
1503 }
1504
1505 voltage_max = intel_dp_voltage_max(intel_dp);
1506 if (v >= voltage_max)
1507 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1508
1509 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1510 if (p >= preemph_max)
1511 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1512
1513 for (lane = 0; lane < 4; lane++)
1514 intel_dp->train_set[lane] = v | p;
1515 }
1516
1517 static uint32_t
1518 intel_dp_signal_levels(uint8_t train_set)
1519 {
1520 uint32_t signal_levels = 0;
1521
1522 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1523 case DP_TRAIN_VOLTAGE_SWING_400:
1524 default:
1525 signal_levels |= DP_VOLTAGE_0_4;
1526 break;
1527 case DP_TRAIN_VOLTAGE_SWING_600:
1528 signal_levels |= DP_VOLTAGE_0_6;
1529 break;
1530 case DP_TRAIN_VOLTAGE_SWING_800:
1531 signal_levels |= DP_VOLTAGE_0_8;
1532 break;
1533 case DP_TRAIN_VOLTAGE_SWING_1200:
1534 signal_levels |= DP_VOLTAGE_1_2;
1535 break;
1536 }
1537 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1538 case DP_TRAIN_PRE_EMPHASIS_0:
1539 default:
1540 signal_levels |= DP_PRE_EMPHASIS_0;
1541 break;
1542 case DP_TRAIN_PRE_EMPHASIS_3_5:
1543 signal_levels |= DP_PRE_EMPHASIS_3_5;
1544 break;
1545 case DP_TRAIN_PRE_EMPHASIS_6:
1546 signal_levels |= DP_PRE_EMPHASIS_6;
1547 break;
1548 case DP_TRAIN_PRE_EMPHASIS_9_5:
1549 signal_levels |= DP_PRE_EMPHASIS_9_5;
1550 break;
1551 }
1552 return signal_levels;
1553 }
1554
1555 /* Gen6's DP voltage swing and pre-emphasis control */
1556 static uint32_t
1557 intel_gen6_edp_signal_levels(uint8_t train_set)
1558 {
1559 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1560 DP_TRAIN_PRE_EMPHASIS_MASK);
1561 switch (signal_levels) {
1562 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1563 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1564 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1565 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1566 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1567 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1568 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1569 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1570 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1571 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1573 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1574 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1575 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1576 default:
1577 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1578 "0x%x\n", signal_levels);
1579 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1580 }
1581 }
1582
1583 /* Gen7's DP voltage swing and pre-emphasis control */
1584 static uint32_t
1585 intel_gen7_edp_signal_levels(uint8_t train_set)
1586 {
1587 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1588 DP_TRAIN_PRE_EMPHASIS_MASK);
1589 switch (signal_levels) {
1590 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1591 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1592 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1593 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1594 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1595 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1596
1597 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1598 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1599 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1601
1602 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1603 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1604 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1605 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1606
1607 default:
1608 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1609 "0x%x\n", signal_levels);
1610 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1611 }
1612 }
1613
1614 static uint8_t
1615 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1616 int lane)
1617 {
1618 int s = (lane & 1) * 4;
1619 uint8_t l = link_status[lane>>1];
1620
1621 return (l >> s) & 0xf;
1622 }
1623
1624 /* Check for clock recovery is done on all channels */
1625 static bool
1626 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1627 {
1628 int lane;
1629 uint8_t lane_status;
1630
1631 for (lane = 0; lane < lane_count; lane++) {
1632 lane_status = intel_get_lane_status(link_status, lane);
1633 if ((lane_status & DP_LANE_CR_DONE) == 0)
1634 return false;
1635 }
1636 return true;
1637 }
1638
1639 /* Check to see if channel eq is done on all channels */
1640 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1641 DP_LANE_CHANNEL_EQ_DONE|\
1642 DP_LANE_SYMBOL_LOCKED)
1643 static bool
1644 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1645 {
1646 uint8_t lane_align;
1647 uint8_t lane_status;
1648 int lane;
1649
1650 lane_align = intel_dp_link_status(link_status,
1651 DP_LANE_ALIGN_STATUS_UPDATED);
1652 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1653 return false;
1654 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1655 lane_status = intel_get_lane_status(link_status, lane);
1656 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1657 return false;
1658 }
1659 return true;
1660 }
1661
1662 static bool
1663 intel_dp_set_link_train(struct intel_dp *intel_dp,
1664 uint32_t dp_reg_value,
1665 uint8_t dp_train_pat)
1666 {
1667 struct drm_device *dev = intel_dp->base.base.dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 int ret;
1670
1671 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1672 POSTING_READ(intel_dp->output_reg);
1673
1674 intel_dp_aux_native_write_1(intel_dp,
1675 DP_TRAINING_PATTERN_SET,
1676 dp_train_pat);
1677
1678 ret = intel_dp_aux_native_write(intel_dp,
1679 DP_TRAINING_LANE0_SET,
1680 intel_dp->train_set,
1681 intel_dp->lane_count);
1682 if (ret != intel_dp->lane_count)
1683 return false;
1684
1685 return true;
1686 }
1687
1688 /* Enable corresponding port and start training pattern 1 */
1689 static void
1690 intel_dp_start_link_train(struct intel_dp *intel_dp)
1691 {
1692 struct drm_device *dev = intel_dp->base.base.dev;
1693 struct drm_i915_private *dev_priv = dev->dev_private;
1694 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1695 int i;
1696 uint8_t voltage;
1697 bool clock_recovery = false;
1698 int voltage_tries, loop_tries;
1699 u32 reg;
1700 uint32_t DP = intel_dp->DP;
1701
1702 /*
1703 * On CPT we have to enable the port in training pattern 1, which
1704 * will happen below in intel_dp_set_link_train. Otherwise, enable
1705 * the port and wait for it to become active.
1706 */
1707 if (!HAS_PCH_CPT(dev)) {
1708 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1709 POSTING_READ(intel_dp->output_reg);
1710 intel_wait_for_vblank(dev, intel_crtc->pipe);
1711 }
1712
1713 /* Write the link configuration data */
1714 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1715 intel_dp->link_configuration,
1716 DP_LINK_CONFIGURATION_SIZE);
1717
1718 DP |= DP_PORT_EN;
1719
1720 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1721 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1722 else
1723 DP &= ~DP_LINK_TRAIN_MASK;
1724 memset(intel_dp->train_set, 0, 4);
1725 voltage = 0xff;
1726 voltage_tries = 0;
1727 loop_tries = 0;
1728 clock_recovery = false;
1729 for (;;) {
1730 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1731 uint8_t link_status[DP_LINK_STATUS_SIZE];
1732 uint32_t signal_levels;
1733
1734
1735 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1736 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1737 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1738 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1739 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1740 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1741 } else {
1742 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1743 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1744 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1745 }
1746
1747 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1748 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1749 else
1750 reg = DP | DP_LINK_TRAIN_PAT_1;
1751
1752 if (!intel_dp_set_link_train(intel_dp, reg,
1753 DP_TRAINING_PATTERN_1 |
1754 DP_LINK_SCRAMBLING_DISABLE))
1755 break;
1756 /* Set training pattern 1 */
1757
1758 udelay(100);
1759 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1760 DRM_ERROR("failed to get link status\n");
1761 break;
1762 }
1763
1764 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1765 DRM_DEBUG_KMS("clock recovery OK\n");
1766 clock_recovery = true;
1767 break;
1768 }
1769
1770 /* Check to see if we've tried the max voltage */
1771 for (i = 0; i < intel_dp->lane_count; i++)
1772 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1773 break;
1774 if (i == intel_dp->lane_count && voltage_tries == 5) {
1775 ++loop_tries;
1776 if (loop_tries == 5) {
1777 DRM_DEBUG_KMS("too many full retries, give up\n");
1778 break;
1779 }
1780 memset(intel_dp->train_set, 0, 4);
1781 voltage_tries = 0;
1782 continue;
1783 }
1784
1785 /* Check to see if we've tried the same voltage 5 times */
1786 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1787 ++voltage_tries;
1788 if (voltage_tries == 5) {
1789 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1790 break;
1791 }
1792 } else
1793 voltage_tries = 0;
1794 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1795
1796 /* Compute new intel_dp->train_set as requested by target */
1797 intel_get_adjust_train(intel_dp, link_status);
1798 }
1799
1800 intel_dp->DP = DP;
1801 }
1802
1803 static void
1804 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1805 {
1806 struct drm_device *dev = intel_dp->base.base.dev;
1807 struct drm_i915_private *dev_priv = dev->dev_private;
1808 bool channel_eq = false;
1809 int tries, cr_tries;
1810 u32 reg;
1811 uint32_t DP = intel_dp->DP;
1812
1813 /* channel equalization */
1814 tries = 0;
1815 cr_tries = 0;
1816 channel_eq = false;
1817 for (;;) {
1818 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1819 uint32_t signal_levels;
1820 uint8_t link_status[DP_LINK_STATUS_SIZE];
1821
1822 if (cr_tries > 5) {
1823 DRM_ERROR("failed to train DP, aborting\n");
1824 intel_dp_link_down(intel_dp);
1825 break;
1826 }
1827
1828 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1829 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1830 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1831 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1832 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1833 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1834 } else {
1835 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1836 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1837 }
1838
1839 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1840 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1841 else
1842 reg = DP | DP_LINK_TRAIN_PAT_2;
1843
1844 /* channel eq pattern */
1845 if (!intel_dp_set_link_train(intel_dp, reg,
1846 DP_TRAINING_PATTERN_2 |
1847 DP_LINK_SCRAMBLING_DISABLE))
1848 break;
1849
1850 udelay(400);
1851 if (!intel_dp_get_link_status(intel_dp, link_status))
1852 break;
1853
1854 /* Make sure clock is still ok */
1855 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1856 intel_dp_start_link_train(intel_dp);
1857 cr_tries++;
1858 continue;
1859 }
1860
1861 if (intel_channel_eq_ok(intel_dp, link_status)) {
1862 channel_eq = true;
1863 break;
1864 }
1865
1866 /* Try 5 times, then try clock recovery if that fails */
1867 if (tries > 5) {
1868 intel_dp_link_down(intel_dp);
1869 intel_dp_start_link_train(intel_dp);
1870 tries = 0;
1871 cr_tries++;
1872 continue;
1873 }
1874
1875 /* Compute new intel_dp->train_set as requested by target */
1876 intel_get_adjust_train(intel_dp, link_status);
1877 ++tries;
1878 }
1879
1880 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1881 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1882 else
1883 reg = DP | DP_LINK_TRAIN_OFF;
1884
1885 I915_WRITE(intel_dp->output_reg, reg);
1886 POSTING_READ(intel_dp->output_reg);
1887 intel_dp_aux_native_write_1(intel_dp,
1888 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1889 }
1890
1891 static void
1892 intel_dp_link_down(struct intel_dp *intel_dp)
1893 {
1894 struct drm_device *dev = intel_dp->base.base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 uint32_t DP = intel_dp->DP;
1897
1898 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1899 return;
1900
1901 DRM_DEBUG_KMS("\n");
1902
1903 if (is_edp(intel_dp)) {
1904 DP &= ~DP_PLL_ENABLE;
1905 I915_WRITE(intel_dp->output_reg, DP);
1906 POSTING_READ(intel_dp->output_reg);
1907 udelay(100);
1908 }
1909
1910 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1911 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1912 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1913 } else {
1914 DP &= ~DP_LINK_TRAIN_MASK;
1915 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1916 }
1917 POSTING_READ(intel_dp->output_reg);
1918
1919 msleep(17);
1920
1921 if (is_edp(intel_dp)) {
1922 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1923 DP |= DP_LINK_TRAIN_OFF_CPT;
1924 else
1925 DP |= DP_LINK_TRAIN_OFF;
1926 }
1927
1928 if (HAS_PCH_IBX(dev) &&
1929 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1930 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1931
1932 /* Hardware workaround: leaving our transcoder select
1933 * set to transcoder B while it's off will prevent the
1934 * corresponding HDMI output on transcoder A.
1935 *
1936 * Combine this with another hardware workaround:
1937 * transcoder select bit can only be cleared while the
1938 * port is enabled.
1939 */
1940 DP &= ~DP_PIPEB_SELECT;
1941 I915_WRITE(intel_dp->output_reg, DP);
1942
1943 /* Changes to enable or select take place the vblank
1944 * after being written.
1945 */
1946 if (crtc == NULL) {
1947 /* We can arrive here never having been attached
1948 * to a CRTC, for instance, due to inheriting
1949 * random state from the BIOS.
1950 *
1951 * If the pipe is not running, play safe and
1952 * wait for the clocks to stabilise before
1953 * continuing.
1954 */
1955 POSTING_READ(intel_dp->output_reg);
1956 msleep(50);
1957 } else
1958 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1959 }
1960
1961 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1962 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1963 POSTING_READ(intel_dp->output_reg);
1964 msleep(intel_dp->panel_power_down_delay);
1965 }
1966
1967 static bool
1968 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1969 {
1970 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1971 sizeof(intel_dp->dpcd)) &&
1972 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1973 return true;
1974 }
1975
1976 return false;
1977 }
1978
1979 static void
1980 intel_dp_probe_oui(struct intel_dp *intel_dp)
1981 {
1982 u8 buf[3];
1983
1984 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1985 return;
1986
1987 ironlake_edp_panel_vdd_on(intel_dp);
1988
1989 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1990 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1991 buf[0], buf[1], buf[2]);
1992
1993 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1994 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1995 buf[0], buf[1], buf[2]);
1996
1997 ironlake_edp_panel_vdd_off(intel_dp, false);
1998 }
1999
2000 static bool
2001 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2002 {
2003 int ret;
2004
2005 ret = intel_dp_aux_native_read_retry(intel_dp,
2006 DP_DEVICE_SERVICE_IRQ_VECTOR,
2007 sink_irq_vector, 1);
2008 if (!ret)
2009 return false;
2010
2011 return true;
2012 }
2013
2014 static void
2015 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2016 {
2017 /* NAK by default */
2018 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2019 }
2020
2021 /*
2022 * According to DP spec
2023 * 5.1.2:
2024 * 1. Read DPCD
2025 * 2. Configure link according to Receiver Capabilities
2026 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2027 * 4. Check link status on receipt of hot-plug interrupt
2028 */
2029
2030 static void
2031 intel_dp_check_link_status(struct intel_dp *intel_dp)
2032 {
2033 u8 sink_irq_vector;
2034 u8 link_status[DP_LINK_STATUS_SIZE];
2035
2036 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2037 return;
2038
2039 if (!intel_dp->base.base.crtc)
2040 return;
2041
2042 /* Try to read receiver status if the link appears to be up */
2043 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2044 intel_dp_link_down(intel_dp);
2045 return;
2046 }
2047
2048 /* Now read the DPCD to see if it's actually running */
2049 if (!intel_dp_get_dpcd(intel_dp)) {
2050 intel_dp_link_down(intel_dp);
2051 return;
2052 }
2053
2054 /* Try to read the source of the interrupt */
2055 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2056 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2057 /* Clear interrupt source */
2058 intel_dp_aux_native_write_1(intel_dp,
2059 DP_DEVICE_SERVICE_IRQ_VECTOR,
2060 sink_irq_vector);
2061
2062 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2063 intel_dp_handle_test_request(intel_dp);
2064 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2065 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2066 }
2067
2068 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2069 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2070 drm_get_encoder_name(&intel_dp->base.base));
2071 intel_dp_start_link_train(intel_dp);
2072 intel_dp_complete_link_train(intel_dp);
2073 }
2074 }
2075
2076 static enum drm_connector_status
2077 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2078 {
2079 if (intel_dp_get_dpcd(intel_dp))
2080 return connector_status_connected;
2081 return connector_status_disconnected;
2082 }
2083
2084 static enum drm_connector_status
2085 ironlake_dp_detect(struct intel_dp *intel_dp)
2086 {
2087 enum drm_connector_status status;
2088
2089 /* Can't disconnect eDP, but you can close the lid... */
2090 if (is_edp(intel_dp)) {
2091 status = intel_panel_detect(intel_dp->base.base.dev);
2092 if (status == connector_status_unknown)
2093 status = connector_status_connected;
2094 return status;
2095 }
2096
2097 return intel_dp_detect_dpcd(intel_dp);
2098 }
2099
2100 static enum drm_connector_status
2101 g4x_dp_detect(struct intel_dp *intel_dp)
2102 {
2103 struct drm_device *dev = intel_dp->base.base.dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 uint32_t bit;
2106
2107 switch (intel_dp->output_reg) {
2108 case DP_B:
2109 bit = DPB_HOTPLUG_LIVE_STATUS;
2110 break;
2111 case DP_C:
2112 bit = DPC_HOTPLUG_LIVE_STATUS;
2113 break;
2114 case DP_D:
2115 bit = DPD_HOTPLUG_LIVE_STATUS;
2116 break;
2117 default:
2118 return connector_status_unknown;
2119 }
2120
2121 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2122 return connector_status_disconnected;
2123
2124 return intel_dp_detect_dpcd(intel_dp);
2125 }
2126
2127 static struct edid *
2128 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2129 {
2130 struct intel_dp *intel_dp = intel_attached_dp(connector);
2131 struct edid *edid;
2132 int size;
2133
2134 if (is_edp(intel_dp)) {
2135 if (!intel_dp->edid)
2136 return NULL;
2137
2138 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2139 edid = kmalloc(size, GFP_KERNEL);
2140 if (!edid)
2141 return NULL;
2142
2143 memcpy(edid, intel_dp->edid, size);
2144 return edid;
2145 }
2146
2147 edid = drm_get_edid(connector, adapter);
2148 return edid;
2149 }
2150
2151 static int
2152 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2153 {
2154 struct intel_dp *intel_dp = intel_attached_dp(connector);
2155 int ret;
2156
2157 if (is_edp(intel_dp)) {
2158 drm_mode_connector_update_edid_property(connector,
2159 intel_dp->edid);
2160 ret = drm_add_edid_modes(connector, intel_dp->edid);
2161 drm_edid_to_eld(connector,
2162 intel_dp->edid);
2163 connector->display_info.raw_edid = NULL;
2164 return intel_dp->edid_mode_count;
2165 }
2166
2167 ret = intel_ddc_get_modes(connector, adapter);
2168 return ret;
2169 }
2170
2171
2172 /**
2173 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2174 *
2175 * \return true if DP port is connected.
2176 * \return false if DP port is disconnected.
2177 */
2178 static enum drm_connector_status
2179 intel_dp_detect(struct drm_connector *connector, bool force)
2180 {
2181 struct intel_dp *intel_dp = intel_attached_dp(connector);
2182 struct drm_device *dev = intel_dp->base.base.dev;
2183 enum drm_connector_status status;
2184 struct edid *edid = NULL;
2185
2186 intel_dp->has_audio = false;
2187
2188 if (HAS_PCH_SPLIT(dev))
2189 status = ironlake_dp_detect(intel_dp);
2190 else
2191 status = g4x_dp_detect(intel_dp);
2192
2193 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2194 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2195 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2196 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2197
2198 if (status != connector_status_connected)
2199 return status;
2200
2201 intel_dp_probe_oui(intel_dp);
2202
2203 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2204 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2205 } else {
2206 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2207 if (edid) {
2208 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2209 connector->display_info.raw_edid = NULL;
2210 kfree(edid);
2211 }
2212 }
2213
2214 return connector_status_connected;
2215 }
2216
2217 static int intel_dp_get_modes(struct drm_connector *connector)
2218 {
2219 struct intel_dp *intel_dp = intel_attached_dp(connector);
2220 struct drm_device *dev = intel_dp->base.base.dev;
2221 struct drm_i915_private *dev_priv = dev->dev_private;
2222 int ret;
2223
2224 /* We should parse the EDID data and find out if it has an audio sink
2225 */
2226
2227 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2228 if (ret) {
2229 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2230 struct drm_display_mode *newmode;
2231 list_for_each_entry(newmode, &connector->probed_modes,
2232 head) {
2233 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2234 intel_dp->panel_fixed_mode =
2235 drm_mode_duplicate(dev, newmode);
2236 break;
2237 }
2238 }
2239 }
2240 return ret;
2241 }
2242
2243 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2244 if (is_edp(intel_dp)) {
2245 /* initialize panel mode from VBT if available for eDP */
2246 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2247 intel_dp->panel_fixed_mode =
2248 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2249 if (intel_dp->panel_fixed_mode) {
2250 intel_dp->panel_fixed_mode->type |=
2251 DRM_MODE_TYPE_PREFERRED;
2252 }
2253 }
2254 if (intel_dp->panel_fixed_mode) {
2255 struct drm_display_mode *mode;
2256 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2257 drm_mode_probed_add(connector, mode);
2258 return 1;
2259 }
2260 }
2261 return 0;
2262 }
2263
2264 static bool
2265 intel_dp_detect_audio(struct drm_connector *connector)
2266 {
2267 struct intel_dp *intel_dp = intel_attached_dp(connector);
2268 struct edid *edid;
2269 bool has_audio = false;
2270
2271 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2272 if (edid) {
2273 has_audio = drm_detect_monitor_audio(edid);
2274
2275 connector->display_info.raw_edid = NULL;
2276 kfree(edid);
2277 }
2278
2279 return has_audio;
2280 }
2281
2282 static int
2283 intel_dp_set_property(struct drm_connector *connector,
2284 struct drm_property *property,
2285 uint64_t val)
2286 {
2287 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2288 struct intel_dp *intel_dp = intel_attached_dp(connector);
2289 int ret;
2290
2291 ret = drm_connector_property_set_value(connector, property, val);
2292 if (ret)
2293 return ret;
2294
2295 if (property == dev_priv->force_audio_property) {
2296 int i = val;
2297 bool has_audio;
2298
2299 if (i == intel_dp->force_audio)
2300 return 0;
2301
2302 intel_dp->force_audio = i;
2303
2304 if (i == HDMI_AUDIO_AUTO)
2305 has_audio = intel_dp_detect_audio(connector);
2306 else
2307 has_audio = (i == HDMI_AUDIO_ON);
2308
2309 if (has_audio == intel_dp->has_audio)
2310 return 0;
2311
2312 intel_dp->has_audio = has_audio;
2313 goto done;
2314 }
2315
2316 if (property == dev_priv->broadcast_rgb_property) {
2317 if (val == !!intel_dp->color_range)
2318 return 0;
2319
2320 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2321 goto done;
2322 }
2323
2324 return -EINVAL;
2325
2326 done:
2327 if (intel_dp->base.base.crtc) {
2328 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2329 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2330 crtc->x, crtc->y,
2331 crtc->fb);
2332 }
2333
2334 return 0;
2335 }
2336
2337 static void
2338 intel_dp_destroy(struct drm_connector *connector)
2339 {
2340 struct drm_device *dev = connector->dev;
2341
2342 if (intel_dpd_is_edp(dev))
2343 intel_panel_destroy_backlight(dev);
2344
2345 drm_sysfs_connector_remove(connector);
2346 drm_connector_cleanup(connector);
2347 kfree(connector);
2348 }
2349
2350 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2351 {
2352 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2353
2354 i2c_del_adapter(&intel_dp->adapter);
2355 drm_encoder_cleanup(encoder);
2356 if (is_edp(intel_dp)) {
2357 kfree(intel_dp->edid);
2358 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2359 ironlake_panel_vdd_off_sync(intel_dp);
2360 }
2361 kfree(intel_dp);
2362 }
2363
2364 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2365 .dpms = intel_dp_dpms,
2366 .mode_fixup = intel_dp_mode_fixup,
2367 .prepare = intel_dp_prepare,
2368 .mode_set = intel_dp_mode_set,
2369 .commit = intel_dp_commit,
2370 };
2371
2372 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2373 .dpms = drm_helper_connector_dpms,
2374 .detect = intel_dp_detect,
2375 .fill_modes = drm_helper_probe_single_connector_modes,
2376 .set_property = intel_dp_set_property,
2377 .destroy = intel_dp_destroy,
2378 };
2379
2380 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2381 .get_modes = intel_dp_get_modes,
2382 .mode_valid = intel_dp_mode_valid,
2383 .best_encoder = intel_best_encoder,
2384 };
2385
2386 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2387 .destroy = intel_dp_encoder_destroy,
2388 };
2389
2390 static void
2391 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2392 {
2393 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2394
2395 intel_dp_check_link_status(intel_dp);
2396 }
2397
2398 /* Return which DP Port should be selected for Transcoder DP control */
2399 int
2400 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2401 {
2402 struct drm_device *dev = crtc->dev;
2403 struct intel_encoder *encoder;
2404
2405 for_each_encoder_on_crtc(dev, crtc, encoder) {
2406 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2407
2408 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2409 intel_dp->base.type == INTEL_OUTPUT_EDP)
2410 return intel_dp->output_reg;
2411 }
2412
2413 return -1;
2414 }
2415
2416 /* check the VBT to see whether the eDP is on DP-D port */
2417 bool intel_dpd_is_edp(struct drm_device *dev)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 struct child_device_config *p_child;
2421 int i;
2422
2423 if (!dev_priv->child_dev_num)
2424 return false;
2425
2426 for (i = 0; i < dev_priv->child_dev_num; i++) {
2427 p_child = dev_priv->child_dev + i;
2428
2429 if (p_child->dvo_port == PORT_IDPD &&
2430 p_child->device_type == DEVICE_TYPE_eDP)
2431 return true;
2432 }
2433 return false;
2434 }
2435
2436 static void
2437 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2438 {
2439 intel_attach_force_audio_property(connector);
2440 intel_attach_broadcast_rgb_property(connector);
2441 }
2442
2443 void
2444 intel_dp_init(struct drm_device *dev, int output_reg)
2445 {
2446 struct drm_i915_private *dev_priv = dev->dev_private;
2447 struct drm_connector *connector;
2448 struct intel_dp *intel_dp;
2449 struct intel_encoder *intel_encoder;
2450 struct intel_connector *intel_connector;
2451 const char *name = NULL;
2452 int type;
2453
2454 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2455 if (!intel_dp)
2456 return;
2457
2458 intel_dp->output_reg = output_reg;
2459 intel_dp->dpms_mode = -1;
2460
2461 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2462 if (!intel_connector) {
2463 kfree(intel_dp);
2464 return;
2465 }
2466 intel_encoder = &intel_dp->base;
2467
2468 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2469 if (intel_dpd_is_edp(dev))
2470 intel_dp->is_pch_edp = true;
2471
2472 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2473 type = DRM_MODE_CONNECTOR_eDP;
2474 intel_encoder->type = INTEL_OUTPUT_EDP;
2475 } else {
2476 type = DRM_MODE_CONNECTOR_DisplayPort;
2477 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2478 }
2479
2480 connector = &intel_connector->base;
2481 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2482 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2483
2484 connector->polled = DRM_CONNECTOR_POLL_HPD;
2485
2486 if (output_reg == DP_B || output_reg == PCH_DP_B)
2487 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2488 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2489 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2490 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2491 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2492
2493 if (is_edp(intel_dp)) {
2494 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2495 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2496 ironlake_panel_vdd_work);
2497 }
2498
2499 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2500
2501 connector->interlace_allowed = true;
2502 connector->doublescan_allowed = 0;
2503
2504 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2505 DRM_MODE_ENCODER_TMDS);
2506 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2507
2508 intel_connector_attach_encoder(intel_connector, intel_encoder);
2509 drm_sysfs_connector_add(connector);
2510
2511 /* Set up the DDC bus. */
2512 switch (output_reg) {
2513 case DP_A:
2514 name = "DPDDC-A";
2515 break;
2516 case DP_B:
2517 case PCH_DP_B:
2518 dev_priv->hotplug_supported_mask |=
2519 DPB_HOTPLUG_INT_STATUS;
2520 name = "DPDDC-B";
2521 break;
2522 case DP_C:
2523 case PCH_DP_C:
2524 dev_priv->hotplug_supported_mask |=
2525 DPC_HOTPLUG_INT_STATUS;
2526 name = "DPDDC-C";
2527 break;
2528 case DP_D:
2529 case PCH_DP_D:
2530 dev_priv->hotplug_supported_mask |=
2531 DPD_HOTPLUG_INT_STATUS;
2532 name = "DPDDC-D";
2533 break;
2534 }
2535
2536 /* Cache some DPCD data in the eDP case */
2537 if (is_edp(intel_dp)) {
2538 struct edp_power_seq cur, vbt;
2539 u32 pp_on, pp_off, pp_div;
2540
2541 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2542 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2543 pp_div = I915_READ(PCH_PP_DIVISOR);
2544
2545 if (!pp_on || !pp_off || !pp_div) {
2546 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2547 intel_dp_encoder_destroy(&intel_dp->base.base);
2548 intel_dp_destroy(&intel_connector->base);
2549 return;
2550 }
2551
2552 /* Pull timing values out of registers */
2553 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2554 PANEL_POWER_UP_DELAY_SHIFT;
2555
2556 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2557 PANEL_LIGHT_ON_DELAY_SHIFT;
2558
2559 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2560 PANEL_LIGHT_OFF_DELAY_SHIFT;
2561
2562 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2563 PANEL_POWER_DOWN_DELAY_SHIFT;
2564
2565 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2566 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2567
2568 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2569 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2570
2571 vbt = dev_priv->edp.pps;
2572
2573 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2574 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2575
2576 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2577
2578 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2579 intel_dp->backlight_on_delay = get_delay(t8);
2580 intel_dp->backlight_off_delay = get_delay(t9);
2581 intel_dp->panel_power_down_delay = get_delay(t10);
2582 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2583
2584 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2585 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2586 intel_dp->panel_power_cycle_delay);
2587
2588 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2589 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2590 }
2591
2592 intel_dp_i2c_init(intel_dp, intel_connector, name);
2593
2594 if (is_edp(intel_dp)) {
2595 bool ret;
2596 struct edid *edid;
2597
2598 ironlake_edp_panel_vdd_on(intel_dp);
2599 ret = intel_dp_get_dpcd(intel_dp);
2600 ironlake_edp_panel_vdd_off(intel_dp, false);
2601
2602 if (ret) {
2603 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2604 dev_priv->no_aux_handshake =
2605 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2606 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2607 } else {
2608 /* if this fails, presume the device is a ghost */
2609 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2610 intel_dp_encoder_destroy(&intel_dp->base.base);
2611 intel_dp_destroy(&intel_connector->base);
2612 return;
2613 }
2614
2615 ironlake_edp_panel_vdd_on(intel_dp);
2616 edid = drm_get_edid(connector, &intel_dp->adapter);
2617 if (edid) {
2618 drm_mode_connector_update_edid_property(connector,
2619 edid);
2620 intel_dp->edid_mode_count =
2621 drm_add_edid_modes(connector, edid);
2622 drm_edid_to_eld(connector, edid);
2623 intel_dp->edid = edid;
2624 }
2625 ironlake_edp_panel_vdd_off(intel_dp, false);
2626 }
2627
2628 intel_encoder->hot_plug = intel_dp_hot_plug;
2629
2630 if (is_edp(intel_dp)) {
2631 dev_priv->int_edp_connector = connector;
2632 intel_panel_setup_backlight(dev);
2633 }
2634
2635 intel_dp_add_properties(intel_dp, connector);
2636
2637 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2638 * 0xd. Failure to do so will result in spurious interrupts being
2639 * generated on the port when a cable is not attached.
2640 */
2641 if (IS_G4X(dev) && !IS_GM45(dev)) {
2642 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2643 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2644 }
2645 }
This page took 0.167454 seconds and 6 git commands to generate.